
www.allitebooks.com

http://www.allitebooks.org

GWT in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

GWT in Action
EASY AJAX WITH THE GOOGLE WEB TOOLKIT

ROBERT HANSON
ADAM TACY

M A N N I N G

Greenwich
(74° w. long.)

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2007 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
Sound View Court 3B Typesetters: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-933988-23-1
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08 07

www.allitebooks.com

http://www.allitebooks.org

 To my son, David

 Thank you for letting me shorten playtime so many times,

 so that Daddy could work on his book.

 —RH

 To my parents

 Everything I have achieved is because of something you did for me.

 Thank you.

 —AT

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

brief contents
PART 1 GETTING STARTED ...1

1 ■ Introducing GWT 3

2 ■ Creating the default application 38

3 ■ Advancing to your own application 64

PART 2 BUILDING USER INTERFACES107

4 ■ Working with widgets 109

5 ■ Working with panels 157

6 ■ Handling events 192

7 ■ Creating composite widgets 246

8 ■ Building JSNI components 277

9 ■ Modularizing an application 317

PART 3 ADVANCED TECHNIQUES ...345

10 ■ Communicating with GWT-RPC 347

11 ■ Examining client-side RPC architecture 375

12 ■ Classic Ajax and HTML forms 409

www.allitebooks.com

http://www.allitebooks.org

viii BRIEF CONTENTS

13 ■ Achieving interoperability with JSON 442

14 ■ Automatically generating new code 471

15 ■ Changing applications based on GWT properties 494

PART 4 COMPLETING THE UNDERSTANDING525

16 ■ Testing and deploying GWT applications 527

17 ■ Peeking into how GWT works 555

www.allitebooks.com

http://www.allitebooks.org

ix

contents
preface xix
acknowledgments xxi
about this book xxiii
about the title xxx
about the cover illustration xxxi

PART 1 GETTING STARTED ..1

1 Introducing GWT 3

1.1 A walk through GWT 5
Explaining GWT's Java-to-JavaScript compiler 6 ■ Using JSNI
to execute JavaScript from Java 8 ■ Accessing the JRE emulation
library 10 ■ Understanding GWT's widget and panel
library 12 ■ Examining GWT’s internationalization and
configuration tools 14 ■ Calling remote procedures with
GWT 16 ■ Investigating GWT’s XML parser 20 ■

Managing the browser history 21 ■ Introducing GWT’s
JUnit integration 22

1.2 GWT vs. other solutions 23
GWT vs. Swing 25 ■ GWT vs. Echo2 26 ■ GWT vs.
JavaServer Faces 27 ■ GWT vs. Ruby on Rails 29

www.allitebooks.com

http://www.allitebooks.org

x CONTENTS

1.3 Building your first GWT application 30
Building and running an example application 30
Building Tic-Tac-Toe with GWT 32

1.4 Summary 37

2 Creating the default application 38

2.1 The GWT application development lifecycle 39

2.2 Stage 1: Creating a GWT application 44
Creating the project 47 ■ Creating an application 50
Setting up internationalization 54 ■ Implementing
internationalization 56 ■ Creating unit test
cases 57 ■ Importing into your IDE 59

2.3 Summary 63

3 Advancing to your own application 64

3.1 Describing the application example 65

3.2 Stage 2: Developing your application 67
Implementing internationalization 68 ■ Constructing the
application 72 ■ Applying styling 83

3.3 Stage 3: Testing and debugging in hosted mode 86
Preparing for hosted mode 86 ■ Running the Dashboard in
hosted mode 90 ■ Debugging the Dashboard in hosted mode
through Eclipse 92

3.4 Stage 4: Compiling the code 94
Compiling the code/preparing for web mode 95
Viewing the compilation results 97

3.5 Stage 5: Deploying the code 98
Deploying to a web server 98 ■ Deploying to a filesystem 99

3.6 Stage 6: Running in web mode 99

3.7 Implementing application logging 100
Logging information on the client-side 100
Logging information on the server-side 103

3.8 Summary 104

CONTENTS xi

PART 2 BUILDING USER INTERFACES107

4 Working with widgets 109

4.1 What is a widget? 111
Using widgets as Java objects 112
Considering widgets as DOM elements 113

4.2 The standard GWT widgets 115
Interacting with the basic widgets 118 ■ Displaying text on the
application 131 ■ Grabbing the user’s interaction using focus
widgets 133 ■ Getting user input through text input 139

4.3 Creating new widgets 141
Creating new widgets by manipulating the DOM 142
Creating new widgets by extending existing widgets 146

4.4 Developing the Dashboard’s ToggleMenuItem

widget 150
Building the TwoComponentMenuItem 151
Building the ToggleMenuItem 154

4.5 Summary 155

5 Working with panels 157

5.1 What is a panel? 158
Using panels as Java Objects 159
Considering panels as DOM elements 160

5.2 The standard GWT panels 162
Interacting with simple panels 164 ■ Considering more
complex panels 170 ■ Considering HTML table-based
panels 178 ■ Considering composite panels 181
Splitting panels 182

5.3 Creating new panels 182
Creating a new panel from scratch 183
Creating a new panel by extending an existing panel 186

5.4 Creating the Dashboard panel 187

5.5 Summary 191

xii CONTENTS

6 Handling events 192

6.1 Exploring events 193
Identifying event model browser differences 195
Understanding the GWT event model 196

6.2 Listening to events 200
Sinking events 200 ■ Managing sunk events with the
onBrowserEvent() method 203 ■ Linking sunk events
to the onBrowserEvent() method 207 ■ Previewing
events 208 ■ Handling events by extending the listener
classes 211 ■ Moving events further into your GWT
code 212 ■ Preventing default browser event handling 216

6.3 Handling standard browser events 216
Reacting to change 218 ■ Clicking around 221 ■ Gaining/
Losing focus 222 ■ Capturing keyboard inputs 223
Loading images 223 ■ Managing mouse
inputs 224 ■ Scrolling 224 ■ Window resize
events 226 ■ Window close events 227

6.4 Handling other event types 231
Handling forms 231 ■ Reacting to closing pop-ups 231 ■ Tab
events 232 ■ Tabling events 234 ■ Tree events 235

6.5 Implementing drag-and-drop 236
Implementing the drag part 236
Implementing the drop part 241

6.6 Summary 244

7 Creating composite widgets 246

7.1 What is a composite widget? 247

7.2 Composite widget development steps 248

7.3 Building the editable label 250
Step 1: Identifying the components 251 ■ Step 2: Choosing the
panel layout and structure 253 ■ Step 3: Implementing the right
GWT Java interfaces 255 ■ Step 4: Building the composite
widget 258 ■ Step 5: Styling the composite widget 267

7.4 Creating a composite widget from other

 composite widgets 269
Creating a slider 270 ■ Constructing the ColourPicker composite 273

CONTENTS xiii

7.5 Creating the Dashboard composite 274

7.6 Summary 276

8 Building JSNI components 277

8.1 Introducing JavaScript Native Interface (JSNI) 279
Understanding JSNI 281

8.2 Communicating using JSNI 290
Chatting to the browser via GWT Java 291 ■ Chatting to the
browser via JavaScript 292 ■ Talking to a GWT application via a
JavaScript API 294 ■ Talking between GWT applications 296

8.3 Loading a JavaScript library 299
Using HTML to load a JavaScript library 299
Using the module XML to load a JavaScript library 299

8.4 Wrapping a simple JavaScript library 300
Accessing the loaded JavaScript library 302
Using the widget in an application 307

8.5 Wrapping a complex JavaScript library 309
Generating the classes 309 ■ Keeping JavaScript objects
as Java objects 310 ■ Calling user-defined code from a
library 312 ■ Using a complex wrapped widget in
an application 314

8.6 Summary 315

9 Modularizing an application 317

9.1 Creating a modularization structure 318
Modularization in GWT 319 ■ Including other
modules in an application 321 ■ Setting source and
other resource paths 325 ■ Defining an application’s
server resources 326 ■ Managing an application’s
GWT properties 327 ■ Replacing classes based on
property values 332 ■ Registering generators in the
XML module file 333 ■ Injecting resources into an
application at runtime 334 ■ Setting an application's
 entry point 337 ■ The Dashboard’s
module XML file 337

9.2 Including third-party modules 339

xiv CONTENTS

9.3 Packaging your own modules 341

9.4 Creating the Java package structure 343

9.5 Summary 344

PART 3 ADVANCED TECHNIQUES345

10 Communicating with GWT-RPC 347

10.1 Underlying RPC concepts 348
Understanding asynchronous communication 350 ■ Restrictions
for communicating with remote servers 351 ■ Creating the Server
Status project 353

10.2 Implementing GWT-RPC 356
Understanding serializable data objects 356 ■ Defining the GWT-
RPC service 360 ■ Preparing the client side of a GWT-RPC
call 366 ■ Calling the remote server service 368

10.3 Project summary 370
Project overview 370 ■ Server-side service implementation 371
Calling the service from the client 372

10.4 Summary 374

11 Examining client-side RPC architecture 375

11.1 Structuring the client code 376
Encapsulating the Server Status component 376 ■ Encapsulating
remote calls in a façade 382 ■ Callback routine using the
Command pattern 384

11.2 Examining different polling techniques 392
Understanding polling issues 392 ■ Implementing a continuously
updating component 393 ■ Emulating server-push by blocking
server threads 398

11.3 Writing custom field serializers 402
Creating a custom field serializer class 403
Implementing custom field serialization 404

11.4 Summary 407

CONTENTS xv

12 Classic Ajax and HTML forms 409

12.1 Classic Ajax with RequestBuilder 410
Examining HTTP methods 411 ■ Simple RPC with
RequestBuilder 414 ■ Using RequestBuilder to load
XML data 417

12.2 Examining FormPanel basics 424
Introducing the FormPanel 425 ■ Listening to FormPanel
events 428 ■ Altering the FormPanel target 429 ■ Using the
various form controls 432

12.3 Summary 439

13 Achieving interoperability with JSON 442

13.1 Introducing JavaScript Object Notation (JSON) 443
Understanding the JSON data format 443
Using JSONParser to parse JSON messages 445

13.2 Examining GWT’s JSON data objects 445
Introducing the JSONValue object 445 ■ Examining basic JSON
types 446 ■ Storing JSONValue objects in a JSONArray 448
Collecting JSONValue objects in a JSONObject 449

13.3 Creating a search component using JSON 450
Examining the Yahoo Search API 451 ■ Implementing the Yahoo
search component 453 ■ Sending JSON data to the server 455
Parsing and validating a JSON server response 457

13.4 Implementing a Yahoo Search proxy service 461
Using JSON with Java on the server 461 ■ Using JSON with Perl
on the server 465 ■ Using JSON with Ruby on the server 467

13.5 Summary 469

14 Automatically generating new code 471

14.1 Generating new types 472

14.2 Investigating GWT generators 473
Basic generator code 476

xvi CONTENTS

14.3 Creating a generator for the Dashboard 477
Accessing the input class 478 ■ Accessing properties of the
context 479 ■ Adding logging to a generator 480 ■ Generating
the new type structure 482 ■ Creating the new class 484
Using the classes that have been generated 491

14.4 Summary 492

15 Changing applications based on GWT properties 494

15.1 Quick summary of properties 495

15.2 Managing browser differences 496
How GWT manages browser differences 497 ■ Building the Flash
widget 498 ■ Setting up the property replacement 501

15.3 Supporting internationalization in full 502
Using static-string internationalization 503
Using dynamic string internationalization 516

15.4 Altering the application for the locale 518
Implementing the default component 518
Locale-specific classes 519

15.5 Implementing user-defined properties 520
Defining user-specified properties 521 ■ Defining a user-specified
property provider 521 ■ Checking the provided property
value 522 ■ Building the code 522

15.6 Summary 523

 PART 4 COMPLETING THE UNDERSTANDING525

16 Testing and deploying GWT applications 527

16.1 Testing GWT code using JUnit 528
Overview of JUnit for GWT developers 529 ■ Creating a new test
case 534 ■ Testing asynchronous code 537

16.2 Deploying GWT applications 539
Organizing your project 540 ■ Installing RPC servlets 548

16.3 Summary 554

CONTENTS xvii

17 Peeking into how GWT works 555

17.1 Examining the compilation process and output 556
Investigating compilation 556 ■ Examining the output 559

17.2 The GWT application-loading mechanism 564
Legacy applications 565 ■ Standard applications 566
Bootstrapping the standard application 567
Cross-script applications 572

17.3 Compiling Java to JavaScript 573
Exploring the produced JavaScript 573 ■ Reviewing
standard Java objects: the vector object 574 ■ Exploring
program code as JavaScript 576 ■ Understanding the
initialization code segment 578

17.4 Summary 579

index 581

xix

preface
In the middle of 2005, we noticed that something was different. The Web had
reinvented itself, and terms like Ajax and Web 2.0 were being created to help
define the new technologies and ideas. JavaScript tools like Scriptaculous, Proto-
type, and DWR were entering the scene, making it much easier to use JavaScript
for interactive interfaces and making Ajax easier to employ. At the same time,
Ajax applications, such as Flickr and Google Mail, were beginning to revolutionize
the way users expected to use the Web.

 We experimented with the new JavaScript libraries, but developing applications
seemed more difficult than it needed to be. We also had difficulty seeing how to
effectively manage a project using JavaScript—we were used to the ease of develop-
ment that comes with typed languages, testing, and powerful IDEs with debugging
capabilities. Sure, you can manage a successful JavaScript project, but the need to
develop and maintain several different versions of code for differing browsers is a
headache. Also, in our experience, it isn’t easy to find enough JavaScript develop-
ers who are aware of the necessary browser issues and nuances and who are also at
a sufficient comfort level with production quality development processes to deliver
a large project (compared to the number of Java programmers).

 In May 2006, a news item from the JavaOne conference announced the Goo-
gle Web Toolkit. It was described as a toolkit that let you write client-side code in
Java and compile it to JavaScript. It was like Christmas, and we hurried to down-
load and exploit these new toys.

www.allitebooks.com

http://www.allitebooks.org

xx PREFACE

 We were early adopters, quickly joining in with the rest of the GWT community
in test-driving this new tool. Each day, developers posted to the developers’ list the
source code of widgets they had created. Everyone was trying to show what they
could do and share their code with others. This led Robert to start the GWT Wid-
get Library project on SourceForge. Before long, we were working together on
the code for Adam’s EditableLabel for the GWT Widget Library. We worked well
together, and we shared a huge enthusiasm for this new technology. When Man-
ning asked if we would write a book, we jumped at the chance to share everything
we had learned to date.

 To paraphrase the first few paragraphs of this book, instead of taking tools to
the Ajax space, Google has taken Ajax to the tools. We can now use fully fledged
IDEs, and GWT manages all the messing around associated with browser differ-
ences. Just as important is the fact that by using Java and all the normal Java tools
(IDEs, Ant, Maven, and so on), GWT fits into our development processes as a hand
does into a glove, plus it supports internationalization and unit testing right out of
the box.

 Let’s be clear: GWT won’t solve every problem you have when it comes to creat-
ing Ajax applications, and some elements could be improved (now that it’s open
source, it can only get better). But GWT takes a massive step toward maturing the
process of creating and maintaining Ajax applications. We finish the book with the
following statement, which sums up our view of GWT: “…we don’t even want to
think about the amount of effort that would be required to program, let alone
debug, any issues or perform maintenance across six different browsers for an
application such as the Dashboard (developed in this book) directly in JavaScript.”

 GWT has proven to be a viable alternative to pure JavaScript development.
Each major release of GWT brings new features; and month after month new
applications are being released by eager developers. We hope that through this
book, we can share our enthusiasm for GWT and make it easier for you to get the
most out of this technology.

xxi

acknowledgments
Although there are only two names on the cover, writing and producing this book
has been a tremendous undertaking by a large cast. We couldn’t have written this
book without them.

 We would like to begin our thanks with Michael Stephens from Manning for
getting this project started. We want to thank him for his honesty about how much
work this book would really be, and for his guidance and encouragement along
the way to get us through it. We couldn’t have done this book without you.

 We wish to thank Manning’s publisher, Marjan Bace, for green-lighting the
project and heading up a great team at Manning. Our thanks also go out to the
entire Manning team for helping us turn our rough ideas into a finished work
that goes far beyond what we could have accomplished on our own. This includes
the fantastic work done by Olivia DiFeterici, Gabriel Dobrescu, Christina Downs,
Leslie Haimes, Cynthia Kane, Dottie Marsico, Mary Piergies, Gordan Salinovic,
Maureen Spencer, Tiffany Taylor, Karen Tegtmeyer, Ron Tomich, and Megan
Yockey. Thanks to all of you for being part of the team.

 We also want to thank Phil Hanna, our technical editor. Phil is an accom-
plished author with several books under his belt, so we were elated when he
joined the team.

 We need to thank each and every reviewer for their comments. All of them
spent their free time to help us with our project, and for that we are grateful. Spe-
cial thanks to Julian Seidenberg, Mike Buksas, Denis Kurilenko, Bernard Farrell,
Deepak Vohra, Carlo Bottiglieri, Scott Stirling, Goldy Luka, Jeff Cunningham,

xxii ACKNOWLEDGMENTS

Eric Raymond, Andrew Grothe, Noel Rappin, Christopher Haupt, Benjamin Gor-
lick, Aleksey Nudelman, and Ernest Friedman-Hill.

 Last, and perhaps the most important contributor to this book, is everyone
from the GWT community. This book was in no small part guided by your ques-
tions and discussions on the GWT developers’ forum. This includes not only GWT
users, but also the entire GWT team at Google. Thank you all.

xxiii

about this book
The Google Web Toolkit (GWT) slashes through the issues that surround multi-
browser Ajax development. It moves the development lifecycle into the type-safe
language of Java while retaining the capability to access JavaScript and third-party
libraries. GWT offers the opportunity to develop your Ajax application once for
use in multiple browsers and configurations.

 GWT in Action aims to give you a solid foundation for developing GWT applica-
tions. It puts all the tools and development tasks into the context of typical appli-
cation development, ensuring that you can understand and avoid the problems
faced in GWT development. Throughout the book, the development of a Dash-
board application, together with various component applications for the Dash-
board, provides the mechanism we use to explain GWT concepts.

 We start by providing a solid background on the basics, looking at the tools
that are used and where they’re used in a typical development lifecycle. Then, we
consider widgets, panels, and events, discussing those provided by GWT and how
to create your own (leaning heavily on our experience from developing compo-
nents for the GWT Widget Library).

 Additionally, we tackle some of GWT’s more advanced aspects that are not cur-
rently documented in other publications, such as the following:

xxiv ABOUT THIS BOOK

■ Writing code that handles internalization and browser differences:
Why send IE and Firefox markup for Flash movies when you can send just
the appropriate one? And, how can you change the way applications work
based on locale as well as changing whole components of your application?

■ Driving alternatives in application functionality through GWT properties:
The Dashboard example comes in two flavors: Internet and intranet ver-
sions. Which one is shown to the user is driven by user-defined properties
that you’ll define and manage.

■ Harnessing the powerful GWT generator concept:
You’ll learn to introspect classes and tags in comments at compile time to
produce new Java classes.

■ Describing the development of composite objects:
You’ll see how to build the EditableLabel we built for the GWT Widget
Library. You’ll also construct new composite widgets using other composite
widgets—for example, building a complex color picker widget from a num-
ber of GWT slider widgets. Finally, you’ll learn how to apply CSS consistently
to components.

■ Integrating with JavaScript through the JavaScript Native Interface (JSNI):
We’ll discuss interapplication communication via JavaScript. You’ll build
wrappers to simple and complex third-party JavaScript libraries (such as the
Google Ajax Search component found in the GWT Widget Library).

Any substantial application requires server-side components, and many books can
tell you about all the server-side development techniques (Java, PHP, and so on)
for which GWT is highly flexible and which it can plug into. Our approach in GWT

in Action is to concentrate several chapters on ensuring you get a thorough under-
standing of GWT’s client-server communication techniques; for example:

■ JSON processing using proxy servers (the Yahoo Search component)

■ GWT-RPC: the technique, the problem, and the solutions (see the Server
Status component)

■ XML processing (used in the menu for the complete Dashboard applica-
tion)

■ Form handling, including uploading files

■ Using traditional Ajax communication

ABOUT THIS BOOK xxv

The key point is to get a good understanding of each approach in GWT so you see
the flexibility and can choose your server side appropriately (or, if your server side
is a given, so you thoroughly understand the technique you’ll be using).

 By the end of the book, you’ll understand how the Dashboard application
(http://dashboard.manning-sandbox.com) referred to throughout is archi-
tected, how it’s constructed, and how it works.

Who should read this book?

The book is aimed at anyone with an interest in GWT. We appreciate that the read-
ership will come from varied backgrounds—JavaScript programmers looking to
see what the fuss is all about, Java programmers learning that they can now pro-
gram Ajax applications simply, server-side developers interested in understanding
GWT-RPC, web designers looking to understand what this useful maturing of
development means to them, and many others.

 Readers looking for a gentle introduction to GWT concepts and components
will appreciate the easy way in which these topics are introduced. The book has
been particularly designed to reduce the large number of gotchas that are found
when you first look at GWT. More advanced readers will find that the book con-
tains many aspects you have perhaps thought of but not yet figured out how to
implement—and, we hope, a few you haven’t thought of!

 You should be familiar with the concept of Java classes and packages, although
we feel this is something you can pick up as you read the book, follow the code
samples, and use an IDE. A lot of GWT (and Java) issues revolve around classpaths
and GWT’s package structure, so we recommend a thorough reading of chapter 9
if you’re getting stuck.

Roadmap

Chapter 1 introduces GWT and examines where it sits in relation to complemen-
tary and competing technologies. It also shows how easy it is to get a first GWT
application up and running.

Chapter 2 provides a detailed understanding of the steps required to build the
default GWT application using the GWT command-line tools, indicating what each
tool is, why it’s used, and when you should use it. This chapter also discusses alter-
native approaches to creating your application, including by hand and by using
an IDE wizard.

xxvi ABOUT THIS BOOK

Chapter 3 is the first step you’ll take away from the default GWT application and
toward the initial version of the Dashboard. We’ll explain what default files you
need to change/replace and why.

Chapter 4 starts our discussion of standard GWT components. It looks at widgets,
but not in a textbook style. Using component applications from the running
Dashboard application, you’ll get insight into the use of key widgets from GWT.
The second part of the chapter looks at building your own widgets, including the
GWT Widget Libraries PNGImage widget and two widgets that extend the standard
MenuItem widget.

Chapter 5 covers panels, looking at how they’re used in the Dashboard and how to
extend and create your own panels—including the DashboardPanel used for the
Dashboard application components.

Chapter 6 introduces event handling as performed by GWT and explains how to
harness it for your own components. You’ll see how to handle new events for wid-
gets as well as plumb together the event handling for double-clicks and so on.

Chapter 7 finishes the four key aspects of GWT application components by thor-
oughly discussing the development of composite widgets. We lean on the Edita-
bleLabel, which has been around for nearly a year and is included in the GWT
Widget Library. You’ll also build some slider composite widgets, culminating in a
sliding color-picker widget.

Chapter 8 is where you’ll learn how to harness any JavaScript library you may have
and want to interact with. The GWT Widget Library includes a GWT widget that
wraps the Google Ajax Search functionality; you’ll learn how we built that compo-
nent as well as how to wrap the Google Video Search component.

Chapter 9 wraps up the direct user interface components included in the book.
You’ll learn the details of using the GWT module’s XML configuration file to,
among other things, inject resources, alter the project layout, invoke class replace-
ment and generation, and include server components. You’ll also see how to
include third-party GWT libraries, as well as how to create you own libraries of
GWT code.

Chapter 10 takes you into the world of GWT-RPC, where you’ll learn how to pass
Java objects between the web browser and your Java servlets.

ABOUT THIS BOOK xxvii

Chapter 11 expands on the previous chapter by showing you common usage pat-
terns and custom serialization for GWT-RPC. This include polling techniques,
including how to emulate server-push.

Chapter 12 looks at GWT’s support for classic Ajax and HTML forms. These tools
offer flexibility, allowing your GWT application to connect to any server-side appli-
cation. This chapter provides real-world examples for loading external configura-
tion data and using GWT to upload files to the server.

Chapter 13 finishes our discussion of client-server communication with GWT’s sup-
port of the JavaScript Object Notation (JSON) message format. We’ll explain what
JSON is and provide an example of using it to communicate with the Yahoo
Search API.

Chapter 14 looks at GWT’s powerful generators. You’ll learn how to build genera-
tors that introspect code at compile time to generate new subclasses with addi-
tional functionality. You’ll also see how these generators can promote comments
written in code to be displayed in dialogs to the user at runtime.

Chapter 15 rounds off the advanced techniques by thoroughly covering properties,
including internationalization both in the normal sense of changing text for
labels and menus, and so on, and also in terms of changing whole components of
your application based on the defined locale. You’ll also use properties to drive
the selection of the view that is presented to the user.

Chapter 16 shows you how to test your GWT code with JUnit and how to deploy
your finished application to the server. You’ll learn how to organize your deployed
code to reduce clutter on the server.

Chapter 17 completes the book by investigating the underlying mechanisms of
GWT, for those interested in delving a little deeper. You’ll see how bootstrapping
works (including the changes introduced by GWT 1.4), what your compiled code
should look like, and what the various output files produced by the compiler are
related to.

Code conventions and downloads

This book contains copious amounts of code and examples. The whole substantial
GWT application, called the Dashboard, is referred to throughout the book and is
available from www.manning.com/hanson or www.manning.com/GWTinAction.

http://www.manning.com/hanson
http://www.manning.com/GWTinAction

xxviii ABOUT THIS BOOK

The additional libraries that are used by the application code and that you need
to download separately are as follows:

■ JSON classes used in the server-side code, from http://JSON.org.

■ File upload server-side processing from Apache Commons (commons-
fileupload.jar, commons-io.jar, commons-codec.jar). Apache Commons is
at http://jakarta.apache.org/commons/.

■ The Apache Commons commons-httpclient component, which the proxy
server implementation used in one component relies on.

■ GWT Widget Library (http://gwt-widget.sourceforge.net/).

Source code in listings or in text is in a fixed-width font to separate it from
ordinary text. Additionally, Java method names, component parameters, object
properties, and HTML and XML elements and attributes in text are also presented
using fixed-width font. Java method names generally don’t include the signa-
ture (the list of parameter types).

 Java, HTML, and XML can all be verbose. In many cases, the original source
code (available online) has been reformatted, adding line breaks and reworking
indentation, to accommodate the available page space in the book. In rare cases,
even this wasn’t enough, and listings include line-continuation markers. Addition-
ally, comments in the source code have been removed from the listings.

 Code annotations accompany many of the source code listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that fol-
low the listing.

 GWT was originally a closed-source development program, but it’s now open-
source. You can download the binary packages for your platform (Windows,
Linux, Mac OX) from here: http://code.google.com/webtoolkit/versions.html.
If you’re interested in contributing to the platform or living on the bleeding edge
of development, then you can grab the source code from the SVN archive here:
http://code.google.com/webtoolkit/makinggwtbetter.html.

Author Online

The purchase of GWT in Action includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask techni-
cal questions, and receive help from the authors and from other users. To access
the forum and subscribe to it, point your web browser to www.manning.com/
GWTinAction or www.manning.com/hanson. This page provides information on

http://code.google.com/webtoolkit/makinggwtbetter.html
http://www.manning.com/GWTinAction
http://www.manning.com/GWTinAction

ABOUT THIS BOOK xxix

how to get on the forum once you are registered, what kind of help is available,
and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialogue between individual readers and between readers and the authors can
take place. It’s not a commitment to any specific amount of participation on the
part of the authors, whose contribution to the forum remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions lest
their interest stray! The Author Online forum and the archives of previous discus-
sions will be accessible from the publisher’s web site as long as the book is in print.

About the authors

ROBERT HANSON is a senior Internet engineer specializing in Java application devel-
opment and maintenance. Robert is the creator of the popular open source GWT

Widget Library found at http://gwt-widget.sourceforge.net and also maintains a blog
at http://roberthanson.blogspot.com where he talks about GWT and other topics
relating to the industry. You can contact him at iamroberthanson@gmail.com.

ADAM TACY works as a project manager at WM-data in the Nordics, specializing in
delivery of new/leading-edge projects while enjoying the associated risks and
need to establish repeatable processes. He was a (grateful) early adopter of GWT
and has contributed to the GWT Widget Library. In his spare time, you can find
him falling through ice, mishandling kite-surf equipment, and enjoying all things
Norwegian, Swedish, and Finnish while missing good old British bacon and beer.
You can contact him at adam.tacy@gmail.com.

www.allitebooks.com

mailto:adam.tacy@gmail.com
http://www.allitebooks.org

xxx

about the title
By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cogni-
tive science, the things people remember are things they discover during self-
motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, re-telling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action guide is that it
is example-driven. It encourages the reader to try things out, to play with new
code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just when
they want it. They need books that aid them in action. The books in this series are
designed for such readers.

xxxi

about the cover illustration
The figure on the cover of GWT in Action is a “Janissary in Ceremonial Dress.” Jan-
issaries were an elite corps of soldiers in the service of the Ottoman Empire, loyal
only to the Sultan. The illustration is taken from a collection of costumes of the
Ottoman Empire published on January 1, 1802, by William Miller of Old Bond
Street, London. The title page is missing from the collection and we have been
unable to track it down to date. The book’s table of contents identifies the figures
in both English and French, and each illustration bears the names of two artists who
worked on it, both of whom would no doubt be surprised to find their art gracing
the front cover of a computer programming book... two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an American
based in Ankara, Turkey, and the transaction took place just as he was packing up
his stand for the day. The Manning editor did not have on his person the substan-
tial amount of cash that was required for the purchase and a credit card and
check were both politely turned down. With the seller flying back to Ankara that
evening the situation was getting hopeless. What was the solution? It turned out to
be nothing more than an old-fashioned verbal agreement sealed with a hand-
shake. The seller simply proposed that the money be transferred to him by wire
and the editor walked out with the bank information on a piece of paper and the
portfolio of images under his arm. Needless to say, we transferred the funds the
next day, and we remain grateful and impressed by this unknown person’s trust in
one of us. It recalls something that might have happened a long time ago.

xxxii ABOUT THE COVER ILLUSTRATION

 The pictures from the Ottoman collection, like the other illustrations that
appear on our covers, bring to life the richness and variety of dress customs of two
centuries ago. They recall the sense of isolation and distance of that period—and
of every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional life
of two centuries ago‚ brought back to life by the pictures from this collection.

Part 1

Getting started

Part 1 introduces you to the Google Web Toolkit by providing an overview
of what the toolkit includes and how it compares to similar technologies. Fol-
lowing the introduction, this part of the book provides instruction for get-
ting your first GWT application up and running, using the GWT command-
line tools to generate skeleton code. Finally, we’ll take a detailed look at the
skeleton code and, more important, explain how to extend it.

3

Introducing GWT

This chapter covers

■ High-level overview of GWT’s toolset

■ Comparison of GWT to similar technologies

■ An example of a GWT application

4 CHAPTER 1

Introducing GWT

In May 2006, Google released the Google Web Toolkit (GWT), a set of develop-
ment tools, programming utilities, and widgets that let you create rich Internet
applications differently than you may have done before. The difference between
GWT and all those other frameworks is that with GWT you write your browser-side
code in Java instead of JavaScript. For those of us who rely on Java as a trusted
tool, this is a monumental difference over traditional JavaScript coding. It means
that besides gaining all the advantages of Java as a programming language, you
also get immediate access to a gazillion Java development tools that are already
available. Instead of trying to build a new tool to support the development of rich
Internet applications in JavaScript, Google has altered the paradigm, allowing
these applications to be written in Java, making use of tools that already exist.

 The need to write code in Java instead of JavaScript is rooted in the ever-
increasing size and complexity of rich Internet applications. Large applications
are difficult to manage, and Java was designed to make large application develop-
ment manageable. While bringing all of Java’s benefits to rich Internet applica-
tions, GWT still allows you to interact with existing JavaScript code. When you
embrace GWT, it doesn’t mean that you need to throw away all your old JavaScript
code: GWT makes every attempt to be flexible with regard to integration, allowing
it to integrate not only with existing JavaScript code, but also with your existing
server-side services.

 At the core of GWT is a Java-to-JavaScript compiler that produces code capable
of running on Internet Explorer, Firefox, Mozilla, Safari, and Opera. The com-
piler converts the Java syntax to JavaScript, utilizing JavaScript versions of com-
monly used Java classes like Vector, HashMap, and Date. The compiler can then
weave in JavaScript that you’ve referenced in your code, allowing you to utilize
popular libraries like Scriptaculous, JSCalendar, and TinyMCE.

 Beyond the compiler, GWT also includes a large library of widgets and panels,
making it effortless to build a web application that looks more like a desktop
application. The widget library includes the usual suspects like text boxes, drop-
down menus, and other form fields. In addition, it includes complex widgets
including a menu bar, tree control, dialog box, tab panel, stack panel, and others.

 When it comes to communication with the server, GWT has a tool for every job.
First, it includes several wrappers of varying complexity and capability around the
JavaScript XMLHttpRequest object, an object often associated with Asynchronous
JavaScript + XML (Ajax) development. Another tool provided by GWT is a set of
classes for supporting the JavaScript Object Notation (JSON) message format.
JSON is a popular message format known for its simplicity and widespread avail-
ability. GWT also provides some of its own special sauce in the form of a tool that

A walk through GWT 5

lets you send Java objects between the browser and server without the need to
translate them into an intermediate message format.

 These tools for communication allow you to access server-side services written
in any language, and make it possible to integrate with frameworks such as Java-
Server Faces (JSF), Spring, Struts, and Enterprise JavaBeans (EJBs). This flexibility
means GWT doesn’t make more work for you; instead, it allows you to continue to
use the same server-side tools you’re using today.

 But being able to write rich Internet applications in Java isn’t enough to make
them easier to write. Toward this end, GWT provides support for the JUnit testing
framework and a special hosted-mode browser that lets you develop and debug in
Java without ever needing to deploy your code to a server. This is a real time-saver!

 As you can see, GWT is a rich topic, and we still haven’t mentioned half of what
there is to cover. In this chapter, we begin the exploration of GWT gently, spend-
ing some time enumerating each of GWT’s major features that will be covered
throughout the book. Along the way, we provide short code snippets to help you
better understand how you’ll use the feature in practice.

 After exploring the main features of GWT, we’ll compare GWT to some of the
other toolkits. Our selection of frameworks for the comparisons is based on ques-
tions we’ve seen posed by non-GWT developers. Our hope is that by making these
comparisons, we can better explain what GWT is and what it isn’t. Again, we provide
code snippets for the purpose of comparison, but not quite a working application.

 At the end of chapter 1, we wrap up the tour by providing you with a complete,
working example application. This example will start you in the process of devel-
oping rich Internet applications with GWT. Let’s get down to business and find out
what GWT is all about, beginning with an overview of the primary features that
make this toolkit so useful to web application developers.

1.1 A walk through GWT

GWT provides a rich set of tools focused on solving the problem of moving the
desktop application into the browser, including a rich set of widgets and many
other tools. The GWT toolbox provides an XML parser, several tools for communi-
cating with the server, internationalization and configuration tools, and a browser-
history management system. Figure 1.1 provides a visual map of the central
aspects of GWT, each of which will be described in this section. In the figure, you
can see that the tools can be divided into those that are tied to the compiler, and
the Java libraries that make up the GWT API.

6 CHAPTER 1

Introducing GWT

We’ll cover each of these tools in turn beginning with the compiler, the most
important piece of the puzzle, along with the accompanying Java emulation
library. We’ll move on to provide information about the rich widget library and
show you how GWT lets you interface your new GWT code with your existing Java-
Script libraries. We’ll then hop over and examine GWT’s support for internation-
alization and see what Remote Procedure Call (RPC) services GWT has to offer for
communicating with server-side services. Finally, we’ll wrap up the examination by
looking at the XML parser API, browser-history management API, and close with a
strong dose of JUnit integration. By the end of this section, you should have a
good idea of what GWT is capable of, and we hope you’ll be as excited as we are
about this new technology.

 Our tour of the features in GWT will mimic the ordering you see in figure 1.1
from top to bottom and left to right. We’ll begin with the keystone of the diagram,
the Java-to-JavaScript compiler.

1.1.1 Explaining GWT's Java-to-JavaScript compiler

The most obvious place to start looking at what GWT provides is the one tool that
defines it: the compiler. The GWT compiler’s responsibility is to convert your Java
code into JavaScript code, in much the same way the Java compiler compiles your
Java code into bytecode. You compile your project by running the Java program

GWT

JRE

Emulation
JSNI

GWT API

Widgets

and Panels I18N RPC
XML

Parser

History

Mgmt.

JUnit

Integration

Java to JS

Compiler

Figure 1.1 GWT provides a comprehensive set of tools to meet the challenge of developing modern

rich Internet applications. From UI components to configuration tools to server communication

techniques, GWT’s tools help web apps look, act, and feel more like full-featured desktop apps.

A walk through GWT 7

com.google.gwt.dev.GWTCompiler, passing it the location of your module
definition file along with some other parameters. A module is a set of related Java
classes and files accompanied by a single configuration file. The module
definition typically includes an entry point, which is a class that executes when the
application starts.

 The compiler starts with the entry-point class, following dependencies
required to compile the Java code. The GWT compiler works differently than the
standard Java compiler because it doesn’t compile everything in the module; it
includes only what is being used. This is useful in that it lets you develop a large
library of supporting components and tools, and the compiler includes only those
classes and methods used by the entry-point class.

 The compiler has three style modes that determine what the resulting Java-
Script looks like. The default style is obfuscate, which makes the JavaScript look
like alphabet soup. Everything is compressed and nearly impossible to decipher.
This isn’t done to prevent it from being read, although that could be seen as a
benefit for preventing code theft; instead, it helps keep the resulting JavaScript
file as small as possible. This is a real concern as your application gets larger.

 This snippet of JavaScript code is the output of the GWT compiler using the
obfuscated compiling mode. You can see that it’s as compressed as it can be, with
no hint as to what the method is used for:

function b(){return this.c + '@' + this.d();}

The next style is pretty, which generates readable JavaScript. This compiled code
snippet is derived from the same original Java source code as the obfuscated sam-
ple. You can now see that the code is a toString() method, a common method
for Java classes, but you still can’t tell what class this code is for:

function _toString(){
 return this._typeName + '@' + this._hashCode();
}

The last style is detailed, which produces JavaScript code that looks like the
pretty style with the addition of the full class name as part of the JavaScript
method name. This makes it easy to trace the JavaScript code back to the origi-
nating Java code. In this code sample, compiled in detailed mode, you can eas-
ily see that this is the toString() method for java.lang.Object, the root of all
Java classes.

function java_lang_Object_toString__(){
 return this.java_lang_Object_typeName + '@' + this.hashCode__();
}

www.allitebooks.com

http://www.allitebooks.org

8 CHAPTER 1

Introducing GWT

The pretty and detailed styles are typically used only during development so
that JavaScript errors in your browser are easier to track back to the source Java
code. For production, using obfuscated is favorable because it keeps the Java-
Script file size down and can help to hide trade secrets.

 Another important aspect of the compiler is that it compiles from Java source
code, not compiled Java binaries. This means the source for all the Java classes
you’re using must be available. This plays a role when you want to distribute GWT
code for reuse. When you build distributable Java Archive (JAR) files, you must
include both the Java source and compiled Java class files. The GWT compiler also
requires that the source code be compliant with the Java 1.4 syntax. This is
expected to change eventually, but for now you can’t use generics, enums, and
other Java 1.5 features in your application. Note that this restriction applies only
to code that will be compiled to JavaScript; it doesn’t limit what Java version you
can use to write server components that will communicate with the browser.

 One last feature to note is that when your code is compiled to JavaScript, it
results in a different JavaScript file for each browser type and target locale. The
supported browsers include Internet Explorer, Firefox, Mozilla, Opera, and
Safari. Typically, this means your application will be compiled to a minimum of
four or five separate JavaScript files. Each of these files is meant to run on a spe-
cific browser type, version, and locale. A bootstrap script, initially loaded by the
browser, automatically pulls the correct file when the application is loaded. The
benefit of this process is that the code loaded by the browser doesn’t contain code
it can’t use. Typically, this doesn’t result in huge bandwidth savings; but in some
cases, especially when you’re providing the interface in multiple locale settings,
the size can be reduced significantly.

 Following our diagram in figure 1.1, we’ll next look at a core feature of the
GWT compiler: its ability to let Java code interact with native JavaScript code via
the JavaScript Native Interface.

1.1.2 Using JSNI to execute JavaScript from Java

Although GWT code is written in Java instead of JavaScript, sometimes you need to
write code that can make direct JavaScript calls. There are several reasons why you
might need to do this. You may need to make a call to the browser’s API for which
no GWT equivalent exists. Another perhaps more common reason is if you want to
use some super-fantastic JavaScript library.

 The JavaScript Native Interface (JSNI) lets you execute JavaScript from Java as
well as execute Java from JavaScript. This is made possible by the GWT compiler,
which can merge native JavaScript code with the JavaScript code generated from

A walk through GWT 9

Java. We’ll get into the finer points of doing this in chapter 8, but here are some
examples to give you an idea how this works.

 This first example is basic but reveals how the mechanism works:

public native int addTwoNumbers (int x, int y)
/*-{
 var result = x + y;
 return result;
}-*/;

In Java, you can declare a method as native, alerting the compiler that the imple-
mentation of the method will be written in some other language. Per the Java lan-
guage specification, when you declare a method as being native, you aren’t
allowed to specify a code block for the method. If you haven’t seen this before,
this mechanism was built into Java to let Java code call methods in compiled
libraries written in languages like C and C++.

 When you inspect this method, you see that what appears to be a block of code
is all contained in a multiline Java comment. Inside this comment is the native Java-
Script code that will be executed when the method is called. This satisfies the Java
syntax requirement of not allowing a code block for native methods, but provides
the JavaScript that the GWT compiler can use to allow execution of this code.

 This example passes a Java List object to the method and uses JavaScript to
add two items to it:

public native void fillData (List data)
/*-{
 data.@java.util.List::add(Ljava/lang/Object;)('item1');
 data.@java.util.List::add(Ljava/lang/Object;)('item2');
}-*/;

Because you’re calling the add() method on a Java object, you need to use a special
syntax to provide details on the object and method we’re referencing. Here you let
the GWT compiler know that the variable data is an instance of java.util.List
and that the add() method takes a single java.lang.Object argument. This mech-
anism is fairly easy to use once you understand the special syntax, and it lets you
include any needed JavaScript code in the same source file as your Java code. Chap-
ter 8 gets into the details of the syntax.

 Moving on to the next component of GWT from figure 1.1, and keeping in line
with the relationship between Java and JavaScript in GWT, we need to visit the JRE
Emulation Library, a mapping of Java Runtime Environment (JRE) classes to their
JavaScript equivalents.

10 CHAPTER 1

Introducing GWT

1.1.3 Accessing the JRE emulation library

We mentioned earlier that the GWT compiler needs access to the Java source code
for any class you’re using in your code. This requirement doesn’t stop with the use
of just external libraries; it includes the JRE as well. To provide developers with the
ability to use some of the JRE classes, GWT provides the JRE Emulation Library.
This library contains the most commonly used parts of the full JRE, which you can
use in your projects and compile to JavaScript.

 Tables 1.1 and 1.2 enumerate the available classes of the JRE that may be utilized
in your GWT applications from the java.lang package and the java.util package,
respectively. If you look through the lists carefully, you’ll likely see that several classes
you might consider important are missing. For example, the java.util.Date class
is available, but not java.util.Calendar or any date-formatting tools.

Table 1.1 Classes from java.lang.* that are available in GWT

Classes

Boolean Byte Character

Class Double Float

Integer Long Math

Number Object Short

String StringBuffer System

Exceptions/Errors

AssertionError ArrayStoreException ClassCastException

Exception Error IllegalArgument-
Exception

IllegalStateException IndexOutOfBounds-
Exception

NegativeArraySize-
Exception

NullPointerException NumberFormatException RuntimeException

StringIndexOutOfBounds-
Exception

Throwable UnsupportedOperation-
Exception

Interfaces

CharSequence Cloneable Comparable

A walk through GWT 11

When you start using these classes, you’ll notice some additional differences.
Some of the functionality differs from the JRE versions in subtle ways. As of this
writing, the following restrictions apply:

■ Double and Float should not be used as HashMap keys for performance
reasons.

■ For String.replaceAll, String.replaceFirst, and String.split, the
regular expressions vary from the standard Java implementation.

■ StringBuffer(int) behaves the same as StringBuffer().

■ System.out and System.err are available but have no functionality in web
mode.

■ The stack-trace-related methods in Throwable aren’t functional due to the
lack of stack-trace support.

■ The implementation of the Vector class doesn’t include any of the capacity
and growth-management functionality of the normal Java implementation,
nor is there any checking of index validity.

Table 1.2 Classes from java.util.* that are available in GWT

Classes

AbstractCollection AbstractList AbstractMap

AbstractSet ArrayList Arrays

Collections Date HashMap

LinkedHashMapa ListIteratora HashSet

SortedMapa Stack TreeMapa

Vector

Exceptions/Errors

EmptyStackException NoSuchElementException TooManyListenersException

Interfaces

Collection Comparator EventListener

Iterator List Map

RandomAccess Set

a. Targeted for inclusion in the 1.4 release of GWT

12 CHAPTER 1

Introducing GWT

In general, this isn’t as limiting as we have made it sound. In many cases, you can
get around the problem by using other Java classes, writing your own code to per-
form a specific function, or making direct use of the JavaScript API. As GWT gains
momentum, it’s likely a lot of these holes will be filled by either the GWT library
itself or open source libraries.

 Now we want to switch gears. As you saw in figure 1.1, the components of GWT
are roughly divided into those relating to the compiler and those relating to the
GWT API. In the next section, we’ll begin our tour of the GWT API by looking at
the GWT widget and panel library, the visual components that are used to build
your user interface.

1.1.4 Understanding GWT's widget and panel library

GWT ships with a large set of widgets and panels. The distinction between widgets
and panels is that a widget is some sort of control used by a user, and a panel is a
container into which controls can be placed. For example, a button or text box is
a widget, and a table that displays the button and text box left-to-right on the page
is a panel. But panels in GWT aren’t just for layout; some panels offer interactivity.
Generally speaking, GWT uses three types of components: widgets, panels for lay-
out, and interactive panels. Figure 1.2 shows a small sample of some of the avail-
able widgets and panels.

Figure 1.2 GWT ships with a set of widgets and panels that allow you to quickly create a

rich Internet application without needing to worry about the HTML and JavaScript details.

A walk through GWT 13

The MenuBar, a widget, is shown across the top of the page. The TabPanel, an
interactive panel, appears in the middle of the page, acting as a container for a
TextArea and Button widget. The MenuBar and TabPanel are then contained in
an AbsolutePanel that allows for exact positioning of the components it contains.

 If you’re familiar with Java’s Swing library, then you may be familiar with using
layout managers to organize the components inside of a panel; but this is difficult
to map to HTML elements, so GWT takes a different approach. Instead of layout
managers, GWT provides a set of panels that display their children in a specific
manner. For example, the HorizontalPanel displays its child widgets from left to
right, FlowPanel displays its children using normal HTML flow rules, and the
AbsolutePanel provides exact positioning of the components it contains.

 The widgets provided by GWT generally map back to a specific HTML equiva-
lent. This includes form fields like Button, TextBox, TextArea, Checkbox,
RadioButton, and FormPanel. In addition, there are several variations of the
HTML table element, including the base class HTMLTable and two specialized sub-
classes, Grid and FlexTable.

 GWT also comes with several rich components that are familiar in desktop
applications but not so much in web applications. The TabPanel lets you place dif-
ferent widgets on different tabs, and the widgets displayed depend on the cur-
rently selected tab, like the tabbed browsing in Firefox and Internet Explorer 7.
The MenuBar provides an easy way to create a multilevel menu for your applica-
tion. Then there are PopupPanel, StackPanel, and others.

 Although GWT includes more than 30 widgets and panels, it’s likely that they
won’t meet all your needs. To fill this void, open source projects make specialized
widget, tools, and panels available to use in your own projects. The list of widgets
includes calendars, sortable tables, calculators, drawing panels, tooltip panels,
and others. There are also a number of widgets available that wrap existing Java-
Script libraries, like the Google Maps API, Google Search API, and Scriptaculous
effects. In addition to HTML-based widgets, widgets are available for Scalar Vector
Graphics (SVG), a markup language for creating extremely rich vector-based
graphics. We’ll discuss how to use third-party libraries in your projects, as well as a
few of our favorite libraries, in chapter 9.

 When you build your own widgets by extending those that come with GWT, it’s
often required that you access the browser’s underlying JavaScript objects. It
would be great it we could forget about the underlying JavaScript, but that isn’t
always possible. Fortunately, GWT provides facilities for interfacing Java with the
underlying JavaScript.

14 CHAPTER 1

Introducing GWT

 Next, we’ll look at a different part of the GWT API. GWT provides a set of tools
for internationalization and configuration, allowing you to present your newly
developed user interface in several languages.

1.1.5 Examining GWT’s internationalization and configuration tools

GWT provides several techniques that can aid you with internationalization and
configuration issues. This may seem like an odd pair, but they’re similar in that
you want the ability to store text strings or numeric values in a properties file and
to access them from your application. GWT provides two primary mechanisms that
should handle most needs: static inclusion at compile time, and dynamic inclu-
sion at runtime. The static method is accomplished by implementing the Con-
stants or Messages interface, whereas the dynamic method uses the GWT
Dictionary class.

 You include settings statically at compile time by implementing an interface,
either Constants or Messages, and by creating a single method for each property
you want to use. For example, perhaps you want to use a properties file to store a
welcome message along with the image path of your application’s logo. You pro-
vide a method for each in your interface:

public interface MySettings extends Constants
{
 String welcomeMessage();
 String logoImage();
}

Once you have your interface, you can use GWT to dynamically create an instance
of this interface, and it automatically attaches the properties file settings to it. You
can also set up several properties to be used for different locales—for example, if
you wanted the text to change based on the language of the reader.

 The Messages interface differs from Constants in that you may specify argu-
ments to the methods, which are then used to fill placeholders in the property
text. For example, you may want to alter the previous interface to allow the per-
son’s name to be included in the greeting message. Your properties file might
look like the following:

welcomeMessage = Welcome to my book {0} {1}
logoImage = /images/logo.jpg

The placeholder {0} is used to mark the place where the first variable should be
inserted into the message and {1} for the second. The interface you use for Con-
stants needs to be modified to use the Messages interface instead, and you add
two arguments to your method:

A walk through GWT 15

public interface MySettings extends Messages
{
 String welcomeMessage(String fname, String lname);
 String logoImage();
}

One of the benefits of using these two interfaces is that the messages from your
properties file are statically included in your compiled JavaScript. This means the
performance of using a value from a properties file is about the same as using a
hard-coded string in the application. The compiler also includes only properties
that are referenced. This makes it possible to use only a few properties from a
large properties file without having all the properties embedded in your Java-
Script code.

 If you’re only using this mechanism for specifying settings that you don’t want
to hard-code into your application, then you’ll likely have a single properties file;
but if you want to provide for localization, you’ll have one properties file for each
supported language. When you compile your code with multiple properties files,
the GWT compiler creates a different set of JavaScript files for each locale sup-
plied. If you’re supporting a lot of locales, this results in a lot of files; but the ben-
efit is that each JavaScript file has only a single set of properties embedded in it,
making the file size smaller.

 On the flip side of the coin, there are occasions where the property values are
generated dynamically—for example, the details of a specific user. In this case,
you need a dynamic runtime mechanism to look up property information. For
this purpose, GWT provides a Dictionary class, which doesn’t use properties files.
Instead, you can use the Dictionary object to grab settings that have been
embedded in the HTML as JavaScript objects:

var MySettings = {
 welcomeMessage: "Welcome to my book",
 logoImage: "/images/logo.jpg"
};

In the GWT application, you load the JavaScript object into a Dictionary instance
by using the static method Dictionary.getDictionary(), passing the JavaScript
variable name as an argument. You can then use the methods of the returned
Dictionary object to get the individual settings. This mechanism is ideal when
you want to pass data to your GWT application:

Dictionary settings = Dictionary.getDictionary("MySettings");
String logo = settings.get("logoImage");

16 CHAPTER 1

Introducing GWT

The configuration mechanisms provided by GWT, covered in detail in chapter 15,
handle most of your configuration and internationalization issues and allow for
both dynamic and static properties.

 So far, we’ve looked at the compiler and its supporting tools for compiling
your code, we’ve introduced you to widgets and panels for building the user inter-
face, and we’ve examined internationalization tools so that you can make the UI
available in a dozen different languages. Now we’ll take it one step further and
look at the tools that GWT provides for communicating with the server and mak-
ing your applications truly interactive.

1.1.6 Calling remote procedures with GWT

Most nontrivial GWT applications need the ability to communicate information
between the browser client and the server. For instance, perhaps the application
needs to fetch data to display to the user, or to log the user into the application, or
to load an external data file. Fortunately, today’s browsers include a special Java-
Script object called XMLHttpRequest that allows communication between the
browser and server without forcing a page refresh like traditional HTML forms do.
This special JavaScript object is the basis for making browser-based Remote Proce-
dure Calls (RPCs).

 GWT provides two tools that sit on top of the XMLHttpRequest object. The first
is the RequestBuilder class, which is essentially a wrapper around this object,
although it’s a bit more Java-like in its usage. The second tool, GWT-RPC, is more
elaborate and lets you send and receive real Java objects between the client and
server. We’ll begin with the RequestBuilder class and give you a feel for what RPC
looks like in GWT.

Making RPC requests with RequestBuilder

The RequestBuilder class lets you create a request to be submitted to the server,
gives you the ability to fire off the request, and provides access to the results sent back
from the server. The short code example in listing 1.1 gives a feel for how it works.

String url = "/service/search";
RequestBuilder rb = new RequestBuilder(RequestBuilder.GET, url);

try {
 Request request = rb.sendRequest("term=GWT+in+Action",
 new RequestCallback() {
 public void onResponseReceived (Request req, Response res) {

Listing 1.1 An example of an RPC call using RequestBuilder

B

C

D

A walk through GWT 17

 // process here
 }

 public void onError (Request req, Throwable exception) {
 // handle error here
 }
 });
}
catch (RequestException e) {
 // handle exception here
}

If you aren’t used to using anonymous classes, then this example may look a little
foreign, so we’ll explain it a little. You begin by creating a new instance of the
RequestBuilder B by specifying the HTTP method and target URL to use. Then,
you can use various methods of the RequestBuilder instance to set a timeout, add
HTTP headers to the request, and even set the username and password for hitting
URLs that require authentication. All these options will be covered in detail in
chapter 12.

 Next, you fire off a request to the server by calling sendRequest() C on the
RequestBuilder instance. This method returns a handle to the request, which is
of type Request. For long-running requests, you can use the returned Request to
check on the status of a request or even cancel it. The sendRequest() method
takes two arguments: a String that is sent to the server with the request, and a
RequestCallback instance to handle the response and any error that might occur.
Listing 1.1 uses an anonymous class D that implements the RequestCallback,
essentially an inline class, for this second parameter to keep the example short;
but if the response handler will contain more than a few lines of code, it’s prefera-
ble to create a separate class.

 You use a handler class to handle the response because RPC calls from the
browser occur asynchronously. The term asynchronous in this context means that the
sendRequest() method returns immediately, without waiting for the server to
respond, putting the server request and the execution of the JavaScript code out
of sync. When the server does eventually respond, the handler is triggered, just
like an event handler. There is a good reason for the call to happen asynchro-
nously. For the browser to handle the call synchronously, it would need to stop
handling events, and it would appear frozen from the user’s perspective. This def-
initely wouldn’t be desirable.

www.allitebooks.com

http://www.allitebooks.org

18 CHAPTER 1

Introducing GWT

 Another notable attribute is that the response to a call made with Request-
Builder is text. This text can be an XML file, HTML code, simple plain text, or
JSON code.

 JSON is a simple message format for sending structured data, and it’s specifi-
cally geared for use in the browser. In chapter 13, we’ll take a long look at how to
use JSON on both the client and server, but for now a brief example will suffice:

JSONObject obj = new JSONObject();
obj.put("title", new JSONString("GWT in Action"));
obj.put("author", new JSONString("Hanson and Tacy"));
obj.put("pages", new JSONNumber(600));
String serializedObj = obj.toString();

This code sample creates a JSONObject and populates it with several properties,
just like you would with a Java HashMap. Calling the toString() method returns
the serialized form of the object as a text string. The next step, not shown,
would be to use the RequestBuilder class to send this serialized data to the
server for processing.

 The JSON implementation that comes with GWT is limited to use in the browser
only, so you need to find your own JSON implementation for use on the server. For-
tunately it’s fairly easy to find a JSON implementation by visiting http://json.org, the
home of the JSON format. When you look for an implementation, you’ll notice that
you aren’t limited to just Java; there are JSON libraries for dozens of languages. This
makes JSON a truly universal format, allowing you to pair your GWT application with
an application written in any language on the server.

 For those of us running only Java on the server, using JSON can feel awkward.
On the browser client, you need to copy the data from your Java object into a
JSON object; then, on the server, copy the JSON object back into a Java object.
When you’re using Java on the server, it makes more sense to deal with Java
objects directly without the JSON middle-man, and that is where GWT-RPC fits in.

Communicating with GWT-RPC

The GWT-RPC mechanism lets you send Java objects between the client and server
with only a little additional work on both the client and server sides. We’ll get into
the finer points of using GWT-RPC, and show you some common usage patterns, in
chapters 10 and 11, but for now we’ll stick to the basics.

 You first define a service interface that will be implemented by the server. For
example, if you’re creating a password service, it might look something like the
following:

A walk through GWT 19

public interface PasswordService extends RemoteService {
 Boolean changePassword (String user,
 String oldPass, String newPass);
}

Nothing too complex here. The interface defines one method for changing the
user’s password. The only requirement is that the interface must extend the
RemoteService interface supplied by GWT. Next comes the implementation of
the server. Again, this is about as easy as it gets:

public class PasswordServiceImpl
 extends RemoteServiceServlet
 implements PasswordService {

 public Boolean changePassword (String user,
 String old, String new) {
 // add code here
 }
}

The implementation implements the interface you defined for your service and
extends the RemoteServiceServlet. The RemoteServiceServlet is where all the
magic happens. This servlet receives the data from the server, which we already
mentioned must be text due to the way the underlying XMLHttpRequest object
works, and deserializes the text data into Java objects. The Java objects are then
passed to the implemented changePassword() method for processing. On the
return trip, the RemoteServiceServlet serializes the return value into text, which
can then be sent back to the browser.

 So far, so good. You created a service interface and coded the implementation
on the server in a specific way. Coding the client-side call is just as easy:

service.changePassword("jdoe", "abc123", "m@tr1x",
 new AsyncCallback()
 {
 public void onSuccess (Object result) {
 Window.alert("password changed");
 }

 public void onFailure (Throwable ex) {
 Window.alert("uh oh!");
 }
 });

Here you call the changePassword() method, and in the call you include an addi-
tional AsyncCallback handler. This is just like the RequestCallback you used
with the RequestBuilder; it handles the result that is passed back from the server.

20 CHAPTER 1

Introducing GWT

 To be honest, we aren’t giving you the whole story; for example, you may have
noticed that we never showed you the code to create the service object on the
client-side. We did this because we want to provide the flavor of what GWT-RPC
provides without getting into all the details. We found that GWT-RPC is easy to use
once you go through a few iterations of using it and when you understand its limi-
tations. We’ll provide those details in chapters 10 and 11 so that you can take full
advantage of GWT-RPC.

 Following our diagram from figure 1.1, we move on to a topic that is somewhat
related to RPC. Earlier in the section, we mentioned that RequestBuilder receives
a text response from the server, and we included XML in the list of formats the
text may be in. It would be difficult to use XML data without an XML parser, so it’s
a good thing GWT has that, too.

1.1.7 Investigating GWT’s XML parser

In the last five or so years, XML has become a part of our daily lives as developers.
The configuration of your Java server uses an XML format, the RSS feeds you con-
sume and supply are XML, and often so are the protocols you use to communicate
with remote services, as in the case of SOAP and XML-RPC. To make it as simple as
possible to deal with these data formats on the client browser, GWT provides a
Document Object Model (DOM) based XML parser. DOM-based XML parsers con-
sume the XML and create an object tree. You can then use the DOM API to
traverse the tree and read its contents.

 GWT takes advantage of the fact that modern browsers have the ability to parse
XML and create a DOM tree. Because the parsing is done by the browser and not
by GWT, you get the performance benefit of native code execution. This code
sample shows you how the XMLParser is used to create a Document object, through
which the entire DOM tree can be traversed:

Document doc = XMLParser.parse(responseText);
Element root = doc.getDocumentElement();

NodeList children = root.getChildNodes();
for (int i = 0; i < children.getLength(); i++) {
 doSomethingWithNode(children.item(i));
}

From the Document object, you can grab the root element, and in an XML docu-
ment there can be only one. From the root element, you can iterate through the
children, and their children, and so on. The GWT DOM implementation is based
on the standard provided by the World Wide Web Consortium (W3C), the same

A walk through GWT 21

people who standardized HTML. In chapter 12, we’ll use RequestBuilder with
GWT’s XML parser to load a set of bookmarks from an XML file sitting on the
server and present them as a menu list.

 Next, we’ll continue with our exploration of the various GWT APIs and show
how GWT can manage your browser history.

1.1.8 Managing the browser history

One of the valid complaints about rich Internet applications is that they break the
browser’s Back button. What we mean is that if you replace a piece of content on
the web page dynamically with JavaScript, the browser doesn’t count that as a page
change. Often, the user sees the content of the page change, so they assume they
can click the Back button in the browser to get back to the previous content; but
their assumption is false. This behavior is due to the fact that changing the con-
tent of a page programmatically is fairly new to many users, and they don’t under-
stand it. To provide a solid user experience, we need to write the application so
that the back button behaves in a manner that the user expects.

 The popular solution to this problem tends to be a little complicated to imple-
ment and use. It requires adding a hidden frame to your page and doing some
amount of scripting to get it to work. In the case of GWT, all the hard work has
been done for you. To access it, you need to write an event handler that imple-
ments the HistoryListener interface and register it with the History object.
Here you register an instance of a user defined class MyHistoryListener:

History.addHistoryListener(new MyHistoryListener());

With the listener registered, you can emulate a page change by creating a new his-
tory token. A token is a keyword that defines the content change. For example, you
might create a token overview for the page with information about your com-
pany and a token reports for a different page showing reporting information.
Note that when we say page, we don’t mean that the browser is loading a different
URL. This is GWT, after all, so a page can be content loaded by selecting a tab on a
TabPanel or selecting an option from a MenuBar:

History.newItem("overview");
History.newItem("reports");

Creating a new token does two things. First, it invisibly loads a hidden frame on
the web page with a new page. Because the hidden frame is loaded with a differ-
ent page, the browser counts this as a new page view and adds it to the browser
history. Second, it calls the onHistoryChanged() method of the HistoryListener
to indicate a content change:

22 CHAPTER 1

Introducing GWT

public class MyHistoryListener implements HistoryListener {
 public void onHistoryChanged (String historyToken) {
 if (historyToken.equals("overview")) {
 // display overview panel
 }
 else if (historyToken.equals("reports")) {
 // display reports panel
 }
 }
}

We hope you can see how this works. Because the hidden frame has changed,
clicking the Back button in the browser changes it back. This in turn triggers
another call to the HistoryListener with the previous token. And don’t forget
the browser’s Forward button—now that you’ve gone back into the history, the
Forward button will move you forward again. This behavior is exactly what the
user expects. We’ll discuss the history mechanism a little more in chapter 4.

 Now, we’ll move on to the last major API feature: the testing framework. Being
able to test JavaScript code properly has proven to be a fairly difficult task due to
the lack of good testing tools, and often it’s done poorly. GWT again makes your
life easy by allowing you to test your GWT code with the Java developers’ favorite
testing framework, JUnit.

1.1.9 Introducing GWT’s JUnit integration

It has always been a best practice to write automated tests for code, and various
frameworks have been made available over the years to make the process easier.
JUnit is the most popular tool of this variety used by Java developers, and it’s inte-
grated with many IDEs. Instead of creating a new framework for GWT from
scratch, GWT provides support for JUnit so that you don’t need to learn yet
another testing framework.

 To create a new test case, you create a class that extends GWTTestCase, which in
turn extends JUnit’s own TestCase class. You then need to implement just one
required method, getModuleName(), followed by any number of specific tests.
GWT uses the module name to locate the project configuration file. We’ll delve
into the details in chapter 16, but for now let’s look at a short example:

public class MathTest extends GWTTestCase
{
 public String getModuleName ()
 {
 return "org.mycompany.MyApplication";
 }

GWT vs. other solutions 23

 public void testAbsoluteValue ()
 {
 int absVal = Math.abs(-5);
 assertEquals(5, absVal);
 }

}

Here we included only one test, which verifies that the absolute value of –5 is 5.
This is obviously true, but if it were false, the assertEquals() method would trig-
ger an exception that would be reported by the JUnit test runner.

 In addition to the usual JUnit-style testing, GWTTestCase also lets you test RPC
calls to the server. GWT starts up its own version of Tomcat; executes your com-
piled GWT code; and tests that when your client-side code calls the server-side
application, it gets the expected results. In short, it does things you couldn’t do
otherwise without having someone sit in front of a browser to test your applica-
tion. No offense to real user testing, but if you have a large suite of tests that you
want to run over and over, it isn’t realistic to always do this manually.

 With the end of this section on JUnit, we also finish our look at GWT’s major
features. Next, we’ll show you how GWT compares to other technologies.

1.2 GWT vs. other solutions

GWT isn’t the first tool to try to make it easy to build rich Internet applications;
and as web technologies constantly evolve, it undoubtedly won’t be the last. In this
section, we’ll look at several other technologies that are often lumped into the
same category as GWT and explain where the differences lie.

 In each of the following sections, we’ll provide a code example for creating a
text box and a button. You’ll fill the text box with the word clicked when the button
is clicked with the mouse. Finally, we’ll compare the code example provided to the
GWT reference implementation and discuss the important differences. Figure 1.3
shows the GWT reference implementation in a web browser when the application
starts and after the action button has been clicked.

Figure 1.3 The GWT reference implementation of a text box

and a button before and after the action button is clicked

24 CHAPTER 1

Introducing GWT

To begin, we need to examine the GWT reference implementation, shown in list-
ing 1.2.

final TextBox text = new TextBox();
text.setText("text box");

final Button button = new Button();
button.setText("Click Me");

button.addClickListener(new ClickListener()
{
 public void onClick (Widget sender)
 {
 text.setText("clicked");
 }
});

Panel main = new FlowPanel();
RootPanel.get().add(main);

main.add(text);
main.add(button);

This is the first example of GWT code that we’ve looked at, so it deserves a thor-
ough explanation:

Create a new text box, which, displayed in the browser, looks like a normal text
box that you might find in a form on the Web.

Create a button and set the text to display on the button. Note that at this point,
neither the text box nor button has been attached to the web page.

Add an event handler to the button by adding a click listener object, which is
called when a user clicks the button. Notice that the object you add as a listener is
an anonymous class. If you haven’t seen this type of Java construct before, it may
seem a little unnatural at first, but all you’re doing is creating an new object that
implements the interface ClickListener.

Add a panel to your window, and then F add the text box and button to the
panel.

When you run this GWT code, it renders an HTML page with a text box and button;
when the button is clicked, the code changes the text in the text box. In the follow-
ing sections, we’ll port this simple code to a few other frameworks and discuss how

Listing 1.2 An implementation of a simple Button event in GWT

Create text
box

B

Create
button

C

Attach event
handler

D

Attach
main panel

E

Attach widgets
to panel

F

B

C

D

E

GWT vs. other solutions 25

they differ from GWT. Note that we’re making every attempt to be unbiased as we
describe the competing frameworks. We believe that each tool is different from the
next, and each has its own strengths and weaknesses.

 With that in mind, let’s begin our tour with Swing, followed by Echo2, JavaServer
Faces, and Ruby on Rails.

1.2.1 GWT vs. Swing

Swing is the standard toolkit for building GUI applications in Java. This may seem
like a strange choice of tools to compare GWT to, because Swing isn’t typically
associated with web applications. We’re comparing Swing to GWT because the two
frameworks are similar in the way you write code for them. Listing 1.3 shows the
Swing version of the application.

final JTextField text = new JTextField();
text.setText("text box");

final JButton button = new JButton();
button.setText("Click Me");

button.addActionListener(new ActionListener()
{
 public void actionPerformed (ActionEvent e)
 {
 text.setText("clicked");
 }
});

final JFrame rootPanel = new JFrame();
Panel main = new Panel();
rootPanel.getContentPane().add(main);

main.add(text);
main.add(button);

rootPanel.setVisible(true);
rootPanel.pack();

This Swing code should look vaguely similar to the GWT reference example; in
fact, it’s nearly identical. There are a few name changes; for instance, GWT’s
ClickListener interface is called ActionListener in Swing.

Listing 1.3 An implementation of a simple Button event in Swing

Create text
box

Create
button

Attach event
handler

Attach
main panel

Attach widgets
to panel

26 CHAPTER 1

Introducing GWT

 For Swing developers, there are a few important differences between GWT and
Swing. First, the components that ship with GWT don’t follow the Model View
Controller (MVC) pattern: No model object can be shared by multiple compo-
nents to keep them in sync. Second, GWT doesn’t use layout managers to control
the layout. Instead, you use panels that have built-in layout styles. For example,
the GWT HorizontalPanel arranges its child components left-to-right across the
page, whereas the DockPanel lets you add widgets to the panel in a similar fashion
to the Swing’s BorderLayout.

 These differences are fairly easy to work with, and GWT is a friendly environ-
ment for Swing developers. Next, we’ll look at Echo2, which lets you write applica-
tions in a similar manner to GWT but takes a different approach.

1.2.2 GWT vs. Echo2

Echo2 is another popular web toolkit in the same problem space as GWT, and it’s
similar to GWT in how it’s used to create the UI. You use the API to create instances
of components and then add them to the display. Listing 1.4 shows the Echo2 ver-
sion of the GWT reference example; the two versions look nearly identical.

final TextField text = new TextField();
text.setText("text box");

final Button button = new Button();
button.setText("Click Me");

button.addActionListener(new ActionListener()
{
 public void actionPerformed (ActionEvent evt)
 {
 text.setText("clicked");
 }
});

Window window = new Window();
window.setContent(new ContentPane());
Row main = new Row();
window.getContent().add(main);

main.add(text);
main.add(button);

Listing 1.4 An implementation of a simple Button event in Echo2

Create text
box

Create
button

Attach event
handler

Attach
main panel

Attach widgets
to panel

GWT vs. other solutions 27

Although both frameworks use similar APIs, they work in an entirely different
fashion. Applications written for Echo2 run on the server, not the client. With
GWT, you compile your Java source to JavaScript and run it on the browser. With
Echo2, you compile your Java source to Java class files and run them on the server.
This also means that when a client-side event is triggered, it may need to be han-
dled on the server.

 The consequence is that an interface built with Echo2 needs to hit the server
more often, but it doesn’t have to deal with an RPC API because the RPC happens
all by itself. It also means that Echo2 doesn’t need to send all the JavaScript to the
browser at once; it sends only what it needs to given the current state of the appli-
cation. Finally, you’re tied to using a Java application server because this is
required to host an Echo2 application.

 Next up is another Java-based framework called JavaServer Faces.

1.2.3 GWT vs. JavaServer Faces

JavaServer Faces (JSF) is a web framework for Java-based web applications. It uses
managed Java beans on the server, which represent the model, plus a set of tag
libraries that can be used with a JSP page to reference the properties of the model.
In a standard JSF implementation, all the processing is done on the server, and
the web page reloads for each transaction. The fact that the page needs to reload
for each transaction doesn’t make JSF a viable rich client for built-in components,
but with additional effort it’s possible. For the sake of comparison, we’ll provide a
standard non-Ajax JSF application that can perform the same action as our refer-
ence GWT application.

 The first step in creating a JSF application is to create a class to represent the
model, as shown in listing 1.5. Our example’s model is simple; it contains only
one property, named text. In standard Java bean fashion, you make the property
private to the class and provide accessors for getting and setting the value. To this
you also need to add a method named changeText(), which is triggered when the
command button is clicked.

package org.gwtbook;

public class SampleBean
{
 private String text = "text box";

 public String getText ()

Listing 1.5 A JSF-managed bean that represents a simple model with a single property

 text and a single command

www.allitebooks.com

http://www.allitebooks.org

28 CHAPTER 1

Introducing GWT

 {
 return text;
 }

 public void setText (String text)
 {
 this.text = text;
 }

 public void changeText ()
 {
 this.text = "clicked";
 }
}

The next step is to register this class as a managed bean in the JSF configuration
file (see listing 1.6). Provide the name sampleBean for the managed bean; this
name will be used to reference it in the JSP code to follow.

<managed-bean>
 <managed-bean-name>sampleBean</managed-bean-name>
 <managed-bean-class>org.gwtbook.SampleBean</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

The JSP page, shown in listing 1.7, looks similar to a standard JSP page. It uses two
JSF tag libraries to specify the view and controls you’re using. For the value in the
inputText tag, you reference the text property of your managed bean using the
JSF expression language. In the actionButton tag you see it again, but this time it
references the changeText() method.

<%@taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<f:view>
<html>
<head>
 <title>JSF Example</title>
</head>
<body>

Listing 1.6 A snippet of the JSF configuration file that defines a managed bean

Listing 1.7 The HTML code and tags used to render a button and link it to your

 managed bean

GWT vs. other solutions 29

 <h:form>
 <h:inputText value="#{sampleBean.text}"/>
 <h:commandButton
 value="Click Me"
 action="#{sampleBean.changeText}"/>
 </h:form>

</body>
</html>
</f:view>

JSF is different from GWT in that JSF provides little in the way of support for rich
client-side functionality. It’s possible to build reusable client-side components by
doing some of the work in JavaScript, but custom components have little reuse
value. Because JSF integrates with the client side, it’s in competition with GWT, but
there is some potential for integrating the two.

 Next, we’ll compare GWT to Ruby on Rails, a popular non-Java framework for
writing web applications.

1.2.4 GWT vs. Ruby on Rails

The title of this section is a little misleading because GWT and Ruby on Rails don’t
compete, although they overlap in some respects. Ruby on Rails is a rapid devel-
opment framework that uses the Ruby language. It provides the server side of the
equation and is specifically designed to handle a lot of the back-end work auto-
matically for you. On the client side, Ruby on Rails provides some support for
Ajax, allowing you to use the Java equivalent of a tag library in your HTML code.
The end result is that Ruby on Rails can send data to the server triggered by a user
action and display a response in the page. However, it isn’t designed for complex
interactions between the client and server.

 GWT is client-centric, and most of what GWT does is on the client side of the
picture. It lets you develop and display widgets using Java and write Java handlers
to trap user-triggered actions. GWT can communicate with the server as needed,
which may be driven by user interaction or perhaps a timed event. GWT then lets
you compile all the Java code to JavaScript so that the program can be run in the
browser. On the server, GWT only provides a mechanism for serializing and deseri-
alizing Java objects so they can be received from the browser and sent back; it
doesn’t get involved in other aspects of the server.

 Instead of competition between GWT and Ruby on Rails, we find an opportu-
nity for integration. This is in part driven by the fact that GWT provides several

30 CHAPTER 1

Introducing GWT

nonproprietary schemes for passing data between client and server. We’re finding
that many developers who are starting to use GWT are using non-Java technologies
on the server and are looking at GWT to provide only client-side functionality.

1.3 Building your first GWT application

Like most developers, the first thing we want to do when we try a new technology
is to build something with it. We could write pages and pages explaining how to
use GWT, and we will, but that can’t replace having a running example in front of
you. Toward that end, this section will be drastically light on details, and we’ll
focus only on getting your first GWT application up and running.

 In this section, we’ll assume that you’ve downloaded and uncompressed the
appropriate GWT distribution for your platform and verified that you have a ver-
sion of Java installed on your workstation that can be used with GWT. If you
haven’t, you can download GWT from http://code.google.com/webtoolkit/ and
Java from http://java.sun.com. Let’s get to it and build something.

1.3.1 Building and running an example application

GWT ships with an applicationCreator tool that creates a directory structure
and populates it with sample code. This tool is your friend; you’ll likely use it to
create the skeleton for every GWT application you write. We’ll cover it in much
greater detail in the next chapter.

 To run the tool, open a command prompt or shell, and navigate to the direc-
tory where you unpacked GWT. As arguments to the command, specify an output
directory named Sample and specify the Java class that you want the tool to create:

applicationCreator -out Sample org.sample.client.App

The output of this command looks like this on Windows and is similar on all other
platforms:

Created directory Sample\src
Created directory Sample\src\org\sample
Created directory Sample\src\org\sample\client
Created directory Sample\src\org\sample\public
Created file Sample\src\org\sample\App.gwt.xml
Created file Sample\src\org\sample\public\App.html
Created file Sample\src\org\sample\client\App.java
Created file Sample\App-shell.cmd
Created file Sample\App-compile.cmd

That’s it. You’ve written your first fully functional GWT application.

Building your first GWT application 31

Granted, you haven’t seen it run, but rest assured that this little application will
compile to JavaScript and execute. Before you run it, we suggest that you explore
each of the generated files:

■ App.gwt.xml—The configuration file for the module. It’s used to define the
entry-point class, dependencies, and compiler directives. The entry-point
class is the class that is executed when the module loads into your browser.

■ App.html—The HTML page that loads and executes the application. We
don’t want to get into the specifics about how the HTML loads the module,
but it may be worth looking at. This file is well commented.

■ App.java—A sample entry-point class generated by the applicationCreator
tool. This is where you put the Java code that you want to be compiled to
JavaScript.

■ App-shell.cmd—A simple shell script that executes the hosted-browser that ships
with GWT. The hosted-browser works like your web browser, but it’s specifi-
cally tailored for GWT development. Executing this launches the application.

■ App-compile.cmd—Another simple shell script that executes the Java to Java-
Script compiler. Just like the App-shell script, this script references the mod-
ule configuration file, which provides the details about what needs to be
compiled. Running this creates a directory called www and generates the
JavaScript there.

The next step is to run the application; if you haven’t guessed already by looking
at the generated source code, it’s a “Hello World” application. You have two
options for doing this: You may either run the App-shell script to launch the
hosted-browser, or run the App-compile script and then open the App.html file in
the www directory in your browser. We recommend that you do both. It’s worth
experimenting a little to see how each of these approaches works, because you’ll
use both frequently when you develop your own applications.

 Figure 1.4 shows the application running in Firefox. It’s a basic application
that presents a button that toggles the visibility of the “Hello World!” message.
From browsing through the project files, you may have noticed that the text at the
top of the page is in the HTML page, and only the button and the “Hello World!”
label are referenced in the Java file. This is a good example of how GWT can mix
HTML content with application logic, allowing you to leverage the skills of a
designer without needing to teach them GWT.

32 CHAPTER 1

Introducing GWT

That is a wonderful example, but if you’re like us, you’ve lost count of how many
“Hello World” examples you’ve seen. Let’s have some fun and alter the code to do
something a little more exciting.

1.3.2 Building Tic-Tac-Toe with GWT

First things first: If you have a favorite IDE or text editor, now is the time to start it
up. In this section, you’ll use the files created with the applicationCreator in the
previous section to do something fun. If you want to use your IDE for this project,
you need to add the gwt-user.jar file that came with the GWT distribution to your
classpath. It doesn’t matter what IDE or text editor you use at this point, but it’s
worth noting that GWT provides additional support for Eclipse users, as you’ll see
in chapter 2. You should also set the project to use Java 1.4 compatibility. As of this
writing, GWT doesn’t yet support the new Java 5 syntax constructs for client-side
code, so for now you need to limit yourself to Java 1.4. The client-side code is con-
sidered to be any Java code that will be compiled into JavaScript and run in the
browser.

 Next, we need to decide what to build. This early in the book, we don’t want
to overwhelm you with advanced GWT concepts like internationalization or
remote procedure calls, so we’ll stick to something simple: a simple rendition of
Tic-Tac-Toe.

Figure 1.4 Sample generated “Hello World” application running in JavaScript. This is

what you should see on your screen; if you don’t, you may want to go back and make

sure you followed along exactly.

Building your first GWT application 33

Designing theTic-Tac-Toe game

You’ll build a Tic-Tac-Toe game by starting with the Grid widget from the GWT
library. The Grid control renders an HTML table with a specific number of
columns and rows. In this example, you’ll use this to build the regulation 3x3
Tic-Tac-Toe grid, but you may alter the code to use a more challenging 4x4 or
even 5x5 grid.

 In each of the cells of the Grid control, you’ll put a blank Button control. The
end result looks something like figure 1.5. Unless you’re using a visual designer to
build your GWT application, it’s usually a good idea to sketch out your application
before you build it, like we did with this diagram.

 The logic of the application is simple. When the first player clicks a button, you
change the text of the button to display an X. When the next player clicks a differ-
ent button, you change the text of the button to display O. You toggle back and
forth between X and O as the game progresses.

 You also need to perform a check before changing the text of a button. If the
button clicked by the player already contains a marker, then you display an alert
message that tells the player they must select a different square.

 All the changes you’ll make are in the App.java file created by the applica-
tionCreator tool; if you want to follow along, open that file now. Let’s write the
code to make this work.

Writing the Tic-Tac-Toe game

To build the Tic-Tac-Toe game, you need to import the needed Java classes for the
project. In the App.java file, replace the generated import lines with the following
import lines for this project:

import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.user.client.Window;
import com.google.gwt.user.client.ui.*;

 control

Grid

9 Button

controls

Figure 1.5

Design sketch of the GWT controls used in a Tic-Tac-Toe

game (before coding). It’s usually a good idea to sketch

out your application before you build it.

34 CHAPTER 1

Introducing GWT

The EntryPoint interface is required to be implemented by the main class of the
module. The EntryPoint interface requires the implementation of the method
onModuleLoad(). This method has the same purpose as the main() method in a
regular Java application or the service() method in a Java servlet. This is the
method that starts the application.

 The Window class is roughly equivalent to the window JavaScript object. It pro-
vides access to the browser window to do things, such as to determine the
browser’s height and width or to display an alert message to the user.

 The third import imports the entire GWT UI package. This includes dozens of
widgets, listeners, and panels that you’ll see more of as you progress through the
chapters. For now, we won’t get into any of the details of what classes this includes;
we’ll focus on the project at hand.

 Listing 1.8 shows the code for the class, which replaces the existing generated
code in the App.java file.

public class App implements EntryPoint {

 private boolean playerToggle = true;
 private ClickListener listener = new TicTacClick();

 public void onModuleLoad() {
 Grid grid = new Grid(3, 3);

 for (int col = 0; col < 3; col++) {
 for (int row = 0; row < 3; row++) {
 Button button = new Button();
 button.setPixelSize(30, 30);

 button.addClickListener(listener);

 grid.setWidget(col, row, button);
 }
 }

 RootPanel.get().add(grid);
 }

 private class TicTacClick implements ClickListener {
 public void onClick(Widget sender) {
 // todo
 }
 }
}

Listing 1.8 A simple Tic-Tac-Toe implementation in GWT

B

C

D

E

F

G

H

Building your first GWT application 35

You begin by defining a boolean value B to keep track of whose turn it is so you
know if you should display an X or O, and you create an listener instance that will
be used to handle click events. We’ll provide more information about this listener
shortly. Next, you create a 3x3 Grid control C. At this point, the control isn’t dis-
played on the page, but it’s constructed in memory. As you loop through the 3x3
Grid, you create the Button control D that appears in that square. You also set
the width and height to 30 pixels. Alternatively, you could use CSS in the HTML
page to specify the height and width, but for now this will suffice.

 After you create the Button control, you register the listener E that you cre-
ated earlier to receive click events for the Button. The listener is an instance of
the private class TicTacClick, which handles the click event; but for now we
haven’t provided any code for it. Once the Button has been created, you need to
add it to the Grid F. Here you use the col and row loop variables to place it in the
right cell.

 Once the Buttons are added to the Grid, you need to add the Grid to the pageG.
The RootPanel class represents the top-level panel on the HTML page, and here you
add the Grid to your RootPanel. By calling RootPanel.get(), you add the Grid to
the bottom of the page. Alternatively, you can pass a String argument to the get()
method to specify the HTML element ID where the control should be added. This
lets you add controls not only to the end of the page, but also inside any HTML ele-
ment that has an ID attribute.

 H This code handles the Button clicks and make the Xs and Os appear. We
didn’t want to put all the code into a single listing, so we’ll look at this next.
Replace segment H with the code from listing 1.9.

private class TicTacClick implements ClickListener {

 public void onClick(Widget sender) {
 Button button = (Button) sender;

 if (button.getText().equals("")) {

 if (playerToggle) {
 button.setText("X");
 }
 else {
 button.setText("O");
 }
 playerToggle = !playerToggle;
 }

Listing 1.9 A click listener class for the Tic-Tac-Toe implementation

B

C

D

36 CHAPTER 1

Introducing GWT

 else {
 Window.alert("That square is already taken ");
 }
 }
}

The TicTacClick class implements ClickListener B, which requires that you
implement the method onClick(). This method is called whenever a click event
is triggered, and, as a parameter to this method, you receive a reference to the
object that was clicked. In this case, you know it’s a Button control that was
clicked, so you can cast it as such.

 You need to test if this specific Button has been clicked before C, and, if it has,
you need to alert the player that they must select a different square. The get-
Text() property of the Button returns the text displayed in this control.

 Remember the boolean toggle property you created in your class? You created
it to toggle between player turns. If the value is true, you display an X D, and, if
it’s false, you display an O. You then toggle the playerToggle value so that it
switches the displayed value the next time a Button is clicked.

 If the Button is already displaying text, you drop down to this else condition.
Here you use the Window object E, which is the equivalent of the JavaScript win-
dow object, to display a message to the user indicating that they need to select a
different square.

 If you typed everything in exactly the same as we did, your Tic-Tac-Toe game
should look like figure 1.6, which shows the game in the hosted-mode browser.

E

Figure 1.6

Tic-Tac-Toe GWT

application running in the

hosted-mode browser. This

is how your screen should

appear if you’re following

along with the code.

Summary 37

This application is a trivial example, but we hope it has given you a small taste of
what GWT is capable of. Throughout this book, we'll provide increasingly complex
examples as we examine the full breadth of GWT’s capabilities.

 We need to wrap things up and start getting into the fine details. Let’s summa-
rize what you’ve seen thus far and prepare for the rest of the GWT adventure.

1.4 Summary

GWT adds a new tool to the web developer’s tool belt, helping to solve some of the
hardships involved with developing complex rich Internet applications. GWT
changes the way you write rich clients by allowing you to write web applications
the same way you write desktop applications with Swing. With GWT, you write code
in Java, using a plethora of fancy Java tools like Eclipse and JUnit, without the
need to learn the intricacies of JavaScript. GWT provides an abstraction on top of
the HTML DOM, allowing you to use a single Java API without having to worry
about differences in implementations across browsers. When you’re done with
your Java application, you can then compile your code to JavaScript, which is suit-
able for running on today’s popular browsers.

 Tools like Echo2 attempt to do this as well, but they require a Java application
server to serve the application. GWT lets you instead create an application that
compiles completely to JavaScript and can be served by any web server. This allows
GWT to be easily integrated with existing applications no matter what type of
server you’re running.

 An important part of what GWT has to offer is its toolset for making RPCs. It
provides a simple RPC mechanism for passing Java objects between the client and
server. It does so by serializing and deserializing the objects on both client and
server, allowing you to pass custom beans without having to worry about serializa-
tion details. GWT also allows communication to non-Java applications via the stan-
dard JSON. JSON libraries are available for most languages, making integration a
relatively simple task.

 GWT as a whole lets you develop web applications at a higher level of abstrac-
tion and leverages the tools already available for the Java language. It provides an
easier way to build rich Internet applications. In the chapters that follow, we’ll get
into the details of doing this. We’ll show you how to set up your development envi-
ronment, build an application with existing widgets, create new widgets, commu-
nicate with the server, and much more. First, let’s start by expanding the default
application we began in chapter 1 and then applying that to a running Dashboard
example we’ll return to throughout the book.

www.allitebooks.com

http://www.allitebooks.org

38

Creating the
default application

This chapter covers

■ Starting a new GWT project

■ Preparing for internationalization

■ Creating JUnit tests

■ Importing the application into your IDE

The GWT application development lifecycle 39

Chapter 1 got you up and running with your first GWT application; it was a quick
and dirty approach, but it worked, and you quickly had a fully functioning Tic-
Tac-Toe application. Now it’s time to start shoring up your approach and take the
first few steps toward building a full-scale application. Over the next two chapters,
you’ll create the first version of the Dashboard application, which is an example
you’ll keep expanding and adding to as you progress through this book.

 You should read this chapter and the next together, because they’re both needed
to create the first version of the Dashboard. We split the discussion into two chapters
so that in this chapter, we can explain the tasks that are necessary for every GWT
application—these initial steps result in the production of an application that we
call the GWT default application. Then, in chapter 3, we go through the steps needed
to specialize the default application in order to produce your own application (in
this case, the GWT Dashboard). If you’re using a wizard provided by an IDE, then
it may perform the steps necessary to generate the default application for you.

 To help us explain how the contents of the two chapters go together, we first
present a typical development lifecycle, which a real-world programmer might
apply when developing GWT applications. With one possible specific high-level
web development process in mind, chapter 2 looks again at the tools you used in
chapter 1; but this time we’ll consider them in detail. You’ll actively use those tools
shown first in chapter 1, which we’ll refer to as the creation tools, to create the
default directory structure and files used as the basis for the example Dashboard
application. This step is performed for all GWT applications you build, and the out-
put is the GWT default application that you first saw in figure 1.4 in section 1.3.1.

 Let’s take the first step toward building the Dashboard’s directory and code
structure by examining how you build the GWT default application.

2.1 The GWT application development lifecycle

You can create GWT applications three ways. The first way is to use the set of cre-
ation tools provided in the GWT download. These tools let you quickly create a
directory and file structure suitable for your GWT application, which is also in line
with the structure the GWT compiler expects. You saw these tools in use when you
created the Tic-Tac-Toe application in chapter 1. If you use these creation tools,
then the result is, by default, independent of any IDE that you may be using. By
providing the extra -eclipse flag to the creation tools, you direct them to gener-
ate an additional set of files that enable the whole structure to be easily imported
into the Eclipse IDE. (Eclipse isn’t the only IDE you can use; GWT just makes it
easy to integrate with Eclipse without using an IDE-specific wizard—it’s also possi-
ble to import Eclipse projects into some of the other more common IDEs.)

40 CHAPTER 2

Creating the default application

 As GWT matures, more third-party tools are appearing on the market that hide
the need to use the GWT creation tools. In some cases, these third-party tools
come in the form of wizards that IDEs support; in other cases, new IDEs are being
built or tweaked specifically to support GWT application development. If you’re
using one of these tools, then generally the tool provides specific use instructions;
but often, running an IDE-specific wizard results in a default application similar to
that produced by the GWT creation tools.

 If you don’t want to use the GWT-provided tools or a tool provided by your IDE,
then it’s possible to create the directory structure and basic files yourself. You may
want to do this, for example, if you’re working in an environment where system
restrictions prevent you from using the standard structure. Taking this approach
means you will more than likely have to deal in more detail with the application’s
Module XML file (see chapter 9) in order to tell the compiler all the paths to the
necessary files.

 Figure 2.1 summarizes the three methods of creating GWT applications.

Start

HTML File

XML Module File

Java Class File(s)

GWT Application

End

Create Application

Using the GWT

Creation Tools

(See section 2.2)

Create

Application

By Hand

Create

Application

Using IDE

Provided Method

Figure 2.1 The three ways to create a GWT application: using the GWT tools, using a plug-in for

an IDE, and creating the structure and files by hand. This chapter uses the GWT creation tools.

The GWT application development lifecycle 41

All three approaches lead to the production of the same set of basic files that rep-
resent the GWT default application—which is good, because all those files are nec-
essary for your application to work. For simplicity at this stage in GWT’s maturity,
this book will follow the first approach—using the set of creation tools provided
by the GWT distribution.

 Looking at the other two approaches identified in figure 2.1, probably the most
error-prone way to create a GWT application’s structure and files is to do so by hand.
We advise against this approach, although it can be useful if your environment
forces you to use a different directory structure than the default. We won’t discuss
this “by hand” approach in this book; it isn’t difficult, but it requires a lot of atten-
tion to detail to make sure all the necessary files are in the correct places, the hosted
mode and compile tools have the correct classpaths set, and so on. We’d risk spend-
ing more of our time explaining that than getting going with development!

 Even though we’re using Eclipse in this book, GWT isn’t tied to Eclipse; the
files produced can be imported into any IDE, or your application can be created
using the command-line tools. Eclipse, like any IDE, has pluses and minuses; but
it’s free and, probably more important, widely used. This book won’t get into the
pros and cons of any particular IDE. GWT provides great support at the creation-
tool level for Eclipse, so we’ll continue with that. Don’t worry if you aren’t using
Eclipse as your IDE, in section 2.2.6, we’ll look briefly at how you can import the
files into other IDEs.

 The GWT creation tools we discuss in this chapter—together with the GWT
hosted-browser, GWT compiler, and your choice of web server and browsers—pro-
vide complete development and test environments. Figure 2.2 shows a simplified
view of the lifecycle stages in which the creation tools and other tools just men-
tioned are typically used. (If you followed one of the other approaches indicated
in figure 2.1, you would do so in figure 2.2’s Stage 1.)

 Table 2.1 details each stage of this typical web-application development lifecycle.
 The remainder of this chapter and all of chapter 3 are given over to showing

this theory in practice by stepping through each of the lifecycle stages in turn to
produce the first basic version of the Dashboard application. You’ll perform all
the steps in Stage 1, using the GWT creation tools to create the directory and
default code and load the application into the Eclipse IDE. (If you want to use
your IDE’s plug-in to create the structure for you, then you can try running it
according to its manual now and pick us up again in chapter 3, where we should
have similar structures.)

42 CHAPTER 2

Creating the default application

Table 2.1 Stages involved in the typical development of a GWT application (the stages are shown in

 figure 2.2)

Stage Description

1 The directory and code structure for the project is established. This can be performed using

one of the three approaches suggested in figure 2.1—using the GWT creation tools, using

an IDE-specific wizard, or by hand. If you use the GWT creation tools, they create a default

application (you saw this in chapter 1).

Often, if you used the GWT creation tools or the by-hand method, the next step you want

to take is to import the basic outline of your project into an IDE. If you’re using the GWT cre-

ation tools and the Eclipse IDE, then by adding the -eclipse flag to the command-line

tools, you create all the additional files required to easily import your directory and code

structure into Eclipse as an Eclipse project.

2 Once the directory and code structure is created, application development can proceed.

Typically, you replace the default files created for you by the GWT creation tools or your

IDE’s wizard and add other files that you require for your application: additional Java

classes, Cascading Style Sheets (CSS), images, and so on.

Figure 2.2 Generic lifecycle of GWT application development, showing along the top which tools are

used and down the side the stage in which they’re used. Some of the stages (for example, Stage 2) can

be repeated many times before moving to the next stage. This is a waterfall approach; you may also follow

a more rapid application development process by cycling between Stages 2, 3, 4, 5, and 6 as necessary.

The GWT application development lifecycle 43

When producing a GWT application, you always start by creating the GWT default
application in order to ensure that the file and directory structure is complete
and correct. After producing the GWT default application, you need to take the
resulting files and turn them into your own application. You’ll do this work in
chapter 3, where we first look at what is produced as the default application and
then discuss the changes you need to make to produce the first version of the
Dashboard. But as we mentioned, your first task is to go through all the Stage 1
steps to create the default directory and code structure.

3 The development period typically contains several cycles that move between writing your

application and testing in hosted mode, using the hosted-browser (Stage 3).

You can launch hosted mode either directly from a shell window or from within your IDE.

It acts as a managed environment, executing your code as pure Java code and deploying

any server-side Java code you’ve developed into its own internal web server.

Errors and exceptions that are raised in hosted mode, as well as any output from the

GWT logging you may have included in your code, are safely captured by this managed envi-

ronment. Compare this to web mode, where your application becomes JavaScript code and

is executed directly by a web browser—it has no guaranteed safe management of excep-

tions and errors. Another benefit of hosted mode comes from the ability to link it to your

IDE’s debugger for both client and server-side Java code debugging.

4 When you’re happy with the developed code in hosted mode, it’s time to compile your Java

code into JavaScript for use in web mode (Stage 4). You start compilation by invoking the GWT

compiler: The resulting files are then ready to be viewed in a web browser. If you have only

client-side code at this point, you can open the application directly from the filesystem; but

if you have server-side code, you need to deploy the code to a web server. The compilation

process produces a number of files that are required; chapter 17 discusses this process.

5 A compiled application is typically deployed to your standard test environment’s web server

so you can check the deployment process as well as ensure that the code executes cor-

rectly. Deploying is largely dependent on your web server; but if you have no server-side

code, you can check web mode directly from your filesystem by double-clicking your applica-

tion’s HTML file from the compiled directory.

6 To finish development, check your functionality in a number of browsers in web mode before

the final production release. It’s nice to trust GWT and Google when they say that you can

write once and run in many browsers, but maybe you’re like us and don’t take everything at

face value!

Table 2.1 Stages involved in the typical development of a GWT application (the stages are shown in

 figure 2.2) (continued)

Stage Description

44 CHAPTER 2

Creating the default application

2.2 Stage 1: Creating a GWT application

Looking into the GWT distribution you downloaded in chapter 1, you should see
four command-line applications, all ending with the word Creator. Table 2.2 sum-
marizes the functionality of these tools. They help you create the directory and
file structure of a GWT application, and they also create a set of default files that
go together to make the default application. In this stage, we’ll look at each of
these creation tools in turn, see how they can be invoked, and discuss the outputs
they produce. The result is the GWT default application, which can support inter-
nationalization as well as some basic unit tests.

DEFINITION The GWT default application is the application created by the applica-
tionCreator tool. It’s useful because you can quickly check that the cre-
ation tools have executed correctly by running it. Creating your own
application means changing the files provided in the default applica-
tion—something we cover in chapter 3.

Table 2.2 GWT provides a number of creation tools that you can use to quickly develop the default GWT

 application. These tools are used at various stages in the typical development lifecycle.

Stage Tool name Overview

1A projectCreator GWT provides tight integration with the Eclipse IDE, and if you’re

going to use this IDE, you need to execute this tool first. If you

aren’t using Eclipse, you can safely ignore this stage.

This tool establishes the necessary files required to enable the

directory and file structure to be easily loaded into the Eclipse

IDE as an Eclipse project. This essentially means at this stage

creating the necessary .project and .classpath files.

1B applicationCreator This tool performs the following three functions:

■ Creates the Java package structure in a directory that holds

your GWT application.

■ Creates default HTML and Java files together with a basic

module XML file that is used to tie the GWT application

together. These created files are the default application that

you saw in chapter 1. For most applications, you overwrite all

these files in Stage 2 of the lifecycle.

■ Creates the command-line scripts that can be used to launch

the GWT application in hosted mode and to compile it for web

mode.

Stage 1: Creating a GWT application 45

Although table 2.2 gives a good overview of each of the tools, it doesn’t explain
which tools are optional and in what order they should be used. When we, the
authors, develop GWT applications, we follow the flow given in figure 2.3. This fig-
ure helps you understand when and where to use each of the tools in Stage 1 of
the development lifecycle.

 If you’ve created GWT applications before, you may wonder where the com-
mands for compiling and executing a project in hosted mode are in figure 2.3.
They aren’t provided as standard command-line tools because they require some
knowledge of your project name and the necessary classpaths. Don’t worry,
though: GWT doesn’t require you to have all this knowledge about classpaths. The

1C i18nCreator I18n is an abbreviation for internationalization (i + 18 missing

letters + n). This tool performs the following two functions:

■ Creates a simple properties file containing the key/value

pairs that act as constants or messages in an application

that uses the GWT i18n capabilities

■ Creates a new command-line tool specifically for the GWT appli-

cation being created, which you’ll need to use in Stage 1D

1D Appl-i18n This command-line application is created by the i18nCreator

tool in Stage 1C. Its purpose is to take the properties file con-

taining constants or messages and produce a corresponding

Java interface file. The resulting interface file is used in your

GWT application code when you need to access i18n constants

and/or messages from the properties files.

In the compilation process, GWT binds together the interface file

with the properties file so that the functionality works seam-

lessly. Don’t worry; we explain this in detail in chapter 15.

1E junitCreator If you’re going to perform unit testing of your GWT application

using the JUnit tool, then the junitCreator tool creates a

suitable directory and file structure. Your unit tests are written

into the file created by this tool.

1F Import to IDE The final optional step in Stage 1 is importing the directory and

code structure created by the creation tools into an IDE. If you

performed Stage 1A and ensured that the -eclipse flag was

used in the other tools, then your GWT application can easily be

imported into the Eclipse IDE. If you aren’t using Eclipse, then

it’s still possible to import the directory structure and files into

other IDEs.

Table 2.2 GWT provides a number of creation tools that you can use to quickly develop the default GWT

 application. These tools are used at various stages in the typical development lifecycle.

 (continued)

Stage Tool name Overview

46 CHAPTER 2

Creating the default application

applicationCreator tool creates the necessary commands for compiling and
hosted mode.

 If you use the creation tools to create an application, then the simplest applica-
tion that can be created by following the path through figure 2.3 uses only the
applicationCreator tool. This results in just the plain box-standard GWT default
application files being produced. Following all the steps in figure 2.3 results in the

Figure 2.3

How the various GWT creation tools

are used together in the development

of the structure and files for the GWT

default application (the application

you have at the end of this chapter)

Stage 1: Creating a GWT application 47

generation of the GWT default application again, but this time it includes the files
necessary to support internationalization and unit testing. If you’re using Eclipse
as the IDE, then you need to add the -eclipse flag when you execute these other
creation commands to ensure that the required launch files for Eclipse are pro-
duced or appropriately updated. Don’t forget that if you’re using Eclipse, the first
tool you need to execute is the projectCreator tool so that a number of Eclipse
project-specific files are created.

 Because the projectCreator tool is executed first when you use Eclipse, that’s
where you start the process of creating the GWT default application (which will, in
chapter 3, turn into the Dashboard application). In the rest of this section, you’ll
follow all the steps in table 2.2 to create a GWT default application that supports
internationalization and unit testing. We assume that you’re using Eclipse as your
IDE; however, if you aren’t using Eclipse or an IDE that can import an Eclipse
project, you can skip to Stage 1B (section 2.2.2) to create the GWT application.

2.2.1 Creating the project

Using the Eclipse editor as your IDE, you can quickly create the necessary Eclipse
project structure and files by using the projectCreator command-line tool.
Doing this and using the -eclipse flag in the other creation tools makes it easy to
import your project directly into Eclipse, because it produces certain project files
that Eclipse uses to describe classpaths and applications.

 If you’re using Eclipse, then you should execute the projectCreator com-
mand as the first step in the development process. Run the following command
now to create the DashboardPrj Eclipse project in the DashboardDir directory:

projectCreator -eclipse DashboardPrj -out DashboardDir

The projectCreator command gives the following response if it executes success-
fully, having produced a source directory (src) and Eclipse-specific .project and
.classpath files in the newly created DashboardDir directory:

Created directory DashboardDir\src
Created directory DashboardDir\test
Created file DashboardDir\.project
Created file DashboardDir\.classpath

The .project and .classpath files will be manipulated by some of the tools you
apply in later steps of Stage 1, so if you don’t create these files first, those tools will
fail. If you don’t get this output, then the tool will try to tell you what went
wrong—most likely, issues with file permissions on directories at this stage.

48 CHAPTER 2

Creating the default application

NOTE If you forget to run projectCreator before applicationCreator, then
it isn’t the end of the world. You can run it afterward; just remember to
use the -ignore parameter.

The full format for the projectCreator command is

projectCreator [-ant AntFile]
 [-eclipse ProjName]
 [-out DirName]
 [-overwrite]
 [-ignore]

The various flags used in the command are as follows:

■ -ant AntFile—Requests the tool to produce an Ant build file to compile
the source code of the project. The suffix .ant.xml is added to the value pro-
vided as the parameter. (Optional.)

■ -eclipse ProjName—The Eclipse project name.

■ -out DirName—The directory into which to write output files. (Defaults to
current.)

■ -overwrite—Overwrites any existing files in the output directory.
(Optional.)

■ -ignore—Ignores any existing files in the output directory; doesn’t over-
write. (Optional.)

-ant AntFile refers to an argument that creates an Ant file. Including such a flag
in the arguments to the projectCreator tool directs the tool to produce a valid Ant
file with actions for compiling, packaging, and cleaning your GWT application (Ant
is a popular tool used to ease the process of building and deploying applications).
By default, the extension ant.xml is appended to the name you provide with the
ant flag. You use the ant flag only if you intend to use the Ant tool to build/deploy
your projects. If you’re considering using Ant, then listing 2.1 shows the default
contents of Dashboard.ant.xml that will be produced if you use the -ant Dashboard
flag in the creation step.

Stage 1: Creating a GWT application 49

<?xml version="1.0" encoding="utf-8" ?>
<project name="Dashboard" default="compile" basedir=".">
 <description>
 Dashboard build file. This is used to package up your project
 as a jar, if you want to distribute it. This isn't needed
 for normal operation.
 </description>

 <!-- set classpath -->
 <path id="project.class.path">
 <pathelement path="${java.class.path}/"/>
 <pathelement path=
 "C:/GWT/trunk/build/dist/Windows/gwt-windows-0.0.0/gwt-user.jar"/>
 <!-- Additional dependencies (such as junit) go here -->
 </path>
 <target name="compile" description="Compile src to bin">
 <mkdir dir="bin"/>
 <javac srcdir="src:test" destdir="bin" includes="**" debug="on"
 debuglevel="lines,vars,source" source="1.4">
 <classpath refid="project.class.path"/>
 </javac>
 </target>
 <target name="package" depends="compile" description=
 "Package up the project as a jar">
 <jar destfile="Dashboard.jar">
 <fileset dir="bin">
 <include name="**/*.class"/>
 </fileset>
 <!-- Get everything; source, modules, html files -->
 <fileset dir="src">
 <include name="**"/>
 </fileset>
 <fileset dir="test">
 <include name="**"/>
 </fileset>
 </jar>
 </target>
 <target name="clean">
 <!-- Delete the bin directory tree -->
 <delete file="Dashboard.jar"/>
 <delete>
 <fileset dir="bin" includes="**/*.class"/>
 </delete>
 </target>
 <target name="all" depends="package"/>
</project>

Listing 2.1 Ant control file output produced when you use the -ant flag

 in the projectCreator tool

Compile
target

Package
target

Clean
target

“All”
target

50 CHAPTER 2

Creating the default application

At this point, you’ve created the basic directory structure and files required for an
Eclipse project; this makes it easy to import your project into the Eclipse IDE (or
another IDE that can import Eclipse projects). In a little while, we’ll show you how
to load this project into the Eclipse editor. But first, we should note that you’ve
created only the structure for an Eclipse project and not any GWT-specific files.
Creating those GWT default application files is the next step as you rejoin the
mainstream development path.

2.2.2 Creating an application

In this step, you’ll create the directory structure and files that make up the GWT
default application (which in the example will be transformed into the Dashboard
application, so you’ll set up the files using that name). The structure and files pro-
duced in this step are independent from any IDE you may be using. If you’re using
the Eclipse IDE, then you just created an Eclipse project, and this step will add the
GWT default application’s files to that project.

 The applicationCreator tool creates a GWT application that conforms to the
GWT expected directory structure (more on this in chapter 9) and also generates
the hosted-mode and web-mode scripts. You use this tool to create a new GWT
application (don’t forget that if you’re using the Eclipse IDE, you should run the
projectCreator tool first, as discussed in section 2.2.1).

 To create the GWT default application, you need to execute one of the two
command lines shown in table 2.3. There is a non-Eclipse version to use if you
aren’t using Eclipse as your IDE and an Eclipse version to use if you are (the differ-
ence being the inclusion of the -eclipse DashboardPrj flag in the Eclipse ver-
sion—don’t worry, we’ll explain the syntax and flags shortly).

Running either of the command-line versions listed in table 2.3 produces the fol-
lowing output:

Table 2.3 Two different versions of the applicationCreator tool in action, using the specific

 code to create the Dashboard application. If you’re using the Eclipse version, you should

 have executed the projectCreator tool first.

Version Command line

Non-Eclipse applicationCreator -out DashboardDir
org.gwtbook.client.Dashboard

Eclipse applicationCreator -eclipse DashboardPrj -out DashboardDir
org.gwtbook.client.Dashboard

Stage 1: Creating a GWT application 51

Created directory DashboardDir\src\org\gwtbook
Created directory DashboardDir\src\org\gwtbook\client
Created directory DashboardDir\src\org\gwtbook\public
Created file DashboardDir\src\org\gwtbook\Dashboard.gwt.xml
Created file DashboardDir\src\org\gwtbook\public\Dashboard.html
Created file DashboardDir\src\org\gwtbook\client\Dashboard.java
Created file DashboardDir\Dashboard-shell.cmd
Created file DashboardDir\Dashboard-compile.cmd

The applicationCreator tool creates the expected Java package structure under
the src directory; the module XML file Dashboard.gwt.xml, which we discuss in
detail in chapter 9; the hosted-mode and web-mode command-line tools; and the
default application’s HTML and Java files.

 If you use the Eclipse version, then the project name you used to create the
project is added as an extra parameter with the -eclipse flag. This tells the com-
mand to create an Eclipse launch configuration specifically for this project, and
results in the following additional output:

Created file DashboardDir\Dashboard.launch

If you examine the directory structure of the
Dashboard application now, you’ll see the struc-
ture shown in figure 2.4.

NOTE If you can’t use the default directory
and file layout for your application
(perhaps you have coding standards
that are in conflict, or your system setup
prevents using it), then you can create
the directory structure by hand. But you
need to ensure that the command tools’
paths are set up correctly and that the
GWT compiler can find the source code
and public folders, by setting the
source and public attributes in the
module XML file (see chapter 9).

As you saw in figure 2.3 (which showed how the GWT creation tools are used
together to develop the directory and file structure of a GWT application), the
applicationCreator tool is all you need to create the structure of the basic GWT
default application. To double-check that the applicationCreator tool has exe-
cuted successfully, you can run the default application by executing the Dash-
board-shell command. Doing so rewards you with the application shown in
figure 2.5.

Figure 2.4 Examining the

directory structure created by the

GWT applicationCreator

tool—in this case, for the Dash-

board application. You can see

the org.gwtbook.client

package structure under the src

directory, which is where your Java

code will go. The application’s

basic HTML file is stored under the

public directory.

52 CHAPTER 2

Creating the default application

But where did this application come from? If you look in the src/org/gwtbook/
client directory of DashboardDir, you’ll find the Dashboard.java file, which cre-
ated the application shown in figure 2.5. The contents of this file are repeated in
listing 2.2. (Note that for brevity, we don’t show the import statements and com-
ment lines that are produced—typically, we won’t show these in our code listings
unless explicitly necessary.)

public void onModuleLoad() {
 final Button button = new Button("Click me");
 final Label label = new Label();

 button.addClickListener(new ClickListener() {
 public void onClick(Widget sender) {
 if (label.getText().equals(""))
 label.setText("Hello World!");
 else
 label.setText("");
 }
 });

 RootPanel.get("slot1").add(button);
 RootPanel.get("slot2").add(label);
}

Listing 2.2 First view of the GWT code that adds a label and a button to the screen

Figure 2.5

The default application created by the GWT

creation tools. The files that produce this

application are created by executing the

applicationCreator tool and are

usually replaced by your own files when

you develop an application (we get to this

in chapter 3). The default application is a

useful tool to show that the creation tools

have worked and that the basic

dependencies are correct.

Create GWT
Button

Create GWT
Label

Add ClickListener
to Button

Add Button to
web page

Add Label to
web page

Stage 1: Creating a GWT application 53

This code, together with the Dasboard.html file in the src/org/gwtbook/public
directory, generates the output shown in figure 2.5. We won’t go through what
these files contain at the moment; we just wanted to let you see that this default
application isn’t created magically by GWT. To get the look and feel of the Dash-
board application (or any other application), you need to replace these files with
your functionality—but we leave that until Stage 2 of the development process, in
chapter 3.

 If you look at the command in full, you see that to create a GWT application, you
call applicationCreator from the command line using the following template:

applicationCreator [-out DirName]
 [-eclipse ProjName]
 [-overwrite]
 [-ignore]
 className

The options that are available for this command are as follows:

■ -out—The directory into which to write output files. (Defaults to current.)

■ -eclipse—Name of the Eclipse project previously used in the projectCre-
ator tool execution. (Optional.)

■ -overwrite—Overwrites any existing files. (Optional.)

■ -ignore—Ignores any existing files; doesn’t overwrite. (Optional.)

The command provides some flexibility over the output, allowing you to change
the default directory (if you don’t provide one, then the command writes all its out-
put to the current directory). You can also tell the tool to overwrite any existing files
or ignore them using the -overwrite and -ignore flags, respectively. If the appli-
cation is being created with a view toward importing it into Eclipse, then you should
add the -eclipse flag as well as the project name you used in section 2.2.1.

NOTE GWT requires the package name for your application’s main code to have
the subpackage client at the end. Not including it will cause the GWT
compiler to raise an error.

The final input to the applicationCreator command is the class name. It needs
to be a fully qualified class name constructed in the particular style shown in fig-
ure 2.6. It follows the Sun standard for fully qualified class names in Java but spe-
cifically requires that the last nested package name be called client. This
restriction isn’t required by Java, but it’s enforced by GWT.

 It’s useful to follow this GWT-specific format, because in chapter 9, we’ll talk
about the Java package structure for an application. Later still, we’ll introduce

54 CHAPTER 2

Creating the default application

server code under the org.gwtbook.
server package and code for automati-
cally generating new code under the
org.gwtbook.rebind package.

 Up to this point, you’ve created your
project and basic application. If you
wanted to, you could already run the
Dashboard-shell command script to
execute the application, as you saw in fig-
ure 2.5. For certain applications—those
that have no internationalization and/
or those for which you have no desire to perform unit testing with JUnit—this is all
you need to do. However, in this example you’ll add internationalization to the
Dashboard; therefore, you’ll go through the next two optional stages, 1C and 1D.

2.2.3 Setting up internationalization

Internationalization allows you to display different interfaces depending on the
locale from which the application is being viewed (for example, the Dashboard
will have different languages in the menus). We discuss internationalization (also
known as i18n) in detail in chapter 15; but because this is the next step in Stage 1,
you’ll set up your application structure now so that i18n is supported. The
i18nCreator tool lets you set up this structure. It’s useful to note that you don’t
need to set up your i18n approach at this point; you can defer it until later in the
development lifecycle if you wish. However, because you know you’re going to use
it, you’ll set it up now.

 The rationale behind GWT internationalization is to allow your application to
replace specific constants and messages on the UI with a locale-specific version.
For example, the Dashboard application will use both English and Swedish a little
later. The generation of this functionality is a two-step process; the first step,
which uses the i18nCreator tool, creates a sample properties file and a new script.
The second step involves entering some constants or messages into the properties
file and then executing the script generated by this tool. The output from the sec-
ond stage is a Java interface file that is used in your application. Trust us: It’s a lot
easier in practice than it may sound!

NOTE Internationalization (i18n) is easy to set up and use in GWT. You just cre-
ate some properties files and a simple Java interface; at compile time,
GWT creates all the necessary Java plumbing code for you.

Figure 2.6 Breakdown of a GWT fully qualified

Java class name for your application. This is

standard Java syntax, but GWT requires that

your user interface code always be under a

subpackage called client. (We cover other

special subpackage names such as server

and rebind at various points later in this book.)

Stage 1: Creating a GWT application 55

To add i18n to your existing structure, you need to select the appropriate com-
mand line to execute from table 2.4—either the Eclipse or non-Eclipse version—
and execute it now.

Successful output of executing either of the i18nCreator commands is as follows:

Created file
DashboardDir\src\org\gwtbook\client\DashboardConstants.properties

Created file DashboardDir\DashboardConstants-i18n.cmd

The tool has created a sample properties file called DashboardConstants.proper-
ties that sits where the main code is, and a new command-line tool called Dash-
boardConstants-i18n where the rest of the creator commands are. You’ll use this
new DashboardConstants-i18n command-line tool in Stage 1D.

 If you use the Eclipse version, then the command also asks the tool to output
the necessary Eclipse launch configurations for the second script:

Created file DashboardDir\DashboardConstants-i18n.launch

You’ve seen the internationalization tool in action, and you’ve created a simple
structure into which to place the internationalization aspects of the Dashboard
application (in this case, you created the structure necessary for constants—in chap-
ter 15, we’ll also look at internationalizing messages). Let’s take a moment to look
at the command line for this tool in detail and see what other arguments you can
pass to the tool to alter its behavior. The tool is called using the following template:

i18nCreator [-eclipse ProjName]
 [-out DirName]
 [-createMessages]
 [-overwrite]
 [-ignore]
 interfaceName

The options that are available to the command are as follows:

Table 2.4 The different versions of the i18nCreator tool used to create the framework for the

 Dashboard internationalization

Version Command line

Non-Eclipse i18nCreator -out DashboardDir
org.gwtbook.client.DashboardConstants

Eclipse i18nCreator -eclipse DashboardPrj -out DashboardDir
org.gwtbook.client.DashboardConstants

56 CHAPTER 2

Creating the default application

■ -eclipse—Name of the eclipse project. (Optional.)

■ -out—The directory into which to write output files. (Defaults to current.)

■ -createMessages—By default, the tool produces an interface that extends
the GWT Constants interface; if you wish it to extend the GWT Messages
interface instead, add this flag.

■ -overwrite—Overwrites any existing files. (Optional.)

■ -ignore—Ignores any existing files; doesn’t overwrite. (Optional.)

By default, the tool produces output files that support the GWT i18n approach
for constants, but adding the flag -createMessages alters the output to suit
the GWT i18n approach for messages instead (we’ll explain the differences be-
tween constants and messages in chapter 15). You can also direct the tool to over-
write or ignore any existing files in the directory indicated by the value passed to
the -out flag.

 This concludes the first part of setting up internationalization. You’ve laid the
foundation for the i18n of your application; the next stage is to get your i18n
approach ready for use in your code—that is, to create the specific locale proper-
ties files that contain the locale-specific constants or messages. Remember that for
the Dashboard example, you’ll be changing the text in the menu system based on
the locale. In the next section, we’ll focus on creating the properties files that con-
tain the menu text.

2.2.4 Implementing internationalization

In the previous stage, the i18nCreator tool created a dummy properties file as well
as a new DashboardConstants-i18n command-line application; but you can’t yet
use these files in your application, because they contain no data. In Stage 1D, you
create the link between the properties file and your application code. To create that
link, you must create key/value pairs for constants in the properties file and then
execute the DashboardConstants-i18n command-line application. This tool takes
that properties file and produces a Java interface class that contains a method for
each key. It’s these methods in the Java interface that you use in your application.

 This step of Stage 1 may be performed more than once, possibly during the
later stages of development. Each time new constants and/or messages are added
to your properties file, this stage should be executed to ensure that the Java inter-
face file is up to date. If you executed the DashboardConstants-i18n command
line now, you’d get a simple interface file reflecting the default properties file.

Stage 1: Creating a GWT application 57

When you update your i18n properties file in chapter 3, you’ll run the Dash-
boardConstants-18n command line again to make sure you take advantage of
and gain access to the new constants.

 That concludes the creation of internationalization. In the final step of using the
creation tools (from figure 2.3), you’ll set the foundations for unit testing. Although
this step is optional, we feel that unit testing is an important part of development.
It isn’t necessary to perform this step at this stage; you can jump to section 2.2.6 if
you wish to start getting your framework into an IDE or to chapter 3 if you want to
start building the Dashboard functionality without an IDE.

2.2.5 Creating unit test cases

JUnit is a powerful approach to testing, and it’s beneficial that GWT includes a
simple way of integrating unit tests into your development approach. Undoubt-
edly, JUnit deserves—and has—a wealth of books written about it, and we won’t
attempt to cover using JUnit here. If you’re interested in knowing more about
JUnit, we recommend JUnit in Action by Vincent Massol and Ted Husted. (In chap-
ter 16, we look at GWT testing in more detail.)

NOTE GWT makes writing and creating JUnit tests for your code a painless
(maybe enjoyable is going too far) process.

Before you can begin creating a JUnit test-case structure, you need to have the
JUnit JAR file somewhere on your development system that you can refer to (you
can download it from http://www.junit.org). To add JUnit tests to the Dashboard
example, execute one of the two versions listed in table 2.5 (for simplicity, we’re
assuming that the JUnit JAR is stored in the root of the C:\ directory; if you have it
somewhere else, then you should replace the argument to the first parameter with
your location).

Table 2.5 The different versions of the junitCreator tool used to create the framework for the

 Dashboard JUnit testing.

Version Command Line

Non-Eclipse junitCreator -junit c:\junit.jar -module
org.gwtbook.Dashboard -out DashboardDir
org.gwtbook.client.test.DashboardTest

Eclipse junitCreator -junit c:\junit.jar -eclipse DashboardPrj
-module org.gwtbook.Dashboard -out DashboardDir
org.gwtbook.client.test.DashboardTest

58 CHAPTER 2

Creating the default application

Running either command creates a suitable directory and file structure ready to
accept the unit-test code for any unit testing you may wish to perform on the
Dashboard example (the Eclipse version provides more files for easy integration
with Eclipse). You ask for the test class to be called DashboardTest and to be in
the package org.gwtbook.client.test. The script creates a new directory called
test under DashboardDir and stores your generated test-class files under that.
Because you’re creating the tests in the same package as the code, there is no
need for the junitCreator command to alter the Dashboard module.

 Successful output of both versions of the junitCreator command is as follows:

Created directory DashboaradDir\test\org\gwtbook\client\test
Created file DashboardDir\test\org\gwtbook\client\test\DashboardTest.java
Created file DashboardDir\DashboardTest-hosted.cmd
Created file DashboardDir\DashboardTest-web.cmd

If you’re using the Eclipse version, then the following two lines are appended to
the output, indicating the creation of the associated hosted-mode and web-mode
launch scripts for Eclipse:

Created file DashboardDir\DashboardTest-hosted.launch
Created file DashboardDir\DashboardTest-web.launch

The junitCreator tool creates the necessary classes with stubs in them; places the
necessary links in the GWT application module; and, if you’re using Eclipse, cre-
ates the appropriate launch configurations. The full template for the command is

junitCreator -junit PathToJUnitJarFile
 [-eclipse ProjName]
 [-module ModName]
 [-out DirName]
 [-ignore]
 [-overwrite]
 className

The options that are available to the command are as follows:

■ -junit—Path to the JUnit libraries.

■ -eclipse—Name of the Eclipse project. (Optional.)

■ -module—The GWT module of the application you wish to test.

■ -out—The directory into which to write output files. (Defaults to current.)

■ -overwrite—Overwrites any existing files. (Optional.)

■ -ignore—Ignores any existing files; doesn’t overwrite. (Optional.)

Stage 1: Creating a GWT application 59

The flags -eclipse, -out, -overwrite, and -ignore are the same as those dis-
cussed for the previous two tools. The -junit flag is required, and its value must
point to the installation of the JUnit classes in your system. The -module flag must
indicate the GWT module you want to test.

 Running the junitCreator tool won’t, unfortunately,
create unit tests for you; it does, however, manipulate the
necessary files and create a sensible directory structure,
shown in figure 2.7. In addition, it creates a simple Java
class file in which you can place your unit tests.

 We’ll look at using JUnit testing in more detail when
we get to chapter 16.

 Let’s take a second to recap where you are with respect
to creating the GWT default application. You’ve created the
directory and code structure for the GWT default applica-
tion, and you’ve added support for internationalization. If
you took the last step, you’ve also incorporated unit test-
ing. These steps are common to all GWT applications you’ll
build; only by altering and adding to the default applica-
tion code do you begin to create your own application.

 Before you start building the Dashboard application in
the next chapter, let’s look at the final Stage 1 application
development task: importing your project into an IDE. We
recommend this optional step because it makes code
development/debugging much easier and quicker.

2.2.6 Importing into your IDE

We’re convinced that a great benefit of GWT is the ability to use a familiar devel-
opment environment in the development of your web applications (the GWT
team members often say on the forums that they chose Java not because they’re
Java addicts but because at this moment in time it has great tool support).

 Right now, GWT integrates easily into Eclipse, and other IDEs are rapidly deliv-
ering easier integration approaches. There are even approaches to build GUI
development tools for GWT in a similar manner to Matisse (the NetBeans IDE
GUI builder).

 In this section, we’ll demonstrate the use of Eclipse as an IDE and also the
generic steps you can take to use another IDE if you created your application fol-
lowing the instructions given in the early part of this chapter.

Figure 2.7 The directory

structure that exists after

you execute the GWT

junitCreator tool.

Notice that the structure

for the application you

saw in figure 2.4 is still

intact. The new structure

for testing sits under the

test directory.

60 CHAPTER 2

Creating the default application

Importing into Eclipse

Importing a project into Eclipse after you create it using the project and applica-
tion creator tools is simple and quick. In the Eclipse Package Explorer window,
right-click, and select the Import option. Figure 2.8 shows this step, together with
the next step of choosing the Existing Projects into Workspace option under the
General folder.

 Click the Next button, and then click the Browse button next to the Select
Root Directory option. Navigate the filesystem to find DashboardDir, and select it;
see figure 2.9. Click OK.

 At this point, you can decide where you want Eclipse to store the project file—
in the Import Projects dialog box, if you select the Copy Projects into Workspace

Figure 2.8 To import the newly created Dashboard project into the Eclipse IDE for

development of the application, right-click the Eclipse Package Explorer window and

select Import.

Stage 1: Creating a GWT application 61

check box, Eclipse copies all the project files into its workspace directory. If you
don’t select this option, Eclipse leaves the files where they are. It’s important to
remember which way you choose, because that dictates where you’ll need to pick
up the GWT-generated files from later for web deployment (GWT will place them
relative to the source files).

 Regardless of which choice you make about where to store the project files,
now you should click the Finish button to import the project. A short while later,
you’ll see a view similar to that shown in figure 2.10. The project is now loaded
into Eclipse.

 Eclipse isn’t the only IDE you can use to develop GWT projects, although it’s
the easiest to integrate straight out of the box using the tools provided in GWT. In
case you choose not to use the -eclipse flag with the creation tools, or if you wish
to import your files into a different IDE, we’ll look at the steps to do that next.

Figure 2.9

The second stage of importing

the Dashboard project into

Eclipse: finding the project

that you’re importing in your

directory structure.

62 CHAPTER 2

Creating the default application

Using other IDEs

With GWT, you aren’t restricted to using the Eclipse IDE. If you wish, you can use a
text editor and command-line execution of tools. If you do use an IDE, then you
can import the structure you’ve just created.

 You’ve already seen how the applicationCreator tool creates the correct file
structure for a GWT application, so you’re up and running from that point. Follow
these steps if you’re using an IDE for which there is no existing GWT support:

1 Create the application using applicationCreator (and both i18nCreator
and junitCreator if you want that functionality).

2 Import the code into your IDE, preserving the file structure just produced.

3 Add the gwt-user.jar file to your IDE’s classpath and any path required for
auto-completion to operate correctly.

4 Hook up your IDE to execute the application-shell and application-
compile scripts.

5 For debugging, hook your IDE debugger up to port 9000, which is the port
on which hosted mode allows debugging connections.

Using Ant scripts will significantly increase the ease of development and testing, and
you can find some references to scripts that others have built on the GWT forum.

Figure 2.10 The GWT Dashboard application loaded into the Eclipse Package Explorer

window, showing the directory structure, the Java and HTML files together with the

associated module XML file, and the range of command-line applications and Eclipse

launch configurations generated by the GWT creation tools.

Summary 63

IDEs such as NetBeans can import Eclipse projects, so this may be a smoother way
to ensure that all the configuration needed for your application is imported.

 The alternative is to use an IDE that has a GWT wizard built for it, such as Intel-
liJ, which creates the necessary files and configuration for instant use in that IDE.
Finally, some extensions to Eclipse exist, such as Googlipse and GWTDesigner;
they allow you to develop GWT applications graphically and thus create the neces-
sary configurations for you at project creation time.

 One way or another, you’ve arrived at the point where your project structure is
in place and you have the ability to start building your new GWT application,
either in a text editor or in an IDE. You’ve executed the default application to
make sure everything has been created correctly, and now you’re ready to change
that default to your own application.

2.3 Summary

This chapter has covered the first step in developing a GWT application created
using the default GWT creation tools. You now have the directory and file struc-
ture for the default GWT application, which forms the basis for the Dashboard
example you’ll build on throughout the rest of the book.

 You may think we’ve used a lot of pages for what is effectively the GWT “Hello
World” example, but the GWT structure isn’t as simple as typing four lines of code
and saying, “there you are.” However, you’ve done the hard part; continuing to
develop your application from this point is much more like writing a few lines of
code and executing it. Although it may have seemed like a long path to get to this
point, you’ve seen that with a bit of practice and knowing what you’re doing, com-
pleting Stage 1 takes only a few minutes.

 The key benefit of using the GWT creation tools is that they generate the direc-
tory structure and file contents in such a way that they correctly tie together. You
can easily check that the structure is correct by executing the default application.
This puts you in a safe position to begin replacing the default files with the files
needed for your own application, and that means heading on to chapter 3.

64

Advancing to your
own application

This chapter covers

■ GWT module definition

■ Hosted-mode browsers

■ Compiling a GWT application

■ Running a GWT application

Describing the application example 65

Generating the GWT default application is great, and if you follow the steps in the
previous chapter time and time again, you’ll consistently get the default applica-
tion. We doubt, though, that this is all you’ll use GWT for; it would be a pretty dull
technology if that were all it did!

 Stage 1 of the lifecycle is generally performed for all GWT applications. It isn’t
wasted work, because it provides a solid foundation of files and directories that
enables you to confidently build your own applications. However, going through
the remaining stages in the lifecycle is the key. In this chapter, we’ll cover the
remaining stages in the lifecycle in the context of the specific example we intro-
duced in chapter 2: a Dashboard application.

3.1 Describing the application example

Throughout the rest of this book, we’ll go through the remaining steps of the life-
cycle that are necessary to transform the default application into the application
you want to build. In this case, that happens to be the Dashboard application
shown in figure 3.1.

 The key functionality of the Dashboard application, where a number of com-
ponent applications will sit, can be summed up as follows:

■ Providing a simple windowing system that lets you drag and minimize com-
ponent applications.

■ Implementing drop functionality for windows. If you drop one on the trash
icon, it’s removed from the display.

■ Supporting a menu system that displays option menu bars for in-focus win-
dows (it’s the responsibility of the windowed application to place and
remove its option menu).

■ Letting you extend the menu system with a bookmark listing that loads
bookmarks from an XML file.

■ Using GWT generators to automatically generate an About menu item
whose display contains information gleaned from introspecting the compo-
nent application’s Java class.

■ Supporting internationalization by using constants for the menu bar and
messages for the initial name of the Dashboard.

66 CHAPTER 3

Advancing to your own application

Component application is the name we give to the individual applications you can cre-
ate in the Dashboard—for example, the Calculator, Google Search, and Server Sta-
tus components. We won’t show how to build these applications in detail in this
book; rather, we’ll point out parts of them to demonstrate key GWT concepts. (You
can download the source code for the complete Dashboard application and a large
number of component applications from http://www.manning.com/hanson.)

 This application is too ambitious to build in one short chapter. To show how
the remaining lifecycle stages are used, we’ll take the default application from
chapter 2 and build a basic version of the Dashboard, shown in figure 3.2.

Figure 3.1 GWT in Action Dashboard running in hosted mode, showing a number of component

applications; an About Box automatically created by GWT generators that have introspected the

application’s class; and a couple of open menu bars, one showing options for the component

application in focus and the other listing the component applications that can be executed.

Although this may look intimidating, it shows what you can do with GWT. Throughout this book

and the code, you’ll see how this is achieved.

Stage 2: Developing your application 67

Stage 1 of the lifecycle got you to the start of this chapter and is generally per-
formed for all GWT applications. As we promised, the rest of chapter 3 steps
through the remaining stages in the web application development lifecycle. If
you’re following along as you build the Dashboard application, then there will be
some hands-on work for you in this chapter as you alter the default files created
for the default application, starting with Stage 2 where you build the application.

3.2 Stage 2: Developing your application

Stage 1 laid the solid foundations for the GWT application. In Stage 2, you’ll move
on to alter the files provided by the default application to build your own GWT
application (this stage is required for all GWT applications built using the GWT
creation tools and most of those built using IDE specific plug-ins).

 When you build small applications, it’s possible—although not always advis-
able, because surprisingly often, prototypes try to head toward production sys-
tems—to get away with sitting down, writing some code, and hoping it meets the
need. As you step up to building larger and larger applications, you must take a
more structured approach in order to keep track of where you are, enable multi-
ple developers to work on the code, and make an application that is maintainable
in the future.

 The approach we’ve typically taken to building the applications, and that we’ve
done in the background for the Dashboard, is shown in figure 3.3. We start, not
surprisingly, by defining the functionality we wish to implement; then, we design

Figure 3.2 The Dashboard application you’ll build in this chapter by taking the default

application created at the end of chapter 2 and altering the files. Comparing this figure to

the full Dashboard application shown in figure 3.1, you can see that it’s much simpler, but

that’s what we want for now.

68 CHAPTER 3

Advancing to your own application

the application to meet that functionality by identifying components and events
we’ll use as well as how we’ll use GWT’s modularization capabilities. We create the
design of the application and end up with a construction step that involves build-
ing the various components that make up the application.

 Each of the five steps takes you nearer the end goal of a completed applica-
tion. For the Dashboard, you can define the functionality as a simple menu system
that implements internationalization text for the English and Swedish languages,
with an icon for the trash can. Why did we pick Swedish? Well, one of the authors
lives in Sweden, and it also gives you a good opportunity to use extended charac-
ters such as ä, ö, and å in the internationalization files. You have no new widgets
or panels to build, and the modularization is negligible (we discuss modulariza-
tion in much more detail in chapter 9). The next step in Stage 2 is to address
internationalization.

3.2.1 Implementing internationalization

When you executed the i18n tools in chapter 2, it created a default properties file
(DashboardConstants.properties) and a DashboardConstants-i18n command-
line tool. You may have executed this new command-line tool at that point, and it
produced a simple DashboardConstants.java file, which was fairly empty because

Figure 3.3 Typical steps in Stage 2 (developing the application) from the application development

lifecycle process introduced in chapter 2 for developing a new GWT application (but not showing the

testing tasks that would normally be present)

Stage 2: Developing your application 69

you hadn’t yet defined any constants in the Dash-
boardConstants.properties file.

 Now we’ll go through the process of adding
internationalization aspects for the Dashboard,
which in this case means creating the text that will
appear in the menu for both the English and Swed-
ish locales. Examples appear in figures 3.4 and 3.5.

 We mentioned in chapter 2 that the second part
of the internationalization step was the only part of
Stage 1 that might be used again in later stages to
ensure that the DashboardConstants.java file
matched the available keys. This is now demon-
strated: Following the update to the properties files
that you’re about to perform, you’ll need to exe-
cute the DashboardConstants-i18n creator tool
again. First you’ll update the key/value pairs that
you require for the Dashboard example by replac-
ing the DashboardConstants.properties file with
the constants for the default locale (the locale used
if the requested one isn’t available). To do so,
replace the contents of DashboardConstants.prop-
erties with those shown in listing 3.1.

AboutMenuItemName: About
CalculatorMenuItemName: Calculator
ClockMenuItemName: Clock
CreateMenuName: Create
HelpMenuName: Help

Now, when you use the key HelpMenuName in the Java code, you get the constant
value Help.

 The format of these properties files follows the traditional Java properties file
format (with the slight exception that the file should be encoded as UTF-8 format
and can therefore include Unicode characters directly). In the example, you use a
colon as the separator between keys and values, but it’s equally valid to use an
equals sign (=) or whitespace character (a space or tab, but not a newline marker,
because that indicates the start of a new key and implies that the last key had an

Listing 3.1 Key/value pairs for menu constants in the default locale

Figure 3.4 The Dashboard

when the locale is left as the

default locale. The menu bar is

written in English.

Figure 3.5 The Dashboard

when the locale is set to

Swedish. The menu bar is now

written in Swedish. (The

locale was changed by adding

the parameter ?locale=sv

to the end of the URL.)

70 CHAPTER 3

Advancing to your own application

empty string as its value). There is no need to do this in the value because all char-
acters up to the line feed are treated as part of the value.

 That set of key/pairs is great for the default locale, but you also want to deal
with the Swedish locale. To do so, you need to add a new properties file that con-
tains the same keys as in listing 3.1 but with the values in Swedish. You have to do
this for all the specific locales you want to make available in the application. (As
you’ll see later in the book, these properties files exist in a hierarchy. If entries are
missing, the value from a file higher in the hierarchy is used instead—if no such
value exists, then the GWT compiler raises an error.) These new files must be
named according to a well-defined naming convention (discussed in more detail
in chapter 15) to ensure that GWT can deal with them.

 For now, you need to create a properties file for the Swedish locale. To do so,
create a new file called DashboardConstants_sv.properties in the same location as
the default properties file, and fill it with the contents shown in listing 3.2. (Don’t
worry if your keyboard doesn’t have these characters. You can always use the elec-
tronic copies of the files available at http://www.manning.com/hanson.)

AboutMenuItemName: Om
CalculatorMenuItemName: Kalkylator
ClockMenuItemName: Klocka
CreateMenuName: Nya
HelpMenuName: Hjälp

NOTE You should set the encoding of your properties files to UTF-8 using your
editor; otherwise, GWT won’t be able to cope with any special charac-
ters—in the case of Swedish, this means the Ä, Ö, and Å characters, but
other languages have their own specifics, too!

To set the encoding of your properties files to UTF-8 in Eclipse, select
the file in the Package Explorer, right-click it, and select Properties. In
the dialog box that opens, select Other for the file encoding; and in the
drop-down box, choose the UTF-8 option (if just encoding the language
file still does not work, try encoding the whole project). For other IDEs,
see the appropriate IDE manual.

You now create a simple interface file that allows you to refer to constants in the
code. You create this file, or update it if you’ve previously done this task, by exe-
cuting the DashboardConstants-i18n tool. This tool takes the default properties

Listing 3.2 Key/value pairs used for menu constants in the Swedish locale

Stage 2: Developing your application 71

file and creates items in the interface file for each key (note that if the locale-
specific files have more keys than the default file, they will be ignored; if the
locale-specific files have keys missing, then the default values are used).

 Because you’ve changed the default properties file, execute the Dashboard-
Constants-i18n command now to refresh the interface file. Doing so creates (or
replaces, if it already exists) the DashboardConstants.java file in the client direc-
tory. This new file contains the code shown in listing 3.3, including one method
declaration for each of the keys in the properties file.

package org.gwtbook.client;

import com.google.gwt.i18n.client.Constants;

public interface DashboardConstants extends Constants {
 String AboutMenuItemName();
 String CalculatorMenuItemName();
 String ClockMenuItemName();
 String CreateMenuName();
 String HelpMenuName();
}

That is all you need to implement the back-end aspects of internationalization—rel-
atively easy, at least compared to doing this yourself in JavaScript! To use the locales
in code, you amend the module XML file as shown in listing 3.9 and then you use
the GWT.create() method shown later in listing 3.7 to get the correct set of con-
stants for the locale the application is told it’s in. You can change locales in one of
two ways. The simplest is to add the following text to the URL used to view the appli-
cation: ?locale=sv. The other is to set it in the module XML file, as discussed in sec-
tion 3.2.2. (Chapter 15 discusses how to use the dynamic string i18n approach GWT
provides when you’re dealing with legacy code.)

 At first glance, the interface and properties files seem to sit in useless isola-
tion—and that is true, except when you execute or compile the code. When that
occurs, the GWT system steps in, binding together the properties files and this
interface to produce new Java classes that the code uses (this is performed by
GWT generators, and there is more on this topic in chapter 14). To use these con-
stants, you need to use a GWT concept called deferred binding in the upgraded
Dashboard.java file.

Listing 3.3 Java interface file created by running the Dashboard-

 Constants-i18n application

72 CHAPTER 3

Advancing to your own application

DEFINITION Deferred binding allows you to write code that is syntactically correct at
development time, but with the exact semantics/functionality deferred
until runtime. (Technically this occurs at compile-time, because that is
where GWT resolves these deferred choices; but conceptually they’re
resolved at runtime.)

3.2.2 Constructing the application

In this section, you’ll examine and alter the contents of the default files; in partic-
ular, you’ll alter the HTML page (Dashboard.html) and the Java file (Dash-
board.java) as well as add a style sheet (Dashboard.css). When you’re developing
applications using the creation tools, you’ll typically need to alter the following files:

■ HTML file—This is the HTML document into which the GWT application will
be loaded. The default file is simple and is unlikely to meet your needs for a
real application, so you’ll almost by default end up replacing it.

What it’s replaced with depends on how you’ll be using your GWT appli-
cation. If your application will be placed into a brand-new page, you have a
lot of flexibility; but sometimes your application will be going into an exist-
ing web page, in which case you should use an HTML file representative of
that page.

■ Module XML file—This file indicates a number of aspects of the current GWT
application (module) to the GWT compiler. Normally, each application has
one module XML file (in the example, it’s Dashboard.gwt.xml), unless you
start making your applications modular. In that case, there will be a number
of XML module files (we cover this in chapter 8 when we discuss how the
Dashboard application will be built).

■ Java code files—This set of Java classes and interfaces goes together to make
up the application. The default application always provides one file, in this
case the Dashboard.java file, which provides the basic interface between the
application and the GWT loading mechanism. For the Dashboard example,
you’ve also implemented internationalization, so you have a Dashboard-
Constants.java file too. In practice, you’ll end up replacing these files to
reflect the needs of your application as well as adding other Java files to rep-
resent other aspects of the application. For example, as you progress
through this book, you’ll build new widgets and panels as well as applica-
tions that sit in the Dashboard.

Stage 2: Developing your application 73

Although it’s physically possible to place the details of all these Dashboard compo-
nents in one massive Dashboard.java file, doing so is considered bad programming
practice and is a support nightmare! In practice, each of these components consists
of one or more Java class files, which all need to be created from scratch.

 For each of the default GWT application files you’ll replace, we’ll look at what
the original file contains and how it works, and then show the replacement file. In
a GWT application, the HTML file acts as the container into which the application
is delivered; it makes sense that this is the first file we’ll examine and change.

Constructing the HTML file

There is nothing unusual in the default Dashboard.html file created by the tools.
It’s simple HTML consisting of a standard head and body block, with a title and
some style information. When viewed in a web browser, it produces output similar
to that shown in figure 3.6, with a header, some text, and an HTML table that con-
tains two cells named slot1 and slot2. (We used Firefox’s Web Developer exten-
sion to allow you to easily see the DOM elements and their names on the web page.)

 The important parts of the HTML file, in a GWT application sense, are the
table cells slot1 and slot2. When the default application loads, this is where the
Button and the Label you saw in chapter 1 are placed.

Figure 3.6 The HelloWorld HTML file displayed in Firefox using the Web Developer

extension tool to highlight the DOM elements. You can see the GWT History frame, the

title, some text, and the two slots where the default application will place its widgets.

74 CHAPTER 3

Advancing to your own application

The HTML that renders figure 3.6 is shown in listing 3.4.

<html>
 <head>
 <title>Wrapper HTML for Dashboard</title>
 <meta name='gwt:module' content='org.gwtbook.Dashboard'>
 </head>
 <body>
 <script language="javascript"
 src="gwt.js"></script>
 <iframe id="__gwt_historyFrame"
 style="width:0;height:0;border:0">
 </iframe>
 <h1>Dashboard</h1>
 <p>
 This is an example of a host page for the Dashboard
 application. You can attach a Web Toolkit module to
 any HTML page you like, making it easy to add bits
 of AJAX functionality to existing pages
 without starting from scratch.
 </p>
 <table align=center>
 <tr>
 <td id="slot1"></td><td id="slot2"></td>
 </tr>
 </table>
 </body>
</html>

The GWT-specific parts of the HTML come at points B, C, D, and E. B and C
are mandatory, and your application can’t work without them being present. D is
required only if you’re going to use GWT history functions. It’s normally required,
but not mandatory, to have some form of named element(s) in the HTML file E
in order for your application to know where to position itself once loaded. What is
important for this example is that there are named DOM elements that can be
found in the web page, not the fact that they’re called slot1 and slot2 or that
they’re table cells.

 Let’s examine the default HTML file in a little more detail. A meta-tag is intro-
duced in the head section B for each GWT application to be included in the web
page. In the case of the default example, there is only one application, so only one
gwt:module meta-tag is required. You set the content attribute of the meta-tag to
be the class name of the application, org.mycompany.Dashboard, which informs

Listing 3.4 Dashboard.html file provided for the default GWT application

Identify
application

B

Load GWT
framework

C

Support
GWT
history

D

Create
application
holding positions

E

Stage 2: Developing your application 75

the GWT loading mechanism where to look to initialize the application (we cover
the GWT loading mechanism in chapter 17—the process just described covers
GWT up to version 1.3, from version 1.4 this gets slightly simpler where only one
JavaScript file directly related to your application is loaded, see chapter 17
for details).

 In addition to the meta-tags for the module, the GWT loading mechanism rec-
ognizes three other meta-tags; these are shown in table 3.1 (with definitions taken
directly from the GWT code).

At C in listing 3.4, you include the main GWT JavaScript file, gwt.js, which is pro-
vided in the GWT distribution. The purpose of this file is to initiate and manage

Table 3.1 Meta-tags that can be entered into an application’s HTML file. Each meta-tag controls an

 aspect of the GWT application.

Meta-tag Description

gwt:module Indicates that a module definition is coming. The value of the

content attribute is the class you define that implements the

EntryPoint interface.

Example

<meta name="gwt:module"
content="qualified_class_name">

gwt:property Defines a deferred binding client property. It can cover many

aspects—for example, the locale of the application (which drives the

loading of other locale-specific constant files, if you defined them).

Example

<meta name="gwt:property"
content="_name_=_value_">

gwt:onPropertyErrorFn Specifies the name of a function to call if a client property is set to an

invalid value (meaning that no matching compilation is found).

Example

<meta name="gwt:onPropertyErrorFn"
 content="_fnName_">

gwt-onLoadErrorFn Specifies the name of a function to call if an exception happens during

bootstrapping or if a module throws an exception out of

onModuleLoad(); the function should take a message parameter.

Example

<meta name="gwt:onLoadErrorFn"
 content="_fnName_">

76 CHAPTER 3

Advancing to your own application

the application loading mechanism, which is discussed in chapter 17, as well as to
perform some other administrative tasks. Google indicates that this tag could be
placed in the header block, but there is a gain in startup speed if it’s included in
the body—we’ll trust them on that point.

 The default application’s HTML includes an iframe D; it’s optional, but the
creation tools include it by default. It’s used by the GWT history functions, and
you should remove it only if you know for sure you won’t be using these functions.
It’s particularly useful, because poor design and development of Ajax solutions
run the risk of breaking the user’s expected behavior of how browser history
works (it’s no longer necessary to refresh the browser page every time a screen
update is required). GWT solves this problem by using an iframe in which history
can be stored and retrieved.

 The final element of the HTML that we’ll discuss is at E in listing 3.4, where
you can find the named DOM elements in which you’ll place the application com-
ponents. In the default application, there are two table cells called slot1 and
slot2 into which the Java code places the button and the text displayed when the
button is clicked.

 It’s worth noting here that you don’t need to place GWT components in a
table; any named DOM container will do (such as a span or a div). Also, it isn’t
always necessary to have a separate element for each GWT component that you
place in the web page. The Google example could easily be implemented using a
GWT panel in which the button and message were placed. The panel itself would
then be placed as one element on the screen; but now we’re straying into compos-
ite widgets and layout design territory, which is a subject for chapter 7. When you
develop the Dashboard, you’ll see that you need no named DOM element.

 In the case of the Dashboard application, replace the contents of the Dash-
board.html file with the code shown in listing 3.5.

<html>
 <head>
 <title>Wrapper HTML for Dashboard</title>
 <meta name='gwt:module' content='org.gwtbook.Dashboard'>
 </head>
 <body>
 <script language="javascript" src="gwt.js">
 </script>
 <iframe id="__gwt_historyFrame"

Listing 3.5 Dashboard.html file used for the first version of the Dashboard

 example application

Identify
application

B

Load GWT
framework

C

Support
GWT historyC

Stage 2: Developing your application 77

 style="width:0;height:0;border:0">
 </iframe>
 </body>
</html>

In this new file, you can see that the two mandatory elements are still there (B
and C), and you also keep the history capability D, because that will be used by
the Dashboard components later. The big difference in this HTML is that you
deliberately don’t include any named DOM elements, such as slot1 or slot2,
from the default application. The main benefit of named DOM elements is to
allow the GWT applications to seamlessly fit into existing web pages at specific
locations; the Dashboard application takes over the whole real estate of the web
page, so named slots are relatively meaningless.

 The new Dashboard.HTML file is nothing out of the ordinary. If you have a
GWT application, to go into any existing web page, you just identify a named DOM
container for it and include the relevant meta-tag and gwt.js script. But how does
the GWT application bind itself to that named container (or display in the
browser, in the case of the Dashboard) and provide the necessary functionality?
That comes in the Java code.

Altering the application files

Along with the HTML file, altering the application’s Java file (Dashboard.java in this
case) is a key step in the process of moving away from the default application. The
code that is provided by default in the Dashboard.java file is shown in listing 3.6.

package org.gwtbook.client;

import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.user.client.ui.Button;
import com.google.gwt.user.client.ui.ClickListener;
import com.google.gwt.user.client.ui.Label;
import com.google.gwt.user.client.ui.RootPanel;
import com.google.gwt.user.client.ui.Widget

public class Dashboard implements EntryPoint {

 public void onModuleLoad() {
 final Button button = new Button("Click me");
 final Label label = new Label("");

Listing 3.6 Default application’s Dashboard.java Java code

Implement
EntryPoint

B

Define initial functionalityC

Create
buttonDCreate

labelE

78 CHAPTER 3

Advancing to your own application

 button.addClickListener(new ClickListener() {
 public void onClick(Widget sender) {
 if (label.getText().equals(""))
 label.setText(“Hello World”);
 else
 label.setText("");
 }
 });
 RootPanel.get("slot1").add(button);
 RootPanel.get("slot2").add(label);
 }
}

This is simple Java code, which breaks down as follows. The Java class name must
be the same as the filename, and in this case it’s called Dashboard B. For GWT
applications, there must be one class in your application known as the entry point

class, which provides an onModuleLoad() method (the GWT loading mechanism
calls this method to start your application). This class is identified to GWT by
implementing the EntryPoint interface, as this class does.

 Because this class implements the EntryPoint interface, it must provide the
onModuleLoad() method C. For the default application, this method creates the
necessary GWT widgets (a button and a label) and adds a click listener to the but-
ton. This click listener contains an onClick() method, which is called when the
button is clicked.

 In segment D of the code, you create a GWT widget—in this case, a Button
widget. In the Java code, this is treated like any other object: It’s created, and you
can perform a number of actions on it through the Button class’s member func-
tions. When executing in hosted or web mode, this object becomes a direct repre-
sentation of a DOM button and is so displayed in the web page. We’ll look at all
the widgets GWT provides in more detail in the next chapter.

 At E, you create a GWT Java Label object, which in Java code acts as a simple
object but in hosted or web mode becomes a direct representation of a DOM div
element whose inner text can be altered.

 Most functionality on the UI aspects of a GWT application are driven by
events—a user clicks something, or something is dragged or changed in some way.
GWT manages these events through listeners added to GWT widget objects. At F,
you add a click listener to the Button widget. When the button is clicked, the
onClick() method is called to update the text value of the Label (causing it
either to be blank or to say Hello World). Event handling is covered in more
detail in chapter 6.

Add ClickListener
to button

F

Add button and
label to web page

G

Stage 2: Developing your application 79

 Now that you know how the default application Java code works, let’s intro-
duce the Java code for the application (you should replace the existing Dash-
board.java contents in your project with that shown in listing 3.7).

package org.gwtbook.client;

import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.core.client.GWT;
import com.google.gwt.user.client.Command;
import com.google.gwt.user.client.Window;
import com.google.gwt.user.client.ui.MenuBar;
import com.google.gwt.user.client.ui.RootPanel;

public class Dashboard implements EntryPoint{
 public void onModuleLoad(){
 MenuBar menu = new MenuBar();
 MenuBar menuCreate = new MenuBar(true);
 MenuBar menuHelp = new MenuBar(true);
 MenuBar login = new MenuBar(true);
 Image trash = new Image("trash.png");
 DashboardConstants constants =
 (DashboardConstants) GWT.create(DashboardConstants.class);

 menuHelp.addItem(constants.AboutMenuItemName(),
 new DummyCommand());
 menuCreate.addItem(constants.ClockMenuItemName(),
 new DummyCommand());
 menuCreate.addItem(constants.CalculatorMenuItemName(),
 new DummyCommand());
 menu.addItem(constants.HelpMenuName(), menuHelp);
 menu.addItem(constants.CreateMenuName(), menuCreate);
 RootPanel.get().add(menu);
 RootPanel.get().add(trash);
 menuCreate.addStyleName("submenu");
 menuHelp.addStyleName("submenu");
 trash.setStyleName("trash");
 }

 public class DummyCommand implements Command{
 public void execute() {
 Window.alert("Menu Item Clicked");
 }
 }
}

Listing 3.7 Dashboard.java Java code for the first version of the Dashboard application

Implement
EntryPoint

B

Define initial functionalityC

Create
menu bars

D

Access internation-
alization constants

E

Define
menu items

F

Build menu
system

G

Add components
to web pageH

Apply styling to
componentsI

Define dummy
commandJ

80 CHAPTER 3

Advancing to your own application

As we walk through this code, you’ll see a number of similarities to and differ-
ences from the default application. The class is still the EntryPoint to the applica-
tion and is still called Dashboard B. Because this is the EntryPoint class, it must
implement the onModuleLoad() method C.

 In the default application, you created Button and Label widgets. For the first
version of the Dashboard, you create MenuBar widgets instead D. As we men-
tioned previously, we’ll talk more about widgets in chapter 4.

 When you created the Dashboard directory and code structure using the tools,
we said you’d implement internationalization, and you created a DashboardCon-
stants interface file using the tools. We also said that you access these constants
through a GWT concept called deferred binding.

 At E you request the correct binding between the interface file and locale-
specific properties files (you’ll create these shortly) to ensure that the correct
locale constants are available. GWT.create() is a special method that works differ-
ently in hosted and web mode, but all you need to worry about here is that the
method selects the correct set of locale-specific constants or messages. (We’ll
cover internationalization in much more detail in chapter 15).

 F is similar to where you added a ClickListener to the Button in the default
application, except here you add MenuItems to MenuBars and indicate that when
these MenuItems are clicked, the code should perform the execute() method of the
new DummyCommand object you create for each MenuItem. You set the text to be shown
for each MenuItem to be the value returned from constant object created at G. This
is how you show different constant values (effectively language, in this case) for dif-
ferent locales.

 To finish the menu system, you add two different MenuBars to the root MenuBar
displayed at the top of the screen. In the default application, you used this Root-
Panel.get() method with specific named elements on the HTML page as a
parameter to insert the widgets at specific locations. In the Dashboard, you don’t
define any named elements in the HTML file; instead, you let the RootPanel place
the widgets in-line from the top of the page H. On the screen, you put the menu
first and then the image for the trash icon. This approach works well for the Dash-
board—different approaches work better for different applications.

 If you’re checking back in the book to see what this looks like, you may wonder
how the trash icon appears directly under the menu bar and on the right side of
the page—because this isn’t how placing elements in-line works. The answer is the
use of Cascading Style Sheets (CSS).

 The final step of the application setup adds names from a CSS to the objects
you’ve created I. You explicitly set the style for the submenus and the trash icon.

Stage 2: Developing your application 81

In a corresponding CSS definition, you enter the stylistic aspects for the compo-
nents. The styling for the trash icon includes the statement float: right, which
is how the icon is made to float to the right side of the page.

 When you created the MenuItems, you told them that if they’re clicked, they
should call the execute() method of an object of type DummyCommand; then, the
text Menu Item Clicked appears on the screen. J provides a simple implementation
of the Command interface, which creates a JavaScript alert box on the screen with
the text Menu Item Clicked in it.

First—Currently, the Java you use in your client-side code must comply to
Java 1.4 standards: no generics, and so on. Your IDE is probably set to the
Java 5.0 standard by default, so even though your IDE says you have valid
code, it may fail in the GWT compiler. (If you’re new to Java, don’t worry;
Java 5.0 is the next version after 1.4—GWT isn’t that far behind!) The eas-
iest thing to do for simple projects is set your IDE to use the 1.4 standard.
In Eclipse, right-click the project in the Package Explorer, and select the
Properties option; then, under the Java Compiler tree, set the compliance
to Java 1.4 mode. If you’re using server-side code, there is no such restric-
tion on the Java used for it.

Second—Any Java packages that you include in client-side code must have
the source code visible to the GWT compiler and must follow the same
restrictions as code you write (that is, they must be compliant with Java 1.4).

Third—Your client-side Java code becomes compiled as JavaScript—don’t
expect your Java code to do anything JavaScript can’t do. In particular,
this means you can’t access the user’s filesystem (except through the
standard file-upload browser functionality, which we’ll look at in chapter
12); and, from client-side code, you can’t directly access a database on
your server (to do this, you need to get your client-side code to talk to
server-side code, which we thoroughly go through in chapters 10–13).

All GWT applications are glued together with one or more corresponding module
XML files. Simple applications have only one of these files. When you build the full
Dashboard application later, you’ll see that there is a module XML file for the Dash-
board application as well as one each for most of the component applications.

Examining the module XML file

Under the src/org/gwtbook folder, you find the Dashboard.gwt.xml module file.
This file is always named YourApplicationName.gwt.xml and is used by GWT to con-
trol the compilation (the generation of what GWT calls permutations) of your appli-
cation as well as GWT module inheritance. GWT creates a new JavaScript file for

DON’T
FORGET

82 CHAPTER 3

Advancing to your own application

each permutation of various options, such as browser types and included locales
(in chapter 15, we’ll look at exactly what you can do in this area). The file can
contain many elements, all of which are described in glorious detail in chapter 9;
but right now it describes the view of the default application (see listing 3.8). You
need to replace this content with that shown in listing 3.9.

<module>
 <inherits
 name="com.google.gwt.user.User" />
 <entry-point
 class="org.gwtbook.client.Dashboard" />
</module>

<module>
 <inherits
 name='com.google.gwt.user.User'/>
 <inherits
 name="com.google.gwt.i18n.I18N" />
 <extend-property
 name="locale"
 values="sv" />
 <entry-point
 class='org.gwtbook.client.Dashboard'/>
 <stylesheet
 src="Dashboard.css" />
</module>

This module file is slightly more than that provided with the default application;
let’s look at what it contains. At B you indicate that this application inherits the
functionality in the User GWT module—almost all applications include this entry.

 Next C, you say that you also inherit the functionality in the I18N GWT mod-
ule—unfortunately, i18n functionality isn’t part of the default include mentioned
in B, and you need to specifically inherit this module if you have i18n aspects in
the code.

 D indicates to the application that it needs to manage the Swedish locale in
addition to the default one. If you don’t include this entry, then even if you have
code for the Swedish locale, it will never be accessible (additional locales require
additional entries in this file).

Listing 3.8 Default application’s Dashboard.gwt.xml file

Listing 3.9 New XML module file to represent the Dashboard application

Inherit standard
GWT functionality

B

Inherit GWT
internationalizationCSwedish

locale
D

Entry
point

E

Style
sheetF

Stage 2: Developing your application 83

 When looking at the Java code, we talked about the need for a class to implement
the EntryPoint interface and act as the starting point of the application. At E in
the module XML file, you tell the compiler which class implements this Entry-
Point interface.

 Finally, at F you inject the style sheet as discussed in the last chapter.
 With the completion of this module XML file, the first version of the Dash-

board application is functionally complete, but it’s still missing the styling needed
to make it look like figure 3.2.

REMEMBER A GWT module XML file and the Java classpath are only loosely related.
The XML file points out GWT dependencies; the classpath points out Java
dependencies. If a particular module is mentioned in a module XML file
but its source code isn’t on the Java classpath, then compilation will fail.

3.2.3 Applying styling

The most obvious instance of styling applied to the application (obvious if you’re
running the code rather than looking at the black-and-white picture in the book!)
is the fading blue background given to the Dashboard. Without the styling, the
Dashboard would appear as shown in figure 3.7.

 Setting a background image on a web page is an easy task to accomplish when
you’re using normal HTML and a CSS; you just set an entry for the body element
in the style sheet. For example:

body {
 margin: 0;
 padding: 0;
 background: #111fff;
 background-image:url("DashboardBackground.jpg");
}

You then link the style sheet into the HTML.

Figure 3.7

This is what the Dashboard

application looks like if you

forget to apply any styling—

not quite the same view as in

figure 3.2.

84 CHAPTER 3

Advancing to your own application

How do you do this in GWT? After compilation, GWT is simple HTML and Java-
Script, so the same CSS approach works perfectly well. You should create a Dash-
board.css file and store it in the src/org/gwtbook/public directory. In that file,
enter the code shown in listing 3.10.

body {
 margin: 0;
 padding: 0;
 background: #111fff;
 background-image:url("DashboardBackground.jpg");
}

.trash {
 float: right;
 margin: 5px;
}

.gwt-MenuBar {
 background: #66a;
 background-image:url("BrushedSteelGrayBackground.jpg");
 border-bottom: 2px solid #000;
 cursor: pointer;
}

This style sheet mentions a couple of graphics files, which you use to give the look—
you can either grab them from the electronic part of this book or supply your own.
Either way, they need to be stored in the same directory as the style sheet.

 The style sheet shows three different ways of styling GWT components. You can
style standard HTML elements using the normal way of defining styling for that
element. In listing 3.10, B shows the styling for the body element, which among
other things sets the background image of the body element to DashboardBack-
ground.gif. When the application loads, it expects to find that image file in the
src/org/gwtbook/public folder in hosted mode (it’s possible to change this
default location, as we’ll discuss in chapter 9) or the public path in web mode.

 It’s possible to set the style name of GWT components using the setStyle-
Name() method, as you saw at I of the Java code in listing 3.7. There you set the
style name (you’re setting the CSS class name for the DOM element) of the trash
object as follows:

trash.setStyleName("trash");

Listing 3.10 Part of the CSS for the first version of the Dashboard application

Style
bodyB

Style
trash icon

C

Style
menu bar

D

Stage 2: Developing your application 85

At C in this style sheet is the corresponding CSS used to style that element. Note
that in the CSS, you need to start the name with a period (.), which isn’t present
in the name used in your Java code—if you don’t do so, then the styling isn’t
applied (that has caught us a few times!). You can give an element multiple CSS
class names by using the addStyleName() method (the setStyleName() method
removes all previous CSS class names associated with the element first and then
applies the provided CSS class name—so, if you call setStyleName() with the
empty string, “”, you clear all associated CSS class names).

 Finally, all GWT widgets come with a set of default style names already applied,
and you can use those in the style sheet without having to name them in the code.
To get the names of the styles set as default, you need to go to the GWT web site
and navigate through the class hierarchy to the UI object you’re interested in.

 You style the root MenuBar a lovely shade of brushed steel in the Dashboard
application. To do this, navigate to the MenuBar object on the GWT web site to see
the standard GWT style names for a MenuBar (at the time of writing, that web site is
at http://code.google.com/webtoolkit/documentation/com.google.gwt.user.cli-
ent.ui.MenuBar.html; see figure 3.8).

Figure 3.8

Identifying the default style

names for standard GWT

widgets from the GWT web site.

In this case, you’re looking at

the MenuBar definition from the

GWT web page, and you can see

the CSS Style Rules section.

86 CHAPTER 3

Advancing to your own application

Under the CSS Style Rules section, you can see three entries for the MenuItem,
which match those given at D in listing 3.10.

 To complete the linkage between application and style sheet, we need to decide
where to place the link to the style sheet. You have two choices. First, you can edit
the Dashboard.html file and add the following in the HTML’s HEAD section (just as
you normally would in an HTML file to which you were linking a style sheet):

<link rel=stylesheet href="Dashboard.css">

Second, you can create an entry in the module XML file to inject the CSS resource
into the application. The benefit of this approach is that you can keep style-specific
information logically with the application; if you embed the application in another
HTML file, you don’t need to alter that HTML file. To use the injection method,
place the following into the module XML file:

<stylesheet src="Dashboard.css"/>

If you add that line to the Dashboard.gwt.xml file you altered earlier, then you’re
ready to get on with testing and debugging the application in hosted mode.

3.3 Stage 3: Testing and debugging in hosted mode

Hosted mode is a managed environment provided as part of the GWT distribu-
tion. You saw in the process diagram in chapter 2 that hosted mode is the environ-
ment where you perform the majority of system testing and debugging.

 In the Windows operating system, hosted mode uses the version of Internet
Explorer that is installed on your machine as the display technology; the other
GWT distribution includes a prebuilt Mozilla instance (unfortunately, you can’t
change these defaults). When running your code in hosted mode, your Java code
isn’t compiled into JavaScript; rather it’s interpreted. This allows you the distinct
advantage of being able to link the execution of the application in hosted mode
to the debugging capabilities of your IDE.

 In this section, we’ll look at the process of running the example in hosted
mode both from the command line and from within the Eclipse IDE’s program-
launch capability. We’ll also discuss how you can debug your application at run-
time in the Eclipse IDE (this process is similar for other IDEs). Let’s prepare for
hosted mode.

3.3.1 Preparing for hosted mode

In hosted mode, the application is executed through a managed environment that
is provided by the GWT distribution. The client-side code executes in a managed

Stage 3: Testing and debugging in hosted mode 87

web browser, where the Java code is effectively interpreted and any errors or issues
are captured and reported in a controller window. Hosted mode also includes an
embedded version of the Tomcat servlet engine into which any server-side Java
code is deployed automatically.

 When you executed the application creation tool in chapter 2, it created a
script for you called Dashboard-shell, in the DashboardDir directory. This script
launches hosted mode. If you haven’t used the creation tools or are just interested
in the contents of the default script, it appears in listing 3.11 (for the Windows
environment—the Mac and Linux versions are similar).

@java -cp "%~dp0\src;%~dp0\bin;gwt-user.jar;gwt-dev-windows.jar"
 com.google.gwt.dev.GWTShell -out "%~dp0\www" %*
 org.gwtbook.Dashboard/Dashboard.html

The hosted-mode script can take a number of arguments. The default set is shown
in listing 3.11, and the following sections describe all the possible arguments and
what they mean.

-noserver

This argument prevents the embedded Tomcat server from starting up. It’s useful
to do this if you’ve deployed your server-side code to your own servlet engine. By
default, this value is false, meaning that the Tomcat server embedded within the
hosted mode software is used.

-whitelist “list”

By default, hosted mode prevents the user/code from navigating to URLs outside
of the applications scope—the whitelist is empty (the whitelist is a list that contains
URLs the hosted mode is allowed to navigate to—the opposite, a list where the
hosted mode is not allowed to navigate to is called the blacklist, and you’ll see that
in a short while). If you wish to allow the user/code to do so, then the URLs that will
be navigated must be added to a whitelist using a regular expression approach.

 For example, if you want the application to navigate to the Swedish Google
search site, and you don’t add the URL to the whitelist, then you’ll see the error
message shown in figure 3.9.

 To add http://www.google.se to the whitelist, you add the following entry to
the Dashboard-shell command script:

-whitelist " ^http[:][/][/]www[.]google[.]se"

Listing 3.11 Default contents of the Dashboard-shell command-line script

88 CHAPTER 3

Advancing to your own application

Now, when you or the code attempts to navigate to this Google site, no security
warning is presented, but the browser navigates to the requested location.

-blacklist “list”

Similar to the whitelist approach, hosted mode can explicitly bar URLs if they’re
placed on the blacklist; by default, the blacklist is empty. To add http://www.goo-
gle.se to the blacklist, add the following entry to the Dashboard-shell com-
mand script:

-blacklist " ^http[:][/][/]www[.]google[.]se"

Now, when you or the code attempts to navigate to this Google site, no security
warning is presented to the user, but the browser doesn’t navigate to the
requested location. If you look at the hosted mode console after you try to navi-
gate to a location on the blacklist, you see the output in figure 3.10.

Figure 3.9

The security warning that GWT

hosted mode raises if the user or code

tries to navigate to a URL that isn’t

specifically included on the whitelist

Figure 3.10 The output on the hosted-mode console if you try to navigate

to a URL that is specifically included on the blacklist

Stage 3: Testing and debugging in hosted mode 89

-logLevel level

Running GWT hosted mode with default settings means that the logging level is
set to INFO. You can alter this level by providing the -logLevel argument to the
hosted-mode browser. Seven levels of logging are available:

■ ERROR

■ WARN

■ INFO

■ TRACE

■ DEBUG

■ SPAM

■ ALL

The levels reside in a hierarchy the same as that in Log4J (see section 3.7.1). This
means that if you set/leave the logging level at INFO, then all INFO, WARN, and
ERROR messages are displayed; if it’s set to DEBUG, then all DEBUG, TRACE, INFO,
WARN, and ERROR messages are shown. This logging can be extensive; figure 3.11
shows logging set to ALL for the Dashboard application.

Figure 3.11 The detailed output that results when the full Dashboard project starts and the

logging level is set to ALL

90 CHAPTER 3

Advancing to your own application

Setting the log level to ALL produces an extremely detailed log of exactly what the
system is producing—it isn’t likely that you’ll use this level all the time, if at all.
However, section 3.7.1 discusses how you hook into this logging mechanism for
your code.

-gen “location”

This argument indicates the directory into which files produced by any GWT gen-
erators in your project are placed (so they can be reviewed at a later date if
required). We cover GWT generators in detail in chapter 14.

-out “location”

Including the -out argument indicates to hosted mode that the files produced for
the application should be stored in a particular directory (rather than the default
location, which is the current user directory).

-style value

This argument alters the way in which the code is created. There are three
options: OBFUSCATED, PRETTY, and DETAILED; each one alters the readability of any
produced JavaScript code. Obfuscated code has a small size footprint but is effec-
tively not readable, whereas detailed output contains as much information as the
compiler can stuff in.

If you include any Java libraries in your development, then they need to
be added to the classpath defined on the first line of the hosted-mode
execution script. Otherwise, they won’t be available to your code (this
includes any libraries you’re using for the client and server sides).

When this script is executed, hosted mode for the application is invoked, as you’ll
see in the next section.

TIP Although the arguments are normally added to the application’s shell
command script, if you’re using an IDE such as Eclipse, then you need to
add them to the launch configuration. In Eclipse, you do so by right-
clicking the project, selecting Run As > Run, and then adding the argu-
ments to the Arguments tab (see figure 3.13).

3.3.2 Running the Dashboard in hosted mode

Firing up the application in hosted mode from the command line is as simple as
typing the following command in the root directory of the application (in this
case, DashboardDir):

Dashboard-shell

DON’T
FORGET

Stage 3: Testing and debugging in hosted mode 91

After a short delay, two new windows open. The first is the hosted development
controller, where you can examine any error messages, and so on; the second is
the application. In the case of the Dashboard, you should see something resem-
bling figure 3.12.

 If you’re using the Eclipse editor, then it’s possible to launch the program
from within Eclipse. To do so, run the project as a Java application. Right-click the
project, and select Run As and then Java Application. The projectCreator tool
created all the details Eclipse needs to know to run the program. To see this infor-
mation in more detail, either look at the Dashboard.launch file or right-click and
select Run; the dialog box in figure 3.13 opens. Clicking Run launches hosted
mode from Eclipse, and you should see the same view as in figure 3.12 after a
short startup delay.

 There isn’t a lot of testing you can do for the Dashboard, because at this time it
doesn’t do much. You can try the menus to confirm that you get back the message
Menu Item Clicked, or change the locale to see the difference. Changing the locale
is as simple as adding the text ?locale=sv to the end of the URL and clicking
Refresh. If you do this, assuming you made all the changes along with us, you
should see the Swedish version of the page shown earlier in figure 3.5.

 The other task you can perform in Stage 3 of the development is debugging
the application. You’ll do this through Eclipse in the next section.

Figure 3.12 Dashboard application running in hosted mode. The left window is the hosted

console, and the right is the hosted browser with the Dashboard application running.

92 CHAPTER 3

Advancing to your own application

3.3.3 Debugging the Dashboard in hosted mode through Eclipse

Debugging in Eclipse works the same way as debugging any Java application (and
this applies to both client and server [RPC] side code, although you haven’t got
any server-side code yet). Follow these steps to debug an application:

1 Set the breakpoints in the code where you wish the debugger to step in. Fig-
ure 3.14 shows a breakpoint set at the point where you display an alert to
the screen when a user selects a menu option. This is indicated by the little
blue ball in the left sidebar.

2 Execute the application in debug mode. In Eclipse, you do this in the same
manner you did when launching hosted mode, except you select Debug As
rather than Run As: Right-click the project in Package Explorer, select
Debug As, and then select Java Application.

Figure 3.13 Running hosted mode from Eclipse by clicking the Run As option. This dialog box shows

that the Java class to be executed is com.google.gwt.dev.GWTShell, which is part of the GWT

system. Here, you can add to the classpath any libraries you’re using (in the case, you aren’t using any

at this stage).

Stage 3: Testing and debugging in hosted mode 93

3 When you execute the application in debug mode, the hosted browser is
launched, and everything works as normal until you click the button. When
you do, normal execution is suspended and the Eclipse debugger traps the
execution point and presents the screen shown in figure 3.15.

Figure 3.14 Setting a breakpoint in the Eclipse IDE at the start of the

changeLabel() method. To do so, click in the gray bar next to the

Window.alert() command. Eclipse shows a little blue circle indicating

that a breakpoint has been set.

Figure 3.15 The view shown in the Eclipse debugger when the code reaches the breakpoint you

previously set in figure 3.11.

94 CHAPTER 3

Advancing to your own application

4 You can now step through and into the code using the navigation buttons at
the top of the Debug window (see figure 3.16).

The debugger is immensely helpful when it comes to understanding the null
pointer errors that seem to inevitably appear when you’re building complicated
applications (so far, you may have experienced them when you forgot to create
objects (widgets and panels) before trying to use them—school child errors, yes;
but with the debugger, they’re quickly found. You can’t imagine how difficult this
would be to do by looking at the JavaScript code, not to mention ensuring it’s con-
sistent across all browser versions you would have to maintain in a non-GWT
approach. It’s also useful when you’re using the more advanced techniques of
remote procedure calling (RPC), where Java code is deployed onto a server. When
you execute such applications through hosted mode, you can hook your debug-
ger up to both client- and server-side code.

 You’re almost at the end of the development lifecycle for the first version of
the Dashboard example. You created the project structure, replaced or amended
the necessary files, and filled them with appropriate content. Then, you launched
the application in hosted mode and tried a little debugging as well as setting up
the basis for unit testing. Now, it’s time to take the final step toward a complete
GWT application and exercise it in web mode, where it runs for real.

3.4 Stage 4: Compiling the code

Whereas hosted mode provides you with a protected environment in which to
perform system testing because the Java code is interpreted and can be debugged,
in web mode the application runs for real. In web mode, the application has been
compiled into the web technologies we discussed in chapter 1. No longer is the
application Java code; you now have a number of JavaScript files (permutations, as
they’re called in GWT) for each browser and locale combination.

Figure 3.16

You can use the buttons on the

debugger’s toolbar to navigate

throughout the code in debug

mode. From left to right, the

buttons are circled: Step Into,

Step Over, Step Out, and Drop

to Frame.

Stage 4: Compiling the code 95

 As you create more complex applications, including and managing different
GWT properties, then the number of permutations will increase—the full Dash-
board, for example, will come with an intranet and Internet version selected by
setting an externalvisibility property. This means the permutation matrix
space will cover browsers, locales, and external visibilities—luckily, GWT takes care
of all that for you, as well as selecting the correct permutation to show the user.

 The first step in executing the application in web mode is to compile the Java
code. In chapter 17, we take a more detailed look at the functionality and outputs
from the compilation process, but let’s take a moment now to discuss how you
invoke the compiler and see what the resulting files are.

3.4.1 Compiling the code/preparing for web mode

In web mode, an application is executed through a normal web browser; there-
fore, the GWT application needs to be compiled from Java to JavaScript before
this happens. You perform compilation by executing the compilation script,
which has also thoughtfully been created by the application-creator command.
It’s in the DashboardDir directory and is called Dashboard-compile. The contents
of this default command look like:

@java -cp "%~dp0\src;%~dp0\bin;gwt-user.jar;gwt-dev-windows.jar"
 com.google.gwt.dev.GWTCompiler -out "%~dp0\www" %*
 org.gwtbook.Dashboard

Again, if you’re including any Java libraries in your development, they
must be added to the classpath defined on the first line of the compiler
script. Otherwise, they won’t be available to the compiler, and you’ll get
compilation errors.

The following sections describes the possible arguments to the compiler and what
they mean:

-logLevel level

As with hosted mode, you can set the logging level used during the compilation
process by providing the -logLevel argument to the compiler. The same seven
levels of logging are available (ERROR, WARN, INFO, TRACE, DEBUG, SPAM, and ALL).
The levels reside in the same hierarchy as for hosted mode.

-treeLogger

Passing the compiler the -treeLogger flag directs the compiler to produce its
output in a standard GWT TreeLogger format in a new window (see figure 3.17).

DON’T
FORGET

96 CHAPTER 3

Advancing to your own application

-gen "location"

This argument indicates the directory into which files produced by any GWT gen-
erators that are in your project are placed (so they can be reviewed at a later date
if required). We cover GWT generators in detail in chapter 14.

-out "location"

Including the -out argument indicates to the compiler that the output files pro-
duced for the application should be stored in a particular directory (rather than
the default location, which is the current user directory).

-style value

This argument alters the way in which the code is created. There are three options:
OBFUSCATED, PRETTY, and DETAILED; each one alters the readability of any produced
JavaScript code. Obfuscated code has a small size footprint but is effectively not
readable, whereas detailed output contains as much information as the compiler
can stuff in.

Figure 3.17 Setting the treeLogger flag for the GWT compiler causes it to produce its

output in a new window in a tree style. You can then easily navigate and check the output of

the compilation process.

Stage 4: Compiling the code 97

 For production-ready code, you’ll probably prefer the small footprint size cre-
ated by setting the style to OBFUSCATED. But in development, you may like to use
PRETTY or DETAILED if you wish to look at the produced JavaScript code.

 When the compiler is invoked, it takes the Java classes and translates them into
a number of JavaScript files. Each JavaScript file (a permutation, in GWT parlance)
represents a version of the application for each property value the application is
concerned with. Normally, those properties are restricted to browser types and any
internationalization that may be going on. In the case of the full Dashboard, you
get 18 different permutations—one for each of the browsers, locales, and external
visibility options. Let’s look at the files that are produced.

NOTE The default values for heap size of the Java Virtual Machine (JVM) used for
compilation aren’t optimal, and you should consider changing them. In
the authors’ development environment, we add the arguments -Xms256m
and -Xmx512m just before the -cp argument in the compiler scripts. This
has the benefit of substantially speeding up compilation (on our machines,
from around 15 minutes to just over 40 seconds!) and avoiding the poten-
tial for heap-size errors generated by the compilation process.

3.4.2 Viewing the compilation results

You perform compilation by executing the following command:

Dashboard-compile

When compilation has finished, your application is compiled into an org.mycom-
pany.Dashboard directory under the DashboardDir/www/ directory (which is cre-
ated if it doesn’t already exist). Figure 3.18 shows a typical subset of the files
produced for the Dashboard application.

 We discuss these files in more detail in later chapters; for now, we can say that
the XML files correspond directly to the HTML files with the same name—they list
the decisions made by the GWT compiler when generating the permutations of
code. For example, the XML file named 127D3E5E8741F096957AE332A38198D0.
xml contains the rebind decisions shown here that indicate the 127D3E5E8741-
F096957AE332A38198D0.nocache.html file is specifically the version for the Opera
browser when the application is using the Swedish locale:

<rebind-decision
 in="org.gwtbook.client.DashboardConstants"
 out="org.gwtbook.client.DashboardConstants_sv"/>
<rebind-decision
 in="com.gootgle.gwt.user.client.impl.DOMImpl"
 out="com.google.gwt.user.client.impl.DOMImplOpera"/>

98 CHAPTER 3

Advancing to your own application

(The file names are based on MD5 hashing, so it’s unlikely that you’ll have exactly
the same filenames. The conceptual link between the XML and HTML files will
still exist and be valid.)

 We cover the process of compilation in chapter 17. For now, you have a com-
piled application, and it’s time to deploy that code.

3.5 Stage 5: Deploying the code

Once the application has been compiled, you can take the next step to execute it
in web mode, by deploying it to your favorite web server. We cover deployment in
detail in chapter 16 because the more complicated your application becomes, the
more complicated deployment can be. For now, you can perform a simple deploy-
ment because you have no server-side code.

NOTE When you have server-side code (in Java), then you need to ensure that
you create a web.xml file that details the services you’re deploying to the
servlet engine (in hosted mode, this is all automatically done for you).
Even if you include your service endpoints (see chapters 10–14) in the
GWT module XML file (see chapter 9), you still need to create a web.xml
file for them to be visible to your web-mode deployment.

3.5.1 Deploying to a web server

We developed the examples for this book with the Apache web server as the tar-
get, and in that case deploying this example was as simple as copying across the

Figure 3.18 The output of compiling the Dashboard GWT application for web mode. You can see three

HTML files that form the framework for the application. A number of XML files detail the choices made

by the compiler for several permutations, followed by a similar number of HTML and JavaScript files (whose

names match the previous HTML files). The remaining files are the image and style-sheet resources.

Stage 6: Running in web mode 99

files in the compilation directory to the web server’s root directory (or, if you pre-
fer, a specific folder under the root directory). If you want to save space on the
deployment, then you don’t need all the XML files we previously discussed,
because they’re only used by the compiler to keep track of where it is.

 If you don’t have a web server, we recommend that you get one. Apache is free,
runs on most systems, and is simple to use in a basic way (if you only ever use cli-
ent-side code, then you can use the basic Apache HTTP server from http://
httpd.apache.org/; but if you use GWT RPC server-side code or other Java-based
server code, then Apache Tomcat is a better idea (http://tomcat.apache.org/).
On those occasions where your application uses only client-side code, you can
“deploy” to the filesystem.

3.5.2 Deploying to a filesystem

If you don’t have a web server, or you want to make a quick check of functionality
in browsers, then you can still “deploy” this version of the Dashboard, because most
operating systems allow you to double-click the Dashboard.html file in the compi-
lation folder. The limitations of this approach are that you can’t execute any server-
related code—for example, if you try this for the full Dashboard example in the
downloadable code, you’ll receive an error notification because the code can’t call
the server to retrieve the XML file necessary for the Bookmark menu.

 This limitation isn’t significant—especially if you want to check some function-
ality quickly. If you want to always deploy to a server, it’s worth taking the extra
effort and using Maven or Ant to build automatic packaging and deployment
tasks that greatly reduce your effort of deploying to a server.

 This is a basic deployment. In chapter 16, we’ll go into detail on the subject of
deployment. After the application has been deployed, it’s time to run it.

3.6 Stage 6: Running in web mode

Running the application in web mode is a case of navigating to the correct URL on
your web server. The final result of the Dashboard application that you’re been
building in this chapter can be seen in figure 3.19 (running on the Opera browser).

 If you have errors at this phase, they’re probably related to the deployment you
just performed. You’ll normally take a good look at the deployment to identify
where it has gone wrong.

 To round off the discussion of the application, we’ll discuss adding logging
capability to check on the progress of the application as it executes.

100 CHAPTER 3

Advancing to your own application

3.7 Implementing application logging

Logging information is useful both for tracing errors and for understanding ser-
vice workloads. Modern logging frameworks make for a flexible, and often light,
approach to capturing in-process information for applications. However, logging
for a web application is an interesting topic; for a start, what do you log—and
more important, where do you store logs?

 With a non-Ajax approach, such as Struts used in a pure way, every action on
the screen results in server calls and a redrawing of the web page, which means
you can log every action the user makes—but you’re hoping to get many thou-
sands of visitors per hour, and logging all of their activities could generate sub-
stantial logs that are unwieldy.

 Ajax complicates the last approach slightly, because a lot more functionality
occurs on the user’s machine, meaning there is potentially not as much client-
server communication. However, a web application doesn’t get access to the user’s
filesystem for security reasons, so you can’t store log files there. How is this log-
ging issue solved in GWT?

3.7.1 Logging information on the client-side

If you’re a JavaScript developer coming to GWT, used to the extensive logging
needed in that language to understand errors, then chances are you’ll look for,
and perhaps become frustrated with, the client-side logging capabilities offered by
GWT. But—and this is a key point—you should move your mindset toward using

Figure 3.19 The Dashboard application in web mode in the Opera browser. Any of the

supported browsers can be used for web mode; we chose Opera because we normally

use Firefox and wanted to see the application in another browser.

Implementing application logging 101

the much more powerful Java debuggers available to you now instead of relying
on output messages and log statements.

 Typically, you should rely heavily on the GWT compiler; but in rare cases, issues
occur in the JavaScript code. To debug these, your best chance is to ensure that
the code is compiled in detailed or pretty mode (by supplying the -style DETAILED
or PRETTY flag to the compiler) and then adding debug statements to the human-
readable JavaScript code (you’ll rarely need to do this).

 If you’re a Java developer and used to frameworks such as Log4J, then you too
may be slightly disappointed. GWT has limited capability for client-side logging: the
only built-in client-side logging capability for web mode is the Window.alert()
method, which isn’t that user friendly; in hosted mode, this is only slightly improved
by the addition of a log method in the GWT class.

 However, as we discussed earlier, if you’re logging for information purposes,
there is limited benefit in client-side logging for an Ajax application (inability to
access those logs). If you’re logging for the purpose of debugging, then the
GWT.log() method can help identify where issues may be occurring, but the real
power comes from the debugging capability of your IDE.

 Other frameworks/toolsets provide more comprehensive JavaScript logging
on the client side, but this is because they’re unable to be debugged like GWT is in
Java. One that we’ve used, for example, is provided by the Yahoo UI Widgets. Fig-
ure 3.20 shows the logger from this toolkit.

 Many times, you may wish to use logging in other frameworks/toolkits because
it’s useful to debug errors, identify uninstantiated objects, and confirm that you’re

Figure 3.20

Client-side logging capabilities provided by

the Yahoo UI widget framework. GWT doesn’t

provide such extensive client-side logging

capabilities, but that is related to the

philosophy of being able to use Java IDE and

debuggers rather than trying to fix issues by

reading logs from running programs.

102 CHAPTER 3

Advancing to your own application

calling valid methods. Remember that when you’re writing GWT programs, you’re
writing your code in Java, and you can use the power of your IDE’s debugger to
capture all these issues.

 Sometimes, you may wish to get notification that your code is following partic-
ular paths while you’re developing code, and you may not want to always invoke
the IDE’s debugger (or you may even be developing without an IDE). In this case,
GWT provides a basic logging capability (but it’s
only valid in hosted mode). You can use the
GWT.log() method to output messages to the
hosted mode console.

 In your code, place the logging messages
where you wish, and GWT duly prints them to
the hosted browser window as required. For
example, if you add logging to the Dashboard
example’s onModuleLoad() method, then when
you execute the Dashboard in hosted mode, you
see the view shown in figure 3.21.

 You can add this logging capability to the
onModuleLoad() method using the code shown
in listing 3.12.

public void onModuleLoad(){
 GWT.log("Starting GWT In Action Dashboard",null);

 // Create Dashboard Name EditableLabel
 // Create Menu System
 // Create Trash Icon
 // Set up window event handling

 GWT.log("Window Event Handling Initialized",null);

 // Add components to the browser

 GWT.log("Dashboard Components Added to Browser",null);

 //Start API listening

 GWT.log("Dashboard API Initialised",null);
 GWT.log("Dashboard Started",null);
}

Listing 3.12 Updating the Dashboard’s onModuleLoad() method to log basic

 runtime information

Figure 3.21 Using GWT’s basic log

capability, GWT.log(), to display log

messages in the hosted browser

window when the Dashboard

application executes

Implementing application logging 103

Using the GWT.log() method means deciding which of the two arguments to pass
in (you can pass only one argument; the other must be null). The first argument
is plain text and is the approach you use in the Dashboard. The second argument
is an object that is an instance of the Throwable object—a GWT exception.

 Finally, if you want to implement a logging system on the client side for web
mode, you can wrap an existing JavaScript logging framework—for example, Log4-
JavaScript (http://log4javascript.sourceforge.net/) with some JavaScript Native
Interface (JSNI) and then access it through that (we talk about wrapping JavaScript
libraries more in chapter 8). However, if you’ve followed a development lifecycle
that only uses web mode as the last stage, then there is limited benefit from client-
side logging a GWT application. You can use a basic approach to client-side logging
in web mode and put your messages on the screen using the JavaScript alert func-
tionality, but again, this is useful only if you have an error that appears in your com-
piled code and not Java code—which should be rare.

 Of much more use and interest is logging on the server side.

3.7.2 Logging information on the server-side

Logging on the server side is much more open than on the client side, and you’re
free to choose the most familiar/useful framework. If your server-side code is Java,
then a good recommendation is to base your logging on an approach such as Log4J
from the Apache Foundation. Because there are no restrictions on the Java used on
server-side code, this recommendation fits well for RPC- and J2EE-based approaches.

 If you’re using other languages, then you can find implementations of Log4J for
them, too, such as Log4PHP (http://logging.apache.org/log4php/) or Log4Perl
(http://log4perl.sourceforge.net/). The scope of these logging packages is worth
chapters of their own, but we focus on GWT rather than logging in this book. For
more information about this type of logging, we recommend starting with the
Log4J documentation (http://logging.apache.org/log4j/docs/manual.html).

 You’ve seen that it’s possible to perform logging on both the client and server
side, but that in a web application, true logging is best performed on the server
side. Logging on the client side to debug code isn’t necessary with GWT because
you should develop in Java in an IDE that reduces errors on the client side to func-
tional misunderstandings.

 That’s it for logging, and for now, it’s time to take a well-deserved break and
grab some coffee; you’ve reached the end of building your first application. After
your coffee, we’ll look at the basics of GWT while building up to the more compli-
cated version of the Dashboard.

104 CHAPTER 3

Advancing to your own application

3.8 Summary

Congratulations—that’s it. You’ve taken the first run through the whole develop-
ment lifecycle of a real GWT application, and you’ve run the first version of the
GWT in Action Dashboard application! Over the coming chapters, we’ll expand on
all the concepts we’ve talked about in the last two chapters and examine how the
full Dashboard example was built. Figure 3.22 shows a schematic of the Dash-
board, identifying the components you’ll build over the next four chapters,
including ToggleMenuItem, EditableLabel, DashboardComposite, and Dash-
boardPanel (in which DashboardComposites sit).

 If you haven’t seen GWT before, then these last two chapters have taken you
through the development lifecycle to the point that you’re in possession of a
working GWT application that includes some aspects of styling and international-
ization. We’ll build on the foundations laid down in this chapter throughout this
book as you continue to construct the Dashboard application.

 You should take away two key points from chapters 2 and 3. First, GWT is flexi-
ble in terms of how you create and build an application. We feel that at the
moment, the smoothest way to develop a GWT application is to use the GWT com-
mand-line creation tools with the -eclipse parameter and then import the appli-
cation into Eclipse for development. As time progresses, the plug-ins for the other
IDEs will improve, and they should become the preferred way of creating GWT
applications; but we aren’t there yet.

Figure 3.22

The design of the Dashboard

application and the various

components that are used. We’ll

discuss most of these components

over the next few chapters.

Summary 105

Second, the GWT creation tools always create the default application, and if you
don’t at a minimum change the application’s Java file, then you’ll get the default
application displayed in hosted and/or web mode. Just adding your own Java files
achieves nothing, unless you alter the main Java file for the application.

 Creating applications is a straightforward process as long as you remember sev-
eral key points:

■ Java code used on the client side must comply with the requirements of
Java 1.4 (not the later versions).

■ Any libraries that you wish to include on the client side must also comply
with the GWT Java requirements, and you must have the source code avail-
able because that is what the GWT compiler uses to create the JavaScript.

■ If you use any Java libraries, then they need to be added to the hosted and
web modes’ classpaths in the respective command-line scripts.

We’ve reached the conclusion of part 1 of the trail. If you look back over your
shoulder, in the distance you see the land of Ajax, with all its cross-browser script-
ing problems and issues over maintaining several versions of JavaScript for the
same applications. In front of you lies the world of GWT, where all those issues are
significantly reduced.

 There is still a tricky trail to follow to complete the Dashboard, but you’ve
taken the first steps by defining the basic structure. In the next part of this book,
you’ll learn the basics of GWT: the core user interface components. We’ll look at
widgets, panels, events, composite widgets, and JSNI components as we ready you
for building the UI parts of the full Dashboard.

Part 2

Building user interfaces

Part 1 introduced you to the fundamentals of building and compiling
your GWT application. This part of the book explores the user-interface com-
ponents that you’ll use to create your GWT applications. We’ll begin with an
introduction to GWT’s widgets and panels and then discuss event-handling
and creating composite widgets. Next, we’ll explain how to use the Java-
Script Native Interface to interact with JavaScript code external to the GWT
application. This part of the book concludes by showing you how to wrap
your GWT module as a reusable library for other GWT applications.

109

Working with widgets

This chapter covers

■ How widgets work

■ Using GWT’s widgets

■ Interacting with widgets

■ Creating new widgets

110 CHAPTER 4

Working with widgets

Now that you’ve wet your toes by building the first version of the Dashboard appli-
cation, you’ll take the next few steps toward building the full version, which uses
many different types of widgets and panels as well as handling different types of
events. To get there, we first need to tell you exactly what these components are!

 This chapter deals specifically with widgets, which are the visible components of
a GWT application that a user sees on the browser page: for example buttons,
labels, images, and the menu system. Imagine buying a new plasma television and
then finding out that the manufacturer hasn’t provided any control buttons or a
remote. This is what your application would be like without widgets: useless.

DEFINITION Widgets are the visible components of a GWT application that a user can
see on the browser page.

Over this and the next five chapters, we’ll cover some of the basics of GWT to get
you into a position to fully understand how the Dashboard is constructed. Along
the way, you’ll build a few of the necessary components for the Dashboard. These
chapters cover the concepts shown in table 4.1.

Table 4.1 The five chapters involved in covering the GWT basics of widgets, panels, events, composite

 widgets, and using the JavaScript Native Interface (JSNI)

Chapter Component covered Details

4 Widgets Widgets are the visible components of a GWT application that

the user sees on the screen: buttons, labels, menu bars, and so

on. You’ll build two widgets used in the Dashboard: PNGImage

and ToggleMenuItem.

5 Panels Panels help you structure the view on the screen; they can

be used to position (with panels such as VerticalPanel)

and manage the visibility of widgets (with panels such as

DeckPanel). You’ll construct the DashboardContainer

panel, which holds all the Dashboard component applications

you’ll build later in the book.

6 Events Functionality in GWT is driven by events: for example, when a

user clicks a button, when a form submission returns, or when

the user drops a component they have been dragging. You’ll

extend the DashboardContainer from chapter 5 to handle

double-click and focus events.

What is a widget? 111

As we’ve said, this chapter covers widgets, and we’ll start by looking at what wid-
gets are. Next, we’ll take a quick look at the widgets that come standard with GWT,
including how to use them in the components of the Dashboard.

 In the second part of this chapter, you’ll learn how to create your own widgets,
just in case those provided as standard aren’t enough or don’t meet your needs. In
that discussion, you’ll build a PNGImage widget to allow you to use PNG images in
the Dashboard (within GWT 1.3, the Image widget doesn’t properly support trans-
parency of PNG images in all browsers, so you have to build your own widget to do
this). You’ll also extend the MenuItem widget so that it meets the Dashboard appli-
cation’s needs. If you’re ready, then we’ll jump in and define what a widget is.

4.1 What is a widget?

Widgets are one of four fundamental building blocks of GWT applications—the
others being panels, events, server communication (including remote procedure
calling [RPC], Form submission, JavaScript Object Notation [JSON], and XML
handling, as well as the traditional Asynchronous JavaScript and XML [Ajax]
XMLHttpRequest). When a user fires up your GWT application, they’re looking at
a set of widgets that have been positioned by panels and that react to events. Wid-
gets, just like the buttons on the plasma television remote
control we mentioned earlier, are the components the user
interacts with. Luckily, GWT provides many different widgets
for free, and these include the usual suspects: buttons (such
as the one shown in figure 4.1), text boxes, and menus.

7 Composite widgets Combining all the power of the last three chapters, we finally

come to composite widgets. These are widgets made up of other

widgets, usually placed in one or more different panels; they’re

the most powerful form of component you can create. You’ll

build the EditableLabel composite and the Dashboard-
Composite object, which are used in the Dashboard.

8 JavaScript Native

Interface (JSNI)

JSNI affords you access to native JavaScript. You can think of it

in a similar manner to using assembly language code in a C pro-

gram. Chapter 8 discusses the appropriate places to use JSNI

and how you can wrap existing third-party JavaScript libraries for

use in the GWT programs.

Table 4.1 The five chapters involved in covering the GWT basics of widgets, panels, events, composite

 widgets, and using the JavaScript Native Interface (JSNI) (continued)

Chapter Component covered Details

Figure 4.1 Button

widget shown as

rendered HTML in

the Firefox browser

112 CHAPTER 4

Working with widgets

 Most applications are built using multi-
ple widgets, which you put in panels to pro-
vide some structure—this is obvious if you
look at the Dashboard’s Calculator compo-
nent application (see figure 4.2).

 Widgets, as well as panels, which we’ll
look at in the next chapter, have a dual exist-
ence in GWT: You can think of them as both
Java objects and DOM elements. The Java
object view is the one you use in day-to-day
programming to create applications. The
DOM view is the view that the Java objects
from your program have when you think of them in the context of what is dis-
played in the web browser. You’ll look at both of these views in the next two sec-
tions, starting with the Java object view of widgets.

4.1.1 Using widgets as Java objects

The purpose of GWT is to develop rich Internet applications once, in Java, and
then have the GWT compiler generate the HTML and JavaScript necessary for the
application to work in a variety of different browsers. To achieve this, you must
have a way of representing various browser objects, which GWT calls widgets, in the
Java programs.

 This approach takes advantage of the object-oriented programming world’s
ability to model objects and concepts as programming objects. For example, in a
GWT program, you can happily use a Java object called Button. This Button object
models various properties that you expect a button to have, such as being able to
set the visible text and click the button. You can model all the components you wish
to see in a browser—the widgets—as Java objects with methods and properties.

 During your everyday programming use of GWT, you’ll consider all widgets in
their natural Java object form. The button we mentioned in this section’s introduc-
tion is created by calling the constructor of the GWT Java Button class as follows:

Button theButton = new Button("Click Me");

This code creates a new GWT button Java object on which you can then execute
various class methods. The tasks shown in table 4.2 are typical operations you can
perform on a GWT Button widget.

Figure 4.2 Calculator application from

the Dashboard, showing how a number of

widgets can be put together to create a

complete application

What is a widget? 113

The Java view of widgets is straightforward to anyone familiar with writing Java
programs or using similar high-level object based language; you create objects
from classes and call methods that those classes have. What the Java view doesn’t
give you is an understanding of how these widgets are displayed on a web page.
That is provided by the widget’s alternative DOM representation.

4.1.2 Considering widgets as DOM elements

The Java representation of the widget you’ve just seen works great in the Java code
and allows you to build GWT applications as you want, using any number of widgets
and using their associated methods to build the functionality. However, you can’t
display these Java objects in a web browser, so you don’t yet have an Ajax applica-
tion. This is where the alternative DOM representation of widgets comes in.

 The Document Object Model (DOM) is the browser’s view of the web page you
see. You can access and alter the DOM using a variety of languages, and the effects
of most manipulations are immediately visible on the current browser page.
Manipulations can include adding or removing elements, hiding or making ele-
ments visible, or changing their location. In the case of GWT, this manipulation is

Table 4.2 Functionality that results from applying some Java Button class methods to the Java

 Button object

Code Description

theButton.setStyleName("buttonStyle"); Sets the Cascading Style Sheet (CSS)

class name for the button. A corre-

sponding entry should be found in the

CSS style sheet attached to the web

document, although its name must be

prefixed with a period: for example,

.buttonStyle{…}.

theButton.addClickListener(
new ClickListener(){
 public void onClick(Widget sender){
 }
});

Adds a ClickListener (an event

listener that specifically listens for

mouse click events) to the button.

When the button is clicked, the code in

the onClick() method defined in the

ClickListener is executed.

theButton.setText("Go on, click me"); Changes the text shown on the button

from the original Click Me to “Go on,

click me”.

theButton.setVisible(false); Hides the button on the web browser so

that it’s no longer visible.

114 CHAPTER 4

Working with widgets

eventually performed through JavaScript in the compiled code; but in your pro-
gram, you use Java. Next, we’ll look at how to bridge that gap.

 All GWT widgets have an alternative DOM representation that is built in paral-
lel with the Java object. The Java constructor is generally responsible for creating
this DOM representation; if you look at the detail of the constructor for the But-
ton class, you see the following definition:

public Button() {
 super(DOM.createButton());
 adjustType(getElement());
 setStyleName("gwt-Button");
}

The call to DOM.createButton() creates the DOM element <button> through the
GWT DOM classes. Also, in the constructor of the parent, the setElement()
method is called to set the widget’s Java class DOM representation to this new
<button> element. Using this value set by the setElement() method, you get
access to the DOM representation from the Java view (to do so, you use the
getElement() method). If you were to look at the DOM representation of a GWT
Java button, you would see that it looks like this:

<button class="gwt-Button"
 eventbits="7041"
 onchange="null"
 onload="null"
 onerror="null">
 Click me
</button>

This is the standard DOM representation of a <button> object with a couple of
additional GWT-specific attributes. These additional attributes (eventbits,
onload, and so on) are set by the object’s Java constructor when this DOM repre-
sentation is created. Don’t be confused by the name of the first attribute, class;
this refers to the CSS styling that can be applied to a widget, rather than the Java
class name of the widget.

 The next attribute, eventBits, is one that occurs in many widgets. It indicates
to GWT what type of events are listened to (sunk) by that particular widget; we’ll
go into this in more detail in chapter 6, but it will keep popping up in examples
until we get there. A widget sinks browser events that it’s interested in handling.

 One golden rule that applies to this DOM representation is that you shouldn’t
rely on the fact that a particular widget is implemented as a particular DOM ele-
ment, because nothing stops future implementations of widgets from being repre-
sented using different DOM elements than previous versions. By focusing your

The standard GWT widgets 115

programming efforts on the Java code view using the methods provided by each
GWT widget class to perform functionality, you protect yourself against possible
future changes at the DOM level. As a rule, you should need to access the DOM in
your applications only on rare occasions, if ever.

 Now that you know what a widget is and how it’s represented both in Java and
the DOM, we’ll take a quick tour of the widgets that are available as part of the
GWT distribution.

4.2 The standard GWT widgets

The standard GWT distribution comes with a wide range of widgets for use in
applications. These widgets cover the types of areas you would expect: buttons,
text boxes, so on. However, some widgets you may expect are missing—for exam-
ple, progress bars and sliders, although you’ll build one of them in chapter 7.

 In the set of widgets, the designers of GWT have implemented a strong hierar-
chy of Java classes in order to provide an element of consistency across widgets
where that consistency naturally exists. Take the TextBox, TextArea, and Pass-
wordTextBox widgets; it isn’t unreasonable to expect them to share certain prop-
erties. GWT recognizes this fact and captures the common properties in a
TextBoxBase class, which these three widgets inherit. To get a snapshot of this
hierarchy, cast your eye over figure 4.3.

 You can see in this hierarchy that all widgets ultimately inherit from the UIOb-
ject class, which contains a number of essential housekeeping and property
aspects. In the UIObject class, you’ll find the setElement() method, which we
discussed previously regarding its use to set the physical link between a widget’s
Java object and DOM views. Subclasses of UIObject must call this method as the
first thing they do before any other methods are called, to ensure that the link to a
Browser element is established.

NOTE All GWT widgets inherit from the UIObject class. This class provides a
common set of methods and attributes for all widgets, including setting
size, visibility, and style names, as well as providing the link between the
Java and DOM representations.

116 CHAPTER 4

Working with widgets

We won’t go through all the methods in the UIObject class, but we’ll highlight the
typical functionality you can expect all widgets to inherit. The UIObject class pro-
vides access to a wide range of DOM functionality without your having to access
the DOM directly. For example you can set the height of a GWT UIObject using
the setHeight() method, which in turn uses the setStyleAttribute() method
from the DOM class:

public void setHeight(String height) {
 DOM.setStyleAttribute(element, "height", height);
}

The other methods written in this style include the ability to set the width, title
(what is displayed when a mouse hovers over an element), and both width and

Figure 4.3 GWT widget class hierarchy, showing the widgets from GWT 1.3 (more widgets are added

continuously in new releases, but looking at GWT 1.3 widgets shows the hierarchy in a nice, succinct

manner), also indicating the types of event listeners that can be registered against each widget and

whether they have text and/or HTML associated with them

The standard GWT widgets 117

height at the same time through the setSize() method. All these methods take
Strings as parameters, such as setSize("100px","200px"). Meanwhile, the set-
PixelSize() method allows integers, such as setPixelSize(100,200). Although
these methods for setting style attributes are available, we recommend that styling
generally be performed using CSS. This is because it allows a nice separation
between functional code and how the application looks (and it also lets you hand
off to the design department to style the application they way they do best).

 After UIObject, all widgets (except TreeItem and MenuItem) must inherit from
the Widget class; it provides widgets with their widget-ness, including the methods
that are called when a widget is attached or detached from a panel. This class also
contains the default implementation of the onBrowserEvent() method, which
lets a widget manage any events it has sunk (you’ll see this in action in chapter 6).

 In the next section, we’ll look briefly at some of the widgets you get for free
with the GWT distribution as well as how you’ll use them in the Dashboard appli-
cation. We won’t aim to talk about all the widgets, because the set is growing with
each new GWT release; those we’ll cover are shown in figure 4.4.

 As we discuss the widgets in this chapter, we’ll include simple code showing
their use and point out where in the Dashboard application you use them. This
code may look a little alien in some places; don’t worry, we haven’t introduced
most of the concepts used in the code yet, because they come in the next few
chapters, but in most cases you should be able to see what is happening.

Figure 4.4

Summary of widgets included

in GWT, indicating how they will

be grouped and discussed in

this chapter

118 CHAPTER 4

Working with widgets

There are a couple of principles to bear in mind as you read the next few sections.
First, this isn’t intended to be a complete walkthrough of the GWT API for widgets;
to do that would border on the excessively boring. Instead, we’ll try to show some
of the key methods and pitfalls, as well as where you use the methods in the Dash-
board application, so you can look in the code. In general, where a getter method
is used, such as getText(), the GWT API provides the appropriate setter method
too (setText()). Finally, we often don’t include names or number of parameters
for a method, unless it’s really necessary; this allows us to write a book focused on
what can be done without getting bogged down in details. The online GWT API ref-
erence (http://code.google.com/webtoolkit/documentation/gwt.html) is an
invaluable source of help for the details, as is the use of a good IDE.

 We’ll break the discussion of widgets into the following five main categories of
widgets shown in figure 4.4: basic, label style, focus, ButtonBase, and TextBox-
Base. Let’s start by looking at basic widgets.

4.2.1 Interacting with the basic widgets

We define the basic widgets as those that inherit directly from the Widget class.
There are five of these widgets which we’ll briefly consider next in the context of
the Dashboard application you’re building. Sometimes we’ll also show a code
sample in isolation to emphasize a particular point or property.

Uploading files with the FileUpload widget

The FileUpload widget acts as a GWT wrapper to
the standard browser file-upload text box—the
one you use to let the user upload a file from their
machine to your server. (See figure 4.5.)

 Remember that this is only the client-side component—clicking the Browse
button allows the user to select a file on their computer through the standard File
Search dialog box, but it doesn’t let you save a file to your server. That takes a little
more work. This widget should be embedded in a form that has its encoding set to
multipart. When ready, you submit the form to your server to process the upload-
ing of the file selected (an example of this functionality is provided in the FileU-
ploadServlet class in the server package of the Dashboard). This widget doesn’t
provide any server-side code to handle file upload; you have to provide that, but
you’re free to do so in your favorite server-side language. We’ll look at such a
FileUpload widget in more detail when we discuss server-side components in
chapter 12; we’ll also consider it briefly later in this chapter when we discuss how
to build widgets.

Figure 4.5 The FileUpload

widget

The standard GWT widgets 119

NOTE Because your GWT application becomes JavaScript code, access to files
falls under the same restrictions as JavaScript. This means no direct sav-
ing of files to a user’s machines; and the only way to access files on a
user’s machine is to use the FileUpload widget.

The FileUpload widget is one of the most inconsistently implemented widgets
across browsers; different browsers allow differing security restrictions and abili-
ties to style it. Most browsers, for example, won’t let you set the default value of
the text box because that would allow a web application to go fishing for files. As
with all widgets, remember that if you can’t do something with the widget in
HTML and JavaScript, then you can’t do it in GWT. GWT only provides a getFile-
name() method that retrieves the filename selected by a user. Don’t confuse this
method with the getName() and setName() methods, which are used to set the
DOM name of the FileUpload widget.

 But enough of file uploading until chapter 12. We’ll now continue looking at
some of the other basic widgets that GWT provides.

Navigating your application with hyperlinks

The Hyperlink widget acts as an internal
hyperlink in your GWT application. To the
user, it looks exactly like a normal hyperlink
on the web page; when they click it, they
expect navigation to occur in the applica-
tion. This action is usually coded as manipu-
lating the GWT History object to change the
application state—you can see how this
works in the Dashboard’s Slideshow applica-
tion (org.gwtbook.client.ui.slideshow.
Slideshow). The application has two hyper-
links at the bottom, as shown in figure 4.6,
which enable the user to move the slideshow
to the start or the end.

 Any component that uses a Hyperlink
widget should also extend the HistoryLis-
tener interface and implement the onHistoryChange() method to catch and
manage clicks the hyperlinks. As you can see, the Dashboard’s Slideshow compo-
nent implements two hyperlinks, which can be found in the code as follows:

Hyperlink startLink = new Hyperlink("Start","0");
Hyperlink endLink = new Hyperlink("End",""+(maxNumberImages-1));

B
C

Figure 4.6 Two Hyperlink widgets

(Start and End) in action at the bottom of

the Slideshow Dashboard application

120 CHAPTER 4

Working with widgets

Each Hyperlink widget constructor comprises two elements: the text to be dis-
played on the screen and a history token (which can be any arbitrary string). In
the Slideshow’s case, all the history tokens represent numbers of a picture, start-
ing at 0 for the first and ending at the maximum number of images in the slide-
show minus one. It’s easy to have a hyperlink that points to the start and end of
the slideshow by using the appropriate values in the Hyperlink constructor—“0”
for the start (as shown in B) and the string representation of the largest image
number (as shown in C).

 When you’re using GWT History, remember to include the following line in
the body of your HTML page:

<iframe id="__gwt_historyFrame"
 style="width:0;height:0;border:0">
</iframe>

Failure to include the history frame will result in errors, because it’s used in GWT’s
approach to storing and retrieving history tokens. This error in hosted web mode
is visible by errors in the hosted web mode console, as shown in figure 4.7 (how-
ever, you’ll get no similar warning in web mode).

(The rebinding message in figure 4.7 is a result of GWT manipulation you’ll per-
form later in the book using GWT generators to take the basic component applica-
tion and automatically generate new code to show an About menu item.)

 Using methods in the Hyperlink class, it’s easy to get the history token associ-
ated with a particular link (getTargetHistoryToken()) or update the token if
you wish (setTargetHistoryToken()). Similarly, you can set the hyperlink’s text
or get it through the setText() and getText() methods respectively (or the
HTML using setHTML() and getHTML() if you’ve created the hyperlink so the text
is treated as HTML, using the Hyperlink(String, boolean, String) constructor
instead of the more simple Hyperlink(String, String) version), which treats
the hyperlink as simple text.

 Treating hyperlink text as HTML means that any mark-up code—such as text in
bold, underlines, and images—is displayed. If you want a normal hyperlink to, say,
another HTML page, then use the HTML widget, which we’ll look at later, rather
than a Hyperlink widget that has its text set to some HTML.

 Hyperlinks are one way to navigate through an application; another is to use a
menu system.

Figure 4.7 Error raised when you try to use the GWT History subsystem in hosted mode without its

being properly initialized

The standard GWT widgets 121

Navigating your application using menus

The menu system provided by GWT is based
on the MenuBar and MenuItem widgets. Menu-
Items are added to MenuBars, and MenuBars
are added to other MenuBars, to create your
application’s menu system. Figure 4.8 shows
the Dashboard menu system, where Clock,
Calculator, and Slideshow MenuItems are
added to a Create MenuBar; this Create
MenuBar and a Help MenuBar are then added
to another MenuBar, which is displayed on the
browser page.

 In the Dashboard class (org.gwtbook.client.Dashboard), you define one
global MenuBar using the following code:

MenuBar menu = new MenuBar();

This simple line creates a horizontal menu bar. (It could just as easily be created
using the alternative constructor, which takes a boolean parameter whose value is
set to false: for example, new MenuBar(false). If the parameter is set to true, a
vertical MenuBar is created.) At present, the Dashboard will have two standard
menu bars; you’ll create two additional ones later in this book, and further down
the Dashboard code you can find two methods used to build the create and help
menu bars. The method buildHelpMenu(), shown in listing 4.1, builds the initial
Create menu bar using vertical menu bars.

protected MenuBar buildHelpMenu(){
 MenuBar menuHelp = new MenuBar(true);
 MenuBar menuLocale = new MenuBar(true);

menuLocale.addItem(constants.EnglishLocale(),

 new ChangeLocaleToEnglishCommand());
 menuLocale.addItem(constants.SwedishLocale(),
 new ChangeLocaleToSwedishCommand());
 menuHelp.addItem(constants.LocaleMenuItemName(), menuLocale);
 return menuHelp;
}

Listing 4.1 Building the Dashboard’s Create menu bar and menu items, and the nested

 Locale menu bar

Create vertical
MenuBars

B

Add MenuItem
to MenuBarC

Add MenuBar
to MenuBar

Figure 4.8 MenuBar and MenuItem

widgets used in the Dashboard application.

In this example, three MenuItems are

placed in one MenuBar, which is then

added to an overall MenuBar.

122 CHAPTER 4

Working with widgets

You create vertical menu bars by passing the Boolean value true as a parameter in
the constructor (see B). In a MenuBar, one or more MenuItems or other MenuBars
go together to give the visual structure shown in figure 4.8. It’s possible to create
MenuItems inline in the code, which is what you do at C where the first parameter
to the addItem() method is a new MenuItem. Each MenuItem is bound to a seg-
ment of code, the second parameter to the addItem() method, which is executed
when that menu item is clicked.

 You use the command pattern to describe the command that will be executed
when a menu item is clicked. In practice, this means you create a new instance of
either the GWT Command class or a subclass, which contains an execute() method
where the code is stored. For the Dashboard, we decided to define a number of
Command subclasses as inner classes to the Dashboard, because this best met our
needs. An example of one of these classes is shown in listing 4.2 (this command is
attached to the MenuItems defined in C of listing 4.1).

class ChangeLocaleToEnglishCommand implements Command{
 public void execute(){
 Window.removeWindowCloseListener(dashboardWindowCloseListener);
 changeLocale("");
 }
}

Using the command pattern allows the GWT application to turn a request for future
functionality into an object that can be passed around the code; the defined func-
tionality can then be invoked later. In the case of the menu items, GWT provides the
plumbing so that when a menu item is clicked, the associated command’s exe-
cute() method is invoked. In this example, when the user clicks a menu item
whose command is set to an instance of the ChangeLocaleToEnglishCommand class,
then this execute() method is invoked, and a WindowCloseListener is removed
from the application before the changeLocale() method is called. (Otherwise, you
invoke both of the window-closing events you’ll set up in chapter 6—in the case of
the Dashboard, these event handlers display two alert boxes, which you don’t want
to happen if you’re just changing the locale.)

 You can interrogate a MenuItem to find out what its parent menu is through its
getParentMenu() method, as well as find out whether it opens a submenu through
its getSubMenu() method. Similarly, you can set the submenu of a MenuItem
through the setSubMenu() method, but not its parent menu. In some applications,

Listing 4.2 A subclass of the Command class to change the application locale to English

The standard GWT widgets 123

you may need to change the command associated with a particular MenuItem (set-
Command()) or find out what that command is (getCommand()).

 The final implementation aspect of a MenuItem we want to discuss relates to the
text shown as the item itself. This text can be treated either as pure text or as
HTML, depending on whether a Boolean parameter is provided in the constructor
of the MenuItem. As with any widget that can allow HTML to be set, you should
always take care that you don’t expose the application to script-based security
issues. Creating a menu item using new MenuItem(String, true, Command) treats
the String as HTML; using the MenuItem(String, false, Command) or Menu-
Item(String, Command) constructor treats it as pure text.

 A MenuBar widget lets you define whether its child menus open automatically
or wait for the user to click them to open. The setAutoOpen() method achieves
this. In the Dashboard, you do this in the onModuleLoad() method, where you
create the whole menu system using the code shown in listing 4.3.

MenuBar menuCreate = buildCreateMenu();
MenuBar menuHelp = buildHelpMenu();
menu.addItem(constants.HelpMenuName(),menuHelp);
menu.addItem(constants.CreateMenuName(),menuCreate);
menu.setAutoOpen(true);

At the top of the screen is the Dashboard’s menu system, shown in figure 4.9,
which is involved in the code a number of times. The Help and Create menu bars
are created as simple implementations for an Internet view (in the Dashboard
class) and then overridden to provide a more functional intranet version (in the
Dashboard_intranet class). The version used, intranet or Internet, is chosen by
using GWT user-defined properties and setting the user-defined externalvisi-
bility property in the Dashboard.html file (we describe all this in chapter 15).

Listing 4.3 Creating the Dashboard’s menu system

Build
submenus

Add submenus
to MenuBar

Set submenus to auto-open

Figure 4.9

The Dashboard menu system, showing

the four possible menu bars. The Help

and Create menu bars are always

present, the Bookmarks menu is loaded

as XML from the server, and the option

menu bar is shown when a component

application gains focus.

124 CHAPTER 4

Working with widgets

The text for these two menu bars is created using GWT internationalization con-
stants set up for a default (English) locale and an alternative Swedish locale. This
internationalization approach, which we looked at briefly in chapter 3, is
expanded on in chapter 15.

 You also use the two new MenuItem widgets
you’ll create later in this chapter in the Dash-
board’s menu system. When running in intra-
net mode, the Help menu bar lets the user
turn on/off the confirmation requested
when they delete a component application;
they do this through a TwoComponentMenu-
Item. In both modes, the user can change the
locale through two TwoComponentMenuItems:
one for each locale supported by the applica-
tion. You can see the intranet view of the
Help menu in figure 4.10, where both new
widgets are in use.

 You also manipulate the menu bar in two further ways. First, you create a book-
mark menu bar whose contents are loaded from an external XML file using the
GWT implementation of the XMLHttpRequest object; this is covered in chapter 12.
Second, each component application can register an option menu, which is
shown in the main menu when the application gains focus (you use a GWT gener-
ator, discussed in chapter 14, to automatically generate an About item in the
option menu for each application; it lists all the methods and fields included in
the application). Figure 4.10 shows the option menu for the Google Search com-
ponent application. These component applications also have some generic func-
tional requirements placed on them.

 The final point to note about the MenuBar is that it implements the PopupLis-
tener interface, which allows functionality to be fired when the MenuBar is closed.
If you wish to use different functionality than the standard when the MenuBar
closes, then you can override the existing class and implement your own onPopu-
pClosed() method. (You don’t use this functionality in the Dashboard.)

Managing the view of data using trees

We’ve nearly completed our look at most of the basic widgets in GWT. Two are left,
the first of which is the Tree widget. This widget provides applications with a stan-
dard hierarchical tree comprising TreeItem widgets. (See figure 4.11.)

Figure 4.10 Examining the Dashboard’s

menu system and showing off the two

new MenuItem widgets built in this

chapter. The English and Swedish locale

MenuItems are instances of the

TwoComponentMenuItem, and the

Confirm Delete MenuItem is an instance

of the ToggleMenuItem (it’s shown in

the ON state).

The standard GWT widgets 125

A Tree is built similarly to the way you built a menu earlier. In that case, you
added a number of MenuItems to a MenuBar; here, you’ll add TreeItems to a Tree.
The constructors for a TreeItem are flexible and allow you to create an empty
TreeItem or TreeItems from Strings or other widgets (which could mean a stan-
dard widget or a composite widget). In listing 4.4, which comes from the Dash-
board’s Book application (org.gwtbook.client.ui.book.Book), you build a
simple tree to represent the top-level structure of the book.

private Tree buildTOC(){
 TreeItem chapter1 = new TreeItem("1: Introducing GWT");
 chapter1.addItem("1.1: A Walk Through GWT");
 chapter1.addItem("1.2: GWT Versus Other Solutions");
 :
 TreeItem chapter2 = new TreeItem("2: Exercising the GWT Tools");
 chapter2.addItem("2.1: Setting up Dashboard Version 1");
 :
 TreeItem chapter3 = new TreeItem("3: Creating the Dashboard");
 chapter3.addItem("3.1: Stage 2 - Developing the Application");
 :
 Tree t = new Tree();
 t.addItem(chapter1); t.addItem(chapter2); t.addItem(chapter3);
 return t;
}

Listing 4.4 Creating the Dashboard’s Book tree system

Figure 4.11 The Dashboard’s Book application, showing the Tree widget on the left. In

chapter 6, you’ll see how events are used when TreeItems are selected or expanded.

Build
chapter 1
tree

Build
chapter 2 tree

Build table of
contents tree

Build
chapter 3
tree

126 CHAPTER 4

Working with widgets

Unlike in the menu system, you don’t add commands to MenuItems to implement
functionality when they’re clicked or expanded; instead, you implement a
TreeListener. Doing so requires you to implement two methods: an onTree-
ItemSelected() method, which is fired when a MenuItem is selected; and the
onTreeItemStateChanged() method, which is invoked if the state (opened or
closed) of a TreeItem changes.

 For the Dashboard Book application, you implement the TreeListener as
shown in listing 4.5.

Tree theTree = buildTOC();
theTree.addTreeListener(new TreeListener(){
 public void onTreeItemSelected(TreeItem item) {
 changeText(item.getText());
 }

 public void onTreeItemStateChanged(TreeItem item) {
 if (item.getState()){
 currChapter.setText(item.getText());
 } else {
 currChapter.setText("----------");
 }
 }
});

This listener calls the Dashboard application’s changeText() method C to fill in
the text box at right in the Book application with text when a TreeItem is
selected B. When the state of a TreeItem changes, then the onTreeItemState-
Changed() method D is called. This method retrieves the state of the MenuItem
that was changed E and, if this item is now open, places the text of the time at
the bottom of the widget by retrieving it using the getText() method F. Other-
wise, it places dashes as the text.

 A TreeItem comes with a host of helper methods that you can invoke to learn
more about or change existing properties of the item. You can find out the child
at a particular index (getChild(int index)), count the number of children
(getChildCount()), or get the index of a particular child (getChildIndex(Tree-
Item)). Additionally, you can get the Tree a particular TreeItem is in
(getTree()), find out if an item’s children are currently displayed (getState()),

Listing 4.5 Adding event handling to the Dashboard’s Book tree to change the

 display text

Fired when
TreeItem selected

B

Get text from
selected itemC

Fired
when
TreeItem
state
changesD

Get
state of
changed
itemE

Retrieve
text F

The standard GWT widgets 127

determine its parent item (getParentItem()), and find out whether it’s currently
selected (isSelected()).

 A TreeItem may have a widget associated with it, though if it does, it can’t
directly have text associated (unless it’s set up as a composite widget). Often, you
may associate a CheckBox, for example, with TreeItems. You associate a widget
with a TreeItem either through the setWidget() method or by using the Tree-
Item(Widget) constructor.

 Finally, the various states of the TreeItem, whether an item is closed or open,
are shown as images. By default, these images are in the public folder of your
application and are called tree_closed.gif, tree_open.gif, and tree_white.gif. You
can replace these images with your own versions if you wish—just keep the names
the same. If you’d like to store the images in a different directory, indicate the
location using the setImageBase() method.

Viewing images

If you wish to display an image in a GWT application, you can use the Image basic
widget. This widget allows images to be loaded and displayed, as you can see in fig-
ure 4.12.

 An interesting aspect of the Image widget is the ability to add a LoadListener
to it so that a particular action can be performed when the image has completed
loading (onLoad()), or another action can be performed if there is an error load-
ing the image (onError()).

TIP The LoadListener will work only if the Image is added to the browser
page, usually via a panel, which is itself added to the browser. Just creat-
ing the Java object and adding a LoadListener isn’t enough to catch the
events, due to the way in which the GWT event-handling system works
(see chapter 6).

Figure 4.12

The Image widget in the Dashboard’s

Slideshow application

128 CHAPTER 4

Working with widgets

Listing 4.6 shows the code from the Dashboard’s Slideshow component (org.gwt.
client.ui.slideshow.Slideshow), which can be used to preload images into an
application.

Image[] testLoading = new Image[maxNumberImages];
preloadImages.setVisible(false);
for(int loop=0;loop<maxNumberImages;loop++){
 testLoading[loop] = new Image(theImages[loop][1]);
 testLoading[loop].addLoadListener(new LoadListener(){
 public void onError(Widget sender) {
 Window.alert("Expected Error - onError() Method works.");
 }
 public void onLoad(Widget sender) {
 Window.setTitle("Loaded Image: "+imageName);
 }
 });
 preloadImages.add(testLoading[loop]);
}

The preloadImages object is a HorizontalPanel, which you add to the applica-
tion specifically for the future use of preloading images. Due to the way the GWT
event mechanism works, you need to have the images loading into a component
that is added to the browser page (if they aren’t, then there is no hook into the
event mechanism, and the LoadListener is ignored). However, there is no
requirement for the component to be visible, so in B you set it to be invisible to
avoid an unsightly mess!

 You add a new LoadListener at C and define the onError() method to just
put a JavaScript alert on the screen if there is an error D; or, if the image loads,
you change the title bar of the browser window to show the image name using the
Window.setTitle() method E.

 Once you have an Image object, it’s possible to use the prefetch()or
setUrl() method to load a new image rather than creating new objects as you
did in the example. Either way is valid, and you’ll choose which way to set it up in
your own applications.

 You should also be aware that when you use a transparent PNG image over
another image in Internet Explorer 5.5 and 6, ugly backgrounds start to get applied.
You’ll build a new widget later in this chapter that overcomes these problems.

 An exciting addition that came with GWT 1.4 is the ability to bundle together
and clip images. The original Image class gained a new method that allows you to

Listing 4.6 Preloading Slideshow images with a LoadListener

Hide
panel

B

Add Load-
Listener

C

Define
onError

code D
Define

onLoad
code E

The standard GWT widgets 129

display only a portion of the image. For example, to display only the top left 50x50
pixel square of an image, you can use the constructor new Image("image.png",
0, 0, 50, 50).

 The ultimate purpose of clipping an image is optimizing the load time of your
GWT application. Loading one image containing a number of images you’ll use is
more efficient than loading each of the images individually. Let’s look at an HTML
page that loads the five images displayed in the Events Widget Browser Dashboard
application. When you have a simple page that loads all five images separately, the
Firebug extension to Firefox reports the timelines shown in figure 4.13.
The five images take around 130ms to download. The images are coming from a
web server local to the machine; but look at the results shown in figure 4.14,
where we manually created an image that contains all the five images in one.
You’re down to 50ms to load the images. Extend this to a larger application that is
loading images across a real network, and you can begin to see that there are dis-
tinct advantages to bundling images together. There’s a disadvantage as well,
though: Do you want to manually manipulate all the images you have into one?
Luckily, GWT provides the ImageBundle class that gets around this problem. You
provide your images as you want and create an interface that extends ImageBun-
dle that references your images, and GWT does the work of putting them together
for you. Let’s look at that in more detail.

Figure 4.13 The Dashboard’s Server Status application showing GWT Label widgets in action

Figure 4.14 All five images displayed in one

130 CHAPTER 4

Working with widgets

 In the Public folder of the Dashboard application, create a ToolbarImages
folder into which you place all the individual images for the toolbar. Then, in the
org.gwtbook.client.ui.EventsWidgetBrowser package, create a new interface
class that extends ImageBundle; a sample of that interface is shown in listing 4.7.

public interface ToolBarImageBundle extends ImageBundle{
 /**
 * @gwt.resource org/gwtbook/public/ToolbarImages/ChangeEvents.png
 */
 AbstractImagePrototype ChangeEvents();

 /**
 * @gwt.resource org/gwtbook/public/ToolbarImages/ClickEvents.png
 */
 AbstractImagePrototype ClickEvents();
}

The interface defines a method C for each image that will be bundled together,
and the GWT-generated implementations of these methods are used to extract the
clipped images. By default, GWT takes the images from within the package in which
the bundle interface is defined (this is different from other images/resources) and
looks for an image named after the method name. To play nicer with the applica-
tion structure, you can direct GWT to take the resource from a location of your
choosing. This is achieved by using annotations in the comments; for example, B
tells the compiler to get the image returned by the ChangeEvents() method from
the ToolbarImages directory.

 Using the bundled image is simple. Listing 4.8 shows the case of creating an
instance of your image bundle, via the deferred binding approach. With access to
the image bundle, you call the appropriate methods for the image we wish to use,
and that method returns an AbstractImagePrototype. To get the Image you’re
after, you call the createImage() method on the AbstractImagePrototype. Now,
you have a standard Image that can be added to your application.

ToolBarImageBundle toolBarImages =
 (ToolBarImageBundle)GWT.create(ToolBarImageBundle.class);
AbstractImagePrototype changeEventImagePrototype =
 toolBarImages.ChangeEvents();
Image changeEventImage = changeEventImagePrototype.createImage()

Listing 4.7 Creating an ImageBundle

Listing 4.8 Creating an ImageBundle

Point to
resource

B

Create
methodC

Create image bundle object

Create Image Prototype Create
image

The standard GWT widgets 131

But images aren’t the only thing you can display on the application. You also have a range
of ways to display text.

4.2.2 Displaying text on the application

The Image widget we looked at just now is useful for displaying pictures and images
on the web browser. However, many applications need to show text either as passive
information or more actively or funkily. As we dig down into the hierarchy of wid-
gets, two widgets allow you to present text on the screen: Label and HTML.

Showing text as a label

A Label widget contains arbitrary text, which is displayed exactly as written. This
means the Label created by the code new Label("Hi there") appears
on the browser page exactly as “Hi there”—the word there isn’t inter-
preted as HTML and isn’t shown in bold text.

 It’s possible to control the horizontal alignment of labels, although by default
the size of a Label widget is the size of the text it encloses. Right-aligning, using
the following command

theLabel.setHorizontalAlignment(HorizontalAlignmentConstant.ALIGN_RIGHT)

has little visible affect unless you use a style
sheet (or, less preferably, the theLabel.set-
Width() method) to set the width of the label
to be longer than the text. The alignment you
see in the Dashboard’s Server Status applica-
tion (org.gwtbook.client.ui.serversta-
tus.ServerStatus), shown in figure 4.15, is
achieved by aligning Labels in a Grid panel
(see chapter 5). A Label may also word-wrap
if the setWordWrap() method is called; this
method takes a Boolean variable that is set to
true if the Label should word-wrap and
false otherwise.

 GWT allows you to add ClickListener
and MouseListener to a standard Label widget, offering the possibility of captur-
ing the user trying to interact with the Label. By default, no action occurs; you
have to add click or mouse listeners. In the EditableLabel widget you’ll build in
chapter 7 (org.gwtbook.client.ui.EditableLabel), when a user clicks the

Figure 4.15 The Dashboard’s Server

Status application showing GWT Label

widgets in action

132 CHAPTER 4

Working with widgets

label, you present a text box instead of the label; they can use it to change the text
of the label. You add the click listener as shown in listing 4.9.

text = new Label(labelText);
text.setStyleName("editableLabel-label");
text.addClickListener(new ClickListener()
{
 public void onClick (Widget sender){
 changeTextLabel();
 }
});

The ClickListener acts similarly to the Command you used in the MenuItem wid-
get. It registers an onClick() method that GWT executes when the user of the
application clicks the label.

 Once you have a label, you can change the text programmatically using the
setText() method (as well as get the current text using the getText() method).
See listing 4.10.

Date d = new Date();
if (! local) {
 d = new Date(d.getTime() - (d.getTimezoneOffset() * 60 * 1000));
}
clockLabel.setText(d.getHours() +
 ":" + twoDigit(d.getMinutes()) +
 ":" + twoDigit(d.getSeconds()));

You can also use a slightly more active text-presenting widget if you wish: the HTML
widget.

Making text active using the HTML widget

If you want to provide more funkiness with the presentation of text, then the HTML
widget may be the component you’re looking for. It acts the same as a Label wid-
get, but—this is important—it interprets any text as arbitrary HTML. Whereas in
the label the text “Hi there” is written as is, if you write the code new
HTML("Hi there"), the text is displayed as “Hi there”.

Listing 4.9 Adding a ClickListener to the GWT EditableLabel widget

Listing 4.10 Changing the label text in the Clock application through the

 setText() method

Set label to
new time

The standard GWT widgets 133

 The HTML widget is also useful if you wish to provide a true hyperlink. When we
looked at the Hyperlink widget, you learned that you can present what looks like
a hyperlink to the user, but when clicked, it only changes the historical aspect of
the application. If you use an HTML widget instead, then you can provide proper
links, as you’ll do later in the About application to link to the book’s web pages:

new HTML("Manning");

You must be careful with this widget because allowing arbitrary HTML can expose
security issues to your application if maliciously constructed HTML is used. Also
consider whether the HTML Panel we’ll discuss in chapter 5 is more appropriate
for your needs.

 Labels and HTML are a useful way of presenting information to a user, but
there is another half of interacting with the user: capturing their input.

4.2.3 Grabbing the user’s interaction using focus widgets

You can grab user input using one of a number of widgets in GWT, all of which fall
under the FocusWidget hierarchy shown earlier in figure 4.3. These widgets inherit
from the FocusWidget class; but before we look at them in detail, you should under-
stand that FocusWidget isn’t a widget in the normal sense—you can’t create an
instance of it and display it on the browser. Yes, it extends the Widget class, but its
only purpose is to provide a class that handles focus, click, and keyboard events that
can be extended to provide the necessary common functionality across its children.
So, it’s defined as an abstract class.

 Although it’s abstract, FocusWidget provides the common functionality for all
focus widgets; this includes setting the widgets position in the browser’s tab index
through the setTabIndex() method. A widget’s tab index indicates the ordering
in which it will highlight when the user uses the Tab key to move through web-
page elements. Setting tab indexes is particularly useful to the user if widgets are
used in a form; correspondingly, the standard form components are subclasses of
FocusWidget.

 You can also use the setAccessKey(char key) method to assign a special key
combination that, when pressed, gives the widget focus—or you can do this pro-
grammatically through the setFocus() method. In the EditableLabel widget
you’ll build in chapter 7, you change a Label widget into TextArea for editing.

134 CHAPTER 4

Working with widgets

Once the widget swapping has taken place, to make sure the TextArea immedi-
ately has focus, you call the setFocus() method on it (see listing 4.11).

changeTextArea.setText(originalText);

changeTextArea.setVisible(true);

changeTextArea.setEnabled(true);

changeTextArea.setFocus(true);

In GWT, two widgets extend FocusWidget directly to produce new widgets: Frame
and ListBox. We’ll look at them next, as well as two additional abstract subclasses
of focus widgets (TextBoxBase and ButtonBase), which in turn have more widgets
as their children.

Framing an area of interest

In the Dashboard, we wanted to introduce flexibility into the About component
application (org.gwtbook.client.ui.about.About). Rather than hard-code the
about message, we decided that it should be loaded from a separate HTML file. To
support that functionality, you use the Frame widget, into which you can easily load
a new HTML page. You do this either through the constructor, such as new
Frame("resource-to-load"), or through the widget’s frame.setURL("resource-
to-load") method.

 Figure 4.16 shows the basic About component application in the Dashboard,
where the contents are loaded from another HTML file (About.html, if you’ve
downloaded the example code). Because the widget represents an IFRAME DOM
element, this content can easily be created from a static HTML file, JSP, servlet,
PHP script, .NET application, and so on.

 A subclass of the Frame widget is the NamedFrame widget, which lets you associ-
ate a name. These NamedFrames are typically used as targets for the FormPanel—
and you’ll see this in action in chapter 12, when we deal with forms.

Listing 4.11 Setting the TextArea widget to have the focus in the

 EditableLabel widget

Set text from FocusWidget

Set visibility inherited from UIObject

Set FocusWidget as enabled

Set focus inherited from FocusWidget

The standard GWT widgets 135

Listing options

The ListBox widget is used extensively in the Dashboard’s Address Book appli-
cation (org.gwtbook.client.ui.addressbook.AddressBook), as shown in fig-
ure 4.17. It presents a list of choices to the user, either as a drop-down or as a
standard list box. In the Address Book application, you use the list-box form for
selecting names and in drop-down form for selecting countries.

Figure 4.16

Using the Frame widget in the

Dashboard About dialog. The contents

of this display are loaded from another

HTML file into a frame.

Figure 4.17 The Dashboard Address Book application uses both forms of the ListBox

widget. Names are stored in a normal format list box, and countries are selected from a

list box in its drop-down style.

136 CHAPTER 4

Working with widgets

To create a normal format list box, you use the standard constructor new List-
Box(), as shown in listing 4.12.

addressLinks = new ListBox();

addressLinks.setVisibleItemCount(10);

super.add(addressLinks);
addressLinks.addChangeListener(new ChangeListener(){

 public void onChange(Widget sender) {
 int val = addressLinks.getSelectedIndex();

 String text = addressLinks.getItemText(val);

 showAddress(text);
 }
});

After creating the ListBox object B, you set the maximum number of visible
items that will be shown C through the setVisibleItemCount(number) method;
this is effectively the height of the list box. For the Address Book, you display 10
items as standard; if there are more, then the widget acquires a scroll bar.

 Having a list box provides a way of presenting choices to the user. To understand
which item the user selects, you add a ChangeListener to the ListBox D. When the
selected value in the list box is changed, the onChange() method is called. You use
this change listener to show the address of the new person by first finding out the
index of the option the user selected (using the getSelectedIndex() method, E)
and then passing that index value as the parameter to the getItemText() method
to get the text representation of the selected option F. This returned text is then
used as a parameter in the Address Book’s showAddress() method.

 The alternative view of ListBox as a drop-down box of options is created by
setting the visible item count to 1. For variety in the Address Book, you subclass
the ListBox widget to provide a country choice drop-down widget, as shown in
listing 4.13.

Listing 4.12 Creating a standard ListBox and adding a ChangeListener to the

 Address Book application

Create standard ListBoxB

Set number of
visible itemsC

Add
ChangeListenerD

Get selected indexE

Get selected
textF

The standard GWT widgets 137

private class CountryChoiceBox extends ListBox{
 public CountryChoiceBox(){
 super();
 this.setVisibleItemCount(1);
 this.addItem("France");
 this.addItem("Finland");
 this.addItem("Norway");
 this.addItem("Sweden");
 this.addItem("United Kingdom");
 this.addItem("United States of America");
 }
}

You select an option programmatically using the setSelectedIndex(value)
method. This method works best, and makes more sense, when the list box is in its
drop-down view; you use it in the Dashboard to ensure that the correct country
option is shown for each address.

 One thing you don’t do in any of the Dashboard component applications is
allow the list box to have multiple selections. To do so is just a case of using the
setMultipleSelect() method. If you do that, then you need to be a little more
intelligent when getting the selected item, because the getSelectedItem()
method returns only the first selected item. To get all the selected items, you need
to iterate over all the items, calling the isItemSelected() method for each item
to determine whether it’s selected.

Clicking your way through an application

Using a list box gives the user a wide range of choices. If you wish to be more care-
ful about the range of choices offered to the user, then you should consider using
one of the widgets that extends the ButtonBase widgets.

 These widgets include Button along with RadioButton and CheckBox. Button-
Base provides the standard methods common to its three children—for example,
setting and getting the text associated with them through the setText() and get-
Text() methods or the similar methods for the HTML (setHTML() and getHTML()).

 Let’s look at these three children and how you use them in the Dashboard.

Pushing the button

The Button widget is one you’ve already seen in this chapter. It’s a push button in
the style normally found on web pages. It’s created by calling the constructor as
follows:

new Button("7");

Listing 4.13 Creating a drop-down list box for the Dashboard’s Address Book application

Call parent constructor

Set widget
to be drop-

down Add
options

138 CHAPTER 4

Working with widgets

You can see the Dashboard’s calculator buttons all lined up
in figure 4.18. You add them to a Grid panel and also apply
some CSS styling to change the normal gray button/black
text to a light blue button/green text—although that may
not be visible in the book!

 Normally, you register a ClickListener with the Button
in order to perform some functionality when the button is
clicked. For the keys that represent the operation buttons
(plus and so on) in the Dashboard’s Calculator application
(org.gwtbook.client.ui.calculator.Calculator), you
add click listeners to the button:

Button w = new Button("+");
w.addClickListener(new ClickListener(){
 public void onClick(Widget sender) {
 performCalculation(op);
 }
});

When you press keyboard buttons while focused in the Dashboard Calculator
application, you wish to perform the same functionality as if you clicked the but-
tons. You achieve this by programmatically executing the clicking of a button by
calling the button.click() method.

 Buttons are one subclass of the ButtonBase widget, but there are two more.
Next, we’ll look at the CheckBox.

Checking the box

The CheckBox widget implements the standard
browser check box functionality (see figure 4.19). In
normal pre-Ajax applications, this widget was usually
found in a Form, and the values were submitted to
the server when the form is submitted. In the Ajax world, this isn’t a constraint
anymore; yes, it’s still found in forms, but it can also function as a standalone com-
ponent. If you’re using it standalone, you can add a ClickListener to it, so that
some segment of code can be executed when the element is checked or
unchecked. You’ll do this in chapter 5 for the Dashboard application.

Making the choice

The final widget we’ll look at that’s included with the GWT distribution as a sub-
class of ButtonBase is the RadioButton widget, which provides the implementa-
tion of a set of mutually exclusive selections. As with the CheckBox, it’s common to
see this either in a form or standing alone. Unlike CheckBox, you need a way to

Figure 4.18 A range of

Button widgets set

out to form the keypad

of the Calculator

Dashboard application

Figure 4.19 CheckBox

components in action

The standard GWT widgets 139

indicate which RadioButtons are included in a particular group. You do this in
the constructor, which has three forms, all of which require the definition of a
group name. Listing 4.14 shows the construction of two groups of radio buttons.

RadioButton rb1 = new RadioButton("Grp1")
RadioButton rb2 = new RadioButton("Grp1", "Second Choice");
RadioButton rb3 = new RadioButton("Grp1", "Third Choice",true);
RadioButton rb10 = new RadioButton("Grp2","Other");
RadioButton rb11 = new RadioButton("Grp2", "Other 2");

rb1.addClickListener(new ClickListener(){
 public void onClick(Widget sender) {
 performAction1(op);
 }
});
rb2.addClickListener(new ClickListener(){
 public void onClick(Widget sender) {
 performAction2(op);
 }
});

If management of choices isn’t the purpose of your application and you need a
freer way to let users express themselves, then the next set of widgets in the Text-
BoxBase family are probably the ones you’re after.

4.2.4 Getting user input through text input

Extending the FocusWidget is the TextBoxBase widget, which again isn’t a widget
but an abstract class providing standard functionality for the PasswordTextBox,
TextArea, and TextBox widgets. The TextBoxBase class provides the type of func-
tionality you would expect for an editable text element on screen: for example, can-
celing keypresses, setting and getting the visible text, setting the cursor position,
and trapping a keypress and replacing it in the text box with a different character.

 TextBoxBase provides a number of methods that you’d reasonably expect a
widget that extends it to implement. You can get all the text in the widget with the
getText() method or just get the text the user selected using the getSelected-
Text() method. In addition, you can get the length of the selected text using
getSelectionLength() and the cursor position with getCursorPos()). It’s also
possible to set all these properties using the opposite methods, such as setText()
and setCursorPos(), or to select all the text using the selectAll() method.

 Let’s look the three child widgets of TextBoxBase and how you use them in the
Dashboard.

Listing 4.14 Creating two groups of a radio buttons

Create Grp1 Radio-
Buttons

Add
ClickListeners
per RadioButton

Create Grp2
RadioButtons

140 CHAPTER 4

Working with widgets

Securing password entry

The PasswordTextBox widget represents the
standard browser text box that masks its input
when the user types in values. It’s commonly used
to allow application users to enter passwords. The
Dashboard includes a simple security application
called the Login component (org.gwtbook.cli-
ent.ui.login.Login), which uses the Password
TextBox as shown in figure 4.20.

 This widget is easily created using the Pass-
wordTextBox() constructor, but it includes no
other methods except those inherited from the
TextBoxBase widget.

Entering multiple lines of text

The TextArea widget allows application users to enter text that has multiple lines.
In the Dashboard, you use this widget in the EditableLabel composite widget
(see chapter 7) as shown in action in figure 4.21.

Creating a TextArea is a simple case of using the TextArea() constructor. From
there, you can set the width and height of the TextArea either through CSS or by
using the provided setCharacterWidth() and setVisibleLines() methods.

 Sometimes you don’t need multiple lines of text, and in that case the TextBox
widget is more appropriate.

Entering a single line of text

If you don’t need multiple lines of text that can be edited,
then TextBox is probably a more appropriate widget. In
the Dashboard, you use text boxes in a number of places,
including in the Calculator Dashboard application; a
user can enter numbers directly in the screen area as well
as by clicking buttons (see figure 4.22).

 One aspect of TextBoxBase widgets we haven’t dis-
cussed is the ability to trap keypresses and either change or cancel them through
using a KeyboardListener. In the Calculator, you don’t want users to have the

Figure 4.21

Using the TextArea in the Editable-
Label composite widget built for the

Dashboard (we’ll look at this in more

detail in chapter 7)

Figure 4.20 PasswordTextBox in

the Dashboard Login application hides

the characters being typed for the

password.

Figure 4.22 The TextBox

widget in the Dashboard

Calculator application

Creating new widgets 141

ability to enter anything except numerical characters in the text box. You achieve
this using the code given in listing 4.15.

theDisplay.addKeyboardListener(new KeyboardListenerAdapter(){
 public void onKeyPress(Widget sender,
 char keyCode,
 int modifiers) {
 if (!Character.isDigit(keyCode)){
 ((TextBox)sender).cancelKey();
 }
 }
});

First, you associate a KeyboardListenerAdapter with the text box (theDisplay)
and then override its onKeyPress() method. In that method, you check to see if
the keyCode is a digit by using the Java Character.isDigit() method. If it isn’t a
digit, then you cancel the keypress—which means it doesn’t reach the widget and
therefore is never displayed on the browser. The syntax to do this may be a little
strange; you have to cast the sender object into a TextBox object before you can
call the cancelKey() method, because the listener method only deals with pure
Widget class objects.

 Just as you can alter some of the stylistic aspects of the TextArea via either the
preferred approach of CSS or programmatically, you can do the same with Text-
Box. Programmatically, you use the setMaxLength() and setVisibleLength()
methods. The first method defined the maximum number of characters that can
be typed into the text box; the second the maximum number of characters that
are visible at any one time.

 We hope this discussion has shown that many widgets are available for you to
use in your applications and indicated where you’ll use them in future develop-
ment in this book. However, sometimes this set of simple widgets isn’t enough or
doesn’t fulfill the needs of your application. In these cases, you can either create
your own widget or extend an existing one.

4.3 Creating new widgets

Although GWT provides an extensive set of widgets, it can be the case that you don’t
have the functionality you need for your application. This may be because the pro-

Listing 4.15 Cancelling keypresses in the Calculator display through

 a KeyboardListener

Add
KeyboardListe

nerAdapter

Check which key
was pressed

Cancel invalid
keypresses

142 CHAPTER 4

Working with widgets

vided widgets aren’t quite right, or a basic
widget is missing. There are three ways to cre-
ate new widgets, as shown in figure 4.23.

 In this section, we’ll look at the first two
approaches: creating new widgets directly
from the DOM and by extending an existing
widget. Remember that when we say a basic

widget, we’re referring to a widget that repre-
sents some basic functionality a browser
can provide—anything more complicated
involves the third approach: creating com-
posite widgets. We’ll discuss composites in
detail in chapter 7; they’re used if you need
to create a widget that is made up of two or
more existing widgets.

 For the first approach, we struggled to find an example to include in this book,
because the current GWT distribution has been comprehensive enough for our
purposes. Earlier distributions were missing a FileUpload widget, so we built one;
we’ll look at how we did that in this section. When it comes to extending existing
widgets, you’ll build three new widgets for the Dashboard. The first is the PNGIm-
age widget, which extends the standard Image widget to cope with some IE 5.5
and 6 problems with displaying PNG image transparency (you’ll use this for the
trash-can icon to allow PNG images to be used there).

 The second new widget extends the MenuItem widget to create the Dash-
board’s ToggleMenuItem widget. GWT provides a MenuItem widget that is used in
menus, but it consists just of text. The ToggleMenuItem will consist of text and one
of two images indicating the toggled state of the menu item (imagine that these
images consist of a check or a blank image indicating that the functionality repre-
sented by the menu item is on or off).

 Let’s assume that you need to create a new widget. First, you’ll see how you do
that through manipulation of the DOM.

4.3.1 Creating new widgets by manipulating the DOM

The first approach we’ll discuss when you need to create a new widget is how to
do so by manipulating the DOM directly (this is generally the way the standard
GWT widgets are constructed). You won’t have to do this often, because most wid-
gets are already built; and you should do this only on those occasions when a basic
browser widget is missing.

Figure 4.23 The three options available

for creating a new widget in GWT. In this

section, we’ll look at following two

methods: directly from the DOM and

extending an existing widget (chapter 7

covers composite widgets in detail).

Creating new widgets 143

 When writing this book, we couldn’t think of a widget that needed to be built
this way, but we recalled that when we started using GWT, a basic widget was miss-
ing: FileUpload. There is now a standard GWT version, so we’ll look at how you
built that.

Developing the FileUpload widget

You want the version of the FileUpload widget to
look like exactly like the standard browser file-
upload box shown in figure 4.24.

 The first step when creating a new widget is to
decide which DOM element the widget will imple-
ment. In this case, it’s a simple choice: Because you
want a FileUpload widget, you need to use a DOM <input> element whose type
attribute is set to file (this is the only way in a browser to create the widget shown
in figure 4.24).

 Next, you decide where the new widget will sit in the hierarchy that already
exists. The approach sometimes involves a little trial and error because the hierar-
chy is large. Taking a common-sense approach, you want the widget to be notified
of focus events and clicks, so you choose for it to sit under the FocusWidget class.

 The widget is rather like a text box, and a user may expect it to behave in such
a way, so TextBoxBase is also a good candidate; but there are a number of issues
with this. It isn’t possible to set the text of the underlying input DOM element due
to valid security restrictions implemented by most browsers. Plus, the notion of
text alignment isn’t valid for this type of widget. Choose for this widget to extend
FocusWidget as well as implement the HasText interface (which indicates that
there is text you can set and get in this widget).

 The widget consists of the code shown in listing 4.16.

package org.gwtbook.client;
import com.google.gwt.user.client.DOM;
import com.google.gwt.user.client.ui.FocusWidget;
import com.google.gwt.user.client.ui.HasText;

public class FileUpload extends FocusWidget implements HasText{

 public FileUpload(String name){
 super(DOM.createElement("input"));
 DOM.setAttribute(getElement(), "type", "file");
 DOM.setAttribute(getElement(), "name", name);
 }

Listing 4.16 The FileUpload widget

Extend
FocusWidget

B

Implement
constructorC

Figure 4.24 Standard

browser file-upload GWT

widget (this is how you

want the widget to appear)

144 CHAPTER 4

Working with widgets

 public String getText(){
 return DOM.getAttribute(getElement(), "value");
 }

 public void setText(String text){
 throw new RuntimeException("Not possible to set Text");
 }
}

At B, you state the name of the new widget and say that it will extend the Focus-
Widget class as just discussed. You’ll inherit a number of methods from there. You
also say that this widget will implement the HasText interface, which means you
have to provide setText() and getText() methods.

 Next C, you define the constructor of this widget. Here you introduce the
direct DOM manipulation we’ve discussed in this section so far. Initially, you need
to create the DOM input element, using the following code:

DOM.createElement("input")

This creates the <input> element, which you then use in the FocusWidget’s con-
structor, which is accessed through the call to super() to establish the widget.
This also sets the element field of the widget to be this new <input> element.

 To complete the widget, you use more DOM manipulation approaches to set
the type of the element (file) and its name:

DOM.setAttribute(getElement(), "type", "file");
DOM.setAttribute(getElement(), "name", name);

The getElement() method retrieves the widget’s underlying element that was set
in the call to the FocusWidget’s constructor. You use this returned element in the
two setAttribute() calls to set both the type and name attributes.

 After the constructor has completed the element, you have the following DOM
element held as the Java object:

<INPUT type="file" name="name" __eventBits="7040"/>

The eventBits has been set, although you haven’t asked for it. These values
appeared because you’re extending the FocusWidget that has these values set.

 Because you’ve implemented the HasText interface, you need to provide the
two methods that this interface requires. First is the getText() method. For the
FileUpload widget, it makes sense that the value returned is the value of the file-
name selected by the user. To get this value, you must perform some more DOM
manipulation; this time, you use the getAttribute() method, as follows, to
retrieve the value of the file input box D:

Implement get and
set methods

D

Creating new widgets 145

return DOM.getAttribute(getElement(), "value");

Another consequence of implementing the HasText interface is that you must
provide the setText() method D. The majority of browsers place security restric-
tions on setting the text of a browser file-upload input, so you raise an exception if
this method is called:

throw new RuntimeException("Not possible to set Text");

You can now use the new widget like any other widget by creating a new instance
of it in the Java code, such as this:

FileUpload myUpload = new FileUpload();

As it turns out, this version isn’t too far off the version that now ships with GWT,
although that one is a little fancier and more flexible. The steps required to cre-
ate a new widget by manipulating the DOM are summarized in table 4.3.

Table 4.3 Steps to create a new widget through DOM manipulation

Step Action Description

1 Identify the DOM Identify which DOM element(s) the widget will wrap.

2 Locate the widget on the hierarchy Locate where on the hierarchy this new widget should

sit. Should it be directly under the Widget class, or can

it take advantage of inheriting from a widget further

down the hierarchy?

3 Identify interfaces to implement Identify what interfaces (in addition to those it inherits)

the widget should implement. We’ll cover event inter-

faces in chapter 6.

4 Implement the constructor Create the constructor using the appropriate DOM meth-

ods to create the element and add necessary attributes

to the DOM element.

If the widget is to sink events that aren’t included in

the hierarchy, then use the sinkEvents() method to

indicate this. Don’t forget to override the onBrowser-
Event() method in the next step.

5 Implement the required methods You now need to implement three types of methods:

■ Those methods required by the interfaces, which you

said in step 2 the widget will implement.

■ Override the onBrowserEvent() method if you

sink additional events not performed by other widgets

above you in the hierarchy.

■ Those methods you wish to create.

146 CHAPTER 4

Working with widgets

That is all there is to it to building a simple new widget from scratch. As we’ve
said, though, it isn’t easy to see where this situation will arise, given the increasing
completeness of the provided GWT widgets. Most of the time, new widgets come
from extending existing ones or creating composite widgets (as you’ll see in chap-
ter 7). The next section looks at how you extend existing widgets; you’ll build
three concrete examples for use in the Dashboard later on.

4.3.2 Creating new widgets by extending existing widgets

Instead of creating a widget directly from scratch, there are occasions where you
can create a new widget by extending an existing one that almost has the func-
tionality you need. In this section, you’ll see three examples. The first extends the
Image widget to allow it to cope with displaying transparency in the IE 5.5 and IE 6
browsers, which you need for the trash-can icon in the Dashboard example. Sec-
ond, you’ll build a widget that extends the standard MenuItem widget by letting
you display another widget after the menu text; you’ll then extend that widget to
create a third one that allows you to toggle the widget shown after the text
between two different widgets when the menu item is clicked.

 The new widgets will follow the development steps shown in table 4.4. These are
comfortingly similar to the steps involved in developing a widget from scratch—
except you no longer need to identify DOM elements and where in the hierarchy
the widget will sit, because these are given by the widget you choose to extend.

Table 4.4 Extending an existing widget to create a new one

Step Action Description

1 Identify the widget’s functionality Define exactly what you wish the new widget to do.

2 Identify the widget to extend Identify which widget provides the closest match to the

functionality you require. Sometimes you’ll find a widget

that provides not enough functionality in one area but too

much in another. This is easy to fix, because you can over-

ride methods to provide both more and less functionality

(sometimes this over-functionality is in the event-handling

area, in which case you can use unsinkEvents() and/

or alter the onBrowserEvent() method).

3 Identify interfaces to implement Do you need to implement any new interfaces for this new

widget? We’ll cover event interfaces in chapter 6.

Creating new widgets 147

Let’s create the first of three new widgets you’ll be using in the Dashboard: the
PNGImage widget.

Developing the Dashboard’s PNGImage widget

The Dashboard application displays a trash-can image that sits at upper right on
screen. In chapter 3, you implemented this as a simple Image widget. However,
the Image widget that comes with GWT isn’t that successful in displaying a trans-
parent PNG image over another when you’re using IE 5.5 or 6. This is what you
could end up doing in the Dashboard, where the trash icon sits on top of a back-
ground image. Also, when you build the slider widget in chapter 7, you’ll be slid-
ing a thumbnail image over a background scale image; if you use the standard
Image widget, and the programmer provides two PNG images, then it will look
messy.

 The problem is that the transparent PNG images acquires a halo effect in IE 5.5
(see figure 4.25) and a horrible background in IE 6 (see figure 4.26).

 The third-party GWT Widget Library includes a PNGImage widget that overcomes
this problem. In this section, we’ll walk through the steps we took to develop this
widget (to avoid importing the GWT Widget Library into the project yet, you’ll cre-
ate the PNGImage widget under the org.gwtbook.client.ui package).

4 Implement the constructor Create the constructor using the appropriate calls to

super() to invoke the parent widget’s constructor, and

implement any additional code required for this new widget.

If the widget is to sink events that aren’t included in the

parent, then use the sinkEvents() method to indi-

cate this. Similarly, if you wish your new widget to not

manage events that the parent widget does, then use the

unsinkEvents() method (and don’t forget to override

the onBrowserEvent() method in the next step).

5 Implement the required methods You now need to implement three types of methods:

■ Those methods required by the interfaces, which you

said in step 2 the widget will implement. Or, override

those methods required by the parent’s interface that

you wish to implement differently.

■ Override the onBrowserEvent() method if you sink

additional events not managed by the parent, or if you

unsink events that are managed by the parent.

■ Those methods you wish to create.

Table 4.4 Extending an existing widget to create a new one (continued)

Step Action Description

148 CHAPTER 4

Working with widgets

Rather than try to create a completely new widget, we decided that PNGImage
should behave as much as possible like the standard GWT Image widget, and
therefore inheritance from the standard Image widget was the way forward. The
widget is made from three classes: a main widget class and two implementation
classes (one for IE and one for other browsers). The full code for the implementa-
tion class of the PNGImage is shown in listing 4.17.

package org.gwtbook.client.ui;

import org.gwtbook.client.ui.impl.PNGImageImpl;
import com.google.gwt.core.client.GWT;
import com.google.gwt.user.client.Event;
import com.google.gwt.user.client.ui.Image;

public class PNGImage extends Image
{
 private PNGImageImpl impl;

 public PNGImage (String url, int width, int height){
 impl = (PNGImageImpl) GWT.create(PNGImageImpl.class);

 setElement(impl.createElement(url, width, height));
 sinkEvents(Event.ONCLICK | Event.MOUSEEVENTS
 Event.ONLOAD | Event.ONERROR);
 }

 public String getUrl (){
 return impl.getUrl(this);
 }

 public void setUrl (String url){
 throw new RuntimeException("Not allowed for a PNG image");
 }
}

Listing 4.17 The main GWT PNGImage class

Figure 4.25 PNG image transparency

problem in IE 5.5: a white halo around

the star using the GWT Image widget

Figure 4.26 PNG image transparency problem in

IE 6: a gray background around the star using the

GWT Image widget

Extend
Image classB Defer

binding of
implemen-
tation class

C

Sink events E

Set widget’s
DOM
elementD

Provide getURL
methodF

Disable
setURL
method

G

Creating new widgets 149

Having identified the functionality required for the PNGImage to be exactly the
same as the Image widget, except to be able to handle PNG transparency, you indi-
cate that the definition of the PNGImage class extends the Image widget B. There
are no new interfaces that you wish PNGImage to implement, because you want
PNGImage to behave the same as Image.

 At C you use code similar to that which we looked at when we discussed inter-
nationalization. Although in this case, instead of deferring picking the right Java
class until you know the locale, you defer the binding until you know the browser
in which the code is being executed (this is known technically as deferred binding,
which we’ll cover in chapter 15—it’s used here because you need to implement
different code depending on whether the browser is IE 5.5/6 or not). If the
browser isn’t IE 5.5/6, then the deferred binding picks a class called PNGImage-
Impl; if not, then it picks a class called PNGImageImplIE6.

 At D, you create the DOM object that represents the PNG image. You do so by
calling the create method on whichever version of the PNGImageImpl class has
been selected by the compiler under the deferred binding rules. In the case
where the browser isn’t IE 5.5/6, the create method contains the following code
to create a standard <image> DOM element and set some attributes:

Element result = DOM.createImg();
DOM.setAttribute(result, "src", url);
DOM.setIntAttribute(result, "width", width);
DOM.setIntAttribute(result, "height", height);
return result;

If the browser is IE 5.5/6, then the create method in the PNGImageImplIE6 class is
used. First, it determines whether the image is a PNG image (by crudely looking at
the extension). If the file isn’t a PNG image, then the normal constructor is used
to create an element. Otherwise, you need to apply a specific IE AlphaIm-
ageLoader filter to the image. You do this by creating a <div> element and then
setting the innerHTML of that DIV to include the PNGImage plus a specific IE
AlphaImageLoader filter, as follows:

Element div = DOM.createDiv();
DOM.setInnerHTML(div, "<span style=\"display:inline-block;width:" +
 width + "px;height:" + height + "px;”+
 filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(src='" +
 url + "', sizingMethod='scale')\">");

In all cases, a DOM element is returned to the constructor in the PNGImage class.
This element is then set as the element of the PNGImage widget. You can find the

150 CHAPTER 4

Working with widgets

full code for the implementation classes in the electronic downloads for the book
(http://www.manning.com/hanson).

 The events that this widget must sink are the same as for the Image widget, so
normally you wouldn’t need to include a new sinkEvents() call. However, in this
case you don’t call the Image constructor using (super()), so you must explicitly
identify the events you’ll sink E. You don’t need to override the onBrowser-
Event() method because that is directly inherited from the parent Image widget.

 To finalize the widget, you ensure that the methods from the Image class you
inherit are handled appropriately. The getURL() method F of the Image class is
no longer valid in this implementation, so you override it and make it call the
browser-specific implementation you’re using to return the correct value.

 Finally, for PNG images, it isn’t possible to set the URL, because it’s for an
Image widget. This is a case where the parent widget provides more functionality
than you can support in the extended widget. You solved this problem by raising a
RuntimeException if someone wishes to try to call this method G.

 The corrected PNGImage now displays correctly in
IE 5.5/6, as shown in figure 4.27. The halo effect from
IE 5.5 and background from IE 6 are gone, and PNGImage
displays a PNG image correctly in all browsers.

 You create the new PNGImage object using the standard
Java call to its constructor:

PNGImage myImage = new PNGImage("star.png",100,100);

Now that you have the PNGImage class, you can represent the
trash icon in the Dashboard application and use safely when
building the sliders—both of which we cover later in this
book. Next we’ll look at developing another widget that you
need for the Dashboard—the ToggleMenuItem widget.

4.4 Developing the Dashboard’s ToggleMenuItem widget

As we explained earlier, GWT provides a useful widget called the MenuItem. One
or more of these menu items are placed in a menu bar to create the GWT menu
system. Useful as it is, it isn’t immediately obvious how to use MenuItem to display
menu items that has two components—for example, the menu item and a short-
cut key, or a menu item followed by an image.

 In this section, you’ll first build a TwoComponentMenuItem widget that allows you
to place some text followed by another widget (which could be a Label representing

Figure 4.27 Corrected

IE PNG handling with no

halo or background using

the new PNGImage

widget, which extends

the GWT Image widget

Developing the Dashboard’s ToggleMenuItem widget 151

a shortcut key combination, or an Image). The con-
tent of a MenuItem is generally text, although you have
the option of that text being interpreted as HTML; this
is the hook you’ll use to build this new widget. In the
Dashboard, you’ll use this widget to indicate the
locales, as shown in figure 4.28.

 Once you have a widget that allows you to place
two components in a menu item, you can extend that
to get to the widget you need for the Dashboard,
which shows one of two images after the text depending on an internal state. When
the widget is clicked, the state and image change, as shown in figure 4.29. This wid-
get is called the ToggleMenuItem.

 For the Dashboard, you use this widget
to indicate to the user whether they will be
asked to confirm that a component should
be deleted. On the left side of figure 4.29,
you indicate that the user will be asked for
confirmation; if the user clicks the menu
item, then the right side of figure 4.29 is vis-
ible. Let’s build the TwoComponentMenuItem
first and then look at the ToggleMenuItem.

4.4.1 Building the TwoComponentMenuItem

The TwoComponentMenuItem provides a wid-
get that displays the text in a normal Menu-
Item followed by a second widget, as shown
in figure 4.30. This second widget could be
text showing which shortcut key combina-
tion can be used—for example, Ctrl + O to
fire the command behind the menu, or per-
haps an image.

 You implement TwoComponentMenuItem as shown in listing 4.18.

Figure 4.28 Example of the

TwoComponentMenuItem in

the Dashboard. It displays an

animated GIF of a country flag

related to the selectable locale.

Figure 4.29 Various states of the

ToggleMenuItem in the Dashboard

example’s Help manu bar. (You show

the Confirm Delete functionality as either

enabled or disabled.)

Figure 4.30 Schematic of the

TwoComponentMenuItem

152 CHAPTER 4

Working with widgets

package org.gwtbook.client;

import com.google.gwt.user.client.Command;
import com.google.gwt.user.client.ui.HTML;
import com.google.gwt.user.client.ui.HorizontalPanel;
import com.google.gwt.user.client.ui.Label;
import com.google.gwt.user.client.ui.MenuItem;
import com.google.gwt.user.client.ui.Widget;

public class TwoComponentMenuItem extends MenuItem{

 protected HorizontalPanel theMenuItem = new HorizontalPanel();

 public TwoComponentMenuItem(String theText,
 Widget secondComponent,
 Command theCommand){
 super(theText,true,theCommand);
 theMenuItem.add(new Label(theText+" "));
 theMenuItem.add(secondComponent);
 this.setSecondComponent(secondComponent);
 }

 public void setSecondComponent(Widget newComponent){
 theMenuItem.remove(1);
 theMenuItem.add(newComponent);
 SimplePanel dummyContainer = new SimplePanel();
 dummyContainer.add(theMenuItem);
 String test = DOM.getInnerHTML(dummyContainer.getElement());
 this.setHTML(test);
 }

 public void setFirstComponent(String newComponent){
 theMenuItem.remove(0);
 theMenuItem.insert(new Label(newComponent),0);
 SimplePanel dummyContainer = new SimplePanel();
 dummyContainer.add(theMenuItem);
 String test = DOM.getInnerHTML(dummyContainer.getElement());
 this.setHTML(test);
 }

 public void setText(String theText){
 setFirstElement(theText);
 }
}

The TwoComponentMenuItem extends the MenuItem class B, so everything there is
available to you in the class and you can use this class everywhere you would use a

Listing 4.18 The TwoComponentMenuItem class

Extend
MenuItem

widget

B Create
Horizontal-

Panel to
hold two

components

C

Call parent’s
constructor

D

Set components
of new widgetE

Set rightmost
component as widgetF

Define
SetSecond-
Component
methodG

SetFirst-
Component
methodH

Standard setText
method

I

Developing the Dashboard’s ToggleMenuItem widget 153

MenuItem. To provide the ability to handle two components, you create a Hori-
zontalPanel C that will hold the two components: The first element is a Label
that contains the text, and the second is whatever widget is passed in to the class.

 In the widget’s constructor, you first call the MenuItem constructor D to make
sure you’re creating a valid MenuItem, but you let it know that you’ll be treating
the text component as a piece of HTML text. Next, you create a Label E using the
text passed in for the menu and add it to the HorizontalPanel as well as adding
the second component directly to the same HorizontalPanel. Then, you call the
setSecondComponent() method F—you have to add the second component
prior to calling the method to set it; or the method would break because it first
removes the second component (as you’ll see next).

 To create the view of the two components on screen, you perform some GWT
and DOM magic G. First, you remove any existing second component from the
HorizontalPanel, and then you add the new second component. So far, this is
simple GWT. Next, you want to get access to the HTML of the HorizontalPanel;
you do so by juggling with the DOM. You put the HorizontalPanel into a Sim-
plePanel and then retrieve the inner HTML of the SimplePanel. A similar pro-
cess is shown to set the first element in H, but note that the code now removes the
first component (index 0), which makes the second component become the first.
The implication is that when you add a new first component, you must insert it
before the existing first component and so use the insert() method as opposed
to the add() method.

 Finalizing the component is a case of overriding the setText() method,
because you need to put any text in the HorizontalPanel instead of straight into
the widget. To change the text, you set a new first element as shown in the over-
ride method I.

 As with the PNGImage and FileUpload, you create the new widget using its
constructor:

TwoComponentMenuItem myMenuItem =
 new TwoComponentMenuItem("MenuItem",
 new Image("myMenuImage.jpg"),
 new Command(){
 public void execute(){
 Window.alert("Menu Clicked");
 }
 });

With the TwoComponentMenuItem in place, you can look at specializing it by
extending the class to create the Dashboard’s ToggleMenuItem widget.

154 CHAPTER 4

Working with widgets

4.4.2 Building the ToggleMenuItem

With the TwoComponentMenuItem widget built, you can extend it to provide the
ToggleMenuItem as shown in listing 4.19. This widget shows one of two different
images depending upon an internal status. For the Dashboard, you wish to show a
check image if a certain piece of functionality is enabled and a cross image if it
isn’t (although you could easily show a check and no image as the disabled view in
other scenarios).

package org.gwtbook.client;

import com.google.gwt.user.client.Command;
import com.google.gwt.user.client.ui.Image;

public class ToggleMenuItem extends TwoComponentMenuItem{

 public class ToggleMenuItemStates{
 static public final boolean ON = true;
 static public final boolean OFF = false;
 }

 Widget[] states;
 boolean state = true;

 public ToggleMenuItem(String theText,
 Widget onState,
 Widget offState,
 Command command){
 super(theText, onState, command);
 states = new Widget[2];
 states[0] = onState;
 states[1] = offState;
 }

 public void toggle(){
 setSecondComponent(states[state?1:0]);
 state = !state;
 }

 public boolean getState(){
 return state;
 }
}

Listing 4.19 The ToggleMenuItem class

Extend
TwoComponent

MenuItem

B

Define
widget
states

C

Define array to store
toggle widgets

D

Define Boolean to
store current stateE

Call parent’s
constructor

F

Set up state
variables

G

Provide method to
toggle widget

H

Get widget’s
current state

I

Summary 155

For the ToggleMenuItem, you’re extending the TwoComponentMenuItem; you say so
in the definition of the class B. Through the inheritance hierarchy, this widget
inherits MenuItem and can be used anywhere a MenuItem could.

 The second component of this widget is one of two different widgets (in the
Dashboard you use Images), which you hold in the array of Widgets you create at D.
To determine which widget you’ll show by default, you set the state value of this Tog-
gleMenuItem widget to be true E.

 Creating the widget is performed by the constructor, which first calls the par-
ent constructor to ensure that this ToggleMenuItem will act in a similar manner to
a TwoComponentMenuItem F and sets the second component as the image repre-
senting the first state. It then creates an array and stores the two Widgets passed in
as parameters as the alternative two states’ widgets G.

 We’ve talked a little about states in this widget, and at C you define an inner
class that contains the available states (ON and OFF). Toggling the state of the
menu item is performed through the toggle() method H, which it’s expected
will be called by the user’s code. This method sets the second component of the
ToggleMenuItem widget to be the widget representing the state you’re currently
not in, and then it changes the internal representation of the state. You return the
current state of the widget by calling the getState() method defined at I.

 You could continue the hierarchy of MenuItems, building many different types
if you wished (to build the menu items you’re familiar with from desktop applica-
tions), but we’ll leave it with these two. With this class developed, you now have
the set of basic widgets that you need to develop the Dashboard example; but we
still need to look at panels and events.

4.5 Summary

That concludes the first part of the journey through the GWT basics, covering wid-
gets. You’ve seen that GWT provides quite a few standard widgets; but where the
functionality you need isn’t present, then it’s relatively simple to create your own
widgets. You can do this either by starting from scratch or by extending an exist-
ing widget (if you need more complicated functionality, which is better imple-
mented as two or more simple widgets put together, then you should consider
composite widgets, which are discussed in chapter 7).

 The fact that widgets have two alternative views, the Java object and the DOM
representation, can be a little strange at first. However, 99 percent of the time you
only have to consider the Java object view. One of the few times you need to think
of the widget in its DOM view is if you’re creating new widgets. It can be dangerous

156 CHAPTER 4

Working with widgets

to rely on the DOM view of the widget, because there is no guarantee that future
versions of GWT will use the same DOM construct for a particular widget.

 In the second half of the chapter, you constructed three widgets that will be
used in the running Dashboard application—the PNGImage together with the
TwoComponentMenuItem and ToggleMenuItem—and we discussed how they’re cre-
ated. To keep going with the Dashboard, we next need to look at how you visually
arrange widgets in the application. You’ll do that in chapter 5 by using panels.

157

Working with panels

This chapter covers

■ How panels work

■ Using GWT’s panels

■ Composite panels

■ Creating new panels

158 CHAPTER 5

Working with panels

If widgets can be said to provide user interface functionality, then panels provide
the application’s layout and visual organization. Think again of the new Plasma
television from chapter 4—thankfully, the manufacturer provides a remote control
with lots of buttons (widgets) on it; but what if the labels didn’t match the buttons,
and the buttons were all over the place? Then it wouldn’t be a useful remote con-
trol! Panels allow you to control the visual structure (ensure the right labels are
with the right buttons, and they’re all in the right place) of your GWT applications.

DEFINITION Panels provide the means to visually organize and lay out a GWT
application.

Panels let you visually organize and lay out a GWT application. In this chapter,
we’ll define what panels are; then, we’ll take a tour of the panels provided in the
standard GWT distribution and how you’ll use them in the Dashboard. As we
move into the second part of this chapter, you’ll begin building your own panels.
Like widgets, there probably won’t be many times when you’ll need to build a
panel from scratch, because a range of panels are prebuilt; but we’ll look at the
steps involved in doing so. We’ll also look at creating new panels by extending
existing panels, which is a much more common situation. We’ll end the chapter
by building the first version of the DashboardPanel, into which all the component
Dashboard applications (such as the Calculator, Server Status, and Clock) you
build as part of the larger Dashboard example will sit.

 Let’s get straight to business by defining GWT panels.

5.1 What is a panel?

Panels are the building blocks of a GWT application’s structural, and sometimes
functional, makeup. They allow you to position widgets where you need them to
make the application’s functionality make sense—putting labels next to the right
buttons, making sure particular components are hidden until needed, and so on.

 This notion starts with the RootPanel, which is a direct interface into the
browser’s current web page. You saw this in action in chapter 3, where we discussed
how the GWT default application inserted a Button and a Label into two named
table cells on the screen and how you’ll insert Dashboard components into the
Dashboard example. RootPanel is a special case because it captures the browser
page directly; all other panels have no knowledge of the browser until they’re
added through methods in the RootPanel class. Outside of the RootPanel, panels
exist to be the containers into which widgets (and often other panels) are placed,
sometimes recursively, to give the necessary structure to your application.

What is a panel? 159

 GWT provides a number of different panels, ranging from a simple FlowPanel,
where components are laid out flowing from top left to bottom right, to more
complicated panels, such as DeckPanel, where child widgets are held like a deck
of cards with only one widget visible at a time. There is a panel for almost every
need you can think of. Where panels aren’t yet available in the core toolkit, you’ll
probably find one in a third-party library or later versions of GWT. (For example,
GWT 1.0 had no FormPanel, so the GWT Widget Library provided one; then, in
GWT 1.3 a native implementation was provided. In this chapter, we look mainly at
the panels from GWT 1.3, but GWT 1.4 adds various new panels such as three types
of SplitPanels, and so on—it’s a constantly growing set.)

 Panels, like the widgets we looked at in the last chapter, have a dual existence
in GWT—they can be thought of as Java objects and DOM elements.

5.1.1 Using panels as Java Objects

Just as with the widgets in chapter 4, your everyday programming view of panels
will be their Java object view. For example, when you create a FlowPanel (a panel
that lets any widgets added to it flow within the constraints of the panel size), you
use the following Java code:

FlowPanel theFlowPanel = new FlowPanel();

This code creates a new FlowPanel Java object, which you can then execute a
number of class methods on. Some of these methods are listed in table 5.1.

Table 5.1 Applying some of the Java Panel class methods to the Java FlowPanel object

Code Description

theFlowPanel.setStyleName("buttonStyle"); Sets the Cascading Style Sheet (CSS)

style name for the FlowPanel. A cor-

responding entry should be found in the

CSS style sheet attached to the web

document.

theFlowPanel.add(new Label("Test")); Adds a new Label widget to the

FlowPanel.

theFlowPanel.iterator(); Retrieves a Java iterator object to allow

you to iterate over all the widgets that

have been added to the FlowPanel.

160 CHAPTER 5

Working with panels

All panels are created this way—even the more complicated VerticalPanel,
which places widgets on top of each other in a column. This is created in Java
code as simply as this:

VerticalPanel theVerticalPanel = new VerticalPanel();

The Java object view of panels lets you treat the panel as a pure Java object.
Although methods such as add() allow you a peek of how the panel behaves and
may appear on the browser, they don’t let you fully understand how they behave.
For that, we need to consider the panel in its alternative view, as a DOM element.

5.1.2 Considering panels as DOM elements

The DOM element view of panels is displayed in the web browser. When a panel is
created using the Java constructor, that constructor is responsible for creating the
necessary DOM element for the panel. For example, the FlowPanel we looked at
in the previous section has a Java constructor defined as follows:

public FlowPanel() {
 setElement(DOM.createDiv());
}

Therefore, when you create a FlowPanel Java object, you’re also creating a DOM
div element. If you were to look directly at the DOM element of this FlowPanel,
you would see the following:

<div>
</div>

Not the most exciting of panels, but it works as described. If you add two other
FlowPanels to it, they’re added directly inside the first panel, but there are no
instructions about how to position the new panels (next to or on top of)—they
flow according to the browser’s rule, as follows:

<div>
 <div></div>
 <div></div>
</div>

The second and third lines are the two new FlowPanels added to the original
FlowPanel.

 Unlike widgets, where functionality of the component is determined by the
type of widget—a Button is a button, an Image an image—panels are harder to
understand because they’re more abstract in concept. If you just looked at the
DOM element from the FlowPanel, it would be hard to tell what type of panel it
was. The defining property of a panel is how it deals with other user interface

What is a panel? 161

components that are added to it. You can see this easier if we look at the Verti-
calPanel. It has this DOM element representation:

<table cellSpacing="0" cellPadding="0">
 <tbody>
 </tbody>
</table>

If you add the same two FlowPanels you added to the FlowPanel just now to this
VerticalPanel, then the DOM element becomes the following:

<table cellSpacing="0" cellPadding="0">
 <tbody>
 <tr>
 <td style="VERTICAL-ALIGN: top" align="left">
 <div></div>
 </td>
 </tr>
 <tr>
 <td style="VERTICAL-ALIGN: top" align="left">
 <div></div>
 </td>
 </tr>
 </tbody>
</table>

When you add a new widget to the VerticalPanel, its add() method creates a
new tr DOM element into which it places the new widget. Then, this new DOM
element is added at the end of the existing table. You can see this in the previous
code snippet, where the two FlowPanels are captured in separate cells in the table
structure, and each cell is held on a separate row.

 Each panel defines its own add() and insert() methods, among others, and
these give the panel its layout properties. Each panel can have widgets or other
panels added to it; you can do this recursively to build the structure you need for
your application, such that a panel may contain other panels that contain widgets.

 Notice at B that the vertical alignment of the VerticalPanel cell that holds
the first FlowPanel is set to align the component vertically. To change this, use the
setVerticalAlignment() method of the VerticalPanel. (There is also a setHo-
rizontalAlignment() method). A number of panels control formatting in a simi-
lar manner.

 At the heart of the GWT system is the RootPanel—the panel that links the
application to the browser window. It provides references to particular DOM
elements on the page, rather than strictly being a panel itself. There are two ways
to use the object. The first is to pass a DOM name that you know exists, such as
RootPanel.get("MyDomArea"), in which case a DOM element reference to

B

First
FlowPanel

Second
FlowPanel

Bottom
half of
Vertical
Panel

Top half of
VerticalPanel

162 CHAPTER 5

Working with panels

MyDomArea is returned. The second approach is to call RootPanel.get()—the lack
of parameters means the result will be a reference to the page’s Body element.

 As we mentioned previously for widgets, you shouldn’t rely on the fact that a par-
ticular DOM element is used to implement any particular panel, because it isn’t
guaranteed that it will remain that way in future GWT releases. The only exception
is that three panels are set up specifically to be HTML tables and used that way; we’ll
come to those when we discuss the classes of panels in the next section.

5.2 The standard GWT panels

The standard GWT distribution comes with a wide range of panels that cover
many different circumstances. To make sense of the panels, it’s useful to split
them up into five families, which correspond to the breakdown shown in the class
hierarchy in figure 5.1:

■ Simple panels—These panels are based on a div element and may contain
only one widget. (This is a semantic distinction rather than a practical one,
because this one widget may be a panel containing other widgets/panels, or
a composite widget.)

■ Complex panels—Complex panels allow any number of widgets and are usu-
ally based on a div or table element. However, when you use these widgets,
you shouldn’t rely on knowing their internal structure because that could
change in the future.

■ HTML table panels—These types of panels are based on HTML tables and
should be expected to behave in that manner.

■ Composite panels—Composite panels are a combination of other panels put
together to provide some new functionality.

■ Split panels—New in GWT 1.4 is the SplitPanel family, which provides a slid-
ing bar between two widgets that allows them to be resized (but we won't
discuss it in this book).

You can see in this hierarchy that all panels in GWT subclass the Panel abstract class.
This Panel class subclasses the Widget class (and hence UIObject), so in a sense a
panel is a widget. You can make panels sink events and override the onBrowser-
Event() method, as you’ll see you can for widgets in the next chapter (Complex
panels are the exception because they’re composite widgets rather than panels, but
they behave in a similar manner to panels; we’ve shown this linkage as a dotted line
in the hierarchy. We’ll cover composite widgets in detail in chapter 7.)

The standard GWT panels 163

The defining difference between panels and widgets comes in the panel’s imple-
mentation of the HasWidgets interface. This interface requires panels to provide
the ability to add and remove widgets from the component that implements it. It’s
therefore possible to add widgets and panels to a panel, but you can’t add panels
or widgets to a widget (because it doesn’t implement the HasWidgets interface).
Additionally, when a panel is added to the browser, the panel’s onAttach()
method is called; it iterates over all the widgets the panel contains, calling their
onAttach() methods (when you add a widget to the browser on its own, the same
mechanism occurs because you’re adding the widget to the RootPanel; it’s just
less obvious).

 In the next section, we’ll take a quick tour through the panels that come as
standard with GWT which we use in the Dashboard application. The starting point
for exploring the panels will be the SimplePanel family.

Figure 5.1 Class hierarchy of panels provided with the GWT 1.3 framework, showing the different

types of panels available

164 CHAPTER 5

Working with panels

5.2.1 Interacting with simple panels

The SimplePanel family provides panels that restrict the number of widgets that
can be added to one. If we strip it down to its bare bones, the SimplePanel class
extends the abstract Panel class and has a single variable for holding details of its
one widget.

 Figure 5.1 shows the following five SimplePanel panels:

■ PopupPanel

■ DialogBox

■ FormPanel

■ FocusPanel

■ ScrollPanel

Let’s look at each of them, discussing any peculiarities or points of interest and
where you’ll use them in the Dashboard application.

Popping up displays

A PopupPanel “pops” up over other widgets on your page—you could use it, for
example, to implement tooltip functionality (which is what you’ll do in the Dash-
board’s Server Status component application, shown in figure 5.2).

 Google is particularly proud of this component because it even pops up over
list boxes, which normally is a problem for this type of functionality.
The panel can be set to auto-hide if the user clicks outside it. And be aware that it
previews browser events—if a widget you’re developing doesn’t get the events you
expect, make sure no unexpectedly open PopupPanels are grabbing and deleting

Figure 5.2

Displaying a Dashboard tooltip by clicking a

Server Status attribute name (you create the

tooltip by subclassing the PopupPanel)

The standard GWT panels 165

that event! This caused a problem with the ToolTip class, but we’ll discuss that in
more detail in chapter 6.

 A subclass of PopupPanel is the DialogBox panel, which the Dashboard com-
ponent applications use heavily.

Communicating in a dialog

The DialogBox panel is a particular instance of a PopupPanel that can contain a
single widget and a caption at the top—which can be seen in figure 5.3.

 The user can drag the panel around by clicking the caption and dragging the
mouse, although the panel doesn’t naturally contain a close button.

 When you look at figure 5.3, you may question whether this is a simple panel,
because there appears to be more than one widget in the dialog box: your widget
and a Label widget for the caption. Although DialogBox seems to have many wid-
gets associated with it, it doesn’t (really). We get into an argument of semantics
that many politicians would be proud of—because a panel is a widget, if you add
any type of panel to a simple panel, you’re adding only one widget (the panel you
add may be complicated, with many widgets added to it, but you’re still adding
only one “widget” to the dialog box).

 To create a DialogBox, you use one of the two constructors that GWT provides.
The first takes no parameters, and the second takes a boolean parameter to specify
the auto-hide capability (true to hide the dialog if a user clicks somewhere else,
false otherwise).

Figure 5.3

GWT DialogBox used as the basis for

the panels in which the component

Dashboard applications sit

166 CHAPTER 5

Working with panels

Once a DialogBox is created, you need to set the two component parts: the cap-
tion and the widget. You set the former using the setText() or setHTML()
method and the latter using the setWidget() method. Generally, you create a
DialogBox as shown in listing 5.1.

final DialogBox theDialog = new DialogBox(true);
theDialog.setText("A Dialog");
VerticalPanel thePanel = new VerticalPanel();
Label theMessage = new Label("Some Dialog Text");
Button okButton = new Button("OK");
okButton.addClickListener(new ClickListener() {
 public void onClick(Widget sender) {
 theDialog.hide();
 }
});
thePanel.add(theMessage);
thePanel.add(okButton);
theDialog.setWidget(thePanel);

You’ll create a subclass of DialogBox later in this chapter for use in the Dashboard
example. Let’s look at another panel you use in the Dashboard, although as part
of an application.

Forming an opinion

The FormPanel was introduced into GWT in ver-
sion 1.1 to allow the management of forms and is
probably the most functionally active panel in
the set. You can set all sorts of attributes, such as
the form’s encoding, the method of sending to
the server (post or get) and the action (what hap-
pens when the form is submitted). In chapter 13,
we’ll show a complete example of this panel
together with how it’s submitted to the server
and how you handle the events related to submis-
sion and return of results. For now, the form
shown in figure 5.4 is what we’re talking about—
and we hope it seems familiar to you as an out-
line of a standard HTML form.

Listing 5.1 Creating a dialog using the DialogBox class

Create DialogBox object

Set caption
text

Create
dialog’s
widget

Set dialog’s
widget

Figure 5.4 Example of the

FormPanel. It’s a simple panel, but it

performs the same trick you saw with

DialogBox: The form components—

text boxes, labels, radio buttons, and

so on—must be added to a particular

panel, and then that panel is added to

the FormPanel.

The standard GWT panels 167

 Submission of a form occurs programmatically by calling the FormPanel’s sub-
mit() method as the result of some other user interaction—usually, by adding a
ClickListener to a submit Button added to the form. We’ll look more at Click-
Listeners in the next chapter, on events; but one panel manages many different
types of events: the FocusPanel.

Focusing user actions

A FocusPanel acts similarly to the Focus-
Widget you saw in the previous chapter. It
lets its contents become focusable and adds
the ability to capture mouse and keyboard
events that occur anywhere on the panel.
You’ll use a FocusPanel in the Calculator
component application to let you capture
keypresses on the keyboard, as you can see
in figure 5.5.

 Unlike the FocusWidget, which you can’t
create instances of, you can create instances
of FocusPanel. In order for it to have any
functionality, you need to place content in it
(you could use it on its own, giving it dimen-
sions through CSS or the setWidth()/

Height() methods, but we’re not sure what
purpose an empty focus area has).

 In the Dashboard’s Calculator application, you’ll place the calculator keys inside
a FocusPanel so that you can capture physical keyboard presses (see listing 5.2).

FocusPanel theKeypad = new FocusPanel();
:
theKeyPad.add(theKeys);
theKeyPad.addKeyboardListener(new KeyboardListenerAdapter(){
 public void onKeyPress(Widget sender,
 char keyCode,
 int modifiers) {
 //code that handles keypress goes here.
 }
});
theKeyPad.setTabIndex(0);
theKeyPad.setAccessKey(’+’);

Listing 5.2 Using a FocusPanel in the Calculator by adding buttons

 and a KeyboardListener

Add KeyListener
to FocusPanel C

Add widget to
FocusPanel

B

Implement key
event-handlingSet widget’s

tab index
D

Set browser access keyE

Figure 5.5 The Calculator

Dashboard application you’ll build

in this book places its keypad inside

a FocusPanel, which enables you

to capture physical computer

keypresses and pretend the user

has mouse-clicked one of the

calculator's buttons.

168 CHAPTER 5

Working with panels

By adding the calculator’s grid of buttons, theKeys, to the theKeyPad Focus-
PanelB, you can add ClickListeners, FocusListeners, MouseListeners, and
KeyboardListeners. We chose to add a KeyboardListener C to process any key-
board keypresses. This way, the user can use the physical keyboard to enter numbers
and operations in the calculator as if they were clicking the buttons directly.

 The FocusPanel, like the FocusWidget, lets you set its position in the browser’s
tab index through the setTabIndex() method D. If the tab index is shared
between multiple FocusWidgets or FocusPanels, then the ordering given by the
browser when the user presses the Tab key is arbitrary; however, if the FocusPanel
is in sequence with the FocusWidget, then that ordering is upheld.

 Finally, you set up a special access key E for the focus area such that if the
user presses the browser’s modifier key and the special key, then the widget auto-
matically receives focus. In Firefox and Internet Explorer, the special modifier
key is Alt; in Opera, it’s the Shift-Esc key combination. Or, you can set the focus
programmatically by using the setFocus() method with a boolean variable as
the parameter.

 In addition to focusing on a panel, the user may wish to scroll up and down (or
even across) a panel.

Scrolling through information

A ScrollPanel allows a user to scroll around a widget that is larger than the
dimensions of the ScrollPanel. By default, the panel always shows both scroll
bars, although it’s possible to set it such that they’re shown only when necessary.
This is the panel we have the most problems with, because unless you set dimen-
sions for it (either—preferably—through CSS, or programmatically using the
setWidth()/setHeight() methods), it expands to the size of the widget you place
in it—and therefore you get no scrolling capability. You must set the ScrollPanel
dimensions to less than the widget it contains to enact the scrolling.

 You can set a widget to always be visible in the scroll panel. You’ll use that func-
tionality in the Dashboard’s Address Book application to quickly show the relevant
address details when a name is selected from the list of names (see figure 5.6).

 The Address Book uses the code shown in listing 5.3 to create and use a
ScrollPanel.

The standard GWT panels 169

visibleAddresses = new ScrollPanel();
visibleAddresses.setStyleName("addressBook-visibleAddress");
visibleAddresses.add(theAddresses);
visibleAddresses.addScrollListener(new ScrollListener(){
 public void onScroll(Widget widget,
 int scrollLeft,
 int scrollTop) {
 int widgetCount = theAddresses.getWidgetCount();
 int panelHeight = theAddresses.getOffsetHeight();
 int widgetHeight = panelHeight/widgetCount;
 int widgetNumber = scrollTop/widgetHeight;
 addressLinks.setSelectedIndex(widgetNumber);
 }
});

If the panel/widget added to the ScrollPanel has dimensions less than the
ScrollPanel, then by default, no scroll bars are displayed. Scroll bars are added
automatically once the dimensions of the component added to the ScrollPanel
grow out of the ScrollPanel’s dimensions. To have scroll bars always present, you
use the setAlwaysShowScrollBars() method on the panel.

 You can programmatically set the position of the scroll bars for the panel using
two methods the panel provides. To set vertical position, use the setScrollPosi-
tion() method; to set the horizontal scroll-bar position, use the setHorizontal-
Position() method. Alternatively, you can set the position of the bars relative to a
widget that you want visible using the ensureVisible() method. This last method
is used in the AddressBook to show the address selected by the user (see listing 5.4).

Listing 5.3 Using a ScrollPanel in the Dashboard’s Address Book

Figure 5.6 The Dashboard’s Address Book application uses a ScrollPanel when

displaying a list of addresses.

Create ScrollPanel

Set
Scroll-
Panel’s
CSS style
name

Add
panel

to
Scroll-
Panel

Add
ScrollListener

Scroll
event-
handling

170 CHAPTER 5

Working with panels

private void showAddress(String index){
 AddressDetails address = (AddressDetails) addresses.get(index);
 visibleAddresses.ensureVisible(address);
}

In the showAddress() method, you get the AddressDetails object that should
now be seen and then use the ensureVisible() method to make it visible.

 These simple panels were restricted to adding only one widget. Although that’s
mainly a semantic restriction, if you wish to use a panel that explicitly allows the
addition of multiple widgets, you need to consider either a ComplexPanel or HTML-
Table family panel. In the next section, we’ll look at the ComplexPanel family and,
after that, HTMLTable.

5.2.2 Considering more complex panels

The ComplexPanel family of panels lets you add one or more widgets, which
makes them more advanced compared to the SimplePanel family we just looked
at (which allows only one widget per panel).

 Presentational aspects of complex panels are delegated to the subclasses,
which must decide what DOM elements they use to provide their visual behavior.
Some of the subclasses use div elements (for example, the DeckPanel) and others
use table elements (for example, the HorizontalPanel and VerticalPanel).
This difference is driven by the ease with which visual behavior can be imple-
mented. In the case of the DeckPanel, only one widget is visible at any given time;
it’s easier to place each widget in separate div elements and then manipulate the
visibility style property of the individual divs. Horizontal and vertical panels
are easier to construct as tables in HTML—but we should be clear here that you
shouldn’t rely on the fact that they’re implemented as tables, because that could
change in future releases (if you need to rely on a table structure, then you should
use the HTMLTable family of panels we’ll discuss later).

 A complex panel lets you retrieve an iterator to access its child widgets (to get
the iterator, you call the iterator() method on the panel). To get a list of a
panel’s child widgets instead of an iterator, you use the getChildren() method,
which returns a WidgetCollection object.

 You add widgets using the add() method. An insert() method is provided
that lets you insert new widgets before a particular index in the widget collection.

 GWT provides nine complex panels:

Listing 5.4 Setting the scroll-bar position relative to an element

The standard GWT panels 171

■ AbsolutePanel

■ RootPanel

■ HTMLPanel

■ FlowPanel

■ DeckPanel

■ StackPanel

■ DockPanel

■ HorizontalPanel

■ VerticalPanel

Let’s look at the salient points of each of them in turn.

Positioning components absolutely

In an absolute panel, you can position widgets wherever you wish. You add widgets
by specifying the particular x and y coordinates at which they should appear in
the panel. This is achieved using the constructor’s add(Widget, x, y) method;
or, if the widget is already added, then you can change its position with the setPo-
sition(Widget,x,y) method.

 Widgets can overlap if they’re so arranged, but you can’t directly alter the z-
index of an absolute panel with the standard implementation. If you’re interested
in finding the position of a widget in an absolute panel, you can use the getWid-
getTop() and getWidgetLeft() methods, which retrieve values of the top and
left of the widget relative to the panel it’s in.

 Note that an absolute panel won’t resize itself to make room for widgets you
add; all the other panels generally do. If you add an extra widget to a horizontal
panel, it will grow to the right to make room—but not so for the absolute panel. If
you add a widget in a position that is outside the existing visible area for an abso-
lute panel, then the panel will happily place it there. Should you then wish for it
to be displayed, you must either move the widget or explicitly resize the panel.

 This panel is also the parent of RootPanel, which we’ll look at next.

Interfacing with the browser through the RootPanel

A special case of AbsolutePanel is RootPanel, which gives your application direct
access to the browser page. RootPanel is mainly used to add your application’s
components to the view the user gets, as you saw back in section 3.1.2.

 RootPanel provides functionality to get specific named DOM elements from
the DOM representation of the current browser page using the get(elementName)
method, or a reference to the DOM body using the get() method. You’ve seen
both these techniques used: the first in the default application to place the button

172 CHAPTER 5

Working with panels

and label in desired locations on the screen, and the second in the Dashboard
where you place widgets as they come. Figure 5.7 shows what happens when you
add a number of widgets to the browser using the second approach.

 Slightly more controlled, but still flexible, is the HTMLPanel.

Adding new HTML areas

The HTMLPanel lets you include standard HTML code in it. You use the construc-
tor to add an HTML string to the panel, and you add widgets to named elements
in that HTML. This is performed in a similar manner to how widgets are added to
the RootPanel, but using the add(Widget,String) method.

 You don’t use this panel in the Dashboard—we couldn’t manage to use every
single GWT component in our example application!

 RootPanel and AbsolutePanel are extremely relaxed about laying out compo-
nents, giving you total control over positioning. Now we’ll move on to panels that
are more controlling. Let’s ease ourselves in by first looking at the FlowPanel.

Figure 5.7 The Dashboard showing how to use the RootPanel for positioning Dashboard

applications where you want (RootPanel is really an implementation of an AbsolutePanel)

The standard GWT panels 173

Flowing components

A FlowPanel lets the widgets that are added
to it flow in a left to right, top to bottom man-
ner, as if you were adding widgets directly to
the browser page. This is the same manner
they would appear if they were added to the
browser screen. Figure 5.8 shows this flow in
action as you have added four widgets to the
panel in sequential order.

 The panel also implements the Indexed-
Panel interface, which enforces an explicit ordering on its children. This means
you can get a widget with a particular number using the getWidget(int) method
and always be guaranteed that it will be the same widget. You can also get the index
of a widget through the getWidgetIndex(Widget) method and a count of the widg-
ets in a panel with the getWidgetCount() method. Finally, you can remove a widget
using the remove(int widgetIndex) method as well as the standard panel
remove(Widget) method.

 In terms of layout, FlowPanel allows the most flexibility for styling through CSS
after the AbsolutePanel. You’ll make use of this in the EditableLabel compo-
nent you’ll build in chapter 7, where you’ll place
a text area and two buttons in a FlowPanel; by
varying the width of the container, you can move
the buttons from the right of the text to under it
(you can also achieve the same effect using CSS
commands). See figure 5.9.

 If you want to let the application have even
more control over positioning, perhaps not
showing parts of the application, then the Deck-
Panel is a great choice.

Decking out an application

You can add numerous widgets to a DeckPanel, but only one widget is visible at
any given time. The panel acts like a pack of cards. In the GWT implementation,
this panel is used by the TabPanel implementation, where clicking a tab makes
the widget for that tab visible, as you’ll see later. You’ll also use it in the Dashboard
for the Security application, the three decks of which are shown in figure 5.10.
Only one of these decks is visible at a time, and you default to deck 1 to allow the

Figure 5.8 Result of adding four widgets to

a FlowPanel—the widgets were added in

sequential number order and flowed left to

right, top to bottom.

Figure 5.9 Using the FlowPanel in

the EditableLabel component of

the Dashboard. In this example, three

components (a text area and two

buttons) flow from left to right and

top to bottom into the shape of the

outer container.

174 CHAPTER 5

Working with panels

user to log in—if they’re unsuccessful, then they’re shown deck 2; if they succeed,
then they’re shown deck 3.

 To create the Login widget, you use the code shown in listing 5.5 in the con-
structor of the composite widget.

application = new DeckPanel();
application.add(createLoginPanel());
application.add(createLoggedInPanel());
application.add(createErrorPanel());
application.setStyleName("login-visiblePanel");
application.showWidget(LOGIN_PANEL);

This panel also implements the IndexedPanel interface, which means that when
widgets are added, they’re ordered and can be indexed—this ordering gives you
confidence that the correct deck is displayed in the Security application. On top of
this, you can set the current visible widget through the showWidget(int) method
as well as get the current visible widget through the getVisibleWidget() method.

 If you want a panel that acts in a similar way to DeckPanel but lets you choose
which panel is visible, then you should use the StackPanel.

Stacking components together

StackPanel and DeckPanel share similar functionality, in that they both show
only one widget at a time; but in a StackPanel, a header for each widget is visible
and can be selected to show the widget.

 Figure 5.11 shows the Dashboard’s Search Comparison application. There are
two panels (two different versions of the Google search widget we’ll cover later in
the book), but only panel 2, the video search, is currently visible. Clicking header 1
for the blog search displays that panel, as shown on the right in the figure.

 To create the StackPanel in figure 5.11, you use the code shown in listing 5.6.

Listing 5.5 Creating the DeckPanel for the Dashboard’s login application

Figure 5.10

The three decks of the Dashboard’s login

functionality, showing the default view, a failed

login, and a successful login. Only one of these

decks is visible at a time.

Create DeckPanel

Add new widget/
panels as decks

Show first deck

The standard GWT panels 175

StackPanel theStack = new StackPanel();
theStack.add(createGoogleBlogSearch(),"Blog Search");
theStack.add(createGoogleVideoSearch(),"Video Search");

The stack is created using the constructor shown in B. You then add new widgets
to the stack panel using the add() method C, which should be given a widget and
some header text as parameters. The header text can also be HTML text if a third
parameter, a boolean, is given and set to true. This third way lets you add images
to the header text. You can also change the text associated with a widget through
the setStackText() method for a particular widget index—which means you
need to find the index of the widget you wish to set the text for. If it’s the currently
selected widget, you can use the getSelected-
Index() method.

 To programmatically show a new stack, you
use the showStack() method.

Docking components

The DockPanel is reminiscent of the Swing Bor-
derLayout. It lets you add multiple widgets to the
North, West, East, and South; but only one widget
can be added to the Center space, which can take
up any remaining space on the widget. The layout
of the DockPanel is shown in figure 5.12.

Listing 5.6 Creating the DeckPanel for the Dashboard’s Search Comparison

 application

Figure 5.11 StackPanel is similar to DeckPanel but lets you select a label to show each panel (only

one of which is visible at a time, depending on whether you click Blog Search or Video Search).

Create StackPanelB
Add panel
to stack

C

Figure 5.12 Schematic of

the DockPanel showing the five

areas where widgets can be placed

176 CHAPTER 5

Working with panels

If no widget is added to a particular area, then that area’s space is “lost”. You’ll use
of this property in the Dashboard’s Slideshow application, where you use two
DockPanels, one inside the other (see figure 5.13).

 When you add widgets, you must explicitly set where the widget will reside in
the DockPanel using static constants from that class, such as DockPanel.NORTH.
Only one widget can sit in the DockPanel.CENTER location; trying to place more
than one widget there raises an exception, although it’s possible to add more than
one widget to the other areas, as you can see in listing 5.7.

DockPanel thePanel = new DockPanel();
thePanel.add(theTitle,DockPanel.NORTH);
thePanel.add(theImage,DockPanel.CENTER);
thePanel.add(theName,DockPanel.SOUTH);
thePanel.add(navPanel,DockPanel.SOUTH);
thePanel.add(preloadImages, DockPanel.SOUTH);

DockPanel extends the CellPanel, as do the horizontal and vertical panels we’ll look
at next. This CellPanel allows widgets contained in cells of an HTML table; you can

Listing 5.7 Creating the DockPanel for the Dashboard’s Slideshow application

Figure 5.13 Use of the DockPanel in the Slideshow application. The outer dock panel doesn’t use

the East and West areas, whereas the dock panel in the South area of the first uses only the East

and West areas to position the Start and End hyperlinks.

Create DockPanel

Add widget to North

Add multiple
widgets to South

The standard GWT panels 177

set horizontal and vertical layouts using constants from the HasVerticalAlignment
and HasHorizontalAlignment classes, but using CSS styling is preferred.

 If you want to guarantee that widgets are always kept in a horizontal line, you
should use the HorizontalPanel.

Laying out horizontally

A HorizontalPanel adds widgets in a horizontal line
from left to right. There isn’t much more to say about
this panel than that; it’s good at doing its one job. You
used this panel when you created the TwoComponent-
MenuItem widget in chapter 4; it’s shown in figure 5.14.

 For this component, you create a HorizontalPanel
that contains two widgets. Listing 5.8 shows where you
use the horizontal panel.

private HorizontalPanel theMenuItem = new HorizontalPanel();
theMenuItem.remove(1);
theMenuItem.add(newComponent);
SimplePanel dummyContainer = new SimplePanel();
dummyContainer.add(theMenuItem);
String test = DOM.getInnerHTML(dummyContainer.getElement());
this.setHTML(test);

With the horizontal panel in place, listing 5.8 shows how the second component is
changed. You first remove the image—it’s at index 1, because the widget collection
is zero indexed—and then add the new image using the standard add() method.
The remaining part of this code extracts the HTML relating to the panel so it can
be added to the menu item; we covered that function-
ality in section 4.4.1.

 If you want the widgets to go down instead of
across, then you need the VerticalPanel.

Laying out vertically

Diametrically opposite the HorizontalPanel is the
VerticalPanel, which does an excellent job of
keeping widgets stacked on top of each other. You’ll
use it, for example, in the Dashboard Security appli-
cation to keep the components lined up, as shown
in figure 5.15.

Listing 5.8 Creating the HorizontalPanel for the Dashboard’s menu

Create
Horizontal
Panel

Remove existing widget

Add component
to HorizontalPanel

Figure 5.14 Horizontal-

Panel used in the

TwoComponentMenuItem

widget built in chapter 4 to

position both components

horizontally across the page

Figure 5.15 Using the

VerticalPanel to position

all the components used in the

first deck of the Dashboard’s

login application

178 CHAPTER 5

Working with panels

 It’s created using the code shown in listing 5.9.

loginPanel = new VerticalPanel();
loginPanel.add(appImage);
loginPanel.add(userName);
loginPanel.add(password);
loginPanel.add(loginButton);

Whether the complex panel uses a div or table DOM elements is transparent to
you. It’s nice to be aware of the underlying implementation, but you shouldn’t
rely on it, because among other things, it may change in the future. If you need to
manage a panel as a table—for example, to insert widgets in the fourth column
and third row—then you need to consider the final family of panels: HTMLTable.

5.2.3 Considering HTML table-based panels

Three GWT-provided panels act explicitly as if they have a table structure: HTML-
Table, FlexTable, and Grid. You can insert GWT widgets at determined column/
row locations and manipulate the style name of specific cells.

 The first panel is a basic HTML table that is then specialized by the second two
panels. The key difference between the second two panels is that Grid is of a fixed
size and needs to be explicitly resized if columns/rows outside the initially set size
are to be accessed. The FlexTable panel, on the other hand, creates new grid
cells as and when needed.

Implementing an HTMLTable

The HTMLTable panel provides all the basics for building HTML tables in GWT,
although you can’t create an instance of it—you must use one of its children. It
can create an empty table; add or remove cells, rows, and columns; and check
whether particular rows, columns, or cells exist. It also lets you set or remove wid-
gets for particular cells as well as set things such as cell padding and spacing.

 You can add a TableListener to a child of HTMLTable panel, which is fired
when cells in the table are clicked. For example, the code shown in listing 5.10
uses the grid panel and can be used to provide functionality that sorts a table
based on a column when the header of that column is clicked.

Listing 5.9 Creating the VerticalPanel for the Dashboard’s login component

 application

The standard GWT panels 179

final int HEADERROW = 0;
Grid myTable = new Grid();
myTable.addTableListener(new TableListener(){
 public void onCellClicked(SourcesTableEvents sender,
 int row,
 int cell){
 if (row==HEADERROW){
 orderTableOn(cell);
 }
 }
});

Individual cells can be assigned their own CSS class name and have certain stylistic
attributes altered programmatically. You do this using the CellFormatter object
from the HTMLTable class, which is subclassed by Grid and FlexTable. Table 5.2
shows how to set the format of a cell and a whole row for a Grid.

The key aspect of HTMLTable is that it provides the basis for the next two panels.

Flexing a table layout

A FlexTable is essentially a table where rows and col-
umns are created implicitly to match the size needed
when the program adds widgets. For example, if the
FlexTable is initially dimensioned as a 4x4 grid, and the
program adds a widget to column 10, row 15, then the
FlexTable automatically grows to be a 10x15 grid.

 Additionally, rows and columns can span a number
of other columns or rows, which isn’t possible using a
Grid; see figure 5.16.

Listing 5.10 Adding a TableListener to reorder data by clicking

 elements in the header row

Table 5.2 Ways to format in a Grid

Task Code

Formatting a cell Grid g;
g.getCellFormatter().setStyleName(0,0,”header”);

Formatting a row Grid g;
g.getRowFormatter().setStyleName(0,”header”);

Create
HTMLTable

AddTableListener

onCellClicked method

Check if clicked
row was header

Order table
(application method)

Figure 5.16 Example of a

FlexTable with some

row and column spanning

180 CHAPTER 5

Working with panels

FlexTable provides an additional class to allow rows and columns to span a num-
ber of cells: FlexCellFormatter. You can set row and column spanning as simply
as in listing 5.11.

flextable = new FlexTable();
 FlexCellFormatter formatter =
 flextable.getFlexCellFormatter();
 formatter.setColSpan(0, 0, 2);
 formatter.setRowSpan(0,0,2);
 for(int loop1=0;loop1<6;loop1++){
 for(int loop2=0;loop2<5;loop2++){
 flextable.setText(loop1,loop2,"("+loop1+","+loop2+")");
 }

 }
 formatter.addStyleName (1,1,"flexTable");

In this example, you span cell (0,0) across the first two rows and columns B C.
Then D you try to fill the cells. But notice in figure 5.17 that this spanning affects
the positioning of the neighboring cells—row 0 appears one column longer, and
row 1 appears two columns longer. This should be expected; it’s caused by the span-
ning, but it may cause you to think your application
is wrong if you forget this!

 At E, you apply styling directly to the cell at col-
umn 1, row 1, which you can see in figure 5.17.
The Server Status component also uses a table for-
matter to give its table’s header cells a different
style than the rest of the table cells.

 You need to be acutely aware of how the format-
ter works; otherwise, you’ll get results that you may
not expect.

WARNING One thing to be aware of regarding tables in GWT is that there is cur-
rently a performance hit if tables become exceptionally large. An
approach to minimize this issue is to implement data pagination: If the
table can show 10 items, and you have 100 pieces of data in your data-
base, then fetch only the relevant 10 you need at a time.

If you don’t need the flexibility of a flex table, then you use Grid.

Listing 5.11 Using a FlexCellFormatter on a FlexTable

Set cell (0,0) to
span two columns

B

Set cell (0,0) to
span two rowsC

Set style for
cell (1,1)

E Fill cells
(0,0) to (5,4)

with text

D

Figure 5.17 Result of trying to

span the first two cells in rows 1

and 2, columns 1 and 2

The standard GWT panels 181

Gridding components together

A grid provides the same container style as FlexTable
but is less flexible in terms of positioning widgets. If a
grid is created with dimensions 4x4, and then you need
to add a widget at column 10, row 15, you must explic-
itly resize the grid to 10x15 before you can add the wid-
get. Unlike in a flex table, you can’t span rows or
columns in a grid. You use Grid in the Dashboard’s Cal-
culator to lay out the buttons, as shown in figure 5.18.

 The final family we need to look at is the composite
panel family.

WARNING Grid becomes unhappy if you try and place a widget in a cell that doesn’t
exist. However, the error from GWT in Hosted Mode won’t tell you this;
it complains about other things.

5.2.4 Considering composite panels

The final family of panels is the composite panel family. There are two panels in
this family, although you’ll normally use only TabPanel (it uses the TabBar).

Creating a TabBar

The TabBar composite panel wraps a HorizontalPanel to provide functionality
for tabs. It sinks onClick events and allows applications to register TabListeners
against it to be notified when tabs are selected.

Creating a TabPanel

A TabPanel is a combination of two other panels. It uses a DeckPanel to contain the
visible contents of the tab displays so that only one deck is visible at a time. It adds
a TabBar to contain the tabs that can be clicked and registers a TabListener in
order to be notified when elements in the TabBar are clicked, which then shows the
correct deck in the DeckPanel. You can see this arrangement in figure 5.19.

Disclosing panels

GWT 1.4 introduced a new composite panel, called DisclosurePanel—effectively a
panel with a title, where the panel is hidden until the title is clicked upon. The
panel is hidden again when the title is again clicked upon.

Figure 5.18 Buttons laid

out using the Grid panel

to provide a uniform

keypad for the Calculator

Dashboard application

182 CHAPTER 5

Working with panels

5.2.5 Splitting panels

Also new in GWT 1.4 were a family of splitter panels (an abstract base class and two
concrete classes: HorizontalSplitPanel and VerticalSplitPanel). Both concrete
implementations allow widgets to be placed either side of a split bar, which can be
slid in one plane, e.g. left to right for the HorizontalSplitPanel. Sliding the bar
alters the visible width of each side and thus hides and shows the contained widgets.

 That’s all the panels that are provided free with the GWT distribution you use
in the Dashboard. Because it’s an extensive list, it isn’t likely that you’ll need to
create your own panels. However, we should never say never; in the next two sec-
tions, we’ll take a closer look at the process used to create a new panel.

5.3 Creating new panels

In this section, you’ll begin to construct a new panel that allows only Button wid-
gets to be added. Initially, we’ll examine how it can be constructed from scratch
by manipulating DOM elements; then, we’ll explain how to build the same panel
by extending an existing panel.

 Once we’ve shown the basics of extending a panel, we’ll turn our attention to
extending the DialogBox to provide the first version of the panel you’ll use for all
the Dashboard component applications (you’ll extend this panel in the next
chapter to handle more events and the “drop” part of drag and drop).

BE AWARE It’s often tempting to implement a component by extending a panel
rather than creating a composite widget (see chapter 7). If you extend a
panel, then you’re conceptually saying to people that they can expect to
add widgets to and remove them from the panel. Make sure that’s what
you want to say; if not, consider the composite widget approach.

Figure 5.19 How a TabPanel is constructed

Creating new panels 183

5.3.1 Creating a new panel from scratch

If you want to create a panel from scratch, then you need to think what DOM ele-
ment is best suited to representing the panel. In this section, you’ll build a panel
that holds only clickable widgets but isn’t concerned with any structural aspects,
so it seems reasonable that a div is suitable.

 Listing 5.12 shows the code for the panel, including the add(), remove(), and
iterator() methods that make the panel functionally useful.

public class ButtonPanel extends Panel{

 private WidgetCollection children = new WidgetCollection(this);

 public Iterator iterator() {
 return children.iterator();
 }

 public boolean remove(Widget w) {
 if (!children.contains(w))
 return false;
 disown(w);
 children.remove(w);
 return true;
 }

 public void add(Widget w){
 if (w.getParent() == this)
 return;
 if (!(w instanceof Button))
 throw new RuntimeException("Widget must be a Button");
 adopt(w, getElement());
 children.insert(w, children.size());
 }

 public ButtonPanel(){
 setElement(DOM.createDiv());
 }
}

The new panel must declare that it will be a new subclass of the abstract Panel
class, which implements the HasWidgets interface B. By doing this, you need to
provide an implementation of the remove() and iterator() methods, as well as
the add() method.

Listing 5.12 Creating a ButtonPanel from scratch

Extend panelB

Create empty
widget collection Citerator()

methodD

remove()
methodE

add()
method

F

Check that widget
is a Button

G

Construct
new panel

H

184 CHAPTER 5

Working with panels

 Because you aren’t implementing a simple type of panel, you must allow for
one or more widgets to be added to this panel. You need a way to manage and
keep track of them, and this is possible using the WidgetCollection object C.

 It’s a requirement of the HasWidgets interface that the panel must provide a
method that returns an iterator D. In the panel’s case, this iterator is created
by returning the iterator provided by the WidgetCollection object (this is the
same way all the panels, except those in the SimplePanel family, perform this task).
If the iterator() method doesn’t return a valid iterator object, then the panel
will fail to attach completely to the browser. (The failure is that, when attaching the
panel to the browser, an attempt is made to access all of the panel’s children
through the iterator; if that is null, then a null pointer exception is raised.)

 The remove() method E is relatively simple, but it needs to make sure you
remove the requested widget from both the DOM and Java views of the panel. You
remove the widget from the DOM by invoking the superclass’s disown() method.
Disowning a widget is the process implemented in the Panel class that ensures
both that the widget is removed from the panel and that the panel is removed
from being the parent of the widget. The widget is removed from the GWT Java
code representation by using the remove() method on the WidgetCollection.

 The process to add a widget generally depends on the panel’s behavior. For
example, a VerticalPanel always adds new widgets to the bottom of its panel; a
HorizontalPanel always adds them to the rightmost side. For this panel, you’re
lazy and allow the DOM to decide where to place the new widget you add F.

 The first check in the add() method is to ensure that the widget you’re adding
doesn’t already have you as its parent (in which case it’s already added). Next, you
check that the widget is a Button by seeing whether the widget is an instance of
the Button class using the code if (!(w instanceof Button)) G. If both these
checks are passed, then you adopt() the widget and add it to the GWT Java repre-
sentation in the WidgetCollection.

 Adopting a widget is the mechanism to ensure that a widget belongs to one and
only one parent (panel)—it ensures that the widget is attached at both the DOM
and GWT levels. Initially, the widget is removed from any parents it already has;
then, it’s appended as a child into a panel’s DOM element; and finally the parent
of the widget is set as this panel. This adopt() method must be called once in the
process of adding a widget to a panel. The adopt() method is defined in the
Panel class as follows:

protected void adopt(Widget w, Element container) {
 w.removeFromParent();
 if (container != null)

Creating new panels 185

 DOM.appendChild(container, w.getElement());
 w.setParent(this);
}

The underlying HTML element for this panel is the nice and safe div element, so
the constructor for the ButtonPanel sets the panels DOM element as a newly cre-
ated div DOM element H.

 The Panel class is responsible for managing its process of attaching and
detaching from the browser’s DOM and ensuring that all of its child widgets’
onAttach() or onDetach() methods are called.

 At this point, you have created the first panel. The steps to implement a com-
pletely new panel are summarized in table 5.3.

Creating a panel from scratch is the most basic approach. Next, we’ll look at creat-
ing a panel from one of the existing panels. There is a diversity of existing panels,
and after reading the next section, you may agree that creating panels from
scratch is a last resort.

Table 5.3 Summary of the steps required to create a new low-level panel

Step Name Description

1 Extend Create a new class that extends the Panel class; or, if the wid-

gets must be ordered in a particular manner, extends the

IndexedPanel class.

2 Implement iterator Implement the iterator() method to return a valid

iterator over the panel’s widgets.

3 Implement key methods Implement the following methods:

■ remove()—Removes a specified widget. This method must

also call the disown() method for the widget being

removed.

■ add()—Adds a widget to the panel. Often, in more compli-

cated panels, this method calls an insert() method to

add the widget at a particular position in the panel. If not,

then this method must call the adopt() method.

■ insert()—Optionally provided in complex panels to insert

a widget into a particular position. Where it’s provided, it’s

mainly called by the add() method. If this method is pro-

vided, then it must call the adopt() method to ensure that

the widget is properly adopted by the panel.

4 Implement useful methods With the basics in place, you can now add additional methods

that you feel are useful to the functionality of your newly created

panel.

186 CHAPTER 5

Working with panels

5.3.2 Creating a new panel by extending an existing panel

You saw earlier in this chapter that GWT is distributed with a large range of differing
panel layouts. This range means that before creating a new panel from scratch, you
should look to see whether extending an existing panel is the best approach.

 To do so, the first step is to decide which family this new panel will be a mem-
ber of—will it be a simple, a complex, or an HTMLTable panel? This decision will
affect the functionality that the user expects from the panel. If it’s a simple panel,
then you won’t be able to put more than one widget in it; if it’s an HTMLTable
panel, then you should be able to expect to apply CellFormatter objects to posi-
tions in the panel.

 Once the family is selected, you need to choose the most appropriate panel to
extend and then do so, being careful to ensure that you override any methods as
necessary. Let’s revisit the ButtonPanel you just created and see if you can reim-
plement it by extending an existing panel.

Re-creating the ButtonPanel

The definition of the ButtonPanel, a panel where a number of Buttons can be
added, implies that you need the ability to add more than one widget; so, you
shouldn’t use the SimplePanel family. You don’t particularly care about the order
of the buttons, apart from them being displayed in a left-right manner as they’re
added; and you aren’t interested in displaying them conceptually as a table. This
means the best-fit family is ComplexPanel.

 In this family, FlowPanel and HorizontalPanel fit the best. Because you
haven’t defined that the buttons must always be in a horizontal line, you’ll extend
FlowPanel. The new panel class becomes simple and is defined in listing 5.13.

ButtonPanel2 extends FlowPanel{
 public void add(Widget w){
 if (w.getParent() == this)
 return;
 if (!(w instanceof Button))
 throw new RuntimeException("Widget must be a Button");
 super.add(w);
 }
}

In this approach, you inherit all the functionality needed from FlowPanel B but
override the add() method C in order to retain the restriction that widgets being

Listing 5.13 Creating the ButtonPanel by extending the existing FlowPanel

 public class

Extend FlowPanelB

add()
methodC Is widget

a button?
D

Add widget through
parent’s add() methodE

Creating the Dashboard panel 187

added are Buttons D. Notice that you don’t need to define how the widgets are
added because you rely on the add() method in the FlowPanel class by calling
super.add(w) at the end of the method definition E.

 You can see that listing 5.13 is much simpler than the class you created in list-
ing 5.12, and that the only reason for having to extend FlowPanel was to add the
check that widgets are clickable. The general steps for creating a new panel by
extending an existing one are shown in table 5.4.

We’ve looked at panels in detail and have shown how to create your own panels if
you wish. With this experience in your hands, you can take the next step in the
development of the Dashboard by creating the panel in which all the component
Dashboard applications will sit.

5.4 Creating the Dashboard panel

We’ve arrived at the section where you’ll take your knowledge of existing panels
and how new ones are built and apply it to the Dashboard application. If you
recall, the Dashboard lets users open a number of applications, such as a Clock or
a Slideshow. These applications should open in their own window in the Dash-
board, and the user should be able to drag them around. The target is to display
the component applications in a panel that looks like figure 5.20.

Table 5.4 Summary of the steps required to extend an existing panel

Step Name Description

1 Identify class to extend Determine which Panel class is the most suitable for you to

extend for your situation.

2 Implement key methods Implement (override) the following methods as required:

■ remove()—Removes a specified widget. This method must

also call the disown() method for the widget being removed.

■ add()—Adds a widget to the panel. Often, in more complicated

panels, this method calls an insert() method to add the wid-

get at a particular position in the panel. If not, then this method

must call the adopt() method.

■ insert()—Optionally provided in complex panels to insert a

widget into a particular position. Where it’s provided, it’s mainly

called by the add() method. If this method is provided, then it

must call the adopt() method to ensure that the widget is

properly adopted by the panel.

188 CHAPTER 5

Working with panels

Just by looking at figure 5.20, it’s obvious that the DialogBox panel is the closest
match, and you could leave it just like that—this panel has a caption area where
you can store the title and an area for the widget where the application can go.
However, you need the panel to perform a couple of other tasks.

 The panels must have unique IDs in case you need to refer to them individually
in the future, and you need to keep track of which panel is currently active. You also
need to prevent anyone from creating a panel that doesn’t have an associated appli-
cation as well as prevent the previewing of events that comes standard in the Dia-
logBox class (if you don’t do this last step, then all the panels will try to preview
events, preventing you from clicking menu bars, and so on). Listing 5.14 shows the
code for the first version of this new panel (you’ll build up this panel in the next
chapter, so it’s called DashboardPanelFirst here; but we refer to it in both chap-
ters as DashboardPanel unless we need to distinguish between the versions. In the
downloadable code you will see only the final version of the DashboardPanel).

public class DashboardPanelFirst extends DialogBox{
 protected int id;
 protected static int lastId = 0;
 protected static DashboardPanelFirst current = null;
 protected DashboardComposite parkComponent;

 public boolean onEventPreview(Event event){ return true; }
 public static DashboardPanelFirst getCurrent(){ return current; }
 public int getId(){ return id; }

Listing 5.14 Extending DialogBox to provide the first version of the

 DashboardPanel class

Figure 5.20

Example DashboardPanel showing the close

mapping between it and the standard GWT

Dialog class. This panel is where the various

Dashboard component applications will sit.

Extend DialogBoxB

Initialize
variables

C

Cancel DialogBox
event preview D

Creating the Dashboard panel 189

 protected native boolean getConfirmDelete()/*-{
 return $wnd.confirmDelete;
 }-*/;

 protected void removeFromDashboard(){
 if (getConfirmDelete()){
 if(Window.confirm("Are you sure you want to delete this?"))
 hide();
 parkComponent.removeMenu();
 } else {
 hide();
 parkComponent.removeMenu();
 }
 }

 protected void addDashboardComponent(DashboardComposite comp,
 boolean showAtStart) {
 parkComponent = comp;
 this.setText(comp.getName());
 this.setWidget(comp);
 if(showAtStart){
 this.show();
 }
 }

 public DashboardPanelFirst(DashboardComposite component){
 super();
 this.id = ++lastId;
 addDashboardComponent(component, true);
 }

 public DashboardPanelFirst(){
 throw new RuntimeException("Cannot create new Dashboard
 Application without an associated DashboardComposite");
 }
}

You formally indicate B that this class will extend the standard DialogBox panel
and will, therefore, behave in a similar manner.

 A variable called id is created C; it will contain the ID of this panel. Each
DashboardPanel will have its own unique ID, and you use the static variable las-
tId to hold the value of the last ID you set for a newly created DashboardPanel.
The static modifier means that this variable is accessible to all objects in the Java
Virtual Machine.

 Similarly, the static current variable holds a reference to which Dash-
boardPanel is the one that is currently focused. The last class variable you

Confirm delete E

Remove DashboardPanelF

Add application to
DashboardPanel

G

Constructor H

Disallow
constructor
with no
arguments

I

190 CHAPTER 5

Working with panels

define, parkComponent, will eventually hold the Dashboard application; you’ll
use this more in the next chapter when we discuss how the panel handles events.

 As we mentioned in the introductory text, you need to prevent this version of
the DialogBox from previewing events, and you do this at D by overriding the
onEventPreview() method to return the value true.

 When someone tries to close this panel, you wish to check with the overall
Dashboard application whether you should ask the user for confirmation. You do
this by checking the value of the confirmDelete JavaScript variable held in the
Dashboard HTML file. To do that, you use JavaScript Native Interface (JSNI),
which you can see at E; we’ll go into detail on this in chapter 8. This method is
used at F, where the DashboardPanel is removed from the Dashboard by con-
firming with the user if you need to; you also remove any menu item the applica-
tion may have added to the Dashboard’s menu.

 G adds a component Dashboard application to the panel. You set the caption
of the panel to be the name of the component as well as using the panel’s parent
setWidget() method in order to add the application widget to the panel.

 When you create the panel, you should use this constructor H; then, you call the
parent’s constructor to ensure you have a valid DialogBox, and you set the id of this
panel to be one greater than the previous value of the static lastId variable (which
is also then updated). Next, you call the addDashboardComponent() method to tie
the application provided as an argument into this panel. Trying to use the default
constructor I, you raise a RuntimeException to prevent instances of the panel
from being created that don’t have an application component initially.

 You need to develop this panel further to give you the full functionality you
need, but to do that means you need to understand GWT event handling (which is
the topic of the next chapter). You want the panel to handle focus events. Gaining

focus means the application registers an option menu in the Dashboard menu sys-
tem. If a component application loses focus, then its option menu is removed
from the Dashboard’s menu, to be replaced by the option menu of the new appli-
cation that has gained focus.

 The developer of an application is responsible for providing the option menu
they want, but you’ll make sure all applications have at least an About menu item
in an option menu, which, when selected, displays internal information about the
component application (see figure 5.21).
You’ll do that by automatically taking the provided class and creating a new one at
runtime using GWT generators. But you must wait until chapter 14 to see how this
is done.

Summary 191

5.5 Summary

This concludes the second part of our journey through the GWT basics, which has
looked at panels. We hope you’re convinced that GWT provides a large number of
panels as standard, and this list is growing with each release. Where the function-
ality you need isn’t present, it’s relatively simple to create your own panel. You can
do this either by starting from scratch or, more preferably, by extending an exist-
ing panel.

 Panels are similar to widgets in that they have two alternative views: the Java
object and the DOM view. As with widgets, you’ll spend 99 percent of the time con-
sidering the Java object view and only get interested in the DOM view if you’re cre-
ating new panels. It can also be as dangerous with panels as it is with widgets to
start relying on the DOM view of the widget, because there is no guarantee that
future versions of GWT will use the same DOM construct for a particular panel.
However, three panels are specifically tied to DOM representation, which you can
rely on: the HTMLTable, FlexTable, and Grid panels.

 In the second half of this chapter, you constructed a ButtonPanel from scratch
as well as by extending an existing panel. The knowledge you gained allowed you
to build the first version of the DashboardPanel, which will be heavily used in the
Dashboard example. To complete this panel, you need to handle double-clicks on
the title and implement some drag-and-drop functionality; this requires you to
have a good understanding of how GWT handles events, which is the topic of the
next chapter.

Figure 5.21

An example of the About menu

automatically created by using

GWT generators and introspecting

an existing GWT Java class

192

Handling events

This chapter covers

■ GWT event model

■ Listening and previewing events

■ Event types

■ Implementing drag and drop

Exploring events 193

Finishing off the trilogy of GWT basics, and coming just before we pull everything
together in the chapter on developing composite widgets, we’ll now cover how
events are handled in GWT. Remember the plasma television remote control with
buttons that are labeled nicely and set out in a sensible way? When you push the
buttons, you want something to happen—you want the remote control to handle
the button-click event and change the channel or alter the volume. It’s exactly the
same in GWT applications; widgets are laid out in panels, and when the user inter-
acts with them, you want things to happen—you must handle events.

 Event-handling has popped up a few times already: In chapter 2, we discussed
the default application that uses a click listener on a button to show text; you cre-
ated the PNGImage widget in chapter 4 that sank events in the constructor; and we
explored some of the other widgets in chapter 4.

 This chapter explains the event-handling concept in GWT, including how it
manages and differs from the standard browser way of handling events. You’ll also
take the dashboard panel (DashboardPanelFirst) that you built in chapter 5 and
extend it so that it can handle mouse double-clicks and drag-and-drop capability
(a mouse double-click toggles the minimized/full view of the component). Let’s
start looking at how GWT deals with events.

6.1 Exploring events

Event handling in web applications ties visual elements the user sees to the func-
tionality of the application. This could be through clicking a button, dragging a
component, changing a value, or a number of other events. GWT supports all the
events that a browser can manage, as shown in table 6.1.

Table 6.1 Browser events that a GWT application can handle, together with internal

 GWT values that may be assigned to them

Event Description

BUTTON_LEFT The left mouse button was clicked.

BUTTON_MIDDLE The middle mouse button was clicked.

BUTTON_RIGHT The right mouse button was clicked.

ONBLUR An element lost keyboard focus.

ONCHANGE The value of an input element has changed.

ONCLICK A user clicked an element.

194 CHAPTER 6

Handling events

ONDBLCLICK A user double-clicked an element.

ONERROR A JavaScript error occurred (this error event is most often

found when the loading of an image fails).

ONFOCUS The opposite of the ONBLUR event: An element received

keyboard focus.

ONKEYDOWN A user pressed a key.

ONKEYPRESS A character was generated from a keypress (either directly

or through autorepeat).

ONKEYUP A user released a key.

ONLOAD An element (normally an IMG) finished loading.

ONLOSECAPTURE An element that had mouse capture lost it.

ONMOUSEDOWN The user clicked a mouse button over an element.

ONMOUSEMOVE The mouse moved within an element's area.

ONMOUSEOUT The mouse moved out of an element's area.

ONMOUSEOVER The mouse moved into an element's area.

ONMOUSEUP The user released a mouse button over an element.

ONSCROLL A scrollable element's scroll offset changed.

FOCUSEVENTS This is a bitmask covering both the focus and blur events.

ONFOCUS | ONBLUR

KEYEVENTS This is a bitmask covering the down, up, and press key-

board events.

ONKEYDOWN | ONKEYPRESS | ONKEYUP

MOUSEEVENTS This is a bitmask covering the down, up, move, over, and

out mouse events. Note that this doesn’t include the click

or double-click events.

ONMOUSEDOWN | ONMOUSEUP | ONMOUSEMOVE |

ONMOUSEOVER| ONMOUSEOUT

Table 6.1 Browser events that a GWT application can handle, together with internal

 GWT values that may be assigned to them (continued)

Event Description

Exploring events 195

GWT also manages a range of other events that are more application specific in
the same manner as browser events. These events include:

■ Form submission events—Used to handle submission of a form and when a
form submission is completed

■ Pop-up closure—Raised when a pop-up (such as a menu bar) closes

■ Table-cell clicks—Can manage user clicks in the cells of a GWT table

■ Tab events—Used to manage events such as the user clicking a tab

■ Tree events—Fired when items in the tree are selected or the state of them is
changed (the item is opened or closed)

■ Window resize—Fired whenever the browser window is resized

■ Window close—Fired just before the browser window is closed

Supporting event handling in a multitude of browsers can be a tricky business, with
not all browsers following the same standard way of handling events. In the next cou-
ple of sections, we’ll look at how the browsers differ, which is important in order for
you to understand why GWT introduces its own model to solve these differences.

6.1.1 Identifying event model browser differences

The largest difference between handling events in browsers is whether events are
captured or bubbled through elements. Imagine the situation where you have a cou-
ple of nested elements (Elements 1 and 2) in an overall web document. Further
imagine that on each element and the document, you’ve placed an object that lis-
tens for a mouse click. When you click Element 1, different browsers take differ-
ent approaches to handle that click.

 In Internet Explorer (IE), the model that is invoked is called event bubbling. Ele-
ment 1 is the first to receive notification of the click, followed by Element 2, and
then eventually the Document—you can see this case in figure 6.1.

 Other browsers generally use an approach called event capturing. The Docu-
ment is the first component to receive notification when Element 1 is clicked, fol-
lowed by Element 2 and then finally Element 1 itself (see figure 6.2).

 If you rely on the browser to handle events, then you can potentially get incon-
sistencies across implementations. In the worse case, Element 2 may depend on the
event handler for Element 1 setting some values before it can execute properly.
With an event-bubbling strategy, that dependency is fine; but for an event-capture
model, it breaks because the event handler for Element 2 runs before Element 1.

196 CHAPTER 6

Handling events

All browsers that GWT supports, except IE, support the unified World Wide Web
Consortium (W3C) DOM event-handling standard. This requires browsers to
implement both bubbling and capturing, and events are registered using an
addEventListener() method, which has a boolean parameter to say whether the
listener is to be fired on capture or bubble. By using the flexibility of the browsers
that support the W3C model, GWT can make all browsers implement the event-
bubbling approach. GWT then places its own Listener model on top of this to
provide a well-controlled event-handling mechanism.

6.1.2 Understanding the GWT event model

One of the first things a GWT application does when it loads is to register a single
global event handler at the browser’s document level. It performs this through
the init() method of the DOM class, which has two implementations: one for IE
and one for all the other browsers GWT supports. For IE, this is performed in the
DOMImplIE6 class:

$doc.body.onclick = $doc.body.onmousedown =
$doc.body.onmouseup = $doc.body.onmousemove =
$doc.body.onkeydown = $doc.body.onkeypress =
$doc.body.onkeyup = $doc.body.onfocus =
$doc.body.onblur = $doc.body.ondblclick =
$wnd.__dispatchEvent;

Don’t worry too much about the notation here; we’re using JavaScript Native
Interface code (JSNI), which is explained in more detail in chapter 8. If you are
interested now, then $doc is GWT’s way of referencing the JavaScript document
object and $wnd the JavaScript window object.

Figure 6.1 Summary of the process

of event bubbling (the IE model)

Figure 6.2 Summary of the process of

event capture (the Netscape model)

Exploring events 197

 For all browser events in the document, the dispatchEvent() method at the
browser level should be called. Because this is IE, the effect is that any event that
happens on the browser page is handled at the document level first. For all other
browsers, similar functionality is performed using the W3C-defined addEventLis-
tener() method and setting the last parameter to be true, which indicates that
the event should be performed in the capture phase (the Document element gets
to handle the event first). The code can be found in the DOMImplStandard class:

$wnd.addEventListener('click',
 $wnd.__dispatchCapturedMouseEvent,
 true);
$wnd.addEventListener('dblclick',
 $wnd.__dispatchCapturedMouseEvent,
 true);
:
$wnd.addEventListener('keypress',
 $wnd.__dispatchCapturedEvent,
 true);

Here you’re calling slightly different JavaScript methods (__dispatchCaptured-
MouseEvent() and __dispatchCapturedEvent()) than in the IE version, but the
functionality is broadly similar. All of these methods are written in JSNI language,
which we’ll cover in chapter 8.

 By default, any new widget or panel does not listen for any events, and every-
thing is handled at the document level. To get a widget/panel to listen to events,
you need to understand the lifecycle of event handling, which we’ll discus next.
This lifecycle is summarized in figure 6.3.

Creating a widget/panel

When you create a widget, you need to tell it to sink the appropriate events, using
the sinkEvents() method. This results in the widget being set up to listen for par-
ticular events—all widgets implement the EventListener interface by default.

 If you sink events, then you also need to provide a way of handling those sunk
events; you do so by overriding the onBrowserEvent() method (defined in the
com.google.gwt.user.client.ui.Widget class).

 One word of caution: If you’re trying to sink new events in an existing widget,
you need to create a subclass of the existing widget and then add the appropriate
sinkEvent() and onBrowserEvent() code—you must also remember to call the
parent’s existing method, through super.onBrowserEvent(), to ensure your sub-
class acts the same as the parent (we’ll discuss this more in the next few sections).

198 CHAPTER 6

Handling events

Figure 6.3 Lifecycle of event handling for a widget/panel (the element)

in GWT

Exploring events 199

Once the code is in place and you’ve created an instance of the object, then you
need to add it to the page before it starts managing events.

Adding a widget to a page

A widget/panel won’t start listening for events until it’s added into the DOM struc-
ture of the page. This point can sometimes catch you out, particularly if you for-
get about the dual Java object/DOM existence of widgets and panels.

 GWT takes care of the mechanism for you; all you need to do is add the wid-
get/panel directly to the browser page using RootPanel.get().add(widget/
panel) or add it to another panel, which is then itself added to other panels and
then to the browser page. When a component is added to the browser page its
onAttach() method is called, if the object is a panel it then calls all of its chil-
dren’s onAttach() methods. A widget’s onAttach() method, which is eventually
called, registers itself as an event listener within the DOM hierarchy, and the wid-
get is now listening and ready to capture events.

Capturing an event

Capturing events takes place as you have registered in the browser’s event-handling
mechanism—in IE it occurs at the element clicked upon and in other browsers
directly at the document level.

 Once the event is captured, the JavaScript method $wnd__dispatchEvent() is
called. This method was created in the DOM implementation’s init() method.
It performs the next task of finding an appropriate handler for the event just
captured.

Finding a handler

When an event is captured, the GWT application checks if the element the event
has occurred on has a listener attached to it. If so, then it calls the dispatchEv-
ent() method in the DOM class, passing in the event, the element, and a refer-
ence to the element’s listener EventListener. (In versions previous to GWT 1.4,
the process began walking up the DOM hierarchy until it found a listener regis-
tered that can handle the event received. Upon finding one, it calls back into the
GWT code for the dispatched event to be handled, but from GWT 1.4 this walking
the DOM is no longer performed.)

Handling an event

Handling the event is achieved by calling the onBrowserEvent() method of the
EventListener instance passed to the dispatch method in the DOM class. As we
just mentioned, this is a reference to the widget, so the onBrowserEvent() code
you implemented in the first step is now invoked.

200 CHAPTER 6

Handling events

 You can perform some options at this point in the event lifecycle. You can request
that the event bubbling be cancelled using the DOM.eventCancelBubble() method;
this prevents any other widgets in the bubble hierarchy from seeing the event. You
can also request that the default browser action for an event be prevented, using the
DOM.eventPreventDefault() method (although this doesn’t stop context menus
in browsers).

 Finally, you can feed the event further back into the code by making use of the
Listener pattern set up for event management. We’ll cover this in more detail
shortly.

Removing a widget from a page

The widget stops listening only when it’s removed from the browser page. It’s
removed directly or because the panel it sits in has been removed. The process is
the opposite of that you saw when you added a widget to the browser; it’s per-
formed through the onDetach() method, which ultimately sets the event listener
for the widget to null.

 In the next couple of sections, we’ll consider some of these steps in detail to
more fully explain the concepts.

6.2 Listening to events

As you’ve just seen, event handling in GWT is initially set up at the document level.
If a widget wishes to handle events itself, then it needs to register that fact by sink-
ing the event, which can be done either explicitly or implicitly through inherit-
ance. Let’s look at the explicit approach. (The implicit approach occurs when you
inherit from a class that already explicitly sinks events. You’ll see that later when
you build the drag-and-drop capability for the DashboardPanel.)

6.2.1 Sinking events

The first way a widget can register interest in events is to use the sinkEvents()
method. Using this method, you can tell the GWT application and browser what
types of events the widget is interested in. A widget can sink all browser events shown
in table 6.1; when it does so, it registers the $wnd.__dispatchEvent() method for
events the widget should sink. It also updates the DOM element representation of
the widget to show which events it’s interested in. In the Dashboard, you want the
DashboardPanel to handle the double-click event—the result of which you can see
in figure 6.4, where if the user double-clicks the container, you wish it to shrink to

Listening to events 201

display only the title. Double-clicking again restores the panel (to achieve this, you
remove the visible widget and replace it with an image of size 1 pixel by 1 pixel).

 Back in chapter 5, we introduced the first version of the DashboardPanel, the
constructor for which is shown in listings 6.1. Then, in listing 6.2, we introduce
the second version of DashboardPanel, which shows how to start sinking the
new event.

public DashboardPanelFirst(DashboardComposite component){
 super();
 addDashboardComponent(component, true);

}

public DashboardPanelSecond(DashboardComposite component){
 super();
 this.id = ++lastId;
 this.sinkEvents(Event.ONDBLCLICK);
}

Listing 6.1 Previous DashboardPanelFirst constructor code

Listing 6.2 DashboardPanelSecond constructor code, including the sinkEvent()

 method for double-clicks

Figure 6.4 The effect of introducing double-clicking event handling in the

DashboardPanel. The image on the left shows the Slideshow application in

full-mode. On the right, double-clicking the application shrinks it to the title-bar.

Sink double-
click event

B

202 CHAPTER 6

Handling events

Listing 6.1 shows the original dashboard’s panel constructor (DashboardPan-
elFirst) created at the end of chapter 5. The updated code in listing 6.2 includes
an extra line B that registers this widget as sinking the double-click event.
Remember that back in section 4.2, we looked at the DOM view of the Button wid-
get and saw that it looked like this:

<button class="gwt-Button"
 eventBits="7041"
 onChange="null"
 onLoad="null"
 onError="null">
 Click me
</button>

At the time, we said not to worry about what the eventBits attribute was; but
now we can reveal that this attribute is altered when you call the sinkEvent()
method using the values shown in Event handling in web applications ties visual
elements the user sees to the functionality of the application. This could be
through clicking a button, dragging a component, changing a value, or a number
of other events. GWT supports all the events that a browser can manage, as you
saw in table 6.1.

 If you compare the DOM representation of the dashboard panels from before
(listing 6.3) and after (listing 6.4) you run the sinkEvents() method, you can see
that you’ve acquired an extra attribute eventBits. (We got these views by running
the Dashboard application in Eclipse in debug mode and placing a break point
just before the onSink() method. We were then able to inspect variables; we
looked at the this element when in the DashboardPanel code, and Eclipse
showed us these representations.)

<DIV class=gwt-DialogBox
 style="POSITION: absolute">
 <TABLE cellSpacing=0 cellPadding=0>
 <TBODY>
 <TR>
 <TD align=left>
 </TD>
 </TR>
 <TR></TR>
 </TBODY>
 </TABLE>
</DIV>

Listing 6.3 DashboardPanel’s DOM view before calling the onSink() event

Listening to events 203

<DIV class=gwt-DialogBox
 style="POSITION: absolute"
 __eventBits="2">
 <TABLE cellSpacing=0 cellPadding=0>
 <TBODY>
 <TR>
 <TD align=left>
 </TD>
 </TR>
 <TR></TR>
 </TBODY>
 </TABLE>
</DIV>

The value of the eventBits field is set to 2—which is exactly what you’d expect if
you look at the bitwise value of double-click in the GWT code. You don’t need to
limit yourself to adding events one at a time by logically OR-ing events together;
for example, to sink the onLoad and onChange events at the same time, you write
sinkEvents(Event.ONLOAD | Event.ONCHANGE).

 You set bits in the eventBits field so that GWT can keep a record of what
events a particular widget is handling; the field doesn’t play a part in event han-
dling. You’ll see in a short while that when an event occurs on a widget that is sink-
ing those events, then that widget’s onBrowserEvent() method is called; if you
want to handle the event, you need to override the widget’s default onBrowser-
Event() method.

6.2.2 Managing sunk events with the onBrowserEvent() method

Once you’ve indicated that a widget should sink particular events, you must set up
the application to handle those events. You do that in the widget’s code by over-
riding the onBrowserEvent() method. The default implementation of this
method is defined in the Widget class as an empty method, consistent with the
GWT model of not handling events unless explicitly directed to.

 For the DashboardPanel, which extends DialogBox, you must handle all the
DialogBox sunk events plus the onDblClick event you registered in the last sec-
tion. You can easily handle all the DialogBox sunk events by calling the parent’s
onBrowserEvent() method. The onBrowserEvent() method can be written as in
listing 6.5.

Listing 6.4 DashboardPanel’s DOM view after calling the onSink() event

Sink the double-
click event

204 CHAPTER 6

Handling events

public void onBrowserEvent(Event event) {
 super.onBrowserEvent(event);
 int type = DOM.eventGetType(event);
 switch (type) {
 case Event.ONDBLCLICK: {
 toggleShow();
 break;
 }
 }
}

The first line of listing 6.5 tells you that you wish the DashboardPanel panel to
handle events the same way as the parent panel (DialogBox). This is done by call-
ing the parent’s onBrowserEvent() B. You now handle the event by first deci-
phering the event type C by calling the eventGetType() method in the GWT
DOM class, which returns an integer value representing the event.

 The Event object is a strange beast; it provides an opaque interface into the
JavaScript event you’re dealing with. You shouldn’t create these events as normal
Java objects; they appear as necessary, controlled by GWT (opaque JavaScript
objects are explained in more depth in the JSNI chapter, chapter 8).

 If the event you’re dealing with is determined to be a double-click D, then you
execute the toggleShow() method, which is defined in listing 6.6.

public void toggleShow(){
 if(visible){
 int width = this.getOffsetWidth();
 Image empty = new Image("hidden.png");
 empty.setWidth(width+"px");
 empty.setHeight(”1px”);
 this.setWidget(empty);
 } else {
 this.setWidget(parkComponent);
 }
 visible = !visible;
}

This method toggles the visibility of the application part of the DashboardPanel
by showing either the application or a small image; providing the functionality

Listing 6.5 Implementing the DashboardPanel onBrowserEvent() method to

 handle double-click events

Listing 6.6 Toggling the visibility of the application

Call parent event handlerB

Decipher
current eventC

Recognize double-
click eventD

Already
hidden?

Hide
application

Show
application

Toggle
visibility flag

Listening to events 205

you wanted in figure 6.4. When you shrink the panel, you programmatically alter
the widget’s width and height styling.

 You can also unsink events from widgets using the unsinkEvents() method,
which alters the eventBits attribute of the widget and removes the event listener
for that type of event.

 A number of helper methods go with the Event object to allow you to get par-
ticular attributes of the event. These are as follows:

■ eventGetAltKey()—Returns true if the Alt key was pressed when the event
occurred.

■ eventGetButton()—Indicates which mouse button was clicked during the
event. It returns a bit field made up from Event.BUTTON_LEFT,
Event.BUTTON_MIDDLE, and Event.BUTTON_RIGHT.

■ eventGetClientX()—Gets the mouse x-position within the browser window’s
client area.

■ eventGetClientY()—Similar to the previous method, but returns the mouse
y-position in the browser window’s client area.

■ eventGetCtrlKey()—Returns true if the Ctrl key was pressed when the
event occurred.

■ eventGetFromElement()—Valid only for the ONMOUSEOVER event. Returns the
element from which the mouse was moved.

■ eventGetKeyCode()—If the event was ONKEYPRESS, returns the Unicode
value of the character. Otherwise, for the ONKEYDOWN and ONKEYUP events,
returns the code associated with the key.

■ eventGetRepeat()—Returns true if the key event was generated by an
autorepeat.

■ eventGetScreenX()—Determines the mouse x-position on the user’s display;
note the difference from to eventGetClientX.

■ eventGetScreenY()—Similar to the previous method, but returns the mouse
y-position in the user’s display.

■ eventGetShiftKey()—Returns true if the Shift key was pressed when the
event occurred.

■ eventGetTarget()—Returns the element that was the target of this particular
event.

206 CHAPTER 6

Handling events

■ eventGetToElement()—Valid only for the ONMOUSEOVER event and returns
the element to which the mouse was moved.

■ eventGetType()—Returns the event type.

■ eventGetTypeString()—Returns the event type as a String.

Helper methods are particularly useful if you want to capture events such as right
mouse clicks, which aren’t directly available in GWT. If you’re trying to capture
right mouse clicks, you sink the Event.ONMOUSEDOWN event in the widget to cap-
ture the mouse-down event. Then, in the overridden onBrowserEvent() method,
you check whether the event is a mouse down, and then check the button that was
clicked. The result, in the Dashboard’s Address Book application, is shown in fig-
ure 6.5.

 Listing 6.7 shows how this functionality is implemented in the Address Book.

public void onBrowserEvent(Event event) {
 int type = DOM.eventGetType(event);
 switch (type) {
 case Event.ONMOUSEDOWN: {
 switch (DOM.eventGetButton(event)) {
 case Event.BUTTON_RIGHT:
 Window.alert("Pressed the Right Button");
 break;
 }
 break;
 }
 }
}

Listing 6.7 Capturing right mouse clicks

Figure 6.5

Capturing right mouse button

clicks in the Dashboard’s

Address Book application

Is event a
mouse down?

B Which
button was
clicked?

C

Alert user that right
button was clicked D

Listening to events 207

First, you check for the onMouseDown event B. Having confirmed that this is the
event you’re dealing with, you use the eventGetButton() helper method C to
determine whether this is a right click. If it’s a right click, then you bring up an
alert box D.

 The final piece in the event-handling jigsaw is understanding how events that
are sunk actually get handled by the onBrowserEvent() method you’ve just seen.

6.2.3 Linking sunk events to the onBrowserEvent() method

If you have a widget that sinks events, and you’ve defined an onBrowserEvent()
method, how do the two get linked together? The answer comes in a mixture of
Java and JSNI code (don’t worry, GWT does this all for you).

 Remember that the onSink() method registers the fact that the element
should call the $wnd.__dispatchEvent method. This method is defined in the
DOM implementation classes, such as the DOMmplIE6 class’s init() methods. List-
ing 6.8 shows the part of the init() method that is responsible for setting up
event handling.

$wnd.__dispatchEvent = function() {
 if ($wnd.event.returnValue == null) {
 $wnd.event.returnValue = true;
 if (!@com.google.gwt.user.client.DOM::previewEvent(
 Lcom/google/gwt/user/client/Event;)($wnd.event))
 return;
 }
 if (this.__listener)
 @com.google.gwt.user.client.DOM::dispatchEvent(
 Lcom/google/gwt/user/client/Event;
 Lcom/google/gwt/user/client/Element;
 Lcom/google/gwt/user/client/EventListener;)
 ($wnd.event, this, this.__listener);
};

The first segment of the code B checks to see if the element the event was cap-
tured on has been set up to preview events. If so, then it calls the previewEvent()
method, and no further event-processing takes place. For IE6, the event preview-
ing is as simple as shown in B, but for the other browsers you need a little more
processing to prevent the event propagating (remember, they all use the DOM
standard model). In the DOMImplStandard class is this additional code:

Listing 6.8 Definition of the GWT dispatchEvent() method

Check if should
preview event

B

Check if has
Listener

C

Call
dispatchEvent()

method

D

mailto:!@com.google.gwt.user.client.DOM::previewEvent

208 CHAPTER 6

Handling events

 evt.stopPropagation();
 evt.preventDefault();

Once you’ve determined there is no event previewing, at C you check to see
whether a listener is associated with the element the event occurred on. If so, you
then make a JSNI call from JavaScript back into the Java program. We’ll cover the
JSNI in much more detail in chapter 8; for now, we can say that this code calls the
dispatchEvent() method in the DOM class, which takes three arguments: the
event, the element, and the listener D.

 In the DOM class, this method eventually calls the listener.onBrowser-
Event() method.

 As well as handling events, it’s possible to register a widget as previewing
events.

6.2.4 Previewing events

By implementing the EventPreview interface, a widget can register itself as being
able to preview events that are occurring on the browser document. When a com-
ponent that implements EventPreview is active on the document, then all events
are routed to it.

 The events should be handled by the onEventPreview() method, which nor-
mally returns false if it decides to do something with the event and true other-
wise. This has an important implication if you’re inheriting from classes that have
event preview. If that class returns false for an event you wish to handle, then you
won’t see that event occurring. You have this situation in the DashboardPanel.

 DashboardPanel extends DialogBox, which in turn extends the PopupPanel
class, and it’s here that you find the onEventPreview() method that Dashboard-
Panel will inherit. This inherited method is shown in listing 6.9.

public boolean onEventPreview(Event event) {
 int type = DOM.eventGetType(event);
 switch (type) {
 case Event.ONKEYDOWN: {
 return onKeyDownPreview((char) DOM.eventGetKeyCode(event),
 KeyboardListenerCollection.getKeyboardModifiers(event));
 }
 case Event.ONKEYUP: {
 return onKeyUpPreview((char) DOM.eventGetKeyCode(event),
 KeyboardListenerCollection.getKeyboardModifiers(event));
 }
 case Event.ONKEYPRESS: {
 return onKeyPressPreview((char) DOM.eventGetKeyCode(event),

Listing 6.9 onEventPreview() method for the PopupPanel

Determine
event type

B

Manage key-
down event

C

Preview key value D

Listening to events 209

 KeyboardListenerCollection.getKeyboardModifiers(event));
 }
 case Event.ONMOUSEDOWN:
 case Event.ONMOUSEUP:
 case Event.ONMOUSEMOVE:
 case Event.ONCLICK:
 case Event.ONDBLCLICK: {
 if (DOM.getCaptureElement() == null) {
 Element target = DOM.eventGetTarget(event);
 if (!DOM.isOrHasChild(getElement(), target)) {
 if (autoHide && (type == Event.ONCLICK)) {
 hide(true);
 return true;
 }
 return false;
 }
 }
 break;
 }
 }
 return true;
}

As with the onBrowserEvent() method, when you preview events, you must first
decipher the type of event you’re previewing B by calling the eventGetType()
method. If the event you’re previewing is key down C, which is either when it’s
pressed or when it’s on its key-repeat cycle, then you call a helper method to work
out what to do with this key. The eventGetKeyCode() method is one of a number
of methods that allow you to get details about the event you’re looking at; in this
case, it returns the ASCII value of the key being pressed D.

 The DialogBox also previews the double-click event E. You may question why
this method handles the double-click event. Remember that this is event preview-
ing, not event handling, and this is one of five mouse events handled by the code
that follows, which closes the pop-up if a mouse event happens outside it.

 You don’t want any of this previewing functionality in the DashboardPanel. If
you leave it there, then each new component application opened will grab all the
events, and you’ll be at the mercy of other classes as to whether you receive them.
To get us to the situation you want for DashboardPanel, you must override the
onEventPreview() method with this simple one:

public boolean onEventPreview(Event event){
 return true;
}

Preview
double-click

E

210 CHAPTER 6

Handling events

We should summarize the current position of the DashboardPanel, which can now
handle double-click events; it’s shown as DashboardPanelSecond in listing 6.10.

public class DashboardPanelSecond extends DashboardPanelFirst
{
 public boolean onEventPreview(Event event){ return true; }
 public void toggleShow(){
 if(visible){
 int width = this.getOffsetWidth();
 Image empty = new Image("hidden.png");
 empty.setWidth(width+"px");
 this.setWidget(empty);
 } else {
 this.setWidget(parkComponent);
 }
 visible = !visible;
 }

 public void onBrowserEvent(Event event) {
 super.onBrowserEvent(event);
 int type = DOM.eventGetType(event);
 switch (type) {
 case Event.ONDBLCLICK: {
 toggleShow();
 break;
 }
 }
 }

 public DashboardPanelSecond(DashboardComposite component){
 super(component);
 this.sinkEvents(Event.ONDBLCLICK);
 }

 public DashboardPanelSecond(){
 super();
 }
}

This works because the Widget class extends the EventListener interface, and
GWT knows how to plug it all together. Another way to explicitly handle events is
to make the classes extend higher-level listener interfaces.

Listing 6.10 Adding code to the DashboardPanel to handle double click events that

 are sunk.

Suppress
event
preview

Toggle
view of
Dashboard
Panel

Handle
double-click

Sink
double-click

Listening to events 211

6.2.5 Handling events by extending the listener classes

Event handling can also be performed by creating new classes that extend the
higher-level event listeners. As we’ve talked about before, the standard Widget
class extends the EventListener class, but you can also extend the higher-level lis-
teners, such as MouseListener. This is done, for example, by the DialogBox,
which you’re extending already for the DashboardPanel. Listing 6.11 shows how
this is set up.

public class DialogBox
 extends PopupPanel
 implements HasHTML, MouseListener {

 private HTML caption = new HTML();

 public DialogBox() {
 // Some other bits of code
 caption.addMouseListener(this);
 }

 public void onMouseMove(Widget sender, int x, int y){}
 public void onMouseUp(Widget sender, int x, int y){}
 public void onMouseEnter(Widget sender){}
 public void onMouseLeave(Widget sender){}
}

The class definition B says it will implement the MouseListener interface. This
means you should find implementations of all the expected methods, such as
onMouseDown(), onMouseMove(), and so on. The last step in the constructor of the
DialogBox adds this class (or object, as it will be at the time) as the MouseLis-
tener on the caption object of the DialogBox.

 This isn’t as strange as it may seem. The caption object is defined as an HTML
widget; and if you looked in the class definition of the HTML object, you would
see that it implements the SourcesMouseEvents interface that, as you’ve seen in
this chapter, allows you to register and un-register MouseListeners.

 By registering the complete DialogBox as the MouseListener for the caption
component of the DialogBox, you encapsulate the whole functionality in one

Listing 6.11 Filtered view of the DialogBox class that shows how mouse events

 are handled

Implement
MouseListener

B

Add listener to
component

Interface’s
required methods

212 CHAPTER 6

Handling events

class. It just so happens in this case that the functionality is dragging; this arrange-
ment provides you with a panel that can be dragged by clicking only the caption.

 These Listener objects can also be used externally to register particular listen-
ers against widgets that allow you to move (or change) events further into the
application’s code.

6.2.6 Moving events further into your GWT code

Once the widgets have captured events, you’ll often feed that information back
into the code, just as the center gets the ball back to the quarterback, or the rugby
ball needs to be recycled from a ruck. The following code gives an example of
what we mean:

Button theButton = new Button("Click Me");
theButton.addClickListener(new ClickListener(){
 public void onClick(Widget sender){
 Window.alert("Button was Clicked");
 }
});

This code registers a ClickListener with a Button so that when the button is
clicked, the text “Button was Clicked” appears in a JavaScript alert box. Notice
that you haven’t had to sink events or override the onBrowserEvent() to do this.
The Button object implements the SourcesClickEvents interface.

 Let’s see how it does this by looking at the button. It’s complicated to show this
example using the exact GWT Button because the aspects we want to demonstrate
are distributed through its widget hierarchy, so we’ll flatten that hierarchy and
look at the Button shown in listing 6.12.

public class Button
 extends Widget
 implements SourcesClickEvents{

 private ClickListenerCollection clickListeners;

 public Button(){
 setElement(DOM.createButton());
 this.sinkEvents(Event.ONCLICK);
 }

 public onBrowserEvent(Event evt){
 switch(DOM.getEventType(evt)){
 case Event.ONCLICK:
 if(clickListeners != null)

Listing 6.12 Sample Button class that ties together all aspects of GWT event handling

Implement
SourcesClickEvents
interface

B

Create
collection of
ClickListenersC

Sink click
eventD

Override
onBrowserEvent()E

Listening to events 213

 clickListeners.fireClick(this);
 break;
 }
 }
 public void addClickListener(ClickListener listener){
 if (clickListener == null){
 clickListener = new ClickListenerCollection();
 }
 clickListener.add(listener);
 }

 public void removeClickListener(ClickListener listener){
 if (clickListener != null){
 clickListener.remove(listener);
 }
 }
}

You tell the world that you’ll be implementing the SourcesClickEvents inter-
face B. This means you must provide the addClickListener() method to regis-
ter ClickListeners with this Button, and a removeClickListener() method to
remove any ClickListener previously added if you wished to do so. (In the real
GWT Button class, this interface is implemented along with a couple of others in
the FocusWidget class, which is then subclassed as the ButtonBase class; then,
that is subclassed as the real Button class—and that’s why we flattened it out a
bit for this discussion!)

 To support this notion of listeners, you create a ClickListenerCollection
object C, which you’ll use to store the ClickListeners that will be registered
against the component. The ClickListenerCollection also provides simple
methods such as fireClick(), which fires the onClick events to all ClickListen-
ers it holds.

 Managing the interface to the user’s event is the code you’ve seen a number of
times now: the sinking of events D and the onBrowser() event method E. What
is new here is that on receiving an onClick event on the Button, you pull out the
ClickListenerCollection object and execute the fireClick() method on it F.
This has the effect of firing an onClick event to all the ClickListeners registered
with the Button.

 These ClickListeners are registered with the Button through the addClick-
Listener() method G, which adds any new ClickListener objects to the Click-
ListenerCollection (and creates it if it doesn’t already exist).

Fire
ClickListenersF

Add
ClickListenerG

Remove
ClickListener H

214 CHAPTER 6

Handling events

 You created ClickListeners in other components of the code, usually close to
where the Button was created, in a style similar to the following:

Button theButton = new Button();
theButton.addClickListener(new ClickListener(){
 public void onClick(Widget sender){
 //Do something when the button is clicked.
 }
});

This little piece of code creates a new Button and then adds a ClickListener to it
(as a Java anonymous type). When the button is clicked, the code in listing 6.12’s
onBrowserEvent() executes this ClickListener’s onClick() method, and thus
the event happening at the Button class is moved to the area of code just defined.
It’s feasible that other EventListeners are registered with this piece of code and
that the onClick() method might in turn fire them off, too.

 As well as being able to add ClickListeners to the Button, you wish to have the
ability to remove ClickListeners, which is what the code does at this point H. If
you want to remove listeners, then you shouldn’t add them as anonymous classes;
define them first as their own objects, and then add them. (Otherwise, you have no
handle to the object to remove!)

 By making the object implement one of the many SourcesEvents interfaces,
you indicate that it will allow the adding and removing of particular EventLis-
teners and that somewhere in the code, you’ll be firing the necessary events.

 This approach allows you to start moving events around in the code, and not
necessarily just those events that the browser raises. You can also use this method-
ology to change the type of events handled internally in the GWT code. For exam-
ple, if the widget detects a mouse click internally, it could present that externally
as another type of event.

 Why would you do this? To make the event more meaningful to the user. For
example, the HTMLTable panel detects mouse clicks in cells of the table, but it pre-
sents CellClicked events telling you which row and column were clicked rather
than just the fact a mouse click event occurred.

 You can also make actions that happen in the application be treated as events.
You’ll use this approach in the EditableLabel widget described in chapter 7,
where you allow the user to change a label by editing it. When the user has fin-
ished editing and accepted the change, you fire a change event to any ChangeLis-
teners that are registered with the widget (we’ll also look at this functionality in
section 6.3.1).

Listening to events 215

 Let’s turn back to the Dashboard example. You wish to do a couple of things
whenever the panel gets focus, such as adding an option menu to the Dashboard
menu for the component application. To achieve this, you need to make a couple
of changes to the DashboardPanel class to let you add and remove FocusListen-
ers. The intention is that each DashboardPanel will contain one small application
object, which will extend a class called DashboardComposite. You’ll define that
class in the next chapter; for now, you should know that this class extends Focus-
Listener. The third version of the DashboardPanel panel is defined in listing 6.13
(note that this inheritance is purely representative—in the downloadable code, at
http://www.manning.com/hanson, only the final version of the DashboardPanel
class is provided).

public class DashboardPanelThird
 extends DashboardPanelSecond
 implements SourcesFocusEvents
{
 FocusListenerCollection listeners =
 new FocusListenerCollection();

 public void addFocusListener(FocusListener listener){
 listeners.add(listener);
 }

 public void removeFocusListener(FocusListener listener){
 listeners.remove(listener);
 }

 private addDashboardComponent(DashboardComposite component,
 boolean showAtStart){
 super(component, showAtStart);
 this.addFocusListener(component);
 }
}

One key thing to note is that you add a DashboardComposite as the FocusLis-
tener, which means the panel must implement the SourcesFocusEvents inter-
face B. This drives the need to include a FocusListenerCollection and the
addFocusListener() and removeFocusListener() methods.

Listing 6.13 Third version of the DashboardPanel, showing how the code handles

 focus events

Implement
SourcesFocusEvents
interface

B

Create ListenerCollection
object

Add
FocusListener

Remove
FocusListener

Add component
as listener

216 CHAPTER 6

Handling events

 All this talk so far has been about how easy it is to handle events raised in the
browser. But there is a small problem: The browser often has its own default event
handling.

6.2.7 Preventing default browser event handling

Sometimes you want to prevent the standard event handling that a browser pro-
vides. The most obvious instance is the context menus that a browser displays
when a user right clicks; but that unfortunately isn’t always handled by events, so
it’s a little complicated to manage. Another default event that you may wish to
prevent the browser from handling is dragging images.

 In the browser window, it’s possible to drag an image from the browser page
into the address bar and for that image to then be displayed. For the trash icon in
the Dashboard, you create a specific TrashIcon class, and in it you specifically pre-
vent this functionality. To do so, you override the onBrowserEvent() method in
the TrashIcon class, as shown in listing 6.14.

public void onBrowserEvent(Event event){
 DOM.eventPreventDefault(event);
 super.onBrowserEvent(event);
}

In the second line, you call the eventPreventDefault() method to stop the
browser from taking its default action. You can try it for yourself in the running
application; it isn’t possible to drag the trash icon image onto the address bar.

 GWT includes many different types of events and handling classes, and it’s
worthwhile to look at some of them now. We’ll refer back to the Dashboard and its
component applications for examples of their use.

6.3 Handling standard browser events

We’ve covered quite a bit in the first part of this chapter, and you’ve seen all the
components that go together to handle events in GWT. At the start of the chapter,
we indicated in table 6.1 that GWT manages a wide range of events. Over the next
few sections, we’ll look at all these events and how you’ve used them in the Dash-
board and its component application.

 The pattern you use for handling events generally summarizes the sets of
classes discussed so far in this chapter. Any component you wish to be able to add

Listing 6.14 Overriding the onBrowserEvent() method

Handling standard browser events 217

appropriate Listeners to or remove them from will implement the appropriate
SourcesEvent interface, requiring you to implement methods that allow you to
add and remove Listeners to/from a related Collections object. When you wish
to fire events, you use the methods in the appropriate Collections object. In gen-
eral, you’ll add listeners as anonymous classes; for example:

object.addListener(new Listener(){
 public void listenerMethod1(){
 // Appropriate code to handle event goes here.
 }
});

Sometimes you’ll use an associated Adapter class instead of the Listener to avoid
having to leave a large number of the required methods of a listener defined as
blank methods, which makes the code look messy. The Adapter class already pro-
vides implementations for all the Listener’s methods, so when you create a new
subclass of the Adapter, we only override those methods you’re interested in.
Table 6.2 summarizes all of these types together for the Keyboard events, and it’s
possible to do this for all the event types in GWT.

Table 6.2 Summary of components involved in Keyboard events

SourcesEvent interface: SourcesKeyboardEvents

Methods
addKeyboardListener(KeyboardListener c)
removeKeyboardListener(KeyboardListener c)

Related collections object

Name KeyboardListenerCollection

Methods

fireKeyboardEvent(Widget w) Fires the keyboard event on all registered

KeyboardListeners in the

KeyboardListenerCollection. If the

event isn’t a keyboard event, then no action is

taken.

fireKeyDown(Widget w,
 char keyCode,
 int modifiers)

Fires the keyDown event to all registered

KeyboardListeners in the

KeyboardListenerCollection.

The keyCode is the Java representation of

the key pressed.

The modifiers argument relates to the

modifier key that was pressed when the event

occurred. It can be one of the following values:

KeyboardListener.MODIFIER_SHIFT
KeyboardListener.MODIFIER_CTRL
KeyboardListener.MODIFIER_ALT

218 CHAPTER 6

Handling events

As we have previously done for widgets and panels, we’ll now walk through all the
different types of events that can happen and look briefly at where you use them
in the Dashboard or its component applications, pointing out any useful tidbits of
information as we go.

6.3.1 Reacting to change

ChangeListeners are useful if you wish to be notified when a component has
changed. You use this fact in the Dashboard’s Address Book application. When
the user selects a new name—for example, changing the selection from Adam to
Anu, as shown in figure 6.6—you need to change the displayed address.

 In listing 6.15, you create a new ListBox widget and then add a ChangeLis-
tener to it so you’re informed whenever the user changes the selected items in
the list.

Methods

(continued)

fireKeyPress(Widget w,
 char keyCode,
 int modifiers)

Fires the keyPress event to all registered

KeyboardListeners in the

KeyboardListenerCollection.

fireKeyUp(Widget w,
 char keyCode,
 int modifiers)

Fires the keyUp event to all registered

KeyboardListeners in the

KeyboardListenerCollection.

getKeyboardModifiers(
 Event e)

Listener interface: KeyboardListener

Methods

onKeyDown(Widget w
 char keyCode,
 int modifiers)

Fired whenever the widget gains focus.

onKeyPress(Widget w
 char keyCode,
 int modifiers)

Fired when a widget loses focus.

onKeyUp(Widget w
 char keyCode,
 int modifiers))

Related adapter class

Name KeyboardListenerAdapter

Table 6.2 Summary of components involved in Keyboard events (continued)

Handling standard browser events 219

addressLinks = new ListBox();
addressLinks.setVisibleItemCount(10);
super.add(addressLinks);
addressLinks.addChangeListener(new ChangeListener(){
 public void onChange(Widget sender) {
 int val = addressLinks.getSelectedIndex();
 String text = addressLinks.getItemText(val);
 showAddress(text);
 }
});

The onChange() method is called whenever the user changes the selected items in
the list. In this case, you implement it so that it gets the text of the newly selected
name and then calls a helper method to display the correct name on the panel.

 Most of the other listeners we’ll look at are mainly useful when you’re dealing
with low-level widgets such as buttons, text boxes, and so on. ChangeListener is
useful wherever you may want to indicate to other registered listeners that the

Listing 6.15 Adding a ChangeListener to the Address Book’s Names list box

Figure 6.6 Selecting a name in the list box at left in the Dashboard’s Address Book

application automatically selects the appropriate address on the scroll panel on the

right via functionality stored in a ChangeListener registered against the list box.

Create ListBox

Add
ChangeListener

onChange()
method

220 CHAPTER 6

Handling events

state has changed. You use this ability in the EditableLabel composite widget,
which you’ll build in chapter 7, to indicate when the user has changed text. In the
example code, you display an alert message (see figure 6.7); but in a real applica-
tion, you might use this change listener to fire off functionality to save the new
value to a database.

 The EditableLabel is made up of a TextArea, a TextBox, some Buttons, and a
Label widget; the TextArea/TextBox is visible if the user is editing the label, and
the user must click an OK button for the change to take place. Using a change lis-
tener on the underlying text box isn’t suitable, because the user may cancel their
change. Instead, you make the EditableLabel widget implement the Sources-
ChangeEvents interface. This means that in the Dashboard class, you can create a
new instance, as shown in listing 6.16.

dashboardName = new EditableLabel(
 messages.DashboardDefaultNameMessage(message),
 constants.NameChangeOK(),
 constants.NameChangeCANCEL());
 dashboardName.setWordWrap(true);
 dashboardName.addChangeListener(new ChangeListener(){
 public void onChange(Widget sender) {
 Window.alert("We would normally save the \n Dashboard
 Name now it is changed.");
 }
 }
});

Listing 6.16 Creating an EditableLabel and adding a ChangeListener

Figure 6.7 A ChangeListener is registered against the EditableLabel

widget, which is fired when the user changes the EditableLabel text. Normally

the change would be saved in a database, but here you raise an alert box.

Create
EditableLabel

onChange()
method

Add
ChangeListener

Handling standard browser events 221

Within the editable label code, when the label is changed, you fire the onChange
event, as shown in listing 6.17, on the set of ChangeListeners registered in the
ChangeListenerCollection called changeListeners.

private void setTextLabel (){
 if(text.getWordWrap()){
 text.setText(changeTextArea.getText());
 } else {
 text.setText(changeText.getText());
 }
 restoreVisibility();
 if (changeListeners!=null)changeListeners.fireChange(this);
}

Change events are abstract notions, which can be used to your advantage as we
just discussed. Most events in GWT are much more concrete, such as handling
mouse clicks.

6.3.2 Clicking around

The most common place to find ClickListeners
is registered against Buttons, but they can also be
registered against the other widgets in the Focus-
Widget hierarchy (Image, Label, Hyperlink,
PasswordTextBox, TextArea, TextBox, ListBox,
Button, CheckBox, and RadioButton) and the
FocusPanel.

 In the Dashboard, as with most user inter-
face–style applications, you use them extensively;
but the largest number is used in the Dash-
board’s Calculator application. Figure 6.8 shows
the visible affects of a ClickListener registered
against the number 9 button: Clicking it places
the number 9 into the calculator’s display.

 The code in listing 6.18 ties the button to displaying the text.

Listing 6.17 Firing the onChange event from the EditableLabel

Firing a
ChangeListener

Figure 6.8 Clicking the 9 button

on the Dashboard’s Calculator

application enters a number into

the display via a ClickListener

registered on the button.

222 CHAPTER 6

Handling events

private void addNumberButtonPressAction(Button button,
 final char numberChar){
 button.unsinkEvents(Event.KEYEVENTS);
 button.addClickListener(new ClickListener(){
 public void onClick(final Widget sender) {
 sender.setStyleName("calculator-Button-selected");
 displayNumber(numberChar);
 Timer t = new Timer(){
 public void run() {
 sender.setStyleName("calculator-Button");
 }
 };
 t.schedule(CHANGE_STYLE_DELAY);
 }
});

The ClickListener is added to the button, and you implement the necessary
onClick() method to call the helper method displayNumber(), which puts the
correct number on the calculator’s display.

6.3.3 Gaining/Losing focus

You saw earlier in this chapter how you made the DashboardPanel manage
FocusEvents, so in this section we won’t go over this type of event handling again
in detail. Figure 6.9 shows the effect of the FocusListener that the code in list-
ing 6.13 applies to the DashboardPanel: Once the component application gains
focus, a new option menu appears. When this component loses focus (because
the user selects another dashboard component application), the menu disap-
pears and is replaced by the other application’s menu.

Listing 6.18 Adding a ClickListener to the number 9 button in the Dashboard’s

 Calculator

Add
ClickListener

Display
digit

onClick()
Method

Unsink
keyboard
events on
button

Figure 6.9 Methods in the Dashboard container’s FocusListener are fired

when the user focuses on the Dashboard’s Clock application to display an option

menu in the menu system.

Handling standard browser events 223

6.3.4 Capturing keyboard inputs

The Dashboard’s Calculator application makes the heaviest use of keyboard
events in our Dashboard. Both the onscreen keypad (which is a FocusPanel) and
the display (a TextBox) handle keyboard events, in accordance with the classes
and methods shown in table 6.2.

 If you look at the keyboard event listener added to the display object, shown in
listing 6.19, you can see that it uses the KeyboardListenerAdapter class; you don’t
have to provide implementations for all three KeyboardListener methods.

theDisplay.addKeyboardListener(new KeyboardListenerAdapter(){
 public void onKeyPress(Widget sender,
 char keyCode,
 int modifiers) {
 if (!Character.isDigit(keyCode)){
 ((TextBox)sender).cancelKey();
 }
 }
});

Within the implementation, you make sure the keypress is a digit. Otherwise, you
ignore the functionality (you can easily expand this to manage operators if you
want).

6.3.5 Loading images

In chapter 4, you saw how to use the load-event listener when dealing with the
Dashboard’s Slideshow application, where you tried to load seven images and only
six were available. The missing image caused the alert shown in figure 6.10 to be
displayed to the user through the onError() method.

 The two things to remember are that LoadListeners only apply to images at
present, unless you want to implement your own widget and have that handle
load listeners; and if the image isn’t attached to the browser, then LoadListener
methods aren’t fired. This second point is due to the way GWT manages events,

Listing 6.19 Adding a KeyboardListenerAdapter to the Calculator display

Figure 6.10

Showing an error when an image in the

Slideshow component application can’t

be found

224 CHAPTER 6

Handling events

as you saw earlier in figure 6.3. To prevent messy displays, it’s always possible to
set the visibility of the image to false, using image.setVisibility(false), prior
to loading and subsequently display when the load is successful.

6.3.6 Managing mouse inputs

Later in this chapter, you’ll see how to implement drag-and-drop functionality for
the DashboardPanel, which enables you to move your component applications
around in a similar manner to that shown in figure 6.11. This requires you to use
some of the classes and methods associated with the mouse event handling capa-
bilities of GWT.

 In the drag-and-drop capability, you need to capture onMouseDown events to
start the dragging, onMouseMove events to drag a component, and onMouseUp
events to stop the dragging and drop the component. We’ll look at the code for
this in more detail later in this chapter.

6.3.7 Scrolling

When a component that implements the SourcesScrollEvents interface is
scrolled, it can inform any ScrollListeners registered with it about that scroll-
ing. Normally, only the ScrollPanel listens for and manages this event; you use it

Figure 6.11 The MouseListener in action. You’re capturing MouseDown, MouseMove,

and MouseUp events in the Dashboard panel’s drag-and-drop capability.

Handling standard browser events 225

in the Dashboard’s Address Book application so that when a user scrolls down the
list of addresses, the selected index in the ListBox is also updated. If you look at
figure 6.12, you see the effect of the user dragging the scroll bar downward. The
top image shows the address for Adam; as the scroll bar goes down, the address
for Anna is shown, while at the same time the selected index changes to show the
updated name.

 Adding a ScrollListener is no harder than adding the listener to the Scroll-
Panel, which you see happening in listing 6.20.

visibleAddresses.addScrollListener(new ScrollListener(){
 public void onScroll(Widget widget,
 int scrollLeft,
 int scrollTop) {
 int widgetCount = theAddresses.getWidgetCount();
 int panelHeight = theAddresses.getOffsetHeight();
 int widgetHeight = panelHeight/widgetCount;
 int widgetNumber = scrollTop/widgetHeight;
 addressLinks.setSelectedIndex(widgetNumber);
 }
});

Listing 6.20 Adding a ScrollListener to the Address Book’s ScrollPanel

Figure 6.12

Scrolling through addresses

not only changes the displayed

address but also changes

the list box on the left via

functionality registered

in a ScrollListener.

Required onScroll()
method

Add
ScrollListener
to ScrollPanel

226 CHAPTER 6

Handling events

For this application, this works well when you scrolling downward but isn’t perfect
when you scroll upward. This is because it changes the selected name as soon as
any part of the address is visible. Scrolling down, it changes as the top of the new
address appears; but scrolling up, it changes when the bottom appears, which
doesn’t look great—but we’ll leave that to you to fix if you want.

 In the standard GWT implementation, you can’t add a ScrollListener to the
browser window, but you can (from GWT 1.4) find out the scroll position of the
window by using the Window.getScrollLeft() and Window.getScrollTop()
methods. There are also some other events you can handle at the window level.

6.3.8 Window resize events

Two events can be managed through the GWT Win-
dow class: resizing and closing windows. If you reg-
ister a WindowResizeListener with the browser,
using the code shown in listing 6.21, then every
time the browser window is resized you get an alert
box telling you the new size, as you can see in fig-
ure 6.13.

 A WindowResizeListener is added to the
browser using the GWT Window class, as shown in
listing 6.21.

Window.addWindowResizeListener(new WindowResizeListener(){
 public void onWindowResized(int x, int y){
 if(informResize){
 if(Window.confirm("New window size: ("+x+","+y+") "
 +"\n Turn Off Resize Notifications?")){
 Window.removeWindowResizeListener(this);
 }
 }
 informResize = !informResize;
 }
});

This event gets fired twice within GWT due to the event-handling mechanism—so
don’t be surprised to see this message twice if you write the code. To overcome
this in the Dashboard, you include an additional variable and check it before dis-
playing the confirmation box. The final part of the code inverts that variable so
you don’t see the message the second time.

Listing 6.21 Adding a WindowResizeListener to the Dashboard

Preventing double
event handlingB

Add Window-
ResizeListener

 Remove
WindowResizeListener

Figure 6.13 The result of

resizing the browser window

with a WindowResizeListener

set up to display the new size

Handling standard browser events 227

BE AWARE The WindowResize event is fired twice in GWT (even with GWT 1.4’s new
approach to handling events). A simple boolean variable that can be
checked and inverted gets around this problem—you use this in the
Dashboard’s resize listener.

Getting a message indicating the resize can be useful, but it can also be a little
annoying, so you include the ability B to remove the WindowResizeListener
when the user clicks OK in the confirm box (which is launched by the onWidowRe-
sizing() method).

 As well as the browser window being resized, it can be closed. To manage that,
you use a WindowCloseListener.

6.3.9 Window close events

The other event you can manage through the Window class is the user trying to
close the window or navigate to another page. In the Dashboard’s onModule-
Load() method, you implement a simple WindowCloseListener, which presents
the user with the confirmation box shown in figure 6.14.

Figure 6.14 The Dashboard application, displaying a confirmation message after you try to

navigate away from it

228 CHAPTER 6

Handling events

 You do this by using the code shown in listing 6.22.

Window.addWindowCloseListener(new WindowCloseListener(){
 public String onWindowClosing() {
 return "Application Closing, are you sure?";
 }
 public void onWindowClosed() {
 Window.alert("Here is where we would save state
 to the server");
 }
});

You add a new WindowCloseListener as an anonymous type, and this must define
two methods: onWindowClosing() and onWindowClosed(). The first method is
called by your application when someone tries to navigate away from it. In
figure 6.14, we tried to navigate away from the Dashboard to www.manning.com,
and the application caught this and displayed the confirmation message.

 The onWindowClosing() method can return a Java String. If you choose to
return the null object, then no confirmation message is displayed. By making the
onWindowClosing() method return a String, that gets displayed in the default
confirmation message. You can see this in figure 6.14, where the text “Application
Closing, are you sure?” has been inserted into the confirmation message. (Java-
Script places our message between the two lines of text it always presents, as you
can see in figure 6.14.)

 Once the user confirms the message from the onWindowClosing() method,
they’re navigated to the new location. If there is no confirmation message (the
onWindowClosing() returns the null object), then the user is directly navigated.

 The WindowCloseListener gives you one final chance to do something after
the closing event is handled—through the onWindowClosed() method. Many
applications want to do something just before the windows close: for example,
cleaning up state, potentially saving the current state, and more. GWT uses this
mechanism to clean up all the event listeners, and so on, that it has added to the
page before the navigation continues.

 The onWindowClosed() method is the last piece of code executed by the appli-
cation before either the window closes or the user is navigated to their new loca-
tion. Execution of this method is shown in figure 6.15. In the Dashboard you just
display a JavaScript alert message to show the functionality has happened.

Listing 6.22 Listening to Window closure events from the Dashboard code

Runs when window
is closing

Runs when window is
closed

Handling standard browser events 229

You should be careful to understand what happens in this final onWindow-
Closed() method. The code you write in the method is guaranteed to be exe-
cuted to completion; for example, if you write some code that loops through the
numbers 0 to 400,000 before allowing the browser to close, then this will be done.

 However, you need to be careful when it comes to asynchronous processing,
such as an Ajax call in this final code. For example, you may want to try to save
some state information for the application to the server if the user navigates away.
You could write a well-formed request as shown in listing 6.23.

WindowCloseListener dashboardWindowCloseListener =
 new WindowCloseListener(){
 public void onWindowClosed() {
 String stateString = "Some state information”;
 RequestBuilder rb = new RequestBuilder(RequestBuilder.POST,
 GWT.getModuleBaseURL()+
 "saveState");
 try {
 rb.sendRequest(stateString, new RequestCallback(){
 public void onError(Request request,
 Throwable exception) {
 Window.alert("Unable to save");
 }

 public void onResponseReceived(Request request,
 Response response){
 if(response.getStatusCode()!=200){
 Window.alert("Unable to save state");
 } else {
 Window.alert("Saved");
 }
 }
 });
 } catch (RequestException e) {

Listing 6.23 Failing AJAX Handling in an onWindowClosed() method

Figure 6.15

The Dashboard application executing

the onWindowClosed() method, which

would normally be used to save the

application’s state but in this case

displays an alert message

Send
Ajax
requestB

Handle
communication errors

Handle
response

from server

230 CHAPTER 6

Handling events

 GWT.log("Could not send search request", e);
 }
 }

 public String onWindowClosing() {
 return null;
 }
};

We’ll cover these types of requests in detail in chapter 12. In essence, what
you’re trying to do is make a request to the server to save the “Some state infor-
mation” String and then report to the user if there has been an error in han-
dling this request.

 Because this code is placed in the close-listener method, then it’s reasonable to
expect that the request is constructed B. Can it be guaranteed that the request is
sent? That’s a good question. It relies on the underlying JavaScript and browser
being able to create the XMLHttpRequest object and fire it before the browser
unloads the application, and that appears to depend on a wide range of factors
(the browser, whether proxy connections are involved, is it a navigation to
another page or the window closing, and so on).

 Is this approach to saving state reliable? It depends on your view of the data
being saved and what experience you wish to provide for your user. Your applica-
tion may have two types of information: data that is important to the user (text
they’re typing in, for example); and other information, such as which widget was
last shown on a StackPanel.

 The former data is important to keep safe and should be saved continuously
while the application is executing. That way, if the browser is closed in error by
the user or operating system, then only the data since the last update is lost. You
may decide that it would be nice, but not critical, to save the UI information so
that when the user runs the application, they get the same view again. If this sec-
ond kind of data is lost, it may not be a problem; and because you want the last
view status before navigating away, you may pick this Ajax attempt (however, never
underestimate the need for a good user experience).

 One thing you definitely can’t rely on is being able to handle any response
from the server in this situation. If your browser has managed to get the request
off, then your application continues executing the rest of the close listener code.
Because the XMLHttpRequest is asynchronous, and your close listener code is exe-
cuting locally, there is a significant chance that your code will complete and the
browser will load the new page before your response gets back. At that point,
there is no longer any code in the browser that can handle it.

Handling other event types 231

 Our advice is to understand the importance of the data and to understand
whether you’re in a controlled environment that will offer a repeatable experi-
ence. If your application is for the Internet rather than a corporate intranet, then
you have no control over how the network/systems are set up, and you should
avoid trying to save data at the last minute.

 Of course, making sure the user confirms that they’ve saved the data before
the application closes is by far the most reliable approach, and you can do that
using the onWindowClosing() method and popping up an appropriate message
such as “Application closing—have you saved your data? (Click Cancel if you need
to save the data.)”

 Not just the standard browser events are handled by GWT in the way we have
discussed in this chapter. Other types of events are handled in a similar manner,
with equivalent classes.

6.4 Handling other event types

GWT handles five more types of events with the same type of listener pattern as
the standard browser events:

■ Form

■ Popup

■ Table

■ Tree

■ Tab

For each of these types, we’ll look at how you use and manage them in the Dash-
board application or its components. Again, this section isn’t meant to provide a
definitive reference to events; we’ll provide pointers on key aspects and some
identification as to where in the code you can see how you use them.

6.4.1 Handling forms

We’ll cover forms in some detail in chapter 12, so we’ll point you in the direction
of that chapter if you want to learn more.

6.4.2 Reacting to closing pop-ups

You can register an event handler for when pop-ups are closed. The Dashboard’s
Tooltip (see figure 6.16), which is a subclass of the PopupPanel, sets up a timer
that autocloses the pop-up after a delay. If you close the tooltip in another way,

232 CHAPTER 6

Handling events

such as by clicking another part of the application, then you need to cancel that
timed hide event to avoid having surplus timers running (we’re not exactly sure of
the impact of this, but we doubt it’s good, so it’s best to avoid if you can!).

 You only attach tooltips to the Server Status component application (in case
you thought they were going to be everywhere—of course, you can always expand
the Dashboard to use them where you wish).

 By registering a PopupListener, which cancels the timer when the pop-up is
closed, you avoid that issue—see the onPopupClosed() method in listing 6.24.

this.addPopupListener(new PopupListener(){
 public void onPopupClosed(PopupPanel sender,
 boolean autoClosed) {
 removeDelay.cancel();
 }
});

The removeDelay object is an instance of a GWT timer that is ordinarily invoked
after a scheduled delay to close the pop-up. Here you cancel that timer schedule
as soon as the pop-up is closed.

6.4.3 Tab events

GWT allows you to manage events that occur when the user clicks the tabs in a tab
panel. You can implement handlers for two types of events: onBefore and onSe-
lected. The first of these events is fired after a user clicks a tab but before the
associated tab panel is displayed. You use this in the Dashboard’s Address Book
component (see figure 6.17) to prevent a user from going to a tab where no
addresses are available.

Listing 6.24 The ToolTip onPopupClosed() implementation

Figure 6.16 The PopupPanel-based ToolTip on the Server Status

component application. This tooltip disappears after a predetermined

time (or if another tooltip is opened).

Handling other event types 233

The code to achieve this affect is shown in listing 6.25.

addresses.addTabListener(new TabListener(){
 public boolean onBeforeTabSelected(SourcesTabEvents sender,
 int tabIndex) {
 VerticalPanel vp = getAddressPanel(tabIndex);
 int val = vp.getWidgetCount();
 if (val == 0){
 Window.alert("No Address Entries\n Navigation Cancelled");
 return false;
 }
 return true;
 }

 public void onTabSelected(SourcesTabEvents sender,
 int tabIndex) {
 }
});

When using the onBeforeTabSelect() method, you need to return a boolean
value. This value determines whether GWT allows the selected tab to be shown. A
false value prevents the selection of the tab, whereas a true value lets the tab
be selected.

 The onTabSelected() method allows you to implement functionality for the
new tab, which might include operations to initialize the panel. In the Dashboard
case, you don’t implement anything.

Listing 6.25 Adding a TabListener to the Address Book

Figure 6.17 Using the onBefore event handler for tabs to prevent

the user from going to Address Book tabs that contain no addresses

Add TabListener

Do something
before going
to selected tab

Disallow
selected tab

Allow navigation
to selected tab

Do something
when going to
selected tab

234 CHAPTER 6

Handling events

6.4.4 Tabling events

The most classic use of table events we can think of is to develop a table of data in
which clicking headings reorders the data. In the Dashboard’s Server Status com-
ponent application, you set up a TableListener for all cells of the table, as shown
in listing 6.26.

serverStats.addTableListener(new TableListener(){
 public void onCellClicked(SourcesTableEvents sender,
 int row, int cell) {
 if (row == HEADER_ROW){
 if (cell == STATNAME_COL)
 Window.alert("Would re-order based on statistic
 name here");
 else
 Window.alert("Would re-order based on statistic
 values here");
 } else {
 Widget clickedOn = serverStats.getWidget(row, cell);
 int toolY = clickedOn.getAbsoluteTop();
 int toolX = clickedOn.getAbsoluteLeft() +
 clickedOn.getOffsetWidth();
 switch(row){
 case SERVERNAME_ROW: new ToolTip(
 "The name of the server being monitored",
 toolX, toolY);
 break;
 :
 }
 }
 }
});

Clicks on the table are handled by the onCellClicked() method. If the user clicks
in the header row, then you can invoke functionality to reorder the data B—
although for the sake of brevity in the examples, we don’t. Clicking elsewhere in
the table means you wish to show a tooltip explaining what the data means. The
problem is that you can’t tell x and y positions for the mouse click within a
TableListener. To overcome that restriction, you identify the widget that was
clicked (which is possible because each cell contains a widget C) and then calcu-
late the position where the tooltip should be shown to be the upper-right position
of that widget D.

Listing 6.26 Adding a TableListener to perform tasks on the Server Status data

Select
Status Name
column

B

Identify
widget
clicked, if
not in
header

C

Calculate
position
for tooltip

D

Create
tooltip

Handling other event types 235

6.4.5 Tree events

In the Dashboard’s Book component application, we’ll look into how tree events
can be managed, through the TreeListener. Figure 6.18 shows tree events being
managed in the Book application. In the top image, no tree items have been
selected; in the bottom image, we have opened (changed the state) of item 3 and
selected the tree item related to chapter 3.1 of the book.

 By changing the state of a tree item, you fire the onTreeItemStateChanges()
method, which in the Dashboard’s Book object sets the label at the bottom of the
component to read the same as the menu item (see B in listing 6.27).

Figure 6.18 Tree events being fired on the Book widget

236 CHAPTER 6

Handling events

theTree.addTreeListener(new TreeListener(){
 public void onTreeItemStateChanged(TreeItem item) {
 if(item.getState()){
 currChapter.setText(item.getText());
 } else {
 currChapter.setText("------");
 }
 }

 public void onTreeItemSelected(TreeItem item) {
 changeText(item.getText());
 }
});

When you select an item, then the onTreeItemSelect() method is fired, which
for the Dashboard C sets the text shown in a text panel.

 That concludes our look at the events GWT can manage. Next, we’ll use all the
information you’ve seen by implementing drag-and-drop for the component
applications used in the Dashboard.

6.5 Implementing drag-and-drop

So far, you’ve been building the DashboardPanel panel based on the DialogBox,
and you’ve extended that functionality a few times to sink the double-click event,
to handle toggling of the view, to show the application or just the title bar, and to
handle FocusEvents. The one piece of functionality missing—until now—is the
ability to drag the panel around the Dashboard and then handle the dropping it
on the trash icon. GWT currently has no native drag-and-drop capability, but some
libraries are beginning to add windowing-like system capabilities (such as the
GWT Window Manager: http://www.gwtwindowmanager.org/). In this section,
though, we’ll examine how to add this missing piece of functionality by imple-
menting your own code. We’ll look first at dragging and then at dropping. This
way, you get to begin exercising all the event-handling knowledge you have gained
from this chapter.

6.5.1 Implementing the drag part

Think of the act of dragging a component: You press the mouse button down on
the panel and keep it down while dragging the panel. The dragging should stop

Listing 6.27 Implementing the TreeListener on the Dashboard’s Book component

 application

B

C

Implementing drag-and-drop 237

when you release the mouse button. In these terms, you can envisage that you
need to use the onMouseDown, onMouseMove, and onMouseUp events. Do you need
to sink these events? To answer that question, we need to look at the components
of DialogBox to see if the events are already sunk.

 The definition of DialogBox implements the MouseListener interface:

public class DialogBox
 extends PopupPanel
 implements HasHTML, MouseListener

The MouseListener requires the implementation of the following methods:

■ onMouseDown(Widget sender, int x, int y)

■ onMouseEnter(Widget sender)

■ onMouseLeave(Widget sender)

■ onMouseMove(Widget sender, int x, int y)

■ onMouseUp(Widget sender, int x, int y)

The DialogBox class already implements its own drag functionality. In this sec-
tion, you’ll extend this functionality to meet your needs. The DialogBox imple-
ments dragging in the following three phases: starting to drag, dragging, and
stopping the drag.

Starting to drag

Dragging starts when the user creates an onMouseDown event over the panel and is
implemented by the code in listing 6.28.

public void onMouseDown(Widget sender, int x, int y) {
 dragging = true;
 DOM.setCapture(caption.getElement());
 dragStartX = x;
 dragStartY = y;
}

You set an internal variable called dragging to true so you know the drag state of
the panel B. Then, by calling the DOM method setCapture() C, you ensure that
DialogBox’s caption receives all mouse events directly (this is cancelled when you
call the releaseCapture() method later in the code, as you’ll see).

Listing 6.28 Event-handling code for the onMouseDown event in the DialogBox

 component

Set dragging
flag to true

B

Capture DOM
elementCLog initial

coordinatesD

238 CHAPTER 6

Handling events

 To understand where the user has dragged to, and hence where you need to
reposition the dialog box from, you store the screen coordinates of the mouse
cursor when the onMouseDown event was received (provided as parameters to the
onMouseDown() method, which is called by the MouseListener) D.

 Now that you’ve captured the onMouseDown event and set up some preliminary
variables, the next stage is when the user drags the component.

Dragging

When the user drags the component, you need to determine where the mouse
cursor is now on the screen. You know the mouse has moved because it raises an
onMouseMove event. The handler for such an event is shown in listing 6.29.

public void onMouseMove(Widget sender, int x, int y) {
 if (dragging) {
 int absX = x + getAbsoluteLeft();
 int absY = y + getAbsoluteTop();
 setPopupPosition(absX - dragStartX, absY - dragStartY);
 }
}

If you’re handling an onMouseMove event, then you first check to see whether the
panel has been set to be in a dragging state by a previous onMouseDown event. If it
hasn’t, then you ignore the rest of the code B.

 Assuming the widget is in a dragging state, you identify the x and y positions to
which you need to move the widget. You do this by taking the new coordinates of
the mouse cursor (from the event) and then adding those to the leftmost and top-
most point of the panel in the browser’s coordinate system C.

 Finally D, you call the setPopupPosition() method of the PopupPanel
(which is the parent of DialogBox) to move the panel to the correct position.
Notice that you subtract the initial x and y values stored in the previous section,
hence why we had to store them originally.

 The panel continues being dragged while the onMouseDown event is called.
When the user releases the mouse button, then an onMouseUp event is called.

Stopping the drag

Dragging stops when an onMouseUp event is captured. The code in listing 6.30
shows what the DialogBox does to handle an onMouseUp event.

Listing 6.29 Event-handling code for the onMouseMove event in the DialogBox

 component

Check for
dragging

B

Find new
coordinates

C

Move panel
across page D

Implementing drag-and-drop 239

public void onMouseUp(Widget sender, int x, int y) {
 dragging = false;
 DOM.releaseCapture(caption.getElement());
}

You set the drag state of the panel to false and then call the DOM method
releaseCapture() to stop the element from receiving all mouse-related events.

 This functionality works fine for the DialogBox (and it’s a good template for
any type of dragging capability that you need for your own application). For the
Dashboard, you’ll go slightly further and extend this basic ability.

DashboardPanel onMouseDown

At the start of dragging, you’ll change the style of the panel (in the Dashboard,
you’ll change the text color of the caption), and you’ll also fire an onFocus event
against any of the FocusListeners registered with this panel. The code for the
DashboardPanel is shown in listing 6.31.

public void onMouseDown(Widget sender, int x, int y)
{
 super.onMouseDown(sender, x, y);
 if (DashboardPanel.current != null) {
 DashboardPanel.current.listeners.
 fireLostFocus(DashboardPanel.current);
 DashboardPanel.current.
 removeStyleName("selectedDashboardComponent");
 }
 DashboardPanel.current = this;
 addStyleName("selectedDashboardComponent");
 DashboardPanel.current.listeners.fireFocus(this);
}

The DashboardPanel panel still wants to act as much as possible like the Dialog-
Box from which it inherits, so you execute the DialogBox’s onMouseDown()
method first B before trying any of your own functionality. With the DialogBox’s
standard functionality executed, the next check you perform is to see if the static
variable DashboardPanel.current is set to null C. If it is, that means no Dash-
boardPanel currently has focus, so you can jump to step E.

Listing 6.30 Event-handling code for the onMouseUp event in the DialogBox

 component

Listing 6.31 Event-handling code for the onMouseDown event in the

 DashboardPanel component

Set dragging
flag to false

Release DOM
element

Fire our focus listener G F

Set CSS style
to show we
have focus

Lose focus
on old panel

D

Check if we
have focusHandle

as normal
B C

Set this as
current panel

E

240 CHAPTER 6

Handling events

 If the current variable is set, then currently another DashboardPanel has
focus; you need to remove the focus from it (step D). You do that by firing its
onLostFocus event through its FocusListeners object. This invokes the onLost-
Focus() method for the component Dashboard application, which requests that
application to remove any option menu it has placed in the Dashboard’s menu
bar. Once the onLostFocus event is fired, you remove the styling name that gave it
the styling of a focused panel.

 In E you set this panel as the current DashboardPanel object, which has the
focus in the Dashboard, and then change the style of the panel to be that of a
panel with focus F.

 Finally G, you fire the onFocus event for the new current DashboardPanel,
which results in the new component application registering any option menu it
has in the Dashboard’s menu.

 Catching the mouse-down is the initialization part of dragging. Next, you need
to handle when the user starts moving the mouse while keeping the mouse button
down.

DashboardPanel onMouseMove

There is no need to override the DialogBox’s onMouseMove() method because it
does exactly what you require: It moves the panel as you move the mouse. Drag-
ging stops when the user releases the mouse button, and the code gets an onMou-
seUp event.

DashboardPanel onMouseUp

The final action to handle while dragging is to process the mouse-up action. You
need to release the capture of the element and then, crucially, detect where the
component has been dropped. If it’s dropped on top of the trash icon, then the
DashboardPanel being dragged should be removed from the Dashboard. The
onMouseUp() code is shown in listing 6.32.

public void onMouseUp(Widget sender, int x, int y)
{
 super.onMouseUp(sender, x, y);
 if (detectCollision(this, trash)) {
 removeFromDashboard();
 }
}

Listing 6.32 Event-handling code for the onMouseUp event in the DashboardPanel

 component

Implementing drag-and-drop 241

You first call the standard onMouseUp() functionality of the DialogBox and then
perform a collision-detection check, which is at the heart of the drop capability.

6.5.2 Implementing the drop part

Dragging is only one part of the drag and drop functionality you require for the
DashboardPanel. The final part of the previous section showed you how to deal
with letting go of the mouse button, which is technically the drop part; but you
need to implement functionality to see if the user has dropped the component on
another particular area.

 The detection algorithm is based on checking whether two components over-
lap. If they do, then you can say that one component has been dropped on the
other. You can easily check by looking at the boundaries of the objects; for exam-
ple, if the right part of one object is less than the left part of another, then they
aren’t overlapping.

 boolean detectCollision(Widget w1, Widget w2)
 {
 int left1, left2, right1, right2;
 int top1, top2, bottom1, bottom2;
 left1 = w1.getAbsoluteLeft();
 left2 = w2.getAbsoluteLeft();
 right1 = w1.getAbsoluteLeft() + w1.getOffsetWidth();
 right2 = w2.getAbsoluteLeft() + w2.getOffsetWidth();
 top1 = w1.getAbsoluteTop();
 top2 = w2.getAbsoluteTop();
 bottom1 = w1.getAbsoluteTop() + w1.getOffsetHeight();
 bottom2 = w2.getAbsoluteTop() + w2.getOffsetHeight();
 if (bottom1 < top2) return false;
 if (top1 > bottom2) return false;
 if (right1 < left2) return false;
 if (left1 > right2) return false;
 return true;
 }

The code in listing 6.33 shows how to check for collisions. We’ll explain how in
more detail now. B is dedicated to calculating the numerical outer boundaries of
the two components, because you wish to see if they’ve collided according to the
following cases.

Listing 6.33 Event-handling code for the onMouseUp event in the DashboardPanel

 component

Determine
collisions

Calculate
boundaries

B

242 CHAPTER 6

Handling events

Case 1: Widget 1 above widget 2

Collision case 1 checks whether the situation shown in figure 6.19 is true, where the
y index of the bottom of widget 1 is less than the y index of the top of widget 2. If
this is so, then the widgets haven’t collided.

Case 2: Widget 1 below widget 2

Similarly, if the y index of the top of widget 1 is greater than the y index of the bot-
tom of widget 2, then they can’t have collided (see figure 6.20).

Case 3: Widget 1 to the left of widget 2

Collision case 3 determines whether a horizontal collision has occurred by checking
whether the x index of the right side of widget 1 is less than the x index of the left
side of widget 2. If it’s less, then the components haven’t collided (see figure 6.21).

Figure 6.19

Checking for vertical collision. The test fails because

the y-index of the bottom of 1 has a lower y index than

the top of 2.

Figure 6.20

Checking for vertical collision. The test fails because

the y-index of the top of 1 is greater than the y-index of

the bottom of 2.

Figure 6.21

Checking for horizontal collision. The test fails

because the x-index of the right side of 1 is less

than the x-index of the left of 2.

Implementing drag-and-drop 243

Case 4: Widget 1 to the right of widget 2

Finally, collision case 4 checks whether the x index of the left side of widget 1 is
greater than the x index of the right side of widget 2, as shown in figure 6.22. If it
is, then the widgets haven’t collided.

With the complete code for drag-and-drop in place, you can finish the Dash-
boardPanel class, which is shown in listing 6.34. (Note that the downloadable
code doesn’t have this inheritance from DashboardFirst through to this exam-
ple; it has only the one class called DashboardPanel, which contains all the neces-
sary functionality.)

public class DashboardPanel
 extends DashboardPanelThird
{
 public void onMouseDown(Widget sender, int x, int y){
 super.onMouseDown(sender, x, y);
 if (DashboardPanel.current != null) {
 DashboardPanel.current.listeners.
 fireLostFocus(DashboardPanel.current);
 DashboardPanel.current.
 removeStyleName("selectedDashboardComponent");
 }
 DashboardPanel.current = this;
 addStyleName("selectedDashboardComponent");
 DashboardPanel.current.listeners.fireFocus(this);
 }

 public void onMouseUp(Widget sender, int x, int y){
 super.onMouseUp(sender, x, y);
 if (detectCollision(this, trash)) {
 removeFromDashboard();
 }
 }

Listing 6.34 Final version of the DashboardPanel

Figure 6.22

Checking for horizontal collision. The test fails

because the x-index of the left part of 1 is greater

than the x-index of the right part of 2.

Calculate
Boundaries

Determine
Collisions

244 CHAPTER 6

Handling events

 boolean detectCollision(Widget w1, Widget w2)
 {
 int left1, left2;
 int right1, right2;
 int top1, top2;
 int bottom1, bottom2;
 left1 = w1.getAbsoluteLeft();
 left2 = w2.getAbsoluteLeft();
 right1 = w1.getAbsoluteLeft() + w1.getOffsetWidth();
 right2 = w2.getAbsoluteLeft() + w2.getOffsetWidth();
 top1 = w1.getAbsoluteTop();
 top2 = w2.getAbsoluteTop();
 bottom1 = w1.getAbsoluteTop() + w1.getOffsetHeight();
 bottom2 = w2.getAbsoluteTop() + w2.getOffsetHeight();
 if (bottom1 < top2) return false;
 if (top1 > bottom2) return false;
 if (right1 < left2) return false;
 if (left1 > right2) return false;
 return true;

}

This final listing completes our journey exploring events and developing the
DashboardPanel, which you’ll continuously use throughout the elements of the
Dashboard example. We’ve briefly mentioned the DashboardComposite in this
chapter; in chapter 7, we’ll tie widgets, panels, and events together to produce
composite widgets.

6.6 Summary

We’ve reached the end of our journey through the basics of GWT, where we have
covered widgets, panels, and events. We think you’ll agree that GWT provides a
wide range of these components, and if you think in a purely Java way, they are rel-
atively easy to build and plug together.

 The event handling in GWT requires you to think much less about how it
might be happening in the browser and more about how it works in the Java code.
This is a good thing, because it means you aren’t constantly worrying about how
it’s working in the browser, not least because of the browser differences!

 In general, you need to tell widgets to sink events and then handle those sunk
events in an onBrowserEvent() method. You can pass events around the code by
using the EventListener and SourcesEvent interface frameworks, which also
keeps you away from browser differences in event handling.

Summary 245

 Unlike widgets and panels, you can’t build new low-level browser events, but
it’s possible to create higher-level events—for example, the way GWT provides
CellClick events for the HTMLTable. Although we didn’t look at building events
in this chapter, you can follow the pattern provided many times already in GWT.
Also, in the next chapter, you’ll see how to trap mouse-up events and export them
as change events in the slider.

 Next, you’ll pull together all your knowledge of widgets, panels, and events to
produce composite widgets.

246

Creating
composite widgets

This chapter covers

■ Building composite widgets

■ Layout selection

■ GWT interfaces

■ Styling widgets

What is a composite widget? 247

Composite widgets are powerful elements of GWT. They’re widgets that you create
yourself using existing widgets, composites, and panels; they’re almost mini-GWT
applications. A typical composite includes a number of different widgets and pan-
els and ties all that functionality together using events, which is why we had to
leave the definition of composite widgets until this point.

 In this chapter, we’ll look at building two composite widgets that will be used
in the Dashboard application. The first composite widget is one you can also find
a version of in the GWT Widget Library—the EditableLabel. On screen, it resem-
bles normal text until you click it, at which time it switches to a text box in which
you can update the text—when you click the OK or Cancel button, it returns to
being a simple piece of text.

 After building the EditableLabel composite, we’ll look at a much more com-
plicated composite, but show how easy it is to start pulling it together. We’ll show
the outline of a slider class, which is a composite made from two images, and then
explain how by putting together a few of these sliders, you can produce a rich
color-picker widget.

 The third composite you’ll build in this chapter is the DashboardComposite
class. This isn’t a composite in the sense of the EditableLabel; rather, it’s an
extension of the GWT Composite class specifically for use in the Dashboard exam-
ple. It provides the normal Composite functionality, plus it provides the capability
of adding an option menu to the Dashboard’s main menu as well as handling
focus events for the Dashboard applications.

 Let’s start by expanding on the brief definition of what a composite widget is.

7.1 What is a composite widget?

Although GWT provides a large number of widgets, and you saw in chapter 4 how
you can create your own widgets, there will be occasions where you want to man-
age a collection of these widgets, laid out in a particular way, as a single “widget”
itself. This is where composite widgets come in.

DEFINITION A composite widget is a collection of widgets (standard GWT widgets, user-
defined widgets, or other composite widgets), laid out in a particular
manner and providing some specific functionality, which you wish to
manage as a single entity.

To some extent, composite widgets are mini-GWT applications. You build them
from a set of widgets, lay them out using panels, and handle the events using the
standard event-handling process—all of which we’ve described in the last three

248 CHAPTER 7

Creating composite widgets

chapters. In this chapter, you’ll build the Editable-
Label composite widget, which includes a Label,
TextBox, TextArea and two Button widgets; some of
these are shown in action in figure 7.1.

 By building the EditableLabel as a composite
widget, you can treat it like any other widget in the
code by creating instances of it using

EditableLabel newLabel = new EditableLabel();

You can also add it to the browser page, or any other panel, with code similar to
this:

RootPanel.get().add(newLabel);

Defining a composite widget is easy as long as you remember two things: first, the
composite widget class must extend the GWT Composite class; and second, you
must call the initWidget() method, passing in the main container of the com-
posite widget as a parameter before the end of the constructor. Failure to call the
initWidget() method will result in exceptions being thrown in your code and
the program ceasing to work.

 You generally define composite widgets to sit within an overall panel and add
the widgets you need (in their own panels if necessary) to that overall panel. You
pass this overall panel as a parameter to the initWidget() method.

 Because composite widgets are like mini-applications, it’s useful to have a pro-
cess in mind for how to develop them (which can also be applied to applications).

7.2 Composite widget development steps

Building composites is like building miniature applications. Each composite con-
sists of a number of widgets, usually laid out in one or more panels. You have to
answer the same type of questions you do when building an application—which
widgets and panels will you use, how will they be put together, and what GWT
interfaces should the widget implement?

 When you’re building composites, it’s useful to follow a logical path of devel-
opment so that you don’t trip yourself up. However, unlike building an applica-
tion, you don’t need to use the creation tools we covered back in chapter 2; you
create a new class that extends the Composite class.

 The approach for building composite widgets is shown in table 7.1. You’ll use
it as we go through this section.

Figure 7.1 The Editable-

Label composite widget in

action in the Dashboard

Composite widget development steps 249

As you build the EditableLabel widget, mark off the development steps that
you’ve completed using the process checklist shown in figure 7.2.

 Let’s get developing again. We present the EditableLabel!

Table 7.1 Development steps for creating composite widgets

Step Name Description

1 Identify widgets A composite widget is made out of a number of other widgets, which

may be standard GWT widgets or other composites. Before you build a

composite, it’s useful to know what widgets you’ll be including.

2 Choose layout Determine how the widgets will be laid out in your composite. You can

think of composite widgets as being mini-GWT applications.

3 Identify interfaces As with the other widgets and panels you’ve built over the last three chap-

ters, composites should behave in a manner that the user would expect,

and using the provided GWT interfaces helps. If the widget has a text ele-

ment, then it should implement the HasText interface, for example.

4 Build This step covers the building of the composite widget. You need to build

a number of code parts:

■ Implementing the interfaces identified

■ Implementing any outward-facing methods you wish to expose in addi-

tion to those requested by the interfaces

■ Creating the widget structure and setting up the event handling

■ Implementing the code that handles events that are expected

5 Set styles Just as you relied on the standard components having well-defined style

names, any composite you build should also provide that courtesy. In

this step you build a naming convention for the styles and apply them to

the component widgets and panels.

6 Test You should always test composites like other software components,

although in the interest of reducing the size of this book, we don’t write

about this step in this chapter.

Figure 7.2

Composite widget development

process check-off list

250 CHAPTER 7

Creating composite widgets

7.3 Building the editable label

In this section, you’ll build a composite widget
using the process defined in table 7.1. The pur-
pose of the composite widget is to present a text
label that can be edited by clicking it. The pop-
ular Flickr photo site uses this type of function-
ality to allow its users to edit a photo’s title and
description. As you can see in figure 7.3, you
can give photographs a title and a description.

 How do you enter/alter these details? Pre-
Ajax days, this was probably implemented as a
web page including a form for entering/alter-
ing the details, which for one photograph isn’t
an issue. But consider if several photographs
appear on the page at the same time; it will
seem messy to have to navigate to a new page to change each piece of text. This is
where the EditableLabel (see figure 7.4) comes into its own.

 If you want to edit a title or a description, it’s a less than optimal solution to
have to open each photograph, make the change, save it, and then go back to the
main screen. Ajax techniques, such as those in evident use on Flickr, allow this
editing to be performed directly on the screen.

Figure 7.4

Set of photographs with titles and

descriptions. Pre-Ajax user interfaces

didn’t allow multiple edits on a single page.

Figure 7.3 Photograph from Flickr

showing how a title and a description

can be displayed

Building the editable label 251

The EditableLabel widget provides such functionality, and it’s implemented as a
composite widget. It was originally built in the early days of GWT by the authors
for functionality we needed at that point, and then it migrated into the GWT Wid-
get Library for everyone to use. The functionality of the EditableLabel widget is
defined in table 7.2.

Now that we’ve defined the functionality of the composite widget, we’ll look at
how to implement it. That discussion begins with identifying which existing wid-
gets you’ll employ.

7.3.1 Step 1: Identifying the components

The components you’ll choose need to support the stated functionality, and often
the choice is determinable from what you write down as the functionality. A quick
look at the widgets provided with the GWT distribution should satisfy you that the

Table 7.2 Functional description of the EditableLabel composite widget you’ll create in

 this section

Step Action

Add the widget to the panel Only the user-defined text associated with the widget (if any is provided

to the constructor) is shown.

Click text An editable area is shown, containing the user-defined text. If the initial

text is set to be word-wrapped, then the editable area presented is scrol-

lable; otherwise a single-line editable area is used. Cancel and OK but-

tons are displayed.

Click the OK button The editable area is replaced with an element of non-editable text, the

value of which is set to the value last shown in the editable area. After

the alteration in the user interface, a user-provided follow up action

occurs. This action may, for example, save the new value of text dis-

played to a database.

Click the Cancel button The editable area is replaced with an element of non-editable text, the

value of which is set to exactly the same value it had prior to the last

attempt to edit.

Press the Esc key If the Esc key is pressed while focus is on the widget, then the function-

ality invoked is the same as clicking the Cancel button.

Press the Return/Enter key If the Return/Enter key is pressed while focus is on the widget, then one

of two functionalities is invoked. If the EditableLabel is identified

as being word-wrapped, then a new-line is inserted in the area where the

editable text is shown. If the EditableLabel isn’t set as word-

wrapped, then pressing Return/Enter invokes the same functionality as

clicking OK.

252 CHAPTER 7

Creating composite widgets

GWT Label widget is sufficient to represent the initial text—it displays text, can be
word-wrapped, and is un-editable.

 Another option could have been to use an HTML element, because you want the
label to be clickable, which might imply a hyperlink. However, choosing an HTML
element would lead users to expect that clicking the text would invoke behavior
onscreen, such as the loading of a new page. It’s important to keep user interfaces
within the bounds of that which users normally expect.

 You can easily add a click listener to a label (the API tells you that the Label wid-
get implements the SourcesClickEvents interface) that enables you to listen and
react to mouse click events. You’re still left in a situation of trying to indicate to a
user that they can click and edit the label, but that can be solved by, for example,
changing the mouse or background color when the mouse hovers over the editable
label. This can be achieved using CSS, a GWT wrapper to the script.aculo.us effects
library (http://script.aculo.us—see the GWT Widget Library for a GWT wrapper)
or even implementing this effect natively in GWT.

 Providing the editing interface requires you to look for one or more widgets that
can provide single-line and multiline editing. You’ll use two simple GWT widgets for
editing. A TextBox widget is a single-line text box that you’ll be familiar with from
all the forms on web sites. A TextArea widget is a text box that allows for multiline
editing. A quick check again of the API reveals that both TextBox and TextArea
extend the TextBoxBase class, which itself implements the SourceKeyboardEvents
interface. By implementing the SourceKeyboardEvents interface, both TextArea
and TextBox allow you to register the fact that you wish to listen for and react to spe-
cific keyboard presses—in this case, the Esc and Return/Enter keys.

 The composite widget also needs two buttons: one to confirm the change, and
the other to cancel the change, as defined in the functional description. Looking
at the list of standard widgets reveals the GWT Button class, and the first version of
the EditableLabel composite widget used that class. Now we’ve identified all the
composite widgets that are used (see figure 7.5).

 However, we discussed how flexible the finished version should be. It’s clear
that the functionality requires two objects that can be clicked, with one canceling

Figure 7.5

Checking off step 1 of

the composite widget

development process

Building the editable label 253

and the other affirming the edit. GWT buttons are fine, but what if someone
wanted to use images or any other widget instead? Fortunately, Java provides
mechanisms for interrogating objects at runtime, and we’ll show in this section
how to employ this to build a flexible widget with runtime checks to ensure that
the functionality can be fulfilled. Before we get to that point, though, we need to
look at the physical screen real-estate layout of the chosen widgets.

7.3.2 Step 2: Choosing the panel layout and structure

The components in the EditableLabel composite widget are shown in figure 7.6.
It comprises a Label, a TextBox, a TextArea, and two widgets that represent the
buttons.

 The first decision you have to make is how these component widgets will be
laid out—which panels will you use? You need at least one panel; otherwise, the
widgets have nowhere to sit. But do you place all the widgets in one panel or use
subpanels, perhaps with the buttons in one and the other widgets in another?
Some potential groupings are shown in figure 7.7, where groups are loosely based
on different views of the functionality.

 When you think about layouts, consider how flexible you want the layout to be
to any other user of your widget. At one end of the scale is the FlowPanel, which
gives the greatest flexibility for another user to use CSS to reposition elements of
your composite widget. Using HorizontalPanels or VerticalPanels forces a
stricter positioning philosophy.

 The design for EditableLabel went through a number of iterations as we
thought about future reuse. Finally, we settled on putting the buttons in
one FlowPanel and putting this panel and the other component widgets into
another FlowPanel.

Figure 7.6

EditableLabel first form

layout showing the components

in this composite widget

254 CHAPTER 7

Creating composite widgets

Our rationale was that the buttons and other components are clearly separable,
visible components. You don’t want to force another user of the widget into always
having the buttons to the right of the label; perhaps they will prefer them under-
neath. So, you use a FlowPanel for the widget’s main panel. Placing the buttons in
their own panel allows other users to put a command such as display: block
into their CSS to quickly move the buttons beneath the label without making any
code changes.

 Because only one component from the Label, TextArea, and TextBox is visi-
ble at any given time, there is no issue using a FlowPanel for the main panel. The
choice of panel for the buttons could be a Hor-
izontalPanel, but we wanted to cut down, if
possible, the size of any compiled JavaScript
code, so we again choose a FlowPanel.

 This discussion runs the risk that you’ll
think we’re suggesting using FlowPanels all the
time. This isn’t so; it must be considered on a
case-by-case basis. For example, the composite
that makes up a potential PhotoDisplay wid-
get would be created using a VerticalPanel
because this is the most appropriate panel for
that widget (you don’t want a user to alter
the layout). See figure 7.8 as an example of
what we mean.

 Now that you’ve identified the components
and panel layouts, you can check them off in
the development process (see figure 7.9) and

Figure 7.7 EditableLabel potential panel layouts showing different ways the components

could be grouped

Figure 7.8 A possible

PhotoDisplay widget panel

layout demonstrating the potential

use of a VerticalPanel and two

EditableLabel composite widgets

Building the editable label 255

move on to considering what existing GWT interfaces the new composite widget
might implement.

7.3.3 Step 3: Implementing the right GWT Java interfaces

GWT provides a number of interfaces that widgets can claim to implement. A GWT
Label, for instance, implements the HasText interface, which means it provides
setText() and getText() methods. When you use widgets in a composite widget,
these interfaces become buried. It’s possible to make the widgets your composite
uses public; then, a user can call the interface methods on those widgets, but the
user needs to know the structure of your composite. To improve on that and main-
tain consistency across widgets, you need to consider which of those interfaces the
component widgets implement that the composite would be expected to imple-
ment, and also which other interfaces it would be useful to implement. In many
cases, the implementation of interfaces in your composite requires a call on the
appropriate method of the relevant composite part, as you’ll see in just a second.

 The first category of interfaces your composite implements are those it would
be expected to implement. We don’t mean just copying all the interfaces your
component parts implement; we mean those that make sense. Consider the wid-
gets you’ll use:

■ Label

■ TextArea

■ TextBox

■ Buttons

Let’s take each of these in turn and look at the interfaces that are applicable, start-
ing with the Label. Because the composite widget wishes to masquerade as a
Label, it’s reasonable to expect that as far as other users of the widget are con-
cerned, this is a Label and should implement the same interfaces. Let’s consider
these interfaces in more detail:

Figure 7.9

Checking off step 2 of

the composite widget

development process

256 CHAPTER 7

Creating composite widgets

■ HasText—Implementing this interface implies that the widget will have
getText() and setText() methods, which is what you wish to have. The
composite widget implements the HasText interface in order to provide the
outside world with access to the value of the Label. You’ll achieve this by
implementing the methods to call the same methods on the Label object:
Calling the getText() method on the composite will return the result of
calling the getText() method on the implementation’s Label, transpar-
ently to the user.

■ HasWordWrap—Implementing this interface means the widget must provide
setWordWrap() and getWordWrap() methods. This is perfect for imple-
menting the required functionality switching that is based on whether the
Label is word-wrapped. Again, you’ll implement these methods as pass-
through methods to the Label object, but also to understand whether the
editable component is a TextBox or TextArea widget.

■ HasHorizontalAlignment—This interface has no bearing on your function-
ality; you don’t care if the widget is left, center, or right aligned. However,
because the widget is masquerading as a Label, you should implement this
interface for consistency. Calls to it will pass directly to the Label component.

■ SourcesClickEvents, SourcesMouseEvents—These two interfaces allow
ClickListeners and MouseListeners to be registered and unregistered
against a widget implementing them. Because click and mouse events are
applicable only to the Label, you’ll again implement these interfaces by
passing through method calls to the underlying Label widget.

The Label widget is the main component visible to most users initially. When it’s
clicked, the widget presents its editable area. The following list discusses the inter-
faces that could be implemented due to these widgets; both widgets extend the
TextBoxBase class, which in turn implements a several event interfaces:

■ SourcesClickEvents, SourcesMouseEvents—You don’t wish to expose
functionality for these events when you’re in editing mode. You must still
indicate that you’re implementing the interfaces, because you use them for
passing through to the Label when in non-editing mode.

■ SourcesChangeEvents—This interface lets you register change listeners to
a widget. In this instance, you don’t want to allow the addition of change lis-
teners to the TextBox or TextArea—it makes limited sense in the overall
functionality of the widget to listen to changes in editing mode. However,
you’ll see shortly that this interface is implanted, but for other reasons.

Building the editable label 257

■ HasName—In forms and other techniques, this interface makes a lot of
sense, allowing a TextBox or TextArea to be given a name for future manip-
ulation. In the EditableLabel widget it makes no sense at all, because you
want users to be forced to go through the Label element to set or retrieve
text and the editable functionality to change values.

■ HasText—You saw earlier that this interface requires the getText() and
setText() methods to be implemented. These methods will already be
implemented for the composite; we decided that earlier, too, but it doesn’t
make sense to allow access for TextArea and TextBox, because all access to
the text should be through the Label.

The final component is the Button. If you were to use GWT Buttons to implement
the OK and Cancel buttons, then examining the underlying ButtonBase class
doesn’t indicate any interfaces that it’s worthwhile passing on to the user of this
widget. We’ve mentioned that you’ll allow the user of this widget flexibility in what
widget is used for a button (perhaps an Image), but because we don’t know, we
can’t guess at useful interfaces those widgets may have.

 The second class of interfaces that must be considered is those you wish the
new composite widget to implement in addition to those it would be expected to.
A list of all interfaces is provided in the API, and you need to start considering the
list and deciding which are useful.

 In the case of the EditableLabel, the only interface that felt natural was
SourcesChangeListener. We discarded this interface in the previous discussion
because we don’t want users to register change listeners against someone typing
text into the TextArea or TextBox. However, it’s highly useful to allow users of the
widget to register change listeners that you fire when the label has been edited
(changed). You’ll implement this interface and manage the firing of change
events yourself.

 Now you know what widgets and interfaces you’ll implement. Listing 7.1 shows
the first outline of the composite widget code.

public class EditableLabel extends Composite implements
 HasWordWrap,
 HasText,
 HasHorizontalAlignment,
 SourcesClickEvents,
 SourcesChangeEvents,
 SourcesMouseEvents

Listing 7.1 First version of the EditableLabel composite widget

258 CHAPTER 7

Creating composite widgets

{
 private TextBox changeText;
 private TextArea changeTextArea;
 private Widget OK, Cancel;
 private Label text;
}

You can update the progress chart (see figure 7.10) and move on to the next step,
where we’ll begin to look at implementing the functionality.

7.3.4 Step 4: Building the composite widget

Now, we come to building the functionality for the composite widget. The code is
some six pages long; rather than present the code and then talk about the various
aspects afterward, as we’ve done with the example to this point, we’ll walk
through the code step by step.

 The code starts as it did in listing 7.1, indicating that you’re extending the
Composite class and will handle a number of different interfaces:

public class EditableLabel
 extends Composite
 implements HasWordWrap,
 HasText,
 HasHorizontalAlignment,
 SourcesClickEvents,
 SourcesChangeEvents,
 SourcesMouseEvents
{
 private TextBox changeText;
 private TextArea changeTextArea;
 private Label text;
 private String originalText;
 private Widget confirmChange;
 private Widget cancelChange;
 private ChangeListenerCollection changeListeners;

Figure 7.10

Checking off step 3 of

the composite widget

development process

Building the editable label 259

The methods required for the property interfaces HasWordWrap, HasText, and
HasHorizontalAlignment are immediately passed down to the Label named text
as shown in this sample:

public HorizontalAlignmentConstant getHorizontalAlignment() {
 return text.getHorizontalAlignment();
}

Similarly, the methods required by the SourcesClickEvents and Sources-
MouseEvents interfaces are handed straight to the Label text, as well; for example:

public void addClickListener(ClickListener listener) {
 this.text.addClickListener(listener);
}

You want to register ChangeListeners against the whole widget, so the
addChangeListener (and similarly removeChangeListener) is defined as follows:

public void addChangeListener(ChangeListener listener) {
 if (changeListeners == null){
 changeListeners = new ChangeListenerCollection();
 }
 changeListeners.add(listener);
}

You use of the ChangeListenerCollection object here and store ChangeListeners
that are added into it (in the remove method, you take them away).

 The next part generates the code for those aspects you wish to make public in
addition to the identified interfaces. For EditableLabel, you want to do this for a
few attributes, including whether the field is set to be editable, whether it’s in edit-
ing mode, and whether external parties can cancel the editing state. These are
simple portions of code, as shown in listing 7.2.

public boolean isFieldEditable (){ return isEditable; }
public boolean isInEditingMode (){ return isEditing; }
public void setEditable (boolean flag){ isEditable = flag; }
public void cancelLabelChange (){
 text.setText(originalText);
 restoreVisibility();
}

The next step in building the code is creating the widget and its layout. The pre-
ferred approach to creating a composite widget is to perform the following steps:

Listing 7.2 Methods that give external access to EditableLabel attributes

260 CHAPTER 7

Creating composite widgets

1 Create an instance of a Panel into which all the composite widgets and
other panels that make up the composite widget will be placed.

2 Create instances of component widgets, and add required event-handling
code and style names.

3 Put widgets into the defined panels (and those panels into their defined
panels, if required).

4 Place all panels and widgets into the panel created in step 1.

5 Implement any programmatic styling, such as hiding of components.

6 Call the inherited initWidget() method with the panel created in step 1 as
the parameter to initialize the new composite.

These steps are shown in listing 7.3.

private void createEditableLabel(String labelText,
 ChangeListener onUpdate,
 String okButtonText,
 String cancelButtonText){
 FlowPanel instance = new FlowPanel();
 text = new Label(labelText);
 text.setStyleName("editableLabel-label");
 text.addClickListener(new ClickListener(){
 public void onClick (Widget sender){
 changeTextLabel();
 }
 });
 changeText = new TextBox();
 changeText.setStyleName("editableLabel-textBox");
 changeText.addKeyboardListener(new KeyboardListenerAdapter(){
 public void onKeyPress (Widget sender,
 char keyCode, int modifiers){
 switch (keyCode) {
 case 13:
 setTextLabel();
 break;
 case 27:
 cancelLabelChange();
 break;
 }
 }
 });
 changeTextArea = new TextArea();
 changeTextArea.setStyleName("editableLabel-textArea");
 changeTextArea.addKeyboardListener(new KeyboardListenerAdapter(){
 public void onKeyPress (Widget sender,

Listing 7.3 Creating the EditableLabel

Create
container

B

Create Label C

Create TextBox
and listener

D

Create TextArea
and listener E

Building the editable label 261

 char keyCode, int modifiers){
 switch (keyCode) {
 case 27:
 cancelLabelChange();
 break;
 }
 }
 });
 confirmChange = createConfirmButton(okButtonText);
 if (!(confirmChange instanceof SourcesClickEvents)) {
 throw new RuntimeException("OK Must allow click events");
 }
 ((SourcesClickEvents) confirmChange).addClickListener(
 new ClickListener(){
 public void onClick (Widget sender){
 setTextLabel();
 }
 });

 cancelChange = createCancelButton(cancelButtonText);
 if (!(cancelChange instanceof SourcesClickEvents)) {
 throw new RuntimeException("Cancel must allow click events");
 }

 ((SourcesClickEvents)cancelChange).addClickListener(
 new ClickListener(){
 public void onClick (Widget sender){
 cancelLabelChange();
 }
 });

 FlowPanel buttonPanel = new FlowPanel();
 buttonPanel.setStyleName("editableLabel-buttonPanel");
 buttonPanel.add(confirmChange);
 buttonPanel.add(cancelChange);

 instance.add(text);
 instance.add(changeText);
 instance.add(changeTextArea);
 instance.add(buttonPanel);

 text.setVisible(true);
 changeText.setVisible(false);
 changeTextArea.setVisible(false);
 confirmChange.setVisible(false);
 cancelChange.setVisible(false);

 text.setWordWrap(false);

 initWidget(instance);
}

Create TextArea
and listener E

Create OK button
and listener

F

Create Cancel
button and

listener G

Fill button
panel

H

Fill
container

I

Set
visibilities

J

Set default configuration1)

Start widget1!

262 CHAPTER 7

Creating composite widgets

You start generating the composite widget B by creating the main panel in which
the whole composite widget will sit. You called it instance. Next, you build the
main visible component of the composite widget—this is the text label that will be
displayed on screen. Then, you add a click listener to the Label and indicate that
if the Label is clicked, you should execute the changeTextlabel() method C.

 The TextBox called changeText is the first editable element you define—if you
recall, this will be used if the label is edited and it isn’t word-wrapped. Again, you
add the style name to it according to the convention.

 To the TextBox you add a keyboard listener, which listens for two different key-
presses D. The first is a press of the Return/Enter key (ASCII code 13), in which
case you call the setTextLabel() method, which changes the old label to the text
now displayed in the TextBox. This keyboard listener also listens for presses of the
Esc key (ASCII code 27); if it finds that, you call the cancelLabelChange()
method, which restores the label to the text it had before you started to edit it.

 Similar to the TextBox, at E you set up the TextArea, which is used for editing
the Label if it’s word-wrapped. The difference between this code and D is the set-
ting up of the keyboard listener, which in this case only listens for the Esc key
being pressed (a Return/Escape keypress in this widget means to start a new line).

 Next, you begin to generate the button that is used to confirm that the
changes are OK. You call a protected helper method to create the OK button
(createConfirmButton()), which returns a widget. Doing this allows other users
to subclass this class and use widgets that aren’t Buttons for confirming and can-
celing edits.

 However, this type of flexibility comes at a cost. In the code F, you add a click
listener to the result of createConfirmButton(), and if someone subclasses and
uses a widget where click listeners can’t be added, you’re in trouble. Luckily, you
can use some Java magic to determine that the widget returned by createCon-
firmButton() is an instance of SourcesClickEvents (that in widget’s definition,
it says it implements the SourcesClickEvents interface). You do this with the fol-
lowing code segment:

if (!(confirmChange instanceof SourcesClickEvents))

If the widget isn’t an instance of SourcesClickEvents, then you immediately raise
a RuntimeException and stop execution of the application. Assuming that you
have a valid widget, then you continue to add a click listener that calls the set-
TextLabel() method we discussed in D when the widget is clicked.

 You perform the same tasks at G for the Cancel button, except you call the
cancelLabelChange() method if the button is clicked.

Building the editable label 263

 At H, you start building the structure of the composite widget. You create a
FlowPanel, set its style name, and then add to it the two buttons you just created.
Then, in I, you begin adding objects to the base panel of this composite that you
defined in step 1. You’re using a flow panel for this, and, in certain circumstances,
it would matter which order you started adding things because they flow in order.
In this case, you have more freedom, because the next step involves hiding most
of the objects and leaving only the label text visible.

 You’re on the home stretch! At J, you start performing the magic that is the
EditableLabel. You set the visibility of all the objects in the composite to false,
except for the Label text. Then 1), you set the default configuration for the wid-
get to be non–word-wrapped (remember, this parameter affects whether the edit-
able version uses the TextBox or the TextArea).

 Finally, you take the mandatory step of calling the Composite’s initWidget()
method 1!. This is the step we referred to in section 7.1, and as you can see, you
create a panel called instance into which you place all the objects; this instance
panel is now used as the parameter to the initWidget() method. As we men-
tioned at that time, failing to call the initWidget() method will result in errors at
runtime. (Note that in early versions of GWT, this method was called setWidget().
Although it’s deprecated, you may come across third-party widgets or examples
that use that method—it should be replaced with initWidget().)

WARNING Failure to call the initWidget() method when creating a composite wid-
get will result in exceptions being raised in your code when you try and
create an instance of your composite. The error, in hosted mode, states
java.lang.RuntimeException: Null widget handle. If you are creating a composite,
ensure that initWidget() has been called.

The next segment of code you should implement according to the steps in table 7.1
handles the events. We won’t put all the code in this chapter, but we’ll look at the
methods called when you click the label and when you click the OK button. Clicking
the label invokes the label’s click listener, which in turn calls the changeText-
Label() method shown in listing 7.4.

private void changeTextLabel (){
 if (isEditable) {
 originalText = text.getText();
 text.setVisible(false);
 confirmChange.setVisible(true);
 cancelChange.setVisible(true);

Listing 7.4 Changing the Label to a TextBox or a TextArea, depending on whether

 it’s word-wrapped

EditableLabel
editable?

B

Save label textC

Change
visibilitiesD

264 CHAPTER 7

Creating composite widgets

 if (text.getWordWrap()){
 changeTextArea.setText(originalText);
 changeTextArea.setVisible(true);
 changeTextArea.setFocus(true);
 } else {
 changeText.setText(originalText);
 changeText.setVisible(true);
 changeText.setFocus(true);
 }
 isEditing = true;
 }
 }

The first check you need to make ensures that the widget is editable B; if it isn’t,
then there is no point continuing with this method. If it’s editable, then you save a
copy of the current label text for use in restoring the label if the cancel function-
ality is invoked C. Then, you need to hide the original label from view and display
the OK and Cancel buttons D.

 Next, you check to see whether the label is word-wrapped E. If it’s word-
wrapped, then you make the text area visible and set its contents to be the same as
the label text F. If the label isn’t word-wrapped then you make the text box visible
and set its contents to the label text G. Finally you set a flag to indicate the widget
is now in an editing state H.

 Once the user has edited the label, they can click the OK button, which invokes
the setTextLabel() method shown in listing 7.5.

private void setTextLabel ()
{
 if(text.getWordWrap()){
 text.setText(changeTextArea.getText());
 } else {
 text.setText(changeText.getText());
 }
 restoreVisibility();
 if(changeListeners != null) changeListeners.fireChange(this);
}

Listing 7.5 Clicking OK invokes the setTextLabel() method to restore the label

 view with the new text

EditableLabel word-wrapped?E

Show
TextAreaF

Show
TextBoxG

Set state of
EditableLabel to editingH

Set new value
of text

B

Hide editing
components; show text

C

Fire registered change listeners D

Building the editable label 265

First, you check to see whether the Label is word-wrapped B. If it is, then you
need to take the new text for the label from the text area; otherwise, you retrieve
it from the text box. After setting the new text, you restore the visibility of the
label and hide the text box/text area and the buttons so that everything is back to
normal C. Finally, you check to see whether anyone has registered a change lis-
tener against you. Remember that at the start of the discussion, we showed that
using the addChangeListener() method adds the listener to the ChangeLis-
tenerCollection you called changeListeners. Now, you call the fireChange()
method on that collection, which ensures that all change listeners registered
receive the onChange event D.

 The EditableLabel can now be used like any standard widget in GWT; for
example, the creation of an arbitrary PhotoDisplay widget as in figure 7.3 would
include code similar to this:

EditableLabel title = new EditableLabel ("");
title.addChangeListener(new ChangeListener(){
 public onChange(Widget sender){
 saveTitleChange(title.getText());
 }
});
EditableLabel description = new EditableLabel ("");
description.setWordWrap(true);
title.addChangeListener(new ChangeListener(){
 public onChange(Widget sender){
 saveDescrChange(title.getText());
 }
});
PhotoImagePanel photo = new PhotoImage();
VerticalPanel photoPanel = new VerticalPanel();
photoPanel.add(title);
photoPanel.add(photo);
photoPanel.add(description);

You also add a ChangeListener to each EditableLabel such that when a user fin-
ishes editing a label, this code is informed, and an appropriate piece of function-
ality can be called. In this case, the new text of the edited label is retrieved and
then could be saved to a database. Table 7.3 reviews where in the code you can
find the defined functionality for the EditableLabel, and which event listeners
are used to drive this functionality.

 We’ve finished our look at creating the functional aspects of the composite
widget from the panel layout to identifying the necessary components and build-
ing the functional code (see figure 7.11). Next, we’ll examine how styling should
be applied.

Add change
listener to
EditableLabel”

266 CHAPTER 7

Creating composite widgets

Table 7.3 EditableLabel functionality with reference to how it’s implemented in the composite

 widget code

Step Action How implemented in the code

Add the widget

to the panel

Only the user-defined text associated with the

widget (if any is provided to the constructor) is

shown.

Defined in the constructor:

new EditableLabel
 ("Initial Text");

Click the label An editable area is shown, containing the user-

defined text. If the initial text is set to be word-

wrapped, then the editable area presented is

scrollable; otherwise, a single-line editable area

is used. Cancel and OK buttons are displayed.

A click listener is added to the

label that executes the

changeTextLabel() method.

Click the OK

button

The editable area is replaced with an element of

non-editable text, the value of which is set to the

value last shown in the editable area. After the

alteration in the user interface, a user-provided

follow-up action occurs. This action may, for

example, save the new value of text displayed to

a database.

A click listener is added to the

widget that represents the OK but-

ton and executes the

setTextLabel() method.

Click the Cancel

button

The editable area is replaced with an element of

non-editable text, the value of which is set to

exactly the same value it had prior to the last

attempt to edit.

A click listener is added to the

widget that represents the Cancel

button and executes the

cancelLabelChange()

method.

Press the Esc

key

If the Esc key is pressed while focus is on the

widget, the functionality invoked is the same as

clicking the Cancel button.

Keyboard listeners are added to

the TextBox and TextArea

widgets.

If the Esc key is pressed in either

the TextBox or TextArea wid-

get, the

cancelLabelChange()

method is called.

If the Return/Enter key is pressed

in the TextBox widget, the

setTextLabel() method is

called.

Press the

Return/Enter

key

If the Return/Enter key is pressed while focus is

on the widget, then one of two functionalities is

invoked. If the EditableLabel is identified

as being word-wrapped, then a new-line is

inserted in the area where the editable text is

shown. If the EditableLabel isn’t set as

word-wrapped, then pressing Return/Enter

invokes the same functionality as clicking OK.

Figure 7.11

Checking off step 4 of the

Composite widget development

process

Building the editable label 267

7.3.5 Step 5: Styling the composite widget

Earlier in this book, we covered how styling can be applied both programmatically
and through style sheets. We stated that our preference is for CSS styling wherever
possible to allow the greatest flexibility, and in this final step you’ll set up the CSS
references for your objects.

 The penultimate development stage we propose for building composite wid-
gets is to blend in style names. We’ll leave this to the later stages, because now the
widget should be fairly stable and it will be easy to identify where styles are
needed. In the EditableLabel, styling could be applied at the following places:

■ The background panel for the widget, called instance

■ The button panel

■ The cancel-change button

■ The confirm-change button

■ The Label

■ The TextBox

■ The TextArea

We recommend, if you don’t have one already, that you develop a standard way of
naming styles in your widgets so you can minimize cross-widget incompatibilities.
The convention suggested by Google is to use projectname-component. Following
that convention, you end up with these style names:

■ editableLabel-buttonPanel

■ editableLabel-buttons

■ editableLabel-confirm

■ editableLabel-cancel

■ editableLabel-label

■ editableLabel-textBox

■ editableLabel-textArea

In the EditableLabel code, you set these styles using the setStyleName()
method for each component when it’s created. You can then make appropriate
entries in the CSS style sheet; for example:

268 CHAPTER 7

Creating composite widgets

.editableLabel-buttons {
 color: #fff;
 text-transform: uppercase;
}

.editableLabel-confirm {
 background: #0c0;
}

.editableLabel-cancel {
 background: #c00;
}

This style sheet would produce buttons whose labels are white and in uppercase,
with the confirm button having a green background and the cancel button a red
background. Some time ago, when you defined the panel layout, we suggested
that using a FlowPanel gives maximum flexibility when using CSS to reposition
the buttons. If you write the following in the CSS file

.editableLabel-textBox {
 display: block;
}
.editableLabel-textArea {
 display: block;
}

this tells the browser to put whatever flows after the
TextBox and TextArea on the next line—thus you can
move the buttons below the editable area, as shown in
figure 7.12.

 In this example, the underlying label must be word-
wrapped, because the editable view is a TextArea.

 With the styling completed (see figure 7.13), the
final step is the testing of the widget; we’ll cover testing
in much more detail in chapter 16. As far as you’re
concerned, you’ve created your first composite widget,
which is a long way from the simple example you fired
up way back in chapter 1.

Figure 7.13

Checking off step 5 of

the Composite widget

development process

Figure 7.12 Buttons moved

underneath the text area

purely by defining this in the

associated CSS

Creating a composite widget from other composite widgets 269

In the next section, you’ll build another Composite, but this time you’ll build it from
other Composites. Then, in section 7.5, you’ll build the Composite class that will
benefit the components you’ll build for the Dashboard in the following chapters.

7.4 Creating a composite widget from other

composite widgets

Let’s get a little more complicated and show that
you can treat composite widgets just like normal
widgets. This means you can build even more com-
plicated widgets by plugging together other com-
posite widgets as new composite widgets.

 In this section, we’ll look at the Dashboard’s
Colour Picker application, which is shown in
figure 7.14; it can be accessed through the Create
menu, allowing the user to change the color of
the Dashboard name’s background. The code for
the sliders is included in the electronic down-
loads; rather than give a large code example in
this section, we’ll discuss some of the key aspects of the composite widget to give
you an idea of how quickly you can put together fully functional components
using composites.

 This Colour Picker composite widget is made up from two other composite
widgets—two different forms of the slider—and some other normal widgets put
together in a few different panels. We show this breakdown in figure 7.15, which
indicates that the whole composite is constructed in a HorizontalPanel. This

Figure 7.15

Breakdown of widgets and

panels used in the

ColourPicker application

Figure 7.14 Dashboard Colour

Picker application composed of

other composite widgets

270 CHAPTER 7

Creating composite widgets

horizontal panel has, from left to right, a ColourPicker (this component is taken
from a live system one of the authors built and so retains its English spelling of the
word Colour), VerticalSlider, and a VerticalPanel inserted into it.

 The VerticalPanel is filled with a number of Label widgets that represent the
RGB values of the selected color.

 The ColourPicker and VerticalSlider are themselves composite widgets
and are created from two Image widgets (ColourPicker is an instance of Grid-
Slider). We’ll first look at how these sliders are created—which begins with look-
ing at the basic Slider class.

7.4.1 Creating a slider

The Slider class takes an image as a background. Another image is placed on a
PopupPanel.

 You could use the background image and thumbnail shown in figure 7.16 to
create the slider shown in figure 7.17.

 You take the drag functionality you saw in chapter 6 and amend it slightly to
constrain dragging in the x or y plane, if needed, and to make sure that you can’t
drag the thumbnail off the ends of the background image. This updated
onMouseDrag() method is shown in listing 7.6.

public void onMouseMove(Widget sender, int x, int y) {
 if (dragging) {
 absX = 0; absY = 0;
 absX = x + getAbsoluteLeft() - dragStartX;
 if (horizontalControl){
 if (absX<startX){ absX = startX; }
 if (absX>endX){ absX = endX; }
 } else {
 absX = startX;
 }
 if (verticalControl){
 absY = y + getAbsoluteTop() - dragStartY;

Listing 7.6 Mouse dragging functionality for the Slider class

Figure 7.17 First view of a

basic slider

Can slider slide
horizontally?

B

Make slide
stay in bounds

C

Fix horizontal
positionD

Can slider slide
vertically?

E

Figure 7.16 Background and thumbnail

image that will be used in the basic slider

Creating a composite widget from other composite widgets 271

 if (absY<startY){ absY = startY; }
 if (absY>endY){ absY = endY; }
 } else {
 absY = startY;
 }
 theSliderThumbnail.setPopupPosition(absX, absY);
 }
}

In the onMouseMove() method, you first check to see if this slider is a horizontal
slider B. If it is, then C you make sure that the x-index never goes outside of the
left and right of the control. If the control isn’t horizontal, then you make sure
the x-index never changes D. Similar code for the y-index starts at E.

 Once you’ve recalculated the new position within the constraints, you move
the thumbnail pop-up F.

 The rest of the Slider class is responsible for trying to set up the mathematics
for dealing with translating screen positions to slider values (and vice versa) as well
as handling one of the problems with using the pop-up panel for this functionality:
If you resize the browser window, the background image moves as it flows in the new
spacing of the browser page—but unfortunately, the thumbnail doesn’t.

 Luckily, you can get GWT to tell the code whenever the browser window is
resized, by using a WindowResizeListener. This is similar to all the EventListen-
ers we discussed in chapter 6 and lets you fire code when the particular event
occurs; see listing 7.7.

Window.addWindowResizeListener(new WindowResizeListener(){
 public void onWindowResized(int width, int height) {
 theSliderThumbnail.setVisible(false);
 DeferredCommand.addCommand(new Command(){
 public void execute(){
 redimensionalise();
 }
 });
 }
});

Now, when the browser window gets resized, the listener’s methods are fired. This
means you hide the thumbnail B and then call the method that moves the
thumbnail to the needed position D. You put this functionality inside a

Listing 7.7 The WindowResizeListener used in the Slider composite widget

Set new
position of
thumbnail

F

Hide
thumbnail

B

Create
DeferredCommandC

Calculate new
dimensionsD

272 CHAPTER 7

Creating composite widgets

DeferredCommand C so that it gets called once the browser has completed doing
all of its tasks (in this exact case, once the browser has completely resized). If we
were to try and call redimensionalise() directly then there is a risk that the
browser has not stabilized yet so repositioning may fail.

 The final point we want to discuss in relation to the code is how you manage
events. When the user drags the slider, it updates certain values, including the x
and y values of the slider index. As those values are updated, you fire an onChange
event to any ChangeListeners that are registered with the widget. To accomplish
that, you implement the techniques shown in chapter 6. You start by making the
widget implement the SourcesChangeEvents interface, which allows you to regis-
ter ChangeListeners into the ChangeListenerCollection’s changeListener vari-
able. Then, whenever a change is made to the slider’s x and y values, you call the
changeListener.fireChange() method. You create sliders using constructors,
and register ChangeListeners in the normal way:

Slider slider = new Slider()
Slider.addChangeListener(new ChangeListener(){
 Public void onChange(Widget sender){
 Window.alert(”Slider has changed”);
 }
});

With the basics of the slider in place, you generate three subclasses that constrain
the thumbnail in its directions of movement, as shown in table 7.4.

The VerticalSlider used in the ColourPicker widget is created from a stripy
colored background representing all the hues that could be selected and an
image appropriate for the thumbnail.

 The ColourPicker widget is a special form of the GridSlider. A GridSlider
allows the thumbnail to move in the x and y planes, and the ColourPicker widget
uses this to present the user with the swatch of colors.

Table 7.4 How constraints are applied to the x and y plane to

 create subclasses of the slider

Name Constrain x? Constrain y?

HorizontalSlider N Y

VerticalSlider Y N

GridSlider N N

Creating a composite widget from other composite widgets 273

7.4.2 Constructing the ColourPicker composite

To create the ColourPicker composite that the user uses
to select the color, you use a GridSlider with a twist. First,
you create a GridSlider whose background is set to the
graduated transparent PNG image shown in figure 7.18.
In the book, it looks black and white due to the white
background color of the page; in the application, you’ll
apply different background colors to it, and it will show
all of the available hues due to its transparency.

 The clever part comes when you start playing with
the slider thumbnails. As you move the slider on the
VerticalPanel, you select a different hue for the color.
As this hue changes, you fire a change listener that sets
the background color of the ColourPicker widget using
the following code:

private void setSwatchBackground(double newHue){
 theModel.setHSV(swatch, newHue,theModel.S, theModel.V);
 String backgroundColour = "#"+theModel.RGBSwatchHexString;
 DOM.setStyleAttribute(swatchImg.getElement(),
 "background",
 backgroundColour);
}

To determine the exact color selected by the user, you take the hue value from the
vertical slider; the saturation and brightness are given by the x and y positions of the
thumbnail on the GridSlider that sits behind the ColourPicker widget. Values
that are displayed in the text boxes are also calculated from these three values.

 Putting the whole composite widget together is a simple case of creating new
instances of each composite and widgets and then placing them in a Horizontal-
Panel.

 You can see that composite widgets are powerful although easy to use if you
plan and set them out in advance. For the Dashboard project, you’ll be using com-
posites to develop the component applications; however, you want to also provide
consistent functionality across all component applications, so you’ll extend the
standard composite class to ensure this. Dashboard component applications will
then extend this new DashboardComposite class.

Figure 7.18 Background

image used in the

ColourPicker widget

274 CHAPTER 7

Creating composite widgets

7.5 Creating the Dashboard composite

The components created as Dashboard applications (those components that are
dragged around such as a Calculator, a server monitor, and so on) will be created
using composites. They also need a way of registering option menu components
into the Dashboard and of setting their names (because that will be displayed in
the header of the DashboardPanel you created in chapter 5).

 You can again harness the power of writing the applications in Java by extend-
ing the standard Composite class to provide functions and fields that help the
components sit in the Dashboard happily. Listing 7.8 shows such a class, called the
DashboardComposite.

public class DashboardComposite
 extends Composite
 implements FocusListener{

 private String name = "Default Name";
 private MenuBar parentMenu;
 protected MenuBar optionsMenuBar = new MenuBar(true);
 private MenuItem optionsMenu ;

 public DashboardComposite(MenuBar parentMenu){
 this.parentMenu = parentMenu;
 }

 protected MenuBar getOptionsMenuBar(){ return optionsMenuBar; }
 public void setName(String newName){ this.name = newName; }
 public String getName(){return name; }

 public void onFocus(Widget sender){ addMenu(); }
 public void addMenu(){
 if (parentMenu!=null){
 optionsMenu = new MenuItem(name, optionsMenuBar);
 parentMenu.addItem(optionsMenu);
 }
 }

 public void onLostFocus(Widget sender){ removeMenu();}
 public void removeMenu(){
 if (parentMenu!=null){
 parentMenu.removeItem(optionsMenu);
 }
 }
}

Listing 7.8 DashboardComposite: Framework code for Dashboard components

Extend Composite
class

B

FocusListener interfaceC

Provide default nameD

Identify
parent
menu barECreate option menu F

Functionality
when composite
gains focusG

Functionality
when composite

loses focus H

Creating the Dashboard composite 275

You extend the normal Composite class B as well as implementing the FocusLis-
tener interface C. This new interface requires you to provide onFocus() and
onLostFocus() methods. These methods are called when the Composite is given
and loses focus on the screen (usually by the user clicking them).

 You give the DashboardComposite a default name D. This field is picked up by
the DashboardPanel you created in chapter 5 and displayed at the top of that
panel. A link is also provided back to the parent’s menu bar E.

 Next F, you create the basis for the Dashboard component’s option menu.
Each Dashboard component has the ability to create an option menu, which is
embedded into the Dashboard when that component gains focus and removed
when it loses focus. When focus is gained, the onFocus() method, required
because you implement the FocusListener interface, is invoked G. It calls the
addMenu() method to add the option menu to the Dashboard.

 The converse of the onFocus() method is the onLostFocus() method H,
which is called when the composite loses focus. It in turn calls the removeMenu()
method to remove the options menu from the Dashboard.

 With all this code in place you’re almost ready to start developing the func-
tional components of the Dashboard. These components are created by extend-
ing this DashboardComposite class and will adhere to the following template:

public myDashboardComponent(MenuBar menu){

 super(menu);
 setName(”MyName”);
 MenuBar optionsMenu = getOptionsMenuBar();
 optionsMenu.addItem(…);
 MyWidget theWidget = new MyWidget();
 initWidget(theWidget);
}

We have one last trick with the DashboardComposite class where you auto-
matically create a new option menu that extends the one provided by the writer of
the DashboardComposite to provide About and This Application Demonstrates
menu items, but we’ll cover those in chapter 14 when we discuss generators. You
can see all this in action in the code by downloading it from www.manning.com/
hanson. The download includes the JSNI code for the examples you’ll see in the
next chapters.

276 CHAPTER 7

Creating composite widgets

7.6 Summary

The last four chapters have provided quite a tour through the key aspects of
GWT—believe us, it took a long time to write, and we can imagine that for you as a
reader it has been a journey. We hope that, by tying everything back to the Dash-
board, you’re still with us! In your hands you should have code for the following:

■ PNGImage
■ ToggleMenuItem

■ DashboardPanel

■ EditableLabel

■ Range of sliders
■ ColourPicker

■ DashboardComposite

All of these will be used in the Dashboard as we go forward.
 In this chapter, you saw how composite widgets can be created and that the

development of them should be treated in a similar manner to how you develop a
GWT application (although without the overheads of the application-creation pro-
cess). A composite is created as a single class extending the Composite object.

 These four chapters have also been the closest that this book will come to
being a reference to the components in GWT. We discussed all the standard wid-
gets, panels, and event-handling objects and indicated where in this book you’ll
be using them in action. With that in mind, it’s time to introduce the final user
interface aspect of GWT by looking at how you can interact directly with JavaScript
when you need to.

277

Building
JSNI components

This chapter covers

■ Overview of JSNI

■ Passing Java objects to JavaScript

■ Calling Java code from JavaScript

■ Loading external JavaScript libraries

■ Wrapping JavaScript code as Java classes

278 CHAPTER 8

Building JSNI components

GWT’s key benefit is the ability to abstract away from JavaScript, which frees the
developer (you!) from concerns over browser differences and developing in an
untyped programming language. But just as normal application code occasionally
uses assembly-language segments for special needs, so client-side GWT applica-
tions can interact directly with JavaScript. In a normal application, you may use
assembly code to get speed advantage or access hardware in the only way it can;
for GWT applications, in our experience, there are four possible situations when it
may be sensible to use JSNI (you may think of more):

■ To enable communication between a main application and component
applications using a JavaScript variable (although only when they can’t be
in the same variable scope)

■ To access browser functionality that hasn’t been included directly with GWT

■ To expose an API of your GWT application to other applications on your
web page that can execute JavaScript (useful if you’re replacing legacy
applications in an existing site)

■ To access useful JavaScript libraries that you don’t have either the patience
or the ability to translate into GWT (you may, for example, be restricted by a
license associated with the library)

For the Dashboard application, you’ll enable communication between the main
application and the component applications by using a JavaScript variable, which
can be set by the menu system and read by the component applications when
they’re being deleted. The original version of the slider we discussed in chapter 7
used the JavaScript Native Interface (JSNI) to find the scroll position of the
browser window to ensure that the thumbnail was moved to the correct location,
regardless of how far the window had been scrolled; this functionality wasn’t avail-
able directly in GWT until version 1.4.

 In this chapter, we’ll look at the general syntax of JSNI and how you can use
JSNI to communicate to the browser and other GWT applications. We’ll round off
the chapter by showing you how to load and access third-party JavaScript libraries,
in particular some JavaScript search libraries from Google, which allow you to
produce Dashboard applications such as those shown in figure 8.1.

 There is a strong caveat with all this talk about JSNI: Ask yourself if you really
need to use JSNI. A lot of the time, the capability you’re after may exist in the stan-
dard GWT. One key thing to remember about JSNI is that it can only be included

Introducing JavaScript Native Interface (JSNI) 279

in client-side code—so no JSNI can appear in code destined for, or on, the server.
This makes sense if you step back and remember that JSNI is JavaScript code,
which needs to execute in a web browser!

 Before you’re in the position of being able to build the two widgets for this
chapter, we need to introduce and explore some of the attributes of JSNI—the
basic syntax and operation.

8.1 Introducing JavaScript Native Interface (JSNI)

JSNI is GWT’s mechanism to allow you as a programmer to embed JavaScript in the
Java code. We can’t overemphasize the point that JSNI is almost a last-resort
approach. Many issues that look like they need JSNI can be solved at the GWT Java
level if you spend time looking. It’s possible to view the relationship between GWT
Java and JSNI as you do the relationship between a high-level programming lan-
guage and assembly code: Yes, you can do it, but it’s sensible only if there is a clear
need to do so.

Figure 8.1 The Dashboard showing the Google Video Search application on the left and the

Google Ajax Search application on the right. Both applications are JavaScript libraries wrapped

as GWT widgets using JSNI.

280 CHAPTER 8

Building JSNI components

 It’s possible to carry this analogy further, because JSNI, just like assembly lan-
guage, is less portable across systems. If you write something in JSNI that works in
one browser, there is a risk that it may not work at all, or perhaps may work in a
different way, in other browsers. As an example, you can count the number of
children for a DOM element using the simple Java GWT DOM.countChildren()
method. If you were to write that method in JavaScript, you would have to, as GWT
does for you, write several versions to cope with DOM differences between Inter-
net Explorer and the other browsers (check out the DOMImplStandard and
DOMImplIE6 classes in the GWT gwt-user.jar file to see the GWT definitions for this
method in the different browsers). In JSNI, you can write only one of these meth-
ods, or you would have to add the own browser detection JavaScript as well. This
isn’t in the spirit of GWT, which advocates writing once and running in many dif-
ferent browsers. There is also the risk that writing your own JSNI code could intro-
duce memory leaks, unless you’re an expert at those matters.

NOTE JSNI is applicable only to client-side aspects of your application, because
JavaScript doesn’t run on the server side. It’s therefore not possible to
use JSNI code in any server-side code or to pass an object over remote
procedure calling (RPC) to the server and expect to be able to execute
any included JSNI code server-side.

However, let’s be a little more positive about JSNI. In the cases where you do have
to use it, it can be powerful. JSNI lets you interface between Java and JavaScript in
a type-safe way; you can use JavaScript objects in the Java code and rely on Java’s
strong typing to protect you against various programming errors. But again, the
more functionality you include in a single JSNI block, the less you can rely on
Java’s strong typing to minimize errors.

 JSNI also provides a seamless way of moving between Java and JavaScript, allow-
ing you to pass objects and exceptions across the boundary in both directions.
Through JSNI, you manage JavaScript objects from Java, and you can call back to
the Java code from the JavaScript code you write. As we mentioned in the chapter
introduction, one use is to wrap a third-party JavaScript library, where you create
JavaScript objects from the library and pass them around the GWT Java code
before perhaps sending them back to the JavaScript library.

 One word of warning about JSNI: It’s potentially a moving target during the
early stages of GWT adoption. The existing model works well in most cases, as
you’ll see later in this chapter, but already several requests for reviews have been
published about changing functionality of certain aspects. A guiding principle of

Introducing JavaScript Native Interface (JSNI) 281

JSNI coding is to spend as little time as possible in “the dark side”; each JSNI
method should be at an atomic level (perform one clear function) so that you iso-
late issues and keep as much control as possible in the strongly-types Java realm.

 Let’s move on and assume that you’re in a situation where JSNI is the approach
you need. The first thing you need to understand is how to use the syntax.

8.1.1 Understanding JSNI

If you’re familiar with writing native methods in Java for other languages, then
JSNI will seem relatively familiar. If you’ve never written native methods before,
don’t worry; their syntax is a little strange but not frightening. Java Native Inter-
face (JNI) is the Java approach that allows Java code to interface with components
written in other languages, for example C or C++ or assembly. JSNI is the GWT Java
equivalent for interfacing with JavaScript components, and it follows a syntax sim-
ilar to that of JNI.

 In the next few sections, we’ll look at the syntax used to cross the boundary
both ways between Java and JavaScript and how the objects you pass over that
boundary are treated. Here’s a simple JSNI method call:

public static native void method_name(ObjectTyp someData)
/*-{
 someData.@org.gwtbook.client.Data::data1 == "GWT In Action"
}-*/;

We hope that doesn’t look too scary, even with the @ and :: symbols sprinkled in.
To start to understand why these are there, we’ll first look at how you call Java-
Script functionality from a GWT Java program.

Crossing the boundary from Java to JavaScript

To include JavaScript code in a GWT application, you must write it in a specific
way so that both the syntax checkers of Java and the GWT Java compiler can recog-
nize it and deal with it appropriately. For syntax checkers, that means ignoring the
code because it isn’t Java; and for the GWT compiler, it means merging it in a
structured way into the JavaScript output of compilation.

 A basic JSNI method is defined as shown here:

public static native void method_name()
/*-{
}-*/;

Define JSNI methodB
Start/end
method definitionC

282 CHAPTER 8

Building JSNI components

In the template, you define the method in a normal Java way, but you must include
the keyword native as one of the modifiers B; this identifies the code to the Java
compiler as JNI code and to the GWT compiler as JSNI code. To help any syntax
checkers know that they should avoid parsing the JavaScript code, you wrap it as a
comment by using a modified standard comment, which starts with the characters
/*- (a forward slash, an asterisk, and a dash) and ends with -*/ (a dash, an asterisk,
and a forward slash) C. It’s also important not to forget the trailing semicolon at
the end of the definition; otherwise your code won’t compile!

 Crossing the boundary from Java to JavaScript can come in two forms: writing
JavaScript code in the Java application that performs some dedicated functional-
ity, or writing JavaScript in the Java application that calls functionality in a Java-
Script library already loaded into the web browser. Both methods follow the same
syntax of extending the previous template to provide parameters, a return type if
necessary (otherwise the return type must be defined as void), and the native
code. You can consider this crossing of the boundary diagrammatically as shown
in figure 8.2.

Figure 8.2

The interaction between

Java and JavaScript code when

crossing the Java-to-JavaScript

boundary in a JSNI call from a

GWT application

Introducing JavaScript Native Interface (JSNI) 283

Here is some typical code required to cross the boundary from Java to JavaScript:

public static native
 return_java_type
 method(java_type parameter, …, java_type parameter)
/*-{
 JavaScript code goes here and
 can use the passed in Java parameters
 return return_java_object;
}-*/;

Overall, the definition is the same as a normal Java method; you provide a list of
parameters that can be passed in and a possible return object type. If you provide
a return type, rather than just a void, then the JavaScript must return an object of
the correct type. (Be aware that JSNI code can’t create new Java objects; it can manip-
ulate ones passed in or create new JavaScript objects, but not new Java objects.)

REMEMBER It isn’t possible to create new Java objects in a JSNI code block. Return
types must either be primitive types, manipulated Java objects that have
been passed in as input parameters, or references to newly created Java-
Script objects (a JavaScriptObject type).

It’s important to understand how the objects you provide as parameters are han-
dled across the Java-to-JavaScript boundary, as you’ll see in the next section.

Passing Java objects across the Java-to-JavaScript boundary

We have mentioned before that one of the benefits of using Java to develop the
Ajax/rich Internet applications is the strong typing provided by the Java lan-
guage, which isn’t present in JavaScript. This missing typing model could cause
problems as you start crossing the boundary from Java to JavaScript.

 Unfortunately, there isn’t much you can do about the typing capabilities of
JavaScript. Once the objects have passed into the realm of JavaScript, they’re sadly
on their own. This brings us back to the point we mentioned earlier—the shorter
amount of time you can spend in this potentially lawless world of JavaScript, the
better. If you have to spend a long time there, it’s preferable that you do so only to
interact with stable third-party JavaScript libraries. What you can do, though, is
ensure that a clearly defined and repeatable mapping exists between Java typed
objects and JavaScript untyped objects, which is what GWT provides.

 Primitive Java numeric types, such as byte, short, char, int, long, float, or
double, become simple objects in JavaScript whose value is that of the original
object. For example, if you have a Java char, char keyPress = 'a', then it will

Define function
return Java type Parameter

Java types

JavaScript
code

Return
result

284 CHAPTER 8

Building JSNI components

become the JavaScript variable var k = 'a'. Similarly, the Java int, int val = 10,
becomes the JavaScript variable var v = 10.

 A Java String is translated across into JavaScript as a simple variable to which the
original text is assigned. Therefore the Java object String name = "GWT In Action"
becomes the JavaScript variable var s = "GWT In Action". Finally the simple Java
boolean, becomes another simple JavaScript variable; the Java boolean b = true
becomes the JavaScript variable var b = true.

 Moving on to more complicated Java objects that can be passed across the
boundary, you have the Java array, a Java object, and a new object to GWT called
the JavaScriptObject. We’ll discuss the last object more in the next section; for
now, you should think of it as just a reference to a JavaScript object created some-
where else that can be passed around the Java code and on to other JavaScript
methods—but you can’t look into its contents from the GWT Java code. This may
sound strange, but we’ll explain in more detail later in the section on this object.

 Passing an array across the Java-to-JavaScript boundary is treated in a similar
opaque way; you know you have an array object, but you can’t look into its con-
tents. This means that if the JavaScript code needs to use values in the array, then
you should move them out of the array before you cross the boundary: either into
separate parameters or into another type of user-defined Java object. You can
manage Java objects in JavaScript through the JSNI interface, as we’ll discuss next.

 You can also pass your own defined Java objects across the Java-to-JavaScript
boundary; GWT provides a special syntax allowing you to access the fields and
methods of that Java object. This will take a little bit of explaining, so please, stick
with us.

 Let’s say you have an object of type Data, which is defined by the class shown in
listing 8.1 to contain a simple string and an integer.

package org.gwtbook.client;
public class Data{
 String data1 = "GWT In Action";
 int version = 1;
}

You use an instance of this type in a new class defined in listing 8.2, called DataManip.

Listing 8.1 Example class that will be accessed through the Java-to-JavaScript boundary

Introducing JavaScript Native Interface (JSNI) 285

public class DataManip{
 boolean correct = false;

 static boolean checked = false;

 public native void doSomething(Data someData)/*-{
 if(!this.@org.gwtbook.client.DataManip::correct){

 if(!@org.gwtbook.client.DataManip::checked){

 if(someData.@org.gwtbook.client.Data::data1 ==
 "GWT In Action"
 &&
 someData.@org.gwtbook.client.Data::version == 1){
 //Do something else.
 }
 }
 }
 }-*/;
}

In the DataManip class, you have a couple of additional class variables: one called
correct B and then other a static variable called checked C (it doesn’t matter
what they stand for in this example). You also define a JSNI method D called
doSomething(), which takes as a parameter an instance of the Data class but
returns nothing (we’ll cover going across the JavaScript-to-Java boundary in a
short while). When doSomething() is called, you want it to look at the DataManip
class’ correct value E; if that is false, then you want to check the static field
checked F. If that too is false, then you confirm whether the Data instance
passed in as a parameter has its data1 field set to “GWT In Action” and the ver-
sion value set to 1 G; if they are, then you do something else in the code.

 To perform this functionality, you need to access an instance field, a static
field, and a field in a Java object passed in as a parameter, in that order. In each
case, you need to use the JSNI-specific syntax for accessing Java objects, the tem-
plate for which is shown in figure 8.3.

Listing 8.2 Example class demonstrating accessing Java objects through the

 Java-to-JavaScript boundary

Define local
variable

B Define static
variable

C

Define JSNI
method

D

Access instance’s
local variable

E

Access static
variableF

Access variable in
parameter object

G

Figure 8.3

Explanation of the JSNI method to access

a field in a Java object. The first part

comprises the name of the instance (an

object name, the keyword this, or blank

for a static field). Next are the fully

qualified class name and the field name.

286 CHAPTER 8

Building JSNI components

When you access the instance field E, the name of the instance is this, the class
name of this instance is org.gwtbook.client.DataManip, and the field you’re
after is called correct. Accessing this field is, therefore, performed by writing the
following in the JSNI code:

this.@org.gwtbook.client.DataManip::correct

Accessing the static field F requires you to access a field where there is no defined
objectName (because the field is static across all instances). In JSNI, you write

@org.gwtbook.client.DataManip::checked

(Notice that the period is missing and only the @ symbol is still required if there is
no object name to reference.)

 Finally, when you want to reference the data1 field in the parameter that you’ve
passed in, then the parameter name, someData, is the objectName, and you write

someData.@org.gwtbook.client.Data::data1

You can also access the methods from the Java object passed across the boundary
in a similar way. We’ll discuss how that works once you’ve seen how you return
objects back across the boundary to the Java code.

Sending objects back across the JavaScript to Java boundary

When you’ve completed the functionality you need in JSNI, it’s common to pass
an object back in return. As with all Java methods, you need to define the return
type of the JSNI method, which will either be a Java primitive, a Java object, a GWT
JavaScriptObject, or void. Diagrammatically, you’re performing the action
shown in figure 8.4; once complete, program control is back in the hands of the
GWT Java code.

 Just as there was a defined mapping between Java and JavaScript objects for the
parameters, such a mapping exists when going from JavaScript to Java for the
return values.

 To get a Java primitive numeric coming out of the method call, the value
returned from the JavaScript must be a numeric value. You need to be careful
with returning primitive numerics because GWT doesn’t determine whether the
type is correct. If you define the Java method to return a Java int, and the Java-
Script returns the value 1.5, then the result passed out of that surrounding Java
method will be unpredictable.

 Returning Strings and booleans is much simpler because they translate
directly to their Java equivalents. Java objects can also be returned from the Java-
Script; however, you can’t just create Java objects in the JavaScript. If you want to
return a Java object, then it must have been passed in as one of the parameters.

Introducing JavaScript Native Interface (JSNI) 287

Take care if you’re returning null objects, because the JavaScript undefined value
isn’t treated by JSNI as null; if it’s used, unpredictable results can occur (you must
always use the null value). You may even want to ensure that any JavaScript variable
you pass back is checked to be sure it isn’t the undefined value before it’s returned.

 We mentioned briefly when passing in parameters that GWT provides a special
object called the JavaScriptObject. This type of object can be returned by the
JSNI method if a new JavaScript object is created as part of the call. You’ll see this
in use often later in this chapter when you use JSNI methods to create new Java-
Script objects from a third-party library. You need a reference to these third-party
objects in the Java code because you’ll later be calling methods on them, and
they’re therefore passed back as subclasses to the JavaScriptObject. This Java-
ScriptObject is opaque to the Java code—you can’t use Java code to call the
methods in it or even to see its fields; you need to pass them back into new JSNI
methods to do that. But you’ll see this in action a little later. First we need to finish
our journey through the JSNI syntax by looking at how you can call Java methods
from JavaScript.

Crossing the boundary from JavaScript to Java

As well as being able to access fields on Java objects from JavaScript, you can exe-
cute methods defined in those objects in a similar manner, as shown in figure 8.5.

Figure 8.4

Examining the interaction

between Java and JavaScript

code when returning values

across the JavaScript-to-Java

boundary in a JSNI call from a

GWT application

288 CHAPTER 8

Building JSNI components

To refer to a method, you use a syntax similar to that you used to refer to fields.
There are, however, some slight differences. This time, the generic template for
calls to methods is shown in figure 8.6.

 The first part of this should be familiar from when you were accessing fields,
with the same discussion about there being no objectName if you’re accessing a
static method, using this if you accessing a method in the current instance, and
using the parameter name if you’re accessing a passed-in object to a method. The
difference occurs in the second half of the template, where you see the values
param-signature and arguments. The arguments part is a list of the various argu-
ments whose types match the parameter signature. JSNI uses the internal Java

Figure 8.5

Examining the interaction

between JavaScript and a

Java object when crossing

the JavaScript to Java

boundary in JSNI

Figure 8.6 Explanation of the JSNI method to access a method in a Java object. First is the

instance name, followed by the fully qualified class name. The method name is followed by the

parameter signature and then the arguments.

Introducing JavaScript Native Interface (JSNI) 289

method signature to define the parameter signature, but it doesn’t require a defi-
nition of the return type to be included. Parameter type signatures are defined in
table 8.1.

Let’s look at a simple example, shown in listing 8.3.

package org.gwtbook.client;
public class JSNIMethodExample{

 public void m1(String s){
 // Do something with the String s
 }

 Public void m2(int num){
 // Do something with integer num
 }

 public native void doSomething(String s, int num)/*-{
 this.@org.gwtbook.client.JSNIMethodExample::m1
 (Ljava/lang/String;)(s);
 this.@org.gwtbook.client.JSNIMethodExample::m2(I)(num);
 }-*/;

}

Table 8.1 Java type signature for various Java types

Type signature Java type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

L fully qualified class; Fully qualified class

[type type[] (an array)

Listing 8.3 Sample attempts to call methods in a Java class from JavaScript

Call method
with String
parameter

B

Call method with
integer parameter C

mailto:this.@org.gwtbook.client.JSNIMethodExample::m1

290 CHAPTER 8

Building JSNI components

In B, you call the m1() method in this class, which takes a Java String as its
parameter; so, you must define the parameter signature as Ljava/lang/String;.
Then, you call the m2() method C, which expects an integer, so the method sig-
nature is I. (In your code, these definitions should all be on one line—it’s some-
times difficult to get all of them on one line in the book!)

 The final type of objects that can come out of the JSNI call are exceptions.

Handling exceptions

It’s strongly recommended that JavaScript exceptions be handled in the Java-
Script segments of the JSNI method and that Java methods be handled in Java
code. The reason is that when a JavaScript exception creeps over the JavaScript
boundary into the Java, it becomes, and can only become, an object of type
JavaScriptException.

 You don’t necessarily lose information about the JavaScript exception, because
you can use the getName() and getDescription() methods to return String val-
ues about the original JavaScript exception. But relying on these methods leads to
messy code requiring the use of String comparison to handle the exceptions,
whereas they can be handled more gracefully in the JavaScript code.

 The only exception to this rule is where an exception is raised in Java code
called by a JSNI method, which is then handed back to more Java code. In this
case, the original Java exception typing is preserved through the boundaries.

 With all these basics in place, let’s look at the occasions when we said you may
need to use JSNI, starting with how you perform different types of communication
between components (browser, GWT applications, and legacy code).

8.2 Communicating using JSNI

You can use JSNI to allow the applications to talk to the browser, to allow GWT
applications to message each other (on the client side), and to allow legacy appli-
cations to talk to the GWT application. This chapter looks at each of these types of
communication in turn.

 Due to the process GWT uses to load GWT applications, which we’ll look at in
chapter 17, you have to subtly alter the way in which you access the standard Java-
Script variables window and document. The way that GWT loads the applications
means you don’t have direct visibility of these JavaScript variables; however, GWT
fixes that in one of two ways—you can talk to the browser either using a method in
the Window Java class or through the newly provided JavaScript variables $wnd and
$doc. The Window class, that we’ll look at next, keeps you in the realm of Java.

Communicating using JSNI 291

8.2.1 Chatting to the browser via GWT Java

If you’re thinking of using functionality normally associated with the JavaScript
window variable, you should first double-check that the GWT Window class (which
can be found in the com.google.gwt.user.client package in gwt-user.jar)
doesn’t provide the access you’re looking for. It provides access to a number of
functions normally accessed through the JavaScript window variable (such as rais-
ing alert and confirmation windows, opening new browser windows, setting the
browser title, and enabling/disabling scrolling). You’ll use this class in the Dash-
board to display the confirmation message when a user deletes a component, as
you can see in figure 8.7.

 When the user attempts to delete an application, you create a confirmation
box using the code shown in listing 8.4. (If you wanted purely an alert window,
then you could use the Window.alert() method.)

Window.confirm(
 messages.ConfirmDeleteMessage(
 this.parkComponent.getName()));

While we’re thinking of the Window class, we should point out that in the Dash-
board, you prevent the browser window from scrolling by using the Win-
dow.enableScrolling() method; passing false to this method lets you to stop

Listing 8.4 Using the confirm() method in the Window class to present a

 confirmation window

Figure 8.7

Dropping the Slideshow widget on

the trash icon pops up a JavaScript

confirm message. Rather than using

JavaScript to get the message, you

use the GWT Window class’s

confirm() method.

292 CHAPTER 8

Building JSNI components

component applications from moving completely out of the browser area. The
majority of the communication with the browser should be performed through
the provided GWT classes. But on occasions where GWT hasn’t provided a mecha-
nism as yet, you’ll have to dig down to the native JavaScript to do that.

8.2.2 Chatting to the browser via JavaScript

On rare occasions, the methods provided by the GWT Java classes for communi-
cating with the browser won’t provide the functionality you need. In these cases,
you need to use JavaScript (through JSNI); but because of the way the GWT load-
ing mechanism works, you can’t use the normal JavaScript window and document
variables (see chapter 17 for more on the loading mechanism). Instead, GWT pro-
vides the variables $wnd and $doc, respectively.

 Prior to GWT 1.4, the Slider class you built in chapter 7 had an example of using
these variables. When a user clicks the slider’s background, you want the thumbnail
to move to the appropriate location. This works fine using the standard methods,
until someone scrolls the screen. Once that happens, the x and y positions the
onMouseDown event provides you with no longer correlate with the locations on the
slider’s background. You need a way to obtain the scroll-off sets and then use those
in the positioning calculations. The Slider class originally included some JSNI
code that was responsible for getting those values. From GWT 1.4 on, GWT provides
its own method in the Window class to do the same task. The code you would have
used to implement that functionality is shown in listing 8.5.

private static native int getScrollYOffset () /*-{
 var scrOfY = 0;

 if(typeof($wnd.pageYOffset) == 'number'){
 scrOfY = $wnd.pageYOffset;
 }else if($doc.body &&
 ($doc.body.scrollLeft || $doc.body.scrollTop)){
 scrOfY = $doc.body.scrollTop;
 }else{
 scrOfY = $doc.documentElement.scrollTop;
 }
 return scrOfY;
}-*/;

Listing 8.5 JSNI code to get the y offset of scrolling in the browser window

Access JavaScript
window variable through
GWT $wnd variable

B

Access JavaScript
document variable
through GWT $doc
variableC

Communicating using JSNI 293

You use both the $wnd and $doc variables to access y offset properties of the browser.
At B, you retrieve the pageYOffset value for non-IE browsers, and at C you need
to use the $doc variable to retrieve the body.scrollTop variable for IE. Whichever
value you eventually retrieve is the one returned to the caller of the method.

 This is also a great example to point out the limitation of JSNI we spoke of ear-
lier—managing browser differences. The code tries to identify browser differ-
ences using a number of conditional statements, checking for the existence of
particular variables to understand what type of browser it’s dealing with. Not
exactly elegant, and it could be solved using class replacement based on the
browser property technique we discuss in chapter 15, but that would make it
harder to explain the point of this example!

 If you’re confident that there are no browser differences, then you can pro-
ceed in the manner shown in this section. Through these $doc and $wnd variables,
all the usual window and document browser functions are possible. Note that the
Slider class now uses the GWT 1.4–provided methods Window.getScrollleft()
and Window.getSrollTop() instead of your JSNI method.

 Another place in the Dashboard where you use these variables is to give the
Dashboard user the ability to change locale through the menu system. When the
user clicks a locale in the menu system, you call the function shown in listing 8.6
with the appropriate locale parameter. (The GWT Command that is called when
the menu is clicked first removes the onWindowCloseListener(), which you
added in chapter 6, so the user isn’t bombarded with warning messages; then, this
code is called by that Command.)

private native void changeLocale(String newLocale)/*-{
 var currLocation = $wnd.location.toString();
 var noHistoryCurrLocArray = currLocation.split("#");
 var noHistoryCurrLoc = noHistoryCurrLocArray[0];
 var locArray = noHistoryCurrLoc.split("?");
 $wnd.location.href = locArray[0]+"?locale="+newLocale;
}-*/;

You’ll use the $wnd variable often when interfacing between GWT applications and
any JavaScript library that may have been loaded by the application, as well as
when exposing an API into the GWT application.

Listing 8.6 JSNI code to change the locale

Retrieve current
location

Get base
URL

Set new location

294 CHAPTER 8

Building JSNI components

8.2.3 Talking to a GWT application via a JavaScript API

GWT applications come in many shapes and sizes. Some, like the Dashboard, take
up all of the browser’s space; many others fit in a small segment of a web site. As
you saw in chapter 1, there will be times when the GWT application may replace
an existing application. In all these cases, you may need to talk to the application
from an external entity—which may be another GWT application or some legacy
code. In order to do this while preserving the standard GWT loading mechanism,
you need to expose the GWT application through a JavaScript API, something that
GWT can easily manage with a bit of JSNI magic.

 To expose an API, you need to expose JavaScript methods outside of the appli-
cation that have the following features:

■ Can call parts of the application’s code

■ Have names that don’t get obfuscated by the compiler so you can reference
them

You can achieve the first part of this through using JSNI to call back to static meth-
ods in the code. The second part is achieved by carefully constructing new meth-
ods in the browser by using JavaScript definitions. You can access the main
browser page through the $wnd object. To create new JavaScript methods at that
level, you create definitions along the following lines:

$wnd.newMethodName = function(parameters){
 // Some code
}

If you make the internal part of this definition a JSNI call back to static methods in
the GWT application, then you’ve exposed an API to external applications. Let’s
look at how you do this for the Dashboard application.

 There isn’t much of an API that you can expose for the Dashboard you’re build-
ing, but for the sake of an example, you’ll expose two methods for setting and get-
ting the Dashboard’s name (which is usually changed by the user clicking it and
typing in a new name). In the application download, we provide another HTML file
than the one you’ve been using so far; it’s called Dashboard_APITest.html. That file
provides two new buttons, Get and Set (at the top of the web browser page), which
aren’t part of the GWT application but call the API methods. Figure 8.8 shows that
clicking the Get button displays an alert window with the current name of the Dash-
board as its contents.

Communicating using JSNI 295

When you click the Set button, the JavaScript in
the HTML page calls the Dashboard’s
__setDashboardName() API method, which calls
back through the defined API into the Dash-
board application and changes the name, as
shown in figure 8.9.

 In the Dashboard.java file, you’ll find the
segment of code that accomplishes this (see list-
ing 8.7).

public static void setDashboardName(String s){
 dashboardName.setText(s);
}

public static String getDashboardName(){
 return dashboardName.getText();
}

public native void setUpAPI()/*-{
 $wnd.__setDashboardName = function(s){
 @org.gwtbook.client.Dashboard::setDashboardName
 (Ljava/lang/String;)(s);
 }
 $wnd.__getDashboardName = function(){
 return @org.gwtbook.client.Dashboard::getDashboardName()();
 }
}-*/;

Listing 8.7 Methods involved in providing the Dashboard’s external API

Figure 8.8

Clicking the Get

button on the web page to

activate the Dashboard’s API

getDashboardName() method

Internal Java method to
set Dashboard name B

Internal Java
method to set
Dashboard
name

C

Internal JSNI method to
set up API methods

D

Add set method to
browser’s window
objectE

Add get method to
browser’s window object F

Figure 8.9 The result of clicking

the Set button on the web page,

which activates the Dashboard’s API

setDashboardName() method

296 CHAPTER 8

Building JSNI components

The first two methods (B and C) provide the functionality for setting and get-
ting the Dashboard’s name in normal Java code, which is held on the Editable-
Label widget called dashboardName.

 The third method D is the JSNI method that sets up the external methods for
the API. In this method, you can see the creation of two new JavaScript methods:
one for setting the Dashboard name E and the other for getting the name F.

 It works by adding two new methods to the browser’s window object, which
then means those methods are available to anyone else who can see the browser’s
window object. In the new method definitions, you use JSNI to refer to the static
methods (B and C) in the Java class. If an external entity calls the
__getDashboardName() JavaScript method accessible from the browser’s window
object, then the GWT Java getDashboardName() C method is invoked.

 To test the API, add two new buttons to the Dashboard_APITest.html file, which
call the set and get methods as follows:

<button onClick="javascript:__setDashboardName('External Test');">
 Set
</button>
<button onClick="javascript:alert(__getDashboardName());">
 Get
</button>

Each button calls the appropriate JavaScript method.
 You can use this API approach to provide access to whatever functions you

require in the GWT applications by adding the necessary code. As we mentioned
at the start of this section, this approach can be useful if you’re migrating an exist-
ing web site component by component, because you can still allow legacy Java-
Script code to access new GWT applications in the way they accessed the old
JavaScript code the application has replaced.

 Using an API is a way of calling into the GWT applications, and you could use
the same approach to communicate between two separate GWT applications on a
web page. Another way to do this inter-application communication is to use a vari-
able stored in the browser page and pass values through that variable.

8.2.4 Talking between GWT applications

When you drag a Dashboard component application over the trash icon, you want
it to be removed from the screen. Before it’s removed, though, you need to check
whether the user should be asked for confirmation about whether it should be
deleted. The mechanism you’ll use is for the component application to check a
JavaScript boolean variable, which is set by the main Dashboard application. This

Communicating using JSNI 297

is a useful approach when you need to pass data between two distinct GWT appli-
cations, but it should be limited to that situation.

 The normal way of passing information between components in your applica-
tion is to ensure that both components are in the same variable scope in your
GWT code, as shown on the left in figure 8.10.

 To understand this idea of the scope of a variable, check out the code shown in
listing 8.8. The variable confirmDelete is visible to both objects.

public class Test{
 boolean confirmDelete = true;

 public class Obj1{
 public Obj1(){
 confirmDelete = false;
 }
 }

 public class Obj2{
 public Obj2(){
 confirmDelete = true;
 }
 }
}

Listing 8.8 How a variable can have scope over a couple of objects

Figure 8.10 On the left, the variable is in the scope of both components and can be

manipulated directly in the code. On the right, the variable is out of the scope of both

components, so another mechanism is needed to alter the variable’s value. For the

Dashboard, you manipulate the variable using JSNI code.

298 CHAPTER 8

Building JSNI components

Most of the time, you can make sure the variables needed are in scope of all com-
ponents by having a classwide variable as shown in listing 8.8, by having setters
and getters in the subclasses, or by using a static variable. Typically, components
that need to share variables are in the same panel, or composite widget, or appli-
cation. However, on rare occasions, you can’t keep a variable in scope.

 In the Dashboard application, you have a variable called confirmDelete that
needs to be shared with the menu system and all the DashboardPanels. If the vari-
able is set to true and the panel is dragged over the trash icon, then the panel
confirms with the user whether they want to delete it. Although you can keep this
in scope of the component applications by using a static variable in the Dashboard
class, you’ll break the rules slightly and implement it as a JavaScript variable out-
side the scope of the GWT to allow us to explain the concept shown on the right in
figure 8.10.

 In a model such as that shown in figure 8.10, you make a JavaScript variable in
the HTML page and then use JSNI code in the Java GWT applications to access it.
The code in the Dashboard.java file to “get” and “set” this JavaScript value is
shown in listing 8.9.

private native void setConfirmDelete(boolean confirmDelete)/*-{
 $wnd.confirmDelete = confirmDelete;
}-*/;

private native boolean getConfirmDelete()/*-{
 return $wnd.confirmDelete;
}-*/;

At their basic level, the getConfirmDelete() method returns the value of the
JavaScript variable confirmDelete, and the setConfirmDelete() method sets it.
Similar code for getting the value can be found in the implementation of the
DashboardPanel in chapter 5, which completes the link between the main Dash-
board application and the component applications.

 As well as interacting with your own GWT components using JSNI, you can also
use it to interact with existing JavaScript libraries.

Listing 8.9 Code used from the GWT Java code to set and get a JavaScript value set in

 the Dashboard.HTML file

Loading a JavaScript library 299

8.3 Loading a JavaScript library

To use an existing JavaScript library, such as the Google Video Search capability,
you need to load the necessary JavaScript code into the application. In the case of
the Google Video Search, this means loading in two separate JavaScript libraries,
both of them downloaded from Google at runtime. The first is the Google Ajax
Search library (which is common across both the Search and Video Search appli-
cations), and the second is the specific JavaScript library for the video searching.
Because two different libraries are needed, we’ll explore each of the two different
GWT ways of loading libraries: using the HTML file, and using the module XML
file. For the Google Ajax Search library, you’ll use HTML.

8.3.1 Using HTML to load a JavaScript library

The first of the two ways we’ll look at for loading a JavaScript library is through
the HTML file the application lives in. You do so by using the normal way of link-
ing JavaScript files to a web page, using the <script> tag. In the head section of
the Dashboard.html file, you place the following text:

<script src="
 http://www.google.com/uds/api?file=uds.js&v=1.0&key=X"
 type="text/javascript">
</script>

You need to replace the X with a Google Ajax Search API key, which you can
obtained from http://code.google.com/apis/ajaxsearch/ (when using the API in
hosted mode, you should get a key that is linked to the http://localhost:8888
domain; if and when you deploy your code to your server, you’ll need to change
this key to one reflecting your URL at that point).

 That’s it for loading a JavaScript library via the HTML. As you can see, it’s noth-
ing different from the way you would normally load a JavaScript file for an HTML
page. If you don’t have access to the main HTML page, or you want to be more
modular, add the JavaScript through the module XML file. For the video-searching
JavaScript library, you’ll use this module XML file method.

8.3.2 Using the module XML to load a JavaScript library

In chapter 9, we’ll talk about using the ability to load JavaScript libraries for appli-
cations through the module XML file. This is a useful approach if you want to mod-
ularize the applications and ensure that everything required by the application is

300 CHAPTER 8

Building JSNI components

kept with the application. It made sense for you to load the Google Ajax search
JavaScript library in the HTML page, as you just saw, because it’s used by more than
one application.

 The Google Video Search JavaScript library, on the other hand, is only used by
Google Video Search Dashboard application, so you’ll load this code through that
application’s module XML file. In the GoogleVideoSearch.gwt.xml file, you define
the following to load the gsvideobar JavaScript file:

<script src="
 http://www.google.com/uds/solutions/videobar/gsvideobar.js">
</script>

Pre–GWT 1.4, it was necessary to include some JavaScript inside a CDATA tag that
returned true to indicate that the script had loaded. That isn’t necessary begin-
ning with GWT 1.4, because the bootstrapping process now guarantees that the
JavaScript is loaded (assuming of course it can be found).

 With the JavaScript library loaded, it’s time to start using it. There are probably
many different patterns of code you could use to achieve this, but we’ll look next
at the one we, as authors, have become comfortable with.

8.4 Wrapping a simple JavaScript library

One powerful aspect of GWT is the ability to wrap any existing JavaScript library
(your own or from a third party) as a GWT widget that can then be used as normal
code in the GWT applications. You’ll need to do this if you can’t translate the
library into Java, either because it’s too much effort or because you don’t have the
ability (perhaps due to licensing or visibility of code).

 JavaScript libraries exist for Google Maps and the Google Ajax Search capabili-
ties, all provided by Google, and all falling into the category of JavaScript code that
you don’t have the ability to write yourself as Java code. There already exists a useful
GWT widget that wraps the Google Maps functionality (http://sourceforge.net/
projects/gwt/), so we’ll focus on Google’s Video and Ajax search libraries.

 Google’s Video Search capability (http://www.google.com/uds/solutions/
videobar/index.html) provides a nice video-searching application, as shown in fig-
ure 8.11.

 The wrapping of this is relatively simple and a little limited, because you wrap
one JavaScript object and expose only two functions: create() and execute().
But it gives us a good opportunity to examine the concepts in detail and give you
an understanding of how the flow works between the objects you need to create.

Wrapping a simple JavaScript library 301

To take you further into JSNI, you’ll wrap the Google Ajax Search functionality
(http://code.google.com/apis/ajaxsearch/); at the time of writing this book, it
provides five different searchers in one search control, three of which are shown
in action in figure 8.12.

Figure 8.11

The Google Video Search

application running in a browser.

The whole coding for this is a

JavaScript library provided by

Google, which is then wrapped

in JSNI for use in GWT.

Figure 8.12 Three views of the Google Search Dashboard application, showing the Web, Video,

and Blog Search capabilities on the phrase “Kitesurf”

302 CHAPTER 8

Building JSNI components

The key to implementing both of these Dashboard component applications is, of
course, JSNI and the use of all the techniques we’ve discussed so far in this chap-
ter. In the general case, you perform the following steps:

1 Load the JavaScript library.

2 Access the loaded JavaScript library, and create instances of the necessary
objects.

3 Use the objects.

Step 1, loading the JavaScript library, allows you to use a particular capability you
need for the application (for example, to use the Google Video Search capability,
you need to load two JavaScript libraries into the application). You’ve already seen
how you can load libraries, so let’s take the next step and begin to look at how you
access the library.

8.4.1 Accessing the loaded JavaScript library

The journey to create and use objects in the
newly loaded JavaScript library follows the
hierarchy shown in figure 8.13.

 First, you’ll create a simple Java class that
contains the JSNI code needed to interact
with the JavaScript library; this is the GWT
Impl Class. Next, you’ll create a Java class that
extends the basic GWT JavaScriptObject
class. This class is an opaque object that wraps
the JavaScript object obtained by creating a
new JavaScript object from the JavaScript
library. It also contains an instance of the
Impl class to enable you to call the JavaScript
objects methods. Finally, you’ll use the JavaScriptObject class inside the GWT
widget class to provide a widget. Let’s take these three steps in a little more detail,
beginning with the GWT Impl class.

Developing the implementation class

This is the first class you build when wrapping JavaScript libraries, and it contains
all the JSNI code required for interfacing with the particular JavaScript object
you’ll be wrapping. It’s useful to look at JavaScript examples provided by the
library’s documentation to see how you should create the implementation class

Figure 8.13 The object hierarchy

involved with implementing a GWT widget

that wraps a JavaScript library

Wrapping a simple JavaScript library 303

and then identify the methods you want to expose from that. For the Google
Video Search, Google provides the code repeated in listing 8.10 as an example.

<script type="text/javascript">
 function OnLoad() {
 var vbr;

 var options = {
 largeResultSet : true
 }
 vbr = new GSvideoBar(
 document.getElementById("videoBar"),
 document.getElementById("videoPlayer"),
 options
);
 vbr.execute("VW GTI");
 }
</script>

In this Google example, an options object is created B followed by a new
GSvideoBar JavaScript object with two DOM elements representing where the
two components will be displayed as well as the previously created options
object as parameters C. Finally, the code executes a search D on the newly cre-
ated GSvideoBar.

 The GWT Java implementation class will have to emulate all this, but you want
to break out the functionality into different methods to make it more modular.
This allows you to include the methods in the GWT approach to create new wid-
gets, such as that in figure 8.14.

 For the GWT Google Video Search functionality, you define the implementa-
tion class shown in listing 8.11, which closely follows the original GWT example.

import org.gwtbook.client.jswrap.googleVideoSearch.GSvideoBar;

import com.google.gwt.user.client.Element;

public class GSvideoBarImpl {

 public native GSvideoBar create(Element bar,
 Element player) /*-{

Listing 8.10 JavaScript example from the Google Video Search API web site

Listing 8.11 Implementing the Java class that encapsulates JSNI calls to an underlying

 loaded JavaScript library

Create JavaScript
options object

B

Create JavaScript
Video Search object

C

Execute
video searchD

Define create
Java method

B

304 CHAPTER 8

Building JSNI components

 var options = {
 largeResultSet : true,
 horizontal : true,
 thumbnailSize : $wnd.GSvideoBar.THUMBNAILS_SMALL
 }
 var theGSvideoBar = new $wnd.GSvideoBar(bar,player,options);
 return theGSvideoBar;
 }-*/;

 public native void execute(GSvideoBar theControl,
 String searchString) /*-{
 theControl.execute(searchString);
 }-*/;
}

In the GWT approach, you provide a create() method B that creates the
GSvideoBar JavaScript object you’re after. This method is written in JSNI and dem-
onstrates nicely how you cross the Java-JavaScript boundary. The method takes two
GWT Element objects that represent the browser elements where the search-bar
and video player will be displayed. These parameters, along with some options C,
are used directly in the JavaScript call D where the GWT compiler makes sure the
Java objects have become valid JavaScript objects. Notice as well that the JavaScript
object is created by accessing it through the $wnd object.

 After creating the new JavaScript GSvideoBar object in the JavaScript code, you
return it as the result of the method call E. In this case, you now have a JavaScript
object, so you must return an object whose type is a GWT Java JavaScriptObject

Figure 8.14

Breakdown of the Video Search

widget showing the three

components that will be used

Create JavaScript
options objectC

Create JavaScript
Video Search object

D

Return JavaScript objects over
JavaScript to Java interfaceE

Execute video
search G

Define execute
Java method F

Wrapping a simple JavaScript library 305

object (you’ll see how to handle that in the next section—the GSvideoBar Java
object is a subclass of the JavaScriptObject).

 The second method defined in the implementation class is the execute()
method F, which performs the main work in the class by executing a search on
the Google video library. You pass in as the first parameter the GSvideoBar object,
created previously. As it crosses the boundary back into JavaScript through the
JSNI interface, the opaque object turns back into a fully visible JavaScript object
whose methods you can call in JavaScript—which in this case is the execute()
method G.

 Let’s look at this mysterious GSvideoBar object, which in the JavaScript code is
the true GSVideoBar JavaScript object but in the Java code becomes an instance of
the JSObject class.

Adding the JavaScriptObject class

You will normally create JavaScript objects using the JavaScript library on which
you subsequently call methods to provide the functionality you’re after. In the
GWT approach, you want to keep as much of the code in Java as possible and
make use of the strong typing of the language and benefits of the compiler. As
you saw in the last section, you try to make the GWT access to the JavaScript
library as modular as possible, which results in your having to manage the ini-
tially created JavaScript object as a Java object. To do this, you use the GWT Java-
ScriptObject class.

 When you pass a JavaScript object out of a JSNI segment of code and into the
Java, then the GWT compiler automatically treats it as an object defined by the
Java method’s return type. If you define that return type to be a JavaScript-
Object or a subclass of it, then you receive an instance of an opaque Java object.
It’s called opaque because you can’t look into or execute methods on it while in the
Java code. The real use of the standard JavaScriptObject is to act as a handle to
a JavaScript object as you pass it around in the Java code.

 What you do with the JavaScriptObject class is to extend it, hold a reference
to the implementation class, and contain methods that match those you want to
execute in the implementation. You can see this in action if you look at the Java
GSvideoBar class shown in listing 8.12, which extends the GWT JavaScript-
Object class and represents the GSvideoBar JavaScript object.

306 CHAPTER 8

Building JSNI components

public class GSvideoBar extends JavaScriptObject{

 private static GSvideoBarImpl impl = new GSvideoBarImpl();

 public static GSvideoBar create(Element bar, Element player) {
 return impl.create(bar,player);
 }

 public void execute(String searchString){
 impl.execute(this, searchString);
 }

}

You start the class definition by defining that you’ll extend the JavaScriptObject
class. Beginning with GWT 1.4, you shouldn’t provide a constructor method for
JavaScriptObjects or your code won’t compile. (If you pick up some legacy code,
it may not have been updated to reflect this change, so you may see some errors.)
At B, you create a static instance of the implementation class that you’ll use to cre-
ate the new JavaScript object. There is a bit of a circular action going on here; you
call the static create() method C, which in turn calls the implementation class’s
create() method, which returns a new GSvideoBar object.

 Overriding the standard JavaScriptObject class offers two key benefits. First,
you get to provide a name that is more meaningful (this is necessary when you
start wrapping more complicated JavaScript libraries that require you to manage
more than one JavaScript object). Second, you can add the JavaScript object’s
methods into the new class to make it act more like the opaque JavaScript object
it represents.

 An example of this second point is the execute() method D. In this class, you
create a definition that requires the user to pass in the search string as a parameter.
Inside the method, you call the implementation class’s execute() method, passing
in this JavaScriptObject as the first parameter followed by the search string. This
means you’re always addressing the correct instance of the JavaScript object.

 The final step to take is to create the class that will present itself to the GWT
application as the widget.

Creating the widget

Creating the widget class is an easy task; see listing 8.13.

Listing 8.12 Implementing the Java class that embodies a JavaScript object treated as

 an opaque object

Create new
instance C

Extend JavaScript-
Object class

BReference implementation class

Execute JavaScript
methodD

Wrapping a simple JavaScript library 307

public class GVSWidget extends Composite{

 VerticalPanel theArea = new VerticalPanel();
 Label bar2 = new Label("Loading Bar");
 Label player2 = new Label("Loading Player");
 static GSvideoBar gsvideoBar = null;

 public GSvideoBar getGSvideoBar(Element bar, Element player){
 if (gsvideoBar == null){
 gsvideoBar = GSvideoBar.create(bar,player);
 }
 return gsvideoBar;
 }

 public GVSWidget(){
 theArea.add(bar);
 theArea.add(player);
 initWidget(theArea);
 getGSvideoBar(bar.getElement(),
 player.getElement());
 }

 public void execute(String searchText) {
 gsvideoBar.execute(searchText);
 }
}

You need to create two GWT DOM elements where the video bar and player will
reside (you use some simple labels (B and C)) and then add them to a vertical
panel to provide some structure. With the visual structure in place, you call the
create method in the GSvideoBar class using the DOM elements representing the
labels D. You can’t directly pass the labels, because the code expects DOM Ele-
ments, but a call to Label’s getElement() method resolves that.

 Once completed, the create method returns a JavaScriptObject, which you
store in the class field gsvideoBar. You complete the widget by defining a widget-
level method for each of the methods defined in the JavaScriptObject class. In
this case, this means creating an execute() method E. This method calls the
JavaScriptObject’s execute() method, which in turn calls the implementation
class using itself as a parameter to perform the video search.

 That’s all you need to do to perform the simple wrapping of a JavaScript
library with one JavaScript object—the widget is now ready to use.

Listing 8.13 Wrapping the JSNI and JavaScriptObject as a simple GWT widget

Create GWT label as
results placeholder

B

Create GWT label as
video player placeholderC

Get video search
component

D

Execute video
search E

308 CHAPTER 8

Building JSNI components

8.4.2 Using the widget in an application

All this work has created a brand-new GWT widget that you use in exactly the same
manner as any other GWT widget. You can see this in the Google Video Search
Dashboard application code, shown in listing 8.14.

public class GoogleVideoSearch extends DashboardComposite{

 VerticalPanel theArea = new VerticalPanel();
 HorizontalPanel theSearchInput = new HorizontalPanel();
 TextBox theSearch = new TextBox();
 Button startSearch = new Button("Search");
 GVSWidget theWidget;

 public GoogleVideoSearch(){
 super();
 theSearchInput.add(theSearch);
 theSearchInput.add(startSearch);
 theWidget = new GVSWidget();
 theArea.add(theWidget);
 theArea.add(theSearchInput);
 startSearch.addClickListener(new ClickListener(){
 public void onClick(Widget sender) {
 performSearch(theSearch.getText());
 }
 });
 theSearch.addKeyboardListener(new KeyboardListenerAdapter(){
 public void onKeyDown(Widget sender,
 char theKey,
 int modifiers){
 if (theKey==13){
 startSearch.click();
 }
 }
 });
 initWidget(theArea);
 theWidget.execute("porjus aurora");
 }
}

In the Dashboard’s video search application, you create a new GVSWidget and
place it in a new composite that also provides the user with the ability to type in a
search phrase and click a search button. When a phrase is entered and the button
is clicked, you call the widget’s execute() method, and you’re presented with a
number of videos to select from.

Listing 8.14 Dashboard application that uses the new Google Video Search widget

Create GSVideo
widget instance

Perform
search

Perform search after
user presses Return

Perform initial
search

Wrapping a complex JavaScript library 309

 In the next section, we’ll look at how you can take this wrapping strategy a little
further with libraries where there are multiple objects, and we’ll discuss why it
isn’t always efficient to wrap every single JavaScript object.

8.5 Wrapping a complex JavaScript library

The previous section wrapped a simple Java-
Script library where there was only one Java-
Script object. As you saw, this is a real-life
example, but nowadays it’s often the case that
the JavaScript libraries you may want to wrap
contain more than one object that you need
to manage.

 Let’s look at the Google Ajax Search API,
which you’ll use to present the user with a
Dashboard search component similar to that
shown in figure 8.15.

 We won’t go into as much detail about the
wrapping in this section, because we did that
in the last section. What we’ll look at here are
the main differences between this component
and the previous Video Search. First, let’s con-
sider the classes that need to be created.

8.5.1 Generating the classes

This component has a number of different JavaScript objects that could be
wrapped, as shown in figure 8.16 (which is taken direct from the API documentation
at http://code.google.com/apis/ajaxsearch/documentation/reference.html).

Figure 8.16 Google Ajax Search API JavaScript objects, the majority of which

you need to manage in Java code, making this a complex library to wrap

Figure 8.15 Google Ajax API Search

in the Dashboard’s Google Search

application (showing four of the five

available searchers)

310 CHAPTER 8

Building JSNI components

For the widget, you’ll wrap the GSearchControl and all the searchers, and you’ll
do so using the same pattern you saw in the previous section. For example, the
GnewsSearch class becomes the code in listing 8.15.

public class GnewsSearch extends GSearch{

 private static GnewsSearchImpl impl = new GnewsSearchImpl();

 public static GnewsSearch create(){
 return impl.create();
 }
}

The only difference between this and the previous widget is that in the GSearch-
Control, you have more complicated methods such as adding new searchers to the
control. Because you’re working at a Java level, you have simple methods such as

public void addSearcher(GwebSearch theWebSearcher) {
 impl.addSearcher(this, theWebSearcher);
}

Here you add a JavaScriptObject to another JavaScriptObject. As we men-
tioned before, these are opaque objects, so you’re just playing with objects; it isn’t
until you get to the implementation class that the real work of addition occurs. At
this point, you cross the Java-to-JavaScript boundary and call the JavaScript
library’s addSearcher() method on the GSearchControl JavaScript object to add
the GwebSearch JavaScript object:

public native void addSearcher(GSearchControl searchControl,
 GwebSearch theWebSearcher) /*-{
 searchControl.addSearcher(theWebSearcher);
}-*/;

We made a conscious choice not to wrap the GsearcherOptions and GdrawOp-
tions JavaScript objects. Next, you’ll see why and what the impact is of keeping
them as Java objects.

8.5.2 Keeping JavaScript objects as Java objects

When you start dealing with more than one object to wrap, you face a decision: Do
you try to wrap every single object that is available, or do you take a more relaxed
strategy and wrap only those for which it’s necessary? Sometimes you don’t want to

Listing 8.15 The GnewsSearch class, which is part of the Google Ajax Search

 implementation

Wrapping a complex JavaScript library 311

go through the process of creating full Java classes for all JavaScript objects, due to
time constraints or for other common-sense reasons. In the Google Search func-
tionality, two objects perform no function except to hold values of options.

 Although you could create all the implementation and JavaScriptObject
classes for the GdrawOptions and GsearcherOptions JavaScript objects, you would
end up writing vast amounts of code for little benefit. It’s easier to keep these
objects as simple Java classes and then convert them only when necessary, which,
in this example case, is when you draw the control or add searchers.

 When you draw the search control, you call the draw() method in the Search-
ControlImpl, which takes as parameters a JavaScriptObject (the search con-
trol), a DOM element (where the control will be drawn), and a Java object
representing the options. Unfortunately, GWT won’t translate the options object
from Java to the required JavaScript object, so you must do that; but it’s relatively
simple to achieve, as shown in listing 8.16.

public native void draw(GSearchControl searchControl,
 Element div,
 GdrawOptions options) /*-{
 var theOptions = new $wnd.GdrawOptions();
 if (options.@org.gwtbook.GdrawOptions::isInputAttached()()) {
 theOptions.setInput(
 options.@org.gwtbook.GdrawOptions::getInputElement()());
 }
 if (options.@org.gwtbook. GdrawOptions::isDrawModeSet()()) {
 if (options.@org.gwtbook.GdrawOptions::getDrawMode()() ==
 @org.gwtbook.GSearchControl::DRAW_MODE_LINEAR) {
 theOptions.
 setDrawMode($wnd.GSearchControl.DRAW_MODE_LINEAR);
 } else {
 theOptions.
 setDrawMode($wnd.GSearchControl.DRAW_MODE_TABBED);
 }
 }
 searchControl.draw(div,theOptions);
}-*/;

You create a new JavaScript object of the GdrawOptions by writing the code at B
(remember that you need to get the new object through the $wnd object). Once
you have the JavaScript GdrawOptions object, you walk through the fields in the
Java object, checking for values and then setting up the appropriate equivalent in

Listing 8.16 The Google Search draw() method, where options objects become

 JavaScript objects

Get GdrawOptions
JavaScript object

B

Variable set? C

D

Draw search
objectE

312 CHAPTER 8

Building JSNI components

the JavaScript object (for example, at C, you check if an alternative input area is
provided; if so, you set it up in the JavaScript theOptions object D). Finally, you
call the Java SearchControl object’s draw() method with the new JavaScript
theOptions object as a parameter E.

 The Google Search control also provides the functionality for the user to save
search results through a call-back mechanism. Let’s check out how you can imple-
ment and support such functionality.

8.5.3 Calling user-defined code from a library

It isn’t unusual for a third-party JavaScript library to provide the ability to call
some user-defined JavaScript code if an event happens in the library. In the case
of the Google Search Library, you can tell it to display a label after each search
result, which, if clicked, performs a user-defined action (typically, the result of the
search is stored). Figure 8.17 shows this in action in the Dashboard.

 Because this is GWT, you’ll implement this in a GWT style. The first step is to try
to emulate the GWT event-handling mechanisms you saw in chapter 6. You’ll cre-
ate a new KeepListener interface, which requires a simple onKeep() method to

Figure 8.17

Implementing the feedback

mechanism of Google Search

to display an alert when the

Keep label is clicked

Wrapping a complex JavaScript library 313

be implemented that is executed when the user clicks the label in the widget. The
listener is defined as the interface shown in listing 8.17.

public interface KeepListener {
 public void onKeep();
}

You use this listener as shown in listing 8.18 by adding it as an anonymous class to
a search control and implementing the onKeep() method.

searchWidget = new GSearchWidget();
GSearchControl sc = searchWidget.getGSearch();
sc.addOnKeepListener(new KeepListener(){
 public void onKeep() {
 Window.prompt("Saving a result, what name would you
 like to give it?", "MySearchResult");
 }
});

For our keep listener in listing 8.18 we simply pop up a prompt (using the GWT 1.4
Window.prompt() method) to ask for the user to provide a name to save the result
as. In the implementation of GSearchControl, you place the code that ties the lis-
tener to the call-back functionality of the library. The way this is performed usually
depends on the library; in the case of the Google Search, you need to call the set-
OnKeepCallback() method. Google define this method as follows:

 “For instance, if this method is called as .setOnKeepCallback(foo, MyOb-
ject.prototype.myKeephandler), when a user clicks on the keep label, a call to
foo.myKeephandler() is called.”

 This isn’t so easy for you to implement in GWT! However, you can use the trick
that you employed when creating an API again and implement the callback as
shown in listing 8.19.

public native void setOnKeepCallback(GSearchControl searchControl,
 KeepListener theListener) /*-{
 $wnd.__callbackMethod = function(){
 theListener.@org.gwtbook.KeepListener::onKeep()();

Listing 8.17 The KeepListener class

Listing 8.18 Using the KeepListener class

Listing 8.19 Implementing the feedback

Add callback
methodB

314 CHAPTER 8

Building JSNI components

 }
 searchControl.setOnKeepCallback(null,
 $wnd.__callbackMethod,
 $wnd.GSearchControl.KEEP_LABEL_KEEP);
}-*/;

At B, you register a new JavaScript method that calls the onKeep() method of the
listener passed in as the parameter. To tie this together, you then register the new
method with the search control C to be the method called if the user clicks the
Keep label after a search result.

 The final step in completing the generation of the Google Search widget is to
create the widget.

8.5.4 Using a complex wrapped widget in an application

When used in the Dashboard application,
you add the widget as a single component in
a DashboardComposite, resulting in the appli-
cation shown in figure 8.18 (where we
searched for one of the best contributions
Finland has given the world for a cold win-
ter’s night—the sauna).

 Creating a widget from a third-party Java-
Script library means that you must adhere to
any rules the underlying JavaScript library may
place on you. In the case of the Google Search
Library, tasks must be performed in a specific
order, as provided in the documentation:

1 Create the search control.

2 Add the searchers.

3 Create any options.

4 Draw the control.

Listing 8.20 shows how you achieve this to create the widget shown in figure 8.18.

Set up callback method
in JavaScript library

C

Figure 8.18 The Google Search

application in full

Summary 315

searchWidget = new GSearchWidget();
GSearchControl sc = searchWidget.getGSearch();
webSearch = GwebSearch.create();
webSearch.setSiteRestriction("www.manning.com");
sc.addSearcher(webSearch);
videoSearch = GvideoSearch.create();
sc.addSearcher(videoSearch);
newsSearch = GnewsSearch.create();
sc.addSearcher(newsSearch);
blogSearch = GblogSearch.create();
sc.addSearcher(blogSearch);
localSearch = GlocalSearch.create();
sc.addSearcher(localSearch);
GdrawOptions options = new GdrawOptions();
options.setDrawMode(GSearchControl.DRAW_MODE_TABBED);
searchWidget.draw(options);

First, you create a new instance of the search widget B. Then, you use the get-
GSearch() method on the widget to create the JavaScript instance from the
library C. Next, you add a few searchers to the widget: a web searcher D, along
with video, news, blog, and local searchers E. With the searchers added accord-
ing to the Google Ajax Search specification, you create a new set of drawing
options to tell the widget it should draw itself in tabbed mode F. Finally, you
draw the search control in G.

8.6 Summary

JSNI is an extremely powerful way of interfacing with existing JavaScript libraries
and filling in the gaps where GWT may not yet have the functionality you need. It
allows you to apply some of the good control and typing aspects of Java to the Java-
Script interfaces; however, you should keep your use of JavaScript to a minimum.
View using JSNI as you would writing assembly-language code segments in a high-
level language project—it’s for specialized tasks, not for everyday use. The main
reason for restricting the use of JavaScript is cross-browser issues, just as assembly-
language coding restricts your ability to move projects to other machines.

 If you’re going to use JSNI, remember that it’s valid only in your client-side
components, and you’ll need to use the $wnd and $doc variables instead of the
standard JavaScript window and document variables because of the way GWT loads
your application. Also remember that when you’re executing JavaScript code, you

Listing 8.20 Creating a complicated Google Search application using only a few lines

 of Java code

Create Widget InstanceB

Get search
control referenceC

Create and add
web searcher

D

Create and add
other searchers

E

Create and set
drawing optionsF

Draw
search control

G

316 CHAPTER 8

Building JSNI components

don’t have the protection of GWT when it comes to browser differences (for
example, the JavaScript getElementById() method isn’t as robust as the GWT’s
cross-browser DOM.getElementByID() method). Finally, GWT and JSNI don’t allow
you to get around any normal restrictions of JavaScript coding; for example, you
still can’t subvert the security mechanisms that browsers employ.

 We’ve reached the end of our journey through the more client-side related
aspects of GWT, and it’s time to consider the flexibility that GWT provides when
building a real-sized application—using GWT’s modularization aspects.

317

Modularizing
an application

This chapter covers

■ Configuring GWT modules

■ Including external modules

■ Injecting CSS and JavaScript

■ Packaging modules as JAR files

318 CHAPTER 9

Modularizing an application

Now that you’ve built all the user interface components, it’s time to start looking
at how you modularize the application. A principle of software design, which has
now been with us since the 1960s, is the ability to develop code in a modular fash-
ion in order to increase reuse and reliability. GWT supports modular development
in two ways. First, because you’re building a Java application, you have access to all
the benefits of Java’s package structure. Second, and this is new to GWT, is the
XML module concept. There is a certain amount of synergy between GWT mod-
ules and Java packages, but they aren’t the same. Just because a Java package
appears on your classpath doesn’t mean it’s automatically visible by the GWT com-
piler. Don’t worry; we’ll explain this and the steps you need to take in this chapter,
but this topic is often a source of confusion.

DEFINITION A module is a logical collection of classes and resource definitions that it
makes sense to manage as its own entity.

So far, you’ve probably been thinking of the Dashboard application as a single
chunk of software, which isn’t incorrect; but it’s also true that an application can
be constructed out of a number of modules, each module defined in a module
XML file where you also define a number of resource-related items. The Dash-
board lends itself naturally to modularization because it has a main application
and a number of component applications.

9.1 Creating a modularization structure

We mentioned previously that there is a synergy between GWT modules and Java’s
package structure. They’re similar but different things. A Java package consists of a
set of classes organized together for convenience into the same directory. A GWT

module consists of a set of configuration information, relating to a particular GWT
project—including entry points (if any), style sheet references, other modules this
module depends on, and so on. We’ll discuss all this in more detail in section 9.3
when we show how the Dashboard is modularized.

 One word of caution: It isn’t unusual to see a set of Java packages relating to a
particular project and, therefore, a GWT module—it’s possible to get confused
that a GWT module equals a set of Java packages, when it doesn’t. Also be aware
that just because you reference a module doesn’t mean the Java packages loosely
associated with that module are available to your code; you still need to add them
to your classpaths (and that means to both the hosted- and web-mode tools’ class-
paths (and with Eclipse, also the .launch configuration)). Failure to do this will
result in your Java compiler (or IDE) informing you it has no idea where to find

Creating a modularization structure 319

the necessary code—and this can be a frustrating error if you forget that GWT
modules and Java packages aren’t the same thing!

9.1.1 Modularization in GWT

Is modularization used in practice? Yes; the GWT distribution is made up of a
number of modules, including the DOM, TextBox, History, JUnit, i18n, JSON, and
so on. You can see these modules in their hierarchy in figure 9.1.

 If you were to look at the module XML file for i18n, you would see that it
defines the default locale property, provides the JavaScript code for determining
which web browser is being used, and also identifies a special Java class called a
generator that should be executed on all the i18n interfaces in your application to
produce Java classes that bind the interface to the various property files. Modules
can be powerful.

Figure 9.1 Hierarchy of GWT 1.3 modules supplied with the standard

installation of GWT

320 CHAPTER 9

Modularizing an application

In this section, we’ll look at two things. First, we’ll examine all the elements that
can be included inside a module’s XML module, which can resemble the compre-
hensive version shown in listing 9.1. It’s a busy listing, because it includes all the
aspects, but we’ll go into more detail in the remainder of this section.

<module>

 <inherits name="com.google.gwt.user.User"/>
 <inherits name="org.mycompany.client.Sliders"/>
 <inherits name='org.gwtwidgets.WidgetLibrary'/>
 <public path=”GenericPublic”/>
 <servlet path='/upload'
 class='org.mycompany.server.FileUploadServlet'/>
 <define-property name=”externalvisible”
 values=”internet,intranet” />

 <property-provider name=”externalvisible”>
 <![CDATA[
 try{
 var externalvisibility;
 externalvisibility =
 parent.__gwt_getMetaProperty("externalvisibility");
 if (externalvisibility == null){
 externalvisibility = "intranet";
 }
 return externalvisibility;
 } catch(e){
 $wnd.alert("Error: "+e);
 return "intranet";
 }
]]>
 </property-provider>
 <extend-property name="locale" values="sv"/>
 <extend-property name="locale" values="en_UK"/>
 <generate-with class="MyStubGenerator">
 <when-type-assignable class="MyGenTagInterface"/>
 </generate-with>
 <replace-with class="NewClassName">
 <when-type-is class="OldClassName"/>
 <any>
 <when-property-is name="user.agent" value="ie6"/>
 <when-property-is name="user.agent" value="Opera"/>
 </any>
 </replace-with>
 <script src="InjectedScript.js">
 <![CDATA[
 if ($wnd.bar)
 return true;
 else

Listing 9.1 Comprehensive module XML file demonstrating the tags that are available

Inherit core GWT
functionality

Inherit
module
you
defined

Set path to public folder

Inherit
third-party
module

Define
property provider

Define
property
values

Define
interface-
to-server
resource

Extend
property

Register GWT
generator

Define browser-specific
replacements

Inject JavaScript
library

Creating a modularization structure 321

 return false;
]]>
 </script>
 <stylesheet src="InjectedCSS.css">
 <entry-point class="org.mycompany.client.MyApp"/>
</module>

The second thing we’ll look at in this section involves defining how you’ll break the
application into modules and provide the definitive module structure for the Dash-
board. Let’s get started with looking at the various parts that may be included in a
module XML file by examining how you include other modules in an application.

9.1.2 Including other modules in an application

In this section, we’ll discuss how you indicate that a module will include other
modules. All GWT modules inherit at least one other GWT module, called the
User module. This is performed by writing the following in the module’s XML
module file:

<module>
 <inherits name="com.google.gwt.user.User"/>
</module>

If you look at the definition of the User module, you see that it directs the com-
piler to include the majority of the GWT system. How do you know that? You can
look at the User.gwt.xml file included in the com.google.gwt.user package (see
gwt.user.jar). In that module definition is the following:

<module>
 <inherits name="com.google.gwt.core.Core"/>
 <inherits name="com.google.gwt.user.RemoteService"/>
 <inherits name="com.google.gwt.user.DOM"/>
 <inherits name="com.google.gwt.user.HTTPRequest"/>
 <inherits name="com.google.gwt.user.History"/>
 <inherits name="com.google.gwt.user.Popup"/>
 <inherits name="com.google.gwt.user.Form"/>
 <inherits name="com.google.gwt.user.TextBox"/>
 <inherits name="com.google.gwt.user.Focus"/>
 <inherits name="com.google.gwt.user.ImageBundle"/>
 <inherits name="com.google.gwt.user.ClippedImage"/>
 <inherits name="com.google.gwt.user.SplitPanel"/>
</module>

The inherits tag indicates that the module should inherit all the contents from
the specified module. As you can see, you can have multiple inherits tags in a
module definition; in this case, you link to all the basic functionality of GWT.

Inject JavaScript
library

Set entry
point

322 CHAPTER 9

Modularizing an application

(Notice that XML, JSON processing, and internationalization aren’t included by
default. Also, despite HTTPRequest appearing in the previous list, this is an internal
GWT module; if you wish to use, for example, GWT’s XMLHTTPRequest or Request-
Builder object, you need to add additional inherits, which we discuss later.)

 Most modules inherit the User module (User.gwt.xml), because it contains the
“inherits” for the majority of GWT functionality. Thus it would be expected to find
as a minimum the following entry in your module file:

<inherits name='com.google.gwt.user.User'/>

If you’re planning to use some of the extended functionality provided with GWT,
such as the ability to handle JSON responses, internationalization, or the Ajax style
interaction, then you need to include the appropriate inherits tags in your mod-
ule XML file. Following are the four tags that represent what we just mentioned:

<inherits name="com.google.gwt.xml.XML"/>
<inherits name="com.google.gwt.json.JSON"/>
<inherits name="com.google.gwt.i18n.I18N"/>
<inherits name="com.google.gwt.i18n.HTTP"/>

Ajax calls can be slightly confusing. You saw earlier that the GWT User module
inherits HTTPRequest. However, this module definition just helps GWT decide
which class it needs to use for the GWT RPC approach. If you wish to use tradi-
tional Ajax approaches, then you need to explicitly inherit the com.goo-
gle.gwt.i18n.HTTP module.

TIP Basic applications just need to inherit the com.google.gwt.user.User
module. It can be easy to forget that if you use i18n, XML, JSON, or
HTTPRequest methods, such as RequestBuilder, then you need to
explicitly inherit the appropriate GWT modules.

Note that GWT modules shouldn’t be confused with the Java classpath—the two
are complementary but not dependent upon each other. The classpath is used by
the Java compiler and hosted mode to find code that is required. The module
XML file explains to the GWT compiler what GWT modules it needs to find and
use in the application. Remember that the module file can contain many differ-
ent aspects of the application, not just more includes!

 As well as inheriting aspects of the standard distribution, you can inherit your
own, or third-party, components in exactly the same way. If you do so, then you
must take care to set the qualified name of the module correctly. For example,
using the GWT Widget Library, which we discuss near the end of this chapter,
requires the following inherits tag:

<inherits name='org.gwtwidgets.WidgetLibrary'/>

Creating a modularization structure 323

And it’s at this point where confusion may begin between setting Java classpaths
and inheriting modules. By inheriting a module, you’re telling the compiler cer-
tain things about a module, but you aren’t saying where the actual code is—you
do that by setting the classpath to include the code location. (This classpath needs
to be set both in the web- and hosted-mode commands. For the Dashboard, you
need to set it in Dashboard-shell and Dashboard-compile. If you’re using an
IDE, then you may need to set the classpath in that too—for example, adding the
code as an external JAR in Eclipse as well as setting the path to the code in the
launch configuration. Other IDEs have similar needs.)

 For the Dashboard, you’ll create the module structure shown in figure 9.2.
This contains one module for the main Dashboard application, which inherits the
modules for each of the individual component applications.

Figure 9.2 The module structure that will be used in developing the complete Dashboard

application. The component application modules will all be inherited by the main Dashboard module.

324 CHAPTER 9

Modularizing an application

The benefit of creating a structure like this is that you can treat each component
application in isolation, allowing it to have, for example, its own style sheet and
resources. If these applications need to change in the future, you’ve isolated those
changes to just that component. The Dashboard application’s module XML file is
shown in listing 9.2.

<module>
 <inherits name='com.google.gwt.user.User'/>
 <inherits name="com.google.gwt.i18n.I18N"/>
 <inherits name="com.google.gwt.i18n.HTTP"/>
 <inherits name="com.google.gwt.i18n.XML"/>

 <inherits name="org.gwtbook.client.ui.about.About"/>
 <inherits name="org.gwtbook.client.ui.calculator.Calculator"/>
 <inherits name="org.gwtbook.client.ui.addressBook.AddressBook"/>
 <inherits name=
 "org.gwtbook.client.ui.serverStatus.ServerStatus"/>
 : [Add others as necessary]
</module>

Why do you include the standard modules that you have (i18n and XML)? We
mentioned in the design phase that the Dashboard uses GWT’s internationaliza-
tion capabilities, so you need to include that module. Similarly, the Bookmark
menu bar is populated by retrieving an XML file from the server and then process-
ing its contents, so you also need the XML module.

 If you’ve peeked ahead in the book, you know that you have other components
that, for example, process JSON data. You may expect to see GWT’s JSON function-
ality included in the Dashboard’s XML module file. But you don’t need to include
it here, because you can include it in the XML module file that relates directly to that
component. This is the reusability benefit in action—by putting the JSON reference
in the component application, as opposed to at the Dashboard level, you can easily
reuse the component elsewhere, safe in the knowledge that all it needs is kept with
it. If you’ve already downloaded the code from http://www.manning.com/hanson,
then you can see this reference in the YahooSearch.gwt.xml file.

 As we’ve said previously, there is no direct link between the GWT module file and
the Java package structure you choose, but it’s often pragmatic to tie the two
together. To some extent, you can see this in listing 9.2, where each component
application’s module definition is in a new Java package reference. It makes sense

Listing 9.2 The initial definition of the Dashboard module XML file

Inherit core GWT
functionality

Inherit other GWT
functionality

Inherit Dashboard
component applications

Creating a modularization structure 325

to place the Java code for each application in the same named package. For exam-
ple, the XML module file for the Calculator component application is stored as Cal-
culator.gwt.xml in the package/directory org.gwtbook.client.ui.calculator
(according to the module definition shown in listing 9.2)—you’ll also store the nec-
essary Java code in the same package.

 With the basic module inheritance out of the way, it’s time to look at the other
configuration aspects that can be stored in a module definition, starting with set-
ting source and other resource paths.

9.1.3 Setting source and other resource paths

By default, the GWT compiler uses the client directory relative to the module file
to look for the source files of your GWT application/module. For example, if your
module file’s fully qualified name is org.mycompany.MyApp.gwt.xml, then it will
be stored in the org/mycompany directory, and the compiler will assume that the
source code is in the org/mycompany/client directory. If you’ve used the GWT
applicationCreator tool, then this structure is automatically set up for you.

 Sometimes you may decide that this location isn’t best. In that case, you can set
the source path to a different location. Placing the following entry into your mod-
ule XML alters the default path on which code is searched for:

<source path="path-to-code"/>

path-to-code must be a package name, and any classes found in that package or
subpackages must follow the same rules as other classes that are to be translated
by the compiler into JavaScript (typically, the source code must be available and,
at present, that it must conform to Java 1.4 syntax). If this entry isn’t included, the
value <source path="client"/> is assumed.

 Similarly, the compilation process assumes that any files in the public subpack-
age relative to the module XML file are publicly accessible resources and so will be
copied into the compilation output as is (in the Dashboard, the public folder is
used to store all of the trash icon images, for example). To alter this value, you can
use the following tag:

<public path="path"/>

The path must again be a package name, but there are no restrictions on the con-
tent of that package or any subpackages because those contents are copied to the
output folder by the compilation process.

326 CHAPTER 9

Modularizing an application

 It’s possible to filter the files that will be copied from the development struc-
ture to the run structure as public resources using pattern-based filtering. This
places fine-grained control over which resources get copied to the output direc-
tory; the control is based on the FileSet notion from Apache Ant implementation.
Not all aspects of the Ant FileSet are supported; table 9.1 identifies those
attributes and tags that are.

By default, the defaultexcludes attribute of the public tag is set to true and
excludes a comprehensive set of file patterns: for example, **/*~ , **/.#*, **/
CVS, and **/vssver.scc (it excludes by default, for example, any files in the CVS
folder and the vssver.scc file—files that are associated with versioning control soft-
ware). To enable any of these patterns, set the attribute to false:

<public path="public" defaultexcludes="false"/>

To explicitly include or exclude files, you can specify them using the includes or
excludes element, placed in the definition of the public tag. As an example, to
exclude a file called do_not_include_this.js, you write the following:

<public path="public" defaultexcludes="true">
 <exclude name="do_not_include_this.js"/>
</public>

As with the code path, if no entry for the public tag is provided, then it’s assumed
that it defaults to <public path="public"/>.

 Another path-related aspect that is definable in the module XML file is the
path of servlets, or server resources used in hosted mode execution.

9.1.4 Defining an application’s server resources

When running in hosted mode, you need to be able to deploy any GWT remote pro-
cedure call (RPC) code you have as servlets into the hosted-mode web server. The

Table 9.1 Attributes and tags used in pattern-based

 filtering of GWT public resources

Attributes Tags

includes include

excludes exclude

defaultexcludes

casesensitive

Creating a modularization structure 327

first step toward doing this is to register the servlet path and class in the module
XML file using the servlet tag. You’ll do this for a few of the applications given in
chapters 10 through 13. Let’s take one of those as an example now (remember,
you’ll add what you see next into the appropriate component application’s module
file and not the Dashboard’s).

 For the Server Status component application, you’ll require the application to
talk to a servlet that will return status details for the server. In the Java code, you’ll
refer to this servelt as having a path of /server-status. In the Server Status applica-
tion’s module file, you’ll bind that path to the actual Java class that provides the
functionality using the <servlet> tag. In this examples case, the Java class that
provides the functionality is called ServerStatusImpl and is found in the
org.gwtbook.server package. To use this servlet in the code, you define a servlet
entry in the module XML file as follows:

<servlet path="/server-status"
 class="org.gwtbook.server.ServerStatusImpl"/>

You’ll see later in chapter 10 that your application will use this path in the code when
it sets the entry point for the service, using the setServiceEntryPoint(String)
method. For hosted mode, this is all you need to do to get the client-side code talk-
ing to the server code, because hosted mode deploys the server code for you into
the internal web server. You’ll see in chapter 16 that this isn’t the final step required
to set up servlets if you’re deploying outside of hosted mode (in that case, you need
to create a web.xml file for use on the servlet server).

TIP The <servlet> tag is relevant only for hosted mode. When your applica-
tion transitions to web mode, you need to set up your web.xml file
appropriately for the server resources you’re using (we’ll cover this in
chapter 16).

Now, we’ll move on to look at a few tags that start driving the number of permuta-
tions of JavaScript the compiler will be required to produce: the tags associated
with properties.

9.1.5 Managing an application’s GWT properties

We’ll discuss properties in detail in chapter 15; but because they’re set and manip-
ulated in the module XML file, we need to talk about them here, too. The clearest
impact of involving and managing properties for a GWT application that you’ve
seen to this point in the book is that they drive the number of JavaScript permuta-
tions that are produced. The most obvious example where you can see properties
used in GWT is in the generation of a separate piece of JavaScript code per

328 CHAPTER 9

Modularizing an application

browser that is supported. You may not have noticed this yet, because the process-
ing happens in the background and requires no interaction by you. You don’t
even touch the properties involved in these decisions regarding browser choice.

 You were a little more hands-on with properties when we looked at internation-
alization. Earlier in this book, you extended the locale property to include the
Swedish locale. Adding locales to be managed tells the GWT compiler that it
needs to include additional permutations for those new locales. Even if you’ve
included properties files for all of the new locales, if you forget to extend the
property in the XML file, then they won’t be used.

 Note that GWT properties aren’t directly accessible to your application; they’re
used to drive permutations. This means you can’t write code in your application
to get, for example, the current locale. GWT is deliberately set up to resolve all the
permutations of properties at compile time to reduce the size of delivered Java-
Script code. If you desperately need to understand what locale your user interface
is currently presented in, then you can hijack the i18n approach by including a
specific key to describe the locale. Under this approach, you could have a key
called currlocale and in the English local properties file you would write curr-
locale = en; the Swedish local properties file would have currlocale = en. GWT’s
i18n approach would provide a method getCurLocale() that returns the defined
value for the current locale property.

 In this section, we’ll look at the following:

■ Defining and extending properties

■ Handling properties

On to the first item on the list: defining properties.

Defining and extending properties

Properties are defined using the simple define-property tag.

<define-property name="name" values="val1,val2,..."/>

For example, the user agent property that defines the browsers for which GWT
can create JavaScript is given as follows:

<define-property name="user.agent"
 values="ie6,gecko,gecko1_8,safari,opera"/>

You can see this in the UserAgent module XML in the com.google.gwt.user
package. Similarly, the i18n module XML defines one value for locale as follows:

<define-property name="locale" values="default" />

Creating a modularization structure 329

If you want to define your own properties, you use the define-property tag to set
the property name and optionally a set of initial values. You do so as follows:

<define-property name="client-property-name"
 values="comma-separated-values"/>

In chapter 15, we’ll introduce our own user-defined property using this approach
to determine whether the user is looking at the Dashboard from the Internet or
an intranet.

 You also saw in chapter 3, where we introduced internationalization, that you
can add new values to the already-defined locales property. You do so using the
extend-property tag. For example, adding the ISO language code for Swedish
was performed with the following tag:

<extend-property name="locale" values="sv"/>

You use the extension idea when you inherit a set of properties from an existing
module and you want to add new values. In general, you can extend already-
defined properties using the <extend-property> tag, as follows:

<extend-property name="client-property-name"
 values="comma-separated-values"/>

If you’re wondering where these values appear in your code after compilation, for
the Dashboard application you should look at the org.gwtbook.Dashboard.no-
cache.js file in the compiled output. It contains automatically generated Java-
Script representing values for the user agent property, similar to the following:

values['user.agent'] = {
 'gecko':0,
 'gecko1_8':1,
 'ie6':2,
 'opera':3,
 'safari':4
};

Similar JavaScript is set up for the locales. In this case, you have the default locale
that comes with the i18n module you’ve inherited and, in addition, the Swedish
locale property that the Dashboard XML module has extended:

values['locale'] = {
 'default':0,
 'sv':1
};

For the Dashboard, you’ll define new properties in chapter 15 that allow you to
restrict the component applications that are available based on whether the appli-
cation is being accessed from an intranet or the Internet. In your applications, if you

330 CHAPTER 9

Modularizing an application

define new properties, then GWT takes care of producing the additional JavaScript
to representing the values. However, you still need to define how you determine
which property is the one selected—in other words, how to handle the properties.

Handling properties and managing differences

Once properties are provided, you need to provide a mechanism to select one
value over another. The compilation process produces a number of permutations
of JavaScript, covering all the possible property-value permutations; subsequently,
the application-loading mechanism selects the appropriate one.

 The simplest way to determine the appropriate property value is to define it
directly in the application’s HTML file (similar to how the locale property is set).
You can alternatively provide code that allows the application’s loading mecha-
nism to determine the correct property (which is how the browser selection
works). Each approach needs some JavaScript code to be provided in a <prop-
erty-provider> tag in the module file. For the GWT standard properties, i18n
and user.agent, GWT provides the code, for your own user properties, you will
have to do this.

 The generic pattern for providing such code is

<property-provider name="property-name">
<![CDATA[
 Some JavaScript code that returns values of the
 property based on some defined criteria
]]>
</property-provider>

Let’s look at the relatively simple JavaScript code shown in listing 9.3. This is the
code used by GWT to determine the user agent property (which browser the appli-
cation is about to be executed in).

var ua = navigator.userAgent.toLowerCase();
if (ua.indexOf("opera") != -1) {
 return "opera";
}
else if (ua.indexOf("safari") != -1) {
 return "safari";
}
else if ((ua.indexOf("msie 6.0") != -1) ||
 (ua.indexOf("msie 7.0") != -1)) {
 return "ie6";
}
else if (ua.indexOf("gecko") != -1) {

Listing 9.3 GWT-provided JavaScript code that determines the browser into which the

 application is being loaded

Creating a modularization structure 331

 var result = /rv:([0-9]+)\.([0-9]+)/.exec(ua);
 if (result && result.length == 3) {
 var version = (parseInt(result[1]) * 10) +
 parseInt(result[2]);
 if (version >= 18)
 return "gecko1_8";
 }
 return "gecko";
}
return "unknown";

This code is wrapped in the property-provider tag in the UserAgent module XML.
After compilation of the Dashboard application, the org.gwtbook.Dashboard.no-
cache.js file includes this code wrapped as a function in the window array:

providers['user.agent'] = function(){
 var ua = navigator.userAgent.toLowerCase();
 if (ua.indexOf('opera') != -1) {
 return 'opera';
 }
 // rest of the code
}

If other properties are present, then a similar process occurs of creating Java-
Script object for their values and copying the property-provider code into the win-
dow array.

 It’s left to GWT’s bootstrapping process to determine which permutation of
application JavaScript code needs to be selected (for the browser, locale, and
externalvisibility properties in the Dashboard’s case). This method uses a
number of helper functions to extract the correct JavaScript permutation. Here’s
simple extraction from one of the helper methods:

unflattedKeylistIntoAnswers(["true","default","opera"],
 "A0AB2AB8620D2637C30C022EB05A60C3");
unflattedKeylistIntoAnswers (["true","sv","opera"],
 "AC776AB13824B447160C27D2A18B383F");

Ignoring the first parameter, both these entries match the user agent being
“opera”. The first entry matches the locale being the default locale, and the sec-
ond to the locale being set to sv (for Sweden). The final parameter refers to the
MD5 file name that the compiler has given this particular JavaScript permutation
and is the one that will be loaded. (If you look in your compiled application out-
put, you’ll see a number of these types of named files—one for each permutation.
The more different families of properties you want your application to manage,

332 CHAPTER 9

Modularizing an application

the more permutations there will be; by default, there are five, representing each
of the browser types that GWT supports.)

 In chapter 15, you’ll write some JavaScript code that determines the user’s visi-
bility (intranet or Internet) of the application. That code will check the metatags
of the HTML file and is used to restrict the number of component Dashboard
applications the user can access.

 That is how property files drive the generation of numerous permutations of
JavaScript code and how the link is made for loading the correct permutation. In
addition to permutations being driven by properties, their generation can also be
driven by the need to replace class files, which is also property based.

9.1.6 Replacing classes based on property values

One GWT technique that we haven’t explored fully yet is the replacement of Java
files with others based on the value of a property. You used this functionality
already, when creating the PNGImage widget, and GWT uses it a bit to select appro-
priate browser-specific behavior, such as the DOM manipulation class. But because
that happens in the compiler, you’ve probably been unaware of it.

 The technique isn’t restricted to the user agent property (browser type). You’ll
use it again in chapter 15 to see how complete application components can be
altered based on the locale property.

 The most common place that class replacement occurs relates to the different
ways browsers deal with the DOM. GWT copes with these differences by providing
a simple DOM class you use in the Java code; this class is implemented by a num-
ber of increasingly specific classes that inherit the original class, which provide
browser specific methods. You can see this hierarchy in figure 9.3.

Figure 9.3

The various DOM

implementation

classes shown in

their hierarchy. This

allows GWT to cope

with all the browser

differences in DOM

implementation.

Creating a modularization structure 333

When the code is compiled or executed in hosted mode, you need to be able to
select the correct implementation for the browser. Luckily, GWT will do all this
work for you in the background, as long as you tell it the rules in a module XML
file. To tell GWT which class it should use for a particular property value, you use
the replace-with tag inside the appropriate module XML file. The generic for-
mat is

<replace-with class="new-class-name">
 <when-type-is class="old-class-name"/>
 <when-property-is name="property-name" value="property-value"/>
</replace-with>

Let’s look briefly at a concrete example of this from the DOM module XML. In this
example, you replace the generic DOMImpl class with the DOMImplOpera class if the
user agent property is set to the value “opera”:

<replace-with class="com.google.gwt.user.client.impl.DOMImplOpera">
 <when-type-is class="com.google.gwt.user.client.impl.DOMImpl"/>
 <when-property-is name="user.agent" value="opera"/>
</replace-with>

Replacing classes is one mechanism that GWT uses to manipulate your basic code
based on directions given in the module XML file (or one it inherits from). This
functionality relies on the various classes existing in the first place. You can addi-
tionally create code on the fly using generators, the existence of which is also
defined in the module XML file.

9.1.7 Registering generators in the XML module file

Generators are used to create new code based on the existence of an existing class or
interface. This is used in the i18n approach, where GWT takes the interface you use
in the Java code and the properties files you’ve defined and then at compile time
produces a number of Java classes that implement the interface and bind method
names to values in the properties file. They’re also used in the ImageBundle
approach, where a generator is used to combine a number of individual images
that you specify into one image (reducing communication between client and
server). Generators are powerful objects and are registered using the generate-
with tag, whose generic format is as follows:

<generate-with class="generator-class-name">
 <when-type-assignable class="class-or-interface-name"/>
</generate-with>

Several examples of generators provided with GWT show how they’re used to gen-
erate i18n Java classes from the interfaces and properties files you provide. In

334 CHAPTER 9

Modularizing an application

chapter 14, you’ll build your own generator that takes the DashboardComposite
Dashboard applications and extends them by adding a default About menu item
as well as a This Application Demonstrates menu item in the option menu bar.
This is done by a class you’ll write called DashboardCompositeGenerator, which is
executed for every instance of the DashboardComposite class the compiler finds.
The compiler knows to do this because you place the following entry in the Dash-
board module XML file:

<generate-with
 class="org.gwtbook.rebind.DashboardCompositeGenerator">
 <when-type-assignable
 class="org.gwtbook.client.DashboardComposite"/>
</generate-with>

In the DashboardComposite generator, you perform introspection on the Java class;
we show this by creating an About dialog box that lists the internal methods and
fields of the class under scrutiny. It’s important to note that this introspection hap-
pens at compile time and is therefore no use to you if you’re looking for a way to
perform introspection at runtime (something that currently isn’t possible in GWT).

 We’re nearly there; two more entries in the module XML to go. The first of
these is the ability to inject resources (JavaScript library or a Cascading Style
Sheet) into an application.

9.1.8 Injecting resources into an application at runtime

GWT provides the ability to inject into applications JavaScript and CSS resources at
runtime (as opposed to defining them in the applications HTML file). You may
want to do this, for example, if you’re embedding a GWT application into an exist-
ing web page and you want to keep the application’s CSS separate from the web
page HTML. We’ll look at both types of injection in turn: first, injecting JavaScript
resources into applications; and second, injecting style-sheet resources into appli-
cations at runtime.

 Both types of injection again demonstrate the power of GWT’s modularization
approach. In the Dashboard, you inject a CSS style file for the Dashboard in the
Dashboards module file. Each component application is then made responsible
for injecting any CSS or JavaScript code it requires. This way, if you reuse a compo-
nent application in another application, it comes already bundled with the neces-
sary references to make it work.

 Injecting JavaScript and CSS is a useful technique in supporting reusability of
the code. We’ll examine this now, starting with injecting JavaScript code.

Creating a modularization structure 335

Injecting JavaScript resources into an application

To automatically inject a previously written JavaScript library or code into the web
page for use by the GWT application, you use the script tag. This is generically
written as follows:

<script src="js-url">script ready-function body</script>

The js-url is the URL of the JavaScript file you want to be injected.
 In GWT versions prior to 1.4, you’re required to insert code within the script

tag that returns true when you’re sure the JavaScript code has loaded and false
otherwise. From GWT 1.4 on, this code is no longer necessary, because the new
bootstrapping processes ensures that your scripts have loaded prior to starting the
module. But let’s do a quick review, in case you haven’t upgraded to GWT 1.4 or
you come across some legacy code.

 It’s often enough just to check whether a particular function exists in the
browser’s model in order to return the true value. However, when you’re inject-
ing the JavaScript, it’s evaluated such that any JavaScript code required to be exe-
cuted is. Consider this simple JavaScript segment that you may want to inject,
which includes two functions and some executable script:

function fn1() {
 // some functionality
}

doSomething();

function fn2() {
 // something other functionality
}

When you inject this code, the doSomething() function may take some time to
execute, so it’s wise to check for the availability of the fn2 function. For example:

<script src="InjectedScript.js">
 <![CDATA[
 if ($wnd.fn2)
 return true;
 else
 return false;
]]>
</script>

Once the injected JavaScript is loaded into the page, it’s safely available for access
through GWT’s JavaScript Native Interface (JSNI). It’s also possible to load Java-
Script this way and not check whether objects exist—but if you want to do that,
you still need to provide code that returns the value true; otherwise, GWT will

336 CHAPTER 9

Modularizing an application

wait forever. You did this in the Google Video Search Application you built in
chapter 8. In this case, the injection command looks like this:

<script
 src="http://www.google.com/uds/solutions/videobar/gsvideobar.js">
 <![CDATA[
 return true;
]]>
</script>

As we mentioned earlier, beginning in GWT 1.4, the requirement for this code dis-
appears. The second type of injection is the injection of style sheets.

Injecting style sheets into an application

Although you can add style sheets to your application by adding the appropriate
links into the application’s HTML page, there may be occasions where an applica-
tion sits in existing pages that you don’t want to affect. For the Dashboard applica-
tion, you want to keep style sheets for the component applications together with
the application. Rather than having to put a link to all the style sheets in the Dash-
board.html file, you can use each application’s module XML file to inject the
appropriate style sheet as needed. This is performed by the <stylesheet> tag:

<stylesheet src="css-url"/>

css-url is the URL to the CSS file you want to inject. You can indicate a number of
CSS files to be injected into the application. (GWT sometimes gets hung up in
hosted mode when there is more than one style sheet to inject. This is nothing to
worry about, because clicking the hosted browser screen gives GWT the kick it
needs to continue, and this doesn’t happen in web mode.) Figure 9.4 shows the
Dashboard when we haven’t bothered to inject any styles via the module XML files
except the Slideshow application.

Figure 9.4

Dashboard application where styles

have only been injected for the Slideshow

component application. (The figure also

shows the unstyled Calculator and Clock

applications in an unstyled Dashboard.)

Creating a modularization structure 337

The order in which those files are injected is the order in which they’re listed in
the module XML. If you include the same name-style rule in several style sheets,
only the last used one is used. You use this ordering in the Google Video Search
Dashboard application where you load a style sheet provided by Google, and then
you want to alter some of those aspects, such as the video size. The GoogleVideo-
Search.gwt.xml file contains the following two entries in this exact order to
achieve this:

<stylesheet src=
 "http://www.google.com/uds/solutions/videobar/gsvideobar.css"/>
<stylesheet src="CSS/GoogleVideoSearch.css"/>

We’ve now looked at all but one of the aspects that can be placed in a module XML
file. You’ve seen how to inject code and style sheets, how to tell the compiler to
replace code with generators or property-specific classes, and how to inherit other
modules. Now, we’ll look at the tag that turns a simple module into an application.

9.1.9 Setting an application’s entry point

If the module XML relates to a GWT application, then you need to place an
entry-point tag in its associated module XML file. The value of this tag is used by
the compilation process to identify what code needs to be executed upon loading
the application.

 The generic template for the entry-point tag is

<entry-point class="org.mycompany.client.MyApp"/>

This section is short and sweet, because there isn’t much to say about the entry
point apart from the fact that the class mentioned must extend the EntryPoint
class. Only the main application needs an entry point, so this tag is in the Dash-
board’s module XML:

<entry-point class='org.gwtbook.client.Dashboard'/>

But there are no corresponding entries in the component applications, because
they aren’t entry points to the Dashboard application.

 Now we’ve listed all the theoretical aspects that could be included in module
XML file. Let’s look at this in practice by considering a version of the module XML
file for the Dashboard application.

9.1.10 The Dashboard’s module XML file

If you look at Dashboard’s module XML file, you’ll see that it uses almost all the
techniques we’ve discussed:

338 CHAPTER 9

Modularizing an application

<module>
 <inherits name='com.google.gwt.user.User'/>
 <inherits name="com.google.gwt.i18n.I18N"/>
 <inherits name='com.google.gwt.xml.XML'/>

 <inherits name='org.gwtwidgets.WidgetLibrary'/>

 <inherits name="org.gwtbook.client.ui.calculator.Calculator"/>
 <inherits name="org.gwtbook.client.ui.addressBook.AddressBook"/>
 <inherits name="org.gwtbook.client.ui.login.Login"/>
 <inherits name=
 "org.gwtbook.client.ui.googlevideosearch.GoogleVideoSearch"/>
 <inherits name="org.gwtbook.client.ui.googlesearch.GoogleSearch"/>
 <inherits name="org.gwtbook.client.ui.slideshow.Slideshow"/>
 <inherits name="org.gwtbook.client.ui.DashboardUI"/>
 <inherits name=
 "org.gwtbook.client.ui.serverstatus.ServerStatus"/>
 <inherits name="org.gwtbook.client.ui.deckapp.DeckApp"/>
 <inherits name="org.gwtbook.client.ui.yahoosearch.YahooSearch"/>
 <inherits name=
 "org.gwtbook.client.ui.flextableexample.FlexTableExample"/>
 <stylesheet src="CSS/Dashboard.css"/>
 <entry-point class='org.gwtbook.client.Dashboard'/>
 <extend-property name="locale" values="sv"/>
 <extend-property name="locale" values="en_US"/>
 <define-property name="externalvisibility"
 values="intranet,internet"/>
 <property-provider name="externalvisibility">
 <![CDATA[
 try{
 var externalvisibility =
 parent.__gwt_getMetaProperty("externalvisibility");
 if (externalvisibility==null){
 externalvisibility = "internet";
 }
 return externalvisibility;
 } catch (e) {
 return "internet";
 }
]]>
 </property-provider>
 <generate-with
 class="org.gwtbook.rebind.DashboardCompositeGenerator">
 <when-type-assignable
 class="org.gwtbook.client.ui.DashboardComposite"/>
 </generate-with>
 <replace-with class="org.gwtbook.client.Dashboard_intranet">
 <when-type-is class="org.gwtbook.client.Dashboard"/>
 <when-property-is name="externalvisibility" value="intranet"/>
 </replace-with>
</module>

B

C

D

I

J

1)

G

H

E
F

Including third-party modules 339

This module XML description covers that majority of the areas we have talked
about so far. At B you introduce the standard GWT functionality that you be using
in the Dashboard—the standard user modules, as well as the XML handling and
internationalization. If you’ve looked further forward in the book already, then
you know that you’ll be using GWT’s JSON capability; but you don’t list that here
because the Dashboard doesn’t use JSON; the module XML file for the appropri-
ate component application is responsible for including that JSON functionality.

 After including the necessary standard GWT functionality, you include the GWT
Widget Library C and all the component applications included in the Dashboard
application D. You inject the Dashboard’s style sheet E, but note that this style
sheet includes only the main Dashboard-specific styling; styling for the component
applications is delegated to the module XML files for each of those applications.

 At F, you set the entry point for the Dashboard application. Then, you extend
the locale property G to include a Swedish locale and a locale for American
English (see chapter 15). Not content with extending the locale property, you
create a user-defined property (again, see chapter 15) at H and provide some
code in a property provider I that determines the initial value of the user-
defined property.

 Finally, you define a generator (see chapter 14) that supports the Dashboard
component applications J and performs some introspection on the classes. You
wrap the whole file with replacement functionality that makes the application use
(see chapter 15) an intranet version instead of the default restricted Internet ver-
sion 1). (Restricted here is our definition and refers to the fact that the Internet
version of the Dashboard offers fewer component applications than the intranet
version.)

 You saw in C that you inherit the GWT Widget Library, which is a third-party
set of modules and functionality authored by a number of people (found at
http://gwt-widget.sourceforge.net/). Just including this line in the module XML
file isn’t enough to fully integrate a third-party library; you need to perform a
couple of other steps, and we’ll look at those next.

9.2 Including third-party modules

One of the real benefits of GWT’s modularization approach is the ability to pack-
age together chunks of your application for reuse in other applications. By includ-
ing the resource aspects in the XML module file, all the necessary information to
use the components remains together, ready for reuse.

340 CHAPTER 9

Modularizing an application

 This bundling opens up the opportunity for you to reuse your code in your other
projects, to offer your code for use by others, and use code provided by other peo-
ple. A few examples of third-party packages are available for GWT—we, of course,
are partial toward the GWT Widget Library (http://gwt-widget.sourceforge.net/),
but there is also a project looking at combining the various efforts so far into a con-
sistent gwt-commons library of third-party components (http://groups-beta.goo-
gle.com/group/gwt-commons).

 Using a third-party library in your code takes a few simple steps, shown in
table 9.2. Forgetting any of them is likely to cause issues!

The first step is to download your library of choice—in the case of the GWT Wid-
get Library that you’ll use in the Dashboard, go to http://gwt-widget.source-
forge.net/ and retrieve the latest file. In the download is a gwt-widgets-version.jar
file that you need to copy to your project—we normally place the library files in
lib directory of the project; for the Dashboard, this is the DashboardDir/Dash-
boardPrj/lib directory (you may need to create this directory before using it).

 As with any library in Java, you need to add details of the third-party library to
the classpath. For GWT, it’s easiest to do this to the command line tools: Dash-
board-compile and Dashboard-shell. After updating, for example, Dashboard-
shell looks similar to this:

@java -cp "%~dp0\src;%~dp0\bin;
 C:/Program Files/gwt/gwt-user.jar;
 C:/Program Files/gwt/gwt-dev-windows.jar;
 C:/GWTApp/DashboardDir/DashboardPrj/lib/gwt-widgets-0.1.3.jar" #1
com.google.gwt.dev.GWTShell -out "%~dp0\www" %*
 org.gwtbook.Dashboard/Dashboard.html

Table 9.2 Steps involved in using a third-party GWT library in an application

Step Description

1 Download the third-party library.

2 Update the Java classpaths so the compiler (application-compile command) and

shell (application-shell command) scripts can access the new Java code for the

library. These classpaths must point to the source code of the library, because that is what

the GWT compiler uses; just having class files won’t work. If you’re using an IDE, you may

need to update any launch configurations that are also used. This is the case for Eclipse,

where you need to right-click the project, select Run As, and then add the JAR file to the

classpath as an external JAR.

3 Update the application’s XML module file to inherit the new XML module definitions from

the appropriate parts of the third-party library.

Add third-party GWT
JAR archive to classpath

B

Packaging your own modules 341

where B shows the additional entry for the GWT Widget Library.
 In the code, you need to update the application’s XML module file to indicate

that you’ll be using resources from another module in the code. For the Dashboard,
you change the top of the Dashboard XML module file to show the following:

<inherits name="com.google.gwt.user.User"/>
<inherits name="com.google.gwt.i18n.I18N"/>
<inherits name="com.google.gwt.xml.XML"/>
<inherits name="org.gwtwidgets.WidgetLibrary"/>

Now you can use components of the GWT Widget Library in the application. To
add some spice to the Dashboard, you’ll use the Scriptaculous (http://
script.aculo.us/) wrapper included in the GWT Widget Library to hide the color
picker in a flashy way. (Currently, no effects are included directly by GWT—but
they’re being worked on and may appear in a future version!) When the user clicks
the color picker’s close button, you’ll hide it, but using the switchoff effect. This
is easily achieved by using this code:

Effect.switchOff(colourPicker);

Here, you use the static Effect object, call the switchOff() method, and pass the
instance of the GWT ColourPicker widget as a parameter. Before this works,
though, you need to include the script.aculo.us JavaScript in the application; this
is done in the Dashboard.html file (although as we discussed in chapter 8, it could
be done by injecting the JavaScript through the module XML file).

 By including the GWT Widget Library module this way, all the other functional-
ity in the library is available to you. But sometimes you’ll build your own function-
ality that will be useful either to other people or across various applications of
yours. In that case, you’ll be interested in packaging your own modules.

9.3 Packaging your own modules

When you’re developing GWT applications, you’re bound to come across a situa-
tion where you write some widgets or functionality that you end up thinking about
using again in another application. The simple way to solve this is to copy across
the necessary class files into your new application; but that isn’t the best engineer-
ing practice, because you have to remember when you make changes in one copy
to do so in the others (to maintain consistency).

 It’s far better to package your functionality as its own module and treat it the
same way you would when importing a third-party module, as we just discussed.
Luckily, this is easy to do and effectively just requires you to create a JAR file of the

Include third-party widget
library XML module file in
Dashboard’s XML module

342 CHAPTER 9

Modularizing an application

classes you require—but it does take some care,
because you need to conform to the rules of GWT
and ensure that your JAR file contains the source
code (in a normal Java sense, your “libraries”
would contain only the compiled classes).

 For example, for one application we were
building, we had to construct some chat function-
ality over the GTalk network. It initially started as
functionality in another application, and then we
decided it could be shared across other applica-
tions (to be honest, a little pre-thought/design
would have identified this at the outset, and it
could have been set up in such a way initially).

 To create your own package, you need to set
up a mini GWT project that comprises at least a cli-
ent package where your code goes (and perhaps server and RPC packages, if
needed) as well as a module XML file that describes the module. The Chat mod-
ule (which isn’t included in the downloadable code for the book, due to size con-
siderations) was set up with the structure shown in figure 9.5.

 This looks like a standard GWT project, which it is; however, there is no need for
any of the compilation or shell commands, HTML files, or entry points normally
associated with a GWT application. The smackx and smack libraries in the figure are
libraries used to support the Extensible Messaging and Presence Protocol (XMPP;
Jabber) protocol for instant messaging. The module XML file is simple and is
defined as importing the standard GWT user module. It follows the same rules
defined earlier in this chapter. For example, if you wanted your code in a package
other than client, then you’d need to add a source entry (see section 9.1.3):

<module>
 <inherits name="com.google.gwt.user.User" />
 <source path="path-to-code" />
</module>

Now that you have a standalone GWT module, the next step is to export it into a
JAR file. You do this using whatever technique you’re most familiar with—for us,
using Eclipse, it’s as simple as right-clicking the project and selecting the Export
option. When you’re creating the JAR file, it’s vitally important that you include
the Java source files as well as ensuring that you select the Add Directories option
in the Options section of the export wizard. If you don’t do so, then when you use
the module in another application, GWT won’t be able to locate the source code

Figure 9.5 Structure for GWT code

to package as your own module

Creating the Java package structure 343

and will be unable to work (remember that the GWT compiler and shell mode
both work on the Java source files).

 With a JAR file produced that includes a module XML file, and the Java source
files, using them in another application is as simple as following the steps given in
the previous section.

 But enough of GWT modules. We’ve said before that the module file structure
and Java package are independent, but it’s often convenient to link them together.

9.4 Creating the Java package structure

GWT binds your hands slightly in the choice of
package names and structure. When you used the
creation tools in chapter 2, you saw that the appli-
cation’s entry point code had to be in a package
with the subpackage client as the last name.
Thus the Dashboard.java file must be found in
that package.

 GWT applications are beginning to adhere to
some other conventions (mainly as a result of the
example code shipped with GWT). Any server-side
code is generally placed in a sub-package called
server; and if you’re using GWT generators, their
code is usually found in a subpackage called
rebind. You can see all these packages in figure 9.6.

 After the conventionally named packages,
you’re free to pick your own package names and
structure. For the Dashboard, as you can see in
figure 9.6, you’ll create a subpackage called ui,
under client, which contains a new subpackage
for each component application; here, you can
find each component application’s module file.
Additionally, the ui package contains all the new
widgets, panels, and composite widgets you need
to build for the application.

Figure 9.6 Java package structure

used in the Dashboard example

344 CHAPTER 9

Modularizing an application

9.5 Summary

This chapter concludes our demonstration of the basic client-side aspects of a real-
life application—the Dashboard. We started in chapters 2 and 3 where you created
the first version of the Dashboard application. It was limited in functionality but
showed how you need to take the default GWT application and change a number
of files to produce your own application. In chapters 4 through 6, we examined all
the widgets, panels, and event handling that GWT provides by looking at how
they’re employed in the running Dashboard application or its components.

 Chapter 9 discussed how you can lay the foundations for an application whose
size is similar to one that may be found in the real world. You should now have a
clear understanding of the notion of GWT XML module files and their relation-
ship with Java package structuring. From this understanding, you’ve developed
the module and package structure that you’ll be using for the Dashboard. The
code for the Dashboard, and all the component applications discussed in this
book, can be downloaded from www.manning.com/hanson.

 We haven’t discussed the detailed construction of the component applications
in this book, because we’ve focused on their being vehicles to understand aspects
of GWT. In the following few chapters, we’ll introduce more complicated compo-
nent applications including the Server Status application, which introduces client-
server communication; using RPC; the Yahoo Search application, which shows how
to use the classic Ajax XMLHttpRequest approach as well as parse a JSON response;
and how to change components of your application based on GWT properties.

Part 3

Advanced techniques

Part 2 explored the user-interface components of GWT, explaining how to
create custom widgets and bundle them as a reusable library. Part 3 takes you
to the next step by looking at GWT’s advanced toolset for making remote
procedure calls, code generators, application configuration, and interna-
tionalization tools.

347

Communicating
with GWT-RPC

This chapter covers

■ Asynchronous communication

■ Overview of the GWT-RPC mechanism

■ Step-by-step instructions for using GWT-RPC

■ Building an example widget using GWT-RPC

348 CHAPTER 10

Communicating with GWT-RPC

When you’re building a rich Internet application, it’s likely you won’t get too far
before you need to contact the server. The reasons for doing so are numerous
and can range from updating the contents of a shopping cart to sending a chat
message. In this chapter, we’ll explore the primary remote procedure call (RPC)
mechanism that ships with the GWT toolkit. Throughout this chapter, and the
chapters that follow, we’ll refer to this mechanism as GWT-RPC to distinguish it
from other general RPC flavors.

 If you’re unfamiliar with RPC, it’s a term used to describe a mechanism that
allows a program to execute a program on another computer and return the
results of the calculation. This is a simplistic view of RPC, but this is essentially
what you’ll be doing in this chapter.

 Throughout this chapter, as well as the next, you’ll learn by building and
extending an example component. This component, once completed, periodi-
cally requests performance data from the server and displays the values to the
user. We call this example component the “Server Status” component.

 To make the task of writing RPC code as intuitive as possible, this chapter fol-
lows a strict organization. In the first section, we’ll define the component you’re
going to build, including a basic UI layout and defining the data that will be dis-
played in the component. In that context, we’ll discuss asynchronous communica-
tion and some security restrictions of browser-based RPC.

 In the second section, we’ll examine all the nuts and bolts of GWT-RPC. We’ll
define the data object that will be passed on demand between the client and server,
and the serialization of data objects. We’ll then get down to business and write the
code for the component from beginning to end.

 At the end of the chapter, we’ll wrap up the discussion with a detailed overview
of the project and a review of the core participants of the GWT-RPC mechanism.
But it doesn’t end there; chapter 11 extends the example component by applying
software patterns and polling techniques, providing for reusable and maintain-
able code.

 Without further delay, let’s begin the journey by defining the Server Status
example project and examining the fundamental concepts behind the GWT-RPC
mechanism.

10.1 Underlying RPC concepts

In this section, we’ll explain how the GWT-RPC mechanism works by building a
sample component. We wanted the component to be of interest to the widest audi-
ence possible, so we chose to create what we call the Server Status component. The

Underlying RPC concepts 349

purpose of the component is to provide up-to-date memory and thread usage for
the Java Virtual Machine (JVM). As you go through the process of building the
component, think about what other information you may want to add, like per-
haps the number of logged-in users or maybe disk usage. Once it’s completed,
you’ll be able to use this component in the GWT Dashboard project introduced in
chapter 3 or in any of your own GWT projects.

 You need to assemble three pieces of the puzzle to have a working RPC applica-
tion: the service that runs on the server, the client in the browser that calls the ser-
vice, and the data objects that are transported between the client and the server.
Both the server and the client have the ability to serialize and deserialize data so
the data objects can be passed between the two as ordinary text.

 Figure 10.1 provides a visual representation of what the completed Server Sta-
tus component will look like, along with an example service request and response.
The connection between client and server in figure 10.1 is initiated by the client
and passed through a proxy object provided by GWT. The proxy object then serial-
izes the request as a text stream and sends it to the server. On the server, the
request is received by a special Java servlet provided by GWT. The servlet then
deserializes the request and delegates the request to your service. Once your ser-
vice returns a value to the GWT servlet, the resulting object is serialized and sent
back to the client. On the client side, the response is received by the GWT proxy,
which deserializes the data back into a Java object and returns the object to the
calling code.

Figure 10.1 The completed GWT-RPC based Server Status component receiving serialized data

from the server. The three pieces of the RPC application include the service that runs on the

server, the client in the browser that calls the service, and the data objects that are transported

between the client and the server.

350 CHAPTER 10

Communicating with GWT-RPC

The important part to remember about the round trip of the request is that the
code deals with ordinary Java objects, and GWT handles serialization and deserial-
ization of the data automatically. The example transaction in figure 10.1 shows
the request and response data that is passed between the client and server; in
practice you’ll never deal with this data directly, although it may sometimes be
helpful to view the data when debugging a problem. In this book, we won’t
explain the serialization scheme; it isn’t a documented part of GWT and will likely
change in later GWT versions as performance enhancements are introduced.

 The idea of GWT doing most of the work for you sounds great, but the devil is
in the details. You must understand a few things before you start coding, the first
of which is the asynchronous nature of browser-based communication.

10.1.1 Understanding asynchronous communication

Calling a remote service with GWT-RPC is just like calling a local method with a cou-
ple additional lines of code. There is one caveat: The call is made in an asynchro-
nous manner. This means that once you call the method on the remote service, your
code continues to execute without waiting for a return value. Figure 10.2 shows this
graphically; a gap of time exists between the call to the server and the response.

 Asynchronous communication works much like an event handler in that you
provide a callback routine that is executed when the event occurs. In this case, the
event is the return of the call to the service. If you haven’t dealt with this sort of
behavior before, it may feel foreign at first, and it can require some additional
planning when building applications. GWT uses this type of communication due
to the way the underlying XMLHttpRequest object works. The reason why the
XMLHttpRequest object behaves this way is beyond the scope of the book, but in

Figure 10.2 A visual representation of the time-delay of asynchronous communication

used in browser-based communication

Underlying RPC concepts 351

part it’s due to the nature of JavaScript implementations. This asynchronous
nature, though, has some advantages.

 The first advantage is that network latency and long-running services can slow
down communication. By allowing the call to happen asynchronously, the call
won’t hold up execution of the application waiting for a response; plus it feels less
like a web application and more like a desktop application. The other benefit is
that you can use some tricks with this to emulate a server-push.

DEFINITION Server-push is a mechanism where the server pushes data out to the client
without it being requested. This is used in applications like chat, where
the server needs to push messages out to its clients. We’ll look at how to
emulate server-push along with some polling techniques in chapter 11.

Besides asynchronous communication, another RPC issue we need to deal with is
security, which affects how you use any browser-based RPC mechanism.

10.1.2 Restrictions for communicating with remote servers

Security is always a concern on the Internet, especially when a call can be made to
a server that potentially returns sensitive data to the client, or perhaps provides
access to secure systems. We have no intention of conducting a complete exami-
nation of security for web servers, which we leave to the experts. We do, though,
want to explain one feature of making remote calls from the browser, which may
seem like more of an annoyance than a feature. When you make a remote call
from the browser, it must make the call to the same server from where the Java-
Script code originated.

 This means your GWT application running in the browser, which was loaded
from your web server, can’t call services hosted by other sites. For some people,
this is more than an annoyance; it’s a problem that means they may not be able to
deploy their code in the manner they intend. Before we explain why this is truly a
feature, understand that there are ways around it by providing a proxy on your
server that calls the remote server. In chapter 13, you’ll use such a proxy to com-
municate with a third-party search service.

 Note that some browsers may let you override this behavior. For example, with
Internet Explorer, you can tell the browser to allow the remote connection to pro-
ceed, even though it’s attempting to contact a foreign server. Requiring your users
to bypass restrictions like this is never a good idea, and it can make your users vul-
nerable to attacks. This is a strong statement; but as you’ll see shortly with cross-
site request forgery, there is a good reason for this.

352 CHAPTER 10

Communicating with GWT-RPC

 To help you better understand how an attack like this might play out, let’s
examine a hypothetical situation. Pretend you’re a high-ranking executive for
company X-Ray Alpha Delta, and you’re logged in to the top-secret extranet appli-
cation doing some product research. Once you log in to the top-secret applica-
tion, it keeps track of who you are by giving you a web cookie. The connection
between the client and server is an encrypted connection provided by SSL. Using
cookies as a way of handling user sessions and SSL are common tools used by most
secure web applications.

 While working on the top-secret extranet, you receive an email prompting you
to review some competitor content on the Internet. You click the link and start
reading the page, which seems to be a legitimate news site. Unknown to you, the
“news” site is running JavaScript in your browser and is making requests against
your top-secret extranet. This is possible because your browser automatically
passes your session information contained in a cookie to the top-secret extranet
server, even though the JavaScript calling the server originated from the “news”
site. Figure 10.3 shows the order of events in such an attack, allowing the mali-
cious JavaScript access to the “protected” site.

 This scenario is plausible and has been proven to work when the web browser
allows JavaScript to call foreign servers. At the Black Hat convention in 2006, the
security firm iSEC Partners provided details about how they used this technique to
remove $5,000 from a stock account. The user was logged in to a financial site and
then viewed a foreign site, which contained the malicious JavaScript code. The
JavaScript code in question was contained in five separate hidden iframes. Each
script ran in turn, making one call to the financial service. The scripts changed
the user’s email notification settings, added a new checking account for transfer-

Figure 10.3

Cross-site scripting attack,

using JavaScript to break in

to a “secure” application

Underlying RPC concepts 353

ring funds, transferred $5,000 out of the account, deleted the checking account,
and restored the email notification settings. All of this occurred while the user was
viewing the malicious site. This is a scary scenario, and it’s why browsers don’t typ-
ically allow JavaScript code to contact foreign hosts.

 We’ve gotten far off track and need to get back to where we started: an overview
of RPC architecture of GWT. So far, we’ve discussed its asynchronous nature and
automatic data serialization, and addressed why the service must be provided by the
same host that served the GWT application (for critical security reasons). To get
back on track, you’ll create a new GWT project that will be used to house the Server
Status component.

10.1.3 Creating the Server Status project

By now, you know how to set up a new GWT project, but this one will be a little dif-
ferent. When you create a GWT project that will perform RPC, you need to
account for the fact that it will contain both server-side and client-side code. The
GWT compiler should compile only the client-side code to JavaScript without
including the server-side portion of the code. You’ll be including code for both
the client and server in this project, so you need to do a few extra things to inform
the GWT compiler which source files it needs to compile.

 The first step is to use the projectCreator and/or applicationCreator
command-line tool to create a new project. If you need a refresher on how to do this,
consult chapter 2. For our purposes, this chapter assumes you already know how to
do this. The following command and subsequent output creates the project:

applicationCreator -out ServerStatus org.gwtbook.client.ServerStatus

Created directory ServerStatus\src
Created directory ServerStatus\src\org\gwtbook
Created directory ServerStatus\src\org\gwtbook\client
Created directory ServerStatus\src\org\gwtbook\public
Created file ServerStatus\src\org\gwtbook\ServerStatus.gwt.xml
Created file ServerStatus\src\org\gwtbook\public\ServerStatus.html
Created file ServerStatus\src\org\gwtbook\client\ServerStatus.java
Created file ServerStatus\ServerStatus-shell.cmd
Created file ServerStatus\ServerStatus-compile.cmd

Next, you need to remove the sample Java code provided by the applicationCre-
ator tool. The following code is ServerStatus.java after removing the sample
application:

354 CHAPTER 10

Communicating with GWT-RPC

package org.gwtbook.client;

import com.google.gwt.core.client.EntryPoint;

public class ServerStatus implements EntryPoint
{
 public void onModuleLoad ()
 {
 // code
 }
}

You also want to start with a new HTML page. Listing 10.1 shows the ServerSta-
tus.html page in the project. You can remove the various comments, provide a bet-
ter page title, and add an empty style block. Once you finish the component, we’ll
provide some style code you can use to make the component look like figure 10.1.

<html>
 <head>
 <title>Server Status</title>

 <!-- used to load module in GWT versions through 1.3 -->
 <meta name='gwt:module' content='org.gwtbook.ServerStatus'>

 <!-- used to load module in GWT versions 1.4+ -->
 <script language='javascript'
 src='org.gwtbook.ServerStatus.nocache.js'></script>

 <style type="text/css">
 </style>
 </head>
 <body>

 <!-- used to load module in GWT versions through 1.3 -->
 <script language="javascript" src="gwt.js"></script>
 </body>
</html>

NOTE Because GWT is thriving, it’s subject to regular improvements. In list-
ing 10.1, we’ve inserted HTML comments to identify the lines that are
required to load the Server Status module in the current 1.3 release of
GWT as well as the proposed loading method that will be used in GWT
version 1.4. The older module-loading method, using gwt.js, will still
work in GWT version 1.4, but it has been deprecated.

Listing 10.1 The minimal HTML page you’ll use to host the Server Status project

Underlying RPC concepts 355

The CSS styles in listing 10.2 style the Server Status component to look like the
example look and feel provided in figure 10.1. Feel free to adjust the styles to your
liking or use your own. You can place the following CSS code into the <style> ele-
ment in the HTML page or put the CSS code into an external file and reference it
with the HTML <link> element.

.server-status {
 width: 200px;
 height: 200px;
 border: 1px solid black;
}

.server-status td {
 font-family: Arial;
 font-size: 12px;
}

.server-status .title-bar {
 text-align: center;
 background: #666;
 padding: 2px 0;
 color: white;
 font-weight: bold;
}

.server-status .stats-grid {
 width: 200px;
}

.server-status .stats-grid td {
 border-bottom: 1px solid #ccc;
}

.server-status .stat-name {
 font-weight: bold;
}

.server-status .stat-value {
 text-align: right;
}

.server-status .last-updated,
 .server-status .update-button {
 font-size: 10px;
 margin: 0 5px;
}

Listing 10.2 A CSS file for styling the Server Status component

Set component
width and height

Set font
style

Set title-bar
styles

Set inner data-
grid width

Add row lines
to data-grid

Set statistic
title styles

Right justify
data values

Set styles of status label
and update button

356 CHAPTER 10

Communicating with GWT-RPC

Now that you have a new project to work with, you can get down to writing some
code. In the next section, you begin by creating a data object that will be passed
from the server to the client and then get into creating the service and calling it
from the client.

10.2 Implementing GWT-RPC

As we stated at the beginning of this chapter, there are three parts to the GWT-RPC
mechanism, as you can see in figure 10.4. The first is the service that runs on the
server as a servlet, the second is the web browser that acts as a client and calls the
service, and last are the data objects that pass between the client and server.

 We’ll start with the last of these, the data objects, and explain what types of
objects GWT can serialize for you. Following this, we’ll look at the server side of
the threesome and how you implement the service on the server. Finally, you’ll
call the service from your browser.

 During the course of the discussion, we’ll reference the Server Status project
that you started in the previous section. We’ll also provide code examples not
related to the Server Status project when doing so helps explain details of the
GWT-RPC mechanism that aren’t explicitly used by the Server Status component.
By the end of this section, you’ll have completed the Server Status component,
and you’ll be able to reuse it with any of your own GWT projects. Now, let’s look at
the serializable data objects.

10.2.1 Understanding serializable data objects

We need to begin our discussion of GWT-RPC with data objects because the data is
what gives GWT-RPC life. Describing the functionality of GWT-RPC without data
would be akin to describing the function of the human heart without first under-
standing the purpose of life-giving blood.

 At the beginning of section 10.1, we mentioned that with the GWT-RPC mecha-
nism, you can call methods that are executed on the server, and a resulting value

Figure 10.4 The three parts of GWT-RPC: client, server, and data objects

Implementing GWT-RPC 357

is passed back to the client. Just like any Java method, you may pass arguments to
the method, which may be a primitive like an int, an object like a String, or an
array of values. The list of value types that GWT can serialize, though, is finite:

■ Java primitive types—boolean, byte, char, double, float, int, long, short

■ Java primitive wrapper types—Boolean, Byte, Character, Double, Float, Inte-
ger, Long, Short

■ Subset of JRE objects—Only ArrayList, Date, HashMap, HashSet, String, Vec-
tor (future versions of GWT may add to this)

■ User-defined classes—Any class that implements IsSerializable

■ Arrays—An array of any of the serializable types

Added in GWT 1.4 is the ability to have your GWT serializable classes
implement the java.io.Serializable interface instead of the GWT-specific
IsSerializable interface. The change is being introduced to make it easier
to share data objects with server-side persistence frameworks like Hiber-
nate, which require data objects to implement java.io.Serializable. It's
important to note that this change in GWT 1.4 is only intended to make it
easier to integrate with persistence frameworks; it doesn’t imply that GWT
serialization follows any of the semantics of java.io.Serializable.

The first two groups of value types—primitives and their wrapper counterparts—
are self explanatory, and all are supported. Only a limited number of Java data types
are supported. In chapter 1, we discussed the JRE Emulation Library provided by
GWT, and how GWT allows only certain Java classes to be used in client-side code.
The list of supported Java classes here includes all of the value object types from the
emulation library.

 The first three groups consist of types that are part of standard Java, but what
about user-defined types? The IsSerializable interface answers this question.

Implementing the IsSerializable Interface

The second from the last of the list of serializable types is any class that imple-
ments the IsSerializable interface. This interface is part of the GWT library,
and it’s used to signify that a class may be serialized. This serves a similar purpose
as Java’s own java.io.Serializable interface but is specific to GWT applications.
Most of this section will be about using the IsSerializable interface.

 The IsSerializable interface has no methods. It’s only used to let the GWT
compiler know that this object may be serialized, and it implies that you created
the class with serialization rules in mind:

CHANGES
IN GWT

1.4

358 CHAPTER 10

Communicating with GWT-RPC

■ The class implements com.google.gwt.user.client.rpc.IsSerializable.

■ All non-transient fields in the class are serializable.

■ The class has a zero-argument constructor.

By non-transient field we mean any field not using the transient modifier. GWT also
won’t serialize fields that have been marked as final; but don’t rely on this, and be
sure to mark all final fields as transient. That isn’t to say that bad things will happen
if you don’t mark the final fields as transient, but you want the intention of the code
to be clear if you or someone else ever needs to revisit the code for maintenance:

private transient String doNotCopy = "some value";

GWT serialization also traverses relationships between parent and child classes.
You could have a superclass that implements IsSerializable and a subclass that
doesn’t; but, because the superclass is serializable, so are all of its subclasses:

public class Person implements IsSerializable {
 String name;
 Date birthday;
}

public class Programmer extends Person {
 String favoriteLanguage;
}

Another thing to consider when working with serializable data objects is that they
will be used by both the client and server code, and, therefore, must adhere to the
rules for client-side code. This includes being compliant with the Java 1.4 lan-
guage syntax and may only reference classes that are part of the JRE Emulation
Library or are user created classes.

 In terms of optimizations for the GWT compiler, it’s good to be as specific as
possible when specifying the types of your fields in the data object. For example,
it’s common practice to specify java.util.List as a type instead of either Array-
List or Vector. The benefit of using a generalized type is that it allows you to
change the underlying implementation without changing the type declaration.
The problem is that when you generalize the type, it’s harder for the GWT com-
piler to optimize the code, and you often end up with larger JavaScript files. The
rule of thumb it to try to be as specific as possible in your typing.

 You may have noticed the catch-22 situation we’ve run into. You’re limited to
the Java 1.4 syntax, which rules out using generics. If you’re to be as specific as
possible, you need a way to let the GWT compiler know what types of objects are
contained in an ArrayList or Vector. This leads us to the typeArgs annotation.

Implementing GWT-RPC 359

Using the typeArgs annotation

Specific typing isn’t possible when your data object has a member that is a collec-
tion of objects. Collections in Java 1.4 hold values of type java.lang.Object, and
this is as generic of a type you can get. This would be an issue if, for example, your
data class had a member type of ArrayList, Vector, HashSet, or any other type
that implements java.util.Collection.
In the following example, the GWT compiler has no way of knowing what types of
objects are held by either listOfNames or listOfDates, so it won’t be able to
properly optimize the client-side JavaScript:

private ArrayList listOfNames;
private Vector listOfDates;

GWT provides an annotation that allows you to let
the compiler know what types of objects are in a
collection. This isn’t a Java 5 annotation, so it isn’t
part of the Java language; instead, you provide the
annotation inside a Java comment. Figure 10.5
shows the syntax of the typeArgs annotation.

 There are two variations of this annotation, the
second of which will be described later in this chap-
ter when you define the service interface. In this
first variation, the only parameter is the contained
object type inside angled brackets. The contained
type is specified using its full package and class
name. When you apply this to the two fields
listOfNames and listOfDates, it looks like this:

/**
 * @gwt.typeArgs <java.lang.String>
 */
private ArrayList listOfNames;

/**
 * @gwt.typeArgs <java.util.Date>
 */
private Vector listOfDates;

Now that you understand the basics, let’s apply that knowledge to the example
component.

Figure 10.5 The typeArgs

annotation is specified in a Java

comment preceding a field in the

class to provide a hint to the GWT

compiler about the contents of a

java.util.Collection.

360 CHAPTER 10

Communicating with GWT-RPC

Implementing the Server Status data object

To get back to the Server Status component we introduced at the beginning of
this chapter, you need a data object that will be used to hold server statistics data
that will be requested by and sent to the client browser. Here is the complete data
object:

package org.gwtbook.client;

import com.google.gwt.user.client.rpc.IsSerializable;

public class ServerStatusData implements IsSerializable
{
 public String serverName;
 public long totalMemory;
 public long freeMemory;
 public long maxMemory;
 public int threadCount;
}

The class complies with both rules of serializable objects: It implements IsSerial-
izable, and all the fields are also serializable. We built this class with only public
fields, but it would be just as appropriate to provide private or protected fields with
associated getter and setter methods, which is common in Java programming.

 Also note that this class is in the org.gwtbook.client package, and it will be
compiled into JavaScript to allow it to be used in the browser. On the server, you’ll
also use this class, but the server will use a compiled Java version of the class. As
part of the data serialization handled by GWT, it will handle the mapping for the
fields of the client-side JavaScript version to the server-side Java version of this
same class.

 Now that you have your data object, the next step is to define and implement
your service. You need to define a service by using a Java interface and then imple-
ment a servlet that adheres to that interface.

10.2.2 Defining the GWT-RPC service

The next step in using the GWT-RPC mechanism is to define and implement the
service that will live and be executed on the server. This consists of one Java inter-
face which describes the service, and the service implementation. When you write
a server-side service, you’ll probably want to integrate it with other backend sys-
tems like databases, mail servers, and other services. In addition to the basics of
using GWT-RPC, we’ll touch on how you might do some of these things. First, we’ll
look at the GWT RemoteService interface.

Implementing GWT-RPC 361

Extending the RemoteService interface

To define your service, you need to create a Java interface and extend the GWT
RemoteService interface. This is as easy as it sounds. If you recall, the Server Sta-
tus project calls an RPC service method that returns a ServerStatusData object,
which contains various server metrics. The interface looks like the following:

package org.gwtbook.client;

import com.google.gwt.user.client.rpc.RemoteService;

public interface ServerStatusService extends RemoteService
{
 ServerStatusData getStatusData ();
}

That is all there is to it: Provide a name for the interface, in this case ServerSta-
tusService, and have it extend GWT’s RemoteService interface. The RemoteSer-
vice interface doesn’t define any methods, so you won’t need to implement
anything special to get the service running. There are some additional fairly sub-
tle requirements when defining this interface:

■ The interface must extend com.google.gwt.user.client.rpc.RemoteSer-
vice.

■ All method parameters and return values must be serializable.

■ The interface must live in the client package.

We have covered the first of these, but we want to explain it a little further. GWT
automatically generates proxy classes for the client-side application and forwards
to methods using reflection on the server. To put it another way, GWT goes out of
its way to make RPC easy by minimizing the amount of code you need to write.
The RemoteService interface is used to signal which interfaces define the remote
service. This is important because this may not be the only interface the server
implementation implements.

 The second requirement is that all parameters and return values must be seri-
alizable. As we mentioned in the previous section, this includes all primitive Java
types, certain objects that are part of the standard Java library, and classes that
implement the IsSerializable interface. For the ServiceStatusService inter-
face, the only method, getStatusData(), returns a ServerStatusData object
that you created in the last section, and it implements IsSerializable. Here are
some more examples, all of which include parameters and return values that can
be serialized:

362 CHAPTER 10

Communicating with GWT-RPC

boolean serviceOne (String s, int i, Vector v);
String[] serviceTwo (float f, Integer o);

The last requirement is that the interface must be in the client package—the inter-
face code must be in your project where it’s compiled by GWT into JavaScript. Typ-
ically, this is in a package name ending in .client unless you have configured your
project differently. This interface needs to be compiled to JavaScript because it’s
used by both the client and the server. On the server, the service implementation
will implement this interface. We’ll look at how you reference this interface from
the client side when we get to the next section and call the service.

Using the typeArgs annotation

We introduced you to the typeArgs annotation in the previous section when you
used it to define the contents of collections in a serializable object. Here, we’ll
introduce an alternate syntax, but with the same purpose—to provide a hint to
the GWT compiler about what type of object a collection is holding. The specific
collection types that GWT supports are ArrayList, Vector, HashSet, and their
respective interfaces List and Set.

 You should provide the typeArgs annotation for each parameter and return
value that is a collection. Figure 10.6 shows the syntax, which differs in what you
saw in the last section, because it also allows you to specify the parameter name.
When you add an annotation for the return value, you don’t specify the parame-
ter name.

 The following code defines a method that takes a List of Integer values and a
Vector of Date values, and returns an ArrayList of String values:

/**
 * @gwt.typeArgs arg1 <java.lang.Integer>
 * @gwt.typeArgs arg2 <java.util.Date>
 * @gwt.typeArgs <java.lang.String>
 */
ArrayList operationThree (List arg1, Vector arg2);

In practice, you can probably leave off the typeArgs and everything will run fine.
If you decide to leave it off, you may end up with additional JavaScript code being
generated for the client because the GWT compiler won’t be able to optimize the
serialization code for handling Collection parameters and return values.

Figure 10.6 The second version of the

typeArgs syntax, which is used to provide

hints to the GWT compiler about the underlying

data types contained by Collection arguments

to the service

Implementing GWT-RPC 363

This covers serialization. But if you want remote calls to be able to pass Java
objects, you also want them to have the ability to pass exceptions.

Throwing exceptions

Often, it’s desirable to let a method throw an exception that will be handled by
the calling code. For example, you may have a login function that returns a user-
data object on success but, on failure, throws an appropriate exception:

UserData loginUser (String username, String password)
 throws FailedAuthenticationException;

When GWT calls the service method and throws an exception, it serializes the
exception and returns it to the client browser. The only requirement is that the
exception be serializable just like any data object. In other words, it must imple-
ment IsSerializable, all of its fields must be serializable, and the class must be
in the client package. See the previous section, “Understanding serializable data
objects,” for a complete discussion of creating serializable objects.

 As an alternative to writing your own serializable exception class from scratch,
GWT supplies an exception class SerializableException, in the package
com.google.gwt.user.client.rpc. You can use this exception class instead of
writing your own, or you can use this as the base class for your exceptions.

 Next, let’s look at how you can implement the service interface.

Implementing the service

With the service interface defined for your service, you need to implement its
methods. You do this by creating a servlet that extends GWT’s RemoteService-
Servlet and implements the service interface. Listing 10.3 shows the complete
ServerService implementation.

package org.gwtbook.server;

import org.gwtbook.client.ServerStatusData;
import org.gwtbook.client.ServerStatusService;
import com.google.gwt.user.server.rpc.RemoteServiceServlet;

public class ServerServiceImpl
 extends RemoteServiceServlet
 implements ServerStatusService
{
 public ServerStatusData getStatusData () {

Listing 10.3 Server Status server-side implementation

364 CHAPTER 10

Communicating with GWT-RPC

 ThreadGroup parentThread =
 Thread.currentThread().getThreadGroup();
 while (parentThread.getParent() != null) {
 parentThread = parentThread.getParent();
 }

 ServerStatusData result = new ServerStatusData();

 result.serverName = getThreadLocalRequest().getServerName();
 result.totalMemory = Runtime.getRuntime().totalMemory();
 result.freeMemory = Runtime.getRuntime().freeMemory();
 result.maxMemory = Runtime.getRuntime().maxMemory();
 result.threadCount = parentThread.activeCount();

 return result;
 }

}

The benefit of using GWT-RPC, which listing 10.3 shows, is that there is nothing
special you need to do to make your class a service other than extend the Remote-
ServiceServlet and implement an interface that extends RemoteService. When
the service is called, the underlying RemoteServiceServlet parses the request,
converting the serialized data back into Java objects, and calls the service method.
When the method returns a value, it is returned to the RemoteServiceServlet
that called the method, and it in turn serializes the result and returns it to the cli-
ent browser.

 Unlike what you’ve seen with the rest of GWT, there are
no restrictions on the server-side code. You can use any Java
class, you can use Java 5 syntax, and there are no special
annotations you need to use. There is one restriction, how-
ever: the package name. Because the server-side code con-
tains Java code that can’t be compiled into JavaScript, and
because there is no need for this to be served to the client,
you need to make sure this class lives outside the client pack-
age. To refresh your memory, figure 10.7 shows what the
current project directory layout looks like.

 The root of the project is the Java package org.gwtbook, and that package con-
tains the client package and the public folder. The public folder contains any
non-Java assets for the project, like the HTML file, and the client package con-
tains Java classes that will be compiled to JavaScript. For the server-side code, it’s

Find root Java
server thread

Create
result object

Populate
result object

Return
result

Figure 10.7 Reviewing

the current project

directory layout

Implementing GWT-RPC 365

the standard practice to create a server package just beneath the root package,
which for this project is org.gwtbook.server. Don’t get too hung up on this;
depending on what you’re building, it may be more appropriate to use a different
package name, and this is fine as long as it isn’t in the client package.

 Next, we’ll look at how to configure the development environment to use the
new servlet.

Setting up your service for hosted-mode testing

There is one last step: registering your service with GWT by adding it to the project
configuration file. The project configuration file is located in the root package,
and it’s named the same as the entry-point class with a .gwt.xml extension; in this
case, it’s found under org.gwtbook and named ServerStatus.gwt.xml. By default, it
contains both an <inherits> element to provide access to the core GWT libraries
and an <entry-point> element indicating the runnable class for this project. To
this, you need to add a <servlet> element to register your new service. The com-
pleted ServerStatus.gwt.xml file looks like this:

<module>
 <inherits name='com.google.gwt.user.User'/>
 <entry-point class='org.gwtbook.client.ServerStatus'/>

 <servlet path="/server-status"
 class="org.gwtbook.server.ServerServiceImpl"/>
</module>

We’ve stripped out the comments that the GWT application creator added, to
shorten the example, so it may not look exactly like yours. The <servlet> ele-
ment has two attributes: path to indicate the URL of your service, and class to
indicate the servlet that should be run when this URL is requested. Note that just
like a Java application server, the path to the servlet is relative to the web project
root and not the root of the server. With this project, the default project URL in
hosted mode is the following:

http://localhost:8888/org.gwtbook.ServerStatus/ServerStatus.html

When you specify /server-status as the path to the servlet, it’s accessible with the
following URL:

http://localhost:8888/org.gwtbook.ServerStatus/server-status

If you’ve worked with the servlet path setting before, this will be the expected
behavior; but for some, this is a common cause of frustration when configuring a
servlet.

366 CHAPTER 10

Communicating with GWT-RPC

 With your service defined, implemented, and configured on the server, the
next step is to address the client-side issues and finally call the service from the
client.

10.2.3 Preparing the client side of a GWT-RPC call

When you call the remote service from the client, GWT does most of the work for
you; however, you need to create one last interface. The GWT compiler uses this
interface when it generates the service proxy object. A proxy object is an object
instance that forwards the request to another target. In this case, you’ll call a local
method, and the proxy object is responsible for serializing the parameters, calling
the remote service, and handling the deserialization of the return value. You
don’t write the code for the proxy class; the GWT compiler handles this for you. In
the client-side code, you create the proxy object by writing the following:

GWT.create (ServerStatusService.class)

Here you call the static method create() of the com.google.gwt.core.cli-
ent.GWT class, passing it the class object of the remote service interface. This
returns a proxy object that you can use to set the service URL and call the remote
methods. The proxy object returned implements two interfaces: one that you
need to create, and one supplied by GWT (as shown in figure 10.8).

 In figure 10.8, the proxy object is an instance of ServerStatusService_Proxy,
which implements two interfaces. The proxy class is created at compile time, so you
can’t reference this class directly in your code. Instead, you need to cast it to each
interface separately to be able to call its methods.

Figure 10.8 The client-side service proxy generated by the GWT compiler,

and the interfaces it implements

Implementing GWT-RPC 367

Of the two interfaces, ServiceDefTarget is part of the GWT library and includes a
method setServiceEntryPoint() for specifying the URL of the remote service.
The other interface, ServerStatusServiceAsync, provides asynchronous meth-
ods for calling the remote service. You’ll need to write this second asynchronous
service interface yourself, as we’ll discuss next.

 This asynchronous service interface always has the same name as your service,
with the name “Async” appended to it. The methods in the interface must match
all the method names in your original service interface, but the signatures need to
be changed. Specifically, for each method in the original interface, you must do
the following:

■ Set the return value to void.

■ Add an extra com.google.gwt.user.client.rpc.AsyncCallback
parameter.

Table 10.1 shows side-by-side examples of how a method in the service interface
looks in the asynchronous service interface.

This interface is used only by the client code and not the server. Because of this,
you don’t need to include this interface in any code deployed to the server, and
you must place the interface in the client package. Here is what you get when you
apply this to the ServerStatusService interface:

package org.gwtbook.client;

import com.google.gwt.user.client.rpc.AsyncCallback;
public interface ServerStatusServiceAsync {
 void getStatusData (AsyncCallback callback);

}

This sets you up for the last piece of the puzzle: calling the remote service from
the client.

Table 10.1 Comparing methods in the service interface to how they look in the asynchronous

 interface of GWT-RPC

Service interface Asynchronous service interface

String methodOne (int i);

List methodTwo ();

boolean methodThree (int a, int x);

void methodOne (int i,
AsynCallback cb);

void methodTwo (AsynCallback cb);

void methodThree (int a, int x,
AsynCallback cb)

368 CHAPTER 10

Communicating with GWT-RPC

10.2.4 Calling the remote server service

Now that you have the remote service interface defined and implemented, you’ve
created the remote asynchronous interface, and you’ve created a serializable
object to pass between the server and client, all that remains is to call the service
from the client browser. To do this, you need to do the following:

1 Instantiate a proxy object that will forward method calls to the server.

2 Specify the URL of the service.

3 Create a callback method to handle the result of the asynchronous method
call.

4 Call the remote method.

The first time you do this, it doesn’t feel natural, especially because you’re calling
the method asynchronously; but after a few tries, it becomes second nature. We’ll
examine each of these steps in turn and explain what needs to be done—and, per-
haps more important, why it needs to be done. We’ll also point out any areas of
common mistakes.

Step 1: Creating the proxy object

Step 1 is to create your proxy object. You do this by calling GWT.create(), passing
the remote service class as an argument. In return, the create() method returns
a proxy object that you need to cast to the asynchronous interface. A common
mistake is passing the wrong class as an argument to GWT.create(), so be sure to
pass the remote service interface and not the asynchronous interface that will be
implemented by the proxy object:

ServerStatusServiceAsync serviceProxy =
 (ServerStatusServiceAsync) GWT.create(ServerStatusService.class);

With the proxy object in hand, you can move on to the next step and use it to tar-
get the remote service.

Step 2: Casting the proxy object to ServiceDefTarget

The second step is to cast this same object to ServiceDefTarget so that you can
specify the remote service URL. As you saw in the last section, the proxy object
implements both the asynchronous service interface and ServiceDefTarget. All
you need to do is cast this same object to the ServiceDefTarget interface. Once
you do this, you can use setServiceEntryPoint() to set the URL for the service:

ServiceDefTarget target = (ServiceDefTarget) serviceProxy;
target.setServiceEntryPoint(GWT.getModuleBaseURL()
 + "server-status");

Implementing GWT-RPC 369

Or, alternatively, you can use a single-line syntax without creating a new variable:

((ServiceDefTarget)serviceProxy)
 .setServiceEntryPoint(GWT.getModuleBaseURL() + "server-status");

This sets the URL to /org.gwtbook.ServerStatus/server-status, which matches your
servlet definition in the .gwt.xml file but may not match your production environ-
ment when you deploy the application. The GWT.getModuleBaseURL() method
returns the location of the client-side code and appends a slash to the end, which
works fine for hosted-mode development; but when you deploy your service, this
may not be what you want.

 Instead, you can detect whether the code is being executed in hosted mode,
and use the appropriate service URL. You can do this by calling GWT.isScript(),
which returns true when the application isn’t running in hosted mode:

String serviceUrl = GWT.getModuleBaseURL() + "server-status";
if (GWT.isScript()) {
 serviceUrl = "/services/server-status.rpc";
}
((ServiceDefTarget)serviceProxy).setServiceEntryPoint(serviceUrl);

It may even be useful to take this a step further and define the web-mode service
path in a Constants file or as a Dictionary object. You can get more information
on how to use Constants and Dictionary in chapter 15.

 You’ve set up the proxy object, so now you need to construct your callback
object.

Step 3: Create a callback object

The third step in calling the RPC service is to create a callback object. This object
implements the GWT com.google.gwt.user.client.rpc.AsyncCallback inter-
face and is executed when a result is returned from the server. As you may recall,
you added an AsyncCallback parameter to every method in the asynchronous
service interface. The callback object is passed as this additional parameter. Here,
you create an anonymous object instance that implements AsyncCallback:

AsyncCallback callback = new AsyncCallback() {

 public void onFailure (Throwable caught) {
 GWT.log("RPC error", caught);

}

public void onSuccess (Object result) {
 GWT.log("RPC success", null);
 }

};

370 CHAPTER 10

Communicating with GWT-RPC

The AsyncCallback interface has two methods that must be implemented: onSuc-
cess() and onFailure(). If an error occurs where the service can’t be reached, or
if the server-side method throws an exception, the onError() method is called with
the exception that occurred. If the call is successful, then the onSuccess() method
is called, and it receives the return value of the remote method call. The previous
sample uses the GWT.log() method to log information to the hosted-mode console.
This would be replaced with code that does something with the resulting object and
handles the error in an appropriate manner for the application.

Step 4: Make the remote service call

The fourth and final step in calling a remote service is to make the call. This is a
little anticlimatic because it all comes down to one line of code:

serviceProxy.getStatusData(callback);

This method kicks off a chain of events. Any parameters other than the callback
object are serialized and passed to the remote service, and the appropriate call-
back method is executed based on the server response.

10.3 Project summary

The GWT-RPC mechanism is simple; but with all the details, it’s easy to lose site of
the overall architecture. As promised earlier, we’ll provide a summary of GWT-
RPC, using a lot of visuals to make it easy to understand the system as a whole.
We’ll begin with an overview of the files in the project and then look at the server-
side code, followed by the code on the client.

10.3.1 Project overview

The entire project thus far includes only seven files. Figure 10.9 provides a list of
these files. It contains the usual configuration file, project HTML page, and entry
point. That leaves only four files that represent the concepts covered in this chapter.

 The service interface defines the remote service. It extends RemoteService and
may only reference parameters and return values that can be serialized by GWT.
When a method accepts arguments that implement java.util.Collection, or
returns a Collection, you use the @gwt.typeArgs annotation to provide a hint
for the GWT compiler, letting it know what types of objects it can contain. Your
methods may declare that they throw exceptions, as long as any exception thrown
can be serialized by GWT.

Project summary 371

The asynchronous service interface contains the same method names as the service
interface, but with altered method signatures. Each method’s return type is
changed to void, and an AsyncCallback parameter is added as the last argument
to each method.

 The project may contain serializable data objects, each of which implements the
IsSerializable interface. GWT serializes any field not marked as transient or
final in the class, and every field not marked as transient must be of a GWT serial-
izable type.

 The service implementation is in a package outside the other client-side code
because it doesn’t need to be compiled to JavaScript by the GWT compiler. Typi-
cally, server-side code lives in a package at the same level as the client side code, in
a package with the last part named server. The service implementation extends
the RemoteServiceServlet and implements the service interface.

 That is a description of each part of the project in a nutshell. In practice, the
only difference between this service and other services you write will be the num-
ber of serializable data objects. You may also find that, in a large project, you wish
to reorganize the package structure and place all the interfaces and data objects
relating to a single service into a package by themselves.

 Let’s take a closer look at the server side of the project.

10.3.2 Server-side service implementation

Figure 10.10 presents a class diagram of all the classes on the server and their rela-
tionship to each other. We’ve used the stereotype <<client-side>> to mark those
classes that are used on the client side as well as the server and need to be compiled

Figure 10.9 An overview of the Server Status project files you’ve created

372 CHAPTER 10

Communicating with GWT-RPC

by the GWT compiler. Those classes must meet the requirements for client-side
code, including referencing only classes that are a part of the JRE Emulation
Library, or client-side user-defined classes. All other classes may take advantage of
Java 5 syntax and use any classes that are available on the server.

 The server-side service implementation is just a servlet, because it extends
RemoteServiceServlet, which in turn extends HttpServlet. When you deploy
your service. you install it on the server just like any other servlet.

 Finally, let’s look at the client side of the project.

10.3.3 Calling the service from the client

You call the remote service by creating an instance of a service proxy object, spec-
ifying the URL of the service, and calling the server-side method on the object.

Figure 10.10 Overview of the server-side classes used for the Server Status project,

but user generated and GWT supplied

Project summary 373

The last parameter to any such method call is a callback handler, which is exe-
cuted following the server returning a result. Listing 10.4 is a complete listing of
the entry-point class that sets up and calls the remote service.

package org.gwtbook.client;

import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.core.client.GWT;
import com.google.gwt.user.client.rpc.AsyncCallback;
import com.google.gwt.user.client.rpc.ServiceDefTarget;

public class ServerStatus implements EntryPoint
{
 public void onModuleLoad ()
 {
 ServerStatusServiceAsync serviceProxy =
 (ServerStatusServiceAsync)
 GWT.create(ServerStatusService.class);

 ServiceDefTarget target = (ServiceDefTarget) serviceProxy;
 target.setServiceEntryPoint(GWT.getModuleBaseURL()
 + "server-status");

 AsyncCallback callback = new AsyncCallback()
 {
 public void onFailure (Throwable caught)
 {
 GWT.log("Error", caught);
 }

 public void onSuccess (Object result)
 {
 ServerStatusData data = (ServerStatusData) result;
 GWT.log("Server Name: " + data.serverName, null);
 GWT.log("Free Memory: " + data.freeMemory, null);
 GWT.log("Max Memory: " + data.maxMemory, null);
 }
 };

 serviceProxy.getStatusData(callback);
 }
}

Listing 10.4 Client-side implementation

374 CHAPTER 10

Communicating with GWT-RPC

10.4 Summary

In this chapter, you created an RPC service using the GWT-RPC mechanism and
called the service from the web browser, passing serialized Java objects. This chap-
ter covers the basics of how to call a remote service, but we haven’t yet discussed
how to solve common real-world problems. For instance, how do you continu-
ously poll a server for updates, and what is the best way to architect client-side
RPC? In chapter 11, we’ll answer both of these questions as we finish the Server
Status project and take a hard look at client-side architecture.

375

Examining client-side
RPC architecture

This chapter covers

■ Patterns for simplifying GWT-RPC code

■ Server polling techniques

■ Emulating server-push data communication

■ Custom GWT-RPC field serializers

376 CHAPTER 11

Examining client-side RPC architecture

In chapter 10, you began building a component called the Server Status compo-
nent. The purpose of this example component is to present information about
the Java Virtual Machine running on the server, including vitals such as memory
and threads. During the course of that chapter, we took a deep look at how to use
the GWT-RPC mechanism to solve the problem of sending data between the client
and server.

 When you finished that chapter, you had some code but not quite a finished
component. It still needs polish. Some of the missing parts include structuring the
presentation logic for your component, implementing a polling mechanism, and
encapsulating the component so that it can be used over and over.

 In this chapter, we’ll begin by jumping back into the project and finishing it, as
we take a long look at architecting a reusable and maintainable client-side compo-
nent—one that takes advantage of server-side resources.

11.1 Structuring the client code

So far in the Server Status project, which you started in chapter 10, you’ve uncere-
moniously plopped the RPC code into the entry-point class with little care about
application architecture. In this chapter, you continue the Server Status project
and polish it, allowing it to be easily extended and maintained. You do this by
applying some software patterns to the RPC code; none of them are GWT specific,
but you’ll apply them in a GWT-specific manner.

 You’ll begin by encapsulating the entire Server Status component as an exten-
sion of the GWT Composite class, which you’ve seen in prior chapters, and adding
some RPC-specific code. Following that, you’ll see how the Façade software pat-
tern can be used to simplify RPC interaction. Finally, we’ll look at how you can use
the Command software pattern to simplify the calling of remote methods.

 Let’s begin with encapsulating the component.

11.1.1 Encapsulating the Server Status component

The first step in building a component is to formulate the basic visual layout of
the component and then decide which widget class should be extended. For the
Server Status component, figure 11.1 shows the desired structure and the result-
ing styled HTML.

 The Server Status component is a VerticalPanel with four components. The
first compartment inside of the component is the Server Status title bar. You’ll use
a Label for this, and with a little CSS styling you can center it and make the title
appear bold and white.

Structuring the client code 377

The second component you’ll employ is a Grid component to display the server
statistics you’re retrieving via RPC. The grid is two cells wide and five cells tall to
hold the five labels and five data values. These labels, like Server Name and Total
Memory, are added to the grid as plain text. The values, on the other hand, are
separate Label components so you’ll be able to update their values using the set-
Text() method of the Label component. You could set the text directly in the grid
for these, but by providing a named Label instance for each value in the code the
code is somewhat self-documenting, making it easier to understand and maintain.

 At the bottom of the Server Status component is an update Button compo-
nent, used to manually update the statistics, and a Label to indicate the last time
the values were updated. It’s our intention that this component will use some sort
of polling mechanism to update itself periodically, but the manual update button
can be used to force an early update. You’ll hook the Server Status component up
to a polling mechanism when we discus polling techniques in the next section.

 Once you’ve designed a general structure, the next step is to code this as a
component.

Writing the component shell

In writing the shell for the component, you’ll deal with the layout of the component
and not worry much about the inner workings yet. Once you complete the shell, you
can move on to the next step and start having the component display data.

 As we stated earlier, you need to decide which GWT user-interface component
to extend. In figure 11.1, we showed that the outer shell of the component uses a
VerticalPanel, but this isn’t a good choice for the basis of the component. The
reason is that VerticalPanel exposes several methods that you don’t want the
component to support. For example, the add() and remove() methods of Verti-
calPanel could be used to add or remove widgets from the finished component,

Figure 11.1

The structure of

the Server Status

component, and

what the finished

component looks like

378 CHAPTER 11

Examining client-side RPC architecture

changing the desired layout. For this reason, you want to extend com.goo-
gle.gwt.user.client.ui.Composite. The Composite class provides several pro-
tected methods for use by an extending class and only publicly exposes a
getElement() method.

 In listing 11.1, you create the class ServerStatusComponent and place it in the
org.gwtbook.client package with the rest of your client code. You define a pri-
vate variable for each component that makes up the composite. This includes
each of the components we discussed, including the five labels to hold the statis-
tics you receive from the server.

package org.gwtbook.client;

import java.util.Date;
import com.google.gwt.core.client.*;
import com.google.gwt.user.client.rpc.*;
import com.google.gwt.user.client.ui.*;

public class ServerStatusComponent extends Composite
{
 private Panel composite = new VerticalPanel();

 private Label titleBar = new Label("Server Status");
 private Button updateButton = new Button("Manual Update");
 private Grid serverStats = new Grid(5, 2);
 private Label labelLastUpdated = new Label();

 private Label labelTotalMemory = new Label();
 private Label labelFreeMemory = new Label();
 private Label labelThreadCount = new Label();
 private Label labelMaxMemory = new Label();
 private Label labelServerName = new Label();

 public ServerStatusComponent ()
 {
 initWidget(composite);

 composite.add(titleBar);
 composite.add(memStats);
 composite.add(updateButton);
 composite.add(labelLastUpdated);
 }

}

Listing 11.1 Coding the structure of the ServerStatusComponent

Container
component

Subcomponents

Individual
statistic
containers

Structuring the client code 379

Thus far, the only code you’ve included is the constructor for the ServerStatus-
Component. The constructor calls the initWidget() method of the superclass, pass-
ing it a newly created VerticalPanel instance. This sets the user interface
component that will be used as the outer shell for the component. To this, you add
the title bar label, the statistics grid, the update button, and the last-updated label.

 Next, you need to update the entry-point class to reflect that you’re now pack-
aging the Server Status as a component. Notice that by encapsulating the Server-
StatusComponent as a component, you’re able to instantiate it and add it to the
RootPanel with only two lines of code (see listing 11.2).

import com.google.gwt.core.client.*;
import com.google.gwt.user.client.rpc.*;
import com.google.gwt.user.client.ui.*;

public class ServerStatus implements EntryPoint
{
 public void onModuleLoad ()
 {
 ServerStatusComponent serverStatus =
 new ServerStatusComponent();
 RootPanel.get().add(serverStatus);
 }
}

You can now view the project in the hosted-mode browser; it should look like fig-
ure 11.2.

Listing 11.2 Instantiating the ServerStatusComponent

Figure 11.2

The incomplete shell of the

Server Status component

example running in the

hosted-mode browser

380 CHAPTER 11

Examining client-side RPC architecture

The component looks a little sparse at this point, not only because you haven’t
supplied any data, but also because you haven’t yet applied CSS styling.

Adding style and labels to the component

As you saw in chapter 4, you can attach CSS class names to the individual parts of a
component. You need to specify separate style class names for the title-bar, Grid
component, update button, last-updated label, and the Composite as a whole. You
also need to add labels to each row in the grid, to the left of where each data value
will be displayed. See listing 11.3.

public ServerStatusComponent ()
{
 initWidget(composite);

 composite.setStyleName("server-status");
 titleBar.setStyleName("title-bar");
 serverStats.setStyleName("stats-grid");
 updateButton.setStyleName("update-button");
 labelLastUpdated.setStyleName("last-updated");

 updateButton.addClickListener(new ClickListener() {
 public void onClick (Widget sender) {
 getStatusDataFromServer();
 }
 });

 addRowToGrid("Server Name", labelServerName, 0);
 addRowToGrid("Total Memory (kB)", labelTotalMemory, 1);
 addRowToGrid("Free Memory (kB)", labelFreeMemory, 2);
 addRowToGrid("Max Memory (kB)", labelMaxMemory, 3);
 addRowToGrid("Thread Count", labelThreadCount, 4);

 composite.add(titleBar);
 composite.add(serverStats);
 composite.add(updateButton);
 composite.add(labelLastUpdated);

 getStatusDataFromServer();
}

In listing 11.3, you reference two methods that you haven’t yet defined. The first is
addRowToGrid(), which helps you populate the statistics grid; and the second is
getStatusDataFromServer(), which is the method that triggers a call to the server.

Listing 11.3 Adding style classes and labels to the Server Status component

Set style
classes

Add
components
to grid

Attach update
button listener

Retrieve values
from server

Structuring the client code 381

 For each row, addRowToGrid() sets the title of the value, which appears on the
left side of the grid, and inserts the Label component to the right of it. For each
title, you set the style class name to be stat-name, and for each value you set the
style name to be stat-value. Creating methods like this that group repetitious
code is extremely helpful, especially because GWT code can easily become verbose.

 getStatusDataFromServer() will be used to trigger an RPC call to the server.
We’ll describe this method and its purpose shortly, but for now you leave that
method as an empty stub. Listing 11.4 shows the two methods you will add to the
Server Status component.

private void addRowToGrid (String name, Widget widget, int row)
{
 serverStats.setText(row, 0, name);
 serverStats.setWidget(row, 1, widget);
 serverStats.getCellFormatter().setStyleName(row, 0, "stat-name");
 serverStats.getCellFormatter().setStyleName(row, 1, "stat-value");
}

private void getStatusDataFromServer ()
{
}

If you run the application now, you see that it’s starting to come together. Figure 11.3
shows what the application should look like.

Listing 11.4 Adding the addRowToGrid() and getStatusDataFromServer(

 method

Figure 11.3

A nearly complete version of the

Server Status component example

382 CHAPTER 11

Examining client-side RPC architecture

This assumes you’ve been following the example throughout the chapter and are
using the CSS provided in section 10.1.

 Now that you have the majority of the application’s moving parts, you need to
fill in the getStatusDataFromServer() method, which calls the remote method.
You’ll do this a little differently than you did in the prior section: This time, you’ll
encapsulate the interface to the server as a façade.

11.1.2 Encapsulating remote calls in a façade

The Façade pattern is one of the software patterns described in the famed book
Design Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm,
Johnson, and Vlissides. This book defines the Façade software pattern as a way of
providing a higher-level interface to make a subsystem easier to use. In this case,
you want to encapsulate all of the RPC logic into a class that provides a simple
interface in an effort to achieve the following:

■ Reduce complexity by reducing the number of classes you need to interact
with.

■ Promote weak coupling, allowing you to alter the underlying RPC mecha-
nism without affecting the client.

We all like reduced complexity, because easier is almost always better, so it isn’t
hard to understand the motivation for wanting the first point. You’ll realize this by
creating a new class named ServerService with one method for each remote
method plus a single getInstance() method (see listing 11.5).

package org.gwtbook.client;

public class ServerService
{
 public static ServerService getInstance();
 public void getStatusData (AsyncCallback callback);
}

This class follows the Singleton software pattern, providing a single static method
to retrieve an instance of the ServerService class. From this instance, you pro-
vide a getStatusData() method to call the remote service. It may be tempting to
do away with the getInstance() method and make the remote method call static,
but this isn’t a good idea. Doing so would reduce the flexibility of the class and

Listing 11.5 ServerService class

Structuring the client code 383

make it more difficult to do things such as allowing multiple instances to be cre-
ated. It’s one of those cases where you need to make the code a little more ver-
bose to make future maintenance easier.

 With the interface for the service class defined, you now need to implement
the RPC service it will provide. In this case, your needs are simple: You have only a
single endpoint (service URL) to call on the server, and you have only one
method. The implementation is straightforward; see listing 11.6.

package org.gwtbook.client;

import com.google.gwt.core.client.GWT;
import com.google.gwt.user.client.rpc.AsyncCallback;
import com.google.gwt.user.client.rpc.ServiceDefTarget;

public class ServerService {

 private static ServerService instance;
 private ServerStatusServiceAsync proxy;

 private ServerService() {
 proxy = (ServerStatusServiceAsync)
 GWT.create(ServerStatusService.class);
 ((ServiceDefTarget) proxy).setServiceEntryPoint(
 GWT.getModuleBaseURL() + "server-status");
 }

 public static ServerService getInstance() {
 if (instance == null) {
 instance = new ServerService();
 }
 return instance;
 }

 public void getStatusData(AsyncCallback callback) {
 proxy.getStatusData(callback);
 }
}

In this implementation, you make the constructor private, allowing only the Ser-
verService class to create an instance of itself. When getInstance() is called, it
creates a new instance of the ServerService class only if one has not been created.
This ensures that there will only ever be one instance of this class. When the Ser-
verService class is instantiated, it creates the proxy instance that will be needed to

Listing 11.6 The service façade

384 CHAPTER 11

Examining client-side RPC architecture

call the server. When the getStatusData() method is finally called, the proxy
object has already been created and can pass the callback object to the proxy.

 You’ve effectively met your initial goals for using a façade. You’ve reduced the
complexity of the ServerStatusComponent class because it no longer needs to
deal with any of the underlying RPC code, including the creation of a proxy object
and specifing an endpoint. You’ve also decoupled the calling class from the RPC
implementation. You could potentially replace the GWT-RPC call with some other
RPC mechanism such as XML-RPC, and you could do this without having to
change any code in the Server Status component. You can do so only because
you’ve completely delegated the RPC responsibility to the ServerService class.

 Now that you have the façade class implemented, you can write the rest of the
code for the Server Status component. You’ll do so by using the Command soft-
ware pattern to provide future flexibility.

11.1.3 Callback routine using the Command pattern

Early in our discussion of RPC, we addressed the fact that calls to the server are
done in an asynchronous fashion, where the call to the server is as a separate
thread of execution. We then examined how you can pass an anonymous instance
of the AsyncCallback interface to receive the result from the server. Here’s the
example we provided earlier:

AsyncCallback callback = new AsyncCallback() {
 public void onFailure (Throwable caught) {
 GWT.log("RPC error", caught);

}

public void onSuccess (Object result) {
 GWT.log("RPC success", null);
 }
};

This is a valid way of providing a callback object, but it has a couple of drawbacks.
First, it locks you into using this specific functionality; if you wanted to change the
functionality, you would need to rewrite the existing routine. Second, you can’t
extend the functionality of the callback because it’s an anonymous class.

 The solution to both of these issues is to use the Command pattern. The bene-
fits you hope to achieve are as follows:

■ Create a new callback without having to rewrite or remove an existing call-
back.

■ Extend and reuse the callback.

■ Have the ability to create a callback that can execute other callbacks.

Structuring the client code 385

Applying the Command pattern is easy, especially given the way the existing call-
back mechanism works in GWT. All you need to do is create a named class for your
callback; see listing 11.7.

private void getStatusDataFromServer ()
{
 ServerService.getInstance().getStatusData(
 new ServerStatsUpdater());
}

class ServerStatsUpdater implements AsyncCallback
{
 public void onFailure(Throwable caught) {
 }

 public void onSuccess(Object result) {
 ServerStatusData data = (ServerStatusData) result;
 labelServerName.setText(data.serverName);
 labelTotalMemory.setText(toKB(data.totalMemory));
 labelFreeMemory.setText(toKB(data.freeMemory));
 labelMaxMemory.setText(toKB(data.maxMemory));
 labelThreadCount.setText(Integer.toString(data.threadCount));
 labelLastUpdated.setText(new Date().toString());
 }
}

In the getStatusDataFromServer() method, you pass a new instance of Server-
StatsUpdater, an inline class, instead of passing an anonymous callback routine.
The ServerStatsUpdater class is the command object. In this case, you make the
command an inline class due to the fact that it needs to update various Label
objects inside the Server Status component. This, however, doesn’t take away from
the fact that you’ve added flexibility with almost no additional coding time, and this
code is easier to read than if you had used an anonymous AsyncCallback instance.

 To provide an example of how this can add flexibility to your application, let’s
add an additional requirement to the callback. Let’s require that you use the GWT
logging mechanism on all callbacks to log the result of a callback. You could add
this directly to the onFailure() and onSuccess() methods as in the following
anonymous AsyncCallback, but there are some problems with this design:

AsyncCallback callback = new AsyncCallback() {
 public void onFailure(Throwable caught) {
 GWT.log("RPC Error", caught);
 }

Listing 11.7 A callback command

386 CHAPTER 11

Examining client-side RPC architecture

 public void onSuccess(Object result) {
 GWT.log("RPC Success", null);
 ...
 }
};

In practice, you’ll likely have many different RPC commands, and you’d need to
add this code to each callback. This in itself isn’t the problem; the problem occurs
when you change your mind about how to log this information. For example, the
previous code doesn’t let you know which RPC command was executed; it only lets
you know whether it was successful. As developers, we aren’t fortune-tellers; a
good design can prevent pain later when you need to update existing code. Using
chains of callbacks is one solution you can apply to this problem.

Chaining callbacks for separation of activities

If you go back to the Command pattern example, there are two ways in which you
can provide shared logging functionality. The first is by chaining callbacks, and
the second is to provide a superclass to the ServerStatsUpdater class, which
includes logging capabilities. Let’s examine how to solve this problem by chaining
callbacks. To do this, you need to create a new class called LoggingChainingCall-
back (see listing 11.8).

package org.gwtbook.client;

import com.google.gwt.core.client.GWT;
import com.google.gwt.user.client.rpc.AsyncCallback;

public class LoggingChainingCallback implements AsyncCallback {

 private AsyncCallback callback;

 public LoggingChainingCallback(AsyncCallback callback) {
 this.callback = callback;
 }

 public void onFailure(Throwable caught) {
 GWT.log("RPC Failure ["
 + GWT.getTypeName(callback) + "]", caught);
 callback.onFailure(caught);
 }

Listing 11.8 LoggingChainingCallback class

Structuring the client code 387

 public void onSuccess(Object result) {
 GWT.log("RPC Success ["
 + GWT.getTypeName(callback) + "]", null);
 callback.onSuccess(result);
 }
}

The LoggingChainingCallback class implements the AsyncCallback interface
and, as such, includes the onFailure() and onSuccess() methods. Notice that
you add a constructor to this class. It takes an AsyncCallback as a constructor
argument and stores the object in a private instance variable. You reference this
instance in both the onFailure() and onSuccess() methods, using it to pass the
result to that object after logging the event.

 To use this class, all you need to do is alter the calling code slightly. You now
pass the new ServerStatsUpdater callback to the constructor of the Log-
gingChainingCallback. The LoggingChainingCallback instance is then passed
as an argument to the getStatusData() method:

private void getStatusDataFromServer ()
{
 ServerService.getInstance().getStatusData(
 new LoggingChainingCallback(new ServerStatsUpdater())
);
}

If you’re confused about the chain of events, figure 11.4 will help. It shows the
sequence of what happens when a successful result is returned from the server.
The ServerService calls the onSuccess() method of the LoggingChainingCall-
back. This class logs the event and then passes the result on to the ServerStats-
Updater, which updates the fields.

Figure 11.4

Chaining actions, where

one action performs its

task and then passes

control to the next

388 CHAPTER 11

Examining client-side RPC architecture

You’ve chained two callbacks together, where each performs its own function with-
out overlap. In this design, you separate out the logging portion of the application
so that it can be shared and modified independently of the callbacks to which it
passes the request. With a little architecture, you’ve helped to future-proof the
application, making it easier to alter logging functionality at a later date.

 Besides chaining callbacks, we also mentioned that the Command software
pattern allows you to subclass the command to enhance or replace the existing
functionality.

Using an AsyncCallback superclass

As you’ve seen, you’ve applied the Command software pattern by creating a class
that implements the AsyncCallback interface. One of the original reasons for
doing this was so you could extend the command class, which is something you
can’t do if you use an anonymous class for the callback. Again, the goal goes back
to the need to separate out the logging for all RPC commands into a single class
that can be reused and maintained in a single place.

 You can achieve this two ways with a superclass. The first is by convention, and
the second is to create a new type of callback interface. By convention, we mean that
it’s up to the developer to follow the rules; if
the rules are followed, the system works. In
general, it’s a bad idea to allow a developer
the ability to not follow the rules when func-
tionality could break. But this approach is
still useful when you can enforce the con-
vention. For other times, there is a second
approach. The goals you’ll attempt to
achieve include the following:

■ Provide an abstract callback super-
class that can be subclassed to add
specific behaviors (such as logging).

■ Give the superclass the ability to han-
dle the RPC result before the subclass.

To do this, you need to do a little design
work. Figure 11.5 shows a high-level over-
view of what the new structure will look like.

 Figure 11.5 introduces a new interface
called AsyncHandler that contains the two

Figure 11.5 Creating your own handler

interface so you can add functionality, like

logging, in a reusable manner

Structuring the client code 389

methods handleSuccess() and handleFailure(). You then create the class
AbstractAsyncHandler that implements both the new interface and GWT’s
AsyncCallback interface. You achieve the desired behavior by having this new
abstract class intercept the RPC onSuccess() or onFailure() event and then for-
ward it on to either the handleSuccess() or handleFailure() method.

 The abstract handler in this sense is passing on the event to a method of a dif-
ferent name. You want to do this so the MyAsyncHandler will implement only the
handleSuccess() and handleFailure() methods, and not the methods defined
by the AsyncCallback interface. This allows you to extend the AbstractAsync-
Handler with a handler with a specific function, like a logging handler, which only
overrides the onSuccess() and onFailure() methods.

 To build this, you’ll start at the top and work your way down. First, you create
the AsyncHandler interface, which defines the two new methods:

package org.gwtbook.client;

public interface AsyncHandler {

 void handleSuccess(Object result);

 void handleFailure(Throwable caught);
}

The AsyncHandler interface mirrors the AsyncCallback interface in that it has
two methods with the same parameters and return values; the only difference is
the method names. Next, you need to create the AbstractAsyncHandler class
(see listing 11.9).

package org.gwtbook.client;

import com.google.gwt.user.client.rpc.AsyncCallback;

public abstract class AbstractAsyncHandler
 implements AsyncCallback, AsyncHandler {

 public void onFailure(Throwable caught) {
 handleFailure(caught);
 }

 public void onSuccess(Object result) {
 handleSuccess(result);
 }

Listing 11.9 AbstractAsyncHandler class

390 CHAPTER 11

Examining client-side RPC architecture

 public abstract void handleFailure(Throwable caught);

 public abstract void handleSuccess(Object result);
}

You declare the class as abstract, as well as the handleFailure() and handleSuc-
cess() methods. This forces subclasses to either declare themselves as abstract or
implement the two abstract interfaces. The next class in figure 11.5 is MyLogging-
Handler class, but we’re going to skip this one for now because it’s just a place-
holder for a handler class containing any type of needed functionality. Let’s skip
to MyAsyncHandler, which is the specific handler you need to create for a specific
RPC call.

 In the Server Status component RPC call, you implemented ServerStatsUp-
dater as the callback handler. Let’s revisit that handler and alter it to use the new
AbstractAsyncHandler as its parent class. The following code replaces the code
you used earlier for both the call to the service class and the response handler:

private void getStatusDataFromServer ()
{
 ServerService.getInstance().getStatusData(
 new ServerStatsUpdater());
}

class ServerStatsUpdater extends AbstractAsyncHandler {

 public void handleFailure(Throwable caught) { }

 public void handleSuccess(Object result) {
 // success code
 }
}

This is essentially the same thing you started with, except the ServerStatsUp-
dater now extends the new AbstractAsyncHandler instead of implementing
GWT’s AsyncCallback interface. With this change comes the fact that the handler
method names are different, matching the abstract methods of the Abstract-
AsyncHandler class.

 This new structure adds flexibility. As a reminder, these were the goals set forth
for organizing the classes in this manner:

■ Provide an abstract callback superclass that can be subclassed to add spe-
cific behaviors (such as logging).

■ Give the superclass the ability to handle the RPC result before the subclass.

Structuring the client code 391

To demonstrate that you’ve achieved both of these goals, let’s go back to the log-
ging example and create a subclass of the AbstractAsyncHandler that will auto-
matically log RPC events. Name the class LoggingAsyncHandler to indicate that it
provides automatic logging (see listing 11.10).

package org.gwtbook.client;

import com.google.gwt.core.client.GWT;

public abstract class LoggingAsyncHandler
 extends AbstractAsyncHandler {

 public final void onSuccess(Object result) {
 GWT.log("RPC Success [" + GWT.getTypeName(this) + "]", null);
 super.onSuccess(result);
 }

 public final void onFailure(Throwable caught) {
 GWT.log("RPC Failure [" + GWT.getTypeName(this) + "]", caught);
 super.onFailure(caught);
 }
}

Notice that you make the LoggingAsyncHandler class abstract, so it doesn’t need
to implement the handleSuccess() and handleFailure() methods. You also
override the onSuccess() and onFailure() methods and make them final. The
purpose of making them final is so subclasses can’t alter the behavior of the class,
which would most likely break it.

 The onSuccess() and onFailure() methods are overridden to add the
required logging capabilities and log the event prior to the handling of the event
by its subclasses. This meets both requirements you set out to achieve.

 Figure 11.6 summarizes the chain of events when a response is returned from
the server. The LoggingAsyncHandler gets the first look at the response and passes
the response up to its parent class, which then passes it down to the only class that
implements the abstract handleSuccess() and handleFailure() methods.

 It may seem as though you went the long way around to add a couple of simple
logging statements, but as your GWT application gets larger, it becomes increas-
ingly important to have a good design. The payback from this additional work
comes from reuse of the logging handler and ease of maintenance.

 Now that we’ve discussed a couple of patterns for maintainable client-side
code, we can turn our attention back to the more general concept of polling.

Listing 11.10 LoggingAsyncHandler class

392 CHAPTER 11

Examining client-side RPC architecture

11.2 Examining different polling techniques

Often, you may need to keep in constant contact with the server via RPC calls to
keep the client updated. This is usually to inform the client browser of some event
like the arrival of an email, a new chat message, a server being out of disk space,
and so on. The solution is to poll the server. This can be done by contacting the
server via RPC on a regular basis, such as every five minutes. Some applications
require more frequent updates and may want to be as close to real-time as possi-
ble. In this section, we’ll explore GWT’s functionality for scheduling tasks and
examine various polling techniques.

 We’ll begin our examination by providing a high-level overview of polling ter-
minology, including pull versus push. Then, we’ll look at the GWT Timer class and
explain how it works. You’ll use the Timer class to enhance the Server Status com-
ponent by making it update its contents on a regular basis. Following this, we’ll
look at a technique called blocking to emulate a server-push mechanism.

11.2.1 Understanding polling issues

Before we get into implementing polling, it’s useful to understand the different
ways of delivering content and the consequences of each. Delivery techniques can
be broken into two categories: server push and client pull. A push is when the
server pushes content out to a client, and pull is when the client requests data
from the server—the primary difference between these two being who initiates
the request. Let’s look a little closer at these types: first push, then pull.

Examining server-push

In theory, pushing data out to your clients is useful. You use it daily when you send
an email or an instant message. For example, when you send an email, you’re

Figure 11.6

The sequence of events

for the new logging handler

that has been inserted

between the service and

the response handler

Examining different polling techniques 393

sending it to a mail server, which in turn pushes the mail to another mail server.
The same goes for instant messaging, where the message gets pushed to the
intended recipient.

 By pushing data out to clients, you can have any number of clients, perhaps
many thousands, and no server or bandwidth resources are used until you have
something to send. This scales well, and you can easily support any number of cli-
ents with this scheme with relative ease.

 There is one hitch: Web browsers don’t have this capability. During the 1990s,
quite a bit of work went into this area, but it never caught on. Part of the problem
is that if you could push data to the browser, it would likely pose security issues,
opening the user to a new breed of attack.

 Although you can’t achieve true server-push, you’re often required to emulate
it—for example, if you want to build a chat client that immediately broadcasts
messages it receives. There are several techniques for doing this, like Comet,
Pushlet, Pjax, and others. For the most part, these are difficult to implement in
GWT, so we won’t discuss them here. Blocking server threads, on the other hand,
is easy to implement in GWT; we’ll provide a full example of implementing this a
little later.

 The opposite of push is pull; we’ll examine pull technologies next.

Examining client-pull

Client-pull is another name for the standard request-response sequence used by
the browser. When you go to a URL with your browser, you request a page from
the server or, in other words, pull the page from the server. This technique is use-
ful when a delay between the publication of an event and the receiving of an event
is acceptable.

 Client-pull has its own challenges. Because there can be a delay between send-
ing and receiving the event, you often need to queue up data on the server, wait-
ing for a client to check in. For example, if you write a chat application using
client-pull, the server needs to store any unsent messages for a user until that user
pulls the messages.

 Between the two types of delivering data, pulling is the natural for web brows-
ers. We’ll examine a client-pull implementation first by implementing a continu-
ously updating component.

11.2.2 Implementing a continuously updating component

In this section, we’ll revisit the Server Status component and allow it to periodically
update itself. To do this, you’ll add the ability to set the refresh rate for the data, as

394 CHAPTER 11

Examining client-side RPC architecture

well as add the ability to change or stop the automatic updates. In doing so, we’ll
need to look at the GWT Timer class, which allows you to trigger timed events.

 If you’ve been following along with us, your Server Status component should
be working and have a method that can be called to have it update its information
from the server. If you haven’t been following with us, here is the basic shell for
the Server Status component, which includes a getStatusDataFromServer()
method that triggers an RPC call and updates the displayed data:

package org.gwtbook.client;

import java.util.Date;
import com.google.gwt.core.client.*;
import com.google.gwt.user.client.rpc.*;
import com.google.gwt.user.client.ui.*;

public class ServerStatusComponent extends Composite
{
 public ServerStatusComponent () {
 ...
 }

 private void getStatusDataFromServer () {
 ...
 }
}

In the full version of the Server Status component, the getStatusDataFrom-
Server() method is called when the component is first initialized or when an
update button is clicked. Next, you’ll add a timer to trigger an update as well.

Using the GWT Timer class

The Timer class can be found in the com.google.gwt.user.client package. It
provides a no-argument constructor and several methods. The method signatures
are as follows:

public abstract class Timer {
 public abstract void run();
 public void schedule(int milliseconds);
 public void scheduleRepeating(int milliseconds);
 public void cancel();
}

The first thing to point out is that the Timer class is abstract, so you must subclass
it to be able to use it. You can do this by creating an anonymous class or creating
your own specialized timer class. When you implement your class, you need to

Examining different polling techniques 395

implement the abstract method, run(), that is called when the timer is triggered.
In this example, you create a timer that alerts the user with a “hello” message
when a timer event is triggered:

Timer example = new Timer() {
 public void run () {
 Window.alert("hello");
 }
};

To trigger a timer event, you need to set either a one-time event with the sched-
ule() method or a recurring event with the scheduleRepeating() method. In
the case of schedule(), you specify the number of milliseconds to wait before exe-
cuting the run() method. The scheduleRepeating() method also takes the num-
ber of milliseconds as a parameter, and it repeatedly executes the run() method.
The first execution of run() begins in the number of milliseconds specified and
then continuously recurs at that same interval.

 The cancel() method, as apparent by its name, allows you to stop the timer.
Once it’s stopped, you may start it again by calling either the schedule() or
scheduleRepeating() method. The following example sets the timer for five sec-
onds and then cancels it:

example.schedule(5000);
example.cancel(); // just kidding

The next step is to add additional methods to the Server
Status component to provide the ability to set the
update interval as well as the ability to stop the auto-
matic updates. You’ll do this via a schedulable class.

Creating a schedulable class

There are many ways to implement a timer, but you’ll
use an approach we think is highly reusable. The code
not only can be used in the Server Status component,
but also applies to any Composite component. It’s also
possible, with some minor changes, to adapt it to other
base classes.

 You’ll accomplish this by creating a subclass of Com-
posite called UpdateableComposite, shown in figure
11.7, that provides methods for setting and stopping
the update timer. Before you start coding, look at the
class diagram to see the relationships between the new
class and the existing ServerStatusComponent class.

Figure 11.7 A structural

overview of the reusable,

updateable-composite

396 CHAPTER 11

Examining client-side RPC architecture

 We’ll begin by introducing the new UpdateableComposite as a subclass of Com-
posite. UpdateableComposite is an abstract class, meaning that it must be sub-
classed to use it, and it contains three methods. The startUpdateTimer() method
starts the update timer. It allows you to specify the number of seconds between
updates; you can use this same method to change the update interval. The update()
method is an abstract method and must be implemented by the subclass.

 Once you implement UpdateableComposite class, you alter the Server Status
component to implement the update() method, and then set the timer (see list-
ing 11.11).

package org.gwtbook.client;

import com.google.gwt.user.client.Timer;
import com.google.gwt.user.client.ui.Composite;

public abstract class UpdateableComposite extends Composite
{
 private Timer timer = null;

 public abstract void update();

 public void startUpdateTimer(int seconds)
 {
 if (timer != null) {
 stopUpdateTimer();
 }

 timer = new Timer() {
 public void run() {
 update();
 }
 };

 timer.scheduleRepeating(seconds * 1000);
 }

 public void stopUpdateTimer()
 {
 if (timer == null)
 return;

 timer.cancel();
 timer = null;
 }
}

Listing 11.11 Abstract UpdateableComposite class

Examining different polling techniques 397

The implementation is straightforward but is worth some explanation. The class
contains a single private field called timer, which holds the Timer object. You
need to hold onto a reference to the Timer object so that you can cancel it when
stopUpdateTimer() is called. Looking at the stopUpdateTimer() method, you
can see that the method calls cancel() on the Timer object and then sets the
timer field to null.

 The startUpdateTimer() method first checks to see if the timer field is null. If
it isn’t null, this is a sign that it has already been started. The method responds by
calling stopUpdateTimer() to cancel the existing timer. This allows you to use
startUpdateTimer() to change the interval period without having to worry about
stopping the existing timer. The method then goes on to create a Timer instance.
You’re creating the Timer as an anonymous class, which prevents external clients
of this class from being able to control the timer directly. In the timer’s run()
method, you call the abstract method update(). It will be left up to the subclasses
of UpdateableComposite to determine what the update() method does.

 With the UpdateableComposite complete, the only thing left to do is alter the
Server Status component to take advantage of the scheduling capabilities:

public class ServerStatusComponent extends UpdateableComposite
{
 ...

 public void update() {
 getStatusDataFromServer();
 }
}

The only change is that you now extend UpdateableComposite instead of Com-
posite directly, and you implement the update() method. The update()
method, in turn, calls the private method getStatusDataFromServer(), which
you created before triggering an RPC call to the server. In projects other than the
Server Status component, you can include whatever code is required to update
the component in the update() method.

 With this mechanism in place, you can now easily create and schedule updates
for the component. The code to do this for the Server Status component is here,
but it will be essentially the same for any custom component that subclasses
UpdateableComposite:

ServerStatusComponent serverStatus = new ServerStatusComponent();
serverStatus.startUpdateTimer(60);

In summary, using the GWT Timer class, it’s easy to schedule a piece of code to exe-
cute on a schedule. The concepts for doing this are the same no matter if you’re

398 CHAPTER 11

Examining client-side RPC architecture

using a timer to schedule polling of the server or updating a display. In either case,
it’s always a good idea to think through the design and use the tools that Java pro-
vides to create reusable code. The UpdateableComposite is just one example.

 Now that we’ve explored timers and, in conjunction, the concept of polling,
it’s time to look at how you can emulate server-push and push events to the client
browser.

11.2.3 Emulating server-push by blocking server threads

As we briefly mentioned earlier, no true server-push is available to browsers,
meaning the server can’t send data to the browser without the browser requesting
it. The reasons are security and lack of a standard. To accommodate for this lack
of functionality, there are several schemes for emulating server-push. In this sec-
tion, we’ll discuss and implement one such variation called blocking server threads.

 From a high level, RPC involves a client browser requesting data from a server.
The server then processes the request and returns a result. Not only is this how
browser-based RPC works, but it’s also how web pages are served. With blocking
server threads, you add one small alteration: You hold up the processing on the
server until data is available to process. It’s similar to a company with poor cus-
tomer service—you end up waiting on hold until there is someone to talk to you.

 To help understand how this works, figure 11.8 provides a visual comparison
between polling and blocking server threads.

Figure 11.8

A visual comparison

of server polling and

the blocking-threads

technique

Examining different polling techniques 399

In figure 11.8 you can see that when you use polling, the browser handles the
orchestration by calling the server every 20 seconds. With blocking, the server
becomes the conductor, placing the request on hold until it needs to process the
request. Another important difference is that with blocking, you have an almost
constant connection between the client and the server.

 A web-based chat client is the classic example of the need for blocking server
threads, and we’ll use this type of application as our example. You won’t build a
complete component because doing so would require covering a lot of the same
topics we’ve already discussed; but we’ll explain the few changes required to make
it work. We’ll start with the code required on the client and then look at what
changes are needed on the server.

Implementing blocking on the client

When you implement the client side of blocking server threads, there is little that
you need to do. The only requirement is that each time you get a response from
the server, you need to initiate a new request. Take the following AsyncCallback
implementation for example. We’ve removed the implementation details, but
notice that it calls the method getDataFromServer() on both success and failure:

class ChatPanelUpdater implements AsyncCallback
{
 public void onFailure (Throwable caught) {
 ...
 getDataFromServer();
 }

 public void onSuccess (Object result) {
 ...
 getDataFromServer();
 }
}

You’d need to define getDataFromServer(); the only requirement is that this
method triggers another RPC request. In the Server Status component, the
method getStatusDataFromServer() serves the same purpose.

 With this one minor change, we can turn our attention to the more interesting
aspects of blocking server threads on the server.

Implementing blocking on the server

Implementing the server portion of a blocking RPC server can be done the same
way you block any Java thread: by issuing a sleep command. When you issue a sleep
command to the JVM, it stops processing that specific thread of execution for
some amount of time. Once the sleep time is finished, the thread wakes up and

400 CHAPTER 11

Examining client-side RPC architecture

continues processing. Issuing a sleep command involves a single statement. The
method Thread.sleep() takes a number of milliseconds to sleep; passing 1000 to
the method causes the thread to sleep for one second:

Thread.sleep(1000);

For our purposes, you need to do more than just block the thread for some
amount of time. You need to first determine whether you should process the
request, which in the case of a chat application is when you have a message that
you want to send the user. On the other hand, if you don’t have a message to send,
you should put the thread to sleep for a short period of time. Once the thread
wakes up, you check again whether you should process the request. To do so, you
use a loop similar to this:

public List getMessages ()
{
 List result = new ArrayList();

 try {
 while (true) {
 if (canProcess()) {
 result = process();
 break;
 }

 Thread.sleep(1000);
 }
 } catch (InterruptedException ignore) {
 }

 return result;
}

You use the while(true) loop to create an endless loop, and at the end of the
loop, you use Thread.sleep() to sleep for one second. Prior to sleeping, you
check to see if you can process the request by calling canProcess(); if you can,
you call process() to get the result of the RPC call and then break out of the
while loop. The try statement catches an InterruptedException, which could
result from the call to Thread.sleep()—for example, if the application server was
being shut down.

 This loop is fine, but what happens if the user closes their browser or navigates
to a different web page? Unfortunately, you don’t have a good way to be notified
of these events, so potentially a thread could loop forever even though the
browser client is no longer present. To solve this problem, you need to introduce
a timeout (see listing 11.12).

Examining different polling techniques 401

public List getMessages ()
{
 List result = new ArrayList();
 long timeout = System.currentTimeMillis() + (30 * 1000);

 try {
 while (true) {
 if (canProcess()) {
 result = process();
 break;
 }

 if (System.currentTimeMillis() > timeout) {
 break;
 }

 Thread.sleep(1000);
 }
 } catch (InterruptedException ignore) {
 }

 return result;
}

To the original example, you added a timeout value: You set the value to the cur-
rent time in milliseconds and add 30 seconds to that value. You also added a
check, and, if the current time exceeds the timeout value, it breaks the loop. The
timeout value you use depends on your specific project, but in most cases 30 sec-
onds is sufficient to keep the number of requests down while removing stale con-
nections quickly.

 The exact implementation of canProcess() and process() depends a lot on
the purpose of the method. For example, with the chat application, you’ll likely
have a queue of messages for each user of the system, in which case canProcess()
returns true if any messages are in the queue for that user. The process()
method then returns the list of messages and clears out the queue, or marks the
messages in the queue as being delivered.

 Now that we’ve shown how you can easily implement polling, let’s turn our
attention to a completely different, although equally important, topic: how to cre-
ate custom serialization routines for your objects.

Listing 11.12 Blocking threads example with the introduction of a timeout

402 CHAPTER 11

Examining client-side RPC architecture

11.3 Writing custom field serializers

With GWT’s basic serialization system, you can create data objects that implement
the IsSerializable interface, which can be passed between the client and server.
When you implement this interface, GWT handles all the details of serialization
and deserialization for you. This is usually sufficient for most work with GWT, but
occasionally this mechanism isn’t sufficient for a given project. Three common
reasons for needing to write a custom field serializer are as follows:

■ The default serialization causes performance issues for a complex object.

■ The class that needs to be serialized doesn’t implement IsSerializable
(or Serializable as of GWT 1.4).

■ The class that needs to be serialized doesn’t have a zero-argument constructor.

Writing a custom field serializer is fairly easy. In this section, you’ll take the Serv-
erStatusData class that you used as the data object for the ServerStatus compo-
nent example, and you will write a custom serializer for it. To begin, let’s look at the
original implementation of the ServerStatusData class, shown in listing 11.13.

package org.gwtbook.client;

import com.google.gwt.user.client.rpc.IsSerializable;

public class ServerStatusData implements IsSerializable
{
 public String serverName;
 public long totalMemory;
 public long freeMemory;
 public long maxMemory;
 public int threadCount;
}

The data object is fairly simple, including only five fields; the custom field serial-
izer will also be fairly simple, but it will highlight the important concepts. You’ll
begin by creating a custom field serializer class, and we’ll look at implementing
both serialization and deserialization. We’ll then discuss how to serialize objects
that don’t have a zero-argument constructor.

Listing 11.13 Original implementation of the ServerStatusData class

Writing custom field serializers 403

11.3.1 Creating a custom field serializer class

To begin, you need to create a class for each custom field serializer, which must
follow some rules:

■ The serializer class must reside in the same package as the class that it
serializes.

■ The serializer class must have the same name as the class that it serializes
plus _CustomFieldSerializer.

■ It must implement serialize() and deserialize() methods.

■ It may optionally implement an instantiate() method if the class requires
custom creation.

These rules require the convention of adding the suffix “CustomFieldSerial-
izer” to a class to specify that it’s a custom serialization class. Also, as you’ll see
shortly, the three methods have signatures that depend on the class type being
serialized. To help you understand how all this works, you’ll start by building the
shell of the class; then, we’ll discuss each of the method signatures it contains.
(See listing 11.14.)

package org.gwtbook.client;

import com.google.gwt.user.client.rpc.SerializationException;
import com.google.gwt.user.client.rpc.SerializationStreamReader;
import com.google.gwt.user.client.rpc.SerializationStreamWriter;

public class ServerStatusData_CustomFieldSerializer
{
 public static ServerStatusData instantiate(
 SerializationStreamReader reader)
 throws SerializationException
 {
 }

 public static void serialize(
 SerializationStreamWriter writer,
 ServerStatusData instance)
 throws SerializationException
 {
 }

Listing 11.14 Beginnings of the ServerStatusData_CustomFieldSerializer

 class

404 CHAPTER 11

Examining client-side RPC architecture

 public static void deserialize(
 SerializationStreamReader reader,
 ServerStatusData instance)
 throws SerializationException
 {
 }
}

The first method, instantiate(), is a static method that takes a Serialization-
StreamReader as an argument (which we’ll discuss shortly) and returns an object
of the type this class was built to serialize, namely the ServerStatusData class.
The instantiate() method is optional and is required only when the target class
doesn’t have a zero-argument constructor. It must return the same type of object
that you’ve built this class to serialize and deserialize—in this case, a ServerSta-
tusData instance. The instantiate() method, like the other two methods,
throws SerializationException.

 The serialize() method is a static method that takes a writer object, used
for adding data to the serialization stream, and an instance object, which is the
object that is being serialized (in this case, a ServerStatusData object). This
instance object is of the same type that you’re serializing, so if your custom field
serializer was serializing an object of type Foo, then the instance parameter would
be of type Foo.

 The deserialize() method receives a reader object, which can read data
from the serialized stream, and an instance object of the type of object that
you’re deserializing (in this case, a ServerStatusData object). The instance
object is the same object that was created by the instantiate() method, and the
reader object is the same reader that was given as a parameter to instantiate().
The pattern for deserialization is that instantiate() is called first and is given an
opportunity to read data from the serialized stream and use it in the creation of
the object. The instance created by instantiate() is then passed to deserial-
ize() along with the reader, allowing it to continue reading from the stream and
setting any properties of the object.

 Now that you have a basic shell, let’s discuss the usage of the serialization
reader and writer classes by implementing the methods in the class.

11.3.2 Implementing custom field serialization

Thus far, we’ve looked at the method signatures for the custom field serializer, but
you haven’t yet implemented them. Let’s inspect each method individually and
explain its purpose and how it should be implemented.

Writing custom field serializers 405

Implementing the instantiate() method

When GWT serializes or deserializes an object using your custom field serializer
class, it calls instantiate(). The purpose of this method is to create a new
instance of your object, including passing any values to the constructor required
for its creation. This method has a default behavior, and you don’t need to imple-
ment the method unless you need to override the implementation. The default
behavior as shown here, calls the zero-argument constructor of the data class and
returns the instance:

public static ServerStatusData instantiate(
 SerializationStreamReader reader)
 throws SerializationException
{
 return new ServerStatusData();
}

In this implementation, you implemented a field serializer for the data class
ServerStatusData. If you were writing a field serializer for a different class, the
method signature would change to return an object of that type.

 A SerializationStreamReader object is passed to this method and can be
used to read values from the serialized stream and use those values in the con-
struction of the object. For example, in the following example, the class Fake-
Data’s constructor takes a String argument, which you pull from the reader:

public static FakeData instantiate(SerializationStreamReader reader)
 throws SerializationException
{
 String val = reader.readString();
 return new FakeData(val);
}

We’ll discuss using the SerializationStreamReader in more detail when we look
at the deserialize() method (after the serialize() method).

Implementing the serialize() method

The serialize() method of the custom field serializer is passed a writer object,
which is used to write data to the serialized stream, and an existing object
instance, which is the object you’ll serialize. Serialization works by reading some
data from the object you’re serializing and then writing that data to the writer.

 The writer is an instance of SerializationStreamWriter from the package
com.google.gwt.user.client.rpc; it includes methods for writing different
types of data to the serialized stream. Following is a list of available writer meth-
ods, all of which may throw a SerializationException:

406 CHAPTER 11

Examining client-side RPC architecture

■ writeBoolean(boolean value)

■ writeByte(byte value)

■ writeChar(char value)

■ writeDouble(double value)

■ writeFloat(float value)

■ writeInt(int value)

■ writeLong(long value)

■ writeShort(short value)

■ writeString(String value)

■ writeObject(Object value)

The writer includes a method for each of the Java primitive types as well as the
String and Object classes. Writing an object to the stream in turn calls the serial-
izer for that type of object, which could be one of the serializers that comes with
GWT or another custom field serializer.

 You may write the fields to the stream in any order. The only restriction is that
the deserialize() method reads the values from the stream in the same order
you wrote them.

Implementing the deserialize() method

The deserialize() method is passed the object instance created by instanti-
ate() and passed a reader so that it can continue reading from the serialized
stream. The reader is an instance of SerializationStreamReader from the pack-
age com.google.gwt.user.client.rpc. It has a set of methods that allow you to
read one value at a time from the serialized stream. The reader methods mirror
the writer methods we looked at previously. It’s important that you read the values
in the same order as you wrote them, or you’ll likely cause a SerializationEx-
ception to be thrown—or, even worse, end up with a deserialized object with the
wrong data in the wrong fields.

 The reader object has the following methods, all of which throw Serializa-
tionException:

■ boolean readBoolean()

■ byte readByte()

■ char readChar()

■ double readDouble()

Summary 407

■ float readFloat()

■ int readInt()

■ long readLong()

■ short readShort()

■ String readString()

■ Object readObject()

Just like the writer, there is one method for each of Java’s primitive types, plus
String and Object. Calling readObject() in turn causes the deserialization of
the value you’re reading.

 Here is the deserialize() method for the ServerStatusData object:

public static void deserialize(
 SerializationStreamReader streamReader,
 ServerStatusData instance) throws SerializationException
{
 instance.serverName = streamReader.readString();
 instance.totalMemory = streamReader.readLong();
 instance.freeMemory = streamReader.readLong();
 instance.maxMemory = streamReader.readLong();
 instance.threadCount = streamReader.readInt();
}

The deserialize() method, like the serialize() method, is simple; you read
each value from the stream in the proper order and set the appropriate field of
the object.

11.4 Summary

In chapter 10, we introduced an example component, Server Status, which makes
calls to the server and displays statistics on memory usage and the number of
server threads. As we progressed through the chapter, we followed an entire build
process for the component and presented something new at each step.

 In chapter 11, we polished this working example by focusing our attention on
the architecture and design of the application. You started by encapsulating your
code as a reusable composite component. We looked at how the Façade software
pattern can be used to hide the implementation details of the RPC call, providing
the flexibility for changing this later without disturbing the entire application. We
then focused our attention on the callback routine that receives the data from the
server. You encapsulated this object as a Command object, and we discussed how

408 CHAPTER 11

Examining client-side RPC architecture

this pattern allows you to easily add functionality like logging or chaining multiple
commands together.

 Once you had a stable and reusable component, we looked at polling tech-
niques, starting with a comparison of server-push and client-pull. You created an
abstract Composite class, which can be reused and will allow any component that
subclasses it to pull data from the server on a scheduled basis. We followed this up
with a discussion of how you can emulate server-push by blocking server threads.

 Last, but not least, we discussed cases where the built-in serialization routines
aren’t enough. You can write your own custom field serializer class to handle a
data object that can’t follow the requirements of the IsSerializable interface.

 We’ve covered quite a bit, but GWT offers even more with respect to RPC. In
this chapter, we looked at GWT’s proprietary RPC mechanism, which is tailored to
deliver Java objects between the client and server. But what if your server isn’t
Java? In the next chapter, we’ll look at the rest of GWT’s RPC offering, including
the ability to communicate with non-Java servers.

409

Classic Ajax
and HTML forms

This chapter covers

■ Classic Ajax support

■ Loading and parsing external XML data

■ Using FormPanel

■ Widgets for use with FormPanel

410 CHAPTER 12

Classic Ajax and HTML forms

In chapter 10, we showed you how you can use the GWT-RPC mechanism to com-
municate between the Java application server and the browser to pass Java objects.
But what if you don’t have a Java application server? What if you use PHP, .NET, or
even plain vanilla CGI scripts? Or, what if you want to load static configuration
files from the server? These are just some of the situations where the GWT-RPC
mechanism doesn’t quite do the job.

 In this chapter, classic Ajax and good old HTML forms come to our rescue.
These tools are generic and flexible, and GWT provides a set of objects that allows
you to take advantage of them. In the first half of the chapter, we’ll examine the
RequestBuilder class, which provides support for classic Ajax communication.

 In the second half of this chapter we explore GWT’s FormPanel component,
which allows the building of traditional HTML forms in a smart and powerful way.
We’ll show you some different ways of using this component, including using it
for handling file uploads.

 With the path set, let’s begin this journey by looking at the RequestBuilder
class.

12.1 Classic Ajax with RequestBuilder

In chapter 10, we discussed asynchronous communication and the role of the
underlying XMLHttpRequest object. To recap, the XMLHttpRequest object is a tool
that is a part of modern browsers, which can be scripted with JavaScript. This
XMLHttpRequest object allows you to fetch content from a remote URL and han-
dle the response programmatically. The benefit of loading content this way is that
you can use code to communicate with the server without needing to refresh the
web page, making your web application feel more like a desktop application and
more user friendly. The GWT-RPC mechanism that you saw in chapters 10 and 11
is a higher-level tool built on top of this lower-level JavaScript object.

 In this section, you’ll get a lot closer to the XMLHttpRequest object than you
did when you used GWT-RPC. There are many reasons why you might need to do
this. One such situation is where you need to communicate with legacy systems,
which often aren’t written in Java, and it’s too costly to rewrite the server compo-
nents. Another motivation for not using GWT-RPC arises when you aren’t running
a Java application server (which is a requirement of GWT-RPC). Whatever the rea-
son, we’ll explore how you can access this basic functionality.

 We’ll begin the discussion with a brief overview of HTTP and the difference
between a GET and a POST. This will provide the groundwork for exploring
RequestBuilder, which requires you to specify which of these two methods you

Classic Ajax with RequestBuilder 411

want to use. If you’re already well versed in HTTP, you may still want to quickly
browse through the material; we promise to keep it focused and short.

 After going over the basics of the communication protocol, we’ll examine the
RequestBuilder class. RequestBuilder provides a simple interface with sensible
defaults for making remote calls to the server without sacrificing the ability to
alter the low-level details of the request when you need it. This includes the ability
to alter and add HTTP headers to the request and specifying a timeout.

 Let’s get some background on the HTTP protocol and the request-response
cycle.

12.1.1 Examining HTTP methods

When you load a web page into your browser, the Hypertext Transport Protocol
(HTTP) is used to communicate the transaction. HTTP involves a request and a
response. The browser sends the request to the server, and the response is sent
from the server back to the browser. The exact details of HTTP can get complex,
but for the purpose of using GWT we only need to discuss how the basic HTTP
messages work.

 Each request in HTTP involves issuing a command to the server that includes a
method name, a URL, header name-value pairs, and potentially a message body.
There are numerous methods; but with GWT, we only need to focus on GET and
POST, because these are the only methods supported by GWT. Both GET and POST
can be used to send data to the server, but the way they accomplish this differs.

 Let’s look at the GET method first.

Dissecting the HTTP GET method

The GET command sends all its data as part of the URL. Before we get into the spe-
cifics, let’s look at an example URL, which is the URL used to perform a Google
search for “GWT”:

http://www.google.com/search?hl=en&q=GWT&btnG=Google%2Bsearch

When your browser sends this URL request to google.com, it sends the following
GET message using HTTP:

GET /search?hl=en&q=GWT&btnG=Google%2BSearch HTTP/1.1
Host: www.google.com

The URL is still intact, except that the host name has been added as a header. For
clarity, we have only included the Host header, but you could use any number of
additional name-value pairs to identify information about your browser.

412 CHAPTER 12

Classic Ajax and HTML forms

 The server at google.com parses this HTTP request and handles it accordingly.
In Java and most other server-side platforms, you can get complete information
about the request, including the method used, the URL requested, and any of the
header name-value pairs. This can be useful if you need to know what specific
types of content the client-browser can handle.

 The Uniform Resource Locator (URL)
may reference an HTML page, an image, or
just about anything. The URL is made up of
various parts (see figure 12.1).

 The important part for us is the query
portion of the URL. A single question mark
separates the query from the path, and it
contains name/value pairs. The name/
value pairs are separated by ampersands
(&), and the individual pairs use an equal sign (=) to separate the name from the
value. The example URL contains the following names: “hl”, “lr”, “q”, and “btnG”.

 This query is how a GET can be used to pass data to the server. Because the
query uses both equal signs and ampersands to delimit data, you may not use
either of these characters in a name or value. There are several reserved and
unsafe characters, including percent (%), star (*), slash (/), space, period (.),
plus (+), and hash (#); it’s important to escape these characters before you pass
them to the server. GWT provides a tool to perform this function for you:

String safe = URL.encodeComponent("=unsafe value=");

To decode an escaped value, you use the decodeComponent() method. The follow-
ing example decodes the escaped value "=unsafe value=":

String val = URL.decodeComponent("%3Dunsafe+value%3D");

The URL class belongs to the com.google.gwt.http.client package, and you
must specifically import the HTTP module to your module configuration file. You
can do this by adding the following line to your module configuration:

<inherits name='com.google.gwt.http.HTTP'/>

URL escaping involves converting unsafe characters to hexadecimal values and pre-
fixing them with a percent sign. For example, a slash (/) becomes %2F. The only
exception is that a space is encoded as a plus (+) symbol. You typically don’t need
to worry about these details, though, because the encode methods do all the work
for you.

Figure 12.1 The anatomy of a URL,

used to reference some piece of

content on a server

Classic Ajax with RequestBuilder 413

 With the encodeComponent() method, you can use the following code to build
a query whose values were variables that could potentially contain unsafe characters:

StringBuffer query = new StringBuffer();
query.append("param1=" + URL.encodeComponent(value1));
query.append("&");
query.append("param2=" + URL.encodeComponent(value2));
query.append("&");
query.append("param3=" + URL.encodeComponent(value3));

String url = "/search?" + query.toString();

Notice that you need to escape each potentially unsafe value individually. You
also need to make sure that each parameter name is separated from the value by
an equal sign (=) and that each name/value pair is separated by an ampersand
(&). Once you have a completed query string, you can then attach the script or
servlet URL to the beginning and separate it from the query string with a ques-
tion mark (?).

 One limitation of the GET method is that the entire URL has a maximum
length that is allowed. Unfortunately, this isn’t documented, and each browser
and server may impose different length restrictions. Generally, the maximum
length is 1,024 characters—but again, it can vary depending on the browser and
server. If you expect your URL to be more than a few hundred characters, you
shouldn’t use the GET method; instead, you’ll want to use POST, which brings us to
our next topic.

Comparing GET to the POST method

The POST method is typically used for HTML forms, where there can be a lot of
data that needs to be transmitted. The POST method differs from the GET method
in how it sends data to the server. Instead of including the data as part of the URL
query, it uses the body of the HTTP message. In HTTP, the command and headers
are separated from the body with a single blank line. When we looked at GET, we
issued a simple query to a web server. This time, we’ll look at the same query, but
sent as a POST:

POST /search HTTP/1.1
Host: www.google.com
Content-type: application/x-www-form-urlencoded
Content-length: 32

hl=en&q=GWT&btnG=Google%2BSearch

We’ve left out some of the common HTTP header values, but we’ve added new ones
that apply to a POST. The header now includes the content type of the message body

414 CHAPTER 12

Classic Ajax and HTML forms

as well as the length of the body. The message body isn’t limited to a certain size, so
any amount of data can be passed to the server in this fashion.

 The body content in this example is URL-encoded data, as noted by the Content-
type header. The content-type value is important because the server needs to know
how to read the data so that your server-side application can use it. For example, if
you don’t specify that the data is URL-encoded, like the previous example, a Java
application server won’t make this data available to the request object. This is impor-
tant to know because the default content-type for the RequestBuilder class, which
we’ll look at next, is “text/plain”, which isn’t always appropriate.

12.1.2 Simple RPC with RequestBuilder

The RequestBuilder class allows you to call a URL and register a handler to
receive the result. The handler works in a similar fashion as to how it worked with
GWT-RPC in chapter 11, except that you can only send and receive text-only data.
Any data that isn’t in a text form, like a Date value, must be converted to text
when the data is sent. The data can be sent by either GET or POST, which implies
URL-encoded data when using a GET; but for a POST, you can pass any sort of text-
based data. For both GET and POST, you can also specify a username and password
to gain access to the server resource you’re requesting. In most cases, you won’t
need to do this, but it’s offered if the need arises.

 RequestBuilder resides in the com.google.gwt.http.client package, which
is part of the HTTP module. To be able to use this class and its helper classes, you
need to add the following inherits line to your module configuration file:

<inherits name='com.google.gwt.http.HTTP'/>

The RequestBuilder must be instantiated in order to use it. Its only constructor
takes two parameters: a method and a URL. The method can be one of two static
constants, RequestBuilder.GET or RequestBuilder.POST. Here is an example of
setting up the RequestBuilder to use a POST:

RequestBuilder builder = new RequestBuilder(
 RequestBuilder.POST, "/rpc/storedata");

Creating the builder is just the first step. You now have the opportunity to set the
properties of the request. This includes adding header pairs, setting the creden-
tials to use, and specifying a timeout:

builder.addHeader("Content-type",
 "application/x-www-form-urlencoded");
builder.setUser("mikem");
builder.setPassword("l00ta$1nai");
builder.setTimeoutMillis(500);

Classic Ajax with RequestBuilder 415

By default, the content-type is set to “text/plain”, which isn’t always appropriate. If
you’ll be passing a query string payload to the server, you should specify a content-
type of “application/x-www-form-urlencoded”. On many server platforms, this
content-type value is used to signify that the URL-encoded data should be auto-
matically parsed and decoded by the server. An example of such a server-side
framework is a Java application server, which makes the data available via calls to
request.getParameter() only if this specific content type is used.

 Once the additional parameters are set, you need to make the call. To do this,
you call the sendRequest() method of the RequestBuilder object, passing it any
data to add to the body of the HTTP message and a callback handler to handle the
server response (see listing 12.1). The sendRequest() method throws a checked
exception RequestException if an error occurs when sending the message.

Request req = null
try {
 req = builder.sendRequest(
 "storeItem=5893&action=fetch",
 storeCallbackHandler
);
}
catch (RequestException e) {
 GWT.log("Error", e);
}

When you make the call to the server, the RequestBuilder returns a handle to
the Request object. This is often useful if you want to ensure that only one
request hits the server at a time, or if you need the ability to check the status of a
long-running request.

 For example, to ensure that you have only one server request executing at any
given time, you can set up a property in your class called currentRequest, which
holds the last executed request. You can then check the status of the request by
calling isPending(), and if it’s still active, call cancel() to cancel the request:

Request currentRequest = null;
...

if (currentRequest != null && currentRequest.isPending()) {
 currentRequest.cancel();
}
...

Listing 12.1 Initiating the RequestBuilder request

416 CHAPTER 12

Classic Ajax and HTML forms

currentRequest = builder.sendRequest(
 "storeItem=5893&action=fetch", storeCallbackHandler
);

The callback handler implements the RequestCallback interface and must
implement two methods, one for handling a completed request and one for han-
dling an error:

RequestCallback storeCallbackHandler = new RequestCallback() {

 public void onError(Request request, Throwable exception) {
 GWT.log("Error", exception);
 }

 public void onResponseReceived(
 Request request, Response response) {
 ...
 }
};

When an error occurs, the handler’s onError() method is called. This can hap-
pen for any number of reasons, including communication errors or the request’s
timeout being exceeded.

 If the result returns successfully from the server, the onResponseReceived()
method is called, and the Request and Response objects are passed to it. It’s
important to understand that a “successful” response means the server returned a
valid result; it doesn’t mean the server-side application behaved properly.

 In order to verify that the response isn’t just from a server error, it’s a good
practice to check the status code of the response by calling the method getSta-
tusCode(). The status codes are part of the HTTP protocol, where a code of 200
indicates a successful response:

public void onResponseReceived(Request request, Response response) {
 if (response.getStatusCode() == 200) {
 Window.alert(response.getText());
 }
 else {
 GWT.log("Error status code", null);
 }
}

Other codes are grouped by type. Codes in the 300 range indicate that the object
has been moved, the 400 range indicates that the resource is either missing or
otherwise inaccessible, and the 500 range indicates some sort of server-side error
or exception.

Classic Ajax with RequestBuilder 417

 Other methods of the Response object include getStatusText(), which pro-
vides a description of the status code. For a 200 code, this method returns the text
“OK”, and for a 500 error, it returns “Internal Server Error”.

 The Response object also provides several methods to investigate the headers
returned with the HTTP message from the server. You can use getHeader(name)
to retrieve the value of a specific header, getHeaders() to get an array of Header
objects, or getHeadersAsString() to get a String value with all the headers. In
most cases, the header data is relatively useless, unless your server-side service spe-
cifically returns data in the header pairs. For example, you could use custom
header values to augment the data sent in the result.

 We’ve spent a lot of time discussing the API and the differences between POST
and GET. What we haven’t yet done is put all this together into a good example. In
the next section, we’ll provide an example of using the RequestBuilder to read
configuration information from a static XML file.

12.1.3 Using RequestBuilder to load XML data

Describing the API as we’ve done is useful, but a real-life example can help put
everything into context. In this section, you’ll put RequestBuilder to work by
using it to load and parse an XML configuration file. There are real-world reasons
why you might need to do this; even the Dashboard offers lots of places where this
technique could be used. Because we need to pick a reason, we’ve decided to use
an external XML file to add bookmarks to the menu bar.

 The idea is simple: You’ll create an XML file of bookmarks, load the book-
marks via RequestBuilder, and add them to a menu bar. Because using an XML
configuration file to set the values of a menu bar isn’t specific to the Dashboard
project found throughout this book, it’s our hope that you’ll find other uses for
this example in your own projects. Toward that end, we provide the example as an
encapsulated piece that can be easily added to any project.

 We’ll begin with a visual of the project and then discuss the overall architec-
ture of the Bookmarks menu.

Designing the Bookmarks menu

Because you aren’t building a new component type, the design is relatively simple.
It consists of a main MenuBar, to which you’ll add the menu item Bookmarks.
When the Bookmarks menu item is clicked, it opens a submenu populated by
your XML data file. (See figure 12.2.)

 Because the intention is to add this to the existing Dashboard project, we’ll
assume the main MenuBar object already exists. You need to write a method that

418 CHAPTER 12

Classic Ajax and HTML forms

takes this menu as input, as well as the URL of the XML file. In turn, the method
you’ll create loads the XML data file and populates the submenu. The steps it will
perform are listed in table 12.1.

If you’ve been skipping around in this book, we covered the MenuBar and Menu-
Item controls in chapter 4. Fortunately, they’re simple to use; if this is your first
time seeing these controls, you probably won’t require any explanation as to what
is going on. If you do have a question, you can go back and review the details of
these controls.

 Because this book is about GWT, not XML, we’ll keep the message format sim-
ple and (we hope) self-explanatory.

Creating the Bookmark XML data file

For the purposes of the example, the data file is static, short, and extremely sim-
ple. It uses <bookmarks> as the root element and contains a list of <bookmark> ele-
ments. Each <bookmark> element uses attributes to specify the name and URL for
each link. As you read through this example, think of other extensions that could

Table 12.1 The flow of the main method of the example, which adds a list of bookmarks to

 a MenuBar based on the contents of an external XML file

Step Description

1 Load the external XML file based on the URL passed to the method.

2 Parse the XML data file using GWT’s XMLParser class.

3 Create a Bookmarks MenuBar for the drop-down menu listing the bookmarks.

4 Create a MenuItem for each bookmark in the data file. Clicking the MenuItem will trig-

ger the bookmarked page to load into the existing window. Each MenuItem is added to

the MenuBar.

5 Attach the Bookmarks MenuBar to the main MenuBar. This main MenuBar will be

passed to your method as a parameter.

Figure 12.2

A wireframe representation of

the example project, which

loads an external data file and

populates a menu bar

Classic Ajax with RequestBuilder 419

be added. A possible extension would be the ability to group bookmarks by sub-
menu, or attach icons to each bookmark. The possibilities are endless, but
because this chapter can’t be, we’ll stick to the basics:

<bookmarks>
 <bookmark title="Official GWT Site"
 url="http://code.google.com/webtoolkit/"/>
 <bookmark title="GWT Dev Forum"
 url="http://groups.google.com/group/Google-Web-Toolkit"/>
 <bookmark title="GWT Widget Library"
 url="http://gwt-widget.sourceforge.net/"/>
 <bookmark title="Gpokr Online Poker"
 url="http://gpokr.com/"/>
</bookmarks>

The list of bookmarks was handpicked to provide invaluable resources to the GWT
developer. The first two are for the official GWT site and for developer’s forum;
both are great places to go when you’re trying to find a solution to a problem.
The third is our favorite third-party GWT library, which we briefly discussed in sec-
tion 9.2 in our discussion of installing third-party libraries. The last bookmark is
one of the best examples of what GWT is capable of, not to mention a good way to
spend a little down time.

 With the plan spelled out, and now with the data format defined, you should
be starting to understand how you’ll implement your method.

Implementing the submenu reader method

The implementation of the Bookmarks reader is broken into several parts to
make it easier to understand and to add value for code reuse. The main method
that triggers the building of the submenu is named loadSubMenu(). Because
you’ll request an external resource, you need a response handler, which is pro-
vided as a private class named MenuLoaderHandler. Last, you need a Command
object that loads a given bookmark when the menu item is clicked. You’ll create a
private class to encapsulate this command, called LinkCommand.

 This one method and two private classes provide the desired functionality. You
can drop this method and two classes into the entry-point for the Dashboard, or
any other project, to add the functionality. The method signatures are summa-
rized by this code snippet:

private void loadSubMenu(
 MenuBar menu,
 String menuTitle,
 String bookmarksUrl) {
}

420 CHAPTER 12

Classic Ajax and HTML forms

private class MenuLoaderHandler
 implements RequestCallback {
}

private class LinkCommand
 implements Command {
}

In addition to dropping this code into the entry-point class, you also need to
ensure that you’ve imported both the XML and HTTP modules. You can do this by
adding these two lines into your configuration file, if they aren’t already listed:

<inherits name='com.google.gwt.http.HTTP'/>
<inherits name='com.google.gwt.xml.XML'/>

We’ll approach the solution to this problem in reverse, starting with the LinkCom-
mand class, then the MenuLoaderHandler, and finally the loadSubMenu method.
Typically, you’ll code this in the reverse order; but because the two private classes
require variables to be passed to them, it’s easier to explain and understand by
starting at the bottom and working our way up.

Implementing the LinkCommand class

The purpose of the LinkCommand is to load a web page when it’s triggered. The
LinkCommand implements the Command interface, which is part of the com.goo-
gle.gwt.user.client package. Implementing the Command interface requires
you to implement a single method execute(). Look at the implementation in list-
ing 12.2, and then we’ll explain.

private class LinkCommand implements Command {

 private String url;

 public LinkCommand(String url) {
 this.url = url;
 }

 public void execute() {
 Window.open(url, "_self", "");
 }
}

The execute() method uses the Window.open() method to open the provided
URL. The special window name _self indicates that the page should open in the

Listing 12.2 The LinkCommand implementation

Open new
page

Object
constructor

Classic Ajax with RequestBuilder 421

same browser window that the GWT application is running in. If you decide that
you always want the URL to open into a new window, you should replace this with
the special window name _blank. Both _self and _blank aren’t specific to GWT;
they’re part of the HTML specification.

 To open the URL, you need a URL to open. To do this, you must provide a con-
structor for the command, which takes a URL as a parameter. The constructor
stores this value into an instance variable so it can be referenced later by the exe-
cute() method. By creating your command this way, you achieve encapsulation
while still allowing the command to take parameters.

 Moving up the call stack, the LinkCommand class is used by the MenuLoader-
Handler.

Implementing the MenuLoaderHandler

The MenuLoaderHandler class for the example implements the RequestCallback
interface so that it can receive events from remote call that originate from the
RequestBuilder class. At this point, you haven’t made the remote call (we’ll get
to that next); for now, you need to define the handler. In the example of populat-
ing a menu from remote data, the handler is where all the real work is done. (See
listing 12.3.)

private class MenuLoaderHandler implements RequestCallback
{

 private MenuBar parentMenu;
 private String menuTitle;

 public MenuLoaderHandler(MenuBar menu, String menuTitle) {
 this.parentMenu = menu;
 this.menuTitle = menuTitle;
 }

 public void onError(Request request, Throwable exception) {
 Window.alert("Some problem has occurred, we are"
 + " unable to load your bookmarks");
 }

 public void onResponseReceived(Request request, Response response)
 {
 if (response.getStatusCode() != 200) {
 Window.alert("Some problem has occurred, the serve"
 + " returned a status code "
 + response.getStatusCode());
 return;

Listing 12.3 The MenuLoaderHandler implementation

B

C

D

422 CHAPTER 12

Classic Ajax and HTML forms

 }

 MenuBar subMenu = new MenuBar(true);

 Document doc = XMLParser.parse(response.getText());
 NodeList elements = doc.getElementsByTagName("bookmark");

 for (int i = 0; i < elements.getLength(); i++) {
 Node element = elements.item(i);
 NamedNodeMap attrs = element.getAttributes();

 String title = attrs.getNamedItem("title").getNodeValue();
 String url = attrs.getNamedItem("url").getNodeValue();

 MenuItem bookmark =
 new MenuItem(title, new LinkCommand(url));
 subMenu.addItem(bookmark);
 }

 parentMenu.addItem(menuTitle, subMenu);
 }
}

There is quite a bit going on in listing 12.3, so we’ll take it one step at a time. Rest
assured that you’ve already seen most of this, so there isn’t much new.

 You begin with a constructor B that serves the same purpose as the one you
saw with the LinkCommand class in listing 12.3, which is to allow you to pass param-
eters to your handler. In this case, you need a reference to the main menu bar to
which you’re attaching the submenu. You also receive a title for the submenu that
provides you with some additional flexibility—for example, if you wanted your
submenu to be named something other than Bookmarks.

 As part of the interface, you need to implement the onError() method C,
which may be called for various network-related reasons or if a timeout occurs.
You provide a generic error message using the Window.alert() method to inform
the user of the problem.

 As you implement the onResponseReceived() handler, you first check D that
the status code returned by the server indicates success. If any code other than the
successful 200 code is received, you display it to the user as an error message.

 At this point in the code, you have your response from the server, so you first
create E a MenuBar to hold your submenu items, passing true to the constructor
to indicate that it should appear vertically. Next, the response text is parsed F
and the <bookmark> elements are extracted from the external configuration file.

E

F

G

H

I

J

Classic Ajax with RequestBuilder 423

 The next step G loops over each of these elements and H extracts the title
and URL attributes from the XML element. These values are then turned into a
new MenuItem I and added to the submenu MenuBar.

 The handler ends J by utilizing the parentMenu and menuTitle variables that
were initially passed to the constructor. The code attaches the submenu to the
parentMenu using the title that is stored in menuTitle.

 All this could be done by employing anonymous classes, eliminating the need
for the constructor. The drawback of that approach is that it can make the code
difficult to read, and it makes the code impossible to reuse without copying and
pasting each time it’s needed. Unless the handler is small, it’s always a good idea
to shy away from anonymous classes.

 To get back to our example, only one piece is left: implementing the loadSub-
Menu() method.

Implementing the loadSubMenu() method

When we examined the code for the MenuLoaderHandler, we mentioned that the
handler did most of the heavy lifting. It may not come as a surprise that the imple-
mentation of the loadSubMenu() method in listing 12.4 is simple.

private void loadSubMenu(
 MenuBar menu, String menuTitle, String bookmarksUrl) {

 RequestBuilder builder = new RequestBuilder(RequestBuilder.GET,
 bookmarksUrl);

 try {
 String requestData = "";
 RequestCallback callback =
 new MenuLoaderHandler(menu, menuTitle);

 builder.sendRequest(requestData, callback);
 }
 catch (RequestException e) {
 Window.alert(e.getMessage());
 }
}

You create a new RequestBuilder instance, specifying that it should use the GET
command for interacting with the server, and the URL of the configuration file.
This URL, as well as the parent MenuBar and the submenu title, are passed into the
method as parameters.

Listing 12.4 Implementing the loadSubMenu() method

Create
RequestBuilder

Trigger request
to be made

424 CHAPTER 12

Classic Ajax and HTML forms

 Listing 12.4 breaks out the two arguments to the sendRequest() method to
make it clear what you’re sending. The first argument is a list of data to be passed
in the body portion of the HTTP message, which for this example is blank. The
second argument, shown as the variable callback, is a new instance of the Menu-
LoaderHandler() method.

 To have this code add a submenu to the Dashboard project or any other
project, you add a call to this method in the entry-point class, after instantiating
the main MenuBar object. For example, if you have an external configuration file
bookmarks.xml, and the main menu is defined by the mainMenu variable, a call
like the following adds the Bookmarks submenu.

loadSubMenu(mainMenu, "Bookmarks", "bookmarks.xml");

This example has been lengthy, but we hope you find a few gems in it. The example
doesn’t need to end here. If you find that this functionality, or similar functionality,
is useful, you may wish to extend it. One possible enhancement would be to replace
the static XML file on the server with a Java servlet or CGI script capable of gener-
ating XML configuration data from a database or other source. Another idea would
be to extend it to allow for submenus on the submenu, so you could group your
bookmarks by category. This example should give you ideas for many possibilities.

 Next, we’ll look at another form of client-sever communication, falling back to
the ever-useful HTML form.

12.2 Examining FormPanel basics

GWT provides an interesting twist on the HTML form. It mixes the standard form
support of HTML and adds to it some old-school RPC techniques. In the old days,
some time after the dinosaurs but before being able to use the XMLHttpRequest
object, you had to use other techniques for communicating with the server. One
popular technique was to create a hidden iframe for sending and receiving data.
You sent data by loading content into the iframe via JavaScript, passing parame-
ters via the query string to the server. Once the iframe loaded, you could then
inspect the contents of the hidden page to see what was returned. The FormPanel
uses this technique to allow a standard form submission to return a response to
your application without refreshing the page.

 You’ve already seen a few RPC tools provided by GWT: Why is the FormPanel
better than the others? The FormPanel isn’t better, it’s just different. The Form-
Panel is best used when you want to present a set of input controls to the user and
where that form data is destined to be sent to the server for processing. You could

Examining FormPanel basics 425

use GWT-RPC or RequestBuilder for this as well, but doing so would require more
code to get the same effect.

 There is one area where FormPanel functionality can’t be matched by any
other RPC mechanism: when you want the browser to upload files to the server. In
HTML, a file-input tag allows a user to select a file on their local system via a
browse dialog box, which can then be uploaded to the server by submitting an
HTML form. Currently modern browsers have no mechanism other than an
HTML form for uploading files.

 In this section, we’ll present the functionality of the FormPanel in several parts.
We’ll begin with an overview of how the FormPanel works and explore its func-
tionality. We’ll then look at the controls you can use with the FormPanel including
CheckBox, RadioButton, TextBox, and others. We’ll round out our exploration
with perhaps the most interesting use of the FormPanel: processing file uploads.
Let’s begin with a detailed look at how the FormPanel works.

12.2.1 Introducing the FormPanel

It’s likely that you’ve seen dozens of forms on the Internet. They’re used for every-
thing from webmail to shopping, registrations to subscriptions. If you’ve done
web development before it’s likely that you’re well aware as to how they work, but
in case you haven’t run into them before we’ll provide a quick overview.

 HTML forms consists of a <form> element, inside of which are form controls.
Each control is given a name to identify it. For example, a registration form might
use the names fullName, streetAddress, cityState, and phoneNumber. Most
forms also include a submit button that triggers the form and sends the data to
the server. The example form we just described would look like the following
code example in an HTML page:

<form method="POST" action="process.jsp">
 <input type="text" name="fullName" />
 <input type="text" name="streetAddress" />
 <input type="text" name="cityState" />
 <input type="text" name="phoneNumber" />
 <input type="submit" name="submitButton" value="Submit" />
</form>

You may have noticed the method and action attributes of the form element. The
method attribute identifies the HTTP message type that should be used to send the
data to the server; it may be either POST or GET. We discussed the difference
between these two methods earlier in this chapter, in section 12.1.1. The action
attribute specifies the URL to which the form data should be sent. The action URL

426 CHAPTER 12

Classic Ajax and HTML forms

may reference any server-side application that can normally handle processing
form data. The example points to a JSP page, but it could be a .NET application,
CGI, PHP, or just about anything. As you’ll see shortly, the method and action con-
cepts carry over to the FormPanel component.

 Inside of the form element are several form controls. In the example, the first
four are text-box controls and the last is a submit button. Each of these controls,
including the submit button, has a name associated with it. These names are
passed to the server, along with the values, when the form is submitted. It’s possi-
ble to use the same name for multiple fields, but this isn’t usually done because it
complicates the processing of the data on the server. There is one exception to
this rule: the handling of radio buttons, where only one in a group of buttons can
be selected. We’ll take a closer look at the controls a little later; for now, all you
need to know is that each control has to have a name.

 Here’s the way a form works. When the user clicks the submit button, it triggers
the data to be sent to the server. The rule is that any control inside the form ele-
ment is sent to the URL specified by action. Because only the controls inside the
form element are sent, you may have multiple forms on the same page. You might,
for instance, have a search form and a registration form on the same page with two
different actions. The FormPanel works the same way: When you submit the Form-
Panel, it sends the data for all the controls
contained in the component. Figure 12.3
shows the relationship between the controls
and the FormPanel container.

 Setting up a new FormPanel is a little dif-
ferent than other panels because you want
to set some of the properties we men-
tioned, like action and method. Let’s start
by constructing the FormPanel and setting
some of these values:

final FormPanel form = new FormPanel();
form.setAction("/process.jsp");
form.setMethod(FormPanel.METHOD_POST);

The setAction() method, as you probably guessed, sets the action we already
mentioned; its value is set to a the URL of your application. The setMethod()
method sets the HTTP method to use for sending the data. You can use one of two
constants for this: FormPanel.METHOD_POST or FormPanel.METHOD_GET. Unless
there is a reason to do otherwise, you should use the POST method, because the
GET method is usually limited in the amount of data that can be sent.

Figure 12.3 A visual representation of

the relations between the controls and the

FormPanel in which they’re contained

Examining FormPanel basics 427

 The FormPanel is a subclass of SimplePanel, which means it can only contain a
single widget or panel. Unless your form has only one control, you need to place
your controls into a panel and then add that panel to the FormPanel. For a simple
registration, you’ll use a VerticalPanel to hold the form controls, displaying
them one above the next:

VerticalPanel layout = new VerticalPanel();
form.setWidget(layout);

Next, you need to add some controls to the VerticalPanel. Figure 12.3 shows a
form with four text fields. To keep things simple, for now you’ll do the same.

final TextBox fullName = new TextBox();
final TextBox streetAddress = new TextBox();
final TextBox stateZip = new TextBox();
final TextBox phoneNumber = new TextBox();

layout.add(fullName);
layout.add(streetAddress);
layout.add(stateZip);
layout.add(phoneNumber);

When we examined HTML forms earlier, we mentioned that each control con-
tained in the form needs a name associated with it. This is required so you can
access the data by name when you process the form on the server. To allow for
this, the TextBox control and all other controls that can be used in a FormPanel to
send data to the server implement the HasName interface. All such implementa-
tions include getName() and setName() methods:

fullName.setName("fullName");
streetAddress.setName("streetAddress");
stateZip.setName("stateZip");
phoneNumber.setName("phoneNumber");

The only thing you’re missing is a way to submit the FormPanel. Submitting a
FormPanel is done by executing the submit() method of the FormPanel instance.
In a standard HTML form, you’d use the special submit button control; but in
GWT, you need to create a Button instance and attach a listener to trigger the
form submission:

Button submit = new Button("Submit");
layout.add(submit);

submit.addClickListener(new ClickListener() {
 public void onClick(Widget sender) {
 form.submit();
 }
});

428 CHAPTER 12

Classic Ajax and HTML forms

Up to this point, the FormPanel doesn’t differ much from an ordinary HTML
form. You created a FormPanel, the equivalent of the <form> element, and added
TextBox controls that are rendered as <input> elements in the form. So far so
good, but FormPanel has an added trick up its sleeve: event handling.

12.2.2 Listening to FormPanel events

The FormPanel allows you to register an event listener, allowing you to write han-
dler code for exposed events. The two events are the submission of the form and
the completion of the submission:

form.addFormHandler(new FormHandler() {

 public void onSubmit(FormSubmitEvent event) {
 // ...
 }

 public void onSubmitComplete(FormSubmitCompleteEvent event) {
 // ...
 }
});

The onSubmit() handler is triggered just before the form submission, allowing
you to validate the form and even cancel the submission. To cancel the submis-
sion, you call setCancelled(true) on the event object passed to the method.
Here you added validation code to the onSubmit() method from the previous
example and verify that the user supplied their name:

public void onSubmit(FormSubmitEvent event)
{
 if (fullName.getText().length() == 0) {
 Window.alert("You must enter your name");
 event.setCancelled(true);
 return;
 }
}

If the onSubmit() method returns without setting the cancelled flag, the form is
submitted to the server. The FormPanel by default specifies the target of the form to
be a hidden frame. By doing this, it instructs the browser to load the server response
into this hidden frame instead of the main browser window. We’ll discuss the
options for setting the target frame shortly; for now, we’ll stick with the default.

 When the response is returned from the server, the handler’s onSubmitCom-
plete() method is called, and it’s passed a FormSubmitCompleteEvent object. This
object has a getResult() method that returns the content returned by the server.
For the example, the server returns the text “success” if everything went well.

Examining FormPanel basics 429

public void onSubmitComplete(FormSubmitCompleteEvent event)
{
 String result = event.getResults();

 if (result.equals("success")) {
 Window.alert("Registration accepted");
 }
 else {
 Window.alert("Sorry, we cannot accept your registration");
 }
}

The beauty of this system is that the server result isn’t limited to plain text. For
instance, the server can return HTML code that can then be inserted into the page
by your handler. Or, the server may return a complex data structure like XML
data. Because the result isn’t limited to text, the FormPanel is usable in a wide vari-
ety of operations.

 To take a short step backward, we mentioned that you can alter the default tar-
get of the FormPanel submission.

12.2.3 Altering the FormPanel target

There is a good reason why you may want to change the target of the form submis-
sion, and it goes back to how traditional HTML forms work. Typically, when you
submit a form on the Web, the browser loads a completely new page. Although
the idea behind Ajax techniques is that the page doesn’t need to reload, you still
may need to do this.

 With the FormPanel, you can set the target of the form with the constructor only,
and you can’t change it once it has been set. There are three constructor options:
use the default hidden frame, use a named frame, or use a NamedFrame object.

 We already discussed the default behavior, so let’s start with the named frame.
In HTML, each frame may be given a name, and there are also a couple of special
frame names. The following special frame names can be used to identify the tar-
get of the form:

■ _self—Specifies the target frame as being the frame in which the Form-
Panel resides. For most GWT applications, this is the same as _top.

■ _top—Specifies that the target frame is the entire browser window. The
results sent back from the server completely replace what is currently dis-
played in the browser.

430 CHAPTER 12

Classic Ajax and HTML forms

■ _blank—Specifies that the results from the server should be placed into a
new pop-up window. This is a useful target, but you should only use it when
there is a good reason to do so, because users tend to dislike new windows.
Note that you can’t set the features of the target window—you can’t specify
the height/width, remove toolbars, or similarly affect the new window.

■ _parent—Frames may be placed into other frames, creating a hierarchy.
The parent frame is the frame above the current frame in that hierarchy.
We’ve included this target for completeness, but you’ll almost never need to
use it.

Besides these special frames, you may want to specify a specific named frame. The
description of _blank provides a hint as to one reason for doing this: When you
want the results of the form submission to appear in a pop-up window, you often
want to set some of the features of the pop-up, such as setting the window dimen-
sions or hide toolbars. To do this, you need to create the pop-up window first and
then submit the form into that window.

 You must first alter the FormPanel creation by passing in a named frame. You
set the named target frame to resultPopUp (we made up this name):

final FormPanel form = new FormPanel("resultPopUp");

You now have the FormPanel targeting a named frame that doesn’t yet exist. By
default, if you don’t create a frame for this name and submit the results, the
browser creates a new window for you with the specified name, similar to what
happens if you specify _blank.

 To get the desired behavior, you need to alter the onSubmit() method in your
FormHandler code. Use Window.open() to open an empty pop-up with the name
resultPopUp, with a height of 300 pixels and a width 400 pixels:

public void onSubmit(FormSubmitEvent event)
{
 if (fullName.getText().length() == 0) {
 Window.alert("You must enter your name");
 event.setCancelled(true);
 return;
 }

 Window.open("", "resultPopUp", "width=300,height=400");
}

As you can see in the example, the window features are passed as a comma-
delimited String. In addition to setting the height and width, you can also turn

Examining FormPanel basics 431

on and off various features of the window. For example, the following code turns
off the menu bar and turns off the ability to resize the window:

String features = "width=300,height=400,menubar=no,resizable=no";
Window.open("", "resultPopUp", features);

These features aren’t specific to GWT—and there are a large number of them,
some of which are available only in certain browsers. In general, only a few are
used frequently. The most-used features are as follows:

■ height—The height of the window in pixels

■ left—The number of pixels from the left edge of the screen

■ location—Specifies whether the address bar is displayed (yes/no)

■ menubar—Specifies whether the menu bar is displayed (yes/no)

■ resizable—Specifies if the new window is resizable (yes/no)

■ scrollbars—Specifies whether scroll bars will be available (yes/no)

■ status—Specifies whether the status bar should be displayed (yes/no)

■ toolbar—Specifies if the toolbar will be displayed (yes/no)

■ top—The number of pixels from the top edge of the screen

■ width—The width of the new window in pixels

We’ve spent a lot of time talking about the named frame constructor of the Form-
Panel. Most of this information also relates to the last constructor of the Form-
Panel, which takes a NamedFrame object as an argument:

NamedFrame frame = new NamedFrame("resultFrame");
final FormPanel form = new FormPanel(frame);

NamedFrame is a subclass of the Frame widget, with the only real difference
between the two being that the NamedFrame can be identified by its name. The
NamedFrame instance renders as an iframe when it’s added to the page. You’ll use
the NamedFrame as the submission target of FormPanel when you want the form
submission results to appear inside of an iframe on the page.

 With FormPanel, you have several options for the constructor, based on what
you’re trying to accomplish. Table 12.2 summarizes them.
We’ve spent most of our time looking at the FormPanel and how the overall mech-
anism works. Next, we’ll take a tour of the GWT widgets that can be used in the
FormPanel.

432 CHAPTER 12

Classic Ajax and HTML forms

12.2.4 Using the various form controls

The underlying functionality of the FormPanel lies in the standard functionality of
the HTML form. The FormPanel is a wrapper around this existing functionality that
is supplied by the browser. Any controls you use to pass form data to the server must
be rendered in the page as a control type supported by standard HTML forms. The
GWT components we’ll list here mirror existing HTML control types.

 For each component, we’ll offer a brief explanation, a short code example,
and a visual example of what the control looks like in an application. You’ll find
that you’ve already used many of these controls in earlier chapters. We’ll start with
what is likely to be the most often used component: the TextBox.

Using TextBox to capture text

You see the standard TextBox control everywhere. The Text-
Box renders a text input box that consists of a single line but
may be any width. The following snippet creates a new Text-
Box with the name name and a character limit of 100 characters
(see figure 12.4):

TextBox text = new TextBox();
text.setName("name");
text.setMaxLength(100);

Don’t confuse the width of the TextBox, which can be set with CSS, and the max-
Length property. The maxLength property is the maximum number of characters
the field can hold. This is useful when your data will be inserted into a fixed-width
database column.

 The TextBox has a sister component, the PasswordTextBox.

Table 12.2 FormPanel-related issues and the appropriate FormPanel constructor to solve the problem

Problem Solution

You need to send form data to the server and

optionally be notified of the server response.

Use the default constructor.

You need to send the form results to a spe-

cific frame, and the frame has a name.
Use the String constructor, passing in the name of

the frame.

You need to send the form results into a pop-

up window.
Use the String constructor, specifying a name for the

pop-up window, and then use Window.open() to cre-

ate the pop-up.

You need to send the form result into a GWT

Frame control.

Modify your code to use NamedFrame control instead

of the Frame control. Pass the NamedFrame control

to the FormPanel constructor.

Figure 12.4

A TextBox control

Examining FormPanel basics 433

Using PasswordTextBox to hide text

The PasswordTextBox is the same as TextBox, with one
small difference: Any characters typed in the box appear as
stars or a round circles to obscure the contents of the field.
As the name implies, this input component is typically used
only for password fields; someone looking over your shoul-
der won’t be able to read what you’ve typed. Here’s an
example (see figure 12.5):

PasswordTextBox pass = new PasswordTextBox();
pass.setName("password");

As with the TextBox, you must explicitly set the name property of the component if
you plan to send the data to a server as form data. This name is then used on the
server to fetch the data by field name.

 If PasswordTextBox is the sister to TextBox, then both of them have a big
brother that is used to capture long text: the TextArea.

Using TextArea to capture long text

The TextArea is like the TextBox except that it
can span multiple lines and include a scrollbar
when the text exceeds the bounds of the dis-
play area. The following example creates a
TextArea that is 30 characters wide and 5 lines
tall (see figure 12.6):

TextArea textArea = new TextArea();
textArea.setName("description");
textArea.setCharacterWidth(30);
textArea.setVisibleLines(5);

The width of a character and height of a line will differ between browsers, so it
may be preferable to set the height and width using CSS.

 In addition to text controls, several other input types are probably familiar.
These input types include check boxes, radio buttons, and list boxes.

Using CheckBox for boolean values

The CheckBox component is rendered as a square that
can be checked by the user. The CheckBox constructor
takes an optional label as an argument. The label, if spec-
ified, appears to the right of the check box. The following
snippet asks the user to subscribe to a newsletter (see fig-
ure 12.7):

Figure 12.5

A PasswordTextBox

control

Figure 12.6 A TextArea control

Figure 12.7

A CheckBox control

434 CHAPTER 12

Classic Ajax and HTML forms

CheckBox subscribe = new CheckBox("Subscribe to newsletter");
subscribe.setName("subscribe");

On the server, the CheckBox data is handled a little differently than the data of
other form controls. Instead of the value being a specific String value, it’s either
on or null. If the user doesn’t check the box, the browser doesn’t send any infor-
mation about that control to the server, resulting in the null value.

 The RadioButton control is similar to the CheckBox.

Using RadioButton to offer options

Like the CheckBox, the RadioButton presents a control
that can be selected, but it looks to the user like a circle
instead of a box. The user is provided a list of options, and
selecting a single option deselects the others. In a group of
radio buttons, only a single radio button can be selected.
Here is a code snippet that provides four age options (see
figure 12.8):

RadioButton age18 = new RadioButton("age", "18-25");
RadioButton age26 = new RadioButton("age", "26-30");
RadioButton age31 = new RadioButton("age", "31-40");
RadioButton other = new RadioButton("age", "> 40");

The RadioButton constructor includes the group name for the radio buttons. In
the example, all four buttons use the name age as the group name, which is what
links them together. The browser allows you to select only one option from this
group. When your selection is sent to the server, the name of the group can be
used to retrieve the value.

 RadioButton widgets are useful when you’re presenting a short list to the user,
but they aren’t appropriate when the list is lengthy, like a list of countries. In this
case, the ListBox is more appropriate.

Using ListBox to display an option list

The ListBox is rendered as a single line, similar to the
TextBox, except that at the right of the ListBox is a small
arrow. Clicking the arrow opens the list and reveals all the
possible values that can be selected. The following example
creates a list with three country names that appear in the
same order in which they’re added (see figure 12.9):

Figure 12.8

A RadioButton control

Figure 12.9 ListBox

control

Examining FormPanel basics 435

ListBox list = new ListBox();
list.setName("country");
list.addItem("Canada", "CA");
list.addItem("United Kingdom", "UK");
list.addItem("United States", "US");

On the server, the value in this example can be referenced by the country param-
eter of the form data. Each of the items on the list includes a name and a value.
The name appears on the list to the application user, and the value is sent to the
server. If the user selects Canada from the list, the value CA is passed to the server.

 The ListBox has an alternate style that displays a scrolling
list of options instead of a drop-down list. To use this alternate
style, you specify the number of items that should be visible. If
the list includes more items than can be visible, a scrollbar
appears to the right of the list, allowing the user to scroll
through the options (see figure 12.10):

list.setVisibleItemCount(3);

The ListBox by default allows the user to select only a single item. When an item
is selected, any previously selected item is deselected. On occasion, it may make
sense to allow a user to select multiple options. To do so, you need to set the mul-
tipleSelect property to true, as follows:

list.setMultipleSelect(true);

This lets the user select multiple items by holding down the Ctrl key as they select
additional items. In practice, this typically isn’t used because it has a tendency to
confuse users.

 So far, we’ve only talked about the user entering content in some fashion; but
HTML and GWT also support hidden data.

Using Hidden to hide data

Hidden data passes a value to the server with the form data when you don’t want
the user to see or interact with the data. For example, if the user is logged in to
your application and has obtained a security key, you need to pass that key to the
server, but it doesn’t make sense for the user to be able to edit it. The following
example creates a hidden form field with the security key data:

Hidden hidden = new Hidden("securityKey", "KLHiuky$45eEW98h%YS");

When you use the Hidden control, make sure you don’t abuse it. Just because the
data is hidden from the web page doesn’t mean it can’t be detected. It’s always a
good idea to ask yourself whether it would be a potential security risk to allow a

Figure 12.10

A ListBox control

that displays

multiple items

436 CHAPTER 12

Classic Ajax and HTML forms

user to see and modify this data. If the answer is yes, then you’re probably build-
ing flaws into your application that could be exploited by malicious attackers.

 Along the same lines, there is another form control that should be used cau-
tiously: the FileUpload component.

Using FileUpload to upload files

The FileUpload control presents a text box along
with a Browse button. Clicking the Browse button
allows the user to select a file on their system; once
selected, the file’s path appears in the text box.
When the form is submitted, the browser sends the
contents of the selected file along with the form data
(see figure 12.11):

FileUpload upload = new FileUpload();
upload.setName("file");

To be able to use the FileUpload control, you must set the method type of the
FormPanel to POST and set the encoding-type to multipart. Multipart is a special
content-type that allows different types of data to be mixed in a single message. If
you ever sent an email with an attachment, then you’ve sent a multipart message.
The form passes the data to the server using the same technique your mail client
uses to send attachments:

FormPanel form = new FormPanel();
form.setMethod(FormPanel.METHOD_POST);
form.setEncoding(FormPanel.ENCODING_MULTIPART);

On the server, handling a file upload can be a messy task. The tools you use
depend on the language you’re using on the server, but most languages have tools
available to make the task more manageable. In Java, our tool of choice for han-
dling uploaded files is the commons-fileupload library, which is one of the
Apache Jakarta projects. You can download the library from http://
jakarta.apache.org/commons/fileupload/.

 Listing 12.5 provides an example of using commons-fileupload in a servlet.
The servlet iterates over the data passed to the servlet, processing only uploaded
files and ignoring all other data.

Figure 12.11 A FileUpload

control

Examining FormPanel basics 437

import java.io.*;
import java.util.*;
import javax.servlet.ServletException;
import javax.servlet.http.*;
import org.apache.commons.fileupload.*;
import org.apache.commons.fileupload.disk.DiskFileItemFactory;
import org.apache.commons.fileupload.servlet.ServletFileUpload;

public class UploadServlet2 extends HttpServlet
{
 public void service(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 if (!ServletFileUpload.isMultipartContent(request))
 return;

 FileItemFactory factory = new DiskFileItemFactory();
 ServletFileUpload upload = new ServletFileUpload(factory);

 List items = null;
 try {
 items = upload.parseRequest(request);
 }
 catch (FileUploadException e) {
 e.printStackTrace();
 return;
 }

 for (Iterator i = items.iterator(); i.hasNext();) {
 FileItem item = (FileItem) i.next();

 if (item.isFormField())
 continue;

 String fileName = item.getName();

 int slash = fileName.lastIndexOf("/");
 if (slash == -1) {
 slash = fileName.lastIndexOf("\\");
 }
 if (slash != -1) {
 fileName = fileName.substring(slash + 1);
 }

 try {
 File uploadedFile = new File("/uploads/" + fileName);
 item.write(uploadedFile);

Listing 12.5 A servlet using the Jakarta commons-fileupload library to capture

 uploaded files

B

C

D

E

F

G

H

I

438 CHAPTER 12

Classic Ajax and HTML forms

 }
 catch (Exception e) {
 e.printStackTrace();
 }
 } // end for

 } // end service()

}

The handling of uploaded files may look intimidating at first, but it isn’t that com-
plex thanks to the commons-fileupload library. When the servlet’s service()
method is called, the first thing you do B is make sure the form was submitted as
multipart content. As we mentioned previously, this is required in order to use a
form to submit files to the server. To accomplish this, you use the static routine
ServletFileUpload.isMultipartContent() from commons-fileupload to per-
form the check for you. If the form data isn’t multipart, you return from the
method, doing no additional work.

 The commons-fileupload library requires a little setup before it will parse the
form data for you. You create a new instance of ServletFileUpload C and pass it
a reference to a FileItemFactory. The FileItemFactory generates a FileItem
instance for each file that was uploaded to the server. In this example, you use a
DiskFileItemFactory instance. The DiskFileItemFactory stores the uploaded
file in memory if it’s less than 10 KB or save it in a temp directory otherwise. This
is currently the only FileItemFactory that ships with commons-fileupload, so
you don’t have a lot of choices; but it lets you create your own factory for cases
where special data handling is required.

 You then parse the request data D, which builds a list of FileItem objects. If
an error occurs during the parse, a FileUploadException is thrown, providing
information about the problem. In the example, if an error occurs, you return,
although this may not be appropriate for all applications.

 Next, you loop through each of the FileItem instances E. If the FileItem is a
simple form field F or, rather, not a file, you ignore it and continue with the next
FileItem instance.

 If the FileItem is a file, you get the filename G. The filename isn’t what you
may expect, because it isn’t just the filename but instead is the full path to the file
on the client’s computer. For instance, the name might be C:\Document and Set-
tings\rhanson\Desktop\shopping_list.txt, which has limited value for you on the

Summary 439

server. You need to strip the path information from the name H so that you have
only the filename. In listing 12.5, you look for the last forward-slash (Unix style)
or backslash (Windows style), stripping anything up to that point.

 What you do next depends on the application. In the example servlet, you
store the file in the /uploads/ directory I. You accomplish this by creating an
instance of java.io.File and passing it to the helper method write() of the
FileItem instance. This writes the file to disk at the location you specified.

 We don’t expect that you’ll use this servlet as is, because it probably won’t fit
general application usage. For example, it’s bad practice to place all the files in
the same directory. If your application uses user accounts, perhaps it’s better to
store each user’s files in their own directory. Or, if your system is an issue-tracking
system like Bugzilla or Jira, it may be better to store the file in a directory that has
the same name as the ticket number. How you store the files depends on what
you’re building.

NOTE Many web servers and servlet containers place a restriction on the maxi-
mum file size that can be uploaded to the server. If the files your users
are uploading are more then a few megabytes, you should consult your
server documentation for the default maximum file-upload size and asso-
ciated configuration settings.

With the end of our discussion on the FileUpload control, so ends our discussion
of the FormPanel component.

12.3 Summary

In this chapter, we looked at two different tools: RequestBuilder and FormPanel.
Both of them pass data to the server, so it’s a question of the best tool for the job.

 If you need to send or request data from the server behind the scenes without
presenting a form to the user, the RequestBuilder should be your tool of choice.
RequestBuilder is easy to use and offers good error handling, allowing access to
the server-status code so you can handle errors appropriately. The Request-
Builder also lets you set a timeout for the request, cancel the request, and set and
modify the headers that are sent to the server. Modifying the headers is useful if
you want to set the content type to URL-encoded so server-side systems like JSPs
and servlets know that they should parse the message data.

 The FormPanel class takes a completely different approach to sending data to
the server by wrapping existing HTML form functionality found in web browsers.
This makes it useful when you want to send user-supplied data to the server, where

440 CHAPTER 12

Classic Ajax and HTML forms

the data is submitted via a form. In the same way that the RequestBuilder
response handlers work, event handlers can be registered with the FormPanel to
listen for form-submission and submission-complete events. On completion, the
results returned by the server are sent to a hidden frame, which can be read by
your code, allowing you to provide feedback to the user on the server’s response.

 Arguably, you could use RequestBuilder along with some additional coding to
provide the same functionality as the FormPanel, but one specific function sets the
FormPanel apart. Web browsers let you use an HTML form to upload files to the
server. In modern web applications, this approach is being used more and more,
especially as traditional desktop applications are ported to the Web as run-anywhere
applications. With the FormPanel, along with the FileUpload control, you can pro-
vide this functionality in your GWT application. Handling file uploads on the server
isn’t a simple task, but tools are available for most languages to make this easier. Java
has the commons-fileupload library, available from www.apache.org, which makes
it easy to write a servlet that can read uploaded files. Table 12.3 summarizes these
tools and compares them to GWT-RPC from chapters 10 and 11.

In the next chapter, you’ll build on the functionality of RequestBuilder by using
it to pass structured data to the server. The format you’ll use is called JavaScript

Table 12.3 Benefits of the three main tools for sending data to the server, to help you pick the right

 tool for the job

RPC tool
Underlying request

mechanism
Benefits Disadvantages

GWT-RPC XMLHttpRequest Automatic serializa-

tion and deserializa-

tion of Java classes.

Can only communicate with a server

that is running a Java servlet-

container. Complex setup; requires

several interfaces to be built in

addition to your servlet.

RequestBuilder XMLHttpRequest Easy to use. Good

error handling. Allows

control over the HTTP

headers and request

timeout.

Can only send text data. If you

need to send complex data struc-

tures like XML or data objects, you

must write custom serialization and

deserialization code.

FormPanel HTML form Uses a standard HTML

form. Allows for simple

integration with server-

side frameworks like

Struts, and allows for

uploading files.

Requires form fields to be displayed

on the page for use, which makes it

inappropriate for some tasks.

Summary 441

Object Notation (JSON). As you’ll see, JSON makes it easy to send structured data
to server-side applications written in not just Java, but in any popular program-
ming language.

442

Achieving interoperability
with JSON

This chapter covers

■ Overview of the JSON data format

■ Using GWT’s JSON support

■ Yahoo’s JSON search service

■ Examples of JSON server-side in
Java, Perl, and Ruby

Introducing JavaScript Object Notation (JSON) 443

JavaScript Object Notation (JSON) is a message format designed to be lightweight
and easy to learn. The format it provides is meant to be JavaScript friendly and, at
the same time, easy to read and write in any language. You can find the JSON spec-
ification at json.org; it has met with quite a bit of success, assuming that you
equate success with adoption. On the home page of the JSON site are nearly 40
implementations in no fewer than 20 different languages. Because JSON is easy to
learn and is widely available, it’s an ideal choice for communication between your
GWT application and any type of server.

 In this chapter, we’ll discuss the basic structure of a JSON message and provide
an overview of the different objects the JSON format supports. We’ll then map the
JSON format to the JSON support found in GWT and present details of how to use
JSON in your applications.

 Finally, we’ll round out our discussion by implementing a search component
that takes advantage of Yahoo’s JSON API. Because developers using JSON are most
likely doing so because they don’t run Java on the server, you’ll implement the
server portion of your component in not only Java, but in Perl and Ruby as well.
Let’s begin with an introduction to JSON.

13.1 Introducing JavaScript Object Notation (JSON)

In this section, we’ll begin with a brief overview of the JSON message format and
how you can use the GWT JSONParser class to read JSON messages. This lays the
groundwork for the rest of the chapter where we get into the details of JSON value
objects and provide an example application. To help you understand what the
JSONParser is doing under the hood, we need to first understand what a JSON
message looks like.

13.1.1 Understanding the JSON data format

JSON is a message format that was designed specifically to take advantage of Java-
Script’s ability to evaluate strings as code. The JSON format is valid JavaScript
code; when evaluated, it can rebuild the object. The benefit is that the code
required to deserialize a JSON message is only a single line of JavaScript. To under-
stand how this works, consider the following snippet of JavaScript code:

var code = '["this","that","other",1,2,3]';
var x = eval(code);

In this example, the variable code is a string value that contains valid JavaScript
code. The brackets denote an array value, which contains six values—both strings

444 CHAPTER 13

Achieving interoperability with JSON

and numbers. The second line evaluates the string and assigns the result to the
variable x. The result is that x is now an array of values.

 JSON works by evaluating whatever is in the string. You could use eval() to
execute any JavaScript code, but the JSON specification puts some limits on this.
The reason for limiting the syntax is that JSON endeavors to be easy to implement
in any language, not just JavaScript. Toward this end, JSON is limited to only a few
basic values: null, true, false, string, number, array, and object. Let’s look at
another example that uses all these different types:

var code = '{
 "name" : "John Doe",
 "age" : 25.0,
 "married" : true,
 "children" : null,
 "pets" : ["Maxie", "Minnie"]
}';
var x = eval(code);

We’ve spaced out the code variable for readability; it would usually be a single
long value. In the value, the curly braces create a JavaScript object containing
name/value pairs. This object is roughly equivalent to a Map in Java. Each name/
value pair consists of a string name and a value that can be any of the allowable
types we mentioned. JSON arrays, like objects, can contain any of the value types,
including different value types mixed in the same array. This allows you to create
complex data structures any number of levels deep.

 One type we want to focus on is the JSON number value. This is a generic type
used to hold integers and floating-point values of any size. Numbers may be nega-
tive or positive and may use scientific notation:

var code = ' [-90823, 987345, 24345.23445, 1.234e8]';
var x = eval(code);

For further information on the JSON format, visit the json.org web site. It spells
out in minute detail the allowed JSON values. It also lists quite a few JSON imple-
mentations in various languages that can be used on the server to parse and build
JSON messages.

 None of these implementations is especially useful with GWT on the client
side, so GWT provides its own JSON support. The first (and arguably most impor-
tant) GWT class for using JSON is JSONParser.

Examining GWT’s JSON data objects 445

13.1.2 Using JSONParser to parse JSON messages

The JSONParser is responsible for deserializing JSON data into Java objects, and
it’s extremely easy to use. You parse a JSON message by calling the static parse()
method of JSONParser, passing in the raw JSON message. If the JSON message is
malformed, the parser throws a JSONException:

JSONValue valueObject;
try {
 valueObject = JSONParser.parse(jsonData);
} catch (JSONException e) {
 GWT.log("JSON parse exception", e);
}

The JSONValue object that is returned by the parse is a generalized JSON type that
can be any one of a number of JSONValue subclasses. We’ll examine the JSONVa-
lue class as well as its subclasses next.

NOTE JSONParser doesn’t “parse” the JSON message. Instead, it evaluates the
JSON message as JavaScript, essentially executing it, much as you would
do if you were writing your JSON client code in JavaScript.

13.2 Examining GWT’s JSON data objects

As we mentioned in the last section, JSON consists of only a few basic data types:
string, number, boolean, and null. JSON also has the concept of objects and
arrays, which hold collections of JSON values. GWT provides a set of classes that
correspond to each of these JSON values types. In this section, we’ll provide class
diagrams of each of these data types as well as examples of how to use them.

 In addition to having these JSON data objects constructed as the output of the
JSONParser, we’ll also show you how to construct JSON objects, tie them together
as an array or object, and generate a JSON message that can be sent to the server.

 Before we get to these specific JSON types, we need to start at the beginning
and examine the parent of all JSON types in GWT: the JSONValue object.

13.2.1 Introducing the JSONValue object

At the top of the JSON stack is the JSONValue object. This is the abstract super-
class of all JSON value objects. It contains a test method for each JSON type and a
toString() method that returns a JSON message string. Each of the test meth-
ods returns either an object of the specific type or null if the object isn’t of that
type. For example, the isArray() method returns the JSONArray object if the

446 CHAPTER 13

Achieving interoperability with JSON

value is an array or null if it isn’t. Figure 13.1 shows
the methods of the JSONValue class.

 The test methods allow for some creative coding.
In this example, a JSON value is stored in the variable
jsonValue, and you want to log an error if it isn’t a
JSONString value:

JSONString data;
if ((data = jsonValue.isString()) == null) {
 GWT.log("bad data", null);
}

Inside the if statement condition, you call jsonVa-
lue.isString(), which returns a JSONString object into the variable data if it’s a
string, or null if it isn’t. You then test the contents of the variable data to deter-
mine whether it’s null. If it’s null, you log the error. This format may take a little
getting used to if you haven’t used it before, but it’s concise and compact.
Another way to code the same thing is the following:

JSONString data = jsonValue.isString();
if (data == null) {
 GWT.log("bad data", null);
}

The style you use depends a lot on your coding style and how much error-checking
you want to include. If you don’t require any error-checking, you can simply cast the
value object to the appropriate type:

JSONString data = (JSONString) jsonValue;

Next, we’ll look at the specific JSON data.

13.2.2 Examining basic JSON types

In addition to the array and object types, JSON includes four basic value types:
string, number, boolean, and null. Figure 13.2 provides a visual of these classes
and shows their relationship to the JSONValue parent class.

 To construct a JSONString, you pass the String value as a argument to the
constructor. The value can then be retrieved using the stringValue() method:

JSONString name = new JSONString("John Doe");
String value = name.stringValue();

The JSONNumber class is similar in that you pass the value, which is a Java double,
to the constructor. JSON doesn’t include support for granular number types like

Figure 13.1 A class diagram of

the JSONValue class, which is

the superclass of all JSON data

objects in GWT

Examining GWT’s JSON data objects 447

Java; in JSON, all numbers are equal. For example, Java provides several primitive
number types like short, integer, long, float, double, char, and byte. To
retrieve the encapsulated value from a JSONNumber instance, you call the
getValue() method:

JSONNumber age = new JSONNumber(25);
double value = age.getValue();

To create a JSONBoolean instance, you call the static method getInstance(), pass-
ing a Java boolean to indicate the JSON value type to return. To test the value of
the object once it’s created, you call the booleanValue() method:

JSONBoolean married = JSONBoolean.getInstance(true);
boolean value = married.booleanValue();

A JSONNull object is the equivalent to a Java null value. To get an instance, you
call the static method getInstance():

JSONValue children = JSONNull.getInstance();

All of these objects are subclasses of the JSONValue class and, therefore, inherit all
of its methods, including toString(), which returns a JSON message that repre-
sents the object’s value. Several of these values can also be tied together as an
array or map.

Figure 13.2 A class diagram of the basic JSON data types that are part of the GWT library

448 CHAPTER 13

Achieving interoperability with JSON

13.2.3 Storing JSONValue objects in a JSONArray

The two container type objects supported by
JSON are arrays and objects. A JSON array is,
as you probably guessed, an array of JSONVa-
lue objects. It’s a simple ordered collection
of values, with get() and set() methods to
read values from and write values to the
array. The class diagram in figure 13.3 shows
the methods of the JSONArray class.

 The JSONArray has two constructors: one
a zero-argument constructor, and the second
taking a JavaScriptObject. The second con-
structor is typically used only from within the
JSON parser, but you could use it to read val-
ues returned from native JSNI methods that
return a JavaScript value type.

 To fill a JSONArray, you first create a new
instance and add values using the set() method, providing the index of the value
being added to the array. The JSONArray doesn’t include an add() method like
you find with Java’s Vector or ArrayList, so if you want to append a value to the
end of the array of an unknown size, you need to call the size() method to get
the current size:

JSONArray pets = new JSONArray();
pets.set(0, new JSONString("Maxie"));
pets.set(pets.size(), new JSONString("Minnie"));

When you’re putting values into an array, you must ensure that you don’t skip any
indices. When you call toString() on the JSONArray, it throws an exception if
any of the array indices don’t contain an object:

JSONArray pets = new JSONArray();
pets.set(0, new JSONString("Maxie"));
pets.set(5, new JSONString("Minnie"));
String jsonValue = pets.toString(); // throws exception!

If your code could potentially skip indices, you can use the following method to
fix the array by inserting JSONNull values where no values exist. Any value in the
array that returns a Java null value won’t be able to be converted to a JSON mes-
sage and needs to be set with an instance of JSONNull:

Figure 13.3 The JSONArray class,

which can be used to store collections of

JSONValue objects

Examining GWT’s JSON data objects 449

private void fixJsonArray(JSONArray array)
{
 for (int i = 0; i < array.size(); i++) {
 JSONValue val = array.get(i);
 if (val == null) {
 array.set(i, JSONNull.getInstance());
 }
 }
}

To read data from a JSONArray, you can use the size() method to determine the
number of values and use the get() method to retrieve each value:

for (int i = 0; i < pets.size(); i++) {
 JSONValue val = pets.get(i);
 // ... processing ...
}

JSONArrays are useful for ordered data, but we still have yet to look at a way to
store mapped data. The JSONObject fills that need.

13.2.4 Collecting JSONValue objects in a JSONObject

The JSON object type, shown in figure 13.4,
is roughly equivalent to the Java class
java.util.Map: It’s a collection of name/
value pairs. In languages other than Java,
this type of data structure may be known as a
hash, an associative array, or, as in JavaScript,
an object.

 The JSONObject, like the JSONArray, may
be constructed with the zero-argument con-
structor or by passing a JavaScript object.
The ability to pass a JavaScriptObject is
handy if you want to convert a JavaScript
object that was returned from a native JSNI
function to a JSONObject.

 Adding values to a JSONObject is the
same as a Java Map. It provides a put()
method that takes a String as the key and a
JSONValue object as the value:

JSONObject person = new JSONObject();
person.put("name", name);
person.put("age", age);

Figure 13.4 A class diagram of the

JSONObject class, used to hold a

collection of named JSONValue objects

450 CHAPTER 13

Achieving interoperability with JSON

person.put("married", married);
person.put("children", children);
person.put("pets", pets);

To iterate over the values in the JSONObject, you can use the keySet() method to
return a java.util.Set of keys. You can then pass each key to the get() method
to retrieve the stored JSONValue:

Set keys = person.keySet();
for (Iterator i = keys.iterator(); i.hasNext();) {
 String key = (String) i.next();
 JSONValue value = person.get(key);
 // ... processing ...
}

The JSONObject class also includes a size() method to get the number of name/
value pairs and a containsKey() method to test for the existence of a key.

int pairs = person.size();
boolean hasName = person.containsKey("name");

No remove method is available; once you place something in the JSONObject, you
can’t remove the name/value pair without rebuilding the entire object. In most
cases, this isn’t an issue because JSON objects are typically used only for transport
and not modified after creation.

 This concludes our examination of JSONObject and all the JSON value objects.
Now, let’s put JSON to work as you build a search component that uses the Yahoo
Search API.

13.3 Creating a search component using JSON

Yahoo is one of those companies that has provided a lot of open APIs that develop-
ers can use. One of the APIs provided by Yahoo is for its search engine; Yahoo’s
API provides support for several data formats including JSON. Over the course of
this section and the next, you’ll implement a search component that displays
search results from the Yahoo search engine (see figure 13.5).

 You’ll break the component into two parts: the client side and the server side.
On the client, you’ll send a JSON request to the server and then display the results
of the search by parsing the JSON response. On the server side, you’ll utilize a
third-party Java API to read the JSON request from the client, and then you’ll call
the remote Yahoo server API. The server portion will then return the raw JSON
response from Yahoo to the client browser. Once you finish that, you’ll reimple-
ment the server-side code in Ruby and Perl.

Creating a search component using JSON 451

To begin, we’ll explain the Yahoo Search API and provide details on the returned
JSON data.

13.3.1 Examining the Yahoo Search API

Yahoo provides a rich set of Search APIs, allowing you to write applications that
can search for audio, images, web sites, and videos, and also provides a ton of
options. For the purposes of your search component, you’ll be using the web-
search service, and you’ll request that the returned data be in the JSON message
format. Due to space constraints, we can cover only a small portion of the Search
API and its options; if you decide to explore more of what Yahoo has to offer, you
can find the full details at http://developer.yahoo.com/search.

 You can access the Yahoo API by passing the search arguments in a URL. This is
the base URL for the Yahoo Search API:

http://search.yahooapis.com/WebSearchService/V1/webSearch

To this, you can add various query parameters. Following are some of the available
parameters, which you’ll use in your component:

■ appid—The application ID: a required parameter. The Yahoo developer
network provides information for registering your appid and the terms of
use. Visit http://developer.yahoo.com/faq/index.html#token for addi-
tional information.

■ output—The output format. These include json, xml, php, and string. For
this application, you’ll use json as the value for this parameter.

Figure 13.5

The completed Yahoo-service search

component running in the GWT hosted

browser

452 CHAPTER 13

Achieving interoperability with JSON

■ results—The number of results to return. The default is 10.

■ query—Used to pass the search terms to the Yahoo service. This is a
required parameter.

When you pass the value json as the output parameter, the results are returned as
JSON data. You can test this by appending the following search parameters. When
you use this, replace the appid value “GWT-Book” with your own:

?appid=GWT-Book&output=json&results=1&query=Manning

The results returned from this search look like those shown in listing 13.1. Note
that we’ve reformatted the data to make it more readable; when you use this in
your browser or application, the data is on a single line.

{
 "ResultSet" : {

 "type" : "web",
 "totalResultsAvailable" : 22800000,
 "totalResultsReturned" : 1,
 "firstResultPosition" : 1,
 "moreSearch" : "\/WebSearchService\/V1\/webSearch...",

 "Result" : [
 {
 "Title" : "Manning Publications Co.",
 "Summary" : "Publisher of computer books...",
 "Url" : "http:\/\/www.manning.com\/",
 "ClickUrl" : "http:\/\/uk.wrs.yahoo.com\/_ylt=A9ib...",
 "DisplayUrl" : "www.manning.com\/",
 "ModificationDate" : 1160722800,
 "MimeType" : "text\/html",
 "Cache" : {
 "Url":"http:\/\/uk.wrs.yahoo.com\/_ylt=A9ib...",
 "Size":"62363"
 }
 }
]
 }
}

The root object returned is a JSON object, as denoted by the curly braces. Inside the
object is a single property named ResultSet. ResultSet is an object that contains
various properties like type, total available results, total results returned, a link to

Listing 13.1 JSON formatted message received from Yahoo’s Search API after a search

 on the term “Manning”

Creating a search component using JSON 453

additional results, and a Result property. The Result property is an array of
results, each of which is a JSON object. Each result object contains the title of the
result, a summary, a display URL, a click URL, and other details about the result.

 Now that you have an idea what the Yahoo data looks like, you need to create
the client application and implement the code to read this JSON data.

13.3.2 Implementing the Yahoo search component

You’ve built several components at this point, so we won’t repeat the steps for cre-
ating a new project here. Instead, you’ll get right into the project. Your project
name may vary, but for the purposes of the code examples found here, the entry
point class is org.gwtbook.client.JSON.

 Setting up your JSON project is the same as any other, with one addition: By
default, the JSON classes aren’t in the build path for the GWT compiler, so you
need to add them to your project configuration file. To do so, you inherit the
com.google.gwt.json.JSON module, which lets the GWT compiler find the JSON
classes. With this addition, the project configuration looks like the following:

<module>
 <inherits name='com.google.gwt.user.User'/>
 <inherits name='com.google.gwt.json.JSON'/>
 <entry-point class='org.gwtbook.client.JSON'/>
</module>

For this component, you’ll create a class called YahooSearchComponent that
extends the GWT Composite class and resides in the org.gwtbook.client.ui
package. Listing 13.2 provides the component’s basic structure. Again, we’ve cov-
ered how to do this several times, so we’ll only briefly describe the general struc-
ture of the component.

package org.gwtbook.client.ui;

import com.google.gwt.core.client.*;
import com.google.gwt.json.client.*;
import com.google.gwt.user.client.*;
import com.google.gwt.user.client.ui.*;

public class YahooSearchComponent extends Composite
{
 FlowPanel component = new FlowPanel();
 TextBox searchBox = new TextBox();
 Button searchButton = new Button();
 FlowPanel resultsArea = new FlowPanel();

Listing 13.2 The YahooSearchComponent

Construct
components

454 CHAPTER 13

Achieving interoperability with JSON

 public YahooSearchComponent()
 {
 initWidget(component);
 setStyleName("yahoo-search");

 searchButton.setText("Search");
 searchButton.addClickListener(
 new ClickListener() {
 public void onClick(Widget sender) {
 search();
 }
 }
);

 component.add(searchBox);
 component.add(searchButton);
 component.add(resultsArea);
 }
}

The widget you’re using for the top level of this component is a FlowPanel. Inside
it, you include a text box, where the user enters their search text; a button to trig-
ger the search, and a flow panel to hold the search results. In the constructor for
the component, you add a ClickListener that triggers the search() method,
which you’ll define shortly.

 If you comment out the search() call, you should be able to create an instance
of the component from your entry point and test it in the hosted browser. The fol-
lowing is the code for the entry point (nothing special here; you instantiate the
YahooSearchComponent and add it to the RootPanel):

public class JSON implements EntryPoint
{
 public void onModuleLoad()
 {
 YahooSearchComponent search = new YahooSearchComponent();
 RootPanel.get().add(search);
 }
}

Figure 13.6 shows what you should have so far: a simple page with a search box
and a button. We haven’t provided any special CSS styling for this component—we
leave that up to you.

Add listener
for button

Creating a search component using JSON 455

Now that you have the basic structure of the component set, it’s time to use some
of your JSON knowledge and make the component work. Part of this process
involves having the search component send data to the server.

13.3.3 Sending JSON data to the server

When you use JSON to communicate with the server, you do so with the Request-
Builder class that we looked at in chapter 12. JSON by itself isn’t a transport
mechanism; it’s a message format, so you need to use RequestBuilder to transmit
the message. In the discussion that follows, we’ll no doubt repeat some of what we
stated in the section on RequestBuilder, but this isn’t a substitute for our earlier
explanation. If you don’t understand something about the transport of the JSON
message, you should refer to the appropriate topic in chapter 12.

 First, in order to use RequestBuilder, you need to import the com.goo-
gle.gwt.http.HTTP module by adding the following line to the module configu-
ration for this project:

<inherits name='com.google.gwt.http.HTTP'/>

This lets the RequestBuilder class and associated classes be included into your
project path, making them available to the GWT compiler.

 When we ended our coverage of implementing the search panel in the last sec-
tion, you’d created a click listener to trigger a search() method. This method, as
we explained, triggers the search. Listing 13.3 defines the search() method that
provides an example of sending a JSON message.

Figure 13.6

The beginnings of the

Yahoo search component

456 CHAPTER 13

Achieving interoperability with JSON

private void search()
{
 String searchString = searchBox.getText());

 JSONObject o = new JSONObject();
 o.put("searchString", new JSONString(searchString);
 o.put("maxResults", new JSONNumber(5));

 resultsArea.clear();

 RequestBuilder rb = new RequestBuilder(RequestBuilder.POST,
 GWT.getModuleBaseURL() + "search");

 try {
 rb.sendRequest(o.toString(), new SearchResultsHandler());
 }
 catch (RequestException e) {
 GWT.log("Could not send search request", e);
 }
}

First, if you haven’t been following along, you get the search terms for the Yahoo-
SearchComponent from the text box B. Following this, you C build the JSON mes-
sage. You construct a new JSONObject and add two properties to it: searchString
and maxResults. You do this by creating the appropriate JSON object type and
adding it to the JSONObject. Again, this should all be review; if you missed that
part, go back and read section 13.2, where we define the JSON class types.

 Next, you clear the search results panel and send your request to the server,
removing any previously return results D. After that, you’re ready to make the
actual RPC request. You construct a new RequestBuilder instance using the POST
method E. You need to use this HTTP method instead of an HTTP GET because
you want the JSON message to be passed in the body of the HTTP message. We
favor this over passing the data in the HTTP query string because an HTTP POST
doesn’t limit you as to the length of the JSON message.

 The sendRequest() method F takes two parameters: the POST message and a
reference to a RequestCallback object. For the RequestCallback parameter, you
pass a new instance of SearchResultsHandler, which we’ll define shortly, whose job
it is to parse and display the resulting JSON message and display the search results
to the user. For the POST message, you call the toString() method on your JSON
object. This builds a JSON message from the object, which looks like the following:

{"searchString":"google web toolkit", "maxResults":5.0}

Listing 13.3 The search() method

Get search
keywords

B

C
Construct JSON
message

Clear
results area

D

Create request E

Send request F

Creating a search component using JSON 457

With the JSON format, the curly braces denote the boundary of a JSON object;
within are two properties. The searchString property in this example contains the
string “google web toolkit”, and the maxResults property contains the value 5.0. As
we mentioned earlier in this chapter, JSON doesn’t distinguish between integer and
floating-point numbers, which is why the value 5, which you set in the code, is
passed as 5.0. (We discussed the JSON format in section 13.1.1.)

 The only thing left on the client side of the component is to implement the
SearchResultsHandler class that parses and validates the results from the server
and displays them to the user.

13.3.4 Parsing and validating a JSON server response

When you receive the JSON message results from the server, you should add com-
prehensive validation to the message. Because this requires a bit of code, you’ll break
up the functionality into several bite-sized pieces. Listing 13.4 is the shell for the
response handler; it contains four methods, three of which aren’t currently defined.

class SearchResultsHandler implements RequestCallback
{

 public void onError(Request request, Throwable exception)
 {
 GWT.log("Search request failed", exception);
 Window.alert("Sorry, the search request could not be sent.");
 }

 public void onResponseReceived(Request request, Response response)
 {
 if (response.getStatusCode() != 200) {
 Window.alert("Sorry, there was an error...");
 return;
 }

 JSONArray results;
 results = extractYahooResults(response.getText());
 updateResultsArea(results);
 }

 private JSONArray extractYahooResults(String responseText) {}

 private void updateResultsArea(JSONArray results) {}

 private String getString(JSONValue value) {}
}

Listing 13.4 Response handler shell

Handle
errors

Handle
results

Extract
result data

Update
display

458 CHAPTER 13

Achieving interoperability with JSON

The flow of the handler is fairly simple. It first examines the JSON response and
extracts just the JSONArray that contains the search results. This is done in the
method extractYahooResults(), where you’ll provide a lot of error handling. The
results are passed to updateResultsArea(), which updates the results panel of your
component. The last method is a simple utility method that takes a JSONValue and
returns the String representation. Remember that calling toString() on a JSON
object returns a JSON message string. This isn’t always what you want, and it’s the rea-
son for this method, because it would automatically add quotes to a String value.

 Next, let’s define the extractYahooResults() method (see listing 13.5).

private JSONArray extractYahooResults(String responseText)
{
 JSONArray results;
 JSONValue resVal;
 JSONObject resObject;
 JSONObject resultSet;

 if (responseText == null || responseText.equals("")) {
 GWT.log("no response content", null);
 return null;
 }

 try {
 resVal = JSONParser.parse(responseText);
 } catch (JSONException e) {
 GWT.log("JSON parse exception: " + responseText, e);
 return null;
 }

 if ((resObject = resVal.isObject()) == null) {
 GWT.log("resObject is unexpected type", null);
 return null;
 }

 if ((resultSet = resObject.get("ResultSet").isObject()) == null) {
 GWT.log("ResultSet object not found", null);
 return null;
 }
 if ((results = resultSet.get("Result").isArray()) == null) {
 GWT.log("Result array not found", null);
 return null;
 }

 return results;
}

Listing 13.5 Handling the Yahoo API response

Test for
blank
response

B

Parse
response

C

Validate response
format
D

Creating a search component using JSON 459

You need to write the validation of a JSON message yourself, and it can become
verbose. Because of this, you may have a strong desire to skip it and assume that
everything will work. This approach may work out most of the time, but when
something isn’t working right, it can be difficult to debug. In the validation rou-
tine, you want to make it easy to find problems; in the long run, it’s usually worth
the time involved in writing a detailed validation routine.

 You begin the validation by verifying that the message you’re going to parse
isn’t null and that it isn’t empty B. If either of these is true, the parse automati-
cally fails and throws either a NullPointerException or an IllegalArgumentEx-
ception. By making this check, you can log the root cause of the problem without
causing an exception.

 Next, you attempt to parse the JSON message C. If something goes wrong, the
JSONParser throws a JSONException. This is not a checked exception, so you
don’t need to surround it in a try block; but again, you’re attempting to make it
easy to debug any issues with the message you receive from the server.

 Following this are three separate checks D as you dig deeper in the JSON mes-
sage to find the search results you need. You first verify that the object you get
back from the JSONParser.parse() call is a JSONObject. You then verify that this
object has a ResultSet property that is also a JSONObject, and that the object has
a Result property that is a JSONArray. This follows the result format for the Yahoo
JSON message, as we discussed in section 13.3.1. In each check, you call the appro-
priate isXYZ() method, which returns null if the underlying object isn’t of that
type. If everything checks out, you return a JSONArray of search results.

 The next method you need to define is updateResultsArea(), which displays
the results to the user (see listing 13.6).

private void updateResultsArea(JSONArray results)
{
 for (int i = 0; i < results.size(); i++) {
 JSONObject result;
 if ((result = results.get(i).isObject()) == null) {
 GWT.log("Result[" + i + "] not an object", null);
 continue;
 }

 String title = getString(result.get("Title"));
 String summary = getString(result.get("Summary"));
 final String clickUrl = getString(result.get("ClickUrl"));

Listing 13.6 Updating the component’s display

Validate
result
object

B

Extract
field data
from
result

C

460 CHAPTER 13

Achieving interoperability with JSON

 Hyperlink link = new Hyperlink(title, "result");
 link.addClickListener(new ClickListener() {
 public void onClick(Widget sender) {
 Window.open(clickUrl, "_blank", "");
 }
 });

 resultsArea.add(link);
 resultsArea.add(new Label(summary));
 resultsArea.add(new HTML(" "));
 }
}

In this method, you loop over the results in the JSONArray and add each to the
resultsArea FlowPanel. Again, you’re cautious with the JSON data and verify that
each result is a JSONObject B. You then get the string value of the title, summary,
and link C. For each of these, you use the getString() method, which we’ll
define shortly. You then create a Hyperlink for each result D and add a Click-
Listener, which sends the user to the URL for the result when clicked.

 The only method left to define is getString(), which returns the String rep-
resentation of a JSONValue object. Again, be careful not to make any assumptions
about the JSON data:

private String getString(JSONValue value)
{
 if (value == null)
 return "";
 if (value.isString() != null)
 return value.isString().stringValue();
 return value.toString();
}

Here you plan for three cases. If the value is null, you return an empty String.
This makes the method null-safe and prevents NullPointerExceptions. You then
test to see whether the value is a JSONString, in which case you call the
stringValue() method to return the value. In the third case, you don’t know
what the value is, so you call toString() and return a JSON-formatted message for
the object.

 You’ve come a long way, but you don’t quite have a working search. You have a
client, but you still need to write the code for the server. For the server, you’ll cre-
ate a server-side application that will proxy requests between the browser client
and the Yahoo search service.

Create
result link

D

Implementing a Yahoo Search proxy service 461

13.4 Implementing a Yahoo Search proxy service

When you began this project, we stated that you’d build the server-side portion of
the application using Java, Perl, and Ruby. In the sections that follow, you’ll do that.
We expect that only one or two of these may be of interest to you, so feel free to look
at only those languages you’re interested in. In each of the implementations, we’ll
explain everything you need to know with regard to that language, and we don’t ref-
erence any text across those sections (you won’t miss anything if you skip a section).

 We’re calling this a proxy service, meaning that your server code is merely the
man in the middle, passing data between the client browser and the Yahoo ser-
vice. The reason for doing this is that due to security restrictions in the browser,
your client application won’t be able to hit the Yahoo service directly. If you
missed the section on RPC security concerns, you can look at section 10.1.2, where
we explain the reasoning behind this.

 In each of the following sections, the purpose of the code is to first read the
request from the client browser and pass it along to the Yahoo service. The
request from the client browser comes to the server as a JSON message; in each
implementation, we’ll include notes on the JSON implementation that we used
and where you can get it.

 When you call the Yahoo service, you do so by hitting a URL that has been pro-
vided by Yahoo. Again, in each language, you need to use a language-specific
library to do this, and we’ll provide some information about the library we used.
The content returned by the Yahoo service isn’t processed by your server-side
code; instead, the server passes the content to the browser to be processed on the
client. The server code completes its work by “printing” the contents to your client.

 With that brief explanation of what we’re trying to accomplish, let’s look at
how this works, first with Java.

13.4.1 Using JSON with Java on the server

As we stated, you need to implement a proxy service for your Yahoo-based search
component. For this project, you’ll implement this as a Java servlet and use third-
party libraries to allow you to parse JSON data and hit an external web address.
There is no requirement that this be implemented as a servlet, but we’ve done so
because we feel that, as a standalone application, this it the best fit.

 To begin, you need to first address the source of external libraries that will be
required to deploy this project. To let your servlet hit a remote web site, you’ll use
the Jakarta Commons HttpClient library. If you aren’t familiar with the Jakarta
project, it’s a highly respected project in the Java world and is the Java arm of the

462 CHAPTER 13

Achieving interoperability with JSON

Apache Foundation. You can download the latest version of HttpClient library
from the following URL: http://jakarta.apache.org/commons/httpclient/.

 The other external library you need is a library for parsing JSON objects. When
we visited the JSON.org web site, several Java implementations were available, as well
as a reference implementation provided by JSON.org. Each of the libraries has its
own set of features and tools, some easier than others. In the end, we decided to use
the reference implementation because it doesn’t depend on third-party libraries.
The reference implementation can be found at this URL: http://www.json.org/
java/. Unfortunately, there is one downside: The JSON.org folks don’t currently
have their code packaged as a JAR file, so you have to download the source and add
it to your project.

 Our decision to use this implementation was based on the need to make this
example easy to implement, and we didn’t want our readers downloading dozens
of external libraries to get the application working. On the other hand, if you
don’t mind tracking down dependencies, you may find one of the other imple-
mentations more appropriate for your project needs. Look on the JSON.org home
page for a list of alternate Java distributions.

 Once you have the prerequisites downloaded and added to your classpath, you
can proceed with the implementation. Compared to the other languages we’ll
look at, the Java implementation is by far the longest. It isn’t more difficult,
though; it’s just that Java, by its nature, tends to be more verbose than dynamic
languages. We want you to know this because the code in listing 13.7 looks daunt-
ing—but it isn’t complex.

package org.gwtbook.server;

import java.io.*;
import java.net.URLEncoder;
import javax.servlet.ServletException;
import javax.servlet.http.*;
import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.methods.GetMethod;
import org.json.*;

public class YahooSearchService extends HttpServlet
{

 protected void service(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException

Listing 13.7 A JSON server proxy in Java

Servlet
method
signature

B

Implementing a Yahoo Search proxy service 463

 {

 BufferedReader input = new BufferedReader(
 new InputStreamReader(request.getInputStream()));

 StringBuffer data = new StringBuffer();
 String buf = input.readLine();
 while (buf != null) {
 data.append(buf);
 buf = input.readLine();
 }

 String searchString = null;
 int maxResults = 0;

 JSONObject json;
 try {
 JSONTokener tokenizer = new JSONTokener(data.toString());
 json = new JSONObject(tokenizer);
 searchString = json.getString("searchString");
 maxResults = json.getInt("maxResults");
 } catch (JSONException e) {
 e.printStackTrace();
 }

 GetMethod get = new GetMethod(
 "http://search.yahooapis.com/WebSearchService/V1"
 + "/webSearch?appid=GWT-Book&output=json"
 + "&results="
 + maxResults
 + "&query="
 + URLEncoder.encode(searchString, "UTF-8"));

 HttpClient client = new HttpClient();
 client.executeMethod(get);
 String result = get.getResponseBodyAsString();
 get.releaseConnection();

 response.getWriter().print(result);
 }
}

As we mentioned, you implement this service as a Java servlet B. The entry-point
method for a servlet is the service() method, which takes a request object and a
response object as parameters. These objects can be used as handles to read
input from and write output to the browser.

Read input
data

C

Parse and extract
request data

D

Prepare call
to Yahoo
service

E

Call Yahoo
service

F

Return result to
client browserG

464 CHAPTER 13

Achieving interoperability with JSON

 Because the content being sent by the browser isn’t a standard query, you need
to do a little work to extract the JSON data C. Here, you use the request object to
get a handle on the input stream, and then you read it into the StringBuffer
variable data. This code should be fairly standard if you plan to use servlets to
handle JSON requests, so it may be worthwhile to package this code as a method
so that you can easily reuse it.

 Once you read in the JSON message request from the browser, you need to
parse the message and extract the parameters D. The exact code here depends
on the JSON library you use. In this case, you’re using the reference Java imple-
mentation from JSON.org. To parse the message, you create an instance of the
JSONTokenizer and pass it to the constructor of the JSONObject. The JSONObject
constructor uses the tokenizer to parse the message, and, if something is wrong
with the message, it throws an exception. Once the message has been parsed, you
call the appropriate methods on the JSONObject to get the data—in this case,
getInt() and getString(). The names searchString and maxResults are the
parameter names you defined when you built the search client in the last section.

 Next, you utilize the Commons HttpClient library and build a GET request E.
The URL you’re building is the one defined for the Yahoo search service; note
that you URL-encode any String values. You must encode values that are sent in
the URL because the search text may include characters that are considered
reserved in the URL query format.

 Once you have your request, you need to send it to the Yahoo service F. This
involves creating a HTTP client, executing the request, grabbing the result, and
closing the HTTP client. This is analogous to opening your web browser, going to
a URL, reading the page, then closing your browser.

 With the result in hand, all that is left to do is print the JSON message that
came from the Yahoo service G. You print this value using a special writer that
ultimately delivers the data to the client browser. This last part ends the request-
response cycle between the browser and the servlet.

 There is one issue to be aware of, depending on the remote service you’re try-
ing to proxy to. Some services attempt to detect the type of client hitting their ser-
vice and may deny access to the service in some cases. The service can do this
because your web browser, as well as the HttpClient class, sends information
about what type of client (also known as the user agent) it is. This is what allows
web-site log analyzers, for example, to determine the types of browsers being used
by the users of a web site.

 One example of a service that does this is Google Groups, which denied
access to a servlet that we wrote from being able to access an RSS feed. To access

Implementing a Yahoo Search proxy service 465

the service, we had to provide a user agent name other than the default used by
the Commons HttpClient library:

HttpClient client = new HttpClient();
HttpClientParams clientParams = new HttpClientParams();
clientParams.setParameter(HttpMethodParams.USER_AGENT,
 "SecretAgent");
client.setParams(clientParams);

When we made a request with this HttpClient, it reported our agent type as
being SecretAgent. There are many other reasons to set this value to something
other than the default, including masquerading as a specific browser type or
including your contact information as part of the agent name (which is a com-
mon practice).

 We hope we’ve covered everything you need to know to start writing JSON ser-
vices in Java. With that, we’ll move on to the second implementation, in Perl.

13.4.2 Using JSON with Perl on the server

Perl is one of the old workhorses of the Web, and it’s still popular today. In this
section, we’ll provide the code required to get the server portion of your Yahoo-
based search service project up and running in Perl. In the course of doing so,
you’ll see how Perl can work with JSON messages, as well as its ability to act as a
proxy between the client and a remote service.

 As with the Java version, you need to get a few external libraries, the first of
which provides support for JSON. As with all things Perl, there is more than one
way to do it; with a quick search of CPAN.org, we found many. We settled on the
module JSON, by Makamaka Hannyaharamitu, which you can download from the
following URL: http://search.cpan.org/~makamaka/JSON/.

 The second library you need calls the Yahoo web service from your Perl script.
The obvious choice is libwww-perl (LWP) by Gisle Aas. This is probably one of
Perl’s most popular libraries, so you may already have it installed; if you don’t, you
can download it from the following address: http://search.cpan.org/~gaas/lib-
www-perl/.

 If you aren’t sure whether LWP is installed on your system, you can run the fol-
lowing command, which prints the version number of LWP if it’s installed. If
you’re running this command on Windows, replace the single quotes in the com-
mand with double quotes:

perl -MLWP -e 'print $LWP::VERSION'

466 CHAPTER 13

Achieving interoperability with JSON

For the Perl example, you need a third library as well: the URI::Escape module,
again by Gisle Aas. This library is used to URL encode strings and can be found
here: http://search.cpan.org/~gaas/URI/URI/Escape.pm.

 Once you have the prerequisites installed, it’s time to write some code. Due to
Perl’s concise nature, this example is rather short; see listing 13.8.

#!/usr/bin/perl

use strict;
use JSON;
use CGI;
use LWP::Simple;
use URI::Escape;

my $cgi = new CGI();
print $cgi->header('text/plain');

my $req = jsonToObj($cgi->param('POSTDATA'));

my $query =
 sprintf("appid=GWT-Book&output=json&results=%d&query=%s",
 int($req->{maxResults}),
 uri_escape($req->{searchString}));

getprint("http://search.yahooapis.com:80/WebSearchService/V1"
 . "/webSearch?$query");

The first thing you need to do is create a new CGI instance and print the content
headers B. CGI is the de facto standard module when it comes to CGI support in
Perl. Here, you use it to print the standard Content-type header. This header
tells your web server what type of content you’re printing out, which in this case is
plain text.

 Next, you read in the JSON message that was passed to the client and parse the
message so that it can be read C. The CGI module makes the first task easy by
allowing you to retrieve the POSTDATA parameter, which returns the entire mes-
sage that was posted by the client browser. The parsing of the JSON message is
done by calling jsonToObj(), which is one of the methods automatically
imported when you used the JSON module. The jsonToObj() method converts
the JSON message to a regular Perl object.

 With the JSON request in hand, you now build the query that will ultimately be
sent to the Yahoo service D. You use sprintf() to help you format the string, and

Listing 13.8 A JSON server proxy in Perl

Print
headers

B

Read and parse
JSON message

C

Build
query

D

Call Yahoo service E

Implementing a Yahoo Search proxy service 467

you call uri_escape() to URL-encode the search string. The uri_escape()
method is automatically imported when you use the URI::Escape module.

 The last two steps needed to finish up your proxy—calling the Yahoo service
and printing the result—are performed by the last statement in the script E. The
getprint() method is automatically imported when you use LWP::Simple, and it
handles both of these tasks.

 With fewer than 20 lines of code, you should be up and running in Perl. We
expect that the JSON module, along with LWP::Simple, will cover most of your
JSON needs; if not, your first stop should be CPAN: http://search.cpan.org/. CPAN
has thousands of modules available; if you require some bit of functionality, it’s
likely that someone else needed the same functionality and shared their code. For
example, one interesting module we found in our search is DBIx::JSON, which
generates JSON messages from database queries.

 With that, we conclude the Perl version of the implementation. Next, we’ll
look at how you can implement it in a language that has been gaining a lot of pop-
ularity lately: Ruby.

13.4.3 Using JSON with Ruby on the server

The third and final implementation of the Yahoo search service proxy is in Ruby,
a popular language that has been gaining a lot of momentum the last few years. If
you’ve read either the Java or Perl sections that preceded this one, this one fol-
lows a similar pattern and starts by discussing the third-party libraries required for
the example. Then, we’ll look at the implementation and explain in detail what
it’s doing.

 With Ruby, you require only one external library, which parses the JSON data. We
chose to use the json library, by Frank Florian. You can download the json library
from RubyForge at the following address: http://rubyforge.org/projects/json.
Alternatively, you can use RubyGems to install the package by executing the fol-
lowing command at the command line:

gem install json

With the json library installed, it’s time to look at the Ruby implementation; see
listing 13.9.

468 CHAPTER 13

Achieving interoperability with JSON

#!/usr/bin/ruby

require 'rubygems'
require 'json'
require 'net/http'

if $stdin.eof
 raise "no data defined"
end

input = $stdin.read
data = JSON.parse(input)

if data.has_key? 'Error'
 raise "data parse error"
end

searchString = data['searchString']
maxResults = data['maxResults'].to_i

base_url = "http://search.yahooapis.com:80/WebSearchService/V1"
base_url << "/webSearch?appid=GWT-Book&output=json"

url = "#{base_url}&query=#{URI.encode(searchString)}"
url << "&results=#{maxResults}"

resp = Net::HTTP.get_response(URI.parse(url))
result = resp.body

puts "Content-type: text/plain\n\n"
puts result

Out of the gate, the first thing you want to do is verify that you received a request
from the client browser. You do this by checking the stdin file handle B and ver-
ifying that the end-of-file flag isn’t set to true.

 Next, you read the contents of the stdin handle and call JSON.parse() to con-
vert the JSON message to a data object that you can use C. Again, you add some
error-checking by looking for the key Error in the data object. If this key is found,
it signals that there was a parse error, in which case you raise an error.

 With the contents of the JSON message parsed, you extract the two parameters
from the object D. The searchString and maxResults parameters are the ones
you defined in your client for this service in the previous section.

Listing 13.9 A JSON server proxy in Ruby

Verify data
available

B

Read and
parse JSON
message

C

Extract search
request

D

Build Yahoo
service query

E

Call Yahoo
serviceF

Print results to
client browserG

Summary 469

 You now use these parameters to build the URL, which will be used to call the
Yahoo service E. Note that you use the URI.encode() method to escape any
reserved characters that appear in the search string.

 Next, you call the Yahoo service with the Net::Http::get_response()
method F. This method calls the service and returns a response object. You can
then read the body property of the response object to get the JSON message
returned by the Yahoo service.

 The only thing left to do is print the Content-Type header and the JSON mes-
sage G. The web server then sends this output back to the browser that called
your service.

 That concludes the third implementation of a JSON server proxy service. You
aren’t limited to one of the languages we’ve presented here, because JSON imple-
mentations are available in many other languages: Python, PHP, Haskell, Delphi,
C#, Lisp, OCaml, and others. Visit json.org for a long list of implementations.

13.5 Summary

In this chapter we covered the nuts and bolts of GWT’s support of the JavaScript
Object Notation format (JSON). We began by showing that the JSON format is sim-
ple to read and understand and that it’s executable as JavaScript code. This sim-
plicity has brought wide-spread adoption of JSON as a language-agnostic format
that can be consumed and produced by a variety of languages.

 We discussed each of the JSON value types: string, number, boolean, and null.
We also examined the structure and format of the composite types array and
object. The simplicity and small number of types makes the format lightweight.
On the other hand, the lack of complexity means your data may need to be mas-
saged to fit the message format. For example, because JSON doesn’t include an
explicit date object, you need to handle serialization of a Java Date object yourself.

 With the JSON tour out of the way, you finally got to put JSON to work by build-
ing a Yahoo search component. To show off JSON’s ability to work with a variety of
languages, we explained how to implement the server side of the component in
Java, Perl, and Ruby.

 During the course of implementing the Yahoo search component, we provided
a short tour of the Yahoo search API. We used only a subset of the API, but we tried
to provide with enough information so that you can customize the component to
meet your specific needs.

470 CHAPTER 13

Achieving interoperability with JSON

 This ends our discussion of JSON and also our discussion of GWT’s RPC tools:
We began with GWT’s proprietary RPC mechanism in chapter 10, moved on to cli-
ent-side architecture in chapter 11, and then explored the RequestBuilder object
and FormPanel in chapter 12. But it doesn’t end here, because there is more of
GWT to explore. In chapter 14, we’ll focus on using code generators to write code
for you. If you want to squeeze every last ounce of goodness from GWT, then you’ll
likely find it an interesting topic.

471

Automatically
generating new code

This chapter covers

■ Overview of GWT generators

■ Writing custom generators

■ Accessing input and context

■ Using introspection

472 CHAPTER 14

Automatically generating new code

Everything we’ve done so far has involved you, as a developer, writing GWT Java
code for your application. But you can do more with GWT. Is your ideal develop-
ment project one that includes sitting back with your feet up and letting a tool
write the code for you? With GWT, your dreams are about to come true—almost.
Using GWT generators, it’s possible, at compile time, to take an existing interface
or class (a type) and automatically generate a brand-new type. This new type
could implement the input interface or extend the input class, giving new func-
tionality to your applications. The output type of a generator generally contains
more implementation details than the input type.

 Your task in this chapter is to create a generator that takes all of your Dash-
board applications and automatically creates an About menu option in the appli-
cation’s standard option menu bar. When the user clicks the About menu option,
you’ll show them an alert box containing a list of all the fields and methods in the
application’s class (if the application is in Internet mode, you’ll display only the
public fields and methods). In practice, this means you must build and register a
generator that takes all of the DashboardComposite classes in your application
and creates a subclass that provides the About menu item and uses GWT intro-
spection of the class to access the fields and registers.

 Additionally, you’ll create a This App. Demonstrates menu item that displays
the comment defined for the class to the user of the application. This task is also
performed using the generator you’ll develop.

14.1 Generating new types

You’ve already used generators, albeit in the background, while developing the
Dashboard application (although it’s understandable if you haven’t been aware of
it). Remember when we talked about internationalization and how you provide an
interface and a number of properties files? A generator takes that interface and
generates a set of classes that bind methods defined in the interface to the values
in the various language-specific properties files you also provided. These classes
are then used in the deferred binding approach, where the appropriate locale
class is selected in the compilation process.

 GWT uses generators for more than internationalization. You also used them
when you implemented the RPC technique (to talk to the server) in chapter 10.
They took the proxies and interfaces and implemented all the code to plumb
everything together. When you use JUnit to perform some testing in chapter 16,
you’ll again use generators to take your test classes and produce the necessary
classes in the format needed by JUnit. Table 14.1 indicates the class and packages

Investigating GWT generators 473

where you can find the source code for these generators if you’re interested in
seeing how GWT performs these tasks in detail.

Unfortunately, not much documentation is available for generators at present,
but at least some people are at work decoding how these beasts work and looking
at putting them to use (ourselves included!). This chapter represents our knowl-
edge of how generators function, based on our investigation, and also shows you
how to produce a practical implementation for the Dashboard.

14.2 Investigating GWT generators

The first point to note about generators is that most of the classes they use don’t
reside in the JAR archives you’ve been comfortably using so far. Up to now, you’ve
included the gwt-user.jar file into your projects, which includes all the standard
GWT functionality required. For generators, you must venture into the gwt-dev-
platform.jar archive (substitute your development environment for platform, such
as gwt-dev-windows.jar). As always, to use these classes, you must add that archive
to the classpath (for the commands that launch hosted mode and the compiler

Table 14.1 Package and class names of existing generators in GWT

Generator Package Class name

JUnit

com.google.gwt.junit.rebind JunitTestCaseStubGenerator

Description

Creates a JUnit-readable class from a user-provided GWT JUnit class.

I18n

com.google.gwt.i18n.rebind LocalizableGenerator

Description

Takes an interface that extends the Localizable interface and then generates classes

that bind keys in a number of properties files to methods in the interface. One class is pro-

duced for each property-specific locale added to the module’s XML file.

RPC

com.google.gwt.user.rebind.rpc ServiceInterfaceProxyGenerator

Description

Creates all the plumbing code necessary to implement GWT RPC based on the interfaces

you provide.

Image

Bundling

com.google.gwt.user.rebind ImageBundleGenerator

Description

Bundles together a number of user-provided images into a single image.

474 CHAPTER 14

Automatically generating new code

for web mode). Our classpath on our Windows development machine is included
in the Dashboard-shell command script and looks like this:

@java -cp
 "%~dp0\src;%~dp0\bin;C:/Program Files/gwt-win/gwt-user.jar;
 C:/Program Files/gwt-win/gwt-dev-windows.jar"
 com.google.gwt.dev.GWTShell
 -out "%~dp0\www" %* org.gwtbook.Dashboard/Dashboard.html

With the classpath amended, there are three key steps to producing your own
generator. First, you need to write the code that makes up your generator (we did
say that automatic code generation was almost a case of the code writing itself).
Next, you need to register the fact that you wish the generator to be used with the
GWT system. Finally, you must use the deferred binding approach to create the
objects that will be generated by a generator.

 Writing a generator involves extending the com.google.gwt.core.ext.Gen-
erator class with the functionality you require. Registering the generator is per-
formed through your application’s module XML file, where you indicate which
type the generator should be executed on and what generator’s class name is—
package_name.TypeToGenerateFor and package_name.GeneratorClassName in
the following example:

<generate-with class="package_name.GeneratorClassName ">
 <when-type-assignable class="package_name.TypeToGenerateFor"/>
</generate-with>

By using the GWT.create(classLiteral) method to create your objects, you’re
signaling to the compiler that it should use a deferred binding approach—mean-
ing that at compile time (for web mode) or invocation time (for hosted mode),
there is a little more work to do to get the appropriate class. In the case of
deferred binding to a class created by a generator, you’re telling the GWT system
that the appropriate class needs to be generated.

 Be careful, though, because the classLiteral that you pass into the GWT.cre-
ate() method should be the name of the type you’ve written, such as
Clock.class, not the name of the type you expect the generator to produce.
(The generator works by either implementing your interface or subclassing the
class you provide as an input. The result can’t have the same name as the input,
which is a standard Java rule.)

NOTE You must use the deferred binding approach for creating instances of
classes that will be generated. Otherwise, the compiler doesn’t know that
it needs to invoke a generator.

The process of a generator’s action is shown in figure 14.1.

Investigating GWT generators 475

When the compiler comes across a deferred-binding instantiation for a class/type,
it checks the module XML file (together with any included module XML files) to
see if any direction is given to it. If the assignable type of the class/type under con-
sideration matches the definition given in the module XML definition, then the
generator is applied to it, creating a new type that is used in place of the existing
type in the program. If no match is found, then the original class is used.

 You know how to register a generator, and what happens at compile time. But
what does a generator look like?

Figure 14.1 How generators change the code before the compilation process starts

476 CHAPTER 14

Automatically generating new code

14.2.1 Basic generator code

By convention, you place generator classes in a rebind package; for the Dash-
board, this resides under the org.gwtbook package. Just as with server-side code,
you should avoid placing a generator under the client package for two reasons:
It doesn’t naturally fit in that package; and you can use Java 1.5 and other con-
structs that aren’t possible in the client-side code (if you place your generator in
the client package, then the GWT compiler automatically tries to compile it and
complains about any non-GWT compliant code).

 Let’s look at the basic structure of any generator, shown in listing 14.1.

import com.google.gwt.core.ext.Generator;
import com.google.gwt.core.ext.GeneratorContext;
import com.google.gwt.core.ext.TreeLogger;
import com.google.gwt.core.ext.UnableToCompleteException;

public class MyGenerator extends Generator{

 public String generate(TreeLogger logger,
 GeneratorContext context,
 String typeName)
 throws UnableToCompleteException {
 return null;
 }
}

This generator doesn’t do much, but it does show that all generators need to
extend the basic Generator class B and implement the generate() method C.
The inputs to the generate() method are all supplied by the compiler during the
compilation process. These inputs include the context in which the generator
executes; you can use that context to access classes, files, and properties. A Tree-
Logger is also supplied, which allows you to output your own logging information
in the compilation logger. The final parameter is the name of the type that is
being presented to the generator by the compiler.

 At present, the result of the generate() method in listing 14.1 is the value
null—which tells the compiler that the generator hasn’t created a new type and
that it should use the original type passed in as the parameter. If you want to create
a new type, then you need to provide the code to create that new type as well as
return the name of this new type. You’ll do that now for the Dashboard example.

Listing 14.1 The template of a generator

Extend Generator
classB

generate() method C

Creating a generator for the Dashboard 477

14.3 Creating a generator for the Dashboard

When you built the components for the Dashboard, you put in place a mecha-
nism to let component applications display an option menu when they gain focus;
but there is no requirement that a component application must have such a
menu. By using a generator, you’ll now extend the Dashboard functionality by
doing the following:

■ Setting the name of the DashboardPanel that the DashboardComposite sits
in to be the name of the DashboardComposite class (this is then displayed
on the application’s title bar and as the option menu name)

■ Adding an About menu item to the option menu

■ Creating an About alert box, which describes the fields and methods of the
DashboardComposite (if the Dashboard is in Internet mode, then only the
public fields and methods are listed)

Once an application has gone through the generator, it will appear in the Dash-
board. Clicking the About menu gives a result similar to that in figure 14.2,
which shows the About dialog for the GoogleSearch component application in
intranet mode.

Figure 14.2

The About dialog for the GoogleSearch

Dashboard application, showing the

methods and fields in the class.

(The information was gathered by

introspecting the class at compile

time using a GWT generator.)

478 CHAPTER 14

Automatically generating new code

The generator that performs this follows this template:

■ Gets information about the input type and property values from the current
context

■ Creates a new object that is used to create the new type (a SourceWriter
object)

■ Builds the new type, including introspecting the input type, extending that
input type, and adding some new methods

■ Returns the new type’s name to the compiler

In the next few sections, we’ll look at each of these steps.

14.3.1 Accessing the input class

The generate() method takes as a String parameter the name of the input type.
For the generator to be of any use, you need to access the type itself and not a ref-
erence to its name. Listing 14.2 shows how you do this.

public String generate(TreeLogger logger,
 GeneratorContext context,
 String typeName)
 throws UnableToCompleteException {
 try{
 TypeOracle typeOracle = context.getTypeOracle();
 JClassType requestedClass = typeOracle.getType(typeName);
 String packageName = requestedClass.getPackage().getName();
 String simpleClassName = requestedClass.getSimpleSourceName();
 String proxyClassName = simpleClassName + "Proxy";
 String qualifiedProxyClassName =
 packageName + "." + proxyClassName;
 } catch (NotFoundException e) {
 logger.log(TreeLogger.ERROR, "Class '" + typeName +
 "' Not Found", e);
 throw new UnableToCompleteException();
 }
}

GWT provides a TypeOracle class, an instance of which you can retrieve B from
the also-passed generatorContext object, which allows you to access information
about the type. Once you have the TypeOracle, you can get a reference to the

Listing 14.2 Accessing the TypeOracle and various type aspects within a GWT

 generator

Access TypeOracle
for current context

B
Retrieve

class
C

Create
type name

E

Catch
exceptions F

Get details
of class

D

Creating a generator for the Dashboard 479

class through the getType() method C. In the example, you have no nested
classes to find; but if you do, you need to use the source name (with periods)
rather than the binary name (with $).

 This use of TypeOracle is fairly simple: to get access to one named type. It can
also be used to examine the whole set of types and packages in the context that is
being compiled through various methods with the words package and type in
their names.

 The returned type from the getType() method is a JType, which is one of a
number of GWT classes that represent Java constructs. There are also GWT Java
classes for packages, classes, methods, parameters, fields, and so on; you can use
these objects to perform introspection on classes, as you’ll see later in this chap-
ter. For now, you use a couple of methods in the JType class to retrieve the pack-
age name of the input class as well as its simple source name D. Both of these
pieces of data are then used in creating the fully qualified name of the class you’ll
generate E, which is the input class with the text Proxy appended to the class
name. Any exceptions that are raised by your generator are handled at F, where
you output an error message to the current TreeLogger object.

 In certain circumstances, such as with internationalization, you’d like to know
the values of the properties in this context so that the correct binding to con-
stants/messages can be performed. Access to these values is through the Proper-
tyOracle object.

14.3.2 Accessing properties of the context

When the GWT system creates the bindings required for internationalization, the
generator needs to know which locale the current context is all about in order to
select the appropriate properties file (this is why the files must be named in the
particular manner they have been). Similarly, for the Dashboard, you wish to
know if you’re generating for the Internet or intranet version. In chapter 15, we’ll
introduce a user-defined property called externalvisibility that you can set as
either intranet or internet. If the context you’re compiling for has the exter-
nalvisibility property set as internet, then you only show public fields and
methods in the About dialog; you determine that by looking in the PropertyOra-
cle (see listing 14.3).

480 CHAPTER 14

Automatically generating new code

public String generate(TreeLogger logger,
 GeneratorContext context,
 String typeName)
 throws UnableToCompleteException {
 try{
 PropertyOracle properties = context.getPropertyOracle();
 String version = properties.getPropertyValue
 (logger, "externalvisibility");
 } catch (BadPropertyValueException e) {
 logger.log(TreeLogger.ERROR,
 "Could not find property value", e);
 throw new UnableToCompleteException();
 }
}

You accessed information about types through the TypeOracle object, which you
retrieved from the GeneratorContext object. Similarly, you access information
about GWT properties through a PropertyOracle retrieved from the Generator-
Context object B. Retrieving properties is slightly easier than class details
because there is only one thing to look for. You use the getPropertyValue()
method C to get access to the value of the externalvisibility property.

 Unlike other points in GWT where we discuss properties, in the generator case
you’re only concerned with the value of a property in the particular context being
compiled at that point. For example, when you set up the locale property in
chapter 3, you gave two values—an English one and a Swedish one. When the
generator executes the locale, the property has only one value: that of the locale
currently in context. In hosted mode, that means the locale currently being used;
when compiling for web mode, the generator is called multiple times, once for
each locale being managed.

 If you can’t find the property you’re looking for, this is handled by the catch
statement D. You can also keep track of what’s going on in your generators by
implementing logging.

14.3.3 Adding logging to a generator

Logging in a generator is performed by writing log statements to the TreeLogger
class that is passed to the generate() method. You can log either a message or an
exception using the following template:

Logger.log(TreeLogger.LEVEL, message, exception)

Listing 14.3 Accessing the PropertyOracle and a property from within a GWT

 generator

Access PropertyOracle
for current context

B

Handle
failureD

Retrieve
property value C

Creating a generator for the Dashboard 481

Only one of the message or exception can be provided; the other should be left
as the null object. Values of the LEVEL all come from the TreeLogger class and
include the INFO and ERROR levels you’ve used in the Dashboard example as well
as ALL, DEBUG, INFO, SPAM, NULL, TRACE, and WARN.

 When you run the application in hosted mode, the generator is invoked when-
ever you create an instance of a DashboardComposite. The output in the hosted-
mode window is shown in figure 14.3.

 In web mode, all of the compilation is performed at once to generate the numer-
ous permutations of JavaScript code (see chapter 17 for details). Figure 14.4 shows
the output produced when we compiled the code.

Or, you can ask the compiler to use the TreeLogger by including the -treeLogger
flag in the compile command (see chapter 2). Adding this flag means the output
appears in hosted-mode style window, as shown in figure 14.5.

Figure 14.3

Output from the generator

when running in hosted mode

Figure 14.4 Output from the generator when preparing for web mode

Figure 14.5 Output from the generator when preparing for web mode with the compile provided with

the -treeLogger flag set

482 CHAPTER 14

Automatically generating new code

The log statements are added to your generator code, as shown in listing 14.4.

public String generate(TreeLogger logger,
 GeneratorContext context,
 String typeName)
 throws UnableToCompleteException {
 try{
 logger.log(TreeLogger.INFO, "Starting rewriting using:"+
 this.getClass().getSimpleName()+
 " for "+version+" version",
 null);
 // Other code
 logger.log(TreeLogger.INFO, "Completed rewriting", null);
 } catch ...
 }
}

You’re almost in a position to start writing your new functionality, but first you
must get an object that represents the new type—the SourceWriter object.

14.3.4 Generating the new type structure

You write your new type by printing lines of text to a SourceWriter object (which,
unlike the other classes used in generators, can be found in the gwt-user.jar
archive under the com.google.gwt.user.rebind package). The route to it is
slightly convoluted and is shown in listing 14.5 as a separate method in the Dash-
board Generator class.

protected SourceWriter getSourceWriter(TreeLogger logger,
 GeneratorContext context,
 String packageName,
 String className,
 String superclassName){
 PrintWriter printWriter = context.tryCreate(logger,
 packageName,
 className);

 if (printWriter == null) return null;

 ClassSourceFileComposerFactory composerFactory =
 new ClassSourceFileComposerFactory(packageName, className);

Listing 14.4 Logging progress within a GWT generator

Listing 14.5 Creating the SourceWriter object

Create
PrintWriter

B

Handle when new
type already existsC

Get new
ClassSourceFileComposerFactory D

Creating a generator for the Dashboard 483

 composerFactory.addImport("com.google.gwt.user.client.Command");
 composerFactory.addImport("com.google.gwt.user.client.Window");
 composerFactory.addImport("com.google.gwt.user.client.MenuItem");

 composerFactory.setSuperclass(superclassName);

 return composerFactory.createSourceWriter(context, printWriter);
}

First, you try to create a standard Java PrintWriter object from the current Gen-
eratorContext through the tryCreate() method B using the new fully qualified
class name as a parameter. If you fail to get a PrintWriter, it’s because the class
you’re trying to create already exists C. This isn’t unusual, particularly because at
compilation time the generator is called many times; you may have created the
necessary new type in a previous permutation.

 Note that if the generated type is to be an interface rather than the default of a
class, then you additionally call the makeInterface() method on the composer
factory.

 Let’s assume you’re applying the generator to the Clock component applica-
tion. If the PrintWriter has been successfully created, then D creates your new
type, which resembles the following:

package org.gwtbook.client.ui.clock

public class ClockProxy{
}

At E, you tell the new class to have some imports. Because you’re going to add a
MenuItem and an associated Command, these are prime candidates to be included,
as is the Window class, because you’re going to show an alert box with the Win-
dow.alert() method. Next, you tie the new type to the old type by setting its
superclass F. The class is now as follows:

import com.google.gwt.user.client.Command;
import com.google.gwt.user.client.Window;
import com.google.gwt.user.client.ui.MenuItem;
package org.gwtbook.client.ui.clock

public class ClockProxy extends Clock{
}

Finally, you create the SourceWriter from this ComposerFactory G, which is sub-
sequently used to create the methods in the new class.

Set superclassF

Add imports E

Create SourceWriter G

484 CHAPTER 14

Automatically generating new code

14.3.5 Creating the new class

Assuming the result of getting the SourceWriter isn’t null, you need to take the
last result and provide your new functionality. You do this by adding new methods,
overriding methods in the superclass, or manipulating the input class. New meth-
ods and fields are written out to the SourceWriter object. We’ll look at creating
two methods: one that overrides the DashboardComponent’s getName() method,
and another that creates the About menu item.

Overriding an existing method

To override an existing method, you write out the details to the SourceWriter, as
shown in listing 14.6.

public void writeClassNameMethod(TreeLogger logger,
 String className,
 SourceWriter writer){
 writer.beginJavaDocComment();
 writer.println("Overides DashboardComposite getName() method");
 writer.endJavaDocComment();
 writer.println("public String getName()");
 writer.println("{");
 writer.indent();
 writer.println("return \"" + className + "\";");
 writer.outdent();
 writer.println("}");
}

You first write out a JavaDoc comment for the new method. Then, you write the
method definition you want using calls to the println() method. Although you gen-
erally won’t see the new method definition written down, here you use the indent()
and outdent() methods to structure your code—it’s useful to structure the code in
a sensible way for those occasions where you make errors. In these circumstances,
the compiler will direct you to the error, and in our experience it’s often due to for-
getting to put the semicolon in at the end of the command you’re constructing.
Look at this line of code, which could be written instead of B in listing 14.6:

writer.println("return \"" + className + "\"");

The syntax checker in Java won’t complain about this, because it’s valid Java. But
when you try to use your new class, you get the error message shown in figure 14.6.

 The error happens because you forgot to put a semicolon at the end of the
code you’re generating, not because a semicolon is missing from the println()

Listing 14.6 Using a generator to override an existing method

Add JavaDoc
comment

Define method
Indent text

Outdent text

Complete method
definition

Implement
functionalityB

Creating a generator for the Dashboard 485

command. In this case, hosted mode tells you the error is in Line 9, and the next
line in the error points you to the location of the temporary file containing Java
code that has been generated, a segment of which is shown here:

package org.gwtbook.client.dashboard.clock;

import com.google.gwt.user.client.Window;
import com.google.gwt.user.client.Command;

public class ClockProxy extends
 org.gwtbook.client.dashboard.clock.Clock {
 public String getName()
 {
 return "Clock"
 }
}

The offending error line is marked B, and you can see that a semicolon is indeed
missing.

 You can see in figure 14.6 that the compiler tells you where to find the gener-
ated class, but remember from chapter 3 that you can direct the compiler where
to place these generated classes by using the -gen directory flag.

 This method was easy to write. More complicated ones are possible, including
those that include an element of introspection on the input class, as you can see
in the method that creates the About menu dialog.

Creating a method that uses introspection

When it comes to manipulating the input class, we briefly mentioned earlier that
GWT provides a set of classes that allow you to introspect an existing Java class.
These are depicted in figure 14.7.

Figure 14.6 A common error when developing generators is to make a mistake in the code.

Missing semicolon in
the generated code

B

486 CHAPTER 14

Automatically generating new code

NOTE It’s only possible to introspect a Java class at compile time—and that
introspection has to use the GWT classes in figure 14.7 rather than the
normal Java way.

You use these classes when it comes to manipulating the input class. The starting
point for introspection is the JClassType object, which you obtain from the Ora-
cleType at the start of the generator’s generate() method. Once you have this
object, you can start asking for the class’s methods using the JClassType.get-
Methods() method or its field using JClassType.getFields() method. You can
find out the modifiers of the type, such as whether it’s public or private, what type
it subclasses or implements, its metadata, and various other aspects.

 Return objects from methods in the JClassType class generally come from
those classes shown in figure 14.7. For example, if you wanted to list all the meth-
ods of the requestedClass object you retrieved from the TypeOracle, you would
write the following:

JMethod[] methods = requestedClass.getMethods();
for(int loop=0;loop<methods.length;loop++){
 writer.println(methods[loop].toString()+"\n);
}

You use these introspection approaches in the generator to create the About
menu option we’ve previously discussed. Listing 14.7 shows the code.

Figure 14.7

Classes that can be used in

the generator to manipulate

GWT Java classes

Creating a generator for the Dashboard 487

protected void writeCreateOptionsMenu(TreeLogger logger,
 SourceWriter writer,
 String name,
 JClassType requestedClass,
 String version){
 JMethod[] methods = requestedClass.getMethods();
 JField[] fields = requestedClass.getFields();
 writer.println();
 writer.println("public void createOptionsMenu(){");
 writer.indent();
 writer.println("super.createOptionsMenu();");
 writer.println("optionsMenuBar.addStyleName(\"submenu\");");
 writer.println("optionsMenuBar.addItem(
 \"About\", new Command() {");
 writer.indent();
 writer.println("public void execute(){");
 writer.indent();
 writer.println("String aboutMessage =
 \"About the Dashboard "+name+
 " Widget ("+version+" version)\\n\";");
 writer.println("aboutMessage +=
 \"Info Created by a Generator\\n\\n\";");
 writer.println("aboutMessage +=
 \"Number Fields: "+fields.length+"\\n\";");
 for(int loop=0;loop<fields.length;loop++){
 if ((fields[loop].isPublic())||(version.equals("intranet")))
 writer.println("aboutMessage+=
 \""+fields[loop].toString()+"\\n\";");
 }
 writer.println("aboutMessage +=
 \"\\nNumber Methods: "+
 methods.length+"\\n\";");
 for(int loop=0;loop<methods.length;loop++){
 if ((methods[loop].isPublic())||(version.equals("intranet")))
 writer.println("aboutMessage+=\""+methods[loop].toString()+
 "\\n\";");
 }
 writer.println("Window.alert(aboutMessage);");
 writer.outdent();
 writer.println("}");
 writer.outdent();
 writer.println("});");
 writer.outdent();
 writer.println("}");
}

Listing 14.7 Creating a new option menu using source code introspection

Introspect class for
methods and fields

B

Call parent
create()
method

C

Start alert
message

D

Loop through fields E

Intranet mode or
public field? F

488 CHAPTER 14

Automatically generating new code

At B, you use GWT’s version of introspection to get the fields and methods of the
class. Next, you make the method call the overridden parent’s createOptions-
Menu() method C so you ensure that the MenuItem you’re adding always gets
added as the last item in the list. You create a String object to hold the alert mes-
sage D, and at E you start looping around the fields in the input class. You check
at F that you’re generating for the intranet version—or, if it’s the Internet ver-
sion, whether the field is public. If either of those cases is true, then you add the
details to the alert string.

 You can see the complete generator in the downloadable code, which includes
all this code plus more logging. The result of the generator, so far, on the Clock
Dashboard component application for the intranet version is shown in listing 14.8.

package org.gwtbook.client.ui.clock;

import com.google.gwt.user.client.Window;
import com.google.gwt.user.client.Command;
import com.google.gwt.user.client.ui.MenuItem;

public class ClockProxy extends org.gwtbook.client.ui.clock.Clock {

 /**
 * Overides DashboardComposite getName() method
 */
 public String getName(){
 return "Clock";
 }

 public void createOptionsMenu(){
 super.createOptionsMenu();
 optionsMenuBar.addStyleName("submenu");
 optionsMenuBar.addItem("About", new Command() {
 public void execute(){
 String aboutMessage = "About the Dashboard Clock Widget
 (intranet version)\n";
 aboutMessage +="Info Created by a GWT Generator\n\n";
 aboutMessage +="Number Fields: 4\n";
 aboutMessage+="org.gwtbook.client.ui.clock.Clock.AlarmTimer
 alarm\n";
 aboutMessage+="private com.google.gwt.user.client.ui.Label
 clockLabel\n";
 aboutMessage+="private boolean local\n";
 aboutMessage+="org.gwtbook.client.ui.clock.Clock.ClockTimer
 clock\n";

Listing 14.8 The generated version of the Clock class (ClockProxy)

Creating a generator for the Dashboard 489

 aboutMessage +="\nNumber Methods: 2\n";
 aboutMessage+="public java.util.Date getTime()\n";
 aboutMessage+="public void createOptionsMenu()\n";
 Window.alert(aboutMessage);
 }
 });
 }
}

It’s not only methods that you can extend; you can also read and react to tags in
the class’s comments or methods. You did this when you created an ImageBundle
in chapter 4, where the path to the image was stored as a tag in the method’s com-
ment. Let’s look at how you can use this mechanism to create the Dashboard com-
ponents’ This App. Demonstrates menu item.

Getting information from tags in comments

When you created an ImageBundle in chapter 4, you created an interface that
included definitions such as this:

/**
* @gwt.resource org/gwtbook/public/ToolbarImages/ChangeEvents.png
*/
AbstractImagePrototype ChangeEvents();

The tag @gwt.resource defines the location of the image that should be included
in the ImageBundle. GWT’s image bundle generator will ensure that this identi-
fied image is included in the bundle.

 In the Dashboard, you use a similar approach to extract information in the
class’s comment to display to the user when they click the This App. Demonstrates
menu item. Listing 14.9 provides an overview of the Clock class.

/**
 * @dashboard.description Generally shows off how to use various
 * GWT Timer objects to:
 *
 * Display and update a clock
 * To set an alarm through the options menu (set time for
 10 seconds in the future)
 * Cancel a set alarm
 * Clean up all Timers when component is removed
 *
 */

Listing 14.9 Clock class definition showing comment displayed as the This App.

 Demonstrates menu item

Tagged comment B

490 CHAPTER 14

Automatically generating new code

public class Clock extends DashboardComposite
{
 //Clock code.
}

In the Dashboard generator, you extract the comment B for the class C and
wrap it up to be displayed when the user clicks the This App. Demonstrates menu
item, as shown in figure 14.8.

 You ensure that the text you want displayed from the comment starts with a
specific tag—in this case, @dashboard.description. Then, in the generator, you
write some code that extracts this text from the class’s metadata. For the Dash-
board, this code is shown in listing 14.10.

String[][] metaData =
 requestedClass.getMetaData("dashboard.description");
String newAppDescription = "";
if (metaData.length >= 1){
 int lastTagIndex = metaData.length -1;
 for(int loop=0; loop < metaData[lastTagIndex].length;loop++){
 newAppDescription += metaData[lastTagIndex][loop]+ " ";
 }

Listing 14.10 Generator code that extracts the metadata value from the class

Class
definition

C

Figure 14.8 Comment displayed when the user clicks the This App. Demonstrates menu item

Get metadata reference B

Examine
metadata

C

Creating a generator for the Dashboard 491

} else {
 newAppDescription = "No Class Meta Data set for "
 newAppDescription += "this Dashboard application";
}

First, you get a reference to the class’s metadata, which is tagged with the tag
@dashboard.description B. With the reference established, you either extract
all the text related to the tag C or create default text D. The next step is to wrap
the newAppDescription variable into some code that creates a display similar to
figure 14.8.

 There is one final step to take before you use your newly generated class: You
have to return its name to the compiler.

14.3.6 Using the classes that have been generated

The final task that the generator needs to perform is to return the name of the
class the compiler should use. In listing 14.1, you saw that the compiler uses the
input class if you return the null value. For the DashboardGenerator, you always
return a class name, which is the name of the proxy class that either the generator
just generated or was generated in the past.

 To use the generated class in your code, you must use GWT’s deferred-binding
approach to allow the compiler to generate the code for you. Fortunately, there
isn’t much difference between normal Java object creation and GWT’s deferred-
binding approach, except that you can’t pass parameters into the deferred
approach. To create an object this way, write the following code:

DashboardComposite newObject =
 (DashboardComposite)GWT.create(Calculator.class);

Here you use the GWT.create() method, which is in the com.goo-

gle.gwt.core.client package, to create a new object of the Calculator.class
type. The parameter must be a class literal; and, frustratingly, you can’t use a vari-
able in its place. This last fact explains why in the Dashboard.java code you’ll find
the same code shown in listing 14.11 repeated for each Dashboard application.

class CreateServerStatusCommand implements Command{
 public void execute(){
 DashboardPanel thePanel;
 String panelName = "serverstatus";
 if (!panels.containsKey(panelName)){

Listing 14.11 Creating an instance of the Server Status Dashboard application through

 deferred binding

Default text if
no metadata

D

Created panel
before?

B

492 CHAPTER 14

Automatically generating new code

 DashboardComposite newObject =
 (DashboardComposite)GWT.create(ServerStatus.class);

 newObject.addParentMenu(menu);
 thePanel = new DashboardPanel(newObject,true, trash);

 panels.put(panelName, thePanel);

 } else {
 thePanel = (DashboardPanel)panels.get(panelName);
 thePanel.show();
 }
 }
}

If the panel hasn’t already been created B, then you use the deferred binding
approach to create a new instance of the appropriate DashboardComposite C;
place it in its own panel D, which is set to automatically display when created; and
add it to your list of panels E. In the case where the panel already exists, you
make the old panel visible F. (This means only one instance of a Dashboard
application is ever in the Dashboard at a time.)

 With this generator in place and the Dashboard.gwt.xml file updated, you reg-
ister the generator as follows:

<generate-with
 class="org.gwtbook.rebind.DashboardCompositeGenerator">
 <when-type-assignable
 class="org.gwtbook.client.ui.DashboardComposite"/>
</generate-with>

Then, every class you have that extends the DashboardComposite class will be
passed to this generator and have a new About menu item stamped on it, as well
as have its class name added as the title bar of the window it sits in. In our discus-
sion, we briefly touched on some properties the generator can access—in this
case, the externalvisibility property. GWT properties such as this are another
way to alter what is displayed to the user.

14.4 Summary

We’ve covered client-side and client-server techniques and looked at how you
can change an application by using generators or harnessing the power of GWT
properties.

Create component app C

Create DashboardPanel D

Add new panel
to panel storeE

Get panel
from panel store F

Summary 493

 As you’ve seen, you can do a lot with these advanced techniques in GWT. The
best way to get used to them is to use them and play with the Dashboard demo,
adding a few more locales, including other domains on top of internet and
intranet, or enhancing the DashboardCompositeGenerator.

 For generators, the key things to remember is to make sure you return the cor-
rect name from the generate() method—if you don’t, then the results of the
compiler won’t be correct! If you want the compiler to use the original class,
return a null value to use the newly generated class return its new name. And
don’t forget, if the result of the SourceWriter creation is null, the class already
exists; return its new name and not null.

 When you’re dealing with property-based coding, remember that the general
pattern is to create a default class and then the variations, all of which extend the
default class. Then, you can use replace-with tags in the module XML file to
replace the default file when properties match values; or, if you’re using the i18n
approach, the default class must implement Localizable, and all class names
should follow the i18n naming structure.

 In the next chapter, we’ll look at another advanced technique, which allows
you to change your application based on the values given for a set of properties.

494

Changing applications
based on GWT properties

This chapter covers

■ Managing browser-specific code

■ Internationalization (dynamic and static)

■ Altering application functionality based
on locale

■ Implementing and using user defined
properties

Quick summary of properties 495

So far in your journey, you’ve used GWT properties without making too much out
of them. GWT properties are defined in various module XML files and are used at
compile time to change your application based on their values. The most obvious
case of this in action is GWT’s ability to work with many browsers. GWT provides a
user.agent property that defines, in the com.google.gwt.user.UserAgent mod-
ule XML file, a number of values for different browsers. At compile-time, the com-
piler produces a JavaScript permutation for each value of the user.agent property
value, replacing a number of core class files with browser specific versions. These
replacements are defined in various other module XML files—for example,
com.google.gwt.user.DOM defines which browser-specific DOM class is used.

NOTE GWT properties are designed to be used at compile-time to help produce
various permutations of your application as well as at load-time to help
select the appropriate permutation. They aren’t intended to be accessed
via your code at runtime (if you’re trying to do the latter, then you
should think of redesigning your application).

You can also use GWT properties in your programming. Internationalization is
one area where you’ve seen this already: You extended the property values of the
locale property to include the Swedish locale for the Dashboard application. In
this chapter, we’ll look at how you can use GWT properties to your advantage,
including creating a compact Flash widget (which sends only the necessary code
to the browser). We’ll explain fully how you can change parts of the application
based on the locale and look at the full range of internationalization. Finally, we’ll
introduce our own GWT property to indicate whether the Dashboard application
is executing in an intranet or Internet mode (the mode indicated alters the func-
tionality of the application).

 Before we zoom into the chapter, let’s recap the information about properties
from chapter 9 to save you having to flip back through the book.

15.1 Quick summary of properties

Properties are defined in the module XML file. You can set up an initial set of val-
ues initially using the define-property tag, such as this one:

<define-property name="property-name" values="val1,val2,..."/>

It’s possible to extend this set in later modules that inherit the module where the
properties are defined, using the extend-property tag:

<extend-property name="property-name" values="additional-values,..."/>

496 CHAPTER 15

Changing applications based on GWT properties

Once the property values are defined, you need to identify which of those values
you should use; you can do that either declaratively or programmatically. Declara-
tively, you set property values in the application’s HTML file through an HTML
meta tag:

<meta name='gwt:property' content='property-name=value'>

You can also provide some simple JavaScript code in the module XML file that
returns valid values from the set of property values based on a calculation. For exam-
ple, you can define a property-provider tag as follows that returns a property-
value based on the success of a particular condition statement:

<property-provider name="property-name">
<![CDATA[
 if (condition1 == true) return value1
 if (condition2 == true) return value2
 // other code
 else return valuen
]]>
</property-provider>

The programmatic approach is used to decide which browser is in use and then
set the appropriate value for user.agent.

 Now that we’ve recapped properties, it’s time to see how you can put them to
use as opposed to letting GWT have all the fun. We start our discussion by looking
at how you can plug into the way GWT manages browser differences by building a
Flash widget.

15.2 Managing browser differences

Throughout this book, we’ve referred to the benefit of GWT as a write-once, run-
across-many-browsers type of affair. This is true, and don’t be misled by the title of
this section—we aren’t saying you should go out of your way to write applications
that behave differently in different browsers. But on some occasions, you need to
manage the fact that differences exist between the way browsers perform actions
(most often at the DOM or JavaScript level).

 We don’t think you’ll need to deal with browser differences often, unless
you’re implementing specific functionality that requires it. You’ll do it in this sec-
tion, for example, to build a widget that displays a Flash movie. In normal web
pages, you need to send code for both Internet Explorer and other browsers to
ensure that the movie is displayed; using GWT, you can send only the code
needed. Before we move on to the widget, let’s look at how GWT manages browser
differences to see what you can reuse.

Managing browser differences 497

15.2.1 How GWT manages browser differences

We’ll look at the DOM implementation and see how GWT deals with browser dif-
ferences, and we’ll examine the patterns you can use if you need to. The hierar-
chy of classes provided for the GWT DOM implementation is shown in figure 15.1.

 You can see a number of classes in this hierarchy, some marked with specific
browser names—Safari, Opera, and so on, as well as Standard and plain Impl. All
these different classes provide browser-specific implementations of DOM manipu-
lation methods. GWT uses our old friend deferred binding in order to create an
instance of the DOM classes it uses:

DOMImpl impl = (DOMImpl) GWT.create(DOMImpl.class);

This allows the compiler to select the appropriate class for the browser as directed
by the DOM module XML definition. The module XML file contains a number of
replace tags (see chapter 9 for a complete definition) like the following:

<replace-with class="com.google.gwt.user.client.impl.DOMImplIE6">
 <when-type-is class="com.google.gwt.user.client.impl.DOMImpl"/>
 <when-property-is name="user.agent" value="ie6"/>
</replace-with>

The replace statement tells the compiler to replace the DOMImpl class with the
DOMImplIE6 class if the user.agent property is set to a value of ie6.

 In this section, you’ll build a widget that performs in a similar manner, sending
the necessary code to display a Flash movie in Internet Explorer or all the other
browsers.

Figure 15.1

Class hierarchy of DOM

classes in the GWT distribution

498 CHAPTER 15

Changing applications based on GWT properties

15.2.2 Building the Flash widget

When displaying Flash movies in a web browser, you must use two different tags to
ensure that cross-browser functionality is achieved. Internet Explorer needs to use
the OBJECT tag, and the other browsers use the EMBED tag. Figure 15.2 shows the sim-
ple Flash movie used in the Dashboard—we specifically set the text to distinguish
the browser (IE6 for Internet Explorer and Other for Firefox, Opera, and Safari).

 Normally, you write both tags in the HTML page, and the browser ignores the
irrelevant one, as shown in listing 15.1.

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/
 swflash.cab
 #version=6,0,40,0"
 WIDTH="550" HEIGHT="400" id="myMovieName">
 <PARAM NAME=movie VALUE="myFlashMovie.swf">
 <PARAM NAME=quality VALUE=high>
 <PARAM NAME=bgcolor VALUE=#FFFFFF>
 <EMBED src="/support/flash/ts/documents/myFlashMovie.swf"
 quality=high bgcolor=#FFFFFF
 WIDTH="550" HEIGHT="400"
 NAME="myMovieName" ALIGN=""
 TYPE="application/x-shockwave-flash"
 PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer">
 </EMBED>
</OBJECT>

Listing 15.1 Standard way of dealing with browser differences when loading

 a Flash movie

Figure 15.2 Two versions of our test Flash movie, one showing the word IE6 and the

other the word Other. You’ll use GWT's browser-specific code capabilities to show the

right movie in the right browser.

Managing browser differences 499

But you can do better than that by using GWT browser-specific code: You can cre-
ate a widget whose implementation is set up for either Internet Explorer or for all
the other browsers. First, you’ll create a simple Flash movie using one of the free
online Flash generators (we chose this approach because we’re not exactly the
world’s best artists!). The benefit of the movie is that it allows you to change the
text as a parameter to the movie’s URL, and thus you can change the movie text as
shown in the two images in figure 15.2 so you can easily see what browser you’re
running in.

 You’ll follow the pattern used in the majority of GWT browser-specific code, in
that you create a main class that instantiates one of the specific implementation
classes to provide the functionality. The appropriate implementation is chosen by
the compiler based on replace tags you’ll place in the component application’s
module XML file.

Creating the Flash widget

The Flash widget is a simple extension of the Composite class that uses deferred
binding to get a reference to a FlashMovieImpl class, the implementation class, as
shown in listing 15.2. You set up the code so it can be made flexible in the future
with the ability to pass in a set of parameters in the FlashMovieParameters class,
but for now this isn’t used.

public class FlashMovie extends Composite{

 FlashMovieImpl impl =
 (FlashMovieImpl) GWT.create(FlashMovieImpl.class);

 public static class FlashMovieParameters{
 public String movieName;
 }

 public FlashMovie(FlashMovieParameters params){
 SimplePanel panel = new SimplePanel();
 String tag = impl.createMovie(params);
 DOM.setInnerHTML(panel.getElement(), tag);
 initWidget(panel);
 }

 public FlashMovie(){
 new RuntimeException("Need Flash Movie Parameters!");
 }
}

Listing 15.2 Creating a simple Flash widget

Access
implementation class

B

Implement
constructor

C

Prevent constructor
with no parameters

500 CHAPTER 15

Changing applications based on GWT properties

In the widget, you create an instance of the implementation class B, which is then
used in the constructor to create the appropriate tag for the browser C. In the
constructor, you create a simple panel in which the Flash movie will reside, and
then you obtain the appropriate tag from the implementation. Once you have
that, you use DOM manipulation to place the tag in the HTML or the panel and
then initialize the panel as the widget.

 Next, we’ll look at the two implementation classes: one for the majority of
browsers and the other specifically for IE.

Implementing the standard Flash widget

The standard implementation for the Flash widget creates the EMBED tag, as
shown in listing 15.3, by stringing together a number of Strings. In a real imple-
mentation, you would use the parameters passed in to set dimensions, and so on,
but, in this example, you hard-code all the parameters. Note that in the URL, you
set the title value to be the word Other, which is what you expect to be displayed
on screen.

public class FlashMovieImpl {
 public String createMovie(FlashMovieParameters params) {
 String theMovie = "";
 theMovie += "<EMBED src=\"flash_movie.swf?slogan=&
 slogan_white=&title=Other&
 title_white=Other&url=\" ”;
 theMovie += "width=\"318\" height=\"252\" play=\"true\"
 loop=\"false\"";
 theMovie += " quality=\"high\" ”;
 theMovie +=
 "pluginspage=\"http://www.macromedia.com/go/getflashplayer\">";
 theMovie += "</EMBED>";
 return theMovie;
 }
}

Now that you’ve defined the standard implementation, you need to provide the
IE-specific implementation.

Implementing the Internet Explorer–specific Flash widget

The IE implementation returns the OBJECT tag equivalent of the standard imple-
mentation. The two key things to note with the code shown in listing 15.4 is that it

Listing 15.3 Defining the Flash widget’s implementation class for the majority of

 browsers supported by GWT

Managing browser differences 501

must extend the standard implementation and that its URL sets it up to display
the text IE6.

public class FlashMovieImplIE6 extends FlashMovieImpl{
 public String createMovie(FlashMovieParameters params) {
 String movie =
 "<OBJECT classid=
 \"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000\"
 codebase=\"http://download.macromedia.com/pub/
 shockwave/cabs/flash/swflash.cab#\\
 version=6,0,40,0\" name=\"demoMovie\"
 id=\"demoMovie\" width=\"318\" height=\"252\">";
 movie += "<param name=\"movie\" value=flash_movie.swf?slogan=&
 slogan_white=&title=IE6&title_white=IE6&
 url= />";
 movie += "<PARAM name=\"play\" value=\"true\" />";
 movie += "<PARAM name=\"loop\" value=\"false\" />";
 movie += "<PARAM name=\"quality\" value=\"high\" />";
 movie += "</OBJECT>";
 return movie;
 }
}

With the implementation files in place, it’s time to set up the module XML file so
you can replace the standard version with this one if you need to.

15.2.3 Setting up the property replacement

The FlashMovie’s module file contains only one entry: the directive to replace the
standard implementation with the IE-specific one if the user-agent property is
ie6. It’s written as shown in listing 15.5.

<module>
 <replace-with
 class="org.gwtbook.client.ui.impl.FlashMovieImplIE6">
 <when-type-is
 class="org.gwtbook.client.ui.impl.FlashMovieImpl"/>
 <when-property-is name="user.agent" value="ie6"/>
 </replace-with>
</module>

Listing 15.4 Defining the Flash widget’s implementation class for Internet Explorer

Listing 15.5 Replacing FlashMovieImpl with FlashMovieImplIE6

 if the user agent is set to ie6

502 CHAPTER 15

Changing applications based on GWT properties

Now, when you create an instance of FlashMovie, you get an object that contains
only the relevant tag necessary to display the movie in the browser you’re using.

 In addition to changing the application components based on the user-agent
property, you can also manipulate the way GWT uses the standard international-
ization functionality to change components based on the locale. But before you
change components based on the locale, you need to fully understand how GWT
manages internationalization.

15.3 Supporting internationalization in full

You’ve seen GWT’s static i18n approach
twice already in this book. In this section,
we’ll explain it in full, as well as looking at
the dynamic approach you can use, which
is particularly useful if you already have an
existing i18n approach. In the static
approach, you define a default properties
file, say Filename.properties, and then define a number of locale-specific
properties files whose filenames follow a predetermined structure, as shown in
figure 15.3.

 It isn’t necessary to have an ISO country code, but if one is present, then the
ISO language code must be, too. Locales also exist in a hierarchy, as shown in
table 15.1.

In the Dashboard, you’ve already used the ISO language codes en for English and
sv for Swedish; in the full Dashboard version, you’ll also add a properties file for
en_US (American English) where you provide the distinction in spelling of color
from the en version: colour. This hierarchy has been chosen deliberately because
GWT 1.4 introduces localization of times, dates, and currencies, and your choices
of hierarchy could cause issues, as you’ll see later.

Table 15.1 Permutation selected when using types that implement the Localizable interface

If the locale is set to Then use this type

Unspecified value The default type, Type

xx The type called Type_xx, if it exists; or the default type Type, if Type_xx

doesn’t exist

xx_YY The type called Type_xx_YY, if it exists; or the type called Type_xx, if that

exists; or the default type Type, if neither Type_xx_YY nor Type_xx exists

Figure 15.3 How locale-specific filenames

are constructed

Supporting internationalization in full 503

 First, we’ll look at the static approaches you’ve already used in the Dashboard
application.

15.3.1 Using static-string internationalization

The concept of string internationalization stems from the same principles used in
standard code development. In normal code, it’s common practice to avoid writ-
ing constants directly and instead to define the String literal as a constant in the
code and then refer to that. You can also take it a step further by moving the con-
stants out of the code and into a resource file. Table 15.2 shows each of these
three ways, writing the constant directly, and defining and referring to the con-
stant as a string literal, and defining the constant in a separate resource file.

The approach shown in the second row (defining a string literal constant first and
then referring to it in the code) makes it easy to change the value of labelText,
especially if it’s used in numerous places in the code. You can take this a step fur-
ther by moving the constants out of the code and into a resource file, referencing
them from that file; this way, they’re available across different classes. At this
point, GWT static-string i18n can step in.

 In the static approach, the compile uses generators that you saw in the last
chapter to tie together an interface file and the variety of programmer provided
properties files (one for each locale defined as in use). Because the GWT compiler
creates permutations for each locale you identify by extending the locale prop-
erty in the application’s module XML file, it can employ the power of static analy-
sis to include only those constants and messages that are used in the code. It also
only includes code related to the specific locale for which the permutation is
being created, further reducing the size of code per permutation, which translates
to faster loading times for applications.

Table 15.2 Different approaches to using strings in code

Approach Code

Writing a constant directly

in code
Label newLabel = new Label(“Some Label Text”);

Referring to a string literal

in code
final String labelText = “Some Label Text”;
Label newLabel = new Label(labelText);

Referencing constants in a

resource file
MyConstants constants =
 (MyConstants)GWT.create(MyConstants.class);
Label newLabel = new Label(constants.labelText());

504 CHAPTER 15

Changing applications based on GWT properties

 To implement static-string internationalization, you first provide a series of
one or more properties files and a single Java interface that extends one of the fol-
lowing three GWT-provided Java interfaces:

■ Constants—Simple user-interface constants. The compiler removes unused
constants to improve efficiency.

■ ConstantsWithLookup—Simple user-interface constants. The compiler
keeps all provided key/value pairs. You can look up constants by name.

■ Message—Simple user-interface messages that can take parameters, which
are placed in predetermined locations of the message. The compiler
removes unused constants to improve efficiency.

These three interfaces extend the Localizable interface, which is the link into
the i18n generator, as we discussed in the last chapter. In this section, we’ll look at
these three interfaces and see how they’re used. First is the Constants interface.

Defining static string internationalization constants

GWT i18n constants are simple strings that, as the name suggests, are constant—as
opposed to messages that allow parameters to be displayed in the string. You need
two types of files to implement i18n constants functionality in GWT, and we’ll look
at them in turn:

■ A set of one or more properties files

■ A Java interface that extends the Constants interface

The properties files are where the key-value pairs are defined. They’re simple files
that follow the naming convention shown for localized classes: There is a default
file, say myAppConstants.properties, and you can define locale-specific files such
as myAppConstants_en.properties and myAppConstants_en_US.properties.
These files live in a hierarchy, and constants are searched for in that hierarchy in
the same manner as indicated in table 15.1. For example, if the locale is set to
en_US then a constant is searched for in the following order of properties files:

1 myAppConstants_en_US.properties

2 myAppConstants_en.properties

3 myAppConstants.properties

In the Dashboard application, you use this hierarchy (although the standard
English text is kept in the default file) to cope with the different spelling of
colour/color between English and the version of English used in USA. Try it: When

Supporting internationalization in full 505

the application loads, the Help menu contains an entry for the Colour Picker; if
you change the locale to American, then that entry is spelled Color Picker.

 This hierarchy also means you don’t have to define all constants in all files.
Look at the properties files shown in table 15.3. You can see the contents of a non-
locale-specific properties file—myAppConstants—which provides no values for
any constants apart from the ok key. There are also three location-specific proper-
ties files’ contents—an English (en) locale myAppConstants_en, an American one,
and a Swedish (sv) locale myAppConstants_sv. In these locale-specific files, lan-
guage-specific values are defined for all keys except ok.

You could now use the i18n tool provided in the GWT download to create the
appropriate interface file (see chapter 3), or you could create it by hand. Either
way, you would end up with an interface that looks as follows:

public interface MyAppConstants extends Constants{
 String hello();
 String hi();
 String yes();
 String no();
 String ok();
}

Note that this interface contains a method name for each of the constant keys in
the properties file that you may wish to access—including the OK key. Regarding
your part in coding the i18n setup, this is all you need to do; the GWT generator
performs the task of creating necessary Java class files at runtime/compile time.

 To use the Swedish, English and American locales in the application, you must
extend the locale property using the module XML file by adding the appropriate
extend-property tags:

<extend-property name="locale" values="en"/>
<extend-property name="locale" values="en_US"/>
<extend-property name="locale" values="sv"/>

Table 15.3 The contents of three i18n properties files that exist in a hierarchy

myAppConstants myAppConstants_en myAppConstants_en_US myAppConstants_sv

Colour: colour
hello:
hi:
yes:
no:
ok:OK

hello: Hello there
hi:Hi
yes:Yes
no:No

Colour:color Colour: färg
hello:Hejsan
hi:Tjena
yes:Ja
no:Nej

506 CHAPTER 15

Changing applications based on GWT properties

You let the application know which locale to start with by setting a new meta tag in
the head section with the name gwt:property; its content sets the locale of
choice. Alternatively you can also change the locale by setting it as a parameter in
the URL. For example, to use the Swedish version, the URL is

http://www.example.org/myapp.html?locale=sv

Look in the i18n module file (in the com.google.gwt.i18n package) to see how
the system copes with changing the locale through URL parameters. In that file, a
property-provider tag is defined to extract the URL and find the locale. This
provides a good base code to use if you ever implement properties that are also
changeable through URL parameters.

 Finally, to use the different constants in the Java application code, you first
need to obtain an independent version of the MyAppConstants class. Because this
is an interface to your code, you use the GWT.create() method to indicate that
you’ll use the deferred binding approach to allow the compiler to decide the
exact implementation at compile time. You do that by using
the following code:

MyAppConstants constants =
 (MyAppConstants)GWT.create(MyAppConstants.class);

You use constants by calling the appropriate method
defined in the interface:

Label newLabel = new Label(constants.hello());

The aim is to produce a menu that appears similar to fig-
ure 15.4.

 To create the text for the menu items in the default
locale, you take the DashboardConstants.properties file
previously created in chapter 3 and replace its contents
with those shown in listing 15.6.

HelpMenuName: Help
CreateMenuName: Create
AboutMenuItemName: About
LoginMenuItemName: Login
ConfirmDeleteMenuItemName: Confirm Delete
LocaleMenuItemName: Locale
CalculatorMenuItemName: Calculator
ClockMenuItemName: Clock
AddressBookMenuItemName: Address Book

Listing 15.6 Defining the constants used in the default locale

Menu bar constants

Construct
components Menu item constants

for Create menu

Menu item constants
for Locale menu

Figure 15.4 Menu

system when the locale

is set to the default

Supporting internationalization in full 507

SlideshowMenuItemName: Slideshow
GoogleSearchMenuItemName: Search With Google
GoogleVideoSearchMenuItemName: Video Search
FinanceNewsMenuItem: Finance News
ServerStatusMenuItem: Server Status
FlashMovieMenuItem: Flash
FlexTableMenuItem: FlexTable Example
SearchComparisonMenuItem: Search Comparison
BookMenuItem: Book
YahooSearchMenuItem: Yahoo Search
SendEmailMenuItem: Send Email
ColourPickerMenuItem: Colour Picker
NameChangeOK: Change
NameChangeCANCEL: Don't Change
EnglishLocale: English
SwedishLocale: Svenska
AmericanLocale: English (US)
CurrentLocale: en

TIP At runtime, it isn’t directly possible to determine the locale currently
used by the application (because the compilation process removes this
information). However, if you really need to do this, you can write the
locale string value as a constant in the properties files: for example, a
CurrentLocale entry. Then, you can retrieve the value using the con-
stants.CurrentLocale() method.

With the default locale established, you should add constants for the other locales
you expect the Dashboard to manage.

 You also need to replace the Swedish locale that you created in chapter 3 to
match the entries in the default locale, but with Swedish text. (Don’t forget that
the encoding of the text file you’re using should be set to UTF-8 if you’re using a
language’s special characters.) Replace the DashboardConstants_sv.properties
file’s contents with those shown in listing 15.7, which produces a menu similar to
that shown in figure 15.5.

HelpMenuName: Hjälp
CreateMenuName: Ny
AboutMenuItemName: Om Dashboard
ConfirmDeleteMenuItemName: Godkännar Delete
LocaleMenuItemName: Välj Språk
CalculatorMenuItemName: Kalkylator
ClockMenuItemName: Klocka
AddressBookMenuItemName: Adressbok

Listing 15.7 Defining the constants used in the Swedish locale

Color
constants

Text constants for
EditableLabel buttons

See the following tip

Menu bar constants

Menu item constants
for Create menu

Menu item constants
for Locale menu

508 CHAPTER 15

Changing applications based on GWT properties

SlideshowMenuItemName: Galleri
GoogleSearchMenuItemName: Sök med Google
GoogleVideoSearchMenuItemName: Sök Video
FinanceNewsMenuItem: Finans Nyheter
SearchComparisonMenuItem: Search Comparison
BookMenuItem: Boken
YahooSearchMenuItem: Sök med Yahoo
SendEmailMenuItem: Skicka en Email
ColourPickerMenuItem: Välj Färg
NameChangeOK: Byta
NameChangeCANCEL: Ej Byta
CurrentLocale: sv

We made a subtle “error” in the properties file for the
Swedish locale in order to discuss a specific attribute of
GWT i18n. If you compare the default and Swedish
locales, you’ll see that the Swedish properties file misses a
number of constants. When GWT comes across this situa-
tion, it simply goes to the next level in the hierarchy to
find the constant value (in this case the default locale—
which explains the English words visible in figure 15.5.)

 Finally, you create the American English properties file
(DashboardConstant_en_US.properties) which makes
heavy use of the hierarchy to only define the following
two lines:

ColourPickerMenuItem: Color Picker
CurrentLocale: en_US

If you want to add additional locales, now is a good time
to do so. Remember that the filename must follow the for-
mat specified in chapter 15 and that you also need to add
an <extend-property> tag to the Dashboard.gwt.xml file defining each locale
you’re adding (if you’ve not already done so, then you need to add the en_US
locale to the Dashboard.gwt.xml file).

 Once you’re happy that your default properties file contains all the constants
you need in the application, then you need to execute the DashboardConstants-
i18n tool again (remember that this tool was created in chapter 2). It regenerates
the necessary DashboardConstants interface file, taking into account any changes
you’ve made since the last time it was executed. The result of executing the tool
for the default file is shown in listing 15.8.

Color
constants

Text constants for
EditableLabel buttons

Figure 15.5 Menu

system when the locale

is set to Swedish by

changing the

DashboardConstants

_sv.properties file’s

contents

Supporting internationalization in full 509

public interface DashboardConstants extends
 com.google.gwt.i18n.client.Constants {

 String AboutMenuItemName();
 String CreateMenuName();
 String HelpMenuName();
 String CalculatorMenuItemName();
 String SlideshowMenuItemName();
 String AddressBookMenuItemName();
 // other signatures
 String NameChangeOK();
 String NameChangeCancel();
 String SwedishLocale();
 String EnglishLocale();
 String CurrentLocale();
}

In addition to a Constants interface, GWT provides a ConstantsWithLookup
interface, which we’ll look at next. The main difference is that ConstantsWithLo-
okup doesn’t perform any static code reduction.

Defining static string internationlization constants with lookup

The ConstantsWithLookup interface works exactly the same way as the Constants
interface, and values in the properties file can be accessed in exactly the same way.
What sets these two apart is that ConstantsWithLookup sends all constants into
the JavaScript file (so there’s no reduction in file size), and it additionally
provides a number of specific retrieval methods that return the constant as a
variety of Java objects. These retrieval methods are as follows:

■ getBoolean(String)—Looks up a particular method name, and returns a
boolean value

■ getDouble(String)—Looks up a particular method name, and returns a
double value

■ getFloat(String)—Looks up a particular method name, and returns a
float value

■ getInt(String)—Looks up a particular method name, and returns a int
value

■ getMap(String)—Looks up a particular method name, and returns a map
value

Listing 15.8 Result of the DashboardConstants-i18n tool

510 CHAPTER 15

Changing applications based on GWT properties

■ getString(String)—Looks up a particular method name, and returns a
String value

■ getStringArray(String)—Looks up a particular method name, and
returns a String[] value

An exception is raised if the method name doesn’t exist in your interface or if it
isn’t possible to cast the constant type to the object expected (for example, a
String to a boolean). If you define the interface as follows

public interface MyAppConstants extends ConstantsWithLookup{
 String hello();
 String hi();
 String yes();
 String no();
 String ok();
}

then you can look up values from your properties files using one of the following
two approaches:

constants.hello();

or

constants.getString("hello");

If you tried to look up constants.getString("farewell"), it would throw a
runtime exception because the method name farewell() doesn’t exist (if you
had used the static approach, this error would have been picked up at compile
time). Similarly, looking up constants.getInt("ok") would throw a runtime
exception because the ok() method returns a String and not an int.

 Let’s get even racier with our examples and start defining i18n messages—
something you didn’t do earlier—that you’ll use in the Dashboard application. In
addition to constants, you can use messages in the same style by extending the
Messages interface. Messages allow parameters to be passed in the interface; the
values of those parameters appear in predetermined sections of the messages. If
you’re using the GWT creation tools to create the files, don’t forget to include the
-createMessages flag when you’re running the i18nCreator tool. In the next
section, we’ll look at how these messages are created.

Defining static-string internationalization messages

Messages differ from constants in that they’re parameterized. As with constants,
you need two types of files:

Supporting internationalization in full 511

■ A set of one or more properties files

■ A Java interface that extends the Messages interface

The properties files are again where the key-value pairs are defined, and they
follow the same naming convention and hierarchical properties as those
discussed for constants. As an example, you can define myAppMessages.proper-
ties file as the following:

hello:Hello {0},

Defining a message is like creating a template where values will be slotted in. The
example Hello message has one slot, denoted by the text {0}. Other messages
may contain more slots: for example, goodbye:Goodbye {0} at {1}. This
message has two slots; in the interface, you define what goes into them. You can,
of course, define messages with zero slots, in which case they act like constants in
the way we described earlier.

 The interface you need to define for messages is almost the same as for constants,
except that you should extend the Messages interface, and you define the
parameters the methods should take—one parameter for each slot in the message.
For the properties file example, you define the interface method as follows:

public interface MyAppMessages extends Messages{
 String hello(String name);
}

You’re saying that the hello() method takes one parameter, which is a String.
 Using the code in the application and setting the locale is performed the same

way as for the other two techniques we’ve just discussed, except that you need to
pass the appropriate number of parameters to the chosen method. For example,
to display the message “Hello Tiina Harkonen”, you write the following code:

MyAppMessage messages = (MyAppMessage)GWT.create(MyAppMessage.class);
Label newLabel = new Label(messages.hello(“Tiina Harkonen”));

Other specific locale properties files are created the same way as for the other
interfaces we’ve looked at. For example, a properties file for the Finnish locale,
fi, is called myAppMessages_fi.properties and may have the contents

hello: Tervetuloa {0},

If the application was set to the Finnish locale, then the hello message would
become “Tervetuloa Tiina Harkonen”.

 In chapter 2, we discussed that the i18nCreator tool can be used to create
messages as well as constants (messages allow you to add a parameterized value

512 CHAPTER 15

Changing applications based on GWT properties

into the text at runtime, whereas constants don’t). You’ll now bring in a message
that you’ll use to set the default name on the Dashboard (which is stored in the
EditableLabel). The first thing to do is to create the necessary structure and files
using the i18nCreator tool.

Establishing the messages file and directory structure

To create the messages structure, you should execute the appropriate command
line shown in table 15.4, depending on whether you’re using the Eclipse IDE (this
will work, assuming you’ve followed the same structure you created in chapter 2).

Successful execution of the command results in a new DashboardMessages.prop-
erties file in the code directory and a new application called DashboardMessages-
i18n. (If you use the Eclipse version, you also get a new Eclipse launch configura-
tion. In Eclipse, you should now refresh your project by right-clicking it and
selecting the Refresh option; doing so shows these new files in your Package
Explorer view.)

 Now that you’ve created the message structure, let’s create the default locale
implementation.

Creating messages for the default locale

Just like creating constants for the default locale, creating messages for the
default locale means you must update the DashboardMessages.properties file
created by the i18nCreator tool. Find it now, and replace it with the contents
shown in listing 15.9.

DashboardDefaultNameMessage = New Dashboard Created at {0}
ConfirmDeleteMessage = Are you sure you want to delete the
 {0} application?
BookmarkOnErrorMessage = Some problem has occurred, we are unable to
 load your bookmarks.

Table 15.4 Different versions of the i18nCreator tool used to create the message framework for the

 Dashboard internationalization

Version Command Line

Non

Eclipse
i18nCreator -createMessages -out DashboardDir
org.gwtbook.client.DashboardMessages

Eclipse i18nCreator -eclipse DashboardPrj -createMessages -out
DashboardDir org.gwtbook.client.DashboardMessages

Listing 15.9 Part of the default DashboardMessages.properties file

B

C

Supporting internationalization in full 513

BookmarkOnResponseErrorMessage = Some problem has occurred, the
 server returned a status code {0}
 (perhaps you are running this with
 no server?)
WindowResizedMessage = New window size: ({0},{1}) \n Turn Off Resize
 Notifications?
SaveDashboardNameMessage = We would normally save the \n Dashboard
 Name now it is changed.
WindowClosingText: You are attempting to close the Window - are you
 sure?
WindowClosedText: Window is now closing, typically at this point
 we would now save the state of the application.

Notice that in the messages, you use the equals sign (=) as well as the colon (:) to
separate the keys from the message; this is just to show the flexibility we men-
tioned earlier. At B is a message that takes two parameters: in this case, the x and
y dimensions of the resized window.

 This code creates a set of GWT i18n messages, each with a differing style. The
first line B places the variable text at the end of the message (you’ll use this in the
Dashboard as the initial text for the EditableLabel that represents the Dash-
board’s name). It’s simple to place the variable text in the middle of the message,
as shown on the second line C, or it can go at the start. Placing two or more vari-
ables in the message? Not a problem; you do that at D. Finally, you hit a slightly
philosophical point where there are no variables to add to a message—should it
be a message or a constant? Technically, it should be a constant, but in the last
line, E, it’s a message. Where should it be placed? In professional development,
you can always refer back to your coding standards for guidance (or, if it isn’t
there, create it). For the Dashboard, we decided that where the text is presented
to the user as a message, it should sit in the messages area regardless of whether it
has variables.

 If you execute the new DashboardMessages-i18n command (created by the
i18nCreator tool), it creates a new interface file called DashboardMessages.java.
The interface’s contents resemble listing 15.10 (you will explicitly set the parameter
type for the WindowResizedMessage to int).

public interface DashboardMessages extends
com.google.gwt.i18n.client.Messages {

 public String DashboardDefaultNameMessage(String time);
 public String ConfirmDeleteMessage(String appName);

Listing 15.10 Results of the DashboardMessages-i18n tool

D

E

Message with one
String variable

514 CHAPTER 15

Changing applications based on GWT properties

 public String WindowResizedMessage(int x, int y);
 public String WindowClosingText();
 // Other signatures
}

The resulting Java interface is similar to the constants interface, except the
method takes a parameter, the value of which is inserted in the place-marker {0}
defined in the message.

 You must add similar messages for the different locales the application will
manage.

Adding messages for other locales

GWT’s i18n approach is standard. To create different locale messages, you create
different properties files named according to the same naming convention used
for constants. In this case, you create a DashboardMessages_sv.properties file for
the Swedish locale and place the following in it:

DashboardDefaultNameMessage = Ny Dashboard, frambringade @ {0}

But you needn’t stop with localizing constants and messages; you can do the same
thing with components in the application. For example, the trash icon changes
based on the locale. We’ll explain how you can alter components based on the
locale in more detail in section 15.4.

 One of the restrictions of using a static approach is that changing locale
requires you to reload your GWT application. For small applications, this may not
be a major problem; but if your application becomes substantial in size, then a
simple locale change may begin frustrating your user. However, the static nature
which finds errors at compile time and reduces code size should usually outweigh
the reloading problem.

 GWT (version 1.4) also provides a number of classes that deal with localization
of dates, times, and currencies.

Localization of dates, times, and currencies

When you create the message that is the default value for the EditableLabel (in
the Dashboard’s onModuleLoad() method), you use the DashboardDefaultName-
Message from your messages files to display the date and time the Dashboard was
created.

 To do so, you use the DateTimeFormat i18n classes provided from GWT 1.4.
You create two new objects, one that creates a full date format

String fullDateFormat =
 DateTimeFormat.getFullDateFormat().format(new Date());

Message with
two int variablesMessage with

no variables

Supporting internationalization in full 515

and one that creates a short time format:

String shortTimeFormat =
 DateTimeFormat.getShortTimeFormat().format(new Date());

In the com.google.gwt.i18n.client.constants package, you can find hundreds
of classes covering dates and number formats for all the potential language and
country codes. The date format object, for example, provides details about the
short and full date/time formats. Listing 15.11 gives the details of the default
English locale properties file for the DateTimeFormat.

eras = BC, AD
eraNames = Before Christ, Anno Domini
narrowMonths = J, F, M, A, M, J, J, A, S, O, N, D
months = January, February, March, April, May, June, July, August,
 September, October, November, December
shortMonths = Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,
 Nov, Dec
// More month data
weekdays = Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
 Saturday
shortWeekdays = Sun, Mon, Tue, Wed, Thu, Fri, Sat
narrowWeekdays = S, M, T, W, T, F, S
// More weekday data
ampms = AM, PM
dateFormats = EEEE\\, MMMM d\\, yyyy, MMMM d\\, yyyy, MMM d\\,
 yyyy, M/d/yy
timeFormats = h:mm:ss a v, h:mm:ss a z, h:mm:ss a, h:mm a

These definitions in the locale-specific files are used by the DateTimeFormat class
the same way you’ve been using i18n properties files to ensure the appropriate set
of definitions is used for your locale. You use the DateTimeFormat class to get text
representing dates and times in the format you desire. In the Dashboard, you use
the following code to create the EditableLabel:

dashboardName = new EditableLabel(
 messages.DashboardDefaultNameMessage(
 medTimeFormat +" "+ fullDateFormat),
 constants.NameChangeOK(),
 constants.NameChangeCANCEL());

You tie together the GWT DateTimeFormat classes to get the presentation of dates
and times for your locale (for example, the U.S. uses a 12-hour clock as opposed

Listing 15.11 DateTimeConstants_en properties file

516 CHAPTER 15

Changing applications based on GWT properties

to the 24-hour clock used in Europe). In the U.S. locale, the variable medTimeFor-
mat might hold

03:02 PM

whereas in the English and Swedish locales, it would hold

15:02

However, here is the subtle problem in the i18n approach applied so far. The
default English locale in the Dashboard is English, and we specifically included an
American English locale (en_US) to resolve the spelling of colour/color. When you
include GWT’s date and time formats, then they define the default English locale as
American English—and you have a mismatch. In the Dashboard’s default English
locale, the spelling of color is English (colour), but the time format uses the 12-hour
clock rather than the expected 24-hour clock.

 Correct or incorrect is a debate that could go on for a long time, but you
should be wary of this in your applications, especially if you’re developing from a
non-American viewpoint (it isn’t just a debate over English primacy—the default
Spanish locale, as another example, is Argentinian). Be particularly careful if
you’re using currencies, because, for example, the default English currency is U.S.
dollars, and the default Spanish currency is Argentinian Pesos (unless GWT
changes this in the future). To be 100 percent safe, if you’re using currency/date/
time formats, you may want to avoid default locales and specifically use both lan-
guage and country codes.

 We’ve exhausted the static approaches; they’re the ones you should use unless
you have an existing i18n approach. Whether you use constants, constants with
lookup, or messages will depend on your application.

 Dynamic-string i18n is the other approach that GWT provides; it’s a more
flexible approach to i18n with regard to changing locales, although this flexibility
comes at the expense of static analysis. The dynamic approach also lets you use
existing approaches to i18n that you may already have in the rest of your site/
organization. We’ll now look at this dynamic approach.

15.3.2 Using dynamic string internationalization

The dynamic approach was originally designed to allow existing i18n approaches
to be quickly incorporated into GWT applications. If your existing approach used
JavaScript associative array objects containing sets of key-value pairs, like those
shown in table 15.5, then dynamic-string i18n would potentially work for you.

Supporting internationalization in full 517

In this approach, the two JavaScript objects list key-value pairs for a simple user
interface, the first in English and the second in Swedish. In JavaScript, it’s easy to
select an element in an associative array by referencing it via the key. To select the
correct text to display for the index hello in a Swedish locale, you write

userInterfaceSV[hello];

which results in the text “Hejsan” being selected.
 If this is the approach you currently use for i18n, then implementing it in GWT

is swift and easy. You need to insert the JavaScript objects into the HTML file as you
normally would; they’re accessed using the GWT Dictionary class.

 Assuming the HTML file into which the GWT application is to be loaded has
the userInterfaceSV associative array included, then you create an object that
accesses it using the getDictionary() method, as follows:

Dictionary uiText = Dictionary.getDictionary("userInterfaceSV");

The Dictionary.get(key) method retrieves values based on the supplied key. In
this case, to retrieve the value to display for the index hello in a Swedish locale,
you can write

uiText.get("hello")

Dynamic-string i18n offers a few benefits:

■ You can quickly use existing i18n approaches you currently have.

■ No code recompilation is required to make any changes or additions to the
constants.

■ Changing locale doesn’t necessarily require a complete reload of the appli-
cation.

However, the disadvantage of the dynamic approach is that GWT provides no help
to determine whether constants you’re referring to exist. With the dynamic

Table 15.5 Two JavaScript associative array objects containing English and Swedish user

 interface constants

var userInterfaceEN = {
 hello:Hello,
 hi:Hello,
 yes:Yes,
 no:No,
 ok:OK
};

var userInterfaceSV = {
 hello:Hejsan,
 hi:Tjena,
 yes:Ja,
 no:Nej,
 ok:OK
};

518 CHAPTER 15

Changing applications based on GWT properties

approach, it’s possible to refer to keys that don’t exist, creating unexpected results
in your UI. In addition, the compiler can’t perform any optimization by removing
unused keys. This means all key-value pairs, used or not, are sent by the web
server, increasing the application’s size and, therefore, slowing down the delivery
of applications.

 GWT’s i18n approach is great for dealing with the display of different messages
and constants based on locales, but you can go one better and start changing
complete components of the application based on the locale.

15.4 Altering the application for the locale

Let’s imagine that one of the Dashboard applications will access restricted infor-
mation. That information could be anything, but for the sake of the example,
we’ll say that it’s financial information for a company that is restricted by financial
market regulations. Although GWT’s i18n approach is set up for dealing with mes-
sages and constants, you can subvert it to change application components based
on locale by borrowing the code structure.

 You need to implement two basic types to get the differing functionality by
locale (this pattern should be becoming familiar to you now!):

■ A default class

■ A set of zero or more localized classes

Let’s look at both cases in more detail through examining the Dashboard Finance
News component application.

15.4.1 Implementing the default component

When companies make certain announcements, it’s common for this information
to be restricted to certain financial markets due to regulations. For example, the
details of one company intending to purchase a controlling stake in another com-
pany listed on the UK market isn’t usually for release in the USA or Australia. You
can use localization to restrict this access.

 For the financial system application’s functionality, you want to display a but-
ton allowing access to the announcement if a user is in a locale that can see the
announcement and a label expressing regret if not. As a starting point, you’ll
define the default type, in this case a class, and provide a single method that
returns a GWT widget. Because you wish to be safe and not attract the wrath of
regulatory bodies, you want users coming in from any locale to be treated to a dis-
play of the default screen shown in figure 15.6.

Altering the application for the locale 519

To do this, you set the default class to return a Label containing denial message.
Call the class Proceed, and write the following:

public class Proceed implements Localizable{
 public Widget getProceed(){
 return new Label("Unfortunately regulations restrict
 access in your country to this content");
 }
}

The default class is simple and has the basic rule that it must implement the
Localizable interface. Let’s move on to the locale-specific classes.

15.4.2 Locale-specific classes

Let’s say that a financial announcement is made on the Swedish stock market.
Users in the Swedish locale can read the text, and instead of the previous mes-
sage, you want to present a button allowing the user to click through to the
announcement.

 In theory, a user in the Swedish locale will see the full release after they click
on the proceed button, but for this example, you will just show them an alert box
as shown in figure 15.7.

 You distinguish users from the Swedish locale by defining that the locale
they’re in has the ISO language code sv. You want to write a class that is used for
this locale instead of the default class, and you want this new class to return a but-
ton rather than a label. To do so, you write a class that extends the original Pro-
ceed class and is named following a simple naming convention. Here it is:

Figure 15.6 Finance application running in a locale that isn’t allowed to

view financial information

Figure 15.7

Finance application in sv locale (even

though the text is written in English

so the majority of users can see the

functionality)

520 CHAPTER 15

Changing applications based on GWT properties

public class Proceed_sv extends Proceed{
 public Widget getProceed(){
 Button theButton = new Button
 ("Please press to Proceed to the News Item");
 theButton.addClickListener(new ClickListener(){
 public void onClick(Widget sender) {
 Window.alert("Going to News Article");
 }
 });
 return theButton;
 }
}

That is all you need to do from a code perspective to implement localization
classes in a GWT application. Unfortunately, it doesn’t mean your localized code is
available to your application—that takes a couple more steps. The first step is to
tell the application which locales it needs to be concerned about, and the second
is to tell it which locale to use (you already did this for the Swedish locale in the
Dashboard application some chapters back).

 Unlike with browser-specific code, when you replace components due to
locale, there is no need to enter anything beyond the locales in the module XML
file. The existing setup provided by GWT in i18n’s module XML file is sufficient.

 Now that you’ve seen how to use the existing approaches for properties with
your code, it’s time to take the next step and begin defining and managing new
properties.

15.5 Implementing user-defined properties

You’ve seen that GWT provides a nice way to manage different browsers through
properties; it also gives you a way to manage different locales for messages and
constants, which you can subvert to manage the changing of application compo-
nents based on locales. It’s possible to take this property-based approach further
and define your own properties and handling code.

 In this section, you’ll do that for the Dashboard application to present an
intranet view and a more restricted Internet view. In your applications, you may
need to do something similar so that external users get a restricted set of function-
ality compared to users on your intranet. There are many ways to provide this type
of division outside of GWT; this is just an approach that you may want to investi-
gate. (You set the property in the HTML file, which isn’t that secure because the
user can override it; but you can expand the property-provider approach and gen-
erate JavaScript that selects which version the user sees based on IP addresses or
something similar.)

Implementing user-defined properties 521

15.5.1 Defining user-specified properties

The property definition is simple. You’ll define a user-defined property that has
two values—intranet and internet—and you’ll call it externalvisibility. You
set this up using the standard approach that we described a few sections back, by
making the following entry in the Dashboard.gwt.xml file:

<define-property name="externalvisibility" values="intranet,internet"/>

Before it can be used in any meaningful way, you need to be able to get the value
of this property.

15.5.2 Defining a user-specified property provider

In the Dashboard example, you look at the meta tag defined in the HTML file to
determine the start value for the external visibility flag. More realistically, you
might implement IP-checking code to set the value, but we’ll stick with getting it
from the HTML file. You do that in the property provider shown in listing 15.12,
which is placed in the Dashboard’s module XML file.

<property-provider name="externalvisibility">
<![CDATA[
 try{
 var externalvisibility =
 __gwt_getMetaProperty("externalvisibility");
 if (externalvisibility==null){
 externalvisibility = "internet";
 }
 return externalvisibility;
 } catch (e) {
 return "internet";
 }
]]>
</property-provider>

In the property provider, you first try to get the externalvisibilty value from
the meta tag in the Dashboard.html file using the getMetaProperty() method B.
If that isn’t available, then an exception is raised, which you catch at E; you then
set the value to the most restrictive value, internet. If you successfully get a value
at B, then you check to make sure it isn’t null C; if it is, you set it to be the value

Listing 15.12 Defining the property-provider that handles your

 externalvisibility property

Access HTML
meta definition

B

Set default
property valueC

Return
valueD

Return default
value in case
of errorE

522 CHAPTER 15

Changing applications based on GWT properties

internet; otherwise, you return the value that you found D. How do you know
the value is OK? We’ll look at that next.

15.5.3 Checking the provided property value

Just retrieving a value from the metatag doesn’t necessarily mean it’s a valid value
that you can work with. Fortunately, you can harness GWT again to ensure the
value is in the list of defined properties—or, if it isn’t, to handle that error.

 In the Dashboard.html file, you define a gwt:onPropertyErrorFn meta tag as
follows:

<meta name='gwt:onPropertyErrorFn' content='handleWrongVisibility'>
 <script>
 function handleWrongVisibility(propName,
 allowedValues,
 badValue){
 if (propName == "externalvisibility"){
 window.alert("You are looking at the application from
 an unknown area\nCheck the
 externalvisibility property.");
 window.location.href = ("http://www.google.se");
 }
 }
 </script>

Here you define the meta tag B followed by some JavaScript that is executed
when GWT determines that the property value given to the application is invalid.
You indicate in the meta tag that the function handleWrongVisibility should be
called if there is a property error. At C, you begin to provide the definition of the
handleWrongVisibility method. At D, you check whether the error is with the
externalvisibility property, and if so, display an error and navigate the user to
the Google home page E. You can extend this approach to all the properties you
have, if you wish.

 With the basics in place, you can now build the code.

15.5.4 Building the code

Finally, you can build the complete final version of the Dashboard, which comes
in two flavors: one for the Internet and one for the intranet. The Internet version
provides access a small number of component applications; the intranet version
provides those same component applications plus many more.

 You implement this by following the same pattern you have for all the
property-based functions. First, you build the Internet class as a default class for
the property, which you’ll call Dashboard. In this Dashboard class, you create

B

C

D

E

Summary 523

the menus containing the limited number of menu items corresponding to com-
ponent applications. Next, you build a Dashboard_intranet class that extends
that Dashboard class and overrides the methods in Dashboard that are responsi-
ble for building the menus (and therefore giving access to the additional compo-
nent applications).

 To complete the functionality, add a replace-with tag in the Dashboard’s
module XML file:

<replace-with class="org.gwtbook.client.Dashboard_intranet">
 <when-type-is class="org.gwtbook.client.Dashboard"/>
 <when-property-is name="externalvisibility" value="intranet"/>
</replace-with>

This entry says that the Dashboard class must be replaced by the Dash-
board_intranet class if the externalvisibility property is set to intranet.

15.6 Summary

This concludes our walk through using properties to change the application—a
powerful tool, particularly if you need to alter aspects of your application to suit dif-
fering locales. Just remember that the general pattern is to create a default class and
then the variations, all which extend the default class. Then, you can use replace-
with tags in the module XML file to replace the default file when properties match
values; or, if you’re using the i18n approach, the default class must implement
Localizable, and all class names should follow the i18n naming structure.

 In the next part of this book, we’ll look at the final practical aspects of GWT,
including testing and deploying applications.

Part 4

Completing
 the understanding

Part 3 examined the more advanced tools of the GWT toolset for commu-
nication and internationalization. Part 4 of this book completes your under-
standing of GWT by examining how to write tests for your application and
how to deploy to a web server. This is followed by a detailed look under the
hood, showing you the magic behind the tools.

527

Testing and deploying
GWT applications

This chapter covers

■ JUnit testing of GWT applications

■ Testing asynchronous code

■ Deploying GWT applications

■ Installing GWT-RPC servlets

528 CHAPTER 16

Testing and deploying GWT applications

At some point, you’ll make the leap from evaluating GWT to deploying it on pro-
duction systems. This chapter shows you how to write tests for your application,
making long-term maintenance easier, and also shows you how to migrate applica-
tions from hosted-mode development to a server.

 In this chapter, we won’t assume that you’re a JUnit wizard or that you know
your Java application server backward and forward. Although we provide useful
information for experts, we also give you step-by-step information if this is your
first time working with these tools.

 We’ll get to setting up your production environment shortly. First, let’s exam-
ine testing, starting with an overview of JUnit.

16.1 Testing GWT code using JUnit

Many developers (and entire organizations) have taken up the notion of test-
driven development, or at least recognize the importance of writing tests. The
return on investment when creating tests comes in the form of time saved as the
application gets larger and also during the maintenance phase of the software life-
cycle. Almost in contradiction to the notion of writing automated tests as being a
good thing, we find that writing those tests for JavaScript applications can be diffi-
cult and time consuming.

 In Java-land, we’ve had powerful testing tools available for many years. At the
top of the testing framework heap is JUnit, which is so popular that it has been
ported to many other languages. It has remained popular because it’s easy to use
and has been integrated with IDEs and build tools like Eclipse and Ant.

 In the land of JavaScript, we haven’t seen the success of any single testing
framework, and none can match the usability and ease of use of JUnit. The lack of
a good testing framework for JavaScript may be because writing complex Java-
Script applications is a relatively new idea, or perhaps it’s because it isn’t easy to
test code that is meant to be run by the browser. Whatever the reason, testing Java-
Script is hard, but GWT provides a solution.

 When it came time to add testing capabilities to GWT, the GWT development
team turned their attention to the de facto standard: JUnit. But instead of creating
something similar to JUnit, they harnessed the power of JUnit itself. What this
means for you as a developer is that you get to use a time-tested framework for
testing, and all the tools that go along with it.

 In this section, we’ll look at how to use JUnit to test your GWT code, and we’ll
point out areas where the support isn’t perfect. Before we get started, we need to
have a quick review of JUnit.

Testing GWT code using JUnit 529

16.1.1 Overview of JUnit for GWT developers

If you haven’t seen or heard of JUnit, the best place to start is the JUnit project site
at www.junit.org. The site contains links to dozens of articles about the framework,
dating back to 1999. Our overview in no way replaces the thousands of pages writ-
ten on the subject, but it provides enough detail to allow you to write some simple
tests even if this is your first experience with JUnit.

 Unless you already have JUnit ready to go, you need to visit the JUnit site to
download the latest release of the 3.8.x branch. When you visit the JUnit site, you
may notice that a 4.x version available, but this version isn’t compatible with GWT.
JUnit 4.x takes advantage of new functionality that was added in Java 5; but as we
explained in chapter 1, GWT doesn’t yet support the Java 5 syntax.

 Let’s begin by opening an IDE or a text editor and writing a simple test case.

Writing a simple test case

In JUnit, a test case is a class that may contain one or more tests. The purpose of the
test case is to group a set of tests together, typically based on their function. For
example, you may want to place all tests for a calendar widget in the same class,
potentially allowing you to write private methods that can be shared among the tests.

 In the example, you’ll write a test case that tests basic math functionality, giving
you a feel for how to use JUnit. You begin by creating a new class named Math-
TestCase and having it extend JUnit’s TestCase class, as shown in listing 16.1.

 The next step is to add some tests to the class. For each test you add, you need
to create a method. The method name must begin with the name test. JUnit
works by interrogating the methods in the class; any method that begins with the
word test is taken to be a unit test. In listing 16.1, you create four methods, each
of which tests a different mathematical function.

package org.gwtbook.test;

import junit.framework.TestCase;

public class MathTestCase extends TestCase
{
 private int x = 100;
 private int y = 10;

 public void testAdd() {
 assertEquals(110, x + y);
 }

Listing 16.1 JUnit test-case that provides several examples of testing mathematical

 functions

B

530 CHAPTER 16

Testing and deploying GWT applications

 public void testSubtract() {
 assertTrue(x - y == 90);
 }

 public void testMultiply() {
 assertEquals("test #1 failed", 1000, x * y);
 assertEquals("test #2 failed", 1000, y * x);
 }

 public void testDivide() {
 if (x / y != 10) fail();
 }
}

The JUnit TestCase class includes dozens of methods that can be used to test for a
valid value; listing 16.1 provides several examples. In the test testAdd()B, you
use the method assertEquals() from the parent TestCase class to test the equal-
ity of two int values. You pass two values to the assertion method: the expected
result (110) and your tested value. In this case, you’re testing that the variables x
plus y are equal to 110. The TestCase class includes similar variations of the
assertEquals() method for testing each of the primitive types, as well as String
and Object values.

 In testSubtract() C, you use another of the TestCase methods to test the
truth of the statement x – y == 90. If this statement returns a false value, the test
fails. Other similar methods in the TestCase class include assertNull(), assert-
NotNull(), and assertFalse(), each of which behave as the name implies.

 In testMultiply() D, you see a variation on the assertEquals() method
that includes an error message as the first argument. You may have as many asser-
tions in a single test as you like, which can cause confusion if you can’t tell which
assertion in the test failed. If you add a message to the assertion and the test fails,
the message is displayed in the test results, making it easy to determine what part
of the test failed.

 The last variation in the example is used in testDivide() E. Here you test the
value, and if the result isn’t correct, you call the fail() method. The fail()
method does as you may expect: It fails the test. The fail() method takes an
optional message parameter that can be used to provide additional information
about the failure.

 These are the TestCase assertions that you’ll use most often, but there are a few
more. You can use the assertSame() method to test that two object references point

C

D

E

Testing GWT code using JUnit 531

to the same object. failSame() does the opposite, failing if the two references point
to the same object. There is also a variation of the assertEquals() method for
float and double values that allows the addition of a delta argument. The delta is
used to specify a maximum difference between the values being tested. For exam-
ple, the following assertion is true because 99.5 is within 0.6 of 100.0:

assertEquals(100.0, 99.5, 0.6);

When you add up all the variations of assertions with and without messages and
deltas, you have three dozen different assertion methods to choose from.

 Now that you have your test-case written, you need to have JUnit run your tests.

Running tests

JUnit provides two tools for executing unit tests, called test runners. One runs your
tests at the command line, and the second presents you with a GUI tool for point-
and-click testing. Unfortunately, the GUI version of the testing tool doesn’t behave
as expected when running your tests against a GWT application, so we’ll only
explain how to use the command-line version.

 To run your tests at the command line, you need to execute the class
junit.textui.TestRunner that is bundled in with the JUnit JAR file. It takes a
single parameter: the class name of your test case class. You also need to include
the path to the JUnit JAR file and the path to your compiled test-case class file. If
you don’t typically run Java applications at the command line, you would execute
something like the following command:

java -cp junit.jar;./classes" \
 junit.textui.TestRunner \
 org.gwtbook.test.SampleTestCase
....
Time: 0

OK (4 tests)

Note that in this example you use a backslash at the end of the line to denote that
the command continues onto the next line. This is supported only in UNIX and
UNIX-like shells; in Windows, don’t include the backslash in the command.

 As the tests execute, JUnit prints dots to indicate the progress of the testing.
Once completed, it displays the total time it took to run the tests along with the
results of the testing. In this case, JUnit displays that all four tests ran successfully.

 It’s nice to see that all the tests passed—but if this was always the case, you
wouldn’t need to write tests to begin with. Let’s introduce some failures into the

532 CHAPTER 16

Testing and deploying GWT applications

code. You can do this by altering the value of the y variable in the test-case class,
changing it from 10 to 11:

private int y = 11;

After making this change, you need to recompile the test-case code. Then, run
the tests again, and you’ll see the following output:

.F.F.F.F
Time: 0.016
There were 4 failures:
...
FAILURES!!!
Tests run: 4, Failures: 4, Errors: 0

In the output, we used ellipses (...) to denote the additional messages that appear
in the output. When you run this yourself, you’ll see a message and a partial stack
trace indicating the reason for the failure. For example, the following message is
displayed at the command line for the failure report on the testAdd() method:

1) testAdd(org.gwtbook.test.SampleTestCase)
 junit.framework.AssertionFailedError:
 expected:<110> but was:<111>

Notice that JUnit tries to provide a helpful message by displaying not only the
expected value but also the result. This may help you in debugging the problem
without the need to add logging to your test case.

 At the bottom of the output, JUnit tells you that failures occurred and provides
a count of the tests run, the number of failures, and the number of errors. The dif-
ference between these last two may seem confusing at first, but a failure isn’t an error.

Writing a test to properly handle errors

When JUnit reports an error, it means that a runtime exception was thrown and the
test didn’t properly account for it. This is different from a failure, which indicates
that an assertion failed. To illustrate this point, let’s use the following test example:

public void testDataProvider()
{
 List data = DataProvider.getData();
 String value = (String)data.get(0);
 assertEquals("Testing", value);
}

This test may seem correct, but a lot of runtime errors could potentially occur,
which means that JUnit wouldn’t be able to properly report on them. First, you
don’t test that getData() returns a value, which could cause a null pointer excep-
tion. You also don’t check that there is a value in the List, so grabbing the first

Testing GWT code using JUnit 533

element could result in an index out of bounds exception. Last, you cast the value
to a String, but if it isn’t a String value, a class cast exception will be thrown. If
any of these runtime exceptions occurred, they would be reported by JUnit as
errors, not failures.

 A better way to write the test is as follows:

public void testDataProvider()
{
 List data = DataProvider.getData();
 assertNotNull("data is null", data);
 assertTrue("data is empty", data.size() > 0);

 Object value = data.get(0);
 assertTrue("value is not a String", value instanceof String);
 assertEquals("value is incorrect", "Testing", (String)value);
}

You now test for each of the possible error conditions using assertion methods
and provide a message for each assertion that adds value to your test report if the
test fails. Also notice that you don’t need to use conditional blocks in your test to
prevent any of the runtime errors from occurring. Specifically, after you call
assertNotNull() to test for a valid return value from the DataProvider class, you
don’t need to provide code to prevent the next line from executing if it fails,
which would result in a null pointer exception. This isn’t necessary because JUnit
ends the execution of a test as soon as any assertion fails.

 This means that any cleanup in the test that follows a failed assertion won’t be
executed, so it’s important to not use tests for cleanup. This can be problematic,
because on some occasions you may need to free up some resources used by the
test to properly handle errors.

Setting up and cleaning up the test

Because you’ll often need to perform some setup prior to a test and cleanup after,
JUnit provides two methods for this purpose. The setUp() method is called
before executing each test in the TestCase class, and tearDown() is called after
each test.

 Listing 16.2 is an example of using the setUp() method to create a connection
pool using the Jakarta commons-dbcp library before each test and shutting it down
after the test has completed.

534 CHAPTER 16

Testing and deploying GWT applications

BasicDataSource dataSource;

protected void setUp() throws Exception
{
 dataSource = new BasicDataSource();
 dataSource.setDriverClassName("oracle.jdbc.driver.OracleDriver");
 dataSource.setUsername("scott");
 dataSource.setPassword("tiger");
 dataSource.setUrl(connectURI);
}

protected void tearDown() throws Exception
{
 dataSource.close();
}

Although managing a connection pool is more relevant to testing server-side code
than it is to GWT code, it’s a concept that most developers can understand. You
initialize or reset the services needed by the test in the setUp() method, and you
shut down or release the services in tearDown(). Although you may not use these
methods often, it’s good to know that JUnit makes it easy to do.

 At this point, you know everything you need to get started writing tests. In the
next section, we’ll discuss the specifics of using JUnit to test your GWT projects.

16.1.2 Creating a new test case

Back in chapter 2, we briefly discussed the junitCreator tool that ships with GWT.
In this section, we’ll provide additional details and point out some important
points that can help you avoid pitfalls.

 The first question is, what does the junitCreator tool do? The short answer is
that it creates a single TestCase class, two shell scripts you can use to execute that
single test, and optionally two launch files for Eclipse. The first shell script or
launch file is for executing your test case in hosted mode, and the second exe-
cutes the test case in web mode. Let’s take a closer look at the options for junit-
Creator and the files it creates.

Running junitCreator

The command-line options for the junitCreator tool are similar to those for
other tools. Following is the command-line syntax:

junitCreator -junit pathToJUnitJar -module moduleName
 [-eclipse projectName] [-out dir] [-overwrite] [-ignore] className

Listing 16.2 An example of overriding the TestCase setUp() method

Testing GWT code using JUnit 535

Here’s a description of the available options:

■ -junit—Path to the JUnit libraries. This option is required, and it must
point to the location of the JUnit JAR file. Again, note that it must point to
JUnit version 3.8.x, because 4.x isn’t yet supported. This path is used in gen-
erating the scripts, where the path to JUnit is added to the classpath.

■ -eclipse—Name of the Eclipse project (optional). If included, this option
generates the Eclipse launch files that can be used to execute the test case.

■ -module—GWT module of the application you wish to test. This option is
also required and is the name of the module that contains the code that you
want to test. The module name is added to the generated Java source code.
We’ll look at what the generated code looks like shortly.

■ -out—Directory to write output files into (defaults to current).

■ -overwrite—Overwrites any existing files (optional).

■ -ignore—Ignores any existing files; doesn’t overwrite (optional).

When you’re running junitCreator, you’ll want the output to be directed to the
same directory as your project. The scripts and launch files are placed in the root
of the directory, and the test-case source is placed under a new source directory
called test. For example, if you had an existing project called ExampleProject,
the structure would look something like the left side of figure 16.1.

 When you add a test case using junitCreator, you might use the following
command from inside the ExampleProject directory:

junitCreator.cmd -eclipse ExampleProject -junit <pathToJunit>
 -module org.gwtbook.ExampleProject org.gwtbook.client.ExampleTest

After running this command, the project would look like the right side of fig-
ure 16.1. It creates the two scripts for executing the tests and two Eclipse launch
files, and it creates the test case class ExampleTest under a new test source tree.

 When you’re running junitCreator, the test case you’re creating must reside
in the same client package used by the project. In the case of figure 16.1, the
project has a client package org.gwtbook.client. The test case must reside in
this package or a subpackage under it.

 Now, let’s take a closer look at the generated code for the test case and explain
the slight differences between a GWT test case and a standard JUnit test case.

536 CHAPTER 16

Testing and deploying GWT applications

Examining the generated test case

The full source for the generated test case, minus comments, is shown in listing 16.3.

package org.gwtbook.client;

import com.google.gwt.junit.client.GWTTestCase;

public class ExampleTest extends GWTTestCase {

 public String getModuleName() {
 return "org.gwtbook.ExampleProject";
 }

Listing 16.3 Source code for the basic test case generated by the junitCreator tool

Figure 16.1 A sample project directory structure before and after adding a test case

with junitCreator

Extend
GWTTestCase

New GWT-specific
method

Testing GWT code using JUnit 537

 public void testSimple() {
 assertTrue(true);
 }

}

The code shows a basic JUnit test case with a single sample test named testSim-
ple(), which will succeed. What is different is that the test case extends the class
GWTTestCase instead of the normal TestCase class from the JUnit library.

 The second difference is the addition of the setModuleName() method. This
method tells the testing system the name of the GWT module that contains this
test case. Because this test case is essentially a GWT entry point, the module needs
to point to the source of this test case. When you create the test case, you specify
the module name as the same as the main project, which means you don’t need to
create a separate one just for the test case.

 From here, you can create tests just as you did at the beginning of this chapter
when we examined the basics of JUnit. The rules for writing individual tests are
the same as when you’re writing a GWT application. You may only reference core
Java classes when they exist in the JRE Emulation library, and you may include
JavaScript Native Interface (JSNI) methods in the test case.

 This covers the basics, but GWT also provides an additional feature that makes
testing RPC-driven GWT applications a little easier.

16.1.3 Testing asynchronous code

When we looked at the various flavors of RPC in chapters 10 through 13, one
thing in common was that they’re all asynchronous. That makes it difficult to test
because your tests may potentially end before the server returns a response. To
allow for this, the GWTTestCase provides a mechanism you can use to tell the test
to delay ending for some period of time, allowing your server code to return a
response to the client. In this section, we’ll look at how you can use this mecha-
nism to test your server-side functions.

 For the purpose of discussion, you’ll use the RequestBuilder class for per-
forming your RPC. We chose this method because it’s the simplest of the available
mechanisms, but you could use any of the available RPC mechanisms.

 To delay the ending of a test, GWTTestCase provides the method delayTest-
Finish(), which takes a number of milliseconds to delay before ending the test.
Calling this method puts the test into asynchronous mode, and with that come some
important semantics. In asynchronous mode, you must call finishTest() before
the delay expires, or the test will fail—the idea being that if finishTest() was

538 CHAPTER 16

Testing and deploying GWT applications

never called, it’s likely that your RPC call never returned. Listing 16.4 shows a sam-
ple test so you can see how this might work.

public void testLoginService()
{
 delayTestFinish(5000);

 RequestBuilder rb = new RequestBuilder(RequestBuilder.GET,
 GWT.getModuleBaseURL() + "login?user=david&pass=m0mmy");

 try {
 rb.sendRequest("", new RequestCallback() {

 public void onError(Request req, Throwable ex) {
 fail();
 }

 public void onResponseReceived(Request req, Response res) {
 assertEquals(200, res.getStatusCode());
 assertEquals("OK", res.getText());

 finishTest();
 }

 });
 }
 catch (RequestException e) {
 fail();
 }
}

In this example, you’re testing your login service. You first set a five-second delay
so the server code has time to complete execution and return a result B. This
delay starts only after the test has ended normally, so it can be set anywhere in the
test and doesn’t need to be set before the RPC call.

 Next, you make an asynchronous call to your login service, which could be a serv-
let or any other server-side service that is accessed via login.rpc. In order to handle
the response, you pass in a RequestCallback that has an onResponseReceived()
method to receive the server response. The onResponseReceived() method con-
tains an assertEquals() method to test the server response: both the HTTP status
code and the text result passed back from the server D. You then call finishTest()
to signal a successful test completion E. If the remote call throws an exception or
fails, you call the JUnit fail() method to indicate failure C, F. The end result is
a clean, simple test case for testing remote calls.

Listing 16.4 Using delayTestFinish() to test asynchronous application logic

Delay test
finish

B

Fail on
receive errorC

Verify resultD

Complete
testE

Fail on send
errorF

Deploying GWT applications 539

Due to the asynchronous nature of the RPC call, the order in which the code is
executed differs from its order in the method. Figure 16.2 shows the real order,
with the onCompletion() handler being called after the normal execution of the
test has ended.

 During the delay period, three events will end the delay and complete the test:

■ If finishTest() is called, the delay ends, and the test completes success-
fully.

■ If an exception is thrown, including one caused by one of the assert meth-
ods, the delay ends, and the test shows an error.

■ If the delay ends normally, without finishTest() being called, the test
shows a failure due to a timeout.

As you can see, the GWTTestCase extension to JUnit allows you to test client-side
code the same way you test server-side code. This allows Java developers already
familiar with JUnit to leverage their existing knowledge without needing to learn
yet another testing framework.

 Once you’ve tested your application and feel confident that everything is work-
ing properly, you need to deploy the application.

16.2 Deploying GWT applications

It’s fairly typical to spend most if not all of your development time using just your
IDE and the hosted-mode browser. The hosted-mode browser—and web mode as
well—make it easy to write and test your application without ever deploying it to the
server. When it comes time to deploy your application to a server, it would be nice
if you could just toss it up on the server, and it would start working. Unfortunately,
this isn’t the common case; deployment is often a source of pain. This section

Figure 16.2

A diagram showing the flow of execution

of your sample unit test, where the test

performs an asynchronous call

540 CHAPTER 16

Testing and deploying GWT applications

means to help alleviate that pain by providing tips to making the move to your
server an easy one.

 Throughout this section, we’ll discuss general deployment issues as well as
those relating to RPC. When we discuss RPC, we do so with an eye toward the
Apache Tomcat application server, which is freely available and widely used. You
may be using a different server, such as Resin or JBoss, but the discussion still gen-
erally applies. We also assume that you know a little about your application
server—at the least how to stop and start it.

 At the time of this writing, we find ourselves between releases of GWT. GWT 1.4,
which is still in development at the time of this writing, alters the way applications
are loaded by the browser. Throughout this section, we’ll point out differences
that exist between 1.4 and prior versions.

 We’ll begin by looking at a simple GWT application that uses no RPC and exam-
ining how you can better organize the files in the project.

16.2.1 Organizing your project

The files generated by GWT aren’t organized. If this is the first application you’re
deploying, this may not seem like a big deal; but as you add modules, images, CSS,
and other supporting files to the server, it can quickly become a mess. In this sec-
tion, we’ll examine the compiled output of a project and the options available for
organization.

 As an example project, you’ll write an application that prints “Hello World” to
the browser window. The entire application contains two lines of code along with
the usual imports and class declaration. The application is shown in listing 16.5.
It’s far from earth-shattering, but it suits our need for a simple application.

package org.sample.client;

import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.user.client.ui.Label;
import com.google.gwt.user.client.ui.RootPanel;

public class HelloWorld implements EntryPoint
{
 public void onModuleLoad() {
 Label output = new Label("Hello World");
 RootPanel.get().add(output);
 }
}

Listing 16.5 Sample application that displays “Hello World” in the browser

Deploying GWT applications 541

This application generates quite a few files when it’s compiled. It may come as no
surprise that you don’t need most of them, especially given the simple nature of
the project. Figure 16.3 shows the list of compiled files when you use GWT 1.3 to
compile the project. If you’re using GWT 1.4, the list of files includes all of these
plus additional ones.

 Before we go any further, let’s remove the files you don’t need, starting with
the rebind decision files.

Removing unneeded rebind decision files

The rebind decision files are all of those files that end with cache.xml, found in both
GWT versions 1.3 and 1.4. These files provide information about the choices the
compiler made when generating the JavaScript for the project. As we discussed in
chapter 9, the GWT compiler generates a different JavaScript file for each target
browser based on the <replace-with> tags found in the module configuration
files used by the project. These files specify the choices the compiler made for
each version of the JavaScript file. For example, if the compiler was compiling the
IE version of the JavaScript code, you would see this line in this file, indicating
that it used the IE6 implementation of the DOM class:

<rebind-decision
 in="com.google.gwt.user.client.impl.DOMImpl"
 out="com.google.gwt.user.client.impl.DOMImplIE6"/>

Figure 16.3 A plethora of files is created when you compile the GWT project

to JavaScript.

542 CHAPTER 16

Testing and deploying GWT applications

Although this information may be useful for debugging, it isn’t used by the
deployed application.

 Next, we’ll look at the three tree images in the directory and explain what you
can do to clean them up.

Cleaning up the TreeItem images

The next set of files to prune are the three image files: tree_closed,gif,
tree_open.gif, and tree_white.gif. These images are used by the TreeItem widget
that comes with GWT. If you aren’t using the Tree widget, as in this sample
project, you should remove these three images. On the other hand, if you’re
using a tree in your application, it’s unfortunate, because it isn’t the best idea to
have images intermingled with your HTML files. Fortunately, the GWT Tree widget
allows you to move them someplace more appropriate.

 Let’s begin by looking at some sample tree code, shown in listing 16.6. This is a
simple tree of fictitious beasts that have been reportedly seen in the wild, but for
which no proof exists.

Tree tree = new Tree();

TreeItem myths = new TreeItem("Mythical Beasts");
myths.addItem("Loch Ness Monster");
myths.addItem("Big Foot");
myths.addItem("An under-budget software project");
tree.addItem(myths);

RootPanel.get().add(tree);

This code produces the small tree shown in figure 16.4. The figure shows both the
open and closed state of the tree, including the small plus (+) and minus (-)
images used to indicate the open or closed state of the tree branch. This accounts
for the tree_open.gif and tree_closed.gif images. The third image, tree_white.gif,
is used as a spacer for leaf items that don’t have children.

Listing 16.6 Example code that produces a small tree listing several fictitious beasts

Figure 16.4

A Tree widget with sample

data, showing the images

used by the widget for the

different tree states

Deploying GWT applications 543

To change the location of these images, the Tree widget provides a method
setImageBase() that can be used to set a path that is added to the beginning of
image name. If you wanted the images to be pulled from the images directory,
you could use the following code when constructing your tree:

Tree tree = new Tree();
tree.setImageBase("images/");

The trailing slash is important because the code for Tree won’t automatically add
it. With it, the code uses the paths images/tree_open.gif, images/tree_closed.gif,
and images/tree_white.gif. After adding this to your code, you need to manually
create the images directory and move those three images into it. Until you move
the images, they appear as broken images.

 Going back to the original code sample, you still need to do some more clean-
ing. We’ll continue by looking at the history.html file.

GWT 1.4 introduces two new images: disclosure.png and clear.cache.gif.
The disclosure.png image (which may be renamed disclosure.gif prior to
release) is used by the new DisclosurePanel. The second image,
clear.cache.gif, is a clear spacer image used by the new ClippedImage
and perhaps other widgets. If you aren’t using either of these widgets,
you can remove the files; otherwise, you should keep them in the same
directory as the nocache.js file for the project.

Removing an unneeded history file

In the generated project files, you’ll find a history.html file. This is used by the his-
tory subsystem that we discussed in chapter 4. If you aren’t using the History
class, as in the example, then you should remove this file along with the reference
to it in the HTML page.

 In the HTML page that is generated by the applicationCreator, you’ll see
these lines in the body:

<!-- OPTIONAL: include this if you want history support -->
<iframe id="__gwt_historyFrame" style="width:0;height:0;border:0">
</iframe>

As the comment states, this is optional and is used only for the history system. If
you aren’t going to use the history system, remove these two lines from the HTML
file along with the history.html file.

 With this file removed, your project space is looking quite a bit cleaner—but it
isn’t organized, because all the files are still lumped into a single directory. In the
next section, you’ll organize your JavaScript files by placing them in subdirectories.

ADDITIONAL
IMAGES IN
GWT 1.4

544 CHAPTER 16

Testing and deploying GWT applications

Relocating the JavaScript code in GWT 1.3

Because there are some significant differences between the generated files in
GWT 1.3 and 1.4, we’ll discuss each version in its own section. We’ll begin by
examining GWT 1.3 and then immediately follow with version 1.4.

 If you’ve been following along and removing the unused files from the sample
project, you’ll see that there aren’t many files left. Figure 16.5 shows the current
file list for the project. Remaining are the project HTML file (HelloWorld.html),
the gwt.js file, the one loader script ending in .nocache.html, and the four
browser-specific script files ending in .cache.html.

 You could deploy this lump of files as is without any further organization; but if
you’re deploying a GWT project with other pages on your web site, you may want
to keep the GWT project files separated from other site pages. In this section, we’ll
assume that your Hello World application files need to be segregated from the
rest of the pages on the site. This will involve creating a script directory and mov-
ing all the supporting files into that directory. You’ll also separate the files that are
specific to the org.sample.HelloWorld module from other GWT projects while
still sharing the common gwt.js file for all GWT applications on your site.

 The first step is to create a new directory to hold the JavaScript code; name it
scripts. Next, create a directory under scripts for the files specific to the module;
name this directory the same as the module (org.sample.HelloWorld). Now,
move the gwt.js file into the scripts directory and all the other script files into
scripts/org.sample.HelloWorld. When you get done, your project should look
like figure 16.6.

Figure 16.5 The current list of files in your GWT 1.3 project after pruning unused

files like the rebind decision files, tree images, and the history file

Deploying GWT applications 545

This structure makes it easy to deploy additional modules to the same server: You
can add a new directory under scripts for the new module and place the files for
the new module there. As for the gwt.js file, all the modules may share this file.

NOTE If you’re using the GWT resource-injection mechanism to include exter-
nal JavaScript files or CSS files from your module configuration, you’ll
need to move the injected files into the same directory as the
nocache.html file. This requirement also applies to any images refer-
enced from injected CSS files that are using a relative path.

Now that your files are reorganized, you need to make some minor changes to the
HelloWorld.html file to point to these new locations. In the HelloWorld.html file,
you need to change two lines. The first is the script tag that points to the gwt.js
file. Here, you need to update the src attribute to point to the gwt.js file in the
scripts directory. When you get done, it should look like this:

<script language="javascript" src="scripts/gwt.js"></script>

The second change is to the metatag that specifies the name of the module to
load. The following snippet shows the tag before you make your change:

<meta name='gwt:module' content='org.sample.HelloWorld'>

Without any additional path information, this tag will cause the GWT loader to
look for the module JavaScript files in the same directory as this HTML file.
Because you’ve moved these files into the scripts/org.sample.HelloWorld direc-
tory, you need to add this path information to the metatag. You do so by adding
the path to the content attribute, followed by an equal sign (=) and then the
module name. With this change in place, the updated metatag looks like this

<meta name='gwt:module'
 content='scripts/org.sample.HelloWorld=org.sample.HelloWorld'>

Figure 16.6

An example of a reorganized

GWT application that uses a

directory to hold scripts and

modules

546 CHAPTER 16

Testing and deploying GWT applications

The equal sign separates the path from the module name. The GWT loader looks
for the module at this alternate path instead of in the current directory.

 With this last organizational change in place, you now have a tidy little applica-
tion ready to be deployed to the server. Deploying the application from here is as
simple as copying the files to any place on the server and optionally renaming
HelloWorld.html to some other name, like index.html.

 Now let’s take a look at how to clean up the JavaScript files when using GWT 1.4.

Relocating the JavaScript code in GWT 1.4

Although GWT 1.4 still hasn’t finalized, we want to examine what we see so far and
explain how you’ll change the way you deploy your applications. The first noticeable
difference is that the GWT compiler generates a lot of additional files. Figure 16.7
shows the files from the Hello World application; compare it to figure 16.5, the files
generated by GWT 1.3, and you’ll see the difference.

 The reason for all these files is to not only let you load a GWT application from
your own server, but also allow others to load your GWT application from pages
hosted on their server. Looking at 16.7, notice that for each *.cache.html, file
there is a *.cache.js file. The HTML versions of these files are for use on pages
originating from the same site that hosts your GWT code, and the JavaScript ver-
sions are for use on externally hosted sites. The difference between the two is that
the HTML versions can be compressed by your server, whereas the JavaScript ver-
sions can’t be.

Figure 16.7 The current list of files in your GWT 1.4 project after pruning unused

files like the rebind decision files, tree images, and the history file

Deploying GWT applications 547

Along with the two sets of *.cache.* files are two bootstrap files: <module-

name>.nocache.js and <module-name>.nocache-xs.js. The second version is the
cross-site loader (ending with xs.js), and is for use on external sites. The first ver-
sion is for use on the local server, the same server hosting your HTML pages. In
most cases, you won’t need both sets of files, so you should remove either the local
or cross-site versions. In figure 16.8, we make the assumption that you’ll be using
the local loader for your application; the figure shows the cross-site files removed.

 That leaves you with a lot fewer files than you started with, but you can still
remove two more: hosted.html and gwt.js. The gwt.js file is used for compatibility
with the GWT 1.3 loading style, so if you aren’t using the GWT 1.3 style of application
loading with the meta tag, you can remove this file. The hosted.html file makes its
debut in GWT 1.4 and is only needed for hosted-mode support. Removing these two
files leaves you with only the necessary files to deploy your application.

 From here, you could easily deploy the files you have left, but it’s common prac-
tice to relocate your JavaScript files into a scripts directory, making your file system
more organized. When you relocated these files for GWT 1.3, you had to do some
extra work to accomplish this; but with GWT 1.4 compiled files, all you need to do
is relocate the *.nocache.js file along with the *.cache.html files into your scripts
directory. Our recommended practice is to place these files in a directory named
for the project; with the Hello World application, you place the JavaScript files
under /scripts/org.sample.HelloWorld/. By placing the files in a directory named
for the project, you can deploy additional GWT projects in the same manner, keep-
ing the files for each application separate. The only change you need to make in
the HTML page is to alter the script tag to point to the new location.

Figure 16.8 The current list of files in the GWT 1.4 project after pruning unused

cross-site compatibility files

548 CHAPTER 16

Testing and deploying GWT applications

For more information about the GWT bootstrapping mechanism and all the files
mentioned here, visit chapter 17, where we cover both topics in detail. Now that
you’ve cleaned up the file system, let’s turn our attention to installing the servlets
for the GWT-RPC services. In the next section, we’ll begin by providing a brief tuto-
rial of setting up a servlet, in case you’ve never done so before.

16.2.2 Installing RPC servlets

If you need to install an RPC servlet, we need to assume that you already know how
to write one and that you probably already have it running in hosted mode. In this
section, we’ll show you how to deploy your servlet to a server that supports Java
servlets, also known as a servlet container. For the purposes of exploration, we’ll
keep it fairly light and generic when we talk about the server, which is all you need
to deploy a servlet. This section won’t discuss connection pooling, caching, or
other functions that are typically specific to the server software you’re running.
We’ll cover the basics of the web.xml configuration file and how the organization
choices from the previous section affect your application settings.

 To begin, we’ll provide a high-level look at how a Java servlet container works
and how it processes incoming servlet requests.

How servlet containers work

A servlet container is the part of a web server or application server that handles a
network request and manages servlets throughout their lifecycle. Some servlet
containers are also application servers, meaning they meet the requirements of
the Java Enterprise Edition in addition to the servlet specification. JBoss is a freely
available application server. Other servlet containers are only servlet containers,
like the freely available and popular Apache Tomcat server.

 If this is your first attempt at setting up a servlet container, we recommend
Apache Tomcat, which can be found at http://tomcat.apache.org. It’s available
for most popular operating systems, and it’s relatively easy to install and use.
Throughout this section, any server-specific information that we provide is for
Apache Tomcat. Rest assured that if you run a different software package, nearly
all of the information in this section is relevant; we’ll keep it as generic as possible.

 For developers new to servlets, the way they work can be a little confusing, espe-
cially if you’re familiar with how CGI scripts, ASP pages, or HTML pages are served.
With these technologies, the URL in the browser matches the location of the file on
the file system. For example, if a user requests /works/gwt_in_action.html, you
expect that there is a file on the system named gwt_in_action.html in the directory
works. Servlets don’t work like this. Instead, you use a configuration file to map a

Deploying GWT applications 549

URL to a servlet class. This allows you to map any arbitrary URL or set of URLs to any
servlet by using wildcards. The configuration file that is used to map URLs to servlets
is named web.xml, and it always resides under the WEB-INF directory on your site.

 When you’re developing a GWT application using the hosted-mode browser,
you’re using Tomcat. Because this provides a good example of servlet configura-
tion, it’s a good place to start the discussion about the web.xml file.

Understanding servlet configuration in the development environment

When you tested your RPC servlet in hosted mode, you may have noticed that a
directory named tomcat was created. In that directory, under tomcat/webapps/
ROOT/WEB-INF/, is a file named web.xml, which is known as a deployment descrip-

tor. Unless you manually modified this file to integrate other services into your
development environment, it looks like listing 16.7.

<?xml version="1.0" encoding="UTF-8"?>
<web-app>

 <servlet>
 <servlet-name>shell</servlet-name>
 <servlet-class>
 com.google.gwt.dev.shell.GWTShellServlet
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>shell</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

</web-app>

If you take a good look at listing 16.7, you’ll see that it isn’t complicated. It first
defines a servlet by giving it an arbitrary name and specifying the full package and
class name of the servlet. In this case, the servlet is GWTShellServlet. It’s impor-
tant to note that you shouldn’t use this servlet on your server; it’s only meant for
use only in the GWT development environment.

 The second part of the configuration maps a URL to the servlet. It does so by
specifying a URL pattern and the name of the servlet that handles requests to that
URL—in this case, the URL is /*. The URL may include the wildcard * to match

Listing 16.7 Default deployment descriptor used by the GWT development environment

 in hosted-mode

Define
servlet

Map URL
to servlet

550 CHAPTER 16

Testing and deploying GWT applications

anything, so the pattern /* matches any request to the server. This isn’t typically
what you want; but in this case, the GWTShellServlet servlet was written to read
your project’s module file and dispatch the request to the right place. If you
recall, the module configuration uses the <servlet> tag to define your GWT-RPC
servlets. This information is used by the GWTShellServlet, but it isn’t used when
you move your code to a production server.

 Let’s apply these basics to how you configure your production environment.

Configuring the production environment

The first step is to find the directory your server uses to deploy web applications. If
you’re using Apache Tomcat, figure 16.9 shows this directory structure for the
Tomcat installation. Figure 16.9 shows the directory structure on Windows, but it’s
the same regardless of the platform.

 In figure 16.9, you see a bin directory to hold executables, conf for the overall
server configuration, logs to store log files, and a few others. The directory that
you need to be concerned with is webapps. This directory holds individual web

Figure 16.9 The directory structure of an Apache Tomcat installation on Windows

Deploying GWT applications 551

applications running in Tomcat. Figure 16.9 shows a few applications we’ve placed
there, like echo2-demo and jsf-demo. To access these applications in a browser,
you use the URLs http://your-host-name/echo2-demo and http://your-host-name/
jsf-demo. Each application directory in the webapps folder is accessible in your
browser by using the same name as the application directory.

 We’re pointing this out because the ROOT directory under webapps works a lit-
tle differently. You can access the ROOT directory in the browser via http://your-

host-name without specifying the application directory. This is important because
you need to decide if you want your application to be accessed using just the host
name in the URL or in an application directory. For example, if you want the
Dashboard application to be accessible as http://your-host-name, then you place it
under ROOT; otherwise, you create a new directory under webapps, perhaps
called Dashboard, and the application is then accessible as http://your-host-name/
Dashboard. For the purposes of the discussion that follows, it doesn’t matter what
you choose because all applications, including the root application, have the same
directory structure.

 Inside, each application directory follows a specific structure. Figure 16.10
shows this structure, including the location of the web.xml file that is used to con-
figure the application.

 You place the HTML and JavaScript files generated by your project in the root
of the application. In the WEB-INF/lib directory, you place any JAR files your
project relies on. If you’re using GWT-RPC, this includes at least the gwt-servlet.jar
file that is part of the GWT distribution. This JAR includes all the GWT classes
required for the GWT-RPC mechanism. You should never deploy the gwt-user.jar
and gwt-dev.jar files to your server, because they will probably interfere with your
server; these JAR files contain their own Tomcat server code, which is used when
you’re testing in hosted mode.

 The WEB-INF/classes directory can be used for loose classes. You need to place
any necessary compiled class files for your project under the WEB-INF/classes
directory or package them as a JAR and place it in the WEB-INF/lib directory. The

Figure 16.10

The directory structure inside

a web application, including

the location of the deployment

descriptor

552 CHAPTER 16

Testing and deploying GWT applications

servlet container automatically includes all the classes and JAR files in these direc-
tories in the classpath for the application. Note that this only applies to code that
needs to be run on the server. For example, if you’re using GWT-RPC, you must
include the class files for your servlet and any Java interfaces it references. How-
ever, you don’t need to include any classes that are used only on the client side,
such as widgets, because these aren’t executed on the server. Also note that it
won’t hurt anything if you do deploy class files that are used only on the client,
because they will never be called.

 Once that is complete, the only step left is to create the web.xml file, known as
the deployment descriptor, and reference your servlets.

Writing the application deployment descriptor

When you’re creating the deployment descriptor, you need to map each individ-
ual GWT-RPC servlet to a URL. You can do this in the same manner as you saw
previously when we looked at the deployment descriptor used by the GWT devel-
opment environment.

 The easiest way to explain this is to provide an example. Listing 16.8 provides
the deployment descriptor file that could be used to deploy the Server Status
project from chapter 10. In most cases, you can copy the example and alter it to
match your servlet classes.

<?xml version="1.0" encoding="UTF-8"?>
<web-app>

 <servlet>
 <servlet-name>server-status</servlet-name>
 <servlet-class>
 org.gwtbook.server.ServerStatusImpl
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>server-status</servlet-name>
 <url-pattern>/server-status</url-pattern>
 </servlet-mapping>

</web-app>

Just as you saw with the deployment descriptor used in hosted mode, you first
define the servlet using the <servlet> tag, providing a name and class. You then

Listing 16.8 Deployment descriptor for the Server Status project from chapter 10

Define
servlet

Map URL
to servlet

Deploying GWT applications 553

provide a <servlet-mapping> tag that maps the servlet to a specific URL. The
servlet you list in the deployment descriptor is your GWT-RPC class that extends
the RemoteServiceServlet class. If you have multiple servlets, you’ll have multi-
ple <servlet> blocks, one for each servlet you need to define.

 The servlet-mapping is usually where it’s easy to run into problems. First,
understand that the forward slash (/) at the beginning of the pattern refers to the
root of this specific web application, not necessarily the root of the web site. This
may seem confusing at first; but if you look back at figure 16.7, we showed you
that each subdirectory in the Tomcat webapps directory is its own “application.” If
you place the Server Status application in the webapps/status directory so that it’s
accessible via the URL http://your-host-name/status, then the servlet-mapping /
server-status refers to the URL http://your-host-name/status/server-status.

 You also need to be concerned about the use of the method GWT.getModule-
BaseURL() in your code, which typically references GWT-RPC and other server-side
resources. Understand that this method returns the path to your project’s Java-
Script file that ends with nocache.html. At the beginning of this chapter, we
showed how you can relocate this file, as well as the other JavaScript files, to better
organize your site. If you used getModuleBaseURL() to reference an RPC servlet,
you need to account for this in the servlet-mapping.

 As an example, if you look back at figure 16.6, you’ll see that we moved the
generated JavaScript files for the module into the directory /scripts/org.sam-
ple.HelloWorld/. Let’s imagine that some code in this module referenced the fol-
lowing URL in an RPC call:

GWT.getModuleBaseURL() + "/hello-world-service"

In this case, you would use a servlet-mapping that looks like the following code.
Notice how it takes into account the path to the generated JavaScript:

<servlet-mapping>
 <servlet-name>service</servlet-name>
 <url-pattern>
 /scripts/org.sample.HelloWorld/hello-world-service
 </url-pattern>
</servlet-mapping>

When you get done setting up your deployment descriptor, you should restart the
servlet container to make sure the changes take effect. After you carefully write
the deployment descriptor, if the RPC doesn’t seem to be working, then check the
server logs. They will show you what URL the client browser is calling; you can
compare this to web.xml and make any necessary changes.

554 CHAPTER 16

Testing and deploying GWT applications

16.3 Summary

In this chapter, we showed you how to use JUnit and how it can be used to test
your GWT code. We showed you how you can use the included junitCreator tool
to painlessly create new JUnit test cases for testing your client-side and RPC inter-
actions, which isn’t typically available when building a non-GWT Ajax application.

 We then turned our attention to deploying the GWT application to the server.
We showed how you can better organize your project and what unused files can be
safely deleted. In the end, we showed how you can keep your deployments orga-
nized, allowing you to deploy multiple GWT applications to the same server with-
out having a mess of files.

 After a good cleanup, we examined how a servlet container works and how it’s
used to host GWT-RPC servlets. We looked at the deployment descriptor file in
some detail, and we compared the hosted-mode deployment descriptor against
what you would use in your production environment.

 Now that the application is tested and deployed, the next chapter looks under
the hood. There is a lot to GWT, and the more you know about how the magic
works underneath, the better you’ll be able to maintain and debug your GWT
application.

555

Peeking into
how GWT works

This chapter covers

■ GWT compilation process

■ GWT compiler outputs

■ GWT loading mechanism

556 CHAPTER 17

Peeking into how GWT works

We’ve arrived at the final chapter in our discussion on GWT, where we’ll round off
by looking at how GWT performs the magic that it does. When we started using
GWT, we were first interested in building applications; then, as our curiosity got
the better of us, we started wondering how GWT works behind the scenes.

 We asked ourselves questions like, how does the compilation work? Why are so
many HTML and XML files produced, and what do they do? How is an application
loaded into the web browser? What does the produced JavaScript look like? How
does GWT manipulate the DOM? There were, and still are, many more questions,
and we suspect you may have the same questions now that you’ve gotten this far in
the book. After showing you the practical uses of GWT and how to develop a web
application using this toolkit, we’ll finish by setting out to answer a number of those
questions that hounded us once we got past the initial learning curve with GWT.

 To answer the questions, we felt the best place to start was by looking at the
compilation process. We hope we’ll begin to answer your questions, as well.

17.1 Examining the compilation process and output

The GWT compilation stage, Stage 4 in the lifecycle defined in chapter 2, involves
taking the source files you’ve written in Java and producing output that can be
executed in a number of web browsers. We’ve spent the majority of this book dis-
cussing the Java source files. In this section, our goal is to look at the output from
the compiler; but to get there, we need to look at how files get from the source to
the compiled side.

17.1.1 Investigating compilation

If you look at the compilation process, it isn’t a one-for-one translation of Java to
JavaScript files. In figure 17.1, you can see that many more files are produced as
the result of the compilation process than are supplied to it.

 The files that are produced fall into three types: those that are passed straight
through, such as the style sheets and the resources in the public folder; those that
are “magically” created by the compiler almost from thin air; and those that are
created by the true compilation of source Java files to produce object JavaScript
files. The files that fall into these categories are as follows:

Examining the compilation process and output 557

Figure 17.1 Source-to-object file mapping in the compilation process of

GWT Java files to files that can be used in a web browser

558 CHAPTER 17

Peeking into how GWT works

■ Dasboard.html—The HTML file you created in which the GWT modules will
be placed.

■ gwt.js—Produced to support legacy GWT applications. Pre-1.4, it was the
basic GWT JavaScript code used to bootstrap your GWT modules into the
browser and get them up and running. From GWT 1.4 on, it’s provided only
to support legacy code—you should include either org.gwtbook.Dash-
board.nocache.js or org.gwtbook.Dashboard.nocache-xs.js to boot-
strap the Dashboard instead.

■ history.html—A simple HTML file that is used to manage the history of a GWT
application.

■ org.mycompany.Dashboard.nocache.js or org.mycompany.Dashboard.nocache-xs.js—
The first file loaded by the bootstrapping mechanism (unless you’re using leg-
acy applications, in which case gwt.js is loaded first, and then that loads
org.mycompany.Dashboard.nocache.js). It contains all the code necessary to
derive the set of properties this application has: the browser, which locale, and
any other property values. In the case of the Dashboard, this is the exter-
nalvisibility property (it determines all of these values by directly using
the code described in the property-provider tag of the XML module file).
Once all the property values are determined, the necessary permutation can
be deduced, and is then loaded into the browser.

The two versions relate to how the GWT application could be loaded. The
nocache.js file loads the appropriate cache.html file, enabling the applica-
tion to use any compression the server provides. Use the nocache-xs.js file if
you want to load the application’s pure JavaScript directly into the browser.
Using the second approach, it isn’t possible to take advantage of any web
server functionality, but your browser gets unwrapped JavaScript code that
can be used in mashups and so on.

■ MD5_coded_name.cache.xml—A set of files, all prefixed by an MD5-coded
name, that lists in XML format the various choices made by the compiler in
producing this particular permutation of JavaScript code.

■ MD5_coded_name.cache.html—A set of files, all prefixed by an MD5-coded
name, that corresponds to a matching cache.xml file. Unlike the XML file,
the HTML file contains the actual JavaScript code for this permutation of

Examining the compilation process and output 559

the application. Marking the files as HTML allows the web server to send
them as compressed files to the browser.

■ MD5_coded_name.cache.js—A set of JavaScript files, all prefixed by an MD5-
coded name, that corresponds to a matching .cache.xml file. Like the
HTML files, these contain the actual JavaScript code for this permutation of
the application, but they can’t be compressed by the web server (however,
they can be used by other JavaScript applications).

We’ll now look at each of these files in more detail.

17.1.2 Examining the output

In this section, we’ll look at the contents of the various compiler outputs, starting
with the file that was the first one loaded by GWT applications prior to the arrival
of version 1.4.

The gwt.js file

Until GWT 1.4 came along, the first file a GWT application had to load into the
browser was gwt.js. It set up a few variables and then tried to load an applica-
tion.nocache.html file (for the Dashboard, that would have been the Dash-
board.nocache.html file). The arrival of GWT 1.4 turned this bootstrapping
process around, and gwt.js became obsolete.

 It’s still produced to support legacy HTML pages that haven’t changed to the
new process, but it’s reduced to checking for the gwt:module tag, extracting the
module name, and then loading the appropriate module.nocache.js file (note that
beginning with GWT 1.4, the loading mechanism ignores the gwt:module tag).
We’ll next look at the module.nocache.js file.

The module.nocache.js and module.nocache-xs.js files

Whereas GWT previously loaded a module.nocache.html file from the gwt.js script,
you now put a link in your HTML directly to the module’s JavaScript file. The ben-
efit of this approach is that you link directly to your application and can in theory
load several applications into your HTML page. There are two different ways to
refer to the module’s JavaScript file, depending upon the strategy you wish to fol-
low to load your GWT application. You load one of the following two files:

■ module.nocache.js

■ module.nocache-xs.js

560 CHAPTER 17

Peeking into how GWT works

The first strategy, which we’ll call the standard approach, lets the server compress
your files as much as possible. In this case, you load the module.nocache.js file,
which in turn loads the appropriate cache.html file. The second strategy, which
we’ll call the cross-site approach, trades off the potential compression and speed of
the HTML files for getting pure JavaScript files in order to mash up your applica-
tion. In this case, you load the module.nocache-xs.js file.

 In both cases, the files perform similar tasks: They set up a number of vari-
ables, process metadata tags, and identify which permutation of the module is
required to be loaded. Permutations are generated under the direction of the
compiler, considering the various options and paths that can be taken. The most
obvious permutations are driven by the different browsers supported by GWT—
one permutation for each. Other permutations can be driven by using more
advanced GWT techniques. Internationalization, for example, drives a number of
permutations based on the number of locales that the application is told to man-
age, as does the user-defined property externalvisibility for the Dashboard.

 If you’re interested in seeing the type of code GWT uses to determine browser
type, it’s reproduced in listing 17.1. At present, GWT recognizes the following
types of browser: Opera, Safari, IE6, Gecko, and Gecko 1.8 (for example Firefox
and Mozilla).

window["provider$user.agent"] = function() {
 var ua = navigator.userAgent.toLowerCase();
 if (ua.indexOf('opera') != -1) {
 return 'opera';
 }
 else if (ua.indexOf('safari') != -1) {
 return 'safari';
 }
 else if (ua.indexOf('msie 6.0') != -1 ||
 ua.indexOf('msie 7.0') != -1) {
 return 'ie6';
 }
 else if (ua.indexOf('gecko') != -1) {
 var result = /rv:([0-9]+)\.([0-9]+)/.exec(ua);
 if (result && result.length == 3) {
 var version = parseInt(result[1]) * 10 + parseInt(result[2]);
 if (version >= 18)
 return 'gecko1_8';
 }
 return 'gecko';
 }
 return 'unknown';
};

Listing 17.1 Looking at the code GWT provides to perform browser detection

Examining the compilation process and output 561

Similar code is used to determine other properties that may be used to select per-
mutations—such as the code we introduced in chapter 15 to look for your user-
defined externalvisibility property.

 Each module.nocache file is also responsible for loading the CSS and JavaScript
libraries that you’ve indicated must be loaded in the module XML file. With all
the resources loaded, the loading attempts to set up its own onLoad and onUnload
handlers. Finally, the module.nocache.js file tries to start the module (this doesn’t
happen for the module.nocache-xs.js file because you’re expected to either start or
use parts of the code yourself).

 Next, we’ll look more at the JavaScript application permutations. Two types of
files are produced: an XML file that details the options chosen by compiler, and
associated HTML and JavaScript files that contain the JavaScript permutations cor-
responding to the options chosen.

The cache.xml files

The compilation process relies heavily on the module XML file and knowledge of
the types of browsers that are supported in order to produce numerous permuta-
tions of JavaScript files. In the simplest case, the only property dealt with is
user.agent; subsequently, there are four permutations—one JavaScript file for
each browser that GWT supports.

 Using GWT more extensively—for example, by using its internationalization
aspects—drives up the number of permutations required. Using two locales means
that two sets of browser-specific permutations are required: a set of four for the first
locale and another set of four for the second locale. This scales linearly, so if you
have 10 locales for your application, you’ll have some 40 different permutations.

 What is the benefit of this madness? It considerably reduces the amount of
code that needs to be sent to the browser, decreasing download size and times.
The downside is the amount of time necessary to perform the compilation. If
you’ve already tried to compile the Dashboard application, you’ll have noticed
how long it takes (we hope compiler optimizations will appear in the near future,
especially because GWT is now open source). One way to reduce this compilation
time during the testing phase is to restrict the number of permutations that are
created by adding an entry such as

<set-property name="user.agent" value="ie6"/>

in the module XML file, which restricts the number of user.agent permutations
to one (you could easily replace ie6 with whatever browser you prefer). In the
case of the example we mentioned, with 10 different locales to manage and 40

562 CHAPTER 17

Peeking into how GWT works

permutations, placing this line in the module XML file reduces the number of
permutations to 10.

TIP To reduce the number of permutations created during web-mode testing,
and therefore speed up compilation, add a set-property tag to your
application’s module XML file. Set the name to user-agent and the value
to the browser you’ll test with (ie6, safari, opera, and so on).

The purpose of the cache XML files is to allow the compiler to keep track of the
permutations it has already created and to know what more it needs to do. Once
compilation has finished, the files are of limited use; they serve only as a record of
what the compiler did. This is why we suggested in chapter 16 that you can get rid
of them when you package the application to deploy.

 Sometimes, it’s useful to examine these cache XML files, particularly if your com-
piled application isn’t performing nicely and you wish to look at what the compiler
did. When we compiled the Dashboard application on our system, the compiler
produced a number of .cache.xml files, including one called E36B89235-
ACF98A4C55874ACEBBDF6E8.cache.xml (see listing 17.2).

<cache-entry>
<generated-type-hash
 class="org.gwtbook.client.ui.slideshow.SlideshowProxyintranet"
 hash="56AB4931F5D118966FAB4EC5937F0C51"
/>
:
<generated-type-hash class="org.gwtbook.client.DashboardMessages_"
 hash="1FB08CF8556128D1B892F2AAEB7D38FA"
/>
:
<rebind-decision
in="com.google.gwt.xml.client.impl.XMLParserImpl"
out="com.google.gwt.xml.client.impl.XMLParserImplOpera"
/>
:
<rebind-decision
in="org.gwtbook.client.DashboardMessages"
out="org.gwtbook.client.DashboardMessages_"
/>
:
<rebind-decision
in="org.gwtbook.client.ui.slideshow.Slideshow"
out="org.gwtbook.client.ui.slideshow.SlideshowProxyintranet"
/>
:
</cache-entry>

Listing 17.2 Example cache XML file from the Dashboard application

Result of GWT
generator working

B

GWT generated
default locale class

C

Compiler
picked Opera
version of
GWT class

D

Compiler
decided to
use default
locale class

E

Compiler chose
intranet version of

Slideshow generated

F

Examining the compilation process and output 563

OK, so the cache.xml file doesn’t readily say that the compiler chose the default
locale and compiled for the Opera browser using the intranet property as the
value for the externalvisibility property (and listing 17.2 is an edited highlight
of the file). You can, though, conclude this by looking at the rebinding decisions
listed in the xml file. At D, the compiler decided to use XMLParserImplOpera in
place of the XMLParserImpl class. (If you were to look into the bowels of GWT, you
would see this rebinding direction defined in a module XML file where the prop-
erty of user.agent was set to Opera.)

 The choice of the default locale occurs at E, where the DashboardMessages
interface used in the code is to be replaced by the DashboardMessages_ class. You
know this is the default locale because GWT uses a generator to produce a set of
classes that bind the user provided interface to the user provided properties files,
which must conform to a particular naming convention. The generated classes
also conform to the same naming convention, where DashboardMessages_ repre-
sents the default locale class (DashboardMessages_sv would be the Swedish locale
class). But you didn’t write these classes: The compiler did that for you using a
GWT-provided generator, and at C you can see a reference to that generated
class. B shows a class that was created by the user-defined generator; in this case,
the Slideshow class has been generated into the SlideshowProxyintranet class
as the generator provided in chapter 14 requires. Finally, F indicates where the
generated class for the slideshow is chosen for use in this permutation.

 Closely associated with cache XML file is the JavaScript file implementation
relating to the permutation described. As we’ve previously mentioned, GWT pro-
duces both a JavaScript and an HTML version for each compiler permutation.

Specific HTML and JavaScript files

For each permutation identified in specific XML files, there is an associated
cache.html file that the browser can load under the first loading strategy and a
cache.js file that can be loaded under the second strategy. For the XML file men-
tioned earlier, there is an E36B89235ACF98A4C55874ACEBBDF6E8.cache.html
file and an E36B89235ACF98A4C55874ACEBBDF6E8.cache-xs.js file. These files
contain the JavaScript specific to the Opera browser, where the externalvisi-
bility property is set as intranet and locale is the default locale (the JavaScript
in the first file being wrapped in HTML).

 The final file produced by the compilation process is History.html, which is
used for managing history.

564 CHAPTER 17

Peeking into how GWT works

The History.html file

History.html is an HTML file that contains JavaScript for managing history in the
application. Listing 17.3 shows the definition of the hst() history function that is
used to decode any URL that has a history token and subsequently move the appli-
cation to the necessary state.

<html>
 <head>
 <script>
 function hst() {
 var search = location.search;
 var historyToken = '';
 if (search.length > 0)
 historyToken = search.substring(1));
 document.getElementById('__historyToken').value =
 historyToken;
 if (parent.__onHistoryChanged)
 parent.__onHistoryChanged(historyToken);
 }
 </script>
 </head>
 <body onload='hst()'>
 <input type='text' id='__historyToken'>
 </body>
</html>

History is stored in the input element with id_historyToken and is accessed and
managed via your application when it uses the history management operations.

 Now that you’ve seen the various outputs from the compilation process, the
next logical step is to look at how the application is loaded into the web
browser in web mode (hosted mode is out of scope for this book, although the
recent open sourcing of GWT means the mechanics behind hosted mode are
more readily accessible).

17.2 The GWT application-loading mechanism

As a final step in examining the Dashboard example, we’ll look at what happens
when a GWT application is loaded. You’ve seen all the files that you need to create
a GWT application and the result of the compilation process. When you load the
Dashboard.html file, from either the file system or a web server, what is going on?
It’s one of the three processes shown in figure 17.2.

Listing 17.3 GWT code used in the history management subsystem;

Decode history
token in URL Set start

history
token value

Move history
state to the
token value

The GWT application-loading mechanism 565

There are three processes because GWT supports the pre-1.4 version loading
approach of including a gwt.js file that then bootstraps the application, as well as
the new two versions (standard and cross-site). Let’s look at each of these
approaches in more detail, starting with the legacy approach.

17.2.1 Legacy applications

The legacy approach is provided for applications that haven’t upgraded to the
new approach. Its purpose is to allow the application’s HTML file to include a
gwt:module tag and load a gwt.js JavaScript file as it would have done under the
initial bootstrapping approach for GWT. From GWT 1.4 on, gwt:module and the
gwt.js file are no longer used.

Figure 17.2 Steps performed behind the scenes in the loading process of a

GWT application

566 CHAPTER 17

Peeking into how GWT works

 Once the gwt.js file is loaded, it processes the HTML file’s metatags looking for
the gwt:module tag. When this is found, the script sets up the HTML page to load
the module.nocache.js file used in the standard approach, which we’ll look at next.

17.2.2 Standard applications

In a standard application approach, the application’s HTML file directly refer-
ences the module.nocache.js JavaScript file. It’s loaded as soon as the HTML file
loads. Let’s review the Dashboard’s HTML file, given in listing 17.4; you haven’t
seen it for some time, and we can use it as a concrete example.

<html>
 <head>
 <meta name='gwt:property'
 content='externalvisibility=intranet'>
 <meta name='gwt:onPropertyErrorFn'
 content='handleWrongVisibility'>
 <script>
 function handleWrongVisibility(propName,
 allowedValues,
 badValue){
 if (propName == "externalvisibility"){
 window.location.href=("http://www.manning.com/hanson");
 }
 }
 </script>
 <script type="text/javascript" language="javascript">
 confirmDelete = true;
 </script>
 <script src="http://www.google.com/uds/api?file=uds.js&
 amp;v=1.0&key=X" type="text/javascript">
 </script>
 <script src="Scriptaculous/prototype.js"
 language="javascript"/>
 <script src="Scriptaculous/effects.js"
 language="javascript"/>
 </head>
 <body>
 <iframe id="__gwt_historyFrame"
 style="width:0;height:0;border:0"></iframe>
 <script language="javascript"
 src="org.gwtbook.Dashboard.nocache.js"></script>
 </body>
</html>

Listing 17.4 Dashboard.html file from a perspective of the loading mechanism

Set GWT
property value

B

Define function to execute
if visibility set wrong

C

Load
JavaScript file D

The GWT application-loading mechanism 567

You set the value of the user-defined GWT property variable B as well as provide
functionality to deal with someone setting the property variable incorrectly C.
AtD, you load the nocache.js file.

 With this HTML in mind, we’ll go through each of the steps identified in fig-
ure 17.2. We’ll assume that you’ve loaded the HTML into a browser, so the first
step is bootstrapping the application by loading in the nocache.js file.

17.2.3 Bootstrapping the standard application

When the HTML loads, it automatically loads in the nocache.js. This file is respon-
sible for bootstrapping your complete application through the following well-
oiled process:

1 Establish property-providers for this module.

2 Compute the script’s base location.

3 Process all the metatags.

4 Determine the MD5 name that matches the permutation for the property
values.

5 Insert the appropriate cache.html file into an iframe in the current docu-
ment.

6 Load all resources.

7 Try to start the module.

We’ll look at some of these steps in more detail now.

Establishing property-providers

In chapter 15, you set up your own property, externalvisibility, as well a prop-
erty provider for it. We also discussed the fact that GWT has standard properties,
such as user.agent, which is used to identify the browser the application is
loaded into. Your own property provider and those GWT uses are found in the
nocache.js file after compilation.

 Establishing the property providers means the script creates a new JavaScript
function for each property. Listing 17.5 shows this for the externalvisibility
property.

568 CHAPTER 17

Peeking into how GWT works

providers['externalvisibility'] = function(){
 try {
 var externalvisibility = __
 gwt_getMetaProperty('externalvisibility');
 if (externalvisibility == null) {
 externalvisibility = 'internet';
 }
 return externalvisibility;
 } catch (e) {
 return 'internet';
 }
};

In addition, this file defines values that are allowed for the properties (allowed val-
ues are specified in module XML files, if you recall). For the externalvisibility
property, this file defines

values['externalvisibility'] = {'internet':0, 'intranet':1};

Now, we’ll look at how the metatags are processed.

Processing the metatags

GWT also lets you define metatags covering the situations shown in table 17.1.

Listing 17.5 externalvisibility property-provider from the perspective of the

 loading mechanism

Table 17.1 Metatags that can be entered into an application’s HTML file

Metatag Description

gwt:module Defines any modules and entry points that you’ll be using in the web

page. (This is now deprecated under the new bootstrapping process.)

<meta name=”gwt:module”
 content=”qualified_class_name”>

gwt:property Defines a deferred-binding client property. It can cover many aspects,

such as the locale of the application (which would drive the loading of

other locale-specific constant files if you had defined them).

<meta name="gwt:property"
 content="_name_=_value_">

The GWT application-loading mechanism 569

Managing property metatags

In the Dashboard application, you define one property tag, which indicates
whether the application is in an intranet or the Internet. This property is used in
the user-defined property approach shown in chapter 15. Under the bootstrap-
ping process, each property is stored in an associative JavaScript array called
metaProps; for example, in the Dashboard, the intranet value is stored as follows:

metaProps['externalvisibility'] = intranet;

Although this example defines one gwt:property tag, it’s feasible for you to
define the initial locale as a property tag (if not, then the default locale is used).

Registering a property error function

GWT lets you register JavaScript functions that execute under two error condi-
tions during the loading process. First is the gwt:onPropertyErrorFn metatag,
which allows you to register a function to be executed if a defined property value
doesn’t appear in the list of valid properties. (We’ll discuss the second condition
in the next section.)

 The Dashboard example includes the externalvisibility property, which
can have values of internet and intranet. You’ll set up an error handler that
redirects the user to the book’s web page if an invalid property value is used (to
test this in action, you can change the property’s value in the Dashboard.html file
and run the application). If the property is wrong, then you receive the alert
shown in figure 17.3.

gwt:onPropertyErrorFn Specifies the name of a function to call if a client property is set to an

invalid value (meaning no matching compilation will be found).

<meta name="gwt:onPropertyErrorFn"
 content="_fnName_">

gwt:onLoadErrorFn Specifies the name of a function to call if an exception happens dur-

ing bootstrapping or if a module throws an exception out of

onModuleLoad(). The function takes a message parameter.

<meta name="gwt:onLoadErrorFn"
 content="_fnName_">

Table 17.1 Metatags that can be entered into an application’s HTML file (continued)

Metatag Description

570 CHAPTER 17

Peeking into how GWT works

Listing 17.6 shows the code in the Dashboard.html file that achieves this redirec-
tion when an error occurs.

<meta name='gwt:onPropertyErrorFn' content='handleWrongVisibility'>
<script>
function handleWrongVisibility(propName,
 allowedValues, badValue){

 if (propName == "externalvisibility"){

 window.location.href = ("http://www.manning.com/hanson");
 }
}
</script>

You first need to set the name of the JavaScript function to execute if there is a
property error; you do that by setting the content property of the metatag B.
With the name set up, you need to provide the JavaScript function, which you can
do within normal script tags—usually following our definition, but this isn’t man-
dated because the error-handling calls the JavaScript function given to it.

Listing 17.6 JavaScript function called if an incorrect value is set for the

 externalvisibility property

Figure 17.3 The result of running the Dashboard example when there is an

error in the user-defined externalvisibility property

Define function
to call in case of a

property error B

C

Confirm failed property D

Redirect
user on error E

The GWT application-loading mechanism 571

 The error function, in this case handleWrongVisibility(), can take up to the
three parameters C, allowing you to present a complex error message if you wish.
For the Dashboard, you redirect the user to the book’s web page using simple
JavaScript code E. Before you can handle the error, though, you first must check
that the property that erred is externalvisibilty; you do so with an equality
check on the propName variable D.

Registering a loading error function

You can also register a function that is executed if the loading process errors, in a
similar manner to the property error just shown, using the gwt:onLoadErrorFn
metatag—although you don’t do that for the Dashboard application.

Determining the MD5 name of the file to load

Next, the GWT application determines the name of the cache.html file it will try to
load. It does this by trying to flatten out the lists of property values against the
property value set for this run (see listing 17.7).

try {
 unflattenKeylistIntoAnswers(['intranet', 'default', 'ie6'],
 '0154B171C285D65E6187DF0D30FD12C6');
 unflattenKeylistIntoAnswers(['intranet', 'sv', 'gecko1_8'],
 '05B292B62BD4D184310C95932CF27787');
 unflattenKeylistIntoAnswers(['intranet', 'en_US', 'opera'],
 '0ACD8C827FA60AC018F0846D4687F633');
 strongName = answers[computePropValue('externalvisibility')]
 [computePropValue('locale')]
 [computePropValue('user.agent')];
} catch (e) {
 return;
}
strongName += '.cache.html';

The script establishes a set of patterns against filenames B. At C, it determines
which MD5 name should be used for the set of properties of the current applica-
tion. Then, it tags on the text .cache.html to create the full filename for the boot-
strapping mechanism to load D.

 With this name, the script can now load the appropriate JavaScript permuta-
tion and attempt to start it.

Listing 17.7 Determining the filename of the nocache.html file to load

Set properties to name B

Calculate
name to use

C
Create
filename

D

572 CHAPTER 17

Peeking into how GWT works

Executing the application

Throughout the loading process, the code makes calls to the maybeStartMod-
ule() method in the module.nocache.js file. This method tries to execute the
gwtOnLoad() method in the JavaScript permutation code; when it can do so, the
GWT application is officially up and running, as shown in figure 17.4.

17.2.4 Cross-script applications

The cross-script application performs mainly the same task as the standard appli-
cation approach, but with two subtle differences. First, it doesn’t load a nocache.html

file; rather, it loads the nocache.js version. Second, it makes no attempt to start the
application; that is left for you to do, which is just how you want it if you’re going
to mash up your GWT application with some other code.

 Now that we’ve looked into the loading process, it seems only natural to turn
our attention to how the content that is to be loaded is created.

Figure 17.4

The result of loading the

Dashboard GWT application

Compiling Java to JavaScript 573

17.3 Compiling Java to JavaScript

Although you’ll write your code in Java, the output of the GWT compiler is pure
JavaScript to enable it to execute on a user’s web browser. The code written for
the client side uses a subset of the Java 1.4 definition; the main reasons for this
restriction are the applicability of packages to web applications and the ability to
represent the OO Java concepts in JavaScript. Those parts of Java that are available
for the client side were discussed in detail in section 1.1.2, although you should
again note that there are no restrictions on the Java used for server-side compo-
nents, as you saw earlier.

 In this section, we’ll look at the output of the compiler to give you a bit of con-
fidence that the Java code you write is nice, if not that simple, JavaScript.

17.3.1 Exploring the produced JavaScript

When you have GWT Java code that you wish to execute, you need to decide if
you’re going to execute it in hosted or web mode. In hosted mode, the Java code
remains Java code and is executed in a special hosted environment. For web
mode, which this section deals with, the GWT compiler is invoked to compile the
Java code to JavaScript files. The result of compilation is then viewed through a
normal web browser as a user would.

 The compilation process is complicated and produces a number of output
files, which vary depending on the number of browsers supported and various
options you may use (for example,
internationalization). Code produced
from the compilation can be broken
down into the three segments shown
in figure 17.5.

 This visual breakdown isn’t immedi-
ately obvious if you go to a GWT appli-
cation and open one of the JavaScript
files, because by default the compiler
obfuscates its output. You can turn off
the obfuscation by sending the -style
PRETTY (or -style DETAILED) flag to
the compiler.

 In the first part of the JavaScript
file is the JavaScript definition of the
standard Java objects supported by the Figure 17.5 Structure of compiled code

574 CHAPTER 17

Peeking into how GWT works

compilation process. To reduce the file size, the compiler outputs only those Java
objects that have been used either directly or indirectly in your program code.
Further file-size reductions are made by including only the object’s methods used
rather than all the object’s possible methods. We’ll now look at the following:

■ An example of a standard object that has been compiled (we show the vec-
tor object in the example)

■ Some of our compiled code

■ An application’s initialization code

We’ll start with an example of how a standard Java object is compiled behind the
scenes of the GWT code.

17.3.2 Reviewing standard Java objects: the vector object

Let’s look briefly at the implementation of the Java Vector class—this commonly
appears even if you don’t explicitly used Vector. As soon as you use events in your
code, Vector is included because it’s used in the internal process of GWT event
handling. The prototype JavaScript definition for the java.util.Vector class
appears in listing 17.8 (you used -style DETAILED for this view).

function java_util_Vector(){
}

_ = java_util_Vector.prototype = new java_util_AbstractList();
_.add__ILjava_lang_Object_2 =
 java_util_Vector_add__ILjava_lang_Object_2;
_.add__Ljava_lang_Object_2 =
 java_util_Vector_add__Ljava_lang_Object_2;
_.contains__Ljava_lang_Object_2 =
 java_util_Vector_contains__Ljava_lang_Object_2;
_.equals__Ljava_lang_Object_2 =
 java_util_Vector_equals__Ljava_lang_Object_2;
_.get__I = java_util_Vector_get__I;
_.hashCode__ = java_util_Vector_hashCode__;
_.indexOf__Ljava_lang_Object_2I =
 java_util_Vector_indexOf__Ljava_lang_Object_2I;
_.size__ = java_util_Vector_size__;
_.toString__ = java_util_Vector_toString__;
_._1get__I = java_util_Vector__1get__I;
_.initArray__ = java_util_Vector_initArray__;
_.java_lang_Object_typeName = 'java.util.Vector';
_.java_lang_Object_typeId = 16;

Listing 17.8 Prototype JavaScript definition for the java.util.Vector class

Object
definition

Object inheritance of
java.util.AbstractList

Signature
definition

Internal
definitions

Compiling Java to JavaScript 575

Notice that everything in the JavaScript
keeps its fully qualified class name, with the
periods (.) replaced by underscores (_).
The Java class java.util.Vector, for exam-
ple, becomes the JavaScript class java_
util_Vector. Classname and method are
separated by one underscore, and the types
of any inputs are separated from the method name by two underscores. This nota-
tion is shown in figure 17.6, which represents the Vector.add(Object) method.

 The definition in the JavaScript code for adding an object to a vector is as follows:

_.add__Ljava_lang_Object_2 =
 java_util_Vector_add__Ljava_lang_Object_2;

Or, executing the .add method on a vector is the same as executing the
java_util_Vector_add method; the parameter is of type java.lang.Object
(which is the same as the Java definition). Further, in the file you find the defini-
tion of this function to be the addition of the new object to the end of the array
representing the current vector:

function java_util_Vector_add__Ljava_lang_Object_2(o){
 var a = this.array;
 a[a.length] = o;
 return true;
}

Similarly, the method to retrieve an indexed element from the vector, the Vec-
tor.get(int) method, is referenced as follows:

_.get__I = java_util_Vector_get__I;

(int is a primitive type in Java and isn’t treated as an object; thus the input to the
get method has type I rather than the incorrect Ljava.lang.int. If you were using
the Java Integer object, then the argument would indeed be Ljava.lang.Inte-
ger.) The get method is implemented in the JavaScript function

function java_util_Vector_get__I(index){
 return java_util_Vector_$get__Ljava_util_Vector_2I(this, index);
}

which calls the second form of the get operation with arguments (this,index):

function java_util_Vector_$get__Ljava_util_Vector_2I(this$static,
 index){
 if (index < 0 || index >= this$static.size__())
 throw java_util_NoSuchElementException_$NoSuchElementException__

Figure 17.6 Explanation of JavaScript call

format

576 CHAPTER 17

Peeking into how GWT works

 Ljava_util_NoSuchElementException_2
 (new java_util_NoSuchElementException());
 return this$static._1get__I(index);
}

Here it’s easy to see some bound-checking taking place. An exception is thrown if
the index is less than 0 or greater than the size of the vector (or, in reality, the
underlying JavaScript array implementation). If all is OK, then a value is retrieved
from the call to the 1get_I(index) method, which returns the value at the cor-
rect index in the underlying array implementation:

function java_util_Vector__1get__I(index){
 return this.array[index];
}

You’ve seen that standard Java objects are compiled into JavaScript in a systematic
way that is relatively easy to read if you tell the compiler to produce human-
readable code. What happens to the JavaScript you write? How does it relate to
the Java code?

17.3.3 Exploring program code as JavaScript

In the next segment of code, you find the JavaScript relating to your Java code.
Consider the Dashboard again; listing 17.9 shows the compiled version of the
onModuleLoad() method (this time using the flag -style PRETTY to cut down on
the verbose output).

function _$onModuleLoad(_this$static){
 var _menuCreate, _menuHelp;
 _dashboardName = _$EditableLabel(new _EditableLabel(),
 _$DashboardDefaultNameMessage(_this$static._messages,
 _$Date0(new

_Date())._toLocaleString0()),
 'Byta', 'Ej Byta');
 _$setWordWrap0(_dashboardName, true);
 _$addChangeListener0(_dashboardName, _$Dashboard$3
 (new _Dashboard$3(),
 _this$static));
 _$setStyleName(_dashboardName, 'dashboard-Name');
 _menuCreate = _$buildCreateMenu0(_this$static);
 _menuHelp = _$buildHelpMenu0(_this$static);
 _$loadSubMenu(_this$static, _this$static._menu, 'Bookmarks',
 'bookmarks.xml');
 _$addItem2(_this$static._menu, 'Hj\xE4lp', _menuHelp);
 _$addItem2(_this$static._menu, 'Nya', _menuCreate);
 _$setAutoOpen(_this$static._menu, true);

Listing 17.9 onModuleLoad() method in JavaScript using the –style PRETTY flag

Compiling Java to JavaScript 577

 _$setIcon(_this$static._trash);
 _$addStyleName(_this$static._trash, 'trash');
 _$setUpWindowEventHandling(_this$static);
 _$add2(_get3(), _this$static._menu);
 _$add2(_get3(), _this$static._trash);
 _$add2(_get3(), _dashboardName);
 _this$static._setUpAPI0();
}

If you recall the original Java code for the onModuleLoad() function, this will look
familiar. As you can see, the JavaScript for the Java code is written in the same style
as the rest of the code. The rest of the functions are also included in JavaScript
permutation—feel free to browse, although if you’ve forgotten to put -style
PRETTY or -style DETAILED as a flag to the compiler, it will be extremely difficult
to follow the output, which will resemble listing 17.10.

Listing 17.11

function a(){return window;}
function b(){return this.c + '@' + this.d();}
function e(f){return this === f;}
function g(){return h(this);}
function i(){}
_ = i.prototype = {};
.j = b;.k = e;
.d = g;.toString = function(){return this.j();};
.c = 'java.lang.Object';.l = 0;
function m(n){return n == null?null:n.c;}
o = null;function p(){return ++q;}
function r(s){return s == null?0:s.$H?s.$H:(s.$H = p());}
function t(u){return u == null?0:u.$H?u.$H:(u.$H = p());}
q = 0;function v(){v = a;w = y('[N',[0],[24],[0],null);return window;}
function z(){var A,B;A = m(this);
B = this.C;
if(B !== null){return A + ': ' + B;}else{return A;}}
function D(E,F){if(E.ab !== null)throw bb(new cb(),
 "Can't overwrite cause");
if(F === E)throw db(new eb(),'Self-causation not permitted');
E.ab = F;
return E;}
function fb(gb){v();return gb;}
function hb(ib,jb){v();ib.C = jb;return ib;}

Listing 17.10 Sample compiled code using the default style flag

 (–style OBFUSCATED)

578 CHAPTER 17

Peeking into how GWT works

In the final segment of the JavaScript, from figure 17.5, you can find the code that
is called when a module is initialized.

17.3.4 Understanding the initialization code segment

Finally, the JavaScript is completed with the initialization code segment. This
segment includes a method called gwtOnLoad(), which is called by the GWT
application-loading process. In this example, the following JavaScript code was
produced:

function gwtOnLoad(errFn, modName){
 if (errFn)
 try {
 init();
 }
 catch (e) {
 errFn(modName);
 }
 else {
 init();
 }
}

The init function is defined as firing up your application; it looks something like
the following:

function init(){
 HelloWorld_$onModuleLoad__LHelloWorld_2(
 new HelloWorld()
);
}

At first glance, this example may appear to have a lot of overhead associated with
it, and you could easily start thinking that a hand-coded version would be smaller
and more efficient. This is probably true for such a trivial example; but when you
turn your mind to industrial-strength applications, the true benefits of coding in
Java and letting a compiler produce all this code become clearer. Remember as well
these two quotes from Google that list important things you should keep in mind:

■ “A typical, full-featured GWT application will require the user to download
about 100K of cacheable JavaScript, which is in line with most hand-written
AJAX applications.”

■ “GWT applications are almost always as fast as hand-written JavaScript. The
GWT compiler avoids adding any wrappers around any functionality that is
implemented natively in the browser.”

Summary 579

Of course, we’ll have to wait and see as the facts and figures emerge to confirm
the validity of these statements, once industrial applications start becoming a real-
ity; but each permutation of the Dashboard application, ignoring any third-party
JavaScript libraries, comes in at around 228KB in obfuscated mode. On the size
side, we’re doubling Google’s estimate, but considering all the functionality on
the Dashboard, that’s not unreasonable.

 Speedwise, we didn’t find any problems on the development machines or any
machines we tested on, but we haven’t built an equivalent directly in JavaScript to
compare.

TIP If your compilation is slow, you can alter the parameters for the Java Virtual
Machine, which may increase the compilation speed. Try the Xms and Xmx
parameters to the Java command; we use -Xms256m and -Xmx512m.

To be frank, and this is probably the key point of GWT, we don’t even want to think
about the amount of effort that would be required to program, let alone debug,
any issues or perform maintenance across six different browsers for an applica-
tion such as the Dashboard directly in JavaScript.

17.4 Summary

As you’ve seen, GWT is a powerful tool firmly based in delivering standards-
compliant web technologies compiled from Java code and using CSS for styling. It
doesn’t bring any magic proprietary technologies that need to be downloaded by
your application users, which is good news in these days of Internet security and
trojans. The use of these technologies makes GWT easily expandable and flexible
in the ways you need. Coupled with the ability to bring the power of the existing
Java toolsets to bear on development, it’s a great proposition.

 It’s simple to access and manipulate the DOM through GWT at a low level via
the JavaScript Native Interface, through low-level method calls in the GWT DOM
implementation classes, and through the more natural Java approach of creating
objects and using widget and panel API methods such as add(). These widgets and
panels are simple HTML elements, and you’ve seen them all in use.

 On the client side, functionality is provided by writing code in GWT Java and
subsequently compiling it to JavaScript code using the provided compiler code.
You saw that the resulting JavaScript code contains the code you’ve produced, or
which has been generated; and implementations of the standard Java objects used
by your code.

580 CHAPTER 17

Peeking into how GWT works

 Server-side integration is possible with your choice of language. If you want to
use Java, then GWT provides the RPC approach to make the boundary between cli-
ent and server almost disappear.

 Is GWT the answer to every Ajax development problem? Probably not, but it goes
a great way toward making Ajax applications easier to develop. GWT enables you to
use the mature tooling of Java in the development of Ajax applications, as well as
access JavaScript directly if you need to do that. To sum up, we’ll go back to the last
sentence of the previous section, which sums up our thoughts on GWT at present:

 “To be frank, and this is probably the key point of GWT, we don’t even want to
think about the amount of effort that would be required to program, let alone
debug, any issues or perform maintenance across six different browsers for an
application such as the Dashboard directly in JavaScript.”

581

index

Symbols

$wnd.__dispatchEvent() 200
$wnd__dispatchEvent() 199
* wildcard 549
@typeArgs 359, 362–363

A

About 133–134
About menu, automatic

generation of 472
AbsolutePanel 171

add(Widget, x, y) 171
getWidgetLeft() 171
getWidgetTop() 171
setPosition(Widget, x, y) 171

abstract class 133
AbstractAsyncHandler 389
AbstractImagePrototype 130
add() 160–161
add(Widget,String) 172
addChangeListener 259
addDashboardComponent()

190
addMenu() 275
Address Book 136, 218, 232

handling scrolling 225
handling tab events 232

addRowToGrid() 380
addStyleName() method 85
adopting widgets 184
Ajax 111, 113

with RequestBuilder 410–424
AlphaImageLoader filter 149

anonymous classes, reason to
avoid 423

Ant 48, 99
ant flag 48
Apache 99
Apache Foundation 462
Apache Tomcat 548

directory structure 550
servlet engine 87

API, exposing 278, 294
Appl-i18n tool 45
application

altering for locale 518–520
compiling 94–98
constructing 72–83
creating 44, 50, 54–63
cross-script 572
defining server

resources 326–327
deploying 98–99, 539–553
developing 67–86
executing in debug mode 92
implementing

internationalization 56–57
internationalization 54–56
large 67
legacy 565
loading mechanism 564–572
logging 100–103
manaing GTP

properties 327–332
running in web mode 99
setting entry point 337
standard 566–567
styling 83–86

testing and debugging in
hosted mode 86–94

application-compile script 62
applicationCreator tool 30, 44,

46, 48, 50, 53, 62, 353, 543
application-loading

mechanism 564–572
application-shell script 62
architecture 376
ArrayList 362
assertion methods 533
assignable type 475
AsyncCallback interface

369, 384–385, 388–391
asynchronous code

testing 537–539
asynchronous communication

348, 350–351
asynchronous mode 537
asynchronous service

interface 367, 371
asynchronous testing 537–539
automatic updates 394

B

bin directory 550
Black Hat convention 352
blacklist argument 88
_blank frame name 421, 430
blocking 392

comparison to polling 398
implementing on client 399
implementing on server

399–401
server threads 398–401

582 INDEX

Book application 125, 235
managing tree events 235

bookmarks 417
Bookmarks menu

designing 417–418
XML data file 418–419

boolean readBoolean() 406
booleanValue() 447
bootstrapping, standard

applications 567–572
breakpoints, setting 92
browser

change title of 128
communicating via GWT

Java 291–292
communicating via

JavaScript 292–293
detection of type 560
determining which is being

used 330
managing differences

496–502
tab index 133

browser events, handling
standard 216–231

browser functionality,
accessing 278

browser-specific code 328
builder, creating 414
Button 35, 248, 252, 427, 454

click() 138
GWT Java class 112
Java object 112

<button>, DOM element 114
Button widget 78, 80, 137–138
ButtonPanel 186

creating 183–185
byte readByte() 406

C

cache.html 563
cache.xml files 561–563

identification of browser
choices 563

Calculator 138, 140, 221, 223
handling clicks 221
managing keyboard

events 223

callbacks
chaining 386–388
handler 373, 416
mechanism 385
object, creating 369–370
routine, using Command

Pattern 384–391
cancelLabelChange() 262
canProcess() 400
capturing

long text 433
text 432

Cascading Style Sheets
(CSS) 42, 80, 85, 355

class-naming convention 268
styling widgets 117

CellFormatter 179
CellPanel 176

HasHorizontalAlignment 177
HasVerticalAlignment 177

CGI 410
CGI (Perl module) 466
chaining callbacks 386–388
ChangeListener

136, 218–221, 259
addChangeListener() 265
fireChange() 272
onChange() 219

ChangeListenerCollection
259, 265

changeTextLabel() 263
char readChar() 406
Character.isDigit() 141
characters, escaping 412
CheckBox 138

for boolean values 433–434
class replacement, DOM 332
classes

abstract 390
locale-specific 519–520
schedulable 395–398

classpath
confusion with GWT

modules 322
relation to GWT module

file 83
ClickListener 36, 212–213,

221–222, 252, 454, 460
addClickListener() 213
removeClickListener() 213

ClickListenerCollection 213
fireClick() 213

client code, structuring 376–391
client package 364
client, implementing

blocking 399
client-pull 393
client-side RPC architecture 375
code

compiling 94–98
deploying 98–99

ColourPicker 270
constructing 273–274

com.google.gwt.http.HTTP 455
Comet 393
Command 122

execute() 122
command class 388
Command interface

81, 419–420
command object 385
Command pattern 122, 376,

384, 386–391
commons-fileupload library 436
commons-httpclient library 461
compilation 94

-gen 96
GWT 556–564
GWT, file mapping 557
GWT, output 559
heap size errors 97
-logLevel 95
-out 96
output infomration in tree

format 95
setting level of logging 95
setting location for generated

code 96
setting location of output

code 96
setting the style of output

code 96
speeding up the process of 97
-style 96
-treeLogger 95
viewing results 97–98

compilation process
benefits of 561
drawbacks of 561

compilation script 95

INDEX 583

compiler 6
flags 573
making output more

readable 573
web mode 573

compiling 94–98
complex panels 162
complexity, reducing 382
ComplexPanel 170–178
component shell, writing

377–380
components

continuously updated
393–398

labels, adding 380–382
shell, writing 377–380
style, adding 380–382

Composite 378
initWidget() 248

composite panels 162, 181–182
composite widgets 247, 251

building 258–265
creating 262
creating from other compos-

ite widgets 269–274
definition 247
development steps 248–249
initializing 263
initWidget() 263
layout 253
setWidget(), deprecated 263
styling 267–269

conf directory 550
configuration 14
configuring production

environment 550–552
confirmDelete 190
constants

avoiding writing directly 503
moving to resource file 503
referring to as string

literals 503
Constants interface 14
containsKey() 450
content delivery

client-pull 393
server-push 392–393
techniques 392

content-type 415
Content-type header 414

continuously updated
component 393–398

convention 388
CPAN 467
createConfirmButton() 262
createImage() 130
–createMessages flag 56
createOptionsMenu() 488
creation tools 39

application creator 44, 48,
50, 53, 62

i18nCreator 511
internationalization

creator 45, 54–55, 62
project creator 44, 47–48, 50
unit testing 45, 57–58, 62

cross-script applications 572
cross-site request forgery 351
CSS. See Cascading Style Sheets

(CSS)
custom field serializer 402–407

class rules 403
reasons to write 402

CustomFieldSerializer 403

D

Dasboard.html 558
Dashboard 50–53, 74, 95,

97, 103, 522
About 133–134
About menu 472
adding JUnit tests 57
Address Book 135–136,

168, 206, 218, 225, 232
Book 125, 235
bookmark menu 124
Calculator 138, 140, 167,

181, 221, 223
Colour Picker 269
compiling the code 94–98
component applications

65–66, 81
confirmDelete 297
creating panel for 187–190
Dashboard_APITest.html 296
Dashboard_intranet

class 123, 523
DashboardComposite

274–276, 334, 477
DashboardContainer 188

DashboardPanel 204, 208,
215, 222, 274, 298, 477

debugging 92–94
deploying the code 98–99
description 65–67
developing your

application 67–86
directory structure 51, 59
drag and drop 65
EditableLabel

131, 247–249, 253
building 250, 258–269
change text

notification 220
choosing panel layout and

structure 253–255
creating 259–260, 263
FlowPanel 173
identifying

components 251–253
implementing GWT Java

interfaces 255–258
multiple text lines 140
styling 267–269

externalvisibility
property 123, 521, 563, 569

final version 522–523
Finance News 518
Flash movie widget 496
FlashMovieImpl 499
generator 477–492
getConfirmDelete() 298
getDashboardName() 296
Google Video Search

308, 336
importing into Eclipse 60
internationalization

54–57, 68–72
internet view 520
intranet view 520
key functionality 65
languages 54
Login 140, 173, 177
menu system 65, 121
module XML file 337–339
onEventPreview 209
passing data between inde-

pendent applications 297
PNGImage 147–148
processing XML 65

584 INDEX

Dashboard (continued)
running in hosted mode

90–91
running in web mode 99
Search Comparison 174
Server Status 131, 164, 180,

232, 234, 327
setConfirmDelete() 298
setDashboardName() 295
Slider 270–273
Slideshow 119, 128, 563
Stage 6 99
testing and debugging in host

mode 86–94
ToggleMenuItem

150–151, 154–155
Tooltip 231
Trash Icon 216
TwoComponentMenuItem

124, 150–153, 177
Dashboard.css file 84
Dashboard.gwt.xml file

72, 81, 86
Dashboard.html file 72–73, 86
Dashboard.java file 72, 77
Dashboard_APITest.html 294
Dashboard-compile, altering

classpath 340
DashboardComposite 334

definition of 274–276
DashboardCompositeGenerator

334
DashboardConstants interface

file 80
DashboardConstants.java

file 68, 72
DashboardConstants.properties

69, 506
DashboardConstants_sv.proper-

ties 507
DashboardConstants-i18n

tool 55–56, 68–70, 508
DashboardContainer 188
DashboardMessages.properties

512
DashboardMessages-i18n 512
DashboardPanel 200, 274, 298

gaining and losing focus 222
ignoring event 208
onMouseDown 239

onMouseMove 240
onMouseUp 240

Dashboard-shell 90
altering classpath 340

Dashboard-shell script 87
data

hiding with Hidden 435–436
pagination 180

data objects 348
JSON 445–450
serializable 356–360

DBIx::JSON 467
debugging

hosted mode 86–94
using JUnit messages 532
using rebind decision

files 542
DeckPanel 170, 173–174

getVisibleWidget() 174
showWidget(int) 174

decodeComponent() 412
default application

HTML file 72–77
Java file 77–81
module XML file 72, 81–83

default browser event,
preventing 216

defaultexcludes attribute 326
deferred binding 71, 149

creating DOM class
instances 497

with generators 474, 491
DeferredCommand 272
define-property tag 495
defining

new properties 328
server resource 327

deploying
applications 539–553
code 98–99
to a filesystem 99
to a web server 98

deployment descriptor 549
writing 552–553

deserialization 350, 402
pattern 404

deserialize() 403–404, 406–407
Design Patterns: Elements of

Reusable Object-Oriented
Software 382

DETAILED option 90

determining browser 330
development lifecycle. See lifecy-

cle
DialogBox 164–166

creating 165
Dictionary 15, 517

get(key) 517
getDictionary 517

DiskFileItemFactory 438
disowning widgets 184
<div> 160
div element 78
DockPanel 175–177
DOM

browsers dealing with 332
browser-specific methods 497
creating an element 144
div element 78
eventCancelBubble() 200
eventPreventDefault() 200
getElement() 144
getting specific named 171
implementation class

hierarchy 497
named 74
setAttribute() 144

DOM pages, getting
reference 171

DOMImplIE6 280
DOMImplStandard 197, 280
double readDouble() 406
drag-and-drop

drag 236–241
drop 241–244
implementing 236–244

DummyCommand 81
dynamic string

internationalization
516–518

E

Echo2 26
Eclipse

importing into 60–61
launch configuration 51
launch files 534

-eclipse flag 39, 47, 51, 59, 61
EditableLabel 140, 220

managing change 220
EMBED tag 498

INDEX 585

encapsulating remote calls
382–384

encodeComponent() 412–413
encoding-type 436
endless loop, creating 400
entry point

setting 337
EntryPoint interface 34, 78

class 80
errors, handling with tests

532–533
escaped values

decoding 412
encoding 412

escaping 413
characters 412
URLs 412

event handling, preventing
default in browser 216

event listeners
ChangeListener 136
ClickListener 131, 138
HistoryListener 119
KeyboardListenerAdapter

141
LoadListener 127
MouseListener 131
PopupListener 124
TreeListener 126

Event object 204
eventBits attribute 114, 202
__eventBits field 203
EventListener 211, 214
EventPreview 208–210
events 193

addEventListener() 196–197
bubbling 195
BUTTON_LEFT 193
BUTTON_MIDDLE 193
BUTTON_RIGHT 193
capturing 195
capturing right mouse

clicks 206
ChangeListener 218–221
ClickListener 212
closing pop-ups 231–232
dispatchEvent() 197
eventCancelBubble() 200
eventGetAltKey 205
eventGetButton 205
eventGetClientX 205

eventGetClientY 205
eventGetCtrlKey 205
eventGetFromElement 205
eventGetKeyCode 205
eventGetRepeat 205
eventGetScreenX 205
eventGetScreenY 205
eventGetShiftKey 205
eventGetTarget 205
eventGetToElement 206
eventGetType() 204, 206
eventGetTypeString 206
eventPreventDefault()

200, 216
EventPreview 208–210
finding a listener 199
FOCUSEVENTS 194
FocusListener 215, 275
form events 231
getting the type of 204
GWT event model 196–200
GWT handling lifecycle 197
handling 193, 199
handling by extending lis-

tener classes 211–212
handling double click 200
handling standard browser

events 216–231
identifying event model

browser differences
195–196

KeyboardListener 140, 168
KEYEVENTS 194
linking sunk events to

onBrowserEvent() 207–208
listening 200–216
LoadListener 223
managing sunk events

203–207
MOUSEEVENTS 194
MouseListener 211
moving into GWT code

212–216
ONBLUR 193
onBrowserEvent() 197, 199,

203, 207–208
ONCHANGE 193
ONCLICK 193
ONDBLCLICK 194
onDetach() 200
ONERROR 194

onError 127
onEventPreview() 208
ONFOCUS 194
onHistoryChange() 119
ONKEYDOWN 194
ONKEYPRESS 194
ONKEYUP 194
ONLOAD 194
onLoad 127
ONLOSECAPTURE 194
ONMOUSEDOWN 194
ONMOUSEMOVE 194
ONMOUSEOUT 194
ONMOUSEOVER 194
ONMOUSEUP 194
ONSCROLL 194
PopupListener 232
preventing previewing 188
previewing 208–210
ScrollListeners 224–226
sinkEvent() 197, 202
sinkEvents() 197, 200–203
sinking 200–203
super.onBrowserEvent() 197
tab events 232–233
table events 234
TableListener 178, 234
TabListener 181
tree events 235–236
TreeListener 235
unsinkEvents() 205
W3C DOM model 196
window close events 227–231
Window CloseListener 293
window resize events 226–227
WindowCloseListener

227–231
WindowResizeListener

226–227, 271
examples

applicationCreator 30
Server Status 353–356
Tic-Tac-Toe 32

exceptions
JSNI 290
serializable 363
throwing 363

excludes 326
execute() 420
existing methods,

overwriting 484–485

586 INDEX

exposing an API 294
extending properties 329
extend-property tag 495
Extensible Messaging and Pres-

ence Protocol (XMPP) 342
externalvisibility property 95
extractYahooResults() 458

F

Façade pattern 376, 382–384
failure, different than an

error 532
field serializers

class 403–404
custom 402–407
custom, class rules 403
custom, implementing

404–407
custom, reasons to write 402

file uploads 436
file-input tag 425
FileItemFactory 438
files, uploading with

FileUpload 436–439
filesystem, deploying to 99
FileUpload 118–119, 436–439

getFilename() 119
getName() 119
old version 143–146
server-side component 118
setName() 119

FileUploadException 438
FileUploadServlet class 118
filtering public resources 326
finishTest() 538
fireChange() 265
Firefox Web Developer

extension 73
Flash widget

building 498–501
Internet Explorer 498
Internet Explorer

implementation 500–501
other browser

implementation 500
other browsers 498

FlexCellFormatter 180
spanning cells and rows 180

flexibility, adding 390
FlexTable 179–180

FlexCellFormatter 180
Flickr, label editing 250
float readFloat() 407
FlowPanel 159–160,

173, 253, 454
getWidget(int) 173
getWidgetCount() 173
getWidgetIndex(Widget) 173
remove(int widgetIndex) 173
setting style of 263

FocusListener 215, 222, 275
onFocus() 275
onLostFocus() 275

FocusPanel 164, 167–168
setFocus() 168
setTabIndex() 168

FocusWidget 133–141, 143, 167
setAccessKey() 133
setFocus() 133
setTabIndex() 133

<form> 425
form action 426
form controls 425–426
form encoding 415
form method 425
FormHandler 428

onSubmit() 428
onSubmitComplete() 428

FormPanel 164, 166–167,
410, 424–439

events 428–429
form controls 432–439
setAction() 426
setMethod() 426
submit() 167, 427
submitting 427
target, altering 429–431

FormPanel.METHOD_GET 426
FormPanel.METHOD_POST

426
forms, handling events 231
FormSubmitCompleteEvent

428
Frame 134
frame.setURL('resource-to-

load') 134
frames, named 429

G

gen argument 90, 96
generate() 476
generating new code

automatically 471–491
GeneratorContext 478
generators 472

amending classpath to
use 473

basic code 476
context argument 476
context properties 479–480
DashboardComposite-

Generator 334
deferred binding with 474
generate() 478
generating classes 563
GeneratorContext object 478
input class 478–479
internationalization 472
introduction 472–473
JUnit 472
logging progress 480–482
logging to a TreeLogger 476
makeInterface() 483
PrintWriter 483
PropertyOracle object 479
registering 333–334, 474
returning new class 491–492
returning null as the

result 476
RPC 472
SourceWriter 478, 482
TreeLogger 480
TypeOracle 478

generics 358
GET 411–413

compared to POST 413–414
get() 171, 450
get(elementName) 171
getAttribute() 144
getCellFormatter() 179
getDescription() 290
getElement() 114, 378
getGSearch() 315
getInstance() 382–383, 447
getMetaProperty() 521
getName() 290, 427
getprint() 467

INDEX 587

getResult() 428
getRowFormatter() 179
getStatusCode() 416
getStatusData() 361, 382,

384, 387
getStatusDataFromServer()

380, 385, 397
getType() 479
getValue() 447
getWidgetCount() 173
getWidgetIndex(Widget) 173
Google Ajax Search

299, 301, 309
API key 299
GdrawOptions 310
GnewsSearch 310
GSearchControl 310
GsearcherOptions 310
GwebSearch 310
KeepListener 312
making the widget 314
SearchControlImpl 311

Google Groups 464
Google Maps 300
Google Video Search 300, 336

GSvideoBar object 303
injecting JavaScript

source 336
JavaScript example 303
making the widget 306

Google Web Toolkit. See GWT
Googlipse 63
Grid 35, 138, 181
GWT 4

$doc 290, 292
$wnd 290, 292, 294
application development

lifecycle 39–43
application-loading

mechanism 564–572
browser differences 496
compilation 556–564
compilation process

556, 564, 573
compilation process, file

mapping 557
compilation process, Java

objects supported 574
compilation process, knowl-

edge of browser types 561

compilation process,
output 559

compilation, file
mapping 557

compiler 41
components styling 83
creating applications

39, 44–63
creation tools 39–42, 46,

51–52, 62, 67
default application 39, 44,

47, 50, 65, 105
development lifecycle. See life-

cycle
DOM implementation class

hierarchy 497
event model 196–200
generators 65–66, 71, 473
getModuleBaseURL()

method 553
history functions 76
hosted-browser 41
integration into Eclipse 59
internationalization

support 502
introduction 5
local, altering the

application 518
modularization 68
module XML 318
online API reference 118
open source 564
properties 495
properties,

externalvisibility 479
stages of application

development 42
testing and deploying

527–554
testing code with JUnit

528–539
user.agent property 495
user-defined properties 520
using IDEs other than

Eclipse 62
vs. Echo2 26
vs. JavaServer Faces 27
vs. Ruby on Rails 29
vs. Swing 25
widgets default style names 85

<gwt:module> 565

GWT applications
talking between 296–298
talking to via JavaScript

API 294–296
GWT Interfaces

HasText 144
GWT Widget Library 147, 340
GWT.create() 71, 80, 366, 368
GWT.create(classLiteral) 474
GWT.getModuleBaseURL() 369
GWT.isScript() 369
gwt.js 544, 558–559
gwt.js JavaScript file 75
GWT.log() 101–102, 370
gwt:module meta-tag 74
gwt:onPropertyErrorFn meta-

tag 75
gwt:property meta-tag 75
GWTDesigner 63
gwtOnLoad() 572, 578
gwt-onLoadErrorFn meta-tag 75
GWT-RPC 348, 376

defining 360–366
implementing 356–370
preparing client side of

call 366–370
RPC concepts 348–353
servlets 550

gwt-servlet.jar 551
GWTShellServlet 549
GWTTestCase 22, 537

delayTestFinish()
method 537

finishTest() method 537
setModuleName()

method 537
gwt-user.jar 280

H

handleFailure() 389
handler 35
handleSuccess() 389
HasHorizontalAlignment 256

required methods 259
HashSet 362
HasName 257, 427
HasText 143–144, 255–257

required methods 259
HasWidgets interface 163

588 INDEX

HasWordWrap 256
required methods 259

heap size 97
HelpMenuName key 69
Hidden, hiding data 435–436
hiding text 433
History 119

getTargetHistoryToken() 120
HistoryListener 119
including in HTML page 120
onHistoryChange() 119
setTargetHistoryToken() 120

history
history.html 564
storage 564

history files, removing 543
history functions 76
History object 21
history tokens 120
history.html 543, 558
History.html file 564
HistoryListener 21, 119
HorizontalPanel 170, 177, 253
hosted development

controller 91
hosted mode 333, 369, 573

default project URL 365
deployment descriptor 552
-gen 90
-logLevel 89
-noserver 87
-out 90
setting location for generated

code 90
setting location of output

code 90
setting the style of output

code 90
-style 90
testing 365–366
testing and debugging in

86–94
-whitelist 87

hst() 564
HTML 13, 252

getHTML() 120
security implications 133
setHTML() 120

HTML panels 178–181
HTML Table panels 162

HTML widget 132–133
HTMLPanel 172
HTMLTable 170, 178–179

setting style of cells 179
HTTP

GET 411–413
GET, compared to

POST 413–414
methods 411–414
POST 413–414
response codes 416

HTTP module
importing to module

configuration 412
RequestBuilder 414

HTTPRequest 111
HttpServlet 372
Husted, Ted 57
Hyperlink 119–120, 460

getText() 120
setText() 120
treating as HTML 120
treating as text 120

hyperlinks, creating a true
hyperlink 133

I

i18n 45, 54–56
adding to a structure 55
module XML file 319

I18N GWT module 82
i18nCreator 511
i18nCreator tool 45, 54–55, 62
IDE 59

Eclipse 39, 41, 44, 47, 50,
53, 55, 57–60, 62

Googlipse 63
GWTDesigner 63
importing into 59–63
importing to 45
IntelliJ 63
Matisse 59
NetBeans 59, 63
other than Eclipse 62
with GWT wizard 63

IFRAME 76, 134
iframes 424
–ignore flag 53, 59
IllegalArgumentException 459

Image 127–131
getURL() 150
PNG problem with Internet

Explorer 147
image.setVisibility(false) 224
ImageBundle 129
images

bundling together 128
loading 223–224

importing into IDE 59–63
includes 326
indent() 484
IndexedPanel 173–174
inheriting other modules

321–325
<inherits> 365
inherits tag 365
init() 196
initialization code 578–579
Initializing a Composite

Widget 263
initWidget() 379
injecting a style sheet

resource 336
injecting JavaScript code 335
injection 86
innerHTML 149
<input> 428
installing RPC servlets 548–553
instantiate() 403–405
int readInt() 407
IntelliJ 63
intercomponent

communication 297
internationalization 14, 45, 54,

65, 68–72, 97, 328, 495, 560
change locales 71
constants 504–509
ConstantsWithLookup

504, 509–510
default locale 69
Dictionary 517
dynamic string 516–518
English 69
hierarchy 504
implementing 56–57
ISO country code 502
ISO language code 502
key/value pairs 69
Localizable interface 504

INDEX 589

internationalization (continued)
Message 504
messages 510–512
messages for default

locale 512–514
messages for other

locales 514–516
messages structure 512
properties files 69
setting up 54–56
static string 503–516
supporting in full 502–518
Swedish 69–70
use in the Dashboard

application 124
use of generator 472

InterruptedException 400
introspection 65, 485–491

in generators 334
JClassType 486
JType 479

iSEC Partners 352
ISO country code 502
ISO language code 502
IsSerializable 357

interface 357–358, 361, 402
isString() 460
iterator() 170

J

Jabber 342
Jakarta project 461
Java

class name 53–54
compiling to JavaScript

573–579
creating package

structure 343
package structure 318
packages 343
strong type model 280
Vector class 574–576

Java 1.4 standard 81
Java 1.5, use in GWT

generators 476
Java 5.0 standard 81
Java classpath, confusion with

GWT modules 322
Java debuggers 101

Java libraries, adding to
classpath 90

Java method signature 289
Java Native Interface. See JNI
Java objects, passing across

Java-to-JavaScript
boundary 283–286

Java package
client 43, 50–53,

55, 57–58, 343
creating structure 343
rebind 54, 343
server 41, 43, 54, 343

Java Runtime Environment 10
Java Virtual Machine (JVM) 97
java.io.File 439
java.util.Set 450
JavaScript 278

$doc 290, 292
$wnd 290, 292–294, 304, 311
access browser

functionality 278
call format 575
compiling Java to 573–579
document object 290, 292
exposing an API 278, 294
files, organizing 544
including in a GWT

application 281–283
intercomponent

communication 278, 297
libraries 278
loose type model 280
permutations 495, 560–561
permutations, cache.html 563
permutations, Dashboard 579
permutations, reducing

number of 561
permutations, selecting 561
program code as 576–578
relocating code 544, 546–548
undefined object 287
variable 278
window object 290, 292, 294

JavaScript API, talking to GWT
application 294–296

JavaScript libraries
accessing objects 302–307
accessing of 278, 299
calling callback code 312–314

loading 299–300
loading through HTML 299
loading through module

XML 299–300
third-party, accessing 278
wrapping as GWT

component 300–309
wrapping complex 309–315

JavaScript Native Interface. See
JSNI

JavaScript Object Notation. See
JSON

JavaScript objects, keeping as
Java objects 310–312

JavaScript resources,
injecting 335–336

JavaScriptException 290
JavaScriptObject 284, 287,

302, 304
GSVideoBar example 305

JavaServer Faces. See JSF
JBoss 548
JClassType.getFields() 486
JClassType.getMethods() 486
JNI 281
JRE emulation library 10, 358
JSF 27
JSNI 8, 190, 281

accessing a field in a Java
object 285–286

accessing a static field
285–286

accessing an instance
field 285–286

calling JavaScript code 282
communicating using

290–298
creating new Java objects in

JavaScript 283
exceptions 290
executing methods in Java

objects 287–290
introduction 279–290
JavaScriptObject 284
passing a byte to

JavaScript 283
passing a char to

JavaScript 283
passing a double to

JavaScript 283

590 INDEX

JSNI (continued)
passing a float to

JavaScript 283
passing a JavaScriptObject

to JavaScript 284
passing a long to

JavaScript 283
passing a short to

JavaScript 283
passing a String to

JavaScript 284
passing a user-defined Java

object to JavaScript 284
passing an array to

JavaScript 284
passing an int to

JavaScript 283
passing Java objects to

JavaScript 283
returning a Java object 286
returning a

JavaScriptObject 287
returning a String 286
returning null objects 287
returning primitive types 286
syntax 281

JSON 111, 469
arrays 444
basic types 446–447
classes, adding to configura-

tion file 453
creating Search

component 450–460
data format 443–444
data objects 445–450
deserializing data 445
format 443
implementations 462
introduction 443–445
module 453
number 444
Perl module 465
response 458
sending data to server

455–457
server proxy 462
server response 457–460
using with Java on server

461–465
using with Perl 465–467

using with Ruby 467–469
value types 469

json library for Ruby 467
JSON.parse() 468
JSONArray 458

storing JSONValue
objects 448–449

JSONBoolean 447
JSONException 459
JSONNull 447–448
JSONNumber 446
JSONObject 456, 459

collecting JSONValue
objects 449–450

JSONParser 443, 445
parse() method 459

JSONString 446
JSONTokenizer 464
jsonToObj() 466
JSONValue 445–446, 458, 460
JSONValue objects

collecing in JSONObject
449–450

storing in JSONArray
448–449

JUnit 22, 45, 54, 57, 59
downloading 529
JAR file 57
overview for GWT

developers 529–534
testing GWT code 528–539
version compatibility with

GWT 529
JUnit in Action 57
junitCreator

command-line options 534
creating TestCase 534
running 534–535

junitCreator tool 45, 57–58, 62
-junitflag 58

K

keyboard events
eventGetKeyCode() 209
getting key pressed 209

keyboard, capturing inputs 223
KeyboardListener 140, 168, 223
KeyboardListenerAdapter 223
keySet() 450

L

Label 131–132, 248, 252
adding a ClickListener 262
adding to component

380–382
create as plain text 131
editing by clicking 250
getText() 132
setHorizontalAlignment()

131
setText() 132
setWordWrap() 131

Label object 78
Label widget 80
legacy applications 565
libwww-perl 465
lifecycle 39–44, 67, 94, 103

stage 1, tools 45, 65
stage 2, development 67–86
stage 3, testing and

debugging 86–94
stage 4, compiling 94–98, 556
stage 5, deployment 98–99
stage 6, running in web

mode 99
stages 41

LinkCommand 419
loading web page 420–421

List interface 362
list, displaying in a ListBox

434–435
ListBox 135–137, 434–435

drop-down view 136
getItemText() 136
getSelectedIndex() 136
getSelectedItem() 137
setMultipleSelect() 137
setSelectedIndex() 137
setting height 136
standard view 136

listener.onBrowserEvent() 208
listeners

ChangeListener 218–221
ClickListener 212, 252
FocusListener 215
KeyboardListener 140
LoadListener 223
MouseListener 211
PopupListener 232
ScrollListeners 224–226

INDEX 591

listeners (continued)
TableListener 234
TreeListener 235
Window CloseListener 293
WindowCloseListener

227–231
WindowResizeListener

226–227
loading error function,

registering 571
LoadListener 127, 223

onError() 223
loadSubMenu() 419, 423–424
locale 502

changing 91
changing in HTML 506
changing through URL 506
hierarchy 502
permutations based on 560

locale-specific classes 519–520
Localizable interface 504
localization 15
Log4J 89, 103
Log4JavaScript 103
Log4Perl 103
Log4PHP 103
logging 100–103, 386

automatic 391
handler 389
in a generator 480–482
on the client side 100–103
on the server side 103

logging levels 89
LoggingAsyncHandler 391
Login 140
logLevel argument 89, 95
logs directory 550
long readLong() 407
LWP 465
LWP::Simple 467

M

Massol, Vincent 57
Matisse 59
Maven 99
maxLength vs. TextBox width

property 432
maxResults 456
maybeStartModule() 572
MD5 name, determining 571

menu system 65
MenuBar 80, 121–124

addItem() 122
onPopupClosed() 124
widget 80

MenuItem 121–124, 150–155
extending 146
getCommand() 123
getParentMenu() 122
getSubMenu() 122
setCommand() 123
setSubMenu() 122
treating as HTML 123

MenuLoaderHandler
419, 421–423

menus, enabling/disabling auto-
opening of children 123

menuTitle 423
Messages 14
metaProps 569
metatags 74, 545

gwt:module 568
gwt:onLoadErrorFn 569, 571
gwt:onPropertyErrorFn 569
gwt:property 568–569
processing 568
property, managing 569

methods
making final 391
overwriting existing 484–485
using introspection 485–491

Model View Controller. See MVC
modularization 68, 319–321

creating 318–339
module configuration 550

importing HTTP module 412
–module flag 59
module XML 81, 561

property replacement
501–502

registering a generator 474
replace tags 497
user defined property

provider 521
module.nocache.js file 559–561
module.nocache-xs.js file

559, 561
modules

class replacement due to
properties 332–333

defining properties 328

defining server resource 327
extending properties 329
filtering public resources 326
GWT Widget Library 322
HTTPRequest 322
include other modules

321–325
injecting a style sheet 336
injecting JavaScript code 335
internationalization 322
JSON 322
packaging 341–343
path to public resources 325
property provider 330
registering Generator

class 333–334
replace class due to

properties 333
setting source code path

325–326
setting the entry point 337
standard with GWT 319
third-party, using 339–341
User 322
XML 322
XML processing 322

Mouse events 207
eventGetButton() 207

mouse inputs 224
MouseListener 211

onMouseDown() 211, 237
onMouseMove() 237
onMouseUp() 237

multipart messages 436
MVC 26
myAppConstants.properties 504
MyAsyncHandler 389–390
MyLoggingHandler 390

N

named DOM elements 74
benefits 77

NamedFrame 134, 429, 431
naming convention for widget

styles 268
native keyword 282
native, declaring method 9
.NET 410
Net::Http::get_response() 469
NetBeans 59, 63

592 INDEX

nocache-xs.js 558
nontransient fields 358
noserver argument 87
null pointer errors 94
NullPointerException 459

O

OBFUSCATED option 90
Object readObject() 407
OBJECT tag 498
objects, sending across

JavaScript-to-Java boundary
286–287

onBefore 232
onBrowserEvent()

117, 145–146, 162, 203–208
handling sunk events 203
overriding 203

onClick() 78
onCompletion() 539
onError() 370
onEventPreview() 190
onFailure() 370, 387
onKeep() 312
onKeyPress() 141
onLostFocus() 240
onModuleLoad()

78, 80, 123, 227
onMouseDown() 207, 239
onMouseDown(Widget sender,

int x, int y) 237
onMouseEnter(Widget

sender) 237
onMouseLeave(Widget

sender) 237
onMouseMove() 240
onMouseMove(Widget sender,

int x, int y) 237
onMouseUp(Widget sender,

int x, int y) 237
onResponseReceived() 422, 538
onSelected() 232
onSink() 202
onSuccess() 370, 387
onWindowClosed() 228
onWindowCloseListener() 293
org.gwtbook 364
organization 540
organizing projects 540–548
out argument 90, 96

-out flag 56, 59
outdent() 484
-overwrite flag 53, 59
overwriting existing

methods 484–485

P

Package Explorer 60
package names, restrictions 364
package structure, creating 343
pageYOffset 293
Panel class 162
Panel, Grid 138
panels 12, 158

AbsolutePanel 171
add() 161, 170
adding widgets 159
adopt() 184
alignment 161
as DOM elements 160–162
as Java objects 159–160
CellPanel 176
ComplexPanel 162, 170–178
composite panel 162
creating 182–187
creating by extending an exist-

ing panel 186–187
creating for Dashboard

187–190
creating from scratch

183–185
DeckPanel 170, 173–174
DialogBox 164–166
difference from widgets 163
disown() 184
DockPanel 175–177
extending, vs. composite

widgets 182
FlexTable 179–180
FlowPanel 160, 173, 253
FocusPanel 164, 167–168
FormPanel 164, 166–167
getChildren() 170
Grid 181
HorizontalPanel

170, 177, 253
HTML table panel 162
HTMLPanel 172
HTMLTable 178–179
IndexedPanel 174

insert() 161, 170
onAttach() 163
PopupPanel 164–165, 270
RootPanel 158, 161, 171
ScrollPanel 164, 168–170
setting styling 159
simple panel, definition 162
SimplePanel 164–170
StackPanel 174–175
standard GWT 162–182
TabBar 181
TabPanel 173, 181–182
VerticalPanel 160–161,

170, 177–178, 253
_parent frame name 430
parentMenu 423
parkComponent 190
parse 445
password entry, securing 140
PasswordTextBox 140, 433
Perl 443

using with JSON 465–467
permutations 94

reducing number of for
testing 562

PHP 410
Pjax 393
PNGImage 147–148

onBrowserEvent() 150
sinkEvents() 150

PNGImageImpl 149
PNGImageImplIE6 149
polling 392

comparison to blocking server
threads 398

issues 392–393
techniques 392–401

PopupListener 124, 232
onPopupClosed() 232

PopupPanel 164–165,
208, 231, 270

pop-ups, reacting to
closing 231–232

POST 413–414, 456
prefetch() 128
PRETTY option 90
PrintWriter 483
process() 400
production environment,

configuring 550–552

INDEX 593

program code, as
JavaScript 576–578

project
creating 47–50
importing into Eclipse 60–61
organizing 540–548

project files, separating from
other pages 544

projectCreator 44, 47–48,
50, 91, 353

projectCreator tool 47
properties 495

defining 328–330
defining initial value 496
defining new 328
definition in module

XML 495–496
determining value through

code 496
extending 328–330
extending in module

XML 495
managing 327–332
managing differences

330–332
user defined 520–523
user specified 521

properties file 14
encoding 70
format 69
hierarchy 70
key/value separator 69
UTF-8 69

property error function
registering 569–571

property provider 330
establishing 567–568
tag 496
user-specified 521–522

property replacement 501–502
PropertyOracle 479–480

getPropertyValue() 480
providing code to determine

properties 330
proxy 351, 461
proxy classes 361
proxy object 366, 384

casting to
ServiceDefTarget 368–369

creating 368
proxy service 461

public attribute 51
public folder 364
public tag 326
Pushlet 393

R

radio buttons 434
RadioButton 138–139, 434

grouping together 139
reader methods 406
rebind 476
rebind decision files,

removing 541–542
reducing complexity 382
reflection 361
refresh rate 393
registering Generator class

333–334
releaseCapture() 237, 239
remote calls,

encapsulating 382–384
Remote Procedure Call. See RPC
remote server

calling 368–370
restrictions for communicat-

ing with 351–353
remote service call

making 370
RemoteService interface

361, 364, 368
extending 361–362

RemoteServiceServlet
363, 372, 553

removeChangeListener 259
removeMenu() 275
removing history files 543
<replace-with> 541
replacing class due to property

values 332–333
Request

cancel() method 415
checking status 415
isPending() method 415
setting properties 414

request.getParameter() 415
RequestBuilder 423, 439, 455

loading XML data 417–424
RPC 414–417
sendRequest() method 415
with Ajax 410–424

RequestBuilder.GET 414
RequestBuilder.POST 414
RequestCallback 416, 538

onError() method 416
onResponseReceived()

method 416
RequestException 415
request-response cycle 411, 464
resources, injecting at

runtime 334–337
Response

checking status codes 416
getHeader() 417
getHeaders() 417
getHeadersAsString() 417
getStatusText() 417

ResponseCallback 456
Result property 453
ResultSet 452
right mouse clicks,

capturing 206
ROOT directory 551
RootPanel 35, 80, 158,

161, 171, 379
RootPanel.get() method 80
RootPanel.get().add(widget/

panel) 199
RPC 16, 94, 111, 326, 348

installing servlets 548–553
logging 391
underlying concepts 348–356
with RequestBuilder 414–417

Ruby 443
using with JSON 467–469

Ruby on Rails 29
RubyForge 467
RubyGems 467
running tests 531–532
runtime errors 532
RuntimeException 150, 262

S

Scalar Vector Graphics 13
schedulable class 395–398
schedule() 395
scheduleRepeating() 395
scheduling tasks 392–401
script.aculo.us 252
Scriptaculous 341

use in the Dashboard 341

594 INDEX

scrolling 168
ScrollListeners 224–226
ScrollPanel 164, 168–170

ensureVisible() 169
setAlwaysShowScrollBars()

169
setHorizontalPosition() 169
setScrollPosition() 169

search component, creating with
JSON 450–460

SearchResultsHandler 456
searchString 456
security 351
_self 420, 429
sendRequest() 424
serializable data objects 371

following rules for client-side
code 358

SerializableException 363
serialization 348, 402, 405

custom, implementing
404–407

types supported by GWT 357
SerializationException 404–406
SerializationStreamReader

404–406
SerializationStreamWriter 405
serialize() 403, 405–406
serializers

class 403–404
custom 402–407
custom, class rules 403
custom, reasons to write 402

server
contacting 348
implementing blocking

399–401
server package 365
server proxy 462
server resources, defining for an

application 326–327
Server Status 234, 348, 552

creating 353–356
encapsulating 376–382
encapsulation 376
updating 393

server threads
blocking 398–401

server-push 351, 392–393
emulating 398–401
unavailable to browsers 398

ServerService 363, 382–383
server-side 4–6, 23

classes 372
code 364
GWT-RPC 99, 360
Java compliance 81, 415
JSON 450
logging information 103
service implementation

363–364, 371
successful response 416
testing functions 537–539
throw exception 370

ServerStatsUpdater 385, 390
ServerStatus 131, 232
ServerStatusComponent,

creating 378
ServerStatusService_Proxy 366
ServerStatusServiceAsync 367
service implementation

363–365, 371
service proxy 366, 372
ServiceDefTarget 367–369
services

calling from client 372–374
server-side

implementation 371–372
<servlet> 365, 550
servlet configuration 549–550
servlet containers 548–549, 552

Apache Tomcat 548
servlet path setting 365
servlet tag 365
ServletFileUpload 438
ServletFileUpload.isMultipart-

Content 438
<servlet-mapping> 553
servlets 326, 463

configuration file 549
mapping to URL 553
RPC, installing 548–553

Set 362
setAutoOpen() 123
setCancelled() 428
setCapture() 237
setElement() 114
setHorizontalAlignment() 161
setHTML() 166
setName() 427
setOnKeepCallback() 313
setPopupPosition() 238

setSecondComponent() 153
setServiceEntryPoint() 367–368
setStyleName() 268
setText() 166, 377
setTextLabel() 262
setting application's entry

point 337
setting path to public

resources 325
setting source code path

325–326
setUrl() 128
setVerticalAlignment() 161
setVisibleItemCount(number)

136
setWidget() 166, 190
short readShort() 407
simple panels, defined 162
SimplePanel 164–170, 427

add() 153
insert() 153

Singleton pattern 382
sinkEvent() 202
sinkEvents() 145, 147
sinking events 197, 200–203
sleep command 399
Slider

creating 270–273
GridSlider 273
HorizontalSlider 273
onMouseDrag() 271
VerticalSlider 273

slider index 272
Slideshow 119, 128
software patterns 376
source attribute 51
SourceKeyboardEvents 252
SourcesChangeEvents

220, 256, 272
SourcesClickEvents 212–213,

252, 256
checking for instanceof 262
required methods 259

SourcesEvents 214
SourcesMouseEvents 211, 256

required methods 259
SourceWriter 478, 482
sprintf() 466
StackPanel() 174–175

getSelectedIndex() 175
setStackText() 175

INDEX 595

stale connections 401
standard applications 566–567

bootstrapping 567–572
startUpdateTimer() 396–397
static-string

internationalization
503–516

status codes, checking 416
stdin 468
stopUpdateTimer() 397
String readString() 407
stringValue() 446, 460
strong typing 280
style argument 90, 96

adding to component
380–382

-style DETAILED 573
style names, default 85
-style PRETTY 573
style sheet

injecting 336–337
linking into HTML 83

styling 83–86
subclasses, serializable 358
submenu, reader method

419–420
submit button 425
sunk events

linking to
onBrowserEvent() 207–208

managing 203–207
super() 147
superclasses, serializable 358
Swing 25

T

tab index 133, 168
Tab Listener,

onTabSelected() 233
TabBar 181
table performance, large

table 180
TableListener 178, 234

onCellClicked() 234
TabListener 181

onBeforeTabSelect() 233
TabPanel 173, 181–182
test runners 531–532
TestCase

assertEquals() 530

assertFalse() 530
assertNotNull() 530
assertNull() 530
assertSame() 530
available assertions 530
creating new 534–537
fail() 530
failSame() 531
setUp() 533
tearDown() 533
writing 529–531

test-driven development 528
testing

asynchronous code 537–539
cleaning up 533–534
GWT code, with JUnit

528–539
handling errors 532–533
in hosted mode 86–94
naming methods 529
not meant for cleanup 533
running 531–532
setting up 533–534

TestRunner 531
text

capturing 432
capturing long 433
displaying as a label 131–132
displaying on an

application 131–133
entering a single line 140–141
entering multiple lines 140
hiding, with

PasswordTextBox 433
making active 132–133

TextArea 140, 248, 252, 433
setCharacterWidth() 140
setVisibleLines() 140

TextBox 140–141, 248, 252,
427, 432, 454

adding a
KeyboardListener 262

cancelKey() 141
setMaxLength() 141
setVisibleLength() 141

TextBoxBase 115, 139, 143, 252
getCursorPos() 139
getSelectedText() 139
getSelectionLength() 139
getText() 139
selectAll() 139

setCursorPos() 139
setText() 139

theLabel.setWidth() 131
third-party libraries 13

altering module XML file 341
changing necessary

classpaths 340
JavaScript, accessing 278
using 339–341

Thread.sleep() 400
timed events 394
timeout 400, 439

value 401
Timer 392, 394–395, 397

cancel() method 395
run() method 395
schedule() method 395
scheduleRepeating()

method 395
timer events, triggering 395
ToggleMenuItem 151, 154–155

getState() 155
toggleShow() 204
tokenizer 464
Tomcat. See Apache Tomcat
Tooltip 231
_top frame name 429
<tr> 161
transient fields 358
TrashIcon 216
Tree 124–127

onTreeItemSelect() 236
setImageBase() 543

tree_closed.gif 542
tree_open.gif 542
tree_white.gif 542
TreeItem 124–127

getChild(int index) 126
getChildCount() 126
getChildIndex(TreeItem)

126
getParentItem() 127
getState() 126
getTree() 126
image files 542
images, cleaning up 542–543
isSelected() 127
onTreeItemSelected() 126
onTreeItemStateChanged()

126
setWidget 127

596 INDEX

TreeItem(Widget)
constructor 127

TreeListener 126, 235
onTreeItemStateChanges()

235
TreeLogger 476
treeLogger argument 95
tryCreate() 483
TwoComponentMenuItem

124, 150–153
type structure, generating

482–483
typeArgs annotation

359, 362–363
TypeOracle 478, 486
types

generating 472–473

U

UIObject 115, 162
setHeight() 116
setPixelSize() 117
setSize() 117
setStyleAttribute() 116

Uniform Resource Locator. See
URL

unit test cases 57–59
unsinkEvents() 146–147, 205
update() 396–397
UpdateableComposite 395–396
updateResultsArea() 459
updating component 393–398
uploading files

FileUpload 436–439
FormPanel 425

URI.encode() 469
URI::Escape 466
uri_escape() 467
URL 412

calling with
RequestBuilder 414

class 412
escaping 412
maximum length in GET 413
query 412

user agent 464
User GWT module 82
User.gwt.xml file 321

user-defined code, calling from a
library 312–314

UTF-8 encoding 70

V

variable scope 297
Vector 362, 574–576
Vector.get(int) 575
VerticalPanel 160–161, 170,

177–178, 253, 427

W

weak coupling 382
web mode 573

preparing for 95
running an application 99

web server, deploying to 98
web.xml 98, 548–549
webapps directory 550–551
WEB-INF 549

classes directory 551
lib directory 551

whitelist argument 87
Widget class 117, 162
WidgetCollection 170
widgets 12–13

adding to a page 199
adopting 184
applying styling 138
basic 118
Button 137–138, 248, 252
ButtonBase 137
CheckBox 138
composite 247, 251
creating 141–150, 197
creating by extending an exist-

ing widget 142, 146–150
creating by extending the

DOM 142–146
definition of 111–112
difference from panels 163
disowning 184
DOM elements 113–115
FileUpload 118–119, 143–146
FocusWidget 133–141,

143, 167
Frame 134
getElement() 114

Google Video Search 306
grouping 117
hiding from screen 113
hierarchy 116
HTML 132–133, 252
Hyperlink 119–120
Image 127–131
Label 131–132, 248, 252
ListBox 135–137
MenuBar 121–124
MenuItem 121–124, 150–155
NamedFrame 134
onAttach() 199
PasswordTextBox 140
PNGImage 147–148, 332
RadioButton 138–139
removing from a page 200
setElement() 114
setFocus() 134
setting style class name 113
setting visibility of 263
sinking events 114
standard in GWT 115–141
style-naming convention 268
styling 117
TextArea 140, 248, 252
TextBox 140–141, 248, 252
TextBoxBase 139, 143
ToggleMenuItem

151, 154–155
Tree 124–127
TreeItem 124–127
TwoComponentMenuItem

150–153
using as Java objects 112–113

Window 34, 290
alert() 291
confirm() 291
enableScrolling() 291
getScrollleft() 293
getSrollTop() 293
open() 430
prompt() 313
setTitle() 128

Window Close listeners
onWindowClosed() 228
onWindowClosing() 228

WindowCloseListener
122, 227–231

INDEX 597

WindowResizeListener
226–227, 271

onWidowResizing() 227
windows features 430
writeBoolean(boolean

value) 406
writeByte(byte value) 406
writeChar(char value) 406
writeDouble(double value) 406
writeFloat(float value) 406
writeInt(int value) 406

writeLong(long value) 406
writeObject(Object value) 406
writer methods 405
writeShort(short value) 406
writeString(String value) 406

X

XML configuration file 417
XML data, loading with

RequestBuilder 417–424
XML handling 111

XMLHttpRequest 350, 410
XMLParser 418

Y

Yahoo 450
Yahoo search API 451–453

parameters 451
Yahoo search component

453–455, 469
Yahoo search proxy service

461–469

	GWT in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	about the title
	about the cover illustration
	Getting started
	Introducing GWT
	1.1 A walk through GWT
	1.1.1 Explaining GWT's Java-to-JavaScript compiler
	1.1.2 Using JSNI to execute JavaScript from Java
	1.1.3 Accessing the JRE emulation library
	1.1.4 Understanding GWT's widget and panel library
	1.1.5 Examining GWT’s internationalization and configuration tools
	1.1.6 Calling remote procedures with GWT
	1.1.7 Investigating GWT’s XML parser
	1.1.8 Managing the browser history
	1.1.9 Introducing GWT’s JUnit integration

	1.2 GWT vs. other solutions
	1.2.1 GWT vs. Swing
	1.2.2 GWT vs. Echo2
	1.2.3 GWT vs. JavaServer Faces
	1.2.4 GWT vs. Ruby on Rails

	1.3 Building your first GWT application
	1.3.1 Building and running an example application
	1.3.2 Building Tic-Tac-Toe with GWT

	1.4 Summary

	Creating the default application
	2.1 The GWT application development lifecycle
	2.2 Stage 1: Creating a GWT application
	2.2.1 Creating the project
	2.2.2 Creating an application
	2.2.3 Setting up internationalization
	2.2.4 Implementing internationalization
	2.2.5 Creating unit test cases
	2.2.6 Importing into your IDE

	2.3 Summary

	Advancing to your own application
	3.1 Describing the application example
	3.2 Stage 2: Developing your application
	3.2.1 Implementing internationalization
	3.2.2 Constructing the application
	3.2.3 Applying styling

	3.3 Stage 3: Testing and debugging in hosted mode
	3.3.1 Preparing for hosted mode
	3.3.2 Running the Dashboard in hosted mode
	3.3.3 Debugging the Dashboard in hosted mode through Eclipse

	3.4 Stage 4: Compiling the code
	3.4.1 Compiling the code/preparing for web mode
	3.4.2 Viewing the compilation results

	3.5 Stage 5: Deploying the code
	3.5.1 Deploying to a web server
	3.5.2 Deploying to a filesystem

	3.6 Stage 6: Running in web mode
	3.7 Implementing application logging
	3.7.1 Logging information on the client-side
	3.7.2 Logging information on the server-side

	3.8 Summary

	Building user interfaces
	Working with widgets
	4.1 What is a widget?
	4.1.1 Using widgets as Java objects
	4.1.2 Considering widgets as DOM elements

	4.2 The standard GWT widgets
	4.2.1 Interacting with the basic widgets
	4.2.2 Displaying text on the application
	4.2.3 Grabbing the user’s interaction using focus widgets
	4.2.4 Getting user input through text input

	4.3 Creating new widgets
	4.3.1 Creating new widgets by manipulating the DOM
	4.3.2 Creating new widgets by extending existing widgets

	4.4 Developing the Dashboard’s ToggleMenuItem widget
	4.4.1 Building the TwoComponentMenuItem
	4.4.2 Building the ToggleMenuItem

	4.5 Summary

	Working with panels
	5.1 What is a panel?
	5.1.1 Using panels as Java Objects
	5.1.2 Considering panels as DOM elements

	5.2 The standard GWT panels
	5.2.1 Interacting with simple panels
	5.2.2 Considering more complex panels
	5.2.3 Considering HTML table-based panels
	5.2.4 Considering composite panels
	5.2.5 Splitting panels

	5.3 Creating new panels
	5.3.1 Creating a new panel from scratch
	5.3.2 Creating a new panel by extending an existing panel

	5.4 Creating the Dashboard panel
	5.5 Summary

	Handling events
	6.1 Exploring events
	6.1.1 Identifying event model browser differences
	6.1.2 Understanding the GWT event model

	6.2 Listening to events
	6.2.1 Sinking events
	6.2.2 Managing sunk events with the onBrowserEvent() method
	6.2.3 Linking sunk events to the onBrowserEvent() method
	6.2.4 Previewing events
	6.2.5 Handling events by extending the listener classes
	6.2.6 Moving events further into your GWT code
	6.2.7 Preventing default browser event handling

	6.3 Handling standard browser events
	6.3.1 Reacting to change
	6.3.2 Clicking around
	6.3.3 Gaining/Losing focus
	6.3.4 Capturing keyboard inputs
	6.3.5 Loading images
	6.3.6 Managing mouse inputs
	6.3.7 Scrolling
	6.3.8 Window resize events
	6.3.9 Window close events

	6.4 Handling other event types
	6.4.1 Handling forms
	6.4.2 Reacting to closing pop-ups
	6.4.3 Tab events
	6.4.4 Tabling events
	6.4.5 Tree events

	6.5 Implementing drag-and-drop
	6.5.1 Implementing the drag part
	6.5.2 Implementing the drop part

	6.6 Summary

	Creating composite widgets
	7.1 What is a composite widget?
	7.2 Composite widget development steps
	7.3 Building the editable label
	7.3.1 Step 1: Identifying the components
	7.3.2 Step 2: Choosing the panel layout and structure
	7.3.3 Step 3: Implementing the right GWT Java interfaces
	7.3.4 Step 4: Building the composite widget
	7.3.5 Step 5: Styling the composite widget

	7.4 Creating a composite widget from other composite widgets
	7.4.1 Creating a slider
	7.4.2 Constructing the ColourPicker composite

	7.5 Creating the Dashboard composite
	7.6 Summary

	Building JSNI components
	8.1 Introducing JavaScript Native Interface (JSNI)
	8.1.1 Understanding JSNI
	8.2 Communicating using JSNI
	8.2.1 Chatting to the browser via GWT Java
	8.2.2 Chatting to the browser via JavaScript
	8.2.3 Talking to a GWT application via a JavaScript API
	8.2.4 Talking between GWT applications

	8.3 Loading a JavaScript library
	8.3.1 Using HTML to load a JavaScript library
	8.3.2 Using the module XML to load a JavaScript library

	8.4 Wrapping a simple JavaScript library
	8.4.1 Accessing the loaded JavaScript library
	8.4.2 Using the widget in an application

	8.5 Wrapping a complex JavaScript library
	8.5.1 Generating the classes
	8.5.2 Keeping JavaScript objects as Java objects
	8.5.3 Calling user-defined code from a library
	8.5.4 Using a complex wrapped widget in an application

	8.6 Summary

	Modularizing an application
	9.1 Creating a modularization structure
	9.1.1 Modularization in GWT
	9.1.2 Including other modules in an application
	9.1.3 Setting source and other resource paths
	9.1.4 Defining an application’s server resources
	9.1.5 Managing an application’s GWT properties
	9.1.6 Replacing classes based on property values
	9.1.7 Registering generators in the XML module file
	9.1.8 Injecting resources into an application at runtime
	9.1.9 Setting an application’s entry point
	9.1.10 The Dashboard’s module XML file

	9.2 Including third-party modules
	9.3 Packaging your own modules
	9.4 Creating the Java package structure
	9.5 Summary

	Advanced techniques
	Communicating with GWT-RPC
	10.1 Underlying RPC concepts
	10.1.1 Understanding asynchronous communication
	10.1.2 Restrictions for communicating with remote servers
	10.1.3 Creating the Server Status project

	10.2 Implementing GWT-RPC
	10.2.1 Understanding serializable data objects
	10.2.2 Defining the GWT-RPC service
	10.2.3 Preparing the client side of a GWT-RPC call
	10.2.4 Calling the remote server service

	10.3 Project summary
	10.3.1 Project overview
	10.3.2 Server-side service implementation
	10.3.3 Calling the service from the client

	10.4 Summary

	Examining client-side RPC architecture
	11.1 Structuring the client code
	11.1.1 Encapsulating the Server Status component
	11.1.2 Encapsulating remote calls in a façade
	11.1.3 Callback routine using the Command pattern

	11.2 Examining different polling techniques
	11.2.1 Understanding polling issues
	11.2.2 Implementing a continuously updating component
	11.2.3 Emulating server-push by blocking server threads

	11.3 Writing custom field serializers
	11.3.1 Creating a custom field serializer class
	11.3.2 Implementing custom field serialization

	11.4 Summary

	Classic Ajax and HTML forms
	12.1 Classic Ajax with RequestBuilder
	12.1.1 Examining HTTP methods
	12.1.2 Simple RPC with RequestBuilder
	12.1.3 Using RequestBuilder to load XML data

	12.2 Examining FormPanel basics
	12.2.1 Introducing the FormPanel
	12.2.2 Listening to FormPanel events
	12.2.3 Altering the FormPanel target
	12.2.4 Using the various form controls

	12.3 Summary

	Achieving interoperability with JSON
	13.1 Introducing JavaScript Object Notation (JSON)
	13.1.1 Understanding the JSON data format
	13.1.2 Using JSONParser to parse JSON messages

	13.2 Examining GWT’s JSON data objects
	13.2.1 Introducing the JSONValue object
	13.2.2 Examining basic JSON types
	13.2.3 Storing JSONValue objects in a JSONArray
	13.2.4 Collecting JSONValue objects in a JSONObject

	13.3 Creating a search component using JSON
	13.3.1 Examining the Yahoo Search API
	13.3.2 Implementing the Yahoo search component
	13.3.3 Sending JSON data to the server
	13.3.4 Parsing and validating a JSON server response

	13.4 Implementing a Yahoo Search proxy service
	13.4.1 Using JSON with Java on the server
	13.4.2 Using JSON with Perl on the server
	13.4.3 Using JSON with Ruby on the server

	13.5 Summary

	Automatically generating new code
	14.1 Generating new types
	14.2 Investigating GWT generators
	14.2.1 Basic generator code

	14.3 Creating a generator for the Dashboard
	14.3.1 Accessing the input class
	14.3.2 Accessing properties of the context
	14.3.3 Adding logging to a generator
	14.3.4 Generating the new type structure
	14.3.5 Creating the new class
	14.3.6 Using the classes that have been generated

	14.4 Summary

	Changing applications based on GWT properties
	15.1 Quick summary of properties
	15.2 Managing browser differences
	15.2.1 How GWT manages browser differences
	15.2.2 Building the Flash widget
	15.2.3 Setting up the property replacement

	15.3 Supporting internationalization in full
	15.3.1 Using static-string internationalization
	15.3.2 Using dynamic string internationalization

	15.4 Altering the application for the locale
	15.4.1 Implementing the default component
	15.4.2 Locale-specific classes

	15.5 Implementing user-defined properties
	15.5.1 Defining user-specified properties
	15.5.2 Defining a user-specified property provider
	15.5.3 Checking the provided property value
	15.5.4 Building the code

	15.6 Summary

	Completing the understanding
	Testing and deploying GWT applications
	16.1 Testing GWT code using JUnit
	16.1.1 Overview of JUnit for GWT developers
	16.1.2 Creating a new test case
	16.1.3 Testing asynchronous code

	16.2 Deploying GWT applications
	16.2.1 Organizing your project
	16.2.2 Installing RPC servlets

	16.3 Summary

	Peeking into how GWT works
	17.1 Examining the compilation process and output
	17.1.1 Investigating compilation
	17.1.2 Examining the output

	17.2 The GWT application-loading mechanism
	17.2.1 Legacy applications
	17.2.2 Standard applications
	17.2.3 Bootstrapping the standard application
	17.2.4 Cross-script applications

	17.3 Compiling Java to JavaScript
	17.3.1 Exploring the produced JavaScript
	17.3.2 Reviewing standard Java objects: the vector object
	17.3.3 Exploring program code as JavaScript
	17.3.4 Understanding the initialization code segment

	17.4 Summary

	index

