
Beijing • Cambridge • Farnham • K�ln • Sebastopol • Taipei • Tokyo

Head First

Android Development

Wouldn’t it be dreamy if
there was a book on Android

development that could turn me
into an expert while keeping me
engaged and entertained? But it’s

probably just a fantasy...

Jonathan Simon

http://

Head First Android Development

by Jonathan Simon

Copyright © 2011 Jonathan Simon. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are

also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales

department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Editor: Brian Sawyer

Cover Designers: Karen Montgomery

Production Editor: TK

Indexer: TK

Proofreader: TK

Page Viewers: Felisa

Printing History:

October 2011: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,

Head First Android Development and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark

claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no

responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-1-449-39330-4

[M]

Felisa

http://

you are here 4 iii

dedication

Ella Simon
2002 - 2011

This book is dedicated to our dog...

Our super-cute
dog, Ella, that
sadly passed away.
We love you!!

I miss
you Ella!

Ella’s sister,
Billie

http://

iv

the author

Author of Head First Android Development

Before the modern smartphone era,

Jonathan Simon was coding away at the

cool phones of the day, writing low level UI

frameworks and debugging tiny screens (back

when 176x220 was huge!) with a magnifying

glass. Since then, he’s worked with all kinds

of phones, even the new ones with big fancy

schmancy screens.

Before working with mobile devices, Jonathan

spent a good six years working on Wall Street

designing and building user interfaces for

trading systems. And no, it’s not his fault the

stock market tanked, honest! He also can’t give

you any stock tips. (Sorry!)

When he’s not coding or designing, he’s

probably hanging out with his wife, Felisa,

or their dog, Billie. Otherwise, he’s probably

riding (or building) a bike or perfecting his

espresso extraction.

Jonathan Simon

One of Jonathan’s espresso
shots. It took MANY of
these to write this book.

http://

table of contents

v

Table of Contents (the real thing)

So you’re thinking: “What makes Android so special?�

Android is a free and open operating system from Google that runs on all kinds

of devices from phones, to tablets and even televisions. That’s a ton of different

devices you can target with just one platform! (And the market share is gaining

too!) Google provides all of the stuff you need to get started building Android apps

for free. You can build your Android apps on Macs, Windows, or Unix and publish

your apps for next to nothing (with no need for anyone’s approval). Ready to get

started? Great! You’re going to start building your first Android app, but first there

are a few things to set up...

Your First App

Table of Contents (Summary)
 Intro xi

1 Your first app: Meet Android 1

2 Give your app an action: Adding behavior 41

3 Pictures from space: Work with feeds 79

4 When things take time: Long-running processes 123

5 Run your app everywhere: Multiple-device support

6 Tablets are not just big phones: Optimizing for tablets

7 Building a list-based app: Lists and adapters 167

8 Navigation in Android: Multi-screen apps 205

9 Database persistence: Store your stuff with SQLite 265

10 RelativeLayout: It’s all relative 313

11 Give your app some polish: Tweaking your UI 345

12 Make the most of what you can use: Content proficers 393

i Leftovers: The Top Ten Things (We Didn’t Cover)

http://

table of contents

vi

Your first app

1
meet android

So you’re thinking: “What makes Android so special? �

Android is a free and open operating system from Google that runs on all kinds

of devices from phones, to tablets and even televisions. That’s a ton of different

devices you can target with just one platform! (And the market share is gaining

too!) Google provides all of the stuff you need to get started building Android apps

for free. You can build your Android apps on Macs, Windows, or Unix and publish

your apps for next to nothing (with no need for anyone’s approval). Ready to get

started? Great! You’re going to start building your first Android app, but first there

are a few things to setup...

Give your app an action

Apps are interactive� When it comes to apps, it’s what your users can

do with your apps that make them love ‘em. As you saw in Chapter 1, Android

really separates out the visual definition of your apps (remember all that

XML layout and String resource work you just did!) from the behavior that’s

defined in Java code. In this chapter, you’re going to add some behavior to the

AndroidLove haiku app. And in the process you’ll learn how the XML resources

and Java work seamlessly together to give you a great way to build your Android

apps!

adding behavior

2

Pictures from space!

3
work with feeds

RSS feeds are everywhere� From weather and stock information to

news and blogs, huge amounts of content are distributed in RSS feeds and just

waiting to be used in your apps. In fact, the RSS feed publishers want you to use

them! In this chapter, you’ll learn how to build your own app that incorporates

content from a public RSS feed on the Web. Along the way, you’ll also learn a little

more about layouts, permissions, and debugging.

http://

table of contents

vii

When things take time

It would be great if everything happened instantly. Unfortunately,

some things just take time. This is especially true on mobile devices, where network

latency and the occasionally slow processors in phones can cause things to take a

bit longer. You can make your apps faster with optimizations, but some things just

take time. But you can learn how to manage long-running processes better. In this

chapter, you’ll learn how to show active and passive status to your users. You’ll also

learn how to perform expensive operations off the UI thread to guarantee your app is

always responsive.

long-running processes

4

Run your app everywhere

5
multiple-device support

There are a lot of different sized Android devices out

there� You’ve got big screens, little screens, and everything in between. And it’s

your job to support them all! Sounds crazy, right? You’re probably thinking right

now “How can I possibly support all of these different devices?” But with the

right strategies, you’ll be able to target all of these devices in no time and with

confidence. In this chapter, you’ll learn how Android classifies all of these different

devices into groups based on screen size as well as screen density. Using these

groups, you’ll be able to make your app look great on all of these different devices,

and all with a manageable amount of work!

Tablets are not just big phones

6
optimizing for tablets

Android tablets are coming onto the scene� These new larger-

format Android devices give you an entirely new hardware format to present new

and cool apps to your users. But they are not just big phones! In this chapter,

you’ll learn hot to get your app up and running on a tablet. You’ll learn about the

new screen size groupings and also how to use Fragments to combine multiple

Activities on a single screen. So more importantly then just running on tablets in

this chapter, you’ll learn about how to make your app work better on them.

http://

table of contents

viii

8
Navigation

multi-screen apps

Eventually you’ll need to build apps with more than one

screen�. So far, all of the apps you’ve built only have a single screen. But the

great apps you’re going to build may need more than that! In this chapter, you’ll

learn how to do just that. You’ll build an app with a couple of screens, and you’ll

learn how to create a new Activity and layout which was previously done for you

by the Wizard. You’ll learn how to navigate between screens and even pass data

between them. You’ll also learn how to make your own Android context men- the

menu that pops up when press the Menu button!

9
Store your stuff with SQLite

In memory data storage only gets you so far� In the last chapter,

you built a list adapter that only stored data in memory. But if you want the app to

remember data between sessions, you need to persist the data. There are a few ways

to persist data in Android including writing directly to files and using the built in SQLite

database. In this chapter, you’ll learn to use the more robust SQLite database solution.

You learn how to create and manage your own SQLite database. You’ll also learn how

to integrate that SQLite datase with the ListView in the TimeTracker app. And don’t

worry, if you’re new to SQL, you’ll learn enough to get started and pointers to more

information.

database persistence

Building a list-based app

Where would we be without lists? They display read-only information,

provide a way for users to select from large data sets, or even act as navigational

device by building up an app with a list-based menu structure. In this chapter, you’ll

learn how to build an app with a list. You learn about where lists store data (in Adapters)

and how to customize how that data is rendered in your list. You’ll also learn about

adding additional layouts to your app (not just the layout that the Wizard creates for

you) and turn that into a real view.

lists and adapters

7

http://

table of contents

ix

Giving your app some polish

11
tweaking your ui

With all the competition in the marketplace, your apps

must do more than just work� They have to look great doing

it! Sometimes, basic graphics and layouts will work. But other times, you’ll need to

crank it up a notch. In this chapter, you’ll learn about a new layout manager called

Relative Layout. It’ll let you lay out your screens in ways that you just can’t do with

LinearLayout and help you code your designs just the way you want them. You’ll

also learn more techniques for using images to polish up the look and feel of your

app. Get your app noticed!

Make the best of what you can use

You don’t want to reinvent the wheel, do you? Of course you

don’t; you’ve got apps to build! Well, one of the awesome benefits of Android is the

ease in which you can use bits of other applications with content providers. Android

apps can expose functionality they want to share and you can use that in your apps.

But this doesn’t work only for market apps; a number of built-in apps (like the Address

Book) expose stuff you can use in your apps too. In this chapter, you’ll learn how to

use content providers in your app. And who knows, you might like this whole content

provider thing so much, you’ll decide to provide some of your own content to other

apps!

content providers

12

It’s all relative

10
relativelayout

You’ve created a few screens now using LinearLayouts

(and even nested LinearLayouts)� But that will only get you so far.

Some of the screens you’ll need to build in your own apps will need to do things

that you just cant’ do with LinearLayout. But don’t worry! Android comes with other

layouts that you can use. IN this chapter, you’ll learn about another super powerful

layout called RelativeLayout. This allows you to layout Views on screen relative to

each other (hence the name). It’s new way to layout your Views, and as you’ll see

in the chapter, a way to optimize your screen layouts.

http://

http://

xi

how to use this book

Intro

In this section we answer the burning question:

“So why DID they put that in an Android book?”

I can’t believe
they put that in
an Android book.

http://

xii intro

how to use this book

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card.]

Do you prefer stimulating dinner party conversation to dry,

dull, academic lectures?

3

Do you want to build mobile apps for an awesome mobile

OS that runs on tons of devices?

2

Are you solid with the basic Android development

fundamentals and are just looking for a guide to its

super-advanced features, like ADL or services?

2

Have you done some Java programming, but don’t

consider yourself a master?

1

Have you already mastered Android programming but

need a solid reference?

1

Are you afraid to try something different? Would you

rather have a root canal than mix stripes with plaid?

Do you believe that a technical book can’t be serious

if it anthropomorphizes control groups and objective

functions?

3

http://

you are here 4 xiii

the intro

“How can this be a serious Android development book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for something

unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things

you encounter? Everything it can to stop them from interfering with the

brain’s real job—recording things that matter. It doesn’t bother saving the

boring things; they never make it past the “this is obviously not important”

filter.

How does your brain know what’s important? Suppose you’re out for a day

hike and a tiger jumps in front of you, what happens inside your head and

body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.

You’re studying. Getting ready for an exam. Or trying to learn some tough

technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to

make sure that this obviously non-important content doesn’t clutter up scarce

resources. Resources that are better spent storing the really big things.

Like tigers. Like the danger of fire. Like how you should never have

posted those “party” photos on your Facebook page. And there’s no

simple way to tell your brain, “Hey brain, thank you very much, but

no matter how dull this book is, and how little I’m registering on the

emotional Richter scale right now, I really do want you to keep this

stuff around.”

We know what you’re thinking

We know what your brain is thinking

Your brain thinks THIS is important.

Your brai
n

thinks THIS isn’t

worth savin
g.

Great. Only 488
more dull, dry,
boring pages.

http://

xiv intro

how to use this book

So what does it take to learn something? First, you have to get it, then make sure you

don’t forget it� It’s not about pushing facts into your head� Based on the latest research

in cognitive science, neurobiology, and educational psychology, learning takes a lot

more than text on a page� We know what turns your brain on�

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning

much more effective (up to 89% improvement in recall and transfer studies). It also makes

things more understandable. Put the words within or near the graphics they

relate to, rather than on the bottom or on another page, and learners will be up to twice as

likely to solve problems related to the content.

Use a conversational and personalized style. In recent studies, students performed up to 40%

better on post-learning tests if the content spoke directly to the reader, using a first-person, conversational

style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language. Don’t take

yourself too seriously. Which would you pay more attention to: a stimulating dinner party companion, or a

lecture?

Get the learner to think more deeply. In other words, unless you actively

flex your neurons, nothing much happens in your head. A reader has to be motivated,

engaged, curious, and inspired to solve problems, draw conclusions, and generate new

knowledge. And for that, you need challenges, exercises, and thought-provoking questions,

and activities that involve both sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this but I can’t stay

awake past page one” experience. Your brain pays attention to things that are out of the ordinary, interesting,

strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have to be boring. Your

brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something

is largely dependent on its emotional content. You remember what you care about.

You remember when you feel something. No, we’re not talking heart-wrenching

stories about a boy and his dog. We’re talking emotions like surprise, curiosity, fun,

“what the...?” , and the feeling of “I Rule!” that comes when you solve a puzzle, learn

something everybody else thinks is hard, or realize you know something that “I’m

more technical than thou” Bob from engineering doesn’t.

We think of a “Head First” reader as a learner.

http://

you are here 4 xv

the intro

Metacognit ion: thinking about thinking
I wonder how

I can trick my brain
into remembering
this stuff...

If you really want to learn, and you want to learn more quickly and more

deeply, pay attention to how you pay attention. Think about how you think.

Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we

were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn

Android. And you probably don’t want to spend a lot of time. If you want to

use what you read in this book, you need to remember what you read. And for

that, you’ve got to understand it. To get the most from this book, or any book

or learning experience, take responsibility for your brain. Your brain on this

content.

The trick is to get your brain to see the new material you’re learning as

Really Important. Crucial to your well-being. As important as a tiger.

Otherwise, you’re in for a constant battle, with your brain doing its best to

keep the new content from sticking.

So just how DO you get your brain to treat Android

like it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The

slow way is about sheer repetition. You obviously know that you are able to learn

and remember even the dullest of topics if you keep pounding the same thing into your

brain. With enough repetition, your brain says, “This doesn’t feel important to him, but he

keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different

types of brain activity. The things on the previous page are a big part of the solution,

and they’re all things that have been proven to help your brain work in your favor. For

example, studies show that putting words within the pictures they describe (as opposed to

somewhere else in the page, like a caption or in the body text) causes your brain to try to

makes sense of how the words and picture relate, and this causes more neurons to fire.

More neurons firing = more chances for your brain to get that this is something worth

paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they

perceive that they’re in a conversation, since they’re expected to follow along and hold up

their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”

is between you and a book! On the other hand, if the writing style is formal and dry, your

brain perceives it the same way you experience being lectured to while sitting in a roomful

of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning…

http://

xvi intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s

concerned, a picture really is worth a thousand words. And when text and pictures work

together, we embedded the text in the pictures because your brain works more effectively

when the text is within the thing the text refers to, as opposed to in a caption or buried in the

text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,

and multiple senses, to increase the chance that the content gets coded into more than one area

of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,

and we used pictures and ideas with at least some emotional content, because your brain

is tuned to pay attention to the biochemistry of emotions. That which causes you to feel

something is more likely to be remembered, even if that feeling is nothing more than a little

humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more

attention when it believes you’re in a conversation than if it thinks you’re passively listening

to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember

more when you do things than when you read about things. And we made the exercises

challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while

someone else wants to understand the big picture first, and someone else just wants to see

an example. But regardless of your own learning preference, everyone benefits from seeing the

same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you

engage, the more likely you are to learn and remember, and the longer you can stay focused.

Since working one side of the brain often means giving the other side a chance to rest, you

can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,

because your brain is tuned to learn more deeply when it’s forced to make evaluations and

judgments.

We included challenges, with exercises, and by asking questions that don’t always have

a straight answer, because your brain is tuned to learn and remember when it has to work at

something. Think about it—you can’t get your body in shape just by watching people at the

gym. But we did our best to make sure that when you’re working hard, it’s on the right things.

That you’re not spending one extra dendrite processing a hard-to-understand example,

or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.

And your brain pays more attention to people than it does to things.

http://

you are here 4 xvii

the intro

So, we did our part. The rest is up to you. These tips are a

starting point; listen to your brain and figure out what works

for you and what doesn’t. Try new things.

6 Drink water. Lots of it.

Your brain works best in a nice bath of fluid.

Dehydration (which can happen before you ever

feel thirsty) decreases cognitive function.

9 Get your hands dirty!

There’s only one way to learn to Android: get

your hands dirty. And that’s what you’re going to

do throughout this book. Android Development

is a skill, and the only way to get good at it is to

practice. We’re going to give you a lot of practice:

every chapter has exercises that pose a problem for

you to solve. Don’t just skip over them—a lot of the

learning happens when you solve the exercises. We

included a solution to each exercise—don’t be afraid

to peek at the solution if you get stuck! (It’s easy to

get snagged on something small.) But try to solve

the problem before you look at the solution. And

definitely get it working before you move on to the

next part of the book.

8 Feel something.

Your brain needs to know that this matters. Get

involved with the stories. Make up your own

captions for the photos. Groaning over a bad joke

is still better than feeling nothing at all.

7 Listen to your brain.

Pay attention to whether your brain is getting

overloaded. If you find yourself starting to skim

the surface or forget what you just read, it’s time

for a break. Once you go past a certain point, you

won’t learn faster by trying to shove more in, and

you might even hurt the process.

5 Talk about it. Out loud.

Speaking activates a different part of the brain. If

you’re trying to understand something, or increase

your chance of remembering it later, say it out loud.

Better still, try to explain it out loud to someone else.

You’ll learn more quickly, and you might uncover

ideas you hadn’t known were there when you were

reading about it.

4 Make this the last thing you read before bed.

Or at least the last challenging thing.

Part of the learning (especially the transfer to

long-term memory) happens after you put the book

down. Your brain needs time on its own, to do more

processing. If you put in something new during that

processing time, some of what you just learned will

be lost.

3 Read the “There are No Dumb Questions”

That means all of them. They’re not optional

sidebars, they’re part of the core content!

Don’t skip them.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

2 Do the exercises. Write your own notes.

We put them in, but if we did them for you, that

would be like having someone else do your workouts

for you. And don’t just look at the exercises. Use a

pencil. There’s plenty of evidence that physical

activity while learning can increase the learning.

Don’t just read. Stop and think. When the book asks

you a question, don’t just skip to the answer. Imagine

that someone really is asking the question. The

more deeply you force your brain to think, the better

chance you have of learning and remembering.

Slow down. The more you understand, the

less you have to memorize.
1

http://

xviii intro

technical review team

Paul Barry

David Griffith

Frank Maker

Herve Guihot

Technical Reviewers:

The technical rev iew team

http://

you are here 4 xix

the intro

Acknowledgments
My editor:

Brian Sawyer kept the ball rolling all through this process.

I had to learn a lot to pull this off, and he always made sure

I was hooked up with the right folks to help me get it done!

My design editor:

Dawn Griffiths used her keen design sense and Head

First touch to make these pages more beautiful and more

learner friendly.

My wife:

As with everything else in my life, this book would not

have been possible without my totally super awesome wife,

Felisa! She listened to countless hours of discussion on

Android, as well as the finer points of teaching it Head First.

Undoubtedly, she rocks!

Brian Sawyer

Felisa Wolfe-Simon

http://

xx intro

safari books online

Safari® Books Online
When you see a Safari® icon on the cover of your favorite

technology book that means the book is available online through

the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily

search thousands of top tech books, cut and paste code samples, download chapters,

and find quick answers when you need the most accurate, current information. Try it

for free at http://my.safaribooksonline.com/?portal=oreilly.

http://

this is a new chapter 1

meet android1

Your first app

So you’re thinking: “What makes Android so special? � Android is

a free and open operating system from Google that runs on all kinds of devices from

phones, to tablets and even televisions. That’s a ton of different devices you can target

with just one platform. (And the market share is gaining too). Google provides everything

you need to get started building Android apps for free. And you can build your Android

apps on either Mac, Windows, or Unix and publish your apps for next to nothing (and with

no need for anyone’s approval). Ready to get started? Great! You’re going to start building

your first Android app, but first there are a few things to setup...

Wait, Android is
a Free and Open
Source mobile OS?
That’s crazy!

No, wearing that suit with
that tie is crazy! But, hey,
you summed up Android
pretty well.

http://

2 Chapter 1

why android

So you want to build an Android app...
Maybe your an Android user, you already know Java and

want to get in on the mobile craze, or you just love the open

operating system and hardware distribution choices of Android.

Whatever your reason, you’ve come to the right place.

Android already runs on a TON of different devices!

With careful planning, you’re app can run on all of these

Android powered devices. From phones and tablets, to TVs and

even home automation, Android is spreading quickly.

Your one app
can run on all
these devices...

Tablets.
TVs.

Phones.

http://

you are here 4 3

your first app

And it’s growing!

-- Google’s Head of Android, Andy Rubin, via Twitter

“Over 500,000 Android devices [are] activated every day”

Just check out the Android Market

The Android Market has a ton of apps. There are or course

games (because we all love playing games on our phones), but

also really great apps that just make our lives better like

navigation and commuting schedule apps.

That’s a LOT of
devices in one day!

There are a lot of mobile platforms out there, but with

Android’s presence and growth, everyone is building out their

Android apps. Welcome to Android, it’s a great place to be!

Before you dig into your first app, let’s take a look at

exactly what Android is and who’s responsible for it...

The Android
Market web view
for an outdoor
exploration app
AllTrails. .

http://

4 Chapter 1

the android ecosystem

So tell me about Android...
Android is a mobile operating syetem, but it’s a

lot more than that too. There is a whole ecosystem,

a complete platform, and community that supports

Android apps getting built and on to new Android based

hardware devices.

Google maintains Android
Google maintains Android, but it’s free to use.

Device manufacturers and carriers can modify

me, and developers can build apps for free.

1 Hardware manufacturers build a device
Hardware manufactures can use the Android

operating system and build special hardware

around it. Manufacturers can even modify

Android to implement custom functionality for

their devices.

2

Google gives you the tools
Google freely distributes the tools for you to

build your own Android apps. And you can build

your apps on multiple platforms: Mac, Windows,

Linux...

3 Google also runs a Market
This is where your users can download their apps

right to their phones. Google runs one market,

but there are also others run by Amazon, and

Verizon for example. But the biggest one is still

Google’s.

4

Google manages
me, but they don’t
own me baby!

http://

you are here 4 5

your first app

With all these different
devices and OS variations, how
do you build anything at all?
Where do you even start?

In practice, it’s not so bad!

It’s true that there are a bunch of different

Android devices out there, from all kinds of

different manufacturers running different

modifications of Android. Sounds crazy right? While

it definitely takes some care tuning your apps

for these different devices, you can get started

building basic phone apps really easily. And that’s

what you’re going to do right now.

Later on in the book, you’ll learn strategies for

dealing with different types of devices like phones

with different resolutions and even designing for

phones and tablets in the same app.

Let’s get started.

Are you ready to get started?

http://

6 Chapter 1

the android rockers

Meet Pajama Death
It’s time to introduce you to an awesome

rock duo called the Pajama Death! They

love Android and love to sing about it!

They write all of their song lyrics in the form of a haiku

Pajama
Death

A haiku is an ancient Japanese form of poetry. Each

poem consists of 3 lines - the first line having 5 syllables,

the second 7 syllables, and the third line 5 syllables just

like the first. These poems are meant to be meaningful,

yet compact... just like your Android apps!

http://

you are here 4 7

your first app

I dreamed of a phone!
Open source and Hackable...

Android for the win!!

They’re about to play their favorite song for you!
This one’s called... Android Love!

But they need your help!

OK, let’s get started...

They want to make an app with the Android Love

lyrics to hand out to their fans. But they are Android

users not Android developers. They heard that

you were learning to build your own Android apps.

They were wondering if you would build the app for

them. And how could you say no? Of course you’ll

do it, you’re a huge fan!

http://

8 Chapter 1

I dreamed of an phone
open source and hackable Android for the win!

Android Love

getting started

Getting started
Just asking you to build an app isn’t a lot to go on. So

the Pajama Death made a napkin sketch of what

they want the app to look like. It’s an app showing the

haiku, with each line of the haiku on a new line.

This looks great
but how do I start
building it?

First you’ve got some setup to do

Since this is your first Android app, you’ll need

to setup your development environment. Let’s

start with a quick look at what you need in your

development environment to build Android

apps. Form there, you’ll install your own

development environment, then build the app

for Pajama Death!

Here are the lyrics to the
song. Since it’s a haiku in
three lines, each line of the
haiku goes on its own line.

Every app needs a title.
Since the song is called
Android Love, call the app
‘Android Love’ too.

http://

you are here 4 9

your first app

Meet the android development environment

Android

Development

Tools (ADT)

Android

Software

Development

Kit (SDK)

Eclipse IDE

2.1 2.3

The Android development environment

is made up of several parts that seamlessly

work together for you to build Android

apps. Let’s take a closer look at each one.

2.2

Eclipse Integrated Development
Enviroment (IDE)
The Eclipse Integrated Development

Environment (IDE for short) is where you’ll

write your code. Eclipse is a generic IDE,

not specific to Android development. It’s

managed by the Eclipse foundation.

1

Android Development Tools (ADT)
The Android Development Tools (ADT)

is an Eclipse plugin that adds Android

specific functionality to Eclipse.

2

Software Development Kit (SDK)
The Android Software Development Kit

(SDK) contains all of the lower level tools

to build, run and test your Android apps.

The ADT is really just a user interface, and

the guts of the app building all happens

here in the ADT.

3

Android Packages
You can develop and support multiple

versions of Android from the same

developmentw environment. These

packages add functionality to the base

SDK to let you develop for that Android

4

Eclipse is managed
by the eclipse
foundation.

Everything else is
managed by google.

You can use Mac,
Windows or Linux to
build Android apps.

http://

10 Chapter 1

your development environment

You don’t have to use Eclipse.

But it certainly makes things easier. The full

integrated Android development environment

works well as a whole to help you easily build

Android apps.

But everything you need to build and test your

Android apps is the Android SDK and Android

Packages. If you really cant live without your

favorite development environment,. you can use it

in conjunction with the SDK without Eclipse and

still build Android apps.

Even though you can use the
SDK without Eclipse, all of the
examples in this book will use
Eclipse and the ADT plugin.

Choosing your IDE
Eclipse may be a fine IDE, but

what if you don’t want to use it.

You may have your own IDE of

choice that you’d rather use... I will only write code
in VI or Emacs. Does
this mean I can’t
write Android apps?

http://

you are here 4 11

your first app

There’s some major
app construction projects
up ahead. Don’t go any
further until you’ve
installed your IDE!

Set up your development environment

You won’t be able to build your apps until your

development environment is setup! Follow our

nifty Android development environment setup

instructions over the next few pages and you’ll be

ready to build your apps!

Turn the page for instructions

on setting up your own Android

development environment...

http://

12 Chapter 1

eclipse and the SDK

Download, install and launch eclipse

http://www.eclipse.org/downloads

Eclipse is a free and open source IDE managed by the Eclipse

foundation (started and managed by IBM, but a very open

community). You can download Eclipse for free from the eclipse.

org. There are a number of different versions of Eclipse optimized

for different types of development. You should download the latest

version of Eclipse Classic for your Operating System.

After you download Eclipse, follow the installation instructions for

your platform and launch Eclipse. When you launch Eclipse for the

first time, you will be prompted to enter a workspace location;

a directory where all of your Eclipse projects and settings will be

stored. Feel free to use the default or enter your own.

Enter your
workspace location
directory here.

http://

you are here 4 13

your first app

Doanload and install the SDK

http://developer.android.com/sdk/index.html

Download the SDK

for your platform

The Android SDK contains the core tools

needed to build and run Android apps. This

includes the Android emulator, builder, docs

and more. You can download the SDK from

android.developer.com.

Once you download the SDK zip file, unzip it

to your hard drive and the SDK is ready to go.

Now let’s setup the ADT...

http://

14 Chapter 1

the eclipse plugin

https://dl-ssl.google.com/android/eclipse

Install the ADT
The Android Development Tools (ADT) are the glue that

seamlessly connects the Android specific SDK with Eclipse.

The ADT is an Eclipse plugin, and it installs through the

standard Eclipse plugin installation mechanism (so this

should look very familiar if you’re an experienced Eclipse

user).

From your Eclipse window, select Help → Install new

software. This will bring up the Available Software window.

Since this is being installed from scratch, you’ll need to

create a new site for the ADT.

Available
Software
window.

Enter this
URL into the
text field.

Press Add...

Name it
Android.

Press OK.

http://

you are here 4 15

your first app

Configure the ADT

Select “Android” from
the Preferences list.

Enter the path where you
unzipped the Android SDK.

The ADT is just the glue between the SDK and Eclipse, so

the ADT needs to know where the SDK is installed.

Set the SDK location in the ADT by going to Window →

Preferences in Eclipse, selecting Android from the left panel,

and selecting the directory where you installed the Android

SDK.

Geek Bits

It’s a good idea to add the <SDK-install-directory>/

tools directory to your path. The SDK includes a number of

command line tools and it’s convenient to be able to launch them

without having to type in complete paths.

Press OK.

http://

16 Chapter 1

installing packages

Install android packages
The SDK is designed to allow you to work with

multiple versions of Android in the same development

environment. To keep downloads small, the SDK version

packages are separated from the SDK. (This also allows

you to update to new versions of Android without having

to redownload the entire SDK. Pretty slick!)

You can configure the installed packages in the SDK

from the Android SDK and AVD Manager (another

added bonus of the ADT). Open the manager by

selecting Window → Android SDK and AVD Manager.

From the left pane, select “Available Packages”. Android SDK
and AVD
manager.

Expand this item to
view all the available
packages.

Select
available
packages.

When you expand the tree node, you’ll see a combination

of SDK Tools, SDK platforms, samples documentation

and more. These are all plugins to the SDK that you can

add to expand the functionality of the SDK. (This way

you can download and install the SDK once and keep

adding new functionality to it as new versions come out).

http://

you are here 4 17

your first app

Select
android
2.3.3.

Select “SDK Platform

Android 2.3.3” and

press “Install Selected”.

Press “Instal
Selected”

Do this!

Q: What about the samples should I install those?

A: Google put together a set of sample apps that show off a

bunch of features and techniques in the platform. They won’t be

used in the book, but they are extremely useful. If you want to

learn about something not covered in the book, the samples are a

great place to start.

Q: And what about Tools? Should I install those too?

A: The tools inside the SDK can also get updated as new

functionality is released in the Android platform. It’s a good idea to

keep these up to date.

http://

18 Chapter 1

make your own project

Make a new Android app project
Now that you have your environment setup, it’s time to make

your first project.

The Eclipse ADT plugin comes with a Wizard to create

new Android apps. All you have to do is enter a few bits of

information into the wizard, and it makes a fully functional

(but very boring) application for you.

Launch the New Android Project wizard by going to File →

New → Android Project, then fill in the fields to make your

new project!

Call the project
“AndroidLove”

New Android
Project wizard.

Call the project “AndroidLove”. This
is the app name your users will see.

Set the package name to “android.
love”. This will be used for the java
package name in your project.

Leave “Create Activity” checked Call
the Activity “HaikuDisplay”. This will
generate the behavior code for your
screen displaying the hauki.

http://

you are here 4 19

your first app

What’s in an Android project?
Wizards are great because they do a lot of basic setup

for you. But what did that wizard do anyway? Here’s

a quick look at the basic Android project that the

wizard created. To look at the project contents, click

on the “Package Explorer” tab in Eclipse.

App Behavior in Java code
The behavior of Android apps is built with Java

code. This code controls what happens when

buttons are pressed, calls to servers, and any

other behavior that your app is doing. Your

android projects have a source directory where

all of the Java code lives.

The Eclipse
Package
Explorer tab.

Binary assets
Great apps need to do more than just

deliver great functionality... they need

to look great doing it. You’ll be using

images to style your app and give them

custom polished looks. The images

and other raw binary resources in this

directory are included in your app.

Resources and XML layouts
For Android apps, layouts are primarily

defined in XML rather than code. All sorts

of other properties are defined in XML too

- like string values, colors, and more. These

XML files are stored in the res directory.
Configuration files
Your app now has Java code, XML resources, and

binary assets that define it. Configuration files are

the glue that holds all of it together. Everything from

the title of your app on the Android home screen, to

the different screens in your app are defined in these

configuration files.

http://

20 Chapter 1

run your app

The Android SDK includes an Android emulator

desktop application that simulates a complete running

Android device. It runs a full basic android operating

system and the default set of Android apps. It’s

obviously not a complete hardware Android device,

but it’s about as close as you can get with hardware

emulation!

Running Android emulator.

You can
simulate touch
screen “presses”
by clicking on
the screen with
your mouse.

The emulator
also includes
hardware
buttons like a
keyboard and
the Android
hard buttons.

Run the project!

Test run your apps using the Android emulator

At this point, your new project is all ready to run!

The wizard not only setup a project for you, but also

created a very basic runnable Android app. How

cool is that!

http://

you are here 4 21

your first app

To run an Android app from Eclipse, select “Run → Run”

and you’ll see a dialog that prompts you for how you want

to run the project. Since your project is an Android app,

select “Android Application” and click on “OK”.

But instead of seeing an Android app running, you’ll see

the following dialog.

Alternatively, you can run your android apps by pressing

the “play” button on the Eclipse toolbar.

Play button

Eclipse toolbar.

Test Drive

Select Android
Application

Press OK.

http://

22 Chapter 1

what’s an AVD?

Wait, I thought you
said I could run the app
right out of the box!
Were you lying to me?

The app is fine to run.

The issue isn’t with the app the wizard

generated, the issue is that there no way to run

it. Your Android development environment

can built apps for multiple Android versions,

hardware configurations and screen sizes. So

when you try and run your app, the Android

tools don’t know what type of device you want

to run your app on.

The solution is to create Android Virtual

Devices (or AVD for short) that defines a

particular device’s software version and

hardware format to run your app in. You

can think of an AVD as like a saved emulator

configuration.

Since you don’t have an AVD setup already

(and there are no stock AVDs in the Android

SDK) you have to make your own.

Click Yes on the dialog

to take you to the AVD

creation screen.
Do this!

Why won’t the app run?
The app didn’t run, and instead you

were faced with a dialog with an error

about a target not being found and

asking you to create a Virtual Device.

http://

you are here 4 23

your first app

Setup an emulator configuration
Clicking yes on the dialog to create a new AVD takes

you to the Android SDK and AVD Manager window.

This is the same place you configured the SDK, but

now the “Virtual Devices” panel is selected. From

here, you’ll be able to create a new AVD.

Give your configuration a name.

Select Android 2.3.3.

Enter 512 here, this will give
the emilator a 512 MB virtual
SD card, general testing.

Click
“Create
AVD”

Click new.to create
a new configuration.

Android SDK and AVD Manager

http://

24 Chapter 1

born to run

Now that you have an emulator configuration set up, run the app again.

Run it the same was as before by pressing the play button in the toolbar.

This will first launch the emulator and automatically install your app on

the emulator and start your app.

Your app running in
the emulator!

The emulator you
configured

Test Drive

Cool! Your first working app ...

http://

you are here 4 25

your first app

Head First: Hey there, Android Emulator. I wanted

to start by thanking you for joining us tonight.

Android Emulator: Well, since I am software I do

have to do what you tell me. Just kidding! Happy to

be here, as always.

Head First: Fantastic! Just to clear the air here,

there’s been some confusion out in the development

community. Are you a real Android device or, dare I

say, an imposter?

Android Emulator: I’m neither, actually. I’m not

a hardware device, but I’m as close to one as you’re

going to get with pure software.

Head First: If you’re not a real device, why exactly

should we use you?

Android Emulator: There are some serious

benefits to me being fully software. For starters, it’s

easy to quickly test and debug your software without

having to carry around a hardware device. Plus,

since I’m fully virtual, I can run as different devices

at the same time. If you didn’t use me you’d have to

carry around a bag of phones!

Head First: Sounds complicated. How do you keep

it all straight?

Android Emulator: Well that’s exactly what

the emulator configurations are for! They tell

me everything I need to know, from hardware

configuration (like screen size), and device

capabilities (like wireless latency), and even the

version of Android. Everything I need to know about

what device I’m supposed to act like is right there!

Head First: Neat! So not only is it easier to use you

than a real device for testing, but I can test on all

different kinds of devices and Android versions using

you instead of keeping a stack of Android devices

around!

Android Emulator: Precisely my friend. Precisely.

Head First: That all sounds great, but if there’s one

thing I’ve learned it’s that nothing is ever that easy.

What’s the catch?

Android Emulator: The catch is that since I’m not

a real device, there are some subtle differences in

how I work than a real hardware device.

Head First: For example?

Android Emulator: Well, GPS is a good example.

When I’m running, I sort of spoof a location based

on your computers location, but I’m not really using

GPS, so I can’t be your only test. Photos are another

good example. I don’t have my own camera, so I

have to fake it a little.

Head First: Sounds like mostly hardware specific

differences.

Android Emulator: Pretty much. I am emulating

Android hardware devices after all.

Head First: I think I’ve got it. You’re really

useful for basic testing, with a number of different

configurations. But if I need to test something

hardware specific, nothing beats real world

hardware.

Android Emulator: Bingo!

Head First: Great. Thanks for joining us! Now,

don’t you have some apps to run?

Android Emulator: Sheesh! Always making me

work! Anyway, always a pleasure. I’m off to help

more developers test their apps!

The Android Emulator Exposed
This week’s interview:

Getting to Know the Emulator

http://

26 Chapter 1

next steps

This app is OK... but the
whole point is to show the
haiku lyrics to our fans!
This isn’t the haiku!

It’s OK. You’re not that far off...

OK, it’s true. Your app isn’t displaying a

haiku. But take a step back and compare the

app you have with the app that was sketched

out. You’ll see they are pretty close.

Let’s get some feedback!
You’ve just got your first (although pretty boring)

app up and running. Before going on, let’s get

some quick feedback.

http://

you are here 4 27

your first app

I dreamed of an phone
open source and hackable
Android for the win!

Android Love

They both have titles.

(And the title in your app

already matches the sketch)

Both have text in
the body, but your
app’s text (the
hello world stuff)
doesn;t match the
sketch.

Check for differences
The app you have and the sketch for the app

you want are pretty similar. The only difference

is that the main text display is displaying a

boring hello world message instead of the haiku.

Now you just need to replace the boring string

with the haiku and you’ll be done with the app.

Start by looking at the layout

There is an XML layout that was generated by the

wizard. This is what control the visual display of

your app. Let’s take a look at the layout and locate

where the string is being set.

But how do you
change the string
displaying in the app?

http://

28 Chapter 1

screen layouts

Locate the layout
Android layouts are defined in XML There was one

layout created for you by the wizard called main.

xml. Navigate to /res/layout/main.xml in the

exlipse package explorer and double click on it.

These directories hold
resources for specific
screen resolutions. You’ll
learn more about these
later in the book.

Navigate to the main.xml

file in the Eclipse package

explorer. Double click on

the file to open it.

Do this!
res

drawable-

hdpi

drawable-

mdpi

drawable-

ldpi

layouts

values

main

.xml Double click main.xml to open the layout.

http://

you are here 4 29

your first app

I was expecting to
see the raw XML, since
this is an XML file.
What is this?

The main.xml file
open in Eclipse.

When you double click main.xml and open it, you’ll

this new pane opened up in Eclipse.

This is a graphical editor provided by the ADT

Many of the files used to build your Android apps are XML

based. The ADT Eclipse plugin includes graphical editors for

these files that help you edit them.

Now that you’ve seen the visual representation of the XML

layout, you can also view the raw XML that the editor is

displaying...

View the layout

http://

30 Chapter 1

what’s in a layout

The graphical editors are just a facade over

the XML underneath. So don’t worry, if you

want feel all super-coder, you can always jump

in edit the XML source. Or you can use the

graphical editors, or a mix of both!

Click the main.xml tab on the
bottom to view the XML.

Here is the same
information from the
graphical display in
text XML format.

The layout XML

Q: Can I edit the XML text here, or do I have to use the

graphic editor.

A: The graphical editor just graphically displayed the contents of

the XML text file. If you update the XML code, Android will keep the

graphical editor in sync.

Q: Can I use both the graphical editor and the text editor, or

do I have to choose?

A: Sure you can use both! If you make changes in the graphical

editor and switch to the text view, you’ll see your changes.

Likewise, if you make changes in the text and switch to the

graphical view, you’ll see your changes there too! So` switch back

and forth as much as you like!

http://

you are here 4 31

your first app

A closer look at the layout XML

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

<TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/hello"

 />

</LinearLayout>

Android XML layouts consist of a number

of user interface components called Views,

and layout managers called ViewGroups.

The generated main.xml layout has one

ViewGroup with a single View inside it.

Since the TextView is displaying text, the String must

be set in there somehow. Let’s take a closer look...

The main.xml
layout XML code.

The ViewGroup, in this
case a LinearLayout
fills the screen.

The View inside the
layout is a TextView, a
View specifically made
to display text.

main�xml

XML

http://

32 Chapter 1

resource values

<TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/hello"

 />

Take a closer look at the TextView
Android Views are declared in XML layouts

along with a number of attributes to configure

them. Let’s take a look at the generated

TextView from the layout and look at it’s

properties.

These XML properties
define the width and
height of the view.

This attribute sets
the text on the view.

The TextView
declaration
from main.xml

Hold on, not so fast! The property seems
to be setting the TextView’s text to “@
string/hello” but the app says “Hello
World, HaikuDisplay!”. What gives?

Android loves resource properties

It’s a good practice to move details of your user interface

to property files. Developers have long since done this with

text strings in their apps to spell check easier or prepare for

internationalization. Similar needs hold true for colors, font

sizes, image names and more!

The “@string/hello” isn’t the string itself, but rather a

pointer into a String property file.

Now look at the property files and locate

the String definition.

http://

you are here 4 33

your first app

Android value files
Right below layouts in the res folder is a folder called

values. This folder contains the Android resource value

files for your app. Open the folder and you’ll see a single

file named strings.xml. Double click strings.xml

to open it.

drawable-

hdpi

drawable-

mdpi

drawable-

ldpi

layouts

strings

.xml

Navigate to the strings.

xml file in the Eclipse

package explorer. Double

click on the file to open it.

values

Let’s see what’s inside...

Here is the Android
Resources file with
the app’s strings.

Do this!

res

Layout files
are in here

Value files,
including Strings.
xml are in here.

http://

34 Chapter 1

Geek Bits
The raw XML showing
name/value strings resources.

string values

Open the strings.xml file
Opening the strings.xml file will display another

Android graphical editor in the main Eclipse pane.

This editor is similar to the graphical layout editor,

except that it display Android resources.

If you haven’t
already, navigate
to the res/values/
strings.xml file in
the Eclipse package
explorer Double
click on the file to
open.

The strings.xml file
opened in Eclipse.

Click the strings.
xml tab to view
the XML.

Just another graphical editor

This is just another Android

graphical XML editor. Click on the

tab on the bottom right to view the

raw XML if you want. This works

with all XML file graphical editors.

http://

you are here 4 35

your first app

Look at the values
You can edit any of the values by select an item

from the list on the left of the pane. Once you

select an item, a second panel will display showing

the name and the value for that item.

Select a
resource
item to edit

Once selected, a new
panel displays where you
can edit the name and
value of the item.

Select the first element

labeled “hello” from the list.

There is the hello
world sting displaying
in the app!

Do this!

Now that you see where the string is located, where can you edit it? Can

you edit the string in the graphical editor? In the raw XML?

http://

36 Chapter 1

editing string values

 Remember to

save your files.

When you edit
an XML file
in an Android

graphical editor, it generates
the underlying XML. But that
underlying XML is just like
any other kind of text file to
Eclipse and has to be saved
after editing. After you make
changes in a graphical editor,
make sure to save before you
run.

Edit the string
With a resource selected from the Resource Elements

list, the name and value are editable on the right panel

(In this case labeled “Attributes for hello (String)”. Edit

the “hello” Resource Element’s value to the haiku.

The attribute name
and value have
editable text fields.
Changing them here
will update the value
in your app.

Edit the Value of the hello Resource Attribute with

the following text “I dreamed of a phone\

nOpen source and hackable\nAndroid

for the win!”. (The \n’s make new lines so

the haiku will display on three lines.)

Do this!

http://

you are here 4 37

your first app

With the “hello” Resource Element updated with the poem, run

the app again and make sure it shows your changes.

There’s
the haiku
displaying
in the app!

Great job! The haiku is displaying in your app.

Test Drive

http://

38 Chapter 1

android toolbox

You built your first app using the tools Google provides to

help you get started quickly. Your development environment

is up and running with Eclipse, the ADT plugin, and SDK

configured to use an up-to-date Android version. And you

modified the basic generated app to make it your own.

Stay tuned for a new feature that Pajama Death want toadd

to the app...

You’re off to a great start!

Great work, Now we have
an awesome way for our
fans to see the lyrics to our
favorite song!

After seeing this
we’ve got some more
ideas. We hope you can
help us out!

http://

your first app

you are here 4 39

Installation Check List
• Install Eclipse (if you don’t have it

installed already).

• Install the Android SDK.

• Install the ADT Eclipse Plugin.

• Install the SDK packages.

• Configure the ADT.

• Build your awesome Android app!

Project Contents
• Screen layouts and resources (defined in XML)

• App behavior (defined in Java source code)

• Binary assets (like images and fonts) included directly in the project
• Configuration files (mostly XML)

Your Android Toolbox

Now that you built your first

Android app, you’re starting to

build your toolbox of Android

skills!

CHAPT
ER 1

 � Get your Eclipse-based Android

development environment up and running!.

 � It’s a good idea to add the SDK directory to

your path (while you’re in a configuration

mindset) so you can easily run Android

tools later from the command line.

 � Setup an emulator configuration for you

target Android version. And don’t limit

yourself: feel free to setup a bunch of them!

 � Create new Android projects using the

Eclipse “New Android Project” Wizard.

From there, modify the generated app to

make it your own.

 � Layouts are defined in XML and you can

find them in /res/layouts.

 � Values (like strings) are defined in Android

Resource XML files. They can e found in /

res/values.

 � When you open an Android XML file in

Eclipse, you’ll see a graphical editor to help

you modify these files. If you want to view

or edit the raw XML text, click on the right

tab on the bottom of the editor.

 � You can go back and forth editing XML

files in the graphical editor or text. Just

remember to save your files when you use

the graphic editor!

http://

http://

this is a new chapter 41

give your app an action2

Adding behavior

Apps are interactive� When it comes to apps, it’s what your users can do with

your apps that make them love ‘em. As you saw in Chapter 1, Android really separates

out the visual definition of your apps (remember all that XML layout and String resource

work you just did!) from the behavior that’s defined in Java code. In this chapter, you’re

going to add some behavior to the AndroidLove haiku app. And in the process you’ll

learn how the XML resources and Java work seamlessly together to give you a great way

to build your Android apps!

It’s like harding
cattle trying to
organize this crowd to
do anything!. Sheesh!

http://

42 Chapter 2

adding behavior

Make your app interactive

We want the app to
rock! But right now it
just displays the haiku...

Yeah, we want it to do
something! I’m thinking
we hide the haiku and add
a button our fans have to
push to show it! Let me
sketch it out...

Let’s see what Pajama Death have in mind...

http://

you are here 4 43

working with feeds

The Pajama Death app update with an action button

Pajama Death sketched out what they were thinking so you could build it. They added a button on top of the haiku,

and hide the haiku on launch. Then when you push the button the haiku shows up!

Show me some Android love!

Add a button to
the app to show
the haiku

HIde the
haiku when
the ap loads.

Click!

The haiku is
displayed after
the click

If you’re thinking this looks great, but you

have no idea where to start... turn the page!

Show me some Android love!

http://

44 Chapter 2

the plan

Here’s how you’re going to do it

1. Add the button

You’re going to add a new button to your app’s screen.

Eventually, this button will show the haiku, but not

in this first step. This is the first time you’ll be adding

a brand new component to a screen and you’ll learn

what components are available and how to add them

to your app screens.

You’ve got some work to do. So let’s break it down into a few

steps. First off, you’ll be starting with the AndroidLove

app project form Chapter 1, and making a few

modifications to it.

Open the Android Love project now if you don’t still

have it open from Chapter 1.

The AndroidLove
app as you left it
at the end of the
last chapter.

Open the AndroidLove

project from Chapter

1 if you don’t already

have it open.

The new
button.

Show me some Android love!

Do this!

http://

you are here 4 45

working with feeds

2 Hide the haiku text

3. Make the button show the haiku

After adding the button, you’re going to hide the

haiku text. The button still won’t do anything and

you won’t see the haiku text at all, but hey, you’re

making progress! Here you’re going to learn about

the different attributes you can set on your widgets

from XML.

Next, you’re going to wire up the button

to show the haiku. This is going to be your

first taste of Java coding as you connect

the Java behavior to the XML screens.

This is where the magic happens!

The text
is hidden.

Show me some Android love!
Click!

The button
action that
shows the haiku.

Show me some Android love!

You’ve got your project open and you’re ready to start working on this

new action. The first step is adding the button. Which file do you need to

open to add the button?

http://

46 Chapter 2

a new button

Add the button
You worked with the main.xml layout file in Chapter

1 that defines the entire layout for your app’s screen.

This is where you’re going to add the new button to

your app. Open main.xmlby by double clicking on it.

You can find it under /res/layout/main.xml.

In Chapter 1, you edited the XML layout in the raw

XML source. Now you’re going to add a component

using the graphical editor. Click on the ‘Graphical

Layout’ tab to view the layout in the graphical editor

if it isn’t already showing. Notice all of the Views in

the list on the left side of the screen.

Open main.xml now. You

can find it under /res/

layout/main.xml.

These are all of
the different
Views available to
you in Android.

You can add views to your screen by dragging
them from the list onto your screen.

Do this!

http://

you are here 4 47

working with feeds

Adding a View Up Close
Let’s take a closer look at adding the button using the Graphical

Layout editor.

Click on the
Button and
drag it to
the top of
the layout.

Drag the button all
the way to the top
and you’ll see an orange
dotted line where the
button will be added.

After you add the button it’ll look like this.

Here’s the
button you
just added.

The added XML
declaration to
create the Button.

 Click on the button on the left panel and drag it to the top of the

graphical layout. You’ll notice an dotted line display where the button is

going render. Make sure it goes at the top.

1

 Now click back to the main.xml showing the XML. You’ll the first

View defined in the file is the Button you just added!
2

http://

48 Chapter 2

button text

Fix the button text
It’s great that the button is on the screen now, but not so great

that the button text is showing up as “@+id/Button01”. Let’s

see about changing that.

Here’s the button with the
weirdo button text showing
up as “@+id/Button01”

Why is the button text showing up like this?

 <TextView android:text=”@string/haiku”

 android:id=”@+id/haikuTextView”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content” />

To get to the bottom of this, compare the View XML

declarations of the TextView displaying the hauki and

the Button you just added. Focus on the text properties of

each View.

The haiku TextView android:text property is

referring to the haiku string property in strings.xml.

The haiku TextView
XML declaration from
main.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="haiku">I dreamed of a phone \nOpen Source

 and Hackable \nAndroid for the win!</string>

 <string name="app_name">AndroidLove</string>

</resources>

XML

main�xml

XML

strings.xml

The android:text attribute is
set to “@string/haiku” which
references the haiku String
resource in strings.xml

Jagged edges

http://

you are here 4 49

working with feeds

 <Button android:text=”@+id/Button01”

 android:id=”@+id/Button01”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

The new Button
XML declaration.

Now look at the Button definition
The Button definition’s android:text attribute

value doesn’t have the “@string/” prefix. It just has

“@+id/Button01” as it’s value.

The android:text
attribute is referring
to Button01.

XML

main�xml

Wait a second! There
is no Button01 string
property in strings.xml.
What gives?

There are string properties
for “haiku” and “app_name”
but nothing for “Button01”

The answer lies in the prefix...

The value for the android:text

property in the TextView is referring

to a String resource in strings.xml.

But there is no string resource for

the Button!

http://

50 Chapter 2

referencing strings

The @string prefix
Take another look at the haiku TextView text attribute

and you’ll see it has a special prefix “@string/”. That

special prefix tells the view rendering code to look into the

strings.xml file for a string property. And even though

the Button has a prefix before Button01, it’s not the

special “@string/” prefix so it doesn’t work.

 <TextView android:text=”@string/haiku”

 <Button android:text=”@+id/Button01”

The TextView’s text has the
“@string/” prefix.

The Button doesn’t have the
special “@string/” prefix.

Using the @string prefix

NOT using the @string prefix

Q: If the Button is missing the @
string prefix, how is it displaying

any text at all?

A: If the Android view rendering code

doesn’t detect the @string prefix to look

up a key in the strings.xml file, it

renders the value in the android:text

directly.

Q: Is that why the button says

“@+id/Button01” because

it’s rendering directly from the

android:text property?

A: Exactly.

Q: Hey cool! So why are we messing

with strings.xml file at all? Couldn’t I

just put all of my strings directly in the

layouts and call it a day?

A: Technically, yes. But it’s not the best

idea. The string resource element was

designed to remove string constants from

your layouts. It’s a good idea to keep them

separate, and Android is setup to handle

this out of the box.

http://

you are here 4 51

working with feeds

Add a string resource for the button

Below is the the contents of the strings.xml file. Add a new String property called

“love_button_text” and give it a value of “Show me some Android love!”

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="haiku">I dreamed of a phone\nOpen Source

 and Hackable\nAndroid for the win!</string>

 <string name="app_name">AndroidLove</string>

</resources>

The fix for this is going to include two changes. You’ll

need to add a new string property in strings.xml,

and then you’ll need to update the Button definition

in main.xml.

Let’s start by adding the new string resource. Open

strings.xml and click on the strings.xml.

This is where you’re to add the new String property

and you’ll do it directly in XML!

Here is the format.

Add the new property here.

Start the element
with String. This is so
android knows it’s a
String resource.

<string name="haiku">I dreamed of a phone \nOpen Source
 and Hackable \nAndroid for the win!</string>

Give it a name, that’s what
you’ll use to reference this
string in your layout.

The value is the
actual string you
want to display.

http://

52 Chapter 2

using the string resource

Below is the the contents of the strings.xml file. You should have added a new String property

called “love_button_text” and given it a value of “Show me some Android love!”

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="haiku">I dreamed of a phone\nOpen Source

 and Hackable\nAndroid for the win!</string>

 <string name="app_name">AndroidLove</string>

</resources>

<string name="love_button_text">Show me some Android love!</string>

The element is a
String element.

The element has a
name attribute of

“love_button_text”.

And the value is set
to “Show me some
Android love!”

Now you just need to use it!

You just added the String resource for love_button_text. Now

it’s time to plug it into the Button declaration in main.xml to set

the text.

http://

you are here 4 53

working with feeds

Below is the main.xml layout. Now that you have the love_

button_text property, use it in the Button definition to set the

text form the strings.xml resources.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

<Button android:id="@+id/Button01"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text=” “

 />

<TextView android:text="@string/haiku"

 android:id="@+id/haikuTextView"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content" />

</LinearLayout>

Use the “@string/”
prefix plus the String
resource name here
to have the Button
reference the String
resource you just added.

http://

54 Chapter 2

testing the new string

Below is the main.xml layout. Now that you have the love_

button_text property, you should have used it in the Button

definition to set the text form the strings.xml resources.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

<Button

 android:id="@+id/Button01"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text=” “

 />

<TextView android:text="@string/haiku"

 android:id="@+id/haikuTextView"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content" />

</LinearLayout>

@string/love_button_text

Here’s the prefix
telling the view
rendering to use a
String resource

And here’s the name of
the String resource to use.

http://

you are here 4 55

working with feeds

Whew! You added the Button, which had some weird text. And to fix

that, you added a new String resource, and used that new String resource

from the Button’s android:text attribute. Let’s see if it all worked!

Run the app again...

And it works! The button looks good!

The button is displayed
with the correct text
from the String resource.

Nice! You are so
totally on the right
track. Now it’s time to
hide the haiku text...

Test Drive

http://

56 Chapter 2

hiding text

Hide the haiku text
Now that the Button is added and looking good, it’s time

to move on to the next step: hiding the haiku text.

How are you going to do this?

Well, two strategies are probably coming into your head

right now. You could remove the TextView and it back

once the button is pushed or you could set the text to be

invisible and make it visible once a user presses the button.

Let’s go with the invisible text option!

OK, but that’s not a huge help, right? You need to know

how to hide text. This is something new that you haven’t

done yet and you need to know where to find out about

new things in Android. Luckily, Android comes with great

online documentation for just this reason! You can view is

at developer.android.com/reference.

You need
to hide
this text.

developer.android.com/reference

Go to the online

Android documentation

now at developer.

android.com/

reference.

Do this!

http://

you are here 4 57

working with feeds

Documentation Navigation Up Close

This area lists all
of the packes in
the documentation.
Click on one to
view the package
documentation.
In this case, the
android.widget
package is selected.

Once a package
is selected, this
section will show
all of the classes
in that package.
In this case, the
TextView is selected.

When you click on a class or a
package, the main panel will show the
details for what you’ve selected.

If you know the class you’re
looking for, but now the package,
you can type it in here to search
the documentation.

Let’s take a quick look around the Android online documentation

to get acquainted. You can navigate to what you’re looking for by

either selecting the package and class name, or searching for a class

name in the search box on the top right. Now since you’re looking

to update an attribute on the TextView, you need to look at the

TextView documentation.

http://

58 Chapter 2

android online docs

Browse the XML attributes
As you browse the documentation for TextView,

you’ll notice it has a number of Java methods, but

it also has XML attributes listed. That’s because

internally, TextView is a complete Java class.

Since you’re working with the main.xml layout

definition in XML, focus on the XML attributes.

Does any look interesting? You’re looking

for something that can hide the text...

This looks perfect!

It says it can control the “visibility of a view.” That’s

exactly what you want! Using this you can make the

entire TextView invisible when the app starts up.

So how does it work?

http://

you are here 4 59

working with feeds

View XML attribute details
If you click on any attribute, you’ll be taken to a

section that details the usage of that attribute. Click

on android:visibility, you’ll be taken to the

detail section on it’s usage.

Click here to view
the usage details for
android:visibility.

This tells us the usage is like this:

android:visibility = “invisible”

This is the name of the XML attribute, which matches the name in the docs.
Use invisible since you
want to hide the view.

Attribute values are
always in quotes.

Detailed usage for
android:visibility.

http://

60 Chapter 2

making the text invisible

It looks like you went to
the documentation for View
when you clicked on the
android:visibility attribute.
detail link. What gives?

ence/android/view/View.html#attr_android:visibility

Look in the URL after you go to the android:visibility details and you’ll see “View” in the URL now instead of “TextView”.

View is a base class that other widgets inherit from

The View.java class is a base class with several cross widget methods,

attributes, and constants. And if you look at the headers for both

Button and TextView, you’ll see that they both inherit from View.

The Android docs include superclass methods descriptions along with

the locally implemented methods (but if you look close you will see that

the android:visibility attribute was located in a section called

Inherited XML Attributes).

http://

you are here 4 61

working with feeds

Below is the main.xml layout code. Update this code with the

android:visibility set to invisible. This will hide the

TextView and with it the haiku text.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

<Button android:text="@string/love_button_text"

 android:id="@+id/Button01"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

<TextView android:text="@string/haiku"

 android:id="@+id/haikuTextView"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 />

</LinearLayout>

Add the
android:visibility
attribute here.

http://

62 Chapter 2

testing the hidden text

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

<Button android:text="@string/love_button_text"

 android:id="@+id/Button01"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

<TextView android:text="@string/haiku"

 android:id="@+id/haikuTextView"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 />

</LinearLayout>

android:visibility=”invisible”

Below is the main.xml layout code. You should have updated

this code with the android:visibility set to invisible.

This should hide the TextView and with it the haiku text.

Here’s the android:visibility attribute
set to invisible. This should hide the
whole haiku TextView!

http://

you are here 4 63

working with feeds

You’ve hidden the TextView with the haiku on it with the

android:visibility attribute. Now run the app and

make sure it worked!

The text is gone. Great job!

Setting the
android:visivibility
attribute to ‘invisible”
hid the text.

Awesome! You’ve got the
button displaying AND the
text is hidden. Now you
just have to show the text
when you press the button.

Let’s get that button working!

Test Drive

http://

64 Chapter 2

the onClick attribute

Make the button show the haiku

XML

main�xml

<Button android:text=”@+id/Button01”

 android:id=”@+id/Button01”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 />

android:onClick=”onLoveButtonClicked”

The onClick attribute
added to the Button.
Pointing to the
onLoveButtonClicked
method.

The Button
definition
from main.xml

It’s time to start making that Button work! There is

an attribute on the Button View for just this purpose

called android:onClick. The value for the

attribute is the name of the action you want to use.

Let’s use it now!
Add the android:onClick property to the

Button definition in main.xml. Give is a value of

onLoveButtonClicked to be descriptive of what

the Button is supposed to do.

http://

you are here 4 65

working with feeds

Wait a second! What is
onLoveButtonClicked? Is it more XML
code that you’re going to define in
main.xml, or somewhere else?

You’ll get an error like
this if you run your
app now and press the
button. This is because
onLoveButtonClicked
isn’t defined yet.

Actually, it’s a Java method.

It’s just not written yet...

So far, you’ve updated the screen

layout, added a new View to the screen,

modified and added String resources.

All of these changes control the way

the app starts. But for the button action,

you’ll be making a change that a user

can initiate while the app is running-

adding behavior to the app. And

Android app behavior is defined in Java.

So, let’s define onLoveButtonClicked now...

http://

66 Chapter 2

java source

Defining onLoveButtonClicked

Android

Love

Project

src

gen

assets

res

Your project’s
Java source code
is all in here.

config

files

Android

Love

.java

com

headfirst

labs

android

love

So defining onLoveButtonClicked

in the android:onClick property

on the Button is calling some kind of

Java method. But where is that method

supposed to go?

Let’s start by taking a look at the Java

source code in your project and it’s contents.

This is the package com.
headfirstlabs.android.
love that you defined
in the project creation
dialog in chapter 1. This is the only Java

source file in your
project created by the
new project wizard.

Only one Java source file created by the wizard?

Let’s take a closer look at it...

http://

you are here 4 67

working with feeds

 public class AndroidLove extends Activity {

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 }

 }

AndroidLove�java

The AndroidLove Activity
The AndroidLove class is a subclass of a built

in Android class called Activity. Think of

an Activity as the Java code that supports

a screen. And in this case, AndroidLove is

actually the Activity that supports your main

screen you’re defining in main.xml.

Double click on AndroidLove.java and

Eclipse will automatically open it in a Java editor.

The source for
AndroidLove.java

The button is expecting to call a method in this class.

Since the AndroidLove Activity is

setting the main.xml layout on the screen,

the Android action code is going to look for the

method defined in the android:onClick

attribute here. The action code is going to look

for a method in the following format.

AndroidLove extends
Activity

This code is setting the view defined

in main.xml on the screen. You’ll see
how it works soon!

public void onLoveButtonClicked View view((

The method name needs
to match the value of the
android:onClick attribute

The method needs to take one
argument of a View. This is the
view that was clicked.

http://

68 Chapter 2

action method

Add the action method

 public class AndroidLove extends Activity {

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 }

 public void onLoveButtonClicked(View view) {

 //doesn’t do anything yet

 }

 }

AndroidLove�java

You can run the app and click
the button now. Nothing will
happen, but the app won’t force
close either.

Let’s add the onLoveVuttonClicked method to

AndroidLove now. Once this is done, we can run

the app and press the button and it shouldn’t break.

The new
onLoveVuttonClicked
method that’s
referenced from the
android:onClick Button
attribute.

Run the app now and press the button. It won’t perform

any actions yet. But you also won’t see errors either.

Test Drive

http://

you are here 4 69

working with feeds

Implementing the action method
Great work so far! The Button has an action method

configured in the android:onClick property

(onLoveButtonClicked). The onLoveButtonClicked

method has an empty implementation in the AndroidLove

Activity which you’ve verified is being called since the app

doesn’t crash. Whew!

Now it’s time to implement the onLoveButtonClicked

method and make it show the text!

Implementing the action in the onLoveButtonClicked

method really consists of two parts. First, you need to get a

reference to the TextView and then you need to set the

visibility property to true. Sounds simple enough, right?

 public class AndroidLove extends Activity {

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 }

 public void onLoveButtonClicked(View view) {

 TextView haikuTextView =

 }

 }

Cool! Let’s get started...

Make a variable to reference
the haiku TextView...

 ?!?

Wait, how do you get a reference to the TextView? AndroidLove�java

http://

70 Chapter 2

bridging the java XML gap

From XML to Java
You’ve got a disconnect right now. Your screen Views

(the Button and the TextView displaying the haiku

are defined in XML in the main.xml layout. But you

action code is defined in Java in the AndroidLove

Activity. How are you supposed to get references to

XML defined Views from your Java code?

main�xml AndroidLove�java

TextView

Button

onLove

Button

Clicked

XML definitions.
Java source code

XML
defined
Views.

The button’s
action code.

How do they talk
to each other?

The ‘R’ file

To solve this, Android generated a special called the

‘R’ file. This is a file of constants that allow you to

get Java references to the TextView you defined

in main.xml In fact, you can get references to all

kinds of in app resources you define! But remember

the String resources you defined in XML? You can

get references to those too.

Open the R file now. You

can find it under gen/

com/headfirstlabs/

androidlove/R.java

Do this!

http://

you are here 4 71

working with feeds

public final class R {

 public static final class attr {}

 public static final class drawable {

 public static final int icon=0x7f020000;

 }

 public static final class id {

 public static final int Button01=0x7f050000;

 }

 public static final class layout {

 public static final int main=0x7f030000;

 }

 public static final class string {

 public static final int app_name=0x7f040001;

 public static final int haiku=0x7f040000;

 public static final int love_button_text=0x7f040002;

 }

}

R�java

The R file consists of a number of public static final

constants, each one referring to an XML resouce. The constants

are grouped into interfaces according to XML resource type.

Your R.java should look like this:

Interfaces
grouping the
constants.

Constants
referring to
XML resource.

Android provides a number of utility methods for using these

constants. Take another look at the onCreate method

from AndroidLove.java where the screen layout is set.

setContentView takes an R.java constant which was

generated from the main.xml layout.

AndroidLove�java

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

}

setContentView
is called with
the constant at
R.layout.main to
set the layout
defined in main.
xml on the screen.

The R file Way Up Close

http://

72 Chapter 2

finding views

Getting view references

Button button = (Button) findViewById(R.id.Button01)

Setting the content view from the R file is nice and all,

but what you really want to do is get a reference to the

TextView! Well, Android provides another cool utility

method called findViewById to do just that. The

findViewById method is in the base class of Activity, so

you can use it directly in the AndroidLove class since it’s

a subclass of Activity.

The findViewById method takes one parameter, the R

constant for the View. But since the method is meant to be

generic, it returns a View not one of the View subclasses

(like Button, TextView, or any other View). It’s easy

enough though, you just need to cast the result to the View

you’re expecting.

Let’s see how this works for retreiving a reference

to the button on screen.

public final class R {

 public static final class attr {}

 public static final class drawable {

 public static final int icon=0x7f020000;

 }

 public static final class id {

 public static final int Button01=0x7f050000;

 }

 public static final class layout {

 public static final int main=0x7f030000;

 }

R�java

Make a reference to
store the returned View

Cast the returned View to
the appropriate View class
you’re looking for.

View R constants
are in the ‘id’
interface group

Pass the R.id.Button01

to findViewById to get

a reference to the on

screen button.

http://

you are here 4 73

working with feeds

There’’s no android:id attribute defined in the TextView

declaration in main.xml, so no R file constant get’s generated.

Don’t worry though, you can just add one yourself! Below is the

the TextView declaration in main.xml. Add an android:id

attribute and give it a value of “haikuTextView”

<TextView android:text=”@string/haiku”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:visibility=”invisible”

/>

Give the textview an id
Take another look at the id interface inside R.java.

There is a constant for the Button but not for the

TextView. Weird, huh?

The issue here is that the R file constants for the Views

are generated based on an android:id attribute in

main.xml.

XML

main�xml

<Button android:text=”@string/love_button_text”

 android:id=”@+id/Button01”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:onClick=”onLovebuttonClicked” />

<TextView android:text=”@string/haiku”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:visibility=”invisible” />

This android:id attribute
controls the name of the
constant created for the
Button in the R file.

There’s no android:id
attribute defined in the
TextView declaration so no
R file constant is created.

http://

74 Chapter 2

java attributes

<TextView android:text=”@string/haiku”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:visibility=”invisible”

/>

There wasn’t an android:id attribute defined in the TextView

declaration in main.xml, so no R file constant get’s generated.

Below is the the TextView declaration in main.xml. You should

have added an android:id attribute and given it a value of

“haikuTextView” so an R file constant will getgenerated.

android:id=”@+id/haikuTextView”

Complementary Java methods
Most of the properties you can set from XML can also be set

from code. This is important since you need to make the haiku

TextView visible from the v action in Java. Let’s take another look

at the TextView documentation for android:visibility

and look for the complementary Java method.

setVisibility is the
complementary method
to the android:visibility
attribute.

Method details
for setVisibility.

The constants are in the View base class, so
you can refer to them as View.VISIBLE, View.
INVISIBLE, and View.GONE.

http://

you are here 4 75

working with feeds

The Complete Action Magnets
You’ve got all the pieces you need to write the onLoveButtonClicked

method now! Below is the code for the AndroidLove Activity, but the

method is onLoveButtonClicked blank. The magnets below contain

all of the code fragments you need to finish the method. Use the magnets

to complete the implementation.

TextView textView = (TextView) findViewById();

textView.setVisi
bility(

 public class AndroidLove extends Activity {

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 }

 public void onLoveButtonClicked(View view) {

 }

 }

);
R.id.haikuTextView

AndroidLove�java

View.VISIBLE

This is a constant
you can pass into
setVisibility to make
the View visible.

http://

76 Chapter 2

finishing the action

The Complete Action Magnets Solution
Below is the code for the AndroidLove Activity. The magnets

below contain all of the code fragments you needed to finish the

onLoveButtonClicked method. You should have used the magnets

to complete the implementation.

 public class AndroidLove extends Activity {

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 }

 public void onLoveButtonClicked(View view) {

 }

 }

TextView textView = (TextView) findViewById(

);

);R.id.haikuTextView

AndroidLove�java

Get the TextView
reference using the
R constant.

Set the TextView visibility
to true so it’s displayed.

View.VISIBLEtextView.setVisibility(

Let’s run it now!

http://

you are here 4 77

working with feeds

Click!

Now that the onLoveButtonClicked method is complete, run the app and try it out.

The text was hidden,
but displayed when you
clicked the button.

That button
just adds so
much... action!

That so totally rocks!
You are developing
some mad Android
coding skills!

Test Drive

You did it!
When you started the chapter, the

AndroidLove app had no behavior, it

didn’t do anything. But now you’ve

made it do something! And to make

that happen, you added a new view,

created and used a new string resource

for it’s text, built a button action in Java,

and used the R file to help go back and

forth between Java and XML.

Great work!

http://

78 Chapter 2

 � Use the graphical layout editor to make

adding new Views easy.

 � Add new String resources when you need

them (and add them to Strings.xml).

 � Use the “@string/” prefix in your XML layout

to refer to String resources.

 � Explore the online documentation for all

of the attributes you can set in your XML

layouts.

 � If you know what you’re looking for but don’t

know where to find it, use the documentation

search

 � Get references to Views on screen by calling

findViewById and passing in that

View’s ID constant from the R file.

 � Make sure your Views in your XML layout

have android:id attributes set if you need to

get references using findViewById.

 � to use Use the android:onClick

property on Button to add an action

method. That action method will be called

on the Activity that launched the screen, so

make so to add the method.

 � Remember all of the Java source is in the

/src folder.

Making a Button Action
• Use the Button onClick attribute to

declare the name of the action method

• Open the Activity that displays the

layout with the Button

• Add a method with a name matching the

onClick attribute value

• Make sure the method takes in a single

View as a parameter

Your Adding Behaviour
Toolbox
Now that you’ve completely

implemented a button action,

you can start adding behavior to all

your apps!

CH
AP

T
ER

 2

http://

this is a new chapter 79

working with feeds3

Pictures from Space!

RSS feeds are everywhere� From weather and stock information to news and

blogs, huge amounts of content are distributed in RSS feeds and just waiting to be used

in your apps. In fact, the RSS feed publishers want you to use them! In this chapter, you’ll

learn how to build your own app that incorporates content from a public RSS feed on

the Web. Along the way, you’ll also learn a little more about layouts, permissions, and

debugging.

Wait, let me get this straight.
People put up RSS feeds on the
Web and I can use them for my
own apps? Every day is like my
birthday on the Internet!

http://

80 Chapter 3

bobby loves space!

I really wanted a telescope, but
all I can find are these binoculars.
Since I can’t see space, I’ve been
checking out the NASA image of
the day web site instead. It’s got
a cool new picture of something
about space every day!

Bobby

NASA’s image of
the day site.

Welcome to NASA

http://

you are here 4 81

working with feeds

I saw an RSS feed on NASA’s
site. Could you use that feed and build

an Android app that reads it and displays
the picture? That would be way cooler than
hitting the website from my phone...

Yes! We can write an app for that!

Let’s put your newly developed Android skills to use

and build an app that will let Bobby see the NASA

daily image on his phone. He’s going to love it!

The image of the day site looks pretty good on a big

computer, but not so hot on a phone. It technically works,

but not without a ton of scrolling and zooming. There has

to be something better ...

But what about phones?

http://

82 Chapter 3

picking the important feed content

Plan out your app
Before starting on your brand-new app, take a minute to plan it out.

Since you’ll be building the app from he image feed from NASA, start by

taking a look at the feed to get a feeling of what you have to work with.

The feed is an RSS (Really Simple Syndication) feed. You can find out

more about RSS feeds with a quick search of the Web, but for this app,

just think of it as pure XML.

Eclipse has a built-in XML editor that really helps to visualize the

format of feeds like this. Go to http://www.nasa.gov/rss/image_
of_the_day.rss and save the content locally on your computer as

an XML file. Then you can open the XML file in Eclipse (which will

automatically open the built-in XML editor) and view away!

Image of the day feed
saved locally as an
XML file and opened in
Eclipse’s XML editor.

RSS header
information.

General
information
about the
feed.

Information
about the
day’s image.

Metadata
about the
image.

http://

you are here 4 83

working with feeds

There’s a whole bunch of stuff in that feed! If you show it all,

you’re going to overload your users with information and miss

the point of building a specialized mobile app for viewing the

image of the day. At the same time, just showing the image

would be pretty boring.

Take a look at the XML view of the feed and pick a few things you

think you should show. And make sure to say why you picked it.

The first one is filled in for you. Add a few more on your own.

Property to include Why include it?

image URL I definitely want display the image, so I’ll include the image URL.

This is an image of the day app, after all!

http://

84 Chapter 3

arranging your data on the screen

There’s a whole bunch of stuff in that feed! If you show it all,

you’re going to overload your users with information and miss

the point of building a specialized mobile app for viewing the

image of the day. At the same time, just showing the image

would be pretty boring.

You were to look at the XML view of the feed, pick a few things

you think you should show, and make say why you picked it.

image URL

image title

item description

item pubDate

The image title will help users quickly tell what the image is about.

If the image is cool, users will want to read more about it. This

isn’t the most important information, but it’s great to know.

NASA doesn’t publish a new image every day (not on weekends, for example),

so it helps to know when they did publish the image being displayed.

Property to include Why include it?

You’ll need to make sure you get the correct title and
description, because the example feed contains many of each.
In the example feed, the image description is blank, but the
item description is populated correctly.

The XML feed doesn’t include the binary image

data. But using the image URL, you’ll be able to

doanload the image and diaply it on the screen.

Your answers may be slightly different and you may have picked a different
field or two (and that’s perfectly OK). We’ll use the properties here, but
there are several other perfectly good ways you could build this app.

I definitely want display the image, so I’ll include the image URL.

This is an image of the day app, after all!

http://

you are here 4 85

working with feeds

Screen Design Magnets
To build your interface, add the View magnets at the bottom of this

page to the screen. There is one View for each of the properties you

picked from the RSS feed.

Put the Views on
the screen here

Item pubDate in a TextView.

Item description
in a TextView.

Image title in a TextView.

The image at the URL
displayed in an ImageView
(This is a new component but
don’t worry, you’ll learn how
to use it in a bit.).

http://

86 Chapter 3

getting ready to start coding

Screen Design Magnet Solution
You were to add the View magnets at the bottom of this page to

the screen to build your interface. There is one View for each of the

properties you picked from the RSS feed.

The image is front and
center, stretched to
the size of the screen.

the title is at the
top so you know what
you’re looking at.

The date really could
go anywhere, but
it’s kind of a nice
subheader isn’t it?

The description is nice to have, but it’s
definitely not the most important piece of
data. It’s also really big! Best to keep it at
the bottom of the screen, out of the way.

http://

you are here 4 87

working with feeds

I’m late for a math test,
so I’ve got to run. But so far,
this design looks awesome, I
can’t want to see it working!

Time to start coding!
Every good app starts with a good plan, and

you’ve got one now (the selected fields from the

RSS and the screen design). Now it’s time to start
coding it.

Here is how you’ll do it.

Create a new project
You’re building a new app, so start a new project.

Mobile apps are small and concise, so get used to

having lots of little apps (and projects) around!

1

Store feed information locally
Removing variables from development is a good thing.

Store feed data locally, so you can focus on building

your UI and not connecting to the feed.

2

Connect the app to the XML RSS feed
Once the app is up and running, just plug it into the

XML feed and get the live data. It really is going to be

that easy. Promise!

4

Build the UI using the stored feed data
You’ve got a design for the UI; now it’s time to execute

it. Create layouts, implement UI functionality, and get

the app up and running!

3

http://

88 Chapter 3

make a new clean project

Create a new project
Now that you’re ready to start coding, make a new Android Eclipse

project. Launch the new Android project wizard in Eclipse by going

to File → New → Android Project.

The project name
can have spaces or
not. But It’s better
leave out spaces,
because a directory
is created with
the project name
in your workspace,
and command-line
navigation is usually
easier without spaces.

The application
name has spaces.
This is shown to
your users, so
format it to be
human readable.

Select the latest
platform you have
installed (2.3 at
the time of this
writing).

Web site plus application
name is a pretty safe
bet for a package name.

Make a default
activity. Naming the
activity to match
the project name
is a good rule for
single-screen apps.

http://

you are here 4 89

working with feeds

 Open strings.xml (under res/values) and delete the hello String.1

Get rid of the autogenerated ‘Hello’ stuff
You’re not going to need the autogenerated TextView showing

the default “Hello World, NasaDailyImage” text. So before you get

going, delete the TextView and the the String.

Select the
TextView, right
click and select
delete.

Select the hello
string and click
Remove...

 Open main.xml (under res/layout) and delete the hello TextView.2

 Save your files. You now have a nice, clean app, without the boilerplate hello app content. 3

http://

90 Chapter 3

<resources>

<string name=”app_name”>NASA Daily Image</string>

<string name=”test-image_title”>
 Decorating the Sky

</string>

<string name=”test-image_date”>
 Mon, 27 Dec 2010 00:00:00 EST
</string>

<string name=”test-image_description”>

This mosaic image taken by NASA\’s Wide-field
Infrared Survey Explorer, or WISE, features
three nebulae that are part of the giant Orion
Molecular Cloud--the Flame nebula, the Horsehead
nebula and NGC 2023. Despite its name, there is

store XML values for realitsic testing

Store feed information locally
Start by saving text values as string resources. Open

strings.xml and add three new strings for the image

title, date, and description. The easiest way to do this

is to copy the values directly from the sample XML

feed file you saved at the beginning of the chapter.

 Watch out for escape characters

Some of the characters in the XML file (usually
‘, “, and \) need to be escaped, to let Java
know they aren’t control characters. Do this by
preceding these characters with a \.

strings.xml with the new
test information added.

Values from a RSS
feed sample.

Watch out for
places where you
need to add escape
characters.

http://

you are here 4 91

working with feeds

Save the image in your project
Images are stored in your Android project as resources in the

res directory. Can you find a folder called drawable inside your

project’s res directory?

Ah yes, the folders are for different screen sizes.

One of the great things about Android is how many devices it runs

on... and how many devices your apps can run on! The price for

that versatility is the need to support a whole bunch of different

devices with a wide range of resolutions and screen sizes.

You’ll learn more about supporting different screen sizes and devices

later. For now, just add images to the drawable-hdpi directory. The

default emulator will use the images in this directory.

Hmm. There are three
different drawable
directories here ...

Here’s the res
directory, the same
place your layouts
and string resources
are located.

Do this!
Open up a browser and navigate to the URL for

the image in the RSS XML file. Save the file to

your project in the res/drawable_hdmi directory.

Call it test_image.jpg.

Now that you have stored your data locally, let’s build the layout!

There are three different
drawable directories under
res. What gives?

http://

92 Chapter 3

arrange the views in layout xml

`v

<ImageView

 android:id=”@+id/imageDisplay”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:src=”@drawable/test_image”/>

<TextView

 android:id=”@+id/imageDate”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”@string/test_image_date”/>

<TextView

 android:id=”@+id/imageDescription”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”@string/test_image_description”/>

<TextView

 android:id=”@+id/imageTitle”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”@string/test_image_title”/>

Below are magnets with the XML layout declarations for the Views in your layout along with

the the Views they represent. Drag the the View XML magnets onto the layout on the next

page of the exercise. This will complete the layout for the app.

Image

Title

Description

Date

View XML
declaration
magnets

View visuals
here, just for

reference.

http://

you are here 4 93

working with feeds

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

</LinearLayout>

Put the widget magnets here
to complete the layout. You’re
using LinearLayout, so you just
need to arrange them with the
component at the top of the
screen as the first in the layout
and continuing down.

http://

94 Chapter 3

see your progress

Below are magnets with the XML layout declarations for the Views. You were to arrange the

the View XML magnets to complete the layout for the app.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

<ImageView

 android:id=”@+id/imageDisplay”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:src=”@drawable/test_image”/>

<TextView

 android:id=”@+id/imageDate”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”@string/test_image_date”/>

<TextView

 android:id=”@+id/imageDescription”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”@string/test_image_description”/>

<TextView

 android:id=”@+id/imageTitle”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”@string/test_image_title”/>

</LinearLayout>

Image

Descrip
tion

Date

Title

http://

you are here 4 95

working with feeds

Run the app by selecting the project in the Exclipse explorer

view and selecting run. You’ll have to select Android

Application in the “Run as” pop-up that displays.

Nice! The screen is looking good!

The running screen matches your design. Excellent work.

Test Drive

http://

96 Chapter 3

picking the important stuff

Actually, scrolling would be a good idea!

You never know how long the description might be.

NASA could throw a whole book in there, for all we

know! After all, they are in control of the feed. The best

we can do is make our app visually scalable. A good

way to do that is just to make the entire screen scroll.

Hey, how come the
description is showing but
getting cut off. Shouldn’t
it scroll or something?!?

http://

you are here 4 97

working with feeds

Wouldn't it be dreamy if you could just
wrap up your entire layout into some kind of
View that would automatically scroll? But I
know it's just a fantasy…

http://

98 Chapter 3

make it scroll

Use ScrollView to show more content
ScrollView is a View you can add to your screens to make

content scroll. ScrollView is a ViewGroup (Android’s name for

layout manager). Use ScrollView by adding a child component to

it, and the ScrollView will automatically scroll.

<ScrollView

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent” >

 <TextView

 android:text=”@string/image_description”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content” />

</ScrollView>

The description TextView

is big enough to overfill
the screen by itself!

This ScrollView wraps the
description TextView ...

... and here’s that
TextView scrolling
inside the ScrollView!

LOTS of scrolling text!

You can put one or more of the existing Views into the ScrollView.

Any Views you add to the ScrollView will scroll, and the views not in

the scrollview won’t. Since your goal is visual scalability, just make the entire
layout scroll. This way, you can be gauranteed to have a scalable UI, even

if unepxected information comes through the feed (like a really long title, for

example).

One catch using ScrollView is that it can have only a single child View.

In the example on this page, the TestView is added directly as a child

to the ScrollView. But for the whole screen to scroll, you need multiple

Views to scroll. The solution is to add a complete LinearLayout (with

multiple child Views) as the ScrollView’s child.

How much should scroll?

http://

you are here 4 99

working with feeds

Add and amend the following code to use the ScrollView

to make the entire screen scroll. You’ll need to make the

ScrollView the main layout. And since the ScrollView can

hold only one View, you need to add the entire LinearLayout

as the one ScrollView child View.

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

<TextView

 android:id="@+id/imageTitle"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/test_image_title"/>

<TextView

 android:id="@+id/imageDate"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/test_image_date"/>

<ImageView

 android:id="@+id/imageDisplay"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:src="@drawable/test_image"/>

<TextView

 android:id="@+id/imageDescription"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/test_image_description"/>

</LinearLayout>

Quick Tip: This needs to
be in the root layout. If
you add this layout to a
ScrollView, you’ll need to
move this to the ScrollView.

Wrap this
entire
layout in a
ScrollView.

http://

100 Chapter 3

watching it scroll

You were to used the ScrollView to make the entire screen scroll.

You needed to make the ScrollView the main layout. And since the

ScrollView can hold only one View, you should have added the

entire LinearLayout as the one ScrollView child View.

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

<TextView

 android:id="@+id/imageTitle"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/test_image_title"/>

<TextView

 android:id="@+id/imageDate"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/test_image_date"/>

<ImageView

 android:id="@+id/imageDisplay"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:src="@drawable/test_image"/>

<TextView

 android:id="@+id/imageDescription"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/test_image_description"/>

</LinearLayout>

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

</ScrollView>

Did you remember to move
the xmlns:android attribute
from the LinearLayout to
the ScrollView (the root
view)

end of the
ScrollView

Beginning
of the
ScrollView

The complete
non-scrolling
layout

The inner widgets remain
untouched inside the
LinearLayout.

http://

you are here 4 101

working with feeds

Here’s the
scroll bar.

Look how the ENTIRE
LinearLayout is
scrolling, not just one
of the components.

Run your app to check the scrolling you just added. You should

see the entire screen scrolling.

Everything is scrolling as expected.

The scrolling is working properly. See how the entire screen

content scrolls up and down together? That’s because

you added the entire LinearLayout as the child to the

ScrollView.

Let’s show it to Bobby and see what he thinks!

Test Drive

http://

102 Chapter 3

start your parsing

Wow, that’s looking
pretty slick! But what’s
this about not hitting the
actual NASA RSS feed?

Oops! Almost forgot about the actual feed.

Things are going really well with the design and layout.

The screen looks like you want. Now it’s time to make

it work the way you want... parsing the feed data in real

time.

http://

you are here 4 103

working with feeds

There are plenty of XML parsers out there, and Android has built-

in support for three of them: DOM (Document Object Model), SAX
(Simple API for XML), and XMLPULL. They each take a different

approach to parsing the XML and each has benefits and drawbacks.

We’re going to skip the big XML parser smackdown here (don’t worry,

though, you can find plenty on the Web) and just pick one.

Let’s keep it simple and start with SAX.

Choose a parser

Let’s review some Ready Bake parser code to keep you moving!

SAX works by firing events while parsing the XML. There is no random access with SAX. The

parser begins at the beginning of the XML, fires appropriate messages, and exits. Here’s a quick

sample of a few events that get fired in the first three lines of the NASA image feed.

<rss version=”2.0”>

<channel>

<title>
 NASA Image of the Day
</title>

Start Element: rss

Start Element: channel

Start Element: title

Characters: “NASA Image of the day”

End Element: title

Feed XML,
line by line SAX events

The parser for the NASA feed will need to listen for the SAX start element messages for the

fields in the app (the title, image URL, description, and date) and cache the values. That’s it!

SAX Parsing Up Close

http://

104 Chapter 3

ready bake parser code

Ready Bake
Code

public class IotdHandler extends DefaultHandler {

 private String url = “http://www.nasa.gov/rss/image_of_the_day.rss”;

 private boolean inUrl = false;

 private boolean inTitle = false;

 private boolean inDescription = false;

 private boolean inItem = false;

 private boolean inDate = false;

 private Bitmap image = null;

 private String title = null;

 private StringBuffer description = new StringBuffer();

 private String date = null;

 public void processFeed() {

 try {

 SAXParserFactory factory =

 SAXParserFactory.newInstance();

 SAXParser parser = factory.newSAXParser();

 XMLReader reader = parser.getXMLReader();

 reader.setContentHandler(this);

 InputStream inputStream = new URL(url).openStream();

 reader.parse(new InputSource(inputStream));

 } catch (Exception e) {

 }

 private Bitmap getBitmap(String url) {

 try {

 HttpURLConnection connection =

 (HttpURLConnection)new URL(url).openConnection();

 connection.setDoInput(true);

 connection.connect();

 InputStream input = connection.getInputStream();

 Bitmap bitmap = BitmapFactory.decodeStream(input);

 input.close();

 return bitmap;

 } catch (IOException ioe) { return null; }

 }

SAX-based feed parsers look pretty much the same. Now that you understand

how the SAX parser conceptually works, here is a parser packaged up as

Ready Bake code that you can just drop into your app. Don’t worry about

understanding everything; just add it to your project. But feel free to explore it!

Since the events get
called separately (like
starting elements and
their contents), keep
track of what element
you’re in ...

Configuring the
reader and parser.

Make an input
stream from the
feed URL.

Start the parsing!

http://

you are here 4 105

working with feeds

 public void startElement(String uri, String localName, String qName,

 Attributes attributes) throws SAXException {

 if (localName.equals(“url”)) { inUrl = true; }

 else { inUrl = false; }

 if (localName.startsWith(“item”)) { inItem = true; }

 else if (inItem) {

 if (localName.equals(“title”)) { inTitle = true; }

 else { inTitle = false; }

 if (localName.equals(“description”)) { inDescription = true; }

 else { inDescription = false; }

 if (localName.equals(“pubDate”)) { inDate = true; }

 else { inDate = false; }

 }

 }

 public void characters(char ch[], int start, int length) {

 String chars = new String(ch).substring(start, start + length);

 if (inUrl && url == null) { image = getBitmap(chars); }

 if (inTitle && title == null) { title = chars; }

 if (inDescription) { description.append(chars); }

 if (inDate && date == null) { date = chars; }

 }

}

public String getImage() { return image; }

public String getTitle() { return title; }

public StringBuffer getDescription() { return description; }

public String getDate() { return date; }

.... and if you’re in
an element that
you are interested
in, cache the
characters.

Here are a few accessors. so you
can get the cached variables
back from the parser...

Download the IotdHandler code

from the Head First Android Development

site and add it to your project.
Do this!

http://

106 Chapter 3

connecting everything together

Connect the handler to the activity
Now that you’ve added the feed parser code to your project, you

need to use it in your activity. Start by instantiating the handler in

your Activities onCreate method.

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 IotdHandler handler = new IotdHandler();

 handler.processFeed();

}

Create the
handler ...

and start parsing ...

The app’s not going to work with
the parser yet. You’re parsing the
feed, but you’re not setting the values
cached in the feed on the Views.

True, the values are cached in the handler,

but never displayed.

Let’s make a method called resetDisplay that will

set all of the view data on screen. Then you can call that

method in onCreate() afterprocessFeed() returns.

http://

you are here 4 107

working with feeds

Code Magnets
Complete the resetDisplay() method below by retrieving

references to the on-screen Views (using findViewById) and

setting the values on those Views with the values passed in. Once

this method is complete, you can use it to pass in the values from

the feed.

TextView titleView =

(TextView)findViewById(R.id.imageTitle); titleView.setText(title);

TextView dateView =

TextView descriptionView =

(TextView)findViewById(R.id.imageDescription);

descriptionView.setText(description);

(TextView)findViewById(R.id.imageDate);

dateView.setText(date);

ImageView imageView =

(ImageView)findViewById(R.id.imageDisplay);

private void resetDisplay(String title, String date,

 String imageUrl, String description) {

}

Here are your
magnets.

Get a reference to each on
screen View. Then set the
values on those Views to the
cached values from the parser.

imageView.setImageBitmap(image);

http://

108 Chapter 3

setting the feed data on screen

Code Magnets Solution
You were to complete the resetDisplay() method below

by retrieving references to the on screen Views (using

findViewById) and setting the values on those Views with the

values passed in. With this method complete, you can use it to pass

in the values from the feed.

TextView titleView = (TextView)findViewById(R.id.imageTitle);

titleView.setText(title);

TextView dateView =

imageView.setImageBitmap(image);

TextView descriptionView = (TextView)findViewById(R.id.imageDescription);

descriptionView.setText(description);

(TextView)findViewById(R.id.imageDate);

dateView.setText(date);

ImageView imageView = (ImageView)findViewById(R.id.imageDisplay);

private void resetDisplay(String title, String date,

 String imageUrl, String description) {

}

Use the image from the feed
parser and set it on the ImageView.

Get a reference to the title
view and set the text to the
cached value from the handler.

Same deal with date View: get
the View reference and set the
text to the value from the parser.Get a reference to

the ImageView.

Finish up by getting the description View reference and setting the text with the cached description value.

http://

you are here 4 109

working with feeds

Hmm, a blank
screem...

Everything is plugged in with the parser. The parser is integrated

with the activity, and the results from the parsing are displayed on

the screen. You should be good to go. Go ahead and run the app.

Uh oh! The screen is gone!

resetDisplay(iotdHandler.getTitle(), iotdHandler.getDate(),
 iotdHandler.getImage(), iotdHandler.getDescription());

The resetDisplay method is a helper method you’re about to write to
populate the fields on screen with the parsed data.

Now you can finish connecting the handler in the

onCreate() method. Add a call to resetDisplay()

after handler.processFeed(). This will take the

cached values in the parser and set them in the Views screen.

Test Drive

Clearly, something broke along the way.

What broke? Where would you look to

find out what’s broken?

http://

110 Chapter 3

no internet

Find errors with LogCat
It’s OK; errors happen! The important thing

is knowing where to go to find out what’s

happening with your application, so you can fix

things when they break. Android uses a built-

in logging mechanism that outputs to a screen

included in the Android Development Tools

(ADT) called LogCat.

Open LogCat by going to Window → Show

View → Other, which will bring up the Eclipse

Show View dialog. Expand the Android folder,

select LogCat, and press OK.

Expand the
Android folder.

Select LogCat.
Click OK.

After you click OK, you’ll see the new LogCat view in your Eclipse workspace.

Log statementsLogCat shows up as a tab on

the bottom of the screen.

Look for errors, they will show up in red.

Here you’re getting an IOException saying
the host is not found. That’s odd, because
you just went to nasa.gov from your browser.

http://

you are here 4 111

working with feeds

Use permissions to gain restricted access
The UnknownHostException is thrown here because you need

permission to access the Internet.

With all the cool stuff you can do with Android devices, it’s hard to

remember that they are mobile devices. And because of this, Android is

built to be super careful about making sure each app has rights only to the

system resources it absolutely needs. The only way for your app to get

those permissions is to request them.

Enough about Twitter. Let’s add permission to your app!

How do permissions work?
You can specity the permissions your app needs using a group of

permission constants in AndroidManifest.xml. When users install your app

from the Android market, they are prompted with a list of permissions that

your app requsts. If they agree, they accept the permissions and the app

installs.

As an example, let’s take a look at the Android market install page for the

official Twitter app.

The market
install page for
the Twitter app

All of the
permissions
the app
requests

android.permission.INTERNET

android.permission.READ_CONTACTS

android.permission.WRITE_CONTACTS

android.permission.MANAGE_ACCOUNTS

android.permission.AUTHENTICATE_ACCOUNTS

android.permission.USE_CREDENTIALS

android.permission.WRITE_SYNC_SETTINGS

android.permission.GET_TASKS

android.permission.ACCESS_FINE_LOCATION

The permissions
on the market
page are
generated from
these constants.

http://

112 Chapter 3

using permissions

Add a permission to access the internet
The Twitter app had a lot of permissions, but

your app just needs permission to access the

Internet. Follow these instructions to add the

Internet access permission.

Find the
AndroidManifest
XML file in the
root of your
project.

Click Add...

... select the
Permissions tab,

Open AndroidManifest.xml
The AndroidManifest file is

generated by the new app wizard.

You can find it in the root of your

project. Double-click the file to

open it.

1

Add a new permission to the manifest
Just like all of the other Eclipse XML editors you’ve been working with,

there’s a custom editor for AndroidManifest file. Click on the Permissions

tab and press the Add button to add a new permission.

2

http://

you are here 4 113

working with feeds

select uses
permission

click OK

The dropdown shows ALL the
permissions you can add. Select
android.permission.INTERNET.

To apply the changes, save the file when you’re done.

Select the permission type
When the dialog opens, select Uses Permission and click OK. This tells

Android that you want to use a permission in your application.

3

Select the permission
There are a bunch of different permissions that you can ad to your

application. Since you’re accessing the Internet to get the feed and the

image, select the android.permission.INTERNET permission.

4

http://

114 Chapter 3

fireside chat

Tonight’s talk: Permissions

Android App:

What, seriously? I have to ask permission to do

everything? Don’t you trust me at all? This is

ridiculous!

Unsupervised?!? Look, I’m not a child!

OK, well I kind of see that. But really, I have to tell

you everything I do? Like everything? That’s lame!

Why can’t I just ask them myself ?

Hey man, that’s low.

You’re right, I probably wouldn’t. BUT ...

Mffft! Well, I suppose I don’t really have a choice,

do I?

Harsh.

Android Operating System:

No, it isn’t ridiculous. I just need to be really careful

about what I let you do unsupervised.

Well, listen, my user (who is also your user I might

add) expects us all to work together to keep the

whole phone secure. We can’t allow any viruses,

unauthorized data access, unecessary Internet

access, or other security no-nos to spoil their

experience. Then we all lose!

Sorry, but you do. That way, I can tell our user what

you’re planning on doing and they can decide if

they will let you do it.

How can I trust that if the user says no to you you’ll

actually listen? You wouldn’t even listen to me if I

couldn’t kill your process!

Well would you?

I rest my case!

Nope! You don’t have a choice. My way, or the

highway, buddy.

http://

you are here 4 115

working with feeds

Now that the permissions are properly set, the app should

run correctly, parsing the feed and displaying everything

on the screen. Go ahead and run your app!

The data feed
looks good ...

Better, but not done yet!

The feed is working (fantastic!), and fresh data is

bing displayed on the screen. This is all great, but

something is going wrong with the formatting.

Huh. What’s with all the extra space?

How do you find out what’s wrong?

Test Drive

http://

116 Chapter 3

picking the important stuff

If there’s a custom
logger in the Android SDK,
maybe there’s something for
debugging layouts too.

In fact, there is a built-in tool.

That tool is rhe Android Hierarchy Viewer. This

cool little tool from the Android SDK lets you do all

kinds of introspection on your layouts and Views to

get to the bottom what’s going on.

Launch the Hierarchy Viewer by

opening a terminal, going to your

<SDK>/tools directory, and

executing hierarchyviewer at

the command line.

Do this!

http://

you are here 4 117

working with feeds

Find layout problems with HierarchyViewer
When you launch the Hierarchy Viewer, the first thing you’ll

see is the selection screen below. There are two main views; the

view you’re going to look at inspects the screenshot and allows

you to view your Views in a tree and see visual details about

them. (The other screen is also useful; it shows a more visual

tree structure with detailed attributes about each view).

View hierarchy
Zoomed in view
(zooms where the
crosshairs are)

Your app. The red square
surrounds the View selected in
the leftmost panel).

select the
emulator

After you select the

emulator, click here to

launch the main window.

Here is the extra
space... INSIDE the
ImageView. (You
can tell because
the ImageView is
selected on the
left and the red
box includes the
extra space).

You’ll see this screen
when you launch the
Hierarchy Viewer.

http://

118 Chapter 3

aspect ratio

Set the adjustViewBounds property
You can see from the Hierarchy Viewer that the ImageView is too big.

But why? The cause is actually that the apsect ratio is not preserved when

the Bitmap from the Web is displayed. The aspect ratio is what keeps

the width to height proptionally the same when you resize an image,

and the image is being resized by the internal layout code to fill the screen

width.

<ImageView

 android:id=”@+id/imageDisplay”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:adjustViewBounds=”true” />

Set this property in
your layout XML.

main.xml

Without keeping
the aspect ratio
the same, the
image stretches
and takes up too
much space.

adjustViewBounds = false adjustViewBounds = true

When set to
true, the image
stretches to the
edges of the
screen, and sets a
height proprtional
to that width.

If you set the adjustViewBounds property to true in your layout

XML, the extra space will go away.

http://

you are here 4 119

working with feeds

The data coming
from the feed
looks good...

And the extra
space is gone!

It’s all coming together!

The layout works just like you designed it, the feed parsing is

up and running, and the layout issue with the ImageView is

fixed.

With the adjustViewBounds properts upated in your

layout, run the app again. This time, you should see the image

resized correctly in the layout.

Test Drive

http://

120 Chapter 3

user feedback

This is looking great! I’m super
psyched to see how far you’ve
come with the app so quickly!

Really great work!

You really did put your new Android development skills

to use and built a whole new app! And you learned even

more skills along the way. You added scrolling layouts,

image resources, and more. But most importantly, you

built a cool app that made your users happy!

http://

working with feeds

you are here 4 121

Now that you have a cool

RSS feed-parsing app

in your toolbox, you can

build all kinds of your own

cool feed-based apps! � When working with RSS feeds, download a

sample of the feed and decide what content

in the feed you want to use in your app.

 � Start with SAX parsing, but explore the

DOM and XMLPULL parsers to see if they

will work better in your app.

 � It’s a good practice to break your app down

into small development pieces. For RSS

feed apps that rely on the Internet, it’s

perfectly acceptable (and even a good idea)

to build out your app with test data and plug

in the Internet services later.

 � Add image resources to the res/drawable-

hdmi directory (for now). These will get

picked up by the Android compiler and the

images will be available to your application.

 � Use ImageView to display images in

your app.

 � Use ScrollView when your app’s

content is too big for the screen. (Just

remember that ScrollView can have

only one child).

 � When things go wrong, use LogCat to

look at Android errors and log statements.

 � Make sure your app has the proper

permissions configured in AndroidManifest.

xml.

 � Use HierarchyViewer to debug

your layouts when your app isn’t displaying

correctly.

Built-in Problem Solvers
• Use LogCat to view code log statements

and errors from your apps.

• Use HierarchyViewer to analyze your

views and layouts. This can be extremely

helpful when layouts or views aren’t

behaving as you might expect them to.

View Roundup
• Use TextView to display text. You can use it for small text like labels, or really big text like the Image descriptions.

• Use ImgaeView to display images. You can add your own images to the res directory and display them in an ImageView.
• Use ScrollView to make your content scroll on screen. ScrollView can have only one chid View, so wrap multiple child views in a layout to make them all scroll.

Your Android Toolbox

CHAPT
ER 2

http://

http://

this is a new chapter 123

long-running processes4

When things take time

It would be great if everything happened instantly. Unfortunately,

some things just take time. This is especially true on mobile devices, where network

latency and the occasionally slow processors in phones can cause things to take a bit

longer. You can make your apps faster with optimizations, but some things just take time.

But you can learn how to manage long-running processes better. In this chapter, you’ll

learn how to show active and passive status to your users. You’ll also learn how to perform

expensive operations off the UI thread to guarantee your app is always responsive.

Oh, I’ll get to it.
But not before I eat
my breakfast, drink
my coffee, finish
the paper ...

http://

124 Chapter 4

enhancement request

I’ve been using the NASA app, and I love
it! One thing, though. NASA updates the
feed at different times every day. Do
you think you could add a refresh button?
Right now, I have to restart the app
every time I want to check...

Sounds like a reasonable request...

But why is a refresh button necessary? You’ll

want to make enhancements to your apps from

user feedback, but it’s a idea to understand why

you’re being asked for something. You have a

request to add a refresh button. Let’s take a look

at the Activity Lifecycle which will explain when

the feed loads and why it isn’t enough for Bobby...

http://

you are here 4 125

long-running processes

When does the feed refresh?

The feed refreshes only when the activity starts and the

onCreate() method is called. The feed will never refresh

once the app starts. Currently, the only way to get the app to

refresh the feed is to exit the app and then restart it.

You could override more of the lifecycle methods like

onResume(), but that would only cover the case where the

app is paused and restarted. You could also build some sort of

auto-refresh mechanism, but that is very processor and battery

intensive. Looks like the refresh button is a good idea after all.

onStart()

Your app

is running

front and

center

onResume()
onPause()

A

different

activity

comes

into focus

This is called when your
activity is displayed on
the screen.

onCreate()

This is called when your
activity is created and
typically where layouts
and configuration
occurs.

This is where you process
the feed and set the values
for the on-screen views.

This could be caused by a phone call, an alert from another application, or a user switching to a different app.

This is only a portion of
the full Activity lifecycle.
You can find the complete
diagram in the online docs.

The Activity Lifecycle
Activity has a number of special methods (called lifecycle

methods) that get called during the lifecycle of the activity. The

onCreate() method where you set the layout is one of these

methods, and there are many more. A few of these methods

are shown here, so you can see where the feed is (and is not)

refreshed.

http://

126 Chapter 3

start the layout

Update the user interface
A recurring Android user interface design pattern for

on-screen actions, the button bar is a gray panel on the

bottom of the screen holding one ore more buttons. This

will work perfectly for the refresh button placement.

Let’s build the button bar as a standalone layout and

then add it the app’s current layout. Encapsulating parts of

your fullscreen layout into separate smaller layouts can be a

good way to organize layouts. And since LinearLayout

extends ViewGroup, which itself extends View, you can

add your entire new LinearLayout you’re making for

the button bar as a child to your original ViewGroup.

Button bar on the
Add screen in the
contacts app

Button bar on an
email setup screen

Grey
background

Centered
button

A little space
between the
text and the
button bar

A little space between the button and
the top and bottom of the button bar

http://

you are here 4 127

long-running processes

Start with a basic LinearLayout
LinearLayout is a surprisingly functional layout manager

for basic screen designs. You’ve already built a few screens

using LinearLayout, and you’re going to build the button

bar with it too. You will learn more about LinearLayout

in the process, and don’t worry; you will also learn about

other layout managers later in the book.

The key to using LinearLayout for the Button Bar is to

center the refresh button using the android:gravity

attribute. Then you can fine-tune the layout.

<LinearLayout

 android:orientation=”horizontal”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:gravity=”center”

 >

 <Button android:text=”@string/refresh”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

</LinearLayout>

This is overkill, because
horizontal is the default,

but it’s good to be safe.

The button
is centered.

You’re off to a great start! Now start fine-tuning the layout ...

The beginnings of the
button bar layout: right
now, just a LinearLayout

with a centered button.

http://

128 Chapter 3

layout properties

Use properties to fune-tune the layout
With the button properly centered in the layout, let’s focus on fine-

tuning the layout to get the colors and spacing looking like the button

bar examples. Use these properties to get the layout looking the way

you want.

background
The background property can be set

to an image resource, a color, and

a few additional Android graphics

types. Use a solid color for the button

panel background, which is defined

in 8-digit hexadecimal format (two

digits each for alpha, red, green, and blue).

padding
Padding controls the spacing between Views

within a layout. Use Density Independent
Pixels (DIP) to specify spacing rather than raw

pixels to make your layouts really flexible.

margin
Margin controls the spacing between this

View and the Views outside this layout. Use

Density Independent Pixels (DIP) to specify

spacing rather than raw pixels to make your

layouts really flexible.

Alpha Red Green

Blue

FF8D8D8D

android:background=”#ff8D8D8D”

android:padding=”5dp” android:margin-top=”5dp”

http://

you are here 4 129

long-running processes

layout-width and layout-height
Layout width and height can be set to predefined values of

wrap_content and fill_parent, as well as raw size

values in pixels and DIPs. Using wrap_content makes

the view just as big as it needs to be, while using fill_
parent sizes the view to fill all of the space it can.

android:layout_height=”wrap_content”

Density Independent Pixels (DIP) Android supports too many
screen sizes to keep track! Using raw pixel dimensions in layouts
might make your layout look good on one device and terrible on
others. Android provides an ABSTRACT sizing measurement called
Density Indepent Pixels that is derived from device attributes.

This means that you can define layout attributes in DIPs
that will look great on all Android devices. Thanks, Android!

Use wrap_content to size

the button. This way, it will

be just as big as it needs to

fit the “refresh” text.

Use fill_parent for the
button bar’s LinearLayout
width. This will make sure
that the layout stretches to
the edges of the screen.

android:layout_height=”fill_parent”

http://

130 Chapter 3

build the layout

Button Bar Layout Magnets
Construct the button bar layout using the magnets below.

Think about the width and height for each the button and the

LinearLayout. And don’t worry; you’ll have a few extra magnets

left over for widths and heights you didn’t use.

<LinearLayout

</LinearLayout>

>

<Button android:text=”@string/refresh”

android:background=”#ff8D8D8D”

android:padding=”5dp”

android:margin-top=”5dp”
/><Button android:text=”@string/refresh”

android:layout-width=android:layout-height=

android:layout-width=android:layout-height=

“wrap-content“
“wrap-content“ “wrap-content“ “fill-parent“

“fill-parent““fill-parent“

Here are your
magnets.

android:gravity=”center”

http://

you are here 4 131

long-running processes

Now that you have the button bar layout, you need to add it to your screen. Below is a graphical

representation of your current View/Layout hierarchy. Draw new views and layouts for the button

bar Views (and any other views and layouts you need) to complete your layout. Also, remember,

just like ScrollView that can have only one child, there can be only one root layout.

ScrollView

LinearLayout

Title

Date

Image

Description

The app layout without
the button bar

Display
fields for
feed data

Layout allowing more
than one child View in
the ScrollView

ScrollView
is the root
layout node

http://

132 Chapter 3

place the layout

Button Bar Layout Magnets Solution
You were to construct the button bar layout using the magnets

below. Think about the width and height for each the button and the

LinearLayout. you should have a few extra magnets left over for

widths and heights you didn’t use.

</LinearLayout>

>

android:background=”#ff8D8D8D”

android:padding=”5dp”

android:margin-top=”5dp”

/>

<LinearLayout

<Button android:text=”@string/refresh”

android:layout-width=

android:layout-height=

android:layout-width=

android:layout-height=

“wrap-content“

“fill-parent“

“wrap-content“

“wrap-content“

The width is set to fill
parent, so it fills the
width of the screen.

The height is set to wrap
content; it shouldn’t be the full height (since there is
also the scrollpane).

Add some spacing between the
button panel and scroll pane.

Add some spacing around the
button inside the layout.

Set the
background color
to a medium grey.

Both the width and
height are set to
wrap content, so
the button will size
as it needs to based
on the button text

android:gravity=”center”
Center the
button.

http://

you are here 4 133

long-running processes

ScrollView

LinearLayout

Title

Date

Image

Description

Now that you have the Button Bar layout, you needed to add it to your screen. Below is a

graphical representation of your current View/Layout hierarchy. You were to draw new views and

layouts for the button bar Views (and any other views and layouts you need) to complete your

layout.

The complete
original layout is
added as the first
child View to the
root LinearLayout.

The button bar is
added the second
child (since it should
be displayed under
the ScrollView).

The root
layout, which
has both the
ScrollView
and the
button bar
as children.

LinearLayout

LinearLayout

Refresh Button

http://

134 Chapter 3

<ScrollView xmlns:android=”http://schemas.android.com/apk/res/android”

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”

 >

<LinearLayout

add the layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

</LinearLayout>

Update your app layout

<LinearLayout

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:background=”#ff8D8D8D”

 android:layout_marginTop=”5dp”

 android:padding=”5dp” >

 <Button android:text=”@string/refresh”

 android:onClick=”onRefresh”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

</LinearLayout>

Existing
layout

Beginning of wrapper layout

The
complete
button bar
layout

xmlns moved to
root layout

Height changed to wrap-content;
otherwise, it would fill the screen,
leaving no room for the button bar.

End of wrapper layout

Add the button bar to the app layout in main.xml. Also,

add the wrapper LinearLayout in the root, and add

the button bar and the ScrollView to that layout.

Do this!
Update your layout in

main.xml, adding the code

for the button bar and the

wrapper LinearLayout.

</LinearLayout>

</ScrollView>

 “wrap-content”

http://

you are here 4 135

long-running processes

And WHERE exactly is the
button panel? All that time
building it and it’s gone?!?

After you update your layout in main.xml, run the app to verify

your layout updates.

The button bar should
be here ...

Test Drive

There has got to be something going on here. The widths

and height look OK, and the LinearLayout should be

resizing everything... right? What could be wrong?

http://

136 Chapter 3

weight property

Use LinearLayout’s weight property

<LinearLayout

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:layout_weight=”0”

<ScrollView

 xmlns:android=”http://schemas.android.com/apk/res/android”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:layout_weight=”1”

LinearLayout lets you assign a weight property that controls

the resizing behavior of its child Views. For the button bar, you

want the button bar to be just as big as it needs to and then have

the ScrollView fill the entire rest of the screen.

Weights are defined using the android:layout_weight

XML attribute and have a number value of 0 or 1. Using a

weight of 1 makes the View stretch, while using 0 will make that

View just as big as needed. ScrollView
definition

Button bar
LinearLayout
definition

A weight of 1 fills the screen
with just enough space left
for the button bar.

A weight of 0 makes the

button bar just as big as

needed.

 Where do you find out about these properties?

All of the properties used here (and many, many more) are documented

in the Android online documentation. To learn about more of these

properties, look at the documentation for your specific layout as well as the

layout tutorials. Do a quick search at developer.android.com, and you’ll get right to it.

http://

you are here 4 137

long-running processes

Run the app again, and check that the layout weight modifications

made the desired layout changed.

Great work!

The app is looking fantastic. Now just wire up the

refresh button and you can show it to Bobby.

Test Drive

http://

138 Chapter 3

the refresh button

Connect the refresh button

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 iotdHandler = new IotdHandler();

 iotdHandler.processFeed();

 resetDisplay(iotdHandler.getTitle(),

 iotdHandler.getDate(),

 iotdHandler.getUrl(),

 iotdHandler.getDescription());

}

You already have the feed-handling code working from

Chapter 2. To keep your code clean and concise (and

without duplicate code), move the feed-handling code to

a new method called refreshFromFeed(). Then

you can call the same feed-processing method from

onRefresh() and onCreate().

 private void refreshFromFeed() {

 iotdHandler = new IotdHandler();

 iotdHandler.processFeed();

 resetDisplay(iotdHandler.getTitle(),

 iotdHandler.getDate(),

 iotdHandler.getUrl(),

 iotdHandler.getDescription())

 }

Move this code to a
new method called
refreshFromFeed().

public void onRefresh(View view) {

 refreshFromFeed();

}

Call refreshFromFeed
from onCreate().

Call the same refreshFromFeed from
the button’s onRefresh() method.

refreshFromFeed();

http://

you are here 4 139

long-running processes

Run the app again, and click refresh. This will update the app

from the feed.

Nothing happened
on the screen.

It’s not clear what’s going on here...

Did the refresh work? Was the feed successfully processed? It’s

totally unclear what exactly happens here when the user clicks

on the refresh button.

Test Drive

Click!

Did the refresh
work? I didn’t see
anything change on
the screen...

http://

140 Chapter 3

the debugger

Use the debugger
The debugger is an incredibly useful tool for figuring out what’s

happening while your application is running. The Android

Eclipse plugin includes tools to seamlessly use the built-in

Eclipse debugger to debug your Android apps, either in the

emulator or even on a device. Follow these steps to debug the

app and see whether refreshFromFeed() is getting called.

Double-click in the
gray margin to set
a breakpoint.

The debugger
automatically
deploys and
attaches to your
app (on the
emulator or a
device).

Click this button to
launch the debugger.

 This isn’t intended

to be a detailed

debugger tutorial.

There is just enough

detail here to debug the NASA app.

Take a look at the Android and Eclipse

documentation for more tips on using

the Eclipse debugger.
Get a breakpoint
The debugger works by setting stopping points in your app

called breakpoints. A breakpoint is like a scenic stop on

a nice drive where you stop and take a look at what’s going

on in that spot.

1

Launch the debugger
The debug button is just to the left of the play button in the

Eclipse toolbar. It uses the Android launch configurations you

already set up. Press it to launch the debugger.

2

http://

you are here 4 141

long-running processes

This selector switched from Java

to Debug, letting you know you’re

in the debug perspective
. Click

Java to take you back to
 the

standard code perspect
ive.

This view shows
thread stack traces.

This view shows
you the values
of variables
that are in
scope.

The arrow next to the
breakpoint indicator lets you
know the line was reached.

So the line was reached... but how does the user know?

Monitor your app in the debug perspective
The debug perspective is where you can see the state of your

app running. (A perspective is Eclipse’s name for a stored

collection of panels for specific work.) When you launch your app

with the debugger, it will immediately hit a breakpoint, because

onCreate() calls refreshFromFeed(), which is where you

set your breakpoint.

3

http://

142 Chapter 3

progress dialog

Add a progress dialog
The ProgressDialog is a utility that shows a modal

progress pop-up with customized information for your app.

ProgressDialog is perfect here, because you can show your

users status, but you also keep them from repeatedly pressing

refresh and successively triggering refresh after refresh.

ProgressDialog dialog = ProgressDialog.show(

 this,

 “Loading”,

 “Loading the image of the Day”);

dialog.dismiss();

How do you show a progress dialog?

Show a ProgressDialog by calling the static method show

on ProgressDialog. The show method returns a reference to

a ProgressDialog isntance. Make sure to cache the reference,

as you’ll need it to dismiss the dialog when you’re done with it.

This is the code to
show a progress dialog.
Change the title and
detail text as needed.

Call dismiss on the dialog when you’ve completed all of

your work and the dialog will go away.

Call this to dismiss
the dialog.

Geek Bits

Modal means users can’t

interact with the application

at all. All user input will be

ignored.

http://

you are here 4 143

long-running processes

Below is the refreshFromFeed method with long-running

code. Add the necessary code to show the ProgressDialog

before the long-running work is shown. And remember to

dismiss the dialog once the work is completed.

Show the
dialog here.

Dismiss the
dialog here,
now that all
the work is
done.

public void refreshFromFeed() {

 iotdHandler = new IotdHandler();

 iotdHandler.processFeed();

 resetDisplay(iotdHandler.getTitle(),

 iotdHandler.getDate(),

 iotdHandler.getUrl(),

 iotdHandler.getDescription());

}

The long-running
work of the feed
processing.

http://

144 Chapter 3

add the progress dialog

Below is the refreshFromFeed method with long running

code. You were to add the necessary code to show the

ProgressDialog before the long running work is shown.

You should have also dismissed when dialog once the work is

completed.

public void refreshFromFeed() {

 iotdHandler = new IotdHandler();

 iotdHandler.processFeed();

 resetDisplay(iotdHandler.getTitle(),

 iotdHandler.getDate(),

 iotdHandler.getUrl(),

 iotdHandler.getDescription());

}

ProgressDialog dialog = ProgressDialog.show(

 this,

 “Loading”,

 “Loading the image of the Day”);

dialog.dismiss();

Show the
progress
dialog.

Dismiss the progress
screen, now that
the work is done.

The feed and
UI update
code remains
untouched.

http://

you are here 4 145

long-running processes

Run the app and click Refresh to verify that the ProgressDialog

is working correctly.

The problem is in the threading...

What? No dialog
after clicking
refresh ...

Well that’s not good.

The whole point of putting in the

ProgressDialog was to have it show while

the long-running feed-processing work is occurring.

The dialog code is in the right place, but for

some reason it’s not showing. What could be
happening?

Test Drive

Click!
????

http://

146 Chapter 3

ui thread

Dedicated UI thread
Android has a dedicated thread for updating the user interface (UI). It

is responsible for repaints, layouts, and other graphical processing that

helps keep the UI responsive and keeps animations smooth. The UI

thread has a queue of work, and it continually gets the mot important

chunk of work to process.

Why didn’t the progress dialog display?

UI thread

UI work
queue

Repaint
Set text

Pperform
layout Repaint

More UI work...

The UI thread
takes its work
from the queue.

Process
feed

Show
progress
dialog Repaint More UI work...

The button action occurs in the UI thread by default. When the progress

screen is shown, successive calls to repaint the screen are made to support

the animation effect. But the process feed code also runs in the UI thread,

which occupies the UI thread. By the time the UI thread could run the

repaint code, the dialog was hidden.

This expensive call on call
on the UI thread keeps
repaints from happening.

http://

you are here 4 147

long-running processes

How do you fix it?

Keep the UI thread free
of expensive processing
for a responsive UI.

The solution is to keep non-UI work off the UI

thread and all UI work on the UI thread.

Start new
thread to
execute feed
processing

Show
progress
dialog

Repain

New thread-
processing feed

Repaint
Repaint

Repaint

Hide
progress
dialog

Feed processing ...

Feed processing
completed, call the
UI thread to hide
progress screen

UI Thread

Non-UI Thread

Only UI work

Only non-UI work

UI work
queue

Moving the feed processing work off the UI thread and onto

a separate thread allows the UI thread to focus on repaints.

The first repaint shows the progress dialog, and the successive

repaints make the animation happen. Then, when the feed

processing is completed, the new thread puts an item in the UI

queue to hide the progress screen. This switch back to the UI

thread is important, because the non-UI thread can’t hide the

dialog, which is a UI component.

UI thread

http://

148 Chapter 3

new threads

Spawn a new thread for the long process
The most straightforward way to get your long-running

processing code on a different thread than the UI thread is to

make an inner class extending Thread and implementing the

run method inline.

public void refreshFromFeed() {

 dialog = ProgressDialog.show(

 this,

 “Loading”,

 “Loading the Image of the Day”);

 Thread th = new Thread() {

 public void run() {

 if (iotdHandler == null) {

 iotdHandler = new IotdHandler();

 }

 iotdHandler.processFeed();

 resetDisplay(

 iotdHandler.getTitle(),

 iotdHandler.getDate(),

 iotdHandler.getUrl(),

 iotdHandler.getDescription());

 dialog.dismiss();

 }

 };

 th.start();

}

There are about a million different ways to
structure your code to deal with threads. The
goal here isn’t to debate them, but to understand
how to work with the Android UI thread.

Extend thread.

Implement run.

Leave this
code on the UI
thread.

All of the
feed-
processing
goes on the
new thread.

Don’t forget to start
your new thread.

http://

you are here 4 149

long-running processes

iotdHandler.processFeed();

resetDisplay(

 iotdHandler.getTitle(),

 iotdHandler.getDate(),

 iotdHandler.getUrl(),

 iotdHandler.getDescription());

dialog.dismiss();

Run the app again, now with the expensive feed-processing code

moved to the new thread. The dialog should show... but when you

run the app, you will see an error.

This needs to occur
on the UI thread.

What’s the problem?

The problem is the dismissing of the ProgressDialog.

Properly managing your work on and off the UI thread

means not only getting expensive work off the UI thread,

but also making sure that all necessary UI code occurs on

the UI thread.

You’ll see this error dialog

when you run the app.

Test Drive

FATAL EXCEPTION: Thread-11

android.view.ViewRoot$CalledFromWrongThreadException: Only the original
thread that created a view hierarchy can touch its views.

 at android.view.ViewRoot.checkThread(ViewRoot.java:2932)

 at android.view.ViewRoot.requestLayout(ViewRoot.java:629)

 at android.view.View.requestLayout(View.java:8267)

The error
description

http://

150 Chapter 3

the handler

Use Handler to get code on the UI thread
The dialog.dismiss() call needs to get back on the UI thread.

Getting off of the UI thread is a cinch by creating a new thread. But

that thread doesn’t have a reference to the UI thread to get code to

execute back on the UI thread after the expensive work. That’s where

Handler comes in.

Handler works by keeping a reference to the thread it was created by.

You can pass it work and Handler ensures that the code is executed

on the instantiated thread. (Handler actually works for more than

just the UI thread.)

handler.post(Runnable runnable)

Once you have a Handler instance, you can call post, passing it a

Runnable to execute on the desired thread.

Start by instantiating a handler from the UI thread

Handler handler;

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 handler = new Handler();

 refreshFromFeed();

}

Cache a Handler reference as a
member variable, so you don’t have to
create Handlers over and over again.

Since onCreate() executes in the UI
thread, creating the Handler here
makes a handler with the ability to
execute code on the UI thread.

onCreate() executes
on the UI thread.

onCreate method from
the NasaIotd Activity

Pass work to the Handler using post

Get ready to fix refreshFromFeed() with correct threading...

This is a standard
Runnable, nothing
Android specific.

The onCreate() method is called from the UI thread. Instantiate

the Handler there, so you can get work back on the UI thread later.

http://

you are here 4 151

long-running processes

Handler Magnets
Use the magnets below to complete refreshFromFeed() with all of

the necessary threading changes. The expensive feed-processing code

needs to execute on a new thread, and the call to dismiss the dialog has

to happen on the UI thread using Handler. Assume the Handler was

already instantiated for you in onCreate().

dialog = ProgressDialog.show(this,

 “Loading”, “Loading the Image of the Day”);

Thread th = new Thread() {

iotdHandler.processFeed();public void run() {

if (iotdHandler
== null) {

 iotdHandler = ne
w IotdHandler();

}

public void run() {

handler.post(

new Runnable () {

resetDisplay(iotdHandler.getTitle(), iotdHandler.getDate(), iotdHandler.getUrl(),
 iotdHandler.getDescription());

dialog.dismiss();

th.start();

}});

Here are your
magnets.

http://

152 Chapter 3

adding a handler

Handler Magnet Solution
You were to use the magnets below to complete refreshFromFeed() with

all of the necessary threading changes. The expensive feed-processing code

should be executing on a new thread, and the call to dismiss the dialog should be

executing on the UI thread using Handler. Assume the Handler was already

instantiated for you in onCreate().

dialog = ProgressDialog.show(this,

 “Loading”, “Loading the Image of the Day”);

Thread th = new Thread() {

iotdHandler.processFeed();

public void run() {

if (iotdHandler == null) {

 iotdHandler = new IotdHandler();

}

public void run() {

handler.post(

new Runnable () {

resetDisplay(iotdHandler.getTitle(),

 iotdHandler.getDate(), iotdHandler.getUrl(),

 iotdHandler.getDescription());

dialog.dismiss();

th.start();

}});

The dialog is called from
the UI thread (where
refreshFromFeed is called
from).

Start a new
thread for
the actual
feed code.

Post a new Runnable
to the Handler.

Call resetDisplay
and dismiss the
dialog from the UI
thread.

http://

you are here 4 153

long-running processes

Now run the app and you’ll see the progress screen show while the

app loads from the feed during onCreate(). You’ll also see the

the progress screen show when you click the refresh button.

On app startup,
the progress
dialog will show

No progress dialog,
now that the feed
processing is complete.

Great work!

Now your users know that the app is doing

something. Positive reinforcement goes a long way!

Test Drive

 Start the app.1

 Give the app a few

seconds to load the feed.
2

 Watch the progress

dialog get hidden.
3

http://

154 Chapter 3

another enhancement

Don’t get me wrong, looking at
the daily image is pretty cool... but it’s
so fleeting. I’d love to be able to save
a particularly cool picture as my home
screen wallpaper, so I can look at it later.

Could you pull that off?

This shouldn’t be too hard.

It’ll be a snap to update the wallpaper. You’ve

already got the image from the feed, so you just

need to make the call to set the wallpaper using that.

And you’ve already got a button bar layout in place,

so you can just add a second button to the bar.

http://

you are here 4 155

long-running processes

WallpaperManager wallpaperManager =

 WallpaperManager.getInstance(this);

wallpaperManager.setBitmap(bitmap);

Ready Bake
Code

This is the code to
actually set the wallpaper.

Bobby’s going to love this! Let’s get started ...

The code

The design

You can set the wallpaper by retrieving

the WallpaperManager and

setting the wallpaper by Bitmap.

You’ve already got a reference to the

Bitmap coming from the feed, so this

should be a piece of cake.

You already built the button bar to

house the refresh button. And that

is an ideal place to add a button to

set the wallpaper. (More than two

buttons in the button bar could be a

problem if the button text is two long,

but these two work great.)

“This” refers to the
current activity.

You can pass in the
bitmap you decoded
from the feed here.

The new set
wallpaper button

http://

156 Chapter 3

<LinearLayout

 android:orientation=”horizontal”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:layout_weight=”0”

 android:gravity=”center_horizontal”

 android:background=”#ff8D8D8D” >

 <Button android:text=”@string/refresh”

 android:onClick=”onRefresh”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

 <Button android:text=”@string/setwallpaper”

 android:onClick=”onSetWallpaper”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

</LinearLayout>

set the wallpaper

Add the “Set Wallpaper” button
The button bar is built with a LinearLayout, so you can just

add the new Set Wallpaper button directly to the button bar layout.

LinearLayouts are horizontal by default, so you can add the

android:orientation=”horizontal” or simply rely on the

default.

LinearLayout defaults to
horizontal orientation, but
it’s a good idea to include
the orientation attribute
anyway. It makes your code
easier to understand later
and proptects you in case
defaults change.

Add the “Set
Wallpaper”
button as the
second child in
the button bar
layout. This
will add it to
the right of
the refresh
button.

Add the new button to the buton bar layout in main.xml:

Update strings.xml adding the new string for the Set Wallpaper button:

<string name=”setwallpaper”>Set Wallpaper</string>

http://

you are here 4 157

long-running processes

public void onSetWallpaper(View view) {

 Thread th = new Thread() {

 public void run() {

 WallpaperManager wallpaperManager =

 WallpaperManager.getInstance(NasaIotd.this);

 try {

 wallpaperManager.setBitmap(image);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

 };

 th.start();

}

Since the current scope
is an inner class; you
can get a reference to

“this” by preceding it
with the class name.

Setting the wallpaper
can take a while,
so kick off a new
thread to get it off
the UI thread.

Update the activity for the button action
The feed-processing code already downloads the image from the

URL and creates a Bitmap from the web resource. To complete

onSetWallpaper (the onClick call declared in the layout),

cache the Bitmap once decoded and pass that image to the

WallpaperManager.

iotdHandler.processFeed();

image = getBitmap(

 iotdHandler.getUrl());

Add the onSetWallpaper method to your activity in NasaIotd.java:

public class NasaIotd extends Activity {

 private IotdHandler iotdHandler;

 ProgressDialog dialog;

 Handler handler;

 Bitmap image;

Make a member variable
for the bitmap.

This will do a
default dump of the
exception to LogCat.

In refreshFromFeed()

Store the bitmap in the
image member variable
after processing the feed.

http://

158 Chapter 3

test the wallpaper

Run the app to make sure the Set Wallpaper

button is correctly configured in the layout.

The button is displaying
correctly, horizontally
positioned next to the
Refresh button.

The button looks good. Now

check and see how it works!

First check that the button

displays correctly...

Test Drive

Click!

Setting the wallpaper requires a

uses-permission element

with android.permission.
SET_WALLPAPER. Set this now

in AndroidManifest.xml before you

run the app.

Do this!

http://

you are here 4 159

long-running processes

The button did actually work, but...

If you go to the home screen, you’ll see that the wallpaper was

in fact set to the feed image. That said, the user experience

is aweful! Remember that getting your app working is just one

part of bigger picture. In order to make successful apps that

people want to use (and that will make you bags of money on the

Android market!), you need to have a fantastic user experience.

The issue here in setting the the wallpaper is that the change is

happening off screen away from the user’s view. What you need is

some positive reinforcement so your users know it worked.

Click on the home screen and you will see that the wallpaper was in fact set to the NASA feed image. Now to deal with the user experience...

What? Nothing
happened. I clicked Set
Wallpaper and now the
app is just sitting there!

You could just show a ProgressDialog while the

wallpaper is being set, but there’s a better way...

http://

160 Chapter 3

use toast

Use toast to give users reinforcement
You could show a progress screen while the wallpaper is

being set. But one of the inherent features of the progress

screen is that it blocks users from doing anything. This is

great when the feed is loading, because you want to block

your users from interacting with the app. (This is what

keeps users from repeatedly clicking on refresh.)

But setting the wallpaper is different. You want to make

sure to notify your users when the wallpaper is set, but

you don’t want to keep them from doing something else

in the app. For example, it would be perfectly acceptable

for the user to set the wallpaper and to scroll down to view

the long description while the wallpaper is being set in

the background. This wouldn’t be possible if you used a

progress dialog, because it blocks all user interaction.

Android provides Toast for just such occasions
Toast is a passive, non-blocking user notification that shows

a simple message at the bottom of the user’s screen. A

toast typically displays for a few seconds and disappears.

Meanwhile, the user can still completely interact with the

application. Here is what the app would look like with a

Toast message when the wallpaper is set and the code to

make it happen.

Toast

Progress Dialog

=

=

passive
notifications

active, blocking

notifications

Toast.makeText(this,

 “Wallpaper set”,

 Toast.LENGTH_SHORT).show();

Pass in your
activity.

Message
text Time to display

the toast.

http://

you are here 4 161

long-running processes

Complete the onSetWallpaper method below adding two Toast notifications: one for

success and one in case of failure in the catch block. The Toast call must be made from the

UI thread. Use the Handler reference cached previously to make both of the toast calls on

the UI thread.

public void onSetWallpaper(View view) {

 Thread th = new Thread() {

 public void run() {

 WallpaperManager wallpaperManager =

 WallpaperManager.getInstance(NasaIotd.this);

 try {

 wallpaperManager.setBitmap(image);

 } catch (Exception e) {

 e.printStackTrace();

 }}};

 th.start();

}

Add the code here

to create the toast

confirmation message for

setting the wallpaper.

Add a toast message in the catch block with the message “Error setting wallpaper.”

http://

162 Chapter 3

check the toast

You were to complete the onSetWallpaper method below adding two Toast notifications:

one for success and one in case of failure in the catch block. The Toast call must be made

from the UI thread. You should have used the Handler reference cached previously to make

both of the toast calls on the UI thread.

public void onSetWallpaper(View view) {

 Thread th = new Thread() {

 public void run() {

 WallpaperManager wallpaperManager =

 WallpaperManager.getInstance(NasaIotd.this);

 try {

 wallpaperManager.setBitmap(image);

 } catch (Exception e) {

 e.printStackTrace();

 }}};

 th.start();

}

handler.post(

 new Runnable () {

 public void run() {

 Toast.makeText(NasaIotd.this,

 "Wallpaper set",

 Toast.LENGTH_SHORT).show();

}});

handler.post(

 new Runnable () {

 public void run() {

 Toast.makeText(NasaIotd.this,

 "Error setting wallpaper",

 Toast.LENGTH_SHORT).show();

}});

Use the handler to
post runnables to
the UI thread.

Use NasaIotd.this to

get a reference
 to

the Activity from

the inner class.

Make a
confirmation
toast

Show another toast if
an exception is caught.

http://

you are here 4 163

long-running processes

The toast
confirmation
displays shortly
after the click.

Run the app and click the Set Wallpaper button. Now you will see the

wallpaper set and a nice toast conformation that lets you and your users know.

Fantastic work! Bobby and all of his friends are going to love this!

Test Drive

Click!

http://

164 Chapter 3

user feedback

The app rocks... you totally came
through! I think it’s time to share this
with more people than just my friends,
though. Can you get it on the Market?

Sounds great! Next stop... the Android Market!

You’ll have the NASA app up on the market in the next chapter. Stay tuned!

http://

long-running processes

you are here 4 165

 � Use extended properties of

LinearLayout to fine-tune your

screens (padding, margin,

background, gravity, and more).

 � Define layout width and height using

fill_parent and wrap_content.

Use fill_parent to maximize the size

to fill the parent. Use wrap_content to

make a View just as big as it needs to be.

 � Use Density Independent Pixels (DIPs)

when you need to define sizing or

dimensions. This will ensure your layouts

work on the most possible number of

devices .

 � Layouts can nest (you can add layouts as

Views to other layouts). Just remember

that too much nesting will slow down the

layout and rendering of your screens. So

use nested layouts with caution. (You’ll learn

strategies for this in later chapters.)

 � Use the debugger to trace code in the

emulator or a device.

 � Use a ProgressDialog to block users

and display progress.

 � Use Toast to passively notify users of

progress.

 � Both Toast and ProgressDialog

can be extensively customized for your app.

 � Keep expensive work off the UI thread, and

UI work only on the UI thread

 � Use Handler to add UI work to the UI

thread’s queue from non-UI threads.

The UI Thread
• Keep expensive work off the UI thread;

otherwise, the responsiveness of the UI

will suffer.

• Make sure all UI work occurs only on the

UI thread. Calling UI code from non-UI

threads will throw exceptions throughout

your code.

Give your users feedback
• Toast: Use toast to passively display a message to your users
• ProgressDialog: Use a ProgressDialog when you want to block user input and display a message and progress on the screen.

Your Android Toolbox

With proper threading and user

feedback, you can guarantee

your users a responsive app

with a rock solid user experience.

CHAPT
ER 3

http://

http://

this is a new chapter 167

multiple device support5

Run your app everywhere

There are a lot of different sized Android devices out there�

You’ve got big screens, little screens, and everything in between. And it’s your job to

support them all! Sounds crazy, right? Right now you’re probably thinking “How can I

possibly support all of these different devices?” But with the right strategies, you’ll be

able to target all of these devices in no time and with confidence. In this chapter, you’ll

learn how Android classifies different devices into groups based on screen size as well as

screen density. Using these groups, you’ll be able to make your app look great on these

different devices, and best of all, with a manageable amount of work!

I hope this new app
you’re talking about
supports my fancy new
high resolution phone.

Tell me about it! The
last app I downloaded

looked just awful on my
cute little screen phone.

You ladies
better start
paying attention
to the game. I just

beat you both.

http://

168 Chapter 5

sharing the app

All my friends love
my app and want to use it
too! Can you publish it on
the Android Market?

Bobby and all of this friends love the app!
Bobby has been using the NASA image app all

around schools and his friends have all been

asking him for a copy.

Sounds great... but how about a

limited audience?

If Bobby and all of this friends want the app,

likely others would too. And the place to share

Android apps with everyone is the Android

Market. But you would like to test the app out

a bit before publishing it for the world. So you

decided to do

You installed the app on Bobby’s phone using the

direct ADB install, but you can’t do that with all

of Bobby’s friends since you don’t have access to

all of their phones.

http://

you are here 4 169

multiple device support

Can you share the app without using the market?
Sure! You can publish the apk on any webserver.

Then anyone can download the app by navigating

to the hosted APK on their Android device.

Let’s get some of Bobby’s friends to download the app...

Upload your APK to a webserver
You can upload the APK to any webserver. You can find the APK

in your project’s bin directory and transfer it to your webserver.

(Note: You’ll need to add the mime type application/vnd.

android.package-archive for the .apk extension or have

your web administrator do this for you).

1

Navigate to the URL on the device
Anyone who wants to install the app can navigate to the URL

of the hosted APK from the browser on their device. This will

download and install the app for them. (Note: Each user will have

to configure the ‘Unknown sources; setting to allow non-market

applications on their device).

2

APK

APK

http://

170 Chapter 5

getting feedback

Let’s see what Bobby’s friends have to say
Bobby got a bunch of his friends to download

the app over the air and play with it for a few

days. Most people were pretty happy. But two

of his friends, Jesse and Shawn, came back

with some great suggestions for improvement.

Those buttons
just seem like a waste
of space. I want to see
the space images!

Jesse

Jesse’s wants to see more of the
image in landscape mode
Jesse has a phone with slide-out keyboard, which

forces the app into landscape mode. Technically it

works, but Jesse doesn’t like how much vertical space

the buttons are taking up. She would love to see more

of the images instead of those buttons...

http://

you are here 4 171

multiple device support

Shawn wants small screen phones
to show more of the image too
Shawn has a really small phone (300x350 pixels to be

exact). Like Jesse, shawn thinks the buttons on the

bottom are a waste of space on his extremely small

phone. He’s love to see those buttons moved somewhere

too.

You’ve got to do
something about
those buttons
and that cheesy

home icon.

Shawn

Shawn also pointed out that the home
icon is pretty boring...
Android uses a default icon on the home screen. It’s pretty

boring though. Shawn really thinks you should update it

to make the app look more polished.

The home icon
is boring.

http://

172 Chapter 5

getting a handle on the issues

So many devices, and so many issues!

Is there a way we can make
everyone happy? Leaving the app as
is for portrait mode, but updating
it for landscape and small phones?

You knew there are all kinds Android devices out in the

wild with different sizes and resolutions. But with such a

simple layout, who would have though there would be so

many issues?

Some of the issues are also device specific

Jesse and Shawn both have suggestions for improving

the app in landscape mode and for really small screened

devices. But you don’t want to change the regular app in

portrait mode. The app you built at the end of Chapter 4

still works great for those devices.

On Android, you can make

changes just for specific devices!

With all of the different device shapes and

sizes in the vast world of Android devices,

you’ll often need to customize your apps

for a few devices, like really big, or really

small screens. Luckily, Android provides a

mechanism for using a default layout and

overriding those layouts for specific devices.

http://

you are here 4 173

multiple device support

Update the icon
Shawn also pointed out the boring default Android home icon.

Since you’re goal is to get the app Android-market-ready, let’s get

that fixed while you’re at it.

Update the layout for small screens
Shawn brought up a good point that the buttons are wasting

space on small screens. But just like landscape mode, you want

to be able to leave the regular layout alone and just make the

modification for small screens.

Update the layout for landscape mode
You can solve Jesse’s problem by creating a special layout for

landscape mode. This way, you can leave the regular portrait

screen as it was and make adjustments for the landscape version.

Make a plan
Making your app work on all kinds of Android

devices takes some careful planning. In the case

of the NASA Image of the Day app, Bobby’s

friends tested it out on all kinds of different

devices and you’ve narrowed down just a few

cases where you need to improve.

Here’s what you’re going to do to get this app market ready in no time!

Turn the page to get started!

Make a
cooler icon.

Make the app look
better on really
small screens.

Optimize
the app for
landscape mode

http://

174 Chapter 5

replicating landscape mode

Preview landscape mode in your emulator
The first issue to address is the lack of vertical

space in landscape mode. But before you can

fix anything, you need to be able to duplicate

the issue reported by your users in your own

development environment. In this case, you need

to be able to view the app in landscape mode.

You can do this in any running Android

emulator by pressing CTRL → F12.
Press CTRL → F12 to switch

your emulator between portrait

and landscape modes.

The screen and
the emulator
controls switch to landscape mode.

Do this!

http://

you are here 4 175

multiple device support

Update the design for landscape mode
The main issue with landscape mode is the

buttons. With the button bar gone, you’ll gain a

lot more vertical space to show the day’s image.

But where could you put those buttons?
There are a number of different solutions, but

let’s move the buttons to the top right of the

screen in line with the title and date. This will

keep most of the screen as is and move the

buttons where there is currently blank space. Move the button
s

up here for

landscape mode

You’ll gain all of this
vertical space by moving
the buttons. On this phone,
this is almost one fifth of
the entire screen height!

But how do you change the layout
just for landscape mode?

http://

176 Chapter 5

adding a special landscape layout

Create a landscape layout with the wizard
You can created new layouts using the New Android

XML File wizard. This wizard isn’t specific to layouts, you

can use it to make all kinds of different Android XML

resource files. Launch the wizard by going to File → New

→ Android XML File.

The project will be filled in for you. Select the “Layout”

radio button as the resource type and enter “main.xml”

as the file name. Then for the folder enter “/res/layout-

land”. This will automatically add “Landscape” as a

Chosen Qualifier.

Make sure
your project is
selected here.

Enter main.
xml in the file
name.

Enter /res/

layout-land

as the folder.

Entering the ‘-land’
at the end of the
folder automatically
adds the Landscape in
the Chosen Qualifiers.

http://

you are here 4 177

multiple device support

drawable-

hdpi

drawable-

mdpi

drawable-

ldpi

res

layout-

land

XML

main�xml

layout

XML

main�xml

Where is the layout?
The new layout you made is named the same as

your existing layout, but your new layout is in a

parallel directory called layout-land. This special

construct allows the Android runtime to determine

the best layout based on the device’s state.

If the device is in prortrait mode, it loads the layout

at /res/layout/main.xml. And if the device

is in landscape mode, it loads the layout at /res/

layout-land/main.xml. This doesn’t require

any code changes to your Activity since both

resources are still referenced by the same R constant

at R.layout.main.

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 handler = new Handler();

 refreshFromFeed();

}

NasaIotd�java

Here is the onCreate()
method from NasaIotd.
java. The R constant in
setContentView is unchanged.

If the device
is in portrait
mode, the
regular layout
will be loaded.

in portrait

in landscape

The layout you just created starts
out empty... time to build it out!

http://

178 Chapter 5

building the landscape layout

Landscape Layout Magnets
Since the portrait and landscape layouts are so similar, a good

starting place is to copy and paste the layout. But some things will

have to change too. Below is the copied beginning and end of the

layout. Use the magnets below to complete the layout with the

buttons on the top right of the screen.

<LinearLayout

 android:orientation=”horizontal”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:gravity=”left” >

<TextView

 android:id="@+id/imageDate"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:textSize="10dp"

 android:layout_marginBottom="5dp" />

</LinearLayout></LinearLayout>
</LinearLayout>

<Button android:text=”@string/refresh”

 android:onClick=”onRefreshButtonClicked”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:id=”@+id/refreshButton” />

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

Here are some
magnets. Here are

some MORE
magnets.

This is the root
LiearLayout.

<LinearLayout

 android:orientation="vertical"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:gravity="left"

 android:layout_weight="1" >

http://

you are here 4 179

multiple device support

<TextView

 android:id="@+id/imageTitle"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:textSize="20dp"

 android:textColor="@color/image_title_color"

 android:layout_marginTop="5dp" />

<LinearLayout

 android:orientation="horizontal"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:gravity="center_vertical"

 android:layout_weight="0"

 android:layout_marginTop="5dp" >

<Button android:text="@string/setwallpaper"

 android:onClick="onSetWallpaper"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/setWallpaperButton" >

<ScrollView android:layout_width="fill_parent"

 android:layout_height="wrap_content"android:layout_weight="1" >

 <LinearLayout android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:gravity="center_horizontal" >

 <ImageView android:id="@+id/imageDisplay"

 android:layout_width="wrap_content”

 android:layout_height="wrap_content"

 android:layout_marginBottom="5dp"

 android:adjustViewBounds="true" />

 <TextView android:id="@+id/imageDescription"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

 </LinearLayout>

</ScrollView>

</LinearLayout>

Here are
EVEN MORE
magnets.

The ScrollView
and its contents
remain unchanged.

http://

180 Chapter 5

building the landscape layout

Landscape Layout Magnet Solution
Since the portrait and landscape layouts are so similar, a good

starting place is to copy and paste the layout. But some things will

have to change too. Below is the copied beginning and end of the

layout. You should have used the magnets below to complete the

layout with the buttons on the top right of the screen.

<LinearLayout

 android:orientation=”horizontal”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:gravity=”left” >

<LinearLayout

 android:orientation="vertical"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:gravity="left"

 android:layout_weight="1" >

<TextView

 android:id="@+id/imageTitle"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:textSize="20dp"

 android:textColor="@color/image_title_color"

 android:layout_marginTop="5dp" />

<TextView

 android:id="@+id/imageDate"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:textSize="10dp"

 android:layout_marginBottom="5dp" />

</LinearLayout>

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

This is a horizontal
layout for the
entire header.

Here is a vertical
LinearLayout for
the title and date.

Add the title
and date view.

http://

you are here 4 181

multiple device support

</LinearLayout>

</LinearLayout>

<LinearLayout

 android:orientation="horizontal"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:gravity="center_vertical"

 android:layout_weight="0"

 android:layout_marginTop="5dp" >

<Button android:text=”@string/refresh”

 android:onClick=”onRefreshButtonClicked”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:id=”@+id/refreshButton” />

<Button android:text="@string/setwallpaper"

 android:onClick="onSetWallpaper"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/setWallpaperButton" >

<ScrollView android:layout_width="fill_parent"

 android:layout_height="wrap_content"android:layout_weight="1" >

 <LinearLayout android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:gravity="center_horizontal" >

 <ImageView android:id="@+id/imageDisplay"

 android:layout_width="wrap_content”

 android:layout_height="wrap_content"

 android:layout_marginBottom="5dp"

 android:adjustViewBounds="true" />

 <TextView android:id="@+id/imageDescription"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

 </LinearLayout>

</ScrollView>

</LinearLayout>

Here is a horizontal
LinearLayout
buttons on the right.

Add the buttons
to the layout.

End of the entire
header layout.

http://

182 Chapter 5

testing the landscape layout

Update the layout in your project to match the code updates you

did with the magnets. Now run the app again. The emulator

will start off in portrait mode. Press CTRL → F12 to switch to

Landscape mode and back.

CTRL → F12 to

switch to landscape

CTRL → F12 to switch

back to portrait

Test Drive

http://

you are here 4 183

multiple device support

Yeah, that’s a huge improvement!
It’s little details that will make your
app so cool on the market. Plus, you
know, space!

This was a cool improvement

for landscape mode.

That button bar looks great in portrait

mode but sure was a huge waste of space

in landscape mode. With those buttons

moved to the top right, you can see almost

all of the image, even with the minimal

screen height. And with this change,

portrait mode is left alone and just the

landscape mode was altered. Super cool!

Q: I would have laid out this screen differently. Is this the

only way to solve this button issue?

A: There are many different ways to have solved this design

issue. This is pretty common when you’re dealing with user

interface design.

Q: What is another way you might have solved this?

A: You’ll learn about Android menus in a few chapters. These

are actions that are hidden until you press the menu button. Menus

are often a good choice if you want to hide functionality but still

allow it to be used.

Q: This landscape mode change is pretty minimal. Can I

make bigger changes?

A: You can change the screen all around and have entirely

different functionality! That said, you probably want to keep

landscape mode and portrait mode pretty similar since they are the

same screen from your users perspective and they might go back

and forth as they move their phone around. Also, remember that

the underlying Activity is the same for both landscape and portrait

mode, so any features added to either orientation need to be

supported by the same Activity.

http://

184 Chapter 5

replicating small screens

Now that the landscape mode is taken care of it’s time to move on

to small screen devices. But as with any other issue, the first step

is always to replicate it in your local development environment.

Testing landscape mode was easy! All you had to do was switch the

orientation of the running emulator. But how do I make the emulator

device smaller?

What about super small screen devices?

Create an AVD for a smaller screen device

The whole point of creating an AVD (which as a quick refresher

stands for Android Virtual Device) is to be able to run an Android

emulator mimicking a hardware device. Switching between landscape

and portrait mode worked on the same device, but making a smaller

screen requires a new device.

Making a new AVD is easy to do though. Go to Window → Android

SDK and AVD Manager. Select Virtual Devices and press “New...”.

Name the AVD API10-
300-350 (API version
number and screen size).

Select API Level 10.

Set the resolution to
300 x 350 pixels.

Press Create AVD
once configured.

http://

you are here 4 185

multiple device support

Launch your new AVD
The AVD is just a description of a device. Before you

can test your app on that AVD, you need to start it. After creating your new AVD,
you’ll see it appear in the
Virtual Devices list. Select the
new AVD from the list.

With the new AVD
selected, press start.

The new AVD is
now running.

http://

186 Chapter 5

digging deeper into screen variations

Run the app on the small device
Now that the new AVD is running you can run the app on it

just like you would your original AVD. Run your project now

and you’ll see it running on the smaller emulator.

Woah! That’s not what
the app looked like at all
on the smaller phone

Here is the
NASA Daily
Image app
running on the
small device
emualtor!

This app
looks totally
different eben
though it’s
the same sized
screen.

The answer lies with pixel density...

It looks really different!

There are always going to be little differences between devices

and emulators. But there shouldn’t be this drastic of a difference

in display between them! Let’s get to the bottom of this...

 You may have to

select the emulator

after trying to tun

your app.

Your Android development environment

knows about the emulators you have

running. And if you have more than one

emulator running, it will ask you which

emulator you want to install and run

your app on. If you closed your original

emulator before launching the new

smaller device, you won’t see this.

http://

you are here 4 187

multiple device support

Screens Up Close
There are two screen device properties that effect the way your

application looks and runs on a device.

300 pixels wide

350

pixels

high

480 pixels wide

800

pixels

high

The AVD
you just
created

Your first
AVD
at the
default
resolution

Per inch, the small screen phone actually has

twice as many pixels as the big screen.

Super zoomed in view of
1x1 inch squares on the
two screens. Pixel counts
are NOT to scale.

Screen Size
This refers to the number of horizontal

and vertical pixels on a screen.

1

Pixel Density
This refers to the abstracted number

of pixels in an inch.

2

1 inch

1 inch

1
 i
n

c
h

1
 in

c
h

More pixels
over here...

http://

188 Chapter 5

tuning the small screen virtual device

Edit the AVD’s pixel density
You can edit your the Pixel Density of the emulator you just

configured. Go the Window → Android SDK and AVD

Manager and select your new AVD. Click edit and you’ll

see the same dialog that created your AVD.

Under Hardware, there is a property called Abstracted

LCD density. This controls the pixel density of your AVD.

Click on the value
to edit. Set the
value to 160.

Here’s the pixel
density hardware
property.

 Be sure to use a supported pixel density.

The Abstract LCD Density can only be set to 120, 160,
240, 213, or 320. If you edit your pixel density, you must
set it to one of these values.

http://

you are here 4 189

multiple device support

(Re)start the AVD and the app
Now that you’ve edited the AVD, close and

restart it to make the changes take effect.

Once you start the updated AVD, run the

app again and see how it looks.

Now the app looks
right on the small
screen emulator!

OK dude, so does this
mean you’re finally
going to look at my

small screen layout?

What updates would you make to the layout design

for small screens?

http://

190 Chapter 5

creating a special small screen layout

Update the design for small screens
Now that you can see what the small screen

layout looks like, you can also see that you

can’t make the same change you did for the

landscape layout. Even though they both

want to get rid of the buttons, the small

screen doesn’t have room for the buttons

next to the title and date.

What about just making
the buttons scroll with the
picture and the description
just for small screens?

Scrolling the buttons is a great idea!

You could relatively make a minor change to the

layout, just for small screens, allowing the buttons

to scroll on the screen after scrolling past the image

and the description. This is a bit of the best-of-both-

worlds as your regular screen sizes will still have the

buttons on screen, and just the small screens will

have to scroll. But at least they’ll see more of the

image like the landscape layout.

Time to make a new layout...

http://

you are here 4 191

multiple device support

Create a small screen only layout

res

layout
layout-

land

XML

main�xml

Just like you created a landscape specific layout, you can

create a small screen specific layout. Open the new Android

XML File Wizard and create a new layout XML file as you

did before. But this time, add the size by selecting size from

the Available Qualifiers. Once added, select screen size

“Small” from the dropdown on the right.

XML

main�xml

XML

main�xml

layout-

small

The original
layout.

The landscape
specific layout. The new small

screen layout.

Select size
from the
Available
Qualifiers.

Once added, select
small from the
dropdown to
indicate a small
screen size.

When you click

Finish, a new layout

xml file will be

created in the layout-

small directory for

small screen phones.

http://

192 Chapter 5

building a special small screen layout

Small Screen Layout Magnets
Below are the magnets you need to complete the custom small

screen layout. Just like the landscape mode, the small screen layout

with the buttons in the ScrollView is going to be really similar to

the original layout. You just need to recreate the button bar inside the

ScrollView. Use the magnets below to complete the layout.

<ScrollView

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:layout_weight=”1” >

<LinearLayout

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:gravity="center_horizontal" >

<TextView

 android:id=”@+id/imageTitle”

 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:textSize=”20dp”

 android:textColor=”@color/image_title_color”
 android:layout_marginTop=”5dp”
 android:layout_marginBottom=”5dp” />

<TextView

 android:id=”@+id/imageDate”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:textSize=”10dp”
 android:layout_marginBottom=”5dp” />

<ImageView

 android:id=”@+id/imageDisplay”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:layout_marginBottom=”5dp”

 android:adjustViewBounds=”true”/>

<Button android:text=”@string/setwallpaper”

 android:onClick=”onSetWallpaper”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:id=”@+id/setWallpaperButton” />
</LinearLayout>

Your magnets.

http://

you are here 4 193

multiple device support

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

<TextView

 android:id=”@+id/imageDescription”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content” />

<LinearLayout

 android:orientation=”horizontal”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:layout_weight=”0”

 android:paddingTop=”5dp”

 android:gravity=”center_horizontal”

 android:background=”#ff8D8D8D” >

<Button android:text=”@string/refresh”

 android:onClick=”onRefreshButtonClicked”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:id=”@+id/refreshButton” />

</LinearLayout>

</ScrollView>

</LinearLayout>

More
magnets.

http://

194 Chapter 5

building a special small screen layout

Small Screen Layout Magnet Solution
Below are the magnets you needed to complete the custom small screen

layout. Below are the magnets you need to complete the custom small

screen layout. Just like the landscape mode, the small screen layout with

the buttons in the ScrollView is going to be really similar to the original

layout. You just need to recreate the button bar inside the ScrollView.

Use the magnets below to complete the layout. You should have used the

magnets below to complete the layout.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

<ScrollView

 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:layout_weight=”1” >

<LinearLayout

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:gravity="center_horizontal" >

<TextView

 android:id=”@+id/imageTitle”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:textSize=”20dp”

 android:textColor=”@color/image_title_color”

 android:layout_marginTop=”5dp”

 android:layout_marginBottom=”5dp” />

<TextView

 android:id=”@+id/imageDate”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:textSize=”10dp”

 android:layout_marginBottom=”5dp” />

The root
vertical
LinearLayout

Beginning of
the ScrollView.

Vertical
LinearLayout
as the single
ScrollView child.

Here are the title
and date TextViews
as children to the
ScrollView’s vertical
LinearLayout.

http://

you are here 4 195

multiple device support

<ImageView

 android:id=”@+id/imageDisplay”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:layout_marginBottom=”5dp”

 android:adjustViewBounds=”true”/>

<TextView

 android:id=”@+id/imageDescription”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content” />

<LinearLayout

 android:orientation=”horizontal”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:layout_weight=”0”

 android:paddingTop=”5dp”

 android:gravity=”center_horizontal”

 android:background=”#ff8D8D8D” >

<Button android:text=”@string/refresh”

 android:onClick=”onRefreshButtonClicked”
 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:id=”@+id/refreshButton” />

<Button android:text=”@string/setwallpaper”

 android:onClick=”onSetWallpaper”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:id=”@+id/setWallpaperButton” />

</LinearLayout>

</ScrollView>

</LinearLayout>

</LinearLayout>

Here are the image
and description
Views, also as
children to the
ScrollView’s vertical
LinearLayout.

This is the start
of the button
panel directly inline
as a child of the
ScrollViews vertical
LinearLayout.child

Inside the button
LinearLayout is
the same, both
the refresh and
set wallpaper
button are added
to the horizontal
LinearLayout.

http://

196 Chapter 5

testing out the small screen layout

Now that you have the layout customized for small screens, run the

app and make sure your layout changes worked.

When the app stars up,
the buttons are hidden,
but you can now see
the entire image!

Scroll!

When you scroll ALL
the way down, you’ll see
the full button bar.

No buttons on
startup.

The small screen updates look great!

Test Drive

http://

you are here 4 197

multiple device support

What about small screen landscape mode?
You’ve put a lot of effort now into customizing the

app for landscape mode, and small screens. All of this

because you really want to make the app the best on all

of these different devices! But so far, the issues you knew

about were raised by your users. But it’s your job as the

Android expert to think ahead for your users and
anticipate these layout changes.

With that in mind, take a closer look at the small screen

device again. You customized the main layout, the

landscape layout and the small screen layout.

But what about small screen landscape mode?
Turn the emulator into landscape mode (by pressing

CTRL-F12) and see how it looks.

Scroll!

Wait, how did it figure out the
landscape small screen layout?

http://

198 Chapter 5

determining the best layout

How Android determines the best layout
As you’re building and customizing your app for

multiple screen sizes and configurations, you can end

up with a lot of different layouts in your project. It’s

important to understand which is getting loaded and

why. Here’s a look at how the four layouts scenarios

have loaded their layouts.

Is there a custom layout

for this screen size?

Is the device in

portrait mode? No

NoR.layout.
main

XML

main�xml

layout-

land

Is there a custom layout

for this landscape? Yes!

Big screen in
landscape mode

The layout under
layout-land will
get loaded.

Is there a custom layout

for this screen size?

Is the device in

portrait mode? Yes

No
R.layout.

main

XML

main�xml

layout

Big screen in
portrait mode

The layout under
layout will get
loaded.

A normal device is in portrait mode.1

A normal device is in landscape mode.2

http://

you are here 4 199

multiple device support

Is there a custom layout

for this screen size?

Is the device in

portrait mode? Yes

Yes
R.layout.

main

XML

main�xml

layout-

small

Small screen in
portrait mode

The layout under
layout-small will
get loaded.

Is there a custom layout

for this screen size?

Is the device in

portrait mode? No

Yes
R.layout.

main

XML

main�xml

layout-

small

Small device in
landscape mode

The layout under
layout-small will
get loaded.

Is there a custom layout

for this landscape? No

Geek Bits
Check the online docs at http://developer.android.com/

guide/practices/screens_support.html for more detailed

information on how layouts are selected for other screen

sizes not covered here.

A small device is in portrait mode.3

A small device is in landscape mode.4

http://

200 Chapter 5

changing the home icon

Shawn can see the entire space picture

without scrolling (which he’s thrilled

about). And if he wants to see the

description, refresh the app or set my

wallpaper, he can always scroll down. You

just made a happy user!

Awesome! The app looks
way better on my small
phone. You even thought
about landscape mode!

Shawn’s happy with the app now

http://

you are here 4 201

multiple device support

Now, about that icon...
Remember, Shawn did point out one other item that should

be fixed before posting the app on the Android Market. He

mentioned the app icon was the default icon and it would be

a good idea to change it. It will definitely make the app more

polished looking to your users, so let’s do that now.

After some looking around on the web, you found some free

pictures of earth. One in particular looked great for the home

screen icon.

As you saw in Chapter 3, app images are stored in the res

directory. And the home screen icon is in there in a PNG

called icon.png.

res

drawable-

hdpi

PNG

icon�png

drawable-

mdpi

PNG

icon�png

drawable-

ldpi
PNG

icon�png

You found this image on
the web and want to
use it as the app icon.

The icon.png image under
these directories are used as
the home screen app icon.

Ummm, no. How can
three separate images
control one app icon?
That’s crazy!

There are multiple images just like there

are multiple layouts.

You have to build different layouts to optimize for different

screens. And you have to include different images too. Let’s

see what the different images are optimized for...

http://

202 Chapter 5

different image for each pixel density

Different images for different pixel densities
Earlier in this chapter, the first small screen AVD

you created looked weird because the pixel density

was wrong. Buttons and images were too big and

everything looked really squished on the screen. The

same weird appearance problems would happen if you

use an image that’s too big or too small for a device’s

pixel density.

Android solves this problem by breaking devices down

into groups of pixel densities (high, medium, and large)

and allows you to include images for each group. Then

just like the layouts getting chosen at runtime, image

resources are dynamically loaded based on the screen

size the app is running on.

res

drawable-

hdpi

PNG

icon�png

drawable-

mdpi

PNG

icon�png

drawable-

ldpi
PNG

icon�png

high pixel density

(around 240 DPI)

medium pixel density

(around 160 DPI)

low pixel density

(around 120 DPI)

extra high pixel density

(around 320 DPI)

This device density grouping is brand new, so
old versions of Android won’t support it..

Android devices are broken
down into these groups...

...which map to the separate folders
under the res directory with images
just for that density group

http://

you are here 4 203

multiple device support

Larger icon for high

resolution phones

Medium sized

icon for medium

resolution phones

Small icon for low

resolution phones

This way, once the images are
displayed on the device, they are
all about the same size.

Real size is the whole reason for the

pixel density groupings.

If you have a screen with a pixel density of 240 DPI
and an icon that is 240 pixels wide, it’s going to be

one inch wide rendered on the screen. And if you

have a 120 DPI screen with a 120 pixel wide image,

it’s also going to be one inch wide rendered on the
screen.

Let’s say for example that you only had the large 240
pixel width icon. If you displayed that on the 120
DPI screen, it would render 2 inches wide! Twice

as big as the large screen.

That’s why the first AVD that you created had suck big

buttons and icons, when the pixel density was wrong.

These all render on the
respective screens to be
around the same size.

http://

204 Chapter 5

following the guidelines

Image standards
As you’re quickly learning. with all of the different

devices, there are lots of variations in screen sized

and pixel densities. Android divides these up into

manageable groups to make things easier. But that’s

not enough to make a consistent look and feel.

To solve this problem, Android has a published set

of guidelines that encourage standards. One of these

standards is the image size of the home screen icon.

Visit http://developer.

android.com/guide/

practices/ui_guidelines/

index.html and familiarize yourself

with the Android UI design guidelines.

The guidelines define pixel dimensions for launcher icons at each pixel density.

36x36 pixels

48x48 pixels

72x72 pixels

Low Medium High

Do this!

Q: Are there any other design requirements for the icons?

A: The icon design guidelines list a number of other design

attributes to use for your home icons. These include recommended

margins, colors, drop shadows, and more.

Q: Wow, that sounds like a lot of different requirements.

Are there some examples?

A: Absolutely. The icon design guidelines page includes a

number of different example icons you can use for reference.

Q: The design requirements for these icons look really

complicated! Is it worth it to seek a professional designer’s

help?

A: Yes. Apps are becoming much more graphics intensive

and can often benefit form the help of a professional designer.

This is especially true of your launcher icon which will be one

of the first things your users see! If you work with a designer,

point them over to the UI guidelines page as well as http://

developer.android.com/guide/practices/

ui_guidelines/icon_design.html#design-

tips for more information on working with graphics in Android.

http://

you are here 4 205

multiple device support

res

drawable-

hdpi

drawable-

mdpi

drawable-

ldpi

This icon is
72x72 pixels. This icon is

36x36 pixels.

This icon is
48x48 pixels.

Home Icon Magnets
Below are the density specific folders under the res directory. There

are magnets for the picture of earth icon resized for each pixel

density. Drag the home icons on the squares to the right of the

folder they belong to.

Drag the
appropriate
home screen
icon to each
density specific
directory.

http://

206 Chapter 5

testing the home icons

res

drawable-

hdpi

drawable-

mdpi

drawable-

ldpi

This 72x72 pixel icon is
for the high resolution
devices and goes in the
hdpi directory.

Home Icon Magnet Solution
Below are the density specific folders under the res directory. There

are magnets for the picture of earth icon resized for each pixel

density. You should have dragged the home icons on the squares to

the right of the folder they belong to.

This 48x48 pixel
icon is for the medium
resolution devices
and goes in the mdpi
directory.

This 36x36 pixel icon is
for the low resolution
devices and goes in the
ldpi directory.

http://

you are here 4 207

multiple device support

Test Drive
Now that you have optimized icons for each pixel density, run the app in both AVDs and navigate to the home

screen. Note the updated icons.

On the large screen high
pixel density device, the
72x72 icon is used. But
still, it just looks normal.

On the small screen
medium pixel density
device, the 48x48
icon is used. But
again, it just looks
normal.

Two screen sizes, two pixel densities and different image to

make the images look appropriate on each. Perfection!

http://

208 Chapter 5

getting more feedback

This is looking great. I
think it’s finally ready
for the market!

It looks like the app is ready

for the market

After building the app, tweaking the

layouts for screen sizes and orientations,

and polishing it off with the home icons,

it’s ready for people to download and run

in from the Market. .

TODO:

Maybe some mention of the

market deploy here, or explicityly

if we do a chapter 5.5 for

deploying to the market...

http://

you are here 4 209

multiple device support

You’ve done some great work optimizing your layouts for different devices. Here are

some additional directions to explore if you’re looking for more!

Go Off Piste

Cover more configurations

This chapter covered on
e screen size

and one orientation cu
stomization. Try

optimizing the layout for bo
th landscape

and portrait on small phones and large ph
one.

Add an additional set o
f layouts for medium

screen sized phones.

Make more AVDs
You currently have one AVD for large screens and one for small. Try creating a few more so you can test your small and large layouts against multiple different sized AVDs. Watch your layout managers dynamically resize based on screen size!

Rearrange the screens for
orientation changes
You made a small change between orientations,

moving the buttons to a better location. But

think of some extreme changes you could make

that would benefit orientation differences.

Think about adding features or drastic layout

differences between orientations. Think about

how this will effect the user experience. Is it

beneficial or a distraction? Also, think about how

the Activity might need to change if you have

functionality in one orientation but not another.

http://

210 Chapter 5

picking the important stuff

 � Create multiple AVDs for different screen

sizes.

 � Change emulator orientation by pressing

CTRL F12.

 � Create landscape layouts using the New

Android XML file wizard and adding the

landscape qualifier.

 � Create small, normal, and large screen

layouts using the New Android XML file

wizard and adding the landscape qualifier.

 � You can combine qualifiers and make

layouts just for one size and orientation, like

small and landscape.

 � Adjust the pixel density as you create new

AVDs to test the correct resource loading.

 � Create custom resources for each pixel

density you support.

 � You can edit AVDs after you create them to

adjust screen size and pixel density. But it’s

still a good idea to have a few AVDs created

with configurations for testing.

 � Replace icon.png with a custom icon for

your app, noting the specific icon sizes for

each pixel density.

Screen Size
• small screens are at least 426dpx320dp

• normal screens are at least 470dpx320dp

• large screens are at least 640dpx480dp

• xlarge screens are at least 960dpx720dp

** dp is denisty independent pixels *
*

Pixel Density
• ldpi is around 120dpi
• mdpi is around 160dpi
• hdpi is around 240dpi
• xhdpi is around 320dpi

** dpi is dots per inch **

Your Screen Toolbox

Now that you’ve optimized your

app for different screen sizes,

orientations and densities, you

can make all your apps look great

across multiple Android devices!

CH
AP

T
ER

 5

http://

this is a new chapter 211

tablets6

Running your apps on
big(ger) screens

There are more than just phones in the world of Android

devices� In the last chapter, you learned how to customize layouts to target different

phone screen sizes and device orientations. But now you want to take advantage of some

of the other Android devices out there like tablets. Some of the same strategies still apply,

like creating base layouts and optimizing for screen sizes and orientations, but you’ll learn

about new features to support tablets. You’ll also learn about a cool new feature called

fragments that allow you to configure, and reconfigure the content on the screen based

on screen size. Let’s get going!.

Forget it! I’m done
with this band.

That guy is off on his own.
What he doesn’t get is that
the whole band working
together is way cooler than
him by himself!

That may actually be
the cheesiest thing
I’ve ever heard.

http://

212 Chapter 6

thinking about tablets

Bobby wants to run the NASA app on a tablet
Bobby’s school is running an experiment and

gave everyone in his class an Android tablet.

Naturally, the first thing Bobby wanted to do

was check and see how his NASA Image of

the Day app looks on his brand new tablet!

I’ve been having a TON of fun with the
NASA Image of the Day app. And now
that I’ve got this new tablet, I can wait to
see the NASA app running on it!

Install the app on a tablet.

The app is already up on the market, so

you can download it from any device...

including a tablet! You can also install the

app directly on the tablet just like a phone.

Let’s see how it looks...

http://

you are here 4 213

working with feeds

The app loaded the
landscape layout, since
this is in landscape mode. There is a very large

amount of blank space.
The title is
too small.

Android tablet users describe apps
like this as being humongified!

Since they act like they
are running on humongous

phones!

Really wide
stretched text...

The title is really small on this huge screen, the image is

centered with too much blank space, and the text goes

all the way across the screen. It looks bad because we

are running a layout that was designed for a phone and

running it straight on a tablet.

The app doesn’t look so good

http://

214 Chapter 6

adding more content

What about all that blank space?
Right now, the app has a lot of blank space

when it runs on a tablet. Bobby’s teacher,

Kevin, has an idea for you.

Why don’t you fill up some of
that free space by displaying
NASA educational news?

Adding a second feed sounds like a

great way to fill out the app!

Since the school gave out tablets, all of Bobby’s

classmates have them now. And they all want

to run the NASA Daily Image app. While they

are looking at the daily image, a NASA feed

displaying information specifically oriented

around education sounds like a perfect fit. So

you’re not just adding stuff to fill out the screen,

you’re going to be adding additional useful

content for your tablet users.

Bobby’s
teacher Kevin.

http://

you are here 4 215

working with feeds

An activity displaying the
NASA education new feed.

The NASA education news feed activity
Kevin thinks this is such a good idea that he

built the Activity for you to display the NASA

Educational News feed.

Download the sample code for Chapter 6. There

is a project called CH06_NASA_Image_

of_the_Day that includes a new Activity for

displaying the NASA Education News feed in

NasaEdNews.java.

You’ll be taking this code and the code you’ve

written in earlier chapters to make these two

Activities work together for a tablet app.

Download the sample projects i fyou

haven’t already. Open the project

CH06_NASA_Image_of_the_Day

and you’ll find a new Activity called

NasaEdNews and all of the feed

parsing code to make it work.

Do this!

 You’ll learn all about

lists in the next chapter

The NASA Education News

Activity is displaying each

result in a special View called a ListView.

You’ll learn all about them and how to build

and customize your own in the next chapter.

For this chapter, you can use the sample code

you’ve downloaded.

http://

216 Chapter 6

designing for the big screen

Picture title
Picture Date

Picture description

Refresh News Item 1

News Item 2

News Item 3

News Item 4

Set Wallpaper

How do you want the app to look?

The design of the image
of the day section is
mostly unchanged.

The design of the news
list also remains vasically
unchanged, just a vertical
list of news items.

There are a number of different ways to

design the app to include both the daily image

and educational news. Here is one design that

uses space well, and also keeps the news off to

the side as secondary information.

http://

you are here 4 217

working with feeds

The plan

1. Update your development environment
Android tablets are running Android version 3.0

and above. In order to be able to develop tablet

specific Android functionality, you’ll need to update

your development environment to use an Android

platform 3.0 or above.

2 Combine the activities
The code for the Nasa Image of the Day and the

Education News feed are in two different Activities.

These need to be combined into a single Activity to

they can be displayed on the screen.

There are a number of different ways to

design the app to include both the daily image

and educational news. Here is one design that

uses space well, and also keeps the news off to

the side as secondary information.

3. Test the new combined activity
You’re going to be moving a lot of code around to

make both Activities display on the screen together.

As always, you’ll need to test your code and make

sure nothing is broken (and fix it if it is)!

Android
3.2

News Image+

Install new
Android platform.

Display two activities
on one screen.

Test all your code
when you’re done.

http://

218 Chapter 6

adding a new platform

Add a new platform
In Chapter 1, you installed all of the Android development tools,

including the base SDK and one version of the Android platform

(Android 2.3.3, API Version 10). Tablets use a later version of

Android starting with Android version 3.2 (API version 13).

Android is built to handle these differences by allowing you to install

multiple platforms at once in your development environment. To

work with Tablet specific functionality, start by installing Android 3.0.

Launch the Android SDK and AVD Manager select Available

Packages, and install Android 3.2.
Android SDK and
AVD Manager

Select Available
Packages.

Select Android
version 3.2.

Press Install
Selected when
complete.

Q: How come Android versions have a version number and

an API number?

A: Since your app will be running on multiple Android versions

simultaneously, the Android platforms are very specific about API

changes. And the version number isn’t enough to let you know

what version the API is. For example, 2.3 is API version 9, 2.3.3

is API version 10, and 3.0 is API version 11. Since the numbering

jumped from 2.3.3 to 3.0, the API version helps keep versions in

sequence.

Q: How come there are separate versions for Android and

Google platforms for each release?

A: The base Android platform versions include the core Android

platform. Google provides an extended version of each platform

with additional APIs including maps and other cool add ons.

http://

you are here 4 219

working with feeds

Setup a tablet AVD
Now that you have a new Android platform version

installed, you need to setup an Android Virtual

Device (AVD) that uses it. Then when you launch

that AVD, you’ll be running an emulator with the

latest version. And in this case, we’ll want to setup

tablet dimensions since we’re testing tablets.

Select the
platform you
just instaled.

Name the AVD
something that will
help you remember
which one it it. Using a
combination of version
and size will help you
quickly tell your AVDs
apart.

Select the
default size,
WXGA.

Press Create AVD
when you’re done.

http://

220 Chapter 6

running a tablet in the emulator

Start the tablet AVD
Once your new tablet AVD is setup, start the

AVD by going to Android SDK and AVD

Manager → Virtual Devices and launching the

new API13-Tablet device.

You’ll notice it looks a lot different from Android

2.3.3.

This is the new
home screen.

These three buttons are the back button, the
home screen button, and the menu button
respectfully. They have been moved to soft
buttons for tablets.

This takes you to all
the apps installed on
the device.

Now let’s run the app on the tablet AVD

http://

you are here 4 221

working with feeds

 Android will check where you want to run your app.

If you have both Android

emulators running and

you run your app, you’ll

be shown a dialog with

the available devices. You

can then choose where you

want to run the app from

the list of devices.

Run the app on the tablet AVD
Now that the tablet AVD is running, you can

run your app on that AVD as you normally

would (using the play button or right clicking on

the app in Eclipse and selecting run). The app is running in
the emulator.

If you have multiple AVDs running or
devices connected, you’ll get a dialog
like this when you run your app.

http://

222 Chapter 6

combining multiple activities

Combine the activities
Now that you have the app running in

the tablet specific emulator, it’s time to

start implementing the design changes to

combine the activities on one screen.

Image of the day Education News

The code for this
screen is in the
NasaEdNews Activity. The code for the image of the

day is in the NasaIotd Activity.

One way to make this work would be to combine both

the Image of the Day and the Education News Feed

Activities into one single combined Activity. There

are a few big downsides to this.

First, you would be duplicating code since you want to

be able to keep the Activities separate to run just one at

a time on a small screen device. On top of that, right

now the code for each function (the image and the news

feed) is encapsulated in an Activity. And it would be

great to keep them that way.

One combined activity

You could make one combined
Activity to display both
Activities on one screen...

http://

you are here 4 223

working with feeds

Wouldn't it be dreamy if you could
combine multiple Activities in a single screen
without having to combine them into one giant
Activity. But I know it's just a fantasy…

http://

224 Chapter 6

meet fragment

Use fragments
It’s a natural progression to add more features per

screen once you move to the larger screen sizes of

tablets. But since Android devices take on so many

different shapes and sizes, it’s important to remain

flexible and be able to arbitrarily combine parts

of different screens.

But it’s equally important that the functionality

for the screen part stay tightly coupled to the

screen part that is rendered.

To solve these needs, Android introduced the idea

of screen fragments.

On a tablet...

Image of

the Day

Education

News

Education

News

Image of

the Day

Users will see both fragments on a single

screen. And the logic to drive each screen

art is in a separate fragment.

Image of

the Day Education

News

On a phone...

The fragments can be configured to run on

separate screens, one for each fragment.

http://

you are here 4 225

working with feeds

... but the codebase is built on activities
Fragments sound like a great idea, but right now your

codebase is built on Activities, not fragments. Without

rewriting your app from from scracth, you need to convert

those Activities to fragments. How are you going to do it?

Image of

the Day

Education

News

Education

News

Image of

the Day

Activities.

You have two Activities... ... you want to fragments and a Screen.

Fragments

Screen to
display the
fragments.

Converting your existing app to use fragments

Here are the steps you’ll take to convert your existing

app to use fragments without rewriting it from scratch.

Convert your existing Activities to fragments.
This will allow you to combine them into a single screen.

1

Create a new Activity that will display the two fragments.2

Add the two fragments to the new Activity.3

Test and bug fix as needed.4

http://

226 Chapter 6

migrating activities to fragments

Extend fragment instead of activity
Start by opening the NASA Image of

the Day Activity (in NasaIotd.java).

Change the class declaration from extending

Activity to extending Fragment. Extending fragment
instead of activity.

LOTS of errors.
(Each line in
the margin is an
error).

You told me to extend
Fragment and now I
have all these errors.
What gives?

Extending fragment is the right thing to do...

But there are a few other changes you’ll need to make in

your development environment and the Fragment itself for

everything to work seamlessly.

Let’s start by updating your development

environment...

http://

you are here 4 227

working with feeds

Set the android version for your project
If you hover over the line in the margin of the

Eclipse editor, you’ll see an error saying that

class Fragment is not found. Right now, you’re

probably wondering how the Fragment class

couldn’t be found if you’re running the app on a

tablet running Android 3.2!

The answer is that even though you’re running

the app on an Android AVD running Android

version3.2, your project is still set to build using

version 2.3.3. And Fragment’s hadn’t been

released in Android 2.3.3 so the class Fragment

couldn’t be found.

Update the Android version building

this project by going to Project

Properties (right click on the project)

and select Android. Then select a build

target of Android 3.2.

Android property screen
in Project Properties.

Select
Android 3.2

Press OK
when done.

Do this!

http://

228 Chapter 6

updating calls to activity methods

Why do you still get errors?
After you select OK, setting the Android platform

version for your project, Eclipse will automatically

rebuild your project using the new platform. The

Fragment class should be found now, but there are

still many other errors to contend with.

Fragments aren’t activites
themselves...

The implementation of the NasaIotd

relied on several methods inherited

by subclassing Activity. But

Fragment doesn’t extend Activity,

and now NasaIotd extends

Fragment not Activity, so those

methods are out of scope.

... but they do have access to
their Activity.

Fragments can’t be launched by

themselves. Instead, your app will still

be launched by an Activity, and

that Activity is going to assemble the

Fragments to display on the screen.

But the Fragment can get a reference

to the Activity that added it to a

screen using the method getActivity.

 TextView titleView = (TextView)

 getActivity().findViewById(R.id.imageTitle);

 TextView titleView = (TextView)

 findViewById(R.id.imageTitle);

This code will throw a compiler error
This line is from the iotdParsed method and is getting a reference to the Title TextView

using the findViewById method. But that method doesn’t exist in Fragment.

Here is the same line of code modified to work in a Fragment. Notice that getActivity is called

before findViewById. This gives a reference to the Activity that launched the Fragment.

This code works

findViewById doesn’t exist in fragment
and will cause a compile error.

Calling getActivity returns a reference to the Activity that
displayed the fragment. Then you can call findViewById

http://

you are here 4 229

working with feeds

Below is the iotdParsed method that is called when the parser

completes parsing and the results are displayed on the screen.

Modify the code below to use getActivity() to retrieve the

Activity and make this Fragment work correctly.

public void iotdParsed(final Bitmap image, final String title,

 final String description, final String date) {

 handler.post(

 new Runnable() {

 public void run() {

 TextView titleView = (TextView)

 findViewById(R.id.imageTitle);

 titleView.setText(title);

 TextView dateView = (TextView)

 findViewById(R.id.imageDate);

 dateView.setText(date);

 ImageView imageView = (ImageView)

 findViewById(R.id.imageDisplay);

 imageView.setImageBitmap(image);

 TextView descriptionView = (TextView)

 findViewById(R.id.imageDescription);

 descriptionView.setText(description);

 }

 }

);

}

http://

230 Chapter 6

updating lifecycle methods

Below is the iotdParsed method that is called when the

parser completes parsing and the results are displayed on

the screen. You should have modified the code below to use

getActivity() to retrieve the Activity and make this

Fragment work correctly.

public void iotdParsed(final Bitmap image, final String title,

 final String description, final String date) {

 handler.post(

 new Runnable() {

 public void run() {

 TextView titleView = (TextView)

 findViewById(R.id.imageTitle);

 titleView.setText(title);

 TextView dateView = (TextView)

 findViewById(R.id.imageDate);

 dateView.setText(date);

 ImageView imageView = (ImageView)

 findViewById(R.id.imageDisplay);

 imageView.setImageBitmap(image);

 TextView descriptionView = (TextView)

 findViewById(R.id.imageDescription);

 descriptionView.setText(description);

 }

 }

);

}

getActivity().

getActivity().

getActivity().

getActivity().

All of the findViewById
calls need to be preceded
by getActivity.

Do this!
Go through the Activity and look

for other errors that can be fixed by

calling getActivity before the

method call not being found.

http://

you are here 4 231

working with feeds

Update the lifecycle methods
The lifecycle methods of a Fragment are also a bit different than

Activity. One of the major differences are lifecycle methods that

allow code to execute when lifecycle methods happen on the associated

Activity.

Another major change is in onCreate in your Activity, you configured

the Activity and set the view. With Fragments, onCreate is

separated into two methods, with an additional method added called

onCreateView which returns a View. This allows the Activity to

control the view generation and query the Fragment for their Views.

onCreate

View
onStartonAttach

onActivity

Created
onCreate

These methods are based on
lifecyle events in the Activity

You set the view in Activity onCreate,
but for fragments these are separated
out into onCreate and onCreateView

onCreate

View
onStartonCreate

You’ll almost always override
these three methods.

Just like Activity, there are a

number of lifecycle methods you

can override from the Fragment

base class. But you’ll almost always

override these three.

Initialization and
configuration

Create and return
the View to use

Start anything needed
after the Fragment
starts.

http://

232 Chapter 6

planning fragment lifecycle methods

Verify the lifecycle methods
The only lifecycle method overridden in NasaIotd

is onCreate, which contains all of the initialization

and configuration for the Activity. When

migrating to Fragments, this code needs to split

up since the lifecycle includes separate creation.

attachment, and rendering methods to facilitate

combining fragments.

The handler creation and invoking the feed refresh

can still happen in onCreate.

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 handler = new Handler();

 refreshFromFeed();

 setContentView(R.layout.activity_main);

 }

 public View onCreateView(LayoutInflater inflater,

 ViewGroup container, Bundle savedInstanceState) {

 //View instantiation goes here ...

 }

The handler and refresh
can stay in onCreate

Setting the content view needs to change
since Fragments need to return their view
in onCreateView rather than setting the
content view for the entire Activity.But the view creation has to happen separately.

Fragment has a special lifecycle method that returns

the View for the Fragment called onCreateView.

But rather than returning an R constant for the View

XML, you return an instantiated View.

onCreateView returns
an instantiated View.

http://

you are here 4 233

working with feeds

Wait, how are you
supposed to instantiate
a View? I thought Android
did that for you!

You can instantiate Views yourself, too.

The setContentView method is a helper method

that takes an R file constant and creates a View.

This works internally by looking up the XML layout

defined by that constant, parsing the file, and creating

and configuring each View specified in the layout.

This creation of real Views from layout

XML is called inflation.

XML

The layout XML
file goes in.

The LayoutInflater processes
the layout XML file and
instantiates the Views that
are described in the XML file.

Once inflated, the View can be
returned in onCreateView

http://

234 Chapter 6

inflating views

Using LayoutInflater

public void inflate (

 int layoutId,
 ViewGroup root,

 boolean attachToRoot

);

It sounds like a LayoutInflater will do the

job, but where do you get the LayoutInflater?

There are a few parameters passed in to the

onCreateView method, and one of them is a

LayoutInflater. And you can use it to inflate

your View defined in the Fragment’s layout.

 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {

 }

You will inflate your
layout in here

A layout inflater is passed in to
Fragment’s onCreateView.

Inflating the layout
The inflate method on LayoutInflater take

the R constant of the layout you want to inflate as

an input parameter. It also takes a root ViewGroup

that helps the LayoutInflater configure the

internal layout inflation. The method also takes a

boolean parameter indicating whether or not to

attach the layout to the ViewGroup being passed in. The inflate
method from
LayoutINflater

The R constant for the
layout you want to inflate.

The ViewGroup root to
configure layout inflation.

Indicating whether or not to attach the
inflated view to the ViewGroup. This is
going to be false for fragments. `

http://

you are here 4 235

working with feeds

onCreateView Magnets
Below are empty methods for onCreate, onCreateView, and

onStart. Complete the methods with the magnets below paying

close attention to which code belongs in each method. Not all of the

magnets will be used, so you will have some left over.

refreshFromFeed();

return

handler = new Handler();

R.layout.activit
y_main

public void onCreate(Bundle bundle) {

}

public View onCreateView(LayoutInflater inflater,

 ViewGroup container, Bundle savedInstanceState) {

}

public void onStart() {

}

);

false

setContentView(

inflater.inflate
(container,

super.onStart();

Initialization and
configuration
code in here.

Inflate and return the
view for the fragment

Call the refresh method
in here to be sure the
view was created

http://

236 Chapter 6

implementing onCreateView

public void onCreate(Bundle bundle) {

}

public View onCreateView(LayoutInflater inflater,

 ViewGroup container, Bundle savedInstanceState) {

}

public void onStart() {

}

onCreateView Magnets Solution
Below are empty methods for onCreate, onCreateView, and

onStart. You should have completed the methods with the

magnets below paying close attention to which code belongs in

each method. You should have extra magnets left over.

refreshFromFeed();

handler = new Handler();

setContentView(

return inflater.inflate(

R.layout.activity_main);falsecontainer,

super.onCreate(bundle);

There is no need to call
setContentView since
onCreateView returns the view.

Refresh the feed in on start,
this way, onCreateView will have
already been called and the views
will have been created.

Inflate the layout using the layout inflater
passed in, and inflating the activity_main layout.

The handler can still be
created in onCreate.

super.onStart();

http://

you are here 4 237

working with feeds

public class NasaEdNews extends Fragment implements EdNewsHandlerListener {

 private static final String URL = "http://www.nasa.gov/rss/educationnews.rss";

 private Handler handler;

 private EdNewsAdapter listAdapter;

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 handler = new Handler();

 setContentView(R.layout.ed_news);

 }

 public View onCreateView(LayoutInflater inflater,

 ViewGroup container, Bundle savedInstanceState) {

 return inflater.inflate(R.layout.ed_news, container, false);

 }

 public void onStart() {

 super.onStart();

 listAdapter = new EdNewsAdapter();

 ListView listView = (ListView)

 getActivity().findViewById(R.id.ed_news_list);

 listView.setAdapter(listAdapter);

 refreshFromFeed();

 }

Convert NasaEdNews to a fragment
You’re done converting the NasaIotd to a

Fragment, but now you have to do the same

updating to NasaEdNews. They both need

to be Fragments so you can add them to the

screen.

Update your version of

NasaEdNews to be a

Fragment according to

these changes.

Inflate the layout
in onCreateView.

Don’t call
setContentView

Get a reference
to the Activity,
then call
findViewById

Extend fragment
instead of Activity.

Do this!

http://

238 Chapter 6

creating a new activity

Make the surrounding activity
Now you’ve converted both Activities to

Fragments, but you can’t launch a Fragment on

it’s own. You can combine the Fragments in an

Activity and display the Activity... but you don’t

have an Activity in your app.

Now you’ll make a new Activity, and render

the Image of the Day and Education News

Fragments in that new Activity.

Image of the Day
(Fragment)

Education News
(Fragment)

NasaApp (Activity)

This is the new Activity you’ll
create to display the fragments.

These are the two Fragments you just
converted from Activities. These will be
displayedi in your new Activity.

http://

you are here 4 239

working with feeds

CH06_NASA_

Image_of_the_Day

src

gen

com�headfirstlabs�

ch06�nasa�iotd

NasaApp�java

XML

nasa_app�xml

layout

res

Create a new Activity
called NasaApp.java in
the source folder.

Create a new layout
file, NasaApp.xml in
the layout directory.

Create a new Activity java class
In the Eclipse Package Explorer, navigate to the

project source (CH06_NASA_Image_of_the_Day

if you’re using the example code). Go to src/com/

headfirstlabs/ch06/nasa/iotd. Right click

on the iotd package and select New → Class. Call the

new class NasaApp.java.

1

Create new layout
Now go to File → New → Android XML File.

Select Layout s the type of XML file and call it

nasa_app.xml.

2

http://

240 Chapter 6

implement a basic activity

Built out a basic Activity
You just created a class and a layout for the

Activity, but they are both empty. Start by building

out NasaApp.java to extend Activity, and

create an onCreate method to render the layout.

 public class NasaAppActivity extends Activity {

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.nasa_app);

 }

 }

NasaApp�java

 How come I was supposed to get rid of
the setContentView methods from the
NasaIotd.java and NasaEdNews.java, but
add it here?

NasaApp is an Activity, not a Fragment.

You just converted both NasaIotd.java and

NasaEdNews.java to be Fragments instead

of Activities, and Fragments should use

onCreateView which returns a View instead of

setting the Content View. But NasaApp.java is an

Activity, and it should set the Content View.

http://

you are here 4 241

working with feeds

Update the manifest
The AndroidManifest.xml contains metadata

about how your app is configured, and how to run

and install it. You first modified the manifest file in

Chapter 3 to add permissions to access the network.

The manifest file also includes a reference to the

Activity to launch. And since you’re changing

the Activity to launch (from NasaIotd to

NasaApp) you need to update the manifest.

 <application android:icon=”@drawable/icon” android:label=”@string/app_name” >

 <activity android:name=”.NasaApp”
 android:label=”@string/app_name” >

 <intent-filter>

 <action android:name=”android.intent.action.MAIN” />

 <category android:name=”android.intent.category.LAUNCHER” />

 </intent-filter>

 </activity>

 </application>
XML

AndroidManifest�xml

Open the AndroidManifest.xml file in

the project root. Click on the tab to the right

labeled AndroidManifest.xml to edit

the XML directly. Update the android:name

attribute in the Activity to point to the

new Activity you just created.

Update the android:name attribute in
the Activity to .NasaApp from .NasaIotd
since NasaApp is the new Activity.

Do this!

http://

242 Chapter 6

test the new activity

Run the app now to verify everything is starts and renders the

Activity

The app runs, but the screen is empty.
This isn’t surprising since you are
displaying a layot that has no Views.

Test Drive

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout

 xmlns:android=”http://schemas.android.com/apk/res/android”

 android:orientation=”horizontal”

 android:layout_width=”match_parent”

 android:layout_height=”match_parent”>

</LinearLayout>
XML

nasa_app�xml

The layout you just
created in NasaApp.xml
does not contain any
Views yet.

http://

you are here 4 243

working with feeds

Wait now, I don’t want a
blank screen, I want to
see both Fragments on
the screen!

It’s no surprise the layout is empty...

You created the new Activity and layout, but you

haven’t populated it yet. The fragments need to be

displayed on the screen too.

Now that you have the completed Fragments and

an Activity to display them, let’s see how to

display the Fragments on screen.

http://

244 Chapter 6

adding fragments to the screen

Add the fragments to your layout
Fragments can be added to a screen

in the XML layout. There is a special

<fragment> element added to XML

layouts after Fragments were introduced.

<fragment android:name=”_______________”

 android:id=”_______________”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

The fully qualified
class name of your
fragment goes here

It’s a good idea to add an android:id
attribute for your fragment. This will
allow you to retrieve and configure the
fragment from your activity later on.

You can use regular layout
attributes on a fragment
just like any other View.

Q: You’re defining a fragment in the layout, but assigning

View layout attributes. Can you do that?

A: Yes. You’re defining the fragment attribute and referencing

the fragment class. But the view is rendered to the screen, and

view attribute control how the view is laid out.

Q: Do I have to do any other configuration to make the

fragment load?

A: No, defining the fragment in the layout renders the view and

instantiates the fragment class.

Q: Do I have to start the fragment or call any of the other

lifecycle methods?

A: Nope! That’s all done for you automatically.

Q: Do I have to declare it in the layout? What if I want to

programatically decide which Fragment to add?

A: You can add fragments programatically in addition to

declaring them in the layout. Check the online docs for more

information.

http://

you are here 4 245

working with feeds

Below is the empty layout for nasa_app.xml. Add both the NasaIotd and

the NasaEdNews Fragments to this layout. Add them to the current horizontal

LinearLayout below. Make sure to give the Fragments android:id

attributes as you would for other Views.

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 android:orientation=”horizontal”

 android:layout_width=”match_parent”

 android:layout_height=”match_parent”>

</LinearLayout>

http://

246 Chapter 6

test the new fragments

Below is the empty layout for nasa_app.xml. You should have add both the NasaIotd

and the NasaEdNews Fragments to this layout. You should have added them to the

current horizontal LinearLayout below. You also should have given the Fragments

android:id attributes as you would for other Views.

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 android:orientation=”horizontal”

 android:layout_width=”match_parent”

 android:layout_height=”match_parent”>

</LinearLayout>

<fragment android:name=”com.headfirstlabs.ch06.nasa.iotd.NasaIotd”

 android:id=”@+id/fragment_iotd”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_weight=”1” />

<fragment android:name=”com.headfirstlabs.ch06.nasa.iotd.NasaEdNews”

 android:id=”@+id/fragment_ed_news”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_weight=”1” />

The image of the
day fragment

The education
news fragment

Fully qualified
class names of the
fragments

http://

you are here 4 247

working with feeds

Run the app again. At this point, you should see both of the

fragments displaying on the screen.

This screen is just a big horizontal LinearLayout

with two large Views... the two fragments!

Test Drive

http://

248 Chapter 6

small screen testing

Test it on a small screen
Right now you’re testing the app on the

default tablet size for the emulator, WXGA,

which is a sizable 1280x800. But not all of

your users’ devices are going to be that big,

even tablets. Let’s make a small Android

Version 3.2 AVD to see how the app looks.

Name the AVD API13-
Tablet-600-400 so you
know the size and version.

Override the default
resolution and set it
to 600 x 400.

Select Android
3.2 Level 13.

Click finish when
you’re done.

Launch the emulator and run the app.

http://

you are here 4 249

working with feeds

That looks pretty awful.
I think this screen is
too small to display both
fragments on the screen.

It is definitely too small for these fragments.

There are no firm rules about how many fragments you can

display on the screen. These two fragments take up a lot of

space, so they don’t work well together on small screens. They

look great together on large screens though.

But one way or another, you’ll need to fix this on small screens...

Yikes! Not
looking too
good...

http://

250 Chapter 6

different screens, different layouts

New Screen Groups Up Close

In Chapter 5, you build optimized layouts for small screen devices and

landscape. Using the same R constant, layouts are dynamically loaded based

on their screen size category (small, med, large, and a recent addition,

x-large). These are your layout folders from Chapter 5.

res

layout
layout-

land
layout-

small

The original
layout.

The landscape
specific layout. The new small

screen layout.

Android 3.0 introduced the idea of minimium screen widths and heights

to determine the dynamic layout loading. So instead of declaring small,

med, or large screen widths, you can declare screen widths in Density

Independent Pixels (DPs).

The name of the folder determines in the screen size the layout applied for.

And just like the screen group following the layout in the folder name, so

does the screen size. The difference is that the width or height is specificed

with a w or h, followed by the dimension in DPs. Screens larger then

the specified width or height load the layouts in the folder.

layout-

w800dp

This folder’s layouts will
be loaded if the width is
greater than 800dp

layout-

h400dp

This folder’s layouts will be loaded
if the width is greater than 400dp,
but only up to 800dp if the layout-
w800dp filder is included also.

For newer versions of Android, either the old style screen groupings or the new minimum

screen size approach will work. However, older versions of Android require the older style

screen grouping approach. The new and old screen grouping approaches can work together,

and you’ll need to do that if you plan on supporting older versoins and new versions of

Android in the same app.

http://

you are here 4 251

working with feeds

Use two optimized layouts
Since both of the fragments won’t really fit on the

small 600x400 screen, let’s make special layouts for

large and small screens according to the minimum

screen width and height optimized layouts in 3.0.

Image of

the Day

Education

News

greater than 800

Image of

the Day

less than 800

One large layout
If the screen is large enough, display

both of the fragments side by side.

Depending on your target devices and

application content, this size might

vary. For the Nasa App, let’s define the

minimum size as 800 pixels for side

by side fragments. This will be a new

layout specifying screen sozes 800 pixels

wide or above.

One small layout
If the app is less that 800 pixels, just

display the Image of the Day

fragment and not the Education

News. This will be the layout in /

res/layout/main.xml.

http://

252 Chapter 6

creating custom layouts

Create the large screen layout
Just like the landscape mode, newer versions

of the Android Eclipse Plugin allow you

to configure the minimum layout width

directly from the new Android XML File

wizard. Launch the wizard now and create

the large screen optimized XML layout.

The file should
be main.xml

Select smallest
screen width

Enter 800
here as the
minimum
width.

Press finish
when you’re
done.

http://

you are here 4 253

working with feeds

Head First: Thanks for taking time out of your

busy schedule of laying out screens and determining

which layouts to use to come and talk to us.

Screen Support: A pleasure, as always.

Head First: You know, I thought the small, normal,

and large screen sizes which seemed a little hard

to keep track of. Then I learned about screen pixel

density and seemed like a LOT to keep track of.

Screen Support: Ah yes, the good old days.

Head First: The good old days?

Screen Support: Yes. Back then I just had one

system of screen sizes to keep track of. Now I have

to keep track of all of that, plus the new system of

defining widths directly in the folder name.

Head First: I honestly don’t know how you do it.

Screen Support: Oh it’s not that bad. I just have

an algorithm I follow to figure out which resource to

use. It’s not like I’m making random decisions myself

or anything.

Head First: But don’t developers get frustrated

trying to nail down the different resources?

Screen Support: Some do. But they get used to

my algorithm and then they know what layouts to

build for what screen sizes. And they know which

to override to make some device work the way they

want.

Head First: I’m still shocked that this doesn’t

confuse you, all of these different layouts in the same

app! It would drive me nuts!

Screen Support: If you want to really go nuts,

check out all of the other overrides you can do for

each layout in addition to size and pixel density.

Head First: You’re kidding, there’s even more? I

had a hard enough time keeping up with this already!

Screen Support: Sure! You can also override

layouts by input type. Say for example you have an

app with an on screen numeric keyboard for touch

screens. You can customize the layout for 12-key

devices to remove the keyboard since they already

have hardware buttons.

Head First: OK, this is just getting out of hand.

Screen Support: And I’m not even done! You

can also customize your layouts by locale. Say for

example, you’re working with a language that reads

right to left instead of left to right. You can add

customized layouts that reverse parts of the screen

for those languages.

Head First: Enough already! You lost me with the

12 key devices!

Screen Support: Like I said though, it’s a piece of

cake.

Head First: Of course, its the algorithm right?

Screen Support: Sure is! It’s all in the algorithm.

As long as we both follow the same rules, there will

be no nasty surprises!

Head First: I’m going to take your word for it.

Screen Support: Suit yourself ! Just remember,

I’m here when you need me.

Screen Support Exposed
This week’s interview:

How do you keep it all straight?

http://

254 Chapter 6

building the layouts

Below are the layouts for the main.xml in both the the res/layout folder and the

res/layout-w800dp folder. Modify the main.xml in the layout folder to display just

the NasaIotd fragment for small screen devices. Also modify the currently empty layout

in layout-w800dp/main.xml to show both fragments.

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 android:orientation=”horizontal”

 android:layout_width=”match_parent”

 android:layout_height=”match_parent”>

 <fragment android:name=”com.headfirstlabs.ch06.nasa.iotd.NasaIotd”

 android:id=”@+id/fragment_iotd”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_weight=”1” />

 <fragment android:name=”com.headfirstlabs.ch06.nasa.iotd.NasaEdNews”

 android:id=”@+id/fragment_ed_news”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_weight=”1” />

</LinearLayout>

layout

XML

nasa_app�xml

http://

you are here 4 255

working with feeds

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 android:orientation=”horizontal”

 android:layout_width=”match_parent”

 android:layout_height=”match_parent”>

</LinearLayout>
layout-

w800dp

XML

nasa_app�xml

http://

256 Chapter 6

building the layouts

Below are the layouts for the main.xml in both the the res/layout folder and the

res/layout-w800dp folder. Modify the main.xml in the layout folder to display just

the NasaIotd fragment for small screen devices. Also modify the currently empty layout

in layout-w800dp/main.xml to show both fragments.

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 android:orientation=”horizontal”

 android:layout_width=”match_parent”

 android:layout_height=”match_parent”>

 <fragment android:name=”com.headfirstlabs.ch06.nasa.iotd.NasaIotd”

 android:id=”@+id/fragment_iotd”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_weight=”1” />

 <fragment android:name=”com.headfirstlabs.ch06.nasa.iotd.NasaEdNews”

 android:id=”@+id/fragment_ed_news”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_weight=”1” />

</LinearLayout>

layout

XML

nasa_app�xml

The small screen layout
in layout/main.xml
should only contain the
NasaIotd fragment. So
remove the education
news fragment.

http://

you are here 4 257

working with feeds

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 android:orientation=”horizontal”

 android:layout_width=”match_parent”

 android:layout_height=”match_parent”>

</LinearLayout>
layout-

w800dp

XML

nasa_app�xml

<fragment android:name=”com.headfirstlabs.ch06.nasa.iotd.NasaIotd”

 android:id=”@+id/fragment_iotd”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_weight=”1” />

<fragment android:name=”com.headfirstlabs.ch06.nasa.iotd.NasaEdNews”

 android:id=”@+id/fragment_ed_news”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_weight=”1” />

The entire
contents of
layout/main.xml
move to the large
screeb layout.

http://

258 Chapter 6

testing on multiple screen sizes

Now that you have optimized layouts for small screen and large (over

800dp width) devices, run the app again and make sure it works on

both devices. Use the AVD selection dialog in Eclipse to run the app

on both AVDs if you are running them at the same time.

The large
screen format
still looks good.

Test Drive

http://

you are here 4 259

working with feeds

And the small
screen format
looks great too.

That looks great! Add
more content only where
it works. Perfect!

Fragments made is all possible

This is a perfect example of customizing your app

to render more or less content based on screen size.

And with fragments, it was easy to just add or remove

content (and the functionality to support the content

like the feed refreshing) just from your layouts without

having to move a lot of code around.

http://

260 Chapter 6

testing functionality

Test the app functionality
Speaking of functionality, this is a great time

to test the app and make sure everything

works. You already know the feed is

refreshing correctly, but what about scrolling

and the on screen buttons?

Ouch! The
app crashed!

http://

you are here 4 261

working with feeds

java.lang.IllegalStateException:

 Could not find a method

 onRefreshButtonClicked(View) in the activity

 class com.headfirstlabs.ch06.nasa.iotd.NasaApp

 for onClick handler on view class android.widget.Button

 with id 'refreshButton'

Why is the app crashing?
The feeds are loading correctly, and

scrolling works. But when you press the

butons, the app is crashing. Here is the

output.

Can you figure out what the error is referring to?

Why might this error be occurring? How would you

fix it?

http://

262 Chapter 6

fixing the onClick methods

Add onClick methods to the activity
To make the buttons work, you added

android:onClick attributes to the buttons

and corresponding methods in the NasaIotd

Activity. There’s just one big problem...

NasaIotd isn’t the Activity anymore, it’s a Fragment.

NasaApp is the Activity now. So even though

you have the corresponding onClick methods

in NasaIotd, the Android action code is

looking for the android:onClick methods in

NasaApp.

The methods aren’t in
the Activity, they are
in the fragment.

Refresh

Image of the Day
(Fragment)

Education News
(Fragment)

NasaApp (Activity)

onRefreshButtonClicked()

onSetWallpaper()

Click!

http://

you are here 4 263

working with feeds

Make the buttons work
Both of these methods are already implemented in

NasaIotd, they just aren’t receiving the event since

they are a Fragment not an Activity. So all you really need

to do is pass the event to the Fragment.

You can pass the event to the Fragment, but first

you need to get a reference to the Fragment from the

Activity so you can call the onClick methods in

the Fragment.

That is where the FragmentManager comes

in. The FragmentManager allows you to retrieve

references to Fragments. The following code

implements both of the onClick methods, retrieves the

FragmentManager and calls the underlying method

in the Fragment. Fragment

 public void onRefreshButtonClicked(View view) {

 FragmentManager fragmentManager = getFragmentManager();

 NasaIotd nasaIotdFragment = (NasaIotd)

 fragmentManager.findFragmentById(R.id.fragment_nasa_iotd);

 nasaIotdFragment.onRefreshButtonClicked(view);

 }

 public void onSetWallpaper(View view) {

 FragmentManager fragmentManager = getFragmentManager();

 NasaIotd nasaIotdFragment = (NasaIotd)

 fragmentManager.findFragmentById(R.id.fragment_nasa_iotd);

 nasaIotdFragment.onSetWallpaper(view);

 }

NasaApp�java

Add these two methods to the

NasaApp Activity. These

receive the expected onClick

calls and pass them along to the

underlying Fragment.

Get the FragmentManager.

Find the fragment using
findFragmentById.

Pass the call through
to the fragment.

Implement the same
process for onSetWallpaper

Do this!

http://

264 Chapter 6

testing the onClick fix

Now that you added the onClick methods to the NasaApp

Activity, run the app again and see if the force close is resolved.

Click!

No errors! Now check the home screen to

see if the wallpaper was set.

Test Drive

http://

you are here 4 265

working with feeds

The wallpaper

setting looks great!

This is just a fantastic app!
Cool images, optimized for
tablets in various sizes. I’m
impressed!

Brilliant work

You’ve got the complete Nasa Image of the Day

app is working great. The tablet app is running

with Fragments so you can easily add and remove

on screen content based on screen size. And this

was on top of the already super customized layout

work you did in Chapter 5. This is one tuned app!

http://

266 Chapter 6

wrapping up

That was some great work you did Fragments in this chapter, and all of the other work

on the Nasa Image of the Day. Here are some ideas for additional exploration.

Go Off Piste

New Activities for Small Devices
In this chapter, you only showed the Image
of the Day fragment for small devices. But
the Education News can be interesting!
After reading chapters 7-9 and learning
more about creating additional Activites in
your app, create a second Activity using the
same two fragments. Then you should be
able to show both fragments in one Activity
or one Fragment each in two different
Activities.

Refresh both Fragments
The refresh button only worksfor the
Image of the Day Fragment. After
moving the buttons out of the Image
fragment, make the refresh button
refresh both Fragments.

Move the buttons
The refresh and set wallpaper buttons
look a bit cluttered in the fragment on
screen. Move them to a button bar, or
as menu items (after you learn about
them later in the book).

Explore Additional Overrides
In addition to screen size and pixel density,
you can customize layouts based on device
hardware form factors. Try building a
custom layout for a specific form factor
(like a device without touch screen support).
Then create an AVD for that configuration.
Test that your override works and doesn’t
effect other form factors.

http://

you are here 4 267

working with feeds

Converting to Fragments
• Extend fragment instead of Activity

• Call getActivity() before any Activity

method you called in the Activity you’re

converting

• Update onClicks and other mechanisms

relying on direct access to an Activity

• Make any layout updates needed fo
r the

fragment to layout correctly inside ano
ther

view since it will no longer be full screen

New Screen Configuration
• Put layouts in folders by minimum screen width in DPs. For example, layouts in /res/w720dp will load if the screen is at least 720 dp wide

• Also put layouts in folders by minimum screen height. Layouts in /res/h1024dp will load if the screen is at least 1024 dp high.
• You can also use smallest width which combines the two. So layouts in /res/sw600dp will only load if both the width AND the height are greater than 600dp.

Your Android Toolbox

Now that you’re getting a

handle on optimizing for

tablets, you can build all of

your apps with tablet support!

CHAPT
ER 6

 � Install new Android versions as needed

using the SDK and AVD Manager

 � Make new AVDs for new versions

 � Set the Android version for your project in

Project Preferences

 � Combine multiple Activities on one

screen using Fragments

 � Convert existing Activities to

Fragments, or write new Fragments

from scratch

 � Override Fragment lifecycle methods

as needed, specifically onCreate,

onCreateView and onStart

 � Return the Fragment view in

onCreateView, don’t set the content

view from a Fragment

 � Inflate layouts with LayoutInflater

 � Add Fragment in layouts (or in code).

Then the layout is inflated, your fragment

will be automatically created, started and

connected to the launching Activity.

 � Fragments are supported back to Android

1.6. View the Android Compatibility

Package for more information: http://

developer.android.com/sdk/

compatibility-library.html.

http://

http://

this is a new chapter 269

lists and adapters7

Building a list-based app

Where would we be without lists? They display read-only information,

provide a way for users to select from large data sets, or even act as navigational device

by building up an app with a list-based menu structure. In this chapter, you’ll learn how to

build an app centered around a list. You learn about Adapters where lists store their data,

and how to customize the data rendered in your list.

Really, old man?
Bugging me again
about making lists?

I sure am! It says
right here on my list
to bug you about it.

http://

270 Chapter 7

building a time tracker

Donna is training for a big race...
Donna jogs all the time, but she hasn’t raced before. There

is a big race coming up and she wants to be in super shape

to get a great time.

Donna knows the only way to improve is to train

consistently and track her progress over time, constantly

improving any issues. She wants to track her progress on

her Android phone since she always has it with her. But she

doesn’t like any of the apps she’s found.

Donna

I just want a simple
app where I can enter my
time and notes. No bells

and whistles!

All of the apps she’s found

are too complicated.

She’s found lots of tracking apps, but

they all use GPS, have subscriptions, or

just make things too complicated. Donna

asked you to build the simple time

tracker app for her, and as a good friend

how could you say no!

http://

you are here 4 271

lists and adapters

Time List screen Construction

Donna gave you this sketch for the time tracker app’s time list screen. It’s a pretty simple screen with the list of

times and notes, just like she said.

38:23
Feeling good!

49:01
Tired. Needed more caffeine!

26:21
I totally rocked it!

29:42
Lost some time on the hills, but pretty good.

Needs to be able
to scroll vertically
once there are too
many times to fit
on the screen

Emphasize the time in
each row using a larger
font, since the time
is the most important
piece of information. It
is a race after all!

De-emphasize the notes
for each row by using
a smaller font. This
way users can still see
the notes there, but
the times are more in
forefront.

But which View should you use to implement this sketch?

http://

272 Chapter 7

planning the app

Plan the implementation
You have a pretty clear sketch of the app to build, and now

you need to decide how you’re going to implement it. You

could create a LinearLayout and add Views dynamically

based on the items to be displayed and then put that

LinearLayout in a ScrollView.

Geek Bits

You can get a reference to a ViewGroup using findViewById. Once you have

the ViewGroup reference in code, you can programatically add Views to

that ViewGroup at runtime. This isn’t done in any of the book examples,

but it can be really useful way to declare most of your layout in XML and

add a bit of dynamic behavior.

He’s right.

While that would technically work, it seems a little less

than ideal. You’d be repeating the same layout over

and over again in the list and you’d have to somehow

synchronize the views on screen with the data stored

in your Activity. But what’s the alternative?

Hmm... I feel kind of
uncomfortable about that.
Wouldn’t that mean quite a
lot of repetition?

http://

you are here 4 273

lists and adapters

Wouldn’t it be dreamy if there
were a built in way to manage
lists of information. But I know
it’s just a fantasy…

http://

274 Chapter 7

using ListView

You’ll find
ListViews all over
Android. Here’s
an example of a
ListView used in
the About Phone
screen from the
Android settings.

Use ListView
ListView is a built in Android View that

displays items in a vertical list. It has built in

functionality for most of what you’d want a

list to do- like automatically scrolling when the

screen is filled with data, as well as a clean way

to separate your data displayed in the list from

the ListView itself.

Wireless and networks

Call settings

Display

Location and security

Applications

Accounts and sync

A View for
each row

The ViewGroup
that will be added
to the ScrollView

The internal
ScrollView to
support scrolling

ListView isn’t just a View, it actually

a complete ViewGroup on its own. A

ListView contains Views for each of the rows,

which are then added to a single ViewGroup

and added to the ScrollView so the list can

scroll. And this is all done internally inside the

ListView. The end result is that a ListView

is a ViewGroup, not just a View.

The many pieces of a ListView

http://

you are here 4 275

lists and adapters

Test Drive

<ListView

 xmlns:android=”http://schemas.android.com/apk/res/android”

 android:layout-width=”fill_parent”

 android:layout-height=”fill_parent”

 />

make the ListView
stretch to the edges of
the screen, both vertically
and horizontally

Add a ListView to your screen
Any ViewGroup (like a LinearLayout or the

ScrollView, or even any View) can be added as the

root element of the layout. And since you want to stretch

the ListView fill the entire screen, the ListView is

the one and only View you need in your layout. Add it to

the layout in main.xml as the root View and adjust the

width and height to fill the screen.

Don’t forget to add the xmlns attribute since
this is the root element of the layout

The entire layout for main.
xml, which is the layout
for TimeTrackerActivity

The screen is empty,

as nothing has be
en

added yet.

Run the app, and you’ll see an empty screen.

This isn’t surprising since you added the

ListView, but the the ListView has no

data to display yet.

Let’s add some data to the list!

http://

276 Chapter 7

introducing Adapters

Lists are populated with data from adapters
ListViews don’t actually contain any data themselves.

That’s why you didn’t see anything on the screen for the

first Test Drive. The ListView was in fact on the

screen, but it was empty so the screen appeared empty.

You can populate your ListView’s with using an

Android Adapter. Adapter is an interface whose

implementations provide data and the display of

that data used by the ListView. ListViews own

Adapters that completely control the ListView’s

display.

Wireless and networks

Call settings

Display

Location and security

Applications

Accounts and sync

getCount()

6

getItem(0)

“Wireless and

networks”

The ListView.

The Adapter

Communication methods
The Adapter interface includes a number of methods

to communicate data to the ListView. This includes

methods to determine how many elements need to be

displayed, and to retrieve specific items.

Adapters control the
content displayed in the list
as well as how to display it.

http://

you are here 4 277

lists and adapters

Wireless and networks

Call settings

Display

getView(3)

Applications

Accounts and sync

Location and security

ListView. Adapter

getView returns a view
populated with information
from the adapter

Geek Bits

Android ListViews and Adapters are not clearly separated according to Model

View Controller (MVC) lines. With MVC, you completely separate the data (the Model

in MVC) from the display (the View in MVC) with communication facilitated by the

Controller. However, Adapters perform Controller functions as well as some View

and Model functions. This isn’t a problem, and you can still properly organize and

encapsulate your View and Model code. Just be aware that you won’t always have the

clear MVC separation you have in some other UI frameworks.

Control methods
The Adapter interface also includes methods that

control the display of that data like getView() that

creates and populates a View that is displayed in the

ListView.

http://

278 Chapter 7

using BaseAdapter

Build your own Adapter
You can populate your list with data by building your

own Adapter. Adapter is an interface and you can

implement your own from scratch.

Buy why build your own Adapter completely from

scratch when there is a much easier way to go! Android

provides an Abstract class called BaseAdapter

that has most of the Adapter methods already

implemented for you.

Start by creating a new class in your project called

TimeTrackerAdapter and make it extend

BaseAdapter.

public class TimeTrackerAdapter extends BaseAdapter {

}

TimeTrackerAdapter�java

TimeTrackerAdapter class
before implementing the
abstract BaseAdapter methods.

Q: Do I have to use BaseAdapter?

A: No, you can write your own Adapter implementation from

scratch if you choose.

Q: When would I want to do that?

A: There are a number of different reasons you may want

to write your own. BaseAdapter handles a lot of the Adapter

implementation for you, but if you want something custom or

extremely optimized for your app, you may need to write your own.

Q: Is there any downside to writing my own Adapter?

A: Writing your own Adapter is completely fine. But it does take

some work to rebuild what you get for free with BaseAdapter. Plus,

if you use BaseAdapter, the BaseAdapter implementation could be

improved pver time. And if it is improved, you’ll get that benefit for

free too.

Q: So is it a good idea to use BaseAdapter?

A: For the most part, use BaseAdapter unless you have a good

reason NOT to.

http://

you are here 4 279

lists and adapters

public class TimeTrackerAdapter extends BaseAdapter {

 public TimeTrackerAdapter() { }

 public int getCount() {

 return -1;

 }

 public Object getItem(int index) {

 return null;

 }

 public long getItemId(int index) {

 return -1;

 }

 public View getView(int index, View view,

 ViewGroup parent) {

 return null;

 }

}

TimeTrackerAdapter�java

There are three
data related
methods you need
to implement
in BaseAdapter
subclasses.

There is just one view mthod
you have to implement in
BaseAdapter subclasses...
the method that returns
the view used to display
data in the ListView.

TimeTrackerAdapter class
after implementing the
abstract BaseAdapter methods.

Eclipse will
fill in auto-
generated
implementations
like these

Now implement the abstract

BaseAdapter methods. The easiest

way to do this in Eclipse is to go to

the Eclipse menu and select Source →

Override/Implement methods.

Implement the abstract methods

http://

280 Chapter 7

building the Adapter

Building out the adapter

1. Create a data object
Based on the app design, you’ll need to store a

time and note for each time entered. Rather than

separately storing that information, create a data

object to store both fields in a single object.

2. Add an ArrayList of data objects
Now that you have the data object for a single time

record, add an ArrayList to store these data

objects in your Adapter.

3. Complete the adapter methods
Now that you have the ArrayList of your data

objects, you can finish implementing the Adapter

based on the data stored in the ArrayList.

Now you have a BaseAdapter

implementation, but it still doesn’t store

any data for your list. It’s just filled with

autogenerated methods that will compiles, but

don’t do anything useful yet.

Here’s what you;re going to do to make this

adapter work for you!

Create a data object called
TimeRecord to store information
for a specific time entered.

Add an array of
Timerecord objects
to the Aadapter.

Complete the methods using
the new list of data objects

http://

you are here 4 281

lists and adapters

public class TimeRecord {

 private String time;

 private String notes;

 public TimeRecord(String time, String notes) {

 this.time = time;

 this.notes = notes;

 }

 public String getTime() { return time; }

 public void setTime(String time) { this.time = time; }

 public String getNotes() { return notes; }

 public void setNotes(String notes) { this.notes = notes; } }

Ready Bake
Code

TimeRecord�java

Start by creating the data. Since it’s an object

storing all of the information for a specific time,

call it TimeRecord. It should have two variables,

one for the time and one for the notes. Add a

constructor, getters, and setters for both variables.

Create a data object

Do this! Create the TimeRecord class

in your project. Add the the

code above to the new class.

http://

282 Chapter 7

implementing the data methods

Below is the TimeTrackerAdapter code with the autogenerated methods Eclipse

created when you implemented the BaseAdapter methods. Using the TimeRecord

data object, complete the data methods getCount,and getItem (getItemId is done

for you). You’ll also need to create a collection to store these objects.

public class TimeTrackerAdapter extends BaseAdapter {

 public TimeTrackerAdapter() {

 }

 public int getCount() {

 return -1;

 }

 public Object getItem(int index) {

 return null;

 }

 public long getItemId(int index) {

 return -1;

 }

 public View getView(int index, View view, ViewGroup parent) {

 return null;

 }

}

TimeTrackerAdapter�java

return index;

This just needs to return a unique ID
for the data. And since the index
ID is unique for a row, standard
practice is just to return the index.

Add a collection to
store TimeRecords as a
member variable.

Ignore getView for now. You’ll
implement that method after
finishing the data methods.

http://

you are here 4 283

lists and adapters

Head First: Hi Adapter, thanks for joining us!

Adapter: Always a pleasure.

Interviewer: Let me get right down to business.

Most user interface frameworks are pretty serious

about very clear Model View Controller (MVC)

separation, but not you.

Adapter: What can I say? I’m a renegade.

Head First: Aren’t you afraid the Design Pattern
Police are going to come after you?

Adapter: One step ahead of you! I was worried

people would start clamoring about how I’m not pure

MVC and all that, so I changed my name. I’m not a

Model, Controller, View, or any combination of them.

I’m my own Object. That’s why I’m called Adapter.

Head First: Fair enough. Do you find it confusing

to have all of that logic for data and views in your

implementations?

Adapter: Not really. Most of the time, the data I’m

storing is directly related to me and why I’m on a

screen in the first place. Maybe I’m displaying a list

of States for selection in an Address entry process or

maybe I’m displaying read only data like the times

in the TimeTracker app. I can also be used as a

navigation device with nested menus. Most of the

time my data storage is pretty minimal and directly

related to displaying it. Really, it just makes sense to

keep it together.

Head First: Sometimes it must get confusing though,

right?

Adapter: Absolutely! If I’m displaying a huge list of

information that’s stored elsewhere (say in a database

on the phone) I don’t want to bloat myself by storing

that data inside me AND in the database. That would

be wasteful.

Head First: And what do you do then?

Adapter: Well, there is nothing saying I have to store

the data in me! I just have to facilitate providing that

data to the ListView. I could easily lop off a piece of

myself and turn that into a pure data source. As long

as I have a reference to that new data source, I can

ask it anything that the ListView asks me- how many

rows, the data for a row and so on.

Head First: I like the fact that you can still separate

out your data and provide it to the ListView. That

lopping off bit sounds painful though!

Adapter: Oh, it’s not so bad.

Head First: And there you have it. Adapter, the

renegade MVC recluse, with the ability to control it’s

own data and display. Thanks for joining us!

Adapter: My pleasure! Thanks for having me.

Adapters Exposed
This week’s interview:

Combining your Data and Display: Good or Bad?

http://

284 Chapter 7

thinking about getView

Below is the TimeTrackerAdapter code with the autogenerated methods Eclipse created

when you implemented the BaseAdapter methods. Using the TimeRecord data object,

you should have completed the data methods getCount,and getItem (getItemId is

done for you). You also should have created a collection to store these objects.

public class TimeTrackerAdapter extends BaseAdapter {

 public TimeTrackerAdapter() {

 }

 public int getCount() {

 return -1;

 }

 public Object getItem(int index) {

 return null;

 }

 public long getItemId(int index) {

 return -1;

 }

 public View getView(int index, View view, ViewGroup parent) {

 return null;

 }

}

return times.size();

return getItem(index);

return index;

private ArrayList<TimeRecord> times = new ArrayList<TimeRecord>();

A private ArrayList containing one
TimeRecord for each row in the ListView.

Since there is one TimeRecord for each row, the size of the ListView is just the number of TimeRecords in the ArrayList.

Again, the one-to-one mapping keeps
everything easy! The data for a row
at the index is the TimeRecord in
the ArrayList at that same index.

TimeTrackerAdapter�java

http://

you are here 4 285

lists and adapters

The data methods are complete now, but what

about getView? The getView is the link

between the data stored in the Adapter and how

it’s displayed in the ListView. In the getView

implementation, you’ll retrieve the data for the row

from the ArrayList, populate a view with that data

and return the populated view.

What about getView?

public View getView(

 int index,

 View view,

 ViewGroup parent)

The index of the data to
display. This corresponds to
the indeces in the array list
of TimeRecords. The view to

populate the
data in.

Hold on a second.
What view is going to be
used here? Don’t you have
to customize one for time
tracker data?

You’ll need to create a custom view

You’re storing custom data for you app in the

Adapter. That’s why you had to subclass BaseAdapter

and create your own implementation. Just like

storing your custom data, you also need to create

your own custom views to display your data.

http://

286 Chapter 7

planning out getView

Adapter view construction

Before you can wire up the View to the TimeRecord in getView, you need to design it! Here is a sketch of the

layout for one row in the ListView.

The entire cell is a
vertical LinearLayout

38:23

Feeling Good!

Time with
large font

Notes in a
small font

Linear layout’s
first view

Linear
layout’s
second view

* The widths are all set to FILL_PARENT so they are as wide as possible.
The heights are set to WRAP_CONTENT so they can resize based on contents.

Q: How come all of the View height

are set to wrap_content?

A: First of all, if you set the height to

fill_parent, it will fill the whole list! That’s

very bad! Likewise, setting the height to a

fixed size would be a poor choice. The time

is fixed in length to one line, but the notes

could be several lines. but if you set the

height of each View and the layout to wrap_

content, the cell will grow to fit the content

and the row data will display correctly (and

completely!).

Q: We’re making a new layout here,

can you have more than one layout per

screen?

A: Definitely. Up to now, you’ve had

exactly one layout for each Activity (which

maps to a screen). It doesn’t have to be

that way! You can have as many (or as few)

layouts per screen as you like.

Q: That sounds kind of cool, when

would I want to use a lot of layouts?

A: Well, custom ListView rows are

obviously one example but there are more.

There is a really cool technique where you

can use the <include> directive in one of

your layouts. That takes another layout that

you’re including and adds it inline making a

big combined layout. It’s a really useful way

to organize and encapsulate complicated

layouts. We don’t have time to go over it

in this book, but it’s definitely something

worth checking out in the online Android

documentation.

http://

you are here 4 287

lists and adapters

Instantiate the View
The first time getView is called on your Adapter,

the View passed in is null. Since the Adapter

knows how the data should be displayed, it’s up to

the Adapter to instantiate the View the first time.

Successive calls to getView return the same View

back to be repopulated with new data. Repopulating

the same View instead of creating new Views for

every cell is a performance optimization often used in

user interface frameworks.

The getView method does some serious heavy

lifting for the Adapter. It’s really the method that

bridges the gap between the data and the display. Not

surprisingly, there are a few basic tasks you’ll need to

accomplish inside every getView implementation.

Retrieve the data
The Adapter also contains the data. And the list

index is passed into getView. You’ll need to

correlate the index passed in to the ArrayList of

TimeRecords. For this adapter, you have an

correlated indices between the ListView and the

TimeRecords in the ArrayList.

time TextView

notes TextView

Set values on the view
Using the selected TimeRecord, and the View, set

properties on the view to reflect the data. In this case,

you’ll be setting text in the view to display the time

and the notes from a TimeRecord.

time TextView

notes TextView

Inflate the View

Retrieve the
selected data

Populate the view with
the selected data

The steps to complete getView

http://

288 Chapter 7

making a new layout

Select the
TimeTracker
project

Call the layout
time_list_item.xml

Select Layout as
the resource type

The /res/layout folder
will auto-populate when
you select Layout as the
resource type

Create the new layout
Now that you have a design for your view, it’s time

to build it! Go to File → New → Android XML File

to launch the new Android XML file wizard.

LinearLayout will default as the
root layout for the new layout XML
file. Keep this selected since you’ll use
LinearLayout for your cell layout

Click
finish

http://

you are here 4 289

lists and adapters

Below is the time_list_item layout code generated by the New

Android XML File Wizard. Modify the layout to match the design

you created for the list cell.

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

</LinearLayout>

time_list_item�xml

XML

http://

290 Chapter 7

building the new layout

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

</LinearLayout>

<TextView android:id="@+id/notes_view"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:textSize="12dp" />

<TextView android:id="@+id/time_view"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:textSize="18dp"

 android:paddingBottom="5dp" />

“wrap_content”

Below is the time_list_item layout code generated by the New

Android XML File Wizard. You should have modified the layout to

match the design you created for the list cell.

time_list_item�xml

XML
</LinearLayout>

Set the height to
wrap_content so
it won’t fill up the
whole list.

End the layout.

android:orientation=”vertical” >
Make sure the
layout is Vertical.

Make the width as wide
as possible but size the
height to the content

Make the width as wide
as possible but size the
height to the content.

The first TextView if
for the time. It has
an ID for access later
from findViewById. Make the text BIG!

Add some padding on the bottom so there is

some space between the time and the notes.

The second TextView
if for the notes. It
also has an ID for
access later from
findViewById.

Make the text small.

http://

you are here 4 291

lists and adapters

Topic Title Magnets
Now that you’ve completed the View, you have everything you need to write

the getView method. First you’ll need to check and make sure the View

is not null, and if it is null, you’ll need to inflate it. Then you’ll retrieve the

selected TimeRecord. Once you’ve retrieved it, you need to populate the

view with the information from that TimeRecord. Complete the getView

method using the magnets below.

TimeRecord time = times.get(index);

timeTextView.setText(time.getTime());

TextView timeTextView = (TextView)

 view.findViewById(R.id.time_view);

notesTextView.setText(time.getNotes());
TextView notesTextView = (TextView)

 view.findViewById(R.id.notes_view);

if (view == null) { }

view = inflater.inflate(

 R.layout.time_list_item, parent, false);

LayoutInflater inflater =

 LayoutInflater.from(parent.getContext());

 return view;

}

public View getView(int index, View view, ViewGroup parent) {

Your magnets.

http://

292 Chapter 7

connecting the adapter

The TimeRecord in the ArrayList
at the index has everything you
need to populate the view.

For the time, get a reference to the
time TextView and set the text to the
time String from the TimeRecord.

Do the same process for the notes.
Get a reference to the notes
TextView and set the text to the
notes String in the TimeRecord.

Topic Title Magnets Solution
With the View completed, you had everything you needed to write

the getView method. First you should have checked that the

View is not null, and if it is null, you should have inflated it. Then you

should have retrieved the selected TimeRecord. Once retrieved,

you should have populated the view with the information from that

TimeRecord, completing the code with the magnets.

TimeRecord time = times.get(index);

timeTextView.setText(time.getTime());

TextView timeTextView = (TextView)

 view.findViewById(R.id.time_view);

notesTextView.setText(time.getNotes());

TextView notesTextView = (TextView)

 view.findViewById(R.id.notes_view);

if (view == null) {

}

view = inflater.inflate(

 R.layout.time_list_item, parent, false);

LayoutInflater inflater =

 LayoutInflater.from(parent.getContext());

 return view;

}

public View getView(int index, View view, ViewGroup parent) {

Check if the View is
null. If it is, retrieve
the layout inflater and
inflate the view.

http://

you are here 4 293

lists and adapters

Connect the adapter to the ListView
The Adapter is finished now, and the next step is to use

the Adapter in the ListView. To set the Adapter on the

ListView, you’ll get a reference to the ListView using

findViewById and call the setAdapter method passing in

an instantiated TimeTrackerAdapter.

Start by adding an android:id to the ListView in the layout.

 <ListView

 xmlns:android=”http://schemas.android.com/apk/res/android”

 android:layout-width=”fill_parent”

 android:layout-height=”fill_parent”

 android:id=”@+id/times_list”
 />

main�xml

XML

Now get a reference to the ListView in onCreate,

instantiate the TimeTrackerAdapter and configure the

ListView to use it.

 public class TimeTracker extends Activity {

 TimeTrackerAdapter timeTrackerAdapter;

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 ListView listView = (ListView)

 findViewById(R.id.times_list);

 timeTrackerAdapter = new TimeTrackerAdapter();

 listView.setAdapter(timeTrackerAdapter);

 }

 }

TimeTracker�java

Give the
list an id.

Get a reference to
the ListView.

Instantiate the
adapter.

Configure the ListView
to use the adaapter.

http://

294 Chapter 7

testing it out

Add test code to the adapter
You custom Adapter implementation is now complete and

being used in the ListView. There’s just one problem. the

Adapter still doesn’t have any data in it.

You’ve built the TimeRecords data object to hold times

entered, and built the Adapter around an ArrayList of

TimeRecords. So even if you

 public TimeTrackerAdapter() {

 times.add(new TimeRecord(

 “38:23”, “Feeling good!”));

 times.add(new TimeRecord(

 “49:01”, “Tired. Needed more caffeine”));

 times.add(new TimeRecord(

 “26:21”, “I’m rocking it!”));

 times.add(new TimeRecord(

 “29:42”, “Lost some time on the hills, but pretty good.”));

 }

TimeTrackerAdapter�java

Add this test code

to the constuctor of

TimeTrackerAdapter.

Create a few prepopulated
TimeRecord objects to see
in the ListView.

Do this!

http://

you are here 4 295

lists and adapters

Now that the TimeTrackerAdapter is complete, connected to

ListView and populated with test data, run the app again and

make sure it all worked!

The ListView
has data!

The cells look great too! The time is in a
bigger font and the notes are in a small font.
And there’s a bit of space in between so
things aren’t too crowded in the cells.

The ListView has data now.
Great work!

Test Drive

http://

296 Chapter 7

user review

Donna’s checking in...
Donna’s really looking forward to using the app.

So she stopped by to see how you’re doing.

It’s looking great so
far. but I am going to
be able to enter my own
times, right?

Next up, user entered times

In this chapter, you created the new

project, added a list,build your own

adapter, custom views, and connected it

all together. And great work!

In the next chapter, you’ll be adding a

second screen to this app, so your users

can enter their own times.

See you back shortly to add

user entered times.

http://

you are here 4 297

lists and adapters

With all of this work wrapped on Adapter, you’re ready to move on with this app. If

you’re still wanting to learn more about Adapter and their Views, here are a couple of

places to look.

Go Off Piste

Prebuilt List Views
Although you built this list item view from
scratch, sometimes you can use prebuilt
views. Take a look at the constants in
android.R.layout for more information:
http://developer.android.com/reference/
android/R.layout.html.

Built in Adapters
Take a look at these built in Adapters for your apps.
• ArrayAdapter: Adapter with everything implemented for you, just pass in an array!
• SimpleAdapter: Adapter that uses data stored in XML resources to build the list
• CursorAdapter: An adapter that uses information stored in a SQLite database (you’ll learn more about these in a few chapters)

http://

298 Chapter 7

 � When working on a multi-screened app,

always start with your post important use

case. (Talk to your users to find out what

they are!)

 � Use ListView to display information in a

vertically oriented list (with built in scrolling!).

 � Fill your lists with data using Adapters.

 � Start your custom Adapters

implementations using BaseAdapters.

 � Use Eclipse’s built in “Override/Implement

Methods” option to add method stubs

to your class for any interface your

implementing (or abstract class you’re

extending).

 � If you build an Adapters that stores

data, build your own data object to keep

your data organized

 � Add new layouts to your apps using the

Android New XML File Wizard

 � Inflate layout XML descriptions

into instantiated views using

LayoutInflater.

Using ListViews
• Implement Adapter by subclassing

BaseAdapter, writing your own, or using a

prebuilt Adapter.

• Create an list item View or use a built

in View.

• Populate the adapter with data.

• Configure the list to use your adapter.

Your Android Toolbox

Now that you created an

Adapter and list item View

from scratch, you’ll be able to

add lists to all your apps.

CH
AP

T
ER

 7

http://

this is a new chapter 299

multi-screen apps8

Navigation in Android

Eventually, you’ll need to build apps with more than one screen�

So far, all of the apps you’ve built have only one single screen. But the great apps you’re

going to build may need more than that. In this chapter, you’ll learn how to build an app with

a couple screens, and you’ll create a new Activity and layout, which the Wizard previously

did for you. You’ll learn how to navigate between screens and even pass data between

them. You’ll also learn how to make your own Android context men- the menu that pops up

when press the Menu button!

Trust me,
boys. Sometimes one
is just NOT enough!

http://

300 Chapter 8

the need for user entry

Donna wants to enter her times
Donna thinks the app is looking great, and

she’s really looking forward to using it. But

right now she can’t enter her own times.

I’m going to head out
for a run. Think you can
let me enter times when
I get back?

Let’s get right on it!

The only thing stopping Donna

from using her perfect new time

tracking app is that she can’t enter

her own times yet. Let’s build

that now so she can get started

tracking her times for her big race!

http://

you are here 4 301

multi-screen apps

How is she going to add her own times?
The list is displaying times, and you need to make

a way to add times with notes inside the app. You

could combine it all into one screen and have an

entry section at the bottom, but that would get

cluttered very quickly.

The best way to do this is to add another screen

specially designed for entering data. Here’s a

quick sketch of what the new screen will look like.

Time

Notes

Save Cancel

Field labels.

It’s always a good idea to
give your users an obvious
way to get out of the action they are in.

An obvious action button
to save the newly entered
information (that will take
users back to the list view).

This is an editable text
area where the user will
enter their time.

This is another editable
text area where the user
will enter free form notes
about the time.

http://

302 Chapter 8

planning the user entry implementation

Adding the entry screen
There are a few steps you’ll need to take to make the new entry

screen and connect it to the list screen. Here is what you’ll be

doing in this chapter.

1. Build the new entry screen
The new screen is sketched out, but you’ll have

to build it. You’ll be making a new XML layout

and a brand new Activity for the screen.

2. Launch the entry screen from the list
The list screen is the main screen for this app and this is the

screen that displays when you launch the app. You’ll add

an menu with an ‘Add’ menu item to this screen that will

launch the entry screen.

Time

Notes

Save Cancel

Time

Notes

Save Cancel

You’ll build a new
screen and an
Activity to display it.

Click! Users can launch a
time entry screen
from the main time
list screen.

http://

you are here 4 303

multi-screen apps

3. Return to the list screen from the entry screen
Whether the user enters a new time or cancels out of the entry

screen, they need to return the list screen when they are done. After

writing the code to navigate to the entry screen, you’ll write the code

to return back to the list screen with the user entered data.

4. Display the new time in the list
This is where it all comes together! After

building the navigation back and forth from

the entry screen, you’ll implement logic to

store the newly entered time and display it

in the list.

30:25
Nice clean run. Make sure not to slow down in the
second half.

Time

Notes

Save CancelClick!

The user enters
information and
presses Save.

The newly entered
time information is
sent back to the list.

The newly entered
time information gets
added to the list.

http://

304 Chapter 8

creating a new layout

Create the new layout xml file
Launch the New Android XML File wizard and create

a new layout. Call the new layout add_time.xml.

Here is the plan for the layout. You’ll create one vertical

LinearLayout for the screen. This will have “Time”

label, the text entry field to enter the time, followed by the

“Notes” label and the notes entry field. At the bottom of

the screen, you’ll have a horizontal LineatLayout with

the save and cancel buttons centered.

Time

Notes

Save Cancel

Root vertical
LinearLayout
with the time
and notes labels
and entry fields.

The notes entry field
should stretch vertically
to fill the screen.

The bottom of
the screen should
be a horizontal
LinearLayout with
save and cancel
buttons centered.

The entry fields should
fill the screen widtsh

http://

you are here 4 305

multi-screen apps

Use EditText for text entry
This is the first time you’re adding a text entry

component to one of your screens. All of the

other Views you’ve added to your screens have

been read only. But now you’re having users enter

information, so they need an entry View.

There is a special text entry View called EditText

that you can use. It works just like a TextView,

only it’s editable. From a layout perspective, just

remember to give the EditText an ID so you can

retrieve the View and it’s contents later on.

Q: The New Android XML File wizard is pretty cumbersome.

Do I have to use it to make new layout XML files?

A: No. The wizard is just creating the XML file and adding it to

correct directory based on the XML type. It also tries to add a little

structure based on your XML file type like adding the root element

of a LinearLayout if your making a layout file that you’ve declared

in the wizard to be a LinearLayout.

Q: After all that time customizing layouts for different

screens in the NASA app, how come we’re only adding one

layout for this screen?

A: Just like the NASA app, you would want to test this app on

multiple devices of various screen sizes and customize the layouts

as necessary for your supported device.

<EditText android:id=”@+id/your_id”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 />

Root vertical LinearLayout
with the time and notes
labels and entry fields.

You can apply View
layout attributes
to an EditText just
like other Views.

http://

306 Chapter 8

building the layout

Below are magnets with the XML layout declarations for the Views in your layout. Arrange

the magnets to complete the layout XML. There is one main layout and one sublayout for the

button bar similar to the one you made for the NASA Daily Image app.

<TextView android:text=”
Notes”

 android:layout_width=”wr
ap_content”

 android:layout_height=”w
rap_content” />

<TextView android:text=”Time”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_marginTop=”10dp” />

<EditText android:id=”@+id/notes_view”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:gravity=”top”

 android:layout_weight=”1”

 android:layout_marginBottom=”10dp” />

<LinearLayout

 android:orientation=”horizontal”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:layout_weight=”0”

 android:background=”#FF8D8D8D”

 android:gravity=”center_horizontal” >

http://

you are here 4 307

multi-screen apps

<LinearLayout

 xmlns:android=”http://schemas.android.com/apk/res/android”

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”

 android:orientation=”vertical”>

<EditText android:id=”@+id/time_view”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:layout_marginBottom=”10dp” />

<Button android:text=”Save”

 android:onClick=”onSave”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

<Button android:text=”Cancel”

 android:onClick=”onCancel”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

</LinearLayout>

</LinearLayout>

http://

308 Chapter 8

v

building the layout

Below are magnets with the XML layout declarations for the Views in your layout. You

should have arrange the magnets to complete the layout XML. There is one main layout and

one sublayout for the button bar similar to the one you made for the NASA Daily Image app.

<LinearLayout

 xmlns:android=”http://schemas.android.com/apk/res/android”

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”

 android:orientation=”vertical”>

<EditText android:id=”@+id/time_view”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:layout_marginBottom=”10dp” />

<TextView android:text=”Time”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_marginTop=”10dp” />

<TextView android:text=”Notes”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_marginLeft=”10dp” />

<EditText android:id=”@+id/notes_view”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:gravity=”top”

 android:layout_weight=”1”

 android:layout_marginBottom=”10dp” />

This is the layout root, a vertically
oriented LinearLayout for the screen.

The time
label.

The notes
label.

The time EditText.
Notice it has an ID
for later retrieval.

The notes
EditText. Notice
it also has an ID.

http://

you are here 4 309

multi-screen apps

<LinearLayout

 android:orientation=”horizontal”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:layout_weight=”0”

 android:background=”#FF8D8D8D”

 android:gravity=”center_horizontal” >

<Button android:text=”Save”

 android:onClick=”onSave”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

<Button android:text=”Cancel”

 android:onClick=”onCancel”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

</LinearLayout>

</LinearLayout>

The inner linear layout for the button

bar. It nas a gray background and the

gravity is set to center_horizontal so

the buttons will be centered.

The save and cancel
buttons which
both have onClick
properties defined.
The methods will be
implemented later.

End of the button
bar layout.

End of the screen.

http://

310 Chapter 8

Now that you have the layout built for the entry screen, you

need to display it in the app. So far, you’ve displayed a layout

when an Activity is created, you’ve created optimized layouts

that dynamically display for different screen sizes, and displayed

layouts as part of a fragment.

But now you’re making an entirely new screen with new

behavior. What you need now is another Activity. Start

creating a new Activity by adding a Java class called

AddTimeActivity to your project that extends Activity.

Create a second Activity

creating a new activity

public class AddTimeActivity extends Activity {

}

AddTimeActivity�java

Make sure to
extend Activity.

Q: I already have an Activity. Do I really need another one?

A: In this case, yes. You could have displayed the new layout in

the TimeTracker Activity, but that Activity has functionality specific to

the list screen, like finding the list view in the layout and setting the

adapter. If you just tried to display the entry layout in the TimeTracker

Activity, the Activity would break when trying to find the list.

Q: When would be a good example of when I would have

multiple layouts in one Activity?

A: The layout optimizations you did in chapters 5 and 6 for

different devices consisted of creating multiple layouts for one Activity.

The key is that the functionality and behavior were the same. In the

NASA app, once you had different behavior for the NasaEdNews, you

had a second Activity. Just remember, same behavior, same Activity.

Different behavior, different Activity.

Create a new class called

AddTaskActivity in your project.

Make sure it extends Activity.

Do this!

http://

you are here 4 311

multi-screen apps

Below is the code for the AddTimeActivity class you just created. Complete the code

below to display the screen. You’ll need to override onCreate and set the content view to

your new layout.

 public class AddTimeActivity extends Activity {

 }

Override onCreate here. In
that method, write the
code to display the layout
for the add task screen.

AddTimeActivity�java

http://

312 Chapter 8

setting the layout

 public class AddTimeActivity extends Activity {

 }

Below is the code for the AddTimeActivity class you just created. You should have

complete the code below to display the screen. You should have overrided onCreate and set

the content view to your new layout.

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.add_time);

}

Dont forget
to call super.

Call setContentView
with the R constant
for the layout you just
wrote to set the screen.

AddTimeActivity�java

 Don’t forget to call super.onCreate()

The Activity base class has logic needed to
properly instantiate and configure an Activity
for use by the Operating System. If you
override one of the lifecycle methods, be

sure to call super. If you don’t you’ll get a nasty runtime
exception and your activity won’t run!

http://

you are here 4 313

multi-screen apps

This looks good, but
something tells me I
should keep jogging
and come back later.

There’s work left to do, but you’re

getting there!

So far, you’ve built the layout for the new ttime

entry screen and the Activity to control the

screen’s behavior.

Now it’s time to navigate to the new entry

screen from the list.

Think about different Android apps you’ve

used and how you navigate around them.

How would you build the navigation to

the Add Time screen in this app? Write

your answer below.

http://

314 Chapter 8

navigating with options menus

Use an Option Menu
With the layout built and a new Activity created for the

Time Entry screen, it’s time to navigate to it. There are a few

different ways you could implement the navigation including

putting a button on the screen or using an options menu.

The options menu is the popup that displays when you press

the Menu button on an Android device (or the on screen

menu button on a tablet). The options in the menu are

controlled by the Activity in focus when the menu button is

pressed.

Let’s add an options menu item to launch

the time entry screen.

The list screen remains unchanged
when the menu is not open...

...but when the menu button is pressed,
the menu will show with one button “Add”
which will launch the Add Time screen.

Options menu hidden Options menu showing

http://

you are here 4 315

multi-screen apps

Create the menu XML file
Menus are defined in XML just like layouts

and many other Android resources. Just like

layouts, you can create new menu XML files

using the New Android XML File wizard.

Only this time instead of selecting layout

options, select menu options.

Select the
TimeTracker
project.

Call the menu
time_list_menu.xml.

Select Menu as the
resource type.

The /res/menu folder
will auto-populate
when you select Menu
as the resource type

Menu will be selected
in the dropdown.
The dropdown iwill
be disabled since
menu is the only
possible root element
for a menu resource. Click finish.

http://

316 Chapter 8

adding menu options

Add a menu option
The menu you just created with the wizard

will be in your project under the res/menu

directory. Navigate to that directory in the

Eclipse Package Explorer open it.

Just like the graphical layout editor, there is a

graphical editor for creating menus. Start by

clicking add to add a new menu item.

Now you can configure the new menu item

by setting the title and ID.

Click add.

Select item.

Press OK.

Select the
menu item.

Give the menu item
a title of “Add”

Set the ID.to @+id/
add_time_menu_item.

http://

you are here 4 317

multi-screen apps

Show the menu
Just like XML layouts, the menu is defined in

XML, but you need to display it from your Activity.

The Activity base class includes a method called

onCreateOptionsMenu that is called on the

displayed Activity when the menu button is pressed.

The default implementation does nothing, but you can

override it and display your custom menu.

public void onCreateOptionsMenu(Menu m) {

}

super.onCreateOptionsMenu(m)

MenuInflater menuInflater = getMenuInflater();

menuInflater.inflate(

 R.menu.time_list_menu, menu);

First call super.
Call Activities method,
getMenuInflater() to
retrieve the MenuInflater.

Inflate the menu you defined in
time_list_menu passing in the R file
reference for the menu description.

TimeTracker�java

XML

The menu
XML The MenuInflater.

The menu populated
with your custom
menu items

Notice that onCreateOptionsMenu uses an

Inflater, just like when you inflated the list item layout

in the list adapter. The MenuInflater takes a

menu defined in XML and creates men items. The

only difference is that a default menu is passed in to

onCreateOptionsMenu and the menu items defined

in the XML file are added to that menu. .

http://

318 Chapter 8

processing the menu action

Run the app, and press the menu button when the time list

appears on screen. You should see the menu display with

one single item “Add”.

Press the menu
button

Test Drive

And the menu
will display.

http://

you are here 4 319

multi-screen apps

public boolean onMenuItemSelected(int featureId, MenuItem item) {

 if (item.id == R.id.add_time_menu_item) {

 }

{

Capture the menu action
There is a companion method to

onCreateOptionsMenu method called

onMenuItemSelected which is called

when a menu item is selected by the user.

To make the menu item work, override

onMenuItemSelected, check which menu

item was selected and invoke your action.

TimeTracker�java

Process the add time
menu action in here

Override
onMenuItemSelected

This method will be
called for every menu
item you add. It’s a
good habit to test
which item was selected
by comparing it to the
id you assigned.

You can add your code to process the menu item

inside the if block testing for your menu item.

Now you have two independent Activities, and

a menu item with an action that can move from

one to the other.

Now turn the page to see how to launch new screens

http://

320 Chapter 8

starting new screens with intents

Use Intents to launch new screens
You can launch new screen using an abstract object

representation of an action called an Intent. You can

create an Intent when the Add menu item is selected

pointing to the AddTime Activity.

Then you can call a utility method on the current

Activity called startActivity passing the Intent.

This starts a new Activity in your app, managing all of

the lifecycle methods for you including stopping the old

Activity as well as creating and startng the new Activity.

Selecting the add menu
item creates an Intent

The intent reference
the AddTime Activity.

AddTime

startActivity()
The intent referencing
the new Activity

The new
Activity
gets
started.

Click!

http://

you are here 4 321

multi-screen apps

Launching a new Activity Magnets
Below is the empty onMenuItemSelected method in the

TimeTracker Activity. Complete the method by creating and

invoking an Intent to launch the AddTime Activity Even though

you only have one menu item right now, check and make sure that

the ID of the menu item passed in to onMenuItemSelected is the

add action. Pass the onMenuItemSelected call to super if you

don’t process the action.

}

return true; if (item.getItemId() == R.id.add_time_menu_item) {

public boolean onMenuItemSelected(int featureId, MenuItem item) {

}

TimeTracker�java

return super.onOptionsItemSelected(item);startActivity(intent)

Intent intent = new Intent(this, AddTimeActivity.class);

http://

322 Chapter 8

finishing the new activity

Launching a new Activity Magnets Solution
Below is the onMenuItemSelected method in the TimeTracker Activity.

You should have completed the method by creating and invoking an Intent to

launch the AddTime Activity Even though you only have one menu item right

now, you should have checked and made sure that the ID of the menu item passed

in to onMenuItemSelected is the add action. You should have also passed the

onMenuItemSelected call to super if you don’t process the action.

public boolean onMenuItemSelected(int featureId, MenuItem item) {

}

return super.onOptionsItemSelected(item);

startActivity(intent)

}

return true;

if (item.getItemId() == R.id.add_time_menu_item) {

Intent intent = new Intent(this, AddTimeActivity.class);

Check the item ID to see if
the add action was selected

Create and new intent to
select AddTimeActivity
and then start it

Return true
to indicate the
select event
was processed.

Pass the call on to super
for any menu items that
may be in the menu.

TimeTracker�java

http://

you are here 4 323

multi-screen apps

AndroidManifest�xml

XML

Open AndroidManifest.xml
Every Activity you use in your app has to be declared in

your AndroidManifest.xml file. When you created

your app with the wizard, it created the Activity for you

and added an Activity element in the Android Manifest file.

Before you test the app, add the new Activity declaration to

your manifest file or you’ll get a nasty exception!

<manifest xmlns:android=”http://schemas.android.com/apk/res/android”

 package=”com.headfirstlabs.timetracker”

 android:versionCode=”1”

 android:versionName=”1.0”>

 <application android:icon=”@drawable/icon” android:label=”@string/app_name”>

 <activity android:name=”.TimeTracker”

 android:label=”@string/app_name”>

 <intent-filter>

 <action android:name=”android.intent.action.MAIN”/>

 <category android:name=”android.intent.category.LAUNCHER”/>

 </intent-filter>

 </activity>

 </application>

</manifest>

This configures
the application
to be launched
from the home
screen.

The android:name points to the Activity class, by appending the
package name to the android:name. So in this case, “.TimeTracker”
becomes “com.headfirstlabs.timetracker.TimeTracker” The label is the text that displays

under the icon on the home screen

<activity android:name=”.AddTimeActivity”> </activity>

The package name is appended to the android:name, so you
just need to enter the class name here.which will give you
the fully qualified class name for the AddTimeActivity.

The activity declaration
for the AddTimeActivity.

The package name for
your application

http://

324 Chapter 8

understanding the back stack

You’ve got the new screen built, the Intent starting the new

Activity from the menu and the new Activity configured in

the Manifest. Go ahead and run the app and test out all

your hard work!

Click in these fields
and you’ll see the
on screen keyboard
automatically popup.

Perfect! The new screen looks great!

Click!

Test Drive

http://

you are here 4 325

multi-screen apps

Back Stack Up Close
As you test the app, you’ll pretty quickly realize that the save

and cancel buttons don’t work. But even without implementing

these buttons you’re not stranded on the new screen. Press the

back button and you’ll go back to the list screen automatically.

Press the back button
and you’ll go back to
the list screen.

Android maintains a stack of Activities your app has started,

beginning with the first Activity in your app. As you start

new Activites like you did with the time entry screen, it’s

automatically added to the back stack of Activities. And when

you press the back button, it automatically goes back to the

previous Activity in the stack which in this case is the list screen.

Wait, how did that work?

http://

326 Chapter 8

planning the button actions

The back stack and the back button do allow

one way to navigate back to the list screen from

the time entry screen, but it’s not the behavior

you’re looking for. You have the Save and

Cancel buttons on screen, and you need to

make them work.

Let’s start with the Cancel button. It layout

declaration for the button specifies an onClick

method called onCancel. You could follow the

same pattern you used to launch the time entry

screen and create a new Intent pointing to the

TimeTracker Activity and starting that Intent.

Implement the button actions

public void onCancel(View view) {

}

AddTime�java

<Button android:text=”Cancel”

 android:onClick=”onCancel”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

Intent = new Intent(this, TimeTracker.class);

startActivity(intent); Create an intent
to return t the
TimeTracker Activity. Start the

Activity.

add_time�xml

XML

The cancel button’s onClick
parameter is configured to
call a method called onCancel.

http://

you are here 4 327

multi-screen apps

Time

Tracker

Time

Tracker

AddTime

Activity

AddTime

Activity

Time

Tracker

Time

Tracker

There are two
TimeTracker
instances in
the stack!

Every time you start an Activity, Android

automatically adds it to the back stack. If you

always start Activities to navigate between

different screens, you’re going to end up having

a huge back stack!

But there’s a problem...

Time

Tracker

AddTime

Time

Tracker

finish() AddTime

Call finish on the
AddTimeActivity. AddTime is finished

off the stack.

TimeTracker is automatically
displayed and pressing back button
from here will exit the app.

There are a few different ways to control the

back stack. One technique you can use is to call

finish on the current Activity to end it. This will

remove it from the back stack and automatically

navigate to the previous screen in the stack.

Take control of the back stack

When the app
starts, the
screen stack
only contains
the TimeTracker
Activity.

1

When a user presses the
Add item, the AddTime
Activity is started, adding
it to the screen stack.

2

Cancel starting another
instance of the
TimeTracker Activity
adds it to the screen
stack a second time.

3

http://

328 Chapter 8

implementing cancel

If you implement onCancel using finish, you’ll

remove the intent and the startActivity

call and replace it with a call to finish. This will

stop the AddTime Activity, remove it from the

stack and return the user to the list screen.

Implement cancel using finish

public void onCancel(View view) {

 Intent intent = new Intent(this, TimeTracker.class);

 startActivity(intent);

}

AddTime�java

finish();
Call finish in the
Activity base class.

Don’t start another
TimeTracker Activity.

What about the save button?
This implementation will work for the Cancel
button, but what about the Save button? The

Cancel button just needs to return to the list

view, but the Save button needs to return to the

list view and return the user entered data.

Time

Tracker

AddTime

Time

Tracker

Save AddTime

Call finish on the
AddTimeActivity. AddTime is finished

off the stack.

TimeTracker is automatically
displayed and pressing back button
from here will exit the app.

The user entered data returned
to the time tracker.

result data

http://

you are here 4 329

multi-screen apps

Wouldn't it be dreamy if you could
handle the save and cancel button the same
way, just returning data when you save? But
I know it's just a fantasy…

http://

330 Chapter 8

using startActivityForResult

Use startActivityForResult
There is a mechanism built into Android for launching a new Activity for

a result, which is exactly what the TimeTracker is doing by launching the

AddTime. The key difference is that the new Activity is started using a

special call, startActivityForResult. And when the new Activity is

finished, a method called onActivityResult is invoked on the calling

Activity with the resulting data.

Here is the flow between the two Activites

startActivityForResult

This replaces the call
to startActivity. When the

user presses
save, the
Activity
packages
up the user
entered
data and
calls finish

TimeTracker AddTime

Activity

Started

finish

Activity

Started

onActivityResult

result data

request code

Activity

Stopped

When the activity started
using startActivityForResult is

finished, this is automatically
called with the result data.

The request code is
used to link responses
to requests.

Data packaged before the
AddTimeActivity finished.

http://

you are here 4 331

multi-screen apps

public boolean onMenuItemSelected(int featureId, MenuItem item) {

 if (item.getItemId() == R.id.add_time_menu_item) {

 Intent intent = new Intent(this, AddTimeActivity.class);

 startActivity(intent);

 return true;

 }

 return super.onOptionsItemSelected(item);

}

public static final int TIME_ENTRY_REQUEST_CODE = 1;

TimeTracker�java

startActivityForResult(intent, TIME_ENTRY_REQUEST_CODE);

The request code
constant.

Replace the startActivity call with
a call to startActivityForResult.

Pass in the time entry
request code constant.

Update starting the Activity
The startActivityForResult will work for

both the Save and Cancel flows. Before implementing

the save functionality, let’s go back and update the

Save flow to use startActivityForResult.

One difference between startActivity and

startActivityForResult is that but you need

a request code. This request code is passed back in to

the calling Activity when onActivityResult is

called so the you can correlate the responses to the

screens you’ve started.

Now remove the startActivity call and instead

call startActivityForResult passing in the

intent and the request code.

http://

332 Chapter 8

implementing save

Implement onSave
The Cancel flow looks great, so let’s move on to the Save

flow. You’ll start by implementing the onSave method

invoked by the Save button when clicked. You’ll implement

this method in the AddTime Activity.

<Button android:text=”Save”

 android:onClick=”onSave”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

add_time�xml

XML

public void onSave(View view) {

}

Your implementation here

AddTime�java
In the onSave method, you’ll retrieve the EditTexts

for the time and notes fields from the view. The Intent

that invoked the AddTime is going to be returned to the

TimeTracker Activity. So you can put these values in

a Map inside the Intent. Then you can retrieve those

values from the Intent in the TimeTracker Activity.

result data

Add the user entered
values for time and notes
into the calling intent.

http://

you are here 4 333

multi-screen apps

public void onSave(View view) {

}

onSave Magnets
Below is the empty onSave method from the AddTime Activity.

Use the magnets below to complete the method. You’ll need to

retrieve reference to both EditTexts as well as the Intent. Then

use Intent’s putExtra method to add values to the Intent’s Map so

that you can retrieve them later from the TimeTracker Activity.

Finally set the result of the Intent to RESULT_OK which you’ll use in

the onActivityResult method to determine whether the Save

or Cancel button was pressed. .

AddTime�java

Intent intent = getIntent();

EditText timeView = (EditText)findViewById(R.id.time_view);

this.setResult(RESULT_OK, intent); finish();

intent.putExtra(“notes“, timeView.getText().toString());

intent.putExtra(“notes“, notesView.getText().toString());

EditText notesView = (EditText)findViewById(R.id.notes_view);

http://

334 Chapter 8

processing the result

onSave Magnets Solution
Below is the onSave method from the AddTime Activity. You should

have used the magnets below to complete the method. You should have

retrieved references to both EditTexts as well as the Intent. Then using

the Intent’s putExtra method, you should have added values to the

Intent’s Map so that you can retrieve them later from the TimeTracker

Activity. Finally you should have set the result of the Intent to RESULT_OK

which you’ll use in the onActivityResult method to determine

whether the Save or Cancel button was pressed.

public void onSave(View view) {

}

Intent intent = getIntent();

EditText timeView = (EditText)findViewById(R.id.time_view);

this.setResult(RESULT_OK, intent);

finish();

intent.putExtra(“time“, timeView.getText().toString());

EditText notesView = (EditText)findViewById(R.id.notes_view);

intent.putExtra(“notes“, notesView.getText().toString());

AddTime�java

Calling getIntent() retrieves the
starting intent from a running Activity.

Get a reference to the time EditText, and put

its value in the intent using the string constant.

Get a reference to the notes EditText, and put
its value in the intent using the string constant.

Set the result to OK and
pass in the intent.

Finish the activity.

http://

you are here 4 335

multi-screen apps

Implementing onActivityResult
You’ve completed the onSave method, which

packages up the user entered data in the calling

intent. It also calls finish on its Activity which

pops that Activity off the stack and returns

to the TimeTracker Activity, calling its

onActivityResult method.

Time

Tracker
AddTime

result data

finish() onActivityResult()

Finish gets called, completing
the Activity and removing
itself from the stack.

Then onActivityResult gets called
in TimeTracker with the Intent
containing the result data.

In the TimeTracker onActivityResult

method, you’ll retrieve the values from the

Activity using the getStringExtra method,

using the map keys used to add the values. Then

you’ll create a new TimeRecord object with

the values and add it to the ListAdapter.

Create a new TimeRecord
object with the data from
the result intent. Add the new

Timerecord to
the list.

result data

http://

336 Chapter 8

displaying new data

Pool Puzzle
Your job is to take the code fragments

from the pool and place them into the

onActivityResult method. You

may not use the same code fragment

more than once. Your goal is to make

a new item display in the list..

Note: each thing from

the pool can only be

used once!

protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 if (requestCode == TIME_ENTRY_REQUEST_CODE) {

 if (resultCode == RESULT_OK) {

 }

 }

}

String time = data.getStringExtra(“time”);

String notes = data.getStringExtra(“notes“);

timeTrackerAdapter.addTimeRecord(

new Ti
meReco

rd(tim
e, not

es));

listView.requestL
ayout();

timeTrackerAdapter.notifyDataSetChanged();

This check makes sure the requestCode
is the code you passed in

This checks that the resultCode is
RESULT_OK. Since you didn’t set the
result code in the onCancel, this will return
instead of trying to add a new item.

http://

you are here 4 337

multi-screen apps

Head First: Hi Intent, thanks for speaking with us

tonight.

Intent: Happy to be here, try and tell my story a

little bit, you know.

Head First: Wow, your story? Sounds like you have

something on your mind. What’s up?

Intent: It’s nothing new really. I just don’t get a lot

of respect around here. I mean, I can do an awful

lot! I help start Activities, I let everyone know where

to go, and I can store and communicate data myself

as I move around the system.

Head First: That all sounds right. But it sounds like

you’re not too happy about it.

Intent: I feel bad coming here and complaining,

but I just never get to see the spotlight you know?

Activities get to interact with users! I just have to

hang out in the background while they get to shine

on the screen.

Head First: It must be awful for you to just sit

there while the Activities are out there displaying

themselves to users, getting their buttons pressed...

Intent: Hey! You don’t have to rub my face in it,

Okay?

Head First: Oh, I’m sorry, I didn’t mean...

Intent: It’s Okay. I’m used to it.

Head First: No, I’m telling you that you are really

important. You may be sitting in the background

while the Activity is displayed, but you have to keep

track of really important information.You know

how the Activity was launched, and you include any

information passed in to the Activity.

Intent: That’s true...

Head First: And as you’re sitting there in the

background while the Activity is displaying, you get

asked for your information and new information gets

passed to you. Like when information is added to

you to get sent back to a calling Activity after calling

startActivityForResult.

Intent: That’s true too.

Head First: I think you need to change your

mindset. You’re not under appreciated, you’re the

strong silent type.

Intent: The strong silent type... I think I like the

sound of that.

Head First: Glad you’re feeling a bit better. That’s

all the time we have tonight folks. Give Intent a

big round of applause before going back into the

background and we forget about it!

Intent: Hey now!

Head First: Kidding, man. Kidding.

Intents Exposed
This week’s interview:

Are Intents Under Appreciated?

http://

338 Chapter 8

returning results

Pool Puzzle Solution
Your job is to take the code fragments

from the pool and place them into the

onActivityResult method. You

may not use the same code fragment

more than once. Your goal is to make

a new item display in the list.

Note: each thing from

the pool can only be

used once!

protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 if (requestCode == TIME_ENTRY_REQUEST_CODE) {

 if (resultCode == RESULT_OK) {

 }

 }

}

String time = data.getStringExtra(“time“);

String notes = data.getStringExtra(“notes“);

timeTrackerAdapter.addTimeRecord(new TimeRecord(time, notes));

timeTrackerAdapter.notifyDataSetChanged();

Get the values
from the intent

Create a new
TimeRecord and add
it to the list adapter.

This method lets the list

know the data has changed

and to update the display.

http://

you are here 4 339

multi-screen apps

Everything is all wired up! Run the app and run through the complete

flow of adding a new time. Invoke the Add menu item, enter a time and

some notes, and press save. And you’ll see a new item added to the list!

Fantastic Work!

Press the menu button
and select the Add
menu item.

Enter a time
and notes.

Press save...

Test Drive

http://

340 Chapter 8

You just did some seriously heavy lifting to get data entry working. Can’t get enough?

Here are some more features you could implement to make the app even better!

Go Off Piste

Build edit and delete
In this chapter, you built a
mechanism to add items to the
list.. But what if a user enters the
wrong information? Allowing users to
add information is great, but your
users will eventually want to be able
to edit and delete as well.

Build an about screen
The bulk of the navigation in this chapter used startActivityForResult to manage data entry. Try building another screen, like an about screen, that displays but doesn’t return data to the calling Activity. Think about whether you want that Activity to be in the back stack and build it accordingly.

http://

multi-screen apps

Screen Navigation
• Create a new Activity and configure it

to use a new Layout

• Create an Intent

• Call startActivity or

startActivityForResult to launch a new

screen

New Menu Steps
• Create a menu XML file from the new XML file wizard
• Add menu items using the graphical editor, or edit the raw XML.
• Inflate the menu using the MenuInflater in the onCreateOptionsMenu method in your Activity

• Process the menu action in
onMenuItemSelected in your Activity.

Your Android Toolbox

Now that you’ve built

navigation between two

screens, you can apply the

same logic to building navigation

between as many screens as you like!

Just not too many, OK?

CHAPT
ER 8

 � Create new Layouts using the new XML file

wizard, or by creating the XML files yourself.

 � Reuse Activities with different layouts if

the behavior is the same. If the behavior is

different, create a new Activity.

 � Remember to add a declaration for your

new Activity in AndroidManifest.xml. If you

don’t you’ll get nasty errors!

 � To launch a new Activity in your

app, create an Intent and pass it to

startActivity.

 � If you’re staring an entry screen, use

startActivityForResult to

easily finish and return values to the calling

Activity.

 � Implement onActivityResult to

receive the data returned from the screen.

 � Create new Context Menu XML descriptions

using the new XML file wizard.

 � Show menus by overriding Activities

onCreateOptionsMenu and

process the selection events by overriding

onMenuItemSelected.

 � New screens are automatically added to the

back stack. The back buttons uses this back

stack when pressed.

 � Call finish to complete a screen and

automatically display the previous screen on

the back stack.

 � Use EditText for text entry

http://

http://

this is a new chapter 343

database persistence9

Store your stuff

In memory data storage only gets you so far� In the previous chapter,

you built a list adapter that only stored data in memory. But if you want the app to

remember data between sessions, you need to persist the data. In this chapter, you’ll

learn to store your data using a SQLite database. You’ll learn how to create and manage

your own SQLite database and you’ll learn how to integrate that SQLite database with the

ListView in the TimeTracker app. And don’t worry, even if you’re brand new to SQL, you’ll

learn what you need to get this app’s database up and running.

SQLite

http://

344 Chapter 9

data isn’t saving

Viewing and entering
times looks great. But
the app is useless if I
can’t save times!

Uh oh, the times aren’t saving...
Donna is loving the app so far. It’s a

straightforward app where she can enter her

times and notes. And just like she wanted,

it’s free of clutter from features she won’t use.

But she pointed out a really big problem.

When she closed the app and later reopened

it, all of her times were gone!

http://

you are here 4 345

database persistence

... but you can save them using SQLite
The app currently loses all of the information

added to list when you exit and relaunch the

app. This is because newly entered times

are stored in memory as objects inside the

TimeTrackerAdapter. And once you shut

down the app, the in memory data is gone!

Android comes standard with a built in SQLite

database implementation. SQLite is a lightweight SQL

database implementation that stores data to a text file

on the device. If you store the times in the SQLite

Database and read them back in after you restart the

app, you’ll have persistent data.

The ListView
for your app.

The Adapter for
your list is storing all
the data in memory.

Persist the list data in the
SQLite database and display the
data from the database and you’l
have persistent data storage.

SQLite

http://

346 Chapter 9

planning database integration

Storing times in the database

1. Create a database for your app

You’ll be storing the time and note data in a SQLite

database. But before you can store data in the

database, you have to create it.

You’ll have to touch several parts of the app

to get database storage fully integrated. Let’s

take a look at what you’ll be doing in the

chapter to seamlessly persist data.

2. Save a time record

Once the database is created, you can save times in

it. Here you’ll define the database schema based on

the data you’ll be saving. Then add the code to insert

records directly into the database.

3. Load time records

It’s no fun to store data if you can’t access it. Here

you’ll write the code to query the database and

process the results.

4. Update the List to use the database

The goal is not to save and load data from a

database in isolation. The goal is integrate database

persistence in the existing app. With store and

retrieval working, you’ll finish up by integrating all

of your hard work back into the TimeTracker app.

SQLite

SQLite

SQLite

SQLite

Time

Record

Time

Record

List

View

Your new
database

Save new times
in the database

Retrieve times
from the database

Display those times
in the list

http://

you are here 4 347

database persistence

Start by creating the database

private static class TimeTrackerOpenHelper extends SQLiteOpenHelper {

 TimeTrackerOpenHelper(Context context) {

 super(context, “timetracker.db“, null, 1);

 }

 public void onCreate(SQLiteDatabase database) {

 }

 public void onUpgrade(SQLiteDatabase database,

 int oldVersion, int newVersion) {

 }

}

TimeTracker

OpenHelper�java

You can create and open databases directly inside

your app. The best way to get off the ground with

a new database is to extend a built in abstract base

class called SQLiteOpenHelper that provides

you with all of the basic behavior to manage a

database.

Create a new class called

TimeTrackerOpenHelper that extends

SQLiteOpenHelper. There are three methods you’ll

need to implement that descrive how to connect to

your database, initially create tables, and upgrade

from previous versions.

Pass the name of the
database to super

Pass the version number
to super as well.

Create your tables in here

Handle database schema upgrades in here

Create a new class called

TimeTrackerOpenHelper

that extends SQLiteOpenHelper.

Pass the database name and

the database version to super.

Make empty implementations of

onCreate and onUpgrade.

Do this!

http://

348 Chapter 9

using an open helper

Instantiate the OpenHelper
The database is created internally by

the Open Helper when it is instantiated.

In TimeTracker, add the following

line creating an instance of the

TimeTrackerOpenHelper.

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 ListView listView = (ListView)findViewById(R.id.times_list);

 timeTrackerAdapter = new TimeTrackerAdapter();

 listView.setAdapter(timeTrackerAdapter);

 TimeTrackerOpenHelper openHelper = new TimeTrackerOpenHelper(this);

}

TimeTracker�java

Instantiating your custom
open helper will cause the
database to be created.

Do this!
Add the line to instantiate the

TimeTrackerOpenHelper in

theTimeTracker onCreate

method, then start the app.

Q: Do I have to call a method on the OpenHelper to create

the database?

A: No. When you instantiate the OpenHelper, it automatically

creates the database for you.

Q: Cool! Where does it go?

A: It’s stored on the device under /data/data/<package-name>/

databases<database-name>. If you’re ever curious about what’s in

the database, you can always open it up in SQLite databse browser

and look at its contents.

http://

you are here 4 349

database persistence

Browse to the database file
After running the app with the Open Helper being created, you

won’t notice any visual differences. But there are big changes
behind the scenes. When you instantiated the Open Helper, the

database file was created and saved to your applications persistent

storage.

You can view the file by opening the Android File Explorer. Go to

Window → Show View - Other, expand the Android folder and

select File Explorer. Then navigate to com.headfirstlabs.

timetracker\databases\ and you’ll see a file called

timetracker.db.
The save button to
save the database to
your file system.

Select the database file and press the save icon.

This will allow you to save the entire database file

locally and view it. Here is a screenshot of the

sqlitebrowser (http://sourceforge.net/projects/

sqlitebrowser/) displaying the contents of the

database. Right now the database is empty, it just

includes some default metadata.

The sqlitebrowser
viewing the sqlite
database file.

http://

350 Chapter 9

designing your database

Design the database

id time notes

1

2

3

4

38:23

49:01

26:21

29:42

Feeling good!

Tired. Needed more caffeine!

I totally rocked it!

Lost some time on this

hills. But pretty good.

The ID field is
the primary key
for the database.
This is standard
practice for
databases.

The TimeRecord
object and its fields.

Sample
data

You now have the database being created with the

open helper. But it’s empty. Now look at what you need

to store and how to structure the database to store

that information. The data for this app are already

stores in the TimeTrackerAdapter in a list of

TimeRecord objects. Now you need to store that

same information in the database.

You can store this by creating a single table called

timerecords with a column for time and notes.

Geek Bits

Notice that the sqlite database file is

called timerecords.db. The file’s name is

controlled by the database name string

you passed into the constructor of the

SQLiteOpenHelper.

Time
Record

time

notes

http://

you are here 4 351

database persistence

Q: How much SQL do I need to know for

developing Android apps?

A: That really depends on your app. Some apps just

set up a very basic database and display its contents.

Others do very complex things with their database, like

very detailed queries using very intricate database

schemas. We won’t go into a lot of detail about the SQL

part of SQLite in this book. If you’d like to know more,

we can suggest you read Head First SQL.

create table timerecords (

 id integer primary key time text, notes text

)

Create the initial table
The database design includes the one

timerecords table that you’ll need to create

when the database is created. You overrode the

onCreate method in SQLiteOpenHelper

when you wrote the TimeTrackerOpenHelper

which created a blank database. Now that you

know what the database should look like, you need

to include the code to create that creates the initial

table. Here is the SQL you’ll need to execute.

SQL statement
to create the
timerecords table

Our very biased suggestion
on where to learn more
about SQL.

http://

352 Chapter 9

creating your database

If you run the app again, you still won’t see any visual

or functional change in the app. But you did update the

TimeTrackerOpenHelper onCreate to update

the database creation. So check the sqlite database file

for schema changes.

Updating the database creation

TimeTracker

OpenHelper�java

 public void onCreate(SQLiteDatabase database) {

 database.execSQL(

 "create table timerecords " +

 "(id integer primary key, time text, notes text)"

);

 }

Update your onCreate method to the following.

A SQLiteDatabase instance is passed in which

is an Object wrapper around the SQLite Database.

You can execute SQL using the execSQL method.

Call execSQL on
the database

Pass in the SQL
statament to create
the timerecords table.

Looks the same as before.
No new table in the
database structure.

http://

you are here 4 353

database persistence

Exactly why did the
database not change? I’m not
going to get very far with
databases if I change the
code and nothing happens.

It’s because the database is persistent

The SQLiteOpenHelper is helper class for creating

and managing the SQLite database, which you’ve

seen is stored in a file for persistence. This way, data

stored in the file will be available after the app process

is exited and restarted.

But the code that was just updated was for

onCreate which only gets called when the database

is created. The database doesn’t get created each time

your app runs though, only the very first time. That’s

what makes the data persistent.

Keep reading to see how to update the database

http://

354 Chapter 9

upgrading your database

Implement onUpgrade
At this point you have a database you need to update.

You need to add the timerecords table to the

original empty database. This pattern of updating

a database’s schema is common so the open helper

provides a mechanism for it.

In the TimeTrackerOpenHelper constructor, you

passed a version number of the database to super which

is cached along with the database. If the version number

changes, onUpgrade is called for you to update the

database as needed.

In this case, the upgrade will be quite simple. You just

need to drop the database and recreate it.

public class TimeTrackerOpenHelper extends SQLiteOpenHelper {

 TimeTrackerOpenHelper(Context context) {

 super(context, "timetracker.db", null, 2);
 }

 public void onCreate(SQLiteDatabase database) {

 database.execSQL(

 "CREATE TABLE timerecords " +

 "(id INTEGER PRIMARY KEY, time TEXT, notes TEXT)"

);

 }

 public void onUpgrade(SQLiteDatabase database, int oldVersion, int newVersion) {

 database.execSQL("DROP TABLE IF EXISTS timerecords");

 onCreate(database);

 }

}

TimeTracker

OpenHelper�java

Update the version
number passed in to super

Drop the tables if
they exist and then
call onCreate.

http://

you are here 4 355

database persistence

Now that you’ve updated onCreate, updated the version number and

implemented the onUpgrade method, it’s time to test this out. Run the

app again and inspect the sqlite file in a viewer.

 Don’t forget to update the version number.

The onUpdade method will only get called if the version
number.is updated. If you update your database
schema, make sure to update the version number or
the database will not get updated to the latest version.

Here is the
new table
and fields.

The database is updated!

Test Drive

http://

356 Chapter 9

picking the important stuff

Using the database in your app
The OpenHelper isn’t a database itself. But it does create

the database for you, and gives you access to it. You don’t

have to manually create the database, that’s done for you

when you instantiate the OpenHelper. But you do need

to call one of the getDatabase method to retrieve a

reference to the SQLiteDatabase object.

Once you have the SQLiteDatabase, you can call any of

the methods to insert, delete, execute raw SQL statements,

and more. But first, you need to get a reference to the

database from the OpenHelper.

There are two methods you can call to retrieve the database,

getReadableDatabase to retireve a read only

database and getWritableDatabase and to retrieve a

database you can read and write to. Since you’ll be writing

to the database when you add new times, you’ll be calling

getWritableDatabase.

OpenHelper

getWritable

Database

SQLite

Database

The OpenHelper
creates the
database

Call getWritableDatabase (or
getReadableDatabase) to get
a a database reference

Use the SQLiteDatabase
instance returned to interact
with the database

http://

you are here 4 357

database persistence

Head First: SQLiteDatabase, thanks for joining us.

I know it’s hard to time away from your server to join

us here tonight.

SQLiteDatabase: Thanks! But you know, I don’t

have a server, that’s just soooo old school. I’m an

individual. I work alone. I refuse to be downtrodden

by the shackles of a server...

Head First: Wow! OK, so no server. Gotcha. What

exactly do you need to run?

SQLiteDatabase: Sorry, I get a little carried away

sometimes. My whole point is to run minimally. You

can just drop my library anywhere, and without any

configuration, setup, additional processes or weird

data storage, you have a perfectly functional SQL

database.

Head First: Seriously? If you don’t have your own

process, where do you run?

SQLiteDatabase: I’m pretty flexible, you know.

I run in whatever process runs my library. I run the

their process. But I don’t take much. I’m a drifter.

Head First: Cool! And where do you store your

data?

SQLiteDatabase: On the regular file system in a

plain old file.

Head First: Between running as a configureless

library and storing your data in a plain file, is your

functionality limited?

SQLiteDatabase: No way! I’m super powerful. I

can do multiple tables, triggers, indeces and all kinds

of fancy stuff like that in my one little file.

Head First: Wow, I’m impressed!

SQLiteDatabase: You should be. Also, I weight a

pretty slim 350k. But when apps need me to be super

small, I have a special diet I can go on and drop

down to under 200k. I’m just cool like that.

Head First: Stop, you’re killing me! How do you fit

that all in there?

SQLiteDatabase: A lot of folks use me, and they

care a lot about making sure I’m super optimized. I

have my own consortium, you know.

Head First: Seriously?

SQLiteDatabase: Yeah! You should check it out,

sqlite.org. You can see all of the folks there that make

me happen.

Head First: That’s amazing! Tell me a bit about

your object representation on Android.

SQLiteDatabase: Well, as you can guess, I run

inside an Android app’s process when I’m used.

But they need some way to interact with me. So the

Android engineers built be a nice Object wrapper

called SQLiteDatabase. Once you get an instance

of me and my wrapper, you’ve got a fully functional

SQLiteDatabase at your disposal. Literally, I’m all

yours!

Head First: That’s just fantastic. The power of a

rock solid, fully featured, yet small footprint database

built into every Android app. It’s a beautiful thing.

SQLiteDatabase: Can’t argue with you there.

Head First: Well, thanks for joining us

SQLiteDatabase. That’s all the time we have, but I’m

sure I’ll be seeing you around!

SQLiteDatabase Exposed
This week’s interview:

What are you, exactly?

http://

358 Chapter 9

implementing a database helper

Database Helper Magnets
Below is the empty implementation of TimeListDatabaseHelper

and it’s internal SQLiteOpenHelper implemenation

TimeTrackerOpenHelper. Using the magnets below, complete the

implementation using constants and string concatenation for all

helper methods. .

public class TimeListDatabaseHelper {

public TimeListDatabaseHelper(Context context) {

}

private static final String DATABASE_NAME = “timetracker.db”;

private static final int DATABASE_VERSION = 2;

public static final String TIMETRACKER_COLUMN_TIME = “time”;

public static final String TIMETRACKER_COLUMN_NOTES = “notes”;

openHelper = new TimeTrackerOpenHelper(context);

+ TIMETRACKER_COLUMN_ID + “ INTEGER PRIMARY KEY, “

onCreate(database);

private SQLiteDatabase database;

database = openHelper.getWritableDatabase();

Put constants here
for table names,
database version, etc.

Call super here passing
in constants instead
of raw values.

http://

you are here 4 359

database persistence

private class TimeTrackerOpenHelper extends SQLiteOpenHelper {

 TimeTrackerOpenHelper(Context context) {

 }

public void onCreate(SQLiteDatabase database) {

 }

public void onUpgrade(SQLiteDatabase database,

 int oldVersion, int newVersion) {

 }

 }

}

private static final String TABLE_NAME = “timerecords”;

public static final String TIMETRACKER_COLUMN_ID = “id”;

private TimeTrackerOpenHelper openHelper;

super(context, DATABASE_NAME, null, DATABASE_VERSION);

database.execSQL(

“CREATE TABLE “ + TABLE_NAME + “(“

+ TIMETRACKER_COLUMN_NOTES + “ TEXT)”

+ TIMETRACKER_COLUMN_TIME + “ TEXT, “

); database.execSQL(“DROP TABLE IF EXISTS “ + TABLE_NAME);

Drop and recreate
the database tables
down here...

Call super on the
open helper, passing in
constants.

Create the database
here, also using
constants for the
execSQL call.

http://

360 Chapter 9

implementing a database helper

Database Helper Magnets Solution
Below is the implementation of TimeListDatabaseHelper and it’s

internal SQLiteOpenHelper implemenation TimeTrackerOpenHelper.

You should have completed the implementation using constants

and string concatenation for all helper methods.

public class TimeListDatabaseHelper {

public TimeListDatabaseHelper(Context context) {

}

private static final String DATABASE_NAME = “timetracker.db”;

private static final int DATABASE_VERSION = 2;

private static final String TABLE_NAME = “timerecords”;

public static final String TIMETRACKER_COLUMN_ID = “id”;

public static final String TIMETRACKER_COLUMN_TIME = “time”;

public static final String TIMETRACKER_COLUMN_NOTES = “notes”;

private TimeTrackerOpenHelper openHelper;

openHelper = new TimeTrackerOpenHelper(context);

private SQLiteDatabase database;

database = openHelper.getWritableDatabase();

All of the
constants for
referencing
the database
internal values.

Store variables for
the OpenHelper and
the database it opens

Get the writable
database from the
open helper.

http://

you are here 4 361

database persistence

private class TimeTrackerOpenHelper extends SQLiteOpenHelper {

 TimeTrackerOpenHelper(Context context) {

 }

public void onCreate(SQLiteDatabase database) {

 }

public void onUpgrade(SQLiteDatabase database,

 int oldVersion, int newVersion) {

 }

 }

}

super(context, DATABASE_NAME, null, DATABASE_VERSION);

database.execSQL(

“CREATE TABLE “ + TABLE_NAME + “(“

+ TIMETRACKER_COLUMN_ID + “ INTEGER PRIMARY KEY, “

+ TIMETRACKER_COLUMN_NOTES + “ TEXT)”

+ TIMETRACKER_COLUMN_TIME + “ TEXT, “

);

database.execSQL(“DROP TABLE IF EXISTS “ + TABLE_NAME);

onCreate(database);

Build the
database
table.

Drop and
recreate the
table on upgrade.

http://

362 Chapter 9

saving your data

You can implement save with execSQL...
Now that you have a clean encapsulated helper class

for managing your database, let’s implement saving

time records into the database. Start by adding a

method to TimeListDatabaseHelper to save a

time record called saveTimeRecord.

Passing in the time and notes values as input

parameters and constructing a SQL statement using

string concatenation, you could write this method.

public void saveTimeRecord(String time, String notes) {

 database.execSQL(“INSERT INTO TIMERECORDS“

 + “ (TIME, NOTES)”

 + “ VALUES (‘” + time + “’, ‘” + notes + “’)”

);

 }

TimeTracker

DatabaseHelper�java

Note the spaces at the
beginnings of the lines. Without
proper spacing the SQL
statement will throw an error.

The time and notes
values are passed into
the save method as input
parameters.

The input parameters are properly escaped
and concatenated in the SQL statement.

 Be careful with execSQL and raw SQL strings.

SQL statements in your code are not checked by the
compiler. So if you have errors in your SQL statements, you
won’t know until you run them. In many ways, these dynamic
SQL stataments where you’re concatenating multiple strings

at runtime are even worse! At least with complete SQL statement strings
you can visually inspect the SQL statements for accuracy. Dynamically
generating SQL statements at runtime can be quite difficult to debug.

http://

you are here 4 363

database persistence

... but it’s a lot better to use insert
Knowing that dynamically creating SQL statements

to execute at runtime can be quite difficult, Android

provides a number of utilities to help you avoid this.

One of these utilities is the insert method on

SQLiteDatabase. Insert takes a parameter

called ContentValues consisting of a set of key/

value pairs consisting of the table column name and

the value to insert.

 public void saveTimeRecord(String time, String notes) {

 ContentValues contentValues = new ContentValues();

 contentValues.put(TIMETRACKER_COLUMN_TIME, time);

 contentValues.put(TIMETRACKER_COLUMN_NOTES, notes);

 database.insert(TABLE_NAME, null, contentValues);

 }

TimeTracker

DatabaseHelper�java

Q: Does executing an insert from a

raw SQL function work?

A: Yes, it works just fine. You can

execute arbitrary SQL statements using

execSQL.

Q: OK, so I could use either. What

makes the insert method so much

better?

A:There are a few things that make

the insert method much better to use.

First of all, you don’t have to worry about

the syntax to combine the strings. With

execSQL, you have to combine the insert

and the database name with the fields

you’re inserting in to, plus the values. And

all this has to be properly formatted with

spaces, commas, parentheses, and other

formatting.

Q: So I don’t have to do any of that

formatting with insert?

A: Correct. You’re passing the same

information, but organized in a data

structure rather than a raw String. This

helps you avoid a lot of the nastiness of

piecing together all of these bits of Strings

in SQL statements.

http://

364 Chapter 9

using your database

Add database access to TimeTracker
Now that you have a database setup and

configured to save time records, you can

start saving times entered in the app. Start by

removing the TimeTrackerOpenHelper

from the TimeTracker and replace it with an

instance of TimeTrackerOpenHelper with

a member variable to reference later.

public class TimeTracker extends Activity {

 private TimeTrackerAdapter timeTrackerAdapter;

 private TimeTrackerDatabaseHelper databaseHelper;

 public static final int TIME_ENTRY_REQUEST_CODE = 1;

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 ListView listView = (ListView)findViewById(R.id.times_list);

 timeTrackerAdapter = new TimeTrackerAdapter();

 listView.setAdapter(timeTrackerAdapter);

 TimeTrackerOpenHelper openHelper = new TimeTrackerOpenHelper(this);

 databaseHelper = new TimeTrackerDatabaseHelper(this);

TimeTracker�java

Remove the
open helper.

Create a member variable
for the database helper.

Instantiate the
database helper.

http://

you are here 4 365

database persistence

By adding the TimeTrackerDatabaseHelper

to the TimeTracker Activity, you have access to the

database and you can start saving times.

You’re already saving times to the

TimeTrackerAdapter in onActivityResult.

Leave that code for now and add an additional call

in onActivityResult to save the new time.

Since the database helper is in view, just add a call to

addTimeRecord with the new data after adding it tp

the list adapter.

TimeTracker�java

protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 if (requestCode == TIME_ENTRY_REQUEST_CODE) {

 if (resultCode == RESULT_OK) {

 String time = data.getStringExtra(TIME_KEY);

 String notes = data.getStringExtra(NOTES_KEY);

 databaseHelper.saveTimeRecord(time, notes);

 timeTrackerAdapter.addTimeRecord(new TimeRecord(time, notes));

 timeTrackerAdapter.notifyDataSetChanged();

 }

 }

}

Save new times to the database

Save the newly entered time to the database by
calling saveTimeRecord on your database helper.

Now let’s get rid of some dead code before testing it out....

http://

366 Chapter 9

testing your database

Before you run your new code to save new times

to the database, take a minute to clean up the old

,unused code you have in the app.

Start by deleting the TimeTrackerOpenHelper

from your project since you’ve moved your

SQLiteOpenHelper implementation to inside the

TimeTrackerDatabaseHelper.

TimeTracker

OpenHelper�java

You can delete
this class.

 public TimeTrackerAdapter() {

 times.add(new TimeRecord(

 “38:23”, “Feeling good!”));

 times.add(new TimeRecord(

 “49:01”, “Tired. Needed more caffeine.”));

 times.add(new TimeRecord(

 “26:21”, “I totally rocked it!”));

 times.add(new TimeRecord(

 “29:42”, “Lost some time on the hills. But pretty good.”));

 }

TimeTracker

Adapter�java

Remove all of the test
code adding hard coded
TimeRecords in the adapter.

Remove old code

You can also remove the code that adds the hard

coded TimeRecords to the adapter. They were only

needed since you didn’t have data persistence. Now

that you’re storing times in the database, this will just

be confusing.

Get rid of that dead
code before you forget. It
will just confuse you later.

http://

you are here 4 367

database persistence

Now run the app and add a new time. With your latest changes to the

TimeTracker, you’ll save to the new time to the database as well as

the TimeTrackerAdapter.

You won’t see the database changes directly in the app. You’ll be able

to do this later, once you connect the ListView to display results directly

from the database. Meanwhile, you can view the data in the database

directly and see that the new record is there.

Test Drive

The new time
got added!

Save the database file locally again
from the File Explorer and open it
in a SQLite browser.

http://

368 Chapter 9

queries and cursors

Query the database
It’s great that the time record is saving to the database,

but in order to use the stored information, you need

to be able to query the database. Just like execSQL,

SQLiteDatabase has a method called rawQuery

that allows you to execute raw String based SQL

queries on the database.

Now add a method called getAllTimeRecords to

TimeTrackerDatabaseHelper that will query

the database for all time records. This method will

execute a select all query against the database to

return all of the rows in the timerecords table.

 public TimeTrackerDatabaseHelper(Context context) {

 openHelper = new TimeTrackerOpenHelper(context);

 database = openHelper.getWritableDatabase();

 }

 public void saveTimeRecord(String time, String notes) {

 ContentValues contentValues = new ContentValues();

 contentValues.put(TIMETRACKER_COLUMN_TIME, time);

 contentValues.put(TIMETRACKER_COLUMN_NOTES, notes);

 database.insert(TABLE_NAME, null, contentValues);

 }

 public Cursor getAllTimeRecords() {

 return database.rawQuery(

 "select * from " + TABLE_NAME,

 null

);

 }

TimeTracker

DatabaseHelper�java

This selects all
of the rows.

There are no selection
args since you’re selecting
all of the records.

http://

you are here 4 369

database persistence

id time notes

1

2

3

4

38:23

49:01

26:21

29:42

Feeling good!

Tired. Needed more caffeine!

I really rocked it!

Lost some time on this

hills. But pretty good.

The columns from
the database

The rows are the data returned
from the query. Your query is
returning all of the data, but
a more specific query may only
return a smaller set.

A Cursor is an object wrapper around a

database result set. The Cursor contains

columns and rows filled with data. Think of it

as a mini spreadsheet with utility methods to

navigate the results and retrieve specific data

values.

SQLite queries return cursors

The database query
returns a Cursor
which is being passed
to the caller of
getAllTimeRecords.

Geek Bits

There are some disadvantages of using rawQuery just like using the raw

executeSQL method. For a simple select all method, this works, but for

more complicated queries where you’ll be concatenating string values

for column names and specific search criteria, this approach falls short.

But just like the insert method, SQLiteDatabase has a several query

helper methods to simplify complex database queries.

http://

370 Chapter 9

navigating cursors

Navigating the cursor...

id time notes

1

2

3

4

38:23

49:01

26:21

29:42

Feeling good!

Tired. Needed more caffeine!

I really rocked it!

Lost some time on this

hills. But pretty good.

The selected
row.

Now you’ve queried the database and gotten a

Cursor returned. Now let’s take a look at how to

navigate the Cursor and retrieve data values.

When you work with a spreadsheet, you have a

selected row and column which brings a cell into

focus. The Cursor works the same way.

The Cursor keeps track of a selected row

internally and includes several methods to update

the Cursor’s selected row.

isFirst()

isLast()moveToFirst() moveToNext()

moveToPosition(int position) getPosition()

getCount()

Row selection
metadata methods

Row position
management methods

 Make sure to set the cursor row

before retrieving values.

Cursors start out with the selected row
set to -1. So if you try and retrieve a
value based on that row, you’ll get a

nasty exception. Make sure to call moveToFirst or
moveToPosition before attempting to retrieve a value.

Think of this
whole row in focus.

http://

you are here 4 371

database persistence

... and retrieving values
Once the desired row is selected, you can retrieve data

values using separate getter methods for each data type.

getInt(int columnIndex)

getString(int columnIndex)
getDouble(int columnIndex)

getFloat(int columnIndex
)

getBlob(int columnIndex)

Data retrieval
methods

id time notes

1

2

3

4

38:23

49:01

26:21

29:42

Feeling good!

Tired. Needed more caffeine!

I really rocked it!

Lost some time on this

hills. But pretty good.

Looking at this sample data set, if you move the cursor

to the first row and then call getString(1), it

will return the String “38:23”.

The selected
row.

Calling getString(1) retreives
the value as a String from
the column at index 1.

Q: How do I know which type getter to use?

A: When you create your database, you assign a column type

to each column. You can use whichever type you assigned to the

column for the getter.

Q: What happens if I pick the wrong type?

A: Android does it’s best to convert what’s stored in the

database to the type of the getter method you called. If it cant do

the conversion it will throw an exception.

http://

372 Chapter 9

iterating through cursors

Cursor cursor = helper.getTimeRecordList();

if (cursor.moveToFirst()) {

 do {

 String time = cursor.getString(1);

 String notes = cursor.getString(2);

 Log.d(“DB Value“, time + “ “ + notes);

 } while (cursor.moveToNext());

}

if (!cursor.isClosed()) {

 cursor.close();

}

Query the database
using the helper.

Move the cursor to the first
row, checking the boolean
response before continuing.

Retrieve the data
values from time and
notes columns and
print the value.

Move to next if
there are more rows.

Always make sure to
close the cursor when
you’re done.

Iterating the cursor
Sometimes you just need to get a single value

from the cursor. In those cases, you can go

straight to the row and get the value you need.

Very often though, you’ll be iterating through a

number of results and processing them in bulk.

Next steps
Now you have data saving in the database, a

query to retrieve the Cursor, and a way to

iterate the Cursor to get specific values. Now

you need to get the data from the Cursor into

your ListAdapter
SQLite

Up next: Connecting the
SQLite database and
the ListAdapter.

http://

you are here 4 373

database persistence

Wouldn't it be dreamy if I could just
put this Cursor in a special ListAdapter and
everything would just work. But I know it's
just a fantasy…

http://

374 Chapter 9

using CursorAdapter

Use CursorAdapter
The Android SDK includes a special adapter to easily

get a Cursor working with a ListView called

CursorAdapter. You’ll be able to instantiate

a CursorAdapter, passing in a Cursor. The

CursorAdapter then acts as a facilitator between

the ListView and the Cursor to render the

contents of the Cursor.

Like BaseAdapter, CursorAdapter is an

Abstract class with a few methods you need to

override to integrate it with your list. But unlike

the BaseAdapter subclass overriding getView,

CursorAdapter implementations override two

separate method. One method, newView, inflates the

view. The other method, bindView, is responsible

for populating the view with the selected data.

Cursor

An Adapter to
communicate between the
Cursor and the ListView.

The cursor retrieved from
the database helper with
the time record data.

The ListView.

Q: Do I have to use CursorAdapter?

A:You could follow the idea from a few pages back and

implement the CursorAdapter on your own. Unless you have a

really good reason though, you should just use CursorAdapter. It

will save you a lot of headaches getting going

Q: It looks like the getView implementation is split out

into these two methods newView and bindView. Do I have to

impelement getView as well?

A: No. In fact you shouldn’t. Just implement newView and

getView and you’ll be all set!

http://

you are here 4 375

database persistence

public class TimeTrackerAdapter extends CursorAdapter {

 public TimeTrackerAdapter (Context context, Cursor cursor) {

 super(context, cursor);

 }

 public void bindView(View view, Context context, Cursor cursor) {

 }

 public View newView(Context context, Cursor cursor, ViewGroup parent) {

 }

}

The adapter now extends
CursorAdapter.

Add a Cursor param to
the constructor.Pass the cursor

to super.

Cursor Adapter Magnets
Below is the updated TimeTrackerAdapter extending

CursorAdapter. Implement newView to create the

view and bindView to populate the view with data. The

cursor manages all iteration, so you just need to call the

getter value methods and render the results.

View view = inflater.inflate(R.layout.list_item, parent, false); return view;

nameTextView.setText(cursor.getString(cursor.getColumnIndex(1));

LayoutInflater inflater = LayoutInflater.from(parent.getContext());

TextView nameTextView = (TextView) view.findViewById(R.id.time_view);

valueTextView.setText(cursor.getString(cursor.getColumnIndex(2));

TextView valueTextView = (TextView) view.findViewById(R.id.notes_view);

The adapter handles all
cursor iteration for you,
you just need to display the
values in the selected row.

You can use the same view
for the display. Just create
an inflater and inflate the
view.

http://

376 Chapter 9

integrating the CursorAdapter subclass

public class TimeTrackerAdapter extends CursorAdapter {

 public TimeTrackerAdapter (Context context, Cursor cursor) {

 super(context, cursor);

 }

 public void bindView(View view, Context context, Cursor cursor) {

 }

 public View newView(Context context, Cursor cursor, ViewGroup parent) {

 }

}

Cursor Adapter Magnets Solution
Below is the updated TimeTrackerAdapter extending

CursorAdapter. You should have implemented newView to

create the view and bindView to populate the view with data. The

cursor manages all iteration, so you just needed to call the getter

value methods to render the results.

View view = inflater.inflate(R.layout.list_item, parent, false);

return view;

nameTextView.setText(cursor.getString(cursor.getColumnIndex(1));

LayoutInflater inflater = LayoutInflater.from(parent.getContext());

TextView nameTextView = (TextView) view.findViewById(R.id.time_view);

valueTextView.setText(cursor.getString(cursor.getColumnIndex(2));

TextView valueTextView = (TextView) view.findViewById(R.id.notes_view);

The time and
notes fields are
both retrieved and
populated with data
from getString calls
to the cursor.

The LayoutInflater
is retrieved and the
layout in inflated
and returned.

http://

you are here 4 377

database persistence

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 databaseHelper = new TimeTrackerDatabaseHelper(this);

 ListView listView = (ListView)findViewById(R.id.times_list);

 timeTrackerAdapter = new TimeTrackerAdapter(

 this, databaseHelper.getTimeRecordList());

 listView.setAdapter(timeTrackerAdapter);

}

Update TimeTracker
The TimeTrackerAdapter is now updated to be a

CursorAdapter subclass. The last thing you need to do

to use it is to update the TimeTracker Activity to use

it. Start by passing in the context (this) and the Cursor

containing the list of time records to the new adapter.

Pass in the Cursor
and the context to
the adapter.

protected void onActivityResult(int requestCode,

 int resultCode, Intent data) {

 if (requestCode == TIME_ENTRY_REQUEST_CODE) {

 if (resultCode == RESULT_OK) {

 String time = data.getStringExtra(TIME_KEY);

 String notes = data.getStringExtra(NOTES_KEY);

 databaseHelper.saveTimeRecord(time, notes);

 timeTrackerAdapter.changeCursor(

 databaseHelper.getTimeRecordList());

 timeTrackerAdapter.addTimeRecord(time, notes);

 timeTrackerAdapter.notifyDataSetChanged();

Don’t add the
time record to the
adapter anymore or
call the data change
notification..

Now remove the call to add a time record to the adapter.

You’re already adding the time record to the database.

Save the new time
record in the database,
and update the cursor
in the adapter.

http://

378 Chapter 9

testing your hard work

The TimeTrackerAdapter is now updated to a CursorAdapter

and connected to the ListView from the TimeTracker Activity. Go

ahead and run the app. There is one time record stored in the database,

so if everything works, you should see it in the list.

Don’t stop now, you’re
almost there. Find
and fix the error so I
can start tracking my
times!

Uh oh! Looks like there’s
an error in the code.

Test Drive

Something’s
going wrong
in your code.

http://

you are here 4 379

database persistence

The exception stack trace
printing out in LogCat

Tracking down the error

If you look at the error, you’ll see the following

error message “Caused by: java.lang.
IllegalArgumentException: column ‘_

id’ does not exist“. At first glace, it might

seem strange as you have an id column in your

database.

But look a little closer, and you’ll see it’s not

looking for a column called id, it’s actually

looking for a column called _id with an

underscore in front.

The class overview in
the online docs for
CursorAdapter even specifies
that you need an _ID column.

Open LogCat. If you closed it, you can reopen

it by going to Window → Show View → Other,

opening the Android folder and selecting LogCat.

Now that you know the problem, how are you going to fix it? Think about

all of the steps you would take to implement the fix before going on.

http://

380 Chapter 9

updating the database

Below is the current complete code for the TimeTrackerDatabaseHelper. All of the

changes you need to make to the database to update the table to use the _id column (with

the underscore) instead of the id column (without an underscore) is in this class.

package com.headfirstlabs.timetracker;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

public class TimeTrackerDatabaseHelper {

 private static final int DATABASE_VERSION = 2;

 private static final String DATABASE_NAME = "timetracker.db";

 private static final String TABLE_NAME = "timerecords";

 public static final String TIMETRACKER_COLUMN_ID = "id";

 public static final String TIMETRACKER_COLUMN_TIME = "time";

 public static final String TIMETRACKER_COLUMN_NOTES = "notes";

 private TimeTrackerOpenHelper openHelper;

 private SQLiteDatabase database;

 public TimeTrackerDatabaseHelper(Context context) {

 openHelper = new TimeTrackerOpenHelper(context);

 database = openHelper.getWritableDatabase();

 }

http://

you are here 4 381

database persistence

 public void saveTimeRecord(String time, String notes) {

 ContentValues contentValues = new ContentValues();

 contentValues.put(TIMETRACKER_COLUMN_TIME, time);

 contentValues.put(TIMETRACKER_COLUMN_NOTES, notes);

 database.insert(TABLE_NAME, null, contentValues);

 }

 public Cursor getTimeRecordList() {

 return database.rawQuery("select * from " + TABLE_NAME, null);

 }

 private class TimeTrackerOpenHelper extends SQLiteOpenHelper {

 TimeTrackerOpenHelper(Context context) {

 super(context, DATABASE_NAME, null, DATABASE_VERSION);

 }

 public void onCreate(SQLiteDatabase database) {

 database.execSQL(

 "CREATE TABLE " + TABLE_NAME + "("

 + TIMETRACKER_COLUMN_ID + " INTEGER PRIMARY KEY, "

 + TIMETRACKER_COLUMN_TIME + " TEXT, "

 + TIMETRACKER_COLUMN_NOTES + " TEXT)"

);

 }

 public void onUpgrade(SQLiteDatabase database,

 int oldVersion, int newVersion) {

 database.execSQL("DROP TABLE IF EXISTS " + TABLE_NAME);

 onCreate(database);

 }

 }

}

http://

382 Chapter 9

updating the database

Below is the complete code for the TimeTrackerDatabaseHelper. You should have

made all of the database changes needed to update the table to use the _id column (with

the underscore) instead of the id column (without an underscore).

package com.headfirstlabs.timetracker;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

public class TimeTrackerDatabaseHelper {

 private static final int DATABASE_VERSION = 2;

 private static final String DATABASE_NAME = "timetracker.db";

 private static final String TABLE_NAME = "timerecords";

 public static final String TIMETRACKER_COLUMN_ID = "id";

 public static final String TIMETRACKER_COLUMN_TIME = "time";

 public static final String TIMETRACKER_COLUMN_NOTES = "notes";

 private TimeTrackerOpenHelper openHelper;

 private SQLiteDatabase database;

 public TimeTrackerDatabaseHelper(Context context) {

 openHelper = new TimeTrackerOpenHelper(context);

 database = openHelper.getWritableDatabase();

 }

3;

= “_id”;

Change the “id”
column to “_id”

Update the version number.
This will cause your app to
call onUpgrade, which drops
and recreates the database.

These changes are subtle, but really important

http://

you are here 4 383

database persistence

 public void saveTimeRecord(String time, String notes) {

 ContentValues contentValues = new ContentValues();

 contentValues.put(TIMETRACKER_COLUMN_TIME, time);

 contentValues.put(TIMETRACKER_COLUMN_NOTES, notes);

 database.insert(TABLE_NAME, null, contentValues);

 }

 public Cursor getTimeRecordList() {

 return database.rawQuery("select * from " + TABLE_NAME, null);

 }

 private class TimeTrackerOpenHelper extends SQLiteOpenHelper {

 TimeTrackerOpenHelper(Context context) {

 super(context, DATABASE_NAME, null, DATABASE_VERSION);

 }

 public void onCreate(SQLiteDatabase database) {

 database.execSQL(

 "CREATE TABLE " + TABLE_NAME + "("

 + TIMETRACKER_COLUMN_ID + " INTEGER PRIMARY KEY, "

 + TIMETRACKER_COLUMN_TIME + " TEXT, "

 + TIMETRACKER_COLUMN_NOTES + " TEXT)"

);

 }

 public void onUpgrade(SQLiteDatabase database,

 int oldVersion, int newVersion) {

 database.execSQL("DROP TABLE IF EXISTS " + TABLE_NAME);

 onCreate(database);

 }

 }

}

You updated the database version which will drop
and recreate the database, destroying all of stored
data. If you found this on a production system with
real users and real data, this is when you would
override onUpgrade to migrate the information
from the old database format to the new one.

http://

384 Chapter 9

testing your fix

Now run the app again. Since you updated the database version

number, the database will be automatically wiped and recreated

by the database management code when you start the app.

The screen starts
out blank.

After all that, the
screen is blank! I thought
the time entered earlier
would be in the database
since it’s saved.

It was saved, but you just

cleared the database.

When you upgraded the database

version to “3” and reran the app,

onUpgrade was called which

dropped the timerecords table

and recreated it. This wiped out

any saved data you added while you

were testing.

Test Drive

http://

you are here 4 385

database persistence

The database is starting off empty because it was

just dropped and recreated. That shouldn’t effect

new database records though. Add a new time and

save it and you should see it in the list.

Enter a
new time

After you
save, you’ll see
it in the list.

But here’s the best part. From the list screen, press

the back button to exit the app and then relaunch

it. Your data is still there!

Your data
is persisted
after an exit
and relaunch.

Excellent work! Your app is
now storing and loading data
from a SQLite database.

http://

386 Chapter 67

happy customer

You rock! The app is exactly
what I wanted. Simple, easy to
use with no distractions, and
now it saves my times. Awesome!

Looks like another happy user!

Although there are more features you could

implement in this app, you’ll stop working

on it here. Try implementing new features

on your own, like editing and deleting time

records to really take the app to the next

level and make Donna even happier. But

remember, don’t add too many new features.

She liked her apps to stay simple.

Have fun on your run, Donna!

http://

you are here 4 387

database persistence

Now that times are saving in the database, you’re ready to move on. But if you’re still

thirsty for more, here are a few additional features and exercises you could work on to

start honing your Android database skills.

Go Off Piste

Implement onUpgrade
You upgraded the database in
this chapter without overriding
onUpgrade to handle the schema
change. Go back and modify the
detabase again, implementing a data
migration in onUpgrade.

Use query()
You queried the database using rawQuery(). But just like execSql, this is limited and error prone. Look into the database query() methods and implement a few more detailed queries against your database.

Implement delete and edit
Right now you have the ability to
create the database and add to it.
Try implementing methods on your
database helper to edit previously
entered time or delete them.

http://

388 Chapter 9

picking the important stuff

you are here 4 388

 � Create your own databases for your apps so

you can persist your app data.

 � Use SQLiteOpenHelper to simplify

database management.

 � Wrap your SQLiteOpenHelper in a

database helper class encapsulating your

database and limiting access to it.

 � Expose helper methods on the

databasehelper to manage database usage

throughout the app.

 � Abstract constants and reusable pieces of

your SQL statements to make your code

resilient.

 � Use Database helper methods for

inserting and querying rather than the raw

SQL methods when possible.

 � Always take a look at Android’s built in

components (like CursorAdapter).

They can save you a ton of work.

 � Use CursorAdapter to connect your

cursor to a list so you don’t have to write all

that Cursor management code.

 � Make sure and include an ”_id” column

in your databse if you plan to use

CursorAdapter.

 � Remember to update your database version

or delete the database if you make changes

to your database schema.

 � If you do update your database schama,

consider implementing onUpgrade to

migrate production data.

Cursor Iteration
• Query the Database and get a Cursor in

return

• Move to a specific row location in the

Cursor

• Retrieve typed data from a column

• Close the Cursor when you’re done

Using Cursor Adapter
• Create a class that extends
CursorAdapter

• Create a constructor that passes the
Context to super, as well as a cursor
• Override newView to inflate an XML
View (or create one programatically)
• Override bindView and populate the View
with data from the current cursor row

Your Android Toolbox

You just built your first app

with full persistent SQLite

database support. Use this

same process to add database

support to all your apps!

CH
AP

T
ER

 9

http://

this is a new chapter 389

relative layout10

It’s all relative

You’ve created a few screens now using LinearLayouts (and

even nested LinearLayouts)� But that will only get you so far. Some of the

screens you’ll need to build in your own apps will need to do things that you just cant’ do

with LinearLayout. But don’t worry! Android comes with other layouts that you can use. IN

this chapter, you’ll learn about another super powerful layout called RelativeLayout. This

allows you to layout Views on screen relative to each other (hence the name). It’s new

way to layout your Views, and as you’ll see in the chapter, a way to optimize your screen

layouts.

This guy is out of
control! Ain’t nobody
ever thought about
taming him just a bit?

http://

390 Chapter 10

meet sam and scott

Meet Taylor and Scott, two super tight
skateboarding pals

(And also dating. Well, this week anyway.)

Scott and I like to
skate together a lot. But
sometimes we like to split
up and skate at different
places around the city.

Sam

They worry about each other

when they skate apart

Skating can be dangerous. Crazy tricks,

broken boards, cops... all kinds of things can

happen! After chatting with Sam and Scott a

bit, they asked you to build an app they could

use to let each other know they are OK when

they are skating separately.

http://

relative layout

Woah! Now this looks dangerous...

you are here 4 391

http://

392 Chapter 10

design the app

App design notes

•	 Really simple interface! I want to
focus on skating, not the app.

•	 Just need one contact to
message.

•	 Need to clearly see which
contact I’ve got selected and
update it if I need to.

•	 Big button to send a text
message, right in the middle of
the screen so I can’t miss it!

Design the app
Like all good apps, building this app starts out with a

good solid design. After chatting with Sam and Scott,

you found out that they want a really specific app.

Here are the notes from meeting with them.

Keep it simple! I want one big
button that I can use to text
Taylor. No funny business or
cutsie UIs. But it does have to
look good if I’m going to use it.

Scott

http://

you are here 4 393

relative layout

Taylor
(555) 867 5309

I’m Cool!

Update contact

Your sketch
for the app.

Contact
information

Big button to
send the text
message.

Focus on the layout first
In this chapter, you’ll focus on the layout. You’ll learn

about a new layout called RelativeLayout that is

much more powerful then plain old LinearLayout.

Turn the page
to get started.

http://

394 Chapter 10

investigating layouts

Nested LinearLayout implementation
Based on the sketch, you could implement this layout using a

combination of nested LinearLayouts (layouts inside other

layouts are called nested layouts). But there’s going to be a lot

of nesting! And you’ll need to be really careful to get all of the

parameters right, like which LinearLayouts are veritcal,

which are horizontal, how to size components and all the good

stuff you’ve been doing withLinearLayouts... just a lot more

at once.

Here is one way you could implement this layout using nested

LinearLayouts.

I’m Cool!

Sam

(555) 867-5309

Update Contact

Root screen layout, a
vertical LinearLayout

Horizontal
LinearLayout for
the whole contact
display.

Vertical
LinearLayout for
the name, phone
and update button.

Horizontal
LinearLayout to
help center and
position the button.

http://

you are here 4 395

relative layout

There HAS to be a better way...

Lineat

Layout

Linear

Layout

Linear

Layout

Linear

Layout

Image

View

Name

Label

Phone

Label

I’m Cool

Button

This is getting complicated
That’s a lot of layouts! Before you start writing the code

for this layout, let’s take a look at the view hierarchy

with the layouts and their children on a tree.

Update

contact

button

The contact
avatar

The contact
layout
(horizontal)

Root vertical
linear layout

The left
side of the
contact
layout
(vertical)

The views on the
left side of the
contact display

The big “I’m Cool”
button to send
the message.

Layout used to
center and position
the “I’m Cool”
button

There are 4 layouts
for only 5 Views!

 Too many nested layouts kill really

slow down your app’s performance.

Not only is this nested layout structure
complicated to code, but it will also slow the
performance of your app. There are a number

of back and forth calls between your screens’ layout
managers and the Android layout management code,
and each of these calls take time. The more layouts you
have, the longer it takes to render your screens. For really
complex screens, this can make a HUGE difference!

http://

396 Chapter 10

a new layout

Meet relative layout
RelativeLayout is a layout that allows you to position

Views on the screen relative to each other. Where

LinearLayout positions all Views in a line - either

vertically or horizontally -RelativeLayout let’s you

express layout positions like “put this View below this other

View” or “put this view to the left another View”.

Add a view positioned in the parent

Making your own RelativeLayout starts

with an anchored view. This is a view that has

an anchor on the screen referencing something

about the parent view like the top left or right, the

bottom left or right, or the center of the screen.

Add (a bunch) of other views

You can add (and keep adding) views positioned

relative to any other view on the screen. This

positioning may be relative to an anchored view

(like View B positioned relative to the View A)

but it doesn’t have to be. You can also add more

anchored views, and then other views positioned

relative to that new anchor view too.

This component is
positioned on the
top of the screen
(the parent)

The screen
(the parent in
this case)

A

View ‘B’ is added
to the right of
view ‘A’

View ‘C’ is
under view ‘B’

View ‘D’ is to the
right of view ‘C’

A B

C D

http://

you are here 4 397

relative layout

Sound impossible? Turn the page to get started laying
out the screen with RelativeLayout and see for yourself!

Are you ready for a challenge?
The Android layout manager thinks you can layout the

entire screen using just one RelativeLayout. Do

you believe it?

RelativeLayout is super
powerful. You can layout this
whole screen with just this one
layout and no nesting. Seriously!

I’m Cool!

Contact name

Phone number

Update Contact

One RelativeLayout as
the root screen layout.

No inner
layouts!

http://

398 Chapter 10

anchor your first view

Choose your anchor point
The first step when you make a new RelativeLayout

is to position a View in the parent. This is a view that has

an anchor on the screen referencing something about the

parent view like the top, bottom, left, right or center of

the screen. From there you’ll position the rest of the Views

relative to the first anchored view.

For the layout, the first View that you’ll position in the

parent is the contact Name TextView. And it’s going to

be positioned to the top left hand corner.

Once this first View is positioned, you’ll be

able to layout the rest of the views around it.

Contact name

You’ll start by adding the
contact name TextView
anchored to the top left
of the screen.

http://

you are here 4 399

relative layout

<RelativeLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

<TextView

 android:id=”@+id/contact_name”

 android:text=”Sam”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 />

</RelativeLayout>

android:layout_alignParentTop=”true”

android:layout_alignParentLeft=”true”

android:layout_alignParentBottom=”true”

android:layout_alignParentRight=”true”

Anchored View Magnets
Below is the very beginnings of a RelativeLayout. The layout is

declared with a type of RelativeLayout and its width and height are set

to fill the screen. The TextView for the Contact Name is also added, but

not positioned. You’ll need to use the magnets with position parameters

below to position the View. Remember, it should be positioned to the top

left hand corner. Hint- you can use multiple positioning attributes together.

XML

main�xml

The RelatoveLayout declaration.

The Contact
Name TextView
declaration without
position attributes.

The positioning
attributes need to
go here.

This attribute positions
the view top the top
of the parent. This positions the View at

the top of the parent.
This positions the View to
the right side of the parent.

This positions the
view to the left
of the parent.

http://

400 Chapter 10

testing the layout

<RelativeLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

<TextView

 android:id=”@+id/contact_name”

 android:text=”Sam”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 />

</RelativeLayout>

Anchored View Magnets Solution
Below is the very beginnings of a RelativeLayout. The layout is declared

with a type of RelativeLayout and its width and height are set to fill

the screen. The TextView for the Contact Name is also added, but not

positioned. You should have used the magnets with position parameters

below to position the View. It should be positioned to the top left hand corner.

android:layout_alignParentTop=”true”

android:layout_alignParentLeft=”true”

XML

main�xml

This lays out the
View to the TOP
of the parent.

This lays out
the View to the
LEFT of the
parent.

These two attributes together position the

Contact Name View at the top left of the screen.

http://

you are here 4 401

relative layout

<TextView

 android:id="@+id/anchored_button"

 android:text="Sam"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_alignParentLeft="true"

 android:layout_marginLeft="20dp"

 android:layout_marginTop="20dp"

 android:textSize="20dp"

 />

Now that the first View is positioned, run the app and let’s make

sure the View is positioned correctly.

The View is
positioned on
the top left..

It’s close, but you can make it even better. The View is in fact

positioned on the top left, but it needs some space so it’s not pinned

to the edges. The font also needs to be a bit larger. Let’s make those

updates to the layout before moving on.

Now it’s time to layout some more Views!

Polishing the layout with some

margins and text sizing.

Test Drive

Now there’s a little
bit of space.

http://

402 Chapter 10

add another view

Contact name

Phone number

Positioning views relative to on screen views

android:layout_above

android:layout_below

android:layout_toLeftOf

android:layout_toRightOf

The Contact Name View is looking great! Now

it’s time to add another View. The next view to

add is the Phone Number view. You’ll position it

under the Contact Name view.

Attributes for relative positioning
to other Views

There are different layout positioning attributes

for laying out Views relative to parents and

relative to other Views on the screen. The

Contact Name view is positioned relative to the

parent, but the Phone Number View is going

to be positioned relative to the Contact Name

view (another view on the screen).

android:layout_below = “@+id/contact_name“

Here you supply the View you want
to position this View relative to.

Position to the left of
another component..

Position above...

Position below...

Position to
the right...

Next, you’re going to

position the phone

number TextView

under the Contact

Name TextView.

Using these attributes

You add these attributes to View declarations in

the layout XML just like the other positioning

attributes. The difference is that instead of

using a value of true, you pass in the ID of the

view you want to position your view relative to.

This attribute is added to
the View you’re positioning.

http://

you are here 4 403

relative layout

<TextView android:id=”@+id/contact_phone”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:marginTop=”5dp”

 android:textSize=”10dp”

 android:text=”111-222-3333”

 android:layout_below=”@+id/contact_name”

 />

XML

main�xml

Add the phone number view
This snippet shows the Phone Number TextView in the

layout positioned using the android:layout_below

attribute to be underneath the Contact Name TextView.

Now that the Phone Number view is positioned, run the app and make sure it’s in the right place.

Setting a smaller font...

The phone number
view is positioned
under the contact
name view, but all
the way to the
left of the screen.

How come the phone number field is all the way on the left?

... and so vertically close to the Contact Name view?

Add some vertical space.

Test Drive

http://

404 Chapter 10

aligning your views

android:layout_alignLeft

android:layout_alignBottom

Align your views
You positioned the phone number TextView

under the Contact Name TextView using the

android:layout_below attribute. But why is it

showing up all the way to the left?

In this case, positioning the phone number field

below the Contact Name field controls the vertical

position, but not the horizontal position. And since

the horizontal position is not controlled it’s defaulting

to the left side.

You can use alignment properties to fine tune the position

When positioning isn’t enough, you can use the layout

alignment properties to position a View. There are

attribute for aligning to the left, top, right, bottom,

and baseline of another View. Align to the left
of another view.

Align to the
bottom

android:layout_alignTop

android:layout_alignRight

android:layout_alignBaseline

Align to the top

Align to the
baseline.

Align to the right.

Just like the android:layout_below attribute,

pass the ID of the View you want to align to.

android:layout_alignLeft = “@+id/contact_name“

Align to the left... ... of the contact_name view.

http://

you are here 4 405

relative layout

Here’s the complete layout so far

<?xml version=”1.0” encoding=”utf-8”?>

<RelativeLayout

 xmlns:android=”http://schemas.android.com/apk/res/android”

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”>

<TextView android:id=”@+id/contact_name”

 android:text=”Sam”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_alignParentTop=”true”

 android:layout_alignParentLeft=”true”

 android:layout_marginLeft=”20dp”

 android:layout_marginTop=”20dp”

 android:textSize=”20dp”

 />

<TextView android:id=”@+id/contact_phone”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:textSize=”10dp”

 android:text=”111-222-3333”

 android:layout_below=”@+id/contact_name”

 android:layout_alignLeft=”@+id/contact_name”

 android:layout_marginTop=”5dp”

 />

</RelativeLayout>

XML

main�xml

RelativeLayout
declaration.

Contact name
TextView positioned
to the top left side
of the screen

The contact phone number
TextView declaration. Right
under the contact name
TextView and aligned to the
left to match the contact
name horizontal position.

The attribute aligning this
TextView to match the
horizontal position of the
contact name TextView.

Adding bits and pieces at a time can make it hard to see the big

picture. Take a minute and look at your complete layout so far.

http://

406 Chapter 10

adding more views

Now that you have both the contact name and phone number Views positioned in the layout, check and make sure

your positioning worked correctly. But this time, instead of launching the app, just click on the Graphical Layout

tab. Not only will you be able to see if your layout worked, but you can see graphical layout position and alignment

indicators if you click on a View on the screen.

Layout position
and alignment
parameters.

The phone number view is
now positioned correctly.

The phone number
view is selected.

This line indicates that the phone number view is

aligned to the left of the contact name view.

Test Drive

http://

you are here 4 407

relative layout

I’m OK!

Contact name

Phone number

Update Contact

Add the Update Contact button

Below is the declaration of the update contact button. Position

the Button below the phone number View and aligning to the

left of the Contact Name View. Give it 10dp of vertical margin.

<Button android:id="@+id/update_contact_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Update Contact"

/>

You’ve already positioned two Views

on the screen and just three to go!

With the Contact Name View and the

Phone Number View added, it’s time

to add the Update Contact Button.

Next up, the update
contact button...

http://

408 Chapter 10

testing the alignments

Below is the declaration of the update contact button. You

should have positioned the Button below the phone number

View and aligned it to the left of the Contact Name View. Give it

10dp of vertical margin.

<Button android:id="@+id/update_contact"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Update Contact"

/>

android:layout_below="@+id/contact_phone"

android:layout_alignLeft="@+id/contact_name"

android:layout_marginTop="10dp"

Q: Why is the button aligned to the left of the contact name

view and not the contact phone view?

A: Either one would work. The reason is that the contact phone

view i aligned to the left of the contact name view. So setting the

button to align to the left of either the contact name or contact

phone would both work. Sometimes it’s better to have a single

alignment view that is referenced by multiple views and other times

is better to have the layout positioning and alignment refer to the

save view. It’s really up to you how you want to organize your

layouts.

Q: What if I want to position a View relative to another View

on the screen, but align with the parent? Can I mix and match

like that?

A: You sure can! Say you wanted to position the button below

the phone number view but align it on the right side of the screen.

You could use the layoutBelow attribute to position the button

below, but use the layout_alignParentRight attribute

to align it to the right side of the screen. Pretty slick!

Margin top is
vertical space.

http://

you are here 4 409

relative layout

Contact name

Phone number

Update Contact

It’s a good idea to test your layouts early and often, especially when you’re working with RelativeLayout! This way,

you don’t go too far down a path if a View isn’t positioned correctly.

This is looking great!

Next up... Adding
the contact portrait.

Test Drive

The button is added to
the view, and positioned
to the left matching both
the Contact name and
phone number View.

http://

410 Chapter 10

adding more views

Getting ready to add the contact portrait
Your ready to add the portrait ImageView to the

screen. This ImageView is going to diaplay the avatar

associated with the contact. You’re going need an image

to use to position it and make sure it looks OK.

For now. just set the background to an RGB color and

give it a size in DPs. This way, you can layout the view

on the screen and make sure it’s positioned correctly.

Adjust the ImageView attributes below. Align it to the top

of the Contact Name TextView and to the right hand side

of the screen. Also, add 20dp margin on the right to give the

ImageView a border between it and the right edge of the

screen.

<ImageView android:id=”@+id/contact_portrait”

 android:layout_width=”50dp”

 android:layout_height=”50dp”

 android:background=”#aaa”

 android:adjustViewBounds=”true”

/>

Set the background to a
light gray so you can easily
see it to position it.

android:adjustViewBounds
is set to true so the
image will adjust as needed.

http://

you are here 4 411

relative layout

Tonight’s talk: Is Relative Layout The New GridBagLayout?

RelativeLayout:

Shudder. I can’t believe I’m here with GridBagLayout.

For everyone out in the audience, GridBagLayout was

the magical layout in Java’s Swing desktop UI Toolkit

that was supposed to be able to layout your whole

screen in one layout.

Sure, except that you are impossible to use! You have

made countless developers cry. Seriously!

Exactly! See, I have no grid. You just position a

component somewhere on the screen and position

other components around it. Simple!

I’m sorry! I didn’t mean to offend you. I just wanted

to point out that although we both can layout very

complex sets of components we do so very differently.

I use relative positioning to create very complex

layouts...

Exactly. But I’m just saying I’m waaaaaay easier to

work with than you are.

Ha! There you have it. I’m easier to use!

Yes. Yes, I am.

GridBagLayout:

Talk about getting off on the wrong foot! What’s

wrong with being here with me?

Yup. That sounds about accurate.

Now wait a minute, that’s just unfair! It’s true I have

a rather complex grid structure that my developers

have to learn, then place each component in the

right position in the grid...

You know, I don’t have to sit here and take this kind

of badgering from you!

Right, and I use a grid.

OK, sure. I do require a person willing to devote

effort learning and working with me.

OK, you are easier to use. Are you happy now?

http://

412 Chapter 10

adding another button

<ImageView android:id=”@+id/portrait”

 android:layout_width=”50dp”

 android:layout_height=”50dp”

 android:background=”#aaa”

 android:adjustViewBounds=”true”

/>

android:layout_alignParentRight=”true”

android:layout_alignTop=”@+id/contact_name”

android:layout_marginRight=”20dp”

You should have adjust the ImageView attributes below,

aligning it to the top of the Contact Name TextView and to the

right hand side of the screen. You should have also added a 20dp

margin on the right to give the ImageView a border between it

and the right edge of the screen.

The ImageView for the
portrait is aligned with
the top of the Contact
Name TextView and to the right of the screen.

The right and left
margins match

Give a little
space on
the right.

Align the view to
the top right of
the screen.

http://

you are here 4 413

relative layout

Time to add the “I’m Cool” button
OK, you’ve only got one more View to add to the

screen... the big I’m Cool Button.

This is looking
awesome! Scott and I
can’t wait to use it.

I’m Cool!

Contact name

Phone number

Update Contact

How would you position the I’m Cool button?

What component would you align it with?

How are you going to position it?

http://

414 Chapter 10

detailed positioning

Positioning the “I’m Cool” button
Did you think about how you could position the

I’m Cool button? What did you come up with? One

option you may have come up with is adding the

button under the Update Contact and giving a little

margin to the left.

Center the button
horizontally.

Position it
underthe update
contact button.

Contact name

Phone number

Update Contact

I’m Cool!

<Button android:id=”@+id/im_cool”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”I’m Cool!”

 android:layout_centerHorizontal=”true”

 android:layout_below=”@+id/update_contact”

 />

XML

main�xml

http://

you are here 4 415

relative layout

The truth is, new Android deveices are coming out all

the time with different screen sizes. Your best bet is

think ahead and try and plan for as many screen sizes

as possible. If you position the I’m Cool button some

distance below the Update contact button, it may look

good on some screens that your testing on. But with if

the screen is really long? It’ll be pinned to the top!

So what can I do?

There is another useful positioning element you can

use to center the view in the parent- both vertically and

horizontally. If you use that positioned element for the

I’m Cool button, it would look ok on the smaller screen

on the left AND the long screen on the right!

Always think about resizing

Not vertically
centered. Too
high up on this
long screen.

You’re done! Now let’s take a look at the completed layout.

Contact name

Phone number

Update Contact

I’m Cool!

<Button android:id=”@+id/im_cool”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”I’m Cool!”

 android:android:layout_centerInParent=”true”

 />

XML

main�xmlCenter this View vertically and
horizontally in the parent.

http://

416 Chapter 10

layout comparison

All of the Views are laid out on the screen and (hopefully)

positioned properly. Run the app in the emulator and make

sure everything is where you expect it.

Portrait up on
the top right of
the screen.

Contact name,
number and update
button all left
aligned and the
top of the screen.

One button right
in the middle of
the screen to send
a message to the
contact.

Test Drive

It looks Great!

 You may have noticed the I’m Cool butt is a little small.

The button is a little small now, you’ll be fixing that in Chapter 12.

There, you’ll learn some advanced graphics techniques and make

this button a large graphic.

http://

you are here 4 417

relative layout

Comparing the layouts
With the screen layout all finished using

RelativeLayout, let’s go back and compare

the tree of the nested LinearLayouts with

the new and improved RelativeLayout.

Not only is everything laid out correctly...

but it’s all done with one layout.

Linear

Layout

Linear

Layout

Linear

Layout

Linear

Layout

Image

View

Name

Label

Phone

Label

I’m Cool

Button

Update

Contact

Button

Relative

Layout

Name

Label

Phone

Label

Update

Contact

Button

Image

View

I’m Cool

View

Relative

Layout

Replacing the root LinearLayout
with a RelativeLayout...

These innearLayouts
were all removed.

Now you have
just one layout
for the whole
screen!

Before After

http://

418 Chapter 10

You’re quickly becoming a RealativeLayout master by the end of this chapter. If you’re

ready for more, here are a few pointers to more information on RealativeLayout and

other cool layouts.

Go Off Piste

RelativeLayout docs
Go to http://developer.android.

com/reference/android/widget/

RelativeLayout.html for detailed

RelativeLayout documentation.

Other layouts
RelativeLayout isn’t the only
layout manager on the block. Go
to http://developer.android.com/
guide/topics/ui/layout-objects.
html for a quick look at other
layouts not covered here, including
FrameLayout and TableLayout.

Write your own layout
Layouts are not magical bits of code
passed down in the SDK, and if you’re
doing something special you can write
your own! Check out the documentation
for the ViewGroup abstract class
(http://developer.android.com/
reference/android/view/ViewGroup.
html) for information on writing your
own layouts.

http://

relative layout

 � Too many nested LinearLayout can slow

down your application performance.

 � Use RelativeLayout to optimize deeply

nested LinearLayouts.

 � Align views to the parent positions

using alignParentBotton,

alignParentTop,

alignParentRight, and

alignParentLeft.

 � Layout Views relative to other on screen

views using layout_above,

layout_below, layout_

toRightOf, and layout_

toLeftOf.

 � Align Views relative to other on screen

views using layout_alignTop,

layout_alignRight,

layout_aligntLeft, layout_

aligntBaseline, and layout_

alignBottom.

RelativeLayout process
1. Add an anchored view aligned with

the parent

2. Add more views relative to the others

views added

3. Add more anchored views and views

relative to other views as neeeded

4. Rinse and repeat!

Your Android Toolbox

You just laid out your first screen

with RelativeLayout. Let’s take a

look at what you’ve learned.

CHAPT
ER 10

http://

http://

this is a new chapter 421

content providers11

Working with device contacts

One of the greatest things about Android is how well

applications can work together� So far, you’ve built an apps that access

content on the Web (like the NASA Daily Image app) and apps that generate their own

content (like the TimeTracker app). But sometimes you need to access your users content

on their device to make the app fit seamlessly into their user experience. Luckily, Android

makes that super easy for you! In this chapter, you’ll learn how to select contacts using

contact selection built into the OS. You’ll also learn how to query contacts stored on the

device and a few different details about them.

Hellllllllooooooooo!
If they can’t see my
message now... well,
I just give up!

http://

422 Chapter 11

something is missing

The app is looking good, but now
I want it to be able to use it! Sam
and I are heading out for a little
bit. Check back with you later.

Your app has a big problem at the moment...

He’s got a point, you know.

You just finished laying out all of the views,

but that still won’t allow Sam or Scott to send

messages to each other. Let’s get the guts

of the app built out and get Sam and Scott

messaging each by the time they get back.

... it doesn’t actually work

Yet!

http://

you are here 4 423

content providers

Updated to display
selected contact.

Select a
contact

Click!

Autogenerated
text message.

Sent to selected
Sam’s phone

Here’s what you’re going to do

Sam

Sure, you have some work to do. The app doesn’t have the

functionality you need yet, but you laid the groundwork

with the layout you built in the last chapter. Here is what

you’re going to do in this chapter to make the app work.

Select a contact
Pressing the update contact button

should show a screen allowing your

users to select a contact from the

phone. This way, your users won’t

have to enter contact information

multiple times.

1

Update the display
After the contact is selected, the

contact display (the contact name,

phone number and photo) should

update to display the selected

contact’s information.

2

Send a text message
This is the real user goal of the

application. Once the contact is

selected, your users should be able

to press one button and have a text

message automatically sent to their

selected contact.

3

Alex

Ben

Sam

Tom

http://

424 Chapter 11

making the contact clear

public class ImCool extends Activity {

 public void onCreate(Bundle savedInstance) {

 super.onCreate(savedInstance);

 setContentView(R.layout.main);

 renderContact();

 }

 private void renderContact() {

 TextView contactNameView =

 (TextView) findViewById(R.id.contact_name);

 TextView contactPhoneView =

 (TextView) findViewById(R.id.contact_phone);

 ImageView photoView =

 (ImageView)findViewById(R.id.contact_photo);

 contactNameView.setText("Select a contact");

 contactPhoneView.setText("");

 photoView.setImageBitmap(null);

 }

}

Make it clear that no contact is selected

ImCool�java

When you first launch the app, no contact is selected. In

the last chapter, you designed and constructed the user

interface with some temporary contact information. But

now that you’re making the app work, start by making it

clear that no contact is selected when it launches.

Start by adding a new method called renderContact

and call it from onCreate. Right now this method will

just display a message to select a contact. Later, it will

display the contact you’ve selected.

Get references
to the contact
display views.

Display a message in
the name view and
blank out the rest.

Add a renderContact() method

called from onCreate(). Right now

this is just showing the “no contact”

message but eventually this will

display the contact iif there is o
ne.

http://

you are here 4 425

content providers

Now let’s get started selecting a contact...

Run the app now and verify that the “Select a contact” text appears in the contact name View.

Test Drive

Here is the “Select a
contact” text displaying in

the displayName field.

The render contact
change looks good!

http://

426 Chapter 11

selecting a contact

How do I select a contact?
You’re ready to select a contact now. You could have

them enter their contact’s name and phone number

and select a picture to make the app work. But they’ve
already entered that information into their phone,
in their contact list. So just let your users select a contact

from their contact list and you’ll save them a lot of boring

data entry, and leave your app focused on the cool stuff.

But how should you build a contact list selecting screen?

This seems complicated!

Could there be something easier?

Click!

You could build a screen that loads and
displays contacts stored on the phone...

Get the stored ontacts
on the device.

Build this screen to display

the contacts and allow a

user to select one.

Return the user back to the
main screen after selection.

Here is what the flow would look like if you built your own contact

screen. When you press update contact, you’d go to your new

screen and back to the main screen after you selected a contact.

Alex

Ben

Sam

Tom

http://

you are here 4 427

content providers

Wouldn't it be dreamy if I could just
show the native dialog allowing users
to select contacts on the phone the
same way they make calls. But I know
it's just a fantasy…

http://

428 Chapter 11

native contact selection

Don’t custom build...
Android already has behavior built in to select contacts.

This is used to select contacts for phone calls and other

native apps. But it can also be used by apps like yours

so you don’t have top build it yourself.

Click!

... use the native contact select screen

The native contact
selection screen?

Pressing update contact launches
the native contact election screen.

After selecting a contact, the user

it taken back to the main screen.

Q: Why is it better to use the native contact selection?

A: First of all you don’t have to build it! But more importantly,

it guarantees your users experience is the same as the native

experience. If there is a modified version of the contact selection on

your users’ devices, they’ll see whatever is native when you invoke

the selection request. Also, if the native contact selection changes

over time, you’ll get whatever the latest behavior is automatically. If

you built it yourself, it might look different than what your users are

expecting.

Q: OK, I get that. But what if I really want to make a custom

replacement for native behavior in my app?

A: You could do that too. You could query the contact store

directly and build a custom screen or component displaying the

content and allowing your users to select contacts that way. But this

chapter is going to focus on using the native selection.

Using the native contact selection screen will keep the

same flow, but you won’t have to build it yourself.

Click!

http://

you are here 4 429

content providers

Invoking the contact screen
OK, so it looks like the built in contact selection is the

way to go. But how do you invoke it from the app?

You can use Intents

Intents are a generic mechanism for invoking an action

that the system can respond to. When you built the

screen navigation in the TimeTracker app, you specified

the Activity you wanted to invoke in the Intent. When

the Android action code processed that Intent, it saw the

reference to the Activity and invoked it directly.

You don’t actually have to include a reference to an

Activity in an Intent. You can also supply a Uri or a

combination of Uri and an Action. And if you invoke the

Intent, the Android action code looks for an Activity that

responds to that Uri and invokes it.

But you can be WAY more abstract than that.

Activity: MyActivity

Uri: Contacts

Action: Pick

MyActivity

Contact

Selection

Specify the
actual Activity.

The action code
processes the intent... And starts

MyActivity.

Specify the Uri
and Action.

The action code
processes the intent...

And starts the
contact selection.

http://

430 Chapter 11

creating the intent

Select the URL and Action

http://developer.android.com/reference/android/content/Intent.html

You can find extensive documentation for the Uris

and Actions you can pass into an Intent in the Intent’s

online documentation. Go to http://developer.

android.com/reference/android/content/

Intent.html to take a closer look.

Using this action, you

can dial a contact.
Using this action, you can view a list of all contacts in the contact list.

http://

you are here 4 431

content providers

Creating an Intent

The action that the
activity will invoke.

The uri defining
the data for
the action.

Intent(String action, Uri uri);

You need to create an Intent to select a contact from the contact

list. You can create this Intent using the constructor that takes an

Action and Uri.

The Uri is a reference to data on the device, while the Action says

what to do with the data. So you’ll pass in the Intent.ACTION_

PICK constant. But what about the Uri?

Uris are actually human readable descriptions of where to find the

data. The Uri to find all of the contacts in the phone’s contact list is

content://com.android.contacts/contacts.

But to make the types work with the constructor, you need to convert

the string in a Uri object which you can do using Uri.parse.

Uri contactUri = Uri.parse(

 “content://com.android.contacts/contacts”

);

Hrm. You have a constant
for the action but not the
Uri. You sure there’s not a
constant for that too?

Is it a good idea to use a

String to create the Uri or is

there a constant you can use.

Let’s take a look...

http://

432 Chapter 11

using constants

Use constants when you can
The Uri created by parsing the string will work, but raw

strings are just a hassle to keep in your codebase. The

format could change in the future or you could just have

a typo in your code that the compiler wouldn’t catch.

Always best to use constants if you can. And there is just

such a constant you can use.

Take a look at ContactsContract.Contacts

Get ready to invoke the new Intent

You could launch the new Activity by calling

startActivity,. But in this case, you want to have

the selected contact returned after the contact selection

is complete. That’s OK though, you can just use

startActivityForResult just like when you built

your own screens.

http://developer.android.com/reference/android/provider/ContactsContract.Contacts.html

http://

you are here 4 433

content providers

private static final int PICK_CONTACT_REQUEST = 0;

public void onUpdateContact(View view) {

 startActivityForResult(

 PICK_CONTACT_REQUEST

);

}

protected void onActivityResult(int requestCode, int resultCode, Intent intent) {

 if (requestCode == PICK_CONTACT_REQUEST) {

 if (resultCode == RESULT_OK) {

 }

 }

}

Contact Selection Intent Magnets
Below is the code for onUpdateContact and onActivityResult. Complete

startActivityForResult by creating an Intent and passing in the Action and Uri.

In onActivityResult, print the returned Intent to the Log to see what comes back.

ContactsContract.Contacts.CONTENT_URIIntent.ACTION_PICK

Log.d(“Selection
”, intent.toStri

ng());

new Intent (
);

,

ImCool�java

Add a constant for a request type
passed to startActivityForResult and
verified on return on onActivityResult.

Create the intent
here with the
action and the Uri.

Print a message printing out
the returned intent to the log.

Your magnets.

http://

434 Chapter 11

invoke the intent

public void onUpdateContact(View view) {

 startActivityForResult(

 PICK_CONTACT_REQUEST

);

}

protected void onActivityResult(int requestCode, int resultCode, Intent intent) {

 if (requestCode == PICK_CONTACT_REQUEST) {

 if (resultCode == RESULT_OK) {

 }

 }

}

private static final int PICK_CONTACT_REQUEST = 0;

Contact Selection Intent Magnets Solution
Below is the code for onUpdateContact and onActivityResult. You

should have completed startActivityForResult by creating an Intent

and passing in the Action and Uri. In onActivityResult, you should have

printed the returned Intent to the Log to see what comes back.

ContactsContract.Contacts.CONTENT_URIIntent.ACTION_PICK

Log.d(“Selection”, intent.toString());

new Intent (

);

,

ImCool�java

Instantiate a
new Intent.

Pass in the action
to pick a contact.

Pass in the Uri
for all contacts.

Print the intent to
the log so you can see
what’s passed back.

http://

you are here 4 435

content providers

Now add the READ_CONTACTS permission to your

AndroidManifest.xml file. Without it, you’ll get an

error when you try and access the contacts in your app. After

all, a users contacts are sensitive information so you need to

ask and they need to give you permission. This should also
clue you in to being really sensitive to what you do
with that access.

 </application>

 <uses-sdk android:minSdkVersion="10" android:targetSdkVersion="10" />

 <uses-permission android:name="android.permission.READ_CONTACTS"/>

</manifest> Permission to access the
contacts stored on the device.

XML

AndroidManifest�xml

<Button android:id="@+id/update_contact"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Update Contact"

 android:layout_below="@+id/contact_phone"

 android:layout_alignLeft="@+id/contact_name"

 android:layout_marginTop="10dp"

 android:onClick="onUpdateContact"

 /> Add an onClick property pointing to the
onUpdateContact method you just wrote.

Getting ready to test contact selection
The contact selection code is all ready to go, but there are

a couple of things to update in your project before you

run it. First you need to add the onClick property to

the Update Contact button on the screen to invoke the

onUpdateContact method.

XML

main�xml

http://

436 Chapter 11

testing contact selection

Click!

Now that the Intent is created and being started, you should see the contact lost display when you press the Update

Contact button. Go ahead and run the app and check to make sure it’s working.

Wait a second! It looks like the
contacts page is displaying but
there are no contacts. Did you
tell us to build the wrong stuff?

You don’t have any contacts in your setup in the emulator.

The reason you’re seeing this screen is because the app is running in an emulator

that doesn’t have any contacts configured. You have a few options here. You

could create the contacts on the phone, but we also want to test images and

images are hard to test on the phone. And you’ll want to test the text message

sending anyway which you can’t do from the emulator.

Whoah! How come
there aren’t any
contacts?

Test Drive

http://

you are here 4 437

content providers

Excellent, there are some contacts!

Sometimes it’s best
to test your app on
a hardware device.

And when you select one, you’re taken back to the

home screen of your app.

Run the app on a device
Plug in your Android device using USB and remember to turn on the

option to allow non-market apps. Then just run the app again from

Eclipse and select your hardware device.

Now that you’re running the app on your device, when you go to the

Contact Selection screen, you should see a populated list of contacts.

Click on a contact and you’ll be taken back to the home screen.

Click!

Click!

http://

438 Chapter 11

next steps

Looking good so far. I like that selecting
a contact looks like my other apps. Now
you’re going to display the details, right?
This way, I’ll know I’ve selected Scott so I
know I’m texting the right person. .

Definitely! Displaying the sected

contact is next on the list.

Now that the contact is being selected, it’s time

to display that contact on the home screen. To

get this working, you’ll need to get a reference

to the contact that was selected, retrieve the

display name, phone number and photo for

that contact and display it on the screen.

http://

you are here 4 439

content providers

Sam

Display

Name

Phone

Number

PhotoSelected
Contact

Retreived fields
from that contact. Display those fields

on the screen.

08-10 15:44:52.131: DEBUG/Intent Data(355): content://com.android.contacts/contacts/
lookup/0r1-512D45/1

Start by looking at what’s coming back
You’re already getting the contact back to the ImCool

Activity in onActivityResult. You also put a log

statement in there to see what the returned Intent

contains for its data. Take a quick look at the log and

see what came back. You should see one line that looks

something like this: This string starting
with “content://” is the

data returned from the

contact selection.
LogCat logging
printout

Displaying the contact information

http://

440 Chapter 11

contact URIs

content://com.android.contacts/contacts/lookup/0r1-512D45/1

What is that string referencing?

The Uri portion
pointing to contacts

Lookup Key for the
selected contact.

Action to perform
on the contacts.

Last known position
for selected contact (a
search optimization).

If you’re thinking that the string printing out in the

logs looks kind of like some kind of a local web address,

you’re not too far off. It’s actually a URI, or Uniform
Resource Identifier which is a string that locates a

specific resource. The different between the URI here

and a web URL is that the URI here is an address for a

local resource. In this case, the URI is a reference to the

selected contact

OK, so this points to a
contact. But I don’t want a
reference to the contact, I
want the actual contact!

You can look up the contact using the URI

This Uri doesn’t contain the real contact (which you need

to get the name, phone number and photo to display on

the home screen. But it does represent a direct lookup
to that contact.

http://

you are here 4 441

content providers

Accessing the contact
There is a contact data store built into every Android

device. You can query the contact data store for specific

contact information, like determining which contact

has an associated phone number for building caller ID

functionality, or in our case, just finding more properties

for a contact that you already know about.

There is a utility class called ContentResolver that

you can use to query the contacts. Using this Uri and

a query to the ContentResolver , you can get to

the raw contact! Then using what you learned when you

iterated through database results, you’ll iterate through

the contact result Cursor it returns.

The contact store.

Your app
needs to
query contact
information.

1

A query is sent to
the ContentResolver.

2

The ContentResolver
processes the query
and returns a result
cursor from the
contact store on
the device.

3

The query returns
a Cursor, just
like the Cursor
returned when you
query a database.

4

http://

442 Chapter 11

using the uri

Update the code to use a URI
The renderContact method is currently hard coded

to display the no contact selected state. But you’re

about to start populating the selected contact, so let’s

make it clear when there is and when there is not a

selected contact. Then you can start filling in the code

when a contact is selected.

Update the renderContact method to pass in the Uri.

If the Uri is null (meaning no contact is selected) then set

the name, phone, and photo view to display the no contact

selected state you setup at the beginning of the chapter.

Also update the onCreate to call renderContact

with a null Uri (since no Uri is selected) and from

onActivityResult pass in the Uri.

Update renderContact to take

a Uri. If that Uri is null, display

the no contact selected state with

the message to select a contact. Also

update onCreate to pass in a null

Uri and onActivityResult to

pass in the Uri from the Intent.

private void renderContact(Uri uri) {

 TextView contactNameView = (TextView) findViewById(R.id.contact_name);

 TextView contactPhoneView = (TextView) findViewById(R.id.contact_phone);

 ImageView contactPhotoView = (ImageView)findViewById(R.id.contact_photo);

 if (uri == null) {

 contactNameView.setText(“Select a contact”);

 contactPhoneView.setText(“”);

 contactPhotoView.setImageBitmap(null);

 } else {

 contactNameView.setText(getDisplayName(uri));

 contactPhoneView.setText(getMobileNumber(uri));

 contactPhotoView.setImageBitmap(getPhoto(uri));

 }

}

ImCool�java

Pass in the URI

Check for a null URI. If null,
there must be no contact.

Create helper methods for

each data field you want

to set on the screen.

Do this!

http://

you are here 4 443

content providers

private String getDisplayName(Uri uri) { return null }

private String getMobilePhone(Uri uri) { return null }

private String getPhoto(Uri uri) { return null }

public void onCreate(Bundle savedInstance) {

 super.onCreate(savedInstance);

 setContentView(R.layout.main);

 renderContact(null);

}

protected void onActivityResult(int requestCode, int resultCode, Intent intent) {

 if (requestCode == PICK_CONTACT_REQUEST) {

 if (resultCode == RESULT_OK) {

 renderContact(intent.getData());

 }

 }

}

Pass in a null Uri onCreate since
no contact has been selected yet

Pass the Uri (the data from the
intent) on to renderContact.

private String getDisplayName(Uri uri) { return null; }

private String getMobileNumber(Uri uri) { return null; }

private String getPhoto(Uri uri) { return null; }

Then pass in a null URI in onCreate (since there is no contact selected yet)

And in onActivityResult, pass the URI to renderContact.

Finally, create stub methods for the three display methods. You’ll be

implementing these yourself !

This method will return the
display name for the contact.

This will return the MOBILE
number for the contact.

This last method will return
the photo for the contact.

Stub method for
retreiving the display
values for a contact.

http://

444 Chapter 11

querying contact information

Start with the display name

private String getDisplayName(Uri uri) { return null; }

private String getMobileNumber(Uri uri) { return null; }

private String getPhoto(Uri uri) { return null; }

ImCool�java

With that bit of code reorganization, you now have

three contact detail methods to implement and the

contact display will be up and running. Let’s start with

getDisplayName.

The three contact detail
access methods you’re going
to implement.

Start with implementing
getDisplayName.

This method needs to retrieve the name of the contact.

The display name is the name that displayed in the list

of contacts that you selected. Scott selected Sam from

his contact list, so this method should return “Sam” to

display it on the home screen. This way Scott will know

Sam is the selected contact that the app knows about.

To get this to work, you’ll need to query the contact

store and access the appropriate value in the Cursor.

So, let’s get started!

So what does this method need to do?

Since Scott selected
“Sam” from the contact
list, getDisplayName
should return Sam from
the retrieved contact as
positive reinforcement.

http://

you are here 4 445

content providers

Query the contacts
Think of the contact store like a database. In fact think

of the device having a big database with all of the

content you can access on the phone and the contacts

are inside there. You need a way to query that database

though, and that’s done with the ContentResolver.

You can retrieve the ContentResolver

from your Activity using the Activity

getContentResolver method.

Cursor cur = getContentResolver().query(

 intent.getData,

 null, null, null, null

);

ContentResolver contentResolver =

 getContentResolver();

Then you can query the content provider passing in the

Uri returned from the Contact selection screen.

The ContentResolver query return a Cusor, just

like the cursor returned when you query a database.

Using the getContentResolver
method to retrieve the
default ContentResolver.

The query returns a cursor
just like a database query.

Query the
ContentResolver.

Pass in the data
from the intent.

Now let’s see what content is in the Cursor.

http://

446 Chapter 11

iterating a contact cursor

Cursor contents
Just like the Cursor database queries return, this Cursor

is made up of a number of rows and columns. No

columns were specified in this query so all the columns

came back. This is resource intensive and you’ll want to

fix this. But for now, let’s get the iteration working and

then once you know the columns you need, you can

query just for those.

How do you figure out what columns are coming back?
There are a few ways you could figure this out- you

could write some code to print out the data or use the

debugger. But before you do any of that, take a look

at the documentation for ContactsContract.

Contact. This class has a number of constants for

the columns returned from the query, including one for

DISPLAY_NAME which is what you’ll need to display

in the contact name field.

http://developer.android.com/reference/android/provider/ContactsContract.Contacts.html

The DISPLAY_
NAME constant.

http://

you are here 4 447

content providers

private String getDisplayName(Uri uri) {

 String displayName = null;

 return displayName;

}

Put your code in here to
query the contacts using
the Uri, iterate the cursor,
and set the value for the
display name on the screen.

Below is the updated renderContact method being passed in a Uri. If the

Uri is not null, write the code to retrieve and set the display name on screen.

To do this, you’ll need to query the ContentResolver using the Uri

passed in to renderContact. Then iterate through the cursor and retrieve

the display name using constants. Remember, the ContactsContract.

Contact.DISPLAY_NAME is a String. So retrieve the column index using

the constant and retrieve the value. Also remember to use safe Cursor

iteration and to close the Cursor when you’re done.

http://

448 Chapter 11

showing the display name

private String getDisplayName(Uri uri) {

 String displayName = null;

 return displayName;

}

Below is the updated renderContact method being passed in a Uri.

If the Uri is not null, write the code to retrieve and set the display name

on screen. To do this, you’ll need to query the ContentResolver

using the Uri passed in to renderContact. Then iterate through the

cursor and retrieve the display name using constants. Remember, the

ContactsContract.Contact.DISPLAY_NAME is a String. So

retrieve the column index using the constant and retrieve the value.

Also remember to use safe Cursor iteration and to close the Cursor

when you’re done.

Cursor cursor = getContentResolver().query(uri, null, null, null, null);

 if (cursor.moveToFirst()) {

 displayName = cursor.getString(

 contactCursor.getColumnIndex(

 ContactsContract.Contacts.DISPLAY_NAME

)

);

 }

cursor.close();

Query the contacts with
the uri passed in. Use
getContentResolver to
retrieve a ContentResolver.

Move to the first row of the
cursor (there should only be one)

Get the string value from
the cursor, but first get
the column index using the
display name constant.

http://

you are here 4 449

content providers

Test Drive
Run the app now and select a contact. The display name should be updated.

Click!

After selecting a contact and

going back to the main screen,

the display name is populated

with the selected contact.

Click!

The display
name is updated.

Looing good!

http://

450 Chapter 11

navigating contact data

Display the phone number next
You’ve got the name displaying on the contact

display on the main screen. This means you’re

successfully selecting a contact, getting the

selected contact back and retrieving data values

from that contact by querying the contact store.

Whew!

Now you need to display the phone number and

photo to complete the contact display.

The contact name is
being set from the
selected contact.

The photo still
needs to be set.

The phone number
needs to be set.

So what about these other fields?

http://

you are here 4 451

content providers

This should be super
easy, right? Just need
to get a few more values
from the cursor?

Actually, retrieving the phone and picture

are going to take a little more work...

Phone contacts can be a bit tricky. You can have

multiple phone numbers (think home, mobile, office,

etc), multiple addresses, etc. To handle this, contacts are

actually implemented as separate rows. One row handles

the main information for the contact (like the display

name), and then there are multiple detail rows for the

contact.

Turn the page to see how access
the detail contact rows?

Main contact
information, like
display name.

Multiple detailed rows of
contact information. This
includes multiple phone
numbers, addresses, email
addresses, etc. Contact Row

Contact Detail 1

Contact Detail 2

Contact Detail 3

http://

452 Chapter 11

querying contact details

Accessing contact info details
The general contact info row has some, but not

all, of the information you need. This is pretty

standard when you’re working with the device

contacts. The general row is about enough to

make a list of contacts but that’s it!

The content for the phone numbers
in the contact detail table. It has
a mix of all different kinds of
numbers for multiple contacts.

The detail rows are also stored in the contact

store and you can access them using another

query to the ContentProvider. The

ContactsContract.CommonDataKinds class

contains a number of constants for working

with these detailed rows. One in particular,
ContactsContract.CommonDataKinds.Phone.

CONTENT_URI, allows you to query just the phone

numbers. All you need to do is pass in the Uri to

the query method and you’ll only get back phone

numbers.

So how to get these detail rows?

There are LOTS more
columns at the end here ..

Contact Number Type Email

Ben 555-716-9333 Mobile

Sam 555-299-2354 Work

Alex 555-243-9786 Mobile

Sam 555-867-5309 Mobile

Sam 555-998-9125 Home

Tom awesometom@gmail.com

http://

you are here 4 453

content providers

private String getMobilePhone(Uri uri) {

 String phoneNumber = null;

 Cursor phoneCursor = getContentResolver().query(

 ContactsContract.CommonDataKinds.Phone.CONTENT_URI,

 new String[] { ContactsContract.CommonDataKinds.Phone.NUMBER },

 null,

 null,

 null

);

 if (phoneCursor.moveToFirst()) {

 phoneNumber = phoneCursor.getString(phoneCursor.getColumnIndex(

 ContactsContract.CommonDataKinds.Phone.NUMBER)

);

 }

 phoneCursor.close();

 return phoneNumber;

}

Implement getMobilePhone

ImCool�java

Set the projection
to the phone number.

Let’s put this all in context and implement the

getMobilePhone method. This method needs

to query the contact details for the mobile phone

associated with the selected contact. It will query the

contact store using the Uri from ContactsContract.

CommonDataKinds referencing the phone content.

Here is the method.

Pass in the content
Uri constant for
phone numbers.

Close the cursor.

Store the first
phone number.

Return the
phone number.

Something really important is missing from this method. Can you

spot it? (Hint: Look closely at the Uri passed in to getMobilePhone)

http://

454 Chapter 11

refining the query

Be selective with your contact query
If you used the getMobilePhone method as is

in your app, you’ll most likely get a phone number

associated with a different contact than the contact

selected. That doesn’t make for a very good method!

The reason for this is that the ContactsContract.

CommonDataKinds.Phone.CONTENT_URI used

in the query refers to all phone records and you need to

specify the contact you want.

You can refine results by adding a select value

There are additional parameters you can add to the

query call that refine the results you’ll get back. One of

these is a String selection parameter. It acts like a SQL
WHERE clause in the underlying query to the contacts.

And just like a SQL WHERE clause, you can include

?’s in the select String. Using another constant from

the ContactsContract, your select parameter will

look like this.

ContactsContract.CommonDataKinds.Phone.CONTACT_ID + " = ?"

Another constant from
the ContactsContract
class that allows you to
select a specific contact..

This is going to be the ID
for the contact.

With this select parameter, you also need to pass in an

array of selection argument. These selection arguments

will replace the ?’s in the select string when the query is

executed.

new String[] { id }

This is the ID for
the contact you
want to select.

The only issue now is that you don’t have a reference

to the contact ID in the getMobilePhone method.

But don’t worry, you can query that too!

http://

you are here 4 455

content providers

Select just the numbers for your contact

This first
query retrieves
the main
contact row,
and from that
row you can
retreive the ID.

The second
query
retrieves the
contact detail
rows with
the phone
numbers of
the selected
onctact.

private String getMobilePhone(Uri uri) {

 String phoneNumber = null;

 Cursor contactCursor = getContentResolver().query(

 uri, new String[]{ContactsContract.Contacts._ID},

 null, null, null);

 String id = null;

 if (contactCursor.moveToFirst()) {

 id = contactCursor.getString(

 contactCursor.getColumnIndex(ContactsContract.Contacts._ID));

 }

 contactCursor.close();

 Cursor phoneCursor = getContentResolver().query(

 ContactsContract.CommonDataKinds.Phone.CONTENT_URI,

 new String[] { ContactsContract.CommonDataKinds.Phone.NUMBER },

 ContactsContract.CommonDataKinds.Phone.CONTACT_ID + “ = ? “,

 new String[] { id },

 null

);

 if (phoneCursor.moveToFirst()) {

 phoneNumber = phoneCursor.getString(phoneCursor.getColumnIndex(

 ContactsContract.CommonDataKinds.Phone.NUMBER)

);

 }

 phoneCursor.close();

 return phoneNumber;

}

Passing in a
projection of the
contact ID. This
will return only
contact IDs

Let’s update getMobilePhone now. It needs first query the

contact store to retrieve the ID of the selected contact based

on the selected contact Uri. Then use that ID and pass it in

through the selection arguments in the second query.

Retrieve the selected
contact’s ID.

Pass in the select statement and
selection arguments to select only phone
numbers for the selected contact.

http://

456 Chapter 11

Contact Number Type Email

Sam 555-299-2354 Work

Sam 555-867-5309 Mobile

Sam 555-998-9125 Home

only querying mobile numbers

Just a little more refining to do
With the update of getMobilePhone to use a select

statement using the selected contact ID, you’ll only retrieve

phone numbers for the selected contact. This is good,
but not good enough for you, a Head First rockstar!

Here’s the catch. This current getMobilePhone

implementation retrieves all phone numbers for the

selected contact. But for this app, you only want mobile

phone numbers! You can’t send a text message to a land

line after all, so let’s make sure we retrieve just the mobile

numbers.

So the phone numbers
are narrowed down to just the

selected contact. How do you
make sure they are just mobile

numbers now?

Get more specific with your select statement.

You’re already selecting phone numbers by passing in a select

statement to the query. Now you need to get a little more

specific and add a clause to that select statement that you only

want to select mobile phone numbers.

Luckily, there is a column referenced by the constant at

ContactsContract.CommonDataKinds.Phone.

TYPE that refers to the type of the phone number like

mobile, home, or office. There are also constants for these

different types in ContactsContract. The constant that

refers to the mobile number type is ContactsContract.

CommonDataKinds.Phone.TYPE_MOBILE.

Now just Sam’s detail rows are
coming back, but we want to
narrow that down even more
to just mobile phone numbers.

http://

you are here 4 457

content providers

Below is the query to retrieve the phone numbers for the

selected contact. The second query from getMobilePhone.

Update the code below adding a second clause to the select

statement for the phone type to be mobile. Use AND to join

the clauses in the select statement. Use the constants from the

ContactsContract.

Cursor phoneCursor = getContentResolver().query(

 ContactsContract.CommonDataKinds.Phone.CONTENT_URI,

 new String[] { ContactsContract.CommonDataKinds.Phone.NUMBER },

 ContactsContract.CommonDataKinds.Phone.CONTACT_ID + “ = ? “,

 new String[] { id },

 null

);

Add to this select
statement to narrow
the results down to
only mobile phones.

http://

458 Chapter 11

rendering the phone number

Below is the query to retrieve the phone numbers for the

selected contact. The second query from getMobilePhone.

You should have updated the code below adding a second clause

to the select statement for the phone type to be mobile. You

should have used AND to join the clauses in the select statement

as well as using the constants from the ContactsContract.

Cursor phoneCursor = getContentResolver().query(

 ContactsContract.CommonDataKinds.Phone.CONTENT_URI,

 new String[] { ContactsContract.CommonDataKinds.Phone.NUMBER },

 ContactsContract.CommonDataKinds.Phone.CONTACT_ID + “ = ? “,

 new String[] { id },

 null

);

+ ContactsContract.CommonDataKinds.Phone.TYPE + " = "

AND “

+ ContactsContract.CommonDataKinds.Phone.TYPE_MOBILE,

Extend the
select with AND.

Add the type
constant.

And finally, add the mobile type constant for comparison.

Add =
for the
compare.

http://

you are here 4 459

content providers

You’ve got two of the three renderContact helper methods
working. You’re almost there! Now it’s just that photo...

Test Drive

Click!

Click!
The display
name is updated.

The phone
number is
updated too!

Now the display name AND the

phone number are being displayed.

Run the app and select the contact again, and you should see the

display name and the phone number display for your selected contact.

http://

460 Chapter 11

displaying the contact photo

Now show the photo
There’s a great helper method for loading the photo for a contact in

ContacsContact.Contacts called openContactPhotoStream.

You’ll need to pass in the ContentResolver and a Uri. Notice that

this Uri is using the ContentUris.withAppendedId. This is slightly

different from the other Uri you’ve been using as it’s actually generating

a new Uri based on a stored constant plus the ID you’re passing in Check

out the online documentation for details.

Ready Bake
Code

private Bitmap getPhoto(Uri uri) {

 Bitmap photo = null;

 String id = null;

 Cursor contactCursor = getContentResolver().query(

 uri, new String[]{ContactsContract.Contacts._ID}, null, null, null);

 if (contactCursor.moveToFirst()) {

 id = contactCursor.getString(

 contactCursor.getColumnIndex(ContactsContract.Contacts._ID));

 }

 contactCursor.close();

 try {

 InputStream input =

 ContactsContract.Contacts.openContactPhotoInputStream(

 getContentResolver(),

 ContentUris.withAppendedId(

 ContactsContract.Contacts.CONTENT_URI,

 new Long(id).longValue())

);

 if (input != null) {

 photo = BitmapFactory.decodeStream(input);

 }

 input.close();

 } catch (IOException iox) { /* exception handing here */ }

 return photo;

}

A similar query to getMobilePhone to retrieve the ID.

Create an InputStream
using the helper method.

Use BitmapFactory to decode the
stream into a real, live bitmap!

Return the photo bitmap.

http://

you are here 4 461

content providers

Great work! All three methods
are working to retrieve and
display the contact info!

Test Drive
Run the app and select a contact one last time. You should see all three

fields update- the display name, the phone number AND the photo.

Click!

Click!

The photo is
displaying.

The contact name

is displayed.

The phone number

is displayed.

http://

462 Chapter 11

sending a text message

Getting ready to send the text message

public void onImCoolButtonClick(View view) {

}

<Button android:id="@+id/im_Cool"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerInParent="true"

 android:text="I'm Cool"

 android:onClick="onImOkButtonClick"

 />

ImCool�java

XML

main�xml

The last feature to build before you can give the

app to your users for testing is to send the text

message. Pressing the “I’m Cool” button should

trigger the text message, so before going any

further, let’s add an onClick attribute to the I’m

Cool button on screen and invoke a method called

onImCoolButtonClick in the Activity.

The code to send the text
message will go in here.

Add the onClick
property to the I’m
Cool button in main.xml.

Also add the method
to the activity that’s
called by the onClick
attribute.

http://

you are here 4 463

content providers

Sending a text message on Android couldn’t be easier. There

is a class called SmsManager with a method that sends a

text message. As long as your app is configured with proper

permissions to send text messages (using the android.

permission.SEND_SMS permission) you can send text

messages to whoever you like!

Take a look at the sendTextMessage method.

sendTextMessage (

 String phoneNumber,

 String serviceCenterAddress,

 String text,

 PendingIntent sentIntent,

 PendingIntent deliveryIntent

)

The phone number
to send the text
message to.

The message text.

These are special
intents that can
be activated like
callbacks. You won’t
need to use them
for basic text
message sending.

How to send a text message

 Make sure to add the SEND_SMS permission.

If you don’t add the SEND_SMS permission to your app and
run it on a device, you’ll get an error about missing permissions.
Stop now and add the android.permission.SEND_SMS
permission to your AndroidManifest.xml file.

http://

464 Chapter 11

adding the action

protected void onActivityResult(int requestCode, int resultCode, Intent intent) {

 if (requestCode == PICK_CONTACT_REQUEST) {

 if (resultCode == RESULT_OK) {

 contactUri = intent.getData();

 renderContact(contactUri);

 }

 }

}

public class ImCool extends Activity {

 private static final int PICK_CONTACT_REQUEST = 0;

 private Uri contactUri; Add a variable for
the contactUri.

Let’s make one small change to your Activity to

send text messages. Right now, the contactUri is

used to update the display after selection, but it’s not

stored anywhere. For now, store the contactUri

in your Activity as an instance variable.

Cache the contactUri
that comes back from
the contact selection.

Now store the Uri of the selected contact when

it’s passed back from the contact selection in

onActivityResult. This way, you’ll be able

to call getMobilePhone to retrieve the selected

contact’s phone number to send the text message.

Add the action method for the I’m Cool button

ImCool�java

http://

you are here 4 465

content providers

Pool Puzzle
Your job is to take the code fragments

from the pool and place them into

the empty onImCoolButtonClick

method. You may not use the same

code fragment more than once, and

you won’t need to use all the code

fragments. Your goal is to make the

onImCoolButtonClick send the

text message to the selected contact.

Note: each thing from

the pool can only be

used once!

public void onImCoolButtonClick(View view) {

}

SmsManager smsMan
ager

= SmsManager.getDefault();

null,

smsManager.sendTe
xtMessage(

getMobilePhone(contactUri)

"Babe, I'm Cool!",

null);

null,

http://

466 Chapter 11

wrapping up

Pool Puzzle Solution
Your job is to take the code fragments

from the pool and place them into

the empty onImCoolButtonClick

method. You may not use the same

code fragment more than once, and

you won’t need to use all the code

fragments. Your goal is to make the

onImCoolButtonClick send the

text message to the selected contact.

Note: each thing from

the pool can only be

used once!

public void onImCoolButtonClick(View view) {

}

SmsManager smsManager = SmsManager.getDefault();

null,

smsManager.sendTextMessage(

getMobilePhone(contactUri),

"Babe, I'm Cool!",

null);

null,

http://

you are here 4 467

content providers

Now that you have the hang of ContentProviders,

here are some other cool things to look into.

Go Off Piste

Audio Content
Using the same concepts you

learned searching for con
tacts,

you can load audio too! C
heck out

the android.provider.MediaStore.

Audio for more information on

loading music, playlists, album

covers, and more.

Photo and Video
Loading photos and videos from
the device works in a similar way
too. Check out MediaStore.Images
and MediaStore.Video for more.

Modify Data
Content providers aren’t just read
only, you can modify content too.
For example, writing or modifying
a phone number, adding a new
photo, and more. Check out the
docs for more information.

Write your own!
If you have data in your app
that you’d like to share with
other apps, you can build your
own content provider that
other apps can query. Take a
look at http://developer.android.
com/guide/topics/providers/
content-providers.html for more
information.

Many, many, more...
Take a look at the android.
provider package for even more
content you can access from your
apps.

http://

468 Chapter 11

picking the important stuff

Invoking native behavior
• Intents can invoke specific Activities,

or a Uri/Action combination. If you

pas in this Uri/Action commbo, the OS

determines the most appropriate Activity

to respond to the Intent.

• Use constants from Intent for these

Uris and Actions

• Use startActivity or

startActivityForResult as needed for your

app.

Querying Contacts
• Use ContentResolver and constants from
ContactsContract to query contacts.
• Query general contact information
using the full contact Uri returned form
selecting a contact
• Query contact details with the help of
contact constants in ContactsConstract
subclasses

• Refine your queries with select
statements to get the data you want

Your Android Toolbox

The app is now functional!

You implemented contact

selection using native behavior

and queries all of the contact

details to render in the display. You

also implemented text messaging and

tested on a real world device.

 � Use native behavior by invoking an

Intent with Actions and Uris

instead of explicit Activity references.

 � Check the online documentation for

Intent to see which Uris have native

responders.

 � Use constants for Actions and Uris

whenever possible. This way you’ll be

prepared when things change.

 � Make sure to add the appropriate

permissions for your app, this one needed

READ_CONTACTS and SEND_SMS.

 � Sometimes it’s easier to test on the

emulator and sometimes it’s easier to test

on hardware. Do what makes sense for you

app. And make sure not to only test on the

emulator since you’re deploying your app to

the real world, NOT the emulator!

 � Contact information is located in an on-

device data store you can query like a

database.

 � Contact queries return Cursors, just like

a database query.

 � Contact information is stored in spearate

records for main contact information and

contact details.

 � Query contact (and other OS stored

information) information using

ContentResolver.

 � Easily send text messages from your app

using SmsManager (and adding the

SEND_SMS permission)

CH
AP

T
ER

 11

http://

this is a new chapter 469

advanced graphics12

Make your apps shine

With all the competition in the marketplace, your apps need to

do more than just work��� they need to look great doing it� For

some of your more basic apps, using the stock Android look and feel is fine. But when you

want to built great looking apps that really wow your users and customers, you’re going

to need to need to use graphics. In this chapter, you’ll learn two advanced techniques

for adding images to your apps. First you’ll learn how to use images on your buttons.

Then you’ll learn how to use special resizable images that will really help your apps look

fabulous on all kinds of different screen sizes.

Look here. All you
need is a little polish
to make it look great!

http://

470 Chapter 12

updating the design

It needs to be even better

The app is working, but it’s
kind of boring (sorry!). I like all

my stuff to look HOT! How about
polishing it up a bit?

Sam dropped in while you were finishing up the

message sending and asked for a quick look at the app.

After showing it to her, it became clear that function

alone is not enough. It needs to look great too.

Good apps need good graphics

You might be a strong engineer and a great graphics

designer. And if you can design and build your

own apps, this is where you’d open up your favorite

graphics tools and create some great graphics to

make the app look super slick. But if you’re like the

rest of us, you’re going to need some help.

Don’t worry though, with the super high quality

graphics in even the most basic apps, getting outside

graphics help is pretty standard these days!

Let’s see if there is anyone who can

help us out with this...

http://

you are here 4 471

advanced graphics

The Head First
Graphics Team.

Me

Help! I need some graphics
Today

Head First Graphics Team

Hi Head first Graphics Team! Thanks for offering to help.

I’m building an app with a contact’s picture displayed. But I need something to use
when they don’t have an image set. (Think of an avatar placeholder image). Do you
think you could make something work?

If so, and since this is Android supporting different device sizes, could you send me the
image in three sizes... one for small, medium and large phone screen sizes?

Thanks!

Meet the Head First Graphics Team
Turns out there’s a great group of graphics

artists just dying to help you on your latest

project! They just need you to send them

an email describing what you need.

Here’s your email to the

Head First Graphics Team

http://

472 Chapter 12

how to make it happen

Give the app some polish

Head First Graphics Team

Help! I need some graphics

Today

Me

Sure! Anything to help :-)

Here’s a mockup of the app the way we’d like to see it!

Some cool graphics spread around the app to make it

look super cool for Sam and Scott.

The Head First Graphics Team just got back to you

with a sketch of how to update the design of the

app. Let’s take a look at their design and see what it

would take to implement it.

Now let’s see what needs to be done to

make your app look like this picture.

http://

you are here 4 473

advanced graphics

Turn the page to get started

Use button images...
This design uses custom images for both the Update Contact and I’m

Cool buttons. You’ll need to update the current buttons to use images,

and you’ll need to get those image resources (the actual images for the

buttons) from the Head First Graphics Team.

...and use a background image
This design has a background image that stretches across the entire screen.

You’ll need to get this image from the graphics team and set it on the

background. The issue here is that you don’t really know the actual

size of the screen. Even if you know the screen grouping, the actual

screen might be a a few more or less pixels than you’re expecting. To solve

this, you’ll need to use a special kind of image that can resize.

Update buttons
to use images.

Use a cool
background image.

http://

474 Chapter 12

using image buttons

Use image buttons instead of plain, boring ones
Let’s start implementing the Head First Design

Team’s graphical update by adding the images for

the buttons.

Android provides a special button View called

ImageButton specifically for buttons with images.

To use ImageButton, just declare a View of type

ImageButton and instead of setting the text, set

the android:src attribute to reference an image.

Me

Help! I need some graphics
Today

Head First Graphics Team

Hi again Head first Graphics Team.

The design you sent over with the added graphics looks fantastic! I’m working on the
image buttons now. Can you cut those out and send me PNG files for them?

Thanks!

<ImageButton

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:src=”@drawable/my_image_name”

 />

The view type is
ImageButton

The android:src
attribute should
reference an image

Before you can add the ImageButtons to your layout,

you need the images to use. Time for another email

to the Head First Graphics Team asking for images

from their mockup. Your latest email to
the graphics team.

http://

you are here 4 475

advanced graphics

Add the images to your project

Here’s your reply from
the Graphics team!

The Head First Graphics Team got back to you and

sent you two images. Add them to your project under

the res directories in drawable-hdpi.

res

drawable-hdpi

drawable-mdpi

drawable-ldpi

Head First Graphics Team

Help! I need some graphics

Today

Me

Sure! Anything to help :-)

Here are the images you asked for. Let us know if this works.

update_contact_btn�

png

im_cool_btn�png

 Make sure to cover ALL of the

screen resolutions you’re

targeting.

This chapter is just targeting high
resolution screens. As you’re

building your own apps, you’ll need to add the
button images for each resolution you’re targeting.
You can still use just one selector file though.

http://

updating your layout

476 Chapter 11

Add the ImageButton
With the new button images added to the res directory,

update main.xml replacing the regular Buttons with

ImageButtons. Set the android:src attribute to the

names of the images you added from the graphics team.

Also, remove the android:text attributes from both buttons

since the images both have styled text embedded in them.

<ImageButton android:id=”@+id/im_ok”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_centerInParent=”true”

 android:text=”I’m Cool!”

 android:src=”@drawable/im_cool_btn_bkg”

 /> XML

main�xml

Change the view
type to ImageButton.

Change the view
type to ImageButton.

remove the
android:text
attribute.

<ImageButton android:id=”@+id/update_contact”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”Update Contact”

 android:layout_below=”@+id/contact_phone”

 android:layout_alignLeft=”@+id/contact_name”

 android:layout_marginTop=”10dp”

 android:src=”@drawable/update_contact_btn_bkg”

 />

Set the android:src to
the names of the images
you added (without the
.png extension)

http://

you are here 4 477

advanced graphics

Wow, those borders are
looking pretty crazy! And when
I press them they glow. What’s
going on there?

Now that you have the images added to your project and the

ImageButtons added to your layout, run the app and see how it looks!

The images are displaying, but you’ve got some cleanup to do...

When you press a button,
the gray border turns
a color so you know it’s
being pressed.

Test Drive

http://

getting rid of the border

478 Chapter 11

Remove the background

<ImageButton android:id=”@+id/im_cool”

 android:background=”null”

<ImageButton android:id=”@+id/update_contact”

 android:background=”null”

The image on an ImageButton doesn’t cover the entire

button. The ImageButton has a default background and

the image you set in the android:src attribute is drawn

on top of it. That’s why you have that weird border. If you set

the background to null, you’ll just see you’re image.

Set both
android:background
attribute values to
null.

Now take a look back at the app, and notice that the

ImageButton borders are gone. All you can se now is the

image drawable from the android:src attribute.

There’s a lurking problem
though. Try pressing one of
the ImageButtons now...

XML

main�xml

http://

you are here 4 479

advanced graphics

Me

Help! I need some more graphics

Today

Head First Graphics Team

Hi Head first Graphics Team!

It turns out I need separate images for the button in pressed and non-pressed states.

Can you send me images for those two buttons in their pressed states? The ones you

sent before will work for the unpressed states.

Thanks!

Uggghhhh! Now the ugly
border is gone but you
can’t tell when the button
is pressed. Lame!

Lame, yes. But fixable!

By default, the button indicates it’s being pressed by

changing the background to orange. The indication that

the button is pressed is really important for your users,

but the big gray box around your great new images looks

awful! What to do?

The solution is to have two different images: one for when

the button is pressed and one for when it isn’t. And since

you need more images, that can only mean one thing...

another email to the Head First Graphics Team!

Another email to the
graphics team...

http://

480 Chapter 12

adding more images

Using different images for button states

Add the (new) images to your project
Looks like Head First Graphics Team just got back

to you! Let’s plug in the images they sent back.

There is only one attribute - android:src - to

set the image on an ImageButton. But you want

to use two different images: one when the button is

pressed and another one when the button is in it’s

normal state. You could add a listened to the button

and change the image displayed when pressed, but

there is a much easier way!

res

drawable-hdpi

drawable-mdpi

drawable-ldpi

Head First Graphics Team
Re: Help! I need some more graphics
Today

Me

Hello again!

We added some highlighting to the non-pressed images. This
should make it clear when they are pressed and not pressed.

Let us know if you need anything else, and good luck with the
app.

im_cool_btn_pressed�
png

update_contact_btn_
pressed�png

I hope this
works...

http://

you are here 4 481

advanced graphics

Selectors allow you to define multiple images to use for

buttons based on state. Selecters are implemented as

XML files with elements inside the file referring to specific

states, and which image to use for that state. Then you can

set the selector as the drawable instead of a specific image,

and the ImageButton will automatically select and

update the image according to its state.

Use selectors to control button images

XML

im_cool_button�xml

im_cool_btn_pressed�png

im_cool_btn�png

Update Contact

I’m Cool!

get image

Selector
XML file

Return the
default image

Is the button

pressed? No

XML

im_cool_button�xml

Update Contact

I’m Cool!

get image
Selector
XML file

Return a
selected image.

Is the button

pressed? Yes

When the button is not pressed
The selector returns the default button image when the

button is NOT pressed.

1

When the button is pressed
The selector returns an alternate button image when

the button is NOT pressed.

2

http://

482 Chapter 12

using selectors

Make a new selector file
Start by making a new selector XML file. You can

create one using the same wizard that you use to

create new Android layouts and other XML files.

Select File → New → Android XML File to

launch the wizard.

Name the file
button_im_cool.xml

Select the
drawable
radio button

Select selector
from the dropdown.

Make sure your current
project is selected.

http://

you are here 4 483

advanced graphics

drawable-

hdpi

drawable-

mdpi

drawable

drawable-

ldpi

res

Where is the selector file?
The new empty selector XML file was created

by default in the res/drawable directory.

Wait a second! The images
are in drawable-hdpi, but
the selector file is just in
drawable.

Selectors are just pointers to files, and the

Android runtime finds the right ones.

By default, Android looks in the drawable directory fro the

selector files. But when it comes to loading an image, the Android

runtime tries to load images first from the resource folder specific

to the screen size group. So in this case, the selector XML can

live perfectly happy in the drawable folder and be found by the

runtime. But when an image gets loaded, the runtime starts by

looking in the drawable-hdpi folder (assuming you’re running on a high

resolution device) and loads the image from that folder.

http://

484 Chapter 12

adding selector items

res

drawable-

hdpi

drawable-

mdpi

 <?xml version=”1.0” encoding=”utf-8”?>

 <selector xmlns:android=”http://schemas.android.com/apk/res/android”>

 </selector>

XML

button_im_cool�xml

drawable

XML

im_cool_button�xml

drawable-

ldpi

Navigate to the im_cool_

button.xml in the Package

Explorer. You can fund it under

the res/drawable directory.

Double click top open it and you’ll

see an empty selector file.

You’ll be completing
the selector by adding
images and states here.

Here is the
(currently) empty
selector declaration.

Open the new selector file
Navigate to res/im_cool_button.xml and

double click to open it. The autogenerated file

starts out with an empty selector.

Do this!

http://

you are here 4 485

advanced graphics

Linking a state to a drawable inside selectors is done

by defining <item> elements. Here is an item

element that will render the im_cool_button.

png image when the button is pressed.

<item android:state_pressed=”true”

 android:drawable=”@drawable/im_cool_button” />

Add items to the selector

This item is in
effect when the
button is pressed.

Display the im_cool_
button drawable when
the item is in effect.

Add the image pointers
The autogenerated selector is empty and

you need to add the links from specific states

to the images that should be displayed for

them. You’re going to need two image/state

combinations: one for when the button is

pressed and one when it’s not.

XML

im_cool_button�xml

im_cool_btn_pressed�

png

im_cool_btn�png

You need to add
these links in
the selector.

http://

updating the selector

486 Chapter 1

Selector Magnets
Below is the empty selector from button_im_cool.xml. Use

the code magnets to add two items to the selector. Add one item to

show im_cool_btn_bkg.png when the button is not pressed.

And add another item to show im_cool_btn_bkg_pressed.

png when the button is pressed.

<item
android:state_pressed=”true”

/>
android:drawable=”@drawable/im_cool_btn_bkg”

android:drawable=”@drawable/im_cool_btn_bkg_pressed”

 <?xml version=”1.0” encoding=”utf-8”?>

 <selector xmlns:android=”http://schemas.android.com/apk/res/android”>

 </selector>

XML

button_im_cool�xml

<item

android:state_pressed=”false”

/>

Your magnets.

Add the two
items here.

http://

you are here 4 487

advanced graphics

www

Geek Bits

This selector will only work on devices that fall in the HDPI category.

This is fine (for now) since we know Sam and Scott both have HDPI

Android phones. With that in mind, you should do careful analysis of

your target users and make sure to cover their devices as well.

drawable-

hdpi

drawable-

mdpi

drawable

drawable-

ldpi

res

Here are some tips to cover as many devices as possible.

drawable-

xdpi

And remember, you don’t need resources for every single resolution. You might find that

with flexible layouts and decent scalable images, you can get away with really great

hdpi and mdpi images and you’re all set. Don’t do more work then you have to, but

do make sure your app looks great on all devices.

Put default drawable images in drawable
The other folders contain device group specific

images. But if an image resource isn’t found

for the specific device group (or a new group is

introduced) the Android runtime will check here.

1

Look for new screen groups
With the addition of tablets and larger phones, the

number of screen groups is growing. Keep an eye

out for these new groups and make sure you have

the resources you need for these groups.

3

Add images for each screen group
Each screen grouping will try and load its pecific

images. Make images for every group and add

them to appropriate folder.

2

http://

488 Chapter 12

using the selector

 <?xml version=”1.0” encoding=”utf-8”?>

 <selector xmlns:android=”http://schemas.android.com/apk/res/android”>

 </selector>

Selector Magnets Solution
Below is the empty selector from button_im_cool.xml. You

should have used the code magnets to add two items to the

selector. The first item should show im_cool_btn_bkg.png

when the button is not pressed. And the other item to show im_

cool_btn_bkg_pressed.png when the button is pressed.

<item

android:state_pressed=”true” />

android:drawable=”@drawable/im_cool_btn_bkg”

android:drawable=”@drawable/im_cool_btn_bkg_pressed”

XML

button_im_cool�xml

<item

android:state_pressed=”false”

/>

This item is in effect when the button is NOT pressed,
and it displays the im_cool_btn_bkg drawable.

This item is in effect when the buttis is pressed, and
it displays the im_cool_btn_bkg_pressed drawable.

http://

you are here 4 489

advanced graphics

XML

main�xml

Set the selector as the button’s drawable
The selector is a drawable, so you can set it as the

background just like using an image. The last step

before testing the selector is to set the android:src

attribute on the ImageButton to the selector

instead of pointing directly to an image drawable.

 <ImageButton android:id=”@+id/im_ok”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_centerInParent=”true”

 android:src=”@drawable/button_im_cool”

 android:background=”@null”

 />

</RelativeLayout>

Set the selector as the drawable

for the ImageButton src.

Q: These selectors look cool, but what if I want to use a

different image when the button is, say, disabled?

A: Pressed isn’t the only state you can use for your selectors. In

addition to pressed, you can also create items referencing focused,

selected, checkable, checked, enabled, and window focused

states. Whew, that’s a lot of states! .

Q: Oh cool. But what if I want to combine then? Say I want

to use one image when a button is disabled and pressed.

A: No problem! You can combine as many states as you want

to in a selector item. Just add additional attributes to the item you

want to configure with multiple states and you’ll be all set.

http://

490 Chapter 12

testing the selector

Add the selector for the update contact button

Now that the Button images are working

for the I’m Cool button, let’s add another

selector for the Update Contact button.

Start by adding a new selector XML file

called button_update_contact.xml.
Run the new Android XML file

wizard again and create a new selector

selector XML file called button_

update_contact.xml.

Click!

Now that you have the selector in place, run the app and see how the

“I’m Cool!” button looks when pressed and not pressed.

When the button
isn’t pressed, it
looks just like it
did before.

But when the
button is pressed,
it automatically
switches to the
pressed image!

Looks great!

Test Drive

Do this!

http://

you are here 4 491

advanced graphics

Below is the empty selector for the update contact button. Add two items to that selector

for the pressed and unpressed states as well. The unpressed state should point to update_

contact_btn_bkg.png and the pressed state should point to update_contact_

btn_bkg_pressed.png. When you’re done, update the snippet from main.xml below

to use your new selector.

<ImageButton android:id=”@+id/update_contact”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”Update Contact”

 android:layout_below=”@+id/contact_phone”

 android:layout_alignLeft=”@+id/contact_name”

 android:layout_marginTop=”10dp”

 android:background=”@null”

 />

<?xml version=”1.0” encoding=”utf-8”?>

<selector xmlns:android=”http://schemas.android.com/apk/res/android”>

</selector>

XML

button_update_

contact�xml

XML

main�xml

Add items here for the unpressed
and pressed button states.

Set the drawable
to selector.

http://

492 Chapter 12

adding another selector

Below is the empty selector for the update contact button. Add two items to that selector

for the pressed and unpressed states as well. The unpressed state should point to update_

contact_btn_bkg.png and the pressed state should point to update_contact_

btn_bkg_pressed.png. When you’re done, update the snippet from main.xml below

to use your new selector.

<ImageButton android:id=”@+id/update_contact”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”Update Contact”

 android:layout_below=”@+id/contact_phone”

 android:layout_alignLeft=”@+id/contact_name”

 android:layout_marginTop=”10dp”

 android:background=”@null”

 />

<?xml version=”1.0” encoding=”utf-8”?>

<selector xmlns:android=”http://schemas.android.com/apk/res/android”>

</selector>

XML

button_update_

contact�xml

XML

main�xml

<item android:state_pressed=”false”

android:drawable=“@drawable/update_contact_btn_bkg” />

<item android:state_pressed=”true”

android:drawable=“@drawable/update_contact_btn_bkg_pressed” />

android:src=”@drawable/button_update_contact”

Two items, for
pressed and
unpressed states.
Just like the I’m
Cool button.

Set the android:src
attribute to the
selector as its drawable.

http://

you are here 4 493

advanced graphics

Run the app now and pay close attention to the two buttons. Press and

unpress the buttons a few times and watch their states go back and forth

from pressed and unpressed, changing images between the two PNG

files as the states change. And all you had to do was make a selector!

Great work!

Test Drive

Click!

Click!

When you click on the
“Update Contact” button,

the button image changes.

When you click on the
“I’m Cool!” button, the
button image changes
there too.

http://

494 Chapter 12

setting the background

Now for the background image
The buttons are looking great, so it’s time to move

on to the background image. The Head First

Graphics Team mocked up the background and

sent along the image they used.

PNG

skateboard_

background�png

Add the new file

skateboard_background.

png to your project.

But there’s a problem lurking...

The Head First Graphics Team sent you a

background image that is 300x300 pixels. But

Android devices can be all kinds of different sizes!

Android can resize the image, but this resizing can

make your images look pretty bad with default

stretching.. Just take a look:

Default image resizing

and can push and pull

your images in ways that

make them look terrible!

Do this!

http://

you are here 4 495

advanced graphics

Wouldn't it be dreamy if there was
a way to make images look great on all
different sizes of Android devices. But I
know it's just a fantasy…

http://

496 Chapter 12

using 9-patch images

Use 9-patch images...
You can use a technique called 9-patch images

to really help deal with these variances between

screen sizes. 9-patch images work by specifying

vertical and horizontal stretching sections not

the entire image.

This section can
stretch width
AND height

This section
doesn’t resize.

This section
doesn’t resize.

This section
doesn’t resize. This section

doesn’t resize.

This section can
resize width only.

This section can
stretch height
only.

This section can
stretch height only.

This section can
stretch width only.

Then, when the image needs to be resized, it only resizes

the portions you’ve specified can be stretched either

vertically, horizontally, or both.

http://

you are here 4 497

advanced graphics

... which can look great when resized!
The image can be resized as needed, but since the areas

specified scale well and can be stretched, the image looks

great in all of these sizes. Here are extreme stretched

versions of this image as the size of the background in

portrait and landscape mode.

Look how the ‘sky’ section was vertically

stretched a lot, but since it’s a part of

the image that can stretch it still looks

great! The cloud also horizontally stretched

a little and still look great. All and all, the

image is a LOT taller, but still looks sharp!

Here is the image sized for a landscape
background. The vertical sky part stretched
a little bit, but the clouds stretched a TON
horizontally... but still looks great!

http://

498 Chapter 12

creating 9-patch images

Making your own 9-patch images
Making your own 9-patch images is a snap,

but you’ll need to follow a little process to do

it. Here is what you’ll need to do.

PNG

my_pic�png

PNG

my_pic�9�png

The ‘9’ before
the .png lets
you know it’s a
9-patch image.

Choosing Images Up Close

Using 9-patch images works really

well, but only for images that have a

stretchable area. For this to work, you’ll

need a section that can be stretched

horizontally, a section that can be

stretched vertically, and they have to

intersect.

This image has
a stretchable
horizontal and
vertical section
AND they
intersect.

This image doesn’t have any
stretchable sections. Anywhere
you try and stretch this image
will look distorted.

Get a raw PNG image
9 patch images start with plain old PNG

images. The only thing special about these

images is that they have to resize well based

1

Edit the PNG in Draw 9-patch
Draw 9-Patch is an application that

comes with the Android SDK. Using this

application, you can define the resize points.

2

Use the 9-patch image
Once you save a 9 patch image

from Draw 9-Patch, it works just

like a regular drawable that you can

use in your XML files.

3

http://

you are here 4 499

advanced graphics

Open Draw 9-patch
The draw9patch application is location in

your <android_home>/tools directory.

You can launch it by typing at the command line

<android_home>/tools/draw9patch.

my_computer: me$ draw9patch
File Edit Window Help Eject!

You won’t have to enter the
full path to the android home
if you add it to your path.

When draw9patch opens, you’ll see this empty

screen since there is no 9-patch image opened yet.

From here, you can open a plain PNG file to create

a new 9-patch image, or an existing 9-patch to edit.

http://

500 Chapter 12

adjusting the patches

Open your PNG
Open the background image by dragging the

PNG onto draw9patch. Since you’re working

on the background image, take the background

image that the Head First Design Team sent

you and drag it onto draw9patch.

Once the image is opened in draw9patch, you’ll

see the image preview along with previews of

the image at various different sizes.

Previews of
the resized
images at
different
sizes and
orientations.
Scroll up
and down to
see more.

Preview of
the image
along with
resizing
and zoom
controls

drag

drop

http://

you are here 4 501

advanced graphics

Adjust the path bounds
The path bound are what control the

different patches of the 9-patch image. Draw

pixels on the left, top, right and bottom edges

to add to the resizing sections.

Draw the lines on the
edges to mark the
stretchable areas.

On the right you’ll
see a previews of the
image stretched.

Make sure to select
“Show Patches” to
get a preview of the
stretchable patches.

The 1 pixel black
lines on the edges of
the image mark the
stretchable area.

This stretched
image looks
WAY better!

http://

502 Chapter 12

use the 9-patch

Add the 9-patch image to your project
From inside draw9patch, go to File → Save

9-patch... and save the file in your project’s

res/drawable-hdpi directory. Make

sure to save it with a .9.png extension.

res

drawable-hdpi

drawable-mdpi

drawable-ldpi

skateboard_

background�9�png

Add the image to your
project and make sure it
has the .9.pmg extension.

After you add the 9-patch image file to your project,

you’ll see an updated R file including a @drawable

constant for your new 9-patch image.

 Make sure skateboard_background.png isn’t in your

project when you try and save the 9-patch.

The 9-patch drawables are not unique, they are just drawables
with special extensions. As far as the Android runtime is concerned,
skateboard_background.png and skateboard_background.9.png are

the same drawable resource (they just act different in the running app). So if you
already added skateboard_background.png to your project, make sure you delete it
before adding saving the 9-patch image or you’ll get a nasty error!

http://

you are here 4 503

advanced graphics

Use the 9-patch image in your layout
Once you have the 9-patch image added to your

project, you can use it like any other drawable. You

can set it as the android:src of an ImageView or

ImageButton, or the android:background for a

other Views.

Below is the beginning of the main RelativeLayout for the main screen. Set the

background of the layout to your new 9-patch image using the android:background

attribute. This will set the 9-patch image as the background for the entire screen.

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

 <TextView android:id="@+id/contact_name"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_alignParentLeft="true"

 android:layout_marginLeft="20dp"

 android:layout_marginTop="20dp"

 android:textSize="20dp"

 android:textColor="#ffffff" />

XML

main�xml

http://

504 Chapter 12

test the background

Below is the beginning of the main RelativeLayout for the main screen. You

should have set the background of the layout to your new 9-patch image using the

android:background attribute. This will set the 9-patch image as the background for the

entire screen.

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

 <TextView android:id="@+id/contact_name"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_alignParentLeft="true"

 android:layout_marginLeft="20dp"

 android:layout_marginTop="20dp"

 android:textSize="20dp"

 android:textColor="#ffffff" />

android:background="@drawable/skateboard_background" >

Set the android:background

property to the 9-patch

drawable.

XML

main�xml

http://

you are here 4 505

advanced graphics

Now that the 9-patch image is set as the background. run the app

and see how it looks!

Wow, that looks
TERRIBLE! What is
going on with that
CRAZY positioning?

The background
image looks great!

These component
positions look awful!

Test Drive

http://

506 Chapter 12

adjusting the layout

Adjust the padding
Usually padding isn’t an issue with 9-patch images and you

can easily use them as backgrounds for ImageButtons

and other Views. But when you set the background of a

RelativeLayout to a 9-patch image, you need to watch out for

padding issues. It’s an easy fix though. Just set the padding to 0dp

and you’ll be all set. This overrides any default padding the

Android runtime is trying to use which was causing all of that

crazy positioning.

<RelativeLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:background="@drawable/skateboard_background"

 android:padding="0dp"

 >

Set the padding to 0dp.

XML

main�xml

Q: Can I use 9-patch images with

selectors?

A: You sure can, and it’s a pretty

common thing to do. You can use a 9-patch

image for a button background, with one

for pressed and one for not pressed. Then

use Android text rendering instead of

using the text embedded in the image and

you can use the same pressed and non-

pressed images over and over again!

Q: DO I have to make separate

9-patch images for different screen

densities?

A: Yes. Like all other image resources,

9-patch images are density dependent.

Since 9-patch images scale though, you

can sometimes get away without it. But

it’s always a good idea to include multiple

densities.

Q: Do the 9-patch images have to

resize the same for each pixel density?

A: No. The 9-patch image includes both

the image as well as the resizing areas.

(The resize is marked with black pixels on

the image border). So you can resize the

images differently for each screen density.

That said, you probably want to keep them

pretty similar to keep your app consistent.

http://

you are here 4 507

advanced graphics

Try running the app again, this time with the overridden padding set to 0dp.

Way better. Looks great now!

Test Drive

The background
image looks great. The buttons

are correctly
positioned and look
great with the
images.

http://

508 Chapter 12

using the app

That was a crazy drop! Let
me send Sam a message and
her late her know, I’m cool.

Out in the wild
Testing the app is one thing, but the real

reason you’re building the app is for Sam

and Scott to use it! Let’s give them the app

for the day and see how they use it.

http://

advanced graphics

Snap! My Phone just buzzed.
Hey, it’s Sam using our new app!
I bet he just did a big drop,
and let me know he’s OK. Man,
that’s so sweeeeeet!

I’m Cool.

you are here 4 509

http://

510 Chapter 12

That was some great work you did with the button graphics and 9-patch backgrounds. Here

are some other things to look into if you want to make the app even better!

Go Off Piste

Use more 9-patch images
There are number of places you

could use 9-patches to make the

app cooler. You could use generic

9-patch images for both buttons.

You could also make a cool 9-patch

border for the the contact photo

to make it stand out a little more.

Add location to the txt
It’s cool to let someone know
you’re OK, but even cooler to let
them know where you are too! We
won’t go into it here, but look into
the Android location APIs and add
location info to the text message
the app is sending.

Save the selected contact

You probably noticed that every

time you ran the app, you had to

select the contact again! That’s

because it’s not being saved to

the database. Use what you’re

learned about Android SQLite

databases to save the contact and

automatically reload it on startup.

http://

advanced graphics

 � Use ImageButtons when you want to

use images for your buttons.

 � Set the background drawable to @null to

remove borders.

 � Use Selectors to add multiple images to a

single button based on state.

 � Selector XML files go in the res/

drawable directory. You don’t need a

separate selector for each screen size.

 � Use 9-patch images to create expandable

images

 � Once you have a good PNG, use

draw9patch to mark the resiable sections.

 � Add 9-patch images to your project just

like any other image drawable, in the res

directory specific to your screen size.

 � Make sure you have separate 9-patch

images for each screen size group you are

supporting.

 � You can use 9-patch images for all kinds of

resizable needs: background of EditTexts

and TextViews, layout backgrounds, and

more!

9-patch images
• Find an image that can stretch

horizontally and vertically, and th
at those

sections overlap

• Use draw9patch to mark the expandable

sections

• Use the image just like any other drawable

Selectors and ImageButtons
• Add images for the states (i.e. pressed, not
pressed, selected, not selected, etc)
• Create a selector XML file using the wizard
• Add items for each state and reference the
image drawable to use for that state
• The selector is a ‘drawable’ so set the
drawable source on your ImageButton to the
selector

Your Android Toolbox

You just did some major

graphics heavy lifting! Let’s

review what you’ve learned

here that you can apply to all of

your apps.

CHAPT
ER 12

http://

512 Chapter 12

picking the important stuff

you are here 4 512

Leaving town...

It’s been great having you here in Androidville!

We’re sad to see you leave, but there’s nothing like taking what you’ve learnt

and putting it to use. You’re just beginning your Android journey and we’ve put you in the

driving seat. We’re dying to hear how things go, so drop us a line at the Head First Labs

web site, www.headfirstlabs.com, and let us know how Android is paying off for YOU!

http://

