
www.allitebooks.com

http://www.allitebooks.org

IBM Rational ClearCase 7.0:

Master the Tools That Monitor,

Analyze, and Manage Software

Configurations

Take a deep dive into extending ClearCase 7.0 to

ensure the consistency and reproducibility of your

software configurations

Marc Girod

Tatiana Shpichko

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

IBM Rational ClearCase 7.0: Master the Tools That

Monitor, Analyze, and Manage Software Configurations

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2011

Production Reference: 1190411

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849680-12-7

www.packtpub.com

Cover Image by Tatiana Shpichko (tanya.shpichko@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors

Marc Girod

Tatiana Shpichko

Reviewers

Fernán Izquierdo

Torben Rydiander

Development Editor

Rukhsana Khambatta

Technical Editor

Neha Damle

Indexer

Rekha Nair

Foreword

Lars Bendix

Editorial Team Leader

Vinodhan Nair

Project Team Leader

Priya Mukherji

Project Coordinator

Shubhanjan Chatterjee

Proofreader

Aaron Nash

Graphics

Geetanjali Sawant

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

Foreword

My irst encounter with software coniguration management was way back in the
eighties while at university – and way before I knew that it was called software
coniguration management. We were doing a student project and were ive people
working on this group project. I was coding away, slipping into experiments that
eventually took the wrong directions – now where was that undo button? We were
stepping on each other's toes overwriting changes from others or updating iles
with unpleasant and surprising side effects. All this hampered our productivity
and caused us to have to work late nights to meet our deadline.

The professor, who later was to become my Master's thesis supervisor, told me that it
was called software coniguration management and that I would get the Nobel Prize
in Computer Science if I solved the problem. He was involved in a start-up suffering
more or less the same kind of problems. When I graduated I got a job in the industry
– but problems persisted. We compiled older versions of modules, forgot to link in
a couple of iles in the executable or linked versions that had not been re-compiled.
Often not causing big disasters, but still a mess that created a general feeling of
confusion and uncertainty and caused quite a lot of rework. Apparently there was
something they had not taught us at university. So after a while I returned to the
university to do research and teaching (and from time to time help out companies)
in software coniguration management.

Later on I learned that (software) coniguration management to companies (and
standards organizations) meant something slightly different. It was more of an
administrative and bureaucratic control activity with an emphasis on managing
changes, preserving the integrity of the product and providing traceability between
artefacts. This is also important for a project. However, it is comparable to putting
brakes on the project in order to avoid that it runs out of control, whereas the software
coniguration management I had known was more like providing a team with a
powerful accelerator. If you want to guide a project to a successful result you will need
both an accelerator and a brake – and to know when and how to apply each of them
(actually some successful Formula-1 drivers apply both at the same time going out of
sharp turns). Books that explain about (SCM)brakes and how to use them are plenty
and 13 a dozen whereas there is written surprisingly little about (SCM)accelerators – it
seems to be practiced by people that are too busy to be able to "preach" it.

www.allitebooks.com

http://www.allitebooks.org

This is why this book is so valuable to practitioners as it deals with accelerators. How
you avoid all those small mistakes that create a big mess and make your working life
miserable. Software development is by nature most often the collaborative effort of a
team of people. This team may be located locally or it may (as it happens more and
more frequently because experts are hard to come by locally) be a distributed team.
No matter what, people should be allowed to be productive and to work together
as eficiently as possible. Build management with fast and reproducible builds is
important for traditional development, but becomes even more important if you
want to go with agile development methods. Imagine what would happen to the
Test-Driven Development cycle of "write unit test(s), build the system, run the system,
write code" if the "build the system" phase would take two hours to complete. Agile
methods thrive on quick, immediate feedback (one of Kent Beck's fundamental values
for Extreme Programming) and therefore demand fast (and reliable) builds.

During my years as a teacher, I have time and again met students who brought the
latest version of a document or some code with them to our supervising meetings
instead of the version they had sent me one or two days earlier. Every year I
experience the thrill of seeing students on our second year project course step on
each other's toes and pull the rug from under each other – at least in the beginning of
the project period. From what I have seen during years of interaction with industry
the situation in many companies is not that much better. Apparently good software
coniguration management behaviour is not baked into our DNA – and sadly
neglected in the teaching of software engineering at most universities.

This is why this book is so valuable to everyone involved in software development.
Most often if we follow our individual instincts we tend to ignore the communication
and co-ordination that has to take place in a team effort and confusion and
misunderstanding will be the consequence. Key concepts like integrity,
reproducibility and traceability – good, old-fashioned coniguration management
concepts – are fundamental building bricks in any solution to that situation. So easy
to pronounce, yet so dificult to implement and practise – Marc and Tanya take you
by the hand and show you how.

I did not get my Nobel Prize, nor will this book earn Marc and Tanya the Nobel Prize
in Computer Science. Not because the book isn't good – it is excellent – but because
it is too practical and hands-on. Marc and Tanya are a strong team with many years
of practical experience from both software coniguration management and ClearCase
usage. They are both driven by a strong passion for doing things the right way – and
a deep curiosity for how to use a tool for most beneit and for exploring and pushing
the boundaries of a tool's capabilities. ClearCase is a wonderfully powerful tool – but
also somewhat dificult to master in particular for its more advanced features. I have
seen students at computer labs shoot off both their feet in two seconds lat – and still
walk away at the end of the lab thinking "what an awesome tool with all this cool
stuff that it can do" – and they only scratch the surface in their labs.

www.allitebooks.com

http://www.allitebooks.org

This is why this book is so valuable because it brings together two capacities – one
explaining the use of the other. If you go for a tool like ClearCase it should be
because you want and need something more than "the ordinary SCM tool" can offer
you. Marc and Tanya explain you how to take full advantage of ClearCase (and some
of its more advanced capabilities) through a series of hands-on examples.

If you do not use ClearCase you may still want to read this book. Just skip the
speciic details and code examples related to ClearCase and enjoy the general
guidelines and principles about software coniguration management that Marc and
Tanya introduce and explain. At the end of the book you'd probably wish you did
use ClearCase.

Lars Bendix, Ph. D., ETP
Lund University, Sweden
March, 2011

Lars Bendix is an associate professor at the Department of Computer Science, Lund
University, Sweden where he teaches a dedicated course on software coniguration
management. His main research interest is software coniguration management and
how it can be used to support software development processes. He is also interested
in agile processes and their pedagogical use in software engineering education. He
received a Master's Degree in Computer Science from Aarhus University, Denmark
in 1986 and a PhD Degree from Aalborg University, Denmark in 1996.

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Marc Girod grew up and graduated in France (MSci - Supélec 1983). He moved
to Finland, where he lived for over 20 years, and then to Ireland. He worked irst as
a software developer, later as a ClearCase administrator and build engineer. He is
currently working for LM Ericsson in Athlone, Ireland. He invested similar passion
into several technologies over his career: Transputers and Occam2, C++, and since
1994, ClearCase. He is interested in contemporary philosophy (existentialism and
postmodernity).

Tatiana (Tanya) Shpichko was born in Moscow, Russia. She got an early
interest for mathematics and programming, which developed into a lifelong passion
in the secondary mathematical school number 179. She graduated from Moscow
State Technical University of Electronics and Mathematics with an MSci degree in
Computer Science. Tatiana started with software development back in 1989, and has
been programming in Pascal, C, C++, and Java. She irst started to use ClearCase as a
developer and then moved to work as a ClearCase administrator in 2005.

Tatiana has lived and worked in Finland for the past 10 years.

Tanya and Marc share a passion for scuba diving and underwater photography.

To each other, and to all the octopi, morays, and whale sharks of
the world oceans. And to Sergey and Dominique, who have been
helping and inspiring us all the way along.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Fernán Izquierdo (Madrid, 1981) is a technology and strategy freelance consultant
with a strong background in software solutions and marketing strategies. Thus, in
order to approach problems in the most practical but creative ways, he has received
a very multidisciplinary education. This education includes Master Degrees in
Telecommunications Engineering, Marketing, Cognitive Systems, and Interactive
Media; a Master in International Business Administration (iMBA); and a Master
Diploma in Filmmaking.

As a technology consultant, in the past few years, he has managed and led
consultancy teams for IBM Software Services. All IBM inal customers formed part
to the Fortune Global 500 biggest companies. His tasks included technical support of
the sales team, project planning, adaptation of IBM software products to customer
needs, technical implementation of the solution in customer site, customer training,
and post-sales support.

Besides, he has also worked for the United Nations Headquarters in New York,
in the development of the NGOs worldwide web management system for the UN
Department of Economic and Social Affairs. Other employees include the Dublin
Institute of Technology and Zero Um Engenharia in Brazil. He has published 5 IEEE
technical papers until 2011.

As a strategic marketing specialist, he has designed the worldwide commercial
launch of the Reactable musical instrument in 2009, by Reactable Systems. His tasks
included deining sales and marketing strategies and creating campaigns accordingly
as well as customer and partners (communication, branding and supply chain)
relations management. At the moment (2011), he is working for the Spanish
Embassy in Tokyo as a marketing and international trade advisor.

www.allitebooks.com

http://www.allitebooks.org

He also believes that rich personal experiences are vital for a full life, both personally
and professionally. Therefore, until 2011 he has lived in Spain, The Netherlands,
Norway, Ireland, Brazil, United States, and Japan. This trajectory has resulted in him
being luent in Spanish, English, Catalan, Portuguese, and Japanese. Moreover, he
has obtained more than nine fellowships around the world.

I would like to thank everybody who has shared a smile with me
anytime anywhere. Maybe that smile led to a thought, the thought
led to a discovery, the discovery led to a decision, the decision led to
an action…and the action led to a word in this book.

Torben Rydiander has since 1984 worked with IT in the inancial area in
Denmark. Torben has since 2000 worked as Tool Specialist, with main focus on
Change and Coniguration Management, in the largest bank in the Nordic countries.
The tools are mainly IBM Rational tools such as Software Architect, ClearCase,
and ClearQuest. Torben is at the moment evaluating Rational Team Concert and
hopes to implement it in the bank in 2011. His spare time is spent on golf and with
his grandchildren.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a

range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book

library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
Fully searchable across every book published by Packt

Copy and paste, print and bookmark content

On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib

today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notiied! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

•

•

•

Table of Contents

Preface 1

Teaser 7

But first the scenario 7

Time to review the exhibited functionality? 11

Chapter 1: Using the command line 13

Rationale (pun intended) 13

Against intuition 14

The continuity of reasoning 15

Illustrations 16

Text, shell, and terminal 16

Perl 18

Perl documentation 19

Windows command prompt and alternatives 20

GUI versus text mode 22

ClearCase documentation 24

Summary 26

Chapter 2: Presentation of ClearCase 27

SCM history 28

ClearCase originality 29

Virtual file system 29

Auditing, winkin 30

The main concepts 31

Vobs and views 32

Deeper into views 35
Versioning mechanism 35

Views properties 38

Registry, License, and even Shipping servers 41

Table of Contents

[ii]

Config specs 42

Summary 47

Chapter 3: Build Auditing and Avoidance 49

Configuration records 49

Flat or hierarchical: clearaudit vs. clearmake 50

Makefile syntaxes—compatibility modes 52

A first case with clearmake 53

Recording the makefiles 57

Using remote subsystems 59

Remote dependencies 61

Multiple evaluation of dependencies 64

Validation 68

Error reports and their analysis 69

State of derived objects and reference count 72

Removing derived objects 73

Dependencies on the environment and on tools 75

Reproducing the build 76

Litmus test 79

Tying some knots 81

Ties between vobs and views 82

Distributed or parallel builds 82

Staging 85

Application to other tasks than mere builds 87

Summary 87

Chapter 4: Version Control 89

Making elements 90

Checkout and checkin 92

Versioned directories 93

lost+found 93

Removing files 96

Looking at the view extended side of things 97

Version tree 98

Recovering files 99

Hard links 101

Evil twins 101

Eclipsed files 103

Writable copies 103

Differences and annotations 104

Misguided critiques 105

Summary 106

Table of Contents

[iii]

Chapter 5: MultiSite Concerns 107

Distribution model 108

Multitool, and MultiSite Licenses 109

Replicas and mastership 109

Avoid depending on mastership 111

Branches 112

Labels 113

Other types 114

Global types and admin vobs 115

Shortcomings of MultiSite 118

Summary 120

Chapter 6: Primary Metadata 121

Metadata in the version extended view 121

Types and instances 123

Labels or branches? 125

Parallel development 126

Config specs 126

Floating and fixed labels 128

Baselines and incremental labels 131

Branches and branch types 132

Delivery 135

Archiving 137

Rollback 138

Use of locking 139

Types as handles for information 141

Summary—wrapping up of recommended conventions 141

Chapter 7: Merging 143

Patching and merging 145

Patching text files 145

Managing contributions 147

Merging directories 156

Rebase or home merge 160

Complex branching patterns 161

Rollback of in-place delivery 162

Bulk merges 165

Evil twins 168

Summary—wrapping up 168

Table of Contents

[iv]

Chapter 8: Tools Maintenance 169

Why? 170

Dependency control 170

Safety with updates 171
Explicitly declare tools as dependencies? 171

ClearCase has better to offer! 174

Referential transparency 174

Flexibility 175

Tool fixes 176

Indirect dependencies 176

MultiSite replication 177

How? 177

Example—perl installation under a ClearCase vob,

with multi-platform support 178
Importing CPAN modules 178

Installing the Perl distribution 181

Upgrading the distribution 182

Installation 183

Import 185
Minor checks prior to importing 185

Branching and labeling 185

Issues during the import 186

Operating system 186

Shared libraries 187

Licenses 188

MultiSite and binary elements 189

Labels, config specs, and multiple platforms 189

Special cases: Java 1.4.2_05 on Linux 190

Naming issues: acquisitions, splits, mergers 190

Summary 191

Chapter 9: Secondary Metadata 193

Triggers 194

NO_RMELEM 195

CHECK_COMMENT 196

REMOVE_EMPTY_BRANCH 197

Comments 199

Scrubbers 200

Attributes 203

Hyperlinks 205

Type managers and element types 208

The magic files 208

User defined types 210

Table of Contents

[v]

Type without a new manager 210

New type manager 210

Native types 211

Binary types 212

Text type 213

Summary 215

Chapter 10: Administrative Concerns 217

Top-down 218

License and registry 219
Synchronization between regions 221

Monitoring client activity 223

Location broker 225

Remote monitoring infrastructure 227

Scheduler 228

Storage and backup 231

Vob size 232

Authentication 234

Importing files to ClearCase 235
Even UCM has to use Perl 235

Relocating 236

Importing with synctree 238
ClearCase::Wrapper 240

Copying a vob 240
Moving vob storage 240

Copying vob by replication 241

Re-registering a replica 242

Views cleanup 242

ClearCase and Apache integration 243

Installation tricks 246

Bottom-up 246

ALBD account problems 246

Changing the type manager 248

dbid and the Raima database 248

Protecting vobs: protectvob, vob_sidwalk, fix_prot 250

Cleaning lost+found 254

Summary 256

Chapter 11: MultiSite Administration 257

Setting up the scenery 258

Permissions preserving 260

Connectivity 260

Configuration 261

Export 262

Table of Contents

[vi]

Shipping/routing 262

Import 264

Receipt handler 267

Shipping server 267
Setting up the scheduler on a shipping server 268

Monitoring 268

Client side (remote host) 268

Server side (local host) 269

Troubleshooting 270

Missing oplogs 270

History of exports 272

Consequences of replicas being out of sync 273

Export failures 275

Incompatibility between ClearCase releases 276

MultiSite shipping problems—a tricky case 277

Summary 281

Chapter 12: Challenges 283

Java 283

Problems with the Java build process 283

.JAVAC support in clearmake 284

Ant and XML 292

Audited Objects 293

MultiSite 293

Maven, and Buckminster 294

Mercurial and git 294

Perspectives in Software Engineering 295

Eclipse and OSGI 295

Virtual machines 296

Conclusion 296

Chapter 13: The Recent Years' Development 297

Historical perspective 297

Triggers 298

Snapshot views 299

Express builds 302

UCM 302

Web access and remote clients 314

CM API 315

Summary 316

Table of Contents

[vii]

Conclusion: ClearCase Future 317

ClearCase is dead, long live ClearCase! 322

The legacy of ClearCase 323

Some errors to avoid, or the limits of ClearCase 323

Appendix 327

Chapter 1 327

Chapter 2 327

Chapter 3 327

Chapter 4 327

Chapter 6 328

Chapter 7 328

Chapter 8 328

Chapter 9 328

Chapter 10 328

Chapter 11 329

Chapter 12 329

Chapter 13 329

Conclusion 329

Index 331

Preface
Both of us are essentially developers. One way or another, we took charge of
building the software for our colleagues, and gradually moved into making this
our main job. We have been involved in support and maintenance; evaluation,
planning, and advocacy; installation and updates; design and implementation
of customizations, and even to some extent, in design and implementation of
enhancements and prototyping what could be a new SCM tool. Fundamentally,
we remained developers.

We know that developers are creative and passionate people who do not like to be
disturbed and who want to focus on their work, which is often at the limit of their
own skills. These people are likely to leave to others mundane issues of planning,
organization, politics. This is of course dangerous and often abused. One problem
is that under the word communications one too often means either propaganda, or
secret diplomacy and information concealing. Information doesn't low well through
the mediation of people who share neither the concerns nor the competences. This
is not only an issue of conspiracy: there is something structural in the fact that
competences, and even the concerns, are not being shared. Competences get acquired
slowly, as a by-product of dedication and investment, and this process inevitably
results in specialization. It is not simply a matter of e-learning.

We are deeply concerned about the future, the present, and the past of SCM. For
what we witness, neither the eficiency nor the quality of software development have
improved in the last period, and the trends are bleak.

Main stream solutions are always dull. It becomes worrisome when one can identify
forces that drive them towards obviously wrong directions. This is how we analyze
the excessive value given to visualization, and which in fact aims at making ignorance
socially acceptable. Visual interfaces hide more than they show, and they do it on
generic bases, which does not serve the speciic needs of specialists. Their opacity is
often overwhelmingly hard to reverse-engineer.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

ClearCase was not a main stream tool. If it became one, it is at the expense of losing
what made it valuable.

Evolution, in the absence of progress, works by throwing away the species which
couldn't prove themselves useful, and bringing in new candidates at random. This
is a fate we'd like to save ClearCase from; we feel that there is something there to
keep. Communicating this to our peers, developers, is the ambition of this book.
We found in writing it that despair didn't prevent some fun. We hope to be able to
communicate some of it too!

What this book covers
The Teaser is there to raise questions about what to expect from a tool which pretends
to revolutionize Software Coniguration Management.

Chapter 1—Using the Command Line presents and attempts to justify one important
bias, and focus of this book: the power of the command line interface, as opposed to
GUIs, and the sense of security and control it offers to the end user.

Chapter 2—Presentation of ClearCase guides the reader into a review of the scenery,
as light as possible: what are the main elements which build up the originality of
ClearCase, and with respect to what historical background.

Chapter 3—Build Auditing and Avoidance is the beef of this book, upfront! It is a
technical chapter which explains what to pay attention to in order to get a real
beneit from ClearCase. It explores the core around which revolves the conceptual
integrity of the product.

Chapter 4—Version Control drives back to the bread-and-butter of Software
Coniguration Management, showing that an exceptional tool as ClearCase must
also provide the basic functionalities offered by its competition.

Chapter 5—MultiSite Concerns brings the focus on issues that it is expensive to ignore
at the time of early decisions, and to be reminded later. We show that provided these
concerns are well understood, they build up no restrictions, and may on the contrary
guide to elegant as well as robust designs.

Chapter 6—Primary Metadata is a guide to an eficient yet simple use of the main tools,
labels and branches, that ClearCase provides to manage—identify, discriminate,
access—the user data during the critical phases of the development.

Chapter 7—Merging tries to make essential simplicity emerge from the artiicial
complexity of common misuses. Merging is a necessary functionality, which only
becomes frighteningly complex when abused.

Preface

[3]

Chapter 8—Tools Maintenance turns to the important concern of managing the
development environment, in order to guarantee the consistency and reproducibility
of builds. It shows how ClearCase offers there again a powerful, elegant, and
eficient solution to a hard problem.

Chapter 9—Secondary Metadata makes some well informed choices among the
profusion of weapons available under the ClearCase umbrella. It explains some
sophisticated functionalities in detail, and debunks a few popular myths.

Chapter 10—Administrative Concerns guides the end user into what she needs to know
from the ClearCase administrator's tasks, which may not all be useful every day, but
should be easily reachable when needed.

Chapter 11—MultiSite Administration focuses on aspects of which even end users
should have a basic understanding, in order to form correct expectations and to
collaborate eficiently in distributed environments.

Chapter 12—Challenges turns to some alleged weaknesses of the ClearCase model,
and especially to the apparent mismatch of its build model with the main stream
process of Java development. It argues that the foundation is sound and well worth
being further developed to catch up with functionalities offered by other tools.

Chapter 13—The Recent Years' Development is a critical review of the trends that have
steered the ClearCase product. In our view, what made the exceptional value of
ClearCase was lost from sight, and it is urgent to bring it back in the limelight.

Our Conclusion—ClearCase Future ends up as an invitation to collaborate on an
open development of the most elegant functionalities brought by ClearCase and
developed in this book.

What you need for this book
This book doesn't require any particular competences or knowledge. Its focus on
practical examples will however make sense only for readers with access to a
ClearCase development environment. Prior experience of programming languages and
of collaborative software development, including building, versioning, possibly tool
installation and maintenance, will undeniably help to share our sense of elegance.

Open mind and critical spirit towards authority, main stream and tradition, are probably the
most valuable assets we hope for in our readers.

Preface

[4]

Who this book is for
If you are a developer who wants to use ClearCase for software development then
this book is for you. This book is not for experts, but it will certainly challenge your
technical skills.

While ClearCase concepts and tools are presented for those unfamiliar with the tool,
an ability to use the command line as well as some luency with shell scripting will
certainly be an advantage.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

#include <stdio.h>

#include "wstr.h"

void wstr(const char* const str) {
 printf("%s\n", str);
}

We showed a reasonable amount of code, and of transcripts. We faced there the
common problem of having to wrap long lines of text in a way which would allow
our reader to understand what the original lines actually were.

We chose to cut the lines ourselves, to pad the irst line with '#'s to the right margin
(72 characters), and to right-align any continuation lines.

Italics will be used for general emphasis and less important concepts.

References to web pages are marked as URLs in the chapters' text, and the explicit
URL list along with the chapters' and corresponding page numbers can be found
from the Appendix.

New terms and important words are shown in bold.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Teaser
Let's start with a scenario, backed by a few brief transcripts. They demonstrate some
functionality, which is not traditionally expected from an SCM tool, because it is
supported only by ClearCase. Wait until the end of this part for a detailed review,
and see the annex for the full sources of Makefile, pathconv, and VobPathConv.pm.

Many details of this teaser may remain obscure at this stage. We shall come back to
them in the body of the book, and shall use this example to illustrate some issues,
and the solutions we propose for them.

In our conclusion, we'll ask you to think of the unique functionalities of ClearCase,
these which make it glow in the dark of today SCM, and to ask yourself: How could I
tease a smart colleague, not necessarily aware of ClearCase, into wishing they were available?

And at this point, we wish you'll be able to implement ...about this.

But first the scenario
We intend to edit a ile our own application uses—be it for a ix or an enhancement:
it doesn't matter.

We won't show our application, but will focus on this ile: VobPathConv.pm.
It is not one of the iles that directly implement the main logic of our application,
but rather a resource we use. In our case, it is a Perl module (a library), originally
developed for a non-related purpose, and providing (among others) a function,
localtag2tgt, returning the vob tag in a remote region (this of our registry server,
typically UNIX) corresponding to a vob tag in the local region (may be either UNIX
or Windows).

Teaser

[8]

Many strange words, but do not panic! We'll review them in Chapter 2, Presentation
of ClearCase. It is enough for our purposes to consider that this module serves an
ancillary purpose related to portability between environments (a vob tag is the path
under which a ClearCase database is mounted as a ile system).

We noticed that the function returns an empty string in case of error (no
corresponding path found), and consider making the function die (that is abort, in
Perl terms) instead.

Here is a irst transcript (more on versions, branches, and rules in Chapter 4,
Version Control):

$ cd /vob/perl/lib/site-lib/5.10.0/ClearCase

$ cleartool ls VobPathConv.pm
VobPathConv.pm@@/main/imp/4 Rule: APP [-mkbranch mg]

We notice that the latest published version of the module bears a label we didn't
place ourselves (labels will be covered in Chapter 6, Primary Metadata, although we
will keep using them before).

APP is a label type of our own, but JOE_1.35 is not!

$ cleartool des -fmt "%l\n" VobPathConv.pm
(APP, APP_2.57, JOE_1.35)

Looking at the label type, we ind an attribute (of type ConfigRecord—not a
predeined type: this might not make full sense until Chapter 9, Secondary Metadata,
but it will then) pointing to the full path of a derived object (see Chapter 3, Build
Auditing and Avoidance), which was used to apply it:

$ cleartool des -aattr -all lbtype:JOE_1.35@/vob/perl
JOE_1.35
 Attributes:
 ConfigRecord = "/vob/apps/joe/t/all.tests@@--04-01T07:51.345765"

We check that we can access this vob. We mount it. The derived object has not been
scrubbed (we'll discuss scrubbing in Chapter 10, Administrative Concerns):

$ cleartool mount /vob/apps
$ cleartool lsdo /vob/apps/joe/t/all.tests@@--04-01T07:51.345765
--04-01T07:51.345765 "all.tests@@--04-01T07:51.345765"

Teaser

[9]

We examine the conig record and ind a makeile referenced there (conig records
come in Chapter 3):

$ cleartool catcr /vob/apps/joe/t/all.tests@@--04-01T07:51.345765
Derived object: /vob/apps/joe/t/all.tests@@--04-01T07:51.345765
Target all.tests built by mg.user
Host "tarzan" running Linux 2.6.18-128.el5
Reference Time 2010-04-1T07:51:07Z, this audit started ###############
 2010-04-01T07:51:07Z
View was vue.fiction.com:/views/jane/joe.vws
Initial working directory was /vob/apps/joe/t

MVFS objects:

/vob/apps/joe/t/Makefile@@/main/jn/1 <2009-10-06T13:02:29+01>
/vob/apps/joe/t/all_tests@@--04-01T07:51.345765
/vob/apps/joe/t/pathconv.cr@@--04-01T07:51.345754

non-MVFS objects:

/opt/rational/clearcase/etc/builtin.mk <2008-04-30T15:50:51+01>

Build Script:

 touch all.tests

We can set our conig spec to use the label (more on conig specs in Chapter 2—these
are sets of rules to select versions):

$ ct catcs
element * CHECKEDOUT
mkbranch mg
element * JOE_1.35

This allows us to run the test case, using the same build script as recorded
(winkin will be developed in Chapter 3):

$ cd /vob/apps/joe/t
/vob/apps/joe/t> clearmake all.tests
Wink in derived object "pathconv.cr"
Wink in derived object "all.tests"
/vob/apps/joe/t> clearmake all.tests
`all.tests' is up to date.

Teaser

[10]

We check out the ile (VobPathConv.pm) and edit it: when the vob tag path is
unknown, instead of returning an empty string, set the function to die. Here is
the diff (this is only the irst ix):

< return (-d $tag? $tag : '') if $locreg eq $tgtreg;
> if ($locreg eq $tgtreg) {
> die unless -d $tag;
> return $tag;
> }

We run the test case again and see what this broke:

$ clearmake
 ./pathconv >/dev/null
Died at /vob/perl/lib/site-lib/5.10.0/ClearCase/VobPathConv.pm #####
 line 63, <GEN1> line 16.
*** Error code 2
clearmake: Error: Build script failed for "pathconv.cr"

There was, in pathconv, a test for this case, and now this test fails:

my $unknowntag = '/vob/foo';
$res = localtag2tgt($unknowntag);
$rc |= $res? 1:0; #expecting empty string

This is obviously plain regression testing—our change broke backwards
compatibility and the test shows it.

We ought to note that it is smart regression testing: execution only takes place when
something depended upon has changed and is otherwise avoided (winked in or up
to date).

But there is even a more interesting quirk, and it is that we didn't spot this
requirement: our customer did!

And she told us about it in a very clear and eficient manner, preserving
two-way information hiding: we need to be aware of only the relevant bits
of each other's concerns.

Irrespective of whether or not our relationship is commercial, it is our interest to
keep our customers, and thus their customers, happy. By using our code, they raise
its value, potentially also in the eyes of others.

Teaser

[11]

This will result in better, and faster, feedback for us: an improved low of advance
notices of changes to take into consideration. We will be closer to the goal of driving
the main stream, instead of following trends. This is always a two-way collaboration,
not only a producer-consumer relationship—success is a win-win case.

We could now contact the author, and try to negotiate the case for our changes. But
this is a bad idea in many respects:

It disregards the fact that she already did her part of the work, so that we are
already bound by backwards compatibility.

She didn't disturb us, so why should we disturb her?

In any case we would have to wait for her reply, then we'd rather restore a
stable situation irst.

So, let's revert our change (in this respect). We may even implement the new die
functionality as a conigurable option.

Time to review the exhibited

functionality?
Let's sum it up:

The possibility to communicate with test cases, elements of the expected

behavior of software components, from the user to the maintainer, that is,
upstream of the traditional information low.
The possibility for the maintainer to verify whether these users' expectations
are still met after he makes some modiications, but before he publishes
them; not needing to ask for feedback and wait for replies, that is, support
for anticipated and canned feedback.

This applies to regression testing, but of course not only to it. It concerns tests as a
special case of executables in general, that is, artifacts we can run, instead of artifacts
we have to read (which is always more dificult, more involving).

The SCM tool may thus implement a new kind of very effective communications:

Horizontal, that is, directly between interested peers, without the mediation of
any organization
Bi-directional, that is, not only top-down, from producers to consumers, but
also bottom-up

•
•
•

•

•

•
•

www.allitebooks.com

http://www.allitebooks.org

Teaser

[12]

Objective, that is, freed from the need for, and the risks of, interpretation

And last but not least, about intentions and expectations, not only
after-the-fact!

Some people may think that this is remote from the primary concerns of SCM,
which would be some kind of accounting and assurance about data availability.
We believe that such judgments would be short-sighted, and out-of-step with the
reality of today's software—communications is the main concern of SCM. Software
development is about making choices in a context of incomplete certainty, so that it
is all about convincing others and making commitments.

•
•

Using the command line
Something the previous chapter (Teaser) displayed already is our focus on the UNIX
command line, as a primary working environment.

We see it as a means to maximize power and management over one's work. This
gives access to scripting, in portable and eficient ways, as well as to accurate and
relevant documentation.

We will devote a few words of justiication to the command line interface. This will
be followed with a few hints on Perl usage, and on tool coniguration.

Rationale (pun intended)
There is a general perception that graphical user interfaces are a sign of modernity
(in a positive sense). Also that they free the user from having to learn the syntax of
tools, and thus bring in simplicity and help her to focus on her own tasks.

We do not think this is true. GUIs hide more than they show, and introduce
discontinuities, thus making it more dificult to reverse engineer the hidden
assumptions of their authors.

A possible objection is that GUIs and the command line would be addressed to and
used by different groups of people, maybe in different roles. Let's stress that this
only enforces our point. We do not believe anyway in such assertions, our experience
being that:

There is no task that couldn't be better carried with appropriate, possibly
self-conigured, command-line tools than with a GUI; we reject the idea that
either would, for instance, be better or worse adapted to advanced tasks.

The use of a GUI encourages a back-seat driver's attitude, the dispatching of
one's responsibility to others, which ights the spirit and intent of Software
Coniguration Management.

•

•

Using the command line

[14]

Encouraging practices that might lead groups of people, who are meant to
collaborate on common goals, to ignore one another, is a dangerous idea.

The command line is not a monolithic tool that would have to be mastered as
a whole; it is easily extendible via scripting.

But be it one way or the other, GUI users want to use them, not to read books.
Besides, the existing literature already covers them extensively. We thus propose to
cover the other half of the world.

Finally, we do not intend to compete against IBM, which nowadays provides
instructions on clicking on the right (or sometimes the left) button as videos.

Against intuition
GUIs aim at being intuitive. We do not deny them some success in this direction,
which explains the satisfaction of many users. We only believe this is a misguided
strategy, conlicting with the goal of making sense of one's, and others' work, and this
for several reasons:

•

•

Chapter 1

[15]

Intuition doesn't scale. There is a limit in terms of complexity to what may
feel intuitive to anyone.

Intuition doesn't communicate: intuition is an event, and not a process.

Intuition is hard to question or to validate.

Intuition is only for humans; it is awkward for tools.

We'll follow Nobel Prize winner Daniel Kahneman (Maps of Bounded
Rationality: Psychology for Behavioral Economics in stating:

Intuition and reasoning are alternative ways of solving problems.

And we'll just opt for reasoning.

Some graphical tools such as maps are obviously very useful. But as Kahneman
notes, consulting a map involves reasoning, not intuition. A large source of intuition
in common GUIs is based on metaphors such as the desktop or ... the map (especially
following Google Earth), which appeal to experiences familiar to end users, precisely
because they are remote to software.

The continuity of reasoning
Let's take the perspective of users who intend to learn as much as they need, and not
necessarily more but in a continuous, that is manageable, way. Users who intend
to share their experience with others, by comparing their progress gradually, and
reproduce the steps they take, at their own pace.

Reasoning, and building up one's understanding, is a process that takes time and
goes through states. It is useful and safe to identify and validate these states with
others: this deines a path. There may of course be many roads from one point
to another, and nobody is forced to take the same road as anybody else, but it
is essential to identify the roads in a way allowing one to compare them. This
identiication operates in practice on discrete states. It may feel paradoxical, but
continuity is a result of using discrete representations instead of more continuous
graphical ones.

Text is well-suited to record the progression of reasoning, in a way easy to trace by
the next pilgrim.

Recording achieves an essential SCM concern: re-produce rather than produce (from
scratch, re-inventing the wheel) and re-use. We think that one ought to use an SCM
tool (ClearCase) in an SCM way! One's investment will be rewarded.

•

•

•

•

http://neuroeconomics-summerschool.stanford.edu/pdf/KAHNEMAN1.pdf
http://neuroeconomics-summerschool.stanford.edu/pdf/KAHNEMAN1.pdf

Using the command line

[16]

Another important issue is the possibility to get access to the speciic outputs of
different tools, and to be able to analyze them by parsing, searching, and comparing
relevant details rather than being stuck by the opacity of a pop-up window.
Nowadays, the production of documents, be it text or not, is assisted in frightful ways,
which puts the reader to face ever more dificult challenges. Plain text is her best
chance to practice active reading, that is, to decide precisely what information she
wants to focus upon and to actually make it emerge out of the surrounding noise.
Passive readers most often have the information they need at their disposal, but fail
to notice it; they are instructed by experience to avoid spending the effort necessary
to read it!

The users we target are not alone, and their reading is well assisted by powerful
tools—text being still signiicantly better supported than graphics. Not only is there
a profusion of existing tools, but there is a world of scripting that allows the user to
maintain her own ad hoc tools.

Illustrations
French sociologist Pierre Bourdieu explained in On Television that communications
takes time; instant communications is no communications at all. Graphical
illustrations are often misleading in this respect: they tend to overspecify a situation
for the purpose of giving a representation of one single aspect. The constraint
of producing an image implies to complete the useful parts with details, which
otherwise would be left undetermined. We'll pay a special effort to avoid this
mistake, and will therefore restrict ourselves to producing textual illustrations, that
ought to be read from a beginning to an end, and therefore lend themselves to critical
analysis from a careful reader.

Text, shell, and terminal
When we think of text, we think at the same time of the format of iles and of tools
to operate on the system: terminals and shells. The iles are the natural logs of this
system operation. Of course, most text editors allow us to modify text in arbitrary
order, but each text ile implements the convention of time—from its beginning to its
end. Note how there is nothing similar with graphics (apart
for cinema).

Storing commands as text iles and processing text from iles in the same way as
from any text stream is called scripting. The boundary is not meant to be obvious,
and we will have an example below.

Chapter 1

[17]

This brings us to the point that text is not as straightforwardly and universally
deined as one might naively assume; it is subject to encoding conventions, and
rendering formats (for example, to support colors or fonts). The goal of preserving
contents through text-to-ile-and-back transformations, leads one to restrict the
deinition to the barest (restricted character set, single font, single color). We still
have to pay attention to one crude issue: incompatible end-of-line conventions.
There are actually three: UNIX (one character, linefeed—ASCII 10 decimal), Windows
(a two character sequence: carriage return linefeed—ASCII 13 - 10), and Mac (carriage
return, #ASCII 13, alone). One way is to take care of conversions, and the problem
is to decide at what point. One option, which we'll touch in Chapter 2, Presentation
of ClearCase, is to delegate it to the view. The other, clearly inferior option, is to
use checkin triggers. The best is to raise the level of understanding of users, and to
have them stick to tools consistent in this respect, that is, in practice avoid tools that
enforce the Windows convention.

The shell is the program in charge of executing interactive commands (on UNIX, it is
distinct from the terminal). It presents annoying differences between Windows and
UNIX such as:

The use of back versus forward slashes as separators in directory hierarchies
(including in the format of ClearCase vob tags—see Chapter 2). Backslashes
are used in UNIX as escape characters to prevent the evaluation of special
characters. The result is that they get consumed by the shell, so that to
preserve them, one needs to escape (\\word) or otherwise quote them
("\word") ;

Quoting has two lavors on UNIX but only one on Windows. Double-quotes
("word") allow the evaluation of variables in the quoted text; on UNIX, single
quotes (‘word’) make it possible to prevent this.

The UNIX ile systems are all rooted from a common directory, marked as /.
This is not the case on Windows where the situation is more complex: while
ile systems (rooted in \) are usually mapped to single letter drives (followed
with a colon, for example, C:). On the other hand, a competing syntax may
be used to access named shares, preixed with double backslashes and host
names (for example, \\frodo\nest).

Shells support the expansion of environment variables, with different syntaxes:
$VAR on UNIX and %VAR% on Windows. The deinition syntax varies even
between UNIX shells.

Less visible, but let's mention it: the separator used in list variables such
as $PATH/%PATH% differs from ";" (UNIX) to ";" (Windows). We'll have an
example later with MANPATH.

•

•

•

•

•

Using the command line

[18]

This not so brief review should convince us that it is challenging to write simple
commands, even just to run programs, in a way that would be portable (that is,
stable) across the UNIX/Windows boundary. This issue is usually crucial in almost
any organization using ClearCase: a typical environment comprises a large number
of servers and workstations based on a variety of platforms with a tendency to
run the servers under UNIX and the end-user workstations under both UNIX
and Windows. May this be our reason to introduce Perl, as an answer to the
portability issue.

Perl
In this book, as already mentioned in the Teaser, we'll focus on Perl as a scripting
language for our examples. There are many reasons for this choice.

We already mentioned portability: Perl is available on all the platforms on which
ClearCase is supported, and allows (with the help of a few suitable modules) to
factor away and to hide the platform idiosyncrasies.

A second reason to choose Perl over other scripting languages (irst of which the
UNIX shells) is the existence of a debugger, and the model of compiling irst and
running only code that has satisied a irst check. Both of these are signiicant
advantages to cover a range of users extending to the administrator. Note that
the debugger may be used interactively from the command line (perl -d -e1),
and "one-liner" commands are possible, not to force you to save scripts to iles.

Then could come the existence of a mass of experience, both via the CPAN
library network (http://cpan.org), and the many newsgroups and forums
(see perlfaq2, below), thus giving access to a culture of communications and
excellence.

Finally, one must mention that Perl has been used by the developers and
distributors of ClearCase. However, at this point, we would recommend that the
user avoids the apparent facility of using the instance of perl that is part of the
ClearCase distribution and instead maintains her own installation in a ClearCase
vob (obviously sharing it network-wise with her collaborators—see Chapter 8,
Tool maintenance, and note that we implied this in the Teaser).

IBM has relatively recently improved its support for Perl, with a consistent ratlperl in
the common tools directory. However, this doesn't answer the following points:

It is not intended for the end users: it is tailored for the needs of ClearCase
tools. Remember IBM is not committed to supporting it in any way.

•

Chapter 1

[19]

It is still a relatively old version and comes with a minimum set of modules,
so you'll sooner or later get into limitations (check the available modules with
egrep ^=head2 perllocal.pod, where the perllocal.pod is located in the
platform subdirectory, which you get with ratlperl -V).

You might think of installing modules yourself, but:

If you need to compile them, the compiler needed to build it is not
provided—you'll fail to install even ClearCase::CtCmd (which is a
Perl module provided by IBM on CPAN)!
Your changes will be washed away at the next ClearCase installation.

You'd need to make the same changes locally on every host, thus to
have admin rights there.

In fairness, there exists in perlfaq8 advice on How do I keep my own
module/library directory, which makes it possible to maintain modules
outside of the Perl installation, forcing the users to reference the
shared library path.

We want to stress that Perl is a means to open ClearCase to its users, to enable them
to tailor it to their needs. This is true for every user, not only for administrators with
special needs! The main need it serves is it gets one freed from the GUI.

Perl documentation
One thing Perl encourages you (the user) to do is extend the Perl documentation, and
does this by lowering the threshold for producing quality documentation. Although
on a complete installation, the perl documentation will be available as man pages,
perl offers a format, pod, and a tool perldoc to achieve these goals. This displays
another argument in favor of text: less is more.

Perl provides a possibility to search through its documentation using the same
perldoc tool, so that one can search through Perl FAQ, functions or modules:

$ perldoc -q 'regexp' # Searches free text in a form of regular expression
$ perldoc -f perl_function_name
$ perldoc -m perl_module_name
$ perldoc perlfaq2

•

•

°

°

°

°

http://search.cpan.org/perldoc?ClearCase::CtCmd

Using the command line

[20]

Windows command prompt and

alternatives
For Windows, the default terminal choice is the Windows cmd. It has a limited
functionality, for example, no logging, limited buffering, few hot keys, a clumsy (irst
arbitrary choice) tab completion, and so on. But as restricted as it is, to use ClearCase,
it is still much more powerful, and more functional than the GUI. Even some quite
basic ClearCase commands (for example, create a symbolic link in the vob root
directory, change ile permissions, remove labels from a version, and so on) are only
available on the command line.

Here are some useful hints on coniguring the Windows cmd to make it more usable:

Enable the Quick edit mode. Locate HKEY_CURRENT_USER -> Console ->
QuickEdit in Registry Editor (Regedit) and set its value to 1. This enables
easy copy-pasting (helpful in the absence of any other text handling utilities/
keys): select with the mouse and press Enter for copying, and right-click to
paste. This may also be set and unset in the command prompt window, in
the Properties pane of the menu, by right-clicking the menu bar.

Set appropriate Screen Buffer Size and Window Size. This also affects the ease
to copy and paste!

Here is a small example of what one can do in Windows command line prompt:

> cleartool startview myview
> cleartool mount \myvob
> cd m:\myview\myvob\dir1
> cleartool ln -s ../dir2/file my_symlink
> cleartool mklbtype -nc LBL
> cleartool mklabel LBL ../dir2/file
> cleartool rmlabel LBL_1 ../dir2/filecleartool rmlabel LBL_1 ../dir2/file

This transcript creates a symbolic link, then creates a label type, applies a label to a
versioned ile, and removes another label from the same version.

A far better choice of a terminal for Windows would be Cygwin. Even the default
Cygwin terminal window uses GNU bash shell, with all the expected bash features
supported (such as Emacs key bindings, bash proile, and so on). Installing the
Cygwin ssh package, one could use it conveniently from the same Cygwin terminal.

•

•

Chapter 1

[21]

The terminal we use ourselves for both UNIX and Windows is GNU Emacs shell
mode. Originally a text editor, GNU Emacs has developed, by the virtue of the
genericity of text, into a full-blown integrated environment.

In Windows, one of the options is again to obtain Emacs as a Cygwin package, and
to use it in Cygwin/X mode.

Emacs' ability to combine shell, ile editing, man, and info modes, powerful multi-
window and multi-frame system, unlimited customizing options, powerful logging,
text-and-command search, and the ability to edit remote iles via tramp/ssh, makes
it a powerful choice, even for "normal" users, not to mention administrators. The
pattern of using Cygwin Emacs is not without minor pitfalls such as the absence of
the out of the box tab completion and Ctrl+C process signaling over ssh.

Let's compare Cygwin with a UNIX terminal.

Here is an example of what one can do in a UNIX terminal:

$alias ct=cleartool
$export DO='"do@@--04-11T14:50.3375"'
$ for i in $(ct lsvob -s); do if ct des lbtype:LBL@$i >/dev/null 2>&1; \
 then echo mkattr -rep ConfigRecord \'$DO\' lbtype:LBL@$i; fi; \
 done | ct

This UNIX shell code goes through all the ClearCase vobs, checking whether a label
type LBL exists there. Every instance of LBL gets an attribute of type ConfigRecord
and value do@@--04-11T14:50.3375.

This demonstrates the use of pipes, that is, a model of text as a stream, produced
by one process and consumed by another—here cleartool. It also shows the use of
basic programming language constructs such as loops and conditionals as part of
the (here bash) shell, as well as the deinition and use of an environment variable,
together with a quoting issue (the mkattr function of cleartool requires that string
values are enclosed in double quotes, which themselves have thus to be preserved
from the shell). Note that the conditional tests the return code of a cleartool function
(describe), both stream outputs (standard and error) of which are ignored by
being sent to a special device, /dev/null, with a ile interface. Note the use of ct
as a shorthand for cleartool—we shall keep using it! Aliases need to be marked as
expanded with the shopt command in order to work in non-interactive mode, as
in a pipeline.

www.allitebooks.com

http://www.allitebooks.org

Using the command line

[22]

Now we can illustrate the annoying differences in Windows and UNIX shells
explained earlier (in the Text, shell, and terminal section of the chapter). The UNIX
transcript shown above would not work as such on Cygwin. The vob tags returned
by the (Windows ClearCase) lsvob function would be rooted in backslashes, which
Cygwin bash would evaluate as escape characters and thus remove. We would have
to restore them, for example, as follows:

for i in $(ct lsvob -s); do if ct des lbtype:LBL@\\$i >/dev/null 2>&1;
then echo mkattr -rep ConfigRecord \'$DO\' lbtype:LBL@\\$i; fi; done | ct

This may seem as a tiny issue at irst glance, but errors like this are enough to
break a script or a build system, and chasing them soon takes enormous efforts in
implementation, debugging, and testing.

As we already said, Perl allows us to bridge this gap, for example, with a cleartool
wrapper as ClearCase::Wrapper::MGi, itself building upon ClearCase::Wrapper and
other modules. A wrapper installs itself as a Perl script—here cleartool.plx in
/usr/local/bin, and may be aliased as ct instead of cleartool. It extends and
corrects the cleartool behavior, falling back to the standard cleartool for the
non-extended functionality.

Now, with the help of ClearCase wrapper, one can run exactly the same original
transcript on both platforms, UNIX and Cygwin Windows.

GUI versus text mode
Let's now have a small (biased) illustration on different modes of working—in
ClearCase GUI and in ClearCase command line. Suppose, one would like to
apply a label recursively to a directory hierarchy in ClearCase, containing a few
subdirectories and hundreds of iles.

First, a GUI scenario:

1. Open the Rational ClearCase Explorer
(C:\Program Files\Rational\ClearCase\bin\clearexplorer.exe).

2. Select the view.

3. Mount the vob.

4. Click on the vob's root directory and select Explore types.

5. Double-click on label type.

6. Go to the Type menu and select Create.

7. Type label type name as MYLABEL in the Name ield. Click OK.

http://search.cpan.org/perldoc?ClearCase::Wrapper::MGi
http://search.cpan.org/perldoc?ClearCase::Wrapper

Chapter 1

[23]

8. Get back to the vob and locate the directory you want to label.

9. Right-click on the selected directory and select Version tree.

10. Right-click on the version selected by the view conig spec and marked by
the "eye" icon. Select Apply label.

11. Select MYLABEL from the list. Click OK.

12. Repeat the three last steps for each element under the selected directory (you
might have to repeat the steps a hundred times…).

Using the command line

[24]

Now, let's look at the command-line scenario:

$ ct setview myview

$ ct mount /vob/myvob

$ cd /vob/myvob/mydir

$ ct mklbtype -nc MYLABEL

$ ct mklabel -rec MYLABEL

And we are done (feel the difference)!

One might object that it is possible to add a functionality such as mklabel -recurse
to the suitable menus of the ClearCase Explorer. The tool to perform this is the
ClearCase Context Menu Editor.

Of course, one might also object that our examples are not fair, and they are not. We
stand for our point—it will always be easier to ind yet a better hammer to hit any
given nail using a command line than using a GUI (be it merging iles or applying
labels). Beyond the fact that inding a wizard might be non-obvious and disruptive
of the user's low of mind, the magic this one resorts upon will fall short eventually
and require then reverse engineering knowledge. The user is, in fact, only buried one
step deeper.

ClearCase documentation
ClearCase has a comprehensive documentation set in the form of so-called
ClearCase man pages.

ClearCase shares, in a way, the same philosophy as Perl concerning its man pages.
A ClearCase man page refers basically to a ile coming along with the ClearCase
installation, residing on a local machine and containing a relatively small piece
of ClearCase documentation, dedicated to a single command or topic. Reading
ClearCase man pages may be achieved in a standard UNIX way, using the man utility
(or any other similar tools, for example, as part of GNU Emacs). It may also happen
using the man function of the cleartool utility. On Windows platforms, this will
result in requests to one's browser to display equivalent HTML pages.

Using UNIX man for accessing the ClearCase man pages requires little coniguration.
The man pages reside under /opt/rational/clearcase/doc/man; one needs thus
to add this directory to the MANPATH environment variable. There is a special preix
to name the ClearCase man pages: man ct_<ClearCase command name> (sometimes
with an abbreviation).

Chapter 1

[25]

$ MANPATH=$MANPATH:/opt/rational/clearcase/doc/man
$ man ct_co
$ man ct_describe

These commands would display the man pages for the checkout (co) and describe
commands respectively.

Alternatively, as mentioned earlier, and just like with the Perl perldoc command
(which also performs as an alternative to man), one can use cleartool man (MANPATH
setup not needed):

$ cleartool man co
$ cleartool man des

The distribution (both on UNIX and Windows) also offers a set of useful ClearCase
books in PDF or HTML format (also available for reference purposes from the IBM
website). They are located at /opt/rational/clearcase/doc/books in UNIX and
at <installation drive>:\Program Files\Rational\ClearCase\doc\books
in Windows.

There is inally a useful cleartool functionality (only on UNIX): cleartool apropos. It
displays a brief summary of cleartool man pages matching a query to be speciied as
a regexp:

$ ct apropos 'label.*version'
mklabel Attaches version labels to versions of elements
rmlabel Removes a version label from a version

ClearCase does not support the users in extending this documentation (as Perl does
with the pod markup language).

ClearCase online help is also available at the IBM Rational information center:
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp.

Note that there are separate resources there for each ClearCase version; this
particular one is for the Rational ClearCase 7.0.1 family, although it is not as speciic
as one might think, and applies to other versions as well. We once submitted an
RFE requesting to allow the user to assert changes between these docs, which
was rejected.

Using the command line

[26]

Here are some ClearCase-related Internet resources and forums:

CM Crossroads Wiki
http://www.cmwiki.com

CM Crossroads ClearCase Forum
http://www.cmcrossroads.com/forums?func=showcat&catid=31

IBM Rational ClearCase forum
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=333

Summary
We have reviewed some issues faced by the team player in trying to record her work
and experience in a way that might be reproducible or even comparable by others.
With all this set up, we are better equipped to dive into our actual topic: ClearCase.

Presentation of ClearCase
Soon 20 years after its introduction, ClearCase is still one of the major Software
Coniguration Management tools on the market.

The concept of SCM is however not as clearly deined and agreed upon as some
might pretend. ClearCase itself actually challenged any prior deinition signiicantly
by introducing novelties to what SCM might mean. These novelties are, as we'll try
to show, what makes of ClearCase, still today, an original and valuable product.
Instead thus of risking to ix too early the meaning of SCM, we'll offer a historical
perspective, and aim at reining toward our conclusion how ClearCase contributes to
deine a concept both consistent and useful to the wide community of software users.
On this path we choose however to consider SCM essentially as a concern, which
might and should be shared virtually by anybody, not a concept for the exclusive
use of specialists.

Our initial presentation will:

Offer the above mentioned initial historical setup

Focus upon the features that make ClearCase stand out

Describe the elements of the implementation which will be referred to in the
following chapters

In this book, we'll cover mostly what became known as base ClearCase, and leave
the UCM extension (Uniied Change Management). Justiications for the soundness
of this choice will become clearer and clearer through the reading. Let's state in
addition that UCM is already well, and exclusively, covered by existing literature.

•
•
•

Presentation of ClearCase

[28]

SCM history

There's one thing history teaches us, and it is that it teaches us nothing. —Author
forgotten

We have one duty towards history, and it is to rewrite it. —Oscar Wilde

A brief perspective of SCM history helps to debunk some myths about what to
expect from the different tools. It is commonplace to read matrix comparisons, based
on checklists of standard features. We try to show here that such comparisons are
based on unsubstantiated assumptions: there is no "high-level" deinition of SCM,
which would be applicable to the tools. At least, the most useful functionalities
offered by ClearCase cannot be expected on such bases: this is what we'll
review next.

CM, Coniguration Management, was born twice independently, and a third time as a
synthesis. It happened irst, in the automotive industry, in the 40s, as an accounting
discipline. The second birth is this of version control or "source code management",
and took place in the early steps of the software industry, in the 60s.

The record of this second birth is a bit murky, especially as it spreads over a period
of more than ten years, and the people it involves undoubtedly knew and interacted
with each other before they published anything. Let a slight bit of straightening help
making it clearer, even if it may seem to conlict with some chronological evidence,
as we mention it below.

In its early stage, software development was pure creation from scratch. This gave an
extreme importance to sources: no source, no binary. Of course, this bias, although
still strong in oldtimers' mind, doesn't make much sense nowadays anymore: we all
get most of software in executable form irst, and most often its functionality is the
only (OK: the main) thing which matters. Only later, possibly, we become interested
in reading the source code, maybe to make a ix or an enhancement.

Comparing text sources was made handy with the diff tool. Then the reverse tool
was invented: patch, which allows you to apply diffs to a similar (but not identical)
version of the original text. These tools made it possible to implement cheap (in
terms of space consumption) personal backup. Soon again, it was understood that
this backup constituted a trace of the recent evolution, which it was valuable to
share. Let's admit it: it is not exactly the way it went. For ten years before Larry Wall
actually wrote patch, people used ed line editor scripts, and this is what went into
the irst version control tools.

Chapter 2

[29]

The third moment is this of the "oficial" birth of SCM (at least, with this acronym),
as the merger of the two traditions, and it happened as early as in the 70s.

We have again to acknowledge that this presentation of history is sometimes
received as outrageous, especially by proponents of the irst CM tradition.

One cause of problems with this history (for example, SCCS was in fact known
earlier than diff and patch), is that things became gradually simpler only after the
inception of C and UNIX. But this didn't happen at once; several tools had already
been developed for years in other languages, on other platforms, and were only later
converted to C and ported to UNIX. The important date concerning every one of
these tools is thus maybe not when it was created, but when its propagation reached
people who made it successful.

ClearCase originality
Two main ideas make the originality of ClearCase, as an SCM tool:

Presenting the version database via a ile system interface (distinct from a
sandbox or working copy)

Auditing build transactions, and recording the system calls for opening
ile objects, to produce a graph of dependencies, and to base on it an
identiication mechanism

The two ideas are strictly speaking independent. ClearCase however builds upon
their interaction.

Virtual file system
It is not obvious for people with an experience with other tools, and the prejudice of
the reference to an abstract concept of version control (or source control), to give value
to these ClearCase speciicities.

Accessing the content of the repository in-place (as opposed to in a copy) allows
developers to beneit from the tool management earlier: during the edition phase
itself, and not only after the artifacts have reached a certain status (say, buildable, or
tested), and are thus more stable. It should be quite obvious that the less stable the
artifacts are, the more useful the management!

•
•

Presentation of ClearCase

[30]

Work performed in a dynamic view (the device to exploit this virtual ile system
abstraction: more on this below) is accessible for inspection by others (on their
terms), which brings continuity. Developers can access one another's dynamic
views explicitly, but the most interesting and important ClearCase feature is the
implicit artifacts' (so-called derived objects) sharing, performed by the tool itself.
This is decoupled from deliveries that imply an explicit decision and judgment from
their respective authors: a statement about readiness with respect to conventional
expectations or general usefulness.

Auditing, winkin
Derived objects are even more variable than source iles (because they collect
multiple dependencies). The decisive functionality of ClearCase is a mechanism
allowing to share these, implicitly, and under the control of the tool. This
certainly has a potential for saving time and space (avoiding needless builds,
and copies), but the most valuable is that it sets up a foundation for managing
complexity. It does it in two ways: irst, by reducing the overall amount of
separately distinguishable artifacts, and making real differences emerge (that is,
raising the signal/noise ratio); then by introducing an objective structure (the
dependency graph) into the space of coniguration items.

The mechanism at the heart of clearmake (the build tool of ClearCase, focus
of Chapter 3, Build Auditing and Avoidance) is based on auditing, and recording
as dependencies iles accessed during the execution of commands, such as those
involved in builds. This happens by intercepting system calls. The records may be
used later to decide that an existing artifact matches the requirements for a new one,
the production of which may thus be avoided. Clearmake then offers, winks in, the
old product in place of a needless new duplicate.

ClearCase is not exactly the only system building on these ideas: one can also
mention Vesta, and (for winkin) Audited Objects, by David Boyce.

Also, let's note that recent developments of ClearCase do not build on those ideas,
and thus depart signiicantly from what makes base ClearCase attractive: snapshot
views do not most of the time give access to the versioned database (they do it in a
restricted way, for example when using ct find, which connects to the view server,
and fails if it cannot), and do not support build auditing. Note the use of ct to alias
cleartool, as advertised in Chapter 1, Using the Command Line.

One problem is that these features have a price (mostly in terms of requirements
on the network), and unless one uses them, this price becomes a penalty,
comparing ClearCase to its competitors.

http://www.vestasys.org
http://sourceforge.net/projects/audited-objects/

Chapter 2

[31]

In addition, optimizing winkin involves collaboration from the users, and
thus orients their effort. The same may be told of SCM in general (users may
easily defeat any kind of manageability by choosing adverse practices: useless
duplication, coarse granularity), but sophistication is even more dependent on
user commitment. We'll focus in this book on ways to exploit sophistication to its
full potential, and over.

The main concepts
ClearCase deines several sub-functions that build up a network of server-client
relationships. These functions may be mapped onto different hosts. On
every host running a ClearCase functionality, we'll ind one location broker
(albd_server) process, which plays the role of a postman. It is always accessible
via a well-known address, at port 371, and will answer requests concerning the
location of processes in charge of the other functions. Note that standalone
installations, where all functions are run on a single machine, are possible.

A command line utility, aldb_list, is available to check that this essential
process is up and running, and, from remote hosts, is reachable.

Its response will be a list of all ClearCase processes known on the host (which
may be long). This may often be ignored (by being sent to /dev/null): then a
one line status summary is sent to stderr, which gets displayed (since it is not
redirected by the previous).

$ /opt/rational/clearcase/etc/utils/albd_list badh >/dev/null
noname: Error: Unknown host 'badh': Host not found
cannot contact albd

$ /opt/rational/clearcase/etc/utils/albd_list goodh >/dev/null
albd_server addr = 100.1.2.48, port= 371

Note that it is not enough to guarantee full operability (as other ports are needed
for most operations).

We'll now review the main distinctive concepts, and the ways they are
implemented:

Vob

Dynamic view

Registry, region, site

Conig spec

•
•
•
•

www.allitebooks.com

http://www.allitebooks.org

Presentation of ClearCase

[32]

Vobs and views
VOB stands for Versioned Object Base. Vobs implement in ClearCase the shared
repositories for arbitrary data. Views, although nothing prevents one from sharing
them, typically support the stateful access of multiple vobs by a single user.

Vobs and views are databases (embedded, object-oriented, not table based). At
any time, the databases are kept in the memory of server processes (vob_server,
vobrpc_server, view_server and db_server), but they are also saved to iles, in
storage areas. The memory images are read from the iles, and the caches lushed
back to disk at various points, for example, for backup purposes. In the storages, we
ind some pools with the main data, the database iles, as well as some index iles.

The databases are however mostly exposed as mvfs (for multi-version) ile
systems, a technology building upon nfs (and adapted to cifs/smb for Windows).
Vobs are thus mounted, or mapped, while views need to be started or set. Both
are known via their tags, which can be thought of as mount points. Only, the
vob tag is a full mount point (which is a full path) whereas the view tag is only a
subdirectory of the view root (/view on UNIX and \\view on Windows). Then,
the mounted ile system is actually a combination of both a vob and a view. On
UNIX, it is customary (not mandatory) to mirror the view hierarchy and use a
common root under which to mount all vobs (typically, /vob).

Note that neither this root nor the full vob tags are themselves versioned: they
may be considered as common stubs, shared by all paths of all versions. They'd
rather be kept very stable, and thus their names should not be too speciic. In
the example below, for a vob having /vob/myvob tag, one can easily rename any
subdirectory under /vob/myvob with ct mv command, but it is not possible (or
not recommended) to rename either the vob tag directory /vob/myvob itself, or the
common vob mount root /vob. To be more precise, this is possible, but not under
ClearCase, and creating a new tag would affect the history as well as the future.

$ ct lsvob /vob/myvob
* /vob/myvob /vobstorage/myvob.vbs public
$ mount | egrep 'myvob|vobstorage'
vobhost:/rootdir/vobstg on /vobstorage type nfs
vobhost:/rootdir/vobstg/myvob.vbs on /vob/myvob type mvfs

This shows the vob mount point: /vob/myvob (which is also the vob tag)
of the MVFS ilesystem physically stored on the host vobhost at
/rootdir/vobstg/myvob.vbs vob storage directory. Note the * on
column 1 of the output: this tells us the vob is actually mounted and not
merely registered together with this tag. Be aware of the fact that one cannot
"access directly" a vob on its vob storage and for example, check out something
from there. The only possible way to access the vob is via a view, as explained
below in this chapter.

Chapter 2

[33]

$ ct lsview myview
* myview /viewstorage/joe/myview.vws
$ mount | grep -r "/view |viewstorage"
viewhost:/rootdir/viewstg on /viewstorage type nfs
localhost:/dev/mvfs on /view type mvfs
$ ls -ld /view/myview
drwxr-xr-x 38 joe jgroup 4096 Feb 15 11:16 /view/myview

And this shows the view mount point: myview (also the view tag),
which is a subdirectory of the root MVFS ilesystem mounted at /view;
and the actual view storage directory is located on the viewhost at
/rootdir/viewstg/joe/myview.vws directory. When the view is set
(on UNIX) ClearCase performs a chroot system call to set the root directory to
/view/myview, which explains that all vobs, but also all the contents of the UNIX
root are found there. This obviously includes /view itself, which needs to be
taken into consideration if recursively navigating directories with UNIX find.
A typical case is this of running the GNU utility updatedb from a crontab, to
support the locate tool. Again, the view is already started: the view_server
process is running.

A vob is thus a multi-version repository, which stores in addition shared derived
objects, and meta-data.

Views have some additional storage for private (non-shared) objects, but
otherwise work as a ilter on the vobs, presenting to the user and her tools, a
consistent selection of the versions available from the vobs. They implement the
support for the abstract concept of software coniguration, and the exclusion
principle this one satisies: at most one version of every coniguration item.
Note that it is typical that one uses in the same time multiple vobs, but one
single view. We'll pay more attention below to the mechanism used to express
the version selection: the coniguration speciication, or conig spec. Some
operations (examining well-deined objects, like metadata) do not require to
mount the vobs or set the view. But one needs to do both operations (mount,
setview) to be able to navigate the vob as a ile system, otherwise it shows
empty (the normal default state of the vob mount point).

$ ct pwv
Working directory view: ** NONE **
Set view: ** NONE **
$ ct lsvob /vob/myvob
/vob/myvob /vobstorage/myvob.vbs public
$ ls -la /vob/myvob
total 10

dr-xr-xr-x 2 root root 1024 May 7 22:31 .
drwxr-xr-x 126 root root 4096 May 5 10:53 ..

Presentation of ClearCase

[34]

No view is set, myvob is not mounted and the vob mount directory shows empty.

$ ct mount /vob/myvob
$ ls -la /vob/myvob
total 10
dr-xr-xr-x 2 root root 1024 May 8 12:11 .
drwxr-xr-x 126 root root 4096 May 5 10:53 ..

Just mounting the vob without setting the view is not enough.

$ ct setview myview
$ ct pwv
Working directory view: ** NONE **
Set view: myview
$ ls -la /vob/myvob
total 18
dr-xr-xr-x 2 vobadm jgroup 1024 Oct 4 12:21 .
drwxr-xr-x 126 root root 4096 May 5 10:53 ..

drwxrwxr-x 3 joe jgroup 24 Aug 24 2009 dir1
drwxrwxr-x 4 smith jgroup 46 Feb 1 2010 dir2

Now the vob is mounted and the view is set: the vob content is displayed according
to the view coniguration.

Note that these examples are UNIX speciic: on Windows, one cannot set a view
(the command is not supported), one has to start it, and (typically) to map it to a
drive letter, so that one would have to choose different operations to display related
effects. It is however typical that Windows users ind vobs unmounted, since starting
ClearCase there doesn't mount the public ones, as it does on UNIX.

The bulk of the data is not stored in the databases, but in storage pools, directory
hierarchies hosting various kinds of containers (the iles with the actual data).
The view and vob processes will actually produce and maintain containers
matching the requirements of the use context, and hand these to the external
tools (editors, compilers, etc), that need thus not be aware of the SCM system.
This also ensures that the performance is not signiicantly affected by using iles
from a vob, since in fact, the iles are in the end used from a standard storage.
Finally, the processes mentioned above run, and the iles are stored, on server
hosts: view, vob, or storage servers.

We'll not be back to the containers (source, cleartext, DO), and to the storage in
general (protections) until Chapter 10, Administative Concerns.

Chapter 2

[35]

Deeper into views
A irst and obvious virtual ile system's characteristic is that it offers dynamic access
to the repository: there is no need to download/unload the actual data when setting
or changing the view coniguration, as the dynamic view works as a ilter selecting
versions according to the view's coniguration speciication and displaying them
under the vob mount point.

$ ct setview view1
$ ls -l /vob/myvob
drwxrwxr-x 3 joe jgroup 26 Sep 26 2006 dir1
drwxrwxr-x 3 joe jgroup 49 Sep 26 2006 dir2
drwxrwxr-x 4 joe jgroup 517 Apr 9 20:45 lost+found

$ ct setview view2
$ ls -l /vob/myvob
drwxrwxr-x 3 joe jgroup 24 Jun 17 2008 dir1
drwxrwxr-x 3 joe jgroup 46 Jun 17 2008 dir2
drwxrwxr-x 4 joe jgroup 517 Apr 9 20:45 lost+found
drwxrwxr-x 3 joe jgroup 23 Jun 17 2008 dir3

Why does the same vob directory content look different? - Because the conigurations
of view1 and view2 are different (see more on conig spec below).

Versioning mechanism
Let's also mention that (dynamic) views support path extension syntaxes to access
if need-be arbitrary versions (the ones not selected otherwise by the current view
coniguration):

One such syntax (view extended path) involves explicitly referring to a view
different than the current one (the one set previously)

The other (version extended path) uses decorations to specify the versions of
path elements. The use of such extensions is signaled by a @@, which enters
the space of versions of the element, presented as a directory tree. This @@
works as a door into the hidden space: it need not be mentioned again, and
all the names beyond it are interpreted within the space

They may be mixed

Let's notice that we already met a few such cases in the Teaser chapter.

The view extended path:

$ cd /view/joe/vob/perl/lib

•
•

•

Presentation of ClearCase

[36]

Here the view tag is joe, and the vob tag is /vob/perl, and /vob/perl/lib is a
directory within the vob.

The version extended path:

$ ls -ld /vob/perl/.@@/APP/lib/APP

Here the vob tag is /vob/perl, /vob/perl.@@/APP signiies a version of the
/vob/perl root directory labeled with APP label, and it is followed by lib/APP
denoting version of the lib subdirectory also labeled by the same label APP. Note
that vob roots display an exceptional behavior in requiring there an explicit mention
of the . directory, to which the label applies. This is not needed for other directories
but the vob root.

And another variant of the version extended path:

$ cat /vob/apps/joe/t/Makefile@@/main/jn/1

Here the vob tag is /vob/apps, and /main/jn/1 signiies version 1 of the branch
/main/jn of the /vob/apps/joe/t/Makefile element. Technically, jn is cascaded
from the main branch. Note that main is a predeined branch type, and that there
exist one and only one main branch on every element (which may at most be
renamed or chtyped to another name).

Let's mention one extreme, but at times useful, case: the fully qualiied path. This
completely bypasses the conig spec, ensuring that the path will works in any
context. Note that it requires a view, which must be started:

$ ls -ld /view/joe/vob/perl/.@@/APP/lib/APP

Of course, the default use of views aims at accessing these same versions as if
they were the only ones, as if the elements were plain ile system objects (iles or
directories):

$ ct setview myview
$ ls -ld /vob/perl/lib
drwxrwxr-x 3 joe jgroup 32 Sep 01 2009 lib

$ ls -l /vob/apps/joe/t/Makefile
-r-xr-xr-x 3 joe jgroup 496 Oct 05 2009 Makefile

Chapter 2

[37]

So, in ClearCase virtual ilesystem, a ile name is common to a whole family of
instances. These instances may be versions of an element, or, probably more
interestingly, instances of a derived object. Also, as we have already seen in the
examples above, the view-selected version, or actually any version of the element
can be accessed by any standard operating system tools, and not only by
ClearCase-speciic ones:

$ ct setview myview
$ ct ls /vob/utils/hello
/vob/utils/hello@@/main/5 Rule: /main/LATEST
$ perl /vob/utils/hello
Hello, world!

We have executed the version of the perl script hello, which was selected by the
myview view. The actual selected version is /main/5, which means version 5 on the
branch main.

$ perl /vob/utils/hello@@/main/br1/2
!dlrow ,olleH

And now we have executed another version of the hello Perl script, which was not
selected by the view by specifying it explicitly: /main/br1/2, which is version 2 on
the branch /main/br1.

The ClearCase versioning mechanism is transparent to the end user and to operating
system tools.

It is essential (thinking again of derived objects primarily) that this property extends
to private data and repository data: the location in the virtual ile system gives access
to the set via an instance selected by the view, yet any version may be accessed
explicitly using an extended notation (introduced with @@).

This is how the derived objects are versioned (note the slightly different syntax):

$ cd /vob/test
$ ls -l
-rw-r--r-- 1 joe jgroup 0 Apr 11 14:50 all.tests
-r--r--r-- 1 sara jgroup 135 Apr 11 14:50 Makefile
-r-xr-xr-x 1 sara jgroup 381 Apr 10 14:55 pathconv

$ ct lsdo all.tests
--04-11T15:52 "all.tests@@--04-11T15:52.3380"
--04-11T14:50 "all.tests@@--04-11T14:50.3375"

Presentation of ClearCase

[38]

This lists all versions of the derived object all.tests.

The non-selected versions can be accessed directly using the same @@ syntax as for
the version-controlled elements:

$ ct des all.tests@@--04-11T15:52.3380

Views properties
Views have some properties: one of them (text mode) concerns the presentation
of text, and the conversion of end-of-line sequences, that we mentioned in the last
chapter. The typical application, in views intended for use with Windows tools, is to
add the expected carriage returns to lines of iles stored in UNIX mode. This occurs
at cleartext generation (more on this in Chapter 10), even for read-only access (often
from tools, including compilers). One can see that this is superior to the option of
explicitly modifying the data at checkin (and checkout). The downside is to restrict
the views once and for all to be exclusively used on either platform (otherwise, views
may be tagged in two regions: in both Windows and UNIX, and thus shared, with
some possible beneits). Obviously, and mostly for symmetry, other patterns of use
are possible, including the default transparent mode: no conversion.

The commands to examine and change those properties are:

$ ct lsview -l -prop -full <view tag> | grep Text

where the output text signiies the following modes:

Text mode: unix - transparent (default)

Text mode: msdos - insert carriage returns (when presenting to the user the stored
text, and remove them when storing)

Text mode: strip_cr - strip carriage returns

Note that these view's text mode properties cannot be modiied after the view has
been created (even with the ct chview command).

We'll leave vob creation (a somewhat rare event, even if users are encouraged to
practice creating and maintaining private vobs of their own) for later, but let's
mention the commands to create and remove views that should be used much
more often and by everyone:

$ ct mkview -tag joe -stg -auto
$ ct rmview -tag joe

Chapter 2

[39]

The irst form implies the existence of pre-deined view storage locations, which
frees the user from storage issues concerns (and thus disk space, and backup).
Such pre-deined view storage locations can be created and listed by the
following commands:

$ ct mkstg -view ...
$ ct lsstg -view

In case there are a few view storage locations deined for the same site, one of them
is picked up at the view creation while using the -stg -auto option (the algorithm
to select one location among others is documented in technote 1147041: for dynamic
views, it supports one way to exclude some locations, favors local ones, and
otherwise picks one at random—unfortunately not taking details such as the
version of ClearCase on the server into consideration).

The three text modes mentioned above can be speciied using the -tmo option
(in the ct mkview command) with one of the following arguments: transparent,
insert_cr or strip_cr.

The most important way in which the user affects her views, is however the value of
her umask at the time of creation (note by the way that views are meant to be created
by their actual user, and not by root). The umask is in UNIX a bit pattern used to
restrict the access rights of iles created, from a basic (777) pattern: read/write/execute
(one bit for each), for owner, group, and world: altogether 9 bits. The value 777
(in octal) represents thus a full pattern: every bit set for every entity, since 7 is
4 + 2 + 1. The umask value is subtracted from it and the result is used to set
the view permissions. In practice, the disputed issue is to decide whether or not
to grant write access to group, that is to choose between the values 002 and 022
for the umask: ilter nothing (0) away from the owner, and write from "world" (2),
but choose to treat one's collaborators along to the former or the latter model:

$ umask
022
The view permissions would be then 755
$ ct mkview -tag test1 -stgloc -auto
...
It has the following rights:
User : joe: rwx
Group: jgroup : r-x
Other: : r-x

http://www.ibm.com/support/docview.wss?uid=swg21147041

Presentation of ClearCase

[40]

$ umask
002
The view permissions would be then 775
$ ct mkview -tag test2 -stgloc -auto
$ ct lsview -l -prop test2 | egrep "Owner|Group|Other"
Owner: joe : rwx (all)
Group: jgroup : rwx (all)
Other: : r-x (read)

Note that the execute right is necessary on directories.

The view write permission allows the user to modify the state of the view, such as by
setting the conig spec, or by checking iles out or in.

The current value of the umask still governs the permissions set to iles
(view-private).

ClearCase modiies the write access of elements according to whether they are
checked in (read-only), or checked out (writable). In a read-only view, checkouts are
forbidden. Note that one cannot create a read-only view by setting one's umask to
222. One has to use the already mentioned chview tool.

The issue of the group write permission is met in practice in three cases:

The one we just mentioned: the view creation. Users are typically afraid that
views created with a permissive mask might be shared (usually not a good
idea), but this also allows to ix problems during vacations (there is a range
of options: checkin, uncheckout, unreserve, remove view, with different
restrictions and applying to different contexts, including snapshot views and
Windows; see Chapter 10 for more details), or to chase stale ile handles in
some but not all views.

For winked in derived objects: DOs produced under a restrictive umask
will be read-only for the other members of the group. They may still be
winked in, and may still be deleted (depending on the access rights to the
parent directory), but they cannot be overwritten. This means that builds
will eventually fail (after having irst succeeded and winked in some
results): clearly a nuisance. This is fortunately easy to solve, by using the
CCASE_BLD_UMASK makeile macro, thus overriding the view umask
under clearmake.

•

•

Chapter 2

[41]

For directory elements: directories created with a restrictive umask will
not be modiiable by others, who will not be able to create new elements,
checkout existing ones without redirecting the data elsewhere, or create
derived objects and even simple view-private iles. This may seem like a
mine ield, as the problems are typically not detected at once. One may
of course (with appropriate rights) change the protection of elements, but
one may meet further issues in presence of MultiSite: protection events are
subject to settings in the replica objects, and may be iltered. We'll touch this
in due course (see Chapter 11, MultiSite Administration).

Registry, License, and even Shipping servers
The ClearCase installation is concentrated (apart for the data itself: vobs and views).
In UNIX, these are found under two directories: /opt/rational/clearcase, and
/var/adm/rational/clearcase; in Windows, both parts are by default under
\Program Files\Rational\ClearCase, the latter concentrated as a var
hierarchy below this root. The former part is considered read-only and not
preserved during upgrades (installations). Note that there is also a common tree
(/opt/rational/common in UNIX and C:\Program Files\Rational\Common in
Windows) with some read-only non-preserved contents.

View and vobs are registered in a central location, a directory
/var/adm/rational/clearcase/rgy on a dedicated server (optionally backed
up on another host), in a few lat text iles collectively known as the registry. They
contain records of the objects themselves and of the tags used to access them. The
realm of a single registry maps to the span of regions (also recorded in the registry),
and (possibly with subtle differences, rather to be avoided) with this of sites
(in MultiSite context). The relevant commands are:

$ ct hostinfo -l
$ ct lsregion

One typical use of regions (see our Teaser chapter), is to support Windows
and UNIX environments over the same vobs (and even optionally views). For
reasons explained in the previous chapter (the different path naming schemes),
a vob must be tagged in both in different ways, and regions make this possible.
Each client host (even the registry host itself) can only belong to a single region,
and can only access vobs and view with tags in this region. This is conigured
in a config/rgy_region.conf text ile, under the /var hierarchy (not to be
confused with the rgy/regions ile, on the registry host, in which the names of
the various regions are stored). But a ClearCase client is allowed to query the
tags used in other regions, and to check the identity of a registry object by using
its uuid: universally unique identiier.

•

www.allitebooks.com

http://www.allitebooks.org

Presentation of ClearCase

[42]

Another function is typically localized on a separate server: holding the license
database. ClearCase supports two alternative licensing schemes, functionally
intended to be equivalent (loating licenses, per simultaneous user): a traditional,
proprietary one, based on a simple lat ile, and a more recent one, using the de
facto standard FLEXlm, and supported with tools to provide duplication, backup,
and monitoring (these functionalities may be achieved with the former, but only
using ad hoc tools).

One last kind of servers (hosts) may occasionally be met: shipping servers. Their
function relates to MultiSite, and whereas it is made necessary for crossing irewalls
(with restrictions in the opened port ranges), shipping servers may also be used for
other purposes (for example, buffering or dispatching between multiple vob servers
on a site). See thus Chapter 11.

Config specs
ClearCase offers (or should we say offered, from the point of view of the UCM
extension, which, as told earlier, we'll ignore for now) a mechanism to select
systematically and implicitly consistent sets of versions for multiple elements,
across many vobs. This mechanism is called coniguration speciication, and is a
property of views. Views are thus considered as the ClearCase implementation
of the abstract concept of software coniguration, already mentioned.

The speciication happens through an ordered list of rules evaluated in turn for
every accessible element until one matches. Only the irst match matters. Note
that it is often a different rule which matches in the context of different elements.
A rule selects a version (out of many) of an element.

To check which rule actually applied for a given element, use the ls command:

$ ct ls -d foo

The -d lag in the above example is useful if foo is a directory. What matters, for
build avoidance purposes, is the result of the selection, the version selected, and
not the rule used (hence, not the conig spec). Conig specs should be considered
merely as convenience tools. However, to remain convenient, they have to be
well understood, and thus to be kept simple.

It is a common mistake (sanctiied by UCM) to follow the slippery slope of
making them too complex, by piling up many ad hoc rules speciic to small
contexts, and inally to 'free the user from this complexity' by generating them:
one has once again thrown the baby with the bath water.

Chapter 2

[43]

The speciication ought to be consistent, and this consistency is best achieved
by limiting the number of rules, and thus augmenting their scope: less is more.
Then, there is no reason anymore to generate the conig specs: the main result
achieved by doing this is that the user doesn't feel that consistency is her concern.

A set of simple commands is provided to operate on conig specs as text. Here
are the man pages:

$ ct apropos 'config spec'
catcs Displays the config spec of a view
edcs Edits the config spec of a view
setcs Sets the config spec of a view

In addition to these, the man page documenting the syntax is config_spec
(ct man config_spec).

The most typical example of conig specs is:

element * CHECKEDOUT
element * /main/LATEST

This is called the default conig spec, and may be restored in a given view, with
the command:

$ ct setcs -default

Beware however:

The previous conig spec (in place before running this command) is lost:
ClearCase does nothing to version it, or back it up

This will actually set the conig spec stored on the local host as
/opt/rational/clearcase/default_config_spec (one might
consider it a breach of the principle of least surprise to change it,
but it may still be the case...)

Seldom (but see below for one case) will you not want to select versions you'd have
checked out yourself (what the irst line in the default conig spec says).

The second line will however on the contrary seldom be suficient for your needs.
It is valid only as a default, ensuring that you'll access at least one version of every
element you can reach: there is by construction always a main branch in every
element (unless you have changed its type, or renamed the main type in the
vob—again a questionable move if you intend not to surprise your users), and there
will always be a LATEST version on this branch, even if it may be version 0, which is
an empty one. Note however the more important restriction at the end of the above

•

•

Presentation of ClearCase

[44]

sentence: "every element you can reach". An element is reachable only from a certain
path (or more, in case of hard links); it is not uncommon that one of the directories
on this path will be selected in a version not containing (yet or anymore) the next
name in the path chain: some elements may thus not be reachable at all, in a the
current view, using the current conig spec!

Let's rather consider the following, more useful, conig spec:

element * CHECKEDOUT
element * .../branch/LATEST
mkbranch branch
element * LABEL
element * /main/0

It anticipates on Chapter 6, Primary Metadata, for the concepts of labels (here in
UPPERCASE) and branches (lowercase). The irst line selects the user's checked
out versions.

The second line assumes the user is working in an own branch (branch), and her
check-ins are always made to a distinct workspace in the version tree, in which she
has write access. This device is meant to support parallel development. By this line
in the conig spec, the check-outs will also be done from the branch in case it already
exists for the element.

The third line speciies the beginning of the "branching off" section: that is, for those
elements that do not have the branch branch yet, it will be created from the element
version labeled by the label LABEL, as speciied on line four. Typically, such a label
denotes a code baseline, for example, some stable release, which you'd like to use as
a base for the further development.

The last line is mainly for creating new elements: any element has the default version
0 on the main branch (/main/0), and it will be branched off to the version 1 on the
branch branch right away by this rule. The same rule will however also catch the
case of elements that were not part of the baseline (that is, not labeled by LABEL),
ensuring that no discontinuity will arise from taking existing versions, which might
introduce conlicts with other iles.

As one may see, the main concern is to ensure continuity of work via consistency
of the rules: avoid that iles might appear or disappear, or that the versions selected
might differ in unexpected ways, as a result of one's actions (checking out or in,
creating a branch, applying a label to a version currently selected).

element * LABEL -nocheckout

Chapter 2

[45]

This last example is one in which own checkouts are excluded (both producing any,
and selecting any which would have been produced in the same view before setting
this conig spec): clearly this is suitable for a read-only access of existing versions,
but possibly also for building, hence for creating derived objects, and thus "writing"
in this sense. This kind of setup is useful to reproduce a coniguration recorded as
one single label type; maybe for validating it, making sure that nothing critical was
forgotten (such as environment variables, view private iles, or iles outside the vobs,
which would affect the build one would want to replay).

There are several other functionalities available to edit conig specs
(see the config_spec man page):

Scope patterns. We recommended to make rules as general as possible. There
may however be some restrictions to the extent of this advice, such as the fact
that metadata (and thus label and branch types) is vob local. Some rules may
thus make sense only in the context of certain vobs, but not of others. Scope
patterns extend (or rather restrict) the * character we have used until now.
Scope rules based on vob tags pose an interoperability problem: the vob tags
are only guaranteed to be valid in the current region. The solution is to use a
syntax mentioning the vob family uuid (with the tag as a useful comment):

element "[899d17d4.769311d9.9735.00:01:83:10:fe:64=############
 /vob/apps]/..." LABEL

There is another use: work around the exclusion principle, and allow to
select two versions of the same element in the same view. This is clearly an
exception, probably temporary, but it is essential to be able to allow it: the
user creating a new element instead of a new version (evil twin) would even
be worse, and cannot easily be prevented. The idiom is to use a hard link
and a different name (or path), and to add an exceptional rule for the
alternate name.

element libfoo.so.26 FOO_26
element * LABEL

This example assumes that the current version of libfoo.so is selected
by the generic rule with LABEL, and preempted in the special case of the
libfoo.so.26 name (a hard link of the libfoo.so element).

Include rule. It is possible to share conig spec fragments, by including them
into one's conig spec. This is obviously the mark of a suspicious complexity,
but again, may be justiied in certain contexts. Note a non-intuitive problem
when the included fragments are modiied: the changes do not propagate
to the user conig spec until she re-compiles it, which happens with the
command:

 $ ct setcs -current

•

•

Presentation of ClearCase

[46]

In doubt, one may enquire when was the conig spec last compiled with:
 $ ct lsview -l -prop -full

grepping for the Last config spec update row, or by looking at the time
stamp of the .compiled_spec ile in the view storage directory.
A second problem may surprise users: the versions of the iles actually
included are all evaluated using the conig spec of the current view, from
where one runs the setcs or the setview: any rules found earlier in the
same conig spec do not affect this selection! This is documented, simple to
understand in theory, but counter-intuitive in practice.

Time clauses. One may try to protect oneself against changes that happened
after a certain time stamp, and which would creep in via the LATEST builtin
pseudo-label type: in effect, to freeze the time at a date in the past. Let's bring
your attention to a gotcha under MultiSite: one may learn new things about
one's past! This may happen via importing a delayed packet. The technique
of using time clauses, which seems careful, is thus not a panacea. We'll come
back to MultiSite concerns, and how to deal with them safely in Chapter 5.

Block rules.The last goody in the somewhat too rich conig spec syntax
is an exception to the too simple description with which we opened this
paragraph: block rules—meta rules that apply onto other rules, bracketed
within a block. This may be used for mkbranch and time clauses, and, let's
admit it, rather helps introducing clarity than the other way around.

This review of conig specs did not intend to be exhaustive: for this, we refer our
reader to the man page. What we do want to stress is that conig specs may be
written, and even read by users, unless one errs on the side of excessive complexity.
The need to version conig specs (either by use of the include clause, or by using the
setcs command to set one's conig spec from a ile) should be felt as a red lag. The
opposite strategy is clearly wiser: design one's conig spec so that it may be stable,
and remain small and simple. This may be achieved by using loating labels
(see Chapter 6).

•

•

Chapter 2

[47]

Summary
This concluded our review of the basic concepts:

The virtual ile system metaphor
Auditing and winkin

Vobs and views

Registry, license and other servers

Conig specs

Remember that we also opened up a perspective on thinking of SCM at large, which

we'll nourish during our travel through ClearCase.

The scenes are ready? The play may start!

•
•
•
•
•

Build Auditing and Avoidance
In this chapter, we'll focus on derived objects, and on producing and managing
them. We believe that it is what makes the competitive advantage of ClearCase, and
this makes this chapter, despite its apparent technicality, the most important one.
Contrary to the tradition of version control, which still dominates the mindset of
most of its competitors, ClearCase allows to manage directly what is most valuable
to the end user—the products and not the ingredients. This applies to many realms
and to the various stages of production: building executables out of source code as
a particular case, but also, for example, packaging the software, testing, producing
documentation, etc. We'll analyze how the user and the tool can collaborate to make
management possible and effective.

In this chapter, we are going to cover the following topics:

Coniguration records: how to produce them and to use them; how to
optimize makeiles, avoiding various pitfalls, to not only reduce build
times, but most importantly, to maximize the stability and the sharing of the
derived objects
Validation: how to use the conig records for analysis purposes; how to
examine the records of individual derived objects, to reproduce the builds
and to assert the quality of the reproduction

Tying some knots: how to deal with some speciic requirements, questioning
some "best practices"; we'll inally mention leveraging these techniques to a
wider perspective

Configuration records
ClearCase offers to record the software coniguration actually used during build
transactions. But all records are not equally useful: it depends on the user to help
ClearCase to produce records that may become the irst source of information
concerning the development.

•

•

•

Build Auditing and Avoidance

[50]

Flat or hierarchical: clearaudit vs. clearmake
To introduce coniguration records, the simplest is to irst take the clearaudit tool.
This performs the basic function of recording (auditing) the iles opened during the
hierarchical execution of a process and of the subprocesses directly or indirectly run
by it. It does this however only on iles located in a vob. Let's thus suppose we are in
a view, and under a vob mount directory. We start a clearaudit session, concatenate a
couple of iles (to /dev/null), create one new empty tag ile, and exit. Then we look
at the result as recorded in the conig record of the tag ile.

$ cd /vob/test/caudit

$ clearaudit
$ cat VobPathConv.pm >/dev/null
$ cat /etc/passwd >/dev/null
$ touch tag
$ exit
$ ct catcr tag
Derived object: /vob/test/caudit/tag@@--05-15T06:19.20613
Target ClearAudit_Shell built by mg.user
Host "sartre" running Linux 2.6.18-128.el5
Reference Time 2010-05-15T06:18:35+01:00, this audit started ###########
 2010-05-15T06:18:35+01:00
View was vue.fiction.com:/views/mg/mg.vws
Initial working directory was sartre:/vob/test/caudit

MVFS objects:

/vob/perl/lib/site-lib/5.10.0/ClearCase/VobPathConv.pm@@/main/imp/4
<2009-06-21T12:55:49+01:00>
/vob/test/caudit/tag@@--05-15T06:19.20613

Comparing to what we got in the Teaser chapter, let's note that this case is simpler. In
Teaser, we did produce a ile, all.tests, to which the conig record got attached; we
practiced using the ct catcr command. Now again, we need to create one such ile,
unless our rule modiies one suitable ile (in a vob), in which case the conig record
already gets attached to it and we do not need an extra tag ile.

We note that /etc/passwd did not get recorded in the tag conig record. It is not a
vob object, so recording it (as we did for the builtin.mk makeile component in the
Teaser chapter) would require an explicit mechanism (in the Teaser, it was a special
makeile macro, which will look into later).

Chapter 3

[51]

There is thus no non-MVFS objects section, and neither any Build Script one.
Something more important but less obvious—this record is lat. Note that the
VobPathConv.pm module was not mentioned in the derived object all.tests conig
record we have seen in the Teaser chapter; and yet it was recorded. This is because the
record produced by clearmake was actually hierarchical (which we did not display),
and it is pathconv.cr, which was referenced explicitly in the all.tests conig
record. This is the main difference between clearaudit and clearmake conig records:
there are no hidden parts in this clearaudit record; it is all there, lat.

Maybe you wonder where the conig record itself is actually stored? The important
point here is that although the tag ile (even if empty) is, at least at this point, stored
in the view storage (it is view private data—or lack thereof), the conig record is
already public, and therefore stored in the vob database (you can detect its existence
with the countdb utility, which we'll look at in Chapter 10, Administrative Concerns).

What matters next for us is to understand that audited iles may be thought of as
dependencies, and to see that this makes even more sense in presence of a multi-
version database than of a plain ilesystem. We shall leave outside our scope how
one might compensate the absence of such a database, by mapping the recorded ile
names to versions in an external repository, in an attempt to decouple the function of
clearmake from ClearCase.

The challenge is to use a full list of dependencies, together with the script used to
produce a given derived object, as a means to unequivocally identify it, and by
identiication, to understand the most basic function of Software Coniguration
Management (which one remembers, was once borne as some kind of accounting).
This identiication is implicit (provided by the system), and operational (the system
may use it eficiently).

Let's note that it sets a few requirements:

The production must be deterministic and causal, grounded on ile objects
(random behaviors, or dependence on time are excluded)

All the dependencies must be themselves identiied (in the context of
ClearCase, iles must be in vobs or explicitly designated, elements
must be checked in)

The execution of the script itself must be atomic (closed over oneself:
interactions with other processes will cause problems)

Note that the concept of dependency has a precise meaning in the context of
makeiles (where it is sometimes also termed as prerequisite).

•
•

•

www.allitebooks.com

http://www.allitebooks.org

Build Auditing and Avoidance

[52]

Makeiles will also allow us, as mentioned earlier, to produce hierarchical conig
records. The interest lies in the reuse of components, and in their increased stability:
coarse components become dependency bottlenecks. Fine granularity, on the
contrary, leads to fewer dependencies and therefore to better stability expectations.

Makefile syntaxes—compatibility modes
Makeiles are an old technology, once again popularized by UNIX. It also has
slightly diverged in the various environments, and therefore comes in several
variants. clearmake has historically taken three parallel strategies:

Support a minimum common syntax

Support a compatibility mode with the local platform syntax (Solaris,
HP-UX...)

Support the syntax of GNU make, as this soon became available everywhere

This third strategy has clearly come as the winner, and it is the one we recommend
and will use.

GNU make has evolved over the years, and clearmake has followed. It offers the
richest set of built-in functions, which allows to avoid spawning sub-shells,
and thus: depend on the environment, require extra complexity, and incur
performance penalties.

It also supports two lavors of variables: recursively or simply expanding, with
the latter offering again opportunities for simpliications and performance
improvements in many cases.

The GNU compatibility mode is also the only one supported on Windows.
It is invoked on the command line by using the -C gnu option, but may also be
driven by an environment variable.

We did not use it in our Teaser, for simpliication, as we would have had to explain
the presence of one extra makeile component in the conig record.

•
•
•

Chapter 3

[53]

There is a large body of documentation and of expertise about GNU make.
This is a valuable asset. Also, it is wise to retain compatibility with the GNU make
tool, that is, to ensure that one is able to build using it. The beneit may be to be able
to get a wider assistance while tracing dificult problems, or to have a second tool
when doubting the irst one. Remember however that whatever the similarities,
essential differences remain. Not all advice concerning build systems tuned for
GNU make is relevant or even valid when applied to clearmake. One good
example is the historical controversy concerning a famous paper by Peter Miller:
Recursive Make Considered Harmful. While the problems described in it are real, the
proposed solution, monolithic top-down build systems, is not in line with our goal of
optimizing winkin, which obviously could not be a requirement for the author. We'll
leave it to the reader to check that our solutions do address Miller's issues, using a
radically different strategy.

A first case with clearmake
Our goal will be to describe ways to build hierarchical subsystems, in a way
optimizing the stability of the various components and maximizing winkin. We
shall grow this system from a irst simple one. We'll take our example in C code,
but keep it as trivial as possible: we'll restrict our functionality to the traditional
Hello World greeting.

The most natural way to compose a system from components written in C is by
creating and using shared libraries.

So, here is a subsystem producing a shared library, containing a function (quite
redundant...) to print a single string. The source code is comprised of one header ile,
and one source ile; wstr.h:

void wstr(const char* const str);

and wstr.c:

#include <stdio.h>
#include "wstr.h"

void wstr(const char* const str) {
 printf("%s\n", str);
}

We are, however, more interested in the Makeile:

CCASE_BLD_UMASK = 2
SRC = wstr.c
OBJ = $(SRC:.c=.o)
LIB = libwstr.so

http://miller.emu.id.au/pmiller/books/rmch/

Build Auditing and Avoidance

[54]

BIN = /vob/tools/bin
CC = $(BIN)/gcc
LD = $(BIN)/ld
CFLAGS = -Wall -fpic
.MAKEFILES_IN_CONFIG_REC: $(LIB)

all: $(LIB)

nolib \
$(LIB): $(OBJ)
 $(LD) -shared -o $@ $(OBJ) -lc

Here, we recognize two sections:

Macro deinitions: a name and a value assigned to it
Rules: a target, followed by dependencies, and optionally below, indented
with TAB characters, with the rule proper, i.e. with a shell script supposed to
produce the target

Using clearmake, one need not explicitly name static dependencies to elements
(as e.g. to wstr.h in the example above), as they will be discovered and checked
automatically. On the contrary, dependencies on other derived objects are
mandatory. They are termed in ClearCase documentation (notably the excellent
Guide to Building Software, available both from the IBM website, but only for
version 7.0.0 – at least at the time of writing, and as part of the distribution) build
order dependencies, and this term describes well their essential function, driving the
navigation by the make tool of the dependency tree.

Maintaining this list will be the major focus of our attention, and the main tool to
ensure the quality of the produced conig records.

The rule script is idiosyncratic to our environment: the -shared lag and the explicit
use of the -lc standard C library, as well as the mandated use of the linker (instead
of the main gcc driver) would be different in some other environment and with other
tools. The -o lag to specify the output, as well as the $@ make macro to name the
target are more generic.

Let's note that this makeile relies upon the deinition of implicit (or pattern) rules,
needed here to perform the compilation proper, i.e. to produce the object ile,
wstr.o, from the source ile, wstr.c. One advantage of using the C language is that
this rule is standard. It uses the CC and CFLAGS macros, respectively for the compiler
and compilation lags. Some of these deinitions could (should) be extracted into
common makeile components, to be included by similar subsystems:

OBJ, as it is completely generic, and computed from the value of SRC.

•
•

•

http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m0/topic/com.ibm.rational.clearcase.hlp.doc/cc_main/toc_hlpovw_build_sw.htm

Chapter 3

[55]

CC and LD: we are using here the Gnu C compiler and linker. These are found
from a vob.

CFLAGS is set here to produce position independent code, i.e. is only suitable for
objects packaged in shared libraries.
.MAKEFILES_IN_CONFIG_REC is technically a special target, although it
behaves more like a macro. We met this already in our Teaser makeile
(found as code from the publisher web site). We'll devote the next paragraph
to it. For the time being, and assuming only one library per makeile and
one makeile per directory, one could extract it as well. One could also work
around these assumptions, but this presents tradeoffs in terms of simplicity,
and we'll not do it here.

$(LIB) is also fully generic, depending only on macros. Note the nolib
guard, ensuring syntactic correctness of the makeile in the case the macro
would not be deined.
Next, we could decide that all the C iles found in our directory are actually
meant to be linked to our library. This requires that we move away test and
any extra iles, which is probably advisable anyway, and will help others
to make sense of our code. Assuming this, one might use the wildcard
GNU make function to yield a generic deinition for SRC in our standard
makeile component.

These extractions would leave us with a local makeile such as:

STDDIR = /vob/bld/std
LIB = libwstr.so
include $(STDDIR)/stdlibdefs.mk

all: $(LIB)

include $(STDDIR)/stdrules.mk

We would still have to deine the path to the standard makeile components, STDDIR,
and the name of the library produced locally, LIB. And we would have to deine
the default target (the irst non-special target lexically met), all, which is actually
equivalent to its dependencies, as having no rule of its own. This target is the one
built when invoking clearmake without arguments.

The purpose of these extractions should be clear, although it is twofold:

Avoiding accidental differences, such what could happen if deining the
same list several times, with its tokens in different order, in the makeile:
making sure that any information is only represented once.

Managing by differences, that is, raising the signal/noise value of the local
makeile, so that errors would be easier to spot and to ix; only essential
information should be presented, if possible.

•
•
•

•

•

•

•

Build Auditing and Avoidance

[56]

Our case is still too simple: something we miss here, because we did not meet
this need, is to include directories to resolve precompiler directives. These would
typically arise from indirect dependencies upon other subsystems. The header iles
should be included during the compilation of the local source iles, but the related
libraries should be linked in once (and only once) in the resulting executable. This
is an addition we should make into the CFLAGS variable, which we moved now
into a shared makeile component. This addition may in fact be a boilerplate, and
computed from a LIBS macro which is only empty in our irst simple case. The only
problem is that our value of CFLAGS was speciic to shared libraries (the position
independent code), whereas this generic addition could in fact be more general, i.e.
implemented in a stddefs.mk component, which would itself be included from our
stdlibdefs.mk one. The point is that we'd like to modify (to append to) the value of
the generic CFLAGS. This is an indication for switching to the directly expanded lavor
of make macros, which we alluded to in the paragraph on compatibility mode, since
modifying a recursively expanded macro leads to an ininite regress.

This yields the following state of the standard makeile components,
stdlibdefs.mk:

include $(STDDIR)/stddefs.mk
CFLAGS := $(CFLAGS) -fpic

.MAKEFILES_IN_CONFIG_REC: $(LIB)

stdpgmdefs.mk:

include $(STDDIR)/stddefs.mk
.MAKEFILES_IN_CONFIG_REC: $(PGM)

and stddefs.mk:

CCASE_BLD_UMASK := 2
BIN := /vob/tools/bin
CC := $(BIN)/gcc
LD := $(BIN)/ld
SRC := $(wildcard *.c)
OBJ := $(SRC:.c=.o)
LDIRS := $(patsubst %/,%,$(dir $(LIBS)))
LDIR := $(addprefix -L, $(LDIRS))
LNAM := $(addprefix -l, $(patsubst lib%.so,%,$(notdir $(LIBS))))
LINC := $(addprefix -I, $(LDIRS))
CFLAGS := -Wall $(LINC)

Chapter 3

[57]

Note the assignment syntax: this is now a direct assignment and it is only evaluated
once, which allows to use the previous value of the macro without fearing the
ininite regress.

We changed all the assignments to be direct, with the consequence that their lexical
order now matters.

We used GNU make functions liberally, to build lists of options for the tools, from
the same initial values. Note that LIB and LIBS (which we do not actually use yet)
are now the only ones under the responsibility of the user.

And we need the following rules (stdrules.mk):

nopgm \
$(PGM): $(OBJ) $(LIBS)
 $(CC) -o $@ $(OBJ) $(LDIR) $(LNAM)

nolibs \
$(LIBS):
 @cd $(dir $@); $(MAKE)

nolib \
$(LIB): $(OBJ) $(LIBS)
 $(LD) -shared -o $@ $(OBJ) -lc

From this ile, we only needed the $(LIB) rule so far, to which we just added a
dependency to potential libraries it would depend upon. This macro being empty
in this context does neither affect our build, nor result in any include lag in the
compiler options.

But it is time now to turn to the next step, and to use this library we just built,
precisely via this mechanism. We shall thus use the two additional rules presented
right above.

Recording the makefiles
The .MAKEFILES_IN_CONFIG_REC special target does what its name says—recording
the makeiles in the conig record of the objects named as its dependencies. The
makeiles are needed in order to reproduce a build, so that it is convenient to record
them. However, every target typically requires only a small subset of the information
makeile contains— the rule associated with it, with all the macro expanded. If this
rule doesn't match textually the script used for a next invocation, clearmake will
assume that a different recipe produces another cake and will run it.

Build Auditing and Avoidance

[58]

But then why not to record them systematically? And why using a special
mechanism? The answer is simple: makeiles tend to constitute dependency
bottlenecks, that is, to constitute a dependency of each and every of the objects they
are meant to build and are therefore very volatile. Makeile might be subject to
change every time new objects are added. They share this property with directories,
and actually with most other containers (such as archives or packages from where to
pull out whole installations).

This is why makeiles deserve a special treatment. Like directories, they will (but
only when using this special target) get recorded, but will be ignored for dependency
matching purposes. Although ignored, of course as ile versions and not as expanded
scripts: these will still have to match as described above.

Note that in our examples, we do not record makeiles in all the conig records, but
only for programs and libraries.

As a side remark, recording makeiles with the built-in rules and deinitions
(for GNU compatibility mode they are the following iles under the ClearCase
installation directory /opt/rational/clearcase: etc/gnubuiltin.mk and
etc/gnubuiltinvars.mk) in this way gives us a good example of explicit recording
of iles outside any vob—the full paths and timestamps are recorded. Of course,
all the other makeiles, found in the vobs, are recorded as well, in the MVFS objects
section of the conig record:

$ ct catcr hello
Derived object: /vob/apps/hello/helloc/hello@@--05-23T13:15.178584

MVFS objects:

/vob/apps/hello/helloc/Makefile@@/main/3 <2010-05-23T13:15:53+03:00>
/vob/apps/hello/helloc/hello@@--05-23T13:15.178584
/vob/apps/hello/helloc/hello.o@@--05-23T13:15.178583
/vob/bld/std/stddefs.mk@@/main/1 <2010-05-21T01:19:15+03:00>
/vob/bld/std/stdpgmdefs.mk@@/main/1 <2010-05-23T13:10:09+03:00>
/vob/bld/std/stdrules.mk@@/main/1 <2010-05-21T01:19:17+03:00>
/vob/apps/hello/wstr/libwstr.so@@--05-23T12:39.178560

non-MVFS objects:

/opt/rational/clearcase/etc/gnubuiltin.mk <2008-03-07T02:26:59+02:00>

/opt/rational/clearcase/etc/gnubuiltinvars.mk <1998-12-22T02:47:15+02:00>

Chapter 3

[59]

Using remote subsystems
Let's note that our library does not depend so far upon its client code (hello.c), and
it is good so! It is purely offered. This is achieved by not deining the library and the
client code build together in, for example, some common bulky "project" makeile.
We shall thus use it from a different, remote directory. We should, in fact, keep the
dependency as it is—one way—and avoid creating a top-down architecture that
would preclude later reuse of valuable components in other contexts than the ones
in which they were initially developed.

Our code will still be trivial, hello.c:

#include "wstr.h"

int main() {
 wstr("Hello World");
 return 0;
}

Again, we'll focus our interest onto the Makefile:

PGM := hello
LIBS := /vob/apps/hello/wstr/libwstr.so
STDDIR := /vob/bld/std
include $(STDDIR)/stdpgmdefs.mk

all: $(PGM)

include $(STDDIR)/stdrules.mk

This should strike as very similar to the former, partly thanks to the extraction of
shared makeile components.

We note the use of full and not relative paths. This answers the concern of
avoiding to propagate a dependency on the directory of invocation, into the name
of the invoked target—being fully qualiied, the target name will be the same,
independently from where it is being invoked. This concern anticipates on reuse
from other possible directories.

Next, we'll notice our using the same stdrules.mk ile as previously, albeit in it, the
two rules we did not use so far.

The $(PGM) rule in itself is simple—it links its arguments into an output named
as the target (using the -o option and the $@ macro, in the same way as our earlier
$(LIB) rule). It uses now our $(LDIR) and $(LNAM) macros. These macros act in a
similar way upon $(LIBS), from which they extract lists of directories and ilenames
respectively, that they format then into options as required by the linker syntax,
preixing the directories with -L and the short library identiiers with -l.

Build Auditing and Avoidance

[60]

Its dependency list is what interests us now: or more precisely, not the $(OBJ)
part, which is again common with the previous case, but the $(LIBS) one. $(LIBS)
is a list , every item of which is produced by our second rule. It is reduced in our
example to just one item: /vob/apps/hello/wstr. Every call of the rule performs a
remote (also named recursive) build invocation, i.e. it switches directory to the parent
of a library and explicitly invokes $(MAKE).

This will, in fact, result in using our previous case! Here is the transcript:

$ clearmake -C gnu
 /vob/tools/bin/gcc -Wall -I/vob/apps/hello/wstr -c hello.c -o hello.o

clearmake[1]: Entering directory `/vob/apps/hello/wstr'
 /vob/tools/bin/gcc -Wall -fpic -c wstr.c -o wstr.o

 /vob/tools/bin/ld -shared -o libwstr.so wstr.o -lc

clearmake[1]: Leaving directory `/vob/apps/hello/wstr'

 /vob/tools/bin/gcc -o hello hello.o -L/vob/apps/hello/wstr -lwstr

So, great satisfaction: we made it! Our macros expanded as expected, and our result
(hello) works according to speciication (note that we have to tell the system where to
look for the shared library, using the standard shell macro LD_LIBRARY_PATH, when
executing it):

$ export LD_LIBRARY_PATH=/vob/apps/hello/wstr
$./hello
Hello World

But, let's try to build again, now with the verbose lag:

$ clearmake -C gnu -v
Cannot reuse "/vob/apps/hello/wstr/libwstr.so" - build script mismatch
<<< current build script
>>> "/vob/apps/hello/wstr/libwstr.so" build script

1c1
< /vob/tools/bin/ld -shared -o libwstr.so wstr.o -lc

> @cd /vob/apps/hello/wstr/; clearmake

======== Rebuilding "/vob/apps/hello/wstr/libwstr.so" ========
clearmake[1]: Entering directory `/vob/apps/hello/wstr'
`all' is up to date.
clearmake[1]: Leaving directory `/vob/apps/hello/wstr'
==

`all' is up to date.

Chapter 3

[61]

We built the library, but had to rebuild it the next time!? This was not the intention,
as nothing has changed that would justify rebuilding. Remember that this may be
costly, but also ruins our identiication goals.

What is the problem? The transcript tells it very clearly: we have two different rules
to produce the libwstr.so library—the local one and the remote one. Both concern
the same target name.

Remote dependencies
A irst idea would be to discriminate between the two target names—the local one
(the library name), and the remote one which could be the same with a postix, e.g.
_build. The $(LIBS:=_build) rule would, however, become a pseudotarget in the
stdrules.mk makeile:

nopgm \
$(PGM): $(OBJ) $(LIBS:=_build)
 $(CC) -o $@ $(OBJ) $(LDIR) $(LNAM)

nolibs \
$(LIBS:=_build):
 @cd $(dir $@); $(MAKE)

nolib \
$(LIB): $(OBJ) $(LIBS:=_build)
 $(LD) -shared -o $@ $(OBJ) -lc

And it would force the actual rebuild of any target depending upon it, with the
following message in the verbose build output:

Must rebuild "hello" - due to rebuild of subtarget ######################
 "/vob/apps/hello/wstr/libwstr.so_build"

$ cd helloc
$ clearmake -C gnu -v
...
Must rebuild "hello" - due to rebuild of subtarget ######################
 "/vob/apps/hello/wstr/libwstr.so_build"

======== Rebuilding "hello" ========
 gcc -o hello hello.o -L/vob/apps/hello/wstr -lwstr
Will store derived object "/vob/apps/hello/helloc/hello"
==

Build Auditing and Avoidance

[62]

The cure might seem to be to touch such a ile (libwstr.so_build) at the end of the
remote rule ($(LIBS:=_build)), but this wouldn't work either. This is because now
the target would not itself have build order dependencies, and thus, in effect, hide
any changes to the library libwstr.so, i.e. such changes that would not cause the
rebuild of the hello application.

This appeals thus for a more radical ix: using a layer of pseudotargets, avoiding to
depend upon them, but carefully collecting the resulting records.

By "collecting the records", we mean opening the iles to which records are attached
in the context of a rule and producing a new tag ile.

The irst part, we'll do by reading one line (a minimal amount, maybe not so small in
the case of binaries; GNU head has an option to read one byte) with the head utility,
sending it to /dev/null. We shall make a STAT macro for this purpose. The second
part, we'll do by removing and then touching a tag ile (in order to avoid carrying
forward dependencies of the previous version).

The changes affect all the shared makeile components. In fact, since we can
concentrate the conig recording to tag iles, and decide to have one per directory (for
simpliication), with a standard name of build.tag, we can move the "special target"
(build.tag) together with the other targets to stdrules.mk and get rid completely
of stdpgmdefs.mk. The new makeile components are now stddefs.mk,
stdrules.mk and stdlibdefs.mk.

stddefs.mk:

CCASE_BLD_UMASK := 2
BIN := /vob/tools/bin
CC := $(BIN)/gcc
LD := $(BIN)/ld
SRC := $(wildcard *.c)
OBJ := $(SRC:.c=.o)
LDIRS := $(patsubst %/, %, $(dir $(LIBS)))
LDIR := $(addprefix -L, $(LDIRS))
LNAM := $(addprefix -l, $(patsubst lib%.so, %, $(notdir $(LIBS))))
LINC := $(addprefix -I, $(LDIRS))
LTAGS := $(addsuffix build.tag, $(dir $(LIBS)))
CFLAGS := -Wall $(LINC)
STAT := head -1 > /dev/null
RECTAG := rm -f build.tag; touch build.tag

Chapter 3

[63]

The new $(LTAGS) macro lists the build.tag iles in all the $(LIBS) directories.

stdrules.mk:

.MAKEFILES_IN_CONFIG_REC: build.tag

build_pgm: $(LIBS:=_build)
 @$(MAKE) TGT=$(PGM) build.tag

build_lib: $(LIBS:=_build)
 @$(MAKE) TGT=$(LIB) build.tag

nolibs \
$(LIBS:=_build):
 @cd $(dir $@); $(MAKE) build_lib

nopgm \
$(PGM): $(OBJ)
 $(CC) -o $(PGM) $(OBJ) $(LDIR) $(LNAM)

build.tag: $(TGT)
 @if [-z "$(TGT)"]; then $(MAKE) -f $(MAKEFILE); fi; \
 $(STAT) $(TGT) $(LTAGS); \
 $(RECTAG)

nolib \
$(LIB): $(OBJ)
 $(LD) -shared -o $@ $(OBJ) -lc

We set $(TGT) on the invocation command lines in order to parameterize the generic
build.tag target.

stdlibdefs.mk:

include $(STDDIR)/stddefs.mk
CFLAGS := $(CFLAGS) -fpic

The helloc/Makefile gets slightly modiied accordingly ($PGM is replaced by
build_pgm as the all target dependency, i.e. in fact as its alias).

helloc/Makefile:

PGM := hello
LIBS := /vob/apps/hello/wstr/libwstr.so
STDDIR := /vob/bld/std
include $(STDDIR)/stddefs.mk

all: build_pgm

include $(STDDIR)/stdrules.mk

Build Auditing and Avoidance

[64]

This solves the problem at hand—the build.tag iles get reevaluated every time
(but actually even they are either wink or stay untouched). But the real derived
objects are stable—the actual rebuild involving the compiler never gets executed
unnecessarily:

$ clearmake -C gnu -v
No candidate in current view for "/vob/apps/hello/wstr/libwstr.so_build"

======== Rebuilding "/vob/apps/hello/wstr/libwstr.so_build" ========
clearmake[1]: Entering directory `/vob/apps/hello/wstr'
No candidate in current view for "build_lib"

======== Rebuilding "build_lib" ========
clearmake[2]: Entering directory `/vob/apps/hello/wstr'
`build.tag' is up to date.
clearmake[2]: Leaving directory `/vob/apps/hello/wstr'
==

clearmake[1]: Leaving directory `/vob/apps/hello/wstr'
==

Must rebuild "build_pgm" - due to rebuild of subtarget ##################
 "/vob/apps/hello/wstr/libwstr.so_build"

======== Rebuilding "build_pgm" ========
clearmake[1]: Entering directory `/vob/apps/hello/helloc'
`build.tag' is up to date.
clearmake[1]: Leaving directory `/vob/apps/hello/helloc'
==

Yet the actual rebuild happens in case any of the dependencies change; however, the
situation is not satisfactory as of now.

Multiple evaluation of dependencies
We need to make our case one step more complex yet, by adding a second library/
subsystem. The function we add now prints a string in reverse order, and as it
happens, depends itself on out irst library.
Here is the source code, srev.h and srev.c.

srev/srev.h:

char* srev(const char* const s);
void wrev(const char* const str);

Chapter 3

[65]

srev/srev.c:

#include <stdlib.h>
#include <string.h>
#include <wstr.h>
#include "srev.h"

char* srev(const char* const s) {
 int i = 0;
 int j = strlen(s);
 char* r = malloc(j);
 while (j) {
 r[i++] = s[--j];
 }
 r[i] = 0;
 return r;
}

void wrev(const char* const str) {
 char* p = srev(str);
 wstr(p);
 free((int*)p);
}

and the makeile:

srev/Makefile
ROOT := /vob/apps/hello
LIB := libsrev.so
STDDIR := /vob/bld/std
LIBS := $(ROOT)/wstr/libwstr.so
include $(STDDIR)/stdlibdefs.mk

all: build_lib

include $(STDDIR)/stdrules.mk

We slightly modify our main function in hello.c and its Makefile to use the new
functionality:

helloc/hello.c:

#include "wstr.h"
#include "srev.h"

int main() {
 const char* const s = "Hello World";
 wstr(s);
 wrev(s);
 return 0;
}

Build Auditing and Avoidance

[66]

helloc/Makefile:

PGM := hello
ROOT := /vob/apps/hello
STDDIR := /vob/bld/std
LIBS := $(ROOT)/wstr/libwstr.so $(ROOT)/srev/libsrev.so

include $(STDDIR)/stddefs.mk

all: build_pgm

include $(STDDIR)/stdrules.mk

We build successfully, using the unchanged shared makeile components, add the
new path to the LD_LIBRARY_PATH environment variable and run the application:

$./hello
Hello World
dlroW olleH

It looks right. But nevertheless, there is something wrong.
What is the problem? Let's attempt a rebuild:

$ clearmake -C gnu
clearmake[1]: Entering directory `/vob/apps/hello/wstr'
clearmake[2]: Entering directory `/vob/apps/hello/wstr'
`build.tag' is up to date.
clearmake[2]: Leaving directory `/vob/apps/hello/wstr'

clearmake[1]: Leaving directory `/vob/apps/hello/wstr'

clearmake[1]: Entering directory `/vob/apps/hello/srev'
clearmake[2]: Entering directory `/vob/apps/hello/wstr'
clearmake[3]: Entering directory `/vob/apps/hello/wstr'
`build.tag' is up to date.
clearmake[3]: Leaving directory `/vob/apps/hello/wstr'

clearmake[2]: Leaving directory `/vob/apps/hello/wstr'

clearmake[2]: Entering directory `/vob/apps/hello/srev'
`build.tag' is up to date.
clearmake[2]: Leaving directory `/vob/apps/hello/srev'

clearmake[1]: Leaving directory `/vob/apps/hello/srev'

clearmake[1]: Entering directory `/vob/apps/hello/helloc'
`build.tag' is up to date.
clearmake[1]: Leaving directory `/vob/apps/hello/helloc'

Chapter 3

[67]

The problem is that we went twice in the wstr directory.

Not a big deal? Unfortunately, it is: this is a major nuisance if the system is not as
trivial as ours. Complex builds will take signiicant time just for clearmake to reach
the conclusion that they are up to date. The number of evaluations will only grow,
and it will grow fast as the number of paths to reach the leaf nodes from the root in
the dependency graph. It will actually affect more ine grained designs than coarse
grained ones, and thus encourage people to throw management concerns away.

What is important for us is to avoid the trivial solution of hardcoding one particular
traversal of the graph, on the ground that it allows some low-level optimizations.

The solution, however, is not particularly dificult on the basis of our system as
it is designed so far! We should note that the problem affects only a single target:
$(LIBS:=_build). What we want is to avoid invoking its rule a second time, if it
has been invoked once. We must thus keep track of the irst time it gets invoked. The
natural way is by creating a temporary ile. We must do it in a location which doesn't
depend on the caller, and in a way which doesn't itself get recorded so that nothing
depends on it.

The best location is the simplest one—the directory of the remote target.

The $(LIBS:=_build) doesn't itself produce any derived object which would be
recorded. So the second requirement is easy to fulill. We may even add an ounce of
optimization by telling clearmake not to record anything, using the .NO_CONFIG_REC
special target.

The next question is the name of the ile: it should be unique, to avoid collisions
between possible concurrent builds. The usual trick is to use the process id of the top
makeile (the one directly invoked by the user). This pid is guaranteed to be unique
on the host, so we may add to it the host name, which will protect us against builds
running on different machines as well as anticipate on the option of using distributed
builds (see later). We have to propagate this information through the chain of make
invocations. Again, this is standard functionality: we may deine this macro in such a
way that it gets overridden by the value set in the command line invocation.
The last concern is to clean up these iles. We shall do this at the end of a successful
build, taking care not to overwrite the possible error code returned in case of failure.

Build Auditing and Avoidance

[68]

Here are the changes to the two shared makeile components, stddefs.mk:

BUILD := $(shell hostname).$(shell echo $$$$)
LBLD := $(addsuffix $(BUILD), $(dir $(LIBS)))

and stdrules.mk:

.NO_CONFIG_REC: $(LBLD)

...
build_pgm: $(LIBS:=_build)
 @$(MAKE) BUILD=$(BUILD) TGT=$(PGM) build.tag \
 && rm $(LBLD)

build_lib: $(LIBS:=_build)
 @$(MAKE) BUILD=$(BUILD) TGT=$(LIB) build.tag

nolibs \
$(LIBS:=_build):
 @if [-z "$(BUILD)"]; \

 then echo stddefs.mk not included; exit 1; fi; \
 if [-r $(dir $@)$(BUILD)]; then exit 0; \
 else touch $(dir $@)$(BUILD); \
 cd $(dir $@) && $(MAKE) BUILD=$(BUILD) build_lib; \
 fi

Validation
The result we reached now is simple (all is relative), and certainly too simple to
answer all the requirements one might have. For example, one might criticize the fact
that the include directives are set once per directory, and not once per ile. Also that
we create a shared library per directory, which may result in a large number of them.
These critiques are valid, but can be addressed, subject to tradeoffs. For instance, the
latter could be handled by making intermediate archive libraries, and building the
shared libraries from them.

Another batch of critiques might focus on robustness, and error handling and
reporting. For example, how would this system react in presence of cycles in the
dependency graph (the same subsystem being referenced at different levels in the
recursive traversal)?

This introduces us to the tool: ct catcr -union -check.

Chapter 3

[69]

Error reports and their analysis
The answer is that the build might work, and even the resulting executable might as
well. Yet, a real problem is lurking with potential consequences, which should rather
be detected early, while debugging strange behaviors in the produced deliverables.
The transcript might be (we insert numbers in column 1, so that we may refer to the
precise reports in the following):

$ ct catcr -union -check build.tag

MVFS objects:

1)
Object has multiple versions:
First seen in target "build.tag"
 7 /vob/apps/hello@@/main/mg/11 <2010-05-18T18:39:03+01>
First seen in target "libwstr.so"
 2 /vob/apps/hello@@/main/mg/10 <2010-05-16T16:09:18+01>
2)
Object has multiple versions:
Object has no checked-in element version:
First seen in target "build.tag"
 3 /vob/apps/hello/wstr/Makefile <2010-05-20T09:30:46+01>
First seen in target "libwstr.so"
 1 /vob/apps/hello/wstr/Makefile@@/main/mg/1 <2010-05-16T14:22:30+01>
3)
Object has multiple versions:
First seen in target "build.tag"
 2 /vob/apps/hello/wstr/libwstr.so@@--05-23T12:39.178560
First seen in target "hello"
 3 /vob/apps/hello/wstr/libwstr.so@@--05-25T19:44.178752

This transcript is the result of introducing the following addition to wstr/Makefile:

ROOT := /vob/apps/hello
LIBS := $(ROOT)/srev/libsrev.so

In this case, this addition is a pure fake: deining the LIBS macro results in a
dependency which the code doesn't require. It will thus be easy to ix.

Let's note that we draw now the beneit of having produced a "top level tag ile", to
which the conig record of the whole build got attached. We would like to highlight
again the fact that it is not an artiicial global top, from which any build would
have to be run. Our top level is a bottom-up result, i.e. the opposite to an original
intention, a "project" top. The risk is to tie to the payload of every subsystem the
context in which it was—often accidentally—developed. Such a price tag may
effectively defeat the beneits of sharing and reuse. In other words, the build of a
subsystem made in the context of a project should be re-usable as such in the context
of any other project.

Build Auditing and Avoidance

[70]

Let's review the analysis provided by catcr -check:

Directory elements. Error 1) in the transcript above is: Object has multiple
versions. This is typical of dependency cycles—the current build
remembers of the previous one and, if some objects are modiied
between the two, the recorded versions will not match. In the case of
/vob/apps/hello@@/main/mg/11, it is however a directory, and as we
already mentioned it, directories are ignored for dependency matching
purposes. What this means is that this precise case is not the symptom of
a cycle, but an unavoidable difference. We'd rather skip it, or in fact, have
catcr -check skip it for us, so that we may focus on critical errors irst (by
default, catcr will not list directory versions, but catcr -check will report
their differences). This can be done by using an additional option, -type f,
for skipping directories and checking ile objects only. One must add that
real problems may, at times, lurk behind such differences between directory
versions. clearmake will pay attention to some (removing from a directory
an entry name used in the previous build), but not all (e.g. adding an entry
name which would preempt one used previously if the build was run again).

Makeile elements. The next report 2) is a double one: Object has multiple
versions and Object has no checked-in element version. This is a
special case of the previous kind, now concerning a ile element. We built
before checking in (perfectly normal), but this older build event was not
overwritten. Referencing a checked out version usually prevents build
reproduction (other views have no access to the data, as it is private to our
view). This being an error depends upon the state of our build: it tells us
that this build is not shareable. Makefile is however a makeile. Our case
is thus similar to the previous one with directories—makeiles are ignored
for dependency matching purposes, and may be found in multiple versions
(as builds using a previous version might not have been invalidated). The
unfortunate aspect is that catcr does not provide us with a convenient lag
to ignore these (usually spurious) reports.

Derived objects. At last, error 3) shows us a real problem: Object has
multiple versions. This is a derived object this time. So, for some reason
this derived object was invalidated and rebuilt, but only in a partial context;
the rest of our system still depends on the previous version of this derived
object and has not been rebuilt accordingly if there was a real need. We must
thus investigate where the problem is.

•

•

•

Chapter 3

[71]

To investigate case 3), we will use a handy tool, grepcr, performing a recursive
search in the conig records, and thus providing invaluable help for locating cycles in
the makeiles. The grepcr prints derived objects hierarchies: those that reference the
problematic DO in question, libwstr.so:

$ grepcr /vob/apps/hello/helloc/build.tag libwstr.so
/vob/apps/hello/srev/build.tag@@--05-25T20:41.178893:
 /vob/apps/hello/wstr/build.tag@@--05-25T19:44.178753:
 /vob/apps/hello/srev/build.tag@@--05-25T19:03.178745:
 /vob/apps/hello/wstr/build.tag@@--05-23T14:29.178606:
 /vob/apps/hello/wstr/libwstr.so@@--05-23T12:39.178560:

What do we see here? There is clearly a cycle between the srev and wstr subsystems!

It should be easy now to locate the fake addition to the wstr/Makefile, resulting in
the cycle and to remove it from there.

There are no other kinds of errors in this transcript, but we already saw that ixing
the problem (removing the cycle) will not yield us a fully clean transcript, although a
sane situation was restored. This minor false negative cannot be avoided:

$ ct catcr -union -check -type f build.tag

MVFS objects:

Object has multiple versions:
First seen in target "build.tag"
 7 /vob/apps/hello@@/main/mg/11 <2010-05-18T18:39:03+01>
First seen in target "libwstr.so"
 2 /vob/apps/hello@@/main/mg/10 <2010-05-16T16:09:18+01>
Object has multiple versions:
Object has no checked-in element version:
First seen in target "build.tag"
 3 /vob/apps/hello/wstr/Makefile <2010-05-20T09:30:46+01>
First seen in target "libwstr.so"
 1 /vob/apps/hello/wstr/Makefile@@/main/mg/1 <2010-05-16T14:22:30+01>

Here is one more possible error report:

Element has multiple names: (OID: #######################################
 b966d58d.645d11df.97a2.00:0b:db:7d:45:e7)
 /vob/apps/hello/wstr/stddefs.mk (first seen in libwstr.so)
 /vob/bld/std/stddefs.mk (first seen in build.tag)

Build Auditing and Avoidance

[72]

This occurs in case a ile element (stddefs.mk in this case) was moved to a different
directory. Some derived objects used it from its old location. As we mentioned in our
comment of 1), such changes, although only in directories, would force a rebuild,
if the object itself was not a makeile. As in the previous case, because the version
change did not force a rebuild, the previous version stayed recorded, which results
in a spurious error report.

Let's mention that the catcr -union -check tool may also be used to assert the
consistency of several independently built objects, by specifying multiple arguments.
This may be very valuable before attempting an integration.

State of derived objects and reference count
As you produce a derived object, in a standard dynamic view, it is irst private, non-
shared (but shareable), with a reference count of 1:

$ ct setview view1
$ clearmake
 echo ddd> d.out

$ ct lsdo -l d.out
2010-05-27T16:47:52+03:00 Joe Smith (joe@hostname)
 create derived object "d.out@@--05-27T16:47.179000"
 size of derived object is: 4
 last access: 2010-05-27T16:47:52+03:00
 references: 1 => hostname:/viewstorage/view1.vws

If you remove it, the data is lost, but the record remains in the vob database, with a
reference count of 0. You can assess its existence with the lsdo tool and the -zero
lag, or with the countdb one (as already noted while speaking of clearaudit):

$ rm d.out
$ ct lsdo -zero -l d.out
2010-05-27T16:47:52+03:00 ???.???
 create derived object "d.out@@--05-27T16:47.179000"
 size of derived object is: 4
 last access: 2010-05-27T16:47:52+03:00
 references: 0

Note that such a derived object, which is not shared, and with zero references, would
always get re-created by a subsequent build (as its data is lost):

$ clearmake -d
...
No candidate in current view for "d.out"
>>> 16:55:10.913 (clearmake): Shopping for DO named "d.out" in ##########
 VOB directory "/vob/test/tmp@@"

Chapter 3

[73]

>>> 16:55:10.943 (clearmake): Removed 0-ref, no-data heap derived #######
 object "d.out@@--05-27T16:54.179001"

======== Rebuilding "d.out" ========
 echo ddd> d.out

If there exists one reference, and a second view attempts to produce the same
derived object, in a context in which identical same dependencies get selected, the
derived object winks in the new view. As a matter of fact, it irst gets promoted to
the shared status, its data gets copied to the vob derived object pool, and the new
view gets a reference to it.

Examining the object (from either view) with the lsdo tool, we can now see that its
status is shared, and its reference count 2:

$ ct setview view2
$ clearmake
Wink in derived object "b.out"
$ ct lsdo -l b.out
2010-05-27T16:32:59+03:00 Joe Smith (joe@hostname)
 create derived object "b.out@@--05-27T16:32.178992"
 size of derived object is: 0
 last access: 2010-05-27T16:32:59+03:00
 references: 2 (shared)
 => hostname:/viewstorage/view1.vws
 => hostname:/viewstorage/view2.vws

Note that we achieve the same result by using the winkin command instead of
building. If we irst promote a derived object using the winkin command, and
remove it from the view, only then its data is not lost as it is already stored in the vob
derived object pool. Such a derived object, despite its null reference count, may still
wink in to other views and thus avoid getting rebuilt.

Removing derived objects
Derived objects get automatically scrubbed periodically once they are not referenced
anymore. The details may be tuned using the scheduler; we'll pay it some attention in
Chapter 10, Administrative Concerns.

There are cases when you might want to remove some DOs. But as seen previously,
until they have been scrubbed, a null reference count doesn't prevent them from
winking in back to life. What you might thus want to do, after the reference count
has dropped to 0, is to force the scrubbing. There is however a simpler tool than the
scrubber (used by scheduled jobs) itself: rmdo. However, one should only use rmdo
once the DO has been removed from all the views referencing it, and its reference
count has therefore dropped to 0. This requirement is not easy to meet in practice,

Build Auditing and Avoidance

[74]

when the views of many users are involved. Bypassing it will result in internal error
reports to the view owners and in the logs.

One reason for removing derived objects could be to reach a situation where
catcr -union -check reports no errors. This is an optimal baseline to be ready
to detect errors easily, if they get introduced.

There are scenarios in which this optimal situation may become spuriously
disturbed—by producing equivalent derived objects. This may happen if two
concurrent builds are started at nearly the same time. In such a case, neither has
yet produced the results, which the other could have winked in. A good design
will make such cases of race conditions infrequent, but one cannot avoid them
completely. The most common way to produce this adverse situation is by releasing
a source code baseline without providing a build to be winked in. We'll see in below
in the Litmus Test paragraph, how the release procedure may avoid this pitfall.
Another way to produce identical DOs is to use express builds (i.e. views producing
non-shareable derived objects), or some options of clearmake such as -V (view
only) or -u (unconditional), and then to convert the DOs to shareable status (with
winkin or view_scrubber -p, or by checking them in—see later). Such practices are
misguided: they give a short term beneit, for a long term (higher level) penalty.

The problem with equivalent DOs is that they introduce spurious differences
between conig records using different instances out of sets of equivalent ones, and
thus pollute the derived object pool. These differences are hard to tell apart, and
may thus hide real problems. There is an unfortunate long term bug in clearmake
that leverages this issue: when shopping for derived objects, clearmake will prefer
the newer of two equivalent derived objects, therefore propagating a locally created
instability in a viral effect. The version of a derived object present in a given view
will be validated, but other views will use the newer copy. The result is that the
combined system will report differences that will not get cleaned up automatically—
they require careful human intervention (to remove the offending duplicate DOs, as
explained earlier), or a radical change in basic dependencies.

Here is an illustration of the equivalent derived objects bug:

$ ct setview view1
$ ct lsdo wstr.o
--05-23T12:39 "wstr.o@@--05-23T12:39.178559"

$ ct setview view2
$ cd /vob/apps/hello/wstr
$ clearmake -C gnu -u
 /vob/tools/bin/gcc -Wall -fpic -c wstr.c -o wstr.o

 /vob/tools/bin/ld -shared -o libwstr.so wstr.o -lc

Chapter 3

[75]

$ ct lsdo wstr.o
--05-27T14:44 "wstr.o@@--05-27T14:44.178969"
--05-23T12:39 "wstr.o@@--05-23T12:39.178559"
$ ct ls wstr.o
wstr.o@@--05-27T14:44.178969

$ ct setview view3
$ cd /vob/apps/hello/wstr
$ clearmake -C gnu -d
...
No candidate in current view for "wstr.o"
>>> 15:27:46.791 (clearmake): Shopping for DO named "wstr.o" in VOB #####
 directory "/vob/cifdoc/test/wstr@@"
>>> 15:27:46.798 (clearmake): Evaluating heap derived object #############
 "wstr.o@@--05-27T14:44.178969"
Wink in derived object "wstr.o@@--05-27T14:44.178969"
...
$ ct ls wstr.o
wstr.o@@--05-27T14:44.178969

As we can see, in this case when the equivalent derived object has been explicitly
created with a clearmake -u command, clearmake chooses the "heap derived
object", that is, the newest from the two available ones.

Dependencies on the environment and on

tools
At this point, we found that the excellent catcr -union -check tool has some
possible drawbacks—it may report false negatives that it is not trivial to get rid of, or
even to interpret safely. At the very least, it requires some work and attention.

The unfortunate truth is that it may also err on the other side, and fail to report some
problems that could prevent the reproduction of recorded events. A typical cause
of such hidden dependencies is the user environment. This is a dificult question as
clearmake cannot determine what variables affect where. What is possible is to make
sure that environment variables are explicitly set in the makeiles, so that builds
get protected from user settings (and that the user is free to set her environment as
she pleases). The problem is to determine what variables to deine, and for this, we
know nothing better than heuristics, and trial and error. So, as soon as an impacting
variable has been spotted, deine it away—the only shame is to hit the same pitfall a
second time.

Build Auditing and Avoidance

[76]

One particular environment variable is of course PATH, which determines the
algorithm used to ind tools that would not be deined with their full path. It is a
good idea to set PATH in the makeiles, and a better one is to deine the full path of
one's tools (deine a macro for every tool). One might think that deining PATH is
suficient, but it leaves the door open to inding variants of the same tools in different
places on different hosts.

Of course, a full path is not enough to determine tool, or its version. One might
be tempted to hardcode the version of the tools in their name or their path. This is
usually a poor practice, and tends to prevent changes, as the names often spread to
several places— scripts, makeiles, documentation, symbolic links. There is no syntax
for aliasing such inconvenient names (hence performing the reverse task for one's
convenience) that would suit all the contexts of use.

Another easy solution may seem to be accessing the different versions of tools using
symbolic links. Symbolic links deserve a special note. They tend to be overused by
people without SCM background. One major problem with symbolic links is that
they are not a object of their own (apart in one special corner case related to the
lost+found directory of replicated vobs)—one cannot version them. They are data
of directory objects, and as we saw already, directories are ignored for DO matching
purposes, except in some limited cases. In addition, symbolic links introduce
potentialities for spurious differences in recorded build scripts. Only for these
reasons, one should avoid them.

If one wants to discriminate tools, one generic way is to store some speciic data (e.g.
cksum or version output) about them in makeile macros, and to use these macros in
the build rules (even artiicially, e.g. by echoing their value to /dev/null).

By far the best solution to record tools is however to maintain them in vobs, under
common names that would not be tied to a particular version. We'll devote Chapter 8,
Tool Maintenance, to this issue.

Reproducing the build
Fortunately, there is an easy way to make sure one's build is reproducible, and it is
to try.

To do it, the irst task is to complete the packaging, by applying a convenient label,
which will serve as handle (be this our introduction to labels, although we'll be back
on their subject in Chapter 6, Primary Metadata).

Chapter 3

[77]

First, we need to create label types in every vob referenced. We'll use the conig
record to tell us which vobs:

$ ct catcr -type d -s -flat build.tag | \

perl -nle 'print"mklbtype -nc TYPE\@$_" if s:/\.@@.*$::' | cleartool

This command lattens the conig record, retaining only directory versions. The list is
piped to the perl command line invocation that ilters vobs root directories only (only
they have a dot in their version extended representation: /vob/tag/.@@/version)
and applies a simple pattern replacement for striping the version information. Using
the result, it prints commands to create the label type in every vob, and the output is
piped again to cleartool for execution.

This only assumes we attach no comment to the new TYPE. This way, we shall create
one label type per vob, and these will all have the same (and each of them is the vob
local) name. There would be an option to link these types together, using so-called
hyperlinks, and thus to make them possibly global. This would, however, open a
discussion, which we'll defer until Chapter 9, Secondary Metadata.

What remains now is to apply the label:

$ ct mklabel -con build.tag TYPE

This command will sufice to traverse all the vobs. It will give us errors if several
different versions of the same elements are met during the labeling process,
which, as we already decided, might be acceptable in the case of directories and
of makeiles. In such occurrences, the label will go to the latest version in case the
both versions are on the same branch (which may be trivial and thus safe to decide,
or may not be so, depending on the topology of the version tree). This is the best
possible choice—the differences have been considered by clearmake.

There is of course one case in which this will not work—if we have intentionally
used different versions of some elements in different contexts (either by building
separately, or by using hard links and exceptional scoped rules based on the
alternate names, as alluded in the previous chapter). In such cases, a label will not
do: this has to be on at most one version. But exceptions are exceptions, and it is ine
to be reminded of them.

The main issue against labeling is the time it takes, but we believe this should rather
be addressed than worked around.

Build Auditing and Avoidance

[78]

Let's however mention one workaround which relates to our current topic: there is a
conig spec syntax to allow using a conig record directly (that is -config do-pname
option in the view conig spec), instead of, as we propose here, via a label applied
using it. This does of course shortcut the application! We lack experience of using
this rule in practice, and have always preferred to retain a label type as a concrete
handle to reproduce a software coniguration.

We do, however, record as an attribute (let's leave this aspect to Chapter 9) of the
label type, the identity of the conig record. This identity should allow a different
user to retrieve the conig record if it is still available, and otherwise, to produce it
again. We deal with the latter concern in the following, using the label type itself.
The former supposes that one records both the full path (guaranteed to be accessible
using the label in one's conig spec), and the id of the derived object in the label type
attribute value. ClearCase provides us indeed with a unique identiication for every
derived object produced, or actually even with two of them:

$ ct des -fmt "%n\n%On\n" build.tag
build.tag@@--05-20T09:37.20925
e463cd5e.63ea11df.946a.00:15:60:04:45:5c

The -fmt option is a standard way with many cleartool commands (for
example, describe command, which we'll use heavily) to deine the format in which
one expects the output. It is especially useful to produce synthetic results on a single
line, and therefore suitable for grepping. On the contrary, we used it here to produce
two lines: the irst with the DO-ID of the derived object and the other with its oid.
The former is obviously speciic to derived objects. It is human oriented, a compound
of a ile name, with a time stamp. This doesn't make it memorizable (a wished
property of names) but it makes it understandable and easy to relate to other such
names. Its weakness lies as often in its user friendliness: the timestamp in it is not
guaranteed to be stable. On the contrary, it will change after one year to explicitly
mention the year. This is what leads us to store at least in addition, the latter line,
the oid.

This is, on the contrary, a low-level object id, a kind shared with all ClearCase
objects, elements, or types. Note that this is not the lowest possible id: there also
exists a seldom met, e.g. in some error reports, dbid at the underlying database level.

This oid is stable; however, it is not suficient alone, and not only from a cognitive
point of view: reconstructing the original DO-ID from it is not trivial. One can use
the following to retrieve the original DO-ID timestamp part:

$ ct des -fmt "%n\n" oid:e463cd5e.63ea11df.946a.00:15:60:04:45:5c
e463cd5e.63ea11df.946a.00:15:60:04:45:5c@@--05-20T09:37.20925

Chapter 3

[79]

And as for the ile name part of the DO-ID, we need to keep track of it ourselves, and
that is why we record it separately as well:

$ ct des -fmt "%Na\n" lbtype:TYPE@/vob/apps | tr ' ' '\n'
ConfigRecordDO="build.tag@@--05-20T09:37.20925"
ConfigRecordOID="e463cd5e.63ea11df.946a.00:15:60:04:45:5c"

Now that we have the labels in place, we may want to lock the label types as a proof
that nothing could affect them after the time stamp of the locking event.

The label type TYPE, which we have just created, attributed, and applied, can now
serve two different but related purposes: irst, for the build reproducibility (see
the quick-check Litmus test below), and the second, for fetching the derived object,
and the whole software coniguration along with it by explicitly winkin from the
command line:

$ ct winkin -r build.tag@@--05-20T09:37.20925

This will be useful for our "customers", to access our proposal with the least effort;
but we won't get deeper into that right now.

Litmus test
We can now create a new view, and set a one-line conig spec using the label type as
its single rule:

element * TYPE

What we want to do is to build using the same makeile and our target is to produce
the DO in the irst place. And what we expect to witness is a full winkin and build
avoidance.

The point is: if the build does build anything, then something went wrong in the
recording —we do not have the exact same dependencies.

At this point we do have data to examine; we may run catcr -union -check on the
two topmost build tags and narrow the differences down using out grepcr.

Note that this test, however good, cannot prove we have no hidden dependency on
the environment. The winkin is only as good as the record is—a full winkin is not a
proof that clearmake could have built what it winked in.

This procedure may seem heavy, but it all depends on the frequency of mismatches,
and after a irst investment in tuning the makeiles, and there, especially the
dependency lists, the whole system will converge to a stable one, with minor
incremental issues bound to the latest changes.

Build Auditing and Avoidance

[80]

This may also serve as the basis for the further enhancements, just as we did
illustrate in our Teaser.

In that case the label type also helps the new developer to ind out, how the build was
actually made, that is, to ind the Makeile along with its location and the target!:

$ ct des -fmt "%Na\n" lbtype:TYPE@/vob/apps | tr ' ' '\n'
ConfigRecordDO="build.tag@@--05-20T09:37.20925"
ConfigRecordOID="e463cd5e.63ea11df.946a.00:15:60:04:45:5c"

$ cleartool catcr build.tag@@--05-20T09:37.20925
Derived object: build.tag@@--05-20T09:37.20925
Target build.tag built by joe
Host "tarzan" running Linux 2.6.18-128.el5
Reference Time 2010-04-1T07:51:07Z, this audit started ##################
 2010-04-01T07:51:07Z
View was vue.fiction.com:/views/jane/joe.vws
Initial working directory was /vob/apps/hello/helloc

MVFS objects:

/vob/apps/hello/helloc/build.tag@@--05-29T15:29.179120
/vob/apps/hello/helloc/Makefile@@/main/cif/5 <2010-05-24T19:16:03+03:00>
/vob/apps/hello/srev/build.tag@@--05-29T15:29.179117
/vob/bld/std/stddefs.mk@@/main/cif/3 <2010-05-25T16:58:25+03:00>
/vob/bld/std/stdrules.mk@@/main/cif/8 <2010-05-29T15:25:48+03:00>
/vob/apps/hello/wstr/build.tag@@--05-29T15:28.179108

non-MVFS objects:

/opt/rational/clearcase/etc/gnubuiltin.mk <2008-03-07T02:26:59+02:00>
/opt/rational/clearcase/etc/gnubuiltinvars.mk <1998-12-22T02:47:15+02:00>

Variables and Options:

LTAGS=/vob/apps/hello/wstr/build.tag /vob/apps/hello/srev/build.tag
MAKE=clearmake
MAKEFILE=Makefile
RECTAG=rm -f build.tag; touch build.tag
STAT=head -1 > /dev/null
TGT=

Build Script:

 @if [-z ""]; then clearmake -f Makefile all; fi; #####################
 head -1 > /dev/null /vob/apps/hello/wstr/build.tag
 /vob/apps/hello/srev/build.tag; rm -f build.tag; touch build.tag

Chapter 3

[81]

Then we know we need to use the Makefile makeile from the
/vob/apps/hello/helloc directory (note the line, Initial working directory
was /vob/apps/hello/helloc, in the transcript above), and that the makeile target
is build.tag (note the line, Target build.tag built by joe, in the transcript).

What is more important is that this ought to describe the situation following a
release: any oficial or just higher level build using our latest contribution should only
validate it, i.e. promote it as the baseline status for others. The most convincing way in
which it could achieve this is by building nothing anew. One obvious condition for
this to be possible is that the release procedure itself should provide a build suitable
for winkin. The build is a necessary part of the release, and it must take place before
updating the baseline.

We'll have to show in Chapter 6 how to avoid breaking this with adverse
release processes.

Let's stress here how this opposes most traditional strategies, in which the build
manager conidence is grounded in the fact that she built everything in her controlled
build environment. In the context of clearmake, we may ground conidence on
transparency and management, instead of on opacity and control! We may unleash
the beneits of collaboration.

One result we obtained is the identiication by the system of the derived objects,
as members of a family, which allows them to be elected as a possible, if not the
preferred, ClearCase implementation of the concept of coniguration item. We cannot
avoid to reckon that the tight mapping of the DO family identity to a full path name
sounds like an unfortunate overspeciication.

We reached here to the logical conclusion of this chapter, which we'll wrap up
nevertheless once again before the beginning of the next one.

However, before concluding, we must handle a few issues that did not ind a suitable
place in our presentation.

Tying some knots
Some issues could not ind their natural place in the low of our presentation, but
must be dealt with nevertheless.

Build Auditing and Avoidance

[82]

Ties between vobs and views
After we have produced shared derived objects, and these have thus been moved to
some vobs' derived object pools, we broke the clean separation between vobs and
views. We can easily assess this by running the describe command with its -long
lag on some vob object:

$ ct des -l vob:.
versioned object base "/vob/apps"
...
 VOB holds objects from the following views:
...
vue.fiction.com:/views/mg/mg.vws [uuid ##################################
 d2d16962.837211de.9736.00:01:84:2b:ec:ee]
vue.fiction.com:/views/mg/mg2.vws [uuid #################################
 abcb9897.604e11df.8511.00:01:84:2b:ec:ee]
...

This is certainly a minor detail which may be ignored most of the time. It will,
however, affect removing of views and resynchronizing them with the vobs after a
recovery from backup or another replica. We'll be back to the former in Chapter 10.

Distributed or parallel builds
The issue of builds distribution is in: it brings along with load balancing, signiicant
hopes of performance gains and optimal resource utilization. It is supported by
clearmake using -J options standard to other make tools and to Gnu make in
particular (the option is -j in Gnu make). There are, however, pros and cons.

Let's set up an environment for distributed builds and collect some data. We need
to create a ile with a list of hosts in our home directory, with a name starting with
.bldhost and a sufix matching an environment variable CCASE_HOST_TYPE (which
would rather be a makeile macro), and to ensure that the remote shell used by
clearmake is enabled for our use, between these hosts:

$ export CCASE_HOST_TYPE=test
$ cat ~/.bldhost.test
sartre
beauvoir
$ ll /opt/rational/clearcase/etc/rsh
lrwxrwxrwx 1 root other 12 Aug 3 2007 /opt/rational/clearcase/etc/rsh ###
 -> /usr/ucb/rsh
$ cat <<eot> ~/.rhosts
> sartre
> beauvoir
> eot
$ /opt/rational/clearcase/etc/rsh beauvoir echo hello
hello

Chapter 3

[83]

Instead of coniguring rsh, we could as well have set the CCASE_ABE_STARTER_PN
environment variable to point to, for example, ssh, and used it.

With this setup completed, we are ready to ire the irst try of the distributed build,
which produces some error though:

$ clearmake -C gnu -J 2
Build host status:
 Host sartre unacceptable: only 36% idle, build hosts file requests #####
 50% idle.
...

What is the problem? Well, we need to ine-tune the default 50 percent idleness limit
(a lower value doesn't seem unreasonable):

$ cat ~/.bldhost.test
-idle 30
sartre
beauvoir

Then for the purpose of the test, as explained earlier, we removed all the
derived objects, both from all views and, as vob owner with rmdo, from the
derived object pool.

We ran the following command, thus under a utility measuring the time spent
(in user and kernel spaces, then from a wallclock perspective: real). We slightly
skim the output:

$ time clearmake -C gnu -J 2
Rebuilding "/vob/apps/hello/wstr/libwstr.so_build" on host "sartre"
Rebuilding "/vob/apps/hello/srev/libsrev.so_build" on host "beauvoir"

======== Finished "/vob/apps/hello/wstr/libwstr.so_build" on host #######
 "sartre" ========
...
======== Finished "/vob/apps/hello/srev/libsrev.so_build" on host #######
 "beauvoir" ========
...
======== Finished "/vob/apps/hello/wstr/libwstr.so_build" on host #######
 "sartre" ========
...
======== Finished "build.tag" on host "sartre" ========
==

clearmake[1]: Leaving directory `/vob/apps/hello/helloc'
==

real 0m5.735s
user 0m0.515s
sys 0m0.995s

Build Auditing and Avoidance

[84]

The similar time test for a non-distributed build ires the following igures:

$ time clearmake -C gnu
...
real 0m2.454s
user 0m0.476s
sys 0m1.087s

The results (on such a small build system) are quite clear:

The build passes and produces identical results to the non-distributed one

There is an overhead to distribute the builds: the shortest times achieved
even with the -J lag are met when the actual building happens on one single
host (because other hosts are temporarily overloaded)

The overhead is comparatively much larger in subsequent builds (i.e. when
the build process is mostly just asserting that nothing needs to be built)

The irst point cannot be neglected: a correct build system, with dependencies
completely described, should be distributable. As a matter of fact, distributing
the build is a sound test of the build system. An incorrect build with insuficient
dependencies will fail only randomly, depending on which targets are distributed to
different hosts, so that a one-time success is no guarantee.

The second and third points are obvious in afterthought, but must be kept in mind:
the overhead will penalize a user building a small system. But it will also penalize all
users on average—there is a bounty paid to distributing builds. This bounty may be
tolerable if there are computing and networking resources in excess, but it becomes
unjustiied under heavy load. One might also guess that the overhead penalizes
ine-grained systems more than coarse-grained ones, but we do not have facts to
back this guess.

A break-even is to be expected for a certain size of the build, which is neither easy to
compute nor stable. One could expect that distributing builds may win on building
from scratch, but one should not be surprised to see distributed builds compare
poorly on incremental builds, which should be the main target of our SCM focus:
manage by differences.

Let's however admit that parallel building doesn't work well with recursion in
clearmake: until version 7.1, the value given by the user via the -J lag or the
CCASE_CONC variable (the maximum number of concurrent builds) is propagated
and implicitly reused independently by every recursive clearmake invocation,
potentially resulting in an exponential explosion of build jobs; in 7.1, the value is
is not propagated, so that only the initial build targets may be distributed. In order
to ix this problem, one may consider computing a JVALUE parameter, and use it to
spawn sub-makes with: $(MAKE) -J $(JVALUE).

•
•

•

Chapter 3

[85]

The computation will need the original value of CCASE_CONC (propagated e.g. as
ORIG_CONC, since CCASE_CONC is locally overridden by the parent -J option), as
well as a count of the processes currently running, obtained with something similar
to $(shell pgrep clearcase/etc/abe). Note that abe (audited build executor)
processes are launched for build jobs on remote hosts, not for multiple jobs on
the same host (if one uses the same host multiple times in one's bldhost ile, for
example, to take advantage of a cluster architecture). In this latter case, one would
have to monitor something else than the number of abe processes, maybe just
clearmake ones.

Here is a code example, using wc (UNIX word count) to count the number of
clearmake processes, and dc (UNIX desk calculator) to calculate the value of the
JVALUE parameter:

ifeq ($(MAKE), clearmake)
 ORIG_CONC := $(CCASE_CONC)
 LCONC = $(shell pgrep clearmake | wc -l)
 JVALUE = $(shell p=`echo $(ORIG_CONC) $(LCONC) - p | dc`; \
 if [$$p -lt 0]; then echo 0; else echo $$p; fi)
 OPTS = ORIG_CONC=$(ORIG_CONC) -J $(JVALUE)
endif

One would use this value explicitly in the remote invocations (only on pseudo
targets: beware recording it into the conig records!):

 $(MAKE) $(OPTS)

Note also that such measurements may easily be fooled if started concurrently (thus
too early to take each other into account). This is why GNU make actually uses a
more robust technology, based on serialized IPC.

In some cases (such as precisely, taking advantage of multi-processor or cluster
architectures) such complexity (or better) might be worth the while. Otherwise,
understanding these aspects, one may tune the values of CCASE_CONC to get some
beneit of distribution for one's system.

Let's conclude our critique with the following note: using derived objects already
built by others (winking them in), is actually a form of distributed build! This is true
at least from the point of view of the resource utilization.

Staging
The practice of making elements of one's critical deliverables and checking in new
versions, also referred to as staging, is often recommended, even in IBM/Rational
own documentation.

Build Auditing and Avoidance

[86]

Creating an element, checking out, and checking in a version, will be the topic of the
next chapter.

Doing it inside the build brings in a few additional issues, such as:

Accessing the checked-in versions in a view in which LATEST has been locked
at the time of starting the build (as with a -time clause in a conig spec): this
is best done by using a label, which must irst be applied, which leads to the
next problem.

Accessing checked-out versions with commands such as mklabel: one needs
to use an explicit @@/main/CHECKEDOUT extension, meaning that one has to
record or to compute the branch from where the version was checked out.

Using the additional -c option of clearmake to check out the derived object
versions prior to modifying them.

Several reasons may be invoked in favor of staging:

Ensuring that critical deliverables won't be lost (especially after they have
been delivered to customers).

Providing a performance beneit, by avoiding coniguration lookup.
Sharing derived objects with MultiSite.

The main price is, however, to create alternative dependency trees: ones with opaque
nodes. The makeile system stops being transparent.

Of course, the catcr -union -check consistency test is still available—checked
in derived objects remain derived objects. But asserting the consistency of the build
becomes a political issue: it is not collaborative anymore.

Staging is thus not downright incompatible with derived object management under
clearmake, but it surely competes against it.

We believe the concerns listed above may be addressed in other ways:

Shared derived objects won't get scrubbed if they remained referenced.
One may easily keep a view with a reference to the top of a conig record
hierarchy, which will ensure the persistence of the critical assets.

We believe that we suficiently addressed the performance issues and
showed that the gain of staging is at best only minimal against a well-tuned
build system.

Sharing derived objects across sites is not supported by MultiSite. Sharing the
data may be uselessly expensive: network bandwidth has progressed greatly,
but latency has not, and is not expected to, under the current laws of physics.

•

•

•

•
•
•

•

•

•

Chapter 3

[87]

In any case, even bandwidth has not progressed at the same speed as CPU
and clocks. It does make sense to share conig records, for comparison
purposes, which is possible with a -cr option of the checkin tool. This
option has the same issues as staging proper, with placing references to
the derived objects into journaling records (known as oplogs) used for the
replication. We shall come back to this in Chapter 5, MultiSite Concerns.

Application to other tasks than mere builds
In the spirit of our Teaser, we want to stress that the techniques developed in the
chapter may be applied to other tasks than the ones understood with a narrow
acceptation of building. In general, they may be used to avoid running again and
unnecessarily arbitrary tasks, by managing the artifacts these ones produce. An
excellent example of a domain of application is test avoidance, and especially
regression testing.

Summary
We are aware that we dealt with a mass of technical details. We believe these details
were essential to satisfy the extremely high expectations we place on a full use of
the avoidance and winkin machinery that ClearCase offers us. In the precision with
which the dependencies are described lies the scalability and the economy of the
recording, and hence eventually, the justiication for the strong points we'll make in
our conclusion.

We would like however to bring our reader's attention, away from those technical
details, to the paradigm shift that has taken place: from producing deliverables, to
reproducing a task performed elsewhere by somebody else. Formal sameness is now
detected by the system (clearmake), and guaranteed by avoiding to merely produce
again the same, or similar in some loose sense, deliverables. The beneit is not so
much a matter of build speed or of space saving. It lies in the stability that could be
obtained, and communicated between developers, for the incremental steps of the
development process.

This is the insight we'll have to carry with us while exploring the rest of ClearCase.

•

Version Control
Dear Reader,

You have already entered the second part of our book. We stated our main thesis
(didn't you notice?). What remains for us is to make the dream live! It will be a feast
and a ight, of minute details, on a narrow path between slippery slopes.

The CM tradition was built on top of versions of source artifacts, crafted by hand: its
world was a construction ex nihilo. By contrast, our world is always already there.
Furthermore, it is not a cookbook trying to blow a sparkle of life into an assembly
of carbon atoms: on the contrary, it is a frenetic ight to make sense of a universe of
life all around us, and which we are part of. The only stability there is the one we are
responsible for: meaning. ClearCase made it possible to put SCM back on its feet,
after so many years of its standing on its head.

Derived objects are found in sets of instances: they meet there the fundamental
requirement for coniguration items, as set by the theoretical SCM framework. In
fact they represent the prototype. Elements are what ClearCase names the hand
crafted source artifacts. They can be considered as degenerate derived objects: the
leaves of the dependency tree. Contrary to the derived objects, which build up a
deep structure (the dependency tree), they are found at the surface of the software
coniguration space: they are lat, and therefore opaque from a generic point of view
(but we do not forbid speciic analysis, using ile formats aware tools, and interpreting
the data in ways that make structure arise).

We'll focus in this chapter on this small subset of the coniguration items: the most
simple, the most humble ones.

Version Control

[90]

Historical concerns are neither jeopardized nor forgotten. We'll show here how they
are supported by ClearCase, in ways that only minimally depart from standard
expectations:

Making new elements

Check out and check in, at least in simple cases, and the subtleties of
managing memory

Looking for differences between versions

Answering some misguided critiques

Making elements
Elements, i.e. potential families of versions, may be created either empty or
from view private iles (but not from private directories). The command is
mkelem, and there exists an mkdir shortcut for directories (equivalent to
mkelem -eltype directory). The same operation, if carried out from the
GUI, is termed add to source control.

Whether or not obvious, let's note that one needs to checkout the parent directory
before adding new elements, and to check it in afterwards before others may access
the result of the operation: one cannot create an element without assigning it a path.
Note that a newly created vob comes with a checked in root directory.

We noticed a restriction: not from private directories. It is worth mentioning that
many such orthogonality glitches have been ironed away by David Boyce, in his
wrapper (or actually wrappers) available from CPAN: ClearCase::Wrapper
(and ClearCase::Wrapper::DSB). Let's take this as an example: he offers mkelem
a -recurse option (among others) which, one soon forgets, is missing from the
original cleartool.

If adding several elements to the same directory, it is usually better to check out the
directory once, add all the elements, and check in the directory once. This creates
fewer events in the history, results in a smaller version tree of the directory, and is
simply faster.

The mkelem command has lags that allow to deal with details, which otherwise
would require some user interaction:

Giving a comment (-c) or not (-nc). The comment is duplicated between the
element and the irst version if checked in simultaneously.

•
•
•
•

•

http://search.cpan.org/perldoc?ClearCase::Wrapper
http://search.cpan.org/perldoc?ClearCase::Wrapper::DSB

Chapter 4

[91]

Avoiding to check out the new element from the initial version
/main/0 (-nco). The default behavior is to check out the initial version
and remove the view-private copy of the data. Note that the /main/0
version is always empty, and in case the -nco option was used along with
a non-empty view-private ile, the element with the speciied name gets
created, and the view-private ile is renamed to yet another view private
ile with the additional extension .keep (in order not to eclipse the element
created in its /main/0 version).

Checking in the initial version (-ci), which got checked out by default, and
create the version 1 on some branch (depending on the conig spec).

In relation with the default checkout behavior, it is important to set the conig
spec correctly. It must contain the following line in order to make element
creation possible:

element * /main/0

This line can also be:

element * /main/LATEST

We mentioned this in the presentation of conig specs in Chapter 2.

As any element gets initiated with (an empty) version 0 on the branch main, and
in order to check it out (may be to another branch), it must be selected by the
conig spec.

Elements have a type, which affects the way they are stored and the way their
versions may be compared. This type is determined from their name, and possibly
their contents, unless it is given explicitly with an -eltype option. We'll develop
on these in Chapter 9, Secondary Metadata, but may already mention the existence
of a magic ile, with rules to determine the type of the new element. The default
ClearCase magic ile (/opt/rational/clearcase/config/magic/default.magic)
falls back to compressed_file if no other suitable match was found.

Mass creation of elements requires other tools:

clearfsimport, if importing from a lat directory structure
Tools of the clearexport family, followed with clearimport, if importing version
trees from other tools to ClearCase

cleartool relocate to export data from one ClearCase vob to another

•

•

•
•
•

Version Control

[92]

We'll cover those in Chapter 8, Tools Maintenance, and Chapter 10, Administrative
Concerns. The development model encouraged by ClearCase is continuous, with
early publication (under user/consumer control) of small increments. One easily
understands that the issue of mass creation should be considered rather exceptional.
Again, it is worth mentioning that a tool far more lexible and conigurable
than clearfsimport is David Boyce's synctree (see Chapter 10).

The last source of elements is other replicas, but this aspect belongs to
Chapter 5, MultiSite.

If you remember our Presentation of ClearCase (Chapter 2), you'll recall that a critical
aspect of the creation of a new directory is the umask of the user: this drives the
ability for others to produce derived objects or to add new elements to this directory,
and even to checkout existing elements without complex syntax (see later). In most
cases, directories should be writable to group.

Checkout and checkin
Elements under ClearCase are fully accessible (but read-only) as checked in,
e.g. to tools such as compilers. Checking out implies thus in general terms an
intention to modify an element (we'll discuss later in this chapter the special case of
tools requiring that some iles be kept writable). A version checked out becomes
a view-private ile and is not shared with others (unless via a view-extended
path) until it's checked in. This is why checking out is at best deferred as late as
possible, and also done on a ile basis, as needed. In the same way, checking in
should happen as soon as possible, as it provides a ine-grain backup: it is easily
decoupled from delivery to others. The set of checked out iles should therefore
be, at any moment, minimal, and give an indication of the precise focus of one's
current work. So, we can say that the rule of thumb in ClearCase is: Check in often,

check in soon!

We mentioned earlier that in order to check out a ile, one needs to be allowed to
save its data in a directory. If the parent directory is owned by another user, and
is not group writable (assuming you belong to the same group), checking out
will fail. You need then to specify another directory where to save the data, with
an -out option. When the time comes to check in your changes, you can use the
-from option.

Chapter 4

[93]

Checking in an identical copy of a text ile is suspected to be an error (it doesn't
make much sense, as it just clobbers the version tree, and gratuitously invalidates
derived objects that would have been built using the irst version). To force
ClearCase to accept this, you must use an -identical lag. Note though that this
behavior depends on the element type manager: if the type manager does not
compute version-to-version deltas (contrast text_file versions which are stored
as deltas—see Chapter 9—to compressed_file ones which are not) a new (even
identical) version is always created for the element. Most of the time, what makes
sense is however to undo the checkout (you changed your mind and actually do
not need to modify the ile). Then the correct option is obviously to uncheckout
the element. The fact that this is a distinct command is a minor nuisance,
especially when you process several iles at a time. David Boyce's wrapper
serves this with a -revert lag to checkin.

There is obviously more to say about checking out and back in, in the context of
a branching strategy, but we'll defer it until Chapter 6, Primary Metadata, after we
have taken into account the requirements that may arise from MultiSite.

Versioned directories
Early version control systems only supported text iles. It soon became obvious that
names are equally important as any other data, and that the pressure to change them,
as well as the layout of ile systems, made directory versioning necessary. The only
aspect of directory data which is versioned in ClearCase is the name of entries: the
size and the time stamp of iles vary freely (they are those of the versions, and thus
depend on the selection), the ownership and the access rights are common to the
whole elements, and thus non versioned—shared among all the versions.

In order to rename a directory entry (itself a ile, a symbolic link, or a directory),
to create it, or to remove it, one needs to irst check out the parent directory. To
move a ile, one needs to check out both the source and the target directories. And
conversely, the modiication is private until the directories are checked in back.

lost+found
 At the root of every vob, in the /main/0 version of it, there is a lost+found
directory (there is one also at times in the .s directory of the view storage:
see below).

Version Control

[94]

This is a special directory, which has only a /main/0 version and cannot be checked
out. One may remove its name from a new version of the root directory, but this
doesn't affect its real existence (as it is always accessible via the version-extended
path <vobtag>/.@@/main/0/lost+found), so this is therefore a questionable move.

Elements are moved there when they are not referenced from anywhere anymore
(they are then called orphans).

The simplest scenario is the following: the user checks out a directory, creates a few
elements there, and then changes her mind (maybe the intended elements have
already been created elsewhere). She unchecks out her directory: the newly created
elements are moved to lost+found.

In this process, the iles get renamed, in order to avoid possible name clashes: a
compact form of the element's oid is appended to the original base name:

$ ct unco -rm .
cleartool: Warning: Object "a" no longer referenced.
cleartool: Warning: Moving object to vob lost+found directory as ########
 "a.90d36f02668949f7b000811fe3624a51".
$ cd lost+found
$ ls -ld a.90d36f02668949f7b000811fe3624a51
drwxrwxrwx 2 joe jgroup 0 Feb 20 18:09 a.90d36f02668949f7b000811fe3624a51
$ ct des -fmt "%On\n" a.90d36f02668949f7b000811fe3624a51@@
90d36f02.668949f7.b000.81:1f:e3:62:4a:51

Note that every version has a distinct oid: in order to get the element oid, we had to
append @@ to the name.

 Moving unreferenced iles to lost+found is a safety feature on the behalf of
ClearCase: it protects the user from the unexpected consequences of innocuous
commands.

Other scenarios are probably less innocuous, as they may include removing versions
of directories or even whole directory elements.

There are typically two things one might want to do with iles in lost+found:

Restore them, if they were actually valuable. This is easily done with the mv
(move) command, using the basename and dropping the oid, but provided
one knows where to restore them, as the original path information is lost:

$ ct co -nc .
$ ct mv /vob/apps/lost+found/a.90d36f02668949f7b000811fe3624a51 a
$ ct ci -nc .

Remove them completely. This is a good practice, not only to save disk space,
but also to make it easier for others to manage their own iles in the future.

•

•

Chapter 4

[95]

The tool to perform the cleanup is rmelem (remove element). Removing elements
destroys information in an irreversible way, and should thus not be done lightly.
But precisely for this reason, this tool is safe to use: apart for administrators, only
element owners may use it, and only if strict conditions apply (no metadata attached
to any version, and all branches created by the owner):

$ ct mklabel LABEL foo
Created label "LABEL" on "foo" version "/main/br/1".
$ ct rmelem -f foo
cleartool: Error: Element "foo" has labeled versions
cleartool: Error: You must be the VOB owner or privileged user to #######
 perform this operation.

$ id -un
joe
$ sudo -u adm cleartool mkbranch -nc br2 bar
Created branch "br2" from "bar" version "/main/5".
$ ct rmelem -f bar
cleartool: Error: Element "bar" has branches not created by user
cleartool: Error: You must be the VOB owner or privileged user to #######
 perform this operation.

This means that in practice, one can only use it to correct a mistake just after
it occurred, and before any other user actually used the element. Therefore,
administrators who disable the use of rmelem are misguided and do create more
problems than they solve.

Note that in order to use rmelem, especially in lost+found, you do not need to check
out the parent directory; but you do need uncheck out the element (if it happens to
be checked out) before it can be removed.

$ ct rmelem -f a.90d36f02668949f7b000811fe3624a51
cleartool: Error: Can't delete element with checked out versions.
cleartool: Error: Unable to remove element ##############################
 "a.90d36f02668949f7b000811fe3624a51".

$ ct unco -rm a.90d36f02668949f7b000811fe3624a51
$ ct rmelem -f a.90d36f02668949f7b000811fe3624a51

Removed element "a.90d36f02668949f7b000811fe3624a51".

In the above scenario, the user should have removed her elements before unchecking
out the directory.

Version Control

[96]

Cleaning up lost+found of others' iles is an administrative procedure, and we'll
handle it in Chapter 10. Let's however warn the user of two things:

One should not use rmelem recursively from lost+found (on the output of a
find command): the fact that a directory is not referenced anymore does not
guarantee that its contents is not.

It is normal for the number of cataloged elements to grow as a result of
removing some directories: their content was not yet in lost+found, as it was
referenced; not so anymore after one removed their parent directory.

The view lost+found directory, which we already mentioned, is located in the view
storage directory, inside the .s subdirectory: view-storage.vws/.s/lost+found.
Unlike the vob lost+found, it does not exist by default. It only gets created when
user executes cleartool recoverview command to make the stranded iles
available explicitly. Stranded view-private iles are iles, whose VOB pathname
is not accessible at the moment (e.g. in case the vob in question was unmounted
or removed), or whose directory name inside the vob is not available if e.g. not
selected by the view's current conig spec. Such stranded iles can sometimes become
available again, for example, if the vob gets mounted (the former case) or the view
conig spec changes to select the ile's parent directory (the latter case). The user can
also decide to move the stranded iles explicitly to her view's storage lost+found
directory by using the recoverview command with -sync, -vob, or -dir options.
The moved iles are accessible with normal operating system commands.

Removing files
As an executive summary of the previous paragraph, it is important for the user to
understand the difference between:

Removing a name from a directory (rm command, short for rmname)

Removing an element (rmelem command)

The former is reversible: it boils down to making a different version of a directory.
The latter is not (unless by recovering from backup, but this involves restoring the
state of the full vob, thus losing events more recent than the destruction of
the element).

Restoring a ile removed from a directory version does not require any special
privilege or extraordinary skills. We'll review below the tools and the procedure, but
irst a couple of prerequisites: a recap on view extended path and a brief review of
the version tree.

•

•

•
•

Chapter 4

[97]

Looking at the view extended side of things
If we take a closer look at a particular version of some directory (using the version
extended syntax), two interesting observations can be made:

All the entries seem to be directories (even if the entry name refers to a
ile element)
The timestamps and sizes do not directly relate to those in the directory
listing inside a view:

$ ct ls -d .
.@@/main/mybranch/20 Rule: .../mybranch/LATEST
$ ls -l .
-r--r--r-- 1 joe jgroup 133 Jun 1 2010 file1
drwxrwxrwx 2 vobadm jgroup 0 Oct 31 2009 dir1

$ ls -l .@@/main/mybranch/20
dr-xr-xr-x 1 joe jgroup 0 May 18 2010 file1
drwxrwxrwx 2 vobadm jgroup 0 Jan 15 2009 dir1

The file1 element represented as a directory, is actually the whole version tree of
this element referred by its family name, file1, and it is the view's job to resolve it to
a single actual version. We can navigate explicitly through the whole version tree to
get to the same version as selected by the view:

$ ct ls file1
file1@@/main/mybranch/6 Rule: .../mybranch/LATEST

We would also ind out that the element's "strange" date and size shown in its
directory version listing are actually the date and size of its initial version, /main/0
(given for reference purposes only, as indication of the version tree "root"):

$ ct ls file1@@/main/0
-r--r--r-- 1 joe jgroup 0 May 18 2010 file1@@/main/0

$ ls -l .@@/main/mybranch/20/file1/main/mybranch/6
-r--r--r-- 1 joe jgroup 133 Jun 1 2010 ##################################
 .@@/main/mybranch/20/file1/main/mybranch/6

•
•

Version Control

[98]

Version tree
One gets a good grasp of an element by displaying its version tree:

$ ct lsvtree stddefs.mk
stddefs.mk@@/main
stddefs.mk@@/main/0
stddefs.mk@@/main/mg
stddefs.mk@@/main/mg/1 (MG_3.38)
stddefs.mk@@/main/mg/5 (MG_3.39)
stddefs.mk@@/main/mg/6 (MG, MG_3.40)
stddefs.mk@@/main/mg/8
stddefs.mk@@/main/mg/foo
stddefs.mk@@/main/mg/foo/2
stddefs.mk@@/main/mg/p
stddefs.mk@@/main/mg/p/1
stddefs.mk@@/main/mg/p/p1
stddefs.mk@@/main/mg/p/p1/1 (TTT)

One recognizes the version extended path syntax, branches, and versions (leaves
ending in a number), and as the last decoration in the default view, the list of labels
applies to every version. Note that by default, only "interesting" (irst, last, labeled,
base of branches) versions are shown. One gets the same output for directory objects.

Let's make a note concerning the topological structure of the version tree: there may
be many branches, cascaded on top of each others at various depths, but there is only
one main (even if the type may be changed or renamed, with the risk of surprising
users): this is something one cannot change. The main branch serves as basis for all
the other branches. Otherwise, the main branch is not in any way more important
than the other branches from the user perspective. The ClearCase novices often tend
to exaggerate the importance of the main branch and are inclined to think that all of
the development must be done in the main branch or at least eventually merged to it.
Nothing of that kind! In ClearCase no branch is more equal than others!

This tool also offers a graphical option (-g) which, in our experience, is very popular
among users; although we suspect it to be responsible for the creation of many evil
twins —see later— as it allows the user to bypass, without warnings, the conig spec
selection. In the spirit of our Chapter 1, Using the command line, let's however note
what (in addition to display space) one loses by using it: line orientation, i.e. the
possibility to pipe to other tools, to ilter and tailor one's output:

Chapter 4

[99]

$ ct lsvtree -s stddefs.mk | \
perl -nle 'print qq(des -fmt "%Vn %Nc\\n" $_) if m%/[1-9]\d*$%' | \
 cleartool
/main/mg/1
/main/mg/5
/main/mg/6 optimized
/main/mg/8 tools in vobs and build.tag rule
/main/mg/foo/2
/main/mg/p/1 Peter's enhancement
/main/mg/p/p1/1

These are the perl-formatted commands for cleartool, instructing it to show
only the version and the comment (if any), on the same line, this exclusively for
non-0 versions (skipping the branches). Note the use of the powerful -fmt option,
documented in the fmt_ccase man page. The focus is thus on showing only
relevant information, in a minimalistic way.

We even actually use an lsgen tool, from a ClearCase::Wrapper::MGi CPAN
module, to show only the last relevant genealogy of the version currently selected
(that is the versions that have contributed to it), in reverse order from the
version tree.

Recovering files
The irst step in recovering a ile is to ind a former directory version in which it was
still referenced. Several tools could be used to explore the version tree. We ind that
for directory elements, lshistory is more convenient than annotate. One has again
to ilter the relevant information, and thus irst to present it in a suitable format. In
the example which drove our previous chapter, we had, at some point, a "deinitions"
makeile for programs (stdpgmdefs.mk), which later became useless and was
removed. In what directory version exactly?

To answer this, we'll use a command made of three parts in a pipe:

Produce the history data

Normalize the lines of the output
Filter

•
•
•

Version Control

[100]

The second part is unfortunately complex, especially as a one-liner: it is however
boilerplate. The output of lshistory for directories in not line oriented: for checkin
event, the version is displayed (we actually output irst, before the version, a numeric
time stamp for sorting purposes, which we drop at print stage), followed with the
comment recorded. The latter is a multi-line list of differences between versions. The
role of the Perl script is to reproduce the preix information found on the irst line of
every event report, to the beginning of every following one. It performs its task in a
very typical way for Perl scripts: by creating a hash, i.e. a data structure indexed by
keys. The keys here are the preixes (i.e. the time stamp plus version) information,
and the data is a list of all the ile changes. When the input is exhausted, in an END
block, the script prints out its data structure, in two nested loops, with the outer one
sorted on the time stamps.

$ ct lshis -d -fmt "%Nd %Vn:%c\n" . | \
 perl -nle 'next unless $_;
 if(/^(\d{8}\.\d{6} [^:]+):(.*)$/){
 $k=$1;push @{$t{$k}},$2}else{push @{$t{$k}},$_};
 END{for $k(reverse sort keys %t){
 for(@{$t{$k}}){$k=~s/^[\d.]+ (.*)/$1/;print"$k $_"}}}' | \
 grep stdpgmdefs.mk
/main/mg/2 Uncataloged file element "stdpgmdefs.mk".
/main/mg/1 Added file element "stdpgmdefs.mk".

The ile was thus present in version 1, but removed already in version 2 of the
/main/mg branch of the current directory.

Next, we check out the version of the directory into which we want to resurrect the
ile, and use the ln tool (link) to duplicate the entry found in version 1. We thus
create a hard link (by opposition to soft, synonymous to symbolic, which the same
tool would produce if used with an -s lag). "Hard link" is the technical term, in the
UNIX tradition, for the name used to record an entry in a directory object. The same
ile object may thus be hard linked multiple times in different directories, or different
versions of a directory, under the same or different names.

$ ct co -nc .
$ ct ln .@@/main/mg/1/stdpgmdefs.mk .
$ ct ci -nc .

Giving the directory as a target, as we did, we retain the original name of the
ile—stdpgmdefs.mk in our example here.

We could, in theory, have used the merge tool (we'll come back to it in Chapter 7,
Merging). However, this would have offered us all the changes, interactively if we
selected so. The number of such changes is variable, and may be large (we could
check in advance, and even script the interaction). In the end, merge would however
(for directories) create a hard link in exactly the same way.

Chapter 4

[101]

Hard links
We have already mentioned hard links a couple of times. We saw that they may be
used to select several versions of the same element (with scoped rules in the conig
spec), and that they may be used to restore removed iles.

The long output of the ls command in UNIX mentions the number of hard links
pointing to the same ile (and thus in a vob, to the same element):

$ ls -dl bin
drwxr-xr-x 2 admin locgrp 1564 Jan 9 2009 bin

In case of directories, the number starts from 2 because of the "." alias, and is
incremented by 1 for every sub-directory because of the ".." alias there.
These two special cases are handled in a special way, and never result e.g. in labeling
errors (attempting to label multiple times).

Until a recent version of ClearCase, there was no direct support for inding the other
names of a given element. This is now ixed, with two possible syntaxes:

$ ct des -s -aliases -all t1
t1@@/main/3
 Significant pathnames:
 /vob/tools/tls@@/main/1/t1
 /vob/tools/tls@@/main/1/t2

$ ct des -fmt "%[aliases]Ap\n" t1
/vob/tools/tls@@/main/1/t1 /vob/tools/tls@@/main/1/t2

Evil twins
This issue of recovering iles brings us to the topic of evil twins, that is, the
consequence of not caring for possible ile recovery, while facing for a second time,
the need for the existence of a ile one removed at some point. First, let's stress that
this plague is not an exclusive disease of ClearCase, quite on the contrary. The basic
scenario is thus the following (only the barest bones!):

$ ct co -nc .
$ echo first > foo
$ ct mkelem -nc -ci foo
$ ct ci -nc .

then later:

$ ct co -nc .
$ ct rm foo
$ ct ci -nc .

Version Control

[102]

and later again:

$ ct co -nc .
$ echo second > foo
$ ct mkelem -nc -ci foo
$ ct ci -nc .

The problem is that the two instances of foo are different elements that accidentally
share the same name (in these two versions of the same directory). From a ClearCase
point of view, they have nothing in common (as their name is not one of their
properties): they have a different oid, a different version tree, a different history...
You may recover the irst one (under a different path name) and select arbitrary
versions of both in the same view (i.e. the same software coniguration), without
ClearCase being able to inform you of possible inconsistencies. If they do share some
commonalities from a semantics point of view (the user's intentions), an opportunity
to communicate this to the tool was missed.

This last characterization goes deep into the spirit of SCM (or of the ClearCase
supported new generation thereof): one must use the tool in order to beneit from it.
This doesn't mean that the tool drives and the user obeys, but it tells that one doesn't
quite get the power of a Ferrari if one drags it with oxen: a sophisticated tool serves
its users in relation to their investment in it.

Something else ought to be understood from this abstract characterization: evil twins
are not just a matter of the trivial scenario depicted above—this is just a particular
case of a more general and deeper issue. Evil twins are not a topic to be handled
away with crude (or even clever) triggers (more, or may be less, on them in Chapter
9, Secondary Metadata). It is utterly irrelevant to the real issue that the twins are iles
bearing the same name in the same directory: what matters is that the user missed an
opportunity to represent a commonality in a way which would elect tool support.

And this is all what SCM is about: make it possible for the user to focus on creative
activity, letting the tool take care of reproducing anything already done, earlier
or elsewhere.

So... you meet evil twins, what can you do? Unfortunately, in the general case,
nothing! Pick the one and hide the other away. But removing it (with rmelem) will
break any reference to it, and especially any conig record having used it. It is thus a
matter of convention to decide whether to follow our earlier advice and leave a track
of one's own uses, by applying a label: to read is to write—as you change the status
of what you read, so why not make it explicit? In such a case, you might remove
versions and even elements not bearing any active label (bound to a conig record).
Save the data as a new version of the twin retained (in a suitable branch, which sets
requirements that we'll address in Chapter 6), and possibly move the passive labels
(and other metadata) there. Such decisions obviously are subject to trade-offs and are
dificult to justify.

Chapter 4

[103]

Eclipsed files
We mentioned the word eclipsing in the paragraph on mkelem. This situation
results from a conlict between a view private ile and an element bearing the same
name. It may happen in different situations, but the most likely scenarios involve
changing one's conig spec, thus making accessible some elements that were not
available previously. In case of such a conlict, the view private ile wins, i.e. eclipses
the vob element.

This may easily be detected with the ls command:

$ ct ls foo
foo
foo@@ [eclipsed]

Of course, catcr -union -check would also complain about this ile if it was
used in a build.

It is simple to delete or rename away such iles. Another way to handle them is to
use the same method as for stranded iles (see earlier, in the lost+found paragraph),
with the following command or a variant thereof:

$ ct recoverview -dir $(ct des -fmt "%On\n" .@@) -tag mg
Moved file /views/marc/mg.vws/.s/lost+found/8000043e4c0d3fc3foo
$ rm /views/marc/mg.vws/.s/lost+found/8000043e4c0d3fc3foo

Writable copies
Eclipsing iles may be an answer to a question we set aside at the beginning of this
section: making writable copies of element versions, for tools requiring it. This is
arguably a better answer than keeping the versions checked out unreserved (which is
nevertheless still an option).

The third option which has our preference is to create a branch of the directory, from
which to remove the elements and to place the view private copy there. The reason
for our preference is the clarity of using a dedicated branch type, allowing for some
sharing (not the actual data) among collaborators using the same tool. It also makes
it convenient to compare the different copies (although with the checkout unreserved
variant, one might use some other view for reference).

Version Control

[104]

Differences and annotations
The analysis of changes we did in the case of directories is of course available for text
iles as well. We say "text iles", but it is actually a matter of element types and their
type manager support for the related functionality. As already promised, we'll treat
element types in more detail as part of the secondary metadata in Chapter 9. Let's
say now that the implementation of basic functionality is shared, so that text_file
represents in fact more than itself and even more than its own sub-types.

As our readers may guess, we would not recommend the use of the graphical option
of the diff tool, which results in putting all the responsibility for spotting interesting
data onto the user, making it impossible to use any fancy tool to assist her. The
default output of cleartool diff also surprises us, which presents the differences
side by side, thus truncating the lines (under usual circumstances).

We mostly use the -diff (but -serial goes too) option to retain all the data in a
greppable format.

Note that one may of course use external tools, such as ediff-buffers under GNU
emacs, to compare multiple versions or add colors while retaining the advantages of
text mode.

The -pre/decessor option might be the single reason to prefer the
cleartool diff command to external diff tools (so handy that it is
even implicit with ClearCase::Wrapper):

$ ct diff -diff -pred stddefs.mk@@/main/mg/4
9c9
< LTAG := $(patsubst %so,%.tag,$(LIB))

> LTAG := $(patsubst %.so,%.tag,$(LIB))

The angle bracket preixes obviously distinguish the two versions being compared;
the line numbers and the type of change are expressed in compact format.

The annotate tool is less frequently used (having no counterpart in standard UNIX,
although similar functions exist in several version control tools).

Let's admit that its interface is (powerful yet) cumbersome, so that one doesn't want
to compute the suitable arguments to make the output greppable every time:

CLEARCASE_TAB_SIZE=2 ct annotate -out - -nhe -fmt \
 "%Sd %25.-25Vn %-8.8u,|,%Sd %25.-25Vn %-8.8u" -rm -rmf " D "\
 stddefs.mk | grep LTAGS
2010-05-16 /main/mg/3 marc D LTAGS := $(patsubst %.so,%.tag,$(LIBS))
2010-05-16 /main/mg/5 marc LTAGS := $(addsuffix build.tag, $(dir ########
 $(LIBS)))

http://search.cpan.org/perldoc?ClearCase::Wrapper

Chapter 4

[105]

We were interested in the deinition of the LTAGS macro: this tells us that the current
deinition was introduced in version /main/mg/5, by marc on May 16.

Grepping is really essential with this tool because of the amount of data it may
generate: annotate is in general too verbose to be useful otherwise!

This implies that you:

Don't want to "elide" preixes from any line
Want to get rid of headers

You also typically want to align the content on the same column, after a preix,
and thus:

Set ixed sized formats, relatively short
Set them wide enough to be useful, and truncate the versions from the left
(align to the right)

Use a short tab size (2)
Use a short format to indicate deletions: "D"

We have used this format with very little variation: mostly had to add the -nco lag
when needed, and to trade the -rm one for -all, to get a view of other branches.

Misguided critiques
The subversion Red Book presents some surprising rhetoric in favor of the model
it supports. It designates as Lock-Modify-Unlock, the alternative model, which would
thus be, for naive readers, this of ClearCase (among other SCM products). The
subversion model is elected to similar abstraction under the label: Copy-Modify-Merge.
The problems attached, according to subversion authors, to the former model, are
fortunately trivially and routinely avoided by ClearCase users: these are problems of
the /main/LATEST syndrome, that is, serialization problems bound to the use of one
single branch (per element).

A ClearCase model naturally aims at avoiding the negative aspect of locking (in
fact reserving in ClearCase terms—locking being reserved for some other usage),
that is, modifying the state of the system for the next user. On the other hand, it pays
attention to the beneicial aspect of reserving: communicating to others an intention
and the focus of an ongoing task.

•
•

•
•
•
•

Version Control

[106]

ClearCase does offer a concept of unreserved checkout, but there is hardly any
reason to use it (one should use branches). Anecdotic functionality justiied by the
mere fact it was cheap to implement. There also is an unreserve command to move
a checked out version out of the way. But on the second thought, why would one try
to undo what somebody else did and then ... to do exactly the same thing oneself?
Perhaps a better idea would be to branch off to an own branch (see Chapter 6).

Another trendy commercial in favor of subversion rides the wave of atomic commit.
This was even so powerful as to force some kind of support to be introduced in a
recent version of ClearCase (7.1.1), on customer demand! No special support was ever
needed in ClearCase to allow for atomic publication: this is the domain of labels.
The concept of atomic commit builds on many wrong assumptions: that checkin and
publication are necessarily coupled; that checkin always involves a mass of iles,
and thus a major discontinuity. These abominations should be corrected where they
happen, instead of resorting to smoke pufing games.

Summary
This chapter was lighter than the previous one, wasn't it? We showed that ClearCase,
despite being a ground-breaking monument in the history of SCM, does also handle
neatly the most basic and humble functionalities of:

Making new elements

Making new versions of existing ones

Giving a clear and manageable (lending itself to tailoring) access to the
resulting complexity

All this without resorting to Shoot-Yourself-In-The-Foot GUIs and other fads of some

misguided competition.

The next chapter is again more important in terms of ClearCase originality. It
shows how the requirements set upon the local network, by the build avoidance
mechanism, led ClearCase architects to design the precursor of all distributed SCM
systems. In many ways, still ahead of its successors.

•
•
•

MultiSite Concerns
Not everybody is concerned with distributed development. However, it is wise to
anticipate the move to a multisite environment, and to ensure that it would not result
in a major discontinuity. There are many scenarios, most of which unpredictable
from the developers' point of view, in which a MultiSite environment may become
relevant: outsourcing, acquisitions, mergers, splits. It is important to note that some
of them are incompatible with a central point of control. It is thus wise to design
for lexibility.

Other concerns may lead to partition one's network, and to design a MultiSite
solution, even on the same physical site. We'll see some issues related to
performance in the next paragraph.

Imagine at any rate that a need arises suddenly: will it break the original
single-site setup? Will this need to be redesigned completely? Or can the users
continue working just as they have got used to so far? If the environment remains
stable over such a change in development scale, we have a strong indication of a
proper original setup, optimized for collaboration.

Our agenda for this chapter is:

Push or pull?

Replicas: avoid depending on mastership.

Global types: yes. Admin vobs: no!
Shortcomings of ClearCase MultiSite.

•
•
•
•

MultiSite Concerns

[108]

Distribution model
There is a common debate concerning the pros and cons of centralized versus
distributed coniguration management systems. Beyond the fact that it concerns
mostly version control systems, this dichotomy actually misses the case of
ClearCase, which is often wrongly considered as a representative of the former
camp. The incorrect assumption, which adds to the common ignorance of
MultiSite, is to tie distribution to a pull model (such as in git or Mercurial: users
have to get, i.e. explicitly download the software they are interested in from
remote sites), whereas the push model is associated with the centralized systems
(such as CVS or subversion: users commit, i.e. explicitly upload their changes to the
central server).

ClearCase MultiSite is a distributed system with an implicit push model: remote
changes are made available to the user in the background, asynchronously.

This is a departure from the common culture of synchronous communications,
and is probably felt as a loss of control, while the gain of management is not
clearly perceived.

Synchronization, that is, reaching the same state in the same time (or meeting the
same states in the same order), is only ever obtained by waiting, that is, adjusting
to unavoidable time differences. This is inescapably a loss of eficiency and of
scalability. The sophistication of the interactions between the ClearCase clients
and servers (especially during builds: advertising the creation of derived
objects, promoting local ones for remote winkin) made it clear to the architects of
ClearCase that synchronized behavior was not an option.

Now, vobs are databases, the consistency of which is guaranteed by journaled
transactions. There is a clear mismatch! Clearly every vob server has its
own time, but this time is local, and there is no global time: the situation is one
of relativity, similar to this of Einstein's mechanics. Propagation times are
signiicant compared to CPU speeds, and cannot be ignored.

In fact, if we consider the normal behavior of ClearCase, let's say during a build,
we are writing to a vob database, and all these events have to be serialized,
that is, we are constantly acquiring database locks, executing transactions, and
releasing the locks. This happens between the client and the server, so that the
duration of the process includes the round-trip time of the IP packets between
the two hosts, and this time is incompressible! It is bound to the speed of the
signal and the physical distance (even if in practice, the propagation of the signal
is the slowest due to its treatment in switches, routers, and irewalls). The most
important fact in the communications is thus not the bandwidth, which has been

Chapter 5

[109]

increasing steadily, but the latency. In fact, measured in clock cycles (and thus in
opportunities lost while waiting), the impact of latency is continuously getting
more serious.

This is why ClearCase is optimally used within a 0-hop LAN, and any activity
involving remote hosts should happen in distinct sites, and thus involve
MultiSite. The trade-offs unfortunately involve a loss of functionality over
MultiSite, and of MultiSite scalability.

Multitool, and MultiSite Licenses
ClearCase MultiSite is presented as an add-on product, with distinct licenses: one
needs a MultiSite license as soon as one accesses a replicated vob. This is of course
a major discontinuity and a questionable commercial decision, which may have
limited the historical use of ClearCase.

Being a distinct product, it came with its own tool: multitool, (which we'll alias
as mt) for running MultiSite speciic commands. Over time, several multitool
commands have migrated to cleartool as well (and backwards such as cd and pwd),
as using both is often inconvenient (especially when using a background session to
which to pipe commands: then one would need two such sessions, and need to keep
the two in sync). There remain however some commands that require the use of
multitool. We'll use some below.

Replicas and mastership
The solution to the dilemma is for every site to have, not an identical copy of the
vobs, but a replica of it: this replica is a workspace which can only be modiied
locally, and is prevented by the system from diverging from the other replicas. In the
absence of a global time, it would be meaningless to say that the data is the same: by
the time one would have asserted the state on one site and brought this information
to another site for comparison, it would be unavoidable that this state would have
changed in either or both replicas. What is important is that the differences do not
grow, and that the past, up to a recent date, is common.

This is implemented in the concept of epochs: ever growing igures that represent
high-water marks: the state reached from the point of view of every replica.

We'll review here the commands that may concern users, interested in tracing the
origin or the status of changes. We'll have a later Chapter 11, MultiSite Administration,
on administrative aspects.

MultiSite Concerns

[110]

First, know who you are and who are the partners in communication, both by name
and by virtue of the servers:

$ ct des -fmt "%[replica_name]p\n" vob:.
wonderland
$ ct lsrep -fmt "%n %[replica_host]p\n"
wonderland beyond.lookingglass.uk
sky alpha.centauri.org

Then ind out when was the last import and what is the resulting status in terms of
the epoch number of the remote replica.

$ ct lshis -fmt "%d %o\n%c" -last replica:wonderland
2010-06-11T16:10:40+01 importsync
Imported synchronization information from replica "sky".
Row at import was: sky=377 bigbrother.deleted=565 wonderland=1206
$ mt lsepoch wonderland | grep '(sky)'
 oid:6ba49d09.011621db.8ab1.00:01:93:10:fe:84=378 (sky)

If we have connectivity to the remote server, we can compare with its own values:

$ albd_list alpha.centauri.org > /dev/null
albd_server addr = 123.1.2.3, port= 371

$ multitool lsepoch -actual sky | grep '(sky)'
 oid:6ba49d09.011621db.8ab1.00:01:93:10:fe:84=378 (sky)

This is however unlikely. You have a better chance from your vob server (it must
be connected to some ClearCase server, but it may not be directly to the remote vob
server, rather an intermediate shipping server). How it is connected, at least from the
point of view of shipping its own packets, will show with:

$ cd /var/adm/rational/clearcase/config

$ egrep '^[^#]*ROUTE' shipping.conf

If this shows nothing, then the connection is direct—to any hosts one tries to ship
to, which may only be a subset of the servers hosting replicas of your vob (in case
a delegation scheme is in place, using one kind of hub). This is, assuming the setup
uses the ClearCase shipping_server mechanism, which is likely, but not necessary.
This setup guarantees a high degree of transparency and orthogonality between the
ClearCase servers having the direct connections to one another (the prerequisite is
that the above mentioned albd_list command succeeds). The following commands
will allow you to investigate the history and the schedules:

$ ct getlog -host alpha.centauri.org -inquire
vob ClearCase vob_server log
view ClearCase view_server log
sync_import MultiSite import synchronization log (unformatted)

Chapter 5

[111]

shipping_receipt Multisite shipping receipt log
shipping MultiSite shipping_server log
...

This command shows all the various ClearCase logs that are accessible to you
from the remote host (alpha.centauri.org). All these logs can be fetched by the
same cleartool getlog command, and each particular log can be referenced by its
name speciied in the output of the -inquire command above, e.g.:

$ ct getlog -host alpha.centauri.org shipping
===
Log Name: shipping Hostname: alpha.centauri.org Date: #######
 2010-06-23T10:00:37+01:00
Selection: Last 10 lines of log displayed

This command returns a list of all the scheduled ClearCase jobs on the remote host:

$ ct sched -get -host alpha.centauri.org

The concept of mastership guarantees that inside every object, there is an area
exclusively assigned to the local replica, in which local users may write without
consideration for anything that might happen on other sites. The price of considering
this would be exorbitant: it would be synchronization. Note that mastership works
like a dimension orthogonal to any structure of the software coniguration.

$ ct des -fmt "%[master]p\n" brtype:main
sky@/vob/apps

This preceding example command line shows that the mastership of the main branch
type belongs to the sky replica of the /vob/apps vob.

We wrote inside every object, and this works well for elements, because it suits the
concept of branches, which may be used for this purpose (the summary will wait
until next chapter). But it doesn't work that well for metadata: for metadata, we need
to decide whether to resort to conventions, or whether the item (usually a type) is
stable enough (remember that the concern is only relevant for modiications) to be
shared between the replicas.

Avoid depending on mastership
It is possible to change the mastership of objects. As administrator, it is always
possible to grant one's mastership to some other replica, and to send it. Note that
it takes time, and as such, is irreversible. Once you have sent the mastership, you
depend on the other site to send it back to you. Or it is also possible to conigure
the system so that one may request the mastership of certain objects. This does
also require time. In both cases, the underlying technology is this of creating a

MultiSite Concerns

[112]

sync packet, containing all the oplogs with numbers below the event one is
interested in, to ship this packet, and to import it at the destination. The reqmaster
command tries to take some shortcuts to make it faster, but whether it is possible
depends on the network coniguration, and ultimately is not always safer (one still
needs that all the previous oplogs sent previously have been delivered and imported,
in order to be able to import the oplog...).

We are not trying to paint things black: this is possible, and even works most of the
time. And when it doesn't, it is possible to ix. But, it is always better not to depend
on it at all! Even more: suppose some amount of mastership transfers happens, one
is better to avoid by all means depending on anything related to it, just because it
opens the door to surprises and instability: it introduces a global state of the system.

So, let's not change mastership. The remaining danger is unfairness: we may still
easily be left with some sites more equal than others. One site owns the main branch
type (do you remember? We insisted that topologically, there is only one in the
version tree). If the process mandates that the oficial versions must be found
on main branches, then one site is structurally in a different position than others!
The situation doesn't change an iota by selecting any other type for the
integration branches.

So, our goal will be to answer the simple question: how to avoid depending on
mastership?

The answer is surprisingly simple: read from anywhere, write only to objects (that is,
to branches in the case of elements) you know you master, because you created them.
Share and publish in-place.

In this radical simplicity, this common sense rule defeats 90% of the processes
usually presented as best practices, including the infamous UCM.

This rule rejects all concepts of main or integration branches: never write there,
especially for publication!

Branches
Create branches: this is always possible, if you use a type you created. So, in order
to shoot yourself in the foot, decide to use a predeined type. As long as you don't,
you are free. Branch types should thus not be bound (hardwired) to an intention:
keep them a commodity. Stick to this from the beginning, and neither MultiSite nor
mastership can force you to change your way.

Chapter 5

[113]

Do not design a hierarchy: not everybody would be allowed to create the lower
branches in elements where they wouldn't exist.
Avoid cascading: prefer branching off main branches (or whatever the root branch
type is named). One cannot cascade forever: sooner or later, one meets system
limitations. Choose a policy which preserves the topology of the system for the next
user: the bush model.

Labels
If branch types should be kept free from meaning, it is that semantics are better
held by label types. The cause of the fundamental asymmetry in ClearCase between
branches and labels is simple: labels can be aliased, whereas branches cannot:

$ ct des -s foo@@/AAA foo@@/BBB | sort -u
foo@@/main/3
$ ct des -fmt "%Nl\n" foo@@/main/3
AAA BBB

MultiSite brings however again some far reaching constraints. The namespace of
types is lat and shared among all replicas. This means that any given name may
be reserved by the fastest replica, and preempt the ability of others to use it (there
is a mechanism to resolve conlicts afterwards, but nobody wants the discontinuity
implied by such occurrences). Furthermore, because of the asynchrony of replication,
it is possible for this event to occur retroactively: every time a packet gets imported, it
is the past that changes (note by the way, that this affects time rules in conig spec as
well as labels). Of course, the probability of such accidents is small, but it is a
good idea to use conventions to make it smaller yet. Conventional namespaces, or
pre-assigned families of names, play this role.

Another issue related to MultiSite is that while the same label name may be
associated across several vobs to the same baseline (that is, reference software
coniguration), sync packets are per vob, and independent from others. The result
is that there is no guarantee that a baseline drawn across several vobs will be
synchronized atomically or even only consistently in time.

To wrap up the considerations brought by MultiSite, we advise to:

Avoid sharing label types: to put it clearly, avoid mklbtype -shared.

Use only local label types, that is, types created locally. This refers both to
applying them (one cannot apply unshared types mastered on other replicas),
and using them directly in conig specs (you never know whether you
imported all the "make label" events). Note that you may (and should) use
remote labels as a basis to apply local ones, for integration purposes.

•
•

MultiSite Concerns

[114]

Acquire conventional sub-domains (maybe only preixes) and create new
types within them (to avoid collisions).

A last piece of advice which only marginally relates to MultiSite: we recommend to
lock label types, especially the ones you intend to move (mklabel -replace). Lock
them, and unlock them as needed, of course: this gives a simple guarantee that they
have been stable after a certain time stamp. Locks are not replicated (and it doesn't
make much sense to lock a type mastered elsewhere, and which one therefore cannot
apply), apart for obsolete locks (lock -obs). Obsoleting types requires mastership.

Other types
We shall deal with other metadata types in more detail in Chapter 9, Secondary
Metadata, but we need to anticipate this slightly here. Similar considerations as
reviewed for label and branch types apply roughly. The option of sharing types is
reasonable for stable types, created once for all, and only used later. This results in
less types and in smoother collaboration. The trade-offs depend however clearly on
usage patterns: for example, attribute types bound to label ones (we'll give examples
already in the next chapter) should clearly not be shared, and their name should also
be taken within conventionally pre-acquired domains.

The case of element types is special and needs to be noted, when custom element
type managers are deined and installed. ClearCase MultiSite does nothing
whatsoever to replicate the managers (the built-in tools are installed under
/opt/rational/clearcase/lib/mgrs, which makes it the natural place to put
custom additions) to other sites: this responsibility is left entirely to administrators,
and this meta-responsibility to the users... But no bother: one will be reminded of
the existence of element types managers at the time of failing to import sync packets
on a remote site!

multitool: Error: Operation "create_element" unavailable for manager ####
 "bar"
 (Operation pathname was: ###
 "/opt/rational/clearcase/lib/mgrs/bar/create_element")
multitool: Error: Unable to store new version.
multitool: Error: Unable to replay oplog entry 1800: error detected by ##
 ClearCase subsystem.
1800:
op= mkelem

•

Chapter 5

[115]

Global types and admin vobs
We saw that types are vob speciic, and also that conig spec rules based on them
actually use their names only. This situation is clearly suboptimal, and may be
improved by using global types, that is, creating types with the -global lag,
which allows one to set up hyperlinks of GlobalDefinition types. This affects the
way types are locked, renamed, and removed (together). This, however, creates a
relationship between vobs:

Site 1
$ ct mklbtype -nc -global FOO@/vob/server
$ ct mklbtype -nc FOO@/vob/client
$ ct mkhlink GlobalDefinition \
 lbtype:FOO@/vob/client lbtype:FOO@/vob/server

Describing the type in either vob will now show the same information: the one
stored on the server side, i.e. about the global type:

$ ct des -ahl -all lbtype:FOO
FOO
 Hyperlinks:
 GlobalDefinition <- lbtype:FOO@/vob/client

There are, however, two different objects: on the client side, the type is a local copy,
which may be checked using the -local lag:

$ ct des -ahl -all -local -fmt "%[type_scope]p" \
 lbtype:FOO@/vob/client lbtype:FOO@/vob/server
global Hyperlinks:
 GlobalDefinition <- lbtype:FOO@/vob/client
local copy Hyperlinks:
 GlobalDefinition -> lbtype:FOO@/vob/server

The MultiSite replication system does nothing particular to support (wasn't
originally designed to support) the consistency of this inter-vob relationship. This
means that one may have a replica of one vob (/vob/server, hosting the global
deinition), but not of the other (/vob/client), and the hyperlink will then show up
as "dangling":

Site 2
$ ct des -ahl -all lbtype:FOO@/vob/server
FOO
 Hyperlinks:
 ? <- <object not available>

MultiSite Concerns

[116]

One may get more information (the oid of the link type, link object, vob, and the
other end object) with ct dump, although this amounts to what was contained in the
ct des -local report.

As such, this doesn't cause any problem, beyond some confusion among
remote users.

This may become annoying only if they decide to clean up the glitch, and use the
following command as vob owner on their site:

Site 2

$ ct checkvob -hlink lbtype:FOO

The problem being that this will succeed and thus destroy your information!
Even when this happens, it leaves a trace in the history, which may be used
to communicate and avoid the same problem in the future. To be precise, the
information is not destroyed: the hyperlink just gets detached from the /vob/server
label type (on both sites) and remains attached to the /vob/client label type:

Site 1
$ ct des -ahl -all -local -fmt "%[type_scope]p %n\n" \
 lbtype:FOO@/vob/client lbtype:FOO@/vob/server
local copy FOO
 Hyperlinks:
 GlobalDefinition -> lbtype:FOO@/vob/server
global FOO

Note that the situation is different, if, on contrary, the non-replicated vob is the one
hosting the global deinition (/vob/server). In that case, the error report is the one
as shown here:

Site 2
$ ct des lbtype:BAR
cleartool: Error: Unable to find replica in registry for VOB with #######
 object ID:"046d37bf.7ac511df.9a89.00:01:84:a9:f4:34"
cleartool: Error: Unable to locate versioned object base with object ####
 id: "046d37bf.7ac511df.9a89.00:01:84:a9:f4:34".
cleartool: Error: Trouble finding the global definition for local type ##
 "BAR".
$ ct des -local -ahl -all lbtype:BAR
BAR
 Hyperlinks:
 GlobalDefinition -> <object not available>

Chapter 5

[117]

In this case, the checkvob command will fail, as will any rmhlink one (and lstype
will complain and return an error code, which may affect scripts):

$ ct checkvob -hlink lbtype:BAR
Unable to determine if the following hyperlink is intact.
GlobalDefinition@129@/vob/client lbtype:BAR@/vob/client -> <object not ##
 available>
Delete it? [no] yes
cleartool: Error: Unable to find replica in registry for VOB with #######
 object ID:"d5b61d1f.c73211db.8b18.00:16:35:7f:04:52"
cleartool: Error: Unable to locate versioned object base with object ####
 id: "d5b61d1f.c73211db.8b18.00:16:35:7f:04:52".
cleartool: Error: Unable to perform operation "remove hyperlink" ########
 in replica "sky" of VOB "/vob/client".
cleartool: Error: Master replica of hyperlink is "wonderland".
cleartool: Error: Unable to remove hyperlink ############################
 "GlobalDefinition@129@/vob/client lbtype:BAR@/vob/client -> <object not
 available>".

Now it actually obeys the mastership rules unlike in the previous case we saw.

One might say that this encourages the anti-social behavior of not replicating
the source of one's information, but such a strategy would be cumbersome and
unsustainable in the long range, if wanting to create global lbtypes from different
server vobs.

In summary, global types are thus a useful feature, even if a low-level one, and
as such supported in extremely minimal ways: even the cptype command would
not create a client copy of a global type—one must create the GlobalDefinition
hyperlink explicitly!

Built on top of them, there exists the more ambitious concept of admin vobs. Admin
vobs build up a hierarchy of vobs, linked by hyperlinks of type AdminVOB, and
offering shared deinitions of global types missing in the lower vobs of the tree as
they are being requested (for example, while running ct mklabel for a type not
yet deined in the current vob). Note that for this mechanism to work, one still has
to create the types explicitly as -global, and in the admin vob: types created in the
client vobs are by default -ordinary.

The same issue as previously mentioned for GlobalDefinition hyperlinks exists
with AdminVOB ones, but its consequences may be more severe: it is possible that
packets for the replica of a client vob cannot be successfully imported in the absence
of the admin vob.

MultiSite Concerns

[118]

Admin vobs bring though a conceptual problem: they bind all sites to one and the
same hierarchy, and thus at least to a common set of vobs. In this respect, they
defeat the fairness of the MultiSite design. If we remember the discussion which
started this chapter, about the various scenarios along which one might get pushed
to use MultiSite, one clearly sees that such uniformity doesn't suit the lexibility
requirements considered. It is easy to conceive scenarios in which one would
"inherit" admin vob hierarchies from various origins, which would be utterly
cumbersome to merge, thereby leading to chaos.

Our recommendation concerning admin vobs is thus, based on MultiSite concerns,
to avoid using them at all! On the contrary, global types may be used: some scripting
will raise up the functionality to a reasonable and useful level.

Shortcomings of MultiSite
We saw in the beginning of this chapter that there could be advantages in
partitioning a large local network into several sites (in the MultiSite sense of the
word), and we alluded to trade-offs concerning the loss of functionality.

It is now time to clarify these trade-offs, that is, to give reasons not to use MultiSite in
spite of the beneits this might bring.

Our reader will not be surprised if we stress here the complete lack of support for
derived objects. This is sometimes worked around by naive users through staging,
that is, by checking them in as versioned derived objects, partly for the purpose
of replicating them; we already mentioned this in Chapter 3, Build Auditing and
Avoidance. We believe that this is throwing the baby with the bath water. Versioned
derived objects are certainly still derived objects, in that they retain their conig
records, but they lose what makes conig records valuable: that clearmake uses
them to implicitly manage derived objects—clearmake identiies derived objects by
their conig records, which allows it to avoid their useless duplication. This shift
of responsibility from users, or administrators, to the tool, thus freeing human
resources for more creative and more complex tasks, is what potentially makes
ClearCase a next generation SCM system.

Furthermore, as we already mentioned, we do not believe there is much value in
replicating the data of derived objects: the makeile system should be optimized to
make it faster to build locally than to download binaries. At any rate, one shouldn't
trust binaries that one cannot build oneself, or rather, that one cannot analyze locally.
At the SCM level, such analysis can only be generic, that is, based on comparison.
This is the road to enhancement: MultiSite should replicate the conig records, as
conig records. This means that no derived object data would need to be replicated,

Chapter 5

[119]

but the conig records would be available for tool supported comparisons. As we
already noted, at the moment one can only emulate this by explicitly checking in the
conig record:

$ ct diffcr foo .@@/main/cr/1/foo/main/mg/1
< Target foo built by mg.user
> Target foo built by mg.user
< Reference Time 2010-06-20T14:48:26+01, this audit started #############
 2010-06-20T14:48:26+01
> Reference Time 2010-06-20T14:44:32+01, this audit started #############
 2010-06-20T14:44:32+01

MVFS objects:

< /vob/test/t@@/main/mg/1 <2010-06-20T14:44:45+01>
> /vob/test/t@@/main/cr/1 <2010-06-20T14:43:28+01>

< /vob/test/t/foo@@--06-20T14:48.16247
> /vob/test/t/foo@@/main/mg/1

Note that in the above transcript, one object is a derived object and the other a
derived object version, actually checked in with the -cr option.

Note also that we checked it in in a special branch cr, conventionally reserved for
this purpose, of its parent directory, which allowed us to retain the exact path name,
whereas avoiding to leave a read-only ile in the way of our normal builds. To
update this element, we use a different view, in order to avoid altering the original
DO and test the effects of the -cr option:

$ ct setview v2
$ ct co -nc -nda foo
$ ct ci -nc -cr -from /view/v1$(pwd)/foo -rm foo
Checked in "foo" version "/main/mg/2".
$ ct des -fmt "%[DO_ref_count]p %[DO_kind]p\n" foo
 unshared
$ ct co -nc -nda foo
$ ct ci -nc -from /view/v1$(pwd)/foo -rm foo
Checked in "foo" version "/main/mg/3".
$ ct des -fmt "%[DO_ref_count]p %[DO_kind]p\n" foo
 shared
$ ct setview v1
$ ct des -fmt "%[DO_ref_count]p %[DO_kind]p\n" foo
1 unshared

MultiSite Concerns

[120]

The conclusion is surprising (to us): neither the checked in conig record
(not promoted to the shared status) nor the plain checked in DO (which,
conforming to the documentation, is promoted to the shared status) has a
reference count or affects the reference count of the original object (displayed last).

What this shows is a relatively recent change in ClearCase, which we had not
noticed: until version 2003.06, the journaling record for checkin events used to have
a reference to the derived object, which was only released by scrubbing oplogs (we'll
come back to oplogs scrubbing in Chapter 10, Administrative Concerns and Chapter 9,
Secondary Metadata). It used to be a common cause of problems, because users would
want to remove versions of large binaries, which resulted in dangling pointers inside
the oplogs and errors while importing sync packets. It seems that the versioned
derived object is now a full duplicate of the original DO (with the result that it is
being shared or not is rather pointless), which is a quite radical ix.

Versioned derived objects are thus simply not visible to lsdo and cannot (probably)
be winked in:

$ ct lsdo foo
--06-20T15:27 "foo@@--06-20T15:27.16250"

On the remote site:

$ ct des -fmt "%n, %m, %[DO_ref_count]p, %[DO_kind]p\n" foo
foo@@/main/mg/3, derived object version, , shared
$ ct des -fmt "%n, %m, %[DO_ref_count]p, %[DO_kind]p\n" foo@@/main/mg/1
foo@@/main/mg/1, derived object version, , unshared
$ ct lsdo foo
cleartool: Error: Not a derived object: "foo"

These versioned derived objects are thus there only for explicit manipulation. An
idea for making them more useful would be (some kind of request for enhancement)
to make it possible to promote them to a status related to the real derived objects,
that is, to support lazy identiication: allowing them to work as a bound between sets
of derived objects built on different sites.

Summary
We showed that MultiSite is an integral part of ClearCase, and that its design has
deep roots into requirements set by the sophistication of build management. It is
thus essential to take it into consideration while designing the development process.

Primary Metadata
ClearCase offers auxiliary objects to help managing iles: metadata. The different
metadata types are not equally important. One way to trace a boundary is to elect as
primary the ones appearing in the version extended view paths: labels and branches.

We do here a irst pass at handling these objects, leaving deeper and less critical
aspects for later.

Singling out labels and branches

Types and instances

The relative roles of labels and branches

Labels: loating and ixed
Baselines and incremental labels

The delivery process

Metadata in the version extended view
From the version extended perspective, we notice at once that labels and branches
share a common namespace: it is not easy a priori to tell them apart. The distinction
between the two has to be built on convention. It is customary to follow the example
set by ClearCase itself for predeined types: uppercase for labels such as LATEST and
lowercase for branches such as main.

To illustrate this, let us compare the element extended version path and its
version tree:

$ ct lsvtree
.@@/main
.@@/main/14 (REL1)
.@@/main/38
.@@/main/br1

•
•
•
•
•
•

Primary Metadata

[122]

.@@/main/br1/6 (L1)

.@@/main/br1/t1

.@@/main/br1/t1/3 (PUB3.5)

.@@/main/br1/t1/4

.@@/main/br1/8

.@@/main/45

.@@/main/br2

.@@/main/br2/2

.@@/main/46

The lsvtree command without the -all option shows only important versions:
that is, labeled (/main/14,/main/br1/6, and /main/br1/t1/3), last on their branch
(/main/br1/8, /main/br1/t1/4, /main/46, and /main/br2/2), and versions of
which new branches were spawned (/main/38, /main/br1/6, and /main/45).

The element's extended view shows a "projection" of the version tree: on the top
level, it shows the irst-level branches (main) and all the shortcuts, i.e. the labels
that give access to a particular version of this element.

$ ll .@@
total 8
drwxrwxrwx 2 ann jgroup 223 Feb 4 2008 REL1
drwxrwxrwx 2 ann jgroup 932 Feb 14 2008 L1
drwxrwxrwx 4 ann jgroup 0 Sep 3 2007 main
drwxrwxrwx 2 ann jgroup 1159 Aug 25 2008 PUB3.5

The second-level branches (br1, br2) can be found as sub-directories of the
main directory:

$ ll .@@/main
total 90
drwxrwxrwx 2 jgroup 2000 0 Sep 3 2007 0
drwxrwxrwx 2 jgroup 2000 52 Sep 3 2007 1
...
drwxrwxrwx 2 jgroup 2000 0 May 18 2009 br2
drwxrwxrwx 3 jgroup 2000 0 Sep 13 2007 br1
drwxrwxrwx 2 jgroup 2000 223 Feb 4 2008 REL1
drwxrwxrwx 3 jgroup 2000 1034 Sep 16 2008 LATEST

The other subdirectories are explicit versions: 0, 1, ... 46; and the labeled versions, on
this branch: REL1, LATEST.

Note that for directory elements (as in our example above), all the entries (both labels
and branches) are directories, whereas for ile elements, label entries are always iles
as they refer to a particular version of this ile element. Branch entries are always
directories as they contain at least the following versions for each branch: 0, LATEST:

Chapter 6

[123]

$ ll foo.html@@
total 9
dr-xr-xr-x 3 ann 2000 0 Feb 14 2008 main
-r-xr-xr-x 1 ann 2000 10927 Sep 9 2008 L1
$ ll foo.html@@/main
total 5
-r-xr-xr-x 1 ann 2000 0 Feb 14 2008 0
dr-xr-xr-x 3 ann 2000 0 Feb 14 2008 br1

-r-xr-xr-x 1 ann 2000 0 Feb 14 2008 LATEST

Types and instances
ClearCase consistently follows a philosophy (born in static typing) of distinguishing
between declaration/deinition on the one hand and use on the other. We shall
therefore systematically meet types and instances as we just did. Note that this is
proper to ClearCase, and sometimes confusing to users with other backgrounds.
Indeed, veriication is always based on the consistency of representations, and
therefore requires some degree of duplication. Splitting tasks in two steps, often
separated in time and space, allows such veriications. We shall refer to this
philosophy later, trying to apply it ourselves where support for it is not built in
(see Use of locking section).

It is somewhat awkward to consistently talk of label and branch types, so that we
shall, in non-ambiguous contexts, follow the common practice of using the terms
labels and branches. For example, we shall speak of applying a label, when more
rigorously, we create several instances of a single label type.

Functions will come in pairs: irst make type (mklbtype and mkbrtype, for the kinds
of metadata we consider here) for the declaration, and then make instance (mklabel
and mkbranch) for the actual use.

Both label and branch types are abstract, element-independent concepts. On the
contrary, instances are concrete and bound to a particular ClearCase element (either
a ile or a directory). A label is applied to it, a branch is created on it.

$ ct mklbtype -c "a concise comment, only if useful" MYLABEL
$ ct ls foo
foo@@/main/4 Rule: /main/LATEST [-mkbranch br1]
$ ct mklabel MYLABEL foo
$ ct des -fmt "%n %Nl\n" foo@@/MYLABEL
foo@@/main/4 MYLABEL

Primary Metadata

[124]

We created a label type MYLABEL and applied a label of this type to a version /main/4
of the element foo. Then we showed how to access the labeled version directly by
specifying the label:

$ ct mkbrtype -nc br1
$ ct catcs
element * CHECKEDOUT
element * .../br1/LATEST
mkbranch br1
element * /main/LATEST
$ ct co -nc foo
Created branch "br1" from "foo" version "/main/4".
Checked out "foo" from version "/main/br1/0".

We irst created a branch type br1, and then created the branch by setting a
mkbranch br1 conig spec rule and checking out the element, which resulted in the
br1 branch creation of the foo element. The br1 branch was spawned off the view-
selected version /main/4. Branches can also be created explicitly by the ct mkbranch
command (although the implicit branching described above is more common):

$ ct mkbranch -nc br1 bar@@/main/br/2
Created branch "br1" from "bar" version "@@/main/br/2".
Checked out "bar.txt" from version "/main/br/br1/0".

One more observation one can make in the last example is that the ClearCase
branches cascade. For example, if we branch off, using type br1 from a version
/main/2 of the element, this creates the /main/br1 branch of it; then continuing
to branch off using now br2 from version /main/br1/1, we get branch
/main/br1/br2, and so on. This is why, in the conig spec, it is convenient
to specify the branch type as a wildcard, such as .../br2/LATEST, rather than
with its full name as /main/br2/LATEST, as the latter may not select all the
desired versions (as there can be both elements with branches /main/br2, and
/main/br1/br2, and so on).

Note that one cannot cascade branches indeinitely because of system limitations
(of 1024 bytes for a full version extended pathname). Besides, it is not very handy
either. One may be interested to take a look at the MGi extension of the ClearCase
Wrapper, providing support for BranchOff: root rule in the conig spec: it forces
new branches to be created from the root (usually /main) rather than following
the cascading mode. It maintains the genealogy with Merge arrows (see Chapter 7,
Merging).

Each vob must have one and only one deinition for each branch or label type, which
it may inherit from another vob if using global types.

Chapter 6

[125]

The following exclusion principle applies, by default, to branch and label instances:
every element can have only one version carrying a particular label, and only one
branch of any given type in its version tree (see the version tree of a current directory
in the preceding example).

This may be bypassed at label type creation by using the –pbranch option, which
allows to use the same types on different branches of an element; we cannot
recommend this in general, as this leads to the possibility of ambiguous rules in
conig specs.

Labels or branches?
There is a great deal of symmetry between the two sets of functions (pertaining to
labels and branches), and actually between the concepts. Both may be used in conig
specs, with very similar effect at irst sight. The strategies built upon them are dual,
to use a metaphor familiar to the electric engineer thinking of currents and tensions
when considering a circuitry schema. However, as in the electrical case, this duality
eventually reaches some boundaries, and we'll see which. It must be stressed that
such analyses are very speciic to ClearCase, and bear no validity at the abstract level
of conceptual CM; they don't apply to other tools.

We already mentioned in the last chapter the main difference between labels and
branches: labels can be aliased whereas branches cannot, or in other words, a given
version may bear as many labels as one likes but it sits only on one single branch.

This is the technical aspect. On the functional side, one might think that branches
embody intentions (the future), whereas labels represent states (the past). Now,
this division is not always respected in practice, especially in conig specs. This is
particularly true in the context of UCM, where both labels and branches are treated
as implementation details, and buried under the higher-level concepts of activities,
streams, and projects. We shall ignore them here, not because we believe the concepts
themselves would not be sound (with a reserve concerning the "project" one), but
because their implementation in UCM is built upon an unfortunate foundation. This
will become obvious in the following, although we won't mention it anymore until
Chapter 13, The Recent Years' Development. As mentioned in Chapter 2, Presentation of
ClearCase, UCM is largely covered in existing literature, and we focus here on issues
ignored therein.

Primary Metadata

[126]

What needs to be stressed is that metadata can and should be used to implement
communications between the members of the development team, in an objective
way, hence supported by the tools. Interpretation remains necessary, but is pushed
forward, or upwards if one wants to retain the "high-level" metaphor. This may and
should be enforced by conventions. We shall review here, bottom-up, the constraints
that drive the making of sensible conventions.

Parallel development
Derived objects are shared transparently under ClearCase. This happens through
build avoidance, winkin, and DO identiication. However, nothing of this is spread
via replication through MultiSite! The alternative while using MultiSite is thus to be
down to the rudimentary level of version control, or to do something to raise it back
to the full ClearCase power.

Applying labels serves the latter purpose: conig records are not replicated, but labels
applied using them are. The sharing of derived objects is not transparent, but it is
reasonably easy to reproduce them on another site, or to compare the bill of materials
of objects produced locally with this of objects produced remotely.

Also, every developer needs a workspace under her own control, both protected
from interferences from others and easy to update with the latest relevant changes.
We saw in Chapter 5 that MultiSite considerations direct to work in branches, which
the developer should create herself on a need basis. We will defer to the next chapter,
on merging, the details on how to update them, but will address in the following
section, the questions of delivering her work thus releasing the protection acquired
while creating the branches, and also specifying clearly to her collaborators, the
changes from which they might be willing to update their own environment.

Config specs
The place of choice to express semantics in such a way that the tools will obey them
is the conig specs. This ights the common practice of generating them, using once
again, higher-level considerations.

One concern will be to avoid the pitfall (already mentioned in Chapter 2) of growing
the complexity of conig specs to a point when their generation might meet a
demand from users.

To be convenient, conig specs should be both simple (and concise) and stable.

Chapter 6

[127]

We already mentioned (in Chapter 2) the irst requirement: few generic rules so
that the user can have a clear idea of which of them applies to any given element.
This ought to be governed by simple considerations, ideally either of two: her
own changes on one hand, or the common baseline applying to her situation on
the other—maybe in addition, some intermediate level changes, shared with close
collaborators, on top of the aforementioned baseline.

The second requirement comes from the fact that conig specs are not themselves
versioned. Since they are not managed, they shouldn't change. Optimally again, the
user shouldn't have to modify her conig spec in the following two most common
scenarios (otherwise, this would be redundant and distracting):

As the common baseline (again, speciic to her situation) would be updated
As she would herself deliver her work

Getting back to the example of the useful conig spec from the Chapter 2:

element * CHECKEDOUT
element * .../branch/LATEST
mkbranch branch
element * LABEL
element * /main/0

Here, the fourth line (element * LABEL) represents the common baseline, that is, the
set of versions labeled with LABEL. In case this baseline gets updated (e.g. the label
LABEL is moved to different versions after a bug ix), the changes will be relected
instantly in the user's view, and the new versions will be selected.

The user's own changes are done in the branch named branch, and selected here
with the second line (element * .../branch/LATEST) specifying that the user
wants to select her own changes irst. The third line (mkbranch branch) is about
driving checkouts to branch off the versions carrying LABEL labels, or from /main/0
on elements where there are no such labels.

The user can designate (they are in fact already public, even if not yet delivered)
her changes by applying her own user-speciic label, say ANN_BUGFIX2.1, to the full
set of versions she wants to bind together. This label can be used for veriication or
integration purposes either by herself or by others. Note that this does not have to
affect the user's conig spec.

Of course, she would want to switch to a different conig spec if her situation would
change, e.g. to subscribe to a different baseline. In this case it would be enough to
change the fourth line in the above conig spec to element * NEWLABEL, where
NEWLABEL refers to a different set of versions.

•
•

Primary Metadata

[128]

Also, while debugging a dificult issue, she might want extra stability, and thus to
be protected even from normal updates. She might do this by switching to a special
conig spec, which could be the following:

element * CHECKEDOUT
element * .../branch/LATEST
mkbranch branch
element * MYLABEL
element * /main/0

Here MYLABEL is the user's own baseline label, which she is sure will not be modiied
by anyone except herself.

A more complex conig spec for a similar purpose (e.g. debugging one's own
changes, perhaps with the intention of discarding the temporary changes put in
place for the time of debugging) could look like this:

element * CHECKEDOUT
element * .../tempbranch/LATEST
mkbranch tempbranch
element * ANN_BUGFIX2.1
element * MYLABEL
element * /main/0

Here on top of foundation baseline MYLABEL, the own published changes are selected
(labeled with ANN_BUGFIX2.1 label) and branched-off to a different own branch
tempbranch.

Floating and fixed labels
The issue of stability and volatility is thus essential. Managing changes is managing
their propagation, and keeping stable the environment used to manage it.

A simple convention concerning labels conveniently addresses this need: label
application may use the -replace lag, in which case the labels may be moved
from existing versions to new ones. Labels using this feature should clearly be
distinguished from others: they are customarily called loating, whereas the others,
the stable ones, are referred to as ixed. More generally, ixed labels should thus offer
a guarantee of stability. Floating labels too offer one essential element of stability:
their name can be seen as a handle to up-to-date, and therefore evolving, reality.

Chapter 6

[129]

Floating labels make it possible for conig specs to be stable. Consider the following
conig spec:

element * CHECKEDOUT
element * .../mybranch/LATEST
mkbranch mybranch
element * TOOLS

Here, TOOLS is a loating label. It is actually applied so that it points to the current
version of the particular tool(s) in use. For example, one may have several versions of
gcc compiler stored in ClearCase: version 4.4.1 labeled with GCC_02 label and version
4.1.2, labeled as GCC_01 (both of these are ixed labels). When the gcc version 4.1.2
was selected for the development purposes, the label TOOLS was applied exactly to
the same element versions as those carrying GCC_01 labels. When the newer, 4.4.1 gcc
compiler version needs to be taken into use, the loating label TOOLS will be moved
so that it applies exactly to the same element versions as those labeled with GCC_02.
The developers' conig spec will not change.

It is often a good idea to conventionally bind a loating label to a family of ixed ones.
This is most naturally achieved by sharing a common preix. In the example above,
we might have a GCC loating label, designating the current recommended version of
the Gnu compiler as well as a TOOLS_1.27 ixed label, contributing to keep track of
the position of TOOLS at a given point in time, across a consistent set of tools.

Note also that we choose to keep part of the name (the running number, _01 and
_02 in the example) of the label type free from any predeined meaning (such as
_4.1.2). The idea is that it is dificult to foresee the future, and that later one might
have to import a new, different release of the same version of gcc (for a different
platform, or itself using another tool, or whatever). It is much better to put detailed
information in the comments of the type than in its name: updating this information
if the need arises will be easier than changing the name.

It is important to note that the loating label based conig specs we have been
promoting here cannot be used to reproduce a precise event (for example a certain
build or test run): they are not meant for this purpose. As we saw in Chapter 3, Build
Auditing and Avoidance, an event should be recorded in a derived object hierarchy.
The top of this hierarchy may be used to apply labels, and we are naturally speaking
here of ixed labels (at least at irst: in any case, we intend to easily reconstruct the
full baselines which the conig records constituted). These labels will be replicated to
the other sites, and thus make the event reproducible across MultiSite boundaries.

Here are some hints on how to apply ixed labels.

Primary Metadata

[130]

Suppose, we would like to publish all the element versions that are needed in
order to produce a certain result, speciied as a build target (this may be a ix,
enhancement, whole component or system, etc).

To apply a ixed label:

Check that there are no issues with the conig record (see again Chapter 3):
 $ ct catcr -check -union build.tag

Determine the vobs involved (build.tag is the top derived object produced
by the build, refer to Chapter 3):

$ VOBS=$(ct catcr -flat -type d -s build.tag | grep \\.@@ | \
 perl -pe 's:/\.@@.*$::' | sort -u)

•	 Create ixed label type in every vob:
 $ FIXED="TOOLS1.1"
 $ for v in $VOBS; \
 do ct mklbtype -vob $v -c "$COMMENT" $FIXED; done

Note that one may prefer to use global types, even without admin
vobs—create a global type in the vob where the derived object resides,
use cptype to create local copies in the other vobs, and explicitly create
the GlobalDefinition hyperlinks

Apply the label using the build.tag conig record:
 $ ct mklabel -con build.tag $FIXED

•	 Then in order to "select" a certain version of a tool, which bears a ixed label,
we would apply a loating label on top of this ixed label as follows:
$ FIXED="TOOLS1.1"
$ FLOATING="TOOLS"
$ cleartool find . \
-version "lbtype($FIXED) && ! lbtype($FLOATING)" -print | \
xargs cleartool mklabel -rep $FLOATING

•	 We also need to remove a loating label from versions that do not bear the
ixed label (this would be needed when changing the selected tool version):

$ cleartool find . \
 -element "lbtype_sub($FLOATING) && ! lbtype_sub($FIXED)" \
 -print | xargs cleartool rmlabel $FLOATING

•

•

•

Chapter 6

[131]

Baselines and incremental labels
A ixed label can designate a baseline when it is full, that is, applied to all the
elements included in a particular software coniguration. The label can also be
incremental (a.k.a. partial or sparse), i.e. applied only to the elements that have
changed comparing to a certain baseline. Note that baseline is a keyword in UCM,
and we are not speaking of it here. A baseline is a software coniguration used
as a reference.

Let's state for clarity that, for us, a baseline is full by deinition. We take the
association: "incremental baseline" as an oxymoron. A baseline may be represented
by a full label, or by an aggregation of incremental ones. It is anyway a full baseline
(and this is a pleonasm).

For the purpose of selecting a baseline, a loating label may be applied on top of
either a full ixed label, or an aggregation of incremental ones.

For example, one may have a baseline denoted by the ixed label REL_1.00, which
has been applied to all the versions included into the software coniguration of the
release 1 of the software product. Then, a loating label REL would be applied
to all the versions already having the label REL_1.00, designating the currently
selected release.

In case of a bug ix, the changed code base may be labeled as REL_1.01, including
only the versions changed for this particular ix (incremental label).

Proceeding further with bug ixing activities, another incremental label, REL_1.02,
can be created, and so on.

In order to aggregate the incremental labels, one could use either of two options. The
irst is to set the following conig spec:

element * REL_1.02
element * REL_1.01
element * REL_1.00

The other option is to move the label REL, irst to all the versions labeled as
REL_1.01, and then further, to all the versions labeled as REL_1.02.

Then, the integration view conig spec would contain a single line:

element * REL

The alternative to using incremental labels would be to make a full ixed label
recursively applied to the new code base. This would create a new baseline,
REL_1.03, including all the ixes on top of the original release 1.

Primary Metadata

[132]

Recursively applying labels is however an expensive, time-consuming, operation.
Moving a loating over a subset of changed versions out of a large coniguration
is often far lighter: fewer database write operations are involved. Such a baseline,
resulting from an original application of loating labels over a full coniguration,
followed with moving some of the labels over successive change sets, will be
equivalent to one obtained by applying ixed labels over the last full coniguration
(neglecting the case of elements removed from the coniguration at some stage):
as the baseline deined in our example by the REL loating label, which would be
equivalent to the baseline deined by the REL_1.03 ixed label.

This notion of baseline equivalence may be exploited to achieve a synthesis of the
two valuable properties: the relative cheapness of application of the loating labels,
and the possibility to use ixed labels as a record. One needs to consider a list of
sparse (incremental) labels, applied at every stage to the change sets. It is easy to
build a conig spec with rules using the incremental labels as fall-back of each other
(as the conig spec containing REL_1.02, REL_1.01 and REL_1.00 rules in our
example above). Such a conig spec would be equivalent to the one line conig spec
based on the loating label alone (REL). Starting from the type which is on the top
of the list at any given date in the past, one might reproduce any of the successive
baselines the loating labels have embodied over time.

Support for this strategy is implemented in our CPAN module,
ClearCase::Wrapper::MGi, where the issue of removing elements from
the baseline is addressed.

One might object that this is a typical example of conig spec generation, and we
must admit it is, but this use is exceptional, and only meant to allow as a rule to
use a stable and simple conig spec with the guarantee that reproducibility is not
jeopardized by the gain in eficiency and convenience.

One limitation of this scheme is that this generation of equivalent conig specs works
only for one single loating type (which may be global, and thus span across multiple
vobs): there is no simple way to interleave the rule stacks that would result from
emulating several types. We do not see this limitation as constraining in practice:
it only forces to consolidate one's loating labels into a single one, representing the
whole baseline.

Branches and branch types
It is sometimes dificult for users to understand that branches may actually be
themselves objects, distinct from the branch types. A way to convince one of this
fact is to use the chtype and rename operations, and to notice how they apply
respectively to branch instances and to branch types.

http://search.cpan.org/perldoc?ClearCase::Wrapper::MGi

Chapter 6

[133]

Using chtype (or rename) may be an option to modify the way in which a given
conig spec will select a version of an element: this will happen if either the initial or
the new type (name) is matched in a rule:

$ ct ls foo bar zoo
foo@@ [no version selected]
bar@@/main/m/3 Rule: .../m/LATEST
zoo@@ [no version selected]

$ ct catcs
element * CHECKEDOUT
element * .../m/LATEST

$ ct lsvtree foo
foo@@/main/m1
foo@@/main/m1/0
foo@@/main/m1/1

$ ct lsvtree zoo
zoo@@/main/m1
zoo@@/main/m1/0
zoo@@/main/m1/1
zoo@@/main/m1/2

$ ct chtype m foo@@/m1
Changed type of branch "foo@@/m1" to "m".

$ ct ls foo bar zoo
foo@@/main/m/1 Rule: .../m/LATEST
bar@@/main/m/3 Rule: .../m/LATEST
zoo@@ [no version selected]

As one can see in this preceding example, it is only the branch m1 of the foo element,
which has been renamed to m, not the m1 branch type itself; and the other element's
(zoo) branch m1 remained unaffected.

On the contrary, when we use the rename command, the change affects all
the branches:

$ ct ls foo bar zoo
foo@@ [no version selected]
bar@@/main/m/3 Rule: .../m/LATEST
zoo@@ [no version selected]
$ ct rename brtype:m1 m
cleartool: Error: Name "m" already exists.
cleartool: Error: Unable to rename branch type from "m1" to "m".

Primary Metadata

[134]

$ ct chtype m1 bar@@/m
Changed type of branch "bar@@/m" to "m1".

$ ct rmtype -f -rmall brtype:m
Removed branch type "m".

$ ct rename brtype:m1 m
Renamed branch type "m1" to "m".

$ ct ls foo bar zoo
foo@@/main/m/1 Rule: .../m/LATEST
bar@@/main/m/3 Rule: .../m/LATEST
zoo@@/main/m/2 Rule: .../m/LATEST

Note that we needed to remove the existing m type irst (to make the rename
succeed), which removed all the existing branches of this type. This is why we
preserved the branch m of the bar element by chtyping it to m1.

We can now see that all the elements having branches of type m1 were affected.

Let's note a couple of peculiarities pertaining to branches:

Locking branch types affects the branches, so that the versions cannot be
labeled anymore. In our opinion, this pretty much defeats the purpose of
locking branch types at all

The multitool chmaster command, when applied to a branch type, will
also affect existing branches of this type. This is convenient but has one well-
founded yet non-intuitive restriction: only if their mastership has not been
changed explicitly (this applies also to main branches of elements created
with the -master option)

One can remove an element's branch being any one of the branch creator,
the element owner or the vob owner, or root. The branch creator can remove
only his own branch, provided it has no subbranches created by other users,
and if no version on this branch carries a locked label. The element owner
can remove any branch, unless some version on the branch is protected by a
locked label:

$ ct des -fmt "%[owner]p\n" foo
sam

$ ct lsvtree foo
foo@@/main
foo@@/main/0
foo@@/main/aa
foo@@/main/aa/0
foo@@/main/aa/bb
foo@@/main/aa/bb/0

•

•

•

Chapter 6

[135]

$ ct des foo@@/main/aa
branch "foo@@/main/aa"
 created 2010-08-01T08:59:59+02:00 by Name=mary

$ ct des foo@@/main/aa/bb
branch "foo@@/main/aa/bb"
 created 2010-08-01T09:03:38+02:00 by Name=joe

$ sudo -u joe cleartool mklabel J foo@@/main/aa/bb/0
Created label "J" on "foo" version "/main/aa/bb/0".
$ sudo -u joe cleartool lock lbtype:J
Locked label type "J".

$ sudo -u joe cleartool rmbranch -f foo@@/main/aa/bb
cleartool: Error: Lock on label type "J" prevents operation ######
 "remove version".
cleartool: Error: Only VOB owner or privileged user may remove ###
 a version labeled with an instance of a locked type.
cleartool: Error: Unable to remove branch "foo@@/main/aa/bb".

$ sudo -u sam cleartool rmbranch -f foo@@/main/aa/bb
cleartool: Error: Lock on label type "J" prevents operation ######
 "remove version".
cleartool: Error: Only VOB owner or privileged user may remove ###
 a version labeled with an instance of a locked type.

$ sudo -u joe cleartool unlock lbtype:J
Unlocked label type "J".

$ sudo -u sam cleartool rmbranch –f foo@@/main/aa/bb
Removed branch "foo@@/main/aa/bb".

Delivery
We believe to follow the common use in distinguishing delivery from release, by
considering that the latter involves an additional packaging step, implying further
extraction and installation. A similar procedure may be necessary if some level of
testing in mandated to take place in an environment where the SCM system is not
available.

Primary Metadata

[136]

The developer works in her branches, checks in and out her code as she needs to
produce save-points, builds and tests her results. At some point, she has something
to offer to others. Her delivery will result in updating a public baseline. It is
essential that:

What the user publishes matches exactly what she just tested
The procedure is trivial and cheap, which guarantees she will use it often and
with small increments

The procedure may apply in cascade to various degrees of integration

Different developers do not block each other and do not waste time in
synchronization
Concurrent publications do not obliterate each other (losing with one
contribution what the previous brought in)

Derived objects built prior to the delivery are not obsoleted by it. On the
contrary, they are offered for sharing, thus avoiding the race condition
that otherwise takes place for the creation of the irst DOs matching the
new delivery. Such derived objects also remain valid for conig record
comparison, in case a problem is found and one needs to assess why it
wasn't detected by previous testing

The procedure is reversible, so that in case of error, the delivery can be
withdrawn (with no loss of information) and analyzed by the developer,
in preparation for a new ixed delivery.

These requirements plead for an in-place delivery, with no modiication of data: only
a change of status. This is typically what labeling offers.

Note how the model of delivering by merging to integration branches fails to achieve
these requirements. Merges produce new versions, which invalidates the existing
derived objects. The process may attempt to compensate for this loss by requiring a
build to take place as part of the delivery, but this hugely raises its cost (for example
in time) and introduces new intermediate points of failure. Reversibility at this point
may only be achieved if the build uses checked out versions, by unchecking them
out. But this loses the information needed to analyse the cause of the failure. In any
case, the identity of the delivered changes cannot be guaranteed by the system since
distinct versions were produced. Once the initial strategic error is made, there are
only bad solutions: ixing any one aspect unescapably creates a new problem.
One problem we must acknowledge is that delivering by labeling doesn't solve the
problem of offering derived objects as part of the baseline update over MultiSite.
This is an issue for which we do not have an elegant and simple solution. The best
we can offer it the recommendation to stick to local labels in usual conig specs. Thus
follow a remote delivery by irst producing a build using it, and then updating the
local baseline to use this build.

•
•
•
•
•
•

•

Chapter 6

[137]

Ironically, in spite of the similarities between the label and branch concepts
mentioned earlier, people tend for historical reasons to think of integration as
merging everything to a single branch. Using this branch type in the conig spec is
even considered safe and clear. Label-based conig specs on the contrary are seldom
used for integration purposes and often neglected. The obvious duality between
labels and branches is often lost: users are surprised when reminded that labels are
suficient to select versions, independently from their position in the version tree.
Select a baseline with integration labels, and you don't need integration branches: it
is irrelevant where the labels are found in the version trees.

One of the above requirements, though, requires special attention: ensuring
continuity with other developers' contributions. This implies that the delivery labels
are not moved blindly from the versions to which they are currently applied, but
only from direct ancestors of the new versions. In practice, this requires what UCM
terms a rebase operation, and we shall name, in order to avoid confusion with the
rebase command (which we cannot use outside of UCM), a home merge. We shall
deal with this in our next chapter.

Archiving
As mentioned earlier, the conig spec of the developer authoring the delivery
shouldn't have to be modiied. Again, by delivery here we mean publishing in-place
by labeling. For example, the user has labeled her deliveries with ixed ANN_BUGFIX_1
and ANN_BUGFIX_2 labels, and also applied a loating "integration" label named
ANN_BUGFIX.

Until the delivery, the new versions were selected either with branch-based rules
in the developer's conig spec (mybranch in the next example), or with previous
delivery labels (REL). There might also be pre-delivery labels. This would be the case
if team work was integrated in steps. For example, the developer could be using the
following conig spec (building on one already described in the beginning of this
chapter):

element * CHECKEDOUT
element * .../mybranch/LATEST
mkbranch mybranch

element * ANN_BUGFIX
element * REL
element * /main/0

The use of a personal label is possible, on top of the team pre-delivery one, and
even useful to keep track of correspondences between different elements, and to
communicate between different views the user may have.

Primary Metadata

[138]

It is at any rate essential that the developer starts using the delivery herself, and
doesn't stay caught selecting her own development versions. With the in-place
delivery, there is no difference at irst sight, but there might soon arise some,
as other developers start delivering further improvements.

Our solution is to archive, as a part of the delivery, one's branches and loating labels,
referenced in the user's conig spec, and to do this via renaming.

The branch type mybranch can be archived when ANN_BUGFIX label application is
complete and needs to be tested properly:

$ ct rename brtype:mybranch mybranch-001
$ ct mkbrtype -nc mybranch

The label type ANN_BUGFIX can be archived when user's published changes have
been accepted and the loating label REL has been moved over it:

$ ct rename lbtype:ANN_BUGFIX ANN_BUGFIX-001
$ ct lock -obs lbtype:ANN_BUGFIX-001
$ ct mklbtype -nc ANN_BUGFIX

This way the user's conig spec need not change after the delivery: the mybranch
and ANN_BUGFIX (and possible pre-delivery) types are again free for development
purposes. Contrast this to keeping the names unchanged and modifying the conig
spec instead. In this latter and common case:

All the conig specs that use the types need to be updated synchronously
There is no support for backup and history of these changes

This is something that may be scripted (and again, is already supported by our
CPAN module ClearCase::Wrapper::MGi).

The binding between the branch type and the label type may be interpreted as
the creation of a higher-level concept, not far from activity or stream: the stream
completes at the delivery.

Rollback
The possibility to rollback one's changes is offered by the fact that the delivery was
exclusively a labeling (considering the eventual home merge as part of pre-delivery
development, and indeed, this one might legitimately have been followed with build
and test recording). As such, it is trivially reversible.

•
•

http://search.cpan.org/dist/ClearCase-Wrapper-MGi/

Chapter 6

[139]

Of course, the situation gets slightly more complex as soon as further deliveries have
happened on top of the one, which its author wishes to roll back. We'll see in the
next chapter (because reconstructing consistent versions will indeed involve some
merging) that removing an intermediate step gets facilitated by the fact that it maps
to a distinct set of branches.

Use of locking
Locking is often thought as a inal operation, meant to conclude changes, making
further modiications impossible.

We see this as highly paradoxical: locking is a management operation and
management is needed to allow change. Avoiding changes is an act of control, and
thus, quite the opposite.

So, in fact, the more one needs to change things, the more one wants to lock the label
types. If there was no need for any change, no locking would be needed.

After all the labels have been applied as needed, it is advisable to lock both ixed and
loating label types.

Label types should be locked in order to prevent accidental label removal, moving,
and application to wrong elements. It is important here to avoid confusing safety
with security: these tools are proper to ight error, not fraud. Misusing them to
counter mythical attackers easily compromises safety by artiicially growing
complexity, making ixes cumbersome, and alienating developers of their
responsibilities.

When the loating label needs to be moved, its type must be unlocked irst, the labels
applied, and the type locked again.

Locking to manage change is a way to be faithful to the static typing philosophy
stated at the beginning of this chapter: unlocking a loating label before moving it
parallels creating the type before applying it the irst time, and therefore restores the
irst step required to allow for consistency checking.

In addition, locking provides an event recorded in the history of the label type, and
thus with a time stamp and information about the user and the context. This event
marks the end of the label application.

Primary Metadata

[140]

To lock a label type, one can use the plain cleartool lock command:

$ ct lock lbtype:L1
Locked label type "L1".

$ ct lstype -kind lbtype | grep L1
--07-06T21:15 ann label type "L1" (locked)

$ ct des -fmt "%[locked]p\n" lbtype:L1
locked

One can also use the cleartool lock –obsolete command, to lock it and mark
as obsolete:

$ ct lock -obs lbtype:L2
Locked label type "L2".

Obsolete label types are not listed by default by the cleartool lstype command,
unless -obsolete lag is speciied, which makes lstype queries slightly more
eficient and less verbose:

$ ct lstype -kind lbtype | grep L2
$ ct lstype -obs -kind lbtype | grep L2
--07-07T22:34 ann label type "L2" (obsolete)

$ ct des -fmt "%[locked]p\n" lbtype:L2
obsolete

To obsolete the already locked label, one can specify the -rep and -obs lags to the
lock command:

$ ct lock -rep -obs lbtype:L1
Locked label type "L1".

$ ct des -fmt "%[locked]p\n" lbtype:L1
obsolete

To unlock the label type (also obsolete one), use the unlock command:

$ ct unlock lbtype:L1
Unlocked label type "L1".

$ ct des -fmt "%[locked]p\n" lbtype:L1
unlocked

Locking an object is possible only for its owner (or to an administrator). This may
easily become a nuisance, and may thus requires scripting (the use of sudo, suid
scripts, ssh, or runas on Windows), for example, to authorize group members to
lock/unlock each others' types.

Chapter 6

[141]

Obsoleting types, under ClearCase, has yet another distinct and loosely related use:
obsolete locks are the only ones replicated, as the effects of locking are otherwise
redundant with these of mastership.

Let's note that one cannot change the mastership of locked objects, which is often a
good thing as such: it is better to leave these objects locked (and thus mastered in
their original replica), than to unlock them, chmaster them, to lock them back in
the new replica (losing part of the original history for no clear beneit). We may
further note that may be surprisingly the mastership of objects locked obsolete
may be changed.

Types as handles for information
A last note on types is that they often constitute convenient objects to which to attach
information to be shared between iles.

This is trivially true of comments, but also of attributes and hyperlinks.

We'll give examples of such uses in the Chapter 9, Secondary Metadata.

Summary—wrapping up of recommended

conventions
We announced that our review of constraints would give rise to recommendations
of conventions, and it did: we made a good deal of suggestions that go against some
traditional best practices. Let's mention that we do not believe these recommendations
would only be suitable for speciic teams, environments, or levels of expertise. On
the contrary, they are designed to be scalable, generic, and consistent, which doesn't
mean they would constitute a silver bullet or cannot be further enhanced. Here is a
small summary, and it covers the essential aspects we examined in this chapter:

Checkout exclusively in (private) branches, of one single and stable type

Use branch rules in your conig spec of only this type
Apply labels in pairs: a full loating label and an incremental ixed one
Use only the loating label in your development conig specs
Deliver exclusively by applying labels thus in place, and archive your
development branches away

This way, keep your conig spec stable
Prior to delivering, rebase where the baseline has moved after you branched
off it

Lock your labels and unlock the loating ones before moving them

•
•
•
•
•
•
•
•

Merging
As much as one may attempt to avoid conlicts, it is also necessary to solve them
when they happen. This concern is the object of the present chapter.

Merging has become a pet peeve for many, to the point of being overused, and for
purposes other than conlict resolution.

We'll review both practical aspects, and will guide about things to do and things
to avoid.

Faithful to our focus, we shall ignore any UCM aspects and the graphical tools, with
their additional and accidental complexities.

Somehow, this chapter might naturally feel of lesser importance than the preceding
ones. This is of course by choice: we focused irst on the essential, pushing forward
the remaining explanations. Sharing our vision of the essential is part of our goal:
to convince our reader to look at ClearCase differently! Our views are meant to be
non-obvious at the start: they directly oppose the main stream thinking for which
merging plays a central role. We believe, as we already tried to show, that this
is unfortunate. In fact, a major part of our experience with merging comes from
assisting users with concrete and complex problems that are seldom traced back to
their real causes: processes and practices. Refusal to examine the cause of recurrent
problems leads to treating the symptoms instead, especially with an extensive use of
GUIs (naively seen as rescue buoys), or with scripts to force copy merges (see later);
both of these have vicious circle effects and only make things worse.

Merging

[144]

We'll work out here the causes of some common misunderstandings. We believe
it is fair to acknowledge a widely spread confusion: users don't feel conident with
merging, and often resort to delegating it, hoping for (or requesting) miracles.

Although we strongly advise to avoid useless merges, merging is necessary to
resolve conlicts and must thus be mastered.

It remains to say that the chapter is crossed by multiple themes that make the
presentation of the material hard to order: they overlap, and will thus pop up several
times at different points in the exposition. Let's mention the main "themes" and let
you identify them in the sections:

The tools (the practical aspect): merge and findmerge, but also ln, and
anecdotal as it is, rmmerge

The use and misuse of merging: conlict resolution versus mere
version duplication

The cumbersome undoing or rolling back

The Merge arrow, or the tracing of contributions

The nitty-gritty, that is, the type manager part, and the syntactic issues of
data chunking

•
•
•
•
•

Chapter 7

[145]

Patching and merging
One remembers the historical importance of patch in the birth of version control, and
thus of source code management—the prehistory of SCM. This aspect of computing
deltas (or diffs) and applying them on top of an existing text ile is still at the heart
of merging.

The differences, however marginal, lie on the one hand in using the identity of the
element to determine a base contributor from the common version tree, and on the
other hand in extending merging to directories and semi-binary iles (lifting the
strictest encoding limitations). The former is not a strict requirement (except for
directories, maintained in the database and not as external containers), but covering
the vast majority of the cases, builds upon the maintenance of Merge arrows to
structure the version trees. In addition, bulk merging, using findmerge, only
applies to versions of the same elements.

Patching text files
Reminiscent of the text ile orientation of traditional languages, merging is offered
by (several) element type managers, centered around the one for text iles. While closer
attention to element types will be postponed to Chapter 9, Secondary Metadata, we
have to mention this delegation of functions to speciic tools.

Let's irst note that it is fully possible with iles to use tools external to ClearCase
to perform this function. In fact, this is exactly what we do ourselves, at least for
veriication, using the ediff-buffers function under GNU emacs, in any case of
real merge involving more than three lines or more than one location in the ile.

One has then to take care of the Merge arrows: see lower.

Looking more closely at the way the type managers are conigured, that is, at the
contents of the lib/mgrs directory under the installation root on every ClearCase
client, one notices that on UNIX, the tools performing the various functions (such as
merge for textual, and xmerge for graphical merges) are speciied via symbolic links,
whereas on Windows they are speciied in a map ile and linked there, either via
paths or references into the Windows registry or the merge tools.

Merging

[146]

Either way, this allows sharing of some tools between various managers in a way
which is in fact orthogonal to their inheritance hierarchy, and thus allows overriding
it. What we can see is that the text_ile_delta tools serve as basis for several of the
other element types, and that in the case of the two functions we are concerned with
in the current context, these resolve to: cleardiff and xcleardiff in UNIX and
cleardiff.exe and cleardiffmgr.exe in Windows.

$ ll /opt/rational/clearcase/linux_x86/lib/mgrs/binary_delta
lrwxrwxrwx 1 root root 22 Nov 13 2008 compare -> ../../../bin/cleardiff
lrwxrwxrwx 1 root root 22 Nov 13 2008 merge -> ../../../bin/cleardiff
lrwxrwxrwx 1 root root 23 Nov 13 2008 xcompare -> ../../../bin/xcleardiff
lrwxrwxrwx 1 root root 23 Nov 13 2008 xmerge -> ../../../bin/xcleardiff

$ ll /opt/rational/clearcase/linux_x86/lib/mgrs/text_file_delta
lrwxrwxrwx 1 root root 22 Nov 13 2008 compare -> ../../../bin/cleardiff
lrwxrwxrwx 1 root root 22 Nov 13 2008 merge -> ../../../bin/cleardiff
lrwxrwxrwx 1 root root 23 Nov 13 2008 xcompare -> ../../../bin/xcleardiff
lrwxrwxrwx 1 root root 23 Nov 13 2008 xmerge -> ../../../bin/xcleardiff

$ cat /cygdrive/c/Program\ Files/Rational/ClearCase/lib/mgrs/map
text_file_delta compare ..\..\bin\cleardiff.exe
text_file_delta xcompare ..\..\bin\cleardiffmrg.exe
text_file_delta merge ..\..\bin\cleardiff.exe
text_file_delta xmerge ..\..\bin\cleardiffmrg.exe

binary_delta compare ..\..\bin\cleardiff.exe
binary_delta xcompare ..\..\bin\cleardiffmrg.exe
binary_delta merge ..\..\bin\cleardiff.exe
binary_delta xmerge ..\..\bin\cleardiffmrg.exe

This gives us a hint as to how we might deine an element type to use a custom
merge tool. We'll leave this to those among our readers whom we couldn't convince
that this is only a sidetrack.

Once we are already this far down (or up: matter of taste) technicalities, let's
conjecture about the meaning of binary_delta, and of merging, in this context.
Merging and difing implies chunking the data into comparable items, which seems
simple in the case of lines of text, the only problem there being deciding the exact
syntax of separators: end-of-line codes. However, HTML and XML standards made
it obvious that this stood only on convention: in fact, few of the traditional software
languages made it mandatory for software texts to break on lines! Statements and
deinitions broke more often on semicolons, forms on parentheses... Yet, until
the advent of the world-wide-web, systematically removing any whitespace was
practiced only for code obfuscation purposes.

Chapter 7

[147]

Not so anymore when the data had to be downloaded under the constraints of
limited bandwidth. Some other ways to identify comparable patterns, of size
compatible with this of reasonable buffers, had to be devised. A further step has
since been made with the different variants of Unicode, bringing back issues of
ordering of multibytes characters. This has now made its way into specialized
element types in version 7.1 of ClearCase.

Managing contributions
Back now to the issue of managing the contributions to a given version, that is,
to identifying the contributing versions. During the merge, diffs (or deltas) have
to be computed between every contributor and a common reference: the base
contributor—typically the closest common ancestor, possibly one of the contributors.

The merge tool will use the version tree to compute a suitable version for the role of
base, aiming at producing as small diffs as possible. For that purpose, beyond direct
ancestry, special kinds of hyperlinks (between versions) will be used: instances of the
Merge type. They will be created at the end of every merge, for use at the start of any
later one. They may also be created and removed explicitly.

Let's work out an example, as simple as possible. We are trying here to describe a
mechanism, not to recommend a process.

We'll use a foo text ile element, make changes in an mg branch (selected by the
conig spec: every access of the main branch thus has to be explicit), and merge
them to the main one.

The initial data is a single line.

$ echo 111 > foo
$ ct mkelem -nc -ci foo
Created element "foo" (type "text_file").
Created branch "mg" from "foo" version "/main/0".
Checked in "foo" version "/main/mg/1".
$ ct co -nc -bra /main foo
cleartool: Warning: Version checked out ("/main/0") is different from ###
 version selected by view before checkout ("/main/mg/1").
Checked out "foo" from version "/main/0".
$ ct merge -to foo -ver /main/mg/1
Trivial merge: "foo" is same as base "/vob/test/foo/merge/foo@@/main/0".
Copying "/vob/test/foo/merge/foo@@/main/mg/1" to output file.
Moved contributor "foo" to "foo.contrib".
Output of merge is in "foo".
Recorded merge of "foo".
$ ct ci -nc foo
cleartool: Warning: Version checked in is not selected by view.

Merging

[148]

Checked in "foo" version "/main/1".
$ ct lsvtree -merge foo
foo@@/main
foo@@/main/0
foo@@/main/mg
foo@@/main/mg/1
 -> /main/1
foo@@/main/1

As we use the -merge option, lsvtree shows the Merge arrows.

We got here a irst case of trivial merge: a merge is said trivial if the base contributor
is the same as the merge target (the to contributor)—here, it is the version which
was checked out, since no change was made to it yet. Trivial merges are automatic:
the user is not prompted for a decision (unless he explicitly requires it with the
-qall lag).

Let's now assume that for some reason, we want to roll back this change, that is, to
undo the merge. The most natural option is to use a subtractive merge (not quite a
merge at all in fact, but a related use of the same tool, ct merge, with –del option).

$ ct co -nc -bra /main foo
cleartool: Warning: Version checked out ("/main/1") is different from ###
 version selected by view before checkout ("/main/mg/1").
Checked out "foo" from version "/main/1".
$ ct merge -to foo -del -ver /main/1
Trivial merge: "foo" is same as base "/vob/test/foo/merge/foo@@/main/1".
Copying "/vob/test/foo/merge/foo@@/main/0" to output file.
Moved contributor "foo" to "foo.contrib.1".
Output of merge is in "foo".
$ ct ci -nc foo
cleartool: Warning: Version checked in is not selected by view.
Checked in "foo" version "/main/2".
$ ct lsvtree -merge foo
foo@@/main
foo@@/main/0
foo@@/main/mg
foo@@/main/mg/1
 -> /main/1
foo@@/main/2

As we can see, this didn't result in a user noticeable change in the topology of the
version tree, except for the creation of a new version: /main/2. Note that there are
no Merge arrows for subtractive merges.

The base contributor was again selected as the closest common ancestor, which was
also the contributor being deleted, as well as the to contributor; hence once again a
trivial merge.

Chapter 7

[149]

We also note the saving of view-private copies of the contributors, which we
consider a minor nuisance.

Next, we'll make a further change to the version on the branch (maybe ixing the
problem which resulted in the previous rollback):

$ ct ls foo
foo@@/main/mg/1 Rule: .../mg/LATEST
$ ct co -nc foo
Checked out "foo" from version "/main/mg/1".
$ echo 222 >> foo
$ ct ci -nc foo
Checked in "foo" version "/main/mg/2".

And we'll attempt to roll out (well, to merge) again. This should be understood as a
common practice (note that we do not say a good one), yet its result is not intuitive
(users typically notice at this stage that they weren't extremely clear about their own
expectations):

$ ct co -nc -bra /main foo
cleartool: Warning: Version checked out ("/main/2") is different from ###
 version selected by view before checkout ("/main/mg/2").
Checked out "foo" from version "/main/2".
$ ct merge -to foo -ver /main/mg/2

<<< file 1: /vob/test/foo/merge/foo@@/main/mg/1
>>> file 2: /vob/test/foo/merge/foo@@/main/mg/2
>>> file 3: foo

-----[deleted 1 file 1]------|------[after 0 file 3]-------
111 |-
 -|
*** Automatic: Applying DELETION from file 3 [deleting base line 1]
============
============
----[after 1 file 1]---------|-------[inserted 2 file 2]----
 -| 222
 |-
Do you want the INSERTION made in file 2? [yes]
Applying INSERT from file 2 [line 2]
============
============
Moved contributor "foo" to "foo.contrib.2".
Output of merge is in "foo".
Recorded merge of "foo".
$ cat foo
222

Merging

[150]

For a start, this wasn't a trivial merge anymore: ClearCase had to prompt the user.
We must understand that this kind of dialog is suboptimal:

It stops the transaction (maybe multiple times)

It is error-prone, and thus stressful to the user: no more predictable for her
than for the tool

The transcript will often get lost, which means that the merge result can
only be inspected by others on the basis of less and different data than was
presented to the user

This means that a procedure based on this kind of merging cannot be atomic and
may introduce states that affect others.

Then, we were prompted for the wrong thing; the question concerned the last
addition (line 222, the ix), instead of the previous deletion. Why does this feel
wrong? Because it differs from the normal behavior: what happened the irst time,
before the rollback. The common user does not expect this. What is different for the
user is the deletion. The above sequence is, however, the correct behavior from the
point of view of ClearCase, and we'll have to understand why. The result is anyway
that the deletion was conirmed, against the intention; the line added to version
/main/mg/1 (111) might have had an undesirable side effect, which motivated the
rollback, but it is still part of the ixed version /main/mg/2 and the user expects it to
be found in the version resulting from the merge.

Let's clean up, that is, abort this attempt by unchecking out its results and try again,
taking this time the responsibility of naming ourselves the base contributor, picking
irst the new version in the branch, which results in skipping the history of the
previous deletion.

$ ct unco -rm foo
Checkout cancelled for "foo".
$ ct co -nc -bra /main foo
cleartool: Warning: Version checked out ("/main/2") is different from ###
 version selected by view before checkout ("/main/mg/2").
Checked out "foo" from version "/main/2".
$ ct merge -to foo -base foo@@/main/mg/2 -ver /main/mg/2
Trivial merge: "/vob/test/foo/merge/foo@@/main/mg/2" is same as base ####
 "foo@@/main/mg/2".
Copying "foo" to output file.
Moved contributor "foo" to "foo.contrib.3".
Output of merge is in "foo".
$ cat foo

$

•
•
•

Chapter 7

[151]

We are satisied of reaching our goal of getting a trivial (therefore automatic)
merge, but should be slightly surprised as this behavior doesn't match well with the
documentation as we had read it; the base and to contributors are now different!

However, no visible change took place (the resulting ile is still not correct, as it is
empty now)! Let's pick the to contributor as base, thus reconciling the documentation
of trivial merges:

$ ct merge -to foo -base foo@@/main/2 -ver /main/mg/2
Trivial merge: "foo" is same as base "foo@@/main/2".
Copying "/vob/test/foo/merge/foo@@/main/mg/2" to output file.
Moved contributor "foo" to "foo.contrib.4".
Output of merge is in "foo".
$ cat foo
111
222

The data is now the expected one. Let's thus check in and go forward.
Note, however, that in the last two merge examples, when we speciied explicitly the
base contributor ourselves, we did not get the Recorded merge of "foo" message,
and hence, no Merge arrow was created automatically:

$ ct lsvtree -merge foo
foo@@/main
foo@@/main/0
foo@@/main/mg
foo@@/main/mg/1
 -> /main/1
foo@@/main/mg/2
foo@@/main/2
foo@@/main/CHECKEDOUT view "marc"

This time, we'll make a change to the checked out version, prior to the merge (in
parallel to a change to the version to be merged):

$ ct ci -nc foo
cleartool: Warning: Version checked in is not selected by view.
Checked in "foo" version "/main/3".
$ ct co -nc foo
Checked out "foo" from version "/main/mg/2".
$ echo 333 >> foo
$ ct ci -nc foo
Checked in "foo" version "/main/mg/3".
$ ct co -nc -bra /main foo
cleartool: Warning: Version checked out ("/main/3") is different from ###
 version selected by view before checkout ("/main/mg/3").
Checked out "foo" from version "/main/3".
$ echo 444 >> foo
$ cat foo

https://publib.boulder.ibm.com/infocenter/cchelp/v7r0m0/index.jsp?topic=/com.ibm.rational.clearcase.tutorial.doc/a_trivial_nontrivial.htm

Merging

[152]

111
222
444
$ cat foo@@/main/mg/3
111
222
333
$ ct merge -to foo -ver /main/mg/3

<<< file 1: /vob/test/foo/merge/foo@@/main/mg/1
>>> file 2: /vob/test/foo/merge/foo@@/main/mg/3
>>> file 3: foo

-------[after 1 file 1]--------|-----[inserted 2-3 file 2]----
 -| 222
 | 333
 |-
-------[after 1 file 1]--------|-----[inserted 2-3 file 3]----
 -| 222
 | 444
 |-
Do you want the INSERTION made in file 2? [yes]
Applying INSERT from file 2 [lines 2-3]
Do you want the INSERTION made in file 3? [no] yes
Applying INSERT from file 3 [lines 2-3]
============
============
Moved contributor "foo" to "foo.contrib.5".
Output of merge is in "foo".
Recorded merge of "foo".
$ cat foo
111
222
333
222
444
$ ct lsvtree -merge foo
foo@@/main
foo@@/main/0
foo@@/main/mg
foo@@/main/mg/1
 -> /main/1
foo@@/main/mg/3
 -> /main/CHECKEDOUT
foo@@/main/3
foo@@/main/CHECKEDOUT view "marc"

Chapter 7

[153]

The result is that the base and to contributors are again different, hence the merge
non-trivial.

Furthermore, the options we were prompted didn't once again leave us the choice of
selecting anything satisfying (note though the automatic creation of the Merge arrow
in the lsvtree command output above).

We'll record the irst remark as advice: do not modify the checkedout version if you
wish the merge to be trivial. Let's try and investigate the cause for the surprising
prompts; thus clean up and retry without any change to the checked out version:

$ ct unco -rm foo
Checkout cancelled for "foo".
$ ct co -nc -bra /main foo
cleartool: Warning: Version checked out ("/main/3") is different from ###
 version selected by view before checkout ("/main/mg/3").
Checked out "foo" from version "/main/3".
$ ct merge -to foo -ver /main/mg/3

<<< file 1: /vob/test/foo/merge/foo@@/main/mg/1
>>> file 2: /vob/test/foo/merge/foo@@/main/mg/3
>>> file 3: foo

-------[after 1 file 1]-------|-----[inserted 2-3 file 2]----
 -| 222
 | 333
 |-
-------[after 1 file 1]-------|-----[inserted 2 file 3]------
 -| 222
 |-
Do you want the INSERTION made in file 2? [yes]
Applying INSERT from file 2 [lines 2-3]
Do you want the INSERTION made in file 3? [no]
============
============
Moved contributor "foo" to "foo.contrib.6".
Output of merge is in "foo".
Recorded merge of "foo".
$ cat foo
111
222
333

We now obtain the intended result in the data, but after being prompted: the merge
was not trivial, and that is because the base contributor was selected to be the irst
version in the branch.

Merging

[154]

This is only possible because no Merge arrow was actually created from /main/mg/2
to /main/3 as a part of the step in which we forced the base contributor (contrary to
our expectation, reinforced by the fact that, as we'll see later, such arrows are created
in a similar context by findmerge)!

To verify this theory (that the cause was the absence of the arrow), let's clean up
again, and create ourselves the expected and missing hyperlink and check that its
presence sufices to drive the expected behavior:

$ ct unco -rm foo
Checkout cancelled for "foo".
$ ct lsvtree -merge foo
foo@@/main
foo@@/main/0
foo@@/main/mg
foo@@/main/mg/1
 -> /main/1
foo@@/main/mg/3
foo@@/main/3
$ ct merge -ndat -to foo@@/main/3 -ver /main/mg/2
Recorded merge of "foo".
$ ct lsvtree -merge foo
foo@@/main
foo@@/main/0
foo@@/main/mg
foo@@/main/mg/1
 -> /main/1
foo@@/main/mg/2
 -> /main/3
foo@@/main/mg/3
foo@@/main/3
$ ct co -nc -bra /main foo
cleartool: Warning: Version checked out ("/main/3") is different from ###
 version selected by view before checkout ("/main/mg/3").
Checked out "foo" from version "/main/3".
$ ct merge -to foo -ver /main/mg/3
Trivial merge: "foo" is same as base ####################################
 "/vob/test/foo/merge/foo@@/main/mg/2".
Copying "/vob/test/foo/merge/foo@@/main/mg/3" to output file.
Moved contributor "foo" to "foo.contrib.7".
Output of merge is in "foo".
Recorded merge of "foo".
$ cat foo
111
222
333
$ ct lsvtree -merge foo
foo@@/main
foo@@/main/0

Chapter 7

[155]

foo@@/main/mg
foo@@/main/mg/1
 -> /main/1
foo@@/main/mg/2
 -> /main/3
foo@@/main/mg/3
 -> /main/CHECKEDOUT
foo@@/main/3
foo@@/main/CHECKEDOUT view "marc"
$ ct ci -nc foo
cleartool: Warning: Version checked in is not selected by view.
Checked in "foo" version "/main/4".

We created the missing Merge arrow with the merge tool, using the -ndata lag. We
could as well have used mkhlink, explicitly with the Merge type:

$ ct mkhlink Merge foo@@/main/mg/2 foo@@/main/3
Created hyperlink "Merge@232@/vob/test".

In the same way, to remove a Merge arrow, maybe in order to remove an element
(as the presence of hyperlinks sufices to restrict the use of rmelem to the vob owner
or the administrator), one may use either rmmerge, or rmhlink with a hyperlink
name obtained with describe -l.

Note that rmver is also protected in a similar way from removing interesting
versions, for example, the versions bearing hyperlinks. The way to bypass the
protection is different, though—it is to use an -xhl lag (-xla for labels):

$ ct rmver foo@@/main/mg/3
cleartool: Error: Removal of "interesting" versions must be explicitly ##
 enabled.
Not removing these "interesting" versions of "foo":
 /main/mg/3 (has: hyperlinks)
cleartool: Error: No versions of "foo" to remove.
$ ct rmver -xhl -f foo@@/main/mg/3
Removing these versions of "foo":
 /main/mg/3 (has: hyperlinks)
Removed versions of "foo".

And by the way, rmbranch is protected in a different way: please refer to the section
Branches and branch types from Chapter 6, Primary Metadata.

Despite the fact that we found ways to resolve the various contradictions and obtain
the properties we wanted—triviality (automatic handling), expected outcome and
tracing of the contributions—the complexity of the situations met may still be felt
daunting. To recapitulate what is in our experience the most surprising to users: the
merge behavior is driven in part by the presence or absence of Merge arrows, which
depends on the prior history of merging.

Merging

[156]

In particular, some user communities will avoid subtractive merges and prefer
destructive rollbacks, that is, removal of the versions resulting from the merges. We
believe this is counter-productive: no less error-prone and removing the evidence on
the basis of which the problems met may be analyzed.

In other words, radical as it may be, such a strategy is not radical enough; the
problem is not subtractive merging, it is publishing by merging, instead of
publishing in-place by moving labels.

Merging directories
The issue of merging directories is actually quite different from that of merging iles.

Let's note that, under ClearCase, directories are not stored in containers (standard
ile objects found in vob pools) unlike ile elements, so that their merging cannot
be delegated to external tools, acting upon inodes accessed over NFS. It has to use
ClearCase functions at the low level, to create and remove hard links.

In fact, with large directories, it is often more convenient and more manageable to
use rm and ln explicitly than to use merge, and correct the results before checking in:

$ ct co -nc -bra /main .
cleartool: Warning: Version checked out ("/main/6") is different from ###
 version selected by view before checkout ("/main/mg/3").
Checked out "." from version "/main/6".
$ ct ln .@@/main/mg/3/foo .
Link created: "./foo".
$ ct ln .@@/main/mg/3/foo1 ./zoo
Link created: "./zoo".
$ ct rm bar
Removed "bar".
$ ct ci -nc .
cleartool: Warning: Version checked in is not selected by view.
Checked in "." version "/main/7".

This is especially true when trying to restore an entry removed in a previous version,
or to ensure that parallel works will not result in the creation of evil twins, by
selectively sharing some work before its delivery.

We have already dealt with the issues of recovering iles by using ln, hard links and
evil twins in Chapter 4, Version Control.

Let's now demonstrate how merging directories may produce hard links, and
let's make it more obvious by making these hard links of the same element under
different names.

Chapter 7

[157]

In the example we start from, the ile name exists only on an mg branch of
the directory.

We'll irst merge this "back" to the main branch, then rename the entry in the branch:

$ ct lsvtree .
.@@/main
.@@/main/0
.@@/main/mg
.@@/main/mg/1
$ ct co -nc -bra /main .
cleartool: Warning: Version checked out ("/main/0") is different from ###
 version selected by view before checkout ("/main/mg/1").
Checked out "." from version "/main/0".
$ ct merge -to . -ver /main/mg/1

<<< directory 1: /vob/test/foo/merge@@/main/0
>>> directory 2: /vob/test/foo/merge@@/main/mg/1
>>> directory 3: .

-------[directory 1]---------|-----[added directory 2]----
 -| foo --08-01T12:04 marc
*** Automatic: Applying ADDITION from directory 2
Recorded merge of ".".
$ ct ci -nc .
cleartool: Warning: Version checked in is not selected by view.
Checked in "." version "/main/1".
$ ct co -nc .
Checked out "." from version "/main/mg/1".
$ ct mv foo bar
Moved "foo" to "bar".
$ ct ci -nc .
Checked in "." version "/main/mg/2".

Now, we'll create a second branch of the directory (of a new fff type), and rename
the entry there as well. We do this in order to confuse merge so that it doesn't remove
the original name.

$ ct mkbrtype -nc fff
Created branch type "fff".
$ ct mkbranch -nc fff .@@/main/1
Created branch "fff" from "." version "/main/0".
Checked out "." from version "/main/fff/0".
$ ct mv foo zoo
Moved "foo" to "zoo".
$ ct ci -nc .
cleartool: Warning: Version checked in is not selected by view.
Checked in "." version "/main/fff/1".

Merging

[158]

Last, we merge the two branches at the same time into the main one, which we
previously checked out.

The base contributor is selected to be /main/0, which results in keeping the original
name foo, as well as adding the other two.

$ ct co -nc -bra /main .
cleartool: Warning: Version checked out ("/main/1") is different from ###
 version selected by view before checkout ("/main/mg/3").
Checked out "." from version "/main/1".
$ ct merge -to . .@@/main/mg/2 .@@/main/fff/1

<<< directory 1: /vob/test/foo/merge@@/main/0
>>> directory 2: .@@/main/mg/2
>>> directory 3: .@@/main/fff/1
>>> directory 4: .

-------[directory 1]-------|-----[added directory 2]----
 -| bar --08-01T12:04 marc
*** Automatic: Applying ADDITION from directory 2
------[directory 1]--------|-----[added directory 4]----
 -| foo --08-01T12:04 marc
*** Automatic: Applying ADDITION from directory 4
-----[directory 1]---------|-----[added directory 3]-----
 -| zoo --08-01T12:04 marc
*** Automatic: Applying ADDITION from directory 3
Recorded merge of ".".
$ ls -la .
total 1
drwxrwxr-x 2 marc jgroup 69 Aug 1 20:45 .
drwxrwxr-x 4 marc jgroup 0 Jul 31 21:41 ..
dr-xr-xr-x 1 marc jgroup 0 Aug 1 12:04 bar
dr-xr-xr-x 1 marc jgroup 0 Aug 1 12:04 foo
dr-xr-xr-x 1 marc jgroup 0 Aug 1 12:04 zoo

We check that the three names are indeed hard links of the same element, by printing
out their common object id:

$ ct des -fmt "%n %On\n" bar@@ foo@@ zoo@@
bar@@ 7cc55281.9d5d11df.926d.00:01:84:2b:ec:ee
foo@@ 7cc55281.9d5d11df.926d.00:01:84:2b:ec:ee
zoo@@ 7cc55281.9d5d11df.926d.00:01:84:2b:ec:ee
$ ct ci -nc .
cleartool: Warning: Version checked in is not selected by view.
Checked in "." version "/main/2".
$ ct lsvtree -merge .
.@@/main
.@@/main/0
.@@/main/mg
.@@/main/mg/1

Chapter 7

[159]

 -> /main/1
.@@/main/mg/2
 -> /main/2
.@@/main/1
.@@/main/fff
.@@/main/fff/1
 -> /main/2
.@@/main/2

We showed here how merging directories is in fact handling hard links. We showed
that the merge tool doesn't offer any signiicant additional safety against producing
duplicates of the same element: caveat emptor. Let's examine this situation, and the
reasons there might be to manage it.

It is the second time in this book we meet this case: we already mentioned it as
a technique to reach certain goals in Chapter 2, Presentation of ClearCase, in the
paragraph on conig specs. We admitted that these goals were exceptional, but
reckoned they might be legitimate, and we stated that offering a solution was better
than forcing the users to all too simple and more dangerous workarounds.

Hard links open the door to selecting different versions of the same elements in the
same view (via scope rules). This ights the basic strategy of SCM for identifying
resources in two distinct steps: as a set and as a certain item in the set. Achieving
this with hard links is a means to ensure the case remains manageable and will
be reminded (for example at the time of applying labels: the application will be
attempted once for every name, and while the irst attempt will succeed, any latter
will fail—unless using a -replace lag to silence the error).

But there is a case in which this may result in random looking errors, and it is when
the hard linked elements are directories. Two preliminary remarks:

The IBM documentation warns against creating hard links of directories in
other contexts than directory merges; doing so is a red lag for the support.
The procedure exclusively using merge that we showed above and which
resulted in multiple names for the same element, did not depend on the
element being a ile; it works exactly the same with directories.

Now, the problem. As mentioned earlier, unlike iles, directories are not mapped
to cleartext containers, that is, to ile objects outside the database. With iles, the
view merely identiies or produces a container, which it returns to the application,
the interaction between the two being thus an atomic transaction. Not so with
directories: the view, and thus the mvfs kernel module below it, services in turn
all the requests as the application generates them. The problem is that concurrent
applications selecting different versions of the same directory may interfere over
time with each other. The effects are not easily predictable, but may at least be
incorrect version selections or stale nfs handles.

•
•

Merging

[160]

Note that there has been a longstanding prevention in UNIX against hard linking
directories. This was rooted, we believe, in recursion due to cycles while navigating
directory trees, which led in the worst cases to ile systems corruption. It is still easy
to experiment such issues (i.e. endless recursion, not ile system corruption) using
the ind tool down from the /view root, even if this may be a case of mount point
recursion. The fact is directory hard links are pervasive in ClearCase MVFS (in the
view extended space).

Rebase or home merge
After presenting multiple examples of trivial merges produced with the merge
command, we must apologize to our reader for what could be seen as confusing
and contradictory: we pushed rather far the extent of the acknowledgement that we
would describe a mechanism, not recommend a process.

Let's make our point explicit: any merges resulting in mere duplication of data are to be
avoided whenever possible. Note how this precisely condemns trivial and copy merges!

SCM attempts to factor commonalities and make real differences stand out. On the
contrary, using both of two identical versions introduces spurious differences into
the dependency tree of dependent artifacts, and results in invalidating derived
objects for artiicial reasons. This harmful noise makes it harder to detect
meaningful differences.

There remains one legitimate, necessary use of merging. The issue is to resolve real
conlicts between versions that typically arise in the context of parallel development
when different users concurrently modify the same resource: at some point, one user
notices that the baseline from which she started has now moved forward to integrate
somebody else's contributions. This purpose is well covered by the concept of rebase.
We feel however that speaking rather of home merge is process agnostic, hence more
general; the idea is to modify one's working version with changes coming from
somewhere else.

In any case, irrespective of how you name them, rebase operations can be carried out
with the merge tool, as well as, for bulk merges (see below), with findmerge.

Let's dive back, for one more time, into the context of the (ill-advised as it is)
tradition of publishing by merging back to main or integration branches. In this
context, one attempts to achieve trivial merges for the delivery as a means to reduce
the inherent instability of the process, which is to make the symptoms bearable
instead of curing their causes.

Chapter 7

[161]

The best way to ensure that a merge will be trivial is to have performed it already, to
empty the remaining merge from its real contents. This is achieved by performing a
preemptive merge in the reverse direction from the one actually intended. The object
is to reach a situation satisfying the condition for trivial merges: the coincidence of
the base and the to contributors. The notion of merging direction being inherently
confusing, this irst preemptive merge is termed rebase, and the next "merge"
operation is consistently assimilated to its purpose: delivery.

Rebasing alone is not totally foolproof, as it takes a non-negligible time (especially
if it concerns many iles); there is always a window of opportunity for changes to
take place in the integration branches between the "rebase" and the "delivery". This
may be prevented with locking, and/or by wrapping up the whole procedure into a
"higher level" and heavier operation (what UCM does).

A yet more desperate alternative to trivial merges is to force the delivery to use
copy merges, that is, to ignore any unlikely but possible changes that might
have happened since the last rebase. There are various ways to achieve this, the
simplest involving an operating system copy instead of merge (and possibly using
merge -ndata in addition, only to create the Merge arrow). The copy merge will also
protect against surprises resulting from former subtractive merges.

A last note concerning automatic, hence trivial merges: ine-tuning the merge tool
to resolve the differences correctly and perform the actual merges without, or
with as little user intervention as possible, is in itself a useful task, as it enforces
reproducibility and reduces the possibility for user errors. We saw how managing
the base contributor could, in some cases, be a tool to affect this aspect of things.

Complex branching patterns
Until now we have unfortunately only scratched the surface of the real complexity
met when trying with such technologies, to maintain cascading branching patterns,
with several levels of integration and different release projects running in parallel.
If these levels and projects have been assigned speciic branch types, one will need
to merge the same changes to several places in turn (including thus the possible
rebasing).This alone would work as a red lag in the absence of all too common
process anesthesia.

Just consider the task of identifying the base contributors in the contexts of the
various patterns!

Rather than delving into such intricacies, we feel it is time to remind that they
are purely artiicial—the consequences of an adverse choice to stick to a tradition
inherited from the early systems that had no support for branches—and to try to get
back at delivery time to this historical simplicity.

Merging

[162]

Let us thus send you back to the advice spelled in Chapter 5, under the title: Avoid
depending on mastership, and publish in-place, exclusively using labels.

Following this advice, one may share the same versions in the different contexts in
which it makes sense (by applying different labels), and merging is left to the only
cases from where it cannot be expelled: for resolving contradictions, where it need
not anymore be called rebasing.

Rollback of in-place delivery
We asserted that in-place delivery would be reversible. Now is the time to
show it in practice, on an example. First the trivial case: a new version of the ile
foo was edited in an mg branch, spawn from the baseline represented by the
loating label type AAA, equivalent at this point to the ixed AAA_2.37. The situation
prior to the delivery was thus seen with the lsgenealogy command from our
ClearCase::Wrapper::MGi wrapper, invoked with a depth of two levels
of ancestry:

$ ct lsgen -d 2 foo
foo@@/main/mg/5 (MG, MG_1.25)
 foo@@/main/mg/1
 foo@@/main/ts-012/7 (AAA, AAA_2.37, TS-005, TS_3.01)

After the delivery, including archiving (see Chapter 6) of the branch (mg -> mg-003)
and label (MG -> MG-013) types, the situation changed to the following (only labels
have been applied, and branch types renamed away in order to allow existing conig
specs to retain their semantics in presence of a modiied environment):

$ ct lsgen -d 2 foo
foo@@/main/mg-003/5 (AAA, AAA_2.38, MG-013, MG_1.25)
 foo@@/main/mg-003/1
 foo@@/main/ts-012/7 (AAA_2.37, TS-005, TS_3.01)

At this point, the rollback would be, as announced earlier, trivial, and would yield:

$ ct lsgen -d 2 foo
foo@@/main/mg-003/5 (AAA_2.38, MG-013, MG_1.25)
 foo@@/main/mg-003/1
 foo@@/main/ts-012/7 (AAA, AAA_2.39, AAA_2.37, TS-005, TS_3.01)

Let's not forget that this triviality contrasts with the weight of the procedures one
might consider to use instead in the context of delivery by merging, and which
would be in no way equivalent!

http://search.cpan.org/perldoc?ClearCase::Wrapper::MGi

Chapter 7

[163]

But let's consider now that instead of this rollback, there takes place a new phase
of development (in the ts branch) before the law leading to the need to rollback is
discovered:

$ ct lsgen -d 3 foo
foo@@/main/ts/1 (TS, TS_3.03)
 foo@@/main/mg-003/5 (AAA, AAA_2.38, MG-013, MG_1.25)
 foo@@/main/mg-003/1
 foo@@/main/ts-012/7 (AAA_2.37, TS-005, TS_3.01)

Let this get delivered too:

$ ct lsgen -d 3 foo
foo@@/main/ts-013/1 (AAA, AAA_2.39, TS-006, TS_3.03)
 foo@@/main/mg-003/5 (AAA_2.38, MG-013, MG_1.25)
 foo@@/main/mg-003/1
 foo@@/main/ts-012/7 (AAA_2.37, TS-005, TS_3.01)

And now, let's consider the challenge of rolling the previous change back!
The task decomposes in two steps:

Rolling back to the stage before the faulty delivery

Reapplying the changes that took place later, "on top of it"

We have already considered the irst step; what happened later doesn't affect the
pre-delivery stage version (labeled AAA_2.37).

The question is thus to merge the next changes (from the version carrying the label
AAA_2.39), and to subtract from them the intermediate ones (AAA_2.38), but this
time creating a unique new version and not a duplicate of an old one (AAA_2.37).
The irst merge is a normal ClearCase one; however, the subtractive merge is not.
ClearCase subtractive merges can only affect those changes that took place in the
same branch. We'll have to resort to the UNIX diff and patch tools that we mentioned
in Chapter 2. We'll use them with a -c lag to generate and use context information,
allowing to apply the negative differences to a different version of the ile than the
one on the basis of which they were computed.

$ ct co -nc foo@@/AAA_2.37
Created branch "mg" from "foo" version "/main/0".
Checked out "foo" from version "/main/mg/0".
$ ct merge -to foo -ver AAA
Trivial merge: "foo" is same as base ###################################
 "/vob/test/merge/foo@@/main/ts-012/7".
Copying "/vob/test/merge/foo@@/main/ts-013/1" to output file.
Moved contributor "foo" to "foo.contrib".
Output of merge is in "foo".
Recorded merge of "foo".
$ diff -c foo@@/AAA_2.38 foo@@/AAA_2.37 > foo.patch

•
•

Merging

[164]

$ patch -c foo <foo.patch
 Looks like a normal diff.
done
$ ct ci -nc foo
Checked in "foo" version "/main/mg/1".
$ ct mklabel MG foo
Created label "MG_1.26" on "foo" version "/main/mg/1".
Created label "MG" on "foo" version "/main/mg/1".
$ ct mklbtype -nc -inc AAA
Created label type "AAA_2.40".
$ ct mklabel -over MG AAA
Created label "AAA_2.40" on "./foo" version "/main/mg/1".
Moved label "AAA" on "./foo" from version ##############################
 "/main/ts-013/1" to "/main/mg/1".
$ ct lsgen -d 4 foo
foo@@/main/mg/1 (AAA, AAA_2.40, MG, MG_1.26)
[siblings: foo@@/main/mg-001/1]
foo@@/main/ts-012/7 (AAA_2.37, TS-005, TS_3.01)
foo@@/main/ts-013/1 (AAA_2.39, TS-006, TS_3.02)
 foo@@/main/mg-003/5 (AAA_2.38, MG-013, MG_1.25)
 foo@@/main/mg-003/1
 [alternative path: foo@@/main/ts-012/7]

Several points require comments. First, we used our wrapper for checking out, with
explicit (in the conig spec) support for implicitly branching off /main/0. This is
what explains that the successor to foo@@/AAA_2.37, a.k.a foo@@/main/ts-012/7,
is checked out from foo@@/main/mg/0 instead of from foo@@/main/ts-12/mg/0.
You'll remember there our strategy to avoid cascading forever.

Next, we show gradually deeper views of the genealogy, as we add new generations.
This shows two parents (or contributors) to the same foo@@/main/mg/1, and
presents them at the same level of indentation. We also notice two annotations to
the genealogy output: information that version /main/mg/1 has at least one sibling,
not shown in this genealogy, but spawn from the same parent; and a reminder that
version /main/ts-012/7 is reachable by two distinct paths, and thus need not be
repeated.

There is one important detail we ought not to hide: when we take the AAA_2.37 label
as the version to rollback, we make a human, interactive decision, not an automatic
one. In this case, the choice is trivial, but if we were dealing with many iles, nothing
would guarantee the previous label would be the same for all. This is, however,
only a missing functionality of our wrapper; in the next version, it will compute the
correct version to rollback to, on an element basis.

Chapter 7

[165]

This will allow the rollback procedure (the "irst part", as mentioned earlier, and
which we did not replay as an intermediate step) to be fully automatic.

The second part, reapplying the later changes, will however remain potentially
interactive: it is a real merge, resolving differences, and producing a unique new
version.

This example, which ought still to be concluded with an archiving, showed the
clear superiority of our delivery model over the traditional one. If one still needs
to convince oneself, one may compare this earlier case to the functionally simpler
scenario we reviewed in the Managing contributions section. Do we need to list the
advantages?

Atomicity: No intermediate state, such as checking out

Reversibility: The rollback itself is a toggle, rolling forward again would be
instantaneous

Simplicity: No version added

Fairness, in a MultiSite context (using local labels): Delivery and rollback are
decoupled from branch mastership concerns (consistent state of remote labels
cannot be trusted anyway)

Speed and hence robustness: No window of opportunity for errors

The further advantage we attempted to exploit is the practical availability of all the
contributor versions for further ixing or development.

One may be tempted, and we'll not decide here, to modify the topology of the
graph drawn by the Merge arrows (that is, to rewrite history) so that the version
AAA_2.38 which we rolled back would not be seen anymore as part of the genealogy
of AAA_2.40. As explained previously, such a change could avoid later surprises
with using the merge tool. We would of course retain both 2.37 and 2.39 as direct
contributors, but replace the two Merge arrows, from 2.37 to 2.38 and from 2.38
to 2.39, with a single and direct one, from 2.37 to 2.39. We leave it to our reader to
decide whether such bold historical revisionism would increase or decrease confusion.

Bulk merges
We've been analyzing merging in the simple case of one single element. Obviously,
the more usual case concerns a whole change set, so we have to transpose what
we came up with so far in the context of another tool: findmerge. As the name
suggests, it combines the functions of find and of merge, performing in addition the
necessary checking out in the middle. This applies to all the cases of merging we met,
especially to the real merges, a.k.a rebases, with the possible exception of the copy
merges (back to this below).

•
•
•
•

•

Merging

[166]

Because findmerge is expected to perform checkout operations, the to contributors
are implicitly the ones selected by the view. The function has a lot of options, and
we'll only cover the most useful ones. The most idiomatic (simplest) is probably to
design the other set of contributors (from) with a label, using the -fversion option.
One may also use another view and -ftag, but this slightly raises the risk of creating
evil twins.

$ ct findmerge . -nc -fve FOO -merge

This will produce .contrib as well as a findmerge.log.<date-time> private iles,
and leave the modiied elements checked out.

In case of non-trivial merges, it will prompt the user, which as we already stated, but
even more so in the context of findmerge, which is often inconvenient.

There are two ways to improve on this:

One is to add the -gmerge lag after -merge, which will start a graphical
merge: clearly not to our taste, but maybe yours? Note though that such an
option can be more harmful than useful (refer to the section named Evil twins
later in the chapter).

The other is to add the -abort lag after it: this will go on handling all the
trivial cases, leaving you with only the interactive ones.

The findmerge.log ile then proves to be of value: it contains an executable
shell script to replay the remaining commands (the part already completed being
commented away). You'll have to edit it (for example, remove the -abort lags), but
at the very least, it gives you the list of iles to process. Here is an example of the
findmerge.log ile:

$ cat findmerge.log.2010-08-06T14:28:12+01:00
#cleartool findmerge .@@/main/22 -d -fver /main/t1/6 -log /dev/ #########
 null -fbtag myview -merge -nc -abort
Skipping "./bbb.txt".
Skipping "./ccc.txt".
Skipping "./mak".
The following element is invisible in the "base" view: ################
 /view/myview/vob/test/.@@/foo/t1/4/Makefile.
Findmerge will select base contributor. The following is not a valid ##
 common ancestor: /view/myview/vob/test/.@@/main/t1/4/Makefile.
#cleartool findmerge ./tc/Makefile@@/main/0 -fver /m/t1/5 -log /dev/ ####
 null -fbtag myview -merge -nc -abort
The following element is invisible in the "base" view: ################
 /view/myview/vob/test/.@@/main/t1/4/pathconv.
Findmerge will select base contributor. The following is not a valid ##
 common ancestor: /view/myview/vob/testi/.@@/main/t1/4/pathconv.

•

•

Chapter 7

[167]

#cleartool findmerge ./tc/pathconv@@/main/0 -fver /main/t1/4 -log /######
 dev/null -fbtag myview -merge -nc -abort
Skipping "./tmp/a.txt".

Another useful option is -fbtag: specifying the current view will force trivial merge
by explicitly setting the base contributors to match the to ones.

Note that this doesn't guarantee copy merges, in the case of a history of
subtractive ones.

To guarantee this, one might use the -exec option. One problem with this option
(common to its use with the find command) is that it will spawn a new invocation of
the speciied command for every match. For this reason, it is not a good idea to use it
to invoke cleartool commands as most of the load (and thus of the time) will be spent
in initializing and inalizing the cleartool processes.

There also is a -co lag, which comes handy. We use it here in conjunction with
-exec (despite our strict understanding of the man page) to achieve the copy
merge (we have to deal with directories irst, and to cope with ile names possibly
containing spaces):

$ ct findmerge . -nc -type d -fve FOO -fbtag marc -merge
$ ct findmerge . -nc -type f -fve FOO -fbtag marc -co \
 -exec 'cp "$CLEARCASE_FXPN" "$CLEARCASE_PN"'
Needs Merge "./f2" [(automatic) to /main/mg/1 from /main/1 ##############
 (base also /main/mg/1)]
Checked out "./f2" from version "/main/mg/1".
Needs Merge "./f1" [(automatic) to /main/mg/3 from /main/5 ##############
 (base also /main/mg/3)]
Checked out "./f1" from version "/main/mg/3".
Log has been written to "findmerge.log.2010-08-02T20:32:48+01".

findmerge command may also be used to test the effect of command without
actually running them. This is obtained with the -print option, which may be
usefully augmented with -whynot.

Another possible use of the -print option is to produce lists of versions to be
merged, for arbitrary post-processing. In this case, the -short addition is probably
useful, to restrict the output exclusively to lists of contributors (to irst).

There may however still be a few corner cases, involving directory merges, in which
the output obtained with such dry runs could diverge from the result of actually
effectuating the merges.

Merging

[168]

Evil twins
We already mentioned evil twins in Chapter 4, so why mention them again when
speaking of merging?

The answer is that one cannot (easily) merge evil twins. Merging, contrarily to
patching, concerns versions of the same element, and evil twins are precisely
different elements.

The fact is that evil twins are for this reason often detected while merging, and more
speciically, while merging whole directory trees. It comes as a surprise to many
users that findmerge will fail to ind suitable contributors, a situation they may
show you with a screen dump but cannot explain.

It must be said that it is our experience that evil twins are more frequently produced
by Windows GUI users than by command line UNIX ones. The reason is that the GUI
puts in the hands of a naive user a "power" she doesn't master, offering an illusion
of help, but on the contrary contributing to adding to the complexity. As we already
mentioned, interactive decisions based on perception are not traceable.

How then to merge evil twins? The best tool is once again synctree! Importing
directory trees from one view to another, using the powerful -vreuse and related
options to avoid adding to an already regrettable chaos.

Summary—wrapping up
We hope that we could give some evidence of the complexity of merging. We believe
that this complexity is typically underestimated, and that designing development
processes based on branch patterns that imply a lot of merging is asking for trouble:
it spreads this complexity to realms in which it doesn't belong, making the resulting
complexity artiicial.

We believe that rolling back changes gives a convincing example: it is incomparably
simpler and more reliable to move back a label than to perform a subtractive merge.
The apparent problem with the former is that the version belonging to the baseline,
the one bearing the label, is after the rollback not the latest on the branch. Why
should this be a problem? We can only ind bad and artiicial reasons: "Doctor,
when I hit my head on the wall, it hurts".

If one decides to identify the baseline with labels, one doesn't care anymore on what
branch the baseline version of any element is sitting: merging "back" to integration
branches cannot be justiied.

We met here a new set of reasons to stick to the advice we gave irst in Chapter 5,
and which we came back to already in Chapter 6—to publish in-place.

http://search.cpan.org/perldoc?ClearCase::SyncTree

Tools Maintenance
Tools are an essential concern in build management. If we consider the mass of
information that software development has to deal with, and structure it as sets
of software conigurations, that is, (using the formidable tool ClearCase offers
us) as dependency trees, then we ind tools at both boundaries: as the roots of the
dependencies, with sources; at their leaves, with the customer deliverables (as part
of the run-time environment).

The opacity of tools, as well as that of sources, is of course only a matter of
viewpoint: the boundaries are only surfaces of separation between realms of distinct
coherence. Some other organization is responsible for developing and delivering
them, but typically under a different SCM.

This chapter will be structured in a traditional way, answering two questions about
maintaining tools under ClearCase, that is maintaining them in vobs:

Why?
How?

In the irst part, we'll offer an analysis, which is too often skipped, that is, the
questions are skipped even after the answers have popped up. We'll thus,
as earlier, question some traditional answers.

The second part we choose to confront through an example, convinced as we are that
the Devil is in the details. The review will show the practical dificulty of anticipating
changes beyond one's control and the compromises this leads to.

•
•

Tools Maintenance

[170]

Why?
There are many reasons for managing third-party tools under ClearCase:

Dependency control during builds: we want to ensure the reproducibility of
our build. As the build depends on third-party tools (libraries, compiler, and
so on), we naturally want to keep track of those dependencies.

Safety with updates: we may easily switch back and forth between
successive versions.

Referential transparency: we must be able to switch between versions of tools
without having to change our software or makeiles.
Flexibility: in most cases, simultaneous use of different versions must
be possible.

Localization/Fixing/Enhancing: we can conigure, or even correct or modify
products of which we have the sources. We could report or publish such
modiications, in the hope that they are being integrated into the next
oficial versions.
Tracking of indirect dependencies: third-party components may themselves
use chains of other components, which we may use in different contexts.
We want to be able to detect such dependencies and possible conlicts
between them.

Replication via MultiSite: we can share the installed products (and if need be,
maintain different local conigurations).

Dependency control
We want to conform our results to our intentions, and thus to exclude any factors
of instability. We want to be able to compare our results: our own successive ones,
as well as ours with others'. We need to ensure the consistency of our builds in that
all parts of them use the same or compatible tools. And inally we want to be able to
analyse the results in order to identify and ix the cause of problems, which we need
to narrow down and reproduce in isolation.

If our build depends on a tool X, and X is not under ClearCase, then clearmake offers
only limited support:

It records a dependency on the build script, with the values of makeile
variables expanded

It records the time stamps of declared dependencies

•

•
•
•
•

•

•

•
•

Chapter 8

[171]

This seems to open the way to two strategies: explicit declaration and hardcoding
version information in path names. The former is not really an option on a larger
scale: there are just too many iles to name. It is important however to investigate it,
as it may pop up as a recourse in case of failures with the other.

We'll thus try to explore both and show their shortcomings, so as to justify the extra
effort needed to import and maintain the tools in vobs.

Safety with updates
If the product X is not managed in ClearCase:

Derived objects that depend on different versions of the product X, will not
be validated properly; unconditional rebuild would be required

Having upgraded X, one would need to keep apart an installation of the
previous version, for example, in order to reproduce a bug reported by a
customer in the coniguration in which it was used

Explicitly declare tools as dependencies?
According to the documentation (Tracking non-MVFS iles in
ClearCase IBM Rational ClearCase Guide to Building Software),
clearmake tracks the checksum of explicit dependencies not in a vob.
We found this description insuficient and misleading, as we'll show now.

Let's create a tool named makefoo, producing a derived object, foo. Let's place it in
the /tmp directory (hence not under ClearCase), and record its time stamp (force it to
an arbitrary value) and its size:

$ cat /tmp/makefoo
#!/usr/bin/bash

echo zoo > foo
$ touch 08141200 /tmp/makefoo
$ ll /tmp/makefoo
-rwxrwxr-x 1 marc jgroup 32 Aug 14 12:00 /tmp/makefoo

Let's now use our tool in a makeile, in a vob, being careful to declare it as a
dependency of our foo target:

$ cat Makefile
foo: /tmp/makefoo
 /tmp/makefoo
$ clearmake
/tmp/makefoo

•
•

Tools Maintenance

[172]

$ ct catcr foo
Derived object: /vob/test/nmvfs/foo@@--08-14T12:07.23206
...
Initial working directory was /vob/test/nmvfs

MVFS objects:

/vob/test/nmvfs/foo@@--08-14T12:07.23206

non-MVFS objects:

/tmp/makefoo <2010-08-14T12:00:00+01>

Build Script:

 /tmp/makefoo

$ clearmake
`foo' is up to date.

We checked that a second build gets avoided as it should.

Let's now modify our tool (we replace zoo with bar), but keeping its size and time
stamp unchanged. Of course, its checksum changes:

$ perl -pi -e 's%zoo%bar%' /tmp/makefoo
$ touch 08141200 /tmp/makefoo
$ ll /tmp/makefoo
-rwxrwxr-x 1 marc jgroup 32 Aug 14 12:00 /tmp/makefoo
$ clearmake
`foo' is up to date.

Let's face it: we are disappointed. From the above referenced documentation,
clearmake should have detected the checksum change, and rebuilt. Let's investigate
further.

We then force the rebuild (by removing our irst product) and check that the tool
produces a different result.

$ cat foo
zoo
$ rm foo
$ clearmake
 /tmp/makefoo

$ cat foo
bar

Chapter 8

[173]

Our next attempt is now to do a similar modiication, only this time, not preserving
the size of the tool. We check that the rebuild happens:

$ perl -pi -e 's%bar%bar1%' /tmp/makefoo
$ touch 08141200 /tmp/makefoo
$ ll /tmp/makefoo
-rwxrwxr-x 1 marc jgroup 33 Aug 14 12:00 /tmp/makefoo
$ clearmake
 /tmp/makefoo

$ cat foo
bar1

Last, we modify only the time stamp—irst, to a value newer than the recorded one
for the tool, but older than this of the derived object:

$ touch 08141210 /tmp/makefoo
$ clearmake
'foo' is up to date.

No rebuild! Secondly we set it to a date newer than this of the derived object, which
would trigger the behavior of a "standard" make tool (using the -T lag would show
it, but would obviously defeat our purpose):

$ ll foo
-rw-rw-r-- 1 marc jgroup 5 Aug 14 12:13 foo
$ touch /tmp/makefoo
$ clearmake
'foo' is up to date.
$ ll /tmp/makefoo
-rwxrwxr-x 1 marc jgroup 33 Aug 14 12:39 /tmp/makefoo

This is downright embarrassing... The explanation for all these behaviors comes from
reading the improbable small print of a technote (#1386111): both the time stamp
and the checksum must change for clearmake to rebuild! Alone, neither of them is
suficient (but as it happens, the size seems to be...)

We are of course nit-picking (unintentionally!): seldom will the time stamp remain
the same while the contents changes. But this possibility, added to the discontinuity
with the standard make behavior (ignoring a time stamp newer than this of the
source), is enough to cast a doubt: we cannot depend on this functionality.

Lacking conidence in this behavior of the build system, one traditionally resorts to
make clean, or to building unconditionally.

This is not only sub-optimal in terms of build performance, but introduces
discontinuities in the development process, and thus trade-offs to upgrading or just
tuning one's tools.

https://www.ibm.com/support/docview.wss?uid=swg21386111

Tools Maintenance

[174]

Furthermore, it doesn't encourage supporting ine-tuning one's build system, and
therefore feeds the vicious circle leading to further lack of conidence.

ClearCase has better to offer!
Let's just move the tool in a vob, as a view private object. We may drop declaring it:

$ cat Makefile
foo:
 /vob/test/nmvfs/makefoo
$ ll makefoo
-rwxrwxr-x 1 marc jgroup 33 Aug 14 15:24 makefoo
$ clearmake
 /vob/test/nmvfs/makefoo

$ clearmake
`foo' is up to date.
$ touch makefoo
$ clearmake
 /vob/test/nmvfs/makefoo

$ ct catcr foo | grep 2010
Reference Time 2010-08-14T15:34:12+01, this audit started ###############
 2010-08-14T15:34:12+01
/vob/test/nmvfs/makefoo <2010-08-14T15:26:10+01>
$ touch 08141530 /tmp/makefoo
$ clearmake
 /vob/test/nmvfs/makefoo

ClearCase takes responsibility for auditing the identity of the tool, using the time
stamp for a view private object (and the version for a checked in element).

We are anyway left now with only one alternative to eliminate: hardcoding the
version in the tool's pathname. We must reckon that, in the above scenario, this
would have worked just ine.

Referential transparency
The situation just described gets worse if one considers having to switch back and
forth between several versions of the tools.

Without ClearCase, the traditional solution is to rely upon naming, that is, to
hardcode the version of the tools into the paths used to access them.

Of course, one needs then to produce one's derived objects under names or paths
matching this hardcoding.

Chapter 8

[175]

Such a solution may unfortunately be considered in simple cases, before the
combinatorial explosion of tool variants gets acknowledged. At that time, one has
already invested in generic complexity of the build system (using macros, and/or
generating the build scripts).

ClearCase offers a far more elegant solution by decoupling the versioning dimension
from the common namespace. Allowing the versions of tools to be selected via the
conig spec makes it possible for static iles (build and other scripts, documentation)
to be reused among different software conigurations, thus reducing dramatically the
global number of artifacts.

Referential transparency—the property for the same name to map to different
instances of a resource in different contexts—decreases the artiicial complexity and
helps making essential differences emerge.

Switching versions of tools, that is, switching software conigurations, becomes an
incremental task, concerning only a few iles. The threshold for experimenting or
tuning the environment gets lowered, and the overall quality improves.

With naming-based solutions, the smallest change is an all-or-nothing challenge. This
results in postponing ixes, and bundling changes together, which in turn produces
massive changes and long term instability. It results in matching investments to
expectations, instead of making choices based on real experiments.

Flexibility
It is quite typical that different components of a large system, different applications,
do not evolve synchronously with respect to their use of tools. One application may
meet a limitation or a bug, which makes it critical for it to move onto the next release
of the tool. Feeling the pain, the team is motivated to invest the effort to validate it
and to adapt their own software to the API changes. Other applications will, on the
contrary, be ighting with different problems and satisied with the functions offered
by the current version.

Adopting a new version, or a new tool in replacement for an existing one, is not a
trivial enterprise, and typically takes time and requires making changes. It is highly
beneicial that this may happen in-place, without requiring one to clone the existing
development environment. Once the evaluation has happened, assuming the
decision was made to move onto the new tool, one ought to be able to use the results
of the effort without having to pay the fee a second time.

Tools Maintenance

[176]

These remarks ight a common bad practice to consider the SCM repository as a
certiied archive, in other words, as a place to store only oficial artifacts, ones that
have gone through some kind of formal approval procedure. As we already stated,
management is most useful before the artifacts have been validated. Vobs are the
natural place to store the candidates of such a validation, and the validation, as any
kind of release, should happen in-place.

Tool fixes
The boundary between tuning a tool version and making a new one is itself neither
clear-cut nor stable: tools typically have to be conigured, and one may even have to
maintain workarounds for defects, before a vendor may provide ixes.

Tuning typically depends on usage patterns, and therefore happens naturally late in
the development, and in small increments, with trial and error. Clearly, this should
defeat a tool maintenance strategy based on naming: with such a strategy, in order to
maintain the ability to rollback one's changes or to compare the results with previous
ones, every change should result in duplicating a large portion of the tool hierarchy
as well as the set of products. This may still be considered in simple cases, but is
utterly non-scalable in the presence of combinations of tools and/or platforms.

Indirect dependencies
Third-party tools are themselves built from third (or is it fourth?) party tools. It is
commonplace to ind the same dependencies crop via different paths, and this is
the cause of many consistency concerns: upgrading one tool may force to upgrade
several others in order to build up a coherent virtual baseline for their combined
dependencies. This is a non-trivial task, in which few vendors will assist, and for
which none of them will take responsibility. In fact, this is an excellent argument in
favor of the Open Source model.

Managing the tools under ClearCase certainly makes it easier to build up such
baselines, and evolve them. You may help ClearCase to help you, by sharing the
tools that would be embedded, instead of dumping in various places many instances
of the same. This will help detecting problems, which is often a prerequisite for
ixing them.

Now, the notion of dependency used in this context need not (and often cannot)
be as strict as the SCM notion of dependency (based on identity). There comes the
weaker concept of compatibility (especially of backwards compatibility). One will
often have to trade for a common set of tools, adjusted from a compromise between
otherwise incompatible tool requirements.

Chapter 8

[177]

MultiSite replication
Tools maintained in vobs may obviously be replicated, and thus shared between
different sites. This leverages the installation work, which may be used to distribute
the effort, or... to distribute the pain. It is advisable to opt for a collaborative model,
and let sites feeling irst the need for a new tool or an upgrade do the investment of
installing and validating the new item, rather than for a centralized model, in which
such upgrades have to be ordered. The obvious danger of not doing so is that it will
not prevent the other sites from installing and using the new release: they will only
go underground, and it will be harder to converge back. The more you control, the
less you manage!

Our recommendation is here again to remember to depend in conig specs on local
labels, that is, to use remote ones (applied at another site) only as the basis for
moving one's own. The rationale is the intrinsic asynchrony of replication, leading
to the fact that there is never any guarantee of consistency in the local image of a
remote baseline: at every synchronization not only the present, but the past may
change (we looked at this in Chapter 5, MultiSite, under the section named Labels).

How?
Installing a tool in a vob takes place in two phases:

The installation proper, to a local ClearCase client

The import from there into the vob

The import phase can often use clearfsimport, from the ClearCase distribution, but
in many cases goes much easier with synctree.

The installation phase depends mostly on the way the tool is packaged and
distributed. It is however often necessary to consider the import phase irst, because
it may inluence the parameters used to conigure the installation (the paths for
a start).

We'll start with an example of a tool, the one we announced already in Chapter 1,
Using the Command Line: perl. We'll try to generalize from it.

•
•

http://search.cpan.org/perldoc?ClearCase::SyncTree

Tools Maintenance

[178]

Example—perl installation under a ClearCase

vob, with multi-platform support
Get a perl distribution for the irst platform, for example, Linux. But here comes the
irst choice: binary or source distribution?

Perl will embed the paths to its modules in an @INC variable. It will also record the
compiler used to build it, so as to use the same for building binaries that might be
part of modules to be installed on it (if they so require).

These aspects guide us to build perl ourselves, from a source distribution. However,
in the particular case of Windows, it is possible to use a binary distribution and to
conigure it to use a vob path (associated to a drive letter).

Building perl itself is straightforward, if your environment meets the requirements
that are clearly deined in per platform readme iles. You may of course want to use
the compiler and other tools from a vob, and thus to import them irst. You may get
into chicken and egg problems, and to solve these, you would have to use binary
distributions irst.

Before we install it, let's anticipate about what the maintenance will be. Let's thus
start by the end, by importing or updating individual modules on top of this vob
installation of perl.

Importing CPAN modules
Download the Perl module from CPAN:

$ wget http://search.cpan.org/CPAN/authors/id/D/DS/DSB/##################
 ClearCase-Argv-1.49.tar.gz
$ tar xzf ClearCase-Argv-1.49.tar.gz
$ cd ClearCase-Argv-1.49

First install locally, but using perl from the vob (which has been imported there
already, see below):

$ which perl
/vob/tools/perl/bin/perl
$ perl Makefile.PL PREFIX=/home/marc/tmp
$ make
cp Argv.pm blib/lib/ClearCase/Argv.pm
Manifying blib/man3/ClearCase::Argv.3
$ make install
Installing /home/marc/tmp/lib/site_perl/5.10.1/ClearCase/Argv.pm
Installing /home/marc/tmp/man/man3/ClearCase::Argv.3
Writing /home/marc/tmp/lib/site_perl/5.10.1/i686-linux/auto/#############
 ClearCase/Argv/.packlist

Chapter 8

[179]

Appending installation info to /home/marc/tmp/lib/perl5/5.10.1/ #########
 i686-linux/perllocal.pod

Import from there:

$ ct setview v1
$ ct setcs cs/linux
$ ct catcs
element * CHECKEDOUT
element * .../imp/LATEST
mkbranch imp
element * /main/LATEST

$ sb=/home/marc/tmp; db=/vob/tools/perl
$ synctree -sb $sb -db $db -/ipc=1 -reuse -vreuse -ci -yes -label LINUX \
 lib/site_perl/5.10.1/ClearCase/Argv.pm man/man3/ClearCase::Argv.3

This method is easy, apart from the issue of updating the perllocal.pod and the
.packlist iles.

New information is appended to perllocal.pod for every module installation. The
problem is that the paths recorded there must be manually ixed after importing to
the vob. The ile is found in the platform-dependent tree (which is a reason to share
this tree between the platforms).

$ perl -pi -e 's#/home/marc/tmp#/vob/tools/perl#' \
 /home/marc/tmp/lib/perl5/5.10.1/i686-linux/perllocal.pod
$ ct co -nc $db/lib/perl5/5.10.1/i686-linux/perllocal.pod
$ cat $sb/lib/perl5/5.10.1/i686-linux/perllocal.pod \
 >>$db/lib/perl5/5.10.1/i686-linux/perllocal.pod
$ ct ci -nc $db/lib/perl5/5.10.1/i686-linux/perllocal.pod
$ ct mklabel LINUX $db/lib/perl5/5.10.1/i686-linux/perllocal.pod

The .packlist iles contain the list of iles belonging to a package. They
are therefore more stable than perllocal.pod. They are also found in
platform-speciic trees.

$ cat \
 ~/tmp/lib/site_perl/5.10.1/i686-linux/auto/ClearCase/Argv/.packlist
/home/marc/tmp/lib/site_perl/5.10.1/ClearCase/Argv.pm
/home/marc/tmp/man/man3/ClearCase::Argv.3

$ perl -pi -e "s#/home/marc/tmp#/vob/tools/perl#" \
 ~/tmp/lib/site_perl/5.10.1/i686-linux/auto/ClearCase/Argv/.packlist

$ synctree -sb $sb -db $db -/ipc=1 -reuse -vreuse -ci -yes -label LINUX \
 lib/site_perl/5.10.1/i686-linux/auto/ClearCase/Argv/.packlist

Tools Maintenance

[180]

Even if it is the easiest method, one often has to import different parts separately:
scripts, perl modules, auto-split directories, man pages... For some of them, one may
let the clean up to the -rm option of synctree (to remove some of the elements if they
are not present in the current version of the module), for others it's impossible: it
depends whether the destination directories are shared with other modules or not.

The vast majority of CPAN modules are perl only, hence, platform independent.
They can thus be imported once for all the platforms. We must only avoid
introducing accidental factors of dispersion. Two come to mind at this stage:

Avoid platform-speciic branches
Avoid platform-speciic directory names

For the platform-dependent modules, one could use:

Separate branches, say, imp1

Platform speciic labels—SOLARIS

We have to admit that we didn't conigure perl to avoid the platform-speciic names
for a few directories. We could have done it by irst disabling the platform-speciic
lib paths in the perl installation and replacing them with a common path arch
such as lib/site_perl/5.10.1/arch (by using the -Darchname=arch option for
Configure script, see below). And then we could even specify such common paths
as INSTALLSITELIB and INSTALLPRIVLIB parameters when building our module, in
an attempt to make our imports easier and thus less error-prone:

$ perl Makefile.PL PREFIX=~/tmp \
 INSTALLSITELIB=~/tmp/lib/site_perl/5.10.1/arch \
 INSTALLPRIVLIB=~/tmp/lib/5.10.1/arch

Instead, we did share the platform-speciic directory names, by renaming them
as conigured, so that in our experience, the perllocal.pod and .packlist iles
mentioned above are shared at the element level but unfortunately not (at least for
perllocal.pod) at the version level:

$ ct setview v2
$ ct setcs cs/solaris
$ ct catcs
element * CHECKEDOUT
element * .../imp1/LATEST
mkbranch imp1
element * LINUX
element * /main/LATEST

$ ct co -nc /vob/tools/perl/lib/site_perl/5.10.1
$ ct mv /vob/tools/perl/lib/site_perl/5.10.1/i686-linux \
 /vob/tools/perl/lib/site_perl/5.10.1/sun4-solaris-thread-multi
$ ct ci -nc /vob/tools/perl/lib/site_perl/5.10.1
$ ct mklabel -rep SOLARIS /vob/tools/perl/lib/site_perl/5.10.1

•
•

•
•

Chapter 8

[181]

We also renamed the /vob/tools/perl/lib/perl5/5.10.1/i686-linux in the
same way and then we proceed with importing the Solaris version of the module to
the vob, in the same way as described earlier for Linux—in imp1 branch and we label
it with SOLARIS label. But this discussion anticipates on the Upgrading the distribution
section that will come later in the chapter.

Installing the Perl distribution
Get the Perl distribution (the source code) for Linux (version 5.8.8 is chosen on
purpose: it anticipates upon the section on upgrading):

$ wget http://www.cpan.org/src/perl-5.8.8.tar.gz
$ tar xzf perl-5.8.8.tar.gz
$ ct setview v1
$ ct startview v2
$ ct mkbrtype -nc imp@/vob/tools
$ ct setcs -tag v1 cs/linux
$ ct setcs -tag v2 cs/linux
$ ct catcs -tag v2
element * CHECKEDOUT
element * .../imp/LATEST
mkbranch imp
element * /main/LATEST
$./Configure -des -d -Dprefix=/vob/tools/perl
$ make install
$ synctree -sb /vob/tools/perl -db /view/v2/vob/tools/perl \
 -/ipc=1 -reuse -vreuse -ci -yes -label LINUX

After the successful import, remove the v1 view-private directory /vob/tools/perl
and its content, which is currently eclipsing the imported versions:

$ ct des /vob/tools/perl
View private directory "/vob/tools/perl"
$ rm -rf /vob/tools/perl
$ ct des -fmt "%n %l\n" /vob/tools/perl
/vob/tools/perl@@/main/t/1 (LINUX)

Repeat for other platforms, for example, Solaris, Windows. At import time, one
needs to modify the conig spec to take the previous baseline, identiied with the
LINUX labels (as we have just showed above in the Importing CPAN modules section).

For those, you'll need to use different label types (for example, SOLARIS, WINDOWS),
and to add one option (already mentioned for modules) to the synctree command:
-rm. This is to remove iles (obviously, it was redundant in the very irst import) that
would not exist in the new source base.

Tools Maintenance

[182]

An additional lag is often useful: -lbmods, to apply labels only to the versions
modiied. We choose here to apply one full label per platform though, and thus not
to use this lag.

At least with the Configure line presented above (the one we used ourselves), we
obtain some sub-trees as follows:

lib/site_perl/5.8.8/sun4-solaris-thread-multi
lib/site_perl/5.8.8/i686-linux
lib/5.8.8/sun4-solaris-thread-multi
lib/5.8.8/i686-linux

One option would be to create hard links for lib directories:

$ cd lib/site_perl/5.8.8
$ ls
i686-linux
$ ct co -nc .
$ ct ln i686-linux sun4-solaris-thread-multi
$ ct ci -nc .

We suggest rather renaming the platform-speciic directories for every platform. It
makes it easier to compare the different installations, and even to share some iles
there (see earlier section named Importing CPAN modules). To do so, one needs to
prepare the destination base, that is, the vob copy, prior to running synctree.

Some Configure options to consider (see earlier):

-Dinc_version_list=none: This disables an option offered by perl to keep
historical versions of some scripts in release-speciic directory trees
-Darchname=arch: This standardizes the directory names above
(but thread-multi is still appended), that is, the platform-speciic paths,
sun4-solaris-thread-multi and i686-linux, are replaced by the
common one, arch:

$./Configure -des -d -Dprefix=/vob/tools/perl -Darchname=arch
$ make install
$ ls /vob/tools/perl/lib/site_perl/5.8.8
arch
$ ls lib/site_perl/5.8.8
arch

Upgrading the distribution
The situation is slightly different when it comes to upgrading this installation,
say from 5.8.8 (which is already under ClearCase) to 5.10.1.

•
•

Chapter 8

[183]

We suggest that prior to upgrading the irst platform (for example, Linux), the
Perl version-speciic directories are renamed manually just as we did for the
platform-speciic ones:

$ ct co -nc /vob/tools/perl/lib/site_perl
$ ct mv /vob/tools/perl/lib/site_perl/5.8.8 \
 /vob/tools/perl/lib/site_perl/5.10.1
$ ct ci -nc /vob/tools/perl/lib/site_perl
$ ct des -fmt "%n %c" lbtype:LINUX1
LINUX1 Perl 5.10.1 for Linux
$ ct mklabel LINUX1 /vob/tools/perl/lib/site_perl/5.10.1

Then one can proceed with installation of the new (5.10.1) version and importing it to
the vob. Note that one needs to be careful using the -rm lag: it is appropriate for the
distribution part, but not under the site_perl directories, where it would result in
removing any CPAN modules that have been installed in the meanwhile.

At the point of importing the second platform, one faces however a dilemma: what
baseline should one use?

The previous baseline for the same platform (which was for 5.8.8)?

The baseline for the new version, but for the platform just imported?

This is where the -reuse and -vreuse options of synctree make the difference.
There is more on this in the section on Branching and labeling.

Installation
Time now to try to generalize... or as we'll soon notice, to fail to do so, facing the
speciicity of each tool. We can only draw our reader's attention to a few issues that
need to be considered.

The perl model: extract tar, Configure (or configure, for example, for GNU tools),
and make install, is of course not the only one.

The choice of installing binaries or sources may be met with a packaging tool other
than tar: for example, with rpm. In the case of Linux, one typically installs irst
a binary distribution, and it is only when wanting to debug and ix a problem,
and possibly to contribute the ix back, that one installs a source distribution, and
builds from there. In any case, there are strong reasons not to attempt to build the
tool under clearmake: it is unlikely that the build system of the tool will meet the
requirements that would make builds avoidable under winkin and thus manageable
via derived objects. Changes one would make to it could not be contributed back,
and would thus constitute a fork. Not sharing the results as derived objects, one
would have to stage (that is, fall back to the model of the binary distribution).

•
•

Tools Maintenance

[184]

In short, one has to have a good reason to manage the sources of the third-party tool
under ClearCase and we do not see it to make it a rule.

The installation typically uses a packaging tool speciic to the package format,
typically platform dependent (pkgadd on Solaris, rpm on Linux, swinstall on
HP-UX, and so on), and the import is done from the installation tree. There is
typically an option (such as -R for pkgadd) to relocate this tree to a path under a
vob, but whether this is possible or not depends also on the product itself: some
products are hardcoded to be used from certain paths. It may still be possible to
import them in a vob, and to use them via symbolic links (which will only work
under a view context).

The install tool may require root privileges, and the product may depend on certain
access rights.

Note that a package targeted to multiple platforms cannot be assumed to install
identically on every one of them, so that one could install it and import it only once.

Let's take the example of a Solaris package, intended for both sparc and i386 platforms.
The pkgmap ile found when extracting it drives the installation with pkgadd. It
contains lines that describe ile objects to be installed, one per line. It is however
possible and customary to use macros in the paths that are set in the checkinstall
script, for instance based on the value returned by uname -p (precisely, sparc or
i386). In the simplest case, this mechanism will drive the creation of a symbolic link
pointing to binaries of the suitable architecture.

Products may themselves contain symbolic links (internal or external), which may
have to be adjusted to work under the vob. Again, synctree has an option to assist
with this: -rellinks.

Using a tool from the vob, one must remember to adjust some environment variables
used by various utilities (MANPATH to access manual pages, LD_LIBRARY_PATH or
platform equivalent to access shared libraries, JAVAHOME, and so on).

As in the perl case, the irst installation is usually simpler than any subsequent ones.
It is however the place to make wise decisions, concerning the paths. Fortunately,
ClearCase will make it possible to reconsider those decisions, to learn from one's
mistakes, and to tune the directory layout to favor stability, even if one failed
initially to do so.

Chapter 8

[185]

Subsequent installations of a product may take the existing coniguration into
consideration. Patch installations will even require an existing installation. Typically,
the vob image of the product is not directly suitable: it cannot be overwritten, even
with root privileges. One needs therefore to be able to produce a writable copy of
the vob image, suitable for the installer, and using the same coniguration as for
the original install. One option is to keep the original copy after importing to a vob
from it. Another, perhaps a better option, is to use a dynamic view with -none rules
in its conig spec, and a view private copy of the vob contents. For copying the vob
contents to the view, in case cp -R is not suitable on the current platform, one may
use the old idiom:

$ tar cf - . | (cd /view/copy$(pwd) && tar xf -)

Import
Now that we do have a local installation (after either doing it for the irst time or
applying a patch, or even in some cases just extracting an archive), our next goal is to
import it as such into the vob.

Minor checks prior to importing
We already mentioned, in the earlier section, about the possible issue of symlinks,
which may have to be adjusted. Apart from those, special protections may have to
require attention. First, the groups used must be declared to the vob. The most exotic
protection schemes (such as those used in the vob storages for the contents of the
.identity directory) may not be supported. Neither can devices, sockets, pipes, and
such objects.

It is a good idea to check (and ix) the access rights in the local installation
(protections may be corrected in the vob, but the resulting events may be iltered
from the synchronization to other replicas, depending on permissions preserving
settings): executable iles should have the executable bits set (this might not be the
case if the image was extracted from a Windows archive); directories should be
executable as well, and usually group-writable; ile objects should be world readable.
Contradictions between these rules and "security" concerns should be handled case
by case, examining possible consequences.

Branching and labeling
Traditionally, separate branches types would be recommended:

•	 For releasing tools

•	 Local coniguration and changes
•	 Binaries built out of sources

Tools Maintenance

[186]

This is not necessary if using synctree with the -vreuse and -label options. In this
case, the goal of selecting versions exclusively with labels, and being agnostic to the
actual location in the version tree, may be restored.

The script will reuse existing versions, even if they are not selected: if it inds
a suitable one in the version tree, it will apply the new label there instead of
importing a duplicate.

Each tool release can be labeled by a ixed label (which may be partial), for example
GCC_2.

A distinct common loating label, for example TOOLS, can be used for publishing the
whole tools set: it will be applied over a chosen ixed label for each selected tool.

Issues during the import
One issue not automatically handled by the import tools (neither clearfsimport nor
synctree) is that of incompatible requirements on the type of some elements between
the version already in the vob and the one being imported. This could typically
be met with HTML pages (the old version had short lines and could be imported
with an old, text based, element type, whereas the new one has lines above 1024
characters and requires a new "binary" element type), but also, for example, with
GNU info iles.

These problems are dificult to predict and will typically be detected only as import
errors, reported by the tool but always easy to miss from verbose transcripts. The
elements will be left checked out. The ix requires manual intervention, usually with
chtype and the appropriate new type. Synctree will attempt to cope with transitions
between symlinks and iles or directories. Cases in which the same name is assigned
between two releases to a ile and a directory will require manual removal (rmname)
of the offending object.

Operating system
ClearCase is not available before late runlevel 2 (3 on HP-UX). This means that
everything needed before that cannot be maintained (exclusively) in vobs. Of course,
it is possible to switch, once ClearCase is available, and for resources it doesn't use
itself, to copies from the vobs (some boot sequences use a distinct local ile system in
single user mode, not available later) via symbolic links. A view context is of course
required to access them. One needs a pair of scripts used at boot and shutdown
time to set and reset those links, renaming away and back the local versions of
the resources.

Chapter 8

[187]

This makes maintenance tasks heavier (for example, installing patches) and more
disruptive. The set of resources used from the vobs is also not guaranteed to
be stable.

Versioning under ClearCase also makes the whole system dependent on license
availability. Even users who would only use the tools, for any other need than
software development, would need a ClearCase license once the tools are stored
in a vob. Additional cost may understandably become a concern.

There are other limitations to what may be versioned. For instance, some resources
are inherently unique, thus can only be found in one version, for example, sockets,
but also license and other databases. One may also think of hashes of tools, for
commands such as locate or man.

Finally, there may be a performance penalty, an impact on storage requirements,
on access control, on maintenance tasks, and so on. All these possible issues must
be studied and compared with the beneits described before. The best tradeoff will
heavily depend on the environment.

Shared libraries
Shared libraries are a special case: some of them will be used by tools needed to
set up the environment for running ClearCase. In fact, cleartool itself uses libC.so
(Linux/Solaris extension). Since they are shared, it is enough that one of their clients
needs to be available outside of a ClearCase context, so that the shared libraries must
be used from standard storage.

An interesting aspect of shared libraries is their versioning. The dynamic loader
implements a crude version control system, based on names recorded at link
time in client applications. In order to allow applications to link with the latest
(that is current) version of the shared libraries, without relying on the developers
having to be aware of it, a stable name is maintained as a symbolic link to the
version-decorated name of the actual ile:

libfoo.so -> libfoo.so.3

As it happens, it is often older versions of shared libraries that are in use in operating
system utilities: older at least than the versions that are offered for linking to the
developers. This means that one may often maintain the recent versions under
ClearCase, and leave older versions in the system directories. Or rather, that there
is no conlict in installing the latest patches in the vobs, without upgrading the
hosts themselves.

Tools Maintenance

[188]

One digression while dealing with shared library versions is that whether in the
standard scheme it is the symbolic link which bears the stable name, and the actual
ile which bears the version decorated one, this is actually not required either at link
time or at run time. It may thus be more convenient in the vobs to maintain the name
pairs in the other way around, at least when developing shared libraries: producing
new versions of the shared libraries under a stable name, and creating, as needed
version decorated symbolic links to them. The name recorded in client applications
must only be the version decorated one:

$ ld bar.o -G -o libbar.so -h libbar.so.1
$ ln -s libbar.so libbar.so.1
$ gcc -o foo foo.o -L. -lbar
$ export LD_LIBRARY_PATH=/vob/test/libso
$ ldd foo1 | grep libbar
 libbar.so.1 => /vob/test/libso/libbar.so.1
$ ls -l libbar.so.1
lrwxrwxrwx 1 marc jgroup 10 Aug 21 19:10 libbar.so.1 -> libbar.so

It may be worth stopping for a while on this issue of shared libraries, and
considering it in a wider perspective: what this means is that the run-time
environment is already able (in a limited way) to cope with multiple versions of the
same resources, that is, it doesn't completely fulill the basic assumption allowing
one to consider it as one (consistent) software coniguration: the exclusion principle,
at most one version of any resource. Or in other terms, there is not one monolithic
and consistent software coniguration, but an overlapping collection thereof. Let's
note that this is only a tendency taken to a much wider scope with for example, the
Eclipse repository. We shall mention this again in Chapter 12, Challenges.

A different strategy to maintain shared libraries is to deliberately break the
overlapping between the development and the run-time environment, thus
abandoning the idea of sharing them: maintain a copy of the shared libraries in the
vob, instructing the linker to write the standard path (instead of the one actually
used at link time, pointing within the vob) into the executables. This means that
the result of builds may not be usable in the run-time environment, which one may
consider as an extension of a concept of cross-compilation.

Licenses
Some tools have host-based licenses, so that sharing them in vobs will not work.
It is sometimes possible to store the license keys for every host in a standard path,
and to create a symbolic link to it from the vob.

The tool will be usable only on host for which the link to the license key will not
be dangling.

Chapter 8

[189]

MultiSite and binary elements
The previous discussion about licenses applies to more license schemes (not only
host-locked) in presence of MultiSite, but the treatment remains similar.

MultiSite brings some other concerns, which would be common with staging
(if practiced), and relate to storing and shipping of large binaries.

The mere size of binaries, together with their "opacity", ight continuity: every
version takes a large storage, events concerning them are large and cannot be split
(or only under certain conditions), resulting in large sync packets that take a long
time to ship, require large buffers, and result in frequent errors.

The only common option is compression, but this is a two-edged sword, as time is
needed to compress and decompress and it often requires yet larger buffers (and
results in duplication at the container level (refer to Chapter 9, Secondary Metadata,
about the storage of binary types).

In short, ClearCase can version binaries, but doesn't do miracles: tradeoffs come
near. In particular, there is often very little value in storing packages or zipped
archives in vobs.

Labels, config specs, and multiple platforms
We already mentioned using (site) local labels in the context of MultiSite, and
understand now that handling binaries makes it even more necessary for tools than
for source code. Let's add that (remote) labels crossing vob boundaries (either global,
or just sharing the same name and thus the same rules in conig specs) are even more
in danger of facing transient inconsistencies.

We also saw that tools are often to be dealt in large baselines of consistent (or at least
compatible) releases. It is often convenient to name these baselines with compound
label types, with the effect that these types suffer from combined volatility: they
change as soon as any tool changes, which is sometimes not predictable (it depends
on defects and ixes by other organisations).

This is a typical case for loating labels (for developers' convenience, and minimizing
errors). It is however important to retain underneath ixed labels for the individual
tools.

Tools Maintenance

[190]

Both the loating and the ixed labels should be maintained for every platform. As
seen previously (Referential Transparency) one ought to share as much as possible
between the various platforms, under the same paths, and avoid duplicates and
evil twins. Tools are at the bottom of the development chain, and thus in a strategic
position: errors made at that level will easily multiply and result in combinatorial
explosions, missed opportunities for sharing results, and duplicated work.

Special cases: Java 1.4.2_05 on Linux
Exceptionally, it is possible that some tools cannot be used under ClearCase.

We know only the case of Java 1.4.2_05 and above versions on Linux. In November
2004, Sun made a change to the Java launcher, exclusively on the Linux platform
(although the same thing could have been made, for example, on Solaris), and which
broke among other things (for example the use of LD_LIBRARY_PATH), launching
java from a vob. The change required that the lib directory containing the shared
libraries used by the binaries would be co-located to the directory tree returned from
the value of /proc/self/exe. This was an arbitrary assumption, defeated by the
fact that in the context of ClearCase, the path returned would point inside the
cleartext pool.

Working around this was allegedly possible by implementing an interposer library
to fake a failure of the readlink system call, thus falling back to another mechanism.
This could affect other tools and contexts.

In practice, the change made it impossible to use Java from a vob on Linux.

This situation prevailed for at least a few years. We are unclear about the
current status. Maybe the IBM JRE, bundled with every Rational product,
could offer a solution.

Naming issues: acquisitions, splits, mergers
Our last remark will be to warn against hardcoding in the installation paths names
beyond one's control, and which are not strictly necessary.

Mentions to companies in particular are now-a-days particularly volatile.

Let's remember, for example, that ClearCase was not always a product of IBM: one
might have had to rename occurrences of Rational, after Pure, after Atria.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6189256

Chapter 8

[191]

Summary
We hope the long list of concerns we reviewed in our second part did not
overshadow the bright perspectives opened in the irst one!

Tool maintenance is a good example of the no free lunch reality prevailing in software
development. The issues have to be addressed, and the sooner they are, the better:
these are investments that pay back! Once the base environment is in place, upgrades
will soon feel like routine. The comfort of being able to switch back and forth with
only conig spec changes between different releases of a tool will feel invaluable: was
a bug ixed? did the performance change? Is this new tool compatible with the rest of
the portfolio or where to trace the next baseline? These are questions that are much
better answered, and with incomparably more conidence, by actual testing than by
reviewing release notes!

In the next three chapters, we shall continue to iddle with administration issues,
never losing the user's perspective: what's behind the scenes, and what should there
be, so that my needs are fulilled in the best possible way? What can I, and what
should I, do to make it work even better?

Secondary Metadata
We have seen two kinds of ClearCase objects:

mvfs objects (elements and derived objects—let's say iles)

Metadata (label and branch types and instances)

ClearCase database are clearly structured (indexed) towards designing the irst ones
as the irst class citizens.

This can be felt with the way in which queries about the former are faster than
(non-trivial) queries concerning the latter.

We may notice that in recent releases of ClearCase, the find command has been
extended to support searching for arbitrary objects (not only iles), and thus also for
metadata and types. So far in our experience, the eficiency for the latter has been
the same as this of lstype, and the expressive power of the supported queries is still
restricted. But who knows? This may change.

It is time now to turn our investigations onto some details of the primary metadata
met already (labels and branches: see Chapter 6), and some less essential, yet useful
kinds of metadata, which can be attached to both of the former kinds, as well as to
most vob objects (but not to derived objects).

We'll ind consistency of design, and the advantages of having type objects, suitable
for maintaining information shared by many instances.

This chapter will thus cover:

Secondary metadata types: attributes and hyperlinks, but also comments
and triggers

ClearCase scrubbing mechanisms concerning metadata

User-deined types and custom type managers
Native type managers, especially text_file.

•
•

•
•
•
•

Secondary Metadata

[194]

Triggers
Let's irst deal with triggers. They are not really metadata, but since there is a
trtype, may be dealt with as such in some contexts.

Triggers are very popular. You'll ind a lot of them from numerous web sites, and
this in itself would be enough of a justiication for us to leave them alone.

We'd like however to argument against using triggers—almost at all. Triggers are
one of those slippery slopes on which newbie administrators jump joyfully, and
which end up spoiling the joy of ClearCase for users, thus defeating any reasonable
purpose. It is all too easy to write (bad) triggers, and all too dificult to get rid of
them. The last point is based on experience: whereas it is easy to list the existing
triggers (ct lstype -obs -kind trtype, "-obs" not to miss the ones which
would have been removed), there is no way to know who depends on them, and
in particular what scripts might break if you remove them. In practice, triggers are
seldom removed: only when a bug can be found to have a bad impact. And seldom
are they re-examined to check whether they still it their original purpose (more on
this in the further sections).

Triggers are vob local: in a trigger environment, things happen differently in
different vobs.

They are not replicated (thank God!).

If they don't break on Windows, they'll break in snapshot views, or in the remote
client, or via Eclipse, or with clearfsimport, or using cygwin, and the list is not
exhaustive.

In order to write "portable" triggers, one needs a version of Perl that would satisfy
some annoying and artiicial constraints—be available and consistent in all contexts,
be independent from the user view—and one starts using the one bundled with
the ClearCase installation, which is limited and volatile (may change at the next
upgrade), and... not meant for that! This clearly competes against maintaining
Perl in a vob (see Chapter 8, Tools Maintenance).

In short, triggers are surprising. SCM is about making development manageable
by users, making it easy for them to understand what happens and why. Sharing
their experience and saving their efforts. Triggers are deceitful as a promise of a free
lunch: they are hard to get right, hard to debug, hard to get coherent across the many
contexts in which users may ind themselves, and hard to keep right in the context
of other triggers (in what order are they called?). And triggers are also unfair: users
cannot practice creating ones, cannot usually skip them, or ix them.

Chapter 9

[195]

There are two kinds of administrators; the skillful ones don't write triggers. Existing
triggers have unfortunately been written by the others.

Maybe a few examples might help illustrating this. Let's pick them from a popular
page in the IBM web site: The ten best triggers.

NO_RMELEM
This is number one. Two scripts for UNIX and Windows, using the version of Perl
bundled with ClearCase, respectively Perl and ccperl, and the same inline code:
unconditional exit 1. The irst comment is of course to question the need for this
trigger. As we saw earlier, rmelem is a well-protected command. As a normal user,
you won't be allowed to remove an element you do not own, which has any version
not created by you, or which bears labels or hyperlinks. So, no real beneit.

What are its costs? This is clear: it prevents a user who notices he just created a
wrong element (typical scenario: an evil twin of an existing element either in a
different branch or a different directory) from removing it immediately before
somebody else has any chance of accessing it by mistake.

The good point is that it is easy to work around:

$ PATH=~/bin:$PATH
$ cat <<eot > ~/bin/Perl
echo Skipped \$*
eot
$ chmod +x ~/bin/Perl
$ ct rmelem -f aaa
Skipped exit 1
Removed element "aaa".

Please note that we are not being facetious here when we write that this is a good
point. Let us also trust the author that this is intentional! He could have put the full
path to Perl (which would fail rmelem in a different way on Cygwin though). If he
did not do it, it was precisely in order to allow knowledgeable users in a real need to
work around the trigger. There remain several questions:

Why wasn't this documented? Our belief is that it is because this is "security
by obscurity". Triggers belong to the realm of naive security.

•

http://www.ibm.com/developerworks/rational/library/4311.html

Secondary Metadata

[196]

How can experts such as this script author make such objective mistakes as
to recommend such a trigger? Again, we can conjecture that he doesn't know.
Two possible scenarios might explain why he wouldn't know:

He has been using this trigger for so long that he is now blind to the
real behavior of ClearCase (rmelem was not always as secure as it is
now): remember that in presence of triggers, you are not dealing with
ClearCase anymore...

He only ever uses a vob owner account, and has thus never
experienced the normal user situation. This would be a harsh
criticism, if we wouldn't know some adverse environments in which
tools such as sudo (which allows one to change uid just for running
the few commands requiring super user rights) are banned "for
security reasons".

CHECK_COMMENT
Again coming in platform-speciic guises and using pathless bundled Perl versions,
but with a more sophisticated behavior than previously, requiring a script with a
full path.

As previously, let's irst consider the intention: gently blame the author of a checkin
for not feeding a comment. Let's go to the costs. There are several:

Prompting the user interactively for every checkin without a comment,
starting a GUI (unless on UNIX the DISPLAY variable is unset, in which case
the interactive prompting is textual in the shell). This is a small penalty,
unless one is performing a mass-checkin. In this case, the best is to abort
(killing the process) and start again with a dummy comment; hopefully not
at the end of a session which would perform a cleanup for a long task.

Pushing people to write those comments. This is probably our worst critique:
forcing users to write comments is counter-productive! It only ends up in
ruining any value the comments might have, leading to the fact that nobody
will ever bother to read them!

We may now share some comments on the implementation.
First, the installation was meant to be performed on Windows only; if one does it
on UNIX, the use of double quotes leads the shell to interpret the double backslash
(-execwin "ccperl \\mw-ddiebolt\triggers\check_comment.bat") as a single
one, explicitly escaped, which results in a wrong path and a failure of the trigger on
Windows (fortunately allowing the checkin):

•

°

°

•

•

Chapter 9

[197]

Can't open perl script "\filer\views\marc\check_comment": No such file ##
 or directory
cleartool: Warning: Trigger script for "CHECK_COMMENT" returned failed ##
 exit status

Next, the use of two distinct iles (a Perl script disguised as a Windows batch ile,
and a small wrapper with a .pl extension and invoking the former from UNIX,
which is not shown on the IBM web page) is a common practice in the ClearCase
distribution. It is completely unnecessary once one invokes Perl explicitly! Only one
common and simpler ile is thus needed.

Finally, the script is now shared from a iler, automounted as /net/titeuf on UNIX
and known to Windows as \\mw-ddiebolt. In any case, this makes the trigger
depend on network connectivity, which is a dangerous dependency for a command
as useful as checkin. Fortunately again, failing the trigger does not fail the checkin.
Summary on this trigger? No real beneit: 100% cost. With an implementation which
was never reviewed critically!

REMOVE_EMPTY_BRANCH
Let's look at the third case in this list, which is again gradually more interesting
(it uses environment variables).

First as previously, the intention. We may surprise you, but it is indeed often a good
idea to remove empty branches! These would keep matching in the conig spec after
the user had forgotten about them, preventing her from being informed of new
deliveries.

Now, straight to the implementation. This is only a Windows trigger. Do not set it
in an inter-operating environment as it will prevent UNIX users from unchecking
out anything!

This is the comment as with the previous trigger about the useless batch preamble.
The interesting aspect in this code is the ...comments, and by this we mean the
commented printf commands. What they tell us is that triggers are hard to debug,
even if it is possible to to set the CLEARCASE_TRACE_TRIGGERS environment variable,
or to invoke ccperl with the -d lag starting the debugger.

Secondary Metadata

[198]

Let's uncomment those print statements, and on the contrary, comment the actual
command away. Now, let's create a subbranch, checkout, and uncheckout:

$ ct lsvtree .@@/main/mg
.@@/main/mg
.@@/main/mg/0
.@@/main/mg/aa
.@@/main/mg/aa/0
$ ct co -nc .
Checked out "." from version "/main/mg/0".

$ ct unco -rm .

Trigger is fired \main\mg\0...

\main\mgXXXXXXXXXX Count : 10

Only version 0

\main\mg\0 Count : 0

ToDo : cleartool rmbranch -force \\view\marc\test\.@@\main\mg
cleartool: Warning: This uncheckout left only version zero on branch ####
 "\main\mg".
Checkout cancelled for ".".

There would have gone the aa sub-branch. We wondered what the code was actually
counting: the number of X it had itself inserted and removed twice, but only to
the version extended name of the argument version, not to anything below it in a
possible version tree…

It is not the irst such trigger we meet which is actually public, old, and dangerous.

The last word on this case is that removing the branches should also be done in
conjunction to rmver, and that doing it with a trigger is actually using the wrong
weapon: this would force you to install your same trigger in all vobs. The same idea,
with better code, should be implemented as a cleartool wrapper, only once.

In afterthought, these triggers (well, the irst two) seem to us highly political. They
are milder than many triggers in actual use. Triggers is such a touchy issue that IBM
experts cannot openly write what we write here (and this is why we have to write
it!): avoid them!

This page was irst published in 2004, and last edited in 2006. It was labeled as
Introductory, which it indeed is. It had been accessed more than 20000 times when
we read it, and had been rated four out of ive rated by 116 people.

Chapter 9

[199]

Its title is undoubtedly misleading. It is a pleasant introduction to triggers, showing
scenarios in a pedagogic order, certainly not a list of best examples. But it does show
a lot.

One last point on the evil of triggers which didn't come up from the three examples
reviewed, but would from another popular trigger (redundant in its purpose with
NO_RMELEM): a trigger which changes the owner of new element to the vob owner.
Besides sharing with NO_RMELEM a misguided intention, it displays a performance
impact: cleartool will be invoked on any new element. This is enough to defeat any
attempt at optimizing mass creation.

Comments
Next kind of exceptional metadata: comments. Comments are the lowest common
denominator. The bottom of the bin. They are untyped. You cannot really search
them explicitly (for example using the ct find command)... Well, here is what you
can do:

$ ct lstype -kind lbtype -fmt '%n: %Nc\n' | grep foo

This searches for label types with a comment matching foo. The comment is
displayed using the -fmt option, with the %c pattern, modiied with N.

Secondary Metadata

[200]

Only, this will not work well on multiline comments; the N modiier is only there for
the last newline, allowing us to ensure that we produce at least one line per type,
even if there is no comment. In case the match is on the second line, the type name
will be iltered away.

OK, one can do better. Here is how we can handle the multiline comments properly,
thanks to the ClearCase::Argv Perl module:

$ perl -MClearCase::Argv -e \
'$c=new ClearCase::Argv({ipc=>1,autochomp=>1});
for my$t($c->lstype([qw(-kind lbtype -s)])->qx){
 $t=~s/ \(locked\)$//;
 print "$t\n"
 if grep /foo/, $c->des([qw(-fmt %c)],"lbtype:$t")->qx}'

This is acceptable? Good.

ipc=>1 ensures there is a single background cleartool invocation for all the types.
autochomp=>1 strips ending newlines from the output of cleartool commands. The
des function produces a list, which is tested by the grep one. As an empty list is a
valid list anyway, we may skip the N modiier in the format string.

Well, our point was anyway that the situation gets much better if we needn't parse
multiline output and tell things apart that may or may not relate with each other. So,
comments are useful only if used sparingly, and as a last, informal resort.

One corollary is that if you have nothing special to say, the most eficient way to do it
is by keeping silent, that is, avoid polluting the comment space with forced comments
(OK: triggers was the previous paragraph).

Scrubbers
Don't be impatient: we're getting closer.

Our next digression on the way to metadata is on the issue of scrubbers. You
noticed the plural? Yes, there are two, typically scheduled as tasks: scrubber,
and vob_scrubber.

We shall be concerned here with the latter, so let's talk of the former irst.

The scrubber (already mentioned in the Removing derived objects section of Chapter 3,
Build Auditing, and Avoidance) takes care of maintaining the pools within reasonable
disk space limits. Actually only two of the three pools: the cleartext and the do pools.
Pools are directory trees in the vob storage outside the database that contain the
actual data. The third is the source pool which stores versions of ile elements. We'll
review the most interesting case of source containers—the case of text iles—in the
end of this chapter. We'll keep on with pools in the next chapter. Please note now

http://search.cpan.org/perldoc?ClearCase::Argv

Chapter 9

[201]

that we started this chapter by mentioning two kinds of ClearCase objects: iles and
metadata. Files are actually produced, and thus scrubbed—not only derived objects,
but versions as well (the cleartext containers). See more on the scrubber in Chapter 10,
Administrative Concerns.

The vob scrubber deals with database items: events and oplogs. We'll be back to
oplogs in Chapter 11, MultiSite Administration.

Note how events are classiied in the way the vob scrubber deals with them
(not uniformly).

For example, mkattr events are kept (by default) only for seven days,
and the last one for an attribute type for 30 days, as reads from the
/var/adm/rational/clearcase/config/vob_scrubber_params ile:

event mkattr -keep_all 7 -keep_last 30

You can always check the log for the last runs, at least using perl:

$ ct des -fmt "%[replica_host]p\n" \
 replica:$(ct des -fmt «%[replica_name]p\n» vob:.)
beyond.lookingglass.uk
$ ct lsvob /vob/foo
* /vob/foo /vobstg/foo.vbs public (replicated)
$ ct getlog -host beyond.lookingglass.uk -full vob_scrubber | \
 perl -n00e 'print «p_» if $p and m%/foo%; $p=/^Number/?$_:q()'
Number of Events Events Events Kind of event
objects before deleted after by meta-type
---------- ---------- ---------- ---------- -----------
 1 162 79 83 versioned object base
 3 209 58 151 replica
 3 5 0 5 pool
 1 1 0 1 replica type
 13 13 0 13 element type
 76 78 0 78 branch type
 2545 7648 1138 6510 label type
 27 27 0 27 attribute type
 27 27 0 27 hyperlink type
 3376 3376 0 3376 directory element
 3623 3623 0 3623 file element
 18142 18147 3 18144 branch
 13959 88599 26403 62196 directory version
 17873 97310 27923 69387 version
 4 4 0 4 symbolic link
 95625 0 0 0 derived object
 3199 628 178 450 hyperlink
158497 219857 55782 164075 total in VOB
Event scrubbing done.
Oplog scrubbing done.
Finished VOB «/vobstg/foo.vbs» at 2010-08-29T07:14:10+01.

Secondary Metadata

[202]

The vob_scrubber log is not formatted, which means that it is not trivial to know
what exactly to wait for: in our example we are only interested in /vob/foo. Even if
it is rotated relatively often, the log is still pretty large. We read it in paragraph mode
(the -n00 lag), and print when inding a suitable match, both the previous and the
current paragraphs. This implies that we must remember the previous paragraph,
and print it in case it was of the right kind. This is roughly what the small inline
script does.

This processing allows us to understand the presence or absence of certain events in
the lshistory output. In this case, we could verify that no mkattr events had been
scrubbed for the last period. We knew the attribute was set recently to a label type
(which was conirmed by the presence of the last mkattr events), but the question
was to know whether it had possibly had another (incorrect) value previously. Now,
we could show that no such event had been scrubbed.

If the events you'd like to inspect have been scrubbed, there is still one recourse,
at least in replicated vobs: dumpoplog. This is a useful yet under-documented
command, which produces, slowly, a very verbose output. You need again to be
prepared to post-process it, in a lexible way. Here is one example, run within a vob,
with a view set:

$ mt dumpoplog -l -vreplica wonderland -name -since 7-Aug | \
 perl -n00e 'print "$1 $2\n" if /^op= mklabel.*^op_time= ([\
w:-]+).*^obj_oid= .*?\(.*?: (.*?)\).*^lbtype_oid= .*?\(FOO\)/sm'
2010-08-09T10:57:55Z /vob/foo/.@@/main/1/demo.txt/main/1
2010-08-09T10:57:55Z /vob/foo/.@@/main/1
2010-08-09T10:59:01Z /vob/foo/bar@@/main/1
...

We use again the paragraph mode, and now we parse the result in multiline mode
(m modiier) where the "." wildcard may match newline characters, allowing
nevertheless the beginning and end markers, respectively "^" and "$", to match at
line boundaries (s modiier). In the regular expression, we successively match word
constituents (\w) extended to colons and dashes (in order to match time stamps), and
sequences of arbitrary characters in non-greedy mode (".*?").

The preceding example shows which versions have been labeled with FOO labels, and
this possibly after the mklabel events have been scrubbed.

Now, oplogs may be scrubbed too. It is even both recommended and
recommendable to scrub them. This just doesn't happen by default, and thus
requires editing the host global param ile vob_scrubber_params mentioned earlier
(probably the best way), or a per vob setting, a ile with the same name placed
in the vob storage area. The setting is to keep oplogs for a certain time, and the
recommendation is to keep at least two months of oplogs to be able to reproduce
sync packets that would have been lost before being imported on remote sites.

Chapter 9

[203]

Attributes
Attributes are the preferred alternative to comments. They are preferred because
their typing allows to avoid depending on parsing informal text. This typing
involves two levels:

A low-level typing determining the format of the values and a set of
operators of the query language applying to them

A declarative level, reserving a name which formally identiies the type

Attributes may be attached to different vob objects: ile or type objects.

The existence of options restricting their application to elements, per version or
per branch, may bias their use toward the irst kind (ile, rather than type objects).
Attributes are also often used to store status information—values that may vary.
These are uses for which the -shared option (in a MultiSite context) would be as
questionable as for labels or branches.

We tend to apply attributes mostly to objects of the second kind, almost only label
types; and with stable values, so that the -shared option is safe and justiied.
Attributes allow to attach information at the right level of stability in a structure of
inter-related types, thus offering signiicant lexibility. The same attributes may be
used on different sites, in conjunction to locally mastered and applied labels:

$ ct mkattype -nc -shared AAA
Created attribute type "AAA".

$ ct mkattr AAA '"aaaa"' lbtype:ZOO
Created attribute "AAA" on "ZOO"

The requirement to enclose string values within double-quotes may surprise, and
leads at times to errors. It doesn't concern the other value types.

We'll take an example of applying (unshared) attributes to versions, and it is from
the ClearCase::Wrapper::MGi Perl module. We use attributes there to record the fact
that a label of a certain type hierarchy was removed, and from which exact version
on. The background is that for every label family, we maintain a chain of incremental
ixed label types, recording the successive positions of a common loating label type.
Suppose our loating type is named FOO, then the incremental types, applied at every
stage to the concerned versions only (therefore offering better performance and
manageability), are named FOO_1.00, FOO_1.01, ..., FOO_2.34, and so on.

•
•

http://search.cpan.org/perldoc?ClearCase::Wrapper::MGi

Secondary Metadata

[204]

First, we create a family label type, which is identiied to a loating label (FOO). Its
irst increment, a ixed label FOO_1.00, is created automatically (note that ct is
aliased as usual to the standard cleartool, and ctx is aliased here to the cleartool
wrapper, actually from ClearCase::Wrapper):

$ alias ctx ct
alias ctx='/usr/bin/cleartool.plx'
alias ct='/opt/rational/clearcase/bin/cleartool'

One may also set the expanded_aliases shell option, or prefer to deine functions
instead of aliases:

$ function ctx {
 /usr/bin/cleartool.plx $@
}

$ ctx mklbtype -nc -fam FOO
Created label type "FOO_1.00".
Created label type "FOO".
Created attribute type "RmFOO".

We can create the successive increments with the mklbtype -inc command:

$ ctx mklbtype -nc -inc FOO
Created label type "FOO_1.01".

We use a two-level numbering scheme to guarantee that the types may be
sorted naturally, and to leave some space for growing the size of the namespace if
need-be (for example, jumping to FOO_2.000 after FOO_1.99). This strategy seems to
be enough to allow using only the loating label to name the baseline in development
conig specs, and to produce afterwards a list of conig spec rules equivalent to any
situation in the past, for example:

element * FOO_1.23

element * FOO_1.22

…

element * FOO_1.00

However, this holds only as long as the FOO label was not removed from a version at
any point. To support this case, we set an attribute when we remove a label (as well
as to previous versions bearing a label of the family). In our example, the attribute
type would be RmFOO (it must be speciic to the label type), and the value records the
increment at which FOO was removed. The version will of course still bear the ixed
label corresponding to the increment at which FOO was applied, so that it is correctly
considered part of any equivalent conig spec corresponding to an increment in the
range until this at which FOO was removed.

http://search.cpan.org/perldoc?ClearCase::Wrapper

Chapter 9

[205]

$ ct des -fmt "%Nl\n" foo.txt
FOO FOO_1.14
$ ct des -ahl -all lbtype:FOO
FOO
 Hyperlinks:
 EqInc -> lbtype:FOO_1.23@/vob/foo
$ ctx rmlabel FOO foo.txt
Removed label "FOO" from "foo.txt" version "/main/mg-013/18".
Created attribute "RmFOO" on "foo.txt@@/main/mg-013/18".
$ ct des -fmt "%Nl\n" foo.txt
FOO_1.14
$ ct des -aattr -all foo.txt
foo.txt@@/main/mg-013/18
 Attributes:
 RmFOO = 1.23

Every conig spec rule produced (in the list above) must thus be corrected as follows
(here for increment 1.15):

element * "{lbtype(FOO_1.15)&&!attr_sub(RmFOO,<=,1.23)}"

The main problem with attributes attached to types, is that queries are inherently
ineficient, and that their performance is tied to the number of types, and thus
decreases as the size of the system grows, which is clearly an undesirable property.
The same is of course true of queries for ile objects (using the find command), but
these ones are better supported by the indexing strategy of the ClearCase databases.

To face this problem, one needs to revert the strategy from query to navigation, and to
rely for this upon a new structure, based on hyperlinks.

Hyperlinks
We already know of two dimensions, or hyperspaces, in which to structure software
conigurations: the most trivial, and least interesting one is directory trees; the most
interesting one is audited dependencies. Hyperlinks provide a third layer (or rather,
dimension). What makes directories less interesting is that they record the contingent
history of the development, and thus lose a real value of relevance: they tell you
about your background (which has its value, for sure), not about your actual life
situation. The audited dependencies are real stuff; furthermore, they are collected
for free. Sometimes, they lack lexibility: there is a lot of interesting stuff beyond
plain reality.

Hyperlinks have this lexibility. For a start, they may relate other objects than
elements: label types for instance.

Secondary Metadata

[206]

We already mentioned in the previous chapters the hyperlink mechanisms ClearCase
uses for merging (Merge hyperlinks in Chapter 7, Merging) and global typing
(GlobalDefinition hyperlinks in Chapter 5, MultiSite Concerns).

We use them quite extensively to build label type families, with a loating label
type representing the current baseline (and applied to all the elements present
in a coniguration), and ixed types recording the successive increments of the
development history, and only used indirectly to recreate an equivalent conig
spec pointing to a past coniguration.

We described this earlier in the Attributes paragraph: the successive
increments are linked together with hyperlinks of PrevInc type (deined in
ClearCase::Wrapper::MGi). The top of the linked list, quite a volatile information, is
accessible via the loating label type (a well-known and stable name, even if the set of
versions it is applied to changes frequently) with an EqInc hyperlink. Both kinds of
hyperlinks are maintained by the mklbtype function of our cleartool wrapper.

The following transcript illustrates the relationships explained above between the
loating label FOO and its increments (the ixed labels of the FOO family, such as
FOO_1.22, FOO_1.23 and FOO_1.24).

The family type loating label FOO is linked to the current increment FOO_1.23:

$ ct des -ahl -all lbtype:FOO
FOO
 Hyperlinks:
 EqInc -> lbtype:FOO_1.23@/vob/foo

This is how the successive incremental label types are linked together:

$ ct des -ahl -all lbtype:FOO_1.23

FOO_1.23
 Hyperlinks:
 PrevInc -> lbtype:FOO_1.22@/vob/foo
 EqInc <- lbtype:FOO@/vob/foo

Now we add the next increment:

$ ct mklbtype -nc -inc FOO
Created label type "FOO_1.24".

http://search.cpan.org/perldoc?ClearCase::Wrapper::MGi

Chapter 9

[207]

And see how the label hierarchy is re-arranged:

$ ct des -ahl -all lbtype:FOO lbtype:FOO_1.24

FOO
 Hyperlinks:
 EqInc -> lbtype:FOO_1.24@/vob/foo
FOO_1.24
 Hyperlinks:
 PrevInc -> lbtype:FOO_1.23@/vob/foo
 EqInc <- lbtype:FOO@/vob/foo

This is the point for a syntactical note: there is a difference in support for describing
hyperlinks and attributes. Or rather, the syntax we used in the above example may
also be used for attributes:

$ ct des -aattr -all lbtype:ZOO
ZOO
 Attributes:
 AAA = "aaaa"

...but there is another handy syntax for attributes, which has no equivalent for
hyperlinks:

$ ct des -fmt '%[AAA]NSa\n' lbtype:ZOO
"aaaa"

This prints the value (aaaa) of the AAA attribute. As one can see, this syntax is lexible
and allows to tailor one's needs so as not to require post-processing (except to get rid
of the double-quotes).

We also use hyperlinks across vob boundaries, and there mostly ones of the
predeined GlobalDefinition type, even if we do not set an admin vob for this
purpose (see Chapter 5).

The main problem with the concept of admin vob is that there is only one AdminVOB
hyperlink type (which is used to link vob objects between one another), and its
effect is global. This therefore constrains other sites in an excessively inlexible way,
which ends up defeating collaboration. Client vobs cannot really be used without
their admin vob, and importing vobs from different sites, which wouldn't have
been submitted to a centralized control from the beginning, invariably results in
conlicting requirements to use incompatible admin vob hierarchies.

Fortunately, GlobalDefinition hyperlinks may be created explicitly, by our
wrapper or other scripts, and existing instances are obeyed to functions such as
lock, rename, and so on without having to submit to the constraints of admin vobs.

Secondary Metadata

[208]

A inal note on hyperlinks is that one may use textual hyperlinks as an alternative
to attributes. These hyperlinks do not reference any other object but instead a new
text value. This may be useful if one needs to create an object to hold the value,
for example, in order to be able to transfer its mastership, or if one wants to create
several instances of the same type "attached" to the same object.

Type managers and element types
ClearCase comes with a good few native types, but also allows the users to deine
their own. At least, this was the intention, and since the very beginning—one sees
there that ClearCase was a product of the lamboyant times of object orientation,
and carried ideas experimented in Apollo Domain typed ile system.

The list of native types found depends on the vob feature level, and it has increased
over time. Notable additions had to be made to support ile formats that departed
from the implicit assumption that text should break on new lines (so as to be
generically printable, without the need for a parser, aware of the speciic syntax).
This concerned the HTML and XML iles produced by some popular tools, mostly on
Windows. More recent additions concern the variants of UTF, to support Unicode in
different contexts.

The magic files
One may use element types explicitly, with an -elt option to mkelem, or with the
chtype command, but the stereotypical way is to use them implicitly, via the magic
ile mechanism, in the old UNIX tradition.

A default.magic ile is provided by the ClearCase installation, with rules to
take into use all the existing native types... and more. The syntax of magic iles is
documented in the cc.magic man page.

Here is a sample extract from it:

$ cat /opt/rational/clearcase/config/magic/default.magic
Check stat type
directory : -stat d ;
block_device : -stat b ;
char_device : -stat c ;
socket : -stat s ;
fifo : -stat f ;

Match by name without examining data
program compressed_file : -name "*.[eE][xX][eE]" | -name "*.bin" ;
object_module compressed_file : -name "*.[oO][bB][jJ]" ;
shlib library compressed_file : -name "*.[dD][lL][lL]" ;

Chapter 9

[209]

zip_archive archive file : -name "*.[zZ][iI][pP]" ;
tar_archive archive compressed_file : -name "*.tar" ;
…
assumed to be text
java_source source text_file : -name "*.[jJ][aA][vV][aA]" ;
...
catch-all, if nothing else matches
compressed_file : -name "*" ;

It is made of rules, with a irst match logic similar to this of conig specs. Each rule
consists in two parts: an ordered list of types and a set of selection criteria. When a
selection criterion matches, the types are tried in order, and the irst one found in the
current vob is used; if none of them is found, an error is spit. If no selection criterion
matches, an error is also spit, but default.magic has a catch-all rule to preempt this
case and use then compressed_file.

Let us note while we are here that default.magic anticipates the creation of some
user deined types, such as java_source. We shall fulill this precise anticipation in
the next section.

ClearCase design does not intend the users to modify default.magic. On the
contrary, it suggests that they would create new magic iles in other directories, and
take them into use via a MAGIC_PATH environment variable (a local .magic ile in
every user's home directory will also be searched by default, and this one might of
course be a symbolic link to a site-wise shared copy). It is wise to restrict oneself to
provide in local .magic iles only speciic rules and criteria to override some critical
element types, and to keep the standard path to default.magic—with its catch-all
rule—last in the MAGIC_PATH. This ensures that one doesn't shut oneself off from the
beneits of upgrades from further ClearCase releases.

Remember that the catch-all rule will preempt any further rule if found too early.
This might happen if the built-in path was not the last in MAGIC_PATH, or if magic
iles with names later than default.magic in sorting order would be placed there:
they could never be reached. Even if any directory in MAGIC_PATH may contain an
arbitrary number of magic iles, it may be wise to keep those to a bare minimum,
for fear that they might compete against each other, with the arbitration of the
alphanumeric order of their respective names, which the MAGIC_PATH mechanism is
precisely meant to avoid.

What may be recognized here is yet one special case of the fundamental challenge
of SCM: how to manage sharing, how to propagate changes made locally, so that
all beneit from them without surprises and unanticipated conlicts? ClearCase
unfortunately falls short of offering a satisfying answer in the context of element types.

Secondary Metadata

[210]

User defined types
All the types the user might deine do not present the same challenges.

Type without a new manager
We mentioned the existence of a potential java_source type in the default.magic
ile. This is an insightful provision, as we'll see in Chapter 12, Challenges. Leaving until
then the rationale for such a change, let's consider implementing this type now.

This is a good example of a trivial yet useful—nay: mandatory— type deinition.
The time stamp of java source iles should be this of the last ile saving: it ought to be
preserved at check in, which is not the default behavior. The command is simple:

$ ct mkeltype -c 'Preserve time of java sources at checkin' \
 -super text_file -ptime java_source

Note that there is no mention of a -shared lag: element types are shared by default
(they may be used at other replicas). There is a restriction related to this: they cannot
be changed afterwards in replicated vobs (using the -replace lag of the mkeltype
command will yield an error):

$ ct mkeltype -rep -super binary_delta_file java_source
cleartool: Error: Can't redefine element types when VOB is replicated.
cleartool: Error: Unable to replace definition of element type ##########
 "java_source".

It may be a good idea to make the type -global (unless it is only a cosmetic issue:
you decide). In any case, this type will have to be created (or maybe copied) into
every vob in which it is needed.

However, it will be replicated properly, without any additional coniguration, and
will be directly usable in other replicas, both explicitly and implicitly.

New type manager
How about creating a more ambitious type—a type which would be associated with
a new type manager?

We'll explore here only the most simple case, hence avoid writing code to implement
some type manager methods in ways speciic to a new type (which is covered in
an IBM white paper by Laurent Maréchal). Examples of useful managers could be:
managing tar (and other container) iles, by actually extracting them and maintaining
the resulting directory trees (with a program similar to synctree); or managers
providing compare and merge capabilities for ile types requiring an ad-hoc
graphical editor.

http://www.ibm.com/support/docview.wss?uid=swg27009697&aid=1
http://search.cpan.org/perldoc?synctree

Chapter 9

[211]

One manager we might want to implement would manage source iles in such a way
that new branches spawning from the root of the version tree would not result in a
full copy of the base version in the source container.

Type managers are a collection of methods. In UNIX, these methods are
grouped in directories under the /opt/rational/clearcase/lib/mgrs directory.
Most of the entries there are actually symbolic links, with the help of which the
actual code is shared among multiple types (including implementation of type
inheritance). In Windows, all the methods are listed instead in a single map ile
(in C:\Program Files\Rational\ClearCase\lib\mgrs).

The most trivial implementation we are alluding to would be to create a (completely
useless) symbolic link to an existing type manager, let's say text_file_delta.
Let our symlink be named foo, and let's explore the implications of creating a new
element type using it:

$ ct mkeltype -nc -super text_file -man foo foo_file
Created element type "foo_file".
$ ct co -nc .
$ ct mkelem -nc -elt foo_file foo
Created element "foo" (type "foo_file").
Created branch "mg" from "bar" version "/main/0".
Checked out "foo" from version "/main/mg/0".
$ ct ci -nc .

So far, so good (note that for this to work, you actually need to be using a local view).
But what about editing this ile in another view, hosted on another host? You'll get
an error until you install the type manager on the second view server. On Windows,
you'll have to do it using the map ile. In any case, remember to take a backup of
your changes, in order to be able to reapply them after every ClearCase upgrade; it is
hard to predict which ones will overwrite the map ile, or tamper the mgrs directory.

The same issue awaits you with MultiSite: a prior type manager installation will be
needed on all vob servers to allow the export and import of sync packets containing
events involving the custom type manager. ClearCase doesn't assist you with this,
beyond giving a clear error message, which is unfortunately easy to miss, and to lose
while rotating the synchronization logs.

Native types
ClearCase native element type managers differ mostly in the way they use source
and cleartext containers: the former are used for storing the data, and the latter for
presenting it (this of the selected version only) to the user or her tools. Do the two
need to differ at all? Can multiple versions share a common source container? And
what are the implications in terms of performance and storage?

Secondary Metadata

[212]

Binary types
There are two basic native binary types: file and compressed_file. There is also
one special type: binary_delta_file.

The file type uses the whole_copy type manager. Elements of this type
actually have no cleartext containers: every version is stored integrally in a
new source container.

Note from the following output that both container paths are identical, and from the
source pool (s/sdft):

$ ct mkelem -nc -elt file file
$ mkfile 1k file
$ ct ci -nc file
$ ct dump file | grep cont=
source cont="/vob/foo.vbs/s/sdft/32/3e/##################################
 2-3774301fbe9311df913100156004455c-6g"
clrtxt cont="/vob/foo.vbs/s/sdft/32/3e/##################################
 2-3774301fbe9311df913100156004455c-6g"
$ ct co -nc file
$ ct ci -nc file
$ ct dump file | grep cont=
source cont="/vob/foo.vbs/s/sdft/32/3e/##################################
 2-52e43027be9311df913100156004455c-qq"
clrtxt cont="/vob/foo.vbs/s/sdft/32/3e/##################################
 2-52e43027be9311df913100156004455c-qq"

The compressed_file type uses z_whole_copy. The source containers are
compressed, and thus uncompressed cleartext containers are generated on access:

$ ct mkelem -nc -elt compressed_file cfile
$ mkfile 1k cfile
$ ct ci -nc cfile
$ wc -l cfile
 0 cfile
$ ct dump cfile | grep cont=
source cont="/vob/foo.vbs/s/sdft/10/42/##################################
 3-1ec43037be9411df913100156004455c-1m"
clrtxt cont="/vob/foo.vbs/c/cdft/30/15/1ec43037be9411df913100156004455c"
$ ls -l /vob/foo.vbs/s/sdft/10/42/3-1ec43037be9411df913100156004455c-1m \
 /vob/foo.vbs/c/cdft/30/15/1ec43037be9411df913100156004455c
-r--r--r-- 1 vobadm adm 1024 Sep 12 18:30 ###############################
 /vob/foo.vbs/c/cdft/30/15/1ec43037be9411df913100156004455c
-r--r--r-- 1 vobadm adm 36 Sep 12 18:28 #################################
 /vob/foo.vbs/s/sdft/10/42/3-1ec43037be9411df913100156004455c-1m
$ ct co -nc cfile
$ ct ci -nc cfile
$ ct dump cfile | grep cont=

Chapter 9

[213]

source cont="/vob/foo.vbs/s/sdft/10/42/##################################
 3-8c643047be9411df913100156004455c-9n"

clrtxt cont="/vob/foo.vbs/c/cdft/20/2/8c643047be9411df913100156004455c"

One interesting conclusion is that compressing iles will actually irst increase
the space consumption. Space will be saved after enough versions will have been
created, assuming only few of them remain accessed (and the others' cleartext
containers get scrubbed). The break-even will depend on the compression factor.

The last binary type (binary_delta_file) is actually not a binary type, but a text
one, only lacking a predictable record delimiter. It is the supertype used by the
various HTML and XML types mentioned earlier.

Text type
By far the most interesting element type, for purposes of version control, is
text-file.

A basic understanding of the format of the source containers is an investment which
may pay back in some cases of catastrophe recovery.

There is one single source container for all the branches and all the versions.

Creating a new version actually involves creating a new updated source container
and removing the old one. The information in the container is however stable.

The container starts with a header, beginning with ^S and ending in ^E. A 2-digit id
is assigned to branches ^B and versions ^V bottom-up (that is /main == 0 0 last).

Here is an example:

^S db1 4
^V 72bda4c9.fbe111dc.8c74.00:01:84:16:9f:47 4 1 47eb692e
^V 6c2da4c5.fbe111dc.8c74.00:01:84:16:9f:47 4 0 47eb692e
^B 6c2da4c1.fbe111dc.8c74.00:01:84:16:9f:47 4 2 1
^V 7c7075ce.fb1911dc.8b8a.00:15:60:04:45:5c 3 1 47ea1a4a
...
^B e71bad18.f20c11dc.8ef5.00:01:84:16:9f:47 0 0 0
^E e71bad14.f20c11dc.8ef5.00:01:84:16:9f:47

The irst digit of the id identiies the branch. For branches, the second digit identiies
the parent branch, for versions, the version id.

0 0 /main
1 0 /main/mg-001
2 1 /main/mg-001/mg-002
4 2 /main/mg-001/mg-002/mg50
3 1 /main/mg-001/mg

Secondary Metadata

[214]

The last ield on the line is a time stamp (time2date) for versions.

The header is followed with annotations of two kinds: insertions ^I or deletions ^D,
with the id and the number of lines:

^I 1 1 613
package ClearCase::SyncTree;

^D 4 1 1
^D 3 1 1
^D 2 1 1
^D 1 7 1
^D 1 4 1
^D 1 2 1
$VERSION = '0.47';
^I 1 2 1
$VERSION = '0.48';
^I 1 4 1
...

Here is a possible recovery scenario: an administrator misunderstood a user request
and removed a critical version (rmver or rmbranch).

A previous version of the source container is found in a iler snapshot. It is
possible to identify the container by looking at the time stamps and grepping
some older data.

The challenge: produce from there a cleartext container corresponding to the lost
version(s), and check it back in again.

By comparing with the current source container, it is possible to identify the oids of
the missing version and of the branch object.

^V 2594991b.490d11dd.9673.00:15:60:04:45:5c 17 2 486dfe83
...
^B bd588b72.237145da.8ecf.6a:2a:92:7a:ac:e1 17 15 1

In practice, one could interpret 17 as the branch, and thus 17 2 as version 2 on it,
checking that this one had been removed.

So, from this container, one can run the construct_version method from the
command line, and produce a /tmp/clrtxt.out ile using the version oid found in
the source container header:

$ srccon=/vob/foo.vbs/.snapshot/vobs_snapshot.1/s/sdft/1e/d/0-a14e41314e
7111dd925a00156004455c-qp
$ cd /opt/rational/clearcase/sun5/lib/mgrs/text_file_delta
$./construct_version $srccon /tmp/clrtxt.out \

 2594991b.490d11dd.9673.00:15:60:04:45:5c

Chapter 9

[215]

Summary
This completes our review of metadata. Contrast the power and the beauty of
element types, to the supericiality of triggers. Know to use attributes and hyperlinks,
and avoid abusing comments.

The next chapter will continue with low-level concerns, close to the ClearCase
implementation.

Administrative Concerns
Administration is too important to be left to administrators.

Some insight is necessary for end users as well, even if only to investigate and
narrow down problems, and then make useful requests to administrators.

One may consider two approaches to administration:

Top-down proactive, concerned with resource planning, installation, and
monitoring

Bottom-up reactive, driven by investigation and problem solving, and
virtually involving anybody

The latter is often more challenging, as under error conditions the system does not
exhibit the same level of coherence as under normal ones. We'll mention a few such
cases. What is important is that there is always a balance of the two.

We have actually already dealt with quite a lot of administrative concerns, especially
in the previous chapter:

Vob scrubbing (but so far we have left pools scrubbing)

Structure of source containers for text iles
Construction of cleartext containers

Tradeoffs in compression (existence of cleartext or not)

Use of ct dump

We shall push to the next chapter issues relating to MultiSite.

•
•

•
•
•
•
•

Administrative Concerns

[218]

Finally, we must note that administration is a well-documented part of ClearCase,
partly because of the Administrator's manual, but also because of the profusion
of technotes available from the IBM website. The reason for such a profusion of
information is clear: administration confronts the multitude of the interfaces with
a huge variety of systems, as well as a variety of the situations. It is not reasonable
for us to attempt to compete against this; we'll as usual attempt to avoid repeating
things available already, but try to focus on useful insights left from existing
literature and documentation.

What does this suggest to us as a driver for this chapter? Maybe:

 First a review of a few top-down topics:

License and registry monitoring

Multiple regions and their synchronization
Client monitoring

The location broker

Adding logs and scheduler jobs
Storage and backup concerns

Vob and pools size
Authentication

Importing data to the vobs

Duplicating and registering vobs

Coniguring Apache to access vobs
To leave space for a couple of bottom-up case analyses, without any attempt
at exhaustiveness:

Albd account and its password

Changing types

Dbids and the underlying database

Protecting vobs

Cleaning lost+found

Top-down
The goal is not to squeeze away any top-down concerns: some basic understanding
is needed to set up the scene and as a context to illing in some holes as we promised.

•
°
°
°
°
°
°
°
°
°
°
°

•
°
°
°
°
°

http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m0/index.jsp?topic=/com.ibm.rational.clearcase.books.cc_admin.doc/cc_admin.htm
http://www-947.ibm.com/support/entry/portal/Overview/Software/Rational/Rational_ClearCase

Chapter 10

[219]

License and registry
As discussed in our presentation (Chapter 2), ClearCase servers are split both into
functions and hosts. The former may be mapped onto the latter, so that a standalone
installation is possible, where all functions, including the role of client, are played
by one single host; and on the contrary, an installation in which every function is
held by a different host, and some functions sometimes by several, is possible. The
functions have an order, which is relected in the order in which one must upgrade
the servers—with the exception of the license server, which is somehow nevertheless
the top of the hierarchy.

With relatively recent versions of ClearCase, there have been two options for the
license server. Or rather, an additional option of FLEXlm licenses has been added
to the traditional ClearCase offering. The latter one being stable, and mostly
satisfactory, has been kept. The main rationale for FLEXlm is that this is the
implementation of choice for other IBM/Rational products, starting with ClearQuest.
We won't go into ClearQuest (although we'll mention it again in Chapter 13, The
Recent Years' Development), because its integration with ClearCase has not been very
convincing. While both request tracking and change management are reasonable
concerns, electing ticket life cycle as the main driver of development has not proven
to be compelling. It had a large share of the dramatic development of UCM and
led in our experience to counterproductive results. Another possible rationale for
FLEXlm is that it is a widely used platform, relatively feature rich, and lexible. It
does offer an answer to areas in which the standard ClearCase licensing required
ad-hoc solutions: redundancy and high-availability in various scenarios (network
or host failure) and catastrophe recovery, and monitoring tools. The advantages
are however not compelling. The solutions to offer similar beneits with the old
framework were neither complex nor expensive. They relied on the acquisition of a
second set of license keys, a commercial/political negotiation, disconnected from our
technical point of view. We cannot comment much on the FLEXlm offering, because
it goes beyond our experience, limited to early evaluations that were not at the time
fully convincing.

One piece of advice worth mentioning is to make large license pools (within world
"regions", which is the only restriction traditionally set by ClearCase to limit the use
of the same licenses around the clock, successively in different time zones), to beneit
from a maximal lexibility. Licenses are granted for a period tunable, but typically of
30 minutes, and their acquisition is not signiicantly impacted by latency.

The license server is at best a stable and dedicated host, seldom to be powered
down for maintenance. Its ClearCase version need not be upgraded often, not even
for all major releases, as traditional licensing uses only the albd protocol. FLEXlm
ClearCase licenses do not even require that.

Administrative Concerns

[220]

License monitoring (non FLEXlm) relies upon parsing the output of the clearlicense
tool. One limitation of this method is that it reaches to only the local license server
(the one speciied in the config/license_host ile on the current host, lacking a
-host option such as in the ct getlog or hostinfo commands). But this is easily
worked around on a dedicated low-end PC (with no users), by changing the contents
of the config/license_host ile before running the command in order to collect the
data from multiple license servers. Another strategy to monitor license usage could
be to add the string -audit, to the license.db ile (on the license server, in the
/var/adm/rational/clearcase directory), and to use getlog albd. This is
however not fully reliable.

MultiSite licenses are distinct (for historical shortsighted commercial reasons). A user
needs one if she uses a replicated vob.

The registry collectively designates a few lat iles in the rgy directory under
/var/adm/rational/clearcase on the registry server (which may be backed up
to a second host, allowing for a rgy_switch procedure for maintenance or failure
recovery purposes). There are two main pairs of iles: for vobs (vob_object and
vob_tag) and views (view_object and view_tag); each pair consists of an object
and a tag registry. They are meant to be updated with the register/unregister
(for object registries), and mktag/rmtag (for tag ones) commands. The rgy_check
command allows to detect inconsistencies (such as duplicate or missing tags or the
presence of tags for missing objects, among other things).

One cannot in general recommend to edit these iles, but it may be useful to read
them, in order, for example, to compare entries produced by different commands.
This is often faster than parsing the output of ct lsvob or lsview, for example, to
ind entries sharing a certain storage or erroneously set to use the ile server (where
ClearCase is not installed) as vob or view server. Note that it is not necessary to edit
the registry iles to access objects created with non-intended names such as a -foo
tag for a view. Cleartool commands understand where necessary the "--" last
lag convention:

$ ct lsview -foo 2>&1 | head -2
cleartool: Error: Unrecognized option "-foo"
Usage: lsview [-short | -long] [-host hostname [-quick]]
$ ct lsview -- -foo
* -foo /cc/views/-foo.vws
$ ct rmview -tag -foo
$

Chapter 10

[221]

Of the other iles in the registry, let's mention a few:

regions: Accessible via the commands ct mkregion, rmregion, and
lsregion. The region to which a ClearCase client belongs (it belongs to
one, and only one at a time) is set in the config/rgy_region.conf ile, in
the ClearCase data area. Vobs and views are registered once per registry,
but tagged per region. Regions are usually used for Windows/UNIX
interoperability, so that two regions are deined, and vobs are tagged in both
(with tags obeying the respective operating system constraints). More exotic
setups can be met, with only part of the vobs tagged in certain regions. Views
may also be tagged to multiple regions—a practice subject to controversies.
vob_tag.sec: It is the encrypted registry password required to create public
vobs. This is produced by the rgy_passwd utility, requiring root privileges,
and vob owner accounts have no special access to it.

storage_path: Accessible via ct mkstgloc, rmstgloc, and lsstgloc.
Storage locations are useful and handy for creating vobs and views, by
simplifying the options to the ct mkvob and mkview commands. This is
especially true when using the -stg -auto combination. One way for the
administrator to affect it in presence of several storage locations is for her to
use the -ngpath lag (no global path) for mkstgloc command to disqualify
the locations not intended for "automatic" usage.

site_config: Accessible via ct setsite and lssite. This holds some
default values concerning ClearCase behavior, as well as performance tuning
(view cache size, accessible on a per view basis with ct setcache and
getcache).

Synchronization between regions
Synchronizing views tags and vobs tags, and between the different ClearCase
regions (for example, UNIX and Windows) is just a matter of:

Having the view and vob storage locations available in both environments

Having the view and vob servers accessible in both environments

Creating the view and vob tags with cleartool mktag command in the
target region

For example, consider the following two regions:

$ ct lsreg
unix_reg
win_reg

•

•

•

•

•
•
•

Administrative Concerns

[222]

If we have a view created in the unix_reg region as:

$ ct lsview -l joe_view
Tag: joe_view
 Global path: /filer01/viewstg/joe_view.vws
 Server host: viewserver.domain.com
 Region: unix_reg
 Active: YES
View on host: viewserver.domain.com
View server access path: /filer01/viewstg/joe_view.vws
View owner: joe

We can synchronize it with the Windows region by using the following command:

W:\>cleartool mktag -view -tag joe_view -reg win_reg \
 -hos viewserver.domain.com \
 -gpa \\filer01\viewstg\joe_view.vws \\filer01\viewstg\joe_view.vws

And similarly for the vob:

$ ct lsvob -l /vob/foo
Tag: /vob/testi2
 Global path: /filer01/vobstg/foo.vbs
 Server host: vobserver.domain.com
 Access: public
 Mount options:
 Region: unix_reg
Vob on host: vobserver.domain.com
Vob server access path: /filer01/vobstg/foo.vbs

W:\>cleartool mktag -vob -tag \foo -reg win_reg \
 -hos vobserver.domain.com
 -gpa \\filer01\vobstg\foo.vbs \\filer01\vobstg\foo.vbs

One persistent problem in interoperable contexts concerns the creation, from
Windows, of views with storage on a iler, using a UNIX view server. This would
be required for views intended to be accessed from both UNIX and Windows. The
error is as follows:

cleartool: Error: Failed to record hostname <UNIX view server>

This is because the client is responsible for setting the view storage directory
permissions and the view ACL. Unfortunately, these are Windows-speciic
constructs. The views must be created on UNIX and tagged to Windows later.

Chapter 10

[223]

Monitoring client activity
ClearCase keeps track of the clients of the registry, and of the license database, in
client_list.db, in the data area (/var/adm/rational/clearcase). This ile is
accessible remotely with the ct lsclients utility.

Note that the license database is different from the registry, and here is how one can
distinguish between the two (concerning the client access):

$ ct lsclients -host beyond.lookingglass.uk -l -type registry
Client: beside.wonderland.uk
 Product: ClearCase 7.0.1.3
 Operating system: Linux 2.6.9-78.0.22.EL #1 Fri Apr 24 12:35:12 EDT 2009
 Hardware type: i686
 Registry host: beyond.lookingglass.uk
 Registry region: alice
 License host: license.wonderland.uk
 Last registry access: 2010-09-05T20:01:23+03:00

$ ct lsclients -host beyond.lookingglass.uk -type license -l
Host "beyond.lookingglass.uk" has no license clients.

So, the beyond.lookingglass.uk acts as the registry server for the client host
beside.wonderland.uk, but not as the license server.

The license server conigured for this client is license.wonderland.uk:

$ ct lsclients -host license.wonderland.uk -type license -l
Client: beside.wonderland.uk
 Product: ClearCase 7.0.1.3
 Operating system: Linux 2.6.9-78.0.22.EL #1 Fri Apr 24 12:35:12 EDT 2009
 Hardware type: i686
 Registry host: beyond.lookingglass.uk
 Registry region: alice
 License host: license.wonderland.uk
 Last registry access: 2010-09-05T20:01:23+03:00

The ile format is line oriented, but the output of the utility, with the -long option, is
not, and therefore often requires in practice some (Perl) post-processing to be useful.
One typical reason for such a need comes from the use of DHCP addresses: client
hosts are identiied in the client database with their IP addresses, and if these are
granted by DHCP servers, they will (typically) be leased for a limited time. This
sufices to make the record unreliable, the same hosts being possibly recorded
multiple times. The database gets lushed only at restart time (we do not know
of any other way).

Administrative Concerns

[224]

In the example below, the uniquely sorted list of clients is about 2.5 times shorter
than the original one:

$ ct lsclients -host licsrv -type license | wc -l
 813
$ ct lsclients -host licsrv -type license | cut -d: -f1 | sort -u | wc -l
 331

Using the long output, we may build a hash, and store the recorded access time.
When meeting the same name again, we update the hash record only if the new
time is more recent than the one stored.

$ ct lsclients -l -host licsrv -type license | perl -n00e \
 'chomp; ($n,$a) = (/Client: ([^\n]+).*?(?:access: (.*)|$)/s);
 if (!$h{$n}{a} or $h{$n}{a} lt $a) { $h{$n}{a} = $a?$a:q() }
 END{ for(sort {$h{$a}{a} cmp $h{$b}{a}} keys %h)
 { print "$_: $h{$_}{a}\n" } }' | tail -3
mars: 2010-09-25T19:15:00+01
venus: 2010-09-25T19:15:02+01
jupiter: 2010-09-25T19:15:16+01

We are again (refer to Chapter 9, Secondary Metadata) using the paragraph-oriented
input mode, stripping the newline, and matching the items with the s modiier (so
that the "." wildcard may match newlines). We take advantage of the fact that the
standard format of time stamps makes them string-wise comparable.

Note that some records do not have a last access time (for reasons we can only try
to guess). In order for them to nevertheless match the pattern with which we extract
the ields we are interested in, we enclose the second part in a "(?: ...)" bracket
pair (group, but do not record), as an alternative to an end of line, and to make the
previous indiscriminate pattern non-greedy: ".*?"; We then store an empty value q()
instead of the undeined one; we use an empty value so that it compares "older" than
any recorded access time. Our output format is line oriented, so as to be greppable
(or "tailable" as in the example above). Producing it in an END block allows us to sort
it, here by the last access time.

Other ields may of course be recorded and printed (see the earlier example) such as
Product, Operating system, Hardware type, and so on.

Chapter 10

[225]

Location broker
Clients can be accessed remotely via the albd service, listening to port 371, for example,
with the following utilities: /opt/rational/clearcase/etc/utils/albd_list
(c:\Program Files\Rational\ClearCase\etc\utils\albd_list.exe on
Windows), ct getlog, and so on.

$ albd_list beside.wonderland.uk
albd_server addr = 100.175.111.249, port= 371
PID 16530:
 syncmgr_server, tcp socket 33101: version 1; BUSY
 Storage path syncmgr_server
Albd_list complete

This "pings" the ClearCase client and lists the currently running albd processes
(if any). On a ClearCase server, the output may be quite long.

$ ct getlog -host Win12345 albd
==
Log Name: albd Hostname: Win12345 Date: 2010-09-24T12:36:32+03:00
Selection: Last 10 lines of log displayed
--
2010-09-24T04:43:51+03:00 albd_server(24860): Job 6 #####################
 "Daily VOB Space" (166208) Completed: OK.
2010-09-24T04:43:50+03:00 albd_server(24860): Job 6 #####################
 "Daily VOB Space" (166208) Started.
2010-09-24T04:43:49+03:00 albd_server(24860): Job 5 #####################
 "Daily View Space" (169308) Completed: OK.
2010-09-24T04:30:12+03:00 albd_server(24860): Job 5 #####################
 "Daily View Space" (169308) Started.
2010-09-24T04:30:12+03:00 albd_server(24860): Job 3 #####################
 "Daily Registry Backup" (169276) Completed: OK.
2010-09-24T04:30:12+03:00 albd_server(24860): Job 3 #####################
 "Daily Registry Backup" (169276) Started.
2010-09-24T04:30:12+03:00 albd_server(24860): Job 2 #####################
 "Daily VOB Snapshots" (167520) Completed: OK.
2010-09-24T04:30:07+03:00 albd_server(24860): Job 2 #####################
 "Daily VOB Snapshots" (167520) Started.
2010-09-24T04:30:07+03:00 albd_server(24860): Job 1 #####################
 "Daily VOB Pool Scrubbing" (166296) Completed: OK.
2010-09-24T04:30:04+03:00 albd_server(24860): Job 1 #####################
 "Daily VOB Pool Scrubbing" (166296) Started.
==

Administrative Concerns

[226]

We'll look a bit deeper into logs and the scheduler in the further sections.
The albd port (actually, both tcp and upd ports) is the only well-known port
ClearCase uses, and the only one on which a failure to connect will actually tell
of a problem. One can also test it, for example, with telnet client_host 371,
even if this admin idiom offers no advantage over using albd_list: as the albd
protocol is not text based, the telnet session will display nothing and have to be
interrupted. Sessionless communication resulting in small amounts of data may
be carried on this port. For anything beyond that, the albd server will negotiate a
connection backwards to the requester, using a high port, and continue on this port.
Only for shipping purposes is there a way to restrict this high port within a range
(more on this in next chapter). Understanding this is essential for whoever considers
coniguring a irewall: opening port(s) 371 is not enough; all the high ports must
be opened, and the negotiation is initiated by the remote end. Let's make clear that
using irewalls between ClearCase hosts can thus only really be considered in a
few cases:

For shipping

For license acquisition, and even then, it will impact the ability to run
clearlicense

For web access, including via a remote client (and then the communication is
limited and channeled via the http, https, ssl, ...ports)

Surprisingly to old ClearCase users, the presence of a irewall between a client and
its registry will not stop ClearCase from working (as it used to do, on timeouts,
in previous releases of ClearCase). It will however affect it, and impact even other
users from other clients: delays between database lock acquisition and release will
signiicantly increase, due to the latency resulting from irewall processing, adding
up to the round-trip times.

Firewalls may add speciic error cases such as by dynamically blocking ports as
a measure against Denial of Service attacks, if a single command results in excessive
output. This example is a typical default irewall coniguration problem:

$ cleartool lsview
albd_rgy_get_entry call failed: RPC: Timed out
cleartool: Error: Trouble contacting registry on host "regsrv": #########
 timed out trying to communicate with ClearCase remote server

•
•
•

Chapter 10

[227]

Remote monitoring infrastructure
We saw that the ClearCase infrastructure is typically distributed among multiple
hosts. Problem investigation thus requires access to distributed information, irst and
foremost logs of various kinds, but also the state of the background tasks.

This is well supported by the ClearCase architecture, through the ct getlog and
schedule commands. This architecture is well documented, and actually open to
extension, and administrators would be well inspired in using this option, instead of
resorting to the UNIX tools crontabs and syslog.

There is an exception to the consistency with which ClearCase uses its own
architecture, and it is with shipping server installation, but we'll treat this in
the next chapter.

We have already treated the output of both functions. There could be one deiciency
to getlog, which is worth noting: it is not always obvious which log to inspect
(between error, albd, vobrpc, view, and so on), and it is not trivial to make up one's
mind. The best is often to log in to the remote host, and to tail a list of the logs sorted
by their timestamps. Of course, this defeats the advantage we just praised.

An alternative is to ask for the last line of every log, and to sort them by their
timestamps:

$ ct getlog -last 1 -all -host beyond 2>/dev/null | \
 perl -nle 'if(/^Log Name: (\w+)/) { $n=$1; next }
 $h{$n}=$_ if /^\d+/;
 END {print "$_: $h{$_}" for sort {$h{$a} gt $h{$b}} keys %h}'
view: 2010-09-24T11:01:26+01 view_server(12404): Db closed
mvfs: 2010-09-24T19:34:47+01 global(0): fs: Error: view=joe #############
 vob=/vob/test - Lock on VOB database prevents write transactions
albd: 2010-09-26T04:33:00+01 albd_server(744): ##########################
 Job 6 "Daily VOB Space" (26669) Completed: OK.

This gives a clue of what may be worth reading next: we retained the log name, and
the last line only if there was one, in a hash indexed by the name.

In an end block, we print both together on one line, sorting the logs by the contents
of the records, taking advantage from the fact that these start with the timestamps,
and as we noted earlier already, the timestamps are string-wise comparable. Note
however that this only works for the line formatted class of logs, as it assumes a
timestamp. This unfortunately excludes the error log, for instance.

Administrative Concerns

[228]

Scheduler
We'll turn now to the question of adding one's own custom tasks and logs.

Every job in the scheduler actually runs a task. All the tasks are numbered and listed
in a lat ile: /var/adm/rational/clearcase/scheduler/tasks/task_registry.
The tasks themselves should also be located either in the same directory
/var/adm/rational/clearcase/scheduler/tasks (usually the customized
ones) or in /opt/rational/clearcase/config/scheduler/tasks (usually
the standard ones). Our irst move (after writing the script we intend to use as a
scheduler job) is thus to add one task description to the end of ile.

The example we take here is one on which we'll come back in the next chapter, for
monitoring the status of the MultiSite replication:

Task.Begin
Task.Id: 103
Task.Name: "Moving received repmon logs"
Task.Pathname: "repmon_mv.sh"
Task.End

Here repmon_mv.sh is the name of our script. It moves replica monitoring logs
received from other hosts to a certain location: /tmp dir in our example. As we
placed it into the /var/adm/rational/clearcase/scheduler/tasks directory, we
do not need to specify its full path.

We need next to create a new job in the scheduler, using this task. We can use the
interactive command (which will start the editor speciied in the environment, by
default vi):

$ cleartool sched -edit

And with it, we add something like the following:

Job.Begin
Job.Name: "Daily Repmon logs moving"
Job.Description.Begin:
Move all received replica monitoring packets to /tmp
Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.FirstStartTime: 00:00:00
Job.Schedule.StartTimeRestartFrequency: 04:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 103
Job.Args:
Job.NotifyInfo.OnEvents: JobEndFail
Job.NotifyInfo.Using: email
Job.NotifyInfo.Recipients: root
Job.End

Chapter 10

[229]

Administrators may want to keep a backup of the schedule and possibly to version
their changes.

This is not conveniently supported by ct schedule because the output combines
commands and outputs.

Let's focus on one single job (the one we just added), instead of on the whole
schedule (ct sched -get -sched):

$ ct sched -get -job "Daily Repmon logs moving"
Job.Begin
 Job.Id: 20
 Job.Name: "Daily Repmon logs moving"
 Job.Description.Begin:
Move all received replica monitoring packets to /tmp
 Job.Description.End:
 Job.Schedule.Daily.Frequency: 1
 Job.Schedule.StartDate: 2010-09-26
 Job.Schedule.FirstStartTime: 00:00:00
 Job.Schedule.StartTimeRestartFrequency: 04:00:00
 Job.DeleteWhenCompleted: FALSE
 Job.Task: 103
 # Job.Task: "Moving received repmon logs"
 Job.Args:
 Job.NotifyInfo.OnEvents: JobEndFail
 Job.NotifyInfo.Using: email
 Job.NotifyInfo.Recipients: root
 Job.Created: 2010-09-26T14:07:35+01 by anis/root@beyond
 Job.LastModified: 2010-09-26T14:07:35+01 by anis/root@beyond
 Job.NextRunTime: 2010-09-26T20:00:00+01
 Job.LastCompletionInfo.ProcessId: 2894
 Job.LastCompletionInfo.Started: 2010-09-26T16:00:00+01
 Job.LastCompletionInfo.Ended: 2010-09-26T16:00:02+01
 Job.LastCompletionInfo.ExitStatus: 0x0
Job.End

Actually, even commands get reinterpreted: job ids are produced automatically and
task names are kept only as comments.

But the most obvious is that timing information is added and updated, as well as
completion info, possibly including multiline excerpts of the standard error:

Job.LastCompletionInfo.Messages.Begin:
mv: cannot stat `/usr/atria/shipping/ms_ship/incoming/*.repmon*': #######
 No such file or directory
Job.LastCompletionInfo.Messages.End:

Administrative Concerns

[230]

This results in the fact that some processing of this output is needed if one intends to
use it as input, for example, to restore a previous state. Some more work for Perl.

Now, we want to access the result of our customized task (the replica monitoring
logs in the /tmp directory) via the cleartool getlog command, so we add a
new log.

The ClearCase logs are also deined in a lat ile, in the read-only hierarchy this time:
/opt/rational/clearcase/config/services/log_classes.db.

This is where we have to add one line to gain access to the received and moved
replica monitoring logs (still our same example) via cleartool getlog.

This is not documented in ClearCase:

-class=repmon;-form=imsg_file;-sources=/tmp/*.repmon;- ##############
 description=ClearCase VOB replica monitoring log;

The modiied log_classes.db ile does need to be maintained manually through
the ClearCase upgrades installations (which may overwrite it).

One may replace it with a symlink to under the /var/adm hierarchy (which will not
get overwritten by upgrades), and keep the backup there.

There are two main log formats: ascii and imsg_ile (plus mvfs_ile, where the
timestamps are encoded, requiring the time2date utility in the etc/utils directory,
to decode them).

Logs in the log directory get rotated, so that the sources typically mention two iles:
the current and the old one.

We chose not to use this feature for our log.

We may now check that our log is known to the ct getlog -inquire command,
and fetch it as any other:

$ ct getlog repmon

All the -host, -last, -since, and -around getlog options are available.

$ ct getlog -host beyond -last 100 repmon
$ ct getlog -host beyond -since today repmon

Chapter 10

[231]

Storage and backup
Storage administration was greatly simpliied with the certiication of NetApp ilers,
followed by some other vendors.

Filers may be conigured for use as Network Attached Storage (NAS), that is, ile
servers, serving through NFS and/or CIFS, or Storage Area Network (SAN).
The latter potentially offers greater performance, at a lower level and with
less lexibility. We admit having seen them used effectively with ClearCase.
Nevertheless, it is the NAS coniguration (the iler proper), which seems most
attractive to us, and with which we have the best experience. We'll restrict our
comments to this case.

Filers were irst used to store the pools (which were then known as remote) via
symbolic links. This was temporary until they could be certiied, so that whole vobs,
including the database, were stored on the iler. Let us drop this outdated setup
as well.

The iler relieves the vob server from some noticeable load, part of which is that of
running the NFS and CIFS (samba) servers.

It also makes it trivial to switch a vob from one server to another (of the same
architecture); the data may stay untouched. This is especially valuable in upgrade
scenarios.

The most important advantage of iler storage, from an end user perspective, is the
snapshot functionality and their use for backup.

Filers do not overwrite the data they store; new versions of iles are stored in newly
allocated disk clusters. This makes it possible to freeze the state of the storage at any
given time by storing an image of the directory objects (and keeping the clusters
referenced from there from being reverted to the free pool).

This function is termed taking a snapshot. From the perspective of a database, the only
concern is to ensure that the database caches are lushed before this happens, so that
the disk image is consistent.

This function is performed by a side-effect of locking the vobs: once the vob is locked,
it may be snapped, which takes a few seconds, and then it may be unlocked. The
backup (for example, to tape or to any suitable archive) may thus take place on the
snapshot (and not on live data).

Administrative Concerns

[232]

Restoring from there is easier and incomparably faster than from tape. We saw in the
last chapter how it may offer opportunities to restore individual versions.
This implies that the snapshots may be mounted to user accessible mount points.

In recovery scenarios, one typically needs to synchronize the views with the
recovered vob.

We'll deal later in this chapter with issues of vob protection, including the storage
area, pools, and containers.

Vob size
The ct space -vob command allows to understand what composes the size of a
given vob:

$ ct space -vob /vob/foo
Use(Mb) %Use Directory
 13.7 0% VOB database /vobstg/foo.vbs/db
 0.1 0% administration data /vobstg/foo.vbs/admin
 0.3 0% cleartext pool /vobstg/foo.vbs/c/cdft
 0.0 0% derived object pool /vobstg/foo.vbs/d/ddft
146.9 0% source pool /vobstg/foo.vbs/s/sdft

161.1 0% Subtotal
1078199.0 92% Filesystem fstore:/vol/vol01/vobstg (capacity 1177804.8 Mb)

Total usage 2010-09-26T06:47:19+01 for vob "/vob/foo" is 161.1 Mb

Note that without the -update option, the ct space -vob command works on
the last results obtained from the Daily VOB Space built-in job, and will thus not be
affected by any changes on the spot.

One may of course force a run of the job (as with any job):

$ ct sched -run "Daily VOB Space"

But this runs the job for all local vobs, and may thus take a long time.

The cleartext and the DO pools contain only transient data, which may be
reproduced. Cleartext containers only cache versions of elements accessed recently.
We saw in the previous chapter in the case of text iles how the ile manager
constructed them. Another typical case is that of expanding versions stored in
compressed format. The size of these two pools is affected by the scrubber, which is
typically run by the predeined scheduler job: Daily VOB Pool Scrubbing.

Chapter 10

[233]

$ ct sched -get -job "Daily VOB Pool Scrubbing" | \
 egrep 'Schedule.*Freq|#.*Task'
 Job.Schedule.Daily.Frequency: 1
 # Job.Task: "VOB Pool Scrubber"
$ ct sched -get -tasks | perl -n00e 'print if /: 3$/ms'
Task.Begin
 Task.Id: 3
 Task.Name: "VOB Pool Scrubber"
 Task.Pathname: "scrubber.sh"
Task.End

This task uses a script (by default:
/opt/rational/clearcase/config/scheduler/tasks/scrubber.sh) to drive
the /opt/rational/clearcase/etc/scrubber tool. The default options examine
all the pools in all the vobs. The result is logged in a way accessible to getlog, in
unformatted mode:

$ ct getlog -host alice -full scrubber | \
 perl -ne 'print if m%^Started.*/foo.*Feb 12%...m%^Fin.*/foo.*Feb 12%'
Started VOB alice:/vobstg/foo.vbs at Sat Feb 12 12:26:42 2011
Start scrub VOB alice:/vobstg/foo.vbs Pool ddft
Stats for VOB alice:/vobstg/foo.vbs Pool ddft:

Get cntr tm 0.060150
Setup tm 0.015319
Scrub tm 0.000035
Total tm 0.075504
Start size 1 Deleted 0 Limit size 0
Start files 2 Deleted 0 Subdir dels 0
Statistics for scrub of DO Pool ddft:
DO's 0 Scrubs 0 Strands 0
Lost refs 0 No DO's 2
Start scrub VOB alice:/vobstg/foo.vbs Pool cdft
Stats for VOB alice:/vobstg/foo.vbs Pool cdft:

Get cntr tm 2.527032
Setup tm 0.000019
Scrub tm 0.000417
Total tm 2.527468
Start size 1514 Deleted 1 Limit size 0
Start files 182 Deleted 1 Subdir dels 8
Finished VOB alice:/vobstg/atcctest.vbs at Sat Feb 12 12:26:45 2011

This time we used a range line-oriented matching as we had a clear way to specify
the start and end of the area of interest. The output shows various timings and
deletion statistics for both pools, DO and cleartext. In this run, only one cleartext
container was deleted.

Administrative Concerns

[234]

Let's note that the scrubber may be run manually, with parameters involving size,
age, and heuristics to preserve useful data, along with options allowing us to select
the vobs and pools.

If the source pool grows abnormally, one must suspect the process of importing
or creating new versions and look for redundant data: either evil twins or
identical versions.

The cure is then to remove the versions, branches, or elements created by mistake
(respectively with rmver, rmbranch, and rmelem).

However, this will not affect (at least not decrease) the size of the database. The only
thing which may affect it is vob_scrubber.
In particular, scrubbing the oplogs may be the solution. We touched the topic in the
last chapter.

The tool to give an account of the space consumption within the database is countdb.
Details on the size of the various objects is found in a technote: About the ClearCase
database utility countdb (#1126456).

Authentication
ClearCase has an identity management mechanism, which is called credmap. It is
switched off by default and is rarely used in practice, as it introduces one more level
of authentication, most often unnecessary in the case of a UNIX vob server with
NetApp storage for vobs and views (and the appropriate NetApp access rights) and
CIFS for Windows users mapping. This is why IBM mostly recommends it in case
one uses a Windows vob server and needs to introduce a veriication mechanism for
its UNIX users.

In some rare cases, though, one might want to enable credmap authentication on the
UNIX vob server as well, for the purpose of enforcing that Windows users belong to
a certain Windows network domain.

This can be done by creating a
/var/adm/rational/clearcase/config/credmap.conf ile, putting
the desired Windows domain name there:

$ cat /var/adm/rational/clearcase/config/credmap.conf
AllowedDomain=RATIONAL

Or in ClearCase 7.0 and up, there is an option to allow Windows users to belong to
any network domain (but no local users would be allowed then):

$ cat /var/adm/rational/clearcase/config/credmap.conf
AllowedDomain=[-]

http://www.ibm.com/support/docview.wss?uid=swg21126456
http://www-01.ibm.com/support/docview.wss?uid=swg21285812

Chapter 10

[235]

Importing files to ClearCase
Now we will take a look at a few issues related to importing data to ClearCase or
relocating the data between vobs using both standard tools (clearfsimport, clearimport/
clearexport, ct relocate) and synctree.

A priori, these tools are very different:

ct relocate is targeted at moving elements, with all their history, from one vob
to another

clearimport is targeted at copying elements with their history into a vob

clearfsimport and synctree are useful for copying only versions, from a source
to a destination that may be within the same vob

All these tools are applicable only for base ClearCase vobs. First, we will also take a
brief look at UCM to see how data is supposed to be imported and moved there.

Even UCM has to use Perl
One interesting observation concerning UCM (more of it later in Chapter 13) is that
it is rather dificult to get there (for example, import the initial set of elements), and
rather dificult to change it (relocate something from one vob to another). Like doing
arithmetic using Latin numbers: it was just not designed for that! And the general
recommendation from IBM is ...not to do it. It is also not possible to convert a UCM
component vob to a base ClearCase vob.

The already mentioned synctree tool (there is more on it a bit later in this chapter) can
also be used to fetch data from a UCM vob via a UCM view and import it to a base
ClearCase vob.

The rescue scenario would be the following: choose a UCM baseline (for example,
BL1), create a development stream based on it along with a view (for example,
BL1_view), set a base ClearCase view (view1 in the example that will follow), and
then perform the data import via the view-extended path of the UCM view from the
UCM vob (/vob/ucmvob) into the base ClearCase vob (/vob/tools):

$ ct setview view1
$ synctree -sb /view/BL1_view/vob/ucmvob/foo -db /vob/tools/foo -ci -yes

•
•
•

Administrative Concerns

[236]

One can, of course, fetch several baselines in the same way from the UCM vob, by
creating a new development stream along with a view for each baseline. There, the
-reuse and -vreuse options (as well as -rm) become also useful.

A similar need (the ability to move the data around a bit even within a UCM
environment) was also recognized by IBM, and in order to be able to relocate some
data from a UCM vob to another something that originally was completely out of the
question), one can (without any guarantee of course) ind some aid from a custom
Perl script mkelem_cpver.pl, provided in the ClearCase installation.

Relocating
When it comes to relocating (part of) the vob to a different vob, it is
recommendable to always use the cleartool relocate command instead of
clearexport/clearimport pair. The latter has a hardcoded behavior, which is
worth knowing in advance; it is able to handle the whole version trees of the ile
elements (including all its branches) but has a restriction concerning these of the
directory elements:

$ ct setview myview
$ cd /vob/foo
$ clearexport_ccase -r -o /tmp/foo_export .
$ clearimport -d /vob/newfoo /tmp/foo_export
...
$ ct lsvtree /vob/newfoo
/vob/newfoo@@/main
/vob/newfoo@@/main/0
/vob/newfoo@@/main/1 (FOO, FOO_3.00, RREL_0.80, ZOO, ...)

$ ct ls /vob/newfoo
/vob/newfoo/mdir@@/main/1 Rule: /main/LATEST [-mkbranch br1]
/vob/newfoo/bdir@@/main/1 Rule: /main/LATEST [-mkbranch br1]
/vob/newfoo/zdir@@/main/1 Rule: /main/LATEST [-mkbranch br1]

$ ct ls /vob/foo
/vob/newfoo/mdir@@/main/45 Rule: /main/LATEST [-mkbranch br1]
/vob/newfoo/bdir@@/main/4 Rule: /main/LATEST [-mkbranch br1]
/vob/newfoo/zdir@@/main/2 Rule: /main/LATEST [-mkbranch br1]

As can be seen on this example, clearexport exports only the current version of the
directory element selected by the view, and clearimport always imports it as the
/main/1 version in the new vob. Tuning the views conig specs does not help to fetch
the rest of the directory elements version trees.

Chapter 10

[237]

However, the ile elements' version trees are fully imported:

$ ct lsvtree /vob/newfoo/java/1/makefile
/vob/newfoo/java/1/makefile@@/main
/vob/newfoo/java/1/makefile@@/main/8 (LBL_1.03, LBL_1.02, LBL_1.00)
/vob/newfoo/java/1/makefile@@/main/jb
/vob/newfoo/java/1/makefile@@/main/jb/2

$ ct lsvtree /vob/foo/java/1/makefile
/vob/foo/java/1/makefile@@/main
/vob/foo/java/1/makefile@@/main/8 (LBL_1.03, LBL_1.02, LBL_1.00)
/vob/foo/java/1/makefile@@/main/jb
/vob/foo/java/1/makefile@@/main/jb/2

cleartool relocate lifts these restrictions and is able to relocate both iles and
directories elements along with all their branches and versions; however, it is not
designed to relocate a whole vob but only a part of it (which has to be speciied as a
pathname in the vob):

$ cleartool relocate -f -update /vob/foo/makedir /vob/newfoo

The makedir directory element and all its entries will be relocated correctly to the
/vob/newfoo vob.

The closest to relocating the whole vob is to copy/move it under another one as a
subdirectory:

$ ct relocate -update /vob/foo /vob/newfoo
$ ll /vob/newfoo
total 4
drwxrwxr-x 6 vobadm cc 294 May 6 13:05 foo
drwxr-xr-x 2 joe jgroup 0 May 6 13:03 lost+found

So, to relocate the whole vob, one would need to use other tools (see Copying a vob
section below).

Note that here we used relocate in an update mode, which amounts to a copy,
even if it was originally intended as a transient phase in a move (ct relocate
without -update option). In the update mode, the original data is kept untouched.

Note that the oid of the elements is preserved:

foo> ct des -fmt "%On\n" /vob/foo/makedir@@ /vob/newfoo/makedir@@ | \
 sort -u
8a3fd1d6.14a511df.8283.00:01:37:45:23:13

Administrative Concerns

[238]

Relocate still depends on the current conig spec for creating the version of the
root directory of the import. In its default mode (move), it is destructive for the
information at the original site. Even if it builds symbolic links (and one hyperlink)
to trace the relocation, it does break the conig records of any derived objects
depending on any relocated version.
Note that it may create in the target vob events older than the vob itself.

It looks as if a tool such as synctree (see next section) for importing iles to ClearCase
would desperately be needed for vob relocation purposes.

Importing with synctree
We already mentioned synctree at large in Chapter 8, Tools Maintenance.

Importing large amounts of iles from external directories, for example, third-party
tools, may lead to problems mentioned earlier such as importing the same iles
multiple times.

This may happen when importing several releases out of order in succession, using
the same branch.

Let's consider one ile, foo, which changes between release 1 and release 2; let's
suppose we import in succession releases 1, then 2, and then 1.1.
This will yield three versions of foo, 1 and 3 being identical.

A worst case yet is when foo is deleted in release 2 (with the -rmname option either
in clearfsimport or synctree): in that case, importing 1.1 over 2 with clearfsimport
will yield an evil twin, whereas the -reuse option of the synctree helps to avoid that.
In fact, the -rm option is only safe once one knows one can rely on a -reuse one to
avoid creating evil twins later.

Another scenario is this of releases for different platforms, imported to platform-
speciic branches: platform independent iles (for example, header iles) will be
needlessly imported into every branch.

These scenarios are taken into consideration by special options of synctree:

$ synctree -sb source -db destination -reuse -vreuse -label FOO -/ipc=1
[...]

-reuse will avoid the evil twin creation, by resurrecting a previously deleted
element from the version tree (note that it requires -label or -lb_mods to
resurrect existing versions without creating duplicates).

-vreuse, in conjunction with -label, will compare a ile not matching the
selected version, to versions of the same size in the version tree. Finding a
suitable version, it will skip importing it anew and will label it instead.

•

•

Chapter 10

[239]

-/ipc=1 will use the ipc mode of the underlying ClearCase::Argv module,
thereby invoking one single instance of cleartool, and ensuring that the extra
calls needed to support the above functionality do not incur a prohibitive
cost. It also makes the -cr option reasonable. This one aims at preserving the
conig records of derived objects, but as it uses the -from option of checkin,
it requires a distinct invocation for every element, which makes it prohibitive
without the ipc mode. This functionality is unique to synctree, with no
equivalent in clearfsimport.

Synctree also ixes some clearfsimport hiccups, such as ininite cycles in case the data
you want to import is already in place as view-private:

$ ct ls -d /vob/test/dir1
/vob/test/dir1
$ clearfsimport -r /vob/test/dir1 /vob/test/dir1
Creating directory "/vob/test/dir1".
Private version of "/vob/test/dir1" saved in "/vob/test/dir1.keep".
Creating directory "/vob/test/dir1".
Created branch "br1" from "/vob/test/dir1" version "/main/0".
Validating directory "/vob/test/dir1".
clearfsimport: Warning: Using existing checkout of directory ############
 "/vob/test/dir1".
Creating directory "/vob/test/dir1/dir1".
Created branch "br1" from "/vob/test/dir1/dir1" version "/main/0".
Creating directory "/vob/test/dir1/dir1/dir1".
Created branch "br1" from "/vob/test/dir1/dir1/dir1" version "/main/0".

In synctree, the same is worked around:

$ synctree -sb /vob/test/dir1 -db /vob/test/dir1
/usr/bin/synctree: Error: 6 view-private files exist under ##############
 /view/v1/vob/test/dir1:

Synctree also provides a number of useful features such as:

Branch from root (non-cascading) branch support

Support for regular expressions (-Narrow [!]<re> option) to limit iles to be
imported to those matching /re/

Hash mapping of source set of iles to the destination via -map option

Possibility (-rellinks option) for turning absolute symlinks within source
base into relative ones

•

•
•
•
•

http://search.cpan.org/perldoc?ClearCase::Argv

Administrative Concerns

[240]

ClearCase::Wrapper
For certain ine-tunings related to importing iles to ClearCase, one would ind a
great help in ClearCase::Wrapper, which provides such useful functionality as,
for example, recursive mkelem and checkin.

Copying a vob
We'll consider here moving a whole vob, for instance migrating it to a
new server, and why it is not suitable for duplication. Vob duplication is
requested in case the company's development environment has been split
or in similar situations.

The sad news is that there is no shortcut from exporting and re-importing the
relevant data.

Moving vob storage
One can re-register the vob by moving its storage to a new directory and making a
new vob tag:

$ ct lock vob:/vob/foo
$ ct umount /vob/foo
$ ct unreg -vob /vobstg/foo.vbs
$ ct rmtag -vob /vob/foo
$ pkill -f foo.vbs

$ cd /vobstg/foo.vbs

$ find . -depth | cpio -pdmu /vobstg/bar.vbs

$ ct reg -vob /vobstg/bar.vbs
$ ct mktag -vob -tag /vob/bar -public -host vobserver \
 -gpath /vobstg/bar.vbs /vobstg/bar.vbs
$ ct mount /vob/bar
$ ct unlock vob:/vob/bar

Note however, that this method is not suitable to duplicate the vob, in other words,
to keep both foo and bar vobs independently. The problem is that the vob oids of
the two copies are identical, which constitutes a mine ield: this consanguinity of the
two copies will survive their divergence and lead to corruption even years later at
yet unknown sites, if a packet originating from the irst hierarchy reaches a replica
of the second. Let's note that using MultiSite to produce a new replica does nothing
to solve the problem. Forcibly modifying the oid in one copy hits "internal error"
problems when creating hyperlinks.

http://search.cpan.org/perldoc?ClearCase::Wrapper

Chapter 10

[241]

Copying vob by replication
The easiest way to copy a vob to a different host is often to replicate it there.

[host1]$ multitool mkreplica -exp -work /tmp/foo -nc -fship \
 host2:rep2@/vob/foo

If the actual replication is not desired for some reason, one can consider reciprocal
replica removal at both sites:

[host2]$ ct lsrep -fmt "%n %[replica_host]p\n" -invob /vob/foo
rep1 host1
rep2 host2
[host2]$ mt chmaster -all -obsolete_replica rep1@/vob/foo rep2@/vob/foo
Chmaster -obsolete_replica will transfer mastership of all objects
 currently mastered by rep1@/vob/foo to rep2@/vob/foo. Do not proceed
with this
operation unless the VOB for rep1@/vob/foo has been deleted. Do you want
to proceed? [no] yes
Changed mastership of all objects
You must now complete the removal of rep1@/vob/foo by entering
the following command at the master site for rep1@/vob/foo:
multitool rmreplica rep1@/vob/foo

[host2]$ multitool rmreplica rep1@/vob/foo
The last remaining replica has been deleted; ###########################
 disabling replication in VOB.
Deleted replica "rep1".
[host2]$ ct lsrep -fmt "%n %[replica_host]p\n" -invob /vob/foo
rep2 host2

[host1]$ ct lsrep -fmt "%n %[replica_host]p\n" -invob /vob/foo
rep1 host1
rep2 host2
[host1]$ mt chmaster -all -obsolete_replica rep2@/vob/foo rep1@/vob/foo
Chmaster -obsolete_replica will transfer mastership of all objects
currently mastered by rep2@/vob/foo to rep1@/vob/foo. ###################
 Do not proceed with this
operation unless the VOB for rep2@/vob/foo has been deleted. ############
 Do you want to proceed? [no] yes
Changed mastership of all objects

Administrative Concerns

[242]

You must now complete the removal of rep2@/vob/foo by entering
the following command at the master site for rep2@/vob/foo:
multitool rmreplica rep2@/vob/foo
[host1]$ multitool rmreplica rep2@/vob/foo
The last remaining replica has been deleted; ############################
 disabling replication in VOB.
Deleted replica "rep2".
[host1]$ ct lsrep -fmt "%n %[replica_host]p\n" -invob /vob/foo
rep1 host1

Re-registering a replica
This happens when a vob has to be re-registered with a new vob server host name
(for example, in case the vob server domain name has changed), or when the vob has
been migrated to a new vob server:

$ ct reg -vob -host newvobsrv.domain.com -rep \
 -hpath /vobstg/foo.vbs /vobstg/foo.vbs

The hostname must also be updated explicitly for the vob's replica (even if the vob is
not actually replicated!):

$ ct lsvob -l /vob/foo | grep host
 Server host: newvobsrv
Vob on host: newvobsrv

$ ct lsreplica -fmt "%n %[replica_host]p\n" -invob /vob/foo
rep1 oldvobsrv

As it turns out that even if the vob is registered with a new vob server, its replica
stays conigured with the old one.

Here is how to ix it:

$ multitool chreplica -host newvobsrv rep1@/vob/foo
Updated replica information for "rep1@/vob/foo".

Views cleanup
Having views on a dedicated view server is a big relief for the administrator,
as all the "abandoned" views (and other) problems can be handled in place.
Troubleshooting the problems with local (end-user workstation located) views
is trickier.

Chapter 10

[243]

ClearCase administrators are used to the following scenario: a local view has been
removed incorrectly or is not accessible as the workstation has crashed (has been
replaced, and so on). Typically there would be some checkouts in such an abandoned
local view.

In order to clean it up, one needs to ind out the view uuid, and perform the
ct rmview -uuid command on some host belonging to the appropriate region
(the same one as where the view was registered).

To ind out the view tag in question and its uuid, the administrator would sometimes
need to check it using the ct des -l vob: command:

$ ct des -l vob:/vob/foo
versioned object base "/vob/foo"
...
 VOB holds objects from the following views:
 Win123456:c:\cc\winview1.vws ###
 [uuid 03f6851c.a49f11db.8a12.00:16:35:7f:04:48]

The view in question should be unregistered and its tag removed (so that for
example, a view with the same tag could be re-created):

$ ct unreg -view -uuid 03f6851c.a49f11db.8a12.00:16:35:7f:04:48
$ ct rmtag -view winview1

The last step (and the longer) is to clean up the vob references to this view (for all the
vobs in the following example):

$ ct rmview -uuid 03f6851c.a49f11db.8a12.00:16:35:7f:04:48 -all

Note that this operation leaves the view inconsistent, which is why it is better to
unregister irst: it is not supposed to be usable anymore.

ClearCase and Apache integration
ClearCase integration with a web server (Apache) could be beneicial for
both parties:

ClearCase: Providing public and easy (read-only) access to ClearCase vobs
via http

Apache: Maintaining the web server pages under ClearCase to be able to
manage them better

This can be conigured on any ClearCase client host, having Apache installed there
as well.

•
•

Administrative Concerns

[244]

The main idea is to use a dedicated view, let's call it webview, with a conig spec
preventing checkout.

The following is an example conig spec:

$ ct catcs -tag webview
element * TOOLS -nocheckout
element * .../br1/LATEST -nocheckout
element * .../m/LATEST -nocheckout
element /vob/foo/... .../z/LATEST -nocheckout
element * /main/LATEST -nocheckout

Then for the Apache side coniguration, set the following in
/etc/httpd/conf/httpd.conf:

Alias /vob/ "/view/webview/vob/"

<Directory "/view/webview/vob">

Options Indexes FollowSymlinks MultiViews
AllowOverride None
Order allow,deny
Allow from all
EnableSendFile off

Note the EnableSendFile off setting turning Apache optimization off: using the
sendile system call, which is eficient but not supported by the MVFS ilesystem. The
symptom resulting of missing this step is that every ile just looks empty. Note that
this is necessary only if one wants to use a dynamic view (we do).

You may also set DocumentRoot to some location in a ClearCase vob:

DocumentRoot "/view/webview/vob/web"

<Directory "/view/webview/vob/web">

That's basically all concerning the coniguration. Now, the webview should be irst
started, followed by restarting of the web server:

$ ct startview webview
$ apachectl -k start

Now you can read your ClearCase vobs via http (where ccserver is the name of the
host where you did this integration):

http://ccserver/vob/foo

Chapter 10

[245]

Versions that are not selected by the current webview view coniguration can be
accessible via the ClearCase version extended path (as usual) even in the URL path,
for example:

http://ccserver/vob/foo/bar@@/main/br1/1

This provides the most lightweight type of access to a ClearCase vob: instant and
easy (no client installation or setup, or any bulky data download), but of course,
it is read-only and non-conigurable. This could be ideal for accessing some stable
documentation or codebase stored in a vob for reference purposes.

It would be recommendable to add a new UNIX service for managing the webview
and ensuring it starts up automatically in case of the host reboot:

$ cat /etc/init.d/webview

#! /bin/bash

webview Start/Stop the ClearCase webview view
Source function library.
. /etc/init.d/functions

RETVAL=0

start() {
echo -n $"Starting the webview view: "
/opt/rational/clearcase/bin/cleartool startview webview
RETVAL=$?
echo
[$RETVAL -eq 0]
return $RETVAL
}

stop() {
echo -n $"Stopping the webview view: "
/opt/rational/clearcase/bin/cleartool endview webview
RETVAL=$?
echo
[$RETVAL -eq 0]
return $RETVAL
}

case "$1" in
start)
start
;;
stop)
stop
;;

Administrative Concerns

[246]

*)
echo $"Usage: $0 {start|stop}"
exit 1
esac

exit $?

$ chkconfig --add webview

Installation tricks
Sometimes installing ClearCase on a non-supported platform (such as Fedora) is just
a matter of one coniguration ile ine-tuning.

A default installation attempt would produce an error: platform is not supported.
The applicable workaround is just a matter of creating /etc/redhat-release ile,
such as:

$ cat /etc/redhat-release
Red Hat Enterprise Linux AS release 4

After this the installation goes ine and ClearCase is fully functional (but it won't be
supported by IBM).

Bottom-up
Here we will analyze a few error cases encountered by the end users, and will
discuss possible ways of resolving them.

ALBD account problems
Working with a Windows ClearCase client, one might encounter the following
problem: the Albd service does not start up due to the ALBD account login failure
(note that this is a Windows ClearCase client-speciic problem; no such coniguration
is applicable for the UNIX client). ClearCase becomes then unusable: no views can
be created or started, etc. (Let's note though that some ClearCase operations could
still be possible, provided that originally ALBD account was set up correctly, and got
misconigured later: for example, dynamic views would not be usable, but certain
operations with snapshot views, including the view update and even checkouts and
checkins could succeed).

Chapter 10

[247]

Sometimes one would see errors of this kind when working in a snapshot view with
the misconigured (wrong username/password) ALBD account:

Info 10 May, 2009 10:46:31 view_server 1884 Using view ##############
 c:\joe\view.stg, on host: Win123456
Warning 10 May, 2008 10:07:12 view_server 2740 albd_contact call #####
 failed: RPC: Unable to receive;
 errno = [WINSOCK] Connection reset by peer
Error 10 May, 2009 10:07:12 view_server 4336 view_server.exe(4336): ##
 Error: Unable to contact albd_server on host 'Win123456'
Error 10 May, 2009 09:11:57 view_server 2740 view_server.exe(2740): ##
 Error: Unable to get cleartext for vob: 1204d946.d7b011db.8730.00:
 16:35:7f:04:52 ver 0x112ea.
Error 10 May, 2009 09:11:57 view_server 2740 view_server.exe(2740): ##
 Error: Unable to construct cleartext for object "0x112EA" in VOB
"vobserver.domain.com:/vobstg/foo.vbs": error detected by ClearCase ##
 subsystem
Error 10 May, 2009 09:11:57 view_server 2740 view_server.exe(2740): ##
 Error: Type manager "text_file_delta" failed construct_version
 operation.
Warning 05 May, 2009 09:11:57 view_server 2740 text_file_delta: Error:
 Unable to open file "\\vobserver.domain.com\vobstg\foo.vbs\s/sdft\
 2a/20/0-ade01e85026c4e8da772460af72cbc72-rb": Invalid argument

Usually the ALBD password is not available for the end users in clear text form
because of security reasons. The ALBD password is stored in the sitedefs.dat ile
in the ClearCase Windows release area, in encrypted format. But it does not help
if one needs to reset the ALBD password manually (in Services | Atria Location
Broker | Logon).

The way to do it is either to reinstall the ClearCase client from the available
Windows release area (which is really overkill, at least from the end user's point
of view), or to use the ALBD account reset utility provided by IBM (not oficially
supported though).

Using this utility would require that one has access to the Windows ClearCase
release area, and would specify its location as a parameter. Then the encrypted
password is read from the sitedefs.dat and is updated in the appropriate way
in the Windows Registry. This is quite a light way of working around the ALBD
problem, and is usually much appreciated by the end users.

http://www.ibm.com/developerworks/rational/library/07/0703_nellis/index.html

Administrative Concerns

[248]

Changing the type manager
Sometimes it turns out that certain iles do not "qualify" for their default
type manager:

$ ct ci -nc /vob/tools/jdk/THIRDPARTYLICENSEREADME.txt
text_file_delta: Error: "/vob/tools/jdk/THIRDPARTYLICENSEREADME.txt" ####
 is not a 'text file': it contains a line exceeding 8000 bytes.
Use a different type manager (such as compressed file).

Indeed, the text ile type manager cannot handle such long lines. One must obey and
change the element type in order to use a different type manager:

$ ct chtype file /vob/tools/jdk/THIRDPARTYLICENSEREADME.txt
Change version manager and reconstruct all versions for #################
 "/vob/tools/jdk/THIRDPARTYLICENSEREADME.txt"? [no] yes
Changed type of element "/vob/tools/jdk/THIRDPARTYLICENSEREADME.txt" ####
 to "file".

After that the checkin succeeds:

$ ct ci -nc /vob/tools/jdk/THIRDPARTYLICENSEREADME.txt
Checked in "/vob/tools/jdk/THIRDPARTYLICENSEREADME.txt" version #########
 "/main/mybranch/1".

dbid and the Raima database
This case starts with a build error:

fetch cleartext view=joe vob=/vob/work dbid=0x101d - #################
 No permission match

Similar mentions of dbid may be found in other situations, for example, in system
logs. They refer to the underlying database, used for both views and vobs. The irst
question is: what object is this about?

A irst way, which may work, uses cleartool from the shell.

In case of any problems, one may use perl and the ClearCase::Argv module:

$ ct setview joe
$ cd /vob/work
$ ct dump $(ct find -a -ver '!created_since(now)' -print) | \
 egrep '^oid=.*dbid=.*\(0x101d\)'
bash: /usr/atria/bin/cleartool: Arg list too long
$ perl -MClearCase::Argv -e \
 '$c = new ClearCase::Argv({autochomp=>1,ipc=>1,stderr=>0});
 for($c->find([qw(-a -ver !created_since(now) -print)])->qx) {
 @v = grep/^oid=.*dbid=.*\(0x101d\)/, $c->dump($_)->qx;
 print "@v\n" if @v }'
oid=15009808.3bcd11de.965e.00:30:6e:4b:55:70 dbid=4125 (0x101d)

http://search.cpan.org/perldoc?ClearCase::Argv

Chapter 10

[249]

The dbid ield is not directly accessible: it is only the identiier for the underlying
Raima database.

There is one such record for every version of every element (and in fact for other
objects as well, but we are looking for a cleartext container, thus for an element).
In order to get all the existing versions in the vob, we need a pass-all query. Not
created since now plays this role.

There are two problems with this:

It will typically generate a huge output (and take long)

Part of the versions (for example, the ones currently checked out) will not be
accessible

To tackle these, one can use the following:

ClearCase::Argv: Perl deals better than a shell with lots of output, and the
module presents it one item at a time to cleartool.

The ipc mode: This uses one single cleartool invocation, thus optimizing
performance.

stderr=>0: Ignore the errors... The other option would be to run the dump
commands in dedicated views, but this would be extremely slow. It might be
considered in last resort.

The value printed by ct dump as dbid is given in decimal, with the value in
parentheses being until 2003.06 the hexadecimal transcription.

This can be checked for a ile element on an example. First, with 2003.06:

$ ct dump foo.txt | egrep '^oid'
oid=28003dd9.226a11dd.9bab.00:01:84:1e:63:a9 dbid=147591 (0x24087)
$ printf "%d\n" 0x24087 147591

Then with 7.0.1 (same version):

$ ct dump foo.txt | egrep '^oid='
oid=28003dd9.226a11dd.9bab.00:01:84:1e:63:a9 dbid=147591 (0xfe8b71e8)

•
•

•
•
•

http://search.cpan.org/perldoc?ClearCase::Argv

Administrative Concerns

[250]

With 7.0.1, the hexadecimal value is shared between all the versions, branches, and
the element itself:

$ ct lsvtree -s apps | tail +2 | sed -e 's/\(.*\)/dump \1/' | \
 cleartool | egrep '^oid=.*dbid='
oid=520147ad.912211dc.8834.00:01:83:0a:15:19 dbid=145669 (0xfe8371e8)
oid=520147b1.912211dc.8834.00:01:83:0a:15:19 dbid=145670 (0xfe8371e8)
oid=520147b5.912211dc.8834.00:01:83:0a:15:19 dbid=145671 (0xfe8371e8)
oid=529147b9.912211dc.8834.00:01:83:0a:15:19 dbid=145672 (0xfe8371e8)
oid=533147c1.912211dc.8834.00:01:83:0a:15:19 dbid=145674 (0xfe8371e8)
oid=5310001f.a40411dc.8f90.00:01:83:0a:15:19 dbid=148344 (0xfe8371e8)
oid=cba8673c.74cb4bd3.a5ff.a8:81:b3:4c:f7:1a dbid=211770 (0xfe8371e8)
$ ct dump apps@@ | egrep '^oid=.*dbid='
oid=520147a5.912211dc.8834.00:01:83:0a:15:19 dbid=145667 (0xfe8371e8)

The hexadecimal value is common to all the elements in the vob!
We leave the topic of dbids on these indings, without a satisfactory solution for v7.0.

Protecting vobs: protectvob, vob_sidwalk,

fix_prot
Here our target is to restrict the access to /vob/secret to one single group (sec);
thus we irst reprotect this vob from the previous group (grp) to the new one. To
re-protect the vob (change owner, group, add/remove additional access groups),
the cleartool protectvob command can be used:

$ ct protectvob -chown secadm -chgrp sec /filer01/vobstg/secret.vbs
This command affects the protection on your versioned object base.
While this command is running, access to the VOB will be limited.
If you have remote pools, you will have to run this command remotely.

In case of a vob having remote pools (for example, located on a NetApp storage,
although this kind of setup is now outdated as seen earlier), the remote pools have
to be re-protected separately.

For this purpose the chown_pool utility (from /opt/rational/clearcase/etc)
can be useful:

$ chown_pool secadm.sec /filer01/vobstg/secret.vbs/s/sdft
$ chown_pool secadm.sec /filer01/vobstg/secret.vbs/d/ddft
$ chown_pool secadm.sec /filer01/vobstg/scret.vbs/c/cdft

The protectvob command requires root access:

$ cd /vob/secret
$ newgrp sec
$ id uid=31415(secadm) gid=117(sec)

Chapter 10

[251]

$ ct find -a -ele '!created_since(now)' -print | \
 perl -MClearCase::Argv -ne \
 'BEGIN{$ct=ClearCase::Argv->new({autochomp=>1,ipc=>1})}
 chomp;$ct->protect([qw(-chgrp sec)],$_)->system
 if $ct->des([qw(-fmt %[group]p)],$_)->qx eq q(grp)'

Not bad, especially as it could be done by the vob owner (not root). However, this
affects only elements.

Then on the vob server, check what was left:

~> /opt/rational/clearcase/etc/utils/vob_siddump /vob/secret /tmp/sec.map
VOB Tag: /vob/secret (vobhost:/vobstg/secret.vbs)
Meta-type "directory element" ... 208 object(s)
Meta-type "directory version" ... 746 object(s)
Meta-type "tree element" ... 0 object(s)
Meta-type "element type" ... 13 object(s)
Meta-type "file element" ... 2622 object(s)
Meta-type "derived object" ... 0 object(s)
Meta-type "derived object version" ... 0 object(s)
Meta-type "version" ... 5334 object(s)
Meta-type "symbolic link" ... 0 object(s)
Meta-type "hyperlink" ... 0 object(s)
Meta-type "branch" ... 2830 object(s)
Meta-type "pool" ... 3 object(s)
Meta-type "branch type" ... 1 object(s)
Meta-type "attribute type" ... 9 object(s)
Meta-type "hyperlink type" ... 9 object(s)
Meta-type "trigger type" ... 0 object(s)
Meta-type "replica type" ... 1 object(s)
Meta-type "label type" ... 40 object(s)
Meta-type "replica" ... 2 object(s)
Meta-type "activity type" ... 0 object(s)
Meta-type "activity" ... 0 object(s)
Meta-type "state type" ... 0 object(s)
Meta-type "state" ... 0 object(s)
Meta-type "role" ... 0 object(s)
Meta-type "user" ... 0 object(s)
Meta-type "baseline" ... 0 object(s)
Meta-type "domain" ... 0 object(s)
Total number of objects found: 11818

Successfully processed VOB "/vob/secret".
~> ll /tmp/sec.map
-rw-r--r-- 1 secadm sec 521 Aug 5 17:05 /tmp/sec.map
~> cat /tmp/sec.map
anis/secadm,USER,UNIX:UID-31415,IGNORE,,,43
anis/joe,USER,UNIX:UID-79521,IGNORE,,,209
anis/bill,USER,UNIX:UID-58228,IGNORE,,,61
anis/jane,USER,UNIX:UID-80911,IGNORE,,,2490

Administrative Concerns

[252]

anis/jill,USER,UNIX:UID-79707,IGNORE,,,35
anis/jack,USER,UNIX:UID-7080,IGNORE,,,62
anis/sam,USER,UNIX:UID-79706,IGNORE,,,4
anis/joan,USER,UNIX:UID-87669,IGNORE,,,9
anis/mark,USER,UNIX:UID-18543,IGNORE,,,1
anis/sec,GROUP,UNIX:GID-117,IGNORE,,,2830
anis/grp,GROUP,UNIX:GID-100,IGNORE,,,84
~> echo "anis/grp,GROUP,UNIX:GID-100,anis/sec,GROUP,UNIX:GID-117" \
 > /tmp/newmap
~> /opt/rational/clearcase/etc/utils/vob_sidwalk -execute \
 -map /tmp/newmap /vob/secret /tmp/map2
vob_sidwalk: Error: No permission to perform operation "modify vob".
vob_sidwalk: Error: Must be one of: root
vob_sidwalk: Error: Insufficient permission to fix protection: ##########
 error detected by ClearCase subsystem

Despite what the man page says (which was actually a documentation bug), you
have to be root to run vob_sidwalk, at least with the -execute lag!

We had protected so far (using find/protect) all the elements. There remained 84
objects. What about types?

$ for k in attype brtype eltype hltype lbtype trtype; \
 do ct lstype -fmt “protect -chgrp epc %Km:%n\n” -kind $k; done | \
 cleartool

This solved the problems for all the non-locked types.
A next use of vob_sidwalk showed a rest of 29 objects, 17 of which were locked
types. Of those, seven could be iles in the vob storage, and the remainder
was unknown.

The vob_sidwalk command (with the same map) was run as root, and the result
showed (sam lost?):

~> cat /tmp/epc.map3
anis/secadm,USER,UNIX:UID-31415,IGNORE,,,43
anis/joe,USER,UNIX:UID-79521,IGNORE,,,209
anis/bill,USER,UNIX:UID-58228,IGNORE,,,61
anis/jane,USER,UNIX:UID-80911,IGNORE,,,2490
anis/jill,USER,UNIX:UID-79707,IGNORE,,,35
anis/jack,USER,UNIX:UID-7080,IGNORE,,,62
Account Unknown,USER,UNIX:UID-79706,IGNORE,,,4
anis/joan,USER,UNIX:UID-87669,IGNORE,,,9
anis/mark,USER,UNIX:UID-18543,IGNORE,,,1

anis/sec,GROUP,UNIX:GID-117,IGNORE,,,2914

http://www-01.ibm.com/support/docview.wss?uid=swg1PK53029

Chapter 10

[253]

But the tmp source containers (left over from failing to create a new version: these
are the new containers, which should have been renamed after the previous one was
removed) were not protected, nor any of the iles in the vob storage directory:

~> ll /vobstg/secret.vbs/s/sdft/13/10/tmp_8436.2
-rw-rw-rw- 1 secadm grp 18493016 Dec 15 2009 ############################
 /vobstg/secret.vbs/s/sdft/13/10/tmp_8436.2
~> find /vobstg/secret.vbs -group grp | wc -l
7
~> find /vobstg/secret.vbs -group eei-atusers
/vobstg/secret.vbs/.hostname
/vobstg/secret.vbs/s/sdft/pool_id
/vobstg/secret.vbs/s/sdft/13/10/tmp_8436.2
/vobstg/secret.vbs/s/sdft/13/10/tmp_2240.1
/vobstg/secret.vbs/s/sdft/0/3d/tmp_10020.2
/vobstg/secret.vbs/d/ddft/pool_id
/vobstg/secret.vbs/c/cdft/pool_id

The next attempt is to use fix_prot (as root):

secret.vbs# fix_prot -force -r -root -chown secadm \
 -chgrp sec /vobstg/secret.vbs
CAUTION! This program reprotects every file and directory in a
storage directory tree and should be used only when the protection
has been damaged (e.g., through the process of copying the tree or by
direct manipulation through a tool like the File Manager/Explorer).
Protecting "/vobstg/secret.vbs/.identity"...
Protecting "/vobstg/secret.vbs/s/sdft/0/0"...
...

Note that the -root option tells the tool that the argument is the root of a vob
storage. Since we do not use a -chmod option, we do not need to run the command in
two phases.

This does reprotect all the remaining iles, but also affects the .identity directory
(in the vob storage), in a way inconsistent with the output of the ct des command:

$ ct des vob:/vob/secret
versioned object base "/vobs/swdi/tools"
...
 VOB ownership:
 owner anis/secadm
 group anis/sec
 Additional groups:
 group anis/root
$ ls -l /vobstg/secret.vbs/.identity
total 0
-r----s--- 1 secadm sec 0 Aug 13 19:08 gid
-r-S------ 1 secadm sec 0 Aug 13 19:08 uid

Administrative Concerns

[254]

One must restore (or remove, depending on the need, but to achieve consistency) the
additional group:

$ ct protectvob -add root /vob/secret
$ ls -l /vobstg/secret.vbs/.identity
total 0
-r----s--- 1 secadm sec 0 Aug 13 19:08 gid
-r----s--- 1 secadm root 0 Aug 16 16:31 group.0
-r-S------ 1 secadm sec 0 Aug 13 19:08 uid

Alternatively, the changes to the .identity directory can be done manually (just
using touch, chown and chmod command), and this also works out ine.

As a conclusion of this section, let's mention the technote about the summary of the
protection commands and utilities.

Cleaning lost+found
Let's irst remind what the role of the lost+found directory in every vob is:

$ ct rmelem -f d1
cleartool: Warning: Object "bar" no longer referenced.
cleartool: Warning: Moving object to vob lost+found directory as ########
 "bar.1f89b0fe6e5511df8b600001842becee".
Removed element "d1".

A directory was removed: this resulted in the objects it contained losing their last
reference in the ile system.

The objects were kept and made accessible via the lost+found directory. In order to
avoid name clashes with other objects, their name was made unique, by appending
their oid.

Note that some other scenarios might lead to the same result as destroying a
directory element, for example, unchecking a directory right after creating an
element inside it.

Preserving ile objects in lost+found makes it possible to restore them to any
directory found suitable—either an existing one or created for this purpose.
The directory must of course be checked out preliminarily, and checked in
afterwards.

$ ct mv /vob/foo/lost+found/bar.1f89b0fe6e5511df8b600001842becee bar

http://www.ibm.com/support/docview.wss?uid=swg21211784
http://www.ibm.com/support/docview.wss?uid=swg21211784

Chapter 10

[255]

Can we detect an event such as the one produced above?

$ ct lshis -minor -since 21:42 -all
--09-26T21:47 marc destroy element in versioned object base "/vob/foo"
 "Destroyed element "/vob/foo/d1"."
--09-26T21:47 marc remove name from directory version ##################
 "/vob/foo@@/main/mg/3"
 "Uncataloged directory element "d1"."

The rmelem events are kept forever (by default) in vob_scrubber_params.
The rmname ones are scrubbed at the latest after 14 days.

In order to be able to restore valuable data from lost+found, one needs to detect it.
This implies that lost+found is not cluttered with lots of needless iles, and thus
sets a rationale for cleaning it up: keep a simple background for cases in which
complexity will emerge anyway.

The main tool for the lost+found cleanup is rmelem; however, the procedure grows
complex if it is not practiced regularly.

Do not attempt to remove the contents of lost+found recursively! The fact that a
directory is not accessible from anywhere anymore doesn't mean that its contents are
not: you might remove something valuable and still reference it from elsewhere in
you vob.

Also, you may remove only what you master locally.

Some commands for the vob owner:

First, uncheckout the checked out versions. You have to do it using the view in
which the objects are checked out, assuming this view is dynamic, still healthy, and
reachable (both host and storage).

However, it is possible that the view cannot access the version anymore, or the
lost+found directory itself.

Therefore, use the oid and the vob tag:

$ ct lsvtree * 2>/dev/null | perl -MClearCase::Argv -ne \
 'BEGIN{$ct=new ClearCase::Argv({autochomp=>1,ipc=>1,stderr=>0});
 $tag=$ct->des([qw(-s)],"vob:.")->qx}
 if(m%^(.*)\@\@/.*/CHECKEDOUT view "(.*)"$%){
 $o=$ct->des([qw(-fmt %On)], $1)->qx;
 $ct->argv(qw(setview -exec), "cleartool unco -rm oid:$o\@$tag",
 $2)->system}'

Administrative Concerns

[256]

This will as such not affect names starting with a dot. Treat them with care, as ".*"
would match the ".." parent directory!

It will also skip checked out versions bearing a label. You need to remove the label
irst anyway, before using rmelem.

Then, use (non recursive!):

$ ct rmelem -f *

Process there as well names starting with a dot speciically (like,".a*")
You may repeat either step as many times as necessary (as long as there is something
to remove).

Summary
Strict role assignment leads to incompetence. Administrators are not experts, and
will not grow such if they only deal with routine administration and never look out
of their box. All the same, users will break things if they don't attempt to understand
what they do, and do not feel responsible for the environment (somebody else's
job!) They will break fragile things: robustness is a quality one acquires by
evolutionary mechanisms. Optimizing the processes will only take place if the
various actors understand each other enough to criticize what others do and
suggest meaningful alternatives; if all respect each other enough to listen to such
critique and suggestions.

What this chapter reviewed is a long list of practical spots where users often face
their administrators. A basic knowledge, but moreover the conidence that the
information is there to be found if needed, are necessary to make this encounter a
fruitful collaboration and not a frustrating confrontation. As we showed, this doesn't
go without work, and is therefore subject to tradeoffs. This works both ways: users
might want to avoid spending too much time and effort on tasks which, they feel fall
beyond their attributions, but on the other hand, they have a different perspective,
and thus different priorities than administrators.

MultiSite Administration
Following up on the previous chapter, understanding MultiSite administration
cannot hurt. On the contrary, it helps lifting unreasonable expectations: people with
an experience of centralized or disconnected systems may assume synchronous
behavior (that the data is in sync) without really needing it or without considering
the implied cost (in terms of waiting). Asynchrony in ClearCase MultiSite actually
protects the user from depending upon remote (thus both slow and often out-
of-reach) resources and events. A good understanding of the difference between
latency and bandwidth is a valuable asset in a world where the latter is both well
advertised and increasing regularly, and the former is often overlooked and largely
incompressible.

Two Open Source version control tools—Mercurial and git—have recently made
distributed systems popular. We shall remember that ClearCase was a precursor
in this domain as well, even if it may surprise most of its users—mainly those of
UCM or of the various web interfaces and Eclipse plugins, who have been driven
to see ClearCase as a centralized system. MultiSite comes with an off-the-shelf
coniguration that favors fairness between all replicas but which is dramatically not
scalable. We shall show how to ensure scalability without jeopardizing fairness:
the very value that distinguishes between centralized and distributed systems.

This chapter will be structured along three parts:

A brief top-down view, with considerations on replica properties and
connectivity

A presentation of two simple but effective enhancement proposals

A bottom-up review of some troubleshooting cases

•
•
•

MultiSite Administration

[258]

Setting up the scenery
MultiSite is implemented with the multitool command and the shipping_server
program. It is somehow unfortunate that multitool is distinct from cleartool,
although they share a number of operations, which has been growing over time.
There also came from the beginning a couple of Perl scripts—sync_export_list

and sync_receive—using a common library MScommon.pl. The two scripts are
intended for use from the scheduler (sync_receive is also suitable for use as receipt
handler: see below).

A minor note:

The scripts come, in fact, each as a pair—the real Perl script being found in a
.bat ile with a clever preamble suitable for interpretation by Perl as a dummy
array declaration, and by the Windows command as an instruction to pass
the ile to the bundled (under Windows) ccperl. The other iles without
extension— sync_export_list and sync_receive—are UNIX shell scripts
passing the former to the bundled (under UNIX) Perl.

t some point in time, there came a new family of scripts, together with a
syncmgr_server program. This new family possibly had some advantages, but it
was backwards incompatible and required a synchronous switch on all the sites.
This condition proved unacceptable in all the contexts we have met (because of
subcontractors sites for instance), so that we'll simply ignore the sync manager and
build our coniguration on top of the original scripts, to which we made backwards
compatible enhancements.

Every vob may be replicated to as many sites as needed. The set of replicas builds up
a vob family—a replica on every site. Both kinds of entities have their typed object
in the database. In every vob database, there is one vob object and as many replica
objects as there are physical replicas, imported on the various sites. Every vob thus
maintains a representation of itself and of its siblings.

Events produced on one site are journaled locally into oplogs. These oplogs are
collected on a schedule, and exported as sync packets for the other replicas. They are
then shipped, possibly routed, and inally imported on their destination host. Every
replica keeps an epoch number of the last oplog it has exported to every other replica,
and of the last one it has imported from them. This builds up an epoch table: every
replica maintains its own. What is important to understand is that at no point in time
is there any guarantee that these tables match, and thus that the replicas are in sync.
On the contrary, it is a safe assumption that there are always some packets on their
way, which explains small discrepancies. Obviously, these discrepancies should not
grow: the epoch numbers, on the contrary, should grow on every site.

Chapter 11

[259]

$ pwd
/vob/a
$ mt lsrep -s
s1
s2
$ ct des -fmt "%[replica_name]p\n" vob:.
s1
$ ct des -fmt "%[replica_host]p\n" replica:s1
beyond.lookingglass.uk
$ mt lsepoch s1
oid:d5249fcb.011611db.90b6.00:01:83:10:fe:84=32783 (s1)
oid:6ba49d09.011611db.8aa1.00:01:83:10:fe:84=78 (s2)

What the table shows here is, on site s1, its own row, made of lines with the epoch
number for every registered replica. For itself this gives the best authorized
information: all the oplogs that were effectively created here (32783). For the other
replicas, this gives the best knowledge we have locally, that is, the number of the last
oplog imported from there (78).

$ mt lsepoch s2
oid:d5249fcb.011611db.90b6.00:01:83:10:fe:84=32781 (s1)
oid:6ba49d09.011611db.8aa1.00:01:83:10:fe:84=78 (s2)

If we now look at the row for another replica (s2), the values we see are:

On the line for our own replica, the oplog number (32781) we, as the
site hosting the s1 replica, last exported to s2, whether or not it could be
successfully imported there (even the shipment is unsure).

On the lines for any other replica, again the best knowledge we have locally:
the last oplog known to have been exported from there—78. This information
may have been received indirectly, that is, from a third replica.

This mechanism shows that the replication is an all or nothing issue on a per vob
basis: one cannot avoid sending certain data, conidential for example. Oplogs must
be imported in order (serialized): if an oplog is missing, later oplogs cannot be
imported.

•

•

MultiSite Administration

[260]

Permissions preserving
One apparent exception to the previous rule is protection events, which get iltered
based on a property of replicas (a creation option that may be changed afterwards).
Originally, the choice was only between preserving and non-preserving (and this
encompassed both permissions and identities), but later a separate permissions-
preserving option was added. The latter is the obvious correct option in most cases
(in which NIS or active directory are not shared between sites): it is a good idea to
transfer the events that set the execution right to a program or the write permission
for group to a directory! For protections events to get transmitted, both the exporting
and importing replicas must be preserving of the related lavor.

However, note that this iltering doesn't affect the epoch numbers.

Connectivity
Some multitool commands have -actual options—lsepoch and chepoch. These
commands are exceptionally synchronous. They require direct connectivity to the
remote hosts and do not usually work through irewalls.

Another command that attempts to bypass the standard replication model is
reqmaster.

These commands obviously break the fairness between replicas. They may be handy
interactively: don't use them in scripts or build a process upon using them!

Note in any case that mastership changes are normal events (whichever command,
reqmaster or chmaster, was used to create them), and they are therefore shipped
and imported only after any previous oplog has been successfully imported. While a
mastership is in transit, nobody holds it.

This alone shows that transferring mastership should be avoided for any other
purpose than administrative (for example, sending the mastership of the replica
object after it was successfully imported so that it would be self-mastered, and
before deleting a replica).

The rules of thumb for sound multisite development processes are simple (see
Chapter 5, MultiSite), yet seldom followed:

No mastership transfer

No remote commands

Especially, one should avoid merging back branches to integration or other upper
branches, which obviously may only be mastered on one site.

•
•

Chapter 11

[261]

Configuration
The main problem of the initial MultiSite setup is one of combinatorial explosion.
The simplest is to describe it with an example scenario.

Let's take a vob:/vob/a, with replicas s1 and s2 (we'll designate the replicas and the
sites with the same names).

Suppose we create from site s1 a new replica s3, to be shipped and imported to site
s3. Now, s2 will start creating and shipping to their destinations, sync packets for
both s1 and s3.

Suppose now we create from site s3 a replica s4. On the same schedule as
previously, s2 will now create and ship packets for s1, s3, and s4. And so forth.
And every replica will receive packets from every other. All the three phases: export,
shipping, import are thus impacted, and for all the existing replicas!

This is clearly suboptimal: there is a lot of redundancy in the contents of the
packets. In fact, if we do produce packets to all replicas, they should contain the
same data—the only difference coming from the fact that they are produced at
slightly different times.

The same is of course true of received packets; they will mostly contain the same
oplogs, which will thus get imported once and skipped while importing the
following packets— again some useless load.

Finally, the network will suffer artiicial congestion, the packets typically taking the
same routes for a large part of their paths.

The naive solution is to limit on every site the list of synchronized replicas, and thus
to produce packets only for those. This has undesirable side effects:

It requires manual maintenance of the lists and coordination between
the sites

It stops updating certain parts of the epoch tables, leading to the fact that
all replicas are not equal anymore: in case of need, one might not be able
to use certain replicas in order to re-create one, which one way or another
became corrupted

These irst-level issues may be ixed in ways which further break the fairness of the
original model, but let's examine our alternatives.

•
•

MultiSite Administration

[262]

Export
First, let's note that the sync_export_list script does not take advantage of the
existing ability of mt syncreplica -export to create a single packet for multiple
replicas. This is the irst enhancement we make, and we make it to this script: instead
of creating one packet for every replica in the argument list (including the -all case),
create a common one. This will be reasonable if the replicas are all about at the same
epoch level: otherwise, the packet will contain useless oplogs for the replicas nearly
up-to-date, as driven by the needs of the most outdated one.

We'll return to exporting oplogs to multiple replicas in the further section, while
considering the hub function.

In any case we keep the original script and rename our customized version as
sync_export_list_hub. This leaves the original version for manual use (and
backup), and protects our version from being overwritten during an upgrade.

Shipping/routing
The next question is this of shipping: the default behavior of the shipping server is
to dispatch the packet to its destinations. We do not change this, but only rely on the
ROUTE settings in the shipping.conf ile: if several destinations share a route, the
packets will be sent only once and dispatched at the point where the routes split. We
consider now setting up a hub (hence the sufix appended to the script name). Let's
call our hub host proxima. The shipping.conf iles on all the vob servers other than
the hub would then contain a single default route:

ROUTE proxima -default

Shipping servers are needed to cross irewalls, at least if one intends to restrict the
range of open ports. The setting in shipping.conf allowing us to deine a port
range must be matched with one in the albd_server environment, in the
clearcase startup script:

$ grep 'M.*PORT' /var/adm/rational/clearcase/config/shipping.conf
CLEARCASE_MIN_PORT 49152
CLEARCASE_MAX_PORT 65535

$ grep 'M.*PORT' /opt/rational/clearcase/etc/clearcase
CLEARCASE_MIN_PORT=49152
CLEARCASE_MAX_PORT=65535
export CLEARCASE_MIN_PORT
export CLEARCASE_MAX_PORT

This affects all ClearCase processes on the host.

Chapter 11

[263]

It is obvious that for crossing irewalls, as well as on long-distance connections, the
bandwidth cannot be wasted in shipping redundant data.

The names of the packets produced by default by mt syncreplica -export,
invoked by the sync_export_list script, contain the name of the source replicas
but not the vob tags. The rationale is that the same vobs may be tagged differently
in different sites. Many administrators work around the resulting inconvenience
by duplicating the vob tag in the replica names. We note that this practice suffers
from the effect described in the previous argument (the vob tags may be different).
Next that it creates a pressure to rename the replicas if one re-tags the vobs; inally
that it requires some conventions to deal with the case of structured tags (the path
separator not being a legal character in replica names), and that longer names have a
price in terms of clarity of the outputs. For all these reasons, we cannot recommend
this practice and prefer to trade for using a common site name for all replicas.
The vob uuid is anyway found in the packets and easily read from there with the mt
lspacket command:

$ mt lspacket sync_* | grep family | awk '{print $5}' | sort -u
c6052140.08e511d5.b124.00:01:80:e6:b1:a0

$ ct lsvob -fam c6052140.08e511d5.b124.00:01:80:e6:b1:a0
* /vob/foo /vobstg/foo.vbs public (replicated)

Where the command is not available (nor the registry to map it to the local tag), i.e.,
on shipping servers on the way, the packet bears a transient name. We should note
that this transient name is not normally exposed, as it is not recorded in the shipping
logs, where it is replaced by the original shipping packet name. It is only in the
exceptional cases, when the shipping fails, that one can see the shipping packets
with names such as sh_d_... in the outgoing bay:

[shiphost]$ pwd
/opt/rational/clearcase/shipping/ms_ship
[shiphost]$ ll
-r--r--r-- 1 root root 372 Oct 10 14:16 sh_d_99185
-rw-rw-rw- 1 root root 597 Oct 10 14:16 #################################
 sh_o_sync_s1_2010-10-10T14.16.09+03.00_9517

[shiphost]$ scp sh_d_99185 vobsrv:/tmp
[vobsrv]$ mt lspacket /tmp/sh_d_99185
Packet is: ##
 /var/adm/rational/clearcase/shipping/ms_ship/outgoing/sh_d_99185
Packet type: Update
Packet fragment: 1 of 1
VOB family identifier is: eccf73e6.e44e11dc.9acd.00:16:35:7f:04:52
Comment supplied at packet creation is:
Packet intended for the following targets:
 s1 [local to this network] tag: /vob/foo

MultiSite Administration

[264]

And from the shipping order, we can see both the original and the transient
packet names:

$ cat sh_o_sync_s1_2010-10-10T14.16.09+03.00_9517
ClearCase MultiSite Shipping Order
Version 1.0
%IDENTIFIER d65843f5.d4a311df.894b.00:12:3f:93:d3:e9
%CREATION-DATE 1286738169 2010-10-10T14:16:09+03:00
%EXPIRATION-DATE 1287947770 2010-10-24T14:16:10+03:00
%ORIGINAL-DATA-PATH "/opt/rational/clearcase/shipping/ms_ship/outgoing/ #
 sync_s1_2010-10-10T14.16.09+03.00_9517"
%LOCAL-DATA-PATH "/opt/rational/clearcase/shipping/ms_ship/outgoing/ ####
 sh_d_99185"
%DESTINATIONS
 s1
%ARRIVAL-ROUTE
 s2 1286738169 2010-10-10T14:16:09+03:00
%DELIVERIES
%FAILED-ATTEMPTS
 R 1277634571 2010-06-27T13:29:31+03:00 s2 s1
%NOTIFICATION-ADDRESSES
%COMMENT

Now, we must admit that when grepping remote shipping logs, one has nothing
more than the packet names at one's disposal. One can consider implementing a
change to sync_export_list_hub to use the -out option to add a vob identiication
to the packet name, and use mkorder to ship the packet. Taking into account the
argument of the possible disparity of vob tags, one might use instead of the tag
a special packet_name attribute: it would be attached to the vob object and thus
replicated, which would guarantee a common value on all sites. This would combine
the advantages of the various solutions: save the replica name from having to
depend on the vob tag, and publish a shared and stable name for the packets.

Import
Let's now consider the hub. What behavior would be optimal there? What should it
do on receiving packets?

Our goal is to reduce the number of packets received by the destinations. The hub
will receive packets from multiple origins. How can it combine them so that the
number of packets received at any inal destination does not grow linearly with the
number of replicas? The solution is simple: the hub must itself host a replica, import
the packets, refrain from forwarding them to their other destinations (again, altering
the default behavior, which is to forward packets that are not for the local replica),
and re-export packets containing the compound oplogs on its own schedule.

Chapter 11

[265]

This implements a version of an import/export hub, as opposed to this of a forwarding
hub, already available in the default shipping_server.

More precisely, our changes affect two steps: irst, when the script is used as a
proactive receipt handler (see below), we set a lag skip_ship (here is an excerpt
from the diffs):

+ my $skip_ship = 0;
 if ($CFG::MScfg_proactive_receipt_handler && $CFG::receipt_handler) {
 $cmd = qq/$CFG::MultiTool syncreplica -import -receive -invob $tag/;
+ if ($actual_shiporder and ($sclass ne 'express')) {
+ dbgprint "Do not ship this: $actual_shiporder,\nif the import #####
 is successful. ".
+ "It would be redundant with the sync packet produced later by ######
 the hub\n";
+ $skip_ship = 1;
+ }
... [other branch not altered]

Then, on import success, and with the lag set, we delete the packet and shipping
order to prevent the forwarding (with this second excerpt, we nearly showed all the
changes we made!):

+ if ($skip_ship) {
+ dbgprint "About to delete $pkt and $actual_shiporder\n";
+ if (open SHORDER, "<$actual_shiporder") {
+ my ($line, $pkt) = ();
+ foreach $line (<SHORDER>) {
+ next if $line =~ /^\s*\#.*/; # skip comment lines
+ if ($line =~ /^\%LOCAL-DATA-PATH \"(.*)\"/) {
+ $pkt = $1;
+ last;
+ }
+ }
+ close SHORDER;
+ if ($pkt) {
+ unlink $pkt, $actual_shiporder;
+ dbgprint "Deleted $pkt and $actual_shiporder\n";
+ $actual_shiporder = 0;
... [only error reports in the other branches]

Note here that the packets irst arrive in the outgoing bay, and are only hard linked
to the incoming one: this is to support the case when the packets would have several
destinations and would thus have to be forwarded after being imported. This sets
a requirement that the two bays are co-located on the same ile system. Note also
how the handling of compressed packets gets simpliied now (since v7.0), as the
syncreplica command supports directly the -compress switch! Previously, this
had to be handled by the sync_export_list script.

http://code.google.com/p/clearcase-cpan/source/browse/branches/mg/msite/sync_receive_hub.bat

MultiSite Administration

[266]

We must, however, guard against some cases. Before the hub replica itself has been
imported, packets must be forwarded to their destination. The same must happen if
the local import fails: an error on the hub should not block the replication.

Then, when exporting changes for all the other replicas, we shall often meet the
case when the changes came in fact exclusively from one among them (at least for
the current export, if the schedule is tight enough). Clearly, there is no point in
re-exporting to this replica its own changes!

This is handled in our sync_export_list_hub script by the following excerpt:

 my %remepo = GetReplicaEpochs($vob, $sib);

 my $skip = 1;

 my $key;

 foreach $key (keys %remepo) {

 if ($remepo{$key} < $locepo{$key}) {

 $skip = 0;

 last;

 }

 }

 next if $skip;

We do not attempt anything fancier than skipping a destination if there is nothing
new for its replica.

Next, we must be prepared to distribute the hub function among several hosts:
one single server holding a replica for all known vobs would soon become a
bottleneck. This may however require a dedicated shipping server performing
intelligent dispatching on the hub site. The problem here is that the ROUTE settings
on the various sites are shared between all vobs, without a syntax to discriminate
between them. On the other hand, one cannot mandate that the same vobs would
be co-located on the same vob servers on all sites. It is thus best if one host may be
designated on the hub site to act as the next hop for all routes using the hub. This
host will need to refrain from dispatching the packets, before their import has been
attempted on the host holding the replica within the hub site.

Finally, we must consider redundancy: one must be able to ship packets via different
routes, at least in certain cases. If this can be restricted to certain destinations, the
strategy depicted so far is fully suficient: one only needs to add the route settings
to the shipping.conf. Supporting this on a per vob basis however requires further
adjustments to the scripts, or maybe the use of yet another dedicated shipping
server, this time to dispatch packets before shipping them to remote sites.

Chapter 11

[267]

Receipt handler
The export phase must be scheduled.

The import phase, on the contrary, is better handled as soon as the packet arrives:
there is no advantage to wait. This is by the way true as well on a shipping server for
the purpose of purely dispatching or forwarding packets. This doesn't preclude the
use of a scheduled job to process such packets that, for one reason or another, would
have been dropped by the receipt handler.

The receipt handler is invoked by shipping_server. One may invoke different
handlers per storage class, but it is not obvious how to make use of this feature at its
best. We shall assume here a -default handler. In shipping.conf:

RECEIPT-HANDLER -default /opt/rational/clearcase/config/scheduler/ ###
 tasks/sync_receive_hub

We also add a MSimport_export.conf ile under
/var/adm/rational/clearcase/config, and there we have:

proactive_receipt_handler = 1

This allows the receipt handler to process other packets than the one just received, if
they are for the same vob. This lowers the probability of dropping packets because of
missing oplogs.

Shipping server
There is a special ClearCase shipping server installation on UNIX. This one is lighter,
and doesn't, for instance, require an access to licenses. It comes therefore neither
with cleartool nor multitool. However, the ClearCase scheduler functionality is
enabled on the shipping server, and indeed, it may be very useful to schedule the
following tasks:

sync_export_list -poll (Daily MultiSite Shipping Poll job) to poll all the
packets in the outgoing bay and shipping them to the next hop

sync_receive (Daily MultiSite Receive job), the functionality of which is
reduced on a shipping server to moving received packets from the incoming
to the outgoing bay

Note that the use of a receipt handler is also possible, and even encouraged. We
even propose a trivial receipt handler adapted to the needs of a shipping server.
This will forward packets until the maximum number of ports in the irewall range
is exhausted. It is thus meant to coexist with a scheduler job, which will process the
packets dropped under bursts of activity.

•
•

MultiSite Administration

[268]

Setting up the scheduler on a shipping server
As we already mentioned, the shipping server installation does not include cleartool.
Hence, the scheduler cannot be set up locally using the cleartool sched command
as described in Chapter 10, Administrative Concerns. One can however read the
shipping server schedule from a full ClearCase client, using the following command:

$ ct sched -host shipping_server_hostname -get -sched

One won't be able to change it though, until the scheduler ACLs are set up
adequately on the shipping server. The default ACL settings on any ClearCase
host are:

$ ct sched -get -acl
Scheduler ACL:
Everyone: Read

This grants write permissions only to the local root account, and must thus be
modiied locally irst:

$ ct sched -edit -acl

One can set them as desired, for example, to:

Scheduler ACL:
Everyone: Read
User:<unknown>/joe Full

One can then copy the /var/adm/rational/clearcase/scheduler/db ile from the
local host to the shipping server, and with it goes the ACL just set.
After that the shipping server scheduler can be edited remotely (as user joe):

$ ct sched -edit -host shipping_server_hostname

Monitoring
Because mt lsepoch -actual won't work through irewalls, one can enable remote
hosts replica monitoring with the help of the repoch script.

Client side (remote host)
The repoch script running on the remote host creates a replica monitoring report
containing the current epoch number of the replicas hosted on that site and sends
the report to the other site by creating MultiSite shipping order for it.

http://code.google.com/p/clearcase-cpan/source/browse/branches/mg/msite/repoch

Chapter 11

[269]

The setup on the client site includes the following steps:

1. Copy repoch to /var/adm/rational/clearcase/scheduler/tasks
directory (make sure it has execution permission for everyone)

2. Edit /var/adm/rational/clearcase/scheduler/tasks/task_registry
and add the following to the end of it:

Task.Begin
Task.Id: 102
Task.Name: "Replica monitoring"
Task.Pathname: repoch
Task.End

3. Add a new job to the cleartool scheduler (ct sched -edit):

Job.Begin
Job.Name: "Daily Replica Monitoring Poll"
Job.Description.Begin:
Send replica monitoring log to the next host.
Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.FirstStartTime: 00:00:00
Job.Schedule.StartTimeRestartFrequency: 04:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 102
Job.Args: --dest destination_host_name
Job.NotifyInfo.OnEvents: JobEndFail
Job.NotifyInfo.Using: email
Job.NotifyInfo.Recipients: root
Job.End

Server side (local host)
The local host receives replicas monitoring reports from the remote host using the
MultiSite shipping infrastructure and makes them available to the standard getlog
mechanism. The setup on the server site includes the following steps. We took this
in Chapter 10 as an example of scheduler coniguration, and shall not reproduce the
details here.

1. Create a simple shell script (like below) for the purpose of periodically
moving the received repoch logs from the incoming bay:

#!/bin/bash
mv /usr/atria/shipping/ms_ship/incoming/*.repoch* /tmp

2. Name it repoch_mv.sh and place it in the
/var/adm/rational/clearcase/scheduler/tasks directory.

3. Add a new scheduler task using the repoch_mv.sh script.

MultiSite Administration

[270]

4. Add the corresponding job invoking the task periodically.
5. Add a new repoch entry to the log database named

/opt/rational/clearcase/config/services/log_classes.db,
allowing access to the collected logs with ct getlog repoch.

Troubleshooting
Here we will give a few examples of troubleshooting sessions, with the hope of
demonstrating routines and tools, which apply to other cases as well.

Missing oplogs
A site may fail to import some packets because they depend on previous ones not
found in any available packets. The cure is to generate again the missing oplogs,
and to ship and import the packets. For this, one must use the chepoch command
to set the epochs back in time to the situation required to generate the oplogs, and
use syncreplica to recreate the missing packets. The appropriate values match the
actual situation on the destination site, thus for the destination replica, the epoch
number before the missing oplog. Note however that one may also have to change
the oplogs on more than one line of the row: if one forgets some, the import will fail
and tell which. The information about the epoch values at the various export times is
actually also available in the history of the replica object (for the remote replica): see
the section titled History of exports. This is what the recoverpacket command uses.

Just resetting the oplogs may however result in a huge amount of data right away,
with no guarantee that it will be directly importable.
We recommend taking a more careful approach:

Exclude the destination from the scheduled synchronization; this involves
using a list of replicas as job argument, whether or not one does it by default.
Reset the epoch tentatively.

Send one packet (with multitool syncreplica -export -max 50k -lim 1) and
record the new epoch value.

Set the epochs back, so that the avalanche doesn't start, even if the scheduler
is reset to its normal state, for example, to synchronize other replicas of the
same vob.

Try to import the packet created and shipped, and record the error if any.

If the import succeeds, then the epochs will grow, and you may set them to
the new value. Note, however, that existing packets in the incoming bay on
the destination will become importable at some stage, so there’s no need to
send all the packets again if only few are needed.

•
•
•
•

•
•

Chapter 11

[271]

If the import failed, ix the condition and try again.

Let's illustrate the described approach with an example:

$ ct getlog -last 100 sync_import
multitool: Error: Sync. packet /opt/rational/clearcase/shipping/ms_ship/
 incoming/sync_s2_2010-08-04T10.44.12+05.30_23515 was not applied to VOB
 /vobstg/foo.vbs
 - packet depends on changes not yet received
Packet requires changes up to 1369900; VOB has only 1369884 from ########
 replica: s2
...
multitool: Error: Sync. packet /opt/rational/clearcase/shipping/ms_ship/
 incoming/sync_s2_2010-08-04T11.16.19+05.30_1256 was not applied to VOB
 /vobstg/foo.vbs
 - packet depends on changes not yet received
Packet requires changes up to 1482751; VOB has only 1369884 from ########
 replica: s2

On the s1 site, the epoch table looks as follows:

$ mt lsepoch -invob /vob/foo
For VOB replica "/vob/foo":
Oplog IDs for row "s1" (@ v1.uk):
oid:3b56807b.489a11de.9517.00:21:5e:40:81:8c=3493 (s1)
oid:76d45938.f99a11dd.b047.00:02:c4:65:3f:4c=1369884 (s2)
Oplog IDs for row "s2" (@ v2.uk):
oid:3b56807b.489a11de.9517.00:21:5e:40:81:8c=3493 (s1)
oid:76d45938.f99a11dd.b047.00:02:c4:65:3f:4c=1369884 (s2)

So, it looks like just a tiny missing packet (the missing epoch numbers from 1369884
to 1369900) has resulted in a huge number of non-imported sync packet in the
incoming bay, with epoch numbers up to 1482751 (and actually above that).

Now consider the s2 site:

$ mt lsepoch -invob /vob/foo
For VOB replica "/vob/foo":
Oplog IDs for row "s1" (@ v1.uk):
oid:3b56807b.489a11de.9517.00:21:5e:40:81:8c=3493 (s1)
oid:76d45938.f99a11dd.b047.00:02:c4:65:3f:4c=1489641 (s2)
Oplog IDs for row "s2" (@ v2.uk):
oid:3b56807b.489a11de.9517.00:21:5e:40:81:8c=3493 (s1)
oid:76d45938.f99a11dd.b047.00:02:c4:65:3f:4c=1489641 (s2)

Here, the s2 replica recorded that the sync packets with epoch numbers up to
1489641 have been exported for the s1 replica and it presumes they were
applied there.

•

MultiSite Administration

[272]

The quick and dirty solution would be to reset the 1489641 epoch number to
1369884 and leave it like that until the replicas get synchronized:

$ mt chepoch s2@/vob/foo s1=1369884
$ mt lsepoch -invob /vob/foo
For VOB replica "/vob/foo":
Oplog IDs for row "s1" (@ v1.uk):
oid:3b56807b.489a11de.9517.00:21:5e:40:81:8c=3493 (s1)
oid:76d45938.f99a11dd.b047.00:02:c4:65:3f:4c=1369884 (s2)
Oplog IDs for row "s2" (@ v2.uk):
oid:3b56807b.489a11de.9517.00:21:5e:40:81:8c=3493 (s1)
oid:76d45938.f99a11dd.b047.00:02:c4:65:3f:4c=1489641 (s2)

But that would result in the "avalanche" export of all the epoch numbers from
1369884 to 1489641 into sync packets in the s2 replica, and avalanche shipping them
all (once again) to s1 host. This produces a huge trafic of unnecessarily duplicated
sync packets that have already been delivered to the v1 host.

So, a smarter solution would be to temporarily disable sync_export (or do it well
between its scheduled executions), then reset the epoch number to 1369884 as
speciied above, generate a small sync packet, and check whether the new increased
epoch number is equal to or more than the desired 1369900 number (the point where
importing the irst packet from the stuck pile can start):

$ mt chepoch s2@/vob/foo s1=1369884
$ mt sync -export -max 50k -lim 1 -nc -fship s1@/vob/foo
$ mt lsepoch s1@/vob/foo
For VOB replica "/vob/foo":
Oplog IDs for row "s1" (@ v1.uk):
oid:3b56807b.489a11de.9517.00:21:5e:40:81:8c=3493 (s1)
oid:76d45938.f99a11dd.b047.00:02:c4:65:3f:4c=1369902 (s2)

This looks ine now, so we can set the original epoch number 1489641 back to
avoid generating any more sync packets, as the small packet we exported should be
enough for importing all the sync packets that have accumulated in the incoming
bay on the v1 host:

$ mt chepoch s2@/vob/foo s1=1489641

History of exports
There is a good deal of information in the history of the replica objects: in the local
replica, the history of imports, and in the remote replicas, the history of exports to
the respective destinations. This is an important tool to troubleshoot synchronization
problem: when did you last successfully import a packet from a given replica? What
were the epochs prior to the import? The epochs after the import, you get from the
next import event, or if this was the last one, from the current epochs.

Chapter 11

[273]

The only problem is the verbosity of the records. They contain the epoch for all
the replicas, including the deleted ones (which safely serves the needs of the
recoverpacket command; see earlier in Missing oplogs). Here is our last export to the
andromeda replica:

$ ct lshis -last replica:andromeda
--10-05T18:25 root export sync from replica "wonderland" to replica #####
 "andromeda"
 "Exported synchronization information for replica "andromeda".
 Row at export was: centauri=10758 andromeda=67 wonderland=1377 #########
 centauri.deleted=3"

It is typically more convenient to restrict the output to one or a few relevant replicas:

$ ct lshis -last 8 -fmt "%d %Nc\n" replica:andromeda | \
 perl -n0777e \
 'while (/^([\dT:+-]+) .*?wonderland=(\d+)[^\n]*$/gms){
 print "$1: $2\n"}'
2010-10-05T18:20:01+05:30: 1377
2010-10-05T14:50:02+05:30: 1374
2010-10-05T11:50:24+05:30: 1371
2010-10-04T18:40:01+05:30: 1370
2010-10-04T17:10:09+05:30: 1368
2010-10-01T19:30:14+05:30: 1365
2010-10-01T19:00:13+05:30: 1360
2010-10-01T18:50:03+05:30: 1354

This is again a job for Perl post-processing. This time, we use the "slurp" mode, the
paragraph mode with a non-existing character (octal 0777) as separator. We treat
the multiline output as scalar, as a large string. We then repeatedly retrieve the
interesting records, from which we every time extract and print, the time stamp and
the starting epoch value concerning our own replica. Note the use of the g modiier
(Global matching) to retrieve all the occurrences of matching the regular expression,
updating the position to the beginning of the next line at every step.

Consequences of replicas being out of sync
The window of opportunity for creating evil twin types (label, attribute, and so on)
grows. When the vobs get eventually synched, the names of the remote types clash
at import with the ones created locally. They get renamed.

Now, the funny detail is that the format for the renaming has changed at some point
(presumably between 7.0.1.1 and 7.0.1.4).

It used to be <replica_name>:<type_name> and now changed to
<replica_name>_<type_name>.

MultiSite Administration

[274]

Here is a scenario. We are using a script that creates when needed in the current
vob a shared BldDir attribute type and applies it. It doesn't matter which site
masters the type (which one needed it irst), but it matters that both sites use the
same if they use any. We used this script at our local replica, wonderland, before
we noticed that recent packets from the andromeda replica had not been imported.
When the synchronization is restored, we notice that a BldDir attribute type had
been created at andromeda, the name of which now clashed with the type we created
at wonderland. During the import, the remote type was automatically renamed to
andromeda_BldDir. Note that at andromeda, the situation is mirrored; the local type
is named BldDir and the remote one as wonderland_BldDir:

[wonderland]$ ct lstype -fmt "%n %[type_mastership]p %[master]p\n" \
 -kind attype | grep BldDir
BldDir shared wonderland@/vob/foo
andromeda_BldDir shared andromeda@/vob/foo

[andromeda]$ ct lstype -fmt "%n %[type_mastership]p %[master]p\n" \
 -kind attype | grep BldDir
wonderland_BldDir shared wonderland@/vob/foo
BldDir shared andromeda@/vob/foo

How do we rename the type back at the wonderland replica? One must irst remove
the offending local type BldDir:

[wonderland]$ ct rmtype attype:BldDir
Removed attribute type "BldDir".

But even after that one cannot rename wonderland_BldDir back locally because it is
mastered by the remote wonderland.

The solution is to request that the andromeda site generate two rename events:

[andromeda]$ ct rename attype:BldDir Foo
[andromeda]$ ct rename attype:Foo BldDir

On importing these events at the wonderland site, the remote type
andromeda_BldDir will get back its original name—BldDir. In the meantime,
you may of course create attributes using the renamed name; they will eventually
be of type BldDir, upon synchronization between the replicas:

$ ct mkattr andromeda_BldDir '"foo/bar"' lbtype:FOO
Created attribute "andromeda_BldDir" on "FOO".

Chapter 11

[275]

Export failures
Here is just an example of a very simple sync_export error: Protect Container
failed. Let's explore how it is presented, how to dig up the essential information,
and how to ix it.

~> ct getlog -last 34 sync_export
==
Log Name: sync_export Hostname: beyond Date: 2010-10-06T16:42:14+05:30
Selection: Last 34 lines of log displayed
--
Target replica(s) up to date. No export stream generated.
Generating synchronization packet /stg/shipping/ms_ship/outgoing/ #######
 sync_wonderland_2010-10-06T15.01.18+05.30_17101
multitool: Error: Vob server operation "Protect Container" failed.
Additional information may be available in the vob_log on host "beyond"
multitool: Error: Unable to change permissions of "c/cdft/18/42/ ########
 5640ca84a17511df80d300018503cbba": No such file or directory.
multitool: Error: Vob server operation "Protect Container" failed.
Additional information may be available in the vob_log on host "beyond"
multitool: Error: Unable to change permissions of "c/cdft/18/42/ ########
 5640ca84a17511df80d300018503cbba": No such file or directory.
multitool: Warning: ../vob_export.cxx:222: operation ####################
 'vob_ver_get_data' failed: No such file or directory.
multitool: Error: Could not get statistics of the version data file #####
 for this operation.
2153121:
op= checkin_do
replica_oid= 0d33a902.6d6f11df.98d6.00:30:6e:5d:e0:86
oplog_id= 766
op_time= 2010-08-07T04:54:16Z create_time= 2010-08-07T04:54:16Z
version_oid= 5640ca84.a17511df.80d3.00:01:85:03:cb:ba
event comment= ""
cr_info= 0xc7f00
data size= 148 data= 0xb5d08

ver_oid= 5640ca84.a17511df.80d3.00:01:85:03:cb:ba
ver_num= 2
ver_fstat= ino: 0; type: 1; mode: 00
 usid: DONTCARE
 gsid: DONTCARE
 nlink: 0; size: 14154
 atime: Thu Jan 1 05:30:00 1970
 mtime: Sat Aug 7 10:24:16 2010
 ctime: Sat Aug 7 10:24:16 2010
ckout_ver_oid= 5640ca84.a17511df.80d3.00:01:85:03:cb:ba
nsdir_elem_oid= 00000000.00000000.0000.00:00:00:00:00:00
name_p= ""
multitool: Error: Removing incomplete packet /stg/shipping/ms_ship/ #####
 outgoing/sync_wonderland_2010-10-06T15.01.18+05.30_17101

MultiSite Administration

[276]

ERROR: command './bin/multitool syncreplica -export -maxsize 50m ########
 -fship -limit 1 replica:andromeda@/vob/foo >&2' encountered error.
~> ct getlog -aro 15:00 vob
==
Log Name: vob Hostname: beyond Date: 2010-10-06T16:20:25+05:30
Selection: Lines between 2010-10-06T14:50:00+05:30 and 2010-10-
06T15:10:00+05:30 displayed
--
2010-10-06T15:01:35+05:30 vob_server(1766): Error: unable to access file
 c/cdft/18/42/5640ca84a17511df80d300018503cbba: No such file or directory
2010-10-06T15:01:35+05:30 vob_server(1766): Error: Unable to chmod
 container /vobstg/foo.vbs/c/cdft/18/42/5640ca84a17511df80d300018503cbba:
 No such file or directory
...

We take the oid shown in the log, which is also the base name of the container, just
formatted differently. This allows us to ind the exact version corresponding to this
oid, by executing a describe command in a view context, from a directory in
the vob:

$ ct des -s oid:5640ca84.a17511df.80d3.00:01:85:03:cb:ba
/vob/foo/bar/example@@/main/mg/2
$ file /vob/foo/bar/example@@/main/mg/2
/vob/foo/bar/example@@/main/mg/2: commands text

Back to the vob storage:

$ ls -l /vobstg/foo.vbs/c/cdft/18/42/5640ca84a17511df80d300018503cbba
-r-xr-xr-x 1 vobown jgroup 14154 Oct 6 16:24 /vobstg/foo.vbs/c/cdft/ ###
 18/42/5640ca84a17511df80d300018503cbba

Now the once missing cleartext container is found where expected. It is of course
the file command that forced the generation of the container, and this alone was
enough to make the export succeed! The reason for the error was that exporting the
event required protecting the cleartext container, but this one had been scrubbed,
and there was no instruction to recreate it. Such a recreation happens automatically,
but requires a view context, as in our example above.

Incompatibility between ClearCase releases
It may happen that in a ClearCase MultiSite setup, different sites run different
ClearCase versions; even such versions that support different feature levels (for
example, 7.0 with FL 5 and 2003.06.00 with FL 4). When a new vob is created on a site
with FL 5, and replicated to a site with a lower feature level, the replica package is
not importable at the destination.

Chapter 11

[277]

To support MultiSite inter-operability between such sites, the feature level
of new vob must explicitly be set low at vob creation time, by using the
-flev target_site_fl option of ct mkvob.

[joe@v1 ~]$ ct hostinfo -l | grep Product
 Product: ClearCase 7.0.1.6
[joe@v1 ~]$ ct hostinfo -host v2 -l | grep Product
 Product: ClearCase 2003.06.10+

So, the site s1 has a default feature level of 5, and the site s2 supports only FL 4.
Here is how to create a new vob on site s1, with the intention to replicate it to site s2
(to a vob server v2):

$ ct mkvob -tag /vob/foo -flev 4 -nc -stgloc -auto
$ ct des -fmt "%[flevel]p\n" vob:/vob/foo
4

We can now create a replica for s2 site, as usual:

$ mt mkrep -exp -work /tmp/foo -nc -fship v2:s2@/vob/foo

MultiSite shipping problems—a tricky case
Here is a known problem with ClearCase MultiSite shipping, easy enough to
produce accidentally, but tricky to debug.

This will be the occasion to show the use of mkorder and of some under-documented
debugging features of ClearCase: special environment variables, and the debug
option of shipping_server. All of these apply for sure to a large range of ClearCase
MultiSite administration cases.

The MultiSite coniguration in this case is the following: two sites with a vob server
and a shipping server on each side of a irewall. A range of ports is open in the
irewall between the two shipping servers, so that they may contact each other, but
not the other site's vob server through the irewall.

Let's call the vob servers v1 and v2, and the shipping servers sh1 and sh2.

The problem symptoms: shipping goes successfully in one direction (for example,
v1-> sh1 -> sh2 -> v2), but fails in the other with the following messages:

$ cleartool getlog -since yesterday -host sh2 shipping
07/06/2009 02:56:12 PM shipping_server(23352): 4691): Error: unable to ##
 deliver/forward order /usr/atria/shipping/ms_ship/outgoing/
 sh_o_s2.ddd_1_46
07/06/2009 02:56:12 PM shipping_server(23352): 4691): Error:
A shipping_server RPC failed. Additional information may be #############
 available in the albd_log on the destination machine.

MultiSite Administration

[278]

07/06/2009 02:56:12 PM shipping_server(23352): 4691): Error: ############
 shp_forward_request_V1: RPC: Unable to receive; errno =
 Connection reset by peer
07/06/2009 02:54:51 PM shipping_server(23352): 4691): Error: ############
 Unable to contact albd_server on host sh1
07/06/2009 02:54:31 PM shipping_server(23352): 4691): Error: ############
 connect failed: Connection timed out

We check that sh2 can contact the albd_server on sh1:

[sh2]$ albd_list sh1
albd_server addr = 155.111.22.33, port= 371 PID 10962:
shipping_server, tcp socket 49158: version 1; BUSY PID 29560:
shipping_server, tcp socket 49164: version 1; BUSY PID 30105:
Albd_list complete

So, let's create a test packet and ship it with mkorder from the shipping server sh2 to
the vob server v1 (advantage: it will not get imported):

$ hostname
sh2
$ touch /tmp/foo
$ mkorder -data /tmp/foo -fship v1
Shipping order "/tmp/sh_o_foo" generated.
Attempting to forward/deliver generated packets...
---- NOTE: consult log file ###
 (/var/adm/rational/clearcase/log/shipping_server_log) for errors.
mkorder(19770): Error: Store-and-forward server #########################
 "/opt/rational/clearcase/etc/shipping_server" failed with status 1
mkorder(19770): Warning: Unable to send packet /tmp/foo #################
 (see store-and-forward log)

We check that the error is logged:

$ cleartool getlog -host sh2 shipping

[...] shp_forward_request_V1: RPC: Unable to receive; errno = ###########
 Connection reset by peer

We verify that shipping from sh1 to v2 works:

[sh1]$ mkorder -data /tmp/foo -fship v2
Shipping order "/tmp/sh_o_foo" generated.
Attempting to forward/deliver generated packets...
-- Forwarded/delivered packet /tmp/foo
$ tail -1 /var/adm/atria/log/shipping_server_log
07/06/09 16:25:37 shipping_server(6515): Ok: Forwarded order ############
 /tmp/sh_o_foo (data "foo") to host "v2"

Chapter 11

[279]

Let's now start shipping_server with options -server –d, and set the ClearCase
environment variables—TRACE_SUBSYS and TRACE_VERBOSITY—to monitor the
shipping session. Note that TRACE_SUBSYS may be used with any subsystem to
restrict the verbosity to the one of current interest. This is the server side, at sh1 host
in our case, where we start the shipping server process in the verbose debug mode:

$ export TRACE_SUBSYS=shp_subsys
$ export TRACE_VERBOSITY=4
$ /usr/atria/etc/shipping_server "" -server -d
>>> (shipping_server(4956)): Configuration
>>> (shipping_server(4956)): -------------
>>> (shipping_server(4956)): max data size 2097151
>>> (shipping_server(4956)): minimum port setting 49152
>>> (shipping_server(4956)): maximum port setting 49171
>>> (shipping_server(4956)): notify_prog = /usr/atria/bin/notify
>>> (shipping_server(4956)): storage classes
>>> (shipping_server(4956)): -default ---> /usr/atria/shipping/ms_ship
>>> (shipping_server(4956)): -default ---> /usr/atria/shipping/ms_rtn
>>> (shipping_server(4956)): routes[...]
>>> (shipping_server(4956)): sh2: -default
>>> (shipping_server(4956)): administrators (1)*** listening on #########
 port 49153 ***And we record the port number it is listening on: 49153.

Now, from our client side, on sh2, we can open a shipping session, specifying the
exact port used on the server side (49153):

$ mkorder -copy -ship -data /tmp/foo v1
Shipping order "/opt/rational/clearcase/shipping/ms_ship/outgoing/ ######
 sh_o_foo" generated.
$ export TRACE_VERBOSITY=4
$ export TRACE_SUBSYS="*"
$ shipping_server /opt/rational/clearcase/shipping/ms_ship/outgoing/ ####
 sh_o_foo -d sh1:49153
shipping_server(692): Error: Operation "connect" failed: No such file ###
 or directory.
$ cat /opt/rational/clearcase/shipping/ms_ship/outgoing/sh_o_foo
ClearCase MultiSite Shipping Order
Version 1.0
%IDENTIFIER c5dfcedc.263247dd.a40e.f3:83:5e:db:d9:3b
%CREATION-DATE 1082014994 06-Jul-09.10:43:14
%EXPIRATION-DATE 1083224595 06-Jul-09.10:43:15
%ORIGINAL-DATA-PATH /opt/rational/clearcase/shipping/ms_ship/outgoing/ ##
 sh_o_foo
%LOCAL-DATA-PATH /opt/rational/clearcase/shipping/ms_ship/outgoing/ #####
 sh_o_foo
%DESTINATIONS v1
%ARRIVAL-ROUTE%DELIVERIES
%FAILED-ATTEMPTS

MultiSite Administration

[280]

R 1082015248 06-Jul-09.10:47:28 sh1 v1
%NOTIFICATION-ADDRESSES
%COMMENT

On the server side one receives the following output:

>>> (shipping_server(4956)): socket addr is 0.0.0.0
shipping_server(4956): Error: timeout waiting for transfer RPC request

The investigation showed that the inal destination matters—shipping only to
sh1 worked:

[sh2]$ mkorder -data /tmp/foo -fship sh1
Shipping order "/tmp/sh_o_foo" generated.
Attempting to forward/deliver generated packets...
-- Forwarded/delivered packet /tmp/foo
$ tail -1 /var/adm/atria/log/shipping_server_log
07/06/09 16:25:37 shipping_server(6515): Ok: Forwarded order ############
 /tmp/sh_o_foo (data "foo") to host "sh1"

But mentioning v1 as the destination caused a failure, as we demonstrated earlier.

In this case, the cause of the problem was a misconiguration of the DNS, mentioning
a decommissioned server:

The shipping server always attempts to resolve the destination, and this
implies by default to issue a DNS request

In the case that the DNS server doesn't reply, the shipping session times out

The quick work-around was to add the destination to /etc/hosts
(as /etc/nswitch.conf instructed to use iles before DNS to resolve
host names)

The actual solution was of course to ix the DNS servers in /etc/resolv.conf.

The tricky problem here is that for shipping purposes and routing via a shipping
server, resolving the actual destination (the vob server behind a irewall) is, of
course, completely useless: the host name is likely to be non resolvable, its IP address
non reachable. The difference in the shipping server behavior is dramatically
different though depending on whether it does receive a negative answer from a
conigured DNS server (such as "destination host is not resolvable") within
a certain time limit, or it keeps waiting for the pending DNS answer (in case the DNS
itself is misconigured) and the shipping session terminates then after a timeout.

•
•
•

Chapter 11

[281]

Summary
Once again, we were able to show some scenarios in which users could solve their
problems by themselves without the need for administrative rights or special skills,
just by paying careful attention to the error messages. In the last case of course, the
administrator was eventually required, but the decisive step was to use the mkorder
tool to analyze the shipment into simpler steps that could be shown to succeed.
Even the MultiSite architecture, with its routing tables and shipping servers, is not as
complex as it might seem, and information may be brought closer to the users as we
shown with the remote epoch monitoring.

It is our experience that end users are willing to understand whether a delay in
synchronization is normal, or the symptom of a problem to report or to investigate.

Challenges
The unique features of clearmake we have been describing so far, and to which we
grant so much value, fall short in at least two extremely signiicant contexts: Java and
MultiSite. Our goal in this chapter will be to analyze the causes of the problems, to
examine the existing solutions, and to propose directions for extensions. In the end,
we'll also briely consider a few other challenges, opened by recent evolutions in
software development.

Java
ClearCase was mostly (at least originally) written in C++, and its build model is well
suited (with some historical adjustments to cope with templates in two generations
of compilers) to development using this language. Java, although already old at the
time of its wide success, broke a few signiicant assumptions of the model.

Problems with the Java build process
The traditional build model is stateless, and therefore easily reproducible: running
the same build command in the context of static sources (leaves of the dependency
tree, seen upwards from the products) produces the same results, but doesn't alter
the context. This is not the case anymore with javac. The reason is trivial: javac
integrates into the compiler a build tool function. The compiler reads the Java source
as a build script and uses the information to build a list of dependencies, which it
veriies irst, using traditional time stamp comparison between the sources and class
iles produced, and rebuilding missing or out-dated class iles. It doesn't, however,
perform a thorough recursive analysis, nor attempt to validate jars, for instance.

Challenges

[284]

This behavior is highly problematic from a clearmake point of view, as it results in
the list of derived objects produced with a given rule (siblings of the target) being
variable from one invocation to the next, and conversely, in a given derived object
potentially being produced by several different rules. Both of these effects result
in incorrect dependency analysis, and in spurious invalidation of previous
build results.

Let's note that since javac performs time stamp comparisons, the default behavior
of cleartool to set the timestamp at checkin time is inadequate for Java sources, and
results in needlessly invalidating classes produced before checkin: set up a special
element type manager defaulting to the -ptime (preserve time) checkin option.

The second traditional assumption broken by Java is a practical one: the language
has been designed to optimize compilation speed, which means that build time stops
being a primary issue. This is of course obtained by using a single target, the Java
virtual machine, and at the expense of run-time performance; but history has already
clearly validated this choice, in the context of favorable progresses in hardware.

This is obviously not a problem in itself, but it had two clear consequences:

The winkin behavior of clearmake cannot be sold to users anymore on the
argument of its saving build time (by side-effect). As we know, the argument
of the accuracy of management appeals only to users having experienced its
importance, and reward following investment is a known recipe for failure in
evolution.

It encourages carelessness among developers: throw away (clean) and start
again from scratch.

Of course, the gain in speed is mostly felt in small conigurations, and at the
beginning of projects: this strategy doesn't scale, as the total build time still depends
on the overall size of the component, instead of on this of the increment (the number
of modiied iles). It is however often late to change one's strategy when the slowness
becomes noticeable.

.JAVAC support in clearmake
Support for Java was added relatively late to clearmake (with version 2003.06.00),
in terms of a .JAVAC special target (and a javaclasses makeile macro). The idea
(to which your authors contributed) was to use the build audit to produce a .dep
ile for every class, which would be considered by clearmake in the next invocation,
thus giving it a chance to preempt the javac dependency analysis. Of course, the
dependency tree would only be as good as this of the previous compile phase, but
it would get reined at every step, eventually converging towards one which would
satisfy even the demanding catcr -union -check.

•

•

Chapter 12

[285]

Special care was needed to handle:

Inner classes (producing several class iles per java source, some of them
being preixed with the name of the enclosing class, with a dollar sign as
separator—not a friendly choice for UNIX shells).

Cycles, that is, circular references among a set of classes: a situation which
clearmake could only process by considering all the set as a common target
with multiple siblings.

This solution should be very satisfactory, from the point of view of ensuring
correctness (consistency of the versions used), sharing of objects produced, and thus
managing by differences. It should offer scalability of performance, and therefore
present a breakeven point after which it would compete favorably with from scratch
building strategies.

One might add that a makeile-based system is likely to integrate with systems
building components written in other languages (such as C/C++), as well as with
performing other tasks than compiling Java code.

Let us demonstrate how the dependency analysis and derived objects reuse are
working using the .JAVAC target in the makeiles, testing exactly the aspects
mentioned above—inner classes and cycles.

In our small example, Main.java implements the main class,
FStack.java implements another independent class, which the Main class is
using. Finally, the FStack class also contains an inner class Enumerator, which
results after the compilation in a ile of name FStack$Enumerator.class:

Main.java
public class Main {
 public static void main(String args[]) {
 FStack s = new FStack(2);
 s.push("foo");
 s.push("bar");
 }
};

FStack.java
public class FStack {
 Object array[];
 int top = 0;
 FStack(int fixedSizeLimit) {
 array = new Object[fixedSizeLimit];
 }
 public void push(Object item) {
 array[top++] = item;
 }

•

•

Challenges

[286]

 public boolean isEmpty() {
 return top == 0;
 }
 public class Enumerator implements java.util.Enumeration {
 int count = top;
 public boolean hasMoreElements() {
 return count > 0;
 }
 public Object nextElement() {
 return array[--count];
 }
 }
 public java.util.Enumeration elements() {
 return new Enumerator();
 }
}

We create a tiny Makefile making use of the .JAVAC target. Note that we do not
have to describe any dependencies manually; we just mention the main target
Main.class, leaving the rest to the javac and the ClearCase Java build auditing:

Makefile
.JAVAC:
.SUFFIXES: .java .class
.java.class:
 rm -f $@
 $(JAVAC) $(JFLAGS) $<
all: /vob/jbuild/Main.class

The irst run of the clearmake does not look very spectacular: it just executes the
javac compiler, submitting the Main.java source to it, and all the three class iles
(FStack.class, FStack$Enumerator.class, and Main.class) get generated. The
same would have been produced if we used the "default" Makeile (the same, but
without the .JAVAC target):

$ clearmake -f Makefile
 rm -f /vob/jbuild/Main.class
 /usr/bin/javac /vob/jbuild/Main.java

Note though that one thing looks different from the default Makeile execution:
our ".JAVAC" Makefile produces the following dependency (.dep) iles:

$ ll *.dep
-rw-r--r-- 1 joe jgroup 654 Oct 19 14:45 FStack.class.dep
-rw-r--r-- 1 joe jgroup 514 Oct 19 14:45 Main.class.dep

Chapter 12

[287]

But their contents are somewhat puzzling at the moment:

$ cat FStack.class.dep
<!-- FStack.class.dep generated by clearmake, DO NOT EDIT. -->
<version value=1 />
<!-- (A build of this target has not been directly audited.) -->
<mytarget name=/vob/jbuild/FStack.class conservative=true />
<mysource path=/vob/jbuild/FStack.java />
<!-- Target /vob/jbuild/FStack.class depends upon the following #########
 classes: -->
<target name=/vob/jbuild/Main.class path=/vob/jbuild/Main.class />
<cotarget name=/vob/jbuild/FStack.class path=/vob/jbuild/ ###############
 FStack$Enumerator.class inner=true />

$ cat Main.class.dep
<!-- Main.class.dep generated by clearmake, DO NOT EDIT. -->
<version value=1 />
<!-- (A build of this target has been directly audited.) -->
<mytarget name=/vob/jbuild/Main.class conservative=false />
<mysource path=/vob/jbuild/Main.java />
<!-- Target /vob/jbuild/Main.class depends upon the following ###########
 classes: -->
<target name=/vob/jbuild/FStack.class path=/vob/jbuild/ #################
 FStack.class precotarget=false />

So, it looks as if the FStack class was depending on the Main class, and the other
way around as well. But that's what one can only igure out after a single javac
execution—The Main class was produced and, in order to compile it, two more
classes were needed: FStack and FStack$Enumerator.

But we can do better. Let's try the second subsequent clearmake execution, without
any real changes (for our purpose: in a real work scenario, a new build would of
course be motivated by a need to test some changes). It does not yield all is up
to date, as one would expect when using the default Makeile, but instead it does
something interesting:

$ clearmake -f Makefile
 rm -f /vob/jbuild/FStack.class
 /usr/bin/javac /vob/jbuild/FStack.java

 rm -f /vob/jbuild/Main.class
 /usr/bin/javac /vob/jbuild/Main.java

Challenges

[288]

Note that it does not even execute the default script, but rather some other one
(/usr/bin/javac /vob/jbuild/FStack.java). Where did it come from? Actually
from the FStack.class.dep dependency ile mentioned above. And what about the
dependency iles themselves?-They have somewhat changed:

$ cat FStack.class.dep
<!-- FStack.class.dep generated by clearmake, DO NOT EDIT. -->
<version value=1 />
<!-- (A build of this target has been directly audited.) -->
<mytarget name=/vob/jbuild/FStack.class conservative=false />
<mysource path=/vob/jbuild/FStack.java />
<!-- Target /vob/jbuild/FStack.class depends upon the following #########
 classes: -->
<cotarget name=/vob/jbuild/FStack.class path=/vob/jbuild/ ###############
 FStack$Enumerator.class inner=true />

$ cat Main.class.dep
<!-- Main.class.dep generated by clearmake, DO NOT EDIT. -->
<version value=1 />
<!-- (A build of this target has been directly audited.) -->
<mytarget name=/vob/jbuild/Main.class conservative=false />
<mysource path=/vob/jbuild/Main.java />
<!-- Target /vob/jbuild/Main.class depends upon the following ###########
 classes: -->
<target name=/vob/jbuild/FStack.class path=/vob/jbuild/ #################
 FStack.class precotarget=false />

And now this looks right! The FStack class depends on FStack$Enumerator,
but it does not depend on the Main class, and this is noted in the modiied
FStack.class.dep. The Main class, on the other hand, does depend on FStack,
and that is stated correctly in Main.class.dep.

Now, if we try to run clearmake once again, it yields 'all' is up to date:

$ clearmake -f Makefile
'all' is up to date.

But this time it means that all the dependencies have been analyzed and recorded in
the dep iles.

Let's try to rebuild. Removing either FStack.class or FStack$Enumerator.class
causes its rebuild, which triggers in turn a rebuild of the dependent Main.class:

$ rm FStack$Enumerator.class
$ clearmake -f Makefile
 rm -f /vob/jbuild/FStack.class
 /usr/bin/javac /vob/jbuild/FStack.java
 rm -f /vob/jbuild/Main.class
 /usr/bin/javac /vob/jbuild/Main.java

Chapter 12

[289]

Note that with the default makeile (which does not have any dependencies recorded
manually), such a removal would not invalidate the build and 'all' is up to date
would have been yielded.

And even an unconditional rebuild goes differently than the irst time clearmake
execution. The main target gets built last, and before it, the other independent
targets get executed:

$ clearmake -f Makefile -u
 rm -f /vob/jbuild/FStack.class
 /usr/bin/javac /vob/jbuild/FStack.java

 rm -f /vob/jbuild/Main.class
 /usr/bin/javac /vob/jbuild/Main.java

$ rm Main.class
$ clearmake -f Makefile
 rm -f /vob/jbuild/Main.class
 /usr/bin/javac /vob/jbuild/Main.java

And what about the dependency iles? Have they changed? Not this time. As long as
we do not change the code, the dependencies remain the same and the dep iles are
not affected by the rebuild.

Using a second view, we can now demonstrate the winkin:

$ ct setview view2
$ clearmake -f Makefile
Wink in derived object "Main.class.dep"
Wink in derived object "FStack.class.dep"
Wink in derived object "FStack$Enumerator.class"
Wink in derived object "FStack.class"
Wink in derived object "Main.class"

Let's now introduce an artiicial circular dependency between the FStack and Main
classes, for example by adding the following line to the FStack class constructor:

Main m = new Main();

Challenges

[290]

We see that after a couple of clearmake executions, the new dependencies get
resolved and recorded in FStack.class.dep:

$ clearmake -f Makefile
 rm -f /vob/jbuild/FStack.class
 /usr/bin/javac /vob/jbuild/FStack.java

 rm -f /vob/jbuild/Main.class
 /usr/bin/javac /vob/jbuild/Main.java

$ clearmake -f Makefile
 rm -f /vob/jbuild/FStack.class
 /usr/bin/javac /vob/jbuild/FStack.java
 rm -f /vob/jbuild/Main.class
 /usr/bin/javac /vob/jbuild/Main.java

$ clearmake -f Makefile
'all' is up to date.

$ cat FStack.class.dep
<!-- FStack.class.dep generated by clearmake, DO NOT EDIT. -->
<version value=1 />
<!-- (A build of this target has been directly audited.) -->
<mytarget name=/vob/jbuild/FStack.class conservative=false />
<mysource path=/vob/jbuild/FStack.java />
<!-- Target /vob/jbuild/FStack.class depends upon the following #########
 classes: -->
<cotarget name=/vob/jbuild/FStack.class path=/vob/jbuild/ ###############
 FStack$Enumerator.class inner=true />
<target name=/vob/jbuild/Main.class path=/vob/jbuild/ ###################
 Main.class precotarget=true />
<cotarget name=/vob/jbuild/Main.class path=/vob/jbuild/ #################
 Main.class inner=false />

Now, FStack depends on Main, and Main depends on FStack, and invalidating
either of them would cause a rebuild of the other:

$ rm FStack.class
$ clearmake -f Makefile
 rm -f /vob/jbuild/FStack.class
 /usr/bin/javac /vob/jbuild/FStack.java
 rm -f /vob/jbuild/Main.class
 /usr/bin/javac /vob/jbuild/Main.java

$ clearmake -f Makefile
'all' is up to date.
$ rm Main.class
$ clearmake -f Makefile
 rm -f /vob/jbuild/FStack.class
 /usr/bin/javac /vob/jbuild/FStack.java

Chapter 12

[291]

 rm -f /vob/jbuild/Main.class
 /usr/bin/javac /vob/jbuild/Main.java

This scheme supports some level of sophistication such as maintaining one single
makeile for several source directories, and exporting the classes to a build hierarchy.
One may use for this purpose the javaclasses macro, including while using a
distinct deployment directory:

%.class : %.java
 rm - f $@
 $(JAVAC) $(JFLAGS) -d $(BUILD) $<

COM = org/wonderland
SROOT = $(SRC)/$(COM)
CROOT = $(BUILD)/$(COM)
CLASSES = $(javaclasses $(CROOT)/dir1, $(SROOT)/dir1) \
 $(javaclasses $(CROOT)/dir2, $(SROOT)/dir2) \
 $(javaclasses $(CROOT)/dir3, $(SROOT)/dir3)

all: $(CLASSES)

Note however that this macro is only mechanically computed from the contents of
the source directories and cannot reliably be used to name all the classes collected in
a jar: it would miss the inner classes.

Also, it may in fact catch iles that would actually not be needed. It is thus not
obvious whether using it is actually better than relying as in our irst case, on
naming one (or some) main targets and relying upon the dependency analysis
to ind the others!

The use of a deployment directory (used with the -d option of javac) makes it easy to
create a jar from what was actually produced.

This .JAVAC support seems quite usable, even if we lack a real size experience.
All the infancy problems that were reported at some stage have been
satisfactorily addressed.

Unfortunately, this solution has not been widely used in practice due to the
following reasons:

It came too late.

It performs comparably poorly in small conigurations, because it invokes
javac once per target; javac starts a Java virtual machine and the cost of
initializing and inalizing it overshadows the build cost proper: it is much
more eficient to invoke javac once for a large set of iles.
It departs from the main stream practices, and appeals to competences not
typically shared by Java developers (makeiles).

•
•

•

Challenges

[292]

These are however to some extent only speculations, based upon assumptions
more than on measurements. The performance penalty alluded to above may
actually be overstated...

The third bullet leads us naturally to the next sections: both ant and maven come with
off-the-shelf support for producing the other kinds of deliverables (jar, war, ear... and
so on) common to web development, as well as for deploying them to the various
application servers (WebSphere, tomcat,... and so on) and the various repositories
available, under Eclipse or OSGi. Nothing inherently impossible to do with makeiles,
only no Open Source project or consortium maintains and offers such a support.

Ant and XML
The main stream tool for building Java code is ant, although it is getting challenged
by maven. Neither is actually deeply concerned with the issues of consistency of the
build products: they typically delegate the dependency traversal, at the local level,
as well as the compilation to javac tasks in the Java virtual machine, and rely for the
rest on performing a clean. Their goal is to supplement javac in generating sources
from idl, handling multiple components and their inter-dependencies, packaging,
deploying, and so on.

The eficiency of ant comes from the reason we described earlier: ant is itself written
in Java—invoking it results in only one initialization of the java virtual machine.
In theory, one could intercept the dependency analysis between build jobs. There is
even a mechanism which may be used for this purpose: listeners.

After promising a clearant for a few years, ClearCase came with an ant_ccase
man page describing how to audit Ant builds, using CCAudit.jar. No winkin is
supported so far:

$ ant -listener CCAudits ...

This is of course a way to produce conig records that might be analyzed with
catcr -union -check. Will the evidence produced be suficient to convince
users to switch back from their ant build system to a clearmake / .JAVAC one? We
recommend our readers to test their builds: we are used to raising surprise among
users! The recipe is straightforward and non-invasive:

$ export ##
 CLASSPATH=/opt/rational/clearcase/java/lib/CCAudits.jar:$CLASSPATH
$ export ##
 LD_LIBRARY_PATH=/opt/rational/clearcase/linux_x86/shlib:$LIBRARY_PATH
$ ant -listener CCAudits -buildfile build.xml

Chapter 12

[293]

In most of the cases, the cause of the surprise is incomplete cleaning (for example,
of generated Java sources). Not auditing one's builds moves some responsibility
back from the tool to the developers, which is error-prone. Remember that barring
auditing, all the dependency analysis must be speciic to the tool chain.

But we should note that the dependencies produced are not (at all) ine grained:
basically all of the derived objects share one common (bulky) conig record, as with
the irst run the .JAVAC clearmake build mentioned above. But unfortunately, in Ant
build auditing there is no way to improve it.

We can again only speculate about the reasons why clearant didn't make it as
promised (i.e. fully supporting winkin). One might conjecture that it wasn't so
easy to beat the results achieved with clearmake and the .JAVAC mechanism.

In other words, the existing support is actually better than commonly thought, and
originally anticipated.

Audited Objects
The resolution of our problems may come from a recent Open Source product:
Audited Objects. This offers build auditing without ClearCase, that is, using
user level system call interception and an SQL database.

The huge interest there is that one may hope to transfer some functionality
(competence, concerns) from ClearCase, to e.g. git.

MultiSite
We have already seen a few of the most obvious limitations of ClearCase MultiSite:
since it doesn't replicate conig records, i.e. the information about the successful
production of derived objects, using well identiied resources, MultiSite doesn't
really allow to distribute a development environment. While crossing site
boundaries, one loses the most interesting part of the information. The interactions
between developers on the same site are much richer than the ones across the
MultiSite boundary. This may feel acceptable in the context of a top-down
process of work division and assignment of tasks, but it would be a limitation
for a bottom-up process of managing peer contributions, which is closer to this
of Open Source development.

We showed how to work around some of these limitations by using labels, but this
obviously requires user attention, and manual action.

http://audited-objects.sourceforge.net/

Challenges

[294]

We also mentioned the problems of clashes between the names of types created
in different replicas, within the windows of opportunity left open by the delays
in synchronization. Resolving these problems in a satisfactory way would require
structuring the namespace of types, or in fact allow to version types (group the types
in sets, considering them as representatives thereof).

Some recent products bring interesting perspectives on these issues. Here are a few.

Maven, and Buckminster
We already mentioned maven. The most interesting conceptual novelty in this
product, in spite of its reputation for eficient template processing, may be even more
strongly demonstrated in Buckminster. Both systems identify certain build products
in a way independent from the site in which they were originally produced—they
allow one to alternatively download binaries or produce them locally: what matters
is the result.

Of course these systems use crude naming conventions as the primary means of
identiication (which checksums in addition), and ClearCase is far more robust and
lexible in this respect.

Mercurial and git
Distributed management has known a recent favor with Mercurial and git (and some
other less widely used: svk, Gnu arch to name a few). These offer an alternative to
the centralized model of subversion (and CVS) and to a paradox this model leads
to—it resorts to committers applying patches, that is, to a process completely outside
subversion itself!

All these products support a pull (get) instead of the push model of ClearCase
MultiSite. Once again, this means that information about interesting versions to pull
has to be conveyed by means external to the SCM system: users must get convinced
to make their pulling efforts by other means than evidence supported by the system.

These considerations should remind us that ClearCase was a forerunner in this
category as well (distributed management), and that it is still a technological leader
for those who want to use it.

However, here as well as for the continuity of management by auditing, some
obvious limitations would need to be lifted for it to support tens of thousands of
replicas. All replicas cannot be latly exposed: some structure is badly needed.

Chapter 12

[295]

In this respect, one must admit that both Mercurial and git are far superior to
ClearCase: they easily support hundreds of sites, which may or may not be shared
among communities of users. ClearCase developers came too hastily with the
short-sighted concept of snapshot views, when laptops looded their customer base.
They missed the opportunity to extend MultiSite towards facing the challenge.

Perspectives in Software Engineering

Eclipse and OSGI
The eclipse repository stores multiple versions of the same jars, and offers some
management of dependencies between user applications. This allows to propagate
changes gradually, instead of upgrading all the applications depending on a
common resource synchronously; it even allows to leave some applications as such,
if they do not beneit from the changes.

This displays a radical novelty: the customer environment, under which one delivers,
is not homogeneous and consistent anymore—delivery happens under SCM!

To be honest, this had always existed in UNIX, with shared libraries (see Chapter
8, Tools Maintenance). Using symbolic links, one could decouple the current (latest)
version of a shared library, for linking purposes, from the ones actually bound to
existing applications, which could thus use different versions and did not need to be
updated every time a new version of the shared library was published.

Now, the support in eclipse clearly shows an increase in such uses.

One challenge may be to simulate this under ClearCase in the same view, for
example, with hard links and pattern-based conig spec rules (which we mentioned
already, while speaking of conig specs in Chapter 2, Presentation of ClearCase).
But one could take a wider perspective and consider that different views offer a
much more lexible and robust support, and that the need for an SCM system is in
fact much wider than might have been anticipated. One might want to see the eclipse
repository as a irst case of delivering under SCM, into an SCM system itself deployed
in the customer environment. What is missing there is a standard or rather an open
speciication, to protect customers from being coupled to one single vendor.

The only existing attempt to standardize versioning interfaces is WebDAV, the
extension of the HTTP protocol, geared towards authoring, that is, towards the other
end of the coniguration space (or dependency tree).

Challenges

[296]

Virtual machines
ClearCase virtual ile system, with its dynamic views, was a foregoer, but has its own
limitations: some resources cannot be versioned (such as sockets, or any interfaces
on which one and only one protocol is being used). This problem was irst met with
versioning shared libraries used at boot time.

An interesting trend is the use of virtual machines to split the resources of one host,
protecting the users of a slice from what happens in another. Or other way around:
cloud computing, federating multiple physical hosts to offer a virtual environment.

ClearCase has already certiied certain virtual machines as platforms, but isn't the
real challenge the opposite? Isn't there a need to run multiple virtual machines under
some kind of software coniguration management?

The challenge here would thus be to extend dynamic views to the status of
full-blown virtual machines.

Conclusion
This chapter ended up posing more questions than it offered answers.

What it should convince us of is that there is still a need to develop ClearCase, and
not to drop the experience speciically gained with this wonderful tool, being far
from the main streams of tradition. That one's investment in ClearCase is not lost,
even if it doesn't always seem directly usable in the contexts of its competitors.

The Recent Years'

Development
This chapter is devoted to a cursory review of topics we did not deal with (at least in
any depth) in this book, although they have been the focus of recent developments
in ClearCase. We deliberately chose to spend time and effort on aspects left from
existing literature, but also to focus on a consistent subset of ClearCase functionality.
By this, we do not mean that the most recent developments in ClearCase would
have been inconsistent: only that during recent years, ClearCase development has
departed signiicantly, to our dismay, from the original project.

Let's consider this aspect in the (critical) light of the expertise gained so far, and
review the following items:

Triggers

Snapshot views

Express builds

UCM

Web access, the remote clients, and the Eclipse plugin
CM API

Historical perspective
Although ClearCase was designed at Apollo, and originally developed at Atria, then
PureAtria, its commercial success, especially on the Microsoft Windows platform,
took place at Rational, and then IBM.

Most of what we have covered in this book concerns ClearCase as it was designed in
the irst phase of its development (referring to the above split).

•
•
•
•
•
•

The Recent Years’ Development

[298]

The latter phase, besides taking care of upgrades and ports to new platforms, notably
Linux platforms, has mostly addressed a different customer base than the former.
The aspects of ClearCase developed more recently were those of an opaque product,
aimed at consumers judging it as a black box, instead of as an integral part of their
own conceptual toolbox.

The irst ClearCase had been promoted as a tool set, not mandating a process. In
1997, the new owners from Rational thought that there was, on the contrary, a need
for an out-of-the-box process. This perception matched the prospect of conquering
the Windows market, whereas the original success of ClearCase had been gained
almost exclusively on UNIX. This was a major cultural change. The user of UNIX
command line is in charge of the process, whereas the user of a Windows GUI
lets this one drive: choices have then to be made automatically, according to a
pre-canned process, followed passively, without passion or any feeling of
involvement. Mishaps will be reported, at best with a screen dump, to a black hole
service desk, waiting for a magical "solution" in return; and this will happen only if
the "problem" survives a reboot.

There may also have been a perception that concurrent products such as Continuus
(which became Synergy and is now an IBM product) were gaining an edge with their
radically different strategy, based on process enforcement. Last, Rational also wanted
to integrate a full suite of products, starting with ones for bug tracking tickets (there
were several, which eventually converged into ClearQuest), but also turning around
visual modeling, the original area of expertise of the company (after Ada systems for
the US Department of Defense).

Finally, there was a customer demand for higher-level concepts. This demand, borne
in a business overtaking of the enterprise, after a long and controversial period of
technological creativity, could dangerously well be met with the offering from the
competition: components, activities, and tasks, driven from the bug tracking ticket
perspective.

Triggers
Triggers were the irst mechanism that could be used for process enforcement.
They were indeed part of early implementations of ClearCase. We briely
handled them in Chapter 9, Secondary metadata.

Chapter 13

[299]

Due to their popularity, triggers kept being expanded: they could be attached to
new UCM or MultiSite events. They started being invoked in some remote client
operations. They were not powerful enough, though, to implement the intended
out-of-the-box process. This came as a disproof of the original claim that
ClearCase provided the tools, and that the customers could arbitrarily design
their process and use the tools to support it.

More or less following the same path as the UCM developers, we believe that
triggers are not the proper technology to implement tailored support for one's
own processes. We found wrappers as a more powerful choice, less surprising
from the end user point of view, easier to debug and to override or skip in case
of unexpected problems. We regret wrappers are not advertised to the same
level (or rather, to a higher one) as triggers in the ClearCase documentation.
In wrappers, there lies in our opinion, the best potential for Open Source
contributions to ClearCase, at least for the time being.

Triggers remain an interesting tool for some prospective ixes (often temporary),
especially limited to the context of a single vob. Then it is always a good idea
to get the temporary ix (by the trigger) replaced by a more robust solution
(for example, a wrapper). At this point, the temporary trigger can be removed.
Let's note that the best way to disable a trigger is usually to lock it −obsolete.
Add the comment irst, and lock next, as the -obsolete option ignores any
simultaneous comment. This allows us to document (in the comment ield) the
precise reason for the experimented inadequacy so that the same "ix" is not
attempted again.

Snapshot views
We mentioned snapshot views very briely in Chapter 10, Administrative Concerns and
Chapter 12, Challenges. Snapshot views were introduced with the need to support
work in a temporarily disconnected environment (typically on a laptop). They were
not a great conceptual creation, as they merely implemented the traditional model
of sandboxes, common to the older generation version control systems, still present
under the name of working copies, in, for example, subversion.

Snapshot views still require occasional connectivity, to load and update them. They
are registered in the ClearCase registry, and their state is published, as much as it
concerns checkouts (reserved or not). Because ClearCase doesn't support a concept of
private branches (such as in Mercurial), working in disconnected mode may lead
to conlict situations (hijacking) to be resolved eventually, when the connectivity
is restored.

The Recent Years’ Development

[300]

In a disconnected snapshot view, one may edit elements that one had previously
checked out, hijack some more iles, and build using one's private iles. Problems
with proper ClearCase operations start with the lack of licenses, and even earlier
with the need for authentication from network servers:

$ ct ls foo
cleartool: Error: Unable to contact albd_server on host 'ccserver'
cleartool: Error: Cannot contact license server host "ccserver"
cleartool: Error: You do not have a license to run ClearCase.

$ ct catcs
cleartool: Error: Unable to contact albd_server on host 'ccserver'
cleartool: Error: Cannot contact license server host "ccserver"
cleartool: Error: You do not have a license to run ClearCase.

Of course, one may wonder whether these operations make sense in the context of a
disconnected snapshot view, in which the versions have already been selected and
the choice may not be revised until next time the connectivity is restored. A snapshot
is after all no more than a dead copy.

The hijacking mechanism is actually the accepted way to work around this state of
things in the disconnected mode, with the promise to restore consistency later when
connected. Suppose one is working in disconnected mode; then one can only change
the permissions (remove the read-only lag in Windows) on a downloaded version in
the snapshot view. ClearCase commands are of course still unavailable:

$ ct co -nc foo
cleartool: Error: Unable to contact albd_server on host 'ccserver'
cleartool: Error: Cannot contact license server host "ccserver"
cleartool: Error: You do not have a license to run ClearCase.

$ chmod 755 foo
$ echo foo >foo

$ ct ci -nc foo
cleartool: Error: Unable to contact albd_server on host 'ccserver'
cleartool: Error: Cannot contact license server host "ccserver"
cleartool: Error: You do not have a license to run ClearCase.

When connection is again established, one can spot the hijacked version:

$ ct update .
Processing dir "bar\www".
Processing dir "bar\www\cc".
.......
End dir "bar\www\cc".
.
Keeping hijacked object "bar\www\foo" - base "\main\4".
...........

Chapter 13

[301]

End dir "bar\www".
.
Done loading "\bar\www" (28 objects, copied 0 KB).

$ ct ls foo
foo@@\main\4 [hijacked] Rule: \main\LATEST [-mkbranch b1]

The discrepancy may be resolved either by checking in or by removing the offending
private ile.

First, the later option (clean up the hijacking ile):

$ rm foo
$ ct update foo
Loading "bar\www\foo" (1654 bytes).
.
Done loading "\bar\www\foo"

$ ct ls foo
foo@@\main\4 Rule: \main\LATEST [-mkbranch b1]

Alternatively, the former option, check it in (checking out irst to a separate branch to
avoid a possible conlict with a checkout by another user):

$ ct co -nc foo
Created branch "b1" from "foo" version "\main\4".
Checked out "foo" from version "\main\b1\0".
"foo" has been hijacked.
Do you want to use it as the checked out file?
(If not, it will be renamed.) [yes]

$ ct ls foo
foo@@\main\b1\CHECKEDOUT from \main\b1\0 Rule: CHECKEDOUT

$ ct ci -nc foo

Snapshot views present a real management challenge: the snapshot view directory
is not recorded in the view storage, and may be virtually anywhere on the user
laptop (or whatever accessible storage). This makes it impossible to service by
administrators (backup, upgrade, and so on) even when the laptop is connected.
This is especially true in the case of hijacked versions.

Building in snapshot views, clearmake behavior falls back to the traditional make
model, using only local resources from standard ile systems and producing
view-private artifacts.

The Recent Years’ Development

[302]

On a low level, this is more eficient than building in dynamic views in an MVFS
ile system: process communications are greatly simpliied (only local), and neither
auditing nor shopping for derived objects, with its sophisticated evaluation and
decision process, takes place.

This appealed to many users, especially in cases when these didn't, for one reason or
another, use or beneit from clearmake winkin. From our point of view, such users are
effectively trapped, with no easy way out of their hole.

Express builds
The low-level performance gain obtained in snapshot views can be emulated in
dynamic views as well, thus retaining the comfort of synchronous updates.
A irst way is to use the -V lag of clearmake, restricting coniguration lookup to
the current view and thus disabling winkin. The derived objects produced are still
recorded, with an incurred cost.

The next step is thus to create views with a special -nsh lag, instructing them
to produce non-shareable derived objects. This way, clearmake is effectively
downgraded to a standard make tool.

UCM
UCM was an attempt to raise the level of support, in other words to support
"higher-level" concepts directly: components, as a way to structure sets of iles;
activities and tasks, as a way to attach some meaning to change sets; streams, as a
way to relate and transcend labels and branches.

Chapter 13

[303]

Unfortunately, it didn't build upon the existing sophisticated features of ClearCase
(dynamic views, clearmake winkin, and derived object management), and resulted in
lowering the build support.

It also forced users to make decisions upfront, and made it from hard to nearly
impossible to revise them later.

It inally capitalized on a branching strategy, which was state-of-the-art at the time,
but proved counter-productive in retrospect: one dedicated integration stream (and
integration branch type), where all the changes should be merged to (delivery) from a
number of development streams (branches). The latter would be kept in sync (again,
by merging) with the integration stream (rebase). Streams did bring a welcome
improvement over plain old labels, with a way to support incremental labeling, a
functionality that we had unsuccessfully requested in base ClearCase and inally had
to match with label type families in our ClearCase::Wrapper::MGi wrapper.

UCM claims to implement SCM best practices, and to raise the level of abstraction,
so that the end user would not need to deal with low-level SCM tool concepts such
as individual elements, and could access a representation of the whole software
architecture.

Let's take a closer look at what these best practices are and how they are
implemented.

Boot-strapping the simplest UCM project, be it only for one single user at the start,
already involves quite a few steps. One must deine and create at least the following
minimal set of UCM artifacts: a project vob, a component within this project vob, an
initial baseline for the component, a UCM project itself, an integration stream for the
UCM project, an integration view on the integration stream, and an activity. Usually
at least one development stream with a separate development view is created as well.

After creating and coniguring all of the above, and getting all this inally to work,
one can assume that the basic "out-of-box process" skeleton is in place. Now,
changing one's coniguration back and forth should be a piece of cake, so to speak. It
turns out not to be quite so. One can happily make a code change in the development
stream, deliver it to the integration stream, and create a baseline there. This one
can also be recommended in the integration stream, and the development stream
can be rebased with it. Usually at this point in the UCM literature the reader is
promised an ocean of future possibilities such as compare baselines, merge baselines,
create a child stream from the baseline you want, rebase the child stream with the
recommended baseline, or even ind the changes between baselines and undo/
modify/redo them. But simple things irst. Let us not be distracted from paying
attention to one obvious thing: how easy it is to roll back, that is, what happens if
you change your mind and would like to get back to the previous (initial in our case)
baseline? Let's see: you seem to be able to recommend the initial baseline back in

http://search.cpan.org/perldoc?ClearCase::Wrapper::MGi

The Recent Years’ Development

[304]

the integration stream instead of the newly created one. So far so good! But when
you synchronize your integration view with the stream (which is surprisingly needed
even for dynamic views!), your view still selects the latest changes you made, which
are not part of the initial baseline. It's time to check the integration view conig spec
(even this is discouraged in UCM: the only changes allowed to conig spec are vob
load rules, which don't make any sense for dynamic views of course):

$ ct setview intview
$ ct setcs -stream # Synchronize with the stream
$ ct catcs
ucm
identity UCM.Stream oid:a6cffe7b.6980496a.aaab.11:56:4d:2c:a4: ##########
 b5@vobuuid:5af58e42.640210d5.b8a4.00:c0:61:20:6a:53 1

ONLY EDIT THIS CONFIG SPEC IN THE INDICATED "CUSTOM" AREAS

This config spec was automatically generated by the UCM stream
"PROJ_Integration" at 2010-10-15T10:19:42+01:00.

Select checked out versions
element * CHECKEDOUT

Component selection rules...
element "[2ba58ea2640201c6a8a300d048306e57=/vob/bar]/comp1/..." #########
 .../PROJ_Integration/LATEST
element "[2ba58ea2640201c6a8a300d048306e57=/vob/bar]/comp1/..." #########
 INITIAL -mkbranch PROJ_Integration
element "[2ba58ea2640201c6a8a300d048306e57=/vob/bar]/comp1/..." #########
 /main/0 -mkbranch PROJ_Integration

end ucm

#UCMCustomElemBegin - DO NOT REMOVE - ADD CUSTOM ELEMENT RULES ##########
 AFTER THIS LINE
#UCMCustomElemEnd - DO NOT REMOVE - END CUSTOM ELEMENT RULES

Non-included component backstop rule: no checkouts
element * /main/0 -ucm -nocheckout

#UCMCustomLoadBegin - DO NOT REMOVE - ADD CUSTOM LOAD RULES #############
 AFTER THIS LINE

Our project's name is PROJ. The initial baseline of the component comp1 was called
INITIAL (and was based on the set of versions labeled with the label type INITIAL).
The new baseline we just created has the name BASELINE1, which is actually a
ClearCase label type BASELINE1 attached to the newly created set of elements. But
...it doesn't appear in the conig spec of the integration stream! And actually no
matter how many baselines one creates or recommends in the integration stream,

Chapter 13

[305]

none of them will ever be mentioned explicitly in the integration stream conig spec:
the integration stream is always .../PROJ_Integration/LATEST; that is, no matter
how you conigure your project, you will always see only the latest versions in the
integration stream and this cannot be conigured differently! Hardly a best practice,
is it? By recommending the baseline one only records the current label, which is a
good idea in itself, but the record does not go any further, as far as the integration
view is concerned! This also means that if one chooses to work in a "minimal" UCM
project having just one integration stream, and no development streams, there is no
way to manage one's coniguration at all.

Now it should be a right moment to recall that IBM Rational recommends not to
modify or even look at UCM conig specs ("because you don't need to")—we may
now understand better why...

So, the UCM integration stream always points to the latest versions. If you want even
to take a look at a previous baseline, not to mention working on it, you need to do it
in a separate child (development) stream.

So, how about the development stream? First we rebase it:

$ ct setview devview

$ ct rebase -baseline BASELINE1
 Advancing to baseline "BASELINE1" of component "comp1"
 Updating rebase view's config spec...
 Creating integration activity...
 Setting integration activity...
 Merging files...
 Checked out "/vob/bar/comp1/foo" from version ########################
 "/main/PROJ_development/4".
 Attached activity:
 activity:rebase.PROJ_development.20101112.115451@/vob/ ##############
 pvob "rebase PROJ_development on 11/12/2011 11:54:51 AM."
 Needs Merge "/vob/bar/comp1/foo" [to /main/PROJ_development/ #########
CHECKEDOUT from /main/PROJ_Integration/3 base /main/PROJ_development/2]

 <<< file 1: /vob/bar/comp1/foo@@/main/PROJ_development/2
 >>> file 2: /vob/bar/comp1/foo@@/main/PROJ_Integration/3
 >>> file 3: /vob/bar/comp1/foo

…

$ ct rebase -commit

The Recent Years’ Development

[306]

The new baseline is visible in its conig spec, so this is already something to
start with:

$ ct setview devview
$ ct setcs -stream
$ ct catcs
ucm
identity UCM.Stream oid:595d3b4a.bb0943f1.23d4.15:ac:01:e8:73: ##########
 52@vobuuid:5af58e42.640210d5.b8a4.00:c0:61:20:6a:53 3

ONLY EDIT THIS CONFIG SPEC IN THE INDICATED "CUSTOM" AREAS

This config spec was automatically generated by the UCM stream
"PROJ_development" at 2010-10-15T13:57:05+01:00.

Select checked out versions
element * CHECKEDOUT

Component selection rules...

element "[2ba58ea2640201c6a8a300d048306e57=/vob/bar]/comp1/..." #########
 .../PROJ_development/LATEST
element "[2ba58ea2640201c6a8a300d048306e57=/vob/bar]/comp1/..." #########
 BASELINE1 -mkbranch PROJ_development
element "[2ba58ea2640201c6a8a300d048306e57=/vob/bar]/comp1/..." #########
 /main/0 -mkbranch PROJ_development

end ucm

#UCMCustomElemBegin - DO NOT REMOVE - ADD CUSTOM ELEMENT RULES ##########
 AFTER THIS LINE
#UCMCustomElemEnd - DO NOT REMOVE - END CUSTOM ELEMENT RULES

Non-included component backstop rule: no checkouts
element * /main/0 -ucm -nocheckout

#UCMCustomLoadBegin - DO NOT REMOVE - ADD CUSTOM LOAD RULES #############
 AFTER THIS LINE

Okay, this looks alright. But then can we change it back to the initial baseline? The
answer is NO. See what happens if we try.
We recommend back the initial baseline for the integration stream of our PROJ
project. And then trying the rebase:

$ ct pwv
Working directory view: devview
Set view: devview

$ ct rebase -recommended

Chapter 13

[307]

cleartool: Error: Can't revert to earlier baseline "INITIAL" ############
 of component "comp1" because the stream has made changes
 based on the current baseline.
cleartool: Error: Unable to rebase stream "PROJ_development".

Why should this be impossible? This is because there is a hidden trick in the above
mentioned development stream conig spec: what UCM actually does at rebase
(and similarly at the deliver as well) is physically merging the versions carrying
the label BASELINE1 to all the versions already having a PROJ_development
branch. That means the element ... BASELINE1 rule in the conig spec
(element "[2ba58ea2640201c6a8a300d048306e57=/vob/bar]/comp1/..."
BASELINE1 -mkbranch PROJ_development) comes too late: only in second. It only
applies to versions not having a PROJ_development branch yet, that is, that have
never been checked out in the views on this development stream. That is why
reverting to a previous baseline INITIAL is simply not possible, as it is not possible
to "un-merge" the latest versions on the PROJ_development branch from the ones
carrying BASELINE1 label. Without that harmful merge, the revert would be just
a matter of replacing the BASELINE1 with INITIAL in the development view
conig spec.

The only possibility to make use of the former baseline is to create a new
development stream (PROJ_dev1) from the integration one using the needed baseline
(INITIAL) as its foundation (that is to branch off a new branch from the integration
one using the INITIAL label).

Likewise, the UCM components must be read-only in a project in order to be able
to change their initial baseline later on. Otherwise, in case of any changes (even
the dummy ones) made to a component, rebase becomes forbidden. Furthermore,
removing a component from a UCM project stream would typically not be
possible either:

We must admit such practices are quite commonplace indeed, but can they still
qualify as best?

It already seems that UCM makes its motto from: "no way back", and we'll be back
on this.

But the UCM delivery by merge model is even more questionable. This is especially
felt in large projects, involving many developers.

The Recent Years’ Development

[308]

Any element version change in UCM has to be reported to an activity. Generally
speaking, having activities as a means of tracking one's own (or others') changes
is not a bad idea in itself. Developers can ind it quite useful for their own
bookkeeping purposes.

Performing a delivery to the integration stream takes place in the scope of whole
activities: their change sets are being delivered (merged) to the integration stream.
This delivering by merge occasionally brings surprises, as we explained in
Chapter 7, Merging: presumably ixed bugs may re-appear either in the integration
or in the rebased development streams. Non-trivial merges hidden among massive
amounts of trivial ones may yield, on either the delivery or the rebase way, what
appear as random results. Bulky merges from multiple development streams may
interfere with each other, and a bug ix delivered from one development stream may
unintentionally get overwritten so that the original bug is restored.

Preventing non-trivial merges becomes the goal of policies such as forcing a rebase
prior to delivery. This is however a two-edged sword, as it affects the data being
delivered that ought to be re-tested. This in turn extends the overall delivery time,
thus increasing the risk of collisions, which will force rebases, ad nauseam.

It is sometimes recommended to lock the shared integration stream while building
in it to validate the result of one's delivery before completing it; this to ensure a tight
serialization of deliveries, prevent activity changes, and avoid to ind numerous
elements checked out as an effect of other pending deliveries. Both alternatives of
either locking or leaving it open to changes have signiicant drawbacks.

Do we need to remind our readers that these problems affect radically less in-place
deliveries (refer to Chapter 6, Primary Metadata), based on labeling, which are faster,
thus offer less occasions for collisions, are reversible, hence offer the option to solve
the problems out of the way of competitors, and do not modify the data therefore
do not require a new testing phase as part of the delivery process proper? The
scalability problems we describe here, growing faster than the size of the system
by any measurement, are typical of UCM, not a fatality of parallel development in
ClearCase! One should remember not to mix the actual parallel development concept
and UCM or UCM-like ways of using base ClearCase.

The intention behind UCM activities was interesting, but unfortunately ClearQuest
integration largely impacted their usefulness. ClearQuest imposes a number
of additional restrictions to the already tight UCM environment. Typically, the
ClearQuest-UCM integration is used to impose a number of policies requiring that
all the activities are created beforehand in ClearQuest by the designated roles (such
as project manager) and preferably assigned to the developers: in the best case a
developer could try herself to select one out of a set of activities created in advance.
Additional restrictions can apply to activities delivery, status change, and so on. This

Chapter 13

[309]

is clearly an expensive (and very heavy) overkill. It tends to distract developers, who
end up inding workarounds and developing their code in their own "sandboxes",
outside of UCM and ClearQuest altogether.

Let's now take a brief look at a few typical UCM problems or rather use cases.

Even apart from merge-related issues, and whether with ClearQuest integration or
without it, delivering a dedicated subset of one's activities can be quite challenging.
Although one can reassign the modiied versions from the change set of one activity
to another, this is often not enough to eliminate some dependencies (for example, one
of the activities contains a change to a version of the vob root directory) between the
activities, so one is often forced to make a bulky delivery including all the activities:

$ ct deliver -act act1
cleartool: Error: Activity "act2" must be added to activity list.
cleartool: Error: Version "/vob/foo@@/main/PROJ_development/3" ##########
 from the activity "act2" is missing from the required version list.
cleartool: Error: The list of activities specified is incomplete.
cleartool: Error: Unable to deliver selected activities.
cleartool: Error: Unable to deliver stream "PROJ_development".

For delivering a set of activities, as nearly for everything in UCM, the
recommendation is to use the (slow...) GUI. When the project grows, the usability of
GUI operations, such as delivery, suffers, and one starts to meet all kinds of strange
errors, like shown in the next screenshot:

The command line delivery command may help in this situation:

$ ct deliver
Changes to be DELIVERED to default target stream in project "PROJ":
 FROM: stream "PROJ_development"
 TO: stream "PROJ_Integration"
Using target view: "intview".
Activities included in this operation:
 activity:act1@/vob/bar joe "act1"

The Recent Years’ Development

[310]

Every UCM stream requires a separate view per user involved. Several UCM projects
co-exist usually in parallel (for example, a main release project, a maintenance
project, and so on), and every project can have many streams (some of them for the
purpose of branching off a former baseline as explained above), so the number of
views grows very soon. The view names tend to be very long (for example,
userid_ucmproject_int, userid_ucmproject_dev) to allow distinguishing
between one another's views and even between one's own views, which also
becomes a source of confusion and errors. Especially in the absence of clear
transcripts and logs, due to the encouraged use of GUIs, even simple situations can
become puzzling for not very experienced users.

Let's give an example scenario. A user tries to deliver (merge) her activities from her
development stream using her development view to the project's integration stream. She
gets an error message saying that the element foo, which she attempts to merge, is
in a checked-out state. Actually, even getting this information is not obvious; as with
the ClearCase Project Explorer GUI, it is hidden behind the red icon next to the element
name in the Merge Tool, and the element log (actually the GUI pop-ups below are
Windows UCM client-speciic, as the similar UNIX interface seems to be somewhat
less messy):

There are not many options except for clicking OK on this not too descriptive
pop-up, which results in still one more similar one:

After this a third pop-up window follows, with at least some details this time, but
one must know to right-click on the item having the red icon on the left and choose
Display Element Log to get any actual information about the problem:

Chapter 13

[311]

And inally one is rewarded with the actual problem description (note that log
reading abilities are required though):

And if using Eclipse with the ClearCase plugin, the message she gets asks her to do
a "resource restoration" ("resource" is the Eclipse term for ClearCase element and
"restoration" presumably stands for checkin). But trying to "restore resource", by
updating her development view, doesn't help, as she cannot see any problem with her
foo element and it does not seem to be checked out. The user might conclude that
there are some synchronization problems between the repository and her view. The
actual problem is that the element is being checked out in another view, for example,
in one of the integration views (hers or somebody else's). As the integration stream
always uses the .../Integration_branch/LATEST model, as we explained above,
such an element left in a checked-out state can prevent users from making deliveries.
This is just an illustration of a very simple problem. And such minor issues turn
out to be very tricky and time-consuming to solve because of the artiicial and
unmanageable complexity of the UCM environment.

The Recent Years’ Development

[312]

The use of integration branches, instead of main ones, suggests a MultiSite setup:
the advantage is to allow the coexistence of several integration streams, whereas
there can only be one single main branch at the root of any element. Integration
streams are bound to projects, so that in order to have two, one needs to create two
different projects, based on the same components, enabling inter-project delivery
policies: each project performs inter-project delivery of the other project's baseline
to its own integration stream. This helps avoid the unmanageable posted deliveries
(the recommended practice under MultiSite), one other major woe of UCM. Another
option could be to have a project with a dummy integration stream and two child
(development) streams, each mastered at its own site, and to perform inter-stream
deliveries from each other's baseline to one's own stream.

As we already mentioned in Chapter 9, the standard ClearCase clearimport,
clearexport, and cleartool relocate utilities do not work with UCM vobs (clearfsimport
does work).

A last note, well known as it is: one can easily convert one's vobs to UCM, but
there is no way back. There is no documented way to convert a UCM vob to base
ClearCase.

If the vob has originally been converted to a UCM component from a base ClearCase
vob, one can make it a base ClearCase vob back, by explicitly removing the hyperlink
to the Admin UCM vob:

$ ct des -l vob:/vob/comp1
versioned object base "/vob/comp1"
...
 Hyperlinks:
 AdminVOB@738@/vob/comp1 -> vob:/vob/pvob

$ cleartool rmhlink AdminVOB@738@/vob/comp1
cleartool: Warning: An AdminVOB hyperlink to a UCM PVOB is being removed.
This can cause serious problems with UCM.
If desired, this hyperlink may be replaced using the command:
 cleartool mkhlink AdminVOB vob:/vob/comp1 vob:/vob/pvob
Removed hyperlink "AdminVOB@738@/vob/comp1".

Note that the UCM branches and versions are preserved in the vob (and can be
accessed, for example, with version-extended path names), so a manual conversion
is possible:

$ ct lstype -kind brtype
--11-22T12:30 joe branch type "main"
 "Predefined branch type used to represent the main branch of elements."
--11-22T12:53 joe branch type "PROJ_development"
--11-22T12:39 joe branch type "PROJ_Integration"

Chapter 13

[313]

$ ll .@@/main/PROJ_Integration/1/foo/main/PROJ_Integration/ #############
 PROJ_development
total 6
-r--r--r-- 1 joe jgroup 0 Nov 22 12:58 0
-r--r--r-- 1 joe jgroup 4 Nov 22 12:59 1
-r--r--r-- 1 joe jgroup 4 Nov 22 12:59 LATEST

$ ll .@@/main/PROJ_Integration/1/foo/main/PROJ_Integration/ #############
 PROJ_development/1
-r--r--r-- 1 joe jgroup 4 Nov 22 12:59 .@@/main/PROJ_Integration/1/ #####
 foo/main/PROJ_Integration/PROJ_development/1

$ cat .@@/main/PROJ_Integration/1/foo/main/PROJ_Integration/ ############
 PROJ_development/1
foo

We tried here to show with concrete examples how UCM submits developers to
additional constraints, hence increases the overall complexity of the development
environment, and reduces developers to a passive role. We are deeply aware of
the fact that we shall have failed to convince aicionados (and there are many).
These might retort either with further escalation (creating yet another stream as
an example) or blaming decisions already taken (the processes for ClearQuest
integration already in place). What we face here is a case of non-falsiiability. The
net result of this failure to achieve undisputable conclusions will in any case be that
developers will leave the ield to experts: the tool is not their tool, it is imposed on
them and felt as an external requirement they have to satisfy.

UCM has systematically been presented as "enhanced" ClearCase. This is a myth,
which may only hold supericially. UCM not only ignores the main assets of
ClearCase but it undermines them. The clearest case is maybe how a delivery by
merge forces a full rebuild by failing to promote the derived objects produced
in the development branches. This could be addressed in either of two ways: by
performing the rebuild as part of the delivery before the baseline is updated, or by
letting everybody compete to build. The former would make the delivery longer
yet, and is thus not chosen in practice. The latter results in race conditions and
thus the production of equivalent derived objects, which pollute the DO pool and
jeopardize winkin at large. This is again only an example. Other examples could be
the impossibility to exploit labels produced with mklabel -config or the general
inability to handle the conig specs of UCM views. The bottom line is clear: UCM is
deeply incompatible with an effective use of base ClearCase, as the one we have tried
to present throughout this book.

The Recent Years’ Development

[314]

Web access and remote clients
Internet drives and federates the best news software brought to us during the past
10 years. Hence it's a must to provide web interfaces, that is, to allow accessing
ClearCase from the new universal tool: the browser. This does of course bring some
real beneits: making ClearCase accessible from mobile phones (although the smarter
ones provide a decent terminal interface), tunneling access through one single
port (ouch), and allowing to support a centralized model, including over
WAN connections.

The two latter arguments are actually good news only from an administrator's point
of view, especially with the mythical, but so easy to sell to management, 'security'
concern in mind, but maybe also with the similar cost saving one (that is, from
absolute points of view, which do not have to take anything else into consideration,
such as securing what? Or what does it cost to save?)

Anyway, there's already been several waves of web interfaces to ClearCase, and
more are expected. This is actually one of the most active development areas.
ClearCase comes with a Rational Web Platform (the ClearCase Web server, under
/var/adm/rational/clearcase/ccweb directory), which allows for creating web
views: a special kind of snapshot view with its storage located on the dedicated web
server, and the view root directory on the local client workstation.

The web server must run a ClearCase client, and be connected to the license, registry,
and vob servers.

The user must just have an account on the web server: no ClearCase client
installation or connection to the vob/registry server is needed.

The original interface (so called ClearCase Web Interface), now obsolete, worked in a
standard browser.

A Rational ClearCase Remote Client (CCRC) is also available, accessing the web
server, but offering more sophisticated functionality and running locally on the user
workstation. A irst version was a native client, now replaced by one based on Eclipse
technology. It may use web views.

The ClearCase Web interface stopped being supported before it was taken away.
Where one can still access it, one may expect to get all sorts of Java exceptions, such
as Error: "java.lang.IllegalStateException: Timer already cancelled,
maybe related to the version of Java used on the browser. This interface always was
extremely limited, even comparing to CCRC. CCRC has been the major focus of
attention lately. In the latest releases even some initial command line interface has
been implemented (it had always been just a GUI).

Chapter 13

[315]

CM API
We didn't mention the CM API, which came out with v7.1, as we have no experience
of using it.

It is not the irst attempt at offering an API to extend ClearCase. The very irst one
was a C API. Then came the ClearCase::CtCmd Perl package, distributed on CPAN
and intended to be linked with the ClearCase shared libraries; next the Rational
ClearCase Automation Library (CAL), exclusively on Windows.

Let's note that neither CtCmd nor CAL were compatible with Perl/ccperl, the Perl
bundled with ClearCase installation respectively on UNIX/Windows (actually, the
version of ccperl distributed with v7.x has the Win32::OLE required to access CAL,

as has Common/ratlperl).

ClearQuest came with its own cqperl, different from ccperl. Both tools now use
ratlperl, with cqperl and ccperl being kept only for backwards compatibility.
None of these attempts at offering an API to support customer extensions and
customization were wholly satisfactory.

The CM API is a Java API, and it is common to ClearCase and ClearQuest.
We understand it is bound to the CCRC (thus still limited in functionality), and
intended to supersede the use of cleartool (frightening to us as this may sound!). We
do not feel compelled (yet?) to jump on this bandwagon.

We further skip products farther away yet from the ClearCase "umbrella"—Build
Forge (the relatively recently acquired Continuous Integration offering of IBM) and
Rational Team Concert. To us, both products show the disaffection of ClearCase
concepts, and replace noticeable parts of its architecture with new tools. For instance,
Build Forge does address some of the missing functionalities in clearmake support,
for Java and web development. It does it in ways incompatible with the speciic
solutions in clearmake.

http://search.cpan.org/perldoc?ClearCase::CtCmd

The Recent Years’ Development

[316]

Summary
In this chapter, we didn't so much give our readers assistance to make use of the
features of ClearCase we dealt with, but rather, as it happens, reasons to avoid them.
The bulk of the new functionalities are centered around the UCM extension, which
we consider ...catastrophic.

Working with UCM doesn't mean UCM working for you: it is you who are working
for UCM.

Our advice is bluntly simple: do not use UCM.

ClearCase was, and 20 years after its conception, still is a revolutionary product.
Being revolutionary, it took the risk of showing a different path: putting SCM
upside down and making information emerge from relationships audited at build
time, instead of low down from intentions expressed at design time. In its attempt
to conquer the wide hence proitable market of PC-based software development,
Rational, and then IBM, refocused the ClearCase product away from its avant-
garde concerns back into the traditional mainstream. It is not that the problems
that ClearCase was meant to tackle would have been solved, quite on the contrary:
the mainstream chose to ignore them to bury them under more luffy activity,
bureaucracy, and colorful reports. It is a fallacy to pretend that this shift could
happen without penalizing the idiosyncratic ClearCase. For 10 years, we have been
waiting for a resolution of the conlicts. It is time now to admit that the chasm can
only get wider.

Our conclusion could seem to be a very negative view of ClearCase if it wasn't
balanced with all the useful and promising functionality we have found in
ClearCase, and which we have described at length in this book. In this context,
our advice is only the most effective one we may deliver.

ClearCase Future
We tried hard in this book to be practical, to show the code as the Open Source
precept mandates. We wish our reader will indulge us now the right to draw some
more abstract, more theoretical conclusions, but bear with us until the end: we'll
drive back to practical proposals.

There are good reasons to feel concerned with the future of ClearCase.
As we saw, there are reasons as well to believe that ClearCase has still much to
contribute to SCM, which itself has by far not got the attention it deserves in today's
software development. So, in short, what place may ClearCase have in the future;
does it even have any?

This question is a natural, and a dificult one, for people having already invested in
ClearCase, or thinking of acquiring competences in SCM.

It is commonplace to read extremely negative comments on ClearCase, especially in
Open Source contexts.

We'll consider ClearCase from three points of view—of IBM, of software engineering
at large, and of the Open Source. Then we'll draw our conclusions, and offer an
agenda to our readers.

ClearCase Future

[318]

ClearCase and IBM/Rational
With UCM, Rational and IBM drove ClearCase into a dead end.

Delivering back to an integration stream has only disadvantages, compared to
delivering in-place by moving (or applying) delivery labels, in terms of (not coming
back to developing each of these points) the following:

Performance

Safety/robustness

Reversibility

Support for collaboration over MultiSite

Promotion of derived objects

This idea was a non-idea, based on an accident of history: version control systems
irst had one single stream with successive versions, before they were used for
collaboration, and had to support parallel development. Version control grew
from a personal backup instead of from a communications tool.

Merging back came naturally as a way to piggyback the new functionality as an
extension to existing systems. It should be obvious that it brings back all the problems
that branching off helped to solve.

Deliver by merging back is not the only reactionary idea in UCM. Another idea is to
solve problems with speciic instead of generic solutions (a Copernican revolution in
reverse): hence the concepts of project and of component, in addition to that of element,
whereas the concept of derived object offered an elegant and generic way to bring
structure into software conigurations.

A last reproach we'll do to UCM concerns its focus on control instead of on
management. Or taking the word Brian White uses in his presentation of UCM,
Software Coniguration Management Strategies and Rational ClearCase—on enforcement,
which he deines as follows (2.1.3, p 21, in the irst edition): enforcement is a proactive
control that disallows changes unless certain conditions are met. The two approaches are
opposite: do (only) what you control, instead of manage what you do. Control is invasive,
and ultimately counterproductive: people will keep doing what one intended to
prevent, but they'll do it underground. At the end of the day, the more you control,
the less you manage. Control cannot of course be completely excluded, but it should
be clear that one ought to control only what one cannot manage.

•
•
•
•
•

Conclusion

[319]

We explicitly recommended to stay away from a major part of the ClearCase
functionality, but it must be noted that IBM recommends in practice to abandon
an equally large part of it, the one we value: from clearmake to dynamic views
and MultiSite. This was obvious in the subset selected for ClearCase LT. It is fully
consistent with all recent developments.

IBM recommendations to users are implemented in the integration to Build Forge, in
the CCRC, or the CM API. The new Rational Team Concert, which has been actively
promoted recently, is totally disconnected from ClearCase. Finally, it is striking how
little IBM seems to use ClearCase internally.

ClearCase and the software crisis
Forty years ago there was proclaimed a software crisis. It was the theme of a historical
NATO Software Engineering Conference in 1968, at which Doug McIlroy presented a
paper, Mass produced Software Components, in which he advocated a solution based on
two concepts:

Software components

Software factory

Several factors have since then radically obscured the situation, so that the concern
lost its acuity. The most signiicant is of course the explosion of the Internet, which
on one hand brought in a mass of fresh developers and on the other made the
software market extremely attractive to venture capitalists (with a concern for
"professionalism"—see below). This helped greatly with the implementation of
the concept of software factories. Graphical user interfaces (emphasizing intuition
against reason) and tools developed for the mass market were imposed on
developers as well, which turned them into specialized workers in the most
Taylorist tradition.

The call for software components was also heard; it gave rise to Object Orientation,
and deeply inluenced the development of SCM. Both of them are concerned with
the identiication of items, with the reduction of duplication in the representation of
information, diagnosed as a cause of degradation of the signal per noise ratio, and
with the management of relations between the identiied items. Both of them hold
separation of concerns as a basic principle.

It wasn't understood at once that the concept of software factories could run against
that of components, due to the nature of software. One traded the competence
of hackers against the professionalism of subcontractors, and failed to admit the
difference between production and reproduction.

•
•

ClearCase Future

[320]

We would argue that this led to a dramatic loss of productivity and of quality, only
hidden under the explosion in the amount of software, and that the software crisis
problem was never solved. Software development has been submitted to arbitrary
pseudo-business requirements, which only increased bureaucracy.

The state of the art in terms of parallel development regressed: once well-established
knowledge was lost, and is only being discovered anew, as the failure of naive
technologies (for example, continuous integration) becomes apparent.

We believe that we need to face the facts and hope we will soon again be in a
position to state as Edsger Dijkstra during the 1968 conference:

The general admission of the existence of the software failure in this group of
responsible people is the most refreshing experience I have had in a number of years,
because the admission of shortcomings is the primary condition for improvement.

This is where ClearCase has a role to play.

ClearCase and the Open Source
ClearCase suffered from its being proprietary, and from the commercial strategies of
its successive owners.

These vagaries indeed impacted its users, to the point of raising the question: is it
sensible for a commercial company to be captive from the vendor of its SCM
tool? Doesn't Open Source, or rather Free Software, offer a natural way out of
this dilemma?

The question is interesting, but given the emerging situation we described in the
previous section, such a rational thinking is eclipsed by more mundane and
short-sighted concerns (saving at all costs): since there exist gratuitous alternatives,
who will still pay for SCM products?

Both Free Software and Open Source are, if not trademarks, at least clearly identiied
keywords. The historical distinction between them is however only marginally
relevant from an SCM point of view. We base our distinction not so much on
licensing terms, but on the practical manageability of changes, which is not granted
by simply publishing the sources: Java and Subversion are examples among others,
of products, the source code of which is publicly available, yet are tightly and
effectively controlled. Far from us to consider that the focus of Open Source (as
the name says it) on intellectual property issues was not valid (and the existence of
patents on certain aspects of ClearCase is there to remind us of it) but there are
other ways to close software than restricting access to the sources. In these two
examples: respectively the complexity of the build environment, and the control

Conclusion

[321]

of the integration tree. Let's however not focus exceedingly on speculations about the
intentions of the vendor/owner: what closes the product is the lack of manageability
from the potential contributor's point of view, unable to test the integration of her
changes, which at best she may hand to a dedicated committer.

We develop below (as a wrap-up of a theme already covered in this book) on the
inadequacy of focusing SCM on sources.

The Open Source has, at least as much as commercial software, been impacted by the
resurgence of the software crisis. SCM concerns were completely obliterated by the
frenzy of the irst years, and left to historical tools, tied to the original version control
paradigm. The recent years have seen the birth of a plethora of candidate successors,
unfortunately mostly targeted at offering GUIs and hiding the disturbing complexity
of builds behind template processing, thus turning it into complete chaos (from
the point of view of an end user who would like to analyze the results beyond the
surface presented by the GUI: What was kept, what is new? If something was shared,
whom is it shared with? And so on).

The burning SCM challenge, in the context of free software, is to allow everyone,
and not only a mythical administrator, to manage the contributions of others, which
constitute the main source of complexity. Managing in this context means in practice
ignore safely: how to eficiently spot in the mass of contributions the ones having
enough value with respect to one's own, for one to invest time to review them in
detail and to ensure convergence with them. The easy part there is the traditional
merge-build-test; and the hard one is communicating the result to others in a way
which saves their time: we are back here to the techniques shown in our Teaser!

One thing free software has achieved (beyond freeing maintenance from the
ties to an original vendor) is to supersede the concept of standards. The most
convincing example is obviously the victory of TCP-IP over the OSI 7-layer model
of telecommunications. The case of the GNU tools, and irst of all of gcc, the GNU C
compiler, which was instrumental in making Linux possible, is almost as compelling.
We have been using for our tools, our experiments, and our proof-of-concept
developments, the architecture based on CPAN ClearCase::Argv and
ClearCase::Wrapper. In the advent in which we'd have to leave the home of
ClearCase, the most promising platform towards which to target our porting
efforts seems today to be git, maybe with Audited Objects (mentioned in Chapter 12,
Challenges) as the key build management tool.

http://search.cpan.org/perldoc?ClearCase::Argv
http://search.cpan.org/perldoc?ClearCase::Wrapper

ClearCase Future

[322]

ClearCase is dead, long live ClearCase!
We highlighted functions of ClearCase that we consider essential, although they are
commonly overlooked.

In fact, precisely they build up the revolutionary aspect of ClearCase which, it has to
be said, escaped even its authors.

The crux is the winkin functionality of the clearmake build tool. It was designed for
performance, without anticipation that it might in fact provide a way to uniquely
identify, under the control of the tool, the derived objects.

There is no point in identifying transient and private artifacts, but winkin
promotes derived objects to a shared status, so that their lifetime expands and their
identiication suddenly makes sense: it allows users to compare results produced
in similar yet slightly different contexts, by developers possibly not aware of
one another.

Identiication is the most fundamental function of SCM, and traditionally, it could
only be based on the source iles (the only —relatively— stable artifacts). What the
whole SCM community overlooked was the possibility offered by the clearmake
mechanism to base identiication on the real valuable assets (the deliverables, mostly
the executable ones), and thus to put SCM back on its feet: upside-down!

The reversal of perspective is complete if one accepts the idea that the derived object
in ClearCase is a better prototypical match for the abstract concept of coniguration
item than the source ile. ClearCase uses a different scheme to identify derived
objects and "source iles" (versioned elements), but which scheme is in use doesn't
matter once it takes the responsibility for the identiication: the idea of basing the
version identiication onto a numbered position on a branch is sometimes simply
inadequate. This becomes apparent (for a practical example) in a corner case of the
use of the synctree tool: using the -vreuse option (in conjunction with the -label
one); refer to the Import section of Chapter 8, Tools Maintenance. This option attempts
to avoid creating a new version, by shopping for an existing and suitable one, to
which it merely applies a label of the provided type. Here, the exact branch and
version number are irrelevant: all the version tree is considered as a pool. One ought
to recognize here the logic of winkin, normally used for derived objects, but now in
the context of importing an external "source ile" hierarchy.

http://search.cpan.org/perldoc?ClearCase::SyncTree

Conclusion

[323]

The legacy of ClearCase
Software development involves a chain of processes from editing sources to
producing deliverables that can be distributed, installed, and eventually run.
Traditional management systems are based on version control. ClearCase on the
contrary, is based instead on build management, which is largely ignored by the
competition, as well as by the UCM extension. In the traditional view, build
management is only the production of software artifacts, which nobody attempts
to manage directly, only relying on a cookbook approach. ClearCase, and precisely
clearmake, makes it possible instead to focus on reproducing as much as possible
conigurations contributed by others, so as to make differences emerge in the context
of a clearly supported (identiied) stability.

This is in short what needs to be retained of ClearCase, into what we could term as
ClearCase HT to escape the misleading base ClearCase. In a conservative way, which
might be proven wrong, this compound functionality encompasses the build tool,
clearmake, dynamic views (in order to support referential transparency in the build
scripts and documents), and MultiSite (in order to guarantee that all synchronous
interactions audited in the build transaction only involve a local server).

Some errors to avoid, or the limits of ClearCase
User errors are always grounded somewhere. It should always be easier, cheaper,
and safer for the user to do the right thing, than to ind a workaround for it.
Often, the most stupid processes start with a good idea, or a reasonable concern;
it is extrapolating (scaling) it that leads to the problems. So, it is worth trying to
understand the motivation behind the requests, instead of just (or in addition to)
granting them.

The implementation of the software factory brought in weak professionals. A
culture of impatience with irresolution (quoting the TV producer David Milch, himself
quoted by Dan Meyer in a TED talk), which encouraged intuition, implicitly blaming
people for not understanding at once, and discouraging them from spending time to
reason. A culture welcoming magic and, confusing responsibility with guilt, favoring
dumping part of one's job on others, over exerting one's own freedom. There are
certainly no silver bullets to cure this situation, but the resolution should be to
educate the users out of this hole, not to help administrators to keep them in it.

http://www.ted.com/talks/dan_meyer_math_curriculum_makeover.html

ClearCase Future

[324]

Why many users despise ClearCase conig specs? Because conig specs are needlessly
complex (too feature rich syntax), because they are not versioned, so that the changes
are hard to revert.

Why do people pack information into names? Because they don't know how to get
it from elsewhere, for example, from comments, or better from named attributes.
The -fmt option is very powerful, but not obvious to ind. Besides, comments
may be multi-line, which is poorly supported (you feel it like a punishment when
the comment contained 500 lines of useless text). This certainly applies to many
names within ClearCase, from types to replicas, and thus appeals for different
enhancements.

Users want to send changes by mail. Why is it so? We would tend to reply:
impatience, with a reference to the quote, earlier in this chapter, but we cannot
stop there for several reasons. First, impatience is not necessarily a bad thing, at
least according to Perl philosophy, which makes it a virtue. The difference is subtle
between solving problems, and getting rid of problems. We'll try now to focus on
the next point, the point which might be blamed on ClearCase. Before we do so,
however, we have to clear up several issues which make the problems harder to
identify and to solve, yet, we shall argue, do not cause them.

These issues are ones we dealt with at length in this book. Let's mention them
briely once again.

As we explained already in Chapter 11, MultiSite Administration, the off-the-shelf
setup of ClearCase MultiSite does not scale. One-to-all synchronization very soon
causes trafic jams among the sync packets, making the actual problems (missing
packets) dificult to locate and long to solve.

In addition, development practices based on the centralized integration branch
concept, aggravated with extensive needs to move masterships between the sites,
ruin the whole idea of distributed development (as exempliied by the infamous
posted deliveries of UCM). We showed in Chapter 11 how to use smart MultiSite hubs,
and truly distributed processes to decouple and decentralize development.

At the bottom, we however identify a conlict between two levels of synchronization:
the user wants to (synchronously) solve her problem at hand, across several sites,
whereas MultiSite replication tends to impose some other synchronization (or
serialization, which is the same thing: strict ordering of events) at a vob level:
exporting and shipping changes implies successfully processing all the previous
changes pertaining to the same vob. This results in the fact that merely letting the
user run an export job via the scheduler (which certainly is an option) would be
unlikely to satisfy her (or the system administrator, because it would raise the
overall load).

Conclusion

[325]

The problem here, in our opinion, is a missed opportunity to manage the changes,
instead of once again, merely controlling them. This time, management takes the name
of laziness (another Perl virtue, now opposed to ClearCase eagerness to synchronize
events beyond the ones directly interesting the user). We do not want to design here
a solution to this problem, only to sketch a direction for a development which might
be beyond what may be implemented on top of ClearCase: database requirements
are maybe too close to the surface. As one cannot prevent the user from sending
changes by mail, the system ought to support delivering them with equal or superior
convenience in a way not detrimental to others. Laziness in this context might mean
offering a way to accept temporary inconsistencies, with the promise of resolving
them later (for example, when the actual sync packets are inally imported).

Laziness would by the way also apply to the case of re-conciliating equivalent derived
objects (see the Removing derived objects section from Chapter 3, Build Auditing and
Avoidance).

Being proprietary, ClearCase has closed itself from other tools. There is a lack of
conversion tools to other systems, and especially of tools helping to keep in sync
with non-ClearCase repositories (needed, for example, with partners not necessarily
using ClearCase), a lack of a standard replication protocol. ClearCase is paying now
for its isolation.

Let's work together
We showed in the book that there is a great deal of power to develop ClearCase
with or without support from the vendor, by using Perl and an architecture based
on CPAN modules and culminating in wrappers. This allows the community of
users, irst to survive the end of the development we witness every day, but also to
experiment and design the next generation Software Coniguration Management,
which should be based on the breakthrough ClearCase once brought in. This is not
only an opportunity for ClearCase experts, but a key to bridge the current gap in
software development at large. A challenge to which we invite our readers, and
which we wish could involve IBM.

Appendix

Chapter 1
http://neuroeconomics-summerschool.stanford.edu/pdf/KAHNEMAN1.pdf (p 15)
http://search.cpan.org/perldoc?ClearCase::CtCmd (p 19)
http://search.cpan.org/perldoc?C learCase::Wrapper::MGi (p 22)
http:// search.cpan.org/perldoc?ClearCase::Wrapper (p 22)

Chapter 2
http://www.vestasys.org (p 30)
http://sourceforge.net/projects/audited-objects (p 30)
http://www.ibm.com/support/docview.wss?uid=swg21147041 (p 39)

Chapter 3
http://miller.emu.id.au/pmiller/books/rmch (p 53)
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m0/topic/com.ibm.

rational.clearcase.hlp.doc/cc_main/toc_hlpovw_build_sw.htm (p 54)

Chapter 4
http://search.cpan.org/perldoc?ClearCase::Wrapper (p 90, 104)
http://search.cpan.org/perldoc?ClearCase::Wrapper::DSB (p 90)

Appendix

[328]

Chapter 6
http://search.cpan.org/perldoc?ClearCase::Wrapper::MGi (p 132, 138)

Chapter 7
https://publib.boulder.ibm.com/infocenter/cchelp/v7r0m0/index.
jsp?topic=/com.ibm.rational.clearcase.tutorial.doc/a_trivial_

nontrivial.htm (p 151)
http://search.cpan.org/perldoc?ClearCase::Wrapper::MGi (p 162)
http://search.cpan.org/perldoc?ClearCase::SyncTree (p 168)

Chapter 8
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m0/index.
jsp?topic=/com.ibm.rational.clearcase.books.cc_build_unix.doc/

clearcase_build_concepts.htm#wq15 (p 171)
https://www.ibm.com/support/docview.wss?uid=swg21386111 (p 173)
http://search.cpan.org/perldoc?ClearCase::SyncTree (p 177)
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6189256 (p 190)

Chapter 9
http://www.ibm.com/developerworks/rational/library/4311.html (p 195)
http://search.cpan.org/perldoc?ClearCase::Argv (p 200)
http://search.cpan.org/perldoc?ClearCase::Wrapper::MGi (pp 203, 206)
http://search.cpan.org/perldoc?ClearCase::Wrapper (p 204)
http://www.ibm.com/support/docview.wss?uid=swg27009697&aid=1 (p 210)
http://search.cpan.org/perldoc?synctree (p 210)

Chapter 10
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m0/index.

jsp?topic=/com.ibm.rational.clearcase.books.cc_admin.doc/cc_admin.htm
(p 218)
http://www-947.ibm.com/support/entry/portal/Overview/Software/

Rational/Rational_ClearCase (p 218)
http://www.ibm.com/support/docview.wss?uid=swg21126456 (p 234)
http://www.ibm.com/support/docview.wss?uid=swg21285812 (p 234)
http://search.cpan.org/perldoc?ClearCase::Argv (pp 239, 248, 249)
http://search.cpan.org/perldoc?ClearCase::Wrapper (p 240)

Appendix

[329]

http://www.ibm.com/developerworks/rational/library/07/0703_nellis/

index.html (p 247)
http://www.ibm.com/support/docview.wss?uid=swg1PK53029 (p 252)
http://www.ibm.com/support/docview.wss?uid=swg21211784 (p 254)

Chapter 11
http://code.google.com/p/clearcase-cpan/source/browse/branches/mg/

msite/sync_receive_hub.bat (p 265)
http://code.google.com/p/clearcase-cpan/source/browse/branches/mg/

msite/repoch (p 268)

Chapter 12
http://audited-objects.sourceforge.net/ (p 293)

Chapter 13
http://search.cpan.org/perldoc?ClearCase::Wrapper::MGi (p 304)
http://search.cpan.org/perldoc?ClearCase::CtCmd (p 315)

Conclusion
http://search.cpan.org/perldoc?ClearCase::Argv (p 321)
http://search.cpan.org/perldoc?ClearCase::Wrapper (p 321)
http://www.ted.com/talks/dan_meyer_math_curriculum_makeover.html (p 323)

Index

Symbols

$(LDIR) macros 59
$(LIB) 55
$(LNAM) macros 59
%c pattern 199
$(PGM) 63
* character 45
-/ipc=1 239
-abort lag 166
-actual options

chepoch 260
lsepoch 260

-all case 262
-C gnu option 52
-chmod option 253
-ci 91
-compress switch! 265
-c option 86
-cr option 87, 119
-default handler 267
-d lag 42
–del option 148
-dir option 96
-eltype option 91
-exec option 167
-fmt option 99, 199, 324
-foo tag 220
-from option 92
-ftag 166
-global lag 115
-gmerge lag 166
-identical lag 93
-inquire command 111
-J lag 84
-lc standard 54

-local lag 115
-long lag 82
-master option 134
-merge option 148
-nco lag 105
-nco option 91
-ndata lag 155
-ngpath lag 221
-obs 194
-obs lag 140
-obsolete lag 140
-obsolete option 299
-o lag 54
-out option 92
-pbranch option 125
-pre/decessor option 104
-print option 167
-ptime (preserve time) checkin option 284
-qall lag 148
-recurse option 90
-rep lag 140
-replace lag 128
-reuse option 238
-revert lag 93
-root option 253
-server -d 279
-s lag 100
-shared lag 54
-shared option 203
-stg -auto option 39
-sync option 96
-type f 70
-u (unconditional) 74
-update option 232
-V lag 302
-vob option 96

[332]

-vreuse option 238, 322
-vreuse options 236
.dep ile 284
.JAVAC special target 284
.JAVAC support

about 291
clearmake 284-287

.JAVAC target 286

.MAKEFILES_IN_CONFIG_REC 55
/rootdir/vobstg/myvob.vbs vob storage

directory 32
/view 33
/vob/myvob 32
@@ 35
@@/main/CHECKEDOUT extension 86

A

aa sub-branch 198
administration, approaches

bottom-up approach 217
top-down proactive approach 217

admin vobs
and global types 115-117

albd_list command 110
ALBD account, bottom-up approach

issues 246, 247
albd port 226
albd service 225
aldb_list 31
all.tests conig record 51
all target dependency 63
analysis 69-72
ANN_BUGFIX label application 138
annotate tool 104
Ant 292, 293
ant_ccase man page 292
Apache integration, top-down approach 243
asynchrony 257
attributes 78, 203-205
authentication, top-down approach 234

B

backup, top-down approach 231, 232
base ClearCase 27
BldDir attribute type 274

bldhost ile 85
block rules 46
bottom-up approach

about 217, 246
ALBD account, issues 246, 247
dbid 248-250
ix_prot 250-254
lost+found directory, cleaning 254-256
protectvob 250-254
Raima database 248-250
type manager, changing 248
vob_sidwalk 250-254
vobs, protecting 250-254

br1 branch 124
branches

about 125, 132, 134
archiving 137, 138
creating 112, 113
delivery 135-137
peculiarities 134
rollback 138

branch types 132-134
build

reproducing 76-79
build.tag iles 64
bulk merges 165, 167

C

catcr -check 70
catcr -union -check 74, 103
catcr -union -check consistency test 86
catcr -union -check tool 75
CC 55
CCASE_HOST_TYPE 82
CFLAGS 55
CFLAGS variable 56
checked in to tools 92
checkin 197
checking out 92
checkin tool 87
checkvob command 117
chepoch, -actual option 260
chepoch command 270
chmod command 254
chown command 254
chroot system 33

[333]

chtype command 208
chview tool 40
cient side (remote host) 268, 269
clearaudit

vs. clearmake 50, 51
ClearCase

about 102
and IBM/Rational 318
and open source 320, 321
and software crisis 319, 320
auditing, winkin 30, 31
conig specs (coniguration speciication)

42-46
legacy 323
limitations 323, 324
main concepts 31
originality 29
third-party tools managing, need for 170
Versioned Object Base (VOB) 32
versioning, mechanism 35-38
views 33-35
views, properties 38-40
virtual ile system 29

ClearCase::Wrapper 90
ClearCase::Wrapper::DSB 90
ClearCase::Wrapper::MGi CPAN module 99
ClearCase::Wrapper, top-down approach

240
ClearCase, top-down approach

iles, importing to 235
installation, tricks 246

ClearCase documentation 24-26
ClearCase integration, top-down approach

243
ClearCase man pages 24
ClearCase MultiSite

about 108, 109, 293
Buckminster 294
git 294
Maven 294
Mercurial 294

ClearCase objects
metadata 193
mvfs objects 193

ClearCase Remote Client (CCRC) 314
ClearCase scheduler

setting up, on shipping server 268

ClearCase scheduler functionality 267
clearcase startup script 262
ClearCase Web Interface 314
cleardiff 146
clearfsimport 91
clearmake

.JAVAC support 284-287
about 53-57
vs. clearaudit 50, 51

clearmake -u command 75
cleartool 109
cleartool apropos 25
cleartool commands 167
cleartool diff 104
cleartool diff command 104
cleartool getlog command 111, 230
cleartool lock -obsolete command 140
cleartool lock command 140
cleartool lstype command 140
cleartool mktag command 221
cleartool protectvob command 250
cleartool recoverview command 96
cleartool relocate command 236
cleartool sched command 268
client activity, top-down approach

monitoring 223, 224
CM API 315
CM Crossroads ClearCase Forum

URL 26
CM Crossroads Wiki

URL 26
comments 199, 200
complex branching patterns 161
compressed_ile type 212
conig record 9
conig specs (coniguration speciication) 33

* character 45
-d lag 42
about 42
block rules 46
commands 43
default conig spec 43
editing 45
example 43
loating labels 46
include rule 45
main branch 43

[334]

scope patterns 45
time clauses 46

Coniguration Management (CM) 28
coniguration records

about 49
clearaudit vs. clearmake 50, 51
clearmake, irst case 53-55
dependencies, multiple evaluation 64-68
lat records 50, 51
hierarchical records 50, 51
makeiles, recording 57, 58
Makeile syntaxes 52
remote dependencies 61-64
remote subsystems, using 59

containers 34
contributions

managing 147-155
ct catcr -union -check tool 68
ct chview command 38
ct des -local report 116
ct des -l vob: command 243
ct ind command 199
ct lsclients utility 223
ct mkbranch command 124
ct mkview command 39
ct mv command 32
ct rmview -uuid command 243
ct space -vob command 232

D

db_server 32
dbid, bottom-up approach 248-250
dbid ield 249
de facto standard 42
default.magic 209
default conig spec 43
dependencies

multiple evaluation 64-68
dependency control 170
derived objects

about 30, 70
removing 73, 74
state 72, 73

describe command 82, 276
diff 10

diff tool 28, 104
directories

merging 156-159
directory elements 70
directory versioning 93
DISPLAY variable 196
distributed builds 82, 84
distribution model 108
dynamic view 30

E

Eclipse 295
eclipsing 103
ediff-buffers function 145
ed line editor scripts 28
elements

making 90, 91
element types

about 208
magic iles 208, 209

END block 100, 224
epochs 109
error reports 69-72
evil twins 101, 168
export 262
express builds 302

F

ile1 element 97
iles

removing 96
ind command 96, 167, 193, 205
indmerge command 167
ix_prot, bottom-up approach 250-254
lat records 50, 51
lexibility, tools maintenance 175
FLEXlm 42
loating 128
loating labels 46
fmt_ccase man page 99
FOO label 204
FStack$Enumerator.class class 288
FStack$Enumerator.class name 285
FStack class 287, 288
fversion option 166

[335]

G

getlog mechanism 269
GlobalDeinition type 207
global time 108
global types

and admin vobs 115-117
graphical option (-g) 98
grepcr 71
grepcr prints derived objects 71
grep one 200
GUI

versus text mode 22-24

H

hard links 101
hierarchical records 50, 51
home merge 160, 161
hub function 262
hyperlinks 77, 205-208

I

IBM/Rational
and ClearCase 318

IBM Rational ClearCase forum
URL 26

illustrations 16
implicit artifacts 30
import 264-266
in-place 29
include rule 45
incremental 131
indirect dependencies, tools maintenance

176
initial version (-ci) 91
instances 123-125

J

Java
Ant 292, 293
audited objects 293
XML 292, 293

Java build process
.JAVAC support, in clearmake 284-287
issues 283, 284

javaclasses macro 291
JVALUE parameter 85

L

labels 113, 125
latency 109
LD 55
LD_LIBRARY_PATH environment variable

66
license 41, 42
license, top-down approach

about 219
monitoring 220

License monitoring (non FLEXlm) 220
Litmus test 79-81
ln tool 100
ln tool (link) 100
location broker (albd_server) process 31
location broker, top-down approach

about 225
albd port 226

locking 139-141
long output 101
lost+found directory 93, 94
lost+found directory, bottom-up approach

cleaning 254, 255
ls command 101, 103
lsepoch, -actual option 260
lsgenealogy command 162
lsgen tool 99
lshistory 99, 100
lshistory output 202
lsvtree command 122, 153
LTAGS macro 105

M

Macro deinitions 54
MAGIC_PATH 209
main branch 43
Main class 288
makedir directory element 237
makeile elements 70
makeiles

about 52
recording 57, 58

[336]

mastership dependency
avoiding 111, 112

merge command 160
merge tool 147, 160
merging 143, 145
metadata

about 121
in version extended view 121-123

mkattr event 201
mkbranch 123
mkdir shortcut 90
mkelem -eltype directory 90
mkelem command 90
mklabel 123
mklabel events 202
mklbtype -inc command 204
mklbtype function 206
mkstgloc command 221
mt lspacket command 263
MultiSite

shortcomings 118-120
MultiSite environment 107
MultiSite license 109
MultiSite replication, tools maintenance

177
multitool chmaster command 134
multitool command 109, 258
mvfs (multi-version) ile systems 32

N

native binary types 212, 213
native types

about 211
native binary types 212
text type 213, 214

Network Attached Storage (NAS) 231
N modiier 200
NO_RMELEM 199

O

OBJ 54
open source

and ClearCase 320, 321
oplogs 258
OSGI 295

P

packet_name attribute 264
parallel builds 82-84
parallel development

about 126
baselines 131, 132
conig specs 126-128
ixed labels 128-130
loating 128-130
incremental labels 131, 132

partial 131
patching

about 145
text iles 145-147

pathconv 10
perl

about 18
documentation 19

Perl module 7
PrevInc type 206
printf command 197
protectvob, bottom-up approach 250-254

R

Raima database, bottom-up approach
248-250

Rational ClearCase Automation Library
(CAL) 315

reasoning 15, 16
rebase 160, 161
receipt handler 267
recoverpacket command 270, 273
reference count 72, 73
referential transparency, tools maintenance

174
registry 41, 42
registry, top-down approach

about 220
iles 221
regions 221
regions, synchronization between 221, 222
site_conig 221
storage_path 221
vob_tag.sec 221

remote clients 314

[337]

remote dependencies 61-64
remote region 7
remote subsystems

using 59, 61
rename command 133
rename operations 132
replica 109
replica, top-down approach

re-registering 242
repoch script 268
rm command 96
rmelem (remove element) 95
rmelem command 96, 195
rmelem events 255
rollback of in-place delivery 162-164
ROUTE settings 266
routing 262-264
rules 54

S

scenery
setting up 258, 259

scheduler, top-down approach 228-230
SCM

concept 27
history 28

SCM tool 11, 12
scope patterns 45
scripting 16
scrubbers 200-202
server side (local host) 269, 270
shells 16, 17
shipping 262-264
shipping.conf ile 262
shipping_server mechanism 110
shipping_server program 258, 277
shipping servers 41, 42
skip_ship 265
snapshot functionality 231
snapshot views 299-301
software coniguration 33
software crisis

and ClearCase 319, 320
software engineering, perspectives

Eclipse 295
OSGI 295

virtual machines 296
sparse 131
staging

about 85
reasons 86

STAT macro 62
stddefs.mk component 56
stderr=>0 249
storage, top-down approach 231
Storage Area Network (SAN) 231
storage pools 34
sync_export_list, perl script 258
sync_export_list -poll 267
sync_export_list_hub script 266
sync_export_list ile 258
sync_export_list script 262-265
sync_export error 275
sync_receive 258, 267
sync_receive, perl script 258
sync_receive ile 258
synchronization 108
syncmgr_server program 258
sync packet 111
synctree, top-down approach

importing with 238, 239
synctree tool 322

T

tag conig record 50
teaser 7
terminal 16
text 16
text_ile version 93
text mode

versus GUI 22-24
text type 213, 214
time clauses 46
tool, installation in vob

conig specs 189
CPAN modules, importing 178-181
distribution, upgrading 182
import 185
import, issues 186
import, minor checks 185
Java 1.4.2_05 on Linux 190
labels 189

[338]

licenses 188
multiple platforms 189
MultiSite, and binary elements 189
naming, issues 190
operating system 186, 187
perl, installation 178
Perl distribution, installing 181, 182
phases 177
shared libraries 187, 188
steps 183-185

tool ixes, tools maintenance 176
tools maintenance

dependency control 170
lexibility 175
indirect dependencies 176
MultiSite replication 177
referential transparency 174, 175
safety, with updates 171, 174
tool, ixes 176

top-down approach
about 217, 218
Apache integration 243-245
authentication 234
ClearCase::Wrapper 240
ClearCase, installation tricks 246
ClearCase. iles importing to 235
ClearCase integration 243, 245
client activity, monitoring 223, 224
license, monitoring 220
license and registry 219
location broker 225, 226
regions, registry 221
regions, synchronizing between 221, 222
registry 220
remote monitoring infrastructure 227
replica, re-registering 242
scheduler 228-230
site_conig, registry 221
storage_path, registry 221
storage and backup 231, 232
synctree, importing with 238, 239
views cleanup 242
vob, copying 240
vob, copying by replication 241, 242
vob, relocating 236-238
vob_tag.sec, registry 221
vob size 232-234

vob storage, moving 240
TRACE_SUBSYS 279
triggers

about 194, 298, 299
CHECK_COMMENT 196, 197
NO_RMELEM 195, 196
REMOVE_EMPTY_BRANCH 197-199

troubleshooting
about 270
ClearCase MultiSite shipping, issues

277-280
export, failures 275, 276
exports, history 272, 273
missing oplogs 270-272

trtype 194
type manager, bottom-up approach

changing 248
type managers 208
types 123-125

U

UCM
about 302-306
ClearCase 313
components 307
issues 309

umask 39
unlock command 140
unreserve command 106
user deined types

about 210
new type manager 210, 211
type, without new manager 210

V

validation 68
version extended path 35
version extended syntax 97
version extended view

metadata in 121-123
versioning mechanism, ClearCase 35-38
version tree 98
view_server 32
view extended path 35
view properties, ClearCase 38-41

[339]

views
and vobs, ties 82

views cleanup, top-down approach 242, 243
VOB (Versioned Object Base)

about 32
db_server 32
view_server 32
vob_server 32
vobrpc_server 32

vob, top-down approach
copying 240
copying, by replication 241, 242
relocating 236-238

vob/myvob tag 32
vob_scrubber 200
vob_scrubber log 202
vob_server 32
vob_sidwalk, bottom-up approach 250-254
vob_sidwalk command 252
VobPathConv.pm module 51
vobrpc_server 32
vobs

and views, ties 82
vobs, bottom-up approach

protecting 250-254

vob size, top-down approach 232-234
vob storage, top-down approach

moving 240
vob tag 7

W

web access 314
Windows cmd

coniguring 20
example 20

winkin command 53, 73
winkin functionality 322
winks in 30

X

xmerge 145
XML 292, 293

Z

z_whole_copy 212

Thank you for buying
IBM Rational ClearCase 7.0: Master the Tools That

Monitor, Analyze, and Manage Software Configurations

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more speciic and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it irst before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Application Development for IBM

WebSphere Process Server 7 and

Enterprise Service Bus 7
ISBN: 978-1-847198-28-0 Paperback: 548 pages

Build SOA-based lexible, economical, and eficient
applications

1. Develop SOA applications using the
WebSphere Process Server (WPS) and
WebSphere Enterprise Service Bus (WESB)

2. Analyze business requirements and rationalize
your thoughts to see if an SOA approach is
appropriate for your project

3. Quickly build an SOA-based Order
Management application by using some
fundamental concepts and functions of WPS
and WESB

IBM Rational Team Concert 2

Essentials
ISBN: 978-1-84968-160-5 Paperback: 308 pages

Improve team productivity with Integrated Processes,
Planning, and Collaboration using Team Concert
Enterprise Edition

1. Understand the core features and techniques
of Rational Team Concert and Jazz platform
through a real-world Book Manager
Application

2. Expand your knowledge of software
development challenges and ind out how
Rational Team Concert solves your tech, team,
and collaboration worries

3. Complete overview and understanding of the
Jazz Platform, Rational Team Concert, and
other products built on the Jazz Platform

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Teaser
	But first the scenario
	Time to review the exhibited functionality?

	Chapter 1: Using the command line
	Rationale (pun intended)
	Against intuition
	The continuity of reasoning
	Illustrations

	Text, shell, and terminal
	Perl
	Perl documentation

	Windows command prompt and alternatives
	GUI versus text mode
	ClearCase documentation
	Summary

	Chapter 2: Presentation of ClearCase
	SCM history
	ClearCase originality
	Virtual file system
	Auditing, winkin

	The main concepts
	Vobs and views
	Deeper into views
	Versioning mechanism
	Views properties

	Registry, License, and even Shipping servers
	Config specs

	Summary

	Chapter 3: Build Auditing and Avoidance
	Configuration records
	Flat or hierarchical: clearaudit vs. clearmake
	Makefile syntaxes—compatibility modes
	A first case with clearmake
	Recording the makefiles
	Using remote subsystems
	Remote dependencies
	Multiple evaluation of dependencies

	Validation
	Error reports and their analysis
	State of derived objects and reference count
	Removing derived objects
	Dependencies on the environment and on tools
	Reproducing the build
	Litmus test

	Tying some knots
	Ties between vobs and views
	Distributed or parallel builds
	Staging
	Application to other tasks than mere builds

	Summary

	Chapter 4: Version Control
	Making elements
	Checkout and checkin
	Versioned directories
	lost+found
	Removing files
	Looking at the view extended side of things
	Version tree
	Recovering files
	Hard links
	Evil twins
	Eclipsed files
	Writable copies

	Differences and annotations
	Misguided critiques
	Summary

	Chapter 5: MultiSite Concerns
	Distribution model
	Multitool, and MultiSite Licenses

	Replicas and mastership
	Avoid depending on mastership
	Branches
	Labels
	Other types

	Global types and admin vobs
	Shortcomings of MultiSite
	Summary

	Chapter 6: Primary Metadata
	Metadata in the version extended view
	Types and instances
	Labels or branches?
	Parallel development
	Config specs
	Floating and fixed labels
	Baselines and incremental labels

	Branches and branch types
	Delivery
	Archiving
	Rollback

	Use of locking
	Types as handles for information
	Summary—wrapping up of recommended conventions

	Chapter 7: Merging
	Patching and merging
	Patching text files

	Managing contributions
	Merging directories
	Rebase or home merge
	Complex branching patterns
	Rollback of in-place delivery
	Bulk merges
	Evil twins
	Summary—wrapping up

	Chapter 8: Tools Maintenance
	Why?
	Dependency control
	Safety with updates
	Explicitly declare tools as dependencies?
	ClearCase has better to offer!

	Referential transparency
	Flexibility
	Tool fixes
	Indirect dependencies
	MultiSite replication

	How?
	Example—perl installation under a ClearCase vob, with multi-platform support
	Importing CPAN modules
	Installing the Perl distribution
	Upgrading the distribution

	Installation
	Import
	Minor checks prior to importing
	Branching and labeling
	Issues during the import

	Operating system
	Shared libraries
	Licenses
	MultiSite and binary elements
	Labels, config specs, and multiple platforms
	Special cases: Java 1.4.2_05 on Linux
	Naming issues: acquisitions, splits, mergers

	Summary

	Chapter 9: Secondary Metadata
	Triggers
	NO_RMELEM
	CHECK_COMMENT
	REMOVE_EMPTY_BRANCH

	Comments
	Scrubbers
	Attributes
	Hyperlinks
	Type managers and element types
	The magic files
	User defined types
	Type without a new manager
	New type manager

	Native types
	Binary types
	Text type

	Summary

	Chapter 10: Administrative Concerns
	Top-down
	License and registry
	Synchronization between regions

	Monitoring client activity
	Location broker
	Remote monitoring infrastructure
	Scheduler
	Storage and backup
	Vob size
	Authentication
	Importing files to ClearCase
	Even UCM has to use Perl

	Relocating
	Importing with synctree
	ClearCase::Wrapper

	Copying a vob
	Moving vob storage
	Copying vob by replication
	Re-registering a replica

	Views cleanup
	ClearCase and Apache integration
	Installation tricks

	Bottom-up
	ALBD account problems
	Changing the type manager
	dbid and the Raima database
	Protecting vobs: protectvob, vob_sidwalk, fix_prot
	Cleaning lost+found

	Summary

	Chapter 11: MultiSite Administration
	Setting up the scenery
	Permissions preserving
	Connectivity

	Configuration
	Export
	Shipping/routing
	Import
	Receipt handler
	Shipping server
	Setting up the scheduler on a shipping server

	Monitoring
	Client side (remote host)
	Server side (local host)

	Troubleshooting
	Missing oplogs
	History of exports
	Consequences of replicas being out of sync
	Export failures
	Incompatibility between ClearCase releases
	MultiSite shipping problems—a tricky case

	Summary

	Chapter 12: Challenges
	Java
	Problems with the Java build process
	.JAVAC support in clearmake
	Ant and XML
	Audited Objects

	MultiSite
	Maven, and Buckminster
	Mercurial and git

	Perspectives in Software Engineering
	Eclipse and OSGI
	Virtual machines

	Conclusion

	Chapter 13: The Recent Years' Development
	Historical perspective
	Triggers
	Snapshot views
	Express builds
	UCM
	Web access and remote clients
	CM API
	Summary

	Conclusion: ClearCase Future
	ClearCase is dead, long live ClearCase!
	The legacy of ClearCase
	Some errors to avoid, or the limits of ClearCase

	Appendix
	Chapter 1:
	Chapter 2:
	Chapter 3:
	Chapter 4:
	Chapter 6:
	Chapter 7:
	Chapter 8:
	Chapter 9:
	Chapter 10:
	Chapter 11:
	Chapter 12:
	Chapter 13:
	Conclusion:

	Index

