
www.allitebooks.com

http://www.allitebooks.org

HP Vertica Essentials

Learn how to deploy, administer, and manage
HP Vertica, one of the most robust
MPP solutions around

Rishabh Agrawal

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

HP Vertica Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2014

Production Reference: 1080514

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-156-0

www.packtpub.com

Cover Image by Paul Steven (mediakitchenuk@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Rishabh Agrawal

Reviewers
Mr. Yagna Narayana Dande

Nishant Garg

Stephan Holler

Pranabesh Sarkar

Commissioning Editor
Kevin Colaco

Acquisition Editor
Kevin Colaco

Content Development Editors
Amey Varangaonkar

Chalini Victor

Technical Editors
Ankita Jha

Dennis John

Neha Mankare

Copy Editors
Karuna Narayanan

Adithi Shetty

Laxmi Subramanian

Project Coordinator
Melita Lobo

Proofreader
Paul Hindle

Graphics
Disha Haria

Indexers
Mehreen Deshmukh

Monica Ajmera Mehta

Priya Subramani

Production Coordinator
Sushma Redkar

Cover Work
Sushma Redkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Rishabh Agrawal is currently working as a senior database research engineer and
consultant at Impetus India. He has been tinkering with databases since 2010 and
has gained expertise in a variety of NoSQL, massively parallel processing (MPP),
and relational databases in the Big Data domain in a short span of time. A MongoDB
Certified DBA, he has working knowledge of more than 20 databases, namely
Cassandra, Oracle NoSQL, FoundationDB, Riak, Gemfire, Gemfire XD, HBase, Hive,
Shark, HP Vertica, Greenplum, SQL Server 2008 R2, and so on. His primary focus
areas are research and evaluation of new and cutting-edge database technologies
and consulting with clients on the strategic use of diverse database technologies.

When not at work, he revels in photographing vivid subjects, playing
badminton, writing poems, and dancing. You can connect with him on
LinkedIn at in.linkedin.com/pub/rishabh-agrawal/15/ab4/186.

I would like to acknowledge Impetus (India) that provided me
valuable time and resources for creation and completion of this
book. I would also like to thank my reviewers and editors
(from Packt Publishing) for making sure that this book comes
closest to perfect. Last but not least, I will eternally remain
indebted to my parents for keeping me inspired and being a
pillar of strength in my life.

www.allitebooks.com

in.linkedin.com/pub/rishabh-agrawal/15/ab4/186
http://www.allitebooks.org

About the Reviewers

Mr. Yagna Narayana Dande is currently working as a Lead QA Engineer at
Collective Media. He has been involved in large-scale testing projects for several
years and has exposure to top technologies for both automated and manual testing
in functional and non-functional testing. He has worked with both well-established
MNCs and startups.

"Software testing is a passion" is the motto that drives his career.

He is mentioned in an acknowledgement in the book TestNG Beginner's Guide by
Packt Publishing for his great contribution towards reviewing the book.

He has contributed to many fields such as server provisioning, ad serving, and
Big Data, including Hadoop and distributed filesystems. He writes interesting test
domain articles on his blog—http://qabypassion.blogspot.com. You are welcome
to contact him for questions regarding testing at yagna.bitspilani@gmail.com.

I thank my parents, Venkata Reddiah and Padmavathi, for their
constant support.

www.allitebooks.com

http://www.allitebooks.org

Nishant Garg has more than 13 years of software architecture and development
experience in various technologies, such as Java, Java Enterprise Edition, SOA,
Spring, Hibernate, Hadoop, and Hive; NoSQL databases such as MongoDB,
CouchDB, Flume, Sqoop, Oozie, Spark, and Shark; and MPP databases such as
GreenPlum, Vertica, Kafka, Storm, Mahout, and Solr/Lucene.

He received his MS in Software Systems from Birla Institute of Technology and
Science, Pilani, India, and currently works as a Technical Architect in Big Data
R&D Group within Impetus Infotech Pvt. Ltd.

Nishant has also previously worked with some of the most recognizable names in
IT services and financial industries, employing full software life cycle methodologies
such as Agile and Scrum. He has undertaken many speaking engagements on Big
Data technologies and is also the author of the book Apache Kafka, Packt Publishing.

Stephan Holler currently serves as the Regional Sales Manager for Vertica,
HP's answer to enterprise's Big Data. He is responsible for overlooking all sales
activities in the DACH region.

Prior to that, he worked as an Enterprise Account Manager (Sales) in HP Networking.
His responsibility was to drive business in networking hardware. In fiscal years 2011
and 2012, he successfully served more than 150 commercial accounts in Germany.

In his former role, he acted as a senior business development consultant overseeing
all business activities for the Microsoft Solutions Practice in Germany. His duties
were generating revenue for Microsoft's services portfolio, starting from SharePoint
to Dynamics CRM solutions.

Back in 2007/2008, he was appointed as the leader for the B2C Backend Integration
unit within the e-commerce practice EMEA. His responsibilities ranged from team
management to generating new business for a large German retailer.

He began his career with EDS (now HP) in 1998 and progressed through multiple
assignments ranging from project manager to various roles in delivery and
consulting, and has much client-facing experience in retail, telecommunication,
and manufacturing, amongst others. This progressed to leadership roles including
portfolio management in EMEA, where he was responsible for enabling sales teams
to sell a portfolio-driven approach.

Having helped clients in numerous industries, he has a deep understanding of
how information technology can be applied to support client business objectives.
His unique experience across the sales and delivery life cycle enables the effective
creation of solutions to support client demand for better business outcomes.

www.allitebooks.com

http://www.allitebooks.org

Pranabesh Sarkar is a technology evangelist on database technologies. He has
extensive experience in the IT industry in many facets of data processing and
database systems implementation and development, including analysis and design,
database administration and development, and performance tuning. He has worked
extensively on many database technologies across multiple platforms and possesses
expansive knowledge on RDBMS (Oracle, MySQL, and PostgreSQL), MPP databases
(Greenplum, Vertica, and Stado), NoSQL database systems (Cassandra, MongoDB,
and HBASE), and Big Data technologies including Hadoop/Hive, Shark, Spark, and
so on.

In his current assignment, he leads a competency center for emerging database
technologies with a primary focus on building expertise on NewSQL/NoSQL
databases and MPP database systems. He places core emphasis on helping
enterprises integrate various database solutions for their data processing
requirements and provides guidance on their Big Data journey.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Dedicated to maa and papa

 – Rishabh Agrawal

Table of Contents
Preface 1
Chapter 1: Installing Vertica 5

Understanding the preinstallation steps 6
Swap space 6
Dynamic CPU frequency scaling 6
Understanding disk space requirements 7

Steps to install Vertica 7
Summary 16

Chapter 2: Cluster Management 17
Comprehending the elastic cluster scaling factor 17

Enabling and disabling an elastic cluster 18
Viewing and setting the scaling factor settings 19
Enabling and disabling local segmentation 19
Understanding the best practices in cluster management 21
Monitoring elastic cluster rebalancing 21

Adding nodes in Vertica 21
Method 22

Using the Management Console to add nodes 22
Adding nodes using administration tools 22

Removing nodes in Vertica 23
Lowering the K-safety level 23
Removing nodes using administration tools 23
Removing nodes using the Management Console 24
Removing hosts from a cluster 24

Replacing nodes 25
Replacing a node using the same name and IP address 25
Replacing a failed node using a different name and IP address 26
Redistributing configuration files to nodes 27

Table of Contents

[ii]

Using administration tools to replace nodes with different names
and IP addresses 27

Changing the IP addresses of a Vertica cluster 29
Summary 32

Chapter 3: Monitoring Vertica 33
Monitoring through the system tables 33

Understanding a system table example 35
Looking at events 36

Looking at events through logfiles 37
Looking at events through the ACTIVE_EVENTS system table 38

Monitoring Vertica through the Management Console 40
Retaining monitoring information 40

Enabling and disabling Data Collector 40
Viewing the current data retention policy 40
Configuring data retention policies 41

Monitoring data collection components 41
Summary 43

Chapter 4: Backup and Restore 45
Requirements for backup hosts 45
Generating the vbr.py configuration file 45

Miscellaneous settings 46
Database access settings 47
Data transmission during the backup process 48
Mapping 48

Creating full and incremental backups 49
Understanding the requirements 49
Running vbr.py 49
Incremental snapshots 50
Creating schema and table snapshots 50

Restoring full database snapshots 50
Restoring from a specific snapshot 51
Restoring from the most recent snapshot 51
Restoring schema and table snapshots 51
Copying a database from one cluster to another 52

Copying the database 53
Using database snapshot functions 53

Creating database snapshots 54
Removing snapshots 57

Summary 58

Table of Contents

[iii]

Chapter 5: Performance Improvement 59
Understanding projections 59

Looking into high availability and recovery 60
Comprehending unsegmented projections 61
Comprehending segmented projections 62

Creating projections using Database Designer 62
The comprehensive design 65
The query-specific design 65

Creating projections manually 67
Column list and encoding 68
The base query 68
The sort order 68
Segmentation 68
Keeping K-safety (K-Safe) in mind 69

Understanding the storage model in Vertica 70
Tuple Mover operations 71

Moveout 71
Mergeout 72
Tuning Tuple Mover 72

Adding storage locations 73
Adding a new location 74
Measuring location performance 74
Setting location performance 75
Understanding storage location tweaking functions 75

Summary 76
Chapter 6: Bulk Loading 77

Using the COPY command 77
Aborting the COPY command 79

Load methods 79
Data transformation 80
Summary 80

Index 81

Preface
Column-oriented databases have emerged as one of the leading solutions for
performing analytics on a huge amount of data. Vertica, recently acquired by Hewlett
Packard (HP), is one of the flag bearers in the field of distributed-column-oriented
databases. Vertica can be easily classified as a Massively Parallel Processing (MPP)
database, which allows to you process queries concurrently on a large number of
databases. Vertica's distributed architecture not only allows fast query processing,
but also a highly fault tolerant architecture. With innovative features such as
projections, a replacement for indexes, and views, Vertica has emerged as one
of the most sought after relational analytical database solutions.

With more and more clients pressing for Vertica as a solution, we are glad to present
a small admin book on Vertica, which will empower DBAs to learn and perform the
most essential administration activities on Vertica.

This book has been especially written for Vertica 6.0 (and later). It is assumed that
you are a little familiar with the Vertica database. Our references for this book were
our experiences with Vertica, the Vertica administration guide, and the Vertica
forums. Since this book is just a snapshot of the day-to-day administration activities
of Vertica, it is highly advised to look into the official Vertica guides for more
information and other administration tasks.

What this book covers
Chapter 1, Installing Vertica, explains how to install Vertica.

Chapter 2, Cluster Management, helps you to learn how to manage a running
Vertica cluster.

Chapter 3, Monitoring Vertica, elucidates different methods of monitoring various
aspects of a Vertica cluster.

Preface

[2]

Chapter 4, Backup and Restore, explains how to create backups of a database and
restore them.

Chapter 5, Performance Improvement, helps you learn some tricks of the trade to
achieve good performance in Vertica.

Chapter 6, Bulk Loading, illustrates the working of the bulk loading utility of Vertica.

What you need for this book
You just need a running Vertica cluster. If you don't have one, then Chapter 1, Installing
Vertica, will explain how to create one of your own.

Who this book is for
This book is intended for Vertica users and DBAs who want to perform basic
administration and fine tuning. Prior knowledge of Vertica will help in understanding
the chapters better, but is not mandatory.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Now log in as root or use the
sudo command."

Any command-line input or output is written as follows:

/opt/vertica/bin/adminTools

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Now, to create a database, navigate to Main Menu | Configuration Menu
| Create Database."

Preface

[3]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Installing Vertica
Massively Parallel Processing (MPP) databases are those which partition
(and optionally replicate) data into multiple nodes. All meta-information
regarding data distribution is stored in master nodes. When a query is issued,
it is parsed and a suitable query plan is developed as per the meta-information
and executed on relevant nodes (nodes that store related user data). HP offers one
such MPP database called Vertica to solve pertinent issues of Big Data analytics.

Vertica differentiates itself from other MPP databases in many ways. The following
are some of the key points:

• Column-oriented architecture: Unlike traditional databases that store data
in a row-oriented format, Vertica stores its data in columnar fashion. This
allows a great level of compression on data, thus freeing up a lot of disk
space. (More on this is covered in Chapter 5, Performance Improvement.)

• Design tools: Vertica offers automated design tools that help in arranging your
data more effectively and efficiently. The changes recommended by the tool
not only ease pressure on the designer, but also help in achieving seamless
performance. (More on this is covered in Chapter 5, Performance Improvement.)

• Low hardware costs: Vertica allows you to easily scale up your cluster
using just commodity servers, thus reducing hardware-related costs to
a certain extent.

This chapter will guide you through the installation and creation of a Vertica cluster.
This chapter will also cover the installation of Vertica Management Control, which is
shipped with the Vertica Enterprise edition only. It should be noted that it is possible
to upgrade Vertica to a higher version but vice versa is not possible.

Installing Vertica

[6]

Before installing Vertica, you should bear in mind the following points:

• Only one database instance can be run per cluster of Vertica. So, if you
have a three-node cluster, then all three nodes will be dedicated to one
single database.

• Only one instance of Vertica is allowed to run per node/host.
• Each node requires at least 1 GB of RAM.
• Vertica can be deployed on Linux only and has the following requirements:

 ° Only the root user or the user with all privileges (sudo) can run the
install_vertica script. This script is very crucial for installation
and will be used at many places.

 ° Only ext3/ext4 filesystems are supported by Vertica.
 ° Verify whether rsync is installed.
 ° The time should be synchronized in all nodes/servers of a Vertica

cluster; hence, it is good to check whether NTP daemon is running.

Understanding the preinstallation steps
Vertica has various preinstallation steps that are needed to be performed for
the smooth running of Vertica. Some of the important ones are covered here.

Swap space
Swap space is the space on the physical disk that is used when primary memory
(RAM) is full. Although swap space is used in sync with RAM, it is not a
replacement for RAM. It is suggested to have 2 GB of swap space available
for Vertica. Additionally, Vertica performs well when swap-space-related files
and Vertica data files are configured to store on different physical disks.

Dynamic CPU frequency scaling
Dynamic CPU frequency scaling, or CPU throttling, is where the system automatically
adjusts the frequency of the microprocessor dynamically. The clear advantage of this
technique is that it conserves energy and reduces the heat generated. It is believed
that CPU frequency scaling reduces the number of instructions a processor can issue.
Additional theories state that when frequency scaling is enabled, the CPU doesn't
come to full throttle promptly. Hence, it is best that dynamic CPU frequency scaling
is disabled. CPU frequency scaling can be disabled from Basic Input/Output System
(BIOS). Please note that different hardware might have different settings to disable
CPU frequency scaling.

Chapter 1

[7]

Understanding disk space requirements
It is suggested to keep a buffer of 20-30 percent of disk space per node. Vertica uses
buffer space to store temporary data, which is data coming from the merge out
operations, hash joins, and sorts, and data arising from managing nodes in the cluster.

Steps to install Vertica
Installing Vertica is fairly simple. With the following steps, we will try to understand
a two-node cluster:

1. Download the Vertica installation package from http://my.vertica.com/
according to the Linux OS that you are going to use.

2. Now log in as root or use the sudo command.
3. After downloading the installation package, install the package using

the standard command:
 ° For .rpm (CentOS/RedHat) packages, the command will be:

 rpm -Uvh vertica-x.x.x-x.x.rpm

 ° For .deb (Ubuntu) packages, the command will be:

 dpkg -i vertica-x.x.x-x.x.deb

Refer to the following screenshot for more details:

Running the Vertica package

Installing Vertica

[8]

4. In the previous step, we installed the package on only one machine. Note
that Vertica is installed under /opt/vertica. Now, we will set up Vertica on
other nodes as well. For that, run the following command on the same node:
/opt/vertica/sbin/install_vertica -s host_list -r rpm_package
-u dba_username

Here, –s is the hostname/IP of all the nodes of the cluster, including the one
on which Vertica is already installed. –r is the path of the Vertica package
and –u is the username that we wish to create for working on Vertica. This
user has sudo privileges. If prompted, provide a password for the new user.
If we do not specify any username, then Vertica creates dbadmin as the user,
as shown in the following example:

[impetus@centos64a setups]$ sudo /opt/vertica/sbin/install_vertica
-s
192.168.56.101,192.168.56.101,192.168.56.102 -r
"/ilabs/setups/vertica-6.1.3-0.x86_64.RHEL5.rpm" -u dbadmin

Vertica Analytic Database 6.1.3-0 Installation Tool

Upgrading admintools meta data format..

scanning /opt/vertica/config/users

Starting installation tasks...

Getting system information for cluster (this may take a while)....

Enter password for impetus@192.168.56.102 (2 attempts left):

backing up admintools.conf on 192.168.56.101

Default shell on nodes:

192.168.56.101 /bin/bash

192.168.56.102 /bin/bash

Installing rpm on 1 hosts....

installing node.... 192.168.56.102

NTP service not synchronized on the hosts: ['192.168.56.101',
'192.168.56.102']

Check your NTP configuration for valid NTP servers.

Chapter 1

[9]

Vertica recommends that you keep the system clock synchronized
using
NTP or some other time synchronization mechanism to keep all hosts
synchronized. Time variances can cause (inconsistent) query
results
when using Date/Time Functions. For instructions, see:

 * http://kbase.redhat.com/faq/FAQ_43_755.shtm

 * http://kbase.redhat.com/faq/FAQ_43_2790.shtm

Info: the package 'pstack' is useful during troubleshooting.
Vertica
recommends this package is installed.

Checking/fixing OS parameters.....

Setting vm.min_free_kbytes to 37872 ...

Info! The maximum number of open file descriptors is less than
65536

Setting open filehandle limit to 65536 ...

Info! The session setting of pam_limits.so is not set
in /etc/pam.d/su

Setting session of pam_limits.so in /etc/pam.d/su ...

Detected cpufreq module loaded on 192.168.56.101

Detected cpufreq module loaded on 192.168.56.102

CPU frequency scaling is enabled. This may adversely affect
the performance of your database.

Vertica recommends that cpu frequency scaling be turned off or set
to
'performance'

Creating/Checking Vertica DBA group

Creating/Checking Vertica DBA user

Password for dbadmin:

Installing/Repairing SSH keys for dbadmin

Creating Vertica Data Directory...

Testing N-way network test. (this may take a while)

Installing Vertica

[10]

 All hosts are available ...

Verifying system requirements on cluster.

 IP configuration ...

 IP configuration ...

Testing hosts (1 of 2)....

Running Consistency Tests

 LANG and TZ environment variables ...

Running Network Connectivity and Throughput Tests...

Waiting for 1 of 2 sites... ...

 Test of host 192.168.56.101 (ok)

====================================

 Enough RAM per CPUs (ok)

 Test of host 192.168.56.102 (ok)

====================================

 Enough RAM per CPUs (FAILED)

 Vertica requires at least 1 GB per CPU (you have 0.71 GB/CPU)

 See the Vertica Installation Guide for more information.

 Consistency Test (ok)

=========================

 Info: The $TZ environment variable is not set on 192.168.56.101

 Info: The $TZ environment variable is not set on 192.168.56.102

Updating spread configuration...

Verifying spread configuration on whole cluster.

Chapter 1

[11]

Creating node node0001 definition for host 192.168.56.101

... Done

Creating node node0002 definition for host 192.168.56.102

... Done

Error Monitor 0 errors 4 warnings

Installation completed with warnings.

Installation complete.

To create a database:

1. Logout and login as dbadmin.**

2. Run /opt/vertica/bin/adminTools as dbadmin

3. Select Create Database from the Configuration Menu

** The installation modified the group privileges for dbadmin.

 If you used sudo to install vertica as dbadmin, you will

 need to logout and login again before the privileges
are applied.

5. After we have installed Vertica on all the desired nodes, it is time to create
a database. Log in as a new user (dbadmin in default scenarios) and connect
to the admin panel. For that, we have to run the following command:
/opt/vertica/bin/adminTools

6. If you are connecting to admin tools for the first time, you will be prompted
for a license key. If you have the license file, then enter its path; if you want
to use the community edition, then just click on OK.

License key prompt

Installing Vertica

[12]

7. After the previous step, you will be asked to review and accept the
End-user License Agreement (EULA).

Prompt for EULA

After reviewing and accepting the EULA, you will be presented with
the main menu of the admin tools of Vertica.

Admin tools main menu

Chapter 1

[13]

8. Now, to create a database, navigate to Administration Tools | Configuration
Menu | Create Database.

The Create Database option in the configuration menu

9. Now, you will be asked to enter a database name and a comment that you
would like to associate with the database.

Database name and comments

www.allitebooks.com

http://www.allitebooks.org

Installing Vertica

[14]

10. After entering the name and comment, you will be prompted to enter
a password for this database.

Password for the new database

11. After entering and re-entering (for confirmation) the password, you need
to provide pathnames where the files related to user data and catalog data
will be stored.

Catalog and data pathnames

Chapter 1

[15]

After providing all the necessary information related to the database, you
will be asked to select hosts on which the database needs to be deployed.
Once all the desired hosts are selected, Vertica will ask for one final check.

Final confirmation for database creation

12. Now, Vertica will create and deploy the database.

Database creation

13. Once the database is created, we can connect to it using the VSQL tool
or perform admin tasks.

Installing Vertica

[16]

Summary
As you can see, Vertica installation is simple. You can perform further checks by
creating sample tables and performing basic CRUD operations.

For a clean installation, it is recommended to serve all the minimum requirements of
Vertica. It should be noted that installation of client API(s) and Vertica Management
Console needs to be done separately and is not included in the basic package.

In the next chapter, you will learn some tricks relating to cluster management.

Cluster Management
Vertica provides quite an elastic cluster, which can be scaled both up
(adding new nodes) and down (removing nodes) without affecting the processes
of the running database. The most important task after alteration in a cluster is the
rebalancing of data across new as well as old nodes. This is done to ensure that the
data remains K-Safe. Please refer to Chapter 5, Performance Improvement, for more
information on K-Safe.

Projections are divided into segments, which are small portions of data. After adding
a new node, some segments are given to it, while the other segments are exchanged
to ensure proper K-safety. During the process of node removal from a cluster, all
of the storage containers, which are residing at the node that is being removed, are
moved to other existing nodes in the cluster. This method of partitioning data into
movable segments turns a Vertica cluster into an elastic cluster.

Comprehending the elastic cluster
scaling factor
Each node in the cluster stores local segments of data. The number of local segments
in a node is known as the scaling factor. As discussed earlier, to perform effective
rebalancing when nodes are removed or added, local segments from each of
the nodes redistribute themselves in the cluster in order to maintain even data
distribution across the cluster.

Cluster Management

[18]

The MAXIMUM_SKEW_PERCENT parameter plays a crucial role when the number of
segments cannot be evenly divided by the number of nodes in a new cluster. For
example, if the scaling factor is 4 and there are initially 4 nodes, there will be 16
(4 x 4) segments in the whole cluster. Suppose one additional node is added to the
cluster; then, it is not possible to evenly distribute 16 segments among 5 nodes.
Hence, Vertica will assign more segments to some nodes as compared to others.
So, one possible combination can be 4 nodes get 3 segments each and 1 node gets
4 segments. This skew is around 33.33 percent. Vertica will make sure that it remains
below the set MAXIMUM_SKEW_PERCENT parameter. If Vertica is not able to redistribute
segments because of the MAXIMUM_SKEW_PERCENT limit, the data-rebalancing process
will not fail. However, the segmentation space will be evenly distributed among the
5 nodes, and new segments will be created on each node, making the total 20, that is,
4 segments on each node.

Enabling and disabling an elastic cluster
We can query the ELASTIC_CLUSTER system table to determine if an elastic cluster
is enabled on the database or not, that is, to determine if segmentation is on or off.
Run the following query to check if an elastic cluster is enabled or not:

=> select is_enabled from ELASTIC_CLUSTER;

is_enabled

t

(1 row)

To enable an elastic cluster, we can run the following command:

=> SELECT ENABLE_ELASTIC_CLUSTER();

ENABLE_ELASTIC_CLUSTER

ENABLED

(1 row)

To disable an elastic cluster, we can run the following command:

=> SELECT DISABLE_ELASTIC_CLUSTER();

DISABLE_ELASTIC_CLUSTER

DISABLED

(1 row)

Chapter 2

[19]

Viewing and setting the scaling factor settings
To view the scaling factor, we can query the ELASTIC_CLUSTER table
(4 is the default). Run the following query to find out the scaling factor:

=> SELECT scaling_factor FROM ELASTIC_CLUSTER;

scaling_factor

4

(1 row)

We can use the SET_SCALING_FACTOR function to change a database's scaling factor.
The scaling factor can be any integer between 1 and 32. It should be taken into
account that a very high value of the scaling factor may lead to the nodes creating
too many small container files, eventually causing too many ROS container errors.
These errors are also known as ROS pushback (refer to Chapter 5, Performance
Improvement to learn more about ROS). The following command is an example
of using SET_SCALING_FACTOR:

=> SELECT SET_SCALING_FACTOR(5);

SET_SCALING_FACTOR

SET

(1 row)

=> SELECT scaling_factor FROM ELASTIC_CLUSTER;

scaling_factor

5

(1 row)

Enabling and disabling local segmentation
Just setting the scaling factor and enabling the elastic cluster will make Vertica
create local segments during the rebalancing stage only. It is advisable for
production deployments to keep local segments ready beforehand. For this,
we can enable and disable local segmentation, which tells Vertica to always
segment its old as well as new data.

Cluster Management

[20]

To enable local segmentation, we can use the ENABLE_LOCAL_SEGMENTS function
as follows:

=> SELECT ENABLE_LOCAL_SEGMENTS();

ENABLE_LOCAL_SEGMENTS

ENABLED

(1 row)

To check the status of local segmentation, we can query the ELASTIC_CLUSTER
system table in the following fashion:

=> SELECT is_local_segment_enabled FROM elastic_cluster;

is_enabled

t

(1 row)

To disable local segmentation, we can use the DISABLE_LOCAL_SEGMENTATION
function as follows:

=> SELECT DISABLE_LOCAL_SEGMENTS();

DISABLE_LOCAL_SEGMENTS

DISABLED

(1 row)

To check the status of local segmentation, we can query the elastic_cluster
system table in the following fashion:

=> SELECT is_local_segment_enabled FROM elastic_cluster;

is_enabled

f

(1 row)

Chapter 2

[21]

Understanding the best practices in cluster
management
The following are some of the best practices for local segmentation:

• It only makes sense to keep local segments when we are actually planning to
scale the cluster up or down

• It is highly recommended that backups of the database(s) are created before
the start of the scaling process

• It is not advisable to create segments if our database tables contain a high
number of partitions (more than 75)

Monitoring elastic cluster rebalancing
From Vertica 6.0 onwards, system tables can be used to monitor the rebalance status
of an elastic cluster. There are two tables that can be employed. They are as follows:

REBALANCE_TABLE_STATUS
REBALANCE_PROJECTION_STATUS

In each table, separated_percent and transferred_percent can be used to
determine the overall progress.

Adding nodes in Vertica
Before adding nodes, it is very important that we create a full backup of the
database, as adding nodes in Vertica is a sensitive process. To add a new node,
we will be using the update_vertica script. However, before adding a node to
an existing cluster, the following are certain restrictions and prerequisites that
have to be kept in mind:

• Make sure that the database is running.
• Newly added nodes should be reachable by all the existing nodes in

the cluster.
• If we have a single node cluster that is deployed, without specifying the IP

address, hostname, or hostname specified as the local host, it is not possible
to expand the cluster. We must reinstall Vertica and specify an IP address
or hostname.

• Generally, it is not needed to shut down the Vertica database for
expansion, but a shutdown is necessary if we are expanding it from
a single node cluster.

Cluster Management

[22]

Method
From any node of the cluster, we can run the update_vertica script as follows:

/opt/vertica/sbin/update_vertica -A <hostname1, hostname2…> -r <rpm_
package>

Here, –A is used for providing IP(s) or hostname(s), and –r is used for providing the
location of the rpm/debian package.

The update_vertica script will install Vertica, verify the installation, and add
a node to the cluster. Once we have added one or more hosts to the cluster,
we need to empower them as data storing nodes through either of the following:

• The Management Console interface (Enterprise Edition only)
• The administration tools interface

Using the Management Console to add nodes
We can add or remove nodes from a database by going to the Manage page.
Here, just click on the target node and then click on the Add node or Remove node
button in the node list. When we add a node, the color of the node icon changes from
gray (empty) to green.

Adding nodes using administration tools
The following is the process of adding nodes in a Vertica cluster using
administration tools:

1. Navigate to Main Menu | Advanced Menu | Cluster Management |
Add Host(s).

2. We should now select the database to which we want to add one or more
hosts. A list of unused hosts is displayed.

3. Select the host. You will then be prompted for the password. Provide the
password for the database.

4. The user will be prompted about the success or failure of the addition of
the node.

5. If it is successful, Vertica starts rebalancing the cluster. During database
rebalancing, Vertica will ask the user to provide a path to a temporary
directory that the database designer will use.

Chapter 2

[23]

6. Before starting the rebalancing of the cluster, Vertica will prompt the user to
provide a new higher K-value, or we can continue with the existing K-value.

7. As a final step, we should select whether Vertica should immediately
start rebalancing or whether Vertica should do it at a later time. If we
choose to do the rebalancing later, then a script is created and is kept for
later execution. It is always advised that we should select the option to
automatically start rebalancing. If we choose to automatically rebalance
the database, the script will still be created and will be saved for later use
and review.

Removing nodes in Vertica
Removing nodes or scaling down the Vertica cluster is a fairly simple process.
The procedure of removing nodes comprises the following broad steps:

1. Back up the database.
2. Remember that it is mandatory to lower the K-safety if the cluster is not able

to sustain the current level of K-safety after the cluster is scaled down.
3. Remove the host from the database.

Lowering the K-safety level
A database with a K-safety level 1 requires at least three nodes to operate, and
a database with a K-safety level 2 requires at least five nodes to operate. Vertica
doesn't support K-safety of level 3 and above. To lower the K-safety level, we will
use the MARK_DESIGN_KSAFE function in the Vsql console, as shown in the following
example:

km=> SELECT MARK_DESIGN_KSAFE(1);

 MARK_DESIGN_KSAFE

 Marked design 1-safe

(1 row)

Removing nodes using administration tools
The following are the steps to remove nodes using administration tools:

1. Before starting this step, we must make sure that the number of nodes that
will remain after removing the nodes will comply with K-safety.

www.allitebooks.com

http://www.allitebooks.org

Cluster Management

[24]

2. As a precautionary step, create a backup of the database.
3. Make sure that the database is running.
4. Navigate to Main Menu | Advanced Menu | Cluster Management |

Remove Host(s).
5. Select the database from which we wish to remove the node and click on OK.
6. Select the node that we wish to remove.
7. We will be asked if we are sure about removing the node. If we are, then click

on OK; otherwise, click on Cancel.
8. We will be warned that we must redesign our database and create

projections that exclude the hosts we are going to drop; click on Yes.
The following screenshot shows the warning prompt:

Warning issued during the removal of a node

9. Vertica begins the process of rebalancing the database and removing the
node(s). When you are informed that the hosts were successfully removed,
click on OK.

Removing nodes using the Management
Console
We can remove nodes from a database through the Manage page. For removing a
node, we have to select the node we want to act upon and then click on the Remove
node button in the node list. We can only remove nodes that are part of the database,
that is, nodes that show a state of down or nodes that are not working (represented in
red) and are not critical for K-safety. When we remove a node, its color changes from
red to clear, and the Management Console updates its state to standby.

Removing hosts from a cluster
Removing a node from a database doesn't result in its removal from the cluster.
We can completely remove it from the cluster using the update_vertica script,
but it must be ensured that the host must not be used by any database. We do not
need to shut down the database for this process.

Chapter 2

[25]

From one of the hosts in the cluster, we need to run update_vertica with the –R
switch, where -R specifies a comma-separated list of hosts to be removed from
an existing Vertica cluster. Do not confuse –R with –r, as both have different
functionalities. A host can be specified by the hostname or the IP address of the
system, as shown in the following example:

/opt/vertica/sbin/update_vertica -R 192.168.56.103,host04

Replacing nodes
If we have a K-Safe database, we can replace nodes, as a copy of the data will be
maintained under the nodes. We do not need to shut down the database to replace
the nodes.

Replacing a node using the same name and IP
address
Sometimes, you will be required to upgrade one or more nodes in the cluster.
If the new node has the same IP as the original node, then use the following
method for replacement:

1. From a working node in the cluster, run the following install_vertica
script with the -s (used for providing the hostname or IP(s)) and –r
(the path of the rpm/deb package) parameters:
/opt/vertica/sbin/install_vertica -s host -r rpm_package

2. The installation script will verify the system configuration and the
installation of various important components of Vertica, such as Vertica,
Spread, and the administration tool's metadata.

3. Now, create catalog and data directories on the new node. Make sure that the
path of these directories is the same as that of the original node.

4. Once ready, restart the newly added host, and you will find that it has been
added to the cluster.

The new node automatically joins the database cluster and recovers data by querying
the other nodes within the database cluster. Data recovery may take some time as
huge chunks of data will be moved across the nodes.

Cluster Management

[26]

Replacing a failed node using a different
name and IP address
There may be a time when you will be required to replace a failed node with
a node that has a different IP address and hostname. In such cases, proceed with
the following steps:

1. As a preventive step, create a backup of the database.
2. After the backup is created, run update_vertica with the –A, -R, -E, and -r

parameters, as shown in the following code, to replace the failed host:
 /opt/vertica/sbin/update_vertica -A NewHostName -R
OldHostName -E -r rpm_package

Where:

 ° NewHostName is the hostname or IP address of the new node
 ° OldHostName is the hostname or IP address of the node that is

being replaced from the cluster
 ° The -E parameter makes sure that the failed node is dropped

from the cluster
 ° rpm_package is the name of the rpm package; for example,

–r vertica_6.0.x.x86_64.RHEL5. rpm

3. Using administration tools, we can replace the original host with the new
host. If we are using more than one database, make sure that the old node
is replaced by a new node for all databases.

4. Now, distribute configuration files to the new host. The process is discussed
in the next section.

5. Then, we have to run update_vertica again. However, this time, we will
run it with the -R parameter, as shown in the following code, to clear all
information of the failed node from the administration tool's metadata:
/opt/vertica/sbin/update_vertica -R OldHostName

OldHostName is the hostname or IP address of the system that we removed
from the cluster. Do not confuse –R with –r as both have different functions.

6. Now, start the new node and verify if everything is running properly.

Once you have completed the process, the new node automatically recovers the data
that was stored in the original node by querying other nodes in the database cluster.

Chapter 2

[27]

Redistributing configuration files to nodes
The processes of adding and removing nodes automatically redistribute the
Vertica configuration files. To distribute configuration files to a host, log on
to a host that contains these files using administration tools. This can be done
using the following steps:

1. Navigate to Main Menu | Configuration Menu | Distribute Config Files.
2. Click on Database Configuration as shown in the following screenshot:

Selecting the redistribution configuration category

3. Then, select the database in which we wish to distribute the files and click
on OK.
The vertica.conf file will be distributed to all the other hosts in the
database. If it existed earlier on a host, it is overwritten.

4. We need to follow the same process for Secure Sockets Layer (SSL) keys as
well as administration tool's metadata. For SSL keys, Vertica may prompt for
the location of the server certificate file, server key file, and root certificate
file. Provide an appropriate path and click on OK.

Using administration tools to replace nodes
with different names and IP addresses
Using administration tools, you can easily replace a node with a node of a different
hostname and IP address. Alternatively, you can also use the Management Console
to replace a node.

Cluster Management

[28]

To replace the original host with a new host using administration tools, proceed with
the following steps:

1. As a preventive step, create a backup of the database.
2. You first need to make sure that the database is running.
3. Add the replacement hosts to the cluster using the standard procedure of

adding a node.
4. Now, shut down the node that is intended to be replaced.
5. Navigate to Main Menu | Advanced Menu.
6. In the Advanced Menu option, we need to select Stop Vertica on Host.
7. Select the host we wish to replace and then click on OK to stop the node.
8. After stopping the node, navigate to Advanced Menu | Cluster

Management | Replace Host.
9. Select the database that contains the host we wish to replace and then click

on OK.
10. A list of all the hosts with their internal names and IP addresses will be

displayed. We will select the host we wish to replace and then click on OK,
as shown in the following screenshot:

Selecting nodes to replace

11. Select the host we want to use as the replacement and then click on OK.
12. When prompted that the host was successfully replaced, click on OK.
13. Restart all the nodes (new nodes may take some time to start as they will be

in the recovering state, thus moving data).
14. Verify if the database is running properly.

Chapter 2

[29]

Changing the IP addresses of a
Vertica cluster
Sometimes, during networking-related maintenance chores, the IP(s) of one or more
servers running Vertica changes to some other IP. In these cases, IP changes are
needed to be done in Vertica as well. However, before making changes in Vertica,
we must make sure that changes are made in /etc/hosts of all nodes, where the
hostname is mapped to the IP address. After making system-level changes, proceed
with the following steps to change the IP address of one or more nodes in a cluster:

1. Back up the following three files:
 ° /opt/vertica/config/admintools.conf

 ° /opt/vertica/config/vspread.conf

 ° /etc/sysconfig/spreadd

It is assumed that Vertica is installed on /opt/vertica. If Vertica is installed
on some other location, then we should take backups from that location.

2. We should stop Vertica on all nodes.
3. As a root user, we need to stop Spread manually on each node. Spread is

the messaging system for distributed systems such as Vertica. We can stop
Spread using the following command:
/etc/init.d/spreadd stop

4. On each node, edit /opt/vertica/config/admintools.conf and change
the IPs as required. The following is the text from admintools.conf for one
of the nodes (replace the old IP with the new one wherever required):
[Configuration]

install_opts = ['-s', '192.168.56.101,192.168.56.102,192.168.56.10
3', '-r', 'vertica-ce-6.0.0-1.x86_64.RHEL5.rpm', '-u', 'dba']

default_base = /home/dbadmin

show_hostnames = False

format = 3

[Cluster]

hosts = 192.168.56.101,192.168.56.102,192.168.56.103

spread_hosts =

[Nodes]

node0001 = 192.168.56.101,/home/dba,/home/dba

Cluster Management

[30]

node0002 = 192.168.56.102,/home/dba,/home/dba

node0003 = 192.168.56.103,/home/dba,/home/dba

v_km_node0001 = 192.168.56.101,/ilabs/data/vertica/catalog,/ilabs/
data/vertica/data

v_km_node0002 = 192.168.56.102,/ilabs/data/vertica/catalog,/ilabs/
data/vertica/data

v_km_node0003 = 192.168.56.103,/ilabs/data/vertica/catalog,/ilabs/
data/vertica/data

[Database:km]

host = 192.168.56.101

restartpolicy = ksafe

port = 5433

path = /ilabs/data/vertica/catalog/km/v_km_node0001_catalog

nodes = v_km_node0001,v_km_node0002,v_km_node0003

5. On each node, edit /opt/vertica/config/vspread.conf. We need to
replace the old IP with the new one wherever required. We also need to
change the N number, where N is followed by the IP address without a
period (.). Following is the text from vspread.conf for one of the nodes:
Spread_Segment 192.168.56.255:4803 {

 N192168056101 192.168.56.101 {

 192.168.56.101

 127.0.0.1

 }

 N192168056102 192.168.56.102 {

 192.168.56.102

 127.0.0.1

 }

 N192168056103 192.168.56.103 {

 192.168.56.103

 127.0.0.1

 }

}

EventLogFile = /dev/null

EventTimeStamp = "[%a %d %b %Y %H:%M:%S]"

DaemonUser = spread

DaemonGroup = verticadba

DebugFlags = { EXIT }

Chapter 2

[31]

6. Just like the changes we made in vspread.conf, we also need to make
changes in etc/sysconfig/spreadd.

7. After IP-related changes are made in all three configuration files, we should
start Spread on each node as a root user:
 /etc/init.d/spreadd start

8. Then, we should start a single Vertica node and connect to our database and
run Vsql.

9. In Vsql, issue the following query to verify that the new IP has been
updated:
select host_name from host_resources;

10. As a final step, we need to modify the database to use the new IPs.
11. In Vsql, we have to run the following query to display the current node

names that are configured:
km=> \x

Expanded display is on.

km=> select node_name, node_address from nodes;

-[RECORD 1]+---------------

node_name | v_km_node0001

node_address | 192.168.56.101

-[RECORD 2]+---------------

node_name | v_km_node0002

node_address | 192.168.56.102

-[RECORD 3]+---------------

node_name | v_km_node0003

node_address | 192.168.56.103

12. For each result, we need to update the IP address by issuing the
following command:
alter node NODE_NAME is hostname <new IP address>;

In the preceding command, NODE_NAME is the internal name of the node,
and <new IP address> is the new IP of this node. Before altering this data,
the node of the IP that has been changed needs to be shut down.

13. Bring up all the nodes in the cluster and test if everything is
running properly.

Cluster Management

[32]

Summary
In this chapter, we saw how easily a Vertica cluster can be scaled up or down.
It is worth noting that I have over-emphasized on backing up the database,
because it is always better to be safe than sorry. In the next chapter, you will
learn how to effectively monitor a Vertica cluster.

Monitoring Vertica
Monitoring is one of the key database administration tasks. It allows you to find
possible bottlenecks in database performance in the most pragmatic fashion.
In Vertica, there are several sources of information through which monitoring
can be performed. They are as follows:

• System tables
• Logfiles
• Management Console (Enterprise Edition only)

Monitoring through the system tables
Vertica stores most of its information about the various states of the database in
system tables. The process of storing such information is completely automatic
and runs in the background. By querying these system tables and by relating
various types of information fetched from these tables, you can efficiently monitor
Vertica. The advantage of using system tables is that we can use them, just like any
other user table, to perform aggregation, analytics, and so on. There are more than
100 system tables; we can get the whole list by running the following query:

Select * from system_tables;

www.allitebooks.com

http://www.allitebooks.org

Monitoring Vertica

[34]

The table shown in the following screenshot shows the output of the query:

The system_tables table

On the basis of the type of information a system table stores, system tables can
be grouped into the following categories:

• System information
• System resources
• Background processes
• Workload and performance

System tables are clustered into the following schemas (as shown in the
preceding screenshot):

• V_CATALOG: This schema contains information about persistent objects
in the catalog

• V_MONITOR: This schema contains information about the temporary
system state

Chapter 3

[35]

Examples of V_CATALOG tables include views, roles, nodes, databases,
license_audits, and so on, while examples of V_MONITOR tables include
locks, disk_storage, resource_usage, and so on.

We do not need to specify a schema (V_CATALOG or V_MONITOR) for querying system
tables as they belong to the default schema. It should be noted that there are certain
restrictions imposed on system tables; they are as follows:

1. Vertica provides a SQL-monitoring API that can be used on these system
tables, but the database will not connect through this API if the Vertica
cluster is in a recovering state.

2. Due to the nature of the data stored in these tables, it is not possible
to perform Data Definition Language (DDL) and Data Manipulation
Language (DML) operations on system tables.

Understanding a system table example
For example, we just need to run the following command to retrieve all the
information from the tables of a database:

select * from tables;

The following screenshot shows the output of the command. Please note that in
the table_schema and table_name tables, the columns are case sensitive.

The tables system table

Monitoring Vertica

[36]

Looking at events
There are various events such as Emergency, Alerts, Critical, Errors, Warnings,
Notices, Information, and Debugs that are logged by Vertica. Vertica logs these
events in one of the following ways:

• In the Vertica.log file
• In the ACTIVE_EVENTS system table
• Using SNMP
• Using Syslog

This book will cover the usage of the Vertial.log files and the ACTIVE_EVENTS
system table for logging events.

The following table lists the events that are logged:

Event name Event type Description
Low Disk Space 0 This event is logged either when there is not

enough space in the physical disk or when there
is a hardware issue.

Read Only File
System

1 Vertica uses specific directories for storing Catalog
or Data information. When Vertica is unable to create
or write to files, this event is logged. Changing access
rights may solve the issue.

Loss Of K
Safety

2 Vertica defines the minimum number of nodes
needed to run a database, particularly in the K-Safe
mode. For example, for maintaining K-safety of level
2, we need at least five nodes; if the number of active
nodes goes below five, this event will be logged.
It should be ensured that all nodes are able to reach
each other in the cluster.

Current Fault
Tolerance at
Critical Level

3 As discussed earlier, if a database loses K-safety, it
shuts down, and this event is logged.

Too Many ROS
Containers

4 This may occur due to many reasons, primarily
if there are a large number of local segments or if
Mergeout is not working efficiently. It is suggested
that you stop the data load in such events, and the
database should be allowed to recover.

Chapter 3

[37]

Event name Event type Description
Node State
Change

6 This event occurs when the node state has changed.
For example, a node can change its state from
startup to up.

Recovery
Failure

7 This event occurs when a database is not able to
recover properly from a nonfunctional state.

Recovery Error 8 If the number of recovery errors exceeds the value
of Max Tries defined in the vbr.py configuration
file, this event is triggered.

Recovery Lock
Error

9 This event is logged when a recovering node is not
able to secure lock on tables.

Recovery
Projection
Retrieval
Error

10 This event is logged when Vertica is unable to
retrieve information about a projection.

Refresh Error 11 This event is logged when a database is not able to
refresh itself.

Refresh Lock
Error

12 This event is logged when a database is not able to
obtain the necessary locks during refresh.

Tuple Mover
Error

13 This event is logged when a database fails to move
data from RAM (WOS) to physical disk (ROS or
Read Optimized Store).

Timer Service
Task Error

14 This event is logged when an error occurs in an
internal scheduled task.

Stale
Checkpoint

15 This event occurs when Write Optimized Store
(WOS) data is not completely flushed into the Read
Optimized Store (ROS) containers before shutdown.
This may result in loss of data.

Looking at events through logfiles
During database startup, Vertica writes logs to the dblog file. This file resides in the
catalog-path/<database-name>/ directory path. For any information regarding
the starting of data, in case of a failure or success, it is advisable to look into the
dblog file. The following is the sample text of a dblog file:

Connected to spread at host 192.168.56.101(192.168.56.101) port 4803
[Thu 07 Mar 2013 16:41:49] SP_connect: DEBUG: Auth list is: NULL
Connected to spread at host 192.168.56.101(192.168.56.101) port 4803

Monitoring Vertica

[38]

After the database is up and running properly, Vertica starts writing logs to vertica.
log. Just like the dblog file, the vertica.log file is also maintained on each node of
the cluster. It resides in the catalog-path/<database-name>/<node-name_catalog>
directory path. The following is a sample text:

2013-01-05 04:03:07.225 Main:0x1124df70 [Init] <INFO> Starting up
Vertica Analytic Database v6.0.0-1
2013-01-05 04:03:07.225 Main:0x1124df70 [Init] <INFO> Project
Codename: BunkerHill
2013-01-05 04:03:07.225 Main:0x1124df70 [Init] <INFO>
vertica(v6.0.0-1) built by release@build2.verticacorp.com from
releases/VER_6_0_RELEASE_BUILD_0_1_20120611@95490 on 'Mon Jun 11
10:40:47 2012' $BuildId$
2013-01-05 04:03:07.225 Main:0x1124df70 [Init] <INFO> 64-bit Optimized
Build
2013-01-05 04:03:07.225 Main:0x1124df70 [Init] <INFO> Compiler
Version: 4.1.2 20080704 (Red Hat 4.1.2-52)
2013-01-05 04:03:07.225 Main:0x1124df70 <LOG> @v_km_node0001:
00000/5081: Total swap memory used: 94208

Looking at events through the
ACTIVE_EVENTS system table
The ACTIVE_EVENTS system table can be used to look at various events logged
by Vertica. The following table describes the various fields of the ACTIVE_EVENTS
system table:

Column Description
node_name Internal name of the node
event_code ID of the event type
event_posted_timestamp Timestamp when the event was initiated
event_expiration Timestamp when the event expired
event_code_description Description of the event type
event_problem_description Actual description of the event
reporting_node Internal name of the node on which the event

occurred

Chapter 3

[39]

The following screenshot shows the sample output when we query the
ACTIVE_EVENTS system table:

The ACTIVE_EVENTS system table

Monitoring Vertica

[40]

Monitoring Vertica through the
Management Console
Vertica provides a very intuitive web console that can be installed and integrated
with Vertica. Vertica Management Console is shipped only with the Enterprise
Edition. It can help you perform almost every administration task that is possible
through a command-based console.

Management Console runs only on browsers that support HTML5. By default,
it is hosted on port 5450, which can be changed. To access it, we can just enter
https://xx.xx.xx.xx:5450/webui, where xx.xx.xx.xx is the IP of the host
on which the Management Console is hosted. It will prompt for a username
and password; we can supply any credentials of any user who has admin rights.
It is not advised to install Management Console on data-hosting nodes.

Retaining monitoring information
As discussed earlier, system tables provide a plethora of information regarding
various processes running on a database, including queries. However, sometimes
we need to store monitoring information. For this, we can employ Data Collector.
Information retained by Data Collector is stored on a disk in the DataCollector
directory under the Vertica catalog path.

Enabling and disabling Data Collector
To enable or disable Data Collector, we can use the SET_CONFIG_PARAMETER()
function. Data Collector is on by default. To disable Data Collector, use the
following command:

=> SELECT SET_CONFIG_PARAMETER('EnableDataCollector', '0');

Use the following command to enable Data Collector:

=> SELECT SET_CONFIG_PARAMETER('EnableDataCollector', '1');

Viewing the current data retention policy
To view the data retention policy, we can use the GET_DATA_COLLECTOR_POLICY()
function. We can replace the component variable with the actual component name,
as shown in the following line of code:

GET_DATA_COLLECTOR_POLICY('component');

Chapter 3

[41]

To get the whole list of components, we can query the V_MONITOR.DATA_COLLECTOR
system table. In addition to the list, we will also get their current retention policies
and statistics about how much data is retained.

Configuring data retention policies
We can set Data Collector policies using the SET_DATA_COLLECTOR_POLICY()
function. Only a superuser can modify policies. This function, shown in the
following line of code, allows us to change how much memory (in kb) and disk
space (in kb) to retain for each component on all nodes:

SET_DATA_COLLECTOR_POLICY('component', 'memoryKB', 'diskKB')

Failed nodes are not ignored from the policy, as they will create policy anomalies in
the cluster. Hence, when failed nodes rejoin, the latest policy is imposed on them.

Monitoring data collection components
As discussed earlier, when the DATA_COLLECTOR system table is queried, we are
presented with a list of Data Collector components, their current retention policies,
and statistics about how much data is retained and how much has been discarded.
DATA_COLLECTOR also calculates the approximate collection rate to aid in sizing
calculations. The following is a simple query that returns all the columns in this
system table:

km=> \x

Expanded display is on.

km=> SELECT * FROM data_collector;

-[RECORD 1]----------+---
--

node_name | v_km_node0001

component | AllocationPoolStatistics

table_name | dc_allocation_pool_statistics

description | Information about global memory pools, which
generally cannot be recovered without restart

access_restricted | t

in_db_log | f

in_vertica_log | f

memory_buffer_size_kb | 64

disk_size_kb | 256

Monitoring Vertica

[42]

record_too_big_errors | 0

lost_buffers | 0

lost_records | 0

retired_files | 64

retired_records | 29674

current_memory_records | 0

current_disk_records | 1786

current_memory_bytes | 0

current_disk_bytes | 251826

first_time | 2013-03-08 16:00:40.002042+05:30

last_time | 2013-03-08 16:15:32.001259+05:30

kb_per_day | 23813.3539369616

-[RECORD 2]----------+---
--

node_name | v_km_node0001

component | AllocationPoolStatisticsBySecond

table_name | dc_allocation_pool_statistics_by_second

description | Information about global memory pools, which
generally cannot be recovered without restart (historical, by second)

access_restricted | t

in_db_log | f

in_vertica_log | f

memory_buffer_size_kb | 64

disk_size_kb | 256

record_too_big_errors | 0

lost_buffers | 0

lost_records | 0

retired_files | 292

retired_records | 29777

current_memory_records | 0

current_disk_records | 343

current_memory_bytes | 0

current_disk_bytes | 219173

first_time | 2013-03-08 16:12:41.002868+05:30

last_time | 2013-03-08 16:15:32.001287+05:30

kb_per_day | 107977.851408599

Chapter 3

[43]

Summary
Vertica provides several ways to monitor various processes and facilitates the
storage of the monitoring information. It is up to the administrator to determine
how they can make the best use of it. In the next chapter, we will learn how to create
a backup of Vertica databases and restore them.

www.allitebooks.com

http://www.allitebooks.org

Backup and Restore
In this chapter, you will learn how to create database backups and restore backups in
Vertica. Vertica provides the vbr.py script to back up, restore, and copy a database.
We can create both full and incremental database snapshots, as well as snapshots
of specific schemas or tables. For creating the most optimum backup, it is suggested
that each node have its own dedicated backup host.

Requirements for backup hosts
The vbr.py utility lets us back up the database to one or more hosts (called backup
hosts) that can be outside the database cluster. The backup hosts must have a
password-less SSH access for the database administrator account. Also, backup hosts
must have the same versions of Python and rsync as the main nodes. The vbr.py
utility initially creates a snapshot of the database cluster of which the backup is
being created. When the creation of the new snapshot is complete, it is moved to the
designated backup location (host and directory). After Vertica copies the snapshot
to the backup location, it deletes the snapshot created initially in the main cluster.

Generating the vbr.py configuration file
To invoke vbr.py to set up a configuration file, we should use the following command:

> vbr.py --setupconfig

The script prompts us to answer the following questions for parameters marked
with an asterisk, *. For setting all the advanced options, we need to answer the last
question with a "yes" during initial setup or change the configuration file manually.
A configuration file contains various parameters categorized under various headers.
The upcoming sections explain the headers and corresponding parameters present
in the configuration file.

Backup and Restore

[46]

Miscellaneous settings
The following table shows the parameters present in the Miscellaneous [Misc]
section of the file:

Parameters Default Description
snapshotName* snapshotName This value provides the prefix of

the directory that will contain the
snapshot. The characters in the value of
snapshotName can include the following:

• Aa-Zz
• 0-9
• Period (.), hyphen (-), and

underscore (_)
tempDir /tmp The vbr.py utility uses this directory

path as the path on all nodes to store
temporary data/files during the backup
process. Since it is the universal path, it
must be present on all nodes in the cluster.

verticaBinDir /opt/
vertica/bin

If Vertica is installed on some other
directory than the default location, we
need to state where the bin files are
present through this parameter.

verticaConfig* False Sometimes it is a good idea to backup
configuration files. This parameter, when
set to true, permits Vertica to back up
config files along with data files.

restorePointLimit* 1 If we wish to store incremental snapshots,
we need to increase the value of this
parameter from 1. The permissible value
range is from 1-99.

objects* None We can create a partial backup by
providing a list of object names in the
form of a comma-separated list which is
included in a snapshot.

overwrite True This parameter is not part of the
configuration file and needs to be
included manually under the [MISC]
header to change its default value. When
set to true, a newer object overwrites the
existing one in the database whenever
OID conflicts occur during restore.

Chapter 4

[47]

Parameters Default Description
retryCount 2 This number indicates the number of

attempts or retries of the backup operation
after a fatal error occurs.

retryDelay 1 This is the interval time in seconds in
between retries for backup after a failure
occurs.

Database access settings
The parameter under the [Database] header needs to be set for database access.
The following table lists the parameters present in this section:

Parameters Default Description
dbName N/A As the name implies, it tells the utility

which database to back up. If not supplied
with a name, any live database is chosen as
a backup candidate.

dbUser* The current
username

This parameter tells the utility which user
is authorized to run vbr.py to back up or
restore. The user must have admin rights.

dbPromptForPassword* True If this parameter is set to False, the utility
will not prompt for a password at runtime.
If set otherwise, we must also enter the
database administrator password in the
dbPassword parameter (discussed next).

dbPassword* None This identifies the database administrator's
password. The vbr.py utility doesn't
encrypt the password, and hence
precautions must be taken while supplying
the password. If dbPromptForPassword
is set to true and no password is supplied
in the configuration file, we must supply it
at runtime (this is more secure).

Backup and Restore

[48]

Data transmission during the backup process
The following table lists the parameters present in the [Transmission] section
of the file:

Parameters Default Description
encrypt False When this parameter is set to true, data

transmitted during the backup process is
encrypted. As a rule of thumb, the utility may
engage one whole core on both source and
destination nodes to look for encryption. This may
create a significant overhead and the performance
may suffer.

checksum False In order to ensure that there is no data loss during
transmission, we can set this parameter to true.
When set to true, rsync performs MD5 checksum
over the transmitted data to ensure integrity.

port_rsync 50000 This sets the port number on which rsync will
work.

bwlimit 0 This parameter defines the upper limit of the
bandwidth of the network to be used in kbps
during backup.

hardLinkedLocal False This configuration parameter, when set to true,
makes the utility create a backup on a local directory
instead of a remote location. A local backup is
created by hard links instead of copying data.

Mapping
For each node of the database cluster, a separate mapping heading needs to be
written. Each heading is numbered ([Mapping1], [Mapping2], and so on) and
controls the backup of the respective node. All of the parameters under this header
are mandatory in the configuration file. The following table lists the parameters:

Parameters Default Description
backupHost* None As the name implies, this tells the utility the hostname of

the backup node.

Chapter 4

[49]

Parameters Default Description
backupDir* None This is the path to the directory that will host the backup

files on the designated host or node where the backup
will be stored. This directory must exist and the user
must have all rights to it.

dbNode None This is Vertica's internal name of the host usually in the
form v_databasename_node00xx.

Creating full and incremental backups
In this section, you will learn about the process of creating full and incremental
backups. But first, let's understand the requirements.

Understanding the requirements
Before we create a snapshot, we must check the following:

• The database is up and running.
• All of the backup hosts are up and available to the cluster.
• The user account has all permissions to the target directories on the

backup node.
• By default, the vbr.py utility searches for the config file at /opt/vertica/

config/vbr.ini, and if it is not found, the utility exits with an error. We can
supply the config file using the --config-file parameter with vbr.py.

It should be noted that if some nodes are down but the database is running in K-Safe
mode, then the backup will still be created.

Running vbr.py
To run the vbr.py utility, use the following command:

> vbr.py --task backup --config-file myconfig.ini

Copying...

xxxxxx out of xxxxxx, 100%

All child processes terminated successfully.

Committing changes on all backup sites...

backup done!

Backup and Restore

[50]

Incremental snapshots
If restorePointLimit is set to a value more than 1, then after creating a full
snapshot, the vbr.py utility will create the future backups in an incremental
manner. This incremental backup process works in the following manner:

1. The utility obtains the value of the restorePointLimit parameter from
the configuration file.

2. If the value is more than 1, then after creating a full backup, incremental
backups will be created on subsequent invocation of the utility. It is
suggested to create manual backups of snapshots periodically.

3. If after creating the next snapshot the total number of snapshots exceeds
the restore point limit, vbr.py automatically deletes the oldest snapshot
to maintain the count.

Creating schema and table snapshots
As discussed earlier, it is possible to create object-specific snapshots. These objects
can be certain tables or schemas. As mentioned in the table, there are the following
two configuration file parameters:

• Objects

• Overwrite

Refer to the table under the Miscellaneous settings section for more information.

Restoring full database snapshots
Restoring full database snapshots in Vertica can be a little tricky due to various
constraints. The following are the constraints:

• The database must be down. It is good to have another database cluster to
serve the application by the time the restore is complete on the primary cluster.

• The new cluster should have the same number of hosts as the base cluster
of which the backup is created. This constraint is included to tackle K-Safety
issues that might arise later. In fact, it is important to keep even node names
and the IP addresses the same as that of the nodes in the base cluster.

We can use a full database snapshot created in Vertica 5.0 to restore into a 6.0
database. To begin a full database snapshot restore, log in using the database
administrator's account created during installation. We cannot run the utility as root.

Chapter 4

[51]

Restoring from a specific snapshot
At first, the utility restores the most recent snapshot, though it is possible to control
which snapshot needs to be restored in case we have saved multiple versions. It is
important to bear in mind that snapshots are restored to the same database from
which they were created. In addition to that, you cannot restore a partial snapshot
into an empty database. The following example exhibits restoring a database using
the settings in the myconfig.ini config file:

> vbr.py --task restore --config-file myconfig.ini

Copying...

xxxxxx out of xxxxxx, 100%

All child processes terminated successfully.

restore done!

Restoring from the most recent snapshot
To restore from the most recent of several snapshots, we can use the --archive
option of the vby.py command, specifying the full snapshot name with its date
and time. The following example illustrates restoring a database snapshot using
the settings provided in the myconfig.ini config file, which also contains the
superuser's password:

> vbr.py --task restore --config-file myconfig.ini
--archive=20131210_308564

The --archive parameter recognizes the archive directory created on October 12, 2011
(_archive20131210) at timestamp 308564. Note that the configuration file contains
the snapshot name of the directory, and while running the command, we just need to
specify the date and timestamp. If the snapshot directory has the _archive suffix, the
directory is archived.

Restoring schema and table snapshots
We can restore object-level snapshots only to the database from which they were
created. Only the snapshots created in the same backup are compatible. We can
restore object-level snapshots in the same backup location after a full-database
snapshot restore. It should be noted that we cannot restore any object-level snapshot
into an empty database.

Backup and Restore

[52]

Copying a database from one cluster to
another
As discussed earlier, certain administration tasks require the database to shut down.
In that case, it is good to have a secondary cluster. The vbr.py utility can do this
activity of copying the database from one cluster to another using the copycluster
command task. We can create a config file explicitly for copying the database from
the base cluster to another cluster. In this config file, it is required to provide the
hostnames or IP addresses of nodes of the target cluster as the backup hosts.

Please note that we can use neither incremental snapshots nor object-level snapshot
files with the copycluster command. We can only use a full database backup file.

The following example config file can be used to copy a database on a three-node
cluster to another three-node cluster (secondary cluster) comprising nodes named
bck_host01, bck_host02, and bck_host03. Please note that although backupHost
is used, backupDir is not used. This is because it is a cluster-wide doubling and not
just a data backup.

[Misc]
snapshotName = km_001
tempDir = /data/tmp
restorePointLimit = 1
verticaConfig = False
retryCount = 1
retryDelay = 1
[Database]
dbName = km
dbUser = dba
dbPassword = sql
dbPromptForPassword = False

[Transmission]
encrypt = True
checksum = False
port_rsync = 50000
bwlimit = 0
hardLinkLocal = False

[Mapping0]
dbNode = v_km_node0001

Chapter 4

[53]

backupHost = bck_host01

[Mapping1]
dbNode = v_km_node0002
backupHost = bck_host02

[Mapping2]
dbNode = v_km_node0003
backupHost = bck_host03

Copying the database
The following example exhibits copying a cluster using a config file located in
the current directory:

> vbr.py --config-file CopyCluster.ini --task copycluster

Copying...

xxxxxx out of xxxxxx, 100%

All child processes terminated successfully.

copycluster done!

The vbr.py utility should be invoked from the source cluster and not from the
destination cluster, else the backup database will be copied to the primary cluster.
The user must be a superuser.

Using database snapshot functions
Apart from the vbr.py utility, we can also use database snapshot functions that let
us create snapshots and remove snapshots. It is worth noting that database snapshot
functions do not provide us with great flexibility as vbr.py does. By using database
snapshot functions, we are limited to creating a full image backup of the database on
the respective nodes. For example, if we have a three-node cluster, then a backup of
each node will be created on the respective nodes; this is unlike vbr.py, where we
have an option to migrate them to other nodes.

There are the following two types of snapshots that we can create using
these functions:

• Durable snapshots: These are like hard links to the actual data files of the
database with a proper directory structure. So whatever changes are made,
the storage containers will be readily available through these hard links.
These snapshots remain persistent throughout.

www.allitebooks.com

http://www.allitebooks.org

Backup and Restore

[54]

• Non-durable snapshots: This type of snapshot consists of the actual files
containing the database's data and not hard links. So any change made after
the snapshot has been created will not be reflected in these snapshots.

There are mainly two types of database snapshot functions, as follows:

• Database_snapshot

• Remove_database_snapshot

Creating database snapshots
We will use the DATABASE_SNAPSHOT SQL function to create snapshots. This function
requires the following two parameters:

• The name of the snapshot.
• Whether it is durable or not (true/false). In the case of true, a durable snapshot

will be created. In the case of false, a non-durable snapshot will be created.

The following example illustrates the use of the Database_snapshot function:

=> SELECT DATABASE_SNAPSHOT('snapshot_1', true);

DATABASE_SNAPSHOT

--

v_km_node0001,v_km_node0002,v_km_node0003

(1 row)

=> SELECT DATABASE_SNAPSHOT('snapshot_2', false);

DATABASE_SNAPSHOT

--

v_km_node0001,v_km_node0002,v_km_node0003

(1 row)

Chapter 4

[55]

If we wish to check what snapshots have been created, we can check the
Database_snapshots system table. This system table will not have data of
historic snapshots. The following is the sample output when we query the
Database_snapshots system table:

Backup and Restore

[56]

The snapshots subdirectory in the catalog directory stores both durable and
non-durable snapshots on each node of the cluster. Both types of snapshots have
two files, which are as follows:

• snapshotname.txt: This file contains an overview of the snapshot.
The following is the output of a durable snapshot:

Chapter 4

[57]

• snapshotname.ctlg: This file contains all information pertaining to the
database catalog.

Removing snapshots
We can manually remove snapshots using the REMOVE_DATABASE_SNAPSHOT SQL
function, as shown in the following commands:

=> SELECT REMOVE_DATABASE_SNAPSHOT(snapshot_1');

-[RECORD 1]-----------+--

REMOVE_DATABASE_SNAPSHOT | Removed: v_km_node0001,v_km_node0002,v_km_
node0003

=> SELECT REMOVE_DATABASE_SNAPSHOT('snapshot_2');

-[RECORD 1]------------+---

REMOVE_DATABASE_SNAPSHOT | Removed: v_km_node0001,v_km_node0002,v_km_
node0003

Now we can check the Database_snapshot system tables. Because we have removed
all the snapshots, we will find no rows, as shown in the following command:

=> SELECT * FROM DATABASE_SNAPSHOTS;

(No rows)

Apart from manually removing the snapshots we set, there are two parameters that
allow Vertica to perform automatic removal of snapshots after a certain time interval.
They are shown in the following table:

Parameters Description Default Example
RemoveSnapshot
Interval

This is the
interval time in
seconds between
two checks that
Vertica performs
for automatically
removing
snapshots.

3600 SELECT SET_CONFIG_PARAMETER

('RemoveSnapshotInterval',

7200);

Backup and Restore

[58]

Parameters Description Default Example
Snapshot
RetentionTime

This is a lifetime
of snapshots in
seconds. Vertica
will not remove
a snapshot
automatically
until this time
limit is reached.

3600 SELECT SET_CONFIG_PARAMETER

('SnapshotRetentionTime',

7200);

Summary
A good backup strategy helps you safeguard against possible data losses in case of
any catastrophic events. Vertica provides highly flexible and configurable backup
and restore functions, which when optimally used can provide a satisfactory level
of data backup.

In the next chapter, we will discuss performance tuning in Vertica and some
basic concepts around it.

Performance Improvement
A lot has always been discussed on database performance improvement techniques.
In Vertica, because there is no concept of indexes, a major thrust for performance
improvement lies upon the concept of projections. Apart from projections, this
chapter will also discuss the storage models present in Vertica.

Understanding projections
Traditional databases use row-store architecture. To process a query, a row store
reads all of the columns in all of the tables mentioned in the query, regardless of the
number of columns a table has. Often, analytical queries access (or require to access)
only few columns of a table containing up to several hundred columns, thus making
a whole-column-scan unwarranted. Additionally, a whole-column-scan also results
in the retrieval of a lot of unnecessary data. Unlike other RDBMSes, Vertica reads the
columns from database objects called projections. Consider the following example:

Now, suppose we have the following query:

SELECT A, D, E

FROM Table1 JOIN Table2

ON Table1.C_pk = Table2.C_fk;

Performance Improvement

[60]

On execution of the preceding query, a row store will typically scan through all
columns of each table from physical storage, while a column store such as Vertica
will only read three columns.

Projections constitute the physical schema of Vertica. In Vertica, a table only serves
as a logical schema and doesn't occupy any physical space. All data is stored in the
form of projections. It should be noted that there can be more than one projection
for a table, that is, the same data can be present in multiple projections. Even though
data is repeated, projections consume less space than speculated. A minimum of one
projection should exist for each table in the database. This makes sense as projections
constitute the physical schema in Vertica. Vertica automatically creates a projection
as soon as a table is created. This first projection is called a superprojection. A
superprojection contains all columns of a table, thus making sure that all SQL queries
can be answered. It should be noted that superprojections are a kind of support
projection and are generally not very efficient.

Projections can be compared with materialized views (MVs) and indexes. One key
difference between projections, MVs, and indexes is that projections are primary
storage and there is no underlying table. In contrast, both MV and indexes are
secondary storage and there are one or more underlying tables.

In the traditional sense, Vertica has no raw uncompressed base tables, no materialized
views, and no indexes. Everything is taken care of by projections. Of course, our logical
schema remains the same as with any other database, that is, tables.

Looking into high availability and recovery
The Vertica database is believed to be K-Safe if any K node(s) fail without causing
the database to shut down. In a K-Safe cluster, when a failed node recovers, it joins
the database cluster again. All data changes made during the time when the node
was down are recovered by querying other nodes in the cluster.

In Vertica, the value of K can be 0, 1, or 2. A K-Safe value implies the maximum
number of nodes that can be down at a single point in time without affecting the
working of a database. So, if a database with K-safety of one (K=1) loses a node, the
database will continue to run normally. Similarly, a database with a K-Safe value of
2 (K=2) will ensure that Vertica can run normally if any two nodes fail at any given
point of time. For each K-Safe value, there is a minimum number of nodes that is
required. The following table illustrates this:

K-level Number of nodes required

0 1+
1 3+

Chapter 5

[61]

K-level Number of nodes required

2 5+
K (K+1)/2

Vertica doesn't officially support values of K greater than 2.

Projections on a cluster can be stored in the following two ways:

• Unsegmented
• Segmented

Comprehending unsegmented projections
These types of projections are not broken and distributed on different nodes, but
rather a copy of the entire projection is maintained on each node, that is, data is
replicated across the nodes. It is suggested that small dimensional tables should
remain unsegmented. The following illustration shows two projections: Projection
1 and Projection 2. These are replicated across a three-node cluster but unsegmented:

Performance Improvement

[62]

Comprehending segmented projections
In segmented projections, a projection is broken into chunks or segments, and a copy
of these segments is maintained on different nodes of the cluster. These replicated
projections are known as buddy projections. These projections are recommended for
fact tables and dimensional tables with a large amount of data. Consider an example
where there is a cluster of three nodes and there is a projection, Proj 1, that needs to
be segmented. In order to maintain data on each node, we will need to create two
more copies of data: Proj 1 BP1 and Proj 1 BP2. Each of these projections, that is, Proj
1, Proj 1 BP1, and Proj 1 BP2, will be broken into three equal parts and distributed on
different nodes. The following example illustrates this more clearly:

Creating projections using Database Designer
Vertica provides a UI-based tool known as Database Designer, which recommends
projections on the basis of queries. The following information should be given to
Database Designer to create the best projections:

• A set of queries to be run or something similar
• A K-Safe level
• The database should already have tables ready with sample data

(not more than 10 GB)

Chapter 5

[63]

The following are the steps to work on Database Designer:

1. We can start Database Designer by navigating to Configuration Menu | Run
Database Designer from the admin tools menu, as shown in the following
screenshot:

2. Select a database for the design, as illustrated in the following screenshot:

Performance Improvement

[64]

3. Enter the directory where the output of Database Designer will be stored,
as shown in the following screenshot:

4. Then, enter the design name, as shown in the following screenshot:

5. The preceding steps were generic. From now, the process forks as per the
design type we select:

Chapter 5

[65]

There are two types of designs:

• Comprehensive design
• Query-specific design

The comprehensive design
Comprehensive design lets us design projections for all the tables in the specified
schemas. It is suggested to create a comprehensive design when we create a new
database, but a comprehensive design for an existing database can also be created
if the entire database is not performing up to the mark.

The following are the options for Comprehensive design that will help to control
the design in a better fashion:

• Optimize with queries: This option lets us supply queries that will be taken
into consideration by Database Designer for the design.

• Update statistics: When this option is selected, the statistics are collected
and refreshed. Like any other database technology, precise statistics help
Database Designer enhance the compression and query performance.

• Deploy design: When this option is selected, Database Designer deploys
the new database design to our database automatically. Although Database
Designer saves the SQL script for the new design (projections) in the design
location, if needed, we can review the scripts and deploy them manually later.

The following screenshot shows the afore mentioned options:

The query-specific design
Sometimes, we just need to optimize the performance of certain queries.
For this purpose, a query-specific design can be employed. It should be noted that
a query-specific design will limit design suggestions to the queries we supply.
Projections thus created/suggested may hamper, although rarely, the performance
of other queries.

Performance Improvement

[66]

The query-specific design process lets us specify the following options:

• Update statistics: When this option is selected, the statistics are collected
and refreshed. Like any other database technology, precise statistics help
Database Designer enhance the compression and query performance.

• Deploy design: This option installs the new database design. In the process,
new projections are added to the database. Later, these projections are
populated with data. It should be noted that none of the existing projections
are affected by the deployment of a new projection in this process.

The following screenshot shows the afore mentioned options:

If we wish to select the Comprehensive design with the Optimize with queries
option or the Query-specific design, then we need to provide a set of queries, as
shown in the following screenshot:

Chapter 5

[67]

After this, just provide the K-Safe value to start the process, as shown in the
following screenshot:

Creating projections manually
If the projection created by Database Designer doesn't meet our needs, then we can
write custom projections. Vertica uses the CREATE PROJECTION command to create
projections. The following is an example:

CREATE Projection Projection1

 (

 col1 ENCODING RLE,

col2,

 col3 // Column List and Encodings

) AS

SELECT

 t1.col1, // Base table query

 t1.col2,

 t2.col1

FROM table1 t1

INNER JOIN table2 t2 on t1.col1 = t2.col1

ORDER BY t1.col1

SEGMENT BY HASH (t1.col1) ALL NODES OFFSET 1; //Segmentation clause

Performance Improvement

[68]

Column list and encoding
The column list and encoding lists every column within the projection corresponding
to the base query (described later in this section) and defines the encoding for
each column. For Vertica, it is advisable to use data encoding as it results in fewer
disk I/O.

The base query
The base query identifies all of the columns to incorporate in a particular projection.
Base queries are just like standard SQL queries with the exception that a base query
for large table projections can contain only PK/FK joins from smaller tables.

The sort order
Presorted projections are one of the key ingredients for high-performance queries.
We can also optimize a query by matching the projection's sort order to the query's
GROUP BY clause. Database Designer does not optimize for GROUP BY queries. Using
the GROUP BY pipeline optimization might defeat other optimizations based on the
predicate, especially if the predicate is very selective. Therefore, it is suggested not to
use it or use it only when exclusively required. So, as a tip, when predicates are not
very selective or they are absent, GROUP BY can be used in projections.

Segmentation
As discussed earlier, the SEGMENTATION clause will tell a database to keep projections
in a segmented or unsegmented manner.

Segmentation maximizes database performance by distributing the load.
It is advisable to use SEGMENT BY HASH to segment large table projections.

For small tables, it is better to keep data unsegmented or non-partitioned.
The UNSEGMENT keyword will direct Vertica to do the same. Hence, data will
just be replicated and not partitioned nor segmented.

Chapter 5

[69]

Keeping K-safety (K-Safe) in mind
We can replicate data on all nodes using the UNSEGMENTED ALL NODES keyword.
This will ensure high availability and fault tolerance. For large tables, it is
imperative to segment corresponding projections. In order to make segmented
data fault tolerant and highly available or K-Safe, we need to do the following:

• Create a segmented projection for each fact and large dimension table.
• Create segmented buddy projections for each of the projections. The total

number of projections in a buddy set must be two (2) for a K=1 database or
three (3) for a K=2 database.

Creating buddy projections
To create a buddy projection, copy the script of the original projection and modify it
as follows:

1. Rename it to something similar to the name of the original projection. For
example, a projection named retail_sales_fact_P1 could have buddies
named retail_sales_fact_P1_B1 and retail_sales_fact_P1_B2.

2. Modify the sort order, if needed.
3. Create an offset to store the segments for the buddy on different nodes.

For example, the first buddy in a projection set would have an offset of one
(OFFSET 1;), the second buddy in a projection set would have an offset of
two (OFFSET 2;), and so on.

A note on table partitioning
Vertica supports data partitioning at a table level, which divides one large table into
smaller pieces. The partition remains exclusive to a table and applies to all projections
of a given table. In Vertica, tables just form a logical entity and not a physical one;
hence, a table partition is also a logical entity. This should not be confused with the
segmentation of projections as the latter works at a physical level.

A common use for partitions is to split a table by time periods. For instance, in a table
that contains decades of data, we can partition by year or by month. Partitions can
improve parallelism during query execution and also enable some optimizations that
can improve query performance, at the same time decreasing the deletion time.

Performance Improvement

[70]

Understanding the storage model in
Vertica
In order to cater to a wide array of tasks such as DML, bulk loading, and querying,
Vertica implements a storage model as shown in the following illustration. This
model is the same on each Vertica node.

The Read Optimized Store (ROS) resides on a physical disk storage structure and
is organized by projection. Compression is employed at the ROS level to ensure that
the disk space occupied by projections is minimal.

Unlike the ROS, the Write Optimized Store (WOS) resides on primary memory,
again organized by projection. The WOS stores and sorts the data by epoch.
It doesn't compress the data at this level, ensuring high speed writes.

To learn more on how we can control data writing to WOS and ROS, refer to the
Bulk Loading section.

Tuple Mover (TM) is a Vertica background process, which is responsible for moving
data from primary memory (WOS) to physical disk (ROS). Apart from that, TM is also
responsible for removing deleted data and coalescing small ROS containers.

Chapter 5

[71]

Tuple Mover operations
Tuple Mover performs the following two operations:

• Moveout

• Mergeout

Each data node is responsible for running its own TM tasks, that is, Moveout
and Mergeout at its own interval of time.

Moveout
Moveout is responsible for moving data from primary memory (WOS) to physical
disk (ROS). Every time a Moveout operation is performed, a new ROS container
is created. In the case of COPY…DIRECT (refer Chapter 6, Bulk Loading), new ROS
containers are formed. An ROS container is nothing but a set of rows of a projection
stored in a group of files. An ROS container contains data pertaining to a single table
partition only; however, a table partition can be present in multiple ROS containers.
The STORAGE_CONTAINERS system table stores all information regarding the
execution of Moveout, as shown:

km=> select * from storage_containers;

-[RECORD 1]-------+-------------------------

node_name | v_km_node0001

schema_name | public

projection_id | 45035996273716454

projection_name | timedata_b1

storage_type | ROS

storage_oid | 45035996273716511

total_row_count | 931

deleted_row_count | 0

used_bytes | 5095

start_epoch | 6

end_epoch | 6

grouping | PROJECTION

segment_lower_bound | 2863311530

Performance Improvement

[72]

segment_upper_bound | 4294967294

-[RECORD 2]-------+-------------------------

node_name | v_km_node0001

schema_name | public

projection_id | 45035996273716440

projection_name | timedata_b0

storage_type | ROS

storage_oid | 45035996273716531

total_row_count | 945

deleted_row_count | 0

used_bytes | 5106

start_epoch | 6

end_epoch | 6

grouping | PROJECTION

segment_lower_bound | 4294967295

segment_upper_bound | 1431655764

Mergeout
A Mergeout operation works at the ROS level and is responsible for removing
deleted data and coalescing small ROS containers. When an increased number of
ROS containers hinders the performance, Tuple Mover automatically performs a
Mergeout operation.

Tuning Tuple Mover
We can tune and tweak certain parameters to control Tuple Mover as per our need.
The following table illustrates various configurable parameters for Tuple Mover:

Parameters Description Default Example
ActiveParti
tionCount

By default, only a
single (and the latest)
partition of a partition
table is loaded at any
particular time. If we
wish to increase the
number of partitions
that can be loaded at a
given time, we need to
change this parameter.

1 SELECT SET_CONFIG_
PARAMETER

('ActivePartitionCount',
2);

Chapter 5

[73]

Parameters Description Default Example
MergeOut
Interval

Defined in seconds, this
tells Tuple Mover to
wait for a certain time
interval between two
Mergeout operations.
It is advised to adjust it
as per the frequency of
ROS container creation.

600 SELECT SET_CONFIG_
PARAMETER

('MergeOutInterval',1200);

MoveOut
Interval

Defined in seconds,
this tells Tuple Mover
to wait for a certain
time interval to check
for new data in WOS to
flush data to ROS.

300 SELECT SET_CONFIG_
PARAMETER

('MoveOutInterval',600);

MoveOutMax
AgeTime

Defined in seconds, this
tells Tuple Mover to
wait for a certain time
interval between two
Moveout operations.

1800 SELECT SET_CONFIG_
PARAMETER

('MoveOutMaxAgeTime',
1200);

MoveOut
SizePct

This defines the
percentage of the
primary memory
or WOS that can be
filled with data before
Tuple Mover forcefully
performs a Moveout
operation.

0 SELECT SET_CONFIG_
PARAMETER

('MoveOutSizePct', 50);

Adding storage locations
It is imperative to add additional storage locations (read directories) as the size of the
database grows. Moreover, we can keep crucial files on a high performance physical
memory, such as flash drives, in order to boost performance. The following are the
points that should be kept in mind before adding an extra storage location:

• Catalog and Data directories should be different.
• Catalog and Data directories should not be shared among nodes.
• A new directory is empty and Vertica has all its rights.

Performance Improvement

[74]

We can check for existing data storages for the whole cluster by running the
following query:

SELECT * from V_MONITOR.DISK_STORAGE;

Before adding storage locations, we should decide what type of information
we wish to store in this new location. It can be one of the following:

• Any kind of data (projections): DATA.
• Temporary files produced as a by-product of certain database

processes: TEMP.
• Both data and temp files. This is the default option: DATA, TEMP.
• We can create locations specific for a non-admin user. It will only store

data: USER.

Adding a new location
The ADD_LOCATION() function is used as a query to initialize the new data directory,
the node (optional), and the type of information to be stored. The following is an
example of this function:

SELECT ADD_LOCATION ('/newLocation/data/', 'v_test_node0003', 'TEMP');

Measuring location performance
We can use MEASURE_LOCATION_PERFORMANCE() to measure the performance of a
storage location. This function has the following prerequisites:

• The storage path must be configured for the database.
• Free physical memory greater than or equal to double the RAM on the node.

For example, if we have 4 GB of RAM, then the function requires 8 GB of
free disk space.

Use the system table DISK_STORAGE to obtain information about disk storage on
each database node. The following example measures the performance of a storage
location on node2:

=>select measure_location_performance('/ilabs/data/vertica/data/test/v_
test_node0001_data','v_test_node0001');

WARNING 3914: measure_location_performance can take a long time to
execute. Please check logs for progress

 MEasure_location_performance

--

Chapter 5

[75]

 Throughput : 38 MB/sec. Latency : 51 seeks/sec

(1 row)

The number generated represents the time taken by Vertica to read and write 1 MB
of data from the disk, which equates to the following:

IO time = time to read/write 1MB + time to seek = 1/throughput + 1/Latency

In the preceding command, the following is observed:

• Throughput is the average throughput of sequential reads/writes (units in
MB per second)

• Latency is for random reads only in seeks (units in seeks per second)

Setting location performance
Additionally, we can set the performance of a location. Setting location performance
can really boost the overall database performance as Vertica selectively stores sorted
columns (in order) to faster locations of a projection and the rest of the columns to
a slower location. To set the performance for a location, a superuser can use the
SET_LOCATION_PERFORMANCE() function, as shown:

=> SELECT SET_LOCATION_PERFORMANCE(v_test_node0001','/data/vertica/data/
test/v_test_node0001_data','38','51');

In the preceding command, the following is observed:

• '38' is the throughput in MB/second
• '51' is the latency in seeks/second

Understanding storage location tweaking functions
In this section, we will understand how to tweak storage locations with the help of
some functions.

Altering
We can use the ALTER_LOCATION_USE() function to modify existing storage
locations. This following example alters the storage location on v_test_node0003
to store data only:

=> SELECT ALTER_LOCATION_USE ('/newLocation/data/', 'v_test_node0003',
'DATA');

Performance Improvement

[76]

Dropping
We can use the DROP_LOCATION() function to drop a location. The following example
drops a storage location on v_test_node0003 that was used to store temp files:

=> SELECT DROP_LOCATION('/newLocation/data/' , 'v_test_node0003');

The existing data will be merged out either manually or automatically.

Retiring storage locations
To retire a storage location, use the RETIRE_LOCATION() function. The following
example retires a storage location on v_test_node0003:

=> SELECT RETIRE_LOCATION('/newLocation/data/' , 'v_test_node0003');

Retiring is different from dropping as in the former case Vertica ceases to store data
or temp files to it. Before retiring a location, we must make sure that at least one
other location on the node exists to store data and temp files.

Restoring retired storage locations
To restore an already retired location, we can use the RESTORE_LOCATION() function.
The following example restores a retired storage location on v_test_node0003:

=> SELECT RESTORE_LOCATION('/newLocation/data/' , 'v_test_node0003');

Summary
In Vertica, projections are the single most important topic that can help in improving
performance of a Vertica deployment. As mentioned earlier, it is best to create
projections using Database Designer. In the last and final chapter, we will discuss
bulk loading of data in Vertica.

Bulk Loading
Bulk loading is the process of inserting a huge amount of data at once. Bulk loading
in Vertica is performed using the COPY command. This chapter will cover topics
such as the use of the COPY command, different load methods, and the basics of
data transformation.

Using the COPY command
The COPY command can only be used by a superuser. The COPY command
provides the flexibility to load and manage data with the help of the following
optional parameters:

• Format and arrangement of the incoming data
• Metadata about the data load
• Data transformation
• Error handling

The encoding of the data to be loaded should be in the UTF-8 format. It is advisable
to check the encoding of the file before loading the data. If the data present is not
in the UTF-8 format, then we can convert it using the following Linux/UNIX
iconv command:

iconv -f encoding-of-old-file -t encoding-of-new-file old-file.txt >
newfile.txt

This can be illustrated with the help of the following example:

> iconv –f WINDOWS-1251 –t UTF-8 data.txt > data_new.txt

You can also check for the various formats supported by iconv using iconv -l.

Bulk Loading

[78]

It should also be noted that data should be segregated with proper delimiter
characters. Before loading the data, it should also be checked that no CHAR(N)
or VARCHAR(N) data values are included in the delimiter character. The default
delimiter character is the pipe character, or |.

The following is an example of the COPY command with all the possible options:

COPY [TARGET_TABLE]

FROM { STDIN

...... [BZIP | GZIP | UNCOMPRESSED]

...| 'pathToData' [ON nodename | ON ANY NODE]

...... [BZIP | GZIP | UNCOMPRESSED] [, ...]

...| LOCAL STDIN | 'pathToData'

...... [BZIP | GZIP | UNCOMPRESSED] [, ...]

}

The following is a simple example for loading the data:

COPY table1 FROM '/root/data/tab1.txt';

Here, table1 is the target table while '/root/data/tab1.txt' is the source data.

To load data from the client to the Vertica database cluster, we should use
COPY…FROM LOCAL, as shown in the following example:

COPY table1 FROM LOCAL '/root/data/tab1.txt' DELIMITER '~';

We can provide more than one delimiter. For example, let's say we have data in the
following fashion, a|b|c|d~e|f, with | and ~ being delimiters, as shown in the
following example:

COPY table1 COLUMN OPTION (col4 DELIMITER '~') FROM
'/root/data/tab1.txt' DELIMITER '|'

We can also provide multiple files by giving a comma-separated list as follows:

COPY table1 FROM LOCAL '/root/data/tab1_1.txt',
'/root/data/tab1_2.txt'

We can supply archives (GZIP and BZIP) containing files as follows:

COPY table1 FROM LOCAL '/root/data/tab1' GZIP

Chapter 6

[79]

We can supply data files from any node or a specific node by using pathToData.
This is an optional parameter, and if not supplied, it finds files in the local node
from which the command is invoked, for example:

COPY table1 FROM LOCAL '/root/data/tab1' GZIP ON ANY NODE

In the preceding example, ON ANY NODE is the pathToData exception.

Aborting the COPY command
If at any point in time you feel that something is wrong with the data or loading
process, then you can just cancel the bulk load process. All the changes made during
this process will be rolled back to its original state. Remember, it is not advisable to
abort a bulk loading process, but if the situation warrants it, then go ahead.

Load methods
Depending on the size of the data, you should select one of the following load
methods with the COPY command:

Load methods Description and use

AUTO This is the default option. It loads data into WOS. After WOS is full,
it continues loading data into ROS. It is good for data less than 100
MB in size. (Please refer to Chapter 5, Performance Improvement, to
understand more on ROS and WOS.)

DIRECT This loads data directly into ROS containers. It is advised to use the
DIRECT load method for data more than 100 MB in size.

TRICKLE This loads data only into WOS. After WOS is full, it generates an error.
It is suggested to use this for frequent incremental load operations.

An example of a load method is as follows:

COPY table1 from '/root/data/tab1.txt' DIRECT

For incremental loads, it is suggested to use the NO COMMIT command and use the
COMMIT command at a later stage for better control at the transaction level.

Bulk Loading

[80]

Data transformation
Using the COPY command, we can control the columns in which the values need to
be inserted for a table. Moreover, the COPY command supports operators, constants,
Nulls, and comments. It should be noted that the COPY command cannot use the
analytic and aggregate functions while loading the data, although it supports the
following types of functions:

• Date/time
• Formatting
• Numeric
• String
• Null handling
• System information

You can also ignore columns from source files. For that, we need to use the
FILLER option.

Summary
Since Vertica is more apt for OLAP purposes, it is imperative for you to perform bulk
loading. As you must have observed, bulk loading in Vertica is quite simple and
follows the same standards as followed by other relational databases.

Index
Symbols
--archive parameter 51
--config-file parameter 49

A
ACTIVE_EVENTS system table

about 38
event_code 38
event_code_description 38
event_expiration 38
event_posted_timestamp 38
event_problem_description 38
node_name 38
reporting_node 38

ActivePartitionCount parameter 72
ADD_LOCATION() function

used, for adding new location 74
administration tools

used, for adding nodes 22, 23
used, for removing nodes 23
used, to replace nodes 27, 28

ALTER_LOCATION_USE() function 75
AUTO load method 79

B
backupDir* parameter 49
backupHost* parameter 48
backup hosts

requisites 45
backups

requisites 49
base query 68

Basic Input/Output System (BIOS) 6
buddy projections

about 62
creating 69

bwlimit parameter 48

C
checksum parameter 48
cluster

hosts, removing from 24
column encoding 68
column list 68
COMMIT command 79
comprehensive design

Deploy design option 65
Optimize with queries option 65
Update statistics option 65

configuration files
redistributing, to nodes 27

copycluster command 52
COPY command

aborting 79
using 77, 78

CPU throttling 6
Current Fault Tolerance at Critical Level 36

D
database

copying 53
copying, from one cluster to other 52

database access
dbName parameter 47
dbPassword* parameter 47
dbPromptForPassword* parameter 47
dbUser* parameter 47

[82]

database access settings 47
Database Designer

design type, selecting 65-67
used, for creating projections 62-64

Database_snapshot function 54
database snapshot functions

using 53
database snapshots

creating 54-57
Data Collector

components, monitoring 41
disabling 40
enabling 40

Data Definition Language (DDL) 35
Data Manipulation Language (DML) 35
data retention policy

configuring 41
viewing 40

data transformation 80
data transmission

bwlimit parameter 48
checksum parameter 48
encrypt parameter 48
hardLinkedLocal parameter 48
port_rsync parameter 48

dbName parameter 47
dbNode parameter 49
dbPassword* parameter 47
dbPromptForPassword* parameter 47
dbUser* parameter 47
design types

comprehensive design 65
query-specific design 65-67

DIRECT load method 79
DISABLE_LOCAL_SEGMENTATION

function 20
DROP_LOCATION() function 76
Durable snapshots 53
Dynamic CPU frequency scaling 6

E
elastic cluster

disabling 18
enabling 18

elastic cluster rebalancing
monitoring 21

ENABLE_LOCAL_SEGMENTS function 20
encrypt parameter 48
End-user License Agreement (EULA) 12
event_code 38
event_code_description 38
event_expiration 38
event_posted_timestamp 38
event_problem_description 38
events

about 36
Current Fault Tolerance at Critical Level 36
list 36, 37
Loss Of K Safety 36
Low Disk Space 36
Node State Change 37
Read Only File System 36
Recovery Error 37
Recovery Failure 37
Recovery Lock Error 37
Recovery Projection Retrieval Error 37
Refresh Error 37
Refresh Lock Error 37
Stale Checkpoint 37
through ACTIVE_EVENTS system table 38
through logfiles 37
Timer Service Task Error 37
Too Many ROS Containers 36
Tuple Mover Error 37

F
failed node

replacing, different name used 26
replacing, IP address used 26

full database snapshots
most recent snapshot, restoring from 51
restoring 50
schema, restoring 51
specific snapshot, restoring from 51
table snapshots, restoring 51

G
GET_DATA_COLLECTOR_POLICY()

function 40

[83]

H
hardLinkedLocal parameter 48
hosts

removing, from cluster 24

I
iconv command 77
increment backup

working 50
installation

Vertica 7-15
IP addresses

changing, of Vertica cluster 29-31

K
K-safety

about 69
buddy projections, creating 69
table partitioning 69

K-safety level
lowering 23

L
load methods

AUTO load method 79
DIRECT load method 79
TRICKLE load method 79

local segmentation
best practices 21
disabling 19, 20
enabling 19, 20

location performance
measuring 74
setting 75

logfiles
events, looking at 37, 38

Loss Of K Safety 36
Low Disk Space 36

M
Management Console. See Vertica

Management Console

mapping
about 48
backupDir* parameter 49
backupHost* parameter 48
dbNode parameter 49

MARK_DESIGN_KSAFE function 23
Massively Parallel Processing. See MPP
materialized views. See MVs
MAXIMUM_SKEW_PERCENT

parameter 18
MEASURE_LOCATION_PERFOR-

MANCE() function
used, for location performance

measuring 74
MergeOutInterval parameter 73
Mergeout operation 72
method 22
miscellaneous

objects* parameter 46
overwrite parameter 46
restorePointLimit* parameter 46
retryCount parameter 47
retryDelay parameter 47
snapshotName* parameter 46
tempDir parameter 46
verticaBinDir parameter 46
verticaConfig parameter 46

miscellaneous settings 46
monitoring

through system tables 33, 35
most recent snapshot

restoring from 51
MoveOutInterval parameter 73
MoveOutMaxAgeTime parameter 73
Moveout operation 71, 72
MoveOutSizePct parameter 73
MPP 5
MVs

and indexes versus projections 60

N
NO COMMIT command 79
node_name 38
nodes

adding, administration tools used 22, 23
adding, in Vertica 21

[84]

adding, Management Console used 22
configuration files, redistributing to 27
method 22
removing, in Vertica 23
replacing, administration tools used 27, 28
replacing, IP address used 25
replacing, same name used 25

nodes, removing
administration tools used 23
hosts, removing from cluster 24
K-safety level, lowering 23
Management Console used 24

Node State Change 37
Non-durable snapshots 54

O
objects* parameter 46
overwrite parameter 46

P
port_rsync parameter 48
preinstallation steps, Vertica

disk space, requisites 7
Dynamic CPU frequency scaling 6
swap space 6

projections
about 59
base query 68
column encoding 68
column list 68
creating, Database Designer used 62, 64
K-safety 69
manually creating 67
segmentation 68
segmented projections 62
sort order 68
superprojection 60
unsegmented projections 61
versus MVs and indexes 60

Q
query-specific design

about 65
Deploy design option 66
Update statistics option 66

R
Read Only File System 36
Read Optimized Store (ROS) 37, 70
Recovery Error 37
Recovery Failure 37
Recovery Lock Error 37
Recovery Projection Retrieval Error 37
Refresh Error 37
Refresh Lock Error 37
Remove node button 24
RemoveSnapshotInterval parameter 57
reporting_node 38
RESTORE_LOCATION() function 76
restorePointLimit parameter 50
restorePointLimit* parameter 46
RETIRE_LOCATION() function 76
retryCount parameter 47
retryDelay parameter 47

S
scaling factor 17, 18
scaling factor settings

setting 19
viewing 19

schema
creating 50
restoring 51

segmentation, projections 68
segmented projections 62
SET_CONFIG_PARAMETER() function 40
SET_DATA_COLLECTOR_POLICY()

function 41
SET_LOCATION_PERFORMANCE()

function
using 75

SET_SCALING_FACTOR function 19
snapshotName* parameter 46
SnapshotRetentionTime parameter 58
snapshots

Durable snapshots 53
Non-durable snapshots 54
removing 57

sort order 68
specific snapshot

restoring from 51

[85]

Stale Checkpoint 37
storage locations

adding 73
performance, measuring 74
performance, setting 75
tweaking, functions used 75, 76

storage location tweaking functions
ALTER_LOCATION_USE() function 75
DROP_LOCATION() function 76
RESTORE_LOCATION() function 76
RETIRE_LOCATION() function 76

storage model
about 70
storage locations, adding 73-75
TM operations 71-73

sudo command 7
swap space 6
system tables

about 33
example 35
schemas 34

T
table partitioning 69
table snapshots

creating 50
restoring 51

tempDir parameter 46
Timer Service Task Error 37
TM

about 70
parameters, tuning 72, 73

TM operations
Mergeout 72
Moveout 71, 72

TM parameters
ActivePartitionCount 72
MergeOutInterval 73
MoveOutInterval 73
MoveOutMaxAgeTime 73
MoveOutSizePct 73

Too Many ROS Containers 36
TRICKLE load method 79
Tuple Mover. See TM
Tuple Mover Error 37

U
unsegmented projections 61

V
vbr.py configuration file

database access settings 47
data transmission 48
generating 45
mapping 48
miscellaneous settings 46

vbr.py utility
running 49

vby.py command 51
V_CATALOG schema 34
Vertica

about 5
installing 7-15
key points 5
monitoring 33
nodes, adding 21
nodes, removing 23
preinstallation, steps 6

verticaBinDir parameter 46
Vertica cluster

IP addresses, changing 29-31
verticaConfig parameter 46
Vertica Management Console

about 40
used, for adding nodes 22
used, for removing nodes 24

V_MONITOR schema 34

W
Write Optimized Store (WOS) 37, 70

Thank you for buying
HP Vertica Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Scaling Big Data with Hadoop
and Solr
ISBN: 978-1-78328-137-4 Paperback: 144 pages

Learn exciting new ways to build efficient, high
performance enterprise search repositories for
Big Data using Hadoop and Solr

1. Understand the different approaches of making
Solr work on Big Data as well as the benefits
and drawbacks.

2. Learn from interesting, real-life use cases for
Big Data search along with sample code.

3. Work with the Distributed Enterprise Search
without prior knowledge of Hadoop and Solr.

Big Data Analytics with R
and Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop
to turn your data analytics into Big Data analytics

1. Write Hadoop MapReduce within R.

2. Learn data analytics with R and the
Hadoop platform.

3. Handle HDFS data within R.

4. Understand Hadoop streaming with R.

5. Encode and enrich datasets into R.

Please check www.PacktPub.com for information on our titles

Getting Started with Greenplum
for Big Data Analytics
ISBN: 978-1-78217-704-3 Paperback: 172 pages

A hands-on guide on how to execute an analytics
project from conceptualization to operationalization
using Greenplum

1. Explore the software components and appliance
modules available in Greenplum.

2. Learn core Big Data Architecture concepts and
master data loading and processing patterns.

3. Understand Big Data problems and the Data
Science lifecycle.

Implementing Splunk: Big Data
Reporting and Development for
Operational Intelligence
ISBN: 978-1-84969-328-8 Paperback: 448 pages

Learn to transform your machine data into valuable
IT and business insights with this comprehensive
and practical tutorial

1. Learn to search, dashboard, configure, and
deploy Splunk on one machine or thousands.

2. Start working with Splunk fast, with a tested
set of practical examples and useful advice.

3. Step-by-step instructions and examples with a
comprehensive coverage for Splunk veterans
and newbies alike.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing Vertica
	Understanding preinstallation steps
	Swap space
	Dynamic CPU frequency scaling
	Understanding disk space requirements

	Installing Vertica
	Summary

	Chapter 2: Cluster Management
	Comprehending the elastic cluster scaling factor
	Enabling and disabling an elastic cluster
	Viewing and setting scaling factor settings
	Enabling and disabling local segmentation
	Understanding the best practices in cluster management
	Monitoring elastic cluster rebalancing

	Adding nodes in Vertica
	Method
	Using the management console to add nodes

	Adding nodes using administrative tools

	Removing nodes in Vertica
	Lowering the K-safety level
	Removing nodes using administrative tools
	Removing nodes using the management console
	Removing hosts from a cluster

	Replacing nodes
	Replacing a node using the same name and IP address
	Replacing a failed node using a different name and IP address
	Redistributing configuration files to nodes
	Using administration tools to replace nodes with different names and IP addresses

	Changing the IP addresses of a
Vertica cluster
	Summary

	Chapter 3: Monitoring Vertica
	Monitoring through the system tables
	Understanding a system table example

	Looking at events
	Looking at events through logfiles
	Looking at events through the ACTIVE_EVENTS system table

	Monitoring Vertica through the Management Console
	Retaining monitoring information
	Enabling and disabling Data Collector
	Viewing the current data retention policy
	Configuring data retention policies

	Monitoring data collection components
	Summary

	Chapter 4: Backup and Restore
	Requirements for backup hosts
	Generating the vbr.py configuration file
	Miscellaneous settings
	Database access settings
	Data transmission during the backup process
	Mapping

	Creating full and incremental backups
	Understanding the requirements
	Running vbr.py
	Incremental snapshots
	Creating schema and table snapshots

	Restoring full database snapshots
	Restoring from a specific snapshot
	Restoring from the most recent snapshot
	Restoring schema and table snapshots
	Copying a database from one cluster to another
	Copying the database

	Using database snapshot functions
	Creating database snapshots
	Removing snapshots

	Summary

	Chapter 5: Performance Improvement
	Understanding projections
	Looking into high availability and recovery
	Comprehending unsegmented projections
	Comprehending segmented projections

	Creating projections using Database Designer
	Comprehensive design
	Query-specific design

	Creating projections manually
	Column list and encoding
	Base query
	Sort order
	Segmentation
	Keeping K-safety (K-Safe) in mind

	Understanding the storage model in Vertica
	Tuple Mover operations
	Moveout
	Mergeout
	Tuning Tuple Mover

	Adding storage locations
	Adding a new location
	Measuring location performance
	Setting location performance
	Understanding storage location tweaking functions

	Summary

	Chapter 6: Bulk Loading
	Using the COPY command
	Aborting the COPY command

	Load methods
	Data transformation
	Summary

	Index

