
www.allitebooks.com

http://www.allitebooks.org

Hello! IOS Development
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Hello! IOS Development

Lou Franco
Eitan Mendelowitz

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

User Friendly artwork, characters, and cartoon strips are used in this book by permission
from UserFriendly.org. All rights reserved.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books we publish printed on acid-free paper, and we exert our best efforts to that
end. Recognizing also our responsibility to conserve the resources of our planet, Manning
books are printed on paper that is at least 15 percent recycled and processed without
elemental chlorine.

Manning Publications Co. Development editors: Scott Stirling, Susanna Kline
20 Baldwin Road Technical proofreader: James Hatheway
PO Box 261 Copyeditor: Tiffany Taylor
Shelter Island, NY 11964 Typesetter: Marija Tudor

Cover designer: Leslie Haimes

ISBN: 9781935182986

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

www.allitebooks.com

http://www.allitebooks.org

To my mother, Josephine,
who taught me what was truly important

 —L.F.

To my love Elanit, and to Amalya,
who wants me to create a game about pirates

 —E.M.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Brief contents
PART 1 HELLO! IPHONE 1

1 Hello! iPhone 3

2 Thinking like an iPhone developer 21

3 Coding in Objective-C 41

PART 2 IPHONE APPLICATIONS: STEP BY STEP 59

4 Writing an app with multiple views 61

5 Polishing your app 97

6 Working with databases and table views 119

7 Creating a photo-based application 155

8 Moving, rotating, editing, and animating images 187

9 Working with location and maps 218

10 Accessing the internet 242

PART 3 GOING FROM XCODE TO THE APP STORE 265

11 Debugging and optimizing your application 267

12 Building for the device and the App Store 285
vii

Appendix Online resources for iOS app developers 307

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents
preface xv
acknowledgments xvi
about this book xviii
about Hello! books xxii

PART 1 HELLO! IPHONE 1

1 Hello! iPhone 3
Turning your Mac into an iPhone app factory 5

Installing the iPhone SDK 7 ❍ Running Xcode for the first
time 9 ❍ Using application templates 9 ❍ Learning Xcode’s
user interface 12 ❍ Looking at Xcode’s menus 13 ❍ Running
Xcode’s iPhone simulator 15

Introducing Interface Builder 16
Making Hello, World! 18
Editing, building, and running 20

2 Thinking like an iPhone developer 21
Using model-view-controller to dissect apps 22

Thinking about apps as models, views, and controllers 25
Test yourself on models, views, and controllers 27

Designing apps with objects 29
Establishing class relationships 31 ❍ Organizing classes in
headers and modules 34
ix

Avoiding crashes by understanding object lifetime 35

www.allitebooks.com

http://www.allitebooks.org

x Contents
Applying object-oriented design 38
Preparing to code object-oriented designs 40

3 Coding in Objective-C 41
Creating classes to match your designs 42

Declaring a message 44 ❍ Declaring a view-controller
message for your views to send 48 ❍ Using properties to
save data in objects 49

Connecting code to views in Interface Builder 51
Using the Connections Inspector in Interface Builder 52
Creating outlets and actions using the assistant 54

Defining the action message 56

PART 2 IPHONE APPLICATIONS: STEP BY STEP 59

4 Writing an app with multiple views 61
Designing a flashcard application 62
Creating classes to match your designs 67

Declaring a view-controller message for your views to send 69
Creating your other views and controllers 71

Creating the model classes 74
Implementing FCAnswerKey 78 ❍ The FCGame class 81

Connecting code to Interface Builder 83
Connecting the FCCardViewController view 85 ❍ Connecting
the FCResultViewController view 87

Orchestrating your app with controllers 88
Handling card events in the FCCardViewController 90
Showing the result in the FCResultViewController 93

Reflecting on your progress 96

5 Polishing your app 97
Setting up your application’s images 99

Replacing the default application icon 99 ❍ Making your
application seem to load faster 101

Contents xi
Using images for buttons 103
Preparing a stretchable image 104 ❍ Using a stretchable
image for a button 106

Adding animation 109
Sliding views instead of instantly switching 110 ❍ Flipping a
view to show its back 113 ❍ Using custom animations 114

Making your apps look professional with graphic design 117

6 Working with databases and table views 119
Keeping track of data in the FlashCards app 120

Deciding what to store 120 ❍ Sketching how the app will
look 121 ❍ Designing new models 122

Introducing Core Data 126
Creating a data model 126 ❍ Adding entities and
attributes 127 ❍ Using relationships 129 ❍ Generating
data classes 130 ❍ Adding Core Data support to your
app 131 ❍ Saving your game results 136

Fetching and viewing data 140
Viewing in a table 140 ❍ Navigating to related data 149

Changing your data model 152
Versioning your data model 153 ❍ Migrating between
versions 153

Planning for what’s next 154

7 Creating a photo-based application 155
Designing the application 156

Sketching Disguisey 156 ❍ Defining the behavior of your
application 157 ❍ Designing your application’s models, views,
and controllers 159

Creating an app with tab-based navigation 161
Renaming classes with the refactoring tool 162
Storyboarding your app in Interface Builder 163 ❍ Making
images for the tabs 167 ❍ Making the face view 168
Making the disguise views 170 ❍ Changing tabs with
code 171

xii Contents
Incorporating models 173
Coding DIDisguise and DIDisguiseElement 173

Working with photos 177
Getting images from the Photos application 177 ❍ Adding
disguise elements to the photo 181

Wrapping it up, and what’s next 186

8 Moving, rotating, editing, and animating images 187
Improving Disguisey 188

Sketching your new ideas 188 ❍ Updating models for the new
features 190 ❍ Thinking about what you don’t know 193

Using animation to make disguises grow 195
Visualizing the animation 195 ❍ Coding the animation 196

Recognizing touch gestures 198
Picking the right gesture 198 ❍ Attaching gesture
recognizers 199 ❍ Moving a disguise into place 202
Pinching the DIDisguise to resize it 206 ❍ Using a menu
to remove parts of a disguise 208

Saving the disguised face 212
Displaying a Save menu 212 ❍ Overlaying one image onto
another 214

Moving on from Disguisey 216

9 Working with location and maps 218
Designing a map application 219

Sketching Parkinator 219 ❍ Looking at how it works 219
Designing the models, views, and controllers 220

Creating an app with a map 222
Using the Utility Application template 222 ❍ Adding the
proper frameworks to your app 223 ❍ Placing an MkMapView
on the main view 224 ❍ Showing the current location 226

Flipping the view to take a picture 229
Adding a UIImageView 229 ❍ Adding a camera button 231
Getting a photo 232

Contents xiii
Showing the parking spot on the map 234
Using the flipped view’s image 235 ❍ Creating a map anno-
tation model 236 ❍ Adding the pin to the map 239
Showing the pin 239

Making the data in Parkinator useful to others 241

10 Accessing the internet 242
Overview of an internet-enabled Parkinator 242

Updating the main view 243 ❍ Tweeting an empty parking
spot 243 ❍ Getting a list of open spaces 244
Using HTML for Help 244

Adding buttons on a toolbar 245
Creating a toolbar 245 ❍ Adding buttons for send, search,
and help 246 ❍ Improving the toolbar layout 247

Using web views in your app 248
Making the Help view 248 ❍ Setting up the Help view 249
Making an HTML resource 252

Integrating with Twitter 255
Looking at iOS support for Twitter 256 ❍ Composing
and sending a tweet 257 ❍ Searching Twitter 259
Parsing individual tweets 261 ❍ Displaying locations
in the Map View 262

What’s next 264

PART 3 GOING FROM XCODE TO THE APP STORE 265

11 Debugging and optimizing your application 267
Debugging without tools 268

Intentionally introducing a bug 268 ❍ Logging
messages 269 ❍ Using assertions 271 ❍ Popping up
dialogs 273

Debugging with Xcode 274
Setting breakpoints 275 ❍ Stepping through code 275
Watching variables 276 ❍ Breaking when something
happens 277

xiv Contents
Speeding up your app 278
Profiling your code 278 ❍ Finding bottlenecks 279
Optimizing memory usage 282

What’s next 284

12 Building for the device and the App Store 285
Running your app on a device 285

Getting developer certificates 286 ❍ Provisioning your
device 289 ❍ Installing your program 293
Distributing to testers who don’t have Xcode 293

Submitting your app to the App Store 296
Making sure everything is in order 296 ❍ Creating your App
Store application record 298 ❍ Submitting your app to the
App Store 299

Congratulations! 305

Appendix Online resources for iOS app developers 307

index 309

Preface
We came to iOS development from two different paths. Lou is a commer-
cial software developer with a traditional CS background and degree, and
Eitan has a mixed design and technology background and a career in aca-
demia. Lou is from NYC, and Eitan is from LA. We both decided to settle
in a small town in Western Massachusetts, and although we live less than
a mile from each other, we never met.

Troy Mott, a development editor at Manning, contacted Lou, an iOS
developer and blogger, about Manning’s Hello series. The whimsical take
on programming education and Troy’s persuasion convinced Lou that it
would be a worthwhile project. After Lou got started, though, he became
convinced he needed a coauthor, and he set out to find one.

Late last year, a chance mention of this coauthor search to a mutual
friend led to an introduction to Eitan. An hour or so after sharing a coffee
at a local cafe, we knew we wanted to write this book together.

So, a coauthor search that began over the web and with global reach via
social networking ended the old-fashioned way—over brunch and face-
to-face networking. And, in a time where virtual collaboration is the
norm, we were lucky to be able to meet when we needed to.

We hope you find that our different backgrounds each bring something
to this book. Between us, we have decades of programming, designing,
writing, and teaching experience, and we needed it all to fit the vast
domain of iOS development into something a little gentler than most
other books—and, we hope, a lot more fun.
xv

Acknowledgments
We would like to acknowledge all the folks at Manning who expertly
guided us through the development and production processes: Troy
Mott, Sebastian Stirling, Susanna Kline, Tiffany Taylor, Toma Mulligan,
Mary Piergies, Marija Tudor, and Janet Vail, and many others who
worked on our book and whose names we do not know.

Special thanks to our technical proofreader, James Hatheway, who made
sure the technical content in our manuscript was up to par and who
checked the code examples shortly before the book went into production.

And we would like to acknowledge our peer reviewers, who took the time
to read our manuscript at various stages of its development and who pro-
vided invaluable feedback: Al Scherer, Christopher Haupt, Craig Smith,
David Barkol, David Strong, Frank Ableson, Lester Lobo, Nikolaos
Kaintantzis, Paul Stusiak, Peter Friese, Premkumar Rajendran, Ray
Booysen, Robert McGovern, Sanchet Dighe, Santosh Shanbhag, and
Sarah Forst.

Finally, thanks to J.D. “Illiad” Fraser of User Friendly for letting Manning
use the User Friendly cartoons in the Hello! series and for allowing us to put
our own words in the characters’ mouths in this book.

LOU FRANCO

I would like to thank my wife, Jennifer Rippel, whose seriousness and
self-motivation are daily inspirations to me. Thanks also to my mom, who
did so much to help me find my life’s work, from touch-typing lessons to
xvi

Acknowledgments xvii
getting me the TRS-80 color computer I learned to program on. Also,
thanks to my extended family for their warmth and lifelong support.
Thanks to my colleagues at Atalasoft and the rest of Kofax, who make
my work day rewarding and productive. And finally, a very grateful
thanks to Dominique Thiebaut for introducing me to Eitan, without
whom this book would not exist.

EITAN MENDELOWITZ

I would like to thank my colleagues at Smith College who encouraged
me to work on this project; and my Mobile Computing students, who
were both patient and helpful as I was developing material for this
book. Most of all, I am grateful for the fantastic iOS developer commu-
nity, whose creativity and experimentation are a continual source of
inspiration.

About this book
How this book is organized

Part 1 of this book is your introduction to the world of iOS development.
By the end of this section, you’ll know your way around Xcode, its GUI
building tools, and enough of Objective-C and object-oriented develop-
ment to build an app:

❂ Chapter 1 introduces Xcode, the main tool you’ll be using to develop
iOS apps. We show you how to write Hello World!, the first app that
programmers generally learn to write.

❂ Chapter 2 explains the model-view-controller pattern used to organize
iOS apps.

❂ Chapter 3 introduces Objective-C so you can add interactivity to your
apps. We’ll take Hello World! and show you how to connect up but-
tons, labels, and text fields to make it more useful.

Part 2 takes you through the main features of iOS as you build three
apps. Each chapter will show you all the steps, from sketching a GUI,
through object-oriented design, and, finally, how to code the final result:

❂ Chapter 4 starts with a simple flashcard app that teaches US state capi-
tals. By the end of the chapter, you’ll know how to use outlets and
actions to react to the user and simple navigation to get from screen to
screen. You can adapt this app for any subject.

❂ Chapter 5 shows how to polish the look of your app with imagery, cus-
tom buttons, and animations.
xviii

About this book xix
❂ Chapter 6 takes the flashcard app and adds a local database using
iOS’s Core Data framework. You’ll also learn how to show database
information in table views.

❂ Chapter 7 starts with a new app, Disguisey, that lets you put mus-
taches, hats, wigs, and other disguise elements onto any photo. In
this chapter, we’ll cover tabbed interfaces and accessing the device’s
camera or photo album.

❂ Chapter 8 adds gesture recognition to Disguisey. You’ll learn how to
recognize long press, pinch, and pan gestures to interact with your
face photo and disguise elements.

❂ Chapter 9 explores iOS’s location and mapping frameworks in a new
app, Parkinator. You’ll learn how to show a map and put a new pin
on it to remember where you parked your car.

❂ Chapter 10 adds networking capabilities to Parkinator. You’ll learn
how to show web pages and how to search and post to Twitter.

Part 3 shows you that once you’ve built an app, there’s a lot more to
learn. This part guides you around some of the tools that make sure
your app doesn’t have bugs and explains how to get the app into the
App Store:

❂ Chapter 11 examines Xcode’s debugger and instruments. You’ll pur-
posely add problems to your completed app and then find them
using Xcode’s tools.

❂ Chapter 12 shows you everything you need to know to get your app
into the App Store.

Finally, the appendix provides a list of external resources that will help
you make a great app.

What you'll need

In order to follow along with this book, you’ll need to have access to a
Mac with the latest Xcode on it (we’ll show you how to get Xcode).
This means you must have at least Lion. Most of what we do works on
slightly older versions, but the screenshots may not match exactly.
www.allitebooks.com

http://www.allitebooks.org

xx About this book
If you want to put any of these apps on your iOS device, you’ll need an
iOS developer account, which costs $99 per year. None of the apps in
this book require that—you can run all the code in the Simulator.
There are parts, like taking a picture with the camera, that we show
you how to fake if you aren’t running on a device. If you want to make
a real app, you’ll need to join the developer program.

Code conventions and downloads

This book contains all the source code for three iOS apps, built up over
a few chapters each. Code samples are annotated so you can easily fol-
low along. Code in listings and in text is set in a monospaced font like
this to distinguish it from ordinary text.

If you want to download the source, it’s available on GitHub at http://
github.com/loufranco/hello-ios-source. The code uses the MIT open
source license so you can grab whatever you need for your projects or
use any of the example apps as a starting point for your own app. You
can also download a zip file with the source code for this book from the
publisher’s website at www.manning.com/HelloiOSDevelopment.

Author Online

Purchase of Hello! IOS Development includes free access to a private web
forum run by Manning Publications where you can make comments
about the book, ask technical questions, and receive help from the
authors and from other users. To access the forum and subscribe to it,
point your web browser to www.manning.com/HelloiOSDevelopment
This page provides information on how to get on the forum once you’re
registered, what kind of help is available, and the rules of conduct on
the forum.

Manning’s commitment to our readers is to provide a venue where a
meaningful dialogue between individual readers and between readers
and the authors can take place. It’s not a commitment to any specific
amount of participation on the part of the authors whose contribution
to the book’s forum remains voluntary (and unpaid). We suggest you try
asking the authors some challenging questions, lest their interest stray!

http://github.com/loufranco/hello-ios-source
http://github.com/loufranco/hello-ios-source
http://www.manning.com/franco/
http://www.manning.com/franco/

About this book xxi
The Author Online forum and the archives of previous discussions will
be accessible from the publisher’s website as long as the book is in print.

About the authors

LOU FRANCO runs Atalasoft imaging and PDF toolkit development for
Kofax and has been a mobile app developer for over a decade. He lives
in Northampton, MA.

EITAN MENDELOWITZ is an assistant professor of computing and the
arts at Smith College, where he teaches courses situated at the intersec-
tion of computer science and media art. These include “Seminar on
Mobile and Locative Computing,” which uses iOS as its development
platform. Eitan is currently developing mobile platforms to enable citi-
zen science.

About Hello! books
At Manning, we think it should be just as much fun to learn new tools as
it is to use them. And we know that fun learning gets better results. Our
Hello! Series demonstrates how to learn a new technology without getting
bogged down in too many details. In each book, User Friendly cartoon
characters offer commentary and humorous asides, as the books moves
quickly from Hello World! into practical techniques. Along the way,
readers build a unique hands-on application that leverages the skills
learned in the book.

Our Hello! books offer short, lighthearted introductions to new topics,
with the authors and cartoon characters acting as your guides.
xxii

Part 1

Hello! iPhone
his part of the book will help you get started being an iPhone applica-
tion developer. By the time you’re finished with this part, you’ll have
done the following:

❂ Seen the Apple Developer website and tools
❂ Set up your machine for development
❂ Learned about the basic concepts required to create applications
❂ Created two simple applications

Chapter 1 is focused on getting your machine ready for development.
You’ll learn to navigate the Apple Developer website, download and
install the Apple tools that you need to create apps, and take a tour
through the two most important tools, Xcode and Interface Builder. At
the end of the chapter, you’ll have created a Hello World! application.

Chapter 2 will help you start thinking about iPhone apps like a devel-
oper. You’ll begin by learning the basics of the model-view-controller
model of GUI development and object-oriented design. Then we’ll
move on to the topic of object lifetime, and you’ll apply what you’ve
learned.

Then, in chapter 3, we’ll move on to the syntax of Objective-C, the pro-
gramming language you use to write apps. We’ll end by showing you
how to use these new concepts in Xcode and Interface Builder to cre-
ate a slightly more complex application.

2 CHAPTER

1
Hello! iPhone

This chapter covers

• The Apple Developer website

• Installing the iPhone SDK

• Introduction to Xcode and Interface Builder

• Hello, World!

The iPhone is a fun and powerful phone, and no matter how many apps
there are in the App Store, everyone has an idea for another one. It’s
3

great that there’s finally a combination of a large market, a distribution

4 CHAPTER 1 Hello! iPhone
model, and a way to get paid that makes it easy for hobbyist program-
mers to make a little money (or in some cases, a lot of money) with sim-
ple apps.

Look at iSteam. It’s an app that lets you
steam up your phone with your breath and
that squeaks when you run your finger across
it, and it was written in seven days by first-
time iPhone programmers. It made $100,000
in its first three months in the App Store.

The last new platform that caused this much
excitement was the web. Today, we have so
many tools that can help us make websites without knowing any
HTML that it’s hard to remember we used to have to know how to pro-
gram to create even the simplest site.

But HTML is a nearly ideal way to get started with
programming. Its structure looks like what you see in
the browser, and you can create simple websites know-
ing just a few tags and using Notepad and a browser.
And if you see a page you like, you can view its source
and learn how it was done. This combination of simple
coding, an easy on-ramp, cheap tools, and lots of avail-
able examples makes it possible for many people to
learn to program in HTML.

iPhone programming, unfortunately, isn’t as easy. iPhone apps aren’t
just text you can create in any editor, so you need to use the tools that
Apple provides to help you create your app. And although lots of code
samples are available on the web, there aren’t many complete examples
to learn from.

We wrote this book to solve these problems by offering simple expla-
nations of the concepts used by Apple’s tools and step-by-step instruc-
tions for complete applications. Let’s get started.

(*BREATH* *BREATH* *BREATH*)

Turning your Mac into an iPhone app factory 5
Turning your Mac into an iPhone app factory

Apple does a lot to make sure Macs are useful for a wide variety of
things right out of the box. Your Mac can organize digital photos, play
music, make DVDs, and edit videos, and it evens supports a bunch of
programming language environments like Java, Python, and Ruby.
But if you want to make iPhone apps, you need to set it up.

To start, visit https://developer.apple.com/devcenter/ios, and register
for a developer account. The Apple developer site has everything you
need to create iPhone apps. The most important thing you need is the
developer tools, but you can also find the full SDK documentation,
sample code, and video tutorials. After reading this book, you’ll under-
stand a lot of the standard documentation much better.

With the release of Xcode 4.2, you now get Xcode from the Mac App
Store, so it’s easy for everyone to get started. You could start program-
ming without the developer account, but it’s
free, so you should go ahead and sign up.

If you want to sell apps in the App Store,
you’ll need to pay to join the iOS Developer
Program. You’ll also need to join to test
your app on your own devices. Apple
charges $99 per year to join its developer
program. But hey, it’s not that much for a

hobby, especially one that might make you

6 CHAPTER 1 Hello! iPhone
money, and you can have as many apps as you like without
paying any more.

Don’t worry: for almost all the code samples in this book, just
being a registered developer will be fine. Apple provides an
iPhone simulator that works on your Mac, so you don’t need
to have your apps on your device to learn how to make them.
Of course, some features of the iPhone aren’t in the simulator
(don’t shake your laptop!). If you want to use those features
in your app, you’ll need to join the iOS Developer Program
so you can put your app on your phone. When we get to one
of those features, it will be clearly marked.

Register as a developer on the iOS Dev Center
home page. Registering begins with filling out a sim-
ple multistep form that consists mostly of contact

information, and ends with an email verification form. Once
you’ve completed the process, Apple will send you an email
with instructions for activating your account (you might
need to add Apple to your whitelist or check your spam
folder).

After you’ve received the email and followed its directions,
you’re ready to log in to the iOS Dev Center and look at
what you can access. Now you’re ready to go get Xcode.

Turning your Mac into an iPhone app factory 7
Installing the iPhone SDK
Nearly every great iPhone application was
written with the same tools you’re going to
use. You might not be as good at using them

yet, but it’s not like you’re trying to match Clapton on a
toy ukelele. You have a
long way to go, but you

won’t be held back by inferior
equipment.

To get these tools, open the Mac App
Store and search for Xcode. When you
find it, click the Install button and give
your credentials.

A large file will begin to download.
When it’s done, the installation will
start.

Figure 1.1
Successful Xcode
and iPhone SDK
installation
www.allitebooks.com

http://www.allitebooks.org

8 CHAPTER 1 Hello! iPhone
The installer will guide you through the process. When you get to the
Installation Type page, you should choose the default settings for now
and let the installer proceed with a standard installation. Once you’re
done with accepting the licenses and other setup, the installer will
install Xcode and all the other tools you need. It’s a long installation
and could take half an hour to complete.

When it’s done, let’s look at what you have. If you’ve installed anything
else on your Mac, you know you can find the installed application in
your Applications folder. Xcode is no exception: you can find it in
/Applications.

When you install Xcode and the iOS SDK, you get all the tools you
need to create Mac, iPhone, and iPad applications. The same tools and

Figure 1.2
Location of Xcode

on your Mac

Running Xcode for the first time 9
concepts you learn can be applied to these
other platforms. In the developer applications
folder, you’ll see a lot of applications; you’ll be
spending the most time with Xcode. It’s so
important, that it’s a good idea to put it in
your Dock right now. You can do this by
dragging it from the Finder window onto
your Dock.

Running Xcode for the first time
With Xcode on your Mac, you need to learn a little
about it before you make your first app. If you’ve ever
used another programming environment, some of this
will feel familiar. If you haven’t, Xcode is about as
complex as Photoshop, AutoCAD, Final Cut Pro, or
any professional software used to create complex
things. Even software like Access or Excel is a good
starting point if you’ve created macros or added forms
to make simple apps.

Xcode is an Integrated Development Environment (IDE for short). It has

❂ An editor—For writing your code
❂ A GUI editor—For drawing your application’s screens
❂ A compiler—To build applications from your code
❂ A debugger—To probe your running applications
❂ A profiler—To collect data on how your applications perform

Over the course of this book, you’ll learn about all those parts, but for
your first app you just need to know a little about Xcode’s file organiza-
tion and a little more about drawing a user interface. Each app you
write will introduce a little more.

Using application templates
Your entire project is managed by Xcode, and it’s a lot bigger than you
might expect. Even the simple app you’re going to create has nine files.

Luckily, Xcode will do some of the work for you.

10 CHAPTER 1 Hello! iPhone
Start Xcode by clicking the icon in your Dock. When it starts, it shows
a welcome screen. Choose Create a New Xcode Project. When you do,
you’ll see these templates.

To make your life easier, Xcode comes with application templates. A
template is a set of files that has all the code to get you started with
some common application types. It’s like a less annoying version of the
way Clippy makes a letter for you in Word.

These are the most important templates:

A single-view application starts with one view
and has no built-in navigation. It’s a good start-
ing point if your application doesn’t use one of
the common navigation styles. This would be the
template to use to make the Calculator app that’s
on your phone.

Figure 1.3
The New Project
dialog in Xcode

Figure 1.4 Single

View Application

Running Xcode for the first time 11
A tabbed application is good for any application
that uses a tab bar as its main navigation. The
iPod, App Store, and iTunes applications on
your phone are examples of this style.

A page-based application lets you build apps that
look like books and have built-in page turning
animation and navigation.

A utility application has two views: a main one
with your app and another for the app’s settings
that is meant to be on the back of the main view.
An info button is put on the main view to flip it
over. You can see this style used in the Weather
and Stocks apps.

An empty application starts with nothing except
the bare bones of an application. If you don’t
even want the code that a single-view application
has, this is the one to use.

The easiest to understand and use is the single-view application. Click
it, and then click the Next button. Xcode will prompt you for a product
name, an organization name, and a company identifier. For the product
name, use Hello. Enter your full name for the organization name. Add a

Figure 1.5 Tabbed
Application

Figure 1.6 Page-
Based Application

Figure 1.7 Utility
Application

Figure 1.8 Empty
Application
domain name you own as the basis for your identifier. If you don’t have

12 CHAPTER 1 Hello! iPhone
a domain name, use anything you think will be unique. Put in HW as
your class prefix (which is short for “Hello World”), and choose the
iPhone as your device. Check Use Automatic Reference Counting,
uncheck Use Storyboards and Include Unit Tests, and click Next.

When you click Next, you’ll be prompted for a location to save and
source-control parameters, which you can turn off if you don’t want to
save your project in a local source-control repository right now. If you
don’t use source control (or know what it is), uncheck the box.

The Use Automatic Reference Counting option tells Xcode to automat-
ically manage memory allocation and deallocation. Storyboards are a
fantastic tool for creating and organizing complicated projects, but
they’re a bit much for smaller apps. You’ll begin using them in chapter
7; but in the meantime, its important to learn how to create projects
without them. Unit tests are a software engineering tool that is beyond
the scope of this book.

Learning Xcode’s user interface
Xcode’s main window will now come up. Xcode can be overwhelming
at first, even for the simplest of projects. As you use it, it will feel
increasingly natural. You’ll learn more and more about Xcode’s fea-
tures as you need them. This figure shows you what you need to know

Figure 1.9
Saving your project
right now.

Running Xcode for the first time 13
Figure 1.10 Xcode’s main window

B Toolbar—The most common tools you’ll need.

c Navigator tools—Used to change how you navigate your project.
The default, and most common view, is the Project Navigator.

d Project Navigator—Listing of all source, outputs, and other informa-
tion about the project. It’s used to navigate to the various parts of
the project.

e Editor—The place where you’ll type in code. It shows the file cur-
rently selected in either of the two file-navigation controls. In the
figure, the editor is shown after we selected HWAppDelegate.h.

To help you be productive in Xcode, we’ll go over the menus, hot-
keys, and views that let you edit a project.

Looking at Xcode’s menus
Xcode’s menus control various aspects of creating applications. The
File, Edit, View, Window, and Help menus are similar to what you’d
find in most Mac applications. The main things you do in Xcode are
manage your project, build your application, and test it. To do that,
you’ll use the Navigate, Editor, and Product menus.

14 CHAPTER 1 Hello! iPhone
The Navigate menu has items that let you get around your project effi-
ciently. The best way to use this menu is to learn the hotkeys for each
action.

The Editor menu is useful when you’re writing code and gives you
ways to get extra help while editing.

Figure 1.11 Navigate menu

Figure 1.12 Editor menu

Figure 1.13 Product menu
You use the Product menu to build and run your projects.

Running Xcode for the first time 15
Running Xcode’s iPhone simulator
You haven’t really done anything yet, but the Single View Application
template created a fully working application for you. It’s just a blank
gray window, but let’s build and run it to see how it works. To build the
app, press Cmd-B (or choose Product > Build). The message Build
Hello: Succeeded should appear at the top of Xcode, like this.

There are a lot of ways to run the application. To get you used to the
one that’s the most useful during development, press Cmd-R (or
choose Product > Run).

The iPhone simulator will come up with a blank gray screen. Now is a
good time to look at the simulator. To simulate turning the iPhone into

SO ... ARE YOU DONE YET?

MY "MIRROR
MIRROR" CLONE
JUST BUILT.

Figure 1.14 Build results in Xcode
landscape mode, press Cmd-Left (or choose Hardware > Rotate Left);

16 CHAPTER 1 Hello! iPhone
and to put it back, press Cmd-Right (or choose
Hardware > Rotate Right). You can also click the
Home button at the bottom of the phone and see
an iPhone home screen with a few apps, includ-
ing Safari, installed.

Play around with the simulator to get a feel for
how it works. When you’re done, quit the simula-
tor so you learn how to do more with this app.

Figure 1.15 The iPhone simulator running the
Single View Application template

Introducing Interface Builder
Interface Builder is the part of Xcode that lets you
draw your application. Well, not really. You’ll still have
to write code to make your apps do anything, but for a
lot of your screens, you’ll be able to use Interface
Builder to make them.

To start Interface Builder, go to the Project Navigator
tree in Xcode, and click HWViewController.xib. The
file will open in Interface Builder, and you’ll see this:

Figure 1.16
Interface Builder
main editor

Introducing Interface Builder 17
This is Interface Builder’s main editor, and it lets you
navigate through the parts of the user interface. The
left side is the dock, and the editor shows the actual
UI you’re building. There are inspector panes to
show you more detail. You get to them by showing
the utilities pane with this toolbar or pressing Opt-
Cmd-0.

That will give you access to all the inspec-
tors. The fourth one, the Attributes Inspec-
tor, can be used to change how the view
looks.

You use inspectors to change the selected
part of the view. The easiest thing to change
is the background
color. Do it by click-
ing the gray rectan-
gle to the right of the
word Background in
the inspector. The
Colors dialog will
come up, and you

can change the color in a variety of ways.
Choose a new color, and then run the new appli-
cation by pressing Cmd-R.

Figure 1.19 Interface Builder Colors dialog

Figure 1.17
Xcode’s Show
Utilities toolbar

Figure 1.18
The Attributes Inspector
www.allitebooks.com

http://www.allitebooks.org

18 CHAPTER 1 Hello! iPhone
The last utility to take a quick look at is the
Object Library. It should have come up
automatically, but you can open it with Ctrl-
Opt-Cmd-3 (or by choosing View > Utilities
> Show Object Library). The Library is a
way of browsing all the available controls
you can add to your view. The objects in the
Library are what you’ll add to your view in
order to define your user interface.

There’s a lot more to Interface Builder. You
probably noticed that every utility we looked
at had multiple tabs. We’ll discuss those
when you need them, but you now know
enough to make your first app, Hello,
World!—so let’s make it.

Making Hello, World!
You’re going to make a lot of apps in this book, each
one building on the ideas you’ve learned. The first
of these apps is called Hello, World!, and it’s the
simplest app you can make that does something. It
may not seem like much, but there are apps in the
App Store that are just a variation on it. One of the
most famous was the I Am Rich app, which was just
a picture of a ruby and which sold a couple of times
for $1,000 each before Apple removed it.

Even though this app is simple, we suggest that you
build it the same way you’ll build all apps, and begin
with a drawing and a simple description of what the
app does. It would be a good idea to get some graph
paper for sketching your apps. The ratio of a pre-
iPhone 5 screen is 320 wide by 460 high, so try to
keep that ratio in your drawings (the iPhone 5’s
ratio is 320 by 568). Here’s a sketch of Hello,

Figure 1.20
Interface Builder’s
Object Library Dialog

Figure 1.21
A sketch of
World!: Hello, World!

Making Hello, World! 19
After you sketch the views, the next thing to do is list the behaviors,
transitions, data, and external resources that the app has or uses. Your
app is non-interactive, has no other views, stores no data, and accesses
no other resources, so that’s easy to specify.

Let’s build the app. In Interface Builder, follow these steps:

1 Drag Label from the Object Library onto the view.

2 Double-click the label, and type Hello, World!.

3 With the label selected, bring up the Attributes Inspector (Opt-Cmd-4).

4 Change the font or color to your preference.

5 Save.

It should look like this:

Figure 1.22 Hello, World! in Interface Builder

20 CHAPTER 1 Hello! iPhone
Press Cmd-R to build and run the application.
The iPhone simulator will open with your app.

Hello, World! is now complete. You might want
to take a second to do a little celebratory dance
before we move on. Go ahead. No one’s looking.

Editing, building, and running
You’ve now seen most of the major pieces of
iPhone development and have used Xcode and
Interface Builder to draw, build, and run your
first application. Making apps is a constant iter-
ation of this edit-build-run cycle. You’ll be doing it over and over, and
eventually you’ll have completed apps. Each time through the cycle,
you’ll learn a little more about how to use the tools.

The one thing you haven’t seen is how to code in Objective-C, which is
the way you can get your application to react to touches, change views,
use data, and access the resources and features of the iPhone. In the
next two chapters, you’ll learn the underlying concepts of object-
oriented programming, how they work in the iPhone, and how to write
code in Objective-C.

Figure 1.23
Hello, World! in the
iPhone simulator

2
Thinking like an iPhone
developer

This chapter covers

• Model-view-controller

• Object-oriented programming

• Object lifetime

There’s only so much you can do with Xcode and Interface Builder with-
out code, but before we get to Objective-C, you need to know more about
how iPhone apps are structured. Once you
understand that, it will be easier to understand
how to code your app. Think of this as the
part of The Karate Kid where Miyagi has Dan-
iel painting fences and waxing floors. Or
when Yoda makes Luke carry him through the
swamps of Dagobah. Or maybe you’re more
of a Sound of Music fan. If so, let’s start at the
very beginning.
21

22 CHAPTER 2 Thinking like an iPhone developer
Using model-view-controller to dissect apps
When Maria danced through the streets of Salzburg with the von
Trapp children, she taught them how to sing using the song “Do-Re-
Mi.” Similarly, iPhone development can best be understood with the
letters M-V-C. MVC, or model-view-controller, is a common way of
thinking about apps and is used by web programmers, Windows and
Mac programmers, and mobile app programmers (like us). It’s useful
for any application that has a user interface.

A model is anything in your app that isn’t related to the user
interface. In applications that store data, models are used to
represent the things that you store. For example, imagine a
grocery list application where you keep track of everything
that you want to buy, where it is in the store, and how much
of it you need. A model can be used to represent the items
you want to buy. Each item has a name (such as “Bananas”),
the aisle (such as “Produce”), and the amount you want to
buy (such as “One bunch”).

Figure 2.1 MVC diagram

Figure 2.2
Model diagram

Using model-view-controller to dissect apps 23
A view is what you see on the screen and interact with. When you draw
sketches of iPhone apps or use Interface Builder, you’re drawing the
view. To make things easier later, you keep each part of the user inter-
face in a separate view. That means each button you click, text box you
fill in, or check box you check is its own view. Views do more than just
show the user what is going on—they’re also responsible for letting the
rest of your application know they’re being touched. On that grocery
list, the list you see is the view. Each item is in its own view, and when
you touch the item to cross it off the list, its view is the part of the app
that is first to know.

Figure 2.3 View diagram

24 CHAPTER 2 Thinking like an iPhone developer
A controller is where you coordinate everything. Your controller decides
what to do when a button is clicked, when to show a different view,
and what models should be changed. If you were to draw a flowchart
of how your app works, a lot of that would be represented in your con-
trollers.

So, using a grocery list app example again, when you touch the Gro-
cery Item View on your phone to indicate that you’ve put the item in
your shopping cart, the view tells the Grocery Item View Controller
that it’s been touched. The controller tells the model to remember that
it’s been taken, and then it tells the view to show it crossed out.

The best way to learn MVC is to open apps on your
phone and start seeing their features as models, views,
and controllers. Every app on your phone can be broken

down into these parts. You don’t have to do it this way, and your app
will still work if you put something in the wrong place, but it’s much
easier to understand and work on your application if you keep the
components straight.

Figure 2.4
Controller diagram

Using model-view-controller to dissect apps 25
Thinking about apps as models, views, and controllers
Maria told us that once we knew the notes to sing, we could sing most
anything. That applies to MVC and iPhone development too. Now that
you know MVC, you know something about how every app is made.
Again, they might not be made this way, but let’s not let that stop us.

Let’s look at one of the built-in apps on
your iPhone. The easiest to understand is
Calculator. Play with the app a little, and
think about the kinds of things that are
happening in it.

The app starts by displaying a grid of but-
tons that have numbers and symbols on
them. It also has a result area that starts
with the number 0 in it. Let’s call the
whole area of the screen the calculator view.
It uses button views to draw buttons and a
result view to show the result. Each view—
the calculator view, button views, and
result views—have to be able to draw
themselves on the screen. To do that, they
all need to know their position and size.
Button views also need to know what text to show and what color they
are. Position, size, content (such as text), and color are common things
that views need to know.

Figure 2.5
The Calculator app

Figure 2.6

Views used in the Calculator app

26 CHAPTER 2 Thinking like an iPhone developer
Once you’re running the app, several buttons are created, each with a
location, a size, content, and a color. For example, the 7 button is near
the left and about halfway down. It’s black. It has the number seven
drawn on it in white, and it’s about the size of the tip of your finger.
The Calculator app creates 22 button views on itself when it starts.

Now, click the 7 button. The result view displays 7. Click 3, and the
result view now shows 73. Using what you know about MVC, here’s
how it works.

This continues as you push buttons. The model creates the numbers
from the button presses and does the arithmetic, the view shows the
answers and detects the touches, and the controller figures out what
happens next.

This might seem complicated, but by doing this for larger projects, you
can keep related code together. Also, by keeping views separate from
logic in the models and controllers, you can change what the app looks
like by replacing the views and keep the rest of the app the same.

Figure 2.7 How MVC works in the Calculator app

Using model-view-controller to dissect apps 27
Think that’s far-fetched? Turn
your iPhone 90 degrees.

Turned 90 degrees, the app is
still a calculator. There’s no rea-
son why the models and control-
lers you created can’t be reused.
By making sure the view of the
app is separate, you can create
an alternate view to use in land-
scape. Separation allows you to
vary each part independently.

A lot of apps come with the phone, so take a look at them. If you’re
bored, download a game and goof off for an hour (we mean, figure out
how MVC is used in it). When you’re done, take the test in the next
section.

Test yourself on models, views, and controllers
These are some of the things the various apps that come with your
iPhone do. Would the code for the feature be in the model, the view, or
the controller?

Figure 2.8
The Calculator app in landscape
www.allitebooks.com

http://www.allitebooks.org

28 CHAPTER 2 Thinking like an iPhone developer
If you’ve done well on this pop quiz,
you’re ready to learn more about a
broader concept called object-oriented pro-
gramming. If not, it might be a good idea
to reread this section, because under-
standing MVC is essential to understand-
ing how iPhone apps are organized.
When you’re ready, go get a snack. You
deserve it.

Table 2.1 Test yourself

App feature Model, view,
or controller

1. In the Clock app, the current time is found in a …

2. In the Photos app, when you resize a photo by pinching it, your pinch is
 detected by a …

3. In the Photos app, when you swipe a photo, the app interprets that to mean
 to go to the next photo. The code for that is in a …

4. To unlock your phone, you need to slide a …

5. In the Contacts app, your best friend’s name and phone number are stored
 in a …

6. In the Calendar app, the current date is drawn in blue by the …

7. In the Calendar app, when you touch the right arrow, the … decides to go to
 the next month.

8. In the Phone app, when you click a contact, the … dials the phone for you.

9. In the iPod app, the titles of the albums are found in a …

10. In the Weather app, the sun and rain icons are shown in a …

Designing apps with objects 29
Breaking down your applications to models, views, and controllers is a
start, but there are two more concepts that will help get you from there
to an iPhone app. The first is understanding how the various parts of
your apps communicate with each other, and the second is understand-
ing how to take each part (whether it’s a model, a view, or a controller)
and break it down further. To do that, you need to learn about object-
oriented design and message passing. Let’s get started.

Designing apps with objects
When Steve Jobs was between his two Apple
stints, he headed a company called NeXT.
Apple acquired NeXT and used its software
as a basis for Mac OS X, Xcode, Objective-C,
and much of what makes up the system soft-
ware for Apple’s products. In 1994, while still
at NeXT, Jobs did an interview with Rolling
Stone where he extolled the virtues of object-
oriented programming, a style of program-
ming he saw at Xerox on the same day he first saw the graphical user
interface. Here is an excerpt from that interview.

Would you explain, in simple terms, exactly what object-oriented software is?

Objects are like people. They’re living, breathing things that have knowledge inside them about
how to do things and have memory inside them so they can remember things. And rather than
interacting with them at a very low level, you interact with them at a very high level of abstraction,
like we’re doing right here.

Here’s an example: If I’m your laundry object, you can give me your dirty clothes and send me a
message that says, “Can you get my clothes laundered, please.” I happen to know where the
best laundry place in San Francisco is. And I speak English, and I have dollars in my pockets.
So I go out and hail a taxicab and tell the driver to take me to this place in San Francisco. I go get
your clothes laundered, I jump back in the cab, I get back here. I give you your clean clothes and
say’ “Here are your clean clothes.”

You have no idea how I did that. You have no knowledge of the laundry place. Maybe you
speak French, and you can’t even hail a taxi. You can’t pay for one, you don’t have dollars in
your pocket. Yet I knew how to do all of that. And you didn’t have to know any of it. All that
complexity was hidden inside of me, and we were able to interact at a very high level of abstrac-
tion. That’s what objects are. They encapsulate complexity, and the interfaces to that complexity
are high level.

30 CHAPTER 2 Thinking like an iPhone developer
When your app is running, each piece, whether it’s a model, a view, or
a controller, is an object. As Steve Jobs described, each has memory
inside it and a list of messages it understands. To use an object, you
need to have access to it and to send it a message. It will do the work
associated with the message and provide a result. Most messages need
you to provide something along with them. In the laundry example,
your dirty clothes are what you provide to the message, and the result
of the message is the bag of clean clothes. The things you provide are
called arguments or parameters, and the result is called the return value.

To describe what an object can remember and
what messages it understands, you create a class in
Xcode. It can be confusing to remember the differ-
ence between classes and objects. Just remember
that classes are what you write in Xcode. They’re
the blueprints. Xcode takes those blueprints and
creates an app. When you run the app, it creates
the objects that are the “living, breathing things”
that make the app do something. Multiple objects
can be made from the same class. For example,
most of the button objects you see in an app are
made from one class.

To help keep things straight, in diagrams in this book, classes will be in
rectangles and objects will be in circles. Here are the parts of a class.

You create classes in Xcode to describe the objects that will do what
you want your app to do. In your class, you define the messages that

Figure 2.9 Classes
each object will be able to understand and what it needs to remember.

Designing apps with objects 31
But objects need to collaborate in order to get their work done. To do
that, you need to connect them.

Establishing class relationships
If objects are living and breathing, they’re going to want to get into
relationships with each other. This is an important part of object-
oriented programming, because without knowing another object, you
can’t send a message to it. Our job, as programmers, is to make intro-
ductions, help the objects make small talk, convince them to form long-
term relationships, and then, eventually, help them break up.

The weakest relationship is the uses-a relationship. All this means is
that in some way, one class uses another class. Usually, one of its mes-
sages takes a class as an argument or returns a class. Or it could be that
while doing the message, a class needs temporary access to an object of
the other class. If that’s the only way two objects are related, we show
that with a dashed arrow, like so:

The next type of relationship is has-a, which we represent with a closed
arrowhead. Sometimes it’s important to see other details, like how
many of another object each object has and what that object calls the
other object it has. If you don’t see a number by the arrowhead, you
can assume the object has only one of the other object.

Figure 2.10
uses-a relationship

Figure 2.11

has-a relationship

32 CHAPTER 2 Thinking like an iPhone developer
The has-a relationship means the class could be considered an integral
part of the one that has it. For example, a person has eyes, or a car has
wheels. Or it could be that one class just has to keep track of another,
like the way a person has a car. In the latter case, the has-a relationship
can be mutual—the person has a car, and the car has an owner.

The most intimate relationship is is-a. This is a
special relationship that means one class can
perform every message that another one can,
plus more. In addition, the class can choose to
change the messages so that each message can
do more. This is allowed as long as the changed
messages do everything that the original mes-
sage promised it would do. We represent this
relationship with an open arrowhead. We
won’t use it as much as the other relationships,
but the iPhone SDK uses it all the time. You
saw this type of relationship with views earlier.
Buttons, tables, and labels are all views, so

they remember everything that views remember and handle all mes-
sages that views handle. This relationship is also called inheritance, and
the class is said to inherit its parent’s or superclass’s messages. If the mes-
sage is changed in the child, or subclass, that is called overriding the
message.

These diagrams show you how classes are related, which tells you
which messages they can send. What’s more interesting is to know
which messages they do send. This is something that happens when the
app is running, so it involves the objects, not the classes. We can use a
diagram like the one on the next page to show the objects and the mes-
sages they send to each other.

To understand this diagram, the first thing to notice is what the objects
are that are represented by individual circles. To get your laundry
done, you send a message to a Launderer, and behind the scenes, they
use a Cabbie and a Laundromat. Each arrow represents a message
being passed, with the arrow starting at the object that passes the

Figure 2.12
is-a relationship

Designing apps with objects 33
message and pointing to the object that receives the message. The num-
bers determine the order of the messages:

B You ask the Launderer to do your laundry. You provide dirty
clothes as a parameter.

c The Launderer hails a taxi and asks the Cabbie to go to the Laun-
dromat.

d The Cabbie drives to the destination and lets you know when
you’re there.

e The Launderer asks the Laundromat to clean the dirty clothes.

f The Laundromat returns clean clothes.

g The Launderer hails a taxi to get back.

h The Cabbie drives the Launderer back.

i The Launderer returns your cleans clothes to you.

Eventually, once you’ve worked out your class and object structures,
you need to put them in Xcode. If you poked around the Hello World!

Figure 2.13 Object interaction diagram for doing laundry
project in chapter 1, then you’ve seen some files that were automatically

34 CHAPTER 2 Thinking like an iPhone developer
generated, and by now, some of their names, like HWViewController.h,
are starting to make a little more sense. You know enough to understand
them better.

Organizing classes in headers and modules
In Xcode, each class has two parts: a header and a module. The header is
like a table of contents. It contains a list of everything that objects of
this class can do, but no details about how they do it. To use one of a
class’s objects, you only need to know what’s in the header. If you poke
around Xcode’s Project Navigator, you’ll find headers stored in .h files.
The content of the header file is called the interface of the class.

The modules (which are put in .m files) are the
actual details of how to do the tasks indicated
in a message. The content of a module is called
the implementation of the class.

Many times, in the implementation, you send
messages to other objects. For example, in the

Launderer class’s module, inside the “do my laundry” message, you’d
find that it sends messages like “hail a taxicab” and “talk to the driver.”
As you have seen, the messages for the driver would be in another
class, and the cab’s messages would be in yet another. For example, the
driver understands “take me to the laundromat,” and the car under-
stands “go left,” “go right,” and “stop.”

One nice thing about all this is that it makes it possible for you to get
some of your classes from other people. Maybe you’re working on a
team, and you’re great at writing code for a car, and your teammate is

great at writing cabbie code. They don’t need to know
how the car does anything, and you don’t need to know
the directions to the laundromat. You each work on the
modules you understand, and the classes will work
together just fine.

And the best part is that all the features of the phone are available
for you to use this way. You send the Camera object a “take a pic-
ture” message and the GPS object a “Where am I?” message. You

can concentrate on the parts that make your app unique.

Avoiding crashes by understanding object lifetime 35
Objects can be in a lot of relationships. But every
relationship story has a beginning and an end.
How do these objects meet? How do they break
up? How are they born, and when do they die?
These questions are some of the most important of
object-oriented programming, and we’ll get to
them in the next section. In the meantime, now
might be a good time to strengthen your own rela-
tionships. Call an old friend, say hi, catch up.

Avoiding crashes by understanding object lifetime
In this chapter, so far, everything has been a guideline. If you don’t get
it right, your app will probably still work. You don’t have to use MVC,
and you can put all your code in one giant class. It will be hard to make
improvements, but the iPhone doesn’t care about that. The same isn’t
true for this section. If you don’t get object lifetime right, your app will
eventually crash.

Before you can send a message to an object, the object needs to be cre-
ated. If you never intend to send another message to it, it should be
destroyed. This is because each object uses system memory while it’s
alive. Your iPhone has a lot less memory than a desktop or laptop, so if
the iPhone senses that you aren’t letting your objects die, it will kill
your app. If you destroy an object and then another object sends it a

message, the iPhone will kill your app because it’s talking to dead

36 CHAPTER 2 Thinking like an iPhone developer
objects. There are other reasons why iPhone apps crash, but these are
the most common. Luckily, with Automated Reference Counting
(ARC), which we’ll always use in this book, you don’t have to do this
yourself; but it’s good to understand what’s going on in case you run
into problems, which is still possible.

The first thing to know is that Objective-C gives
every object a count for you to use to keep track
of how many objects are in a relationship with it.
ARC is responsible for increasing this count
whenever an object enters a relationship and
decreasing it when the object relationship breaks
up. The count is called the retain count. ARC
increases it by sending a retain message and
decreases it by sending a release message.

Creating an object is called allocating it (as in, “allocating memory for
it”) and destroying it is called deallocating it. When an object is allo-
cated, it’s assumed that the object will immediately enter into a rela-
tionship, so its retain count starts at one. When an object has a retain
count of zero, it’s sent a deallocate message to free the memory associ-
ated with it.

As a result of the deallocate message being
called, ARC knows that the objects it has
are no longer being referenced, and it
sends them a release message to indicate
that the has-a relationship is about to end
(because the containing object won’t exist).
If no other object is using the object, its
retain count becomes zero as well, causing
a deallocate, and so on.

The object-lifetime diagram on the next page shows how the Launderer
example might work. Objects start to exist after they’re allocated, and
they live until they’re sent a release message that brings their retain count
to zero. In this case, you have a simple, balanced allocate and release,

remembering that the allocate created the object with a retain count of

Avoiding crashes by understanding object lifetime 37
one. The final release causes a deallocate message to be sent to the object,
which triggers releases to any objects it has. In this case, the release to
Cabbie causes it to deallocate and release its Car (causing it to deallocate
as well). The reason you never send a deallocate yourself is that you can
never be sure that some other object isn’t also using it. The retain count-
ing makes sure you don’t need to know if the object is still in use.

Object lifetime is an important topic, and one
that you need to understand well to make
sure your apps don’t crash. ARC helps by
sending all the release and retain messages
for you; but you may still run into a crash
now and then, so it’s a good idea to know
what’s happening under the hood.

Figure 2.14 Object lifetime
www.allitebooks.com

http://www.allitebooks.org

38 CHAPTER 2 Thinking like an iPhone developer
Applying object-oriented design
To understand object-oriented design, you’ll have to practice using it.
You’ll get lots of chances to do this when you work with the sample
apps in part 2 of this book.

But let’s try to put together the concepts using the laundry example.
Imagine the object-oriented system inside the Laundromat. Until now,
you’ve thought of it as a single object that you send the message “clean
these clothes.” But in reality, it has a collection of classes that it needs
in order to implement its messages. Here’s a partial class diagram to
start with:

Fill in the following information:

❂ Washing Machine and Dryer are Machines.
❂ All Machines need to remember how much time is left.
❂ Laundromat has one or more Washing Machines and one or more

Figure 2.15 Laundromat classes
Dryers.

Applying object-oriented design 39
❂ Washing Machine uses Detergent.
❂ A Machine needs messages like “load clothes,” “put in money,” and

“start.” Both Dryers and Washing Machines inherit these messages
from Machine.

❂ Washing Machine needs an additional message: “put in detergent.”
❂ Dryer needs an additional message: “set heat level.”

When you’re done, the diagram should look something like this, but
don’t worry if it’s not exact.

How did you do? Did you remember the three types of relationships
you learned? Did you know where to put the messages? Did you
understand how inheritance was represented? This is something we’re
going to revisit, so you’ll have plenty of chances to see working
examples.

Figure 2.16 Laundromat classes complete

40 CHAPTER 2 Thinking like an iPhone developer
Preparing to code object-oriented designs
You now have all the tools to start learning Objective-C. The diagrams
you’ve seen are meant to help you organize your ideas enough that you
can begin to code them. You’ll find that as you code, your diagrams will
be wrong, and you’ll learn more about what you need to do as you do
it. Maintaining the diagram to some extent will help, because looking at
one diagram will help you understand things that can only be seen
across many code files. Remember that each class consists of two files,
and even very small apps may have half a dozen or more classes.

In the next chapter, you’ll see how each rectangle, circle, line, arrow,
and other diagram element maps to code elements. You’ll see how to
create the header and module files that describe a class, fill the class
with messages, and handle the messages. Along the way, you’ll learn
about conditionals, loops, variables, and the other things that are nec-
essary to code the functionality of your apps.

3
Coding in Objective-C

This chapter covers

• Creating classes to match your designs

• Declaring and implementing messages and properties

• Connecting code to views in Interface Builder

In the last chapter, you learned how to go from ideas to object-oriented
designs. In this chapter, you’ll learn how to code those designs. By itera-
tively applying the concepts of sketching, designing, and coding, you’ll
eventually have an app.
41

Figure 3.1 Sketch, design, code

42 CHAPTER 3 Coding in Objective-C
To finish an app, you’ll go through this loop many
times, refining it on each pass. You already know how
to create designs by sending messages to classes that
are organized into models, views, and controllers, so
you’re halfway there.

Representing those designs as code is the most exacting
of the three skills you need to create an app. Your note-
book won’t complain if it doesn’t like your sketch or
design, but Xcode will put up error after error if you

don’t get the syntax exactly right. In reading this chapter, pay attention
to every detail about creating classes, messages, and properties.

Creating classes to match your designs
In your designs, you spent a lot of time thinking
about what the classes should be, what proper-
ties they should have, and what messages they
need to respond to and send. You’ve also learned
that classes can be in different kinds of relation-
ships with each other. In Objective-C, you’ll see
each piece of the class in two places, the header
and the module, which together define the parts
of a class.

Creating classes to match your designs 43
You can start learning how to code each part by looking at the classes
Xcode generated for you in the “Hello World” app. Open Xcode, and
click HWViewController.h. It looks like this:

#import <UIKit/UIKit.h>

@interface HWViewController : UIViewController {

}

@end

The #import statement indicates a relationship, in
this case to the iPhone UI classes. In your dia-
grams, wherever you’ve drawn an arrow from
one class to another, you’ll need to use an import to let Xcode
know that one class relies on the information in another.

The @interface line is where you put the name of the class
and list any is-a relationships you’re in. In iPhone program-
ming, all view-controller classes need to inherit from UIView-
Controller. So, your class will automatically respond to all of
the messages in a UIViewController, which means you can
concentrate on how yours is different.

The interface of the class is defined between the @interface and @end
statements. You put the class’s properties (which include the other
classes this one has) between the curly braces, and you put the mes-
sages after the closing curly brace and before the @end. Remember, the
interface is like a table of contents. You just need to list the messages
here, not say how they work.

44 CHAPTER 3 Coding in Objective-C
Declaring a message
Before you can fill out the header, you need to learn how to code mes-
sages. Objective-C, like most programming languages, requires that
you get each character you type in exactly right. Before you fully
understand the syntax, it may seem like a random collection of letters
and punctuation, but you need to make sure you copy it into Xcode
exactly as you see it.

When you list a message in the header, that’s called
declaring it. To declare a message, you need to
know its name, its parameters, the types of the
parameters, and the type it returns. Many types are
available. To start with, each class you make can be
used as a type, and the iPhone comes with thou-
sands of classes you can use; there are also built-in
types for simple things like numbers and yes/no val-
ues. Some of the most common are shown in this
table.

Table 3.1 Common classes and built-in types

Type Description

NSString* Text values like @"Hello" and @"Good-bye"

NSDate* Dates like July 4, 1776

int Positive and negative integer numbers, like -1, 0, and 5

bool YES or NO

double Positive and negative decimal numbers like 3.14159, 0.0, and -123.45

void Message return values that indicate there isn’t a return value

NSMutableArray* A collection of any number of other objects, such as a list of strings
or dates

UIButton* A button on a view

UILabel* A label, like the one you used in the Hello World! app

Creating classes to match your designs 45
Here are some ways a message can look in
your header. The simplest is a message
without any parameters or a return. You
use it to tell an object to do something it
knows how to do without any more infor-
mation, and you don’t want anything back
from the message.

Here’s an example of a message that returns an
int (an integer number).

Here’s an example of a message that returns an int and takes a text
parameter using the type NSString*. Anything of type NSString* is called
a string.

Figure 3.2
Message with no parameters or return

Figure 3.3
Message with no parameters and
an int return

Figure 3.4 Message with a string parameter

46 CHAPTER 3 Coding in Objective-C
Finally, you can have a multiple-parameter message. In this
case, the name of the message is split up so that parts of it
can be associated with the role of the parameter within the
message. Here’s what it looks like:

Your actual messages will have more descriptive names for both the
message and its parameters. Let’s try some examples. Think of a name
for the message, what it should return, and any parameters it takes. For
types, let’s use int or double for numbers, bool for yes/no values,
NSString* for text strings, NSDate* for dates, NSMutableArray* for lists, and
void if you don’t need a return value.

Table 3.2 Declare these messages

Message description Declaration

1. A message that returns the first name of a person object as a string

2. A message that returns how old someone is, given a birth date

3. A message that takes the name of a parent and returns a list of their children

4. A message that takes a string and returns the number of letters in it

5. A message that takes a number and returns whether it’s positive or not

6. A message that takes two yes/no values and returns yes only if the values
 match each other, and no otherwise

Figure 3.5 Message with multiple parameters

Creating classes to match your designs 47
At this point, you should be working on
getting the syntax of the message declara-
tion correct. You don’t need to match
these choices of names exactly or care
whether you used an int or double if the
choice was arbitrary. Here’s a possible set
of correct answers:

1 -(NSString*) getFirstName;
2 -(double) getAge: (NSDate*)birthdate;
3 -(NSMutableArray*) getChildrenOfParent:

(NSString*)parent;
4 -(int) getNumLetters: (NSString*)string;
5 -(bool) isPositive: (int)number;
6 -(bool) doesBool: (bool)a matchBool:(bool)b;
7 -(NSDate*) getFutureDate: (int)days;
8 -(bool) isCapital:(NSString*)capital ofState:(NSString*)state;
9 -(NSString*) getFullNameFromFirstName: (NSString*)firstName lastName:

(NSString*)lastName;
10 -(void) showAlert:(NSString*) text;

Although the names and exact types might be arbitrary, the minus
signs, stars, parentheses, and semicolons aren’t. If you get this wrong,
Xcode will let you know with fairly cryptic error messages. You have
to get good at writing the syntax exactly or noticing when it’s not right.

7. A message that takes a number and returns the date that is that number of
 days in the future

8. A message that takes two strings a state, and a capital, and returns yes if
 the capital is the capital of that state

9. A message that takes a first name and a last name and returns a string with
 them separated by a space

10. A message that takes a string and shows an alert containing the string

Table 3.2 Declare these messages (continued)

Message description Declaration
www.allitebooks.com

http://www.allitebooks.org

48 CHAPTER 3 Coding in Objective-C
Now that you’ve had practice with declaring messages, it’s just a small
jump from here to writing messages for view controllers that Interface
Builder can attach to views. We’ll cover that next.

Declaring a view-controller message for your views to send
As you saw in the previous chapter, in model-view-controller (MVC)
applications, views need to send messages to controllers whenever the
user does something with the app. In iPhone programming, because you
you use Interface Builder to draw views and don’t write any code,
there isn’t a place to put the code to send a message. Instead, you create
special messages in the view controller called actions, and Interface
Builder lets you attach them to views.

Actions must take one parameter called sender with type id, which rep-
resents the view that caused the message to be sent. Actions don’t return
anything, but Interface Builder want us to use
IBAction as the return type instead of void. Here’s
what an action message declaration looks like:

-(IBAction) actionMessage: (id)sender;

Messages are the main building block of classes. In
your apps, you’ll be spending a lot of time defining
them, sending them, and processing their results.
But they aren’t enough. Next, you’ll see how

Figure 3.6 What errors
you’ll get for each change
objects remember things between messages.

Creating classes to match your designs 49
Using properties to save data in objects
So far, we’ve concentrated on messages, but objects also need to carry
around data with them to keep track of where you are in your app.
Additionally, all those has-a relationships we talked about must be
remembered, and you can use properties for those as well.

A property consists of a type, a name, and two messages to get and set
its value. This combination is so common that Objective-C provides
some shortcuts to help you make them quickly. The first step is to
declare the field in your header file to set the type and name of the
property. This is put between the two curly braces:

To have Objective-C create the two messages for you, you need to use
@property. It’s used in the messages section of the header, and it looks a
lot like the field declaration you just saw:

You’re only going to use two options. The
first one is either strong (which is the same as
retain) or weak. These terms let Objective-C’s Automated
Reference Counting (ARC) know how it should manage
memory for you. You only need to use the strong option if
you create the property manually and the property is using

Figure 3.7 Syntax for a field (instance variable)

Figure 3.8 Syntax for a property
a class for its type (using a class name and star). If the

50 CHAPTER 3 Coding in Objective-C
propriety is automatically created by Xcode, then
the option will most likely be weak. The second
option, nonatomic, says that you aren’t accessing
this property from multiple threads (which you aren’t,
because you don’t know how).

If you want to use a piece of a view in a view controller, you
use an outlet property. To declare the outlet, you use this:

So far, you’ve broken down apps into classes; organized classes into
models, views, and controllers; and learned that classes are made up of
properties and messages. The next steps are to learn how to define the
messages to say what they do and to get the various objects to commu-
nicate with each other. The easiest connections are between the views
and view controllers, because if you use outlets and actions, Interface
Builder can help us connect them with a GUI. You’ll see how to do that
in the next section.

Figure 3.9 Syntax for an IBOutlet

Connecting code to views in Interface Builder 51
Connecting code to views in Interface Builder
You draw views in Interface Builder and write code in the text editor.
As you’ve seen, there are special messages called actions and special
properties called outlets that connect views and controllers. Views send
actions to controllers when they’re touched, and controllers can access
and change views through their outlet properties.

To see this better, let’s make the Hello World! app a little more interac-
tive. Instead of saying hello to the entire world, let’s have it ask for
your name and then say hello to just you. It will look like this:

The first thing to do is identify all the parts of the view:

Figure 3.10 Sketch of new Hello app
Figure 3.11 Parts of the view

52 CHAPTER 3 Coding in Objective-C
Next, you need to figure out which parts of the view will be changed or
accessed by the controller. These are your outlets:

Each part of the view that can change will use a
GUI to create outlets.

The last step before you code is to list any
actions. In this example, the only action is to Say
Hello when the button is touched.

Using the Connections Inspector in Interface Builder
Now you’re ready to draw the view to match
your sketch. You already labeled each part, so it
will be easy to go into Interface Builder and
draw what you need.

To get started, click HWViewController.xib in
Xcode to bring up the Interface Builder editor.
In chapter 1, you put a label there that said
Hello, World!; you should change that to just
Hello and resize it so the text fits exactly in it.

Figure 3.12 The parts of the view that change
You need another label that says Name, a text

Connecting code to views in Interface Builder 53
field next to it, a button that says Say Hello, and a label that says User
Name (until you change it). You can find these pieces in the Object
Library. When you’re done, the view will look like this:

Remember that you change the text of
a label or button by double-clicking it
and typing a new value. You can click
and drag the parts of the view to posi-
tion them and use the grab handles at
their corners to resize them. You want
the Hello and User Name labels to
start out hidden, so click each one and
then check the Hidden field in the
Attributes Inspector. Interface Builder
will show these labels grayed out
rather than hidden so they’re easy to
work with. When you run the app,
they will be hidden.

Figure 3.13 Say Hello view

Figure 3.14 Check box to hide
views at start

54 CHAPTER 3 Coding in Objective-C
Creating outlets and actions using the assistant
Xcode provides an assistant that allows you to cre-
ate outlets and actions using the Interface Builder
GUI. It’s nowhere near as helpful as Alfred the
butler, but the Xcode assistant does save a lot of
typing. To display the assistant, click the button in
the toolbar that looks like a butler’s tuxedo.

When you’re viewing a .xib file, the assistant will display the associated
header file. So, because you’re viewing HWViewController.xib, the
assistant is displaying HWViewController.h. To create an outlet for the
User Name text field, Control-click the text field and drag the mouse
into the assistant between the beginning and end of the interface decla-
ration:

When you release the mouse button, a dialog will pop up with settings
for the outlet. Leave the default settings, but set the outlet name to
userNameTextField and then click Connect.

Presto, Xcode declares a properly typed IBOutlet property and auto-

Figure 3.15
Xcode’s assistant

Figure 3.16 Control-click and drag to create outlet

Figure 3.17 Name the outlet
matically connects it to the text field. Repeat the process for the User

Connecting code to views in Interface Builder 55
Name label and the Hello label, and name the outlets helloLabel and
userNameLabel. When you’re done, you should have the following three
definitions after @interface but before @end:

@property (weak, nonatomic) IBOutlet UITextField *userNameTextField;
@property (weak, nonatomic) IBOutlet UILabel *userNameLabel;
@property (weak, nonatomic) IBOutlet UILabel *helloLabel;

And because you’re using ARC, you don’t have to do
anything special to release them.

Finally, you need to declare and define the sayHello
action. Remember, actions always return IBAction
and take a parameter of type id called sender. You
can create IBActions the same way you created your
IBOutlets using the assistant. Control-click the Say
Hello button, and drag the mouse over to HWViewCon-
troller’s interface declaration:

This time you need to change the connection type from Outlet to
Action. Name the action sayHello:

Figure 3.18 Control-click and drag to create action

Figure 3.19

Set the connection type and name

56 CHAPTER 3 Coding in Objective-C
Xcode will insert the following message declaration in your header:

-(IBAction) sayHello: (id)sender;

And in your module, the assistant automagically adds this empty mes-
sage body, which you’ll fill in later:

-(IBAction) sayHello: (id)sender
{
}

Your project can now be built, so press Cmd-B or use the
Product > Build menu to build. You should have zero
errors and zero warnings.

If you’ve made a mistake, you can always delete a property
or action. If you delete an action, be sure to delete both the
declaration in the header and the definition in the module.

With your connections in place, it’s time to save and start
coding. The only thing holding back your app from saying
hello to you is that you never filled in the sayHello message
in your module. You’ll do that next.

Defining the action message
Coding messages can get complex. As you see more of them, you’ll
learn the tools that you need to make them. This message is simple, but
it gives you a chance to see how to access outlets and their properties.

You want the sayHello message to do three things:

Figure 3.20

What the sayHello message does

Defining the action message 57
To do that, you need to

B Set the text property of the User Name label to the text property
of the text field.

c Set the hidden property of the Hello label to NO.

d Set the hidden property of the User Name label to NO.

All you’re doing is accessing and changing some properties. The syntax
for accessing a property of an object is

And because properties themselves are often objects with properties,
you can chain together the dots and access the property of a property
like this:

You change a property by using an equals sign and providing an object
of the correct type, and you access an object’s own properties by using
a special predefined object name called self. To see all this in action,
here’s the final code for the sayHello message.

-(IBAction) sayHello: (id)sender
{

self.userNameLabel.text = self.userNameTextField.text;
self.helloLabel.hidden = NO;
self.userNameLabel.hidden = NO;

Figure 3.21 Property syntax

Figure 3.22 Syntax for accessing
a property of a property
}

58 CHAPTER 3 Coding in Objective-C
Replace the code in HWViewController.m with this code, and you’re
done! To see the app, build and run the final result in the simulator
with Cmd-R. When you type your name in the text field and touch the
button, the app should say hello to you.

Of course, real apps need to do a lot more than copy properties around
or set them to constant values. You need to take the values in outlets,
send them to models, and get back results that you then use to change
the view in various ways. In those messages, you might need to make
decisions, do calculations, or access databases or the web. The bulk of
iPhone app writing is defining these messages.

Over the course of the next part of the book, you’ll
build a few real-world apps that use different fea-
tures of the iPhone. Each message will not only
help you get the app done, but will also show you a
new feature of Objective-C or iOS.

Soon you’ll be seeing a full MVC application. You’ll
implement it, enhance it, and modify it with your
own data. In the end, you’ll have a unique app that
you can put in the App Store.

Part 2

iPhone applications:
step by step

his part of the book will teach you how to use the various features of
the iPhone in real applications. In each chapter, you’ll learn first how a
feature works and then how to use it. Each application includes the full
source code and is available on the App Store for you to try. When
you’re finished with this part, you’ll have seen all of the code for the
following:

❂ A simple game that uses touch and animations
❂ An application that uses multitouch and the camera and accesses

your photos
❂ An application that has a database, uses table views, and accesses

contacts and the calendar
❂ An application that uses locations and maps

In chapter 4, you’ll start with a few drawings of a simple FlashCards
game, learn how to identify its views, and draw them in Interface
Builder. Then, you’ll implement the models and controllers that make
the game work. In chapter 5, you’ll add some polish to the app with
icons and startup images. You’ll learn how to make custom buttons
that stretch, and you’ll use animation to make the app come alive. In
chapter 6, you’ll finish the FlashCards app by adding Core Data to
store results and view them later in navigation and table views.

60 CHAPTER
In chapter 7, you’ll start a new app, Disguisey, which will teach you
how to make a tab-based application, access the Photos app, and get
touch locations for images. You’ll add a little animation to Disguisey in
chapter 8 and then learn how to use gestures to get multitouch events.
Finally, you’ll learn how to composite images and save them to the
Photos app.

Chapter 9 discusses how to use maps in views, insert pins into those
maps, and figure out your current location. Then, in chapter 10, you’ll
learn how to access the internet via your app: displaying web pages in
your UI, posting to Twitter, and using information that comes from the
web.

4
Writing an app with
multiple views

This chapter covers

• Designing classes to match your sketches

• Defining your models, views, and controllers

• Changing views based on user interaction

In the last chapter, you learned the syntax
for messages and properties and how you
can make them into actions and outlets so
that Interface Builder can connect views to
them. In this chapter, you’re going to take
the sketches for a real application and see
how to create all of the various pieces. By
the time you’re done, you’ll have made an
application to show flashcards, which you
can customize with your own content.
61

62 CHAPTER 4 Writing an app with multiple views
Designing a flashcard application
For the content of your flashcards, you’ll use U.S. state capitals. Do
you know Juneau from Topeka without peeking? If not, this app will
help.

This app is more complex than the ones
you’ve seen so far, so it’s even more
important that you plan it out a little
before starting. So, let’s make some
sketches of what you want it to look like.
The opening screen is shown at right.

Figure 4.1 Sketch of flashcard start screen

Once you choose which way you want to practice, you’ll see a
sequence like this:

The sketches show that you need three different views: one for the
opening screen, another that shows text and has three buttons for
answers, and another with the final score and a restart button.

Figure 4.2
Sketch
of flashcards

Designing a flashcard application 63
Let’s look at how this app flows:

Finally, it’s a good idea to
think of what model
classes you might need.
The first one, FCCard, represents a flashcard and can
handle a recordAnswer message.

Figure 4.4 FCCard model class

To hold the state of the game, you’ll use a FCGame class. It has cards,
gives you access to them, and tells you when you’re done.

Figure 4.3 Behavior of flashcards
Figure 4.5 FCGame and FCCard model classes

64 CHAPTER 4 Writing an app with multiple views
To configure a game, you’ll use a class called FCAnswerKey
that can generate a deck of cards, each with one right
answer and two wrong ones.

These three classes hold all the information that each of the views might
need. For example, to show a card, the card controller will ask the card
for its card text and answers and then use them on the card view.

To show the final score, the result controller will ask the game for the

Figure 4.6
FCGame, FCCard, and
FCAnswerKey model
classes

Figure 4.7 How the controller will use model
information in the view
number of right and wrong answers.

Designing a flashcard application 65
Here’s how the whole class diagram looks.

Figure 4.8 How the result controller uses game properties in the view

Figure 4.9

All flashcard classes working together

66 CHAPTER 4 Writing an app with multiple views
Each different view needs a controller, and, as you saw, the controllers
use the models to figure out which view to show and what to show on it.

INIT This is the first message that should be sent to an object after allo-
cating it. There are variants that take arguments if they’re needed. You
should only call one init per object.

Another thing to notice is that some classes have a special init mes-
sage. Every class automatically gets an init message to set it up right
after it’s been allocated. If you would like to send parameters to the
init, then you need to make special ones, and you name them starting
with init. For example, you’ll want to give the view controllers the Game
object that you create at the beginning.

Now that you’ve got the basic structure in place, you can learn how to
code it. The more you do up front, the easier it will be to concentrate on
coding one piece at a time. When you start coding, you’ll find that you
made mistakes in the diagram. And once your code is running, you’ll get
better ideas of how your app should work. Still, a little planning is good

Figure 4.10 How the controllers will
share an FCGame model using initWithGame
practice until you’re more comfortable jumping right in and coding.

Creating classes to match your designs 67
Creating classes to match your designs
You did a lot of work to get to the point that you can code. This is typi-
cal, because once you write code, the app becomes a little harder to
change. The sketches will help you keep yourself organized while
you’re coding, and they’re also a great way to explain the code to some-
one else. Sometimes that “someone else” is you in the future when you
come back to the project after being away, so do a good job, and
remember to thank yourself later.

With your design and specification reasonably fleshed out, you’re
ready to begin trying to make this app. In chapter 3, you created your
view first and then used the Assistant Editor to create actions and
properties. In some cases it’s easy to define your controllers and models
first and then create the view. This is especially true when your project
is well planned. This is what you’ll do in this chapter. First you’ll go
through the view controllers and add the messages the view will need.
Then you’ll code the models. Finally, you’ll draw the views and finish
the controllers.

To start, open Xcode and create a new project called FlashCards using
the Single View Application template. This is exactly the same way you
started your Hello World! project:

1 Choose File > New > New Project.

2 Click Single View Application, and click Next.

68 CHAPTER 4 Writing an app with multiple views
3 Type in FlashCards as the product name, fill in your company identifier
(using your domain or anything unique), use FC as the prefix, uncheck
Storyboard, use ARC, and click Next.

4 Pick a folder in which to save the project.

To organize your files a little better, create a Classes group and a
Resources group. To create each group, choose File > New > New
Project. You’re also going to create folders in the Finder that mirror
your project’s group structure. For each group, open a file dialog by

selecting the group and then clicking
the small square under the Path drop-
down in the Utilities tray, which is
located on the right side of the Xcode
window.

When the file dialog opens, click the
New Folder button, name the folder
Classes (or Resources), click Create,

and then click Choose. Move the headers and modules to Classes and
the XIB files to Resources.

Open the Classes group, and click FCViewController.h. It looks like
this.

Listing 4.1 FCViewController.h overview

#import <UIKit/UIKit.h>

@interface FCViewController : UIViewController

@end

Figure 4.11
For each group, open the file
dialog to create a folder.

Needed for
relationshipB

Colon
for is-ac

Data
declarationsdMessage

declarationse

Creating classes to match your designs 69
As you saw in the last chapter, the parts of your diagram map onto the
class definition like this:

The Xcode template helps structure your files, so
you just need to put each part in the correct place.
Unfortunately, it only knows about Objective-C
source files. To add structure to the rest of the
things in your life, you’re on your own.

Declaring a view-controller message for your views to send
Xcode creates your first view and controller for you
when you use the view-based template. Because you
have that one already, let’s start with it. It’s easy to use
because it only has actions.

In the diagram, FCViewController looked as
shown here.

Figure 4.13 FCViewController class diagram

Figure 4.12 How the class
diagram maps to the header

70 CHAPTER 4 Writing an app with multiple views
The class diagram lists two messages, showStates and showCapitals, that
will be called by the view, depending on what button is clicked. These
are actions, so they need to return IBAction and take a sender. Here’s
the code for the header:

@interface FCViewController : UIViewController

-(IBAction) showStates:(id)sender;
-(IBAction) showCapitals:(id)sender;

@end

And here’s how you define the messages in the FCViewController.m file:

-(IBAction)showStates:(id)sender {
}

-(IBAction)showCapitals:(id)sender {
}

Eventually, you’ll put the code for the messages there. But the applica-
tion can now be built, so let’s make sure you’ve done everything right
by pressing Cmd-B. Xcode should say Build Succeeded. If you get any
errors, check all of the code carefully against the listings.

Now that you’ve written most of this controller and declared and
defined its messages, you’re ready to create the rest of your views and
controllers. Controllers define the flow of your application, and as you
saw, if the actions and outlets are done, Interface Builder will let you

attach them to your views.

Creating classes to match your designs 71
Creating your other views and controllers
The design has three view/view-controller pairs. The one you made
will be the startup screen, but you also need to be able to show a flash-
card and the final results. Let’s do that.

In Xcode, chose File > New > File, and then choose Cocoa Touch in
the list at the left and Objective-C Class in the template list. The win-
dow should look like this:

Click Next. In the next window, name the class FCCardViewController,
and choose the subclass UIViewController (this makes your class a
UIViewController). Make sure to create a XIB.

Figure 4.14
Creating a view-
controller class

Figure 4.15
Choosing the base

class and target

72 CHAPTER 4 Writing an app with multiple views
SUBCLASS In an is-a relationship, where class A is-a class B, A is called
the base or superclass, and B is called the subclass. You can also say that B
inherits from A.

Click the Next button, and in the next dialog, make sure the location is
set to the Classes subfolder and group of your project.

Click the Finish button. Xcode will create three files: FCCardViewCon-
troller.m, FCCardViewController.h, and FCCardViewController.xib.
Drag the .xib file to your Resources group with the other files. Repeat
these steps for FCResultViewController.

Your FCCardViewController class now looks
like this.

Figure 4.16
Saving the view-
controller class
Figure 4.17 FCCardViewController class diagram

Creating classes to match your designs 73
The code for the messages and outlet properties looks like this in the
header:

@interface FCCardViewController : UIViewController

@property (nonatomic, strong) IBOutlet UILabel* cardLabel;
@property (nonatomic, strong) IBOutlet UIButton* answer1Button;
@property (nonatomic, strong) IBOutlet UIButton* answer2Button;
@property (nonatomic, strong) IBOutlet UIButton* answer3Button;

-(void) nextCard;
-(IBAction)answerButtonTouched:(id)sender;

And here’s the module (you’ll create initWithGame when you make the
FCGame class):

-(void) nextCard {
}

-(IBAction)answerButtonTouched:(id)sender {
}

Check your work by pressing Cmd-B to build.

Now you can work on FCResultViewController. It
looks like this:

Add these messages after the closing curly brace and before the @end:

@interface FCResultViewController : UIViewController {
 UILabel* numRightLabel;
 UILabel* numWrongLabel;
}

Figure 4.18
FCResultViewController class diagram

74 CHAPTER 4 Writing an app with multiple views
@property(nonatomic, strong) IBOutlet UILabel* numRightLabel;
@property(nonatomic, strong) IBOutlet UILabel* numWrongLabel;

-(IBAction)startAgain:(id)sender;

And add this code in the module file:

-(IBAction)startAgain:(id)sender {
}

Check your work with Cmd-B. If you have
any errors, look carefully at each part of the
syntax. Xcode will usually put you on the
line it’s having problems with, so check that one against these listings.
If they match, make sure you entered the code in the correct place.

Creating the model classes
In previous chapters, the apps you built didn’t do much with user
input, and they certainly didn’t need to store anything for later. Now
you’re going to see what to do when your apps get complex enough to
need models.

The model classes, FCGame, FCCard, and FCAnswerKey, have all the informa-
tion about the app. They work together to set up the game and keep
track of what card you’re on, when you’re done, and how many right
and wrong answers you have.

Figure 4.19

The model classes

Creating the model classes 75
Let’s start with FCCard. To create it, in Xcode, right-click the Classes
group, and then choose New File from the menu. In the following dia-
log, choose to create an Objective-C class; and in the next dialog, call it
FCCard and make it a subclass of NSObject (all classes have a parent, so
use this if you don’t need a different one).

In the next dialog, put the class in the Classes folder.

Click FCCard.h in your Project Navigator. Here you need to declare its
four properties and two messages. It looks like this.

Listing 4.2 Adding properties and messages to FCCard.h

@interface FCCard : NSObject

@property(nonatomic) bool isCorrect;
@property(nonatomic, strong) NSString* cardText;
@property(nonatomic, strong) NSMutableArray* answers;
@property(nonatomic) int correctAnswer;

-(id) initWithQuestion:(NSString*)question)
answer:(NSString*)answer

wrongAnswer1:(NSString*)wrongAnswer1
wrongAnswer2:(NSString*)wrongAnswer2;

-(void) recordAnswer:(int)answerNum;

Figure 4.20
Creating a class

Properties

Messages
@end

76 CHAPTER 4 Writing an app with multiple views
Now you need to define your class in the module. In it, you’ll create
objects, store them in properties, and send messages to them.

The first thing to do is define the initWithQuestion: answer:

wrongAnswer1: wrongAnswer2: message. To do that, you’ll need to send
messages for the first time. The syntax for that is as follows:

If a message returns an object, and you need to send a message to it,
you can nest message sends. It’s common to do this when allocating and
initializing an object. It looks like this:

Figure 4.21 Objective-C
syntax to send a message

Figure 4.22 Objective-C syntax to set a property to a new object

Creating the model classes 77
Here’s the code for the message.

Listing 4.3 FCCard.m init message

-(id) initWithQuestion:(NSString*)question
answer:(NSString*)answer

wrongAnswer1:(NSString*)wrongAnswer1
wrongAnswer2:(NSString*)wrongAnswer2

{
if (self = [super init]) {

self.cardText = question;

self.answers = [[NSMutableArray alloc]
init];

[self.answers addObject:answer];
[self.answers addObject:wrongAnswer1];
[self.answers addObject:wrongAnswer2];

int randomAnswerSlot = arc4random() % 3;
[self.answers exchangeObjectAtIndex:0

withObjectAtIndex:randomAnswerSlot];
self.correctAnswer = randomAnswerSlot;

}
return self;

}

In the init, you build up
an array of answers by
allocating it B, adding
your answers to it c, ran-
domly swapping the cor-
rect answer with a wrong
one d, and then making
sure you remember where
the right answer is e.

The built-in function
arc4random() returns a
random integer. Then you

Create
answers arrayB

Add answersc

Randomly move
correct oned

Remember
correct answere

Figure 4.23 How answers are stored in a

use the modulo operator, Card object

78 CHAPTER 4 Writing an app with multiple views
%, to find the remainder when you divide by three. This leaves you with
a random number between zero and two, which means the right
answer can end up in any spot with equal probability.

MODULO An operator that returns the remainder after dividing. The
result is always between zero and the right-hand operand minus one.

In recordAnswer, you need to remember if the answer matches the cor-
rect one:

-(void) recordAnswer:(int)answerNum
{

self.isCorrect = (answerNum == self.correctAnswer);
}

This class is done, so build the project to
make sure you’ve done everything right.
You started with FCCard because it didn’t
depend on any other class. The next class
we’ll look at, FCAnswerKey, creates the cards
that make up the game and only depends on
the FCCard class, which is already finished.

Implementing FCAnswerKey
So far, most of the classes you’ve seen don’t know anything about states
or capitals and could easily be reused in any flashcard application.
FCAnswerKey is different. If you were to adapt this app to a different topic,
this class is where you’d put the information that is used on the cards.

The purpose of the
FCAnswerKey class is to cre-
ate the deck of cards that
is used to play the game. It
has two messages to allo-
cate the two kinds of decks
you’ll use in the game.

Create the class files by
choosing File > New > Figure 4.24 FCAnswerKey and FCCard class

File. Then choose the diagram

Creating the model classes 79

Creat

to
Objective-C class template, and enter the class name FCAnswerKey.
FCAnswerKey should be a subclass of NSObject. Here’s the header:

#import "FCCard.h"

@interface FCAnswerKey : NSObject

-(NSMutableArray*) allocStateCards;
-(NSMutableArray*) allocCapitalCards;

@end

The only thing to note here is that there is a convention of starting a
message with alloc if its main purpose is to create an object. Here is the
FCAnswerKey module.

Listing 4.4 FCAnswerKey.m

#import "FCAnswerKey.h"

@implementation FCAnswerKey

-(NSMutableArray*) allocStateCards
{

NSMutableArray *cards = [[NSMutableArray alloc] initWithObjects:
[[FCCard alloc]
initWithQuestion:@"Alabama" answer: @"Montgomery"
wrongAnswer1:@"Birmingham" wrongAnswer2:@"Mobile"],
[[FCCard alloc]
initWithQuestion:@"New York" answer: @"Albany"
wrongAnswer1:@"New York City" wrongAnswer2:@"Buffalo"],
[[FCCard alloc]
initWithQuestion:@"New Jersey" answer: @"Trenton"
wrongAnswer1:@"Camden" wrongAnswer2:@"Newark"],
[[FCCard alloc]
initWithQuestion:@"Oklahoma" answer: @"Oklahoma City"
wrongAnswer1:@"Tulsa" wrongAnswer2:@"Muskogee"],
nil];

return cards;
}

-(NSMutableArray*) allocCapitalCards

e cards
and add
 array B

Return listC
{

80 CHAPTER 4 Writing an app with multiple views
NSMutableArray *cards = [[NSMutableArray alloc] initWithObjects:
[[FCCard alloc]
initWithQuestion:@"Montgomery" answer: @"Alabama"
wrongAnswer1:@"Mississippi" wrongAnswer2:@"Tennessee"],
[[FCCard alloc]
initWithQuestion:@"Albany" answer: @"New York"
wrongAnswer1:@"New Jersey" wrongAnswer2:@"Pennsylvania"],
[[FCCard alloc]
initWithQuestion:@"Trenton" answer: @"New Jersey"
wrongAnswer1:@"New York" wrongAnswer2:@"Connecticut"],
[[FCCard alloc]
initWithQuestion:@"Oklahoma City" answer: @"Oklahoma"
wrongAnswer1:@"Tennessee" wrongAnswer2:@"New Jersey"],
nil];

return cards;
}

@end

The first message allocates an array B and then fills it with cards, and
returns it c. You make a similar one for state capitals.

Build the project to make sure everything is OK. Next
you’ll write the last model class, FCGame, which uses
FCAnswerKey to create cards and then keeps track of
them and lets you know when the game is over.

Figure 4.25 Creating cards from the String data on them

Creating the model classes 81
The FCGame class
The FCGame class has a lot of methods, but each is pretty simple. Here’s
how it fits in your overall structure:

Create FCGame as a subclass of NSObject, and fill in the header.

Listing 4.5 FCGame.h interface to the FCGame class

#import <Foundation/Foundation.h>
#import "FCCard.h"
#import "FCAnswerKey.h"

@interface FCGame : NSObject

@property (nonatomic, strong) NSMutableArray* cards;
@property (nonatomic) int currentCard;

-(id) initWithCards:(NSMutableArray*)c;
-(bool) hasMoreCards;
-(FCCard*) getNextCard;
-(int) getNumRight;
-(int) getNumWrong;

@end

Figure 4.26 FCGame, FCCard,
and FCAnswerKey class
diagrams

Remember
to make
properties
strong

b

82 CHAPTER 4 Writing an app with multiple views
The header is straightforward. Remember that you use strong proper-
ties B so ARC will deal with memory for you.

Let’s go through the module piece by piece. First is initWithCards,
which takes a list of cards and assigns it to a property. Because you’re
going to provide the list items one by one, you set the current card to
the beginning:

-(id)initWithCards:(NSMutableArray*)c
{

if (self = [super init]) {
self.cards = c;
self.currentCard = 0;

}
return self;

}

The next two messages let you know if there are any more cards, and if
so, a way to get the next one:

-(bool) hasMoreCards
{

return self.currentCard < [self.cards count];
}

-(FCCard*) getNextCard
{

FCCard* card = [self.cards objectAtIndex:self.currentCard];
self.currentCard++;
return card;

}

To get the final score, you call the next two messages.

Listing 4.6 FCGame.m num right/wrong

-(int) getNumRight
{

int numRight = 0;
for (int i = 0; i < [self.cards count]; ++i) {

FCCard* c = [self.cards objectAtIndex:i];
if (c.isCorrect) {

Count
correct cardsb
numRight++;

Connecting code to Interface Builder 83
}
}
return numRight;

}

-(int) getNumWrong
{

return [self.cards count] - [self getNumRight];
}

To keep it simple, you’ll just loop through the cards and count the num-
ber of correct ones B. The number of wrong cards is the number of
cards minus the number of correct ones c.

Build the project, and fix any errors.

The last part of the app draws the views, hooks them up to the view
controllers, and then has the view controllers use the models to play the
game. You’ve already laid out the outlet and actions in the view con-
trollers, so they’re ready to be connected to the views. You also have
fully functional model classes, so each action in the controller can be
fully implemented as well. You’ll finish it in the next section.

Connecting code to Interface Builder
You’re ready to draw your views and hook them up. In chapter 3, you
Ctrl-dragged from Interface Builder into the Assistant Editor and let
the Assistant Editor create your properties and actions. This time,

Wrong is
total – rightC
you’re going Ctrl-drag from Interface Builder into the Assistant Editor

84 CHAPTER 4 Writing an app with multiple views
to connect your view to code you already wrote. The process is so sim-
ilar to what you’ve already done that you’ve probably got your mouse
hovering over the .xib, ready to click. Go ahead, do it, it’s OK.

Let’s begin with the start-
ing screen, which is shown
here.

Figure 4.27 Sketch of the
FlashCards main screen

Here’s how you build it:

1 Select FCViewController.xib in the Resources group.

2 Drag a Label from the Library to the View dialog (as in the Hello
World! example).

3 Double-click the label, and type State Capital Flash Cards.

4 Drag two Round Rect Buttons from the Library to the View dialog.

5 Double-click the top one and type Show
States. Then double-click the other one
and type Show Capitals.

6 Show the Assistant Editor by clicking the
button on the toolbar that looks like a tux-
edo. FCCardViewController.h should
appear in the Assistant Editor.

7 Ctrl-drag from the Show States button in
Interface Builder to the showStatesIBAction
in FCCardViewController.h. When you’re
over the action, it will become highlighted,
and you’ll see a tooltip that says Connect
Action.

Figure 4.28 The

FCViewController view

Connecting code to Interface Builder 85
8 Repeat the process for the Show Capitals button, Ctrl-dragging from
the button to the action.

You may have noticed little filled-in circles adjacent to your actions.
These represent connections between the view and the file’s owner.
You can also inspect, create, or delete connections using the Connec-
tions Inspector. To bring up the Connections Inspector, select an ele-

ment in your view and press Opt-Cmd-6, or choose
View > Utilities > Show Connection Inspector.

Go ahead and save. Next you’ll draw the card,
which uses outlets in addition to actions. If you
build and run this application now, it will show the
screen you just built. Your action messages are
empty, so the buttons don’t do anything yet, but
you’re getting close.

Connecting the FCCardViewController view
The next view to draw is the one for the FCCardViewController, which is
shown for each card in the deck. It’s different from the last view
because it will be customized rather than having the label and buttons
preset with text. You want to access these items in code, so you’ll need
to connect them to the outlets you created.

Figure 4.29 Connecting to an action

86 CHAPTER 4 Writing an app with multiple views
Here’s what you want the
view to look like.

Figure 4.30 Sketch of a card

Here’s how you build it:

1 Select FCCardViewController.xib in Xcode.

2 Drag a Label and three buttons onto the
view. Make sure they’re wide enough to
display any state or capital name, and set
their text as shown at right.

3 Bring up the Assistant Editor, and then
Ctrl-drag to connect the first button to the
answerButtonTouched action.

4 Repeat with the other two buttons. Notice
that it’s OK to connect multiple buttons to
the same action.

5 Ctrl-drag the label to the cardLabel outlet. Figure 4.31
Card in Interface Builder
Figure 4.32 Connecting an outlet

Connecting code to Interface Builder 87
Ctrl-drag each button to its respective outlet: answer1button,
answer2button, and answer3button.

Save and build again to make sure everything is OK. You’re ready for
the last view now.

Connecting the FCResultViewController view
Next is the result view. This one needs two labels to show the score and
a button to restart the game. The labels are connected to outlets, and
the button is connected to an action. Here’s what you want it to look
like:

Because you’ve done this twice, you should already know how to do it,
but here’s a brief guide:

1 Bring up the view in Interface Builder.

2 Put two Labels and a button on the view, and set their Title Text prop-
erties.

3 Connect the button’s event to the startAgain action.

4 Connect the numRightLabel and numWrongLabel outlets of the file’s owner
to the corresponding views.

You have completed views and models, and now you need to translate
the actions you take in the views to appropriate messages to send to the
models. Messages are the way your models determine how the control-
lers change the views. Controllers have a lot of responsibility. Don’t let
working on them go to your head.

Figure 4.33
Sketch of the result view

88 CHAPTER 4 Writing an app with multiple views
Orchestrating your app with controllers
As you learned, controllers are where you interpret the various things
the user is doing with your app and then respond to the model’s results
by switching views or updating the current view. In the last section,
you used Interface Builder to attach the button events to action mes-
sages, so all you have left is to implement those actions.

The first controller you’ll write is FCViewController, which is the open-
ing screen of the app. Here’s what it needs to do when you click one of
its buttons:

Figure 4.34
FCViewController
sequence to show

the first card

Orchestrating your app with controllers 89
Because showStates and showCapitals are similar, you’ll create a helper
message called showCards that’s shared. Here’s the header code.

Listing 4.7 FCViewController.h

#import <UIKit/UIKit.h>
#import "FCGame.h"
#import "FCAnswerKey.h"
#import "FCCardViewController.h"

@interface FCViewController : UIViewController
@property (nonatomic, strong) FCCardViewController *cardVC;
-(IBAction)showCards:(NSMutableArray*)cards;
-(IBAction) showStates:(id)sender;
-(IBAction) showCapitals:(id)sender;

@end

You add some imports B for the other classes you communicate with,
and you also need to add a property for the FCCardViewController c
because you’ll need to keep it around after the message is complete.

Now, let’s go through the model code. Define the helper message, show-
Cards:

-(IBAction)showCards:(NSMutableArray*)cards {
FCGame* game = [[FCGame alloc] initWithCards:cards];

self.cardVC = [[FCCardViewController alloc]
initWithGame:game];

[self.view.window addSubview:self.cardVC.view];
}

The addSubView message is used to put the card into the main window
on top of your start view. Here’s how you call the helper message in the
two show messages:

-(IBAction)showStates:(id)sender {
FCAnswerKey* key = [[FCAnswerKey alloc] init];
NSMutableArray *cards = [key allocStateCards];
[self showCards:cards];

}

Import
classes
you use

B

Keep track of
other views C

90 CHAPTER 4 Writing an app with multiple views
-(IBAction)showCapitals:(id)sender {
FCAnswerKey* key = [[FCAnswerKey alloc] init];
NSMutableArray *cards = [key allocCapitalCards];
[self showCards:cards];

}

The last thing each show message does is add
a view to the top of the application’s win-
dow, so after either of the action messages is
complete, the view will change to show a
card. You’ll see the FCCardViewController

next.

Handling card events in the FCCardViewController
FCCardViewController goes through each card in the game until you’re
done. It receives the init message to start, and then the iPhone sends it
a viewDidLoad message when it’s been attached to the view that was cre-

ated from the XIB file.
FCCardViewController re-
ceives a succession of
answerButtonTouched mes-
sages from the view,
which you record; then
you proceed to the next
card until you’re finished.
Finally, you need to show
the result view.

Figure 4.35
FCCardViewController

sequence

Orchestrating your app with controllers 91
Let’s look at the complete header.

Listing 4.8 FCCardViewController.h

#import <UIKit/UIKit.h>
#import "FCGame.h"
#import "FCCard.h"
#import "FCResultViewController.h"

@interface FCCardViewController : UIViewController

@property (nonatomic, strong) IBOutlet UILabel* cardLabel;
@property (nonatomic, strong) IBOutlet UIButton* answer1Button;
@property (nonatomic, strong) IBOutlet UIButton* answer2Button;
@property (nonatomic, strong) IBOutlet UIButton* answer3Button;

@property (nonatomic, strong) FCResultViewController* resultsVC;

@property (nonatomic, strong) FCGame* game;
@property (nonatomic, strong) FCCard* currentCard;

-(id) initWithGame:(FCGame*)g;
-(void) nextCard;
-(IBAction) answerButtonTouched:(id)sender;

@end

This is pretty similar to what you’ve seen so far. One thing to notice is
that you need to keep track of the current card B because you get it
from the game in nextCard, but you need to record an answer later when
an answer button is touched.

The module is also similar to what you’ve seen. Here are the initWith-
Game and viewDidLoad messages.

Listing 4.9 FCCardViewController.m init and viewDidLoad

-(id) initWithGame:(FCGame*)g {
if (self = [self initWithNibName:@"FCCardViewController"

bundle:[NSBundle mainBundle]]) {
self.game = g;

}
return self;

Remember
current card
to record
answerb

Load view
from XIB b
}

92 CHAPTER 4 Writing an app with multiple views

w

A
t

-(void)viewDidLoad {
[super viewDidLoad];
[self nextCard];

}

In your init, you need to connect it to a view created from the XIB file
you drew in Interface Builder by calling initWithNibName B. The con-
nection is completed when the iPhone sends you the viewDidLoad mes-
sage, where you can get the next card c and set up the card’s label and
answer buttons. Until viewDidLoad is sent, you can’t access the outlets to
update the view. Here’s nextCard.

Listing 4.10 FCCardViewController.m nextCard

-(void) nextCard {
if ([self.game hasMoreCards]) {

self.currentCard = [self.game getNextCard];

self.cardLabel.text = self.currentCard.cardText;

[self.answer1Button
setTitle:[self.currentCard.answers objectAtIndex:0]
forState:UIControlStateNormal];

[self.answer2Button
setTitle:[self.currentCard.answers objectAtIndex:1]
forState:UIControlStateNormal];

[self.answer3Button
setTitle:[self.currentCard.answers objectAtIndex:2]
forState:UIControlStateNormal];

} else {
self.resultsVC = [[FCResultViewController alloc]

initWithGame:self.game];
[self.view.window addSubview:self.resultsVC.view];

[self.view removeFromSuperview];
}

}

Can change
outlets hereC

Check for
more cardsb

Update vie
from cardc

dd result
o window d

Remove card
from windowe

Orchestrating your app with controllers 93
The nextCard message checks to see if any cards are left in the game B.
If so, it gets the card and uses it to set up the view c. If not, it’s time to
show results, so nextCard creates a result view and adds it to the win-
dow d. Because you’re finished showing cards, the last step is to
remove the card view from the window e.

Each time an answer button is touched, it calls this message.

Listing 4.11 FCCardViewController.m answerButtonTouched

-(IBAction)answerButtonTouched:(id)sender {
if (sender == self.answer1Button) {

[self.currentCard recordAnswer:0];
}
else if (sender == self.answer2Button) {

[self.currentCard recordAnswer:1];
}
else if (sender == self.answer3Button) {

[self.currentCard recordAnswer:2];
}
[self nextCard];

}

All the answer buttons are set to call this message when they’re
touched. You need to check which one was touched B and record the
answer on the currentCard. Then, you call nextCard c.

You’re almost there. The last class you have to define is the result view
that shows the final score.

Showing the result in the FCResultViewController
The last view of your app shows how many you got right and wrong. If
you know the difference between Pierre and Bismarck, then you
should be fine. If not, well, at least you got Oklahoma City right.

Record which
button was
touchedb

Go to
next cardc

94 CHAPTER 4 Writing an app with multiple views
The result view works like this:

And the code is pretty similar to what you’ve seen.

Listing 4.12 FCResultViewController.h

#import <UIKit/UIKit.h>
#import "FCGame.h"

@interface FCResultViewController : UIViewController

@property(nonatomic, strong) IBOutlet UILabel* numRightLabel;
@property(nonatomic, strong) IBOutlet UILabel* numWrongLabel;
@property(nonatomic, strong) FCGame* game;

-(id) initWithGame:(FCGame*)g;
-(IBAction)startAgain:(id)sender;

@end

Listing 4.13 FCResultViewController.m

-(id) initWithGame:(FCGame*)g {
if (self = [self

Figure 4.36
FCResultViewController sequence

Load XIBb

initWithNibName:@"FCResultViewController"

Orchestrating your app with controllers 95
bundle:[NSBundle mainBundle]]) {
self.game = g;

}
return self;

}

- (void)viewDidLoad {
[super viewDidLoad];
self.numRightLabel.text =

[NSString stringWithFormat:@"%d Right",
[self.game getNumRight]];

self.numWrongLabel.text =
[NSString stringWithFormat:@"%d Wrong",

[self.game getNumWrong]];
}

-(IBAction)startAgain:(id)sender {
[self.view removeFromSuperview];

}

The init message needs to load the XIB file B. Then, in the viewDidLoad
message, you get the score from the game and update the labels c.
When the startAgain message is sent d, all you need to do is remove
yourself from the window to reveal the FCViewController’s view.

The app is done. You should be able to build and run the application
using Cmd-R.

Update view
with resultsc

Remove
result viewd

96 CHAPTER 4 Writing an app with multiple views
Reflecting on your progress
There you have it: a complete model-view-controller app that you can
use to practice your state capitals (once you fill in the other 47 states, of
course). More important, by changing how the AnswerKey works and
altering a few message names, you can turn this app into a set of flash-
cards for anything you know about, from Spanish verbs to Lady Gaga
song lyrics.

Even a simple app like this one required you to juggle nine
different classes, three views, three controllers, and three
model classes. As you progress, it will be important to make
sure you map out your app and maintain a good overall pic-
ture of what is going on. Even though in this case it might
seem as though the design was completely developed and then
the code progressed from there, it wasn’t like that. The design
was revised several times as the code was developed, to reflect
new choices that were discovered as it was coded. You
shouldn’t worry about getting the design perfect, but keep it
up to date with what you figure out as you code.

5
Polishing your app

This chapter covers

• Setting your application’s icon and start image

• Using images for buttons

• Customizing built-in views

• Animating view transitions

The flashcards app from the last chapter does what it needs to do, but
without any style. Professional iPhone apps need to do better than that.

There are some things that Apple requires you to do, like making an
application icon. Other things, such as transition animations, make your
app look a lot more polished, and iPhone users will expect and appreciate
them.

Pick up your phone right now, and start your favorite app: not necessar-
ily the most useful one, but the one that gives you the best feeling when
you use it. What do you notice? Professional iPhone apps have a polished
look and professional graphic design and imagery, and they make exten-
sive use of animations.
97

98 CHAPTER 5 Polishing your app
If you want to see apps from well-
known designers, check out anything
from Tapbots to Sophiestication. For
example, here are two screenshots of
Tapbot’s Weightbot.

And at right is the main screen of
Sophiestication’s Groceries app.

The designers of these apps paid care-
ful attention to the details, and the
apps are top sellers in their competi-
tive categories because of that work.
It’s not just the colors and imagery.
The designers also use animations to
add life to their apps.

But don’t be overwhelmed. Each of
these apps is built on a foundation of
techniques that can be applied step by
step. Once you understand how,
you’ll only be limited by your imagi-
nation.

Figure 5.1
Weightbot main screen

Figure 5.2 Weightbot summary

Figure 5.3
Groceries main screen

Setting up your application’s images 99
Setting up your application’s images

Every app needs to have an icon and a startup image. Because these
are required, Apple made it easy to add them without any code, which
should be a relief after the last chapter. Don’t worry: some fun chunks
of code are coming later in this chapter, but right now you’ll get far
with a little drag-and-drop.

Replacing the default application icon
The icon is the first thing users will see from your app, so it’s worth try-
ing to make a good one. Most professional app icons are made by
graphic designers, and if you can afford that or have a friend or co-
worker who can help, it will be worth it.

If you’re making an icon, keep in mind that you might need it in a lot of
sizes, so either use software that lets you create vector images or design
your icon at 512 x 512 to make sure you can
reduce it to all the necessary sizes. Here’s what
you’ll use for this app; note that the icon doesn’t
have rounded corners or a glossy effect on it. The
iPhone will add those for you.

Figure 5.4
An icon without rounded

corners or a glossy effect

100 CHAPTER 5 Polishing your app
For now, you need the icon in two sizes. iPhones before 4.0 use 57 x 57
icons, but the retina display doubled the pixel density of the screen, so
you need an icon at 114 x 114 for that. Name the first icon Icon.png
and the second Icon@2x.png (the capital I is important).

Once you’ve created the icons, select your project in the Project Navi-
gator and click FlashCards under TARGETS. Then select the Sum-
mary tab, if its not already selected, and scroll down to the App Icons
section of the Summary page. Right-click the leftmost square that says
No Image Specified, and choose Select File.

Select your 57 x 57 icon. Next, right-click the square labeled Retina
Display, choose Select File, and select your 114 x 114 icon. When you
select the icon files, they’re automatically copied into the project. If

you’re a neat freak, move the icons files
into the Resources group.

Figure 5.5
Dimensions of an icon

Figure 5.6 Selecting an app icon file
Figure 5.7 Icons in the Resources group

Setting up your application’s images 101
Run the app. When it starts, click the Home button so you can see the
simulator’s home screen. There you’ll see the new icon being used for
the app.

Good icons are memorable, distinctive, and
well-crafted. They’re your first impression in
the App Store and a constant reminder of
your app on the phone once it’s installed. It’s worth being sure your
app has a good one. Many icons have a prominent shape and a domi-
nant color; both those things help them stand out in a crowd.

Having a great icon is just the start of polishing the look and feel of
your application. To get the overall feel right, you need to make sure
your application starts as quickly as possible. Professional iPhone apps
seem to start instantaneously, and because you’re not doing much at
the beginning of the FlashCards app, it’s weird that it seems to take
longer. We’ll look at fixing that in the next section (hint: it’s a trick).

Making your application seem to load faster
You might have noticed that when your app starts up, there’s a period
of time when the screen looks black. If the app is a black hole simulator
or a promotional vehicle for a Metallica, Spinal Tap, or Jay-Z album,
then you can skip this section. If you need some-
thing different, read on.

For the FlashCards app’s background, you’ll use a
style similar to the icon and repeat a lot of small
stars. If you’re not going to use the built-in iPhone
backgrounds, stick to a simple, small repeating pat-

tern or a naturally occurring surface
like wood grain or brushed metal.

Figure 5.8 FlashCards icon
on the home screen
Figure 5.9 Background image

102 CHAPTER 5 Polishing your app
For the older iPhones, you need a 320 x
480 image called Default.png. For the
retina display phones, you need one at
640 x 960 called Default@2x.png. And
if that weren’t enough, for the iPhone 5,
you need a 640 x 1136 image called
Default-568h@2x.png.

Using these is just like
using icons. In the Sum-
mary tab of FlashCards is a

Launch Images section just below
App Icons. Right-click each rectan-
gle, and select the appropriate
default image. When you’re done,
move the added images into the
Resources group to keep things neat.

You’ll want to incorporate this background into your app’s screens as
well. To do that, open each XIB in Interface Builder and then add an
image view to the view. Using the Attributes Inspector, set the image
view’s image to Default.png. Size it correctly, and send it behind the
other controls by clicking it and choosing Editor > Arrange > Send To
Back from the menu.

Figure 5.10 Default image
dimensions

Figure 5.11 Setting the
background image in

Interface Builder

Using images for buttons 103
As you can see, we also resized and positioned
the title label. To make it semitransparent, we set
its Alpha to 0.5 using the Attributes Inspector.

If you run the app, you’ll notice that it doesn’t
start with a blank, black screen. When it comes
up, it looks as shown at left.

The middle of the app’s start screen is blank
and calling out for a graphic. The Default.png
image should match whatever you decide to
put there, but you still need a version of the
image with blank space for the card views.

Figure 5.12 Running the updated
app in the simulator

It’s also obvious that the buttons need an
upgrade. The default no longer matches the
new look. Now would be a good time to take
a break and find a matching t-shirt as well.

Using images for buttons
Because your app uses a lot of buttons (six total), the easiest way to
spruce it up is to make custom buttons. It would be nice to be able to
reuse a background image for all of them, because you want consistency.

104 CHAPTER 5 Polishing your app
The easiest way to use an image for a button is to
set its image in the Attributes Inspector. This is fine
if you’ve made the exact button you want and
aren’t going to change its size. A better way is to
prepare a stretchable image and have the iPhone
put the text on it for you. If you do that, you only
need one image for all your buttons, and it will
work no matter what the size or text.

Preparing a stretchable image
A stretchable image is an image that has a middle part that can be
stretched and end caps that shouldn’t be altered when the image
changes size. Here’s an example that shows how it works:

If you resize an image without doing anything, the edges are treated
the same as the middle and look pixelated. To make an image stretch-
able, you need to know the width of the left cap and the height of the
top cap.

Figure 5.13 How stretchable buttons work

Using images for buttons 105
Create two images with end
caps that are the same size,
one darker than the other.
You’ll use the lighter one nor-
mally and the darker one
when you’re touching the but-
ton. Name them as shown at
right.

On the left is a better look at
what would happen if you just
resized an image to a wide button without doing
this. For comparison, our stretchable button is
on the right.

And you’re not limited to simple but-
tons. Anything with an area in the
middle that can be resized and outer
edges to preserve will work. At left is
a button you could use in a dog-
training app.

Using those guidelines, you can
design images that can be used on
every button in your app, no matter
the size. They’ll also look great on
the retina display without needing to
alter them.

Figure 5.16 Stretchable resize
on a more complex button

Figure 5.14 The position of the left
and top caps

Figure 5.15 What would happen if you just resized
the button

106 CHAPTER 5 Polishing your app
Using a stretchable image for a button
Once you have the buttons, you need a little
code in order to use them in your app. Unfor-
tunately, Interface Builder doesn’t have direct
support for stretchable images.

The first step is to tell Interface Builder that
you want to use a custom button style. Do this
by selecting the buttons and setting their Type
to Custom in the Attributes Inspector. Their
background will be invisible, but you’ll still
see them because of their text.

Next, create outlets for the buttons by opening the Assistant Editor
and Ctrl-dragging into FCViewController.h. Call the outlets showStates-
Button and showCapitalsButton. The Assistant Editor will create proper-
ties that look like this:

@property (weak, nonatomic) IBOutlet UIButton *showStatesButton;
@property (weak, nonatomic) IBOutlet UIButton *showCapitalsButton;

Figure 5.17
Using a stretchable
image on a button
in Interface Builder

Using images for buttons 107
Now that you’re finished creating the Show States and Show Capitals
buttons, open FCResultViewController.xib and create a Start Again
button. Don’t forget to create an outlet named startAgainButton for the
button, using the Assistant Editor.

Here’s how you code the stretchable buttons. Open FCAppDelegate.h,
and add these message declarations:

- (void)setupButtonAsImage:(UIButton*) btn
normalImage:(NSString*) normalImage

selectedImage:(NSString*) selectedImage
leftCap:(NSInteger) leftCap
topCap:(NSInteger) topCap;

- (void)setupButtonAsImage:(UIButton*) btn
image:(NSString*) image

forState:(UIControlState) state
leftCap:(NSInteger) leftCap
topCap:(NSInteger) topCap;

Then, open FCAppDelegate.m, and add these messages.

Listing 5.1 FCAppDelegate.m: loading and stretching the images, and using them
 for the button

- (void)setupButtonAsImage:(UIButton*) btn
image:(NSString*) image

forState:(UIControlState) state
leftCap:(NSInteger) leftCap
topCap:(NSInteger) topCap

{
UIImage* originalImage = [UIImage imageNamed:image];
UIImage* stretchImage = [originalImage

stretchableImageWithLeftCapWidth:leftCap
topCapHeight:topCap];

Load
imageB

Stretch itc

108 CHAPTER 5 Polishing your app

e
on

Set

to

sele
s

[btn setBackgroundImage:stretchImage forState:state];

[btn setTitleColor:[UIColor whiteColor] forState:state];
}

- (void)setupButtonAsImage:(UIButton*) btn
normalImage:(NSString*) normalImage

selectedImage:(NSString*) selectedImage
leftCap:(NSInteger) leftCap
topCap:(NSInteger) topCap

{
[self setupButtonAsImage:btn image:normalImage

forState:UIControlStateNormal leftCap:leftCap topCap:topCap];

[self setupButtonAsImage:btn image:selectedImage

forState:UIControlStateSelected leftCap:leftCap topCap:topCap]
;

}

To use the images, first you need to copy them to your Resources
folder. Then you can use the first message to load them B into a UIImage
object by calling its imageNamed message. Once you load it, you send it a
message c to stretch it based on its left-cap width and top-cap height.
Finally, you set the button’s background image d and set the text of
the button to white e.

Each button needs this done twice—once for the nor-
mal state f and once for the selected state g—so the
next message does that. The second message uses the
first and makes it easier for you, so you’ll be using it in
your views.

Use imag
on buttd

 text
color
 white e

Set normal
statef

Set
cted
tate g

Adding animation 109
In FCViewController.m, add #import "FCAppDelegate.h" to the import
statements. Then you can call the new message by adding this code to
the viewDidLoad message:

FCAppDelegate* delegate = [[UIApplication
sharedApplication] delegate];

[delegate setupButtonAsImage:self.showStatesButton
normalImage:@"btn-normal.png"

selectedImage:@"btn-selected.png"
leftCap:15 topCap:25];

[delegate setupButtonAsImage:self.showCapitalsButton
normalImage:@"btn-normal.png"

selectedImage:@"btn-selected.png"
leftCap:15 topCap:25];

You can use similar code in all of your view-
controller viewDidLoad messages. Run the app
to see how it looks.

Isn’t that better? Well, it’s only as nice as your
design, so be creative. We’ve emulated the
Mac OS X aqua gel button look, but you’re
free to make buttons with as radical a look as
you want.

Icons, background images, color schemes,
and buttons are a start, but to make your app
stand out, you need to use animation. With-
out it, your app won’t seem as professional;
with it, the app will appear to come to life.

Adding animation
If you play around with the built-in iPhone
apps, you’ll notice that new views never snap
into place. There’s always a little transition animation. It could be a
slide, a flip, a page curl, or, with some apps, something even more fun.
Good use of transition animations will make your app look more at
home on the iPhone.

Figure 5.18 The app
with stretchable but-
tons in the simulator

110 CHAPTER 5 Polishing your app
Sliding views instead of instantly switching
Probably the most common animation used on the iPhone has the next
view slide into place. As you’ll see later, this animation is built into the
navigation-based application template, but nearly every app with mul-
tiple views uses it somewhere.

Here’s what the FlashCards app will look with a push transition on the
second view.

To do this, add #import <QuartzCore/QuartzCore.h> and these message
declarations to FCAppDelegate.h:

Figure 5.19
A push transition
-(void) pushView;

Adding animation 111
And add this code to the module file (pro tip: you can use Ctrl-Cmd-up
arrow to switch between .h and .m files).

Listing 5.2 FCAppDelegate.m: creating a push animation

-(void) pushView
{

CATransition* animation = [CATransition animation];
[animation setDelegate:self];

[animation setType:kCATransitionPush];
[animation setSubtype:kCATransitionFromRight];

[animation setDuration: 0.5];

[animation setTimingFunction:
[CAMediaTimingFunction
functionWithName:kCAMediaTimingFunctionEaseInEaseOut]];

[[self.window layer] addAnimation:animation forKey:@"push"];
}

The CATransition class makes it easy to set up animations, and it’s used to
animate an entire window. To use it, pick its type B and subtype. Then
set the duration in seconds c. Finally, choose an animation curve to use
as a timing function d. That last part needs a little more explanation.

An animation sets up a background timing function that makes the
changes to the window for you automatically. But it doesn’t need to
apply an equal change at each point of the animation. In the code,

you’re using an ease-in/ease-out animation, which will
start slowly, speed up, and then slow down.

Animation
typeb

Duration
in secondsc

Animation
curved

Figure 5.20
An ease-in/ease-out

animation over time

112 CHAPTER 5 Polishing your app
You could also have chosen to just ease in. Then it would look like this:

And, of course, you could reverse that or have no
easing whatsoever by using different curves.

You use this animation by adding the following code to the end of the
showCards message in FCViewController.m:

FCAppDelegate* delegate = [[UIApplication sharedApplication] delegate];
[delegate pushView];

Slide animations are all over the iPhone. You’re using a push, which
means one view pushes the other out of the way. There are also reveals
and move-ins, which you can see by changing the type of the transition
to kCATransitionReveal or kCATransitionMoveIn.

The push animation is part of the QuartzCore framework; that’s why
you had to import QuartzCore.h. In order to use the framework, you
also have to add it to your project. Select the project in the Project
Navigator, and click FlashCards under TARGETS. Make sure the
Summary tab is selected, and scroll down to Linked Frameworks and
Libraries. Click the plus sign to add the framework, and choose Quartz-
Core.Framework.

Figure 5.21 An ease-in animation over time

Figure 5.22 Adding the

QuartzCore framework

Adding animation 113
Flipping a view to show its back
Another animation type you see
a lot is a flip. Apps that consist of
a single screen with settings
sometimes use this animation to
make it look like the settings are
on the back of the view.

The code for a flip is similar to
that of a push, but because flips
can be applied to individual ele-
ments as well as the entire
screen, you have to use UIView’s
animation support instead of using CATransition directly. Add this mes-
sage to FCAppDelegate.h:

-(void) flipView;

And here’s the message implementation for the .m file:

-(void) flipView
{

[UIView beginAnimations:@"flip" context:nil];
[UIView setAnimationTransition: UIViewAnimationTransitionFlipFromLeft

forView:self.window cache:YES];

[UIView setAnimationDuration: 0.5];
[UIView setAnimationCurve:UIViewAnimationCurveEaseIn];

[UIView commitAnimations];
}

The messages have the same meaning as their
CATransition counterparts, with setAnimationCurve

having the same meaning as setTimingFunction.

To call it, use this code in FCCardViewController.m,
at the end of answerButtonTouched:

FCAppDelegate* delegate =
[[UIApplication sharedApplication] delegate];

Figure 5.23 A flip animation
[delegate flipView];

114 CHAPTER 5 Polishing your app
Flips work well in this case because the app is emulating cards. It would
be even better if you were showing the back of a card in the next view,
because then the animation would be closer to the real-life version.

Using custom animations
The only other things that don’t animate are the controls that appear
when the app starts. This is more complex because you aren’t transi-
tioning an entire view at once. Each part needs its own animation.

To use a custom animation, you use the UIView ani-
mation support; but instead of setting a type and a
subtype, you start an animation, change the view,
and then commit the animation. The iPhone will
know to make the change using the animation. For

example, if you wanted the Show
States button to start offscreen
(at y-position 460) and move to
its final location at y-position
380, you’d use the steps shown at
right.

Figure 5.24
The steps for animating
a property of a subview

If you choose an ease-in/ease-out
curve, it will look like this:

Figure 5.25 What the button

animation will look like

Adding animation 115
To do that, add this message to FCViewController.m, above viewDid-
Load.

Listing 5.3 FCViewController.m: creating a custom animation

-(void) animateViewEntrance:(UIView*)v
startY:(int)startY delay:(NSTimeInterval)delay

{
CGRect frame = v.frame;
CGFloat endY = frame.origin.y;

frame.origin.y = startY;
v.frame = frame;

[UIView animateWithDuration:0.25 delay:delay
options:UIViewAnimationCurveEaseInOut
animations:^{

v.frame = CGRectMake(
frame.origin.x, endY,
frame.size.width, frame.size.height

);
} completion:nil];

}

You’ll use this code for the title and buttons. It remembers the passed-
in view’s position as set in Interface Builder B. Then it sets a new start-
ing position c and starts an animation. In the animation, the code sets
the original position d as the final position so it looks like it does in
Interface Builder at the end.

You can already call animateViewEntrance on the but-
tons because you have outlets. Before adding the next
message, open FCViewController.nib and make an
outlet for the title label called titleLabel by Ctrl-dragging into the
Assistant Editor.

After you add the outlet, this code will compile:

-(void) animateViewLoad
{

[self animateViewEntrance:self.showStatesButton

Original
locationB

Starting
positionc

Final
positiond
startY:self.view.frame.size.height delay:0];

116 CHAPTER 5 Polishing your app
[self animateViewEntrance:self.showCapitalsButton
startY:self.view.frame.size.height delay:0];

[self animateViewEntrance:self.titleLabel
startY:-self.titleLabel.frame.size.height delay:0];

}

You call animateViewLoad in viewDidLoad by adding this code to the end of it:

[self animateViewLoad];

If you create and commit multiple animations, the iPhone runs them
simultaneously:

It looks like this when you run it.

Figure 5.26
Simultaneous animations
Figure 5.27 The button animation in the simulator

Making your apps look professional with graphic design 117
In animateViewLoad, you can see that you always use a delay of 0 sec-
onds. If you want to delay the button’s appearence until after the title,
set the delay to 0.5 for the buttons. It will use a timeline like this:

With overlapping delays and durations, you can have all kinds of ani-
mations. The best part is that you only need to provide starting and
ending points, durations, and curves. You don’t need to update each in-
between state yourself.

Making your apps look professional with graphic design
Your icon, startup, overall look, and use of animations go a long way
toward making an app look professional. Of course, it’s important that
your app work, but no matter what it does, there are likely to be a few
apps that do something similar. Professional-looking apps stand out in
the crowded App Store, so it’s worth working with a graphic artist to
get this right.

Figure 5.28 An overlapping
animation with delays

118 CHAPTER 5 Polishing your app
The last step is to make the app track data between runs. It’s likely that
your users will want to know how well they have done over time. In
the next chapter, you’ll learn about the iPhone’s support for data stor-
age and presentation.

6
Working with databases and
table views

This chapter covers

• Storing and getting data

• Using data in table views

• Navigating view hierarchies

• Changing data model

You’re nearly done with FlashCards. So far, you have applied model-
view-controller (MVC) to design a complex app. Then, you learned how
to use Interface Builder to draw views and Xcode to code classes. Finally,
you added icons, image buttons, backgrounds, and animations to polish
up your app.

Next, you’ll learn how to store and fetch data so you can track results.
Then your users can see how they have progressed at learning state
capitals.
119

120 CHAPTER 6 Working with databases and table views
Keeping track of data in the FlashCards app
The purpose of the FlashCards app is to help
people remember facts. Whether you’re trying
to learn college football mascots, celebrity cou-
ples, dog breeds, or multiplication tables, it
won’t matter much if you don’t improve. To
help your users know how well they’re doing,
you need to keep track of their results.

Deciding what to store
The best way to figure out what information to
store is to think about what users will want to
see later. If you’re using FlashCards to learn something, you at least
want to know how long the game took you and when you played.

Figure 6.1 What to store for a game result

Keeping track of data in the FlashCards app 121
You also want to know how you did on each card for a particular game.

Figure 6.2 What to store for a card result

If you know that, you can sum up the number of cards
you got right and figure out a percentage of the total, so
there’s no need to keep track of that separately. Notice
that for cards, you don’t need to store the date again,
because you’re storing which game the card result was
associated with.

This is the minimum data you need to keep track of in
order to provide some historical information. It’s also
data that you already know or can get easily. The next
step is to figure out how to show it.

Sketching how the app will look
To use this data in your app, you’ll need to
add more views and ways to navigate to
them. In iPhone apps, the normal way is to
use a hierarchical navigation through
tables. You’ve seen this in the Contacts
app, the Mail app, iTunes, and many other
iPhone apps. This is a common iPhone
user interface, and as you’d suspect, a lot
of it’s provided by the iOS SDK.

The first thing your app shows is a couple
of buttons that let the user choose to see
states or capitals. Let’s add a button to Figure 6.3 Sketch of the

show history as well. new home screen

122 CHAPTER 6 Working with databases and table views
Once you have that up, you’ll show a navigation bar at the top. It will
have a title and a Done button. Underneath, you’ll put a table with a
list of games, the date the user played, and how well they did. You’ll
put a little arrow to the right of each game to indicate that the user can
touch the row to see more information.

And if they touch a row, you’ll show the details of each card. On the
Card History screen, you’ll have a back button to allow the user to go
back to the Game History list.

You can try to fancy up that home screen on
your own. Perhaps three square buttons
arranged horizontally would look nicer.
Remember, because you’re using stretch-
able images, you don’t have to worry about
making new images if you change the but-
ton size.

Designing new models
With your screen sketches in place, you now have to think about what
new classes you may need and how to update the ones you have. To keep
track of historical results, you need classes that can hold the data you
want to store. So, let’s make GameResult and CardResult classes. You’ll add

Figure 6.4 Sketches
of the history screens
the properties that you identified and link the classes together.

Keeping track of data in the FlashCards app 123
Because you’re adding a
new button, you of course
need to add an outlet for it
in the FCViewController. If
you want the button to do
anything, you need an
action as well, which you’ll
call showHistory.

Figure 6.6
FCViewController’s
showHistory action

You’ll save games as soon as they’re finished. The FCResultViewController
will take care of that for you by telling the FCGame to save itself.

Figure 6.5 GameResult and
CardResult classes

Figure 6.7
FCResultViewController’s

saveGame message

124 CHAPTER 6 Working with databases and table views
To save its results, a FCGame creates a GameResult object and sets the
object’s properties. Next, it creates a CardResult object for each card,
sets that object’s properties, and adds the CardResult to the GameResult.
At the end, the FCGame has to send a message to some object to save the
GameResult. You don’t know how that will work yet, but you will soon.

Figure 6.8 The sequence of messages when saving a game

Keeping track of data in the FlashCards app 125
To show the game result
data, you’re going to use a
table. Somehow, you need
to load the data and fill the
cells. You also need to
detect when a row is
touched.

Figure 6.9 FCGameHistory-
ViewController messages

When a row is touched,
you’ll switch the view to
show the related card
results. It would be nice
to not have to load data
again and just pass it from
the game-result view to
the card-result view, so
you’ll do that.

Figure 6.10 FCCardHistory-
ViewController messages

It seems like a lot, but you’ll see how much the SDK does for you. To
help you store and fetch data, Apple provides a framework called Core
Data. It makes storing objects easy. Underlying it is a standard SQL
database, but don’t worry if you don’t know anything about those,
because Core Data takes care of everything for you. If you know a lot
about SQL, it will help you understand how Core Data works.

126 CHAPTER 6 Working with databases and table views
Introducing Core Data
To help you store and get to objects later, you need to
learn about the data-modeling tools built into Xcode.
Using them, you can define what you want to store,
generate classes automatically instead of coding
them, and manage database updates that need to
happen if you want to store things differently later.

Creating a data model
To help you define your data,
Xcode provides a design tool. You
get to it by creating a new data
model. Do this by right-clicking the
Resources group and choosing
New File. In the next dialog, in the
iOS section, select Core Data and
then choose Data Model.

Name the data model FlashCards
.xcdatamodeld.

Figure 6.11 Making a Data
Model in the New File dialog
Figure 6.12 Naming the data model

Introducing Core Data 127
When you do this, Xcode displays a data-modeling interface for your
.xcdatamodel file. Here’s where you can design your data.

Figure 6.13 Data model editor

Designing data for Core Data is similar to the class
designing you’ve been doing, so it will feel familiar.
It’s so similar that the classes you need in order to
access the data can be automatically generated for
you by Xcode. You’ll see how to do that next.

Adding entities and attributes
The first concept to understand in data modeling is the entity. An entity
is roughly equivalent to a class in that it defines storage. Unlike a class,
though, you don’t define messages for it.

To start, click the Add Entity plus sign at lower left in the editor, and
then name the entity GameResult. Then, add two attributes, gameDate and
gameLength, by clicking the plus sign in the Attribute table. When you’re
done, it looks like this.

Figure 6.14

Adding attributes

128 CHAPTER 6 Working with databases and table views
You need to configure each attribute. gameDate is a Date, and gameLength
is the number of seconds the game took to play, so it’s an Integer. Click
each one, and make the Attribute detail pane look like this.

You’ve probably already figured out that attri-
butes are like properties when you’re designing
classes. In the Data Modeler, they’re one of the
types of data properties, with relationships being
the other kind. We’ll get to those soon.

Let’s create the CardResult entity and its two attributes, cardName (a
String), and wasCorrect (a Bool).

Figure 6.16 Creating a CardResult entity in the editor

You’re almost done. If you remember from the beginning of the chap-
ter, you need to associate the cards and games together. For that, Core
Data provides relationships. Can you guess what thing from class

Figure 6.15 Configuring parameters in the Data
Model Editor
design a relationship is most like?

Introducing Core Data 129
Using relationships
When two entities need to be associated with each other, you create a
relationship between them. If you’re familiar with SQL and relational
data, then you understand exactly what this means. If you aren’t, think
of relationships the sane way you think of has-a in class design. A car
has wheels, a game result has card results, and an
album has tracks. Like has-a, there can be mutual,
part-whole, and ownership relationships; one-to-one
and one-to-many; and all the other things you
learned about has-a.

Add a relationship to GameResult called cardResults.
In the detail pane, set Destination to CardResult,
select the To-Many Relationship check box, and set
Delete Rule to Cascade. Then add a gameResults
relationship to CardResult. This one isn’t to-many,
and Destination should be set to GameResult. Now that you’ve created
both, you can say that they’re the same relationship by using the
Inverse drop-down in one relationship’s detail pane to choose the other
relationship. When you do so, the editor automatically sets the other
relationship’s Inverse value for you.

Figure 6.17 Defining a relationship in the Data Model Editor

Your data model is finished. Next you’ll let Xcode do the coding for
you. You can probably imagine the code you’d need to write to mimic
this structure, because it’s similar to object-oriented design.

130 CHAPTER 6 Working with databases and table views
Generating data classes
If you had to write the code yourself, it
wouldn’t be too hard, but you’d have to
remember to keep it up to date every time
you made a change. Generating the code
not only saves time but also is less prone
to errors.

To do it, you must have the model up in
Xcode. Right-click the Classes group, and
choose New File. Under Core Data, choose NSManagedObject Sub-
class, and click Next.

In the next dialog, make sure all your entities are selected, and click
Next to choose the group they will be stored in.

That’s it! As they used to say in the old iMac ads, “There is no step
three.”

Go look at the new modules and headers that were generated. It’s
mostly things you’re familiar with, plus a few we haven’t covered. If

Figure 6.18
Creating a managed
object in the New
File dialog

Figure 6.19
Choose the entities
to generate code for

Introducing Core Data 131
you examine the header, you’ll see that you already know a lot about
how to use these classes.

Adding Core Data support to your app
For every app that needs Core Data, you have to go
through a few steps. If you knew you were going to use
data, you could have checked a box in the template to

set up Core Data for you automatically. It’s good to know how
to add it later yourself, so you know how.

The first step is to add the Core Data Framework to the Frame-
works Group. To do that, click the FlashCards target at the top
of the Project Navigator. Then, choose the Build Phases tab
and open the Link Binary with Libraries table. Click the plus
sign at lower left, and choose to add CoreData.framework.
Figure 6.20 Adding the Core Data Framework

132 CHAPTER 6 Working with databases and table views
To load the model file and use the managed objects in your code, you
need to configure Core Data in your app. To better understand how
the code works, let’s look at some of the major concepts of Core Data
and how they work together.

Figure 6.21 The main Core Data concepts and how they work together

The first thing to understand is the object model. It’s created by Core
Data from reading the .xcmodeldata file, and it gives you a way to find
out about the entities, attributes, and relationships in your model.

OBJECT MODEL The object representation of the model data
resource file.

The persistent store coordinator knows how your model becomes a data-
base. iOS comes with a database called SQLite, and the store coordina-
tor turns all your requests into SQL commands for it.

PERSISTENT STORE COORDINATOR Manages the actual database
file and writes the correct SQL based on your actions.

The object context keeps track of all your changes until they’re saved to
the database. Every time you create a new entity object, it remembers
that it needs to insert a row. When you change an attribute, the object
context remembers to update the object context’s row. The object context

Introducing Core Data 133
also keeps track of objects you fetch from the store. When you’re ready
to commit your changes, you send the object context a save message, and
it tells the store coordinator what was changed.

OBJECT CONTEXT Keeps track of changes
until they’re saved to the database.

Because you generated GameResult and Card-
Result, you know those are managed objects. If
you look at their headers, you’ll see that they
inherit from NSManagedObject.

MANAGED OBJECTS The type of objects cre-
ated by generating classes from your data model

Let’s see how to code the configuration of these
objects. In FCAppDelegate.h, add these
retained properties:

@property (nonatomic, strong) NSPersistentStoreCoordinator *dataStore;
@property (nonatomic, strong) NSManagedObjectModel* dataModel;
@property (nonatomic, strong) NSManagedObjectContext* dataContext;

In any file in which you use Core Data, you need to add an import for
it, so add this to the top of the header:

#import <CoreData/CoreData.h>

In FCAppDelegate.m, you need to
create and configure these objects.
This is a one-time thing, and it’s
pretty much the same in all apps that
use Core Data.

134 CHAPTER 6 Working with databases and table views
First, add this message to figure out where the Documents folder for
this app is on the iPhone. This is where the database file should be
stored:

-(NSString*)docsDir
{

NSArray *paths =
NSSearchPathForDirectoriesInDomains(
NSDocumentDirectory, NSUserDomainMask, YES);

return [paths objectAtIndex:0];
}

Next, add this message to create a persistent store coordinator for a
given model. The store coordinator builds the actual database from the
entities, attributes, and relationships you defined, so it needs access to
the model to do that.

Listing 6.1 FCAppDelegate.m: creates a persistent store

-(NSPersistentStoreCoordinator*)dataStoreForModel:
(NSManagedObjectModel*)model
filename:(NSString*)filename

{
NSURL* storeLocation =

[NSURL fileURLWithPath:
[[self docsDir]
stringByAppendingPathComponent:filename]];

NSPersistentStoreCoordinator* store =
[[NSPersistentStoreCoordinator alloc]

initWithManagedObjectModel:model];

NSDictionary *options =
[NSDictionary dictionaryWithObjectsAndKeys:
[NSNumber numberWithBool:YES],

NSMigratePersistentStoresAutomaticallyOption,
[NSNumber numberWithBool:YES],

NSInferMappingModelAutomaticallyOption, nil];

NSError* error;
if (![store

addPersistentStoreWithType:NSSQLiteStoreType

Find Documents
folder

Database
locationB

Set optionsc

Configure store
for SQLited

Introducing Core Data 135
configuration:nil
URL:storeLocation
options:options
error:&error])

{
NSLog(@"Error initializing Data Store: %@",

[error localizedDescription]);
return nil;

}
return store;

}

To create a store, you need to specify a location B, options c, and the
kind of database you want d. We’ll explain the options we chose in
section 6.4. Finally, many things in Core Data can go wrong, so you
need to check for errors. In this case, you’re logging errors to the con-
sole so you can see the problem if you have one e.

The next step is to set up properties. Add this configureCoreData mes-
sage, and make sure to call it.

Listing 6.2 FCAppDelegate.m: configuring Core Data

-(void)configureCoreData
{

self.dataModel =
[NSManagedObjectModel mergedModelFromBundles:nil];

self.dataStore = [self dataStoreForModel:self.dataModel
filename:@"FlashCards.sqlite"];

self.dataContext =

Report
errorse

Figure 6.22 The object model and the persistent store coordinator

Configure
modelb
[[NSManagedObjectContext alloc] init];
Configure
contextc

136 CHAPTER 6 Working with databases and table views
[self.dataContext
setPersistentStoreCoordinator:self.dataStore];

}

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOption

s
{

[self configureCoreData];

[window addSubview:viewController.view];
[window makeKeyAndVisible];
self.window.rootViewController = self.viewController;
return YES;

}

First, you load the model file
from the .xcdatamodel file in
your bundle B. Next, you use
the message from earlier to make
a store, and then you create a
context c. Because the context
needs to issue changes to the
store, you set that up as well.
Finally, you configure Core Data
when the app launches d.

It’s a fair bit of code, but you can use it as is in just
about any Core Data application. The only change
you’d need to make is the name of the SQLite file.
With that in place you can finally use your man-
aged objects to create rows in the database.

Saving your game results
With Core Data configured in your app, you’re
ready to start using it. A big chunk of the work was

Send configuration
messaged

Figure 6.23 Persistent store coordi-
nator and object context

Introducing Core Data 137
done for you when you generated the model objects. And remember
that big question mark you had when you were trying to figure out
how to save game results? Well, now you know that’s going to be done
by the data context.

To do the save, you need to add the code to the FCGame class. It will use
Core Data, so add this import to the header:

#import <CoreData/CoreData.h>

Also declare the save message. You’ll have the controller tell you about
the context when it requests a save:

-(NSError*)save:(NSManagedObjectContext *)context;

Finally, here’s the implementation for the save. Add #import "Game-
Result.h" to the top of the module and then the following message.

Listing 6.3 FCGame.m: saving a game’s result

-(NSError*)save:(NSManagedObjectContext *)context
{

GameResult *gameResult;
gameResult = [NSEntityDescription

insertNewObjectForEntityForName:@"GameResult"
inManagedObjectContext:context];

gameResult.gameDate = self.gameStart;
gameResult.gameLength = [NSNumber numberWithInteger:

Figure 6.24
Saving managed objects
into the context

Insert
GameResultB

Set its
attributesc
-[self.gameStart timeIntervalSinceNow]];

138 CHAPTER 6 Working with databases and table views
for (FCCard* c in self.cards) {
[gameResult addCardResultsObject:
[c cardResultInGame:gameResult withContext:context]];

}

NSError *error;
if ([context save:&error]) {

return nil;
}
return error;

}

This is typical Core Data code for creat-
ing entities. First you create a new
GameResult object using its entity descrip-
tion B. Next, you set the attributes of
the GameResult c. Then you add Card-
Result objects that the Card will make for
you d, and finally you save e and report
any errors you run into.

To get the gameLength, you needed to add
another property to FCGame, called game-
Start. It’s an NSDate*. To initialize it, set it to the current time by assign-
ing it to [NSDate date] in FCGame’s init message.

Add this message to Card. You’ll also have to remember to declare it in
the header and add #import "CardResult.h".

Listing 6.4 FCCard.m: creating a CardResult from a Card object

-(CardResult*)cardResultInGame:(GameResult*)gameResult
withContext:(NSManagedObjectContext*) context

{
CardResult* cardResult = [NSEntityDescription

insertNewObjectForEntityForName:@"CardResult"

Add CardResult
objectsd

Save contexte

Figure 6.25
Managed objects and the object context
inManagedObjectContext:context];

Introducing Core Data 139
cardResult.cardName = self.cardText;
cardResult.wasCorrect = [NSNumber numberWithBool: self.isCorrect];

return cardResult;
}

This code creates a managed object and configures it. Because you set
up an inverse relationship in the model, Core Data will automatically
set the CardResult’s gameResult property for you when you add it to
GameResult.

To call these messages, add this message to FCResultViewController.m.

Listing 6.5 FCResultViewController.m: saving a game

-(void)saveGame {
FCAppDelegate *appDelegate =

[[UIApplication sharedApplication] delegate];

NSError* err =
[self.game save: appDelegate.dataContext];

if (err != nil) {
NSLog(@"Error in save: %@",

[err localizedDescription]);
}

}

Also add a [self saveGame]; call to its init method, so the game length is
recorded as soon as you’re done.

With this code in place, each game will be stored as soon as you’re done
playing. That’s great, but why save the game result if you can’t do some-
thing with it later? One nice thing to do is to allow the user to navigate
around and view their game result history, which you’ll learn about next.

Save game

Report
errors

140 CHAPTER 6 Working with databases and table views
Fetching and viewing data
It’s no use saving data if you’re never going to use it
for anything. The easiest thing to do with data is to
look at it, and the iPhone provides a nice way to do
that with table and navigation views. They’re perfect
for quickly scrolling through data, choosing rows to
get more detail on, and navigating back to the sum-
mary. This combination of views is used in a lot of
iPhone apps.

Viewing in a table
If you look at the Contacts or Mail app, you’re looking at table and
navigation views in action. The top bar is the navigation, and the list of
data below it is the table. You’ll see this basic structure in a lot of apps,
sometimes configured a little differently, but fundamentally the same.
These views can be used with or without Core Data.

To get started, add a new view controller class to your app.

This time, make it a UITableViewController subclass. Name it FCGame-
HistoryViewController.m.

Figure 6.27 Making your view controller a subclass of

Figure 6.26
Creating a UIViewController
UITableViewController

Fetching and viewing data 141
When you’re done, add another view controller for FCCardHistory-
ViewController.m.

Before we look at the code, at
right you can see how the tables
and Core Data work together.

To start with, your controller will fetch the data into the context using a
new class called a NSFetchedResults controller B, c. This class is
designed to help you put data from Core Data into tables. The context
takes your request and creates managed objects for you d.

Later, the table view will ask for that data like this:

Figure 6.28 The interaction between
the table view controller and Core
Data objects to fetch data

Figure 6.29 Interaction between
the table view controller and Core

Data objects to show data

142 CHAPTER 6 Working with databases and table views
First, the table view asks its controller how many rows it should show
B. To find out, the controller asks the fetched results controller c how
many managed objects it has. Then the table asks for each row in turn
d, which the controller gets by obtaining managed objects from the
fetched results e. The last thing you need to do f is format the prop-
erties to look nice in the table. Let’s see the code.

Change FCGameHistoryViewController.h to look like this.

Listing 6.6 FCGameHistoryViewController.h: fetched-results property

#import <CoreData/CoreData.h>

@interface FCGameHistoryViewController : UITableViewController
<NSFetchedResultsControllerDelegate>

@property(strong, nonatomic)
NSFetchedResultsController *resultsController;

@end

To use an NSFetchedResultsController, you add a property B and make a
delegate c. Let’s take a closer look at how the delegate works.

When an SDK class like NSFetchedResultsController needs to use a class
it can’t possibly know about (like your FCGameHistoryViewController), it

Fetched-results
propertyb

Need this to
use fetched
resultsc

Figure 6.30
Delegates and
protocols with
fetched results
defines a delegate that acts as a definition of what messages it would

Fetching and viewing data 143
like to send. To receive them, you implement the messages
of the delegate. It’s a similar concept to inheritance, with
the major difference being that there are no default message
implementations. In Objective-C, this is called implementing

a protocol, and we’ll diagram that with the ball-and-socket style
used earlier.

Let’s go to the module file and load data. The first step is to build
a request. To make a request, you say what entities you want,
which ones, and how to sort them. Here’s the code.

Listing 6.7 FCGameHistoryViewController.m: fetching and sorting entity objects

-(NSFetchRequest*)requestForGameResults:
(NSManagedObjectContext*) context

{
NSEntityDescription* gameResultDesc =
[NSEntityDescription entityForName:@"GameResult"

inManagedObjectContext:context];

NSFetchRequest* request =
[[NSFetchRequest alloc] init];

[request setEntity:gameResultDesc];

NSSortDescriptor *sort = [[NSSortDescriptor alloc]
initWithKey:@"gameDate"
ascending:NO];

[request setSortDescriptors:[NSArray arrayWithObject:sort]];

return request;
}

This code makes an NSFetchRequest object
that can be used to get NSManagedObjects
into your context. First B it builds an
NSEntityDescription to say you want Game-
Result objects. Next c it builds an NSSort-
Descriptor to say it wants them sorted by
the attribute gameDate in descending order.

Specify the
entities
you want …

B

… and how
to sort
them

c

You’ll use this message in loadData like this.

144 CHAPTER 6 Working with databases and table views
Listing 6.8 FCGameHistoryViewController.m: fetching the entity

-(void)loadData
{

FCAppDelegate* delegate =
[[UIApplication sharedApplication] delegate];

NSManagedObjectContext* context =
delegate.dataContext;

NSFetchRequest* request = [self requestForGameResults:context];

self.resultsController =
[[NSFetchedResultsController alloc]

initWithFetchRequest:request
managedObjectContext:context
sectionNameKeyPath:nil
cacheName:@"GameResults"];

self.resultsController.delegate = self;

NSError *error;
if (![self.resultsController performFetch:&error]) {

NSLog(@"Fetch failed: %@", [error localizedDescription]);
}

}

loadData uses Core Data, so you need to get the
data context from the app delegate B (so you’ll
need to import FCAppDelegate.h). Next you get
the request object and use it to fetch c managed
objects into your fetched-results controller, and
set its delegate d to the view controller. Finally,
you need to handle any errors e.

To get GameResults, you call loadData in viewDidLoad. viewDidLoad also
needs to add a Done button to the navigation bar and set up its action,
doneWithHistory. Here’s how.

Listing 6.9 FCGameHistoryViewController.m: setting up the nav bar with viewDidLoad

-(IBAction)doneWithHistory:(id)sender
{

Get app
delegateB

Make fetched-results
controllerc

Set its
delegated

Handle errorse
[self.navigationController.view removeFromSuperview];

Fetching and viewing data 145
FCAppDelegate* delegate =
[[UIApplication sharedApplication] delegate];

[delegate popView];
}

- (void)viewDidLoad
{

[super viewDidLoad];

self.title = @"Game History";
self.navigationItem.rightBarButtonItem =

[[UIBarButtonItem alloc]
initWithBarButtonSystemItem: UIBarButtonSystemItemDone
target:self action: @selector(doneWithHistory:)];

[self loadData];
}

The doneWithHistory action needs to remove this view from the window
to reveal the home screen. In chapter 5, you made a message pushView
to animate views sliding in from the right. Go make another message
called popView that moves views in from the left,
which you’ll call to make the transition smooth B.

In viewDidLoad, you set the title and Done button c
and load the data.

Your view controller has all the
data but isn’t using it yet. To do
that, you need to implement three
messages that the table view will
send you, as shown here.

Figure 6.31
The sequence of messages for show-

Animate
from leftb

Used by
nav barc
ing data in a table

146 CHAPTER 6 Working with databases and table views
First the table will ask you how many sections you have. For each sec-
tion, it will ask you how many rows are in that section. Luckily,
NSFetchedResultsController knows this, so you just need to forward that
request:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{

return [[self.resultsController sections] count];
}

- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section

{
return [[[self.resultsController sections] objectAtIndex:section]

numberOfObjects];
}

Once the table view knows how many cells there are, it will begin ask-
ing for them. The fetched-results controller has the data you need to
make the cell, so the first step is to configure UITableViewCell objects
from GameResults (don’t forget to add #import "GameResult.h").

Listing 6.10 FCGameHistoryViewController.m: filling a cell

-(void)fillCell:(UITableViewCell*)cell
withResultAtIndex:(NSIndexPath*)indexPath

{
GameResult* gr =
[self.resultsController objectAtIndexPath:indexPath];

cell.textLabel.text =
[NSString stringWithFormat:@"Game played on %@",

[NSDateFormatter localizedStringFromDate:gr.gameDate
dateStyle:NSDateFormatterShortStyle
timeStyle:NSDateFormatterNoStyle]];

cell.detailTextLabel.text =
[NSString stringWithFormat:@"%d seconds long",

[gr.gameLength intValue]];
}

First B you get the right GameResult for the section and row you’re in.
Then you format the date and length c and use them for the labels

Get GameResult
at indexPathb

Set its
propertiesc
inside the cell.

Fetching and viewing data 147

attr
You’ll use this message to fill cells when the table view sends you the
following message.

Listing 6.11 FCGameHistoryViewController.m: making a cell for the given row

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
static NSString *CellId = @"Cell";

UITableViewCell *cell =
[tableView dequeueReusableCellWithIdentifier:CellId];

if (cell == nil) {
cell = [[UITableViewCell alloc]

initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellId];

cell.accessoryType =
UITableViewCellAccessoryDisclosureIndicator;

}

[self fillCell:cell withResultAtIndex:indexPath];
return cell;

}

This message is supposed to provide cells for your
table, and it’s called a lot. To make this as fast as
possible, the best practice is to share those cell
objects. To make that easier, the SDK provides a
way to get cells from previous calls B, and if it’s
the first message call, you make a cell with the
common attributes. The cells have a title and sub-
title and an indicator that more detail is available
c. Once you have a cell, you need to fill it d.

The last step is to add a button to the home screen and make it bring up
this view. You know how to do most of this, so follow these steps:

1 Add a button to FCViewController.xib like the ones you have there
already.

2 Make an outlet called showHistoryBtn, and connect it.

Reuse cells
for speedb

Common
ibutes c

Fill celld
3 Make an action called showHistory, and connect it.

148 CHAPTER 6 Working with databases and table views

on
4 Update animateViewLoad with the new button.

5 Update viewDidLoad with the new button.

Here’s the code to bring up the history inside a navigation controller.

Listing 6.12 FCViewController.m: showing history

-(IBAction) showHistory:(id)sender
{

FCGameHistoryViewController* ghVC =
[[FCGameHistoryViewController alloc]

initWithNibName:@"FCGameHistoryViewController" bundle:nil]
;

self.historyVC = [[UINavigationController alloc]
initWithRootViewController: ghVC];

self.historyVC.view.frame = CGRectMake(0, 20, 320, 460);
[self.view.window addSubview:historyVC.view];

FCAppDelegate* delegate =
[[UIApplication sharedApplication] delegate];
[delegate pushView];

}

This is like the code you used to bring up
views before, but you need to put the view in
a UINavigationController B to automatically
get titles and back buttons for the hierarchical
navigation.

Run the game, and go to the history page to
see something like this.

Figure 6.32 Game result history in the simulator

Use navigati
controllerb

Fetching and viewing data 149
The disclosure indicators you added mean that if you touch the row,
you should see some detail. But if you touch a row, nothing happens.
You’ll add that next.

Navigating to related data
Once you know how to connect data to a table
view, it’s pretty easy to do it again. You could go
back to Core Data and this time get CardResult
objects, but you don’t need to. Your model set up
a relationship between GameResults and CardRe-
sults. This means that when you fetch a GameRe-
sult, the CardResults associated with it come along
for the ride. Look at GameResult.h, and you’ll see
that a property to access them has already been
generated for you.

To use it, add a results property to FCCardHistoryViewController.h:

@property(strong, nonatomic) NSArray *results;

Now, implement the two section- and row-count messages:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{

return 1;
}

- (NSInteger)tableView:(UITableView *)tableView

numberOfRowsInSection:(NSInteger)section

150 CHAPTER 6 Working with databases and table views
{
return [self.results count];

}

You only have one section with as many rows as are in the array.

Filling a cell works pretty much as it does for a GameResult. This time
you’ll use color to make wrong answers stand out more.

Listing 6.13 FCCardHistoryViewController.m: filling a cell

-(void) fillCell:(UITableViewCell*)cell
withResultAtIndexPath:(NSIndexPath*)indexPath

{
CardResult* cr = [self.results objectAtIndex:indexPath.row];
cell.textLabel.text = cr.cardName;

if ([cr.wasCorrect boolValue]) {
cell.detailTextLabel.text = @"Right";
cell.detailTextLabel.textColor = [UIColor blackColor];

} else {
cell.detailTextLabel.text = @"Wrong";
cell.detailTextLabel.textColor = [UIColor redColor];

}
}

And you send this message whenever you’re asked to provide a cell.

Listing 6.14 FCCardHistoryViewController.m: getting a cell for this row

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath

{
static NSString *CellId = @"Cell";
UITableViewCell *cell =

[tableView dequeueReusableCellWithIdentifier:CellId];
if (cell == nil) {

cell = [[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellId];

}
[self fillCell:cell withResultAtIndexPath: indexPath];
return cell;

Color cell based
on value
}

Fetching and viewing data 151
This is also much as it is for GameResults.
Again, you try to reuse cell objects to speed
up table viewing.

When a GameResult is touched, you navigate to
the card history. Add the following message
to FCGameHistoryViewController.m.

Listing 6.15 FCGameHistoryViewController.m: navigating to the card history

- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{
FCCardHistoryViewController* vc =

[[FCCardHistoryViewController alloc]
initWithNibName:@"FCCardHistoryViewController" bundle:nil]

;

NSSortDescriptor* sort =
[[NSSortDescriptor alloc] initWithKey:@"cardName" ascending:YES]

;

GameResult* gr =
[self.resultsController objectAtIndexPath:indexPath];

vc.results = [gr.cardResults sortedArrayUsingDescriptors:
[NSArray arrayWithObject:sort]];

[self.navigationController
pushViewController:vc animated:YES];

}

First you load the view B from the XIB file. Next c you create a sort
descriptor to sort the cards by their cardName property and apply it to
the GameResult’s cardResults d to get a sorted array of cards. Finally, e
you navigate to the card history view by handing FCCardHistoryView-
Controller to the navigation controller.

Load card
history viewb

Sort by
cardNamec

Get sorted
arrayd

Navigate to
card historye

152 CHAPTER 6 Working with databases and table views
Run the game, go to history, and touch a game
result to see the related cards.

Phew. We covered a lot, but now have an app
that stores data and fetches it later to show it in
navigable table views. This pattern of interac-
tion is common in iPhone apps and can be car-
ried out with a fetched-results controller or
arrays (and many other ways). The important
thing is that you know how many rows you
have and what’s in them.

There will come a time, though,
when you want to change your
data model. If you already have
objects stored, then something
has to be done to update them, or
Core Data won’t understand
how to read them. We’ve already covered part of what
you need to do, and now you’ll learn the rest.

Changing your data model
When you created your data model, you were teaching Core Data how
to create a database for you. But you’re not likely to get it perfect the
first time. Even if you do, you’ll probably want to keep adding features
to your app, so you’ll need more entities, attributes, and relationships.

Figure 6.33
Card result history
in the simulator

Changing your data model 153
Versioning your data model
Once you have a stable version of your data model, you should create a
version for Core Data to store no matter what changes you make. To
do that, choose the data model in Xcode and choose Editor > Add
Model Version from the menu. Doing so creates a version of your data
model. Then click the parent data model (the .xcdatamodeld file), and
set the new version as the current one.

The green check mark shows you
the current version.

From now on, don’t ever change the original .xcdat-
amodel file. You can change the new one, but if you
release it, you need to create a new version.

Now Core Data knows the versions of your model. If
you tell it that you want automatic migration, it will
make the updates of your database and data for you.

Migrating between versions
Versioning your model is absolutely necessary if you want Core Data
to handle migrations for you. It’s important that you remember to add a
new version after you release any model to the App Store, or your cus-
tomers won’t be able to upgrade. Between released versions, you may
want to add versions for convenience if you don’t want to delete test
data.

Figure 6.34 Setting the current
data model version

Figure 6.35 Ensuring that the
latest version is correct

154 CHAPTER 6 Working with databases and table views
You already told Core Data to do the migration for you. Remember
this?

NSDictionary *options =
[NSDictionary dictionaryWithObjectsAndKeys:
[NSNumber numberWithBool:YES],
NSMigratePersistentStoresAutomaticallyOption,

[NSNumber numberWithBool:YES],
NSInferMappingModelAutomaticallyOption, nil];

Those options tell Core Data to look at the version in your app’s docu-
ment directory and, if it doesn’t match the latest version in the bundle,
to automatically add or delete any entities, attributes, or relationships
necessary to make the models match.

Planning for what’s next
FlashCards now has enough features to launch into the App Store, but
if you want to, you can let the user select a CardResult and see their past
guesses. To do that, you need to add the attribute to CardResult, regen-
erate it, copy it from the Card, and then show it in a table view that you
push into the navigator.

You’ve seen a few different ways to transition between views, but there
is another popular one called a tabbed view. Using it, you can get to vari-
ous parts of your app quickly without needing a hierarchical naviga-
tion. We’ll explore a new app that is based on this idea in the next
couple of chapters.

SET OPTIONS

7
Creating a photo-based
application

This chapter covers

• Using tab-based navigation

• Getting images from the Photos application

• Detecting touch positions

I know that when I (Lou) want to liven up my day, I put on a fake mus-
tache and a rainbow wig. But sometimes, when you need them, they’re
hard to find. That’s where the next app, Disguisey, fits in. Disguisey lets
you look through your photo album for a picture of a face and then add a
fake mustache, beard, wig, funny hat, or tattoo to it.

You already know a lot about how to make Disguisey. Like every app, it
has models, views, and controllers. You’ll see a couple of new types, but
it’s basically the same. You’ll still use outlets and actions to connect the
view to your code, but you’ll also see how to get more information about
touches when you need it.
155

156 CHAPTER 7 Creating a photo-based application
Designing the application
You need to do two basic things in Disguisey. First,
you need to be able to grab a picture of a face from
your Photos application. Second, you need to be able to pick a
mustache, beard, wig, or tattoo from a disguise palette and
place it on the face. One way to organize this app is as a group
of tabs: one for the face and three for the elements of the dis-
guise. That way, the user has freedom to explore their options.

Sketching Disguisey
Let’s start with a sketch. For the first time, you’re going to use tabs to
control your app. As we just said, you’ll have one for the face and three
for the elements of the disguise. At upper right, you’ll have a button to
pick a face from your Photos application.

This is what it looks like when you press the Add button and then pick
a face.

Figure 7.1 Sketch

of picking a face

Designing the application 157
Once you have a face on the first tab, you can pick any other tab and
touch a disguise element. When you do, the tab will switch automati-
cally to the face tab, where you can place the element on the face by
touching it.

As you’ve seen in previous chapters, these sketches will help you know
what views you need when you go into Xcode and Interface Builder.
You should already be thinking about the parts of the view that change
(and need to be outlets) and the parts of the view that need to have
actions tied to them.

Defining the behavior of your application
To go a little further with the sketches, let’s draw a diagram of what’s
happening when you start the app and pick a photo.

Figure 7.2 Sketch of placing a disguise

Figure 7.3 State transitions

when choosing a photo

158 CHAPTER 7 Creating a photo-based application
Generally, arrows indicate the view sending a message to a controller.
In response, the controller changes the models and then updates the
views based on them.

Here’s what happens when you want to put a mustache on the face.

So far, that looks pretty simple. Because you’re using tabs, the app’s
behavior is much more complex. At any time, you could go to any tab
and pick any disguise element. It’s not just a linear flow. Here’s a dia-
gram of what the flow could really be like.

Figure 7.4
State transitions for
placing a mustache

Figure 7.5
The complex
behavior
enabled by

tabs

Designing the application 159
And that’s still simplifying it, which is fine for
now.

With these sketches done, you’re ready to start
designing your app. This app isn’t as complex
as it seems. The models are a lot simpler than
the card game, and the iPhone has built-in
controllers to handle the tabs and photo pick-
ing. The hardest part will be composing the
disguise on the face, but because that’s the
whole purpose of the app, it’s not a big deal.

Designing your application’s models, views, and controllers
In every app you’ve made, you’ve looked at the sketches and behavior
of the app and tried to come up with models, views, and controllers
that will implement that behavior. The models you need for this app are
the disguise and the elements that make it up. A disguise element con-
sists of an image (for example, of a mustache) and an x-y point to posi-
tion it. The disguise itself is the list of elements. To manage the
elements, you need messages that let the controller alert the disguise
when a new element is chosen and when it’s been placed on a face.

As you’d expect, disguises have zero or more elements.

Figure 7.6
The DIDisguise and
DIDisguiseElement
classes

160 CHAPTER 7 Creating a photo-based application
Let’s look at the face view and controller.

You have messages to add a face to the view, tell when it was touched,
add disguise elements, and clear the disguise.

The three other tabs have the exact same behavior, but they have dif-
ferent elements on them. This means you’ll have three different views,
but they can share the controller. In the past, you’ve seen a one-to-one
correspondence between views and controllers, but if your views are
variations of each other, you don’t need to have copies of the controller.

This is what the facial hair view looks like. The only message it needs is
an action for what happens when you touch one of its elements.

Figure 7.7 The DIFace-
ViewController class
and view

Figure 7.8 The DIDisguise-

ViewController class

Creating an app with tab-based navigation 161
You don’t have to create messages for the tab
at the bottom because tabs are built into the
iPhone, and you can drag them and their
controllers onto your application. You also
don’t have views or controllers for picking a
photo from the iPhone’s Photos app. Like
tabs, those are built in.

You now have everything you need to start
coding the app. You’ll create the views in Interface Builder and then
code the controllers and models in Xcode. So far, most of this should
feel familiar. Disguisey is just like the other apps you’ve made, except
with a fake mustache and a rainbow wig.

Creating an app with tab-based navigation
Disguisey uses tabs, so you’ll begin with the Tabbed Application tem-
plate. To do that in Xcode, choose File > New Project, and select
Tabbed Application.

Figure 7.9 The New Project
dialog, where you choose the

Tabbed Application template

162 CHAPTER 7 Creating a photo-based application
In the next dialog, name the app
Disguisey, set the class prefix to
DI, and select both the Use Story-
board and Use Automatic Refer-
ence Counting check boxes.
(That’s right, you’re finally going
to use a storyboard!)

The next step is to rename the
default classes generated by the
template. It’s a pain, but it’s a lot quicker than going out to the store to
buy Groucho Marx glasses.

Renaming classes with the refactoring tool
If you look at the class names, you’ll see two view
controllers, DIFirstViewController and DISecond-

ViewController. These names are autogenerated
and don’t do a good job of describing what you
want them to do. In the app design, you named these classes
DIFaceViewController and DIDisguiseViewController. You could
rename the files and classes and then hunt down all refer-
ences to them in Interface Builder, but luckily you don’t
have to. Xcode has this kind of renaming built in, and it will
be sure to do it right.

To rename the first class, click DIFirstViewController.h in the Project
Navigator. Then, right-click the word DIFirstViewController right after
the @interface keyword. On the menu that comes up, choose Refactor >
Rename, and then, in the dialog, rename the class DIFaceViewController.
You can click through the dialogs that follow, which show you what
Xcode will do and offer to keep snapshots of your current code base.

Figure 7.10
Disguisey’s project settings
Figure 7.11 Renaming a class

Creating an app with tab-based navigation 163
Do the same with DISecondViewController. This time, rename it
DIDisguiseViewController.

The app has four tabs, but remember that three of them use the same
controller because they have identical behavior. The next step is to cre-
ate the views that go along with these classes and connect them. You’ll
do that using a relatively new feature of Xcode, the storyboard. Story-
boards are particularly useful when you’re managing a lot of intercon-
nected views.

Storyboarding your app in Interface Builder
With the latest Xcode, it’s possible to work with several related views
in one canvas by using a storyboard. It makes sense to use this for tabs,
and that’s why you selected the Use Storyboard check box in the tem-
plate. Let’s look at the storyboard. In Project Navigator, click Main-
Storyboard.storyboard.

Figure 7.12 The app’s storyboard

164 CHAPTER 7 Creating a photo-based application
The template put only two tabs on your app, but it’s easy to add more.
As you can see, unlike a XIB file, a storyboard holds multiple View-
Controller views and even knows that they’re related. Because there’s a
view with tabs already on it and relationships drawn, the tabs know to
switch between the views automatically.

To add the others views, drag two
more view controllers from the Object
Library onto the Storyboard.

Figure 7.13 View controller in the
Object Library

You now have a tabbed view controller and four controllers: one for
each tab.
Figure 7.14 The app’s five views

Creating an app with tab-based navigation 165
Note that only two views are connected.
You make relationships by connecting
the Relationship connector of the Tab
Bar Controller to the individual views.
First click Tab Bar Controller in the
Dock.

Go to the Tab Bar Controller’s Connections Inspector, and you’ll see
that its view controller’s triggered segues are already connected to the
first two views. To connect the other two, drag the little circle on top of
each view.

Now the Tab Bar Controller has four tabs.

To finish customizing the template, you need
to do a few more things:

1 Click the TextView on the Face View Con-
troller, and press Delete to delete it. Do the
same with the Label.

2 Also delete DIDisguiseViewController’s Text-
View and Label.

3 Click the tab bar item of the Face View
Controller. In the Attributes Inspector, set
Title to Face and Image to tab-face.png.

4 Do the same for the next three tabs, setting their titles to Facial Hair,
Wigs/Hats, and Tattoos/Scars and their images to tab-facial-hair.png,

Figure 7.15
The Tab Bar view controller

Figure 7.16
Connecting a view
to a tab bar

Figure 7.17 Tab Bar
Controller with four tabs
tab-wig-hat.png, and tab-tattoo.png, respectively.

166 CHAPTER 7 Creating a photo-based application
5 For the two view controllers you added, go to the Identity Inspector
and set the class to DIDisguiseViewController.

The storyboard should look like this.

Figure 7.18 The storyboard when it’s finished

Your app is now set up. The individual views don’t
have anything on them, and the tab images haven’t
been created, so it’s not an interesting app yet.

Take a quick break, stretch your legs, and get ready for
the next part, where you create the individual views for
the tabs. The views on the tabs are
no different from other views
you’ve made, so it should feel
familiar.

Figure 7.19

The app so far in the simulator

Creating an app with tab-based navigation 167
Making images for the tabs
It would be pretty sad if you had ques-
tion marks as tab images for your app.
If you look at any tab-based apps on
your iPhone, you’ll notice that they usu-
ally have nice gradient images that turn
bright blue when you touch them.
Because every app seems to have this
look, you should have guessed that it
was built in.

All you need to do is create a 32 x 32
pixel PNG image that uses opaque pix-
els on a transparent background. This image isn’t used as is. Instead,
it’s used as a mask against nice gradients to form the tab’s image.
Wherever you have opaque pixels, the gradient will show through.
Here are our Face and Tattoos/Scars images. The checkerboard pat-
tern shows where the image is transparent.

Like all images you use on user interfaces, if you make
one twice as big and name it with @2x before the
extension, it will be used on retina displays. For exam-

ple, name the 32 x 32 face image tab-face.png and the 64 x 64
image tab-face@2x.png. The other images are named tab-
facial-hair.png, tab-wig-hat.png, and tab-tattoo.png.

Once you’ve created the eight images (two for each tab), add
them to the main Disguisey group in Project Navigator. As
always, make sure the Copy Items into Destination Group’s
Folder (If Needed) check box is checked.

Figure 7.20 Tab mask images

168 CHAPTER 7 Creating a photo-based application
If you’ve done it right, you’ll see the images in
the tab bar of the Tab Bar Controller in the
storyboard. If not, check the names of the
files against the Image attribute of each tab bar
item.

If you run the application now, you’ll see a tab
bar with your images, and you can change
tabs by touching each one. It’s hard to see that
the views are changing because they’re all the
same. You’ll fix that in the next section.

Figure 7.21 View with tab titles and images set

Making the face view
When your app comes up, it shows the first tab, the face view. Looking
back at the first sketch, you can see that the view has two areas. The
top bar has the button that adds a face to the app, and you should prob-
ably put the name of the app there too. Most of the view is taken up by
the face itself, which is an image. Here’s a refined sketch.

That standard title bar that you add to the sketch is called a Navigation
Bar, and the button you put on it is a Bar Button Item. To add them,
click the storyboard in Xcode, and then drag the objects from the
Library onto the Face View Controller. One nice thing is that Interface

Figure 7.22 Updated sketch
of the face view
Builder knows that Navigation Bars go on top and what size they are.

Creating an app with tab-based navigation 169
If you drag the Navigation Bar near the top, it will snap into position.
Similarly, when you drag the Bar Button Item near the right side of the
Navigation Bar, Interface Builder will automatically set its size and
location. Double-click the title and type Disguisey, and then double-
click the button and type Pick Face.

Before you add the image into the center, it’s worth noting
that your view doesn’t have the full tab bar on it. That’s
because DIFaceViewController doesn’t know about the other
tabs. Interface Builder lets you simulate the tab bar, which
helps it show you what views will look like in the real app.
Go to the Attributes Inspector of the view (select the fourth
tab or press Opt-Cmd-4), and see that the Bottom Bar field
is set to Inferred in the Simulated Metrics section. When
you place elements in the view, they will know to size and
place themselves while taking the tab bar into account.

Now, drag an ImageView from the Library
onto the center of the view. It’s sized automat-
ically when you drag it to the center, because
you have the top and bottom bars in place.
While it’s still selected, choose Editor >
Arrangement > Send to Back so the disguises
you drag around stay under the navigation
and tab bars.

To finish the view, click the UIImageView and
go to its Attribute Inspector. Set Mode to Top
Left, and select the User Interaction Enabled
check box (because you want to be able to
touch the ImageView).

Figure 7.23
Setting the title and
item button text

Figure 7.24 The com-
pleted face view

170 CHAPTER 7 Creating a photo-based application
Save everything, and then go back to Xcode
and build the application and run it.

You’ll come back and make outlets and
actions later, but think about what you need
to send to controllers (with actions) and
what they will need to update (with out-
lets). Keep the sketch, design, and code
loop in mind as you do each part so you can
flow from one to the next easily.

Making the disguise views
The disguise tabs are the hardest
part of this app. First, go grow
some facial hair (or call in a favor
from your dad), dye your hair
rainbow colors, get some cool
hats, and tattoo your face.

If this seems like too much work,
or if for some reason you don’t
want a face tattoo, you’re still going to have to call in favors.

Look through your digital photos for friends and family who have dif-
ferent beard and hair styles, and then use Photoshop or Gimp to
extract just the hair from the pictures and paste it onto a transparent
background. Here’s an example.

If you can’t find what you need in your own photo library, look for roy-
alty-free images online. Check the license carefully if you’re planning
to use images in a commercial app. The safest thing is to use your own

Figure 7.25
The tab-based applica-

Figure 7.26
A mustache on a transparent background
photos and get permission from the models.

Creating an app with tab-based navigation 171
Save your images in PNG files that are 150 pixels wide, and name them
facial-hair-01.png, facial-hair-02.png, and so on.

To put them on the disguise tabs, click the Facial Hair View Controller
in the storyboard. Then, drag a Round Rect Button onto its view. Set
the button’s Type to Custom, and choose the image for it. Do this for
each different disguise element (putting them on the correct tab in the
storyboard).

If you save the storyboard and then run the app
in Xcode, you’ll be able to switch between tabs
and see the different disguise elements. But when
you touch a mustache, nothing happens. You want the app
to switch to the face tab. You know you need actions. Think
about which part of the view is sending a message to the

controller and what the controller needs to
change while you go grab a congratulatory
cookie for getting this far.

Changing tabs with code
You finally need to add some code. Did you figure out
that the disguise button needed an action? That
should be obvious by now, because buttons without
actions don’t do anything when you touch them.

Figure 7.27
The disguise images in the Project Navigator

Figure 7.28 Placing disguise buttons on the view

172 CHAPTER 7 Creating a photo-based application
Every button does the same thing, so you need only one action. In
DIDisguiseViewController.h, add this code:

-(IBAction)disguiseElementChosen:(id)sender;

You also need this action, which will change the tab bar to the first tab:

-(IBAction)disguiseElementChosen:(id)sender
{

self.tabBarController.selectedIndex = 0;
}

Connect each disguise button’s touch event to the action.

Save everything in Xcode, and run the app. Now,
when you go to the facial hair tab and touch a mus-
tache, the app automatically switches you to the face
tab. If only a face appeared there!

You’re getting to the point where you need models
to help you finish the code. Because they’re simple,
you’ll do that and then use them to finish the appli-
cation.

Figure 7.29 Connecting the button’s touch event to an action message

Incorporating models 173

es
Incorporating models
This app has fairly simple models. You need to be able to create and
manage the disguise. It’s common to see models when you have a col-
lection of things. The collection and the things are usually classes in the
model. In this case, DIDisguise is a collection of DIDisguiseElements.

Coding DIDisguise and DIDisguiseElement
The app’s design represents DIDisguise-

Element as shown at right.

It’s an image and an x-y point on the face.
Create a new class called DIDisguiseElement,
and edit DIDisguiseElement.h to look like
this:

@interface DIDisguiseElement : NSObject

-(id)initWithImage:(UIImage*)image atPoint:(CGPoint)point;

@property(strong, nonatomic) UIImage *image;
@property(nonatomic) CGPoint point;

@end

Put the following code in DIDisguiseElement.m.

Listing 7.1 DIDisguiseElement.m: implementation of the DisguiseElement class

@implementation DIDisguiseElement

@synthesize image = _image;
@synthesize point = _point;

-(id)initWithImage:(UIImage*)img atPoint:(CGPoint)pt
{

if (self = [super init]) {
self.image = img;
self.point = pt;

}
return self;

}

Figure 7.30 The
DIDisguiseElement class

Declare
properti

Custom
init

Synthesize
propertiesb

Make custom
init …c

… to initialize
themd
@end

174 CHAPTER 7 Creating a photo-based application
This is the same familiar code you write whenever you have properties.
You B synthesize them and c d initialize them. DIDisguiseElement is a
simple container of two related properties.

The disguise is a little more complex.

The disguise is accessed in two different ways. Here’s how it works.

Figure 7.32 Sequence of messages when placing a disguise element

Figure 7.31 The DIDisguise and DIDisguiseElement classes

Incorporating models 175
When you’re on the facial hair tab and touch
a mustache, the disguise keeps track of that
as the lastChosenElement. Then, when you’re
on the face tab and you touch a face, the last
chosen element is used to create a new
DIDisguiseElement object, which is added to
the list of elements.

To create it, add a class called DIDisguise,
and add the following code to DIDisguise.h.

Listing 7.2 DIDisguise.h: the DIDisguise class’s interface

#import <Foundation/Foundation.h>
#import "DIDisguiseElement.h"

@interface DIDisguise : NSObject

-(DIDisguiseElement*)placeChosenElement:(CGPoint)point;
-(void)clear;
-(bool)wasElementChosen;
@property(strong, nonatomic) NSMutableArray* elements;
@property(strong, nonatomic) UIImage* lastChosenImage;

@end

For the most part, the implementation isn’t too bad. Here’s everything
except placeChosenElement.

Listing 7.3 DIDisguise.m: the DIDisguise class’s implementation

@synthesize elements = _elements;
@synthesize lastChosenImage = _lastChosenImage;

-(id)init
{

if (self = [super init]) {
self.elements = [[NSMutableArray alloc] init];

}
return self;

}

Create new element
from last chosen image

List of
elements

176 CHAPTER 7 Creating a photo-based application

Cre
eleme

last
-(void)clear
{

[self.elements removeAllObjects];
}

-(bool)wasElementChosen
{

return self.lastChosenImage != nil;
}

Now, let’s take a closer look at placeChosenElement.

Listing 7.4 DIDisguise.m: the placeChosenElement message

-(DIDisguiseElement*)placeChosenElement:(CGPoint)point
{

if ([self wasElementChosen]) {
DIDisguiseElement* el = [[DIDisguiseElement alloc]

initWithImage:self.lastChosenImage atPoint:point];
[self.elements addObject:el];

self.lastChosenImage = nil;
return el;

}
return nil;

}

When the face is touched, you want the disguise element to be centered
at that point, so that’s what the point you pass in represents.

Once you create the element B, you need to add it to your elements
list. And because you don’t want to place the last element ever again,
you set it to nil c.

ate new
nt from
 chosen

image

b

Clear last
chosen imagec

Figure 7.33
The center of a disguise element

Working with photos 177
With your models in place, you can finish the app. In this
case, it was simple to finish the models; but if they’re com-
plex, you can make fake versions of them that have the inter-
face you plan to use but a simpler implementation. For
example, if you plan to use a database to store data in the real
version, use an array early in the project so you can prototype
the app.

Working with photos
The next part of your app involves interacting
with the Photos app that comes with your
phone. Because this is likely to be where the
user has pictures of faces, it makes sense to let
users pick from among those photos.

Getting images from the Photos application
The iOS SDK not only gives you access to the
photos in the user’s Library, but also makes the
Library easy to integrate because the SDK
provides views that control the interaction
with the user as well. This isn’t just a conve-
nience; it ensures that access to the user’s
photo Library is under their control and con-
sistent across applications. When you open the

Figure 7.34
The photo picker
photo Library, the iPhone shows a UI like this. in the simulator

178 CHAPTER 7 Creating a photo-based application
To do this, you need to create a UIImagePickerController object and han-
dle its events. It will automatically put views on the screen to show
albums and then photos, and it even lets the user resize and position
the result if you want. At the end of the process, it tells you what hap-
pened.

Figure 7.35 The object interactions for picking a photo

To code the image picker, first you need to change the class declaration
in DIFaceViewController.h to allow the picker to control your UI.
Change it to this:

@interface DIFaceViewController : UIViewController
<UIImagePickerControllerDelegate, UINavigationControllerDelegate>

Then add the following messages:

-(IBAction)pickFace:(id)sender;
- (void)imagePickerController:(UIImagePickerController *)picker

didFinishPickingMediaWithInfo:(NSDictionary *)info;
- (void)imagePickerControllerDidCancel:

(UIImagePickerController *)picker;

Working with photos 179
The action pickFace is for the button on your view, so attach
it to the button’s selector action in the storyboard. You also
need an outlet for UIImageView* that represents the face, so
create a property named faceImage.

The other two messages are what the image picker will send
when the image-picking process is either canceled or com-
pleted. To implement these messages, add #import <UIKit/

UIKit.h> to DIFaceViewController.h and use the following code in the
implementation.

Listing 7.5 DIFaceViewController.m: picking a face from the Photos application

-(IBAction)pickFace:(id)sender
{

UIImagePickerController* picker =
[[UIImagePickerController alloc] init];

picker.delegate = self;
picker.allowsEditing = YES;
picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
[self presentViewController:picker animated:YES completion:nil];

}

- (void)releasePicker:(UIImagePickerController*)picker
{

[picker dismissViewControllerAnimated:YES completion:nil];
}

-(UIImage*)resizedFaceImage: (UIImage*)face
{

CGFloat vw = self.faceImage.frame.size.width;
CGFloat vh = self.faceImage.frame.size.height;

CGSize size = CGSizeMake(vw, vh);
UIGraphicsBeginImageContext(size);

CGFloat fw = face.size.width, fh = face.size.height;
CGFloat ratio = vh / fh;
CGFloat newW = fw * ratio;
CGFloat newH = fh * ratio;

[face drawInRect:

Create picker
and configure itb

Add it c

Remove it
when done d

Set image’s
final sizee

Fit heightf

Offset so
it’s centeredg
CGRectMake((vw-(newW))/2, 0, newW, newH)];

180 CHAPTER 7 Creating a photo-based application
UIImage *newFace = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
return newFace;

}

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{

UIImage* face =
[info objectForKey:UIImagePickerControllerEditedImage];

face = [self resizedFaceImage:face];
self.faceImage.image = face;
[self releasePicker:picker];

}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{

[self releasePicker:picker];
}

Getting a photo starts when the Pick Face button is touched to trigger
the pickFace action. In response, you allocate a UIImagePickerController
object B, configure it, and present it c. By setting the picker’s delegate
property to this controller, it will be able to send messages to the
DIFaceViewController. When you’re done choosing an image d, you
remove the picker’s controller from the window.

The helper message, resizedFaceImage, makes sure the face fills the
whole view. The following figure will help you see how it works.

Use chosen
photoh

Resize face
to fiti
Figure 7.36 Resizing a face to fit the view

Working with photos 181
First resizedFaceImage sets the size of the face image to the size of the
view e. Then it recalculates a new height and width so the photo fits,
but it maintains the same aspect ratio f. Finally, it centers the image
by offsetting it half the difference in widths between the image and the
view g. This way, you get the largest possible photo to work with.

When you touch an album, it shows you its photos. Choosing a photo
sends it to the controller h, which will resize it for you i before you
use it. If you cancel the image selection, the picker will send the cancel
message. In either case, you need to remove the picker.

If you run the application, the pick face button
will now work.

You’re down to the final stretch. All that’s left is
placing the mustache when you touch the face.
Unfortunately, you can’t use the built-in UIImage-
View.

Adding disguise elements to the photo
The next step is to add a disguise element when
you touch the face.

You might think you just need to wire up an action to
UIImageView on the face view. Unfortunately, you have two
problems. First, UIImageView doesn’t have touch events.

Figure 7.37 Sketch of adding a mustache at
a touch point
But even if it did, actions don’t have x-y coordinates.

182 CHAPTER 7 Creating a photo-based application
When a view is being touched, it gets a series of messages. The one that
indicates that a touch started is called touchesBegan: withEvents:. When
a button receives this message, it sends out action messages to attached
controllers, but images ignore them. You need a way to hook into that
message.

Figure 7.38 UIImageView ignores touches.

To do this, you’re going to use a technique you
learned about in chapter 2: subclassing, or creating
an is-a relationship. If you inherit a new class from
UIImageView called DIFaceImageView, you can handle
messages that would otherwise be ignored. Because
the plan is to send it to the DIFaceViewController, you
need to create a has-a relationship with it. In turn,
the controller will have-a FaceImageView.

Figure 7.39
Subclass UIImageView

to handle touches.

Working with photos 183
This works as follows.

Create a new class in Xcode called DIFaceImageView. You need to inherit
from UIImageView and override its touchesBegan: withEvents: message.
Here are the contents of the header:

#import <UIKit/UIKit.h>
@class DIFaceViewController;

@interface DIFaceImageView : UIImageView

@property(weak, nonatomic)
DIFaceViewController* faceViewController;

-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;

@end

Whenever two classes use each other, in one of the headers you need to
use a forward declaration B instead of an import, because two files
aren’t allowed to import each other. Also, although the view controller
holds a strong reference to this class, DIFaceImageView holds a weak one
back to the view controller. c. A weak reference doesn’t cause a retain
and release, which is important because the circular reference would
have fooled ARC into thinking these objects were always being used.

In the module, synthesize the controller and handle the touch message:

#import "DIFaceImageView.h"
#import "DIFaceViewController.h"

Figure 7.40 DIFaceImageView
will handle touches.

Use a class
without importb

Don’t retain aN
object referencec

184 CHAPTER 7 Creating a photo-based application
@implementation DIFaceImageView
@synthesize faceViewController = _faceViewController;

-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{

NSSet *allTouches = [event allTouches];
UITouch *touch =

[[allTouches allObjects] objectAtIndex:0];
CGPoint p = [touch locationInView:self];

[self.faceViewController faceWasTouched:p];
}
@end

In this code, you get the list of touches and use the first one B. If this
was multitouch, you’d need to do more. Then, you tell the controller

that the face was touched c. You haven’t written face-
WasTouched yet, so this won’t build.

To finish, you need to connect this new class up with
DIFaceViewController. First, change the declaration of the

faceImage property from UIImageView* to DIFaceImageView*. Also add
a disguise property (of type Disguise*) to the controller.

Then, add #import "DIDisguiseElement.h" and these messages to the
controller’s header:

-(void)faceWasTouched:(CGPoint)point;
-(void)drawDisguiseElement:(DIDisguiseElement*)el

startingAtPoint:(CGPoint)p;

In the module, you need to add the following message implementations.

Listing 7.6 DIFaceViewController.m: making the disguise when you touch the face

-(void)faceWasTouched:(CGPoint)point
{

if ([self.disguise wasElementChosen]) {
DIDisguiseElement* el =
[self.disguise placeChosenElement:point];
[self drawDisguiseElement:el startingAtPoint:point];

}
}

Get first
touchb

Tell
controller
about touchc

Make Disguise
Element

Working with photos 185
-(void)drawDisguiseElement:(DIDisguiseElement*)el
startingAtPoint:(CGPoint)p

{
UIImageView* imageView =

[[UIImageView alloc] initWithImage:el.image];

[self.faceImage addSubview:imageView];
imageView.bounds = CGRectMake(0,0,

el.image.size.width, el.image.size.height);
imageView.center = el.point;

}

Also add this in viewDidLoad:

- (void)viewDidLoad {
[super viewDidLoad];
self.faceImage.faceViewController = self;

}

Finally, you need to create a Disguise object and give it to each tab. Add
a disguise property to your app delegate, and make the init message in
DIAppDelegate.m look like this:

-(id)init
{

if (self = [super init]) {
self.disguise = [[DIDisguise alloc] init];

}
return self;

}

Be sure you made a disguise property for the two view controllers, and
set them like this in the viewDidLoad of both view controllers:

- (void)viewDidLoad
{

[super viewDidLoad];
DIAppDelegate* app = (DIAppDelegate*)

[[UIApplication sharedApplication] delegate];
self.disguise = app.disguise;

}

Make disguise
image

Attach to
face image

186 CHAPTER 7 Creating a photo-based application
Run the app, touch a mustache, and then touch
the face.

Well, at least that was better than a face tattoo.
To finish this app, you’ll want to add more dis-
guise images to the various tabs. Now that you
have a framework in place, that should be easy
to do. Once you add an image to the appropri-
ate view, connect it to the touch action that
makes the tab switch. And if you want to do
more, make an icon and a default startup image
for the app, too.

Figure 7.41 Placing a disguise in the simulator

Wrapping it up, and what’s next
Now you know how to make tab-based applications and work with
photos stored on the device. You also learned a little more about touch
events, but you’ll discover even more about that soon.

In the next chapter, you’ll keep playing with this app. You need ways
to move, resize, and delete disguises. You can also use a little animation
to give the app some life. Disguisey will be App Store ready in no time.

8
Moving, rotating, editing, and
animating images

This chapter covers

• Animating image views

• Using gestures to manipulate images

• Compositing a new image

To start out, you kept Disguisey simple, but you can do much more to
improve it. Before you can post it to the App Store, you need to polish it.
If you’ve been playing around with it, the first thing you’ll notice is that
it’s hard to position the mustache on the right part of the face. It would be
great if you could move it around. Also, disguises don’t match all face
sizes, so being able to resize the image would be nice, too.

You’re going to look at some of these problems and a few others. Spend a
minute or so playing with Disguisey and thinking about the features you
think it needs. We might not cover all of them here, but you should try to
sketch, design, and code them yourself.
187

188 CHAPTER 8 Moving, rotating, editing, and animating images
Improving Disguisey
Improving any app is similar to writing it in
the first place but can be a lot more fun.
When you’re first building it, it takes a while
to get a working app that does anything at
all. But a lot of improvements require just
small bits of extra code.

Sketching your new ideas
To start with, you learned in chapter 5 that iPhone apps use simple ani-
mations to make them come alive. There’s a definite feel to well-done
apps, and it comes in part from good use of simple animations. Instead
of plopping the mustache down on the face, how about you make it
grow in place, as shown here.

That will look a lot better. You already know exactly how to do this,

Figure 8.1 Animating
the mustache placement
but we’ll go over the code soon.

Improving Disguisey 189
Another improvement would be to
use a touch-and-drag gesture to let
the user move the disguises around.
That would look as shown at right.

In the last chapter, you learned about
how to access touch events, but it
turns out there is an easy way to rec-
ognize common gestures. You’ll
learn about that technique shortly.

While you’re at it, resizing disguises
would also be nice. You can use the
pinch gesture to do that.

Luckily, resizing a disguise is similar
to moving it. The first changes the
(x, y) position, and the second
changes the scale.

And because everyone makes mis-
takes (or changes their mind), you
need a way to delete disguises. The normal way to get a menu of
actions is to tap and hold the thing you want to change and then pop up
a little menu.

Finally, it would be no fun at all to put mustaches on your friends if you
couldn’t save the results. Let’s use a tap and hold on the face itself to pop

Figure 8.2
Allowing disguises to be moved

Figure 8.3
Allowing disguises to be resized

Figure 8.4 Bringing up
a Delete menu when the
disguise is held
up a Save menu, which will put a composited photo in your Photos app.

190 CHAPTER 8 Moving, rotating, editing, and animating images
Did this list cover all your ideas? If not, we may
get to them in later chapters. Even if we don’t,
we’re sure you’ll figure them out. Sketch them
now, and then try to create designs and code
them up as you move along.

Updating models for the new features
With your sketches in place, you can begin to
plan your design. For each of these features, you
need to figure out what parts should be handled
by the views, the models, and the controllers. You’ll have new proper-
ties and messages, and you’ll also have to design new interactions
between them.

Dragging an element has this simple effect on your state.

Figure 8.5
Bringing up a Save menu

Figure 8.6
Dragging state transition

Improving Disguisey 191
Similarly, pinching an element is simple to describe in this diagram.

The interaction and transitions for deleting are a little more complex,
but not much.

And saving is pretty much the same as deleting.

Figure 8.7
Pinching state transition

Figure 8.8
Deleting state transition

Figure 8.9

Saving state transition

192 CHAPTER 8 Moving, rotating, editing, and animating images
That’s what needs to happen, so next you have to figure out which class
does what. The Face View Controller is heavily involved, as you might
suspect. You know that user interactions are orchestrated by the con-
troller, and you’re doing everything on the face view. Here are some of
the additional properties and messages you need to add.

You can see that a lot is happening there, and, of course, there will be
helper messages that break these messages down a little.

The model classes have to keep track of a little more and need new
messages.

Figure 8.10 New messages in DIFaceViewController

Figure 8.11 New properties and messages in DIDisguise
and DIDisguiseElement

Improving Disguisey 193
Now that you want to change the disguise, you need ways to get the
elements and then change them once you have them. And DIDisguise-
Element keeps track of its scale in addition to its position and image.

With the changes organized into classes, it’s a lot easier to think about
each message and what it will do. For some messages, particularly
those in the model classes, you already know pretty much how to pro-
ceed. For others, you have to learn more about the iOS SDK to imple-
ment them. Take a minute and think about how to code each message,
and what you think you need to learn in order to do it.

Thinking about what you don’t know
Let’s consider moving a disguise
element. You’re storing the point
in your model, and you’ve already
used it to position the view’s cen-
ter. You know that to move the
element, you have to change x and
y, as shown at right.

The only thing you don’t know is
how to find out what xDiff and
yDiff are. To do this, you need to get the initial touch point and track it
while it moves. Along the way, you need to update the models and
views so the disguise stays under the finger. This is called recognizing a
pan gesture.

Figure 8.12 To move an element,
you need to get a difference in the
x and y position.

194 CHAPTER 8 Moving, rotating, editing, and animating images
Pinching is similar.

If you know the scale, you can apply it to the disguise ele-
ment by multiplying it by the width and height. All you
need to learn is how to recognize the pinch gesture.

Popping up the Delete menu involves a few new concepts.

The first one is recognizing the hold, or long press, gesture. But, you
probably get the idea that once you learn one gesture, it will be simple
to learn the others. The second part is making the pop-up menu, which
is something you haven’t done.

The final thing you need to do is
create the composite image.
Like the delete, it starts with a
menu, but then you need to
overlay two UIImage objects into
one by drawing the pixels of
one onto the other.

This would be hard, but iOS

Figure 8.13
To pinch, you need to know
the change in scale.

Figure 8.14
To bring up a Delete menu, you need

to recognize a touch and wait.

Figure 8.15 To save a photo, you
need to composite the disguises into
comes with a library called Coreone image.

Using animation to make disguises grow 195
Graphics that can do most of it for you. You need to know where to
draw and how to scale, but the actual drawing is a simple message.

With these hints, you might want to see what you can do on your own.
The rest of the chapter will take you step by step through the process
of making these additions to Disguisey, but it might be fun to figure
some of it out. The areas that you know already are the animation and
most of the model class updates. The rest will require research.

Using animation to make disguises grow
In chapter 5, you learned that animation on the iPhone
is simple. Just start an animation, change properties,
and then commit the app. All the actual animation of the
in-between states is taken care of for you. The trickiest
part is coming up with how to use animations in the first
place.

Visualizing the animation
The only part of your user interface that needs an animation is the
placement of the disguise element. There aren’t that many other transi-
tions, except for tabs (which shouldn’t animate) and the image picker
(which animates automatically). Here’s what you’ll do.

To make the mustache grow at the touch point, you want it to start

with a small size, then have the height and width change to their final

196 CHAPTER 8 Moving, rotating, editing, and animating images
values, and finally move the top-left corner of the mustache so the cen-
ter stays put. The changes are in the drawDisguiseElement:starting-
AtPoint: message, which you’ll see next.

Coding the animation
You need to change the position and size of
the UIImageView that has the disguise element
to make it grow in place, but iOS makes it
even easier. Each view has a bounds prop-
erty, which is in the coordinate system of
the view. This means the top-left is always
(0, 0), and iOS will calculate the position of
the image within its parent view by using
the center. Because you don’t want the cen-
ter to change, all you need to do is change
the height and width of the bounds, and the
top-left coordinates will be calculated for
you.

Figure 8.17
The steps for implementing an animation

Figure 8.16
Visualizing the animation
Here’s how to change drawDisguseElement:startingAtPoint.

Using animation to make disguises grow 197

i

Listing 8.1 DIFaceViewController.m: new code for
 drawDisguiseElement:startingAtPoint:

-(void)drawDisguiseElement:(DIDisguiseElement*)el
startingAtPoint:(CGPoint)p

{
UIImageView* imageView =

[self newDisguise:el.image];

[faceImage addSubview:imageView];
imageView.bounds = CGRectZero;
imageView.center = p;

[UIView animateWithDuration:.25 delay:0
options:UIViewAnimationCurveEaseIn animations:^{
imageView.bounds = CGRectMake(0, 0,

el.image.size.width,
el.image.size.height);

}
completion:nil];

}

You start by setting the bounds to a rectangle with 0
for x, y, width, and height B. Then you put an ani-
mation begin and end around the code that sets the
bounds to the final value c. As you saw before, you
can change how the animation looks by setting a
few parameters.

To get ready for later, move the allocation of the dis-
guise element to its own message:

-(UIImageView*) newDisguise:(UIImage*)image
{

UIImageView* iv = [[UIImageView alloc] initWithImage:image];
return iv;

}

Try it out by building and running the app with Cmd-R. Now, when
you touch the face, you get a nice animation instead of the instant
placement, which is jarring on the iPhone.

Start at
zero sizeb

End at
mage size c

198 CHAPTER 8 Moving, rotating, editing, and animating images
Speaking of touching the face, do you remember
how you did that in the last chapter? You learned
that if you inherit from UIImageView, you can
implement touch messages to detect the tap. It’s
not hard to recognize a tap this way, but imagine
what a pain it would be to do something harder,
like a pinch. Luckily, you don’t have to.

Recognizing touch gestures
A lot of views, like buttons or tables, do all the work for you. They
have built-in ways for you to interact with them. You don’t need to
worry about touches or recognizing gestures. But if you have your own
ideas for interaction, you have to do a little more. You could look at
every touch and react to it, but some gestures are too complex for that.

There’s a set of gestures that are used so often, they are built in—not
just to save you time, but also to make sure they acted the same in all
apps. If they weren’t, you would have a lot of buggy pinch implementa-
tions in the App Store.

Picking the right gesture
In the first few versions of iOS, developers had to recognize taps,
pinches, pans, and holds. Because these are so common, you now have

Recognizing touch gestures 199
a whole set of classes to help you. They’re organized like this in the
iOS SDK.

Figure 8.18 Gestures class diagram

Each view can have a gesture recognizer object attached
to it. To detect a tap or a series of taps, use UITap-
GestureRecognizer. For a hold, use a UILongPressGesture-
Recognizer. You can probably guess what to use to pinch
and pan a view. Each gesture has different properties
you use to set it up and get information from when the
gesture is recognized.

Use the built-in apps as a guide to what users may expect these ges-
tures to do. For example, use pinch to change the size of things. It
might be fun to use them in other ways, but don’t do so in a way that
confuses the user.

Attaching gesture recognizers
Gestures are so easy to use that you don’t need to think about indepen-
dent touches any more. But because you know views receive these
messages, let’s see how gestures work.

200 CHAPTER 8 Moving, rotating, editing, and animating images
If a view has a gesture recognizer attached to it, the view will send the
recognizer all the touch messages it receives.

Figure 8.19 Sequence of messages for a recognized gesture

Each gesture class is responsible for analyz-
ing these touches and deciding whether the
series of touch events correlates to the kind of
gesture it’s responsible for detecting. If so, it
sends an action message that you set up.

Tap is easy to explain. Here’s what it looks
like.
Figure 8.20 Recognizing a tap

Recognizing touch gestures 201
When you touch the view, the tap recognizer gets a touchesBegan mes-
sage. It remembers the location and time, and if you let go at the same
point (or close enough) within a certain time window, a tap action is
sent to the controller that created the tab recognizer.

All you need to do is create the right recognizer, attach it, and set it up
to call an action in your controller. Here’s the new code for the new-
Disguise message you added.

Listing 8.2 DIFaceViewController.m: attaching gesture recognizers

-(UIImageView*) newDisguise:(UIImage*)image
{

UIImageView* iv = [[UIImageView alloc] initWithImage:image];
iv.multipleTouchEnabled = YES;
iv.userInteractionEnabled = YES;

UIPanGestureRecognizer* move =
[[UIPanGestureRecognizer alloc]

initWithTarget:self
action:@selector(onMoveDisguiseElement:)];

[iv addGestureRecognizer:move];

UIPinchGestureRecognizer* pinch =
[[UIPinchGestureRecognizer alloc]

initWithTarget:self
action:@selector(onPinchDisguiseElement:)];

[iv addGestureRecognizer:pinch];

UILongPressGestureRecognizer *hold =
[[UILongPressGestureRecognizer alloc]

initWithTarget:self
action:@selector(onHoldDisguiseElement:)];

[iv addGestureRecognizer:hold];

return iv;
}

That’s all you need to do to detect these three new gestures on a dis-
guise element. The one thing you haven’t seen before is how to connect
actions with code instead of with Interface Builder. To do so, you use

Detect
moves …

Add the
recognizer, …

… detect
pinches …

… and holds, too

… and call
this message.
@selector to turn the name of the message into something you can pass

202 CHAPTER 8 Moving, rotating, editing, and animating images
as a parameter. The message needs to be defined on the tar-
geted object, self, which is a DIFaceViewController.

SELECTOR A way of making it possible to pass a message
to another message so it can be called later.

To finish, you need to implement the three actions. We’ll go
through each of them next.

Moving a disguise into place
The first gesture you’ll implement is moving the disguise element. This
gesture is called panning, because it’s often used to pan around large
views. It works like this.
Figure 8.21 Recognizing a pan gesture

Recognizing touch gestures 203
That’s all that needs to happen to see the disguises move around, but
remember, you have model classes too. Here’s a more complete picture
of what’s going on.

First the recognizer tells the controller that a move was detected. The
controller sends messages to the recognizer to get the view and the
amount the user’s finger moved. Then the controller sends a message to
the Disguise object it holds to get the specific element associated with
this view, and tells the element to move by the amount the recognizer
gave the controller. Finally, the controller uses the element’s position
property to set the new center of the disguise image view.

Here are the new messages for DIDisguiseElement:

-(void)translateByX:(CGFloat)xDiff y:(CGFloat)yDiff
{

self.point= CGPointMake(self.point.x + xDiff, self.point.y + yDiff);
}

Figure 8.22 Interaction between objects when an
element is moved

204 CHAPTER 8 Moving, rotating, editing, and animating images

Get
Remember to declare translateByX in the header so the view controller
can send the message to it.

And here’s how you find the matching element in the DIDisguise class:

-(DIDisguiseElement*)getElementAtPoint:(CGPoint)pt
withImage:(UIImage*)image

{
for (DIDisguiseElement *d in self.elements) {

if (CGPointEqualToPoint(pt, d.point) && image == d.image) {
return d;

}
}
NSAssert(false, @"This should never happen");
return nil;

}

Declare this in the DIDisguise header. Note that if you
can’t find a disguise element, that must mean you have
a bug somewhere. NSAssert will alert you so you can fix
it. Of course, it does this by crashing the app, so you
want to be sure you find all problems in this area
before releasing the app.

That takes care of the models. Now update FaceViewController.m
with the following messages to orchestrate a move through the models
and views.

Listing 8.3 A move gesture in DIFaceViewController.m

- (IBAction)onMoveDisguiseElement:(UIPanGestureRecognizer *)recognizer
{

if ([recognizer state] == UIGestureRecognizerStateBegan ||
[recognizer state] == UIGestureRecognizerStateChanged) {

UIImageView* v = (UIImageView*)recognizer.view;

Should always
find a match

 view and
distance b

Recognizing touch gestures 205
CGPoint translation =
[recognizer translationInView:[v superview]];

DIDisguiseElement *el =
[self.disguise getElementAtPoint:v.center

withImage:v.image];
[el translateByX:translation.x y:translation.y];

v.center = el.point;

[recognizer setTranslation:CGPointZero
inView:[v superview]];

}

}

To begin, you check to see if this gesture is starting or changing,
because you want to ignore its other states. Next B you get the view
and pan distance (also known as the translation). Then c you get the
disguise element from the disguise, move it, and set the view’s center.
Finally d, you tell the recognizer that next time, you just want to know
how much you moved from here.

You can run the app, but be careful. You
haven’t set up the other recognizers, so if
they’re triggered, the app will crash. Until
then, you’ll have to be happy that you can use
the mustache to cover up bald spots or hide
blemishes.

When you’re done, you can move
on to pinching, which is, unsurpris-
ingly, very similar.

Figure 8.23
Moving a disguise element

in the simulator

Get elementc

Reset for
next timed

206 CHAPTER 8 Moving, rotating, editing, and animating images
Pinching the DIDisguise to resize it
Your disguises look great if they happen to be just the right size for the
face photo you choose. Let’s make it possible to resize disguises when
they don’t fit.

Like moving, pinching has this interaction.

So, the code is nearly the same, except that you are
changing a scale instead of moving a position. To
start, go into the DIDisguise element and add a new
CGFloat property called scale. Then set it to 1.0 in
the init message.

Add this message to the DisguiseElement module (declare it in the
header, too):

-(void)scaleBy:(CGFloat)scaleDifference
{

self.scale = self.scale * scaleDifference;
if (self.scale < .5 ||

isnan(self.scale) || isinf(self.scale)) {

Figure 8.24
Object interaction
when pinching a
disguise element

Keep scale
inbounds

Recognizing touch gestures 207
self.scale = .5;
}

}

You do a check to make sure the scale keeps the
mustaches big enough to be pinched. The func-
tions isnan() and isinf() will tell you if you’re
overflowing the numbers, so you can fix that too. If
you’re curious, remove them later and see what
happens.

Now you can implement the gesture in the Face View Controller.

Listing 8.4 DIFaceViewController.m: implementation of pinching

- (IBAction)onPinchDisguiseElement:
(UIPinchGestureRecognizer *)recognizer

{
if ([recognizer state] == UIGestureRecognizerStateBegan ||

[recognizer state] == UIGestureRecognizerStateChanged) {

UIImageView* v = (UIImageView*)recognizer.view;

CGFloat scaleDifference = recognizer.scale;
DIDisguiseElement *el =

[self.disguise getElementAtPoint:v.center
withImage:v.image];

[el scaleBy:scaleDifference];

v.transform =
CGAffineTransformMakeScale(el.scale, el.scale);

[recognizer setScale:1];
}

}

The transform property of views allows you to change their size, rota-
tion, and position with a matrix called an affine transform. You don’t
need to know the math to use it, though. Just make one from the ele-
ment’s scale, and use it.

Scale the element with
an affine transform

208 CHAPTER 8 Moving, rotating, editing, and animating images
AFFINE TRANSFORM An object that represents how to scale, move,
and rotate any view in 2D. Affine transforms can be combined to make
more complex ones and inverted to reverse the transformation.

Try it with Cmd-R. The simulator can simulate a
pinch if you hold down the Option key. Hold
down Shift as well to move the pinch points
away from the center. Obviously, when you get
this over to the device, you can test it more thor-
oughly.

Recognizing gestures is pretty simple. You could
easily implement the hold gesture if you knew
how to pop up a menu. We’ll cover that next.

Using a menu to remove parts of a disguise
You’re going to make mistakes or change your
mind about what disguises you want to use, so
you need a way to delete them once you’ve aded
them. In iPhone apps, one nice way to interact
with a view is to hold it until a menu comes up.
It’s similar in spirit to the right-click context menus in mouse-driven
GUIs.

The object interactions are somewhat different for this case.

Figure 8.25 Pinching
in the simulator

Figure 8.26
Object interactions for

deleting an element

Recognizing touch gestures 209
As before, you detect the gesture. This time, you have to
pop up a menu to find out what to do. Once the user
chooses to delete an element, you can tell the disguise
object and then remove the view.

To make pop-up menus, you use the UIMenuController class. Cre-
ating a menu works like this.

First you create a UIMenu-
Controller. Then you add
items, give the menu a tar-
get to point to, and make it
visible. Each item has an
action message associated
with it, so when an item is
chosen, the action is sent
back to the controller, and
the menu is released.

Let’s look at the code. First, let’s update the
DIDisguise model. Here’s the implementation, but
remember to declare the message in your header:

-(void)removeElement:(DIDisguiseElement*)el
{

[self.elements removeObject:el];
}

Now let’s recognize that gesture in the Face View Controller.

Figure 8.27 The sequence of
messages for configuring and using
a menu

210 CHAPTER 8 Moving, rotating, editing, and animating images
Listing 8.5 DIFaceViewController.m: recognizing the hold in the controller

-(void)addMenu:(NSArray*)items toView:(UIView*)view
pointingAt:(CGRect)target

{
[self becomeFirstResponder];

UIMenuController* mc =
[UIMenuController sharedMenuController];

mc.menuItems = items;

[mc setTargetRect: target inView: view];
if (target.origin.y > view.frame.size.height/2)

mc.arrowDirection = UIMenuControllerArrowDown;
else

mc.arrowDirection = UIMenuControllerArrowUp;

[mc setMenuVisible: YES animated: YES];
}

- (IBAction)onHoldDisguiseElement:
(UILongPressGestureRecognizer *)recognizer

{
if ([recognizer state] == UIGestureRecognizerStateBegan) {

self.viewToDelete = recognizer.view;

UIMenuItem* miDelete = [[UIMenuItem alloc]
initWithTitle: @"Delete"
action:@selector(onDeleteDisguiseElement:)];

[self addMenu:[NSArray arrayWithObjects: miDelete, nil]
toView:self.viewToDelete.superview

pointingAt:self.viewToDelete.frame];
}

}

The first message, addMenu, makes it a little easier to make menus. First
you get the menu B and set its items based on the array you’ll make
later. Then you point the menu at the thing you’ll be affecting c. If the
touch is near the top of the phone, you put the menu below the finger
pointing up at it; otherwise, you point down. Finally, you save the view
d in a new property called viewToDelete. This property is a strong

Get menub

Target menuc

Save view
to deleted
UIImageView*, which you should add to the controller.

Recognizing touch gestures 211
FIRSTRESPONDER Onscreen controls can receive
shake events and text from the keyboard. When an
object becomes the first responder, it’s the first object
allowed to handle the keyboard and shake notifications.

To use this message in the gesture action, you need
to create an array of UIMenuItem objects. Even if you
have only one, as in this case, you must use an array.
Each item has some text to show and an action that
you make with @selector as you did before.

You need to implement the onDeleteDisguise action with this code:

- (void) onDeleteDisguiseElement: (UIMenuController*) sender
{

UIImageView* v = (UIImageView*)self.viewToDelete;
if (v != nil) {

DIDisguiseElement *el =
[self.disguise getElementAtPoint:v.center

withImage:v.image];
[self.disguise removeElement:el];
[v removeFromSuperview];
self.viewToDelete = nil;

}
}

If you run a test at this point, you’ll see that the app doesn’t work.
What’s going on?

It turns out that you need to let the controller know that it has menus
and that deleting is allowed. First, add this message to the Face View
Controller:

-(BOOL) canBecomeFirstResponder
{

return YES;
}

Now this controller can have menus. When the menu is requested, it
asks the controller if the delete action is allowed. Here’s how you say yes:

-(BOOL) canPerformAction:(SEL)action withSender:(id)sender

{

212 CHAPTER 8 Moving, rotating, editing, and animating images
if (action == @selector(onDeleteDisguise:))
return YES;

return [super canPerformAction:action withSender:sender];
}

Run the app again. Pick a face, add a disguise,
and then touch and hold it.

Tap the Delete menu to remove the disguise.

You can now use your elements pretty much
however you like, but there’s no way to save your
work.

Figure 8.28
Deleting an element in the simulator

Saving the disguised face
To finish Disguisey, you need a way to save the final photo so you can
access it later or share it with others. What good is making your friends
look ridiculous if they don’t know about it?

Displaying a Save menu
To implement a save, you could add another button to the Navigation
Bar or add a toolbar. Because you’ve been playing with pop-up menus,

let’s use one for this, too.

Saving the disguised face 213
Here’s the interaction you’ll implement.

You already know how to do B, c, and d. First, add the following
code to the controller’s viewDidLoad message to add the recognizer to the
face image:

UIGestureRecognizer *hold =
[[UILongPressGestureRecognizer alloc]
initWithTarget:self
action:@selector(onHoldFace:)];

[self.faceImage addGestureRecognizer:hold];

Don’t forget to allow the action by adding this to canPerformAction:

if (action == @selector(onSaveFace:))
return YES;

When the hold is recognized, you handle it with this action:

- (IBAction)onHoldFace:(UILongPressGestureRecognizer *)recognizer
{

if ([recognizer state] == UIGestureRecognizerStateBegan) {

Figure 8.29
Object interactions
when saving a photo
UIMenuItem* miSave =

214 CHAPTER 8 Moving, rotating, editing, and animating images
[[UIMenuItem alloc] initWithTitle: @"Save"
action:@selector(onSaveFace:)];

CGPoint point =

[recognizer locationInView:self.view];
CGRect targetFrame = CGRectMake(point.x, point.y, 0, 0);

[self addMenu:[NSArray arrayWithObjects: miSave, nil]
toView:self.view

pointingAt:targetFrame];
}

}

If you run the app and hold the face, the menu
comes up—but don’t tap it yet, unless you want
Disguisey to crash. Without the onSaveFace mes-
sage to call, you’re not finished. If you’re dying to
save, take a screenshot.

Overlaying one image onto another
When the Save menu is tapped, you need to take all the images for each
disguise element and somehow draw them onto the face image, so you
have one UIImage object at the end. Then you can easily put this image
in the Photos app. How easily?

- (void) onSaveFace: (UIMenuController*) sender
{

UIImage* face =
[self.disguise overlayDisguisesOnFace:[faceImage image]];

UIImageWriteToSavedPhotosAlbum(face, nil, nil, nil);
}

OK, that’s nice, but this only works if DIDisguise can overlay disguises.
Add this message to Disguise, and don’t forget to declare it in Disguise’s
header:

-(UIImage*) overlayDisguisesOnFace:(UIImage *)face
{

Point at whICH
view was touched
UIImage *newFace = face;

Saving the disguised face 215
for (DIDisguiseElement *d in self.elements) {
newFace = [d overlayOnFace:newFace];

}
return newFace;

}

See what you’re doing? You’re making each model class responsible for
its part. DIDisguise is responsible for telling elements that they’re sup-
posed to overlay, but elements do the heavy lifting. Here’s what’s hap-
pening.

The controller starts by requesting the overlay from the
DIDisguise model class. In turn, it loops through each ele-
ment in the disguise and sends the element a message to
overlay itself. The result makes sure each object encapsu-
lates the behavior that it should be responsible for.

To finish, add the following code to DIDisguiseElement’s
module file.

Listing 8.6 DIDisguiseElement.m: overlaying a DIDisguiseElement’s image on the face

-(UIImage*)overlayOnFace:(UIImage *)face
{

UIGraphicsBeginImageContext(CGSizeMake(face.size.width,
face.size.height));

[face drawAtPoint: CGPointMake(0,0)];

Figure 8.30
The sequence of
messages when
compositing an
image

216 CHAPTER 8 Moving, rotating, editing, and animating images

Cal
el
CGSize scaledSize =
CGSizeMake(self.image.size.width * self.scale,

self.image.size.height * self.scale);

CGPoint topLeftPoint =
CGPointMake(self.point.x - scaledSize.width/2,

self.point.y - scaledSize.height/2);

[self.image drawInRect:CGRectMake(topLeftPoint.x, topLeftPoint.y,
scaledSize.width, scaledSize.height)];

UIImage *newFace = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
return newFace;

}

The only hard part is seeing how
to use the center and scale to find
the destination rectangle for the
disguise. Core Graphics handles
resizing and drawing for you.
This illustration will help.

The dashed box represents the
size of the mustache on the
screen after you scale it. To find this rectangle’s upper-left point, you

need to subtract half the scaled width from the center
point’s x-coordinate, and half the scaled height from the
center’s y-coordinate.

But enough of this chit-chat. Let’s run it. After you save,
tap the home button at the bottom of the simulator, and
go to the Photos app to see the saved face. Your
enhancements are finished, so go show a friend. Be sure
to hide all your doctored photos of their face first.

Moving on from Disguisey
You did a lot to make Disguisey better, and we hope we covered some
of the ideas you came up with. Keep playing around with the app and
see if you can figure out how to rotate an element, add another menu

culate
ement’s

size …

… and its upper-
left corner

Figure 8.31 Calculating the new
size and position of an element

Moving on from Disguisey 217
item to make a mustache wiggle, or add a new tab with jewelry and
accessories.

Doing that last one is easy: all you need to do is create another XIB file,
connect it to the Disguise View Controller, set it up in the app delegate,
and add a new tab bar item for it in Interface Builder. Then, grab some
pictures of earrings and add them to the tab. You already know how to
do these things.

Later in the book, you’ll see how to access the internet so you can come
back and send this photo to a friend or post it to a photo-sharing site.

If you have ideas but need some help to get started, don’t forget to visit
the online forum associated with this book (www.manning.com/franco/).

9
Working with location
and maps

This chapter covers

• Using maps in your views

• Getting the current location

• Showing pins on a map

The iPhone has so many features that many things that used to be sepa-
rate gadgets can be apps. For most of us, the GPS on the phone is suffi-
cient for our location and direction needs, and we don’t need a dedicated
GPS device. The next application you’ll write, Parkinator, uses this fea-
ture to solve an important mobile computing problem: remembering
where you parked.
218

Designing a map application 219
Designing a map application
Let’s make the UI for this app just a front and back screen. On the
front, you’ll see your location and the last place you parked. On the
back, you’ll take a picture of your car, and when you’re finished, the
app will flip back and put a pin at your spot.

Sketching Parkinator
Let’s make a quick sketch.

See the little i in a circle at the bottom? That’s how you get to the flip
side of the app. You haven’t used this kind of navigation before, but
lots of apps use it, including the built-in Weather app.

Looking at how it works
This application’s behavior is simple. Because you just want to learn
about location, maps, and pins, we’ll make sure the rest of the app uses

Figure 9.1
Sketch of the front
and back screens
things you’ve seen before.

220 CHAPTER 9 Working with location and maps
Here’s how you want it to work.

When the app comes up, you want to get the current location and show
it on the map. When the user touches the i, you’ll flip the app around.
There they can take a picture. Then you’ll flip the app around again to
show the parking spot picture and a pin on the map.

Designing the models, views, and controllers
It’s pretty obvious from the sketches that you have two views (and con-
trollers): one for the front side, which we’ll call the main view, and one
for the other side, which we’ll call the flip-side view.

The main view needs to respond to two things.
First, when the i is touched, it needs to show the
other side of the app. You’ll see soon that you get
that behavior for free with the template you’re
going to use. Second, when the user is finished with
the flip side, you need to show the parking-spot
photo and put a pin on the map. To hold this infor-
mation, you’ll use a model class called PAParkingSpot.

Figure 9.2 Sketch of the app’s behavior

Designing a map application 221
The flip side is simple as well. It needs to take a picture, show it on the
screen, and then let the user say that they’re finished.

Most of the hard part of this app involves interacting with the new
frameworks you’ll incorporate. Other than that, the behavior and the
kinds of classes you’ll make are similar to the other apps you’ve built
already.

Figure 9.3
The MVC classes for
the front of the app

Figure 9.4 The MVC classes
for the flip side of the app

222 CHAPTER 9 Working with location and maps
Creating an app with a map
You want the app to use a kind of navigation that you haven’t seen yet.
It uses a main view to show most of the functionality of the app and a
flip-side view to set it up. This is called a utility application.

Using the Utility Application template
To get started, go into Xcode and choose File > New > Project from the
menu. When you do, you’ll see the list of templates: choose Utility
Application under the choices for iOS applications.
Figure 9.5 The Utility Application template

Creating an app with a map 223
In the next dialog, name the application Parkinator, and click Next.

If you run the app in the simulator, you’ll see that it has a blank main
screen and that it already includes the i button that flips to the other
side. You’ve probably seen Map View in the Interface Builder object
library when you were building other apps, and you probably already
know that you’ll use it next. Before you do, however, you need to add
the frameworks to your project.

Adding the proper frameworks to your app
Because maps and location aren’t used in every app on the
iPhone, Xcode makes you add them if you’re going to use
them. To do that, click the main Parkinator node at the top
of Project Navigator, and then choose the Parkinator target.

Click the Build Phases tab, and open the Link Binary with
Libraries area as shown.

Figure 9.6 Name
the application.
Figure 9.7 The frameworks in the Build Phases screen

224 CHAPTER 9 Working with location and maps
You need to add two frameworks:
MapKit, which draws maps for
you, and CoreLocation, which talks
to the GPS. To add MapKit, click
the + button, and then type map in
the search bar.

Choose MapKit.framework, and
then click the Add button. Repeat
this with CoreLocation.framework.

Notice that in Project Navigator, these
frameworks are in the main group. To
make things tidier, drag them into the
Frameworks group.

Now you can start using maps in your
views and getting location information
from the GPS.

Placing an MkMapView on the main view
With the frameworks added, the Map View object is like any other

Figure 9.8 The MapKit framework

Figure 9.9
The CoreLocation framework

Figure 9.10 The Frameworks
group in the project
object you’ve put onto views. Let’s go add it.

Creating an app with a map 225
Click PAMainViewController.xib in Pro-
ject Navigator, and scroll the Object
Library until you see the Map View.

Drag it onto the bottom area of your
screen, taking up about half the area.

To make sure you can still touch that i button, while the Map View is
still selected, choose Editor > Arrangement > Send to Back. Doing so
puts the map under the button.

Finally, go to the Attributes Inspec-
tor and select the Shows User
Location check box.

Run the application by pressing
Cmd-R or clicking the play button
at upper-left in Xcode. When you
do, you’ll see this.

Figure 9.13

Figure 9.11 The Map
View object

Figure 9.12
MkMapView on PAMainViewController.xib
Running the map app in the simulator

226 CHAPTER 9 Working with location and maps
If you live in the United States and don’t need to see any streets on the
map, then you can skip the next step. The rest of us would like the map
to show the current location.

By default, the simulator acts like you’re at Apple headquarters in
Cupertino, California. If you slide the map over to California and zoom
in, you’ll see a blue dot showing that you’re there. Once you learn how
to test your apps on an actual iPhone, you’ll see that the map will show
your real location. In the meantime, choose Debug > Location in the
simulator and select a new location or even a simulation of movement.

Right now, you want to get the map view to center around
the blue dot, wherever it is. Because you have to change
the view with code in the controller, you need to add an
outlet for it. Try to do this part yourself before moving on.
The one thing to know is that the Map View is of type
MkMapView*, and you need to add #import <MapKit/MapKit.h>
in the PAMainViewController.h file.

Showing the current location
You added a lot of outlets in the previous chapters, and this
one is no different. Always make sure your view controller

knows the type of view you’re using: unless it’s part of UIKit, you need
to add an import line for it. Put this at the top of PAMainViewCon-
troller.h:
#import <MapKit/MapKit.h>

Creating an app with a map 227
To create the outlet, click PAMainViewController.xib and display the
Assistant Editor. Ctrl-drag from the MKMapView into the assistant, and
call the property mapView.

The MkMapView needs a way to tell you about location changes, and it
does that by sending messages to a delegate. You saw this with
UITableView, which did the same thing. To set it up, click the MkMapView
and, in its Connections Inspector, drag the delegate outlet to the File’s
Owner cube icon.

Finally, to make the controller able to receive these messages, go to
PAMainViewController.h and change the interface declaration to look
like this (adding MKMapViewDelegate):

@interface PAMainViewController : UIViewController
<FlipsideViewControllerDelegate, MKMapViewDelegate>

Now you can get messages from the Map View in your controller. You
want to know whenever the map senses you’re at a new location. That’s
the time to update the map. To handle this, add the following code to
PAMainViewController.m.

Listing 9.1 PAMainViewController.m: handling the Map View reporting a location

- (void) mapView:(MKMapView *)mapView
didUpdateUserLocation:(MKUserLocation *)userLocation

{

Figure 9.14
Connect the
MKMapView to
PAMainView-
Controller.h using
the assistant.

228 CHAPTER 9 Working with location and maps

Set
l

n
r

MKCoordinateSpan span = MKCoordinateSpanMake(.02f, .02f);

self.lastLocation = userLocation.location.coordinate;
MKCoordinateRegion region =

MKCoordinateRegionMake(self.lastLocation, span);

[self.mapView setRegion:region animated:YES];

}

This message will be sent to your controller whenever
your location changes. You want to show the relevant
area of the map, so the first thing to do is to figure out
how much of the map to show B. The .02 is the num-
ber of degrees of latitude and longitude to show; this
value gives you a good overview of the area and lets
you get a sense of the streets. Zoom in more by making
this number smaller, and zoom out by making it larger.

Later you’ll want to place a pin here, so let’s save the
location in a property c. Locations are stored in a

CLLocationCoordinate2D. Create this property on your own by putting
this line in its proper locations:

@property(nonatomic) CLLocationCoordinate2D lastLocation;

Run the app, and it should look like this.

Now that you can show where you are, the
next step is to let the user take a picture of
their parked car. Almost all the code to do this
is like the code you used to get a face for Dis-
guisey, so we’ll go through it fairly quickly in
the next section.

zoom
evel b

Save
locatio
for latec
Figure 9.15 The app with the current location

Flipping the view to take a picture 229
If you’re feeling adventurous, try to do it on your own. Set up the app
to grab a photo from your photo library, because there is no camera in
the simulator. You don’t have to worry about hooking up the Info but-
ton or the Done button on the flip side, because the Utility Application
template did that for you.

Flipping the view to take a picture
In order to implement the flip side, you need to be able to
take a photo and show it. In Disguisey, you used an image
from the Photo Library; the steps and code to use the camera
are basically the same. You’ll begin by putting a UIImageView
on the flip-side view and hooking it up to an outlet.

Adding a UIImageView
After you take the picture,
you want to show it on the
view, so you need to drag a

UIImageView onto the flip-side view.
Select PAFlipsideViewController.xib
in Project Navigator, and set the
UIImageView to take up the view’s
entire size.

Figure 9.16

The view with a UIImageView

230 CHAPTER 9 Working with location and maps
In order to set the image, you have to connect it to an outlet. Here’s
what PAFlipsideViewController.h needs to look like. Most of this code
was written for you by the template, but you have to add the outlet and
prepare the interface with the proper delegates for using the image
picker to get photos.

Listing 9.2 PAFlipsideViewController.h after adding an outlet

#import <UIKit/UIKit.h>

@class PAFlipsideViewController;

@protocol FlipsideViewControllerDelegate
- (void)flipsideViewControllerDidFinish:

(PAFlipsideViewController *)controller;
@end

@interface PAFlipsideViewController : UIViewController
<UIImagePickerControllerDelegate,

UINavigationControllerDelegate>

@property (nonatomic, weak)
id <FlipsideViewControllerDelegate> delegate;

@property (nonatomic, strong)
IBOutlet UIImageView *carPhoto;

- (IBAction)done:(id)sender;
- (IBAction)takeCarPhoto:(id)sender;

@end

When you take a photo, the image picker takes over the GUI and sends
you messages to let you know what’s going on. To do that, it needs you
to implement these delegates. Once the photo is taken, you need to
update the UIImageView with it, so you declare a property to connect the
view to the controller. Later, to make the camera button take a picture,
you’ll attach the button to the takeCarPhoto action.

To finish this part, select PAFlipsideViewController.xib and connect
the UIImageView to the carPhoto outlet.

Image picker
delegates

Image
property

Send this to
take photo

Flipping the view to take a picture 231
You added the takeCarPhoto action so you can hook a button up to it, so
the next step is to add that button.

Adding a camera button
The iOS SDK gives you some premade icon buttons that are used in the
built-in apps and in apps throughout the App Store. Let’s add the cam-
era button to the Navigation Bar.

Find the Bar Button Item in the Object
Library.

Drag it onto the right side of the Naviga-
tion Bar. Then, in the Attributes Inspector,
change Identifier to Camera.

Figure 9.18 Change to a camera button.

Doing so changes the look of the
button to a standard camera icon.

Figure 9.19

Figure 9.17 The Bar
Button Item to use for
the camera button
The camera button in the title bar

232 CHAPTER 9 Working with location and maps
Connect the camera button to the selector action by dragging its File’s
Owner.

Figure 9.20 Drag the action to the File’s Owner

Then, choose the takeCarPhoto action from the list.

Figure 9.21 Choose takeCarPhoto to connect this action to the button.

Now you need to implement the message to get a photo and put in it
the carPhoto UIImageView on the app screen.

Getting a photo
To get photos from the photo library or camera, you use the iOS SDK’s
UIImagePickerController. Here’s what the takeCarPhoto implementation

looks like.

Flipping the view to take a picture 233
Listing 9.3 PAFlipsideViewController.m: takeCarPhoto

-(IBAction)takeCarPhoto:(id)sender {

UIImagePickerController* picker =
[[UIImagePickerController alloc] init];

picker.delegate = self;

if ([UIImagePickerController
isSourceTypeAvailable:

UIImagePickerControllerSourceTypeCamera]) {
picker.sourceType =

UIImagePickerControllerSourceTypeCamera;
}
else {

picker.sourceType =
UIImagePickerControllerSourceTypePhotoLibrary;

}
[self presentViewController:picker animated:YES completion:nil];

}

Before trying to use a camera, make sure you have one B.
This helps you in the simulator and also makes sure your code
works on any iOS devices without a camera, such as the origi-
nal iPad. If there’s no camera, you show the photo library c.

Next you have to handle the messages from the image picker.
This is exactly like what you did for Disguisey.

Listing 9.4 PAFlipsideViewController.m: handling messages from the picker

- (void)releasePicker:(UIImagePickerController*)picker
{

[picker dismissViewControllerAnimated:YES completion:nil];
}

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info

{
self.carPhoto.image =

[info objectForKey:UIImagePickerControllerOriginalImage];
[self releasePicker:picker];

Check for
camerab

Use library if
camera unavailablec

Set the
imageb
}

234 CHAPTER 9 Working with location and maps
- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{

[self releasePicker:picker];
}

When you get an image, you use the UIImage-
View outlet you set up to put it on the screen B.

Run the app. The camera button now gets an
image from your library.

On a device with a camera, the app will take a
new picture instead.

You’re almost done. The final step is to get
back to the front side of the app, show this pic-
ture, and put a pin on the map.

Figure 9.22
Viewing the parking spot in the simulator

Showing the parking spot on the map
The Utility Application template set up a Done button for you that
automatically flips the app back to the main view. Because it’s likely
that the information on the flip side will alter the main-view side, the
template set up a message that it will send to the main view when the
user clicks Done. Look in PAMainViewController.m and see if you can
guess which message you’ll alter to update the image.

Showing the parking spot on the map 235
Using the flipped view’s image
Before you can handle the message
that you’ve flipped back, you have to
put a UIImageView onto the main view.
Click PAMainViewController.xib,
and drag on an ImageView.

Figure 9.23 Putting a
UIImageView onto

PAMainViewController.xib

Of course, because you want the controller to update this view,
you need an outlet for it. Add one called carPhoto by making a
property in your header.

When you’ve done that, edit the flipsideViewControllerDidFin-
ish: that the template created for you so it looks like the follow-
ing listing.

Listing 9.5 PAMainViewController.m: flipsideViewControllerDidFinish

- (void)flipsideViewControllerDidFinish:
(FlipsideViewController *)controller {

self.carImage.image = controller.carPhoto.image;

[self dismissModalViewControllerAnimated:YES];
}

Get image
from flip side

236 CHAPTER 9 Working with location and maps
Run the app, click the info button, choose a
picture, and touch the Done button to see the
image used on the main view.

If you stick a pin here, you’re done. Then,
when you start walking away from your car,
the blue dot will follow you, but a pin will be
left behind to make sure you can find your car
later. You’ll make a model class called
PAParkingSpot and use it to hold the location.

Creating a map annotation model
In order to put a pin on a map, MapKit
requires you to create a class that implements
the MKAnnotation delegate and has a property
called coordinate that holds the location of the
pin. Because you want a model class anyway,
you’ll make it conform to what the Map View
wants. To begin, right-click the Classes group in Project Navigator and
choose New File. Then, in the next dialog, choose Objective-C Class
under Cocoa Touch in the iOS section.

Figure 9.25 Creating a new class

Figure 9.24 After
choosing a picture in
the simulator

Showing the parking spot on the map 237
Like most model classes, you’re going make this one inherit from
NSObject. But to also conform to the MKAnnotation delegate, use
NSObject<MKAnnotation>.

Figure 9.26 Make the class able to be a map annotation.

Save it in the main group.
Figure 9.27 Save the class in the main group.

238 CHAPTER 9 Working with location and maps
Finally, you need to add an init and the coordinate property. Here’s the
header.

Listing 9.6 PAParkingSpot.h: interface for PAParkingSpot

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>

@interface PAParkingSpot : NSObject<MKAnnotation>

-(id)initWithSpotCoordinate:(CLLocationCoordinate2D)spot;

@property (nonatomic) CLLocationCoordinate2D coordinate;

@end

Nothing much to see there: a simple property and an init to set it up.
Here’s the implementation.

Listing 9.7 PAParkingSpot.m: implementation of PAParkingSpot

#import "PAParkingSpot.h"

@implementation PAParkingSpot

-(id)initWithSpotCoordinate:(CLLocationCoordinate2D)spot
{

self = [super init];
if (self != nil) {

self.coordinate = spot;
}
return self;

}

@end

It doesn’t get much simpler than that.

All you have to do now is to create a PAParkingSpot
object and add it to the map. Remember, you want to
do that once the main view is flipped back, so you need
to add a little more code to the message where you set

the UIImageView to the car photo.

Showing the parking spot on the map 239
Adding the pin to the map
When the view flips back, you already know flipsideViewController-
DidFinish will be sent, because that’s where you set up the main view’s
image from the flip side. Now you want to create a PAParkingSpot object,
hold onto it in a property, and add it to the map.

The first step is to add a PAParkingSpot* property called spot. Add the
property yourself, and then update this message to use it.

Listing 9.8 PAMainViewController.m: creating a PAParkingSpot object

- (void)flipsideViewControllerDidFinish:
(PAFlipsideViewController *)controller {

self.carPhoto.image = controller.carPhoto.image;

self.spot = [[PAParkingSpot alloc]
initWithSpotCoordinate:self.lastLocation];

[self.mapView addAnnotation:self.spot];

[self dismissViewControllerAnimated:YES completion:nil];
}

You saved the last location that you received from the map,
so now you can use it to init the PAParkingSpot B. Then you
add it to the map view c.

The map knows it has the pin, but it doesn’t know what you
want the pin to look like yet. To find that out, it sends the
controller a message if the pin is on the screen; you have to
implement it to set what kind of annotation to use and what
color it should be.

Showing the pin
The final step is to implement the message to provide the viewing prop-
erties of any annotation. Viewing annotation properties is similar to
viewing table elements, in that messages sent to request viewing prop-
erties are only generated for pins that are in view.

init from
lastLocationb

Add
pin c

240 CHAPTER 9 Working with location and maps

g
spot?
Listing 9.9 PAMainViewController.m: viewing the pin

-(MKAnnotationView*)mapView:(MKMapView *)mView
viewForAnnotation:(id<MKAnnotation>)annotation

{
MKPinAnnotationView *pin = nil;
if (annotation == self.spot) {

pin = (MKPinAnnotationView*)[self.mapView
dequeueReusableAnnotationViewWithIdentifier:@"spot"];

if (pin == nil) {
pin = [[MKPinAnnotationView alloc]

initWithAnnotation:self.spot
reuseIdentifier:@"spot"];

pin.pinColor = MKPinAnnotationColorGreen;
}

}
return pin;

}

This message is sent for every annotation on the
map, including the current location. First you
need to check to see if the message is asking
about your parking spot B. If it is, then you
want to reuse old pins that you saved under the
name spot c. If you haven’t saved a pin yet,
then you make one d and set its color to green.

Run the app, and mark a parking spot with the
flip side to see the new pin.

You see that there are two annotations on the
map. The green pin represents the parking spot,
and the glowing blue dot is your current location.
If you were on a device, you could start moving,
and the blue dot would follow you. The green pin
would remain behind to let you know where you
parked.

Is it askin
about the b

Reuse an
old pinc

Make a pin if
you need tod
Figure 9.28 Viewing the pin in the simulator

Making the data in Parkinator useful to others 241
Making the data in Parkinator useful to others

That’s a simple utility app with a map and a pin. You could use this
basic idea for all kinds of location-based apps. You’ve used it to track
parking spots, but you could tag your favorite outdoor art, track birds
on a nature walk, or remember the antique store where you saw that
cool lamp. This is the first step toward building a check-in–style app
like FourSquare.

But let’s say you’re successful at getting millions of users to use Parki-
nator. If so, each user collects some valuable data about where there
have historically been parking spots and which spots have recently
been vacated. In the next chapter, you’ll use some simple mechanisms
to collect that data on the internet and use it in your app to find a place
to park.

10
Accessing the internet

This chapter covers

• Showing web pages in your user interface

• Posting updates to Twitter

• Getting and processing information from the web

One of the most amazing things about the iPhone is that it’s always con-
nected to the internet. For some users, that means they can check their
email while speeding down the highway. For you, it means your app can
display web pages, download data, and share information with the world.
You’ll build Parkinator into an application that allows you to share and
discover available parking spaces using the internet. You’ll also create a
web page to display a nicely formatted help page to help the user master
these new features.

Overview of an internet-enabled Parkinator
In this chapter, you’ll extend Parkinator to advertise the location of avail-
able parking spaces via Twitter. You’ll also be able to use Parkinator to
search for free spaces posted by others. Because Twitter support is built
into iOS, reading and writing Twitter messages is a convenient way to
242

share information. As an app becomes more complex, it’s a good idea to

Overview of an internet-enabled Parkinator 243
provide the user with help. You’ll create a help page for Parkinator
using HTML, the language used to create web pages. HTML is an easy
way to create and display nicely formatted text in iOS.

Updating the main view
You’re adding three new features to the appli-
cation, and users will need access to them. A
common way to expose multiple features is to
place multiple buttons in a toolbar at the bot-
tom of the screen. At right is a quick sketch of
the main view with a toolbar containing new
buttons for viewing help, tweeting a spot, and
searching Twitter, and the original button for
going to the camera view.

Tweeting an empty parking spot
You’re adding new functionality to Parkina-
tor. Because the rest of the app is unchanged,
you’ll limit this discussion to the new fea-
tures. Users will share the location of avail-
able spaces as longitude and latitude via Twitter. iOS makes it easy to
send messages (tweets) via Twitter: after you compose a tweet, iOS
handles posting it to Twitter automatically. App tweets will begin with
the string #Parkinator. This tag will make the tweets easy to identify

Figure 10.1 Sketch of
the toolbar at the bot-
tom of the screen

244 CHAPTER 10 Accessing the internet
and allows you to share information via Twitter without having to build
your own website.

Figure 10.2 Tweeting an empty spot behavior

Getting a list of open spaces
To find available spaces posted by other Parkinator users, you’ll search
for recent tweets with the #Parkinator tag. Once you receive a list of
tweets with this tag, you’ll iterate over the list. For each tweet, you’ll
read the latitude and longitude in the tweet and add a pin in the map.

Figure 10.3 Getting open spaces behavior

Using HTML for Help
In iOS, you can display web pages or HTML files
in an app using a UIWebView. The UIWebView renders
the page exactly like Mobile Safari except that
the page is displayed in your app in a view that
you created. The web pages can include format-
ted text and images, and they’re a perfect way to
Figure 10.4 Sketch of the Help view

Adding buttons on a toolbar 245
lay out and render help information to the user. You’ll create a UIWeb-
View to display help to the users of Parkinator when they press the Help
button.

Adding buttons on a toolbar
Let’s edit Parkinator’s MainView.xib file in Xcode to add the toolbar
and buttons to the bottom of the main view. Once the UI elements are
in place, you’ll add the code that allows the user to get help, tweet, and
search.

Creating a toolbar
The first step in creating a toolbar is to
open the Parkinator project and click
MainView.xib in Project Navigator.
Before you add your toolbar, you need to
make room for it. Drag the bottom of
MKMapview up to make it smaller. Don’t
worry about its exact size at the moment;
you can adjust it later. Also move the i
button up so it’s easier to grab.

Now that there is room, find the Toolbar
object in the Object Library.

Drag a toolbar onto the bottom of the main view.
Resize the MKMapview so it meets the top of the tool-

bar. Also place the i
button inside the
toolbar.

Figure 10.5
The Toolbar object
Figure 10.6 Toolbar added to Mainview.xib

246 CHAPTER 10 Accessing the internet
Adding buttons for send, search, and help
With the toolbar in place, you can add
buttons to view help, to send tweets, and
to search tweets. Because you want one
button per feature, you’ll add two more
Bar Button Items in addition to the item
that was automatically added by Xcode
and which you’ll rename later.

From the Object Library, drag two Bar
Button Items into the left side of the tool-
bar.

You’ll now change the buttons to visually represent their function. To
make the leftmost button say Help, double-click the word to highlight
the text and then type Help.

For the Tweet button, you’ll use the action icon, which looks like an
arrow. Click once on the second button to select it, and in the Attri-

butes Inspector, choose Action from the Identifier drop-
down menu.

Figure 10.7 Bar Button
Item object

Figure 10.8 Bar Button Items
added to the toolbar

Figure 10.9
Setting Identifier to Action

Adding buttons on a toolbar 247
To make your Search button look
like a magnifying glass, do the same
thing you did for the Tweet button,
but instead of choosing Action for
the Identifier, choose Search.

Improving the toolbar layout
Currently, all four buttons are
bunched together in the left part of
the toolbar. For most apps, you
would like to evenly space the buttons. It looks better, and it makes it
easier for the user to press the buttons. Buttons in the toolbar can be
evenly spaced using the Flexible Space Bar Button Item found in the
Object Library.

Drag a flexible space between each pair of buttons.

Figure 10.12 Flexible spaces added between buttons

Figure 10.10 Setting Identifier
to Search

Figure 10.11
The Flexible Space Bar Button Item

248 CHAPTER 10 Accessing the internet
Using web views in your app
UIWebViews provide an easy an convenient way to display web pages and
rich text. For this application you’ll use this iOS feature to create a help
page with instructions for using the app. The page will be formatted in
HTML like a web page and loaded into the web view.

Making the Help view
To display a UIWebView, you need to create a view and a view controller.
Like most views in iOS, you’ll create a view using a XIB file and a View-
Controller for the XIB. Select File > New > File, and then select the
UIViewController Subclass template.
Figure 10.13 Creating a new UIViewController subclass

Using web views in your app 249
For the controller’s title, enter PAHelpViewController. Make sure With
XIB for User Interface is selected.

Figure 10.14 Creating PAHelpViewController and the XIB file

Setting up the Help view
As in the sketch, you’ll add a Navigation Bar,
display Help at the top of the view, and provide
a Done button. Then you’ll add a UIWebView to
display the help.

Click PAHelpViewController.xib. From the
Object Library, drag a Navigation Bar to the
top of the view. Double-click the Navigation
Bar title, and type Help. Add a Bar Button Item
to the left of the Navigation Bar. As you did with the toolbar items,
double-click the word item and type Done.

Next you’ll add the web view to your Help view to display the help
information.
Figure 10.15 Web View object

250 CHAPTER 10 Accessing the internet
From the Object Library, drag the UIWeb-
View into the space remaining below the
Navigation Bar.

You’ll take care of displaying help in the
web view soon, but for now you’ll create
two IBActions. The first will display the
Help view when someone presses the
Help button, and the second will dismiss
the Help view and return to the main
view when the Done button is pressed.
You’ve done this plenty of times before.

For the Done action, click PAHelpView-
Controller.xib and open the assistant.
Ctrl-drag from the Done button into the
assistant.

Figure 10.17 Ctrl-drag the Done button to PAHelpViewController.h in the
assistant.

Select Action for the Connection type, and call the message onDone.

Figure 10.16 Help view with
the web view and
Navigation Bar

Figure 10.18 Name the action onDone.

Using web views in your app 251
Open PAHelpViewController.m, and fill in the implementation of
onDone to make the method dismiss the view:

-(IBAction)onDone:(id)sender
{

[self dismissViewControllerAnimated:YES completion:nil];
}

Finally, you need to create an IBAction to display the new view when
the user presses the Help button. This process is almost identical to
what you just did for the Done button. Open PAMainViewCon-
troller.xib, select the Help button, and Ctrl-drag from the button into
PAMainViewController.h in the assistant. (Make sure you have the
Help button selected and not the whole toolbar.)

Figure 10.19 Ctrl-drag from the Help button.

Call the action showHelp.

Figure 10.20 Name the action showHelp.

252 CHAPTER 10 Accessing the internet
Then fill in the message’s definition in PAMainViewController.m so it
looks like this:

- (IBAction)showHelp:(id)sender
{

PAHelpViewController *help =
[[PAHelpViewController alloc]

initWithNibName:@"PAHelpViewController"
bundle:nil];

[self presentViewController:help animated:YES completion:nil];
}

Making an HTML resource

At the moment, if you run the app and press Help, you get a blank web
view with Help in the navigation bar and a Done button. Before you
can use the web view, you need to create a web view outlet property.
Open PAHelpViewController.xib in Interface Builder, and show the
assistant. Ctrl-drag from the UIWebView into PAHelpViewController.h.

Figure 10.21 Use the assistant to

create an outlet for the web view.

Using web views in your app 253
Call the property helpView.

Now, if you wanted to display a web
page (any web page) in the web view,
you could change PAHelpViewController’s
viewDidLoad definition to this:

- (void)viewDidLoad
{

[self.helpView
loadRequest:[NSURLRequest

requestWithURL:[NSURL URLWithString:
@"http://www.manning.com/"]]];

}

You would replace http://www.manning.com/ with you help web page
URL. But in this case you don’t plan to change the web page, and it
doesn’t make sense to require an internet connection just to view help.
Fortunately, iOS allows you to create an HTML resource that is a web
page saved on the phone as part of your app.

To create an HTML resource for the help page, choose File > New >
New File. In the left column, under iOS, choose Other. Create an
Empty file.

Figure 10.22 Naming the
outlet
Figure 10.23 Creating an HTML resource

254 CHAPTER 10 Accessing the internet
Call the file help.html, and save it in Parkinator’s project folder.

HTML provides a simple way to create formatted text in iOS. The topic
of formatting HTML could be its own book, but here are the basics. An
HTML file is a plain text file. Styled text is surrounded by tags: an open-
ing tag, surrounded by angled brackets, < >; and a closing tag that looks

like the opening tag but that also has a forward slash,/.
For example, <h1>Parkinator Help </h1> creates a top
level (level 1) heading, whereas <h2>Remembering where
you parked</h2> creates a second-level heading (which is
usually formatted slightly smaller than the first level).
Individual paragraphs are surrounded by <p> and </p>
tags, and numbered lists can be created by surrounding
list items with the ordered list tags and
. For more information about HTML, see
www.w3schools.com/html/default.asp.

To create your HTML resource, add the following text to help.html.

Listing 10.1 help.html

<html>
<style>body {font: 10pt Helvetica }</style>

<body>
<h1>Parkinator Help</h1>

<h2>Remembering where you parked</h2>
<p>Parkinator lets you take a picture to remember where you parked.
When you do, it also automatically gets the current location from
your phone's GPS and places a pin on a map beneath the picture. To
do this:

Tap the information button (the i) on the bottom right of
the homescreen

Tap the camera icon on the next screen
Take a picture
Tap the Done button

</p>
<h2>Tweeting that your spot is open</h2>
<p>Tap the action button (2nd button from the left). Tweeting your
spot will only work if you have entered a valid Twitter username and

password into the iOS Twitter settings.</p>

Integrating with Twitter 255

Get p
hel
<h2>Viewing available spots</h2>
<p>Tap the seach button (2nd button from the right). Free spaces
near your location will appear as pins on the map.</p>

</body>
</html>

When viewed in your app, it looks like
the figure at right.

When you set up the IBAction that cre-
ated the web view, you used http://man-
ning.com as a stand-in for your help
page. Now you need to display help.html
instead of the external web page. To do
that, you create a new URL that refers to
the HTML file that is stored in your
application bundle rather than a web
page on the internet. Then you tell the
web view to load the new URL:

- (void)viewDidLoad
{

[super viewDidLoad];

NSString *helpPath =
[[NSBundle mainBundle]

pathForResource:@"help" ofType:@"html"];
NSURL *url =
[NSURL fileURLWithPath:helpPath];

[self.helpView
loadRequest:[NSURLRequest

requestWithURL:url]];
}

Integrating with Twitter
Twitter is a popular social network. It’s particularly good
at quickly sharing small bits of information publicly in the
form of 140-character messages nicknamed tweets. Twitter
also facilitates searching existing tweets. iOS 6.0 makes it

Figure 10.24 help.html for-
matted by the Help web view

ath to
p.html

Create url
for help.html

Load help.html
into web view
easy for developers to use social networks, including

http://manning.com
http://manning.com

256 CHAPTER 10 Accessing the internet
Twitter and Facebook, in their apps. You’ll use Twitter in Parkinator to
tweet the location of free spaces and to locate available spaces tweeted
by others.

Looking at iOS support for Twitter

iOS provides system-wide support for Twitter, Face-
book, and the Chinese social network Sina Weibo. For
these networks, users can go to iOS Settings and pro-
vide their usernames and passwords or even create
accounts. In order to test Parkinator, you’ll need to log
in to Twitter.

In Settings, click Twitter, and enter your Twitter user-
name and password. If you don’t have a Twitter
account, you can click Create New Account at the bottom of the
screen.

Once a Twitter username and password are provided, any app can
send tweets without asking the user to log in. This is a convenience for
the user and greatly simplifies the developer’s task by allowing you to
send a tweet using the SLComposeViewController class without worrying

Figure 10.25
iOS settings

Figure 10.26 Twitter account settings
about account management.

Integrating with Twitter 257
SLComposeViewController displays a Tweet sheet, which has a text field
for composing text and Send and Cancel buttons. It’s the standard
view for sending tweets.

To use Twitter in Parkinator, you need to add the Social framework to
your project target. Adding the Social framework is similar to how you
added the MapKit framework in the last chapter. Click Parkinator in
Project Navigator, and then select the Parkinator target. Click the
Summary tab, and scroll down to the Linked Frameworks and Librar-
ies section. Click the + button, and scroll down to find Social.frame-
work (or start typing Social into the text field to filter the list).

After you add the Social framework to the project, you must also
import the Social library. In PAMainViewController.h, add #import
<Social/Social.h> to the import statements.

Composing and sending a tweet
The TWTweetComposeViewController class provides all the functionality
you need to send a tweet. You’ll use this class to send a tweet when the
user presses the action button you added to the main view.

First add an IBAction to PAMainViewController.h that will be called
when the user presses the action button:

Figure 10.27 Adding
the Social framework
to Parkinator
- (IBAction)tweetLocation:(id)sender;

258 CHAPTER 10 Accessing the internet

Che
T
a

Se

ent
The tweetLocation method uses SLComposeViewController’s class method
isAvailableForServiceType to confirm that the device can send tweets.
Then you construct a string that has the #Parkinator tag and the
phone’s latitude and longitude. Each tweet should look something like
#Parkinator 37.787505 -122.403359. You’ll create a SLComposeView-

Controller and then initialize its text to your string. You’ll present the
tweet view; and when you’re done, you’ll dismiss the controller.

In PAMainViewController.m, add the following:

- (IBAction)tweetLocation:(id)sender {
if([SLComposeViewController

isAvailableForServiceType:SLServiceTypeTwitter]) {
NSString *tweetText =
[NSString stringWithFormat:@"#Parkinator %F %F",
self.lastLocation.latitude,
self.lastLocation.longitude];
SLComposeViewController *tweetComposeViewController =
[SLComposeViewController
composeViewControllerForServiceType:SLServiceTypeTwitter];
[tweetComposeViewController setInitialText:tweetText];
[self presentViewController:tweetComposeViewController

animated:YES completion:nil];
tweetComposeViewController.completionHandler =
^(SLComposeViewControllerResult result) {

[self dismissViewControllerAnimated:YES completion:nil];
};

}
}

Finally, connect the Tweet button in the toolbar to the tweetLocation
action. The process is the same as it was for the Help button. Use the
assistant to Ctrl-drag from the Send button to the action (or, if you
want some variety, use the Connection Inspector to drag the selector to
the File’s Owner and choose tweetLocation from the action list).

By the way, you may have noticed that none of the Social framework
classes say anything about Twitter. That’s because they work the same
way for all three networks. Just change SLServiceTypeTwitter to
SLServiceTypeFacebook, and you can post status updates to Facebook.
Use SLServiceTypeSinaWeibo to post to that service. Three networks for

ck for
witter
ccount

Create
String

Create
view

t initial
text Pres

view

Dismiss
view
the price of one. Social.framework FTW!

Integrating with Twitter 259
Searching Twitter
Once you give users a way to tweet parking spots for other users, you
also need to provide a way to search for spaces. Twitter allows you to
search existing tweets via a URL. The following URL

http://search.twitter.com/search.json?q=
Parkinator&result_type=recent&rpp=10

asks for the 10 most recent tweets with the #Parkinator tag. If you type
this URL into a web browser, you’ll see something like this.

Figure 10.28 Twitter search in browser

Don’t panic! These tweets are returned in a data for-
mat called JSON, and you’ll see in a moment that iOS
has methods to interpret them.

260 CHAPTER 10 Accessing the internet

Const
s

req
The following code constructs the twitter request and then handles the
resulting JSON data, parses the returned tweets, and displays their
location on the map. Add this to PAMainViewController.h:

@property(nonatomic, strong) NSMutableArray *freeSpaces;
- (IBAction)searchTwitter:(id)sender;
- (void) updatePins;
- (void) parseTweet:(NSString*) tweet;

To PAMainViewController.m, add the following definition.

Listing 10.2 PAMainViewController.m: additions for Twitter search

- (IBAction)searchTwitter:(id)sender {
SLRequest *twRequest =
[SLRequest requestForServiceType:SLServiceTypeTwitter

requestMethod:SLRequestMethodGET
URL:[NSURL URLWithString:

@"http://search.twitter.com/search.json?"
"q=%23Parkinator&result_type=recent&rpp=10"]

parameters:nil];

[twRequest performRequestWithHandler:
^(NSData *responseData, NSHTTPURLResponse *response,
NSError *error) {

if ([response statusCode] == 200) {
[self.mapView removeAnnotations:self.freeSpaces];
[self.freeSpaces removeAllObjects];
NSError *jsonError = nil;
NSDictionary *results =
[NSJSONSerialization
JSONObjectWithData:responseData
options:0
error:&jsonError];

NSArray *tweets = [results valueForKey:@"results"];
for(id tweet in tweets) {

NSString *tweetText = [tweet valueForKey:@"text"];
[self parseTweet:tweetText];

}
[self performSelectorOnMainThread:@selector(updatePins)

withObject:nil

ruct
earch
uest

Send request
to Twitter

Code 200
means OK

Clear old
results

Convert JSON
to Objective-C

Parse each
tweet
waitUntilDone:NO];

Integrating with Twitter 261
}
}];

}

The NSJSONSerialization class turns the JSON data into an
NSDictionary. The dictionary contains a lot of information
about the query that you don’t care about—for example,
how long the search took to execute on Twitter’s servers.
The tweets themselves are stored with the key results and
are returned as a NSArray by the call [results valueFor-

Key:@"results"].

The data for each individual tweet in the NSArray is stored
in an NSDictionary. The dictionaries have fields for the

author, date, and so on. You’re interested in the content of the tweet,
which is stored in the text field and is returned as an NSString by [tweet
valueForKey:@"text"].

Once you finally get the text of an individual tweet, you call parseTweet
to parse the tweet and add a map pin.

Parsing individual tweets
As we mentioned earlier, each individual tweet generated by Parkina-
tor should look like #Parkinator 37.785834 -122.406417. In other words,
it should consist of the #Parkinator tag followed by a space, a floating-
point number, a space, and then another floating-point number. The
following code splits the tweet wherever there is a space and puts the
pieces into an NSArray.

Listing 10.3 PAMainViewController.m: additions for Twitter search

- (void)parseTweet:(NSString*) tweet {
NSArray *parsedText =
[tweet componentsSeparatedByString:@" "];

if([parsedText count] == 3) {
if([@"#Parkinator" isEqual:

[parsedText objectAtIndex:0]]) {
double latitude =

Split on
spaces

Check for
3 partsb

Parse
latitude and
 [[parsedText objectAtIndex:1] doubleValue];longitude c

262 CHAPTER 10 Accessing the internet
double longitude =
[[parsedText objectAtIndex:2] doubleValue];

if((latitude != 0) && (longitude != 0)) {
CLLocationCoordinate2D freeSpacelocation;
freeSpacelocation.latitude = latitude;
freeSpacelocation.longitude = longitude;
PAParkingSpot *freeSpace =
[[PAParkingSpot alloc]

initWithSpotCoordinate:freeSpacelocation];
[self.freeSpaces addObject:freeSpace];

}
}

}
}

If there are three pieces in the tweet (as there should be) b, then the
code checks to see if the first is #Parkinator and the next two are valid
doubles. If there are two doubles, the code uses them as the latitude
and longitude c to create a new PAParkingSpot d, which it adds to the
array freeSpaces e.

Displaying locations in the Map View

When you perform a Twitter search request, the results are returned in
a different execution thread. Each thread is like a separate program run-
ning along side the main program. The results are returned by Twitter
in their own thread. You need to add the pins to the map in the app’s
main thread because this is also the Map View’s thread. This is why you

If valid,
create spot d

Add spot
to array e
put the spots into the freeSpaces array and it’s also why you have

Integrating with Twitter 263
[self performSelectorOnMainThread:@selector(updatePins)
withObject:nil

waitUntilDone:NO];

at the end of the handler. This causes updatePins to be called in the main
program thread. updatePins then adds the annotations to the Map View,
just like you did when you wanted to display your current location.
Finally, you update the mapView:viewForAnnotation method to add free
spot pins to the Map View. The new code is almost identical to the ear-
lier code for marking a parking spot.

Listing 10.4 Dropping pins for free spaces

-(MKAnnotationView*)mapView:(MKMapView *)mView
viewForAnnotation:(id<MKAnnotation>)annotation

{
MKPinAnnotationView *pin = nil;
if (annotation == self.spot) {

pin = (MKPinAnnotationView*)[self.mapView
dequeueReusableAnnotationViewWithIdentifier:@"spot"];

if (pin == nil) {
pin = [[MKPinAnnotationView alloc]

initWithAnnotation:self.spot
reuseIdentifier:@"spot"];

pin.pinColor = MKPinAnnotationColorGreen;
}

} else if ([self.freeSpaces containsObject:annotation]) {
pin = (MKPinAnnotationView*)
[self.mapView

dequeueReusableAnnotationViewWithIdentifier:@"freeSpot"];
if(pin == nil) {

pin=[[MKPinAnnotationView alloc]
initWithAnnotation:annotation
reuseIdentifier:@"freeSpot"];

pin.pinColor = MKPinAnnotationColorRed;
}
[pin setAnimatesDrop:YES];

}
return pin;

}

Old code
unchanged

Reuse
 old pins

Create if
needed

Different
color Animate

the pin drops

264 CHAPTER 10 Accessing the internet
What’s next
You have learned some great stuff. You can write apps that use the
camera, GPS, maps, and even the internet! You’re now able to load
web pages and display formatted text using UIWebViews. You also know
how to send tweets using iOS’s built-in Twitter support and search
Twitter using special URLs. You’re ready for the next level. In chapter
11, you’ll learn how to evaluate and optimize the performance of your
app, after which you’ll finally be ready to submit apps to the App store.

Part 3

Going from Xcode
to the App Store

his part of the book will help you move the apps you’ve created on your
Mac onto your device for testing and then into the App Store for sale.
You’ll learn how to

❂ Join Apple’s developer program
❂ Get certificates from Apple so you can create device and App Store

builds
❂ Test your application on your device
❂ Debug your application
❂ Install apps, distribute them, and offer them in the App Store

In chapter 11, you’ll learn what to do when something in your app goes
wrong. By the end of the chapter you’ll be able to locate bugs and opti-
mize your app’s code.

Chapter 12 explains how to run your app on an iPhone. You’ll also
learn how to distribute your app to users and, finally, submit your app
for sale in the Apple App Store.

266 CHAPTER

11
Debugging and optimizing
your application

This chapter covers

• Debugging applications without tools

• Using breakpoints and stepping through your code

• Watching variables

• Optimizing the performance of an app

You’ve written some great-looking apps that work well, but what hap-
pens when things don’t go so smoothly? Sometimes a newly written app

may behave unexpectedly or even crash. These problems are
caused by programming errors often called bugs, and even the most
experienced programmers make them.

Because bugs aren’t automatically detected by Xcode, they can be
more difficult to find and fix, but don’t worry. Fortunately, there are
tools and techniques you can use to fix bugs: a process called debug-
ging. And, like a mechanic tuning up a car, there are even things you
can do to make a bug-free app faster and more efficient—this is called

optimization. In this chapter, you’ll learn how to debug and optimize your
code to make sure your app runs as smoothly as possible.
267

268 CHAPTER 11 Debugging and optimizing your application
Debugging without tools
Xcode has a wonderful debugger, which we’ll cover later in the chapter.
But first: patience, grasshopper. A number of coding tricks allow you to
test for bugs without using the debugger. Once upon a time, this was the
only way to debug a program, and these techniques are still useful
today—particularly when a bug is intermittent and hard to reproduce.

Intentionally introducing a bug
In order to learn about debugging, you need a bug. Let’s take a walk
down memory lane and introduce a bug to the trusty old flashcard app.
Open FCCard.m, and find the line in initWithQuestion that chooses a
random slot for the correct answer. Change the 3 to a 4. When you’re
done, the line should look like this:

int randomAnswerSlot = arc4random()%4;

The original code correctly picked a 0, 1, or 2 to
randomly assign the question’s answer to one of
three buttons. With this bug, the number 3 may
also be chosen. If the random-number generator
picks a 3, the program will try to place the answer
in a button that doesn’t exist. This will cause the
program to crash. Occasionally, because it’s ran-
dom, the program won’t choose a 3 for any ques-
tion and will run correctly; but most of the time

Intentional
bug
the program will crash.

Debugging without tools 269
You’re now going to learn about debugging by pretending you don’t
know about the new bug. Take a nice long look at a neuralyzer and for-
get the bug ever existed.

Logging messages
Finding bugs is sometimes like detective work. You need to look for
clues. When you run the FlashCards app, it loads correctly. It only
crashes when you press the Show States or Show Capitals button.
And, if you get lucky, the app doesn’t crash and runs fine. From these
facts, you can deduce that the bug is located somewhere in showCards.
(Remember, you forgot what the problem is.) Fortunately, you can use
NSLog to find where the crash happens.

NSLog prints strings to a special window in Xcode
called the console. Add the statement NSLog(@"Shall
you play a game?"); to the program, and you’ll see
the log message “Shall you play a game?” appear in
the console when the app reaches the NSLog call in
the program. You can use this log to see if and when
a particular section of code is ever run.

To locate a crash, you can call NSLog at the begin-
ning and end of a section of code. If you see only
one of the two expected messages in the console, you know that the
bug is somewhere between the two calls to NSLog. Because you have a
pretty good idea that this bug is located after one of the Show buttons

270 CHAPTER 11 Debugging and optimizing your application
is pressed, start by putting NSLog statements at the beginning and end of
allocStateCards in FCAnswerKey.m:

-(NSMutableArray*) allocStateCards
{

NSLog(@"start allocStateCards");
NSMutableArray *cards = [[NSMutableArray alloc] initWithObjects:
[[FCCard alloc]
initWithQuestion:@"Alabama"
answer: @"Montgomery"
wrongAnswer1:@"Birmingham"
wrongAnswer2:@"Mobile"],
[[FCCard alloc]
initWithQuestion:@"New York"
answer: @"Albany"
wrongAnswer1:@"New York City"
wrongAnswer2:@"Buffalo"],
[[FCCard alloc]
initWithQuestion:@"New Jersey"
answer: @"Trenton"
wrongAnswer1:@"Camden"
wrongAnswer2:@"Newark"],
nil];

NSLog(@"end allocStateCards");
return cards;

}

Although you can use any string you want in the log statements, you
use @"start allocStateCards" and @"end allocStateCards" to make the
messages easy to recognize in the console. It’s important that the last
call to NSLog is before the return statement. If the NSLog was placed after
return, it would never be called. You can also place NSLog statements at
the beginning and end of allocCapitalCards if you want.

Run your app. When it crashes, Xcode
should make the debug area with the
NSLog messages visible automatically. If
it’s not visible, you can expand it man-
ually by clicking the expand icon at
lower-left in the Xcode window.

Log method’s
start

Log method’s
end

Figure 11.1 The debug area
expander

Debugging without tools 271
Here is what the console window looks like after the crash.

Notice that there is a line that reads start
allocStateCards but not one that says end

allocStateCards. This confirms your suspicion
that the bug is located somewhere in alloc-
StateCards (or one of the methods it invokes).
Also notice the error message printed out
after the log message. It tells you that the
error is caused by a call to exchangeObjectAt-
Index:withObjectAtIndex: with a value that is out of bounds. This gives
you another clue that you’ll explore in the next section.

Using assertions

The log statements confirmed that the bug is somewhere in allocState-
Cards. You also got a bonus clue from the console that said you’re try-
ing to call an NSMutableArray’s exchangeObjectAtIndex:withObjectAtIndex:
with a value that is out of bounds. The only place you use this method

Figure 11.2 The Xcode debug
console with NSLog and error
messages

272 CHAPTER 11 Debugging and optimizing your application
is in initWithQuestion in FCCard.m when you try to modify answers. To
confirm that this is the cause of the problems, you’ll use another debug-
ging technique called an assertion.

Assertions allow you to test a value or condition in your code. If the
condition is true, your program keeps running normally. But if the con-
dition is false, a statement is printed to the debug console and an excep-
tion is thrown, which usually causes the program to stop executing.
For example, if you write NSAssert(foo = 10, @"foo doesn't equal 10"),
your program will run fine if the variable foo is 10 but will stop and
print "foo doesn't equal 10" to the console if foo has any other value.
An assertion is like a centurion guarding a gate who asks a question
and only lets those with the correct answer pass. Because the assertion
allows you to send messages to the console only when there is a prob-
lem, it’s useful with bugs that occur infrequently.

You suspect the problem is in initWithQuestion, and you know there
should be only three buttons in answers, so create an assertion in init-
WithQuestion that won’t let exchangeObjectAtIndex be called with a value
greater than 2.

Listing 11.1 FCCard.m: adding NSAssert to initWithQuestion

int randomAnswerSlot = arc4random() % 4;
NSAssert(randomAnswerSlot < 3,

@"slot is greater than 3!");
[self.answers exchangeObjectAtIndex:0
withObjectAtIndex:randomAnswerSlot];
self.correctAnswer = randomAnswerSlot;

Now, when you run the app, you see in the console an assertion fail-
ure that says 'randomAnswerSlot is greater than 3!'. You can use NSAs-
serts to guarantee that different parts of your program are working the
way you think they should be. If an assertion fails, your program stops
running and you’ve found the problem.

Now that you’ve identified the bug, let’s fix it by changing the 4 back
into a 3. You should be able to run the app without it crashing and
without the NSAssert printing a message in the console. Congratulations

Assert
added
on finding and fixing your bug!

Debugging without tools 273
Popping up dialogs
Sometimes you can’t use the simulator or Xcode to debug a program.
This is particularly true for apps that use any of the devices’ sensors.
Suppose you have an app that uses GPS data and only crashes when
you’re moving. Although you could try to walk around town balancing
your iPhone and a laptop in your hands like a deranged juggler, it’s
much easier to use the techniques introduced in this section.

We’ll talk about deploying an app to a real device in the next
chapter, so try to be patient for now. (We know it’s hard to
wait!) One way to make an app give you feedback is to set
the text field of a label. You already know how to do this;
you did it in chapter 3. The downside of this approach is
that you have to modify a view to display a message.
Depending on your app, this may required modifying multi-
ple views and XIBs.

Another option is to pop up a dialog box with the message, value, or con-
dition you want to monitor. The advantage of this approach is that it
doesn’t require modifying any of your existing views. To demonstrate
this technique, you’ll add a pop-up alert to allocCardsFromInfo so you can
confirm that it’s successfully completing without having to look at the
log messages in the console. To create a pop-up, add the following code
to the end of allocCardsFromInfo in FCAnswerKey.m. As you did with
NSLog, make sure you add these statements before the return statement.

Listing 11.2 FCAnswerKey.m: adding Alert

UIAlertView* alert =
[[UIAlertView alloc]

initWithTitle:@"Debug Alert"
message:[NSString

stringWithFormat:@"allocStateCards completed"]
delegate:nil
cancelButtonTitle:@"Dismiss"
otherButtonTitles:nil];

[alert show];

274 CHAPTER 11 Debugging and optimizing your application
Now when you run the app you’ll see a dialog
box after the cards are created.

You can use alerts like log statements or com-
bine them with if statements to behave like
assertions. With alerts, you don’t even need
Xcode to debug a program, which will be
especially handy when you start running
your app on a real iPhone.

Although it’s sometimes necessary to debug a
program without any tools, Xcode’s debugger
is usually more convenient. And now that you
know how to debug an app without any tools,
you’ll appreciate the power and flexibility
provided by the debugger all the more.

Debugging with Xcode

In the last section, you used logging statements, assertions, and alert
boxes to debug your program. Although these techniques are effective,
they have the disadvantage of requiring you to modify your code. The
Xcode debugger allows you to debug without modifying a line of code.
Using the debugger, you can watch variables as they’re changed and
step through the program line by line as it’s executing. The debugger
makes you a superhero with the ability to stop time using breakpoints.
The variable watcher gives you X-ray vision with the ability to peer

Figure 11.3 An alert
box giving debugging
information.
into your program’s inner workings.

Debugging with Xcode 275
Setting breakpoints
Breakpoints allow you to pause a program so
you can examine variables. If a program isn’t
working as expected, it’s useful to make sure
the variables have the values you expect. Break-
points are like giant stop signs that tell Xcode to
stop executing and wait. To set a breakpoint,
click the gutter to the left of the code, and
Xcode will mark the line with a dark-blue
arrow. This arrow informs you that Xcode will pause before this line is
executed. Clicking an existing arrow toggles individual breakpoints on
and off. Disabled breakpoints are translucent.

Try placing a breakpoint next to the line that creates the alert you
added in the last section, and then run your app. When Xcode stops at
the breakpoint, it accentuates the point of execution by highlighting
the relevant line.

Figure 11.5 Highlighted line showing execution stopped at a breakpoint

When you’re writing a complicated program, it’s sometime hard to tell
if a particular line of code is being executed. Breakpoints are one way
to check on a section of code. You can place as many breakpoints as
you want. If the debugger doesn’t stop on your breakpoint, it means
that line isn’t being run.

Stepping through code
Just like pressing a Play button to play a paused song, your can press
the debugger’s Continue button to resume running an app paused by a

Figure 11.4 An
enabled breakpoint
breakpoint. When you press Continue, the program continues running

276 CHAPTER 11 Debugging and optimizing your application
until another breakpoint. The Continue button is the first of four
debugger controls found above the variable view.

In addition to allowing your program to continue running after a
breakpoint, you can use the debugger to execute code one line at a
time. Stepping through the code lets you observe the effects of each
line as it executes. Step Over and Step Into are located next to the
Continue button. If the current line doesn’t send an object a message,
both buttons tell the debugger to execute the current line and advance
to the next. But if the current line sends a message,
Step Over tells the debugger to send the message
and advance to the next line of code after the mes-
sage is handled.

Similarly, if the current line of code sends a message,
Step Into tells the debugger to move inside the
invoked method so you can see its inner workings.
Once inside the method, you can step through its
execution or step out of the method and return to the
line after the initial message was sent.

Watching variables
When Xcode stops on a breakpoint, it makes the debug area visible.
On the right, you see the console in which you viewed the NSLog state-
ments, and to its left you see the Variables View. The Variables View
allows you to observe vari-
ables to confirm that they
have their expected value.

As its name implies, the Vari-
ables View lets you see the
value of variables. You can
click the small arrow to the

Figure 11.6 The four debugger
control buttons: Continue, Step
Over, Step Into, and Step Out
left of an object to look at Figure 11.7 Variables View

Debugging with Xcode 277
variables contained within the object. Amazingly, you can even double-
click a value and type to assign a new value to a variable. Let’s say
you’re debugging the FlashCards app, and you notice that 3 was cho-
sen as the random number. You can manually change that 3 to a valid
number and see how the program runs with that change.

At the top of the Variables View is a pull-down
menu that offers these choices: Auto, Local Vari-
ables, All Variables, Registers, Globals, and Sta-
tistics. Auto displays the variables that are
relevant to the current line in the debugger and
will usually be the most useful.

Breaking when something happens
Sometimes you need to set a breakpoint in a frequently called method
or a loop, but you don’t want your program to stop every time execu-
tion reaches the breakpoint. Xcode allows you to set a breakpoint that
pauses the program only under certain conditions.

To create a conditional breakpoint, set a breakpoint as you normally
would by clicking the gutter. Then right-click (or Ctrl-click) the blue
arrow and enter an expression in the Condition text field. If the expres-
sion is true when the program reaches the breakpoint, the program will
pause, and you can then step through the code or use the Variables
View. If the condition evaluates to false, the program will keep
running. You can also tell the debugger how many times the break-
point should be ignored.

It isn’t enough just to write a program that doesn’t crash. An app
should be responsive and efficient. Xcode provides a number of tools

Figure 11.8 Setting a
conditional breakpoint
called instruments that help to make apps run as smoothly as possible.

278 CHAPTER 11 Debugging and optimizing your application
Speeding up your app

Now that your app doesn’t crash, you can use Xcode to give it a tune-
up. Profiling your code helps you write applications that run faster and
use less memory. A good tune-up is the difference between an app that
works and one that runs Fast and Furious.

Profiling your code
Xcode provides a number of instruments to profile your code. Profiling
allows you to measure things like how long individual methods take to
execute and how much memory the program is using. You can use pro-
filing to find and fix inefficiencies in the code. To profile your code,
choose Profile from the Product menu in Xcode’s menu bar. Doing so
opens a window in which you can choose an individual profiling tool.

Figure 11.9

The Profile window

Speeding up your app 279
Clicking an instrument displays its description in the lower pane. The
Profile button in the lower-right corner runs the selected profiler.

Finding bottlenecks
If your application is running slowly, the Time Profiler can help you fig-
ure out why. The Time Profiler samples your code every millisecond
while the app is running and records what is executing. After you’re
done profiling the program, the Time Profiler presents its data so you
can figure out which methods are taking the most time and know
where to focus you optimization efforts.

The code you’ve written so far works pretty well, so, as you did with
the bug, you’ll intentionally introduce some inefficient code. Open
FCViewController.m, and add the following to the beginning of show-
Cards:

NSMutableArray *uselessArray = [[NSMutableArray alloc] init];
for(int i = 0; i < 10000; i++) {

[uselessArray addObject:[NSNumber numberWithInt:i]];
}

for(int i = 0; i < 10000; i++) {
[uselessArray removeObject:[NSNumber numberWithInt:i]];

}

Now try running the app in the simulator. You’ll notice a
delay after you press Show States and Show Capitals:
your program is needlessly adding and removing numbers
from a mutable array.

Let’s pretend you didn’t know the cause of the delay and
wanted to find the culprit. Open the Profile window, select
the Time Profiler, and click the Profile button. Doing so
opens a new Instruments window and launches the app in
the simulator. Run through the game a couple of times. As
you run the app, you’ll notice some activity in the other

window. Quit the simulator or press the Stop button (the second but-
ton from the left on the toolbar) to stop profiling, and look at the Time

Profiler.

280 CHAPTER 11 Debugging and optimizing your application
Figure 11.10 The Time Profiler

Toward the top of the window is a rectangle containing a graph. This
graph shows you CPU utilization. Below that, you should see a Call
Tree listing all the functions and methods used in your program, along
with their running time in milliseconds and as a percentage of total
running time. Make sure Invert Call Tree is selected in the Cell Tree
settings at left in the windows.

Whoa! There’s a lot of information in that call stack.
Finding a performance bottleneck is like looking for a

Figure 11.11 Select the
Invert Call Tree check box.

Speeding up your app 281
needle in a haystack. Fortunately, you can do a number of things to
reduce the size of the haystack and quickly zero in on the problem.

The first thing you can do is tell Xcode
to only display timing information for
the slice of time when you’re experi-
encing a slowdown. If you look at the
CPU utilization graph, you’ll notice a
spike in usage that corresponds to each
time you started playing the game.

You can limit your search to this spike by clicking and dragging the
mouse across the spike while holding down the Option key. As the
CPU usage graph is selected, the Call Tree below is filtered to show
only methods and functions from the highlighted time slice.

Next you can make the Call Tree easier to read by having Xcode dis-
play only the information that is most likely to be relevant. In the Call
Tree settings menu at left, in addition to Invert Call Tree, select Hide
System Libraries and Show Obj-C Only. This will limit what is dis-
played to only methods you’ve written.

The result should look much more manageable. Now you should see a
handful of methods, most of which you’ve implemented. Because
they’re sorted by running time, the most likely performance problem
will be at the top of the list. In this case, it’s [FCViewController show-

Figure 11.12 Spike in CPU
usage at the start of the game

Figure 11.13
Choose Hide System Libraries
and Show Obj-C Only.
Cards:]. Double-click [FCViewController showCards:] to see a detail view

282 CHAPTER 11 Debugging and optimizing your application
of the method. Highlighted in red is the costliest line of code: in this
case, [uselessArray removeObject:[NSNumber numberWithInt:i]];.

Here you can clearly see that the one line removing objects from use-
lessArray is taking 99.9% of the running time. For comparison, let’s

replace the costly second for loop with the single line [use-
lessArray removeAllObjects];. Calling removeAllObjects

removes everything in uselessArray just as your loop did,
only more efficiently. Now try running the code; even
without the profiler, you can tell that the program is more
responsive. Using the Time Profiler, you can see that show-
Cards: is no longer the costliest method and is running sig-
nificantly faster. Leave the for loops in your code, because
you’ll examine their memory usage in the next section.

Optimizing memory usage
Computers use memory to store running programs
and their data. iPhones and iPads have much less
memory than traditional computers, so iOS app
developers should be especially careful to use mem-
ory efficiently. To profile memory usage, Xcode pro-
vides the Allocations instrument.

There are potentially two types of memory problems:
short-term memory allocations and long-term memory
leaks. A memory leak is caused by allocated memory
not becoming deallocated after it’s needed. Due to the
introduction of Automated Reference Counting (ARC)
memory to iOS, leaks are less common, but they can
still happen. A memory leak will cause your program
to use more and more memory over time, which will

Figure 11.14
Time Profiler
detail view

Figure 11.15
Allocations
eventually cause iOS to terminate the app.

Speeding up your app 283
To check your app’s memory usage, open
the Profile window and double-click the
Allocations icon. You’ll see a window simi-
lar to the one opened by the Time Profiler.
Before you click Show States or Show
Capitals, click the Mark Heap button to the
left of the Instruments window. The heap is the pool of memory used by
your app.

Play the game at least five times, and click Mark Heap before you
press Start Again. Mark Heap tells the iOS record-profiling data so
you can refer to it later. Playing the game five times will let you see how
your app performs over time. Each time you click Mark Heap, you’ll
see a new heapshot appear in the Snapshot column.

Figure 11.17 The Allocations window

The most important column to look at for the heapshots is Heap
Growth. Heap growth measures how much additional memory each
heapshot is using. In a perfect world, the number would be 0, meaning
your program doesn’t need extra memory to run. Notice that after the
first few runs of the game, the heap growth value is usually close to 1.
This is good, because it means the program’s memory footprint is

Figure 11.16 Allocations
barely growing. Even better, if you expand one of the heapshots by

284 CHAPTER 11 Debugging and optimizing your application
clicking the small triangle, you’ll see that the two biggest contributors
to the heap growth are related to CardResult. Some memory growth
here makes sense because the app is supposed to store the results of
games. If the heap growth was consistently a big number, it would
mean your program was constantly eating memory and that you’d need
to find the cause if you wanted your program to run smoothly.

At the top of the window is a graph representing the app’s total mem-
ory usage. Notice the sawtooth pattern that results from the for loops
adding numbers to and removing them from an array.

Figure 11.18 Memory usage graph

Keeping an eye on total memory utilization
can help you diagnose and avoid short-term
memory spikes.

What’s next
You’ve skillfully squashed a bug that caused
your app to crash, by using log statements,
assertions, and alert boxes. You now know
how to use the debugger to step through a program’s operations, and
you found performance bottlenecks and monitored memory usage. Your
app is finally ready to leave the simulator and run on a real iPhone.

12
Building for the device and
the App Store

This chapter covers

• Installing your app on an iPhone

• Distributing an app to others for testing

• Submitting your app to the App Store

Running your app on a device
This is exciting! You’ve written a polished program that runs efficiently
and is free of bugs. But although the simulator is great, it’s no substitute
for using your program on an actual phone. For example, there are some
things like the GPS that you can’t test well in the simulator. This chapter
will explain how to install your app on your phone and distribute it to
others for testing. It will also lead you to the Holy Grail: submitting your
app to the Apple App Store.
285

286 CHAPTER 12 Building for the device and the App Store
Getting developer certificates

The first step in installing your app on an actual device is getting a
developer certificate. Developer certificates are encrypted files that act like
IDs. They allow Apple, Xcode, and iOS devices to know that you are
who you say you are and that your program was written by you. To
test your app on the simulator, you only need a free Apple developer
account; but in order to install your app on an iPhone, you’ll need to

join the iOS Developer Program to get a developer certifi-
cate. Membership in the program is $99 and can be pur-

chased through Apple’s website: https://developer
.apple.com/programs/ios/. You may have to wait up to two

days for an activation email from Apple.

After activating your developer account, you need to take a
series of steps to install your developer certificate. These steps are
all designed to verify your identity with Apple. It sounds like an
Abbott and Costello routine, but you’ll download and install an
intermediate certificate to generate a certificate request so you
can download and install your developer certificate which is
needed to install a provisioning profile certificate.

The first step in this crazy sequence is to log on to the iOS Dev Center
(https://developer.apple.com/devcenter/ios) and go to the iOS Provi-
sioning Portal. In the portal, click Certificate and then download the
WWDR Intermediate Certificate. Once it’s downloaded, double-click

the WWDR certificate file to install it in your Keychain.

https://developer.apple.com/programs/ios/
https://developer.apple.com/programs/ios/

Running your app on a device 287
Figure 12.1 Download certificates from the iOS Provisioning Portal.

The next step is to create a certificate signing request. If it isn’t already
open, launch Keychain Access, found in the Applications > Utilities
folder on your Mac.

In Keychain Access, go to Keychain Access > Preferences, and select
the Certificates tab. Set both options to Off.

Next, select Keychain Access > Certificate Assistant > Request a Cer-
tificate from a Certificate Authority. Enter your email address and

Figure 12.2 Keychain Access, found in the Utilities folder

Figure 12.3
Keychain Access
Certificates Preferences
name exactly as you did when you signed up for the developer

288 CHAPTER 12 Building for the device and the App Store
program. Leave the CA Email Address field blank,
select Saved to Disk, and select Let Me Specify
Key Pair Information.

Click the Continue button, and save the certificate to your desktop.
When prompted for Key Pair Information, choose a key size of 2048
bits and the RSA encryption algorithm.

Figure 12.4
Creating a certificate
request

Figure 12.5
Submitting a
certificate

request

Running your app on a device 289
Finally, return to the Certificate section of the por-
tal and click the Request Certificate button. The
page that loads is a bit confusing. It looks like
nothing more than instructions for what you just
did. But if you look carefully at the bottom of the
page, there are two easy-to-overlook buttons.
Click Choose File, and select the certificate signing
request you created and saved with Keychain
Access. Next, click Submit, and the certificate request will appear in
the portal with a status of Pending Approval.

You’re halfway there. As an individual developer, you should receive
an email notifying you that a certificate request requires your approval.
But you don’t have to wait for the email to arrive in your inbox—just
reload the page in your web browser, and click the Approve button.
Download the certificate, and double-click the certificate file to add it
to your keychain. If Keychain Access gives you an error message,
something like Error: 100013, try quitting the program and double-
clicking the .cer file while Keychain Access is closed. It will work the
second time.

You downloaded the intermediate certificate so you could upload the
certificate request so you could download the developer certificate.
Who’s on first, What is on second, and I Don’t Know is on third. The
bases are loaded, and you’re ready to begin provisioning.

Provisioning your device

290 CHAPTER 12 Building for the device and the App Store
Provisioning you device is a fancy way of saying “getting your phone
ready to install your apps.” When you provision, you create a profile
that tells Xcode which test phones are allowed to run your apps. Like
installing the developer certificate, a number of steps are involved to
provision a phone. Fortunately, the iOS Provisioning Portal provides a
Provisioning Assistant to help you through the task. Click Home, just
above the Certificates link. Then click the Launch Assistant button at
the bottom of the screen.

Click Continue, choose Create a New App ID, and click Continue again.

Figure 12.6 The Development Provisioning
Assistant

Figure 12.7
Choosing an

App ID

Running your app on a device 291
Choose a name for the provisioning profile that has meaning to you. It
doesn’t have to be the same as the name of your project. Click Con-
tinue, select Assign a New Apple Device, and click Continue again.

When the assistant asks for a Device Description, enter a name for
your phone that you’ll recognize, like My iPhone.

The assistant also asks you to enter your
phone’s Unique Device ID (UDID). This
isn’t your phone’s serial number. You can
look up the UDID through Xcode. To do so,
connect your iPhone to your computer, and
launch Xcode. Go to Window > Organizer,
and click the Devices tab. Your phone should
appear at left in the window, under Devices.
Right-click (or Ctrl-click) the phone, and
select Copy Device Identifier.

Figure 12.8
Choosing a Device
Description
Figure 12.9 Getting your phone’s UDID

292 CHAPTER 12 Building for the device and the App Store
Return to the Provisioning Assistant, click in the Device ID text field,
and select Edit > Paste to paste in your phone’s UDID. Click Continue,
and then click it again in the next window. Give your profile a descrip-
tion, and click Generate. Click Continue, and then download the newly
generated provisioning profile to your Mac. Double-click the file, and
the profile will appear in the Xcode Organizer. (Warning: The assistant
tells you to drag the Provisioning Profile into the Organizer window in
Xcode. This doesn’t work, although you can drag the file to the Xcode
icon in the dock as pictured in the assistant.)

Figure 12.10
Downloading and installing

your provisioning profile

Running your app on a device 293
Installing your program
Now that you’ve downloaded and
installed your developer certificate and
a provisioning profile, you have every-
thing you need to place your program
on your phone. With your iPhone con-
nected to the computer, all you have to
do is open your project and select your
iPhone as the build target.

Now, when you run your program, Xcode will install and launch the
app on the iPhone instead of the simulator. Be patient: depending on
the size of the program, it may take a while to load. But once it does,
your app is installed on your phone! When the phone is connected to
your computer, you can run the program on the
phone from Xcode and use the debugger just as
you did with the simulator. Even better, you can
disconnect your phone from the computer, and the
application will remain installed. The provisioning
profile is good for a year. For one year, your app
will work just like an app from the App Store.
When the year is over, the app will need to be rein-
stalled if you want to continue using it.

Distributing to testers who don’t have Xcode
Question: What is better than installing your app on your iPhone?
Answer: Installing your app on your friends’ iPhones! It’s important to
thoroughly test your app before you submit it to the App Store. This
means other people, who aren’t developers, need to use the program
too. Apple allows you to install your app on other peoples devices using
a method called ad hoc distribution.

In order for your app to run on testers’ phones, it must be compiled
with a provisioning profile that contains their UDID. If your testers
don’t have Xcode, they can also use iTunes to discover their UDID.

Figure 12.11 Selecting your
iPhone
Here’s how. Launch iTunes, and connect the iPhone. Select the

294 CHAPTER 12 Building for the device and the App Store
iPhone in the Devices list at left. If it isn’t already
selected, click the Summary tab at the top of the
window. Click the iPhone’s serial number, and the
UDID will become visible. Now choose Edit >
Copy or press Cmd-C. Doing so copies the UDID to the clip-
board even though it didn’t appear to be selected. Have your
testers follow these steps to look up their UDIDs in iTunes
and then send you the UDIDs via email.

Return to the iOS Provisioning Portal, and click Devices. For each
iPhone on which you want to install your app, click Add Devices, and
enter a name and the phone’s UDID. You can add multiple devices by
clicking the + button before you click Submit, but be sure to click Sub-
mit when you’re finished.

Figure 12.12
Getting the UDID
from iTunes

Figure 12.13
Adding devices to
the Provisioning

Portal

Running your app on a device 295
Click Provisioning, and click the New Profile button. Choose a profile
name (Ad Hoc sounds good), make sure your name is selected in the
Certificates section, select an App ID (it can be the same one you used
before), and select the phones to which you wish to distribute your
program. Hint: you can click Select All if you want to distribute the
app to all the UDIDs you already entered. Click Submit, and you’ll see
your new Provisioning Profile with a pending status. Refresh your
browser, and click Download to download your profile. Double-click
the downloaded profile to install it in Xcode.

Figure 12.14 Download the Ad Hoc provisioning profile

Return to Xcode, select your project, and select the project name under
Targets. Scroll down to the Entitlements section. Entitlements are an
app’s way of requesting permission to do certain things. By default,
Xcode requests extra entitlements that you don’t need. Removing these
entitlements makes it easier to distribute your program. To remove the
extra entitlements, select Enable Entitlements, but click the minus
signs to remove iCloud Containers and Keychain Access Groups. Also
delete the text in the iCloud Key-Value Store text field.

Figure 12.15
Entitlements

settings

296 CHAPTER 12 Building for the device and the App Store
The next step is to compile an archive that you can distribute to your
testers. Select iOS Device as your target using the Scheme menu next
to Xcode’s Run and Stop buttons, and then choose Product > Archive.
Your program will compile, and the Archive tab of the Organizer win-
dow will open. Select your program, and click the Share button.
Choose iOS App Store Package (.ipa), and make sure the Ad Hoc pro-
visioning profile is selected. Click Next, and save your IPA file.

Your app can now be distributed to any of the phones listed in the pro-
visioning profile. Send your testers the IPA file you just saved. Have
each tester launch iTunes and connect their iPhone to their computer.
They should then drag the IPA file into iTunes. That’s it! The tester
can then sync their iPhone, and your app will be installed on it.

Submitting your app to the App Store
Congratulations! You’ve finally done it. You’ve written a great pro-
gram, debugged it in the simulator, and distributed it to testers, and
now you’re ready to submit the program to the App Store. This is the
moment you’ve been waiting for, the big kahuna. You just need to get
all your ducks in a row for the App Store.

Making sure everything is in order
The internet is rife with horror stories about great apps being rejected
from the App Store for no reason. Fortunately, real life is a lot less
scary than The Walking Dead. Most apps that are rejected are refused
for easily avoided issues. First, make sure your app is bug free. It

shouldn’t crash, freeze, or have memory leaks. Any of these problems

Submitting your app to the App Store 297
will result in rejection—and you learned how to fix all of them in the
last chapter. Your program shouldn’t have any partially implemented
functionality. For example, don’t have grayed-out buttons that pop up
a Coming Soon message in an alert box.

Finally, don’t run afoul of any Apple rules outlined
in the App Store review guidelines. To view the
guidelines, log in to your dev account and visit
http://mng.bz/s9bT. Most of these guidelines are
common sense, but there are some hidden nuggets
that are worth discovering. For example, if your
application needs the internet. Although it may
seem tedious, reading the guidelines will save you
time in the long run.

You need to check a number of details related to your project’s config-
uration before submitting the app to the App Store. Examine the iOS
Application Target settings, and make sure they’re correct. To do so,
select your project in the Project Navigator and click the project name
under Targets.

Figure 12.16

Target settings

298 CHAPTER 12 Building for the device and the App Store
Set the Identifier. It can be any unique string, but if you have your own
internet domain, the convention is to use your address in reverse DNS
format starting with com: for example, com.yourDomain.yourApp. Pay
special attention to the Version Number. Apple will reject apps with ver-
sion numbers less than 1.0. If your app is already in the App Store, the
version number must exceed the number already in the store.

Apps submitted to the App Store are required to have icons and launch
images. If you didn’t do so already, add them to your app as outlined in
chapter 5. Be sure to set Supported Device Orientations if your app
can be rotated.

Creating your App Store application record
The App Store requires the developer to submit a number of items
before an app will be considered for approval. These are the images
and text that appear on your app’s page in the store. It’s helpful to
gather the necessary files before beginning the application process. In
addition to the icons included in your application, you’ll need a 1024 x
1024 pixel app icon and screenshots. The easiest way to create screen-
shots is with the simulator. While your app is running, select File >
Save Screen Shot. Apple requires screenshots to be of retinal resolu-
tion. If the status bar is visible in your application, it should be cropped
out of the screenshots. Screenshots should be 640 x 920, or 640 x 960 if

the app covers the status bar. You’re allowed to
submit images in a variety of image formats, but
PNGs are probably the best option.

In addition to the graphics, you’ll need to have an application
name, a description, and a list of comma-delimited keywords.

The description should reflect the functionality of your appli-
cation and not reference the names of competing

apps. The description can be up to 4,000 charac-
ters long, but Apple recommends descriptions
shorter than 600 characters. The keywords should

be accurate. Violating these guidelines in an attempt at search-engine
optimization is grounds for an App Store rejection. The App Store will

also ask for a URL for product information and a customer-support

Submitting your app to the App Store 299
email, so it’s good to have a public email address
and at least one web page ready (even if it’s just a
blog).

The first time you try to submit an app, you’ll be asked for a
company name. This company name will appear in the App
Store. It doesn’t have to be an actual corporation, but choose
the name wisely: this company name will be used for all your apps,
and once you choose a company name, you can’t change it.

Take some time to polish the icons, screenshots, app name, and
description. These are the elements that make a first impression. In
addition, once your app is approved, they can’t be changed without
submitting a new application version; so take a breath and get these
things right.

Submitting your app to the App Store

Now that you have everything you need, you’re ready to submit your
app to the App Store. Submissions are handled through iTunes Con-
nect (http://itunesconnect.apple.com). Log in to iTunes Connect with
your developer ID and password. If you plan to charge for your app,
go to the Contracts, Tax, and Banking section and request, read, and
submit the requisite contracts. You’ll also have to add tax, bank, and
contact information (even if the contact info is the same as your devel-

oper account).

300 CHAPTER 12 Building for the device and the App Store
Click Manage Your Applications and then Add New Application. If this
is your first time adding an app, you’re asked for your company name.

Figure 12.18 Pick a company name.

Figure 12.17
iTunes Connect

Contract section

Submitting your app to the App Store 301
Click Continue, and then enter the language, the app name, and a SKU
number. The SKU number is a code that Apple will use to report sales
to you. Despite the fact that it’s called a number, you can pick anything
you want for the SKU, including letters. You may want to use an abbre-
viated app name with the version number. Also select the Bundle ID
you’re using to provision your app.

Figure 12.19 Name your app.

After you name your app, you need to pick an availability date. This is
the date your app will appear in the App Store once it’s approved.

Approval usually takes only a week, but if your app hap-
pens to be approved after the availability date, then the
app will appear in the App Store immediately upon

approval. Many developers like to time app availability with
publicity. To maintain control, they pick an availability date
more than a year in the future; then, when the app is approved,

they choose a real availability date.

Apple requires that you choose your app’s price in a fixed tier.
You can choose from 88 pricing tiers with prices between free
and $999.00. Click View Pricing Matrix to see how the different

tiers correspond to actual app prices. Unlike much of the app

302 CHAPTER 12 Building for the device and the App Store
information, which can only be changed when you submit a new ver-
sion to the store, the price can be changed at will.

Figure 12.20 Pick an availability date and a price.

The next page asks for version information. The version number
should match the version number you set in Xcode. For the copyright,
enter the year and your full name. You’re required to fill out the Rating
section to rate your app for violence and mature themes even if the app
contains nothing remotely suggestive.

Figure 12.21

Rate your app.

Submitting your app to the App Store 303
Now you can use the materials you gathered in the
last section. Enter the description, keywords,
email address, and URL. Upload your icon and
screenshots. When you’re finished, be sure to click
the Save button at lower right. Phew! You’re
ready to upload the app.

Click View Details under your app icon.

Then, in the upper-right corner of the next win-
dow, click Ready to Upload Binary, and answer
when you’re asked whether your application uses
encryption (which is related to the USA export
restrictions). Click Continue.

Figure 12.23 Click Ready to Upload Binary

The actual uploading of your app is done though Xcode and not
through the iTunes Connect website. Return to Xcode, and open your
project. Choose iOS Device as the target.

Figure 12.22
Click View
Details.

Figure 12.24 Set the target.

304 CHAPTER 12 Building for the device and the App Store
Edit the active compilation scheme by clicking the project name and
choosing Edit Scheme.

Change Build Configuration to Release.

Choose Product > Archive. Xcode will build a
release version of your application, and it
should automatically open the Archives tab of the Organizer.
If not already selected, select the archive you just built and
click Validate. If your app validates without any errors—
drumroll please—click Submit.

Figure 12.25
Edit the compilation scheme.

Figure 12.26 Change Build Configuration to Release.

Congratulations! 305
Figure 12.27 Submit your app.

Now comes the hardest part of the process: waiting for approval.
Assuming all goes well, Apple should approve your app in under a
week.

Congratulations!
You’ve installed your app on your phone and distributed it to friends
and testers using ad-hoc distribution. You have an iTunes Connect
account, and you know how to place apps in the iTunes App Store. It
was a long haul, but you did it! You’re officially a full-fledged iOS
developer.

306 CHAPTER 12 Building for the device and the App Store

A
Online resources for
iOS app developers

Frameworks and libraries
Here is a list of useful iOS libraries to add functionality to your app:

❂ Cocos2d—www.cocos2d-iphone.org/. A framework for creating 2D games on iOS.
❂ Three20—http://three20.info/. Originally created for the Facebook app. A collection

of useful GUI controls.
❂ Tapku—https://github.com/devinross/tapkulibrary. A collection of useful compo-

nents, such as CoverFlow.
❂ ASIHTTPRequest—https://github.com/pokeb/asi-http-request. Makes interacting with

web servers much easier than the functionality included in Objective-C.
❂ ShareKit—http://getsharekit.com/. Provides ways of sharing with many more services

than are in iOS.
❂ Core Plot—http://code.google.com/p/core-plot/. Provides comprehensive support for

2D graphs.
❂ CrashKit—https://github.com/kaler/CrashKit. Lets you catch crashes and have the

user send a detailed report directly to your servers.

Design resources
These sites provide backgrounds, icons, and other inspiration for your app’s graphic
design:

❂ Nathan Barry’s 25 Free iOS Design Resources—http://nathanbarry.com/25-free-ios-
design-resources/. A comprehensive list of places to get icons, PSDs, game art, and
307

textures.

308 CHAPTER A Online resources for iOS app developers
❂ Dribbble’s iPhone feed—http://dribbble.com/tags/iphone. Dribbble is like Twitter for
designers. Go there to be inspired.

❂ 99 Designs—http://99Designs.com. Not free, but a good way to get a professional
icon on a budget. You sponsor a contest and award the prize to the designer whose
icon you want to use.

❂ The Noun Project—http://thenounproject.com/. A collection of free black-and-white
vector icons for a huge variety of situations. They aim to cover every noun.

App sketching
Sketching your app with these utilities will make your life a little easier:

❂ Keynote Kung-Fu—http://keynotekungfu.com/. iOS templates for Keynote.
❂ AppCooker—www.appcooker.com/. Full-featured app-mocking iPad app.
❂ iMockups—www.endloop.ca/imockups/. Another iPad app focused on mocking.

Somewhat less expensive than AppCooker.
❂ Balsamiq Mockups—www.balsamiq.com/. High-quality desktop and web-based

mockup software.
❂ Printable templates—http://mng.bz/URA4. If you want to use a pen and paper, these

printable templates from Speckyboy Design Magazine will make it easier.

Simulating, deployment, and other tools
The built-in support for simulating, deployment, and developing in Xcode is good
enough to start, but you’ll want to check out these tools as you do more:

❂ iSimulate—www.vimov.com/isimulate/. Use your iPhone to provide accelerometer,
GPS, and multitouch events to the simulator.

❂ Accelerometer-simulator—http://code.google.com/p/accelerometer-simulator/. Open
source solution for getting accelerometer events from the device to the simulator.

❂ TestFlight—https://testflightapp.com/. The easiest way to deploy apps to non-
developer beta testers. Makes ad-hoc deployment a breeze.

❂ UDID Sender—http://mng.bz/60yC. Free iOS app to send the UDID of a device
via email. Necessary for ad-hoc deployment to the device for testing.

❂ PonyDebugger—http://mng.bz/O1ej. Tool to see your app’s network traffic and
Core Data from your desktop browser.

 Index
Symbols
% (modulo operator) 77

Numerics
99 Designs 308

A
Accelerometer-simulator 308
actions

creating using assistant 54–56
declaring action messages 48
defined 48

ad hoc distribution 293–296
addMenu message 210
affine transform 207
All Variables option 277
allocating 36
Allocations window 283
animations

custom animations 114–117
flipping views 113–114
for images 188–190, 195–198
sliding views 110–112

annotation model for maps 236–238
App Store

creating application record 298–299
developer account for 5–6
reviewing guidelines for 296–298
selling apps in 5

AppCooker 308
ARC (Automated Reference Counting) 36,

49, 282
arguments 30
ASIHTTPRequest framework 307
assertions 271–272
assistant, creating actions and outlets

using 54–56
attributes 127–128
Attributes Inspector 104
Automated Reference Counting. See ARC

B
background images

changing 101–103
sizes for 102

Balsamiq Mockups 308
blue pins on map 240
bool type 44, 46
bottlenecks 279–282
bounds property 196
breakpoints

conditional breakpoints 277
setting 275

bugs
defined 267
introducing intentionally for

debugging 268–269
Bundle ID 301
309

submitting app 299–305 button views 25

310 INDEX
buttons
creating stretchable image for 104–105
for toolbars

adding 246–247
spacing evenly 247

using stretchable image for 106–109

C
Calculator app 25–27
Calendar app 28
call stack 280
Call Tree 281
camera

adding button for 231–232
displaying photo library on device

without 233
getting photo from 232–234

canPerformAction 213
CardResult class 123–124
carPhoto outlet 230, 235
CATransition class 111, 113
.cer files 289
CGFloat property 206
classes

creating 42–44
declaring action messages 48
declaring messages 44–48
defined 30
for gestures 198–199
for Parkinator app 220–221
headers for 34–35
modules for 34–35
properties for

overview 49–51
setting 56–58

reanaming 162–163
relationships for 31–34

CLLocationCoordinate2D property 228
Clock app 28
Cmd-R keyboard shortcut 197
Cocos2d framework 307
company name for developer account 299
compiler 9
compositing images 214–216
conditional breakpoints 277

console 269
Contacts app 28, 140
context menu 208–212
Continue button 275–276
controllers

defined 24
for Disguisey application 159–161
handling events in

FCCardViewController 90–93
overview 88–90
showing result in

FCResultViewController 93–96
coordinate property 236, 238
Core Data Framework

adding entities and attributes 127–128
adding to app 131–136
creating data model 126–127
generating data classes 130–131
relationships in 129

Core Graphics library 194
Core Plot framework 307
CoreLocation framework 224
CoverFlow 307
CPU usage 281
crashes 267
CrashKit framework 307
current location 226–229
custom animations 114–117

D
data models

creating using Core Data tool 126–127
for flashcard game 122–126
migrating between versions 153–154
versioning 153

databases
Core Data tool

adding Core Data Framework to
app 131–136

adding entities and attributes 127–128
creating data model 126–127
generating data classes 130–131
relationships in 129

data models
migrating between versions 153–154
Connections Inspector 52–53 versioning 153

INDEX 311
databases (continued)
fetching data

navigating to related data 149–152
viewing in table 140–149

flashcard game
data model for 122–126
deciding on data to store 120–121
saving game results 136–140
sketching app appearance 121–122

Date type 128
deallocating 36
debugging 9

assigning value to variable during 276
defined 267
with Xcode

setting breakpoints 275
setting conditional breakpoints 277
stepping through code 275–276
watching variables 276–277

without tools
introducing bugs intentionally 268–269
logging messages 269–271
using assertions 271–272
using dialog boxes 273–274

declaring messages
declaring action messages 48
overview 44–48

deploying apps
ad hoc distribution 293–296
distributing to testers 293–296
getting developer certificates 286–289
installing on device 293
provisioning device 289–293
resources for 308
to App Store

creating application record 298–299
reviewing guidelines for 296–298
submitting app 299–305

design resources 307–308
developer account 5–6
developer certificates 286–289
Development Provisioning Assistant 290
devices

installing apps on 293
provisioning 289–293

DIDisguise class 159, 173–177, 192, 204,
214

DIDisguiseElement class 159, 173–177,
192, 203

DIDisguiseViewController class 163
DIFaceImageView class 182
DIFaceViewController class 160, 169,

180, 182, 192, 202
DIFirstViewController class 162
DisguiseViewController class 160
Disguisey application

animating images in 188–190, 195–198
designing models, views, and controllers

for 159–161
DIDisguise class 173–177
DIDisguiseElement class 173–177
disguise views 170–171
displaying Save menu 212–214
face view 168–170
making images for tabs 167–168
modifying mustache in

animating 195–198
model changes for 190–193
necessary information for 193–195
overview 188–190

moving images in 188–190
overlaying images in 214–216
photos in

adding disguise elements to
photo 181–186

getting images from Photos
application 177–181

planning app behavior 157–159
reanaming classes 162–163
rotating images in 188–190
sketching app 156–157
storyboarding app in Interface

Builder 163–167
switching tabs in 171–173
touch gestures in

classes for 198–199
gesture recognizers 199–202
hold gesture to display context

menu 208–212
pan gesture 202–205
dialog boxes 273–274 pinch gesture 206–208

312 INDEX
Disguisey application (continued)
using Tabbed Application

template 161–162
distributing to testers 293–296
double type 44, 46
Dribbble’s iPhone feed 308

E
Editor menu 14
empty application 11
encryption in apps 303
@end statement 43
entities

defined 127
for data models 127–128

entitlements 295

F
Face View Controller 192, 207, 209, 211
Facebook 256
FaceImageView class 182
FCAnswerKey class 64, 78–79, 81
FCCard model class 63, 75
FCCardHistoryViewController class 151
FCCardViewController class 71–72,

85–87, 89–90, 93
FCGame class 81, 124
FCResultViewController class 73–74,

87–88, 93–96
FCViewController class 69, 88
fetching data

navigating to related data 149–152
viewing in table 140–149

first impression 299
flashcard game

connecting code to Interface Builder
connecting FCCardViewController

view 85–87
connecting FCResultViewController

view 87–88
overview 83–85

controller classes
handling events in

FCCardViewController 90–93
overview 88–90
showing result in

data model for 122–126
deciding on data to store 120–121
model classes

FCAnswerKey class 78–81
Game class 81–83
overview 74–78

overview 62–67
saving game results 136–140
sketching app appearance 121–122
view classes

declaring message for views to
send 69–70

FCResultViewController view 71–74
overview 67–69

Flexible Space Bar Button Item 247
flipping views 113–114

adding camera button 231–232
adding UIImageView 229–231
getting photo 232–234

flipsideViewControllerDidFinish
message 235, 239

for loops 282
forward declaration 183
forward slash (/) 254
frameworks

adding additional in Parkinator
app 223–224

resources for 307
freeSpaces array 262

G
Game class 81–83
GameResult class 123–124
gestures

classes for 198–199
gesture recognizers 199–202
hold gesture to display context

menu 208–212
pan gesture 202–205
pinch gesture 206–208
sequence of messages for 200

Globals option 277
GPS (Global Positioning System) 218,

308
graphic design resources 307–308
FCResultViewController 93–96 green pins on map 240

INDEX 313
Groceries app 98
guidelines for App Store 296–298

H
has-a relationship 31
headers

defined 34
for classes 34–35

heap 283
Hello, World! app, in Xcode 18–20
Help view for Parkinator app

creating 248–252
HTML resource for 252–255

helpView property 253
hidden property 57
hold gesture

defined 194
implementing 208–212

HTML resources, displaying in app
252–255

I
I Am Rich app 18
i icon 219–220, 225, 245
IBAction type 48, 55, 70, 250–251, 255,

257
icons, app

App Store and 298–299
changing 99–101
naming 100
sizes for 100

id type 48
IDE (Integrated Development

Environment) 9
Image attribute 168
images

animating 188–190, 195–198
application icon, changing 99–101
background image, changing 101–103
buttons

creating stretchable image for 104–105
using stretchable image for 106–109

compositing 214–216
for tabs, sizes for 167
getting from camera 232–234
modifying using touch gestures

gesture recognizers 199–202
hold gesture to display context

menu 208–212
pan gesture 202–205
pinch gesture 206–208

moving 188–190
overlaying 214–216
rotating 188–190
screenshots for apps 298–299

iMockups 308
implementation 34, 143
import statements 43, 109, 137, 226, 257
inheritance 32
init message 66, 77, 206, 238
inspectors 17
installing

iPhone SDK 7
on device 293

instruments 277
int type 44–45
Integer type 128
Integrated Development Environment.

See IDE
Interface Builder

connecting FCCardViewController
view 85–87

connecting FCResultViewController
view 87–88

in Xcode 16–18
overview 83–85
storyboarding app in 163–167

@interface statement 43, 162
interface, defined 34
internet

Twitter integration
iOS support for 256–257
parsing tweets 261–262
searching Twitter 259–261
sending tweets 257–258

using in Parkinator app
getting list of open spaces 244
tweeting empty parking spot 243–244
UIWebView to display pages 244–245
updating main view for 243

Invert Call Tree check box 280
iOS Dev Center 6, 286
classes for 198–199 iOS Developer Program 5, 286

314 INDEX
iOS Provisioning Portal 286, 290
.ipa files 296
iPhone SDK, installing 7
iPhone simulator, running 15–16
iPod app 28
is-a relationship 32
isAvailableForServiceType method 258
iSimulate 308
isinf() function 207
isnan() function 207
iSteam 4
iTunes Connect 299

J
Java 5
JSON (JavaScript Object Notation) 259

K
Keychain Access 287
Keynote Kung-Fu 308
keywords 298

L
latitude 243
 element 254
libraries 307
Local Variables option 277
location

displaying current 226–229
displaying locations in Map View

262–263
logging messages 269–271
longitude 243
loops, breakpoints in 277

M
Mail app 140
managed objects 133
MapKit framework 224
maps

adding pin to 239
annotating using photo 235–236
map annotation model 236–238
showing pin 239–240

memory leaks 282
memory usage 282–284

messages
declaring 44–48
declaring action messages 48

methods, breakpoints in 277
MKAnnotation delegate 236
MKMapView class 224–227, 245
models

defined 22
FCAnswerKey class 78–81
for Disguisey application 159–161
Game class 81–83
overview 74–78

model-view-controller. See MVC
modules

defined 34
for classes 34–35

modulo operator (%) 77
moving images 188–190
multiple view apps. See flashcard game
multitouch events 308
mustache, in Disguisey

animating 195–198
model changes for 190–193
modifying 188–190

MVC (model-view-controller)
Calculator app example 25–27
overview 22–24
testing knowledge on 27–29

N
Nathan Barry’s 25 Free iOS Design

Resources 307
Navigate menu 14
newDisguise message 201
NeXT 29
nonatomic option 50
NSArray class 261
NSAssert class 204, 272
NSDate type 44, 46, 138
NSDictionary class 261
NSEntityDescription class 143
NSFetchedResults class 141
NSFetchedResultsController class 142,

146
NSJSONSerialization class 261
NSLog class 269–271
menus in Xcode 13 NSManagedObject class 133

INDEX 315
NSMutableArray type 44, 46
NSObject class 75, 79, 81, 237
NSSortDescriptor class 143
NSString* type 44–46

O
Object Library 18
Objective-C

classes
creating 42–44
declaring action messages 48
declaring messages 44–48
properties for 49–51
setting properties 56–58

connecting code to views
creating outlets and actions using

assistant 54–56
overview 51–52
using Connections Inspector 52–53

object-oriented programming. See OOP
objects

context 132
defined 30
lifetime 35–38
model for 132

 element 254
onDeleteDisguise action 211
onDone message 250–251
onSaveFace message 214
OOP (object-oriented programming)

class relationships 31–34
classes in, headers and modules for

34–35
object lifetime 35–38
overview 29–31
testing knowledge on 38–39

optimizing applications
defined 267
finding bottlenecks 279–282
optimizing memory usage 282–284
profiling code 278–279

Option key 208
outlet property 50
outlets, creating using assistant 54–56
overlaying images 214–216

P
<p> element 254
page-based application 11
PAHelpViewController class 249
pan gesture

defined 202
implementing 202–205
recognizing 193

PAParkingSpot class 220, 236, 239
parameters 30
Parkinator app

adding frameworks for 223–224
app behavior 219–220
displaying current location 226–229
flipping view in

adding camera button 231–232
adding UIImageView 229–231
getting photo 232–234

Help view for
creating 248–252
HTML resource for 252–255

MkMapView 224–226
MVC classes 220–221
showing parking spot on map

adding pin to map 239
map annotation model 236–238
showing pin 239–240
using photo 235–236

sketching 219
toolbar in

adding buttons to 246–247
creating 245
spacing buttons in 247

Twitter integration
displaying locations in Map

View 262–263
getting list of open spaces 244
parsing tweets 261–262
searching Twitter 259–261
sending tweets 257–258
tweeting empty parking spot 243–244
UIWebView to display pages 244–245
updating main view for 243

Utility Application template 222–223
#Parkinator tag 243
overriding 32 parsing tweets 261–262

316 INDEX
performance, improving for apps
finding bottlenecks 279–282
optimizing memory usage 282–284
profiling code 278–279

persistent store coordinator 132
Phone app 28
photos

adding elements to photo 181–186
displaying library if device has no

camera 233
getting from camera 232–234
getting images from Photos

application 177–181
Photos app 28
pinch gesture

implementing 206–208
simulating 208

pins
adding to map 239
showing on map 239–240

PNG files 171, 298
PonyDebugger 308
pricing tiers 301
Printable templates 308
Product menu 14
professional look for apps 117–118
Profile window 278
profiler 9
profiling code 278–279
properties, for classes

overview 49–51
setting 56–58

@property statement 49
provisioning device 289–293
Python 5

Q
QuartzCore Framework 112

R
rating, app 302
reanaming classes 162–163
Registers option 277
relationships

for classes 31–34

Release build configuration 304
release message 36
resources

app sketching 308
deployment 308
frameworks 307
graphic design 307–308
libraries 307
simulators 308

result view 25
retain count 36
retain message 36
return statement 270
return value 30
Rolling Stone interview 29
rotating images 188–190
RSA encryption algorithm 288
Ruby 5

S
Save menu, Disguisey 212–214
scale for images 194
scale property 206
screenshots 298–299
searching Twitter 259–261
@selector statement 201, 211
self object 57, 202
sender parameter 48
sensors, debugging 273
shake event 211
ShareKit framework 307
Shift key 208
showHelp action 251
simulators

debugging sensors in 273
default location for 226
pinching in 208
resources for 308

Sina Weibo 256
single-view application 10
sketches 308
SKU number 301
SLComposeViewController class

class 256, 258
sliding views 110–112
in Core Data tool 129 SLServiceTypeFacebook class 258

INDEX 317
SLServiceTypeSinaWeibo class 258
SLServiceTypeTwitter class 258
Social framework 257
social networks

Facebook 256
Sina Weibo 256
SLServiceTypeFacebook class 258
SLServiceTypeSinaWeibo class 258
SLServiceTypeTwitter class 258
Social framework 257
Twitter integration

displaying locations in Map
View 262–263

getting list of open spaces 244
iOS support for 256–257
parsing tweets 261–262
searching Twitter 259–261
sending tweets 257–258
tweeting empty parking spot 243–244
UIWebView to display pages 244–245
updating main view for 243

Sophiestication 98
spacing toolbar buttons evenly 247
Speckyboy Design Magazine 308
spot property 239–240
SQL database 125
SQLite 132
startingAtPoint message 196
Statistics option 277
Step Into button 275–276
Step Out button 275–276
Step Over button 275–276
stepping through code 275–276
storyboarding apps 163–167
strong option 49
styling apps

animations
custom animations 114–117
flipping views 113–114
sliding views 110–112

application icon 99–101
background image 101–103
buttons

creating stretchable image for
104–105

using stretchable image for 106–109

subclass 32, 72
submitting apps to App Store 299–305
superclass 72
switching tabs 171–173

T
Tab Bar Controller 165
tab images 167
tab-based apps. See Disguisey application
Tabbed Application template 11, 161–162
tables, viewing data in 140–149
takeCarPhoto action 230, 232
Tapbots 98
Tapku framework 307
templates, application

overview 9–12
Tabbed Application template 161–162

testers, distributing apps to 293–296
TestFlight 308
text property 57
The Noun Project 308
Three20 framework 307
Time Profiler 279–280, 282
toolbars

adding buttons to 246–247
creating 245
spacing buttons in 247

touchesBegan message 201
transform property 207
translateByX declaration 204
translation 205
tweetLocation action 258
tweets 255
Twitter integration

displaying locations in Map View
262–263

getting list of open spaces 244
iOS support for 256–257
parsing tweets 261–262
searching Twitter 259–261
sending tweets 257–258
tweeting empty parking spot 243–244
UIWebView to display pages 244–245
updating main view for 243

TWTweetComposeViewController

importance of professional look 117–118 class 257

318 INDEX
U
UDID (Unique Device ID) 291, 293
UDID Sender 308
UIButton class 44
UIImage class 108, 194, 214
UIImagePickerController class 178, 180,

232
UIImageView class 169, 179, 196, 198,

229–230, 234–235
UILabel class 44
UILongPressGestureRecognizer class 199
UIMenuController class 209
UITableView class 227
UITableViewCell class 146
UITableViewController class 140
UITapGestureRecognizer class 199
UIView class 114
UIViewController class 43, 71, 248
UIWebView class 244–245, 248, 250, 252
Unique Device ID. See UDID
updatePins action 263
Use Automatic Reference Counting

option 12
user interface, for Xcode 12–13
uses-a relationship 31
utility application 11
Utility Application template 222–223

V
variables

assigning value to when debugging 276
watching when debugging 276–277

Variables View 276
version, app 302
versioning for data models 153
ViewController views 164
viewDidLoad message 213, 253
views

connecting code to
creating outlets and actions using

assistant 54–56
overview 51–52
using Connections Inspector 52–53

declaring message to send 69–70
defined 23
FCResultViewController view 71–74
flipping animation 113–114

adding camera button 231–232
adding UIImageView 229–231
getting photo 232–234

for Disguisey application 159–161
overview 67–69
sliding animation 110–112

viewToDelete property 210
void type 44, 46

W
weak option 49
Weather app 28
web pages, displaying using

UIWebView 244–245
Weightbot app 98
WWDR Intermediate Certificate 286

X
x position 193
Xcode

application templates 9–12
debugging with

setting breakpoints 275
setting conditional breakpoints 277
stepping through code 275–276
watching variables 276–277

Hello, World! app 18–20
Interface Builder in 16–18
menus in 13
overview 9
running iPhone simulator 15–16
user interface for 12–13

xDiff property 193
Xerox 29
XIB files 68

Y
y position 193
yDiff property 193

	iOS Development
	Brief contents
	Contents
	Preface
	Acknowledgments
	About this book
	How this book is organized
	What you'll need
	Code conventions and downloads
	Author Online
	About the authors

	About Hello! books
	Part 1 Hello! iPhone
	1 Hello! iPhone
	Turning your Mac into an iPhone app factory
	Installing the iPhone SDK

	Running Xcode for the first time
	Using application templates
	Learning Xcode’s user interface
	Looking at Xcode’s menus
	Running Xcode’s iPhone simulator

	Introducing Interface Builder
	Making Hello, World!
	Editing, building, and running

	2 Thinking like an iPhone developer
	Using model-view-controller to dissect apps
	Thinking about apps as models, views, and controllers
	Test yourself on models, views, and controllers

	Designing apps with objects
	Establishing class relationships
	Organizing classes in headers and modules

	Avoiding crashes by understanding object lifetime
	Applying object-oriented design
	Preparing to code object-oriented designs

	3 Coding in Objective-C
	Creating classes to match your designs
	Declaring a message
	Declaring a view-controller message for your views to send
	Using properties to save data in objects

	Connecting code to views in Interface Builder
	Using the Connections Inspector in Interface Builder
	Creating outlets and actions using the assistant

	Defining the action message

	Part 2 iPhone applications: step by step
	4 Writing an app with multiple views
	Designing a flashcard application
	Creating classes to match your designs
	Declaring a view-controller message for your views to send
	Creating your other views and controllers

	Creating the model classes
	Implementing FCAnswerKey
	The FCGame class

	Connecting code to Interface Builder
	Connecting the FCCardViewController view
	Connecting the FCResultViewController view

	Orchestrating your app with controllers
	Handling card events in the FCCardViewController
	Showing the result in the FCResultViewController

	Reflecting on your progress

	5 Polishing your app
	Setting up your application’s images
	Replacing the default application icon
	Making your application seem to load faster

	Using images for buttons
	Preparing a stretchable image
	Using a stretchable image for a button

	Adding animation
	Sliding views instead of instantly switching
	Flipping a view to show its back
	Using custom animations

	Making your apps look professional with graphic design

	6 Working with databases and table views
	Keeping track of data in the FlashCards app
	Deciding what to store
	Sketching how the app will look
	Designing new models

	Introducing Core Data
	Creating a data model
	Adding entities and attributes
	Using relationships
	Generating data classes
	Adding Core Data support to your app
	Saving your game results

	Fetching and viewing data
	Viewing in a table
	Navigating to related data

	Changing your data model
	Versioning your data model
	Migrating between versions

	Planning for what’s next

	7 Creating a photo-based application
	Designing the application
	Sketching Disguisey
	Defining the behavior of your application
	Designing your application’s models, views, and controllers

	Creating an app with tab-based navigation
	Renaming classes with the refactoring tool
	Storyboarding your app in Interface Builder
	Making images for the tabs
	Making the face view
	Making the disguise views
	Changing tabs with code

	Incorporating models
	Coding DIDisguise and DIDisguiseElement

	Working with photos
	Getting images from the Photos application
	Adding disguise elements to the photo

	Wrapping it up, and what’s next

	8 Moving, rotating, editing, and animating images
	Improving Disguisey
	Sketching your new ideas
	Updating models for the new features
	Thinking about what you don’t know

	Using animation to make disguises grow
	Visualizing the animation
	Coding the animation

	Recognizing touch gestures
	Picking the right gesture
	Attaching gesture recognizers
	Moving a disguise into place
	Pinching the DIDisguise to resize it
	Using a menu to remove parts of a disguise

	Saving the disguised face
	Displaying a Save menu
	Overlaying one image onto another

	Moving on from Disguisey

	9 Working with location and maps
	Designing a map application
	Sketching Parkinator
	Looking at how it works
	Designing the models, views, and controllers

	Creating an app with a map
	Using the Utility Application template
	Adding the proper frameworks to your app
	Placing an MkMapView on the main view
	Showing the current location

	Flipping the view to take a picture
	Adding a UIImageView
	Adding a camera button
	Getting a photo

	Showing the parking spot on the map
	Using the flipped view’s image
	Creating a map annotation model
	Adding the pin to the map
	Showing the pin

	Making the data in Parkinator useful to others

	10 Accessing the internet
	Overview of an internet-enabled Parkinator
	Updating the main view
	Tweeting an empty parking spot
	Getting a list of open spaces
	Using HTML for Help

	Adding buttons on a toolbar
	Creating a toolbar
	Adding buttons for send, search, and help
	Improving the toolbar layout

	Using web views in your app
	Making the Help view
	Setting up the Help view
	Making an HTML resource

	Integrating with Twitter
	Looking at iOS support for Twitter
	Composing and sending a tweet
	Searching Twitter
	Parsing individual tweets
	Displaying locations in the Map View

	What’s next

	Part 3 Going from Xcode to the App Store
	11 Debugging and optimizing your application
	Debugging without tools
	Intentionally introducing a bug
	Logging messages
	Using assertions
	Popping up dialogs

	Debugging with Xcode
	Setting breakpoints
	Stepping through code
	Watching variables
	Breaking when something happens

	Speeding up your app
	Profiling your code
	Finding bottlenecks
	Optimizing memory usage

	What’s next

	12 Building for the device and the App Store
	Running your app on a device
	Getting developer certificates
	Provisioning your device
	Installing your program
	Distributing to testers who don’t have Xcode

	Submitting your app to the App Store
	Making sure everything is in order
	Creating your App Store application record
	Submitting your app to the App Store

	Congratulations!

	Appendix Online resources for iOS app developers
	Frameworks and libraries
	Design resources
	App sketching
	Simulating, deployment, and other tools

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	iOS-back

