
www.allitebooks.com

http://www.allitebooks.org


Instant  
RSpec Test-Driven 
Development How-to

Learn RSpec and redefine your approach towards  
software development

Charles Feduke

   BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Instant RSpec Test-Driven Development 
How-to

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,  
or transmitted in any form or by any means, without the prior written permission of the 
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly  
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the  
companies and products mentioned in this book by the appropriate use of capitals.  
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1190613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-522-4

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org


Credits

Author
Charles Feduke

Reviewers
Arvind Janakiram

Bhoor Meena (Raj)

Nola Stowe

Acquisition Editor
Vinay Argekar

Commissioning Editor
Shreerang Deshpande

Technical Editor
Sumedh Patil

Copy Editors
Alfida Paiva

Laxmi Subramanian

Project Coordinator
Joel Goveya

Proofreader
Lawrence A. Herman

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org


About the Author

Charles Feduke began developing software in Perl nearly 2 decades ago. He was trapped 
in the Microsoft platform for far too long and spends his free time these days writing Ruby, 
learning Scala, and wishing he was really serious about writing C during the 90s.

I'd like to thank my wife, Cathleen, for her patience and understanding while 
I embark on my endless parade of technological projects. I would also like  
to thank our daughter, Aleksandra, for keeping us extremely busy.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewers

Arvind Janakiram is a software consultant and a practitioner of the TDD process.  
His experience encompasses a variety of platforms including mobile and the web.  
He has used RSpec effectively in numerous applications in order to deliver high  
value products to his clients.

Bhoor Meena (Raj) has graduated with a bachelor's and master's degree in Computer 
Science from the Indian Institute of Technology, Bombay, one of the best engineering  
colleges in India.

After postgraduation, he joined Rakuten Inc., a leading Japanese e-commerce company,  
as an application engineer, where he has worked on J2EE, Python, and Ruby.

Currently, he holds a Senior Engineer position in the navigation team and is handling 
navigation side development of global e-commerce business websites of the Rakuten  
group, including Rakuten Malaysia, Rakuten Indonesia, and, upcoming, Rakuten Spain,  
with BDD/TDD and agile methodology.

He is also a development partner in an American startup, appointmentcare.com,  
handling business requirements.

www.allitebooks.com

http://www.allitebooks.org


Nola Stowe has been programming since she was 13 years old, starting with a BASIC 
programming book for her TRS-80. A self-proclaimed "code scientist," she seeks the  
best tools for the job and the best solutions. She loves writing tests and using test coverage 
tools to find untested code.

She co-founded DevChix in 2005 when she met a handful of women developers at the 
ChicagoRuby group. The group's purpose is to inspire and promote women in software 
development. Currently, DevChix has over 1300 members all over the world and is  
still growing.

She spends her free time learning other programming languages and writing on her blog, 
http://blog.rubygeek.com. She currently experiments with functional programming 
languages such as Scala. She was a technical reviewer for The Rails Way (first edition).

I'd like to thank my husband, Nick, for doing the mundane things in life 
(cooking, cleaning, shopping, laundry, and so on) so that I can spend time 
on what I love doing, programming!

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your 
book.

Did you know that Packt Publishing offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and 
as a print book customer you are entitled to a discount on the eBook copy. Get in touch with 
us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for 
a range of free newsletters, and receive exclusive discounts and offers on Packt Publishing 
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can access, read and search across Packt Publishing entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt Publishing

 f Copy and paste, print, and bookmark content

 f On demand and accessible via web browser

Free Access for Packt Publishing account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials for 
immediate access.

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Table of Contents
Preface 1
Instant RSpec Test-Driven Development How-to 7

Installing RSpec (Simple) 8
Preparing the RSpec environment (Simple) 10
Refactoring specifications and classes (Simple) 15
Making specs more concise (Intermediate) 16
Handling exceptions (Intermediate) 21
Working with RSpec matchers (Simple) 22
Setting up Rails (Intermediate) 25
Writing ActiveRecord specifications (Intermediate) 26
Testing Rails routes (Intermediate) 30
Testing Rails controllers (Intermediate) 34
Stubbing (Intermediate) 39
Mocking (Intermediate) 41
Working with JSON (Intermediate) 43
Speccing file uploads (Advanced) 47
Integration testing with Capybara (Advanced) 49

www.allitebooks.com

http://www.allitebooks.org




Preface
Welcome to Instant RSpec Test-Driven Development How-to. This short book aims to  
get you productive with RSpec and Test-Driven Development (TDD) as quickly as possible.

Test-Driven Development designs a system from the inside out, beginning with domain 
classes, expanding to controllers, and finally reaching the interface that the customer  
uses to work with the software.

A test-driven system is easier to maintain because the code written is designed from the 
ground up to be testable as small units of logic. Your code—when its design is driven by  
tests—has already been written for reuse (once in its actual execution path and once as  
the subject of tests). As your experience with writing test driven code grows and you increase 
the coverage of your unit tests, your confidence in deploying software that you've written  
will increase remarkably.

What this book covers
Installing RSpec (Simple) gets your environment set up by installing and configuring the  
RSpec gem.

Preparing the RSpec environment (Simple) covers how to start a new Ruby project  and use 
RSpec for the testing frameworks. It also lays the foundation  for the demonstration project 
written to support the rest of this book.

Refactoring specification and classes (Simple) demonstrates the techniques necessary  
to support code changes while maintaining high confidence that the code being changed  
still performs what it needs to.

Making specs more concise (Intermediate) demonstrates idiomatic RSpec code that makes 
good use of the RSpec Domain Specific Language (DSL).

Handling exceptions (Intermediate) covers how to write specifications that handle failure  
and exceptional cases.



Preface

2

Working with RSpec matchers (Simple) demonstrates the various matchers that ship with  
the RSpec library, with code examples and explanations.

Setting up Rails (Intermediate) shows the steps necessary to begin a  new Rails project and 
use RSpec as  the testing framework (instead of Test::Unit).

Writing ActiveRecord specifications (Intermediate) reviews how to install Rails, a popular 
Model View Controller web framework, and how to get started right away writing  
specifications for the model classes necessary to support most web applications.

Testing Rails routes (Intermediate) shows how to write specifications that exercise routes,  
an often overlooked area when it comes to testing Rails applications.

Testing Rails controllers (Intermediate) builds off of where the Writing ActiveRecord 
specifications recipe left off by moving up to the controller level.

Stubbing (Intermediate) shows how to use stubs to simulate your runtime environment at  
test time, ultimately helping you write idiomatic tests that are easy to maintain, fun to write, 
and fast to run.

Mocking (Intermediate) demonstrates the next step up from the Stubbing recipe, where  
the behavior of your mocked objects can be validated.

Working with JSON (Intermediate) teaches you how to use JavaScript Object Notation  
(JSON) with Rails and, more importantly, how to do so with RSpec following a Test-Driven 
Development approach.

Speccing file uploads (Advanced) shows you how to write tests to handle file uploads.

Integration testing with Capybara (Advanced) demonstrates how to use the Capybara 
integration testing framework from within RSpec to verify the behavior of your application  
end-to-end.

What you need for this book
This book was written using RSpec on OS X Mountain Lion with Ruby 1.9.3. The first lesson  
is about getting your environment set up correctly, so you won't need to worry about installing 
RSpec prior to starting.

Because most Ruby applications run primarily on Linux or Unix operating systems, this book 
assumes the reader has access to one such OS for working through the code examples. While 
it is certainly possible to set up a native environment on Windows, I recommend Windows 
users give Oracle's VirtualBox (a free, open source software project that manages and runs 
virtual machines), along with one of the many flavors of Linux, an honest try. Who knows,  
you may thank me for it in the long run!



Preface

3

Who this book is for
This book is for novice or experienced developers seeking to learn how to perform idiomatic 
Test-Driven Development using Ruby and RSpec. Rails experience is not necessary. In fact  
if the reader possesses no preexisting Rails knowledge, he or she may find this book a 
worthwhile primer on getting started with development of Rails applications.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds  
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text are shown as follows: "This Location class isn't terribly useful."

A block of code is set as follows:

describe "Example" do
  subject { { :key1 => "value1", :key2 => "value2" } }
  it "should have a size of 2" do
    subject.size.should == 2
  end
end

Any command-line input or output is written as follows:

$ mkdir spec/lib

$ touch spec/lib/location_spec.rb

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "Clicking on the Next button 
moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.



Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to  
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,  
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing  
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt Publishing book, we have a number of things  
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt Publishing books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book elsewhere,  
you can visit http://www.packtpub.com/support and register to have the files  
e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you would report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on 
the errata submission form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded on our website, or 
added to any list of existing errata, under the Errata section of that title. Any existing errata  
can be viewed by selecting your title from http://www.packtpub.com/support.



Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt 
Publishing, we take the protection of our copyright and licenses very seriously. If you come 
across any illegal copies of our works, in any form, on the Internet, please provide us with the 
location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.





Instant  
RSpec Test-Driven 

Development How-to

Welcome to Instant RSpec Test-Driven Development How-to. This short book aims to get  
you productive with RSpec and Test-Driven Development (TDD) as quickly as possible.

In TDD, we follow a simple but important tenet, which is red, green, refactor. Red represents 
writing test code that exercises code you wish you had and then seeing the test code fail when 
executed. (It gets the name red from a unit testing software that almost always represents 
failing tests with the red color.) Green is the stage in the cycle in which you actually write 
the code to satisfy the test in the simplest possible way. (If you guessed that the unit testing 
software shows passing tests in green, you're right!) Refactor is the final stage, during 
which the code written to satisfy the test can be moved, broken apart into smaller units, 
decomposed into other classes, or subjected to similar techniques in such a way that the  
tests that drove the development of the code in the first place do not fail. A passing test  
suite for code that is being refactored is a necessity.

A test-driven system is easier to maintain because the code written is designed from the 
ground up in order to be testable as small units of logic. Your code—when its design is driven 
by tests—has already been written for reuse, once in its actual execution path and once as  
the subject of the tests. As your experience with writing test-driven code grows and you 
increase the coverage of your unit tests, your confidence in deploying software that  
you've written will increase remarkably.



Instant RSpec Test-Driven Development How-to

8

Installing RSpec (Simple)
Assuming you already have a Linux or Unix-based system and the Ruby programming language 
installed, you'll need to install RSpec. There are ways to isolate third-party libraries (called 
gems in Ruby parlance) from one another with tools such as Ruby Version Manager (RVM), 
but for the sake of brevity that complexity has been omitted from this book. The exercises 
herein should work just fine with Ruby 1.8.7 (the default on OS X Mountain Lion) or Ruby  
1.9.3 and later.

If you are using Windows, there are options for getting Ruby running in your environment 
too. Usually you will deploy to a Linux server, so it is often a good idea to develop on a Linux 
system. Oracle provides VirtualBox, which is an open source virtual machine environment  
and is free of charge, and with it you can install and run any of the mainstream Linux 
distributions concurrently within Windows.

If you want to remain in a Windows environment while learning RSpec, you can use 
RailsInstaller (http://railsinstaller.org). While this isn't a book entirely about Ruby 
on Rails, RailsInstaller provides the prerequisites for getting Ruby running on your computer.

Getting ready
As most of the commands presented in this book assume a Unix or Linux command line,  
it's advised to develop on a Windows substitute for the appropriate Command Prompt/
PowerShell commands or install Cygwin (http://cygwin.com).

How to do it...
1. Install RSpec:

$ gem install rspec

2. Next, prepare the directory structure:
$ mkdir lib

3. Now run RSpec:
$ rspec --init

4. To show what we're testing, we'll change the .rspec file generated for us, replacing 
progress with doc:
--color

--format doc



Instant RSpec Test-Driven Development How-to

9

5. We can now run RSpec on our empty specs directory and verify we have the  
gem installed:

$ rspec spec

No examples found.

Finished in 0.00004 seconds

0 examples, 0 failures

How it works…
We'll work with a sample code base that we will later integrate into a Rails 3 application.  
The code used for demonstration purposes is a very simple and fictitious system that  
works with geographical coordinates.

While not strictly necessary at this stage, the lib directory is where the code that is written  
to satisfy the tests will reside.

RSpec creates a spec directory, a spec_helper.rb file within that directory, and a .rspec 
file in the current directory with sensible defaults.

If you have a problem locating the .rspec file, it's because the file is hidden. A command-line 
editor such as Vim has no problem opening a hidden file, for example vim .rspec, but using 
a common dialog box to select a hidden file can be difficult. In OS X, while the Open dialog box 
is shown, you can press command + shift + . (period) to temporarily show these hidden files.

There's more...
The previous .rspec file contains default configuration options, which are applied while 
executing the rspec command-line program. You must execute rspec from the directory 
containing the .rspec file if you want the options contained within to be applied. Each line  
in the .rspec file contains a different option. Other options include:

 f --format progress: Displays progress dots for each executed spec

 f --format doc: Renders a wordy documentation

 f --format html: Displays HTML-formatted output, which can be redirected to a file 
and that file  can then be viewed in a web browser like Firefox (see -o in the next 
bullet item)

 f -o, --out: Redirects output to the specified file

 f -c, --color: Use a color in the terminal output (green for passing and red for failing)

 f --fail-fast: Stops execution when the first failing spec is encountered

www.allitebooks.com

http://www.allitebooks.org


Instant RSpec Test-Driven Development How-to

10

These are not all the options. For a complete list check the rspec command's help:

$ rspec --help

Writing a specification
In TDD, we write tests for the code we wish we had, verify that the tests 
fail, and then implement the code to satisfy the tests. This leads us to a 
well-designed testable system where monolithic classes are reduced to 
smaller supporting classes.
This paradigm shift takes some getting used to, but once you've 
experienced it you'll not want to program without it. Often, you'll find 
yourself writing tests after you've used TDD to evolve a program. This is 
encouraged as it is a natural part of increasing test coverage. You'll rarely 
fall back to your old habits and write code first—when you do, make sure 
you write accompanying tests to verify the new untested code!
In compiled languages such as Java and C#, the compiler will catch a 
missing class and refuse to compile—this becomes your very first "verify 
it fails" test. In a language such as Ruby, it is important to execute the 
"verify it fails" step for new code to ensure you're not a monkey patching 
an existing class and altering its behavior unexpectedly.

Preparing the RSpec environment (Simple)
In this section, we'll setup a new project that will be used with RSpec and lay some  
of the foundation source code for the later  sections in this book.

How to do it...
1. First, create a lib subdirectory under spec and create the location_spec.rb file:

$ mkdir spec/lib

$ touch spec/lib/location_spec.rb

2. We'll begin this process by authoring a specification in spec/lib/location_spec.
rb:
require "spec_helper"
describe Location do
end

3. Save the file and run it from your terminal:
$ rspec spec



Instant RSpec Test-Driven Development How-to

11

4. You'll see a stack trace alerting that there is an uninitialized constant named 
Location:

This is to verify that it fails for the new code and that we're not 
accidentally trampling on another class provided by Ruby. It is important 
to understand why a test fails and ensure that it fails for the right reason. 
If it fails, but you ignore the failure reason, you may be unintentionally 
introducing a bug that could prove difficult to find.

5. Now, write the code that satisfies the specification in the same spec/lib/
location_spec.rb file, making sure we define the Location class preceding  
the describe block:
require "spec_helper"

class Location; end

describe Location do
end

6. At this stage, it's often acceptable to define and work on your class in the same  
file as the spec. The source code won't be delivered to a production environment 
mixed with specs, and we only take this liberty here for the sake of convenience. 
Later, we'll refactor the source code into its own file.



Instant RSpec Test-Driven Development How-to

12

7. The next step will be initializing our Location class with values for latitude  
and longitude:
describe Location do
  describe "#initialize" do
    it "sets the latitude and longitude" do
      loc = Location.new(:latitude  => 38.911268, 
        :longitude => -77.444243)
      loc.latitude.should == 38.911268
      loc.longitude.should == -77.444243
    end
  end

end

Downloading the example code
You can download the example code files for all Packt Publishing books 
you have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files  
e-mailed directly to you.

8. Now run Rspec:
$ rspec spec

This time the test will fail and you'll see a wordy description as to why 
it failed—ArgumentError: wrong number of arguments(1 
for 0). Next, we'll write the code we wish we had when we wrote the 
spec, but it is important to only write the minimum code necessary to 
pass the spec.



Instant RSpec Test-Driven Development How-to

13

9. This next example will be illustrative of a testing extreme—we take the rule for 
minimum code necessary to heart. Expand the definition of the empty Location 
class that we created within spec/lib/location_spec.rb to look like the 
following code:
class Location
  def initialize(args = {}); end
  def latitude
    38.911268
  end
  def longitude
    -77.444243
  end
end

10. Running Rspec, we see the specs pass, and our job is done:

11. This Location class isn't terribly useful. But, we have followed the rule and only 
written the code necessary to pass the test.

When you are comfortable with TDD, you can sometimes skip this 
degenerate step as long as you think about the results of performing  
such a step. There may be times when you don't need a variable at all  
(or some other, shorter implementation will work). But if you skip this  
step you may miss these decisions that reduce implementation complexity. 
In this particular case, we'll need to author a specification that forces a 
change in the implementation so that it's more appropriate.



Instant RSpec Test-Driven Development How-to

14

12. Add the following code to the describe "#initialize" block:
it "sets the latitude to 0 and longitude to 1" do
  loc = Location.new(:latitude => 0, :longitude => 1)
  loc.latitude.should == 0
  loc.longitude.should == 1
end

13. When we execute rspec again, it fails:
1) Location#initialize sets the latitude to 0 and longitude ...

  Failure/Error: loc.latitude.should == 0

    expected: 0

      got: 38.911268 (using ==)

14. Now, we update the implementation by performing some small refactoring to the 
Location class itself:
class Location
  attr_accessor :latitude, :longitude
  def initialize(args = {})
    self.latitude = args[:latitude]
    self.longitude = args[:longitude]
  end
end

15. Make sure to eliminate both the latitude and longitude methods.

Our code passes, but our specs aren't pretty. They aren't concise; 
they perform multiple assertions in each specification—we'll fix these 
problems in a later section—and there are two tests asserting the same 
behavior but with different values. Redundant tests create more code 
to maintain, so they should be removed whenever possible.

16. Remove the associated spec's it block entirely from the file:

it "sets the latitude to 0 and longitude to 1" do... end

There's more…
Anytime you make a change to a specification or a class under test, you must execute rspec 
to run the test suite. Performing this provides immediate feedback—whether your test fails 
(you always want it to fail the first time for new code), passes, or you've broken something  
you weren't expecting to break.



Instant RSpec Test-Driven Development How-to

15

The Ruby community provides tools such as Guard for automatically running your specs every 
time it detects a file system change. It is a good idea to get into the habit of manually running 
the specs yourself at first, until you've gotten enough experience to know when to save your 
files in such a way that Guard's output won't interrupt you.

Refactoring specifications and classes 
(Simple)

Throughout this book, we'll be refactoring the specifications and classes under test to achieve 
a more concise result. The mantra of TDD is "red, green, refactor," referring to failing tests as 
red, passing tests as green, and refactoring happening after you have passing tests.

Refactoring is the act of rearranging the code internally without disturbing its external 
behavior. Having good test coverage is imperative to refactor properly. Without it, you cannot 
be certain that you have not broken the external behavior, except in the most trivial source 
code—and even in trivial code this is dangerous!

We've already seen refactoring illustrated in the previous example when we had to refactor  
our code to pass the specifications, and we then eliminated the redundant specification. 
There are other reasons to refactor—to follow the "Don't Repeat Yourself" (DRY) principle, 
improve testability, and help organize source code, among others.

In this section, we'll safely refactor our existing code from the specification into its own  
class file and verify everything works by running Rspec.

How to do it...
1. Remove the Location class from spec/lib/location_spec.rb and place it  

into its own file under lib/location.rb

2. Run RSpec:
$ rspec

You should see the resulting output indicate a failure. During 
refactoring, we don't often expect to see our tests fail, but it does 
sometimes happen. In this particular case, it's because Rspec doesn't 
know about the lib directory or where to find the Resource class.



Instant RSpec Test-Driven Development How-to

16

3. Remember the empty spec/spec_helper.rb file that rspec --init generated? 
It's time to incorporate this file (which is already included at the top of location_
spec.rb) into our process. You may add the following contents above or below the 
Rspec.configure block found in the file:
$:.unshift 'lib'
require 'location'

4. Execute rspec and you should see that the specs now pass. A successful refactor!

How it works...
spec_helper.rb is a file that includes all the code to be executed before running each suite 
of specifications. For our purposes, we add the lib directory to the current load path ($: is the 
symbol for $LOAD_PATH, a global variable, which is an array of paths that Ruby searches for any 
files specified with the require keyword) and we then require a file named location.

As you'll see later, Rails makes a lot of use of the spec_helper.rb file to prepare its 
environment. Be aware that the more code executed in spec_helper.rb, the slower your 
spec suites will run.

If a spec file doesn't explicitly require spec_helper.rb, it will not be automatically required.

Making specs more concise (Intermediate)
So far, we've written specifications that work in the spirit of unit testing, but we're not yet 
taking advantage of any of the important features of RSpec to make writing tests more 
fluid. The specs illustrated so far closely resemble unit testing patterns and have multiple 
assertions in each spec.

How to do it...
1. Refactor our specs in spec/lib/location_spec.rb to make them more concise:

require "spec_helper"
describe Location do
  describe "#initialize" do
    subject { Location.new(:latitude => 38.911268,
                           :longitude => -77.444243) }
    its (:latitude) { should == 38.911268 }
    its (:longitude) { should == -77.444243 }
  end
end



Instant RSpec Test-Driven Development How-to

17

2. While running the spec, you see a clean output because we've separated multiple 
assertions into their own specifications:
Location

  #initialize

    latitude

      should == 38.911268

    longitude

      should == -77.444243

Finished in 0.00058 seconds

2 examples, 0 failures

The preceding output requires either the .rspec file to contain the 
--format doc line, or when executing rspec in the command line, the 
--format doc argument must be passed. The default output format will 
print dots (.) for passing tests, asterisks (*) for pending tests, E for errors, 
and F for failures.

3. It is time to add something meatier. As part of our project, we'll want to determine  
if Location is within a certain mile radius of another point.

4. In spec/lib/location_spec.rb, we'll write some tests, starting with a new block 
called context. The first spec we want to write is the happy path test. Then, we'll 
write tests to drive out other states. I am going to re-use our Location instance for 
multiple examples, so I'll refactor that into another new construct, a let block:
require "spec_helper"
describe Location do
  let(:latitude) { 38.911268 }
  let(:longitude) { -77.444243 }
  let(:air_space) { Location.new(:latitude => 38.911268, 
    :longitude => -77.444243) }
  describe "#initialize" do
    subject { air_space }
    its (:latitude) { should == latitude }
    its (:longitude) { should == longitude }
  end
end

5. Because we've just refactored, we'll execute rspec and see the specs pass.



Instant RSpec Test-Driven Development How-to

18

6. Now, let's spec out a Location#near? method by writing the code we  
wish we had:
describe "#near?" do
  context "when within the specified radius" do
    subject { air_space.near?(latitude, longitude, 1) }
      it { should be_true }
    end
  end
end

7. Running rspec now results in failure because there's no Location#near?  
method defined.

8. The following is the naive implementation that passes the test  
(in lib/location.rb):
def near?(latitude, longitude, mile_radius)
  true
end

9. Now, we can drive a failure case, which will force a real implementation in spec/
lib/location_spec.rb within the describe "#near?" block:
context "when outside the specified radius" do
  subject { air_space.near?(latitude * 10, longitude * 10, 1) }
  it { should be_false }
end

10. Running the specs now results in the expected failure.

11. The following is a passing implementation of the haversine formula in lib/
location.rb that satisfies both cases:
R = 3_959 # Earth's radius in miles, approx
def near?(lat, long, mile_radius)
  to_radians = Proc.new { |d| d * Math::PI / 180 }
  dist_lat = to_radians.call(lat - self.latitude)
  dist_long = to_radians.call(long - self.longitude)
  lat1 = to_radians.call(self.latitude)
  lat2 = to_radians.call(lat)
  a = Math.sin(dist_lat/2) * Math.sin(dist_lat/2) + 
    Math.sin(dist_long/2) * Math.sin(dist_long/2) * 
    Math.cos(lat1) * Math.cos(lat2)
  c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a))
  (R * c) <= mile_radius
end



Instant RSpec Test-Driven Development How-to

19

12. Refactor both of the previous tests to be more expressive by utilizing  
predicate matchers:
describe "#near?" do
  context "when within the specified radius" do
    subject { air_space }
    it { should be_near(latitude, longitude, 1) }
  end
  context "when outside the specified radius" do
    subject { air_space }
    it { should_not be_near(latitude * 10, longitude * 10, 1) }
  end
end

13. Now that we have a passing spec for #near?, we can alleviate a problem with our 
implementation. The #near? method is too complicated. It could be a pain to try  
and maintain this code in future. Refactor for ease of maintenance while ensuring 
that the specs still pass:
R = 3_959 # Earth's radius in miles, approx
def near?(lat, long, mile_radius)
  loc = Location.new(:latitude => lat, 
    :longitude => long)
  R * haversine_distance(loc) <= mile_radius
end

private
def to_radians(degrees)
  degrees * Math::PI / 180
end

def haversine_distance(loc)
  dist_lat = to_radians(loc.latitude - self.latitude)
  dist_long = to_radians(loc.longitude - self.longitude)
  lat1 = to_radians(self.latitude)
  lat2 = to_radians(loc.latitude)
  a = Math.sin(dist_lat/2) * Math.sin(dist_lat/2) + 
    Math.sin(dist_long/2) * Math.sin(dist_long/2) * 
    Math.cos(lat1) * Math.cos(lat2)
  2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a))
end

14. Finally, run rspec again and see that the tests continue to pass.  
A successful refactor!

www.allitebooks.com

http://www.allitebooks.org


Instant RSpec Test-Driven Development How-to

20

How it works...
The subject block takes the return statement of the block—a new instance of Location in 
the previous example—and binds it to a locally scoped variable named subject. Subsequent 
it and its blocks can refer to that subject variable. Furthermore, the its blocks implicitly 
operate on the subject variable to produce more concise tests.

Here is an example illustrating how subject is used to produce easier-to-read tests:

describe "Example" do
  subject { { :key1 => "value1", :key2 => "value2" } }
  it "should have a size of 2" do
    subject.size.should == 2
  end
end

We can use subject from within the it block and this will refer to the anonymous hash 
returned by the subject block. In the preceding test, we could have been more concise  
with an its block:

its (:size) { should == 2 }

We're not limited to just sending symbols to an its block—we can use strings too:

its ('size') { should == 2 }

When there is an attribute of subject you want to assert but the value cannot easily be 
turned into a valid Ruby symbol, you'll need to use a string. This string is not evaluated as 
Ruby code; it's only evaluated against the subject under test as a method of that class.

Hashes, in particular, allow you to define an anonymous array with the key value to assert  
the value for that key:

its ([:key1]) { should == "value1" }

There's more...
In the previous code examples, another block known as the context block was presented. 
The context block is a grouping mechanism for associating tests. For example, you may 
have a conditional branch in your code that changes the outputs of a method. Here, you may 
use two context blocks, one for a value and the second for another value. In our example, 
we're separating the happy path (when a given point is within the specified mile radius) from 
the alternative (when a given point is outside the specified mile radius). context is a useful 
construct that allows you to declare let and other blocks within it, and those blocks apply 
only for the scope of the containing context.



Instant RSpec Test-Driven Development How-to

21

Handling exceptions (Intermediate)
Sometimes, when code doesn't follow the prescribed happy path, we encounter exceptional 
situations that must be handled as special cases, whereas not every non-happy path 
execution is exceptional. We should, however, specify and verify execution paths that  
do lead to exceptional situations so we are sure that our code handles them properly.

What would happen if a negative value was passed for the mile radius in the near method? 
It would never return true for one, but we shouldn't pass that sort of value in the first place; 
Instead, we should signal back to the call site that a negative radius is never permitted.

How to do it...
1. In spec/lib/location_spec.rb, run rspec and verify that the specification fails:

context "when a negative radius is used" do
  it "raises an error" do
    expect { air_space.near?(latitude, longitude, -1) }
      .to raise_error ArgumentError
  end
end

2. Implement the specified behavior in lib/location.rb:
def near?(lat, long, mile_radius)
  raise ArgumentError unless mile_radius >= 0
  # remainder of method omitted
end

3. Run rspec and verify that the specification now passes.

There's more...
In other programming languages, a common anti-pattern is to use exceptions to manage 
control flow. In Ruby, the throw/catch keywords serve this purpose by throwing a symbol 
that the code further up the stack can catch, albeit without a stack trace. Although not strictly 
used to replace exception raising and handling, throw/catch is a useful control structure 
construct that can be verified by RSpec.



Instant RSpec Test-Driven Development How-to

22

Working with RSpec matchers (Simple)
RSpec matchers can be combined with either should or should_not as a part of validation. 
We'll step back from the sample application for this section and review each matcher class 
and how to use it.

How to do it...
1. The various ways to determine equality and inequality are:

1  describe "Equal" do
2    let(:address) { "123 Main Street" }
3    subject { "123 Main Street" }
4    it { should eq '123 Main Street' }
5    it { should == "123 Main Street" }
6    it { should_not == "789 Any Circle" }
7    it { should_not be(address) } # object equality
8    it { should_not equal(address) } # object equality too
9    it { should eql(address) }
10   it { should == address }
11 end

Lines five and six in the preceding code snippet should not be a surprise; 
they compare the value of subject with string literals that are a match 
(in terms of string comparison) or not a match, respectively. Lines seven 
and eight may surprise you if you're not accustomed to Ruby's object 
equality comparisons. Although the values are indeed the same, the actual 
references to those values are not the same, and be and equal test for 
object equality. Lines eight and nine bring us back home by using string 
comparison for eql and == (such as line four) with a variable reference.

2. Comparisons allow us to verify greater than and less than conditions:
1  describe "Comparisons" do
2    subject { 42 }
3    it { should be > 41 }
4    it { should be >= 42 }
5    it { should be <= 42 }
6    it { should be < 43 }
7  end

3. In RSpec, there is no restriction specifying that only numbers may be compared; 
many other types are candidates for comparison. You would find yourself comparing 
floating point numbers or checking whether a value is within an acceptable threshold:



Instant RSpec Test-Driven Development How-to

23

1  describe "Floating Comparison" do
2    subject { 3.141_592_653_5 }
3    it { should be_within(0.000_2).of(3.141_590) }
4  end

4. Regular expression comparisons are a convenient and powerful way of validating 
portions of text, and are especially noteworthy for their use in validating Rails  
view specs:
1  describe "Regular Expression Comparison" do
2    subject { "this is a block of text" }
3    it { should match(/text$/) }
4    it { should =~ /\bblock\b/ }
5  end

5. Boolean tests determine the truthiness of a variable or statement:
1  describe "Boolean" do
2    subject { "non-nil is true" }
3    it { should be_true }
4    it { should_not be_false }
5  end

It should be noted that in Ruby any non-nil value is true and any nil 
or false value is false.

6. RSpec performs some magic by dynamically creating matchers for any methods 
on a class that either begin with the word has or end with a question mark. These 
dynamically created methods are named have_method_name or be_method_name 
respectively and are called predicates:
1  describe "Predicate" do
2    subject { { :a => 1, :b => 2 } }
3    it { should have_key(:a) } # has_key?(:a)
4    it { should_not be_empty } # empty?
5  end

7. Determining whether a given value is contained by a collection is done with the 
include matcher. Remember that a string is a collection of characters, so include 
may be used with substrings, shown as follows:
1  describe "Collections" do
2    subject { ["text one", "text two"] }
3    it { should include "text two" }
4    its (:first) { should include "ext" }
5  end



Instant RSpec Test-Driven Development How-to

24

8. Testing for a particular class or superclass has limited applicability in Ruby,  
but it can be done as shown in the following code:
1  describe "Class" do
2    subject { 42 }
3    it { should be_instance_of Fixnum }
4    it { should be_kind_of Integer } # Fixnum > Integer
5  end

9. Because Ruby doesn't have interfaces or abstract classes, it can become important 
to verify that a given class adheres to a specific contract:
1  describe "Contract Validation" do
2    subject { Resource.new }
3    it { should respond_to :near? }
4  end

10. Unlike throw in other languages, Ruby's throw and catch are used as control 
structures and may have an associated symbol and optional payload.
1  describe "Throws" do
2    subject { Proc.new { throw :some_symbol, "x" } }
3    it "should throw some_symbol" do
4      expect { subject.call }.to throw_symbol
5      expect { subject.call }.to throw_symbol(:some_symbol)
6      expect { subject.call }.to throw_symbol(:some_symbol, "x")
7    end
8  end

11. Raising errors is similar to the throw statements, but are used for error situations 
and not for the control flow.

1  describe "Errors" do
2    subject { Proc.new { raise RuntimeError.new("x") } }
3    it "should raise an exception" do
4      expect { subject.call }.to raise_error
5      expect { subject.call }.to raise_error(RuntimeError)
6      expect { subject.call }.to raise_error(RuntimeError, 'x')
7      expect { subject.call }.to raise_error('x')
8    end
9  end



Instant RSpec Test-Driven Development How-to

25

Setting up Rails (Intermediate)
In this section you will install and set up rails for ActiveRecord specifications.

How to do it...
1. To install Rails, if you do not already have it installed, execute:

$ gem install rails

This will download and install the most recent stable version of Rails 
into your system. The proceeding examples use Rails 3.2.13, though 
Rails Version 3.0 and later should work too.

2. To create a new Rails project for integrating our existing code into, execute the 
following code:
$ rails new geo_pictures --skip-test-unit

3. By passing the --skip-test-unit option, the necessary folders that would be 
created to support the built-in Ruby Test::Unit framework are omitted. Because 
we're using RSpec to perform the same role as Test::Unit, an additional testing 
framework would be redundant.

4. Edit the Gemfile in the geo_pictures directory and add the following line:
gem 'rspec-rails', :group => [:test, :development]

5. Once the file is saved, update your installed gem dependencies from the geo_
pictures directory by executing the following command:
$ bundle install

6. Finally, to prepare RSpec for use with Rails, execute:
$ rails generate rspec:install

7. The preceding command creates a spec directory, a new .rspec file with just the 
--color option set, and a default Rails-friendly spec/spec_helper.rb file.



Instant RSpec Test-Driven Development How-to

26

Writing ActiveRecord specifications 
(Intermediate)

Continuing with the previous recipe, we will see how to write ActiveRecord  
specifications here.

How to do it...
1. Create a model to represent the Location class that we've already developed:

$ rails g model location latitude:decimal longitude:decimal

g is the shortened form of generate.

2. Create and migrate the environments:
$ rake db:create:all && rake db:migrate && rake db:test:clone

3. This creates databases and then migrates the schema of the default development 
environment. In addition, it also clones the development database structure to the 
test database. Using && between commands will run each command in succession, 
provided that the previous command does not fail. You can alternatively enter each 
command at a separate prompt.

4. Now, execute rspec to reveal that spec/models/location_spec.rb has a 
pending example.

5. Move the previous implementation of location_spec to this new (spec/models/
location_spec.rb) file by replacing the contents of the automatically generated 
file with the contents of the file from our existing spec implementation. (Do not move 
the previous implementation of Location from lib to models; we'll rebuild this 
piecemeal as the need arises.)

6. Run rspec to see where we stand.

7. Of the four examples, two are failing because the new Location model class that 
Rails generated for us has no implementation of the #near? method. We can solve 
this problem by copying the #near? method and its associated private methods  
from the existing lib/location.rb file to the model class at app/models/
location.rb:
class Location < ActiveRecord::Base
  attr_accessible :latitude, :longitude
  R = 3_959 # Earth's radius in mi, approx
  def near?(lat, long, mile_radius)



Instant RSpec Test-Driven Development How-to

27

    # omitted
  end
private
  def to_radians(degrees)
    # omitted
  end
  def haversine_distance(loc)
    # omitted
  end
end

Executing rspec reveals that all the specs now pass.

Next, we'll want to verify the validation behaviors of our model. We'll 
spec out the latitude attribute's validations first and then use a loop 
construct to have the same specs applied to the longitude attribute's 
validation behavior.
In this case, the behavior that we want to drive out is that of the invalid 
Location model instances returning false for Location#valid? 
invocations. A valid Location class is one who's latitude and 
longitude attributes are present and are numeric. But, we can't  
settle with just a Boolean result for Location#valid?; the actual  
error message itself is important and therefore must be verified.

8. In spec/models/location_spec.rb add the following code:
describe "validations" do
  before { subject.valid? }
  [ :latitude ].each do |coordinate|
    context "when #{coordinate} is nil" do
      subject { Location.new(coordinate => nil) }
      it "shouldn't allow blank #{coordinate}" do
        expect(subject.errors_on(coordinate))
          .to include("can't be blank")
      end
    end
  end
end

9. To get the spec passing, add the presence validator to app/models/location_
spec:
class Location < ActiveRecord::Base
  validates :latitude, :presence => true
  # remainder omitted



Instant RSpec Test-Driven Development How-to

28

10. Because latitude and longitude will behave in the same way, the previous code 
will set up a loop outside the context block. We can make use of this by changing 
the line in location_spec from:
[ :latitude ].each do |coordinate|

to:
[ :latitude, :longitude ].each do |coordinate|

and the line in the Location model from:
validates :latitude, :presence => true

to:

validates :latitude, :longitude, :presence => true

11. Fast-forwarding and compacting important TDD steps together, the remaining 
behavior is driven out as follows:
describe "validations" do
  before { subject.valid? }
   [ :latitude, :longitude ].each do | coordinate|
    context "when #{coordinate} is nil" do
      subject { Location.new(coordinate => nil) }
      it "shouldn't allow blank #{coordinate}" do
        expect(subject.errors_on(coordinate))
          .to include("can't be blank")
      end
    end
    context "when #{coordinate} isn't numeric" do
      subject { Location.new(coordinate => 'forty-two') }
      it "shouldn't allow non-numeric #{coordinate}" do
        expect(subject.errors_on(coordinate))
          .to include("is not a number")
      end
    end
    context "when #{coordinate} is an acceptable value" do
      subject { Location.new(coordinate => 42.0) }
      it "should have no errors for #{coordinate}" do
        expect(subject).to have(0).errors_on(coordinate)
      end
    end
  end
end



Instant RSpec Test-Driven Development How-to

29

12. The completed implementation in the Location model for validation is:

class Location < ActiveRecord::Base
  validates :latitude, :longitude,
    :presence => true,
    :numericality => true
  # remainder omitted

How it works...
Our Location specs passed, although we never explicitly recreated the constructor 
(#initialize) method in our new Location model class. The spec passes because 
ActiveRecord::Base provides a constructor that accepts a hash as its argument.  
The hash is in turn used to assign values to the attributes of the class so there is no  
need to explicitly write our own constructor in order get our specs passing.

ActiveRecord::Base also yields to a block, which makes the following code valid:

let(:air_space) do
  Location.new do |loc|
    loc.latitude = 38.911268
    loc.longitude = -77.444243
  end
  loc.save # store it in the database
  loc      # assign loc to variable air_space
end

While creating tests, use the hash or block method. This results in the easiest way to  
read and maintain source code. Typically, this means that as the number of attributes  
grow, the block method becomes favored.

There's more...
Let's review the Gemfile and the changes made to the spec_helper.rb file where  
we migrated our existing code to Rails.

Gemfile environments
When we added rspec-rails to the Gemfile, we restricted its inclusion to a couple of groups: 
test and development. Typically, deploying a Rails application to production does not include 
either test or development configurations, and as a result the gems that support those 
environments don't go along for the ride. The need for rspec-rails to be available to the test 
environment is self explanatory, but why do we need to include it with the development 
environment? Including rspec-rails at development time (the default environment when the 
RAILS_ENV environment variable is not specified) hooks the Rails' generate commands, so 
that anytime a model, a controller, or a Rails-specific class (for example, rails generate 
controller Person) is created, an accompanying empty spec file is generated along with it.

www.allitebooks.com

http://www.allitebooks.org


Instant RSpec Test-Driven Development How-to

30

spec_helper.rb
In the previous spec_helper.rb file for the Location class that lived in the lib/ directory, 
we had to explicitly add lib/ to $LOAD_PATH and even include the location file directly. 
How come we don't need to perform this step now?

Rails automatically loads all *.rb files that it finds under the app/ directory as part of its 
startup (in addition to config/initializers, which is lexicographically enumerated 
first). Because the Location class lives under app/models, and the spec/models/
locations_spec.rb file requires the spec/spec_helper.rb file, the Rails environment 
is loaded as part of the rspec execution.

Doesn't this mean that tests that rely on the Rails infrastructure are inherently slow? Yes, 
with all that additional overhead, even the simplest tests can take longer than you may 
expect to execute. The way to mitigate this problem is to write your specs and implementation 
independent of Rails whenever possible, and stub Rails' behavior whenever necessary.

rake spec
Instead of running rspec to execute your test suite, you could optionally run rake spec. 
There is a problem with doing this that may not be readily apparent, at least in Rails 3.  
When you execute rake spec from the command line, the Rails environment is loaded to 
support the rake task with the development profile (RAILS_ENV=dev). Then, in order to run 
as a proper test environment, rake spec must spawn off rspec in a separate child process  
with the test profile (RAILS_ENV=test). This means that the Rails environment gets loaded 
twice and could take considerably more time than executing rspec by itself.

Testing Rails routes (Intermediate)
In this recipe, we'll see how to properly test drive and verify routes in a Rails application. 
Routes determine which controller handles a particular request based on the data provided  
by the client's browser.

Getting ready
To spec controller routes, we'll first need an actual controller. Without it, Rails won't  
properly route requests and we won't be able to validate our specs:

$ rails g controller locations --no-helper

As a part of controller generation, if the --no-helper option wasn't passed, an empty  
helper and spec file with pending examples would be created.



Instant RSpec Test-Driven Development How-to

31

How to do it...
1. First, we'll need to register routes to the controller. This is not only easy to do but  

can be test-driven as well. Create a new file, spec/routing/routes_spec.rb:
$ mkdir -p spec/routing

$ touch spec/routing/routes_spec.rb

2. Now, drive the registration of all the routes together because the Rails command  
to configure them, in this case, is a one-liner:
require 'spec_helper'
describe "Routes" do
  describe "LocationsController" do
    it "routes get new" do
      { :get => '/locations/new' }.should route_to(
        :controller => 'locations',
        :action     => 'new'
      )
    end
    it "routes post create" do
      { :post => 'locations' }.should route_to(
        :controller => 'locations',
        :action     => 'create'
      )
    end
    it "routes get index" do
      { :get => 'locations' }.should route_to(
        :controller => 'locations',
        :action     => 'index'
      )
    end
    it "routes get show" do
      { :get => 'locations/42' }.should route_to(
        :controller => 'locations',
        :action     => 'show',
        :id         => '42'
      )
    end
    it "routes delete destroy" do



Instant RSpec Test-Driven Development How-to

32

      { :delete => 'locations/42' }.should route_to(
        :controller => 'locations',
        :action     => 'destroy',
        :id         => '42'
      )
    end
    it "does not route get edit" do
      { :get => 'locations/42/edit' }.should_not be_routable
    end
    it "does not route put update" do
      { :put => 'locations/42' }.should_not be_routable
    end
  end
end

A lot of routes are being verified in the previous code. This is 
acceptable, although we end up essentially verifying the framework 
code, which isn't the real goal of TDD. But if you're not familiar with 
Rails routing, using tests to drive this configuration is a great way  
to arrive at a working implementation.

3. With those failing specs, we can open up config/routes.rb and add the  
one-liner that makes them all pass (within the routes.draw block):
resources :locations, :except => [:edit, :update]

4. By default, resources will add all the routes that we tested for and exclude the  
ones that we marked as should_not be_routable. Run rspec again and  
you'll see everything pass, meaning that the routing configuration is good.

How it works...
Test driving routes can often be a lot of work for a little reward. If you are or become 
comfortable with Rails routing configuration, it may only be necessary to test drive  
for any particularly thorny configurations—nested resources or URLs that include  
nonstandard elements such as additional variables. For example, see this spec:

it "routes to cars/make/model/year" do
  { :get => "cars/toyota/corolla/1994" }.should route_to(
    :controller => "cars",
    :action     => "show",
    :make       => "toyota",
    :model      => "corolla",
    :year       => "1994"
  )
end



Instant RSpec Test-Driven Development How-to

33

Verifies this routing statement:

match "cars/:make/:model/:year" => "cars#show"

It is important to note that in the preceding code, even though 1994 could be converted  
to an integer when it's coming in as part of an URL, Rails correctly treats it like a string.  
This could lead to frustration if you had year => 1994 instead of year => "1994".

A pitfall while speccing routes is that when there is no matching controller under app/
controllers, a route will not be routable. This can be especially troublesome if you forget  
to pluralize your controller name (for example, LocationController) and your specs are 
for routing to controller locations. RSpec will print that no route matches the expected 
route, which is almost not true because executing rake routes will print the expected route  
as a valid route; it' s just that no actual controller matches the requested controller.

There's more...
What if there's a need to validate that a particular route is available only over a given protocol, 
such as HTTPS? You can add a constraints section to a route in config/routes.rb and 
validate it through a spec as follows:

it "allows HTTPS for history" do
  { :get => 'https://test.host/locations/42/history' }
    .should route_to(:controller => 'locations', 
      :action     => 'history', 
      :id         => '42'
     )
end
it "does not route HTTP for history" do
  { :get => 'http://test.host/locations/42/history' }
    .should_not be_routable
end

And the configuration to match the spec (in config/routes.rb) is as follows:

match 'locations/:id/history' =>
  'locations#history',
  :constraints => { :protocol => "https://" }

Why this explicit test.host value? It turns out that, unlike other constraints such as  
the format protocol, this has to be tested as part of the URL. During test time, the virtual 
hostname test.host is substituted for an actual host (such as localhost) unless the 
configuration is changed to provide another host name.



Instant RSpec Test-Driven Development How-to

34

Testing Rails controllers (Intermediate)
In this recipe we'll see how to test drive the development of a Rails controller.

How to do it...
1. Begin with LocationsController#create in spec/controllers/

locations_controller_spec.rb:
describe LocationsController do
  describe "#create" do
    subject { post :create, { :location =>
      { :latitude => 25.0,
        :longitude => -40.0 }
      }
    }
    its(:status) { should == 302 } # redirect
  end
end

2. Running this fails because there's no #create method in LocationsController. 
Rectify this by adding it to app/controllers/locations_controller.rb:
class LocationsController < ApplicationController
  def create
  end
end

3. Executing rspec now reveals that we're failing because the view template is missing. 
By default, Rails will look for a template named create, but in actuality we're going 
to redirect to the show template after creating a location. This means that we  
have to complete two steps to get this code to pass:
$ touch app/views/locations/show.html.erb

4. Next, update the #create method to redirect:
def create
  redirect_to location_path(0)
end

5. The spec passes, but once again it doesn't perform the behavior ultimately 
expected. Save the location to the database by modifying the expectations of spec/
location_controller_spec.rb:
it "saves the location" do
  subject
  Location.all.count.should == 1
end



Instant RSpec Test-Driven Development How-to

35

Did you notice the invocation of subject on a line all by itself in this 
spec? Without it, the subject block would not have been invoked 
and the spec would then fail, even for a valid implementation.

6. Next, add an implementation in app/controllers/locations_controller.rb:
def create
  @location = Location.new(params[:location])
  @location.save
  redirect_to location_path(0)
end

7. There is still an artifact of the simplest solution: we're passing 0 as an argument  
to location_path. Without a spec, we have no reason to change. Let's rectify this:
it "should redirect to show the created location" do
  subject.should redirect_to(location_path(Location.first.id))
end

8. rspec fails, so we add the implementation in app/controllers/locations_
controller.rb by updating the redirect_to line:
redirect_to location_path(@location.id)

9. The specs now pass. This isn't yet complete; validation and error handling are missing.

10. Add a describe "#new" block:
describe "#new" do
  context "when invalid longitude" do
    subject { post :create, { :location =>
      { :latitude => 25.0 } } }
    its(:status) { should == 200 } # OK
    it "should render the new view" do
      subject
      response.should render_template("new")
    end
  end
end

11. The empty new view template will need to exist:
$ touch app/views/locations/new.html.erb

12. No implementation of LocationsController#new need to be created at this  
time because of the way that Rails renders actions.



Instant RSpec Test-Driven Development How-to

36

13. Complete the implementation that the spec requires in LocationsController:
def create
  @location = Location.new(params[:location])
  if @location.save
    redirect_to location_path(@location.id)
  else
    render :action => "new"
  end
end

Only a missing longitude was tested. Because there is good test 
coverage exercising the model, this should be enough to ensure that 
when there's at least one error the controller performs the expected 
action. By using stubs (discussed in a later section) you could separate 
the dependency of location invalidation from the actual Location 
model to make these tests less brittle.

14. The next logical spec is the show action. Just write the controller spec for now:
describe "#show" do
  context "when the location exists" do
    let(:location) { Location.create(
      :latitude => 25.0, :longitude => -40.0)
    }
    subject { get :show, :id => location.id }
    it "assigns @location" do
      subject
      assigns(:location).should eq(location)
    end
  end
end

15. Running rspec fails. The passing implementation skips past the initial baby step  
(@location = Location.first) and goes right into using the params[:id] 
value passed:
def show
  @location = Location.find(params[:id])
end

16. Now, expand the test coverage to ensure the template expected is rendered by 
adding the following code to the when the location exists context block:
it "renders the show template" do
  subject
  response.should render_template("show")
end



Instant RSpec Test-Driven Development How-to

37

Now when we run rspec, it passes! This was unexpected and should raise 
a red flag because we always expect the code we write to fail at first. But, 
in this case, it's about Rails convention over configuration. A controller 
method, unless explicitly given a different render instruction in its method, 
will attempt to render a template named after itself.

17. This behavior can be verified by making the the show method attempt to render 
another template (optional). Now, RSpec will fail; and on removal of the incorrect 
render 'xyz' line, the specs will pass once again:
def show
  @location = Location.find(params[:id])
  render 'xyz'
end

18. Next we need to handle the show method, when a requested ID has no associated 
location inside the describe "#show" block:
context "when the location does not exist" do
  subject { get :show, :id => 404 }
  its(:status) { should == 404 }
end

19. Running rspec shows us that an ActiveRecord::RecordNotFound error is 
raised, which can be caught and an appropriate HTTP status code can be returned.

20. The implementation of LocationsController#show is now refactored to the 
following implementation:
def show
  begin
    @location = Location.find(params[:id])
  rescue ActiveRecord::RecordNotFound
    render :status => 404
  end
end

21. Next is the #index action beginning as always with a spec. Here, rspec fails 
because of the missing index method in LocationsController:
describe "#index" do
  context "when there are some locations" do
    let(:location) do
      [
        Location.create(:latitude => 25.0,
          :longitude => -40.0),
        Location.create(:latitude => -10.0,



Instant RSpec Test-Driven Development How-to

38

          :longitude => 42.0)
      ]
    end
    #TODO check with let!
    before { locations }
    subject { get :index }
    it "assigns @locations" do
      subject # let!
      assigns(:locations).should eq(locations)
    end
  end
end

22. Adding an empty index method (def index; end) now throws the expected 
ActionView::MissingTemplate error:
$ touch app/views/locations/index.html.erb

23. After the preceding step, there's now a failing spec that can be solved by writing  
code implementing the LocationsController#index method:
def index
  @locations = Location.all
end

In the previous spec, there is an explicit before { location } 
block. If this was absent, the let statement for locations would not be 
executed as a part of the subject block and our spec would not pass.
The render_template("index") expectation should be made for 
the preceding context, but the implementation has been omitted for 
brevity.

24. Implementing a when there are no locations context in the describe 
"#index" block will improve the code coverage despite the fact that it drives  
no new implementation:
context "when there are no locations" do
  subject { get :index }
  it "assigns @locations" do
    subject
    assigns(:locations).should eq([])
  end
end



Instant RSpec Test-Driven Development How-to

39

25. The destroy action is described as follows:
describe "#destroy" do
  context "when the location exists" do
    let (:location) { Location.create(
      :latitude => 25.0, :longitude => -40)
    }
    subject { post :destroy, :id => location.id }
    it "deletes the location" do
      subject
      Location.all.count.should == 0
    end
  end
end

26. Now, enter a command to create the necessary view to support the 
#destroy action:
$ touch app/views/locations/destroy.html.erb

27. The following is the LocationsController#destroy implementation:

def destroy
  Location.destroy(params[:id])
end

This example should be speced out for the same 404 HTTP status when the location to  
be deleted doesn't exist, similar to LocationsController#show, although that exercise 
has been omitted here for the sake of brevity.

Stubbing (Intermediate)
Stubbing and mocking are powerful techniques that can be used to simulate a runtime 
environment during test time. Stubs reply with an expected result, whereas mocks verify 
specific behavior such as whether methods were invoked at all, with what arguments,  
and in what order.

How to do it...
1. In a Rails project, views are a good place to introduce stubs, although they are 

applicable anywhere. We'll work with the show action's associated view by first 
making a spec file for it:
$ mkdir -p spec/views/locations

$ touch spec/views/locations/show.html.erb_spec.rb

www.allitebooks.com

http://www.allitebooks.org


Instant RSpec Test-Driven Development How-to

40

2. In the newly created show.html.erb_spec.rb file, we can drive the expectations 
of a simple view:
require "spec_helper"

describe "locations/show" do
  before do
    assign(:location,
      stub_model(Location, :latitude => 42.0,
        :longitude => -12.4)
      )
  end
  it "displays the latitude" do
    render
    expect(rendered).to match /Latitude:\S*42\.0/
  end
end

3. In app/views/locations/show.html.erb, write the implementation 
necessary to pass the spec:
<label>Latitude:</label><%= @location.latitude %>

4. Adding a similar test case for longitude follows the same implementation 
procedure. (Code omitted for brevity.)

How it works...
In the before block in the previous code example, RSpec's assign method is used to inject 
the @location variable—normally created by a controller as part of a request and handed  
off to the view—in a stub. stub_model creates an instance of the Location class and 
assigns its attributes to the specified values. It's as if a web browser made a request to the 
server, it was routed to the controller, the controller retrieved the location from the database, 
and that location was then handed off to the view to render back to the client's browser—but 
without all those costly dependencies.

Using stubs keep these tests running fast, which greatly helps during the Test-Driven 
Development process.



Instant RSpec Test-Driven Development How-to

41

Mocking (Intermediate)
Mocking is often confused with stubbing. While mocks also permit the elimination of costly 
dependencies, it's the behavior of the mock—what methods are invoked and with what 
arguments—that is what needs to be asserted.

The Location class has a #near? method we'd like to make use of in our 
LocationsController. However, we've already verified that the Location#near? method 
works in the model specs and there's no reason to repeat that same functional test in our 
controller. In fact, repeating a test makes your tests brittle because if the behavior changes, 
you'll need to update multiple tests. While test driving the controller, the only concern is 
whether it behaves correctly when its dependencies furnish it with different return values.

How to do it...
1. Test drive a route. The test is omitted for brevity but the relevant config/routes.

rb file is:
post "locations/near/:id" => "locations#near"

2. Next is the spec in spec/controllers/locations_controller_
spec.rb:
describe "#near" do
  let(:location) { double("Location") }
  before do
    Location.should_receive(:find).with(42)
      .and_return(location)
  end
  context "when the supplied coordinates are near" do
    it "renders the near view" do
      location.should_receive(:near?)
        .with(25.0, 62.1, 1.0).and_return(true)
      post :near, :id => "42", :latitude => 25.0,
        :longitude => 62.1
      response.should render_template("near")
    end
  end
end



Instant RSpec Test-Driven Development How-to

42

3. The naive implementation in app/controllers/locations_controller.rb is:
def near
  location = Location.find(params[:id].to_i)
  location.near?(params[:latitude].to_f,
    params[:longitude].to_f, 1.0)
end

4. Create the empty near view template:
$ touch app/views/locations/near.html.erb

The specs pass, which means that the behavior requested that 
Location#find is invoked with the numeric value 42 and the 
location mock returned has its #near? method invoked with the 
expected arguments. The default action is to render the near view, 
which passes our assertion and immediately raises a red flag, as we 
want to see the test fail at first. We could explicitly render the incorrect 
view but instead we'll tackle this from the other direction—rendering a 
far view when the Location#near? method returns false.

5. In spec/controllers/locations_controller.rb, create a new context  
within the describe "#near" block:
context "when the supplied coordinates are far" do
  it "renders the far view" do
    location.should_receive(:near?)
      .with(25.0, 62.1, 1.0).and_return(false)

    post :near, :id => "42", :latitude => 25.0,
      :longitude => 62.1
    response.should render_template("far")
  end
end

6. And create the empty far view template:
$ touch app/views/locations/far.html.erb

7. On running the spec, it fails, forcing implementation of the expected behavior  
by replacing LocationsController#near with this definition:
def near
  location = Location.find(params[:id].to_i)
  unless location.near?(params[:latitude].to_f,
    params[:longitude].to_f, 1.0)
    render :far
  end
end



Instant RSpec Test-Driven Development How-to

43

8. Now all specs pass. Importantly, note that we invoke the Location#near? method 
with the same arguments but return a varying reply depending on the context, 
meaning whether we want the mocked location to be near or far from the supplied 
coordinates. We don't have to go to some external resource and calculate a pair of 
latitude/longitude coordinates and rely on the implementation of Location#near?.

Working with JSON (Intermediate)
JSON is a lightweight text-based communication medium that commonly appears in place  
of XML in newer web applications and web services.

For this exercise, let's pretend that our web application has a sibling mobile application 
that will transmit geographic coordinates and the application needs an API, which it can 
communicate with.

How to do it...
1. Begin with updates to spec/controllers/locations_controller_spec.rb:

context "when JSON format" do
  describe "#create" do
    subject { post :create, { :format => :json,
               :location => {
                  :latitude => 25.0,
                  :longitude => -40.0 }
            }
    }
    its(:status) { should == 200 } # OK
  end
end

This looks a lot like our normal create method except as an API 
endpoint, we expect a 200 and not a 302. The :format => :json 
is included in the hash of submitted data. This allows us to use the 
JSON format in LocationsController.



Instant RSpec Test-Driven Development How-to

44

2. Specify that LocationsController can respond to JSON content by adding the 
following lines to LocationsController (app/controllers/locations_
controller):
class LocationsController < ApplicationController
  respond_to :html, :json
  # remainder omitted

Next, update LocationsController#create with the following 
definition:
def create
  @location = Location.new(params[:location])
  if @location.save
    respond_to do |format|
      format.json { head :ok }
      format.html { redirect_to location_path(@location.id) }
    end
  else
    respond_to do |format|
      format.json { head :bad_request }
      format.html { render :action => "new" }
    end
  end

end

In APIs, it's typically enough to reply with an HTTP status code so 
we use the Rails #head method (in lieu of render :nothing, 
:status => :ok). The validation failure condition, where :bad_
request is used, leaves a lot to be desired. In an actual API, for 
calling a helper method that renders an error, JSON view would be 
acceptable; for the purposes of illustration :bad_request will 
suffice.

3. We can take this one step further and validate the API endpoint by using a URL.  
First, start the Rails server:
$ rails server

4. Execute the following command:
$ curl -v -H "Content-type:application/json" 
  -X POST -d '{"location":{"latitude":-25.0,"longitude":40.0}}'  
  http://localhost:3000/locations



Instant RSpec Test-Driven Development How-to

45

You're expecting to see an HTTP 1.1 200 OK reply output by cURL (the 
-v switch is necessary to see the output headers).
It's the Content-type header that's important as that sets the 
params[:format] value, which the controller uses to determine the 
format to be used. (Instead of specifying the header, make the request 
to locations.json—running rake routes reveals that there's an 
optional (.format) parameter for each route.)

5. Next, wire up the show action for JSON, as this will be an actual JSON reply. As usual, 
begin with a spec in spec/controllers/locations_spec.rb (within the when 
JSON format context block):
describe "#show" do
  let(:location) { Location.create(:latitude => 25.0,
                                   :longitude => 40.0) }
  subject { get :show, { :format => :json,
    :id => location.id } }
  its(:status) { should == 200 }
end

This fails with the expected missing template error message.

6. There are several ways to proceed. We could author an app/views/locations/
show.json.erb view template, use a third-party library such as the excellent  
rabl gem, or just a simple Rails built-in: #respond_with. Choose the solution  
that matches the requirements, and in this case there's no reason to overcomplicate 
things so #respond_with is fine:
def show
  begin
    @location = Location.find(params[:id])
    respond_with(@location)
  rescue ActiveRecord::RecordNotFound
    render :status => 404
  end
end

7. How do we know whether the reply is JSON? If we had used a view template  
such as show.json.erb or rabl, we'd have to use render_views in our  
controller spec. Because we're using #respond_with, the body of the response  
can be inspected:
it "replies with JSON" do
  json = JSON.parse(subject.body)
  json.should have_key("id")
end



Instant RSpec Test-Driven Development How-to

46

8. render_views and parsing the response body within a controller is a testing 
antipattern—instead of verifying controller behavior, we're trying to validate view logic. 
We can use mocking to ensure that a JSON request results in Location#to_json 
method being invoked—a precursor to a JSON reply:
it "replies with JSON" do
  Location.any_instance.should_receive(:to_json).and_return({})
  subject
end

9. The next problem is that requests for JSON formatted nonexistent locations 
result in a HTML formatted reply for a missing template:
$ curl -v -H "Content-type: application/json" \ 
  -X GET http://localhost:3000/locations/42

10. This presents an opportunity to refactor the begin/rescue/end block for 
ActiveRecord::RecordNotFound. Drive out a 404 with the expectation  
that the content type is application/json:
context "when a location doesn't exist" do
  subject { get :show, { :format => :json, :id => "42" } }
  its(:status) { should == 404 }
  its(:content_type) { should == "application/json" }
end

11. This problem cannot be solved by merely adding the missing 
template. Instead a slightly more robust solution is required. Declare 
LocationsController#not_found and wire it up as the handler for 
ActiveRecord::RecordNotFound errors. First, at the start of app/
controllers/locations_controller.rb, add the rescue_from line:
class LocationsController < ApplicationController
  rescue_from ActiveRecord::RecordNotFound,
    :with => :not_found
  # remainder omitted
At the end of LocationsController, add the private method #not_
found:
private
  def not_found(e)
    respond_to do |format|
      format.html {
          render :file => "public/404",
          :formats => :html,
          :status => :not_found }
      format.json { render :json => { :message => e.message },
                           :status => :not_found }
    end
  end



Instant RSpec Test-Driven Development How-to

47

12. Finally, refactor the LocationsController#show method by removing  
several lines:

def show
  @location = Location.find(params[:id])
  respond_with(@location)
end

If you have optionally implemented the 404 action for #destroy, you can 
refactor the begin/rescue/end block in the same way as show was 
just refactored.
All specs now pass, including the previous specs for HTML-formatted 404 
not found handlers. LocationsController#destroy could likewise 
be refactored next (although omitted for brevity).

Speccing file uploads (Advanced)
File uploads can be a little daunting to test at first. Fortunately, rspec-rails provides helper 
methods to make this sort of testing easier.

Getting ready
1. To enable file storage in the database, create and run a migration:

$ rails g migration AddImageToLocations image:binary

$ rake db:migrate

$ rake db:test:prepare

2. Update app/models/location.rb to include the image attribute:
class Location < ActiveRecord::Base
  attr_accessible :latitude, :longitude, :image
  # remainder omitted

3. And finally, generate a test file fixture:

$ mkdir -p spec/fixtures/files

$ dd if=/dev/urandom of=spec/fixtures/files/test.png \

  bs=1 count=1024

This fixture is used to represent our image for uploading. It's just a series 
of random bytes. If you're following along on Windows, you can grab any 
file you like, but a smaller file size is ideal since the unit test will copy this 
file as part of the upload process every time the spec is executed.



Instant RSpec Test-Driven Development How-to

48

How to do it...
A file can be uploaded into a controller using rspec-rails' #fixture_file_upload. The goal 
is to have LocationsController#create to save the uploaded file in the database.

1. In spec/controllers/locations_controller_spec.rb, update the original 
describe "#create" block to:
subject { post :create, { :location =>
  { :latitude => 25.0,
    :longitude => -40.0 },
    :image => fixture_file_upload("/files/test.png",
      "image/png", :binary => true)
  } }
it "saves the file in the image column" do
  subject
  Location.first.image.size.should == File.size(
    "spec/fixtures/files/test.png")
end
# remainder omitted

It's important to note the file upload, although associated in the hash 
with a :image parameter key—the same as the attribute name on the 
Location model. It exists outside the parameter values that Rails will 
automatically bind to the Location model instance it creates in the 
controller. This is because uploaded files are special cases and must be 
handled differently from regular form encoded parameters.

2. The specs fail, so the next step is to make them pass by updating the definition 
of LocationsController#create in app/controllers/locations_
controller.rb:

def create
  @location = Location.new(params[:location])
  image_file = params[:image]
  @location.image = image_file.read unless image_file.nil?
  # remainder omitted



Instant RSpec Test-Driven Development How-to

49

There's more...
Storing large amounts of binary data in a database is sometimes not the correct solution, 
although duplicating it there may often be worth the effort (in terms of backups and 
replicating data to a new environment). Speccing file uploads—wherever the data ends  
up being stored—is still important.

It is sometimes necessary to combine a JSON API endpoint with file uploads. In these cases, 
there are a few different options: multipart/form-data (instead of placing JSON in the HTTP 
body—this is what is specced in the preceding example), multipart/mixed (where the HTTP 
body is the encoded payload), and finally, base 64 within JSON (or some other form of binary 
to UTF-8 encoding).

Integration testing with Capybara 
(Advanced)

Capybara is a testing tool that helps test web applications by simulating the interaction  
a user would have with the application through their browser. It even has support for 
JavaScript behavior by driving an actual web browser.

In this recipe, Capybara is used to simulate a user interacting with the new view template  
of LocationController and then add client-side JavaScript validation.

By default, Capybara uses a very limited but fast headless web browser for validating Rack 
applications though it supports additional web browsers through different drivers. These 
examples use the Selenium driver for Capybara because it is the default. It requires that  
you have Mozilla Firefox installed.

Getting ready
1. Add the gem dependencies to the Gemfile:

gem 'capybara', :group => :test
gem 'dynamic_form'
gem 'client_side_validations'

Here, dynamic_form is used for showing error messages when validation fails  
on the server side and client_side_validations is a simple and fast way  
of extending server validations to client-side JavaScript.

www.allitebooks.com

http://www.allitebooks.org


Instant RSpec Test-Driven Development How-to

50

Anytime you update the Gemfile dependencies, make sure you 
run bundle install from the command line:
$ bundle install

2. In spec/spec_helper.rb add the following:
require 'capybara/rspec'

3. Create a spec/features directory:
$ mkdir -p spec/features/controllers

4. To complete the client_side_validations installation, there are a  
few more steps that must be taken. First, execute the following command  
to create the initializer:
$ rails g client_side_validations:install

5. Next, open up the initializer file generated at config/initializers/client_
side_validations.rb and uncomment the entire block following the line  
which reads:
# Uncomment the following block if you want each...

6. Now, add the following line to app/assets/javascripts/
application.js at the bottom of the file:
//= require rails.validations

7. LocationsController (app/controllers/locations_controller.
rb) needs a #new method:

def new
  @location = Location.new
end



Instant RSpec Test-Driven Development How-to

51

How to do it...
1. In spec/features/controllers/locations_controller_spec.rb,  

add the following code (note the new file located under the spec/features/
controllers directory):
require 'spec_helper'
describe LocationsController do
  describe "#new" do
    before { visit(new_location_path) }
    context "when using valid values" do
      it "redirects to show the location" do
        fill_in 'Latitude', :with => '-42.103826'
        fill_in 'Longitude', :with => '77.899063'
        click_button('Create')
        current_path.should =~ /locations\/\d+/
      end
    end
  end
end

2. Running rspec will fail because there are no fields or other user interface 
elements in app/views/locations/new.html.erb. Add them:
<%= form_for @location do |f| %>
    <%= f.error_messages %>
    <%= f.label :latitude, 'Latitude' %>
    <%= f.text_field :latitude %>
    <%= f.label :longitude, 'Longitude' %>
    <%= f.text_field :longitude %>
    <%= f.submit 'Create' %>
<% end %>



Instant RSpec Test-Driven Development How-to

52

3. Unlike the controller specs, these integration tests are full-stack, meaning HTTP 
redirects are followed and rendered views are important.

As Capybara executes on a separate thread and the majority of the testing 
techniques in the Rails environment rely on database transactions, validating 
the state of the database when a spec finishes is unreliable. Instead, focus 
on what the end user should see as a result of these scripted actions.
The fill_in helper method used is case sensitive; it can accept a variety 
of arguments for selectors but the two most commonly used are selecting 
the label by its text, as shown in the previous code example, and the field  
by name. In the case of the previous view template, location_latitude 
would be a valid locator for the latitude field.

4. Next, validate the failure condition of empty values:
context "when using empty values" do
  it "shows four error messages" do
    click_button('Create')
    page.html.should =~
      /4 errors prohibited this location from being saved/i
  end
end

5. While working through these specs, it may not be known how the output will  
exactly look. For cases such as these, you could use puts page.html,  
or even compare it with a best guess regular expression and check the  
comparison output in the console.

6. In the previous examples, the browser Capybara is simulating is an extremely 
basic headless web browser with no client-side JavaScript support. The following 
example uses the :js => true setting to drive a browser that supports JavaScript—
this is where you'll see Capybara fire up Mozilla Firefox and execute a scripted test:
context "when performing client-side validation" do
  context "when using non-numeric and empty values" do
    it "shows two error messages", :js => true do
      fill_in 'Latitude', :with => 'invalid'
      click_button('Create')
      find(:xpath,
'//*/label[@class="message" and @for="location_latitude"]')
        .should have_content("is not a number")
      find(:xpath,
'//*/label[@class="message" and @for="location_longitude"]')
        .should have_content("can't be blank")
    end
  end
end



Instant RSpec Test-Driven Development How-to

53

Due to the length of time a browser integration test takes to execute, 
there are two validations occurring in the same spec. These could 
be broken up into separate tests, as done with all of the other RSpec 
examples so far, though that comes at a cost of extra time to execute 
the tests. Ultimately, you need to strike a balance between code 
maintainability and your integration test strategy.

7. To pass the spec enable the client_side_validations gem for this form  
in app/views/locations/new.html.erb:

<%= form_for @location, :validate => true do |f| %>

There's more...
When a :js => true spec is executed, an instance of the Firefox web browser will be 
launched on a separate thread and driven by Capybara's Selenium driver. For a split second 
it's possible to see the fields as they are filled out by the driver. To keep the page open, you'll 
need to add a dependency for the test group to your Gemfile:

gem "launchy", :group => :test

Then in any :js => true spec the following line:

save_and_open_page

This will cause your default browser to open a temporary file that contains the HTML snapshot 
of the page at that point. Depending on the version of Capybara installed, form fields may not 
have their values displayed but DOM elements should still be intact. Using this method with  
a web browser such as Chrome, you can right-click on any element by navigating to Developer 
tools | Elements and copy XPath. Then you're not guessing about where values appear when 
trying to validate your specs.

Capybara
As an integration test driver, Capybara is more commonly used after you've used TDD to  
drive out the design to improve test coverage and ensure user interaction is modeled correctly. 
That doesn't mean we can't use it as an agent of TDD, but it's important to remember that the 
purpose of Capybara is to verify what the end user sees.

I personally prefer lighter alternatives such as view speccing and mocks for attempting a full-
stack integration test on the user interface. For small projects, though it may be a valid choice, 
if client-side behavior needs to be tested, adding an additional JavaScript testing framework 
such as Jasmine isn't justified.



Instant RSpec Test-Driven Development How-to

54

Specification tagging
You may notice that execution of your specs has become very slow due to the inclusion of the 
spec that fires up Firefox for client-side JavaScript validation. RSpec supports tagging specs 
and omitting tags from your test run. To tag a spec as an integration test—the :integration 
symbol here is arbitrary —you can write the following:

it "shows two error messages", :js => true,
  :integration => true do

And then in the command line execute:

$ rspec -t~integration

The tilde (~) symbol means exclude this tag. You don't even need to specify integration since 
that particular test is already tagged :js, but you may wish to adopt the :integration 
moniker as a classification standard for all integration tests.

You can avoid having to enter -t~integration in the command line constantly by adding  
it to your .rspec file, on its own line:

--color

-t~integration

Then, to run integration tests you just have to include the tag:

$ rspec -tintegration



Thank you for buying  
Instant RSpec Test-Driven 
Development How-to

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL 
Management" in April 2004 and subsequently continued to specialize in publishing highly focused 
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and 
customizing today's systems, applications, and frameworks. Our solution based books give you the 
knowledge and power to customize the software and technologies you're using to get the job done. 
Packt books are more specific and less general than the IT books you have seen in the past. Our 
unique business model allows us to bring you more focused information, giving you more of what 
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be 
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to 
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors 
will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Ruby on Rails Web Mashup 
Projects
ISBN:  978-1-847193-93-3            Paperback: 272 pages

A step-by-step tutorial to building web mashups

1. Learn about web mashup applications and 
mashup plug-ins

2. Create practical real-life web mashup projects 
step by step

3. Access and mash up many different APIs with 
Ruby and Ruby on Rails

Building Dynamic Web 2.0 
Websites with Ruby on Rails
ISBN: 978-1-847193-41-4            Paperback: 232 pages

Create database-driven dynamic websites with this 
open-source web application framework

1. Create a complete Web 2.0 application with Ruby 
on Rails

2. Learn rapid web development

3. Enhance your user interface with AJAX

Please check www.PacktPub.com for information on our titles



Ruby on Rails Enterprise 
Application Development: 
Plan, Program, Extend
ISBN: 978-1-847190-85-7             Paperback: 528 pages

Building a complete Ruby on Rails business application 
from start to finish

1. Create a non-trivial, business-focused Rails 
application

2. Solve the real-world problems of developing 
and deploying Rails applications in a business 
environment

3. Apply the principles behind Rails development to 
practical real-world situations

Aptana RadRails: An IDE for 
Rails Development
ISBN: 978-1-847193-98-8            Paperback: 248 pages

A comprehensive guide to using RadRails to develop 
your Ruby on Rails projects in a professional and 
productive manner

1. Comprehensive guide to using RadRails during the 
whole development cycle

2. Code Assistance, Graphical Debugger, Testing, 
Integrated Console

3. Manage your gems, plug-ins, servers, generators, 
and Rake tasks

4. Rails 2.0-ready

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Instant RSpec Test-Driven Development How-to
	Installing RSpec (Simple)
	Preparing the RSpec environment (Simple)
	Refactoring specifications and classes (Simple)
	Making specs more concise (Intermediate)
	Handling exceptions (Intermediate)
	Working with RSpec matchers (Simple)
	Setting up Rails (Intermediate)
	Writing ActiveRecord specifications (Intermediate)
	Testing Rails routes (Intermediate)
	Testing Rails controllers (Intermediate)
	Stubbing (Intermediate)
	Mocking (Intermediate)
	Working with JSON (Intermediate)
	Speccing file uploads (Advanced)
	Integration testing with Capybara (Advanced)


