
Core concepts and techniques

for iOS developers

•

•
•
•

iOS 5 Recipes
A Problem-Solution Approach

Shawn Grimes | Colin Francis

iO
S 5 Recipes

www.allitebooks.com

http://
http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://
http://www.allitebooks.org

 i

iOS 5 Recipes

A Problem-Solution Approach

■ ■ ■

Shawn Grimes

Colin Francis

www.allitebooks.com

http://
http://www.allitebooks.org

iOS 5 Recipes: A Problem-Solution Approach

Copyright © 2012 by Shawn Grimes and Colin Francis

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-4005-1

ISBN-13 (electronic): 978-1-4302-4006-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Development Editor: Ralph Moore
Technical Reviewer: Anselm Bradford
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Mary Ann Fugate
Compositor: MacPS, LLC
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://
http://www.allitebooks.org

I dedicate this book to my wife, Stephanie, and my family, who have always supported me
and encouraged me.

—Shawn Grimes

This work is dedicated to my grandfather, Larry Cohan.

—Colin Francis

www.allitebooks.com

http://
http://www.allitebooks.org

iv

Contents at a Glance

Contents .. v

About the Authors ... x

About the Technical Reviewer ... xi

Acknowledgments .. xii

Introduction ... xiii

■Chapter 1: Xcode 4 Tips and Tricks ... 1

■Chapter 2: Introduction to Interface Builder ... 29

■Chapter 3: Application Design Elements ... 87

■Chapter 4: Location Recipes .. 125

■Chapter 5: Map Kit Recipes ... 163

■Chapter 6: Camera Recipes ... 205

■Chapter 7: Multimedia Recipes ... 241

■Chapter 8: User Data Recipes .. 277

■Chapter 9: UITableView Recipes .. 317

■Chapter 10: Data Storage Recipes ... 353

■Chapter 11: Core Data Recipes .. 391

■Chapter 12: Core Motion Recipes .. 429

■Chapter 13: Data Transmission Recipes .. 453

■Chapter 14: Twitter Recipes .. 485

■Chapter 15: Image Recipes .. 515

■Chapter 16: Game Kit Recipes ... 555

Index ... 583

www.allitebooks.com

http://
http://www.allitebooks.org

v

Contents

Contents at a Glance .. iv

About the Authors ... x

About the Technical Reviewer ... xi

Acknowledgments .. xii

Introduction ... xiii

■Chapter 1: Xcode 4 Tips and Tricks ... 1
Xcode 4: An Introduction ... 1

Build a Lite and Full Version in One Xcode Project .. 5

Zombie Hunter ... 7

Version Control with Xcode 4 ... 9

Steve and the ARC ... 20

Quick Tips .. 25

Summary .. 28

■Chapter 2: Introduction to Interface Builder ... 29
Interface Builder Walkthrough .. 29

Our Forces Combined… ... 30

Touches Too .. 36

Adjusting Tint .. 42

Rapid App Development with Storyboarding .. 43

So What’s in a Story(board)? ... 43

Telling a Story .. 46

Passing Data Between Scenes .. 58

UITableViewCell Prototypes ... 72

Adding a Storyboard to an Existing Project .. 78

Summary .. 85

■Chapter 3: Application Design Elements ... 87
Cocoa Touch Controls ... 87

UILabel ... 87

UIButton ... 89

UISegmentedControl .. 90

UITextField ... 91

www.allitebooks.com

http://
http://www.allitebooks.org

■ CONTENTS

vi

UISlider .. 95

UISwitch ... 96

UIActivityIndicatorView .. 96

UIProgressView .. 97

UIPageControl .. 97

UIStepper ... 98

Data Views .. 99

UIImageView .. 99

UITextView ... 101

UIScrollView ... 103

UIWebView ... 104

MKMapView ... 104

UITableView ... 104

UIPickerView .. 105

UIDatePickerView ... 107

Gesture Recognizers ... 107

UITapGestureRecognizer .. 109

UISwipeGestureRecognizer .. 109

UIPanGestureRecognizer ... 110

UILongPressGestureRecognizer ... 110

UIPinchGestureRecognizer ... 111

UIRotationGestureRecognizer .. 111

View Controllers .. 111

UINavigationController ... 112

UITabBarController ... 114

UISplitViewController ... 116

UIPopoverController ... 118

UIPageViewController .. 120

Modal Controllers ... 120

Temporary User Interface Elements ... 122

UIAlertView .. 122

UIActionSheet .. 123

Summary .. 124

■Chapter 4: Location Recipes .. 125
Supported Devices .. 125

Requiring Location Services ... 126

How Do I Know Where I Am? .. 126

Recipe 4–1: Getting Device Location Information ... 127

Recipe 4–2: Significant Location Changes ... 136

Recipe 4–3: Determining Magnetic Bearing ... 141

Recipe 4–4: Specifying True Bearing .. 146

Recipe 4–5: Region Monitoring ... 150

A Thing or Two About Regions ... 150

Welcome to Baltimore! .. 151

Recipe 4–6: Reverse and Forward Geocoding .. 156

Getting Coordinates from Place Names .. 162

Summary .. 162

www.allitebooks.com

http://
http://www.allitebooks.org

■ CONTENTS

vii

■Chapter 5: Map Kit Recipes ... 163
Recipe 5–1: Showing a Map with the Device’s Location .. 163

Recipe 5–2: Marking Locations with Pins ... 173

Recipe 5–3: Creating Custom Annotations ... 177

Recipe 5–4: Adding Overlays to a Map ... 190

Recipe 5–5: Grouping Annotations by Location .. 192

Summary .. 203

■Chapter 6: Camera Recipes ... 205
Recipe 6–1: Taking Pictures ... 205

Recipe 6–2: Recording Video .. 213

Recipe 6–3: Editing Videos ... 214

Recipe 6–4: Custom Camera Overlays .. 217

Recipe 6–5: AV Framework and Capture Sessions ... 221

Recipe 6–6: Programmatically Recording Video ... 228

Recipe 6–7: Capturing Video Frames .. 233

Summary .. 239

■Chapter 7: Multimedia Recipes ... 241
Recipe 7–1: Playing Audio .. 241

Recipe 7–2: Recording Audio .. 248

Recipe 7–3: Accessing the iPod Library ... 252

Querying Media .. 259

A Few Notes on MPMediaPropertyPredicates: ... 262

Recipe 7–4: Background Playing and Now Playing Info ... 262

Summary .. 275

■Chapter 8: User Data Recipes .. 277
Recipe 8–1: Working with NSCalendar and NSDate ... 277

Recipe 8–2: Fetching Events .. 282

Recipe 8–3: Displaying Events in a UITableView .. 284

Recipe 8–4: Viewing, Editing, and Deleting Events .. 288

Recipe 8–5: Creating Simple Events ... 291

Recipe 8–6: Recurring Events ... 297

Recipe 8–7: Basic Address Book Access .. 299

Recipe 8–8: Setting Contact Information .. 305

Recipe 8–9: Viewing Contacts .. 312

Summary .. 315

■Chapter 9: UITableView Recipes .. 317
Recipe 9–1: Creating an Ungrouped Table ... 317

A Note on Rounded Corners ... 327

Enhanced User Interaction ... 334

A Note on Cell View Customization .. 336

Recipe 9–2: Editing a UITableView ... 337

UITableView Row Animations .. 339

But Wait, There’s More! ... 340

Recipe 9–3: Re-ordering a UITableView ... 343

Recipe 9–4: Creating a Grouped UITableView ... 344

Summary .. 351

www.allitebooks.com

http://
http://www.allitebooks.org

■ CONTENTS

viii

■Chapter 10: Data Storage Recipes ... 353
Recipe 10–1: Using NSUserDefaults ... 353

Recipe 10–2: Managing Files .. 359

Core Data .. 373

Recipe 10–3: Persistence with iCloud .. 374

Recipe 10–4: Storing Key-Value Data in iCloud .. 386

Summary .. 389

■Chapter 11: Core Data Recipes .. 391
What Is Core Data? ... 391

Recipe 11–1: Creating a Data Model .. 393

Recipe 11–2: Working with NSManagedObjects .. 402

Recipe 11–3: Subclassing NSManagedObject .. 413

Recipe 11–4: Filtering Your Fetch Requests ... 419

Recipe 11–5: Versioning ... 422

An Irritating Error .. 426

Summary .. 428

■Chapter 12: Core Motion Recipes .. 429
Recipe 12–1: Registering Shake Events ... 429

Recipe 12–2: Accessing Raw Core Motion Data ... 434

Core Motion in Detail ... 437

Attitude Properties ... 445

Recipe 12–3: Moving a UILabel with the Accelerometer .. 449

Summary .. 451

■Chapter 13: Data Transmission Recipes .. 453
Recipe 13–1: Composing Text Messages ... 453

Attaching Data to Mail ... 461

Recipe 13–3: Printing an Image .. 467

Recipe 13–4: Printing Plain Text ... 473

Recipe 13–5: Printing a View .. 475

Recipe 13–6: Formatted Printing with Page Renderers .. 478

Summary .. 483

■Chapter 14: Twitter Recipes .. 485
Recipe 14–1: Composing Simple Tweets ... 485

Recipe 14–2: Creating Simple TWRequests .. 491

Sending Tweets via TWRequest .. 492

Recipe 14–3: Retrieving Tweets ... 494

Recipe 14–4: Filtering Tweets .. 508

Summary .. 513

■Chapter 15: Image Recipes .. 515
Recipe 15–1: Drawing Simple Shapes .. 515

Programming Screenshots .. 520

Recipe 15–2: Using UIImageViews ... 522

Recipe 15–3: Scaling Images ... 529

In Review ... 536

Recipe 15–4: Manipulating Images with Filters .. 537

Recipe 15–5: Detecting Features .. 548

www.allitebooks.com

http://
http://www.allitebooks.org

■ CONTENTS

ix

Summary .. 553

■Chapter 16: Game Kit Recipes ... 555
Recipe 16–1: Starting with Game Center .. 555

iTunes Connect Setup .. 555

Project Setup ... 558

Checking for Game Center Support ... 560

Player Authentication ... 561

Recipe 16–2: Leaderboards .. 563

Setting Up iTunes Connect ... 563

Setting Up Your Code ... 567

Showing High Scores ... 568

Recipe 16–3: Achievements ... 569

Setting Up iTunes Connect ... 569

Setting Up Your Code ... 572

Showing Achievements ... 574

Recipe 16–4: Multiplayer .. 575

Setting Up Your Code ... 575

Summary .. 582

Index ... 583

http://

x

About the Authors

In 2010, Shawn Grimes taught himself Objective-C and iOS development and
wrote his first iOS app for the iPad. From Baltimore, Maryland, Shawn attended
Capitol College in Laurel, Maryland and graduated in 2003 with a bachelor’s
degree in software and Internet applications. He founded Shawn’s Bits, LLC to
create additional apps and present workshops for other aspiring iOS
developers. To help local developers, he co-runs the Baltimore Mobile
Developers group with Chris Stone. Shawn and his wife, Stephanie, run
Campfire Apps, LLC, a mobile app development company focused on
children’s apps.

Colin Francis is an iOS developer from Gaithersburg, Maryland. After
extensively studying computer science, he trained himself in iOS development
and worked with Shawn Grimes in Baltimore. Now he lives in Miami,
developing iOS apps independently with a focus on utilities and audio-focused
software applications.

http://

xi

About the Technical Reviewer

Anselm Bradford is a lecturer in digital media at the Auckland University of
Technology (AUT) in New Zealand, where he researches interactive media, web
media, and visual communication. His experience with Internet-related
development stretches back to 1996, when he hand-coded his first web site. He
may be found at @anselmbradford on Twitter and occasionally blogs at
AnselmBradford.com.

http://

xii

Acknowledgments

First, I would like to thank Colin, who took on this project with me and led the way to getting it
completed. It has always been a pleasure working with him, and his appetite for knowledge is an
inspiration to me.

I would also like to thank my wonderful family, who has inspired me and always supported
me: Terri, Larry, Amber, Gloria, Wayne, Kelly, Debbi, Billy, Tom, Mark, Derek, Devin, Bethany,
Lauren, Kelsie, Matt, Pam, Mike, Jackie, Gus, Chris, Sam, Brynn, and Courtney.

Finally, I would like to thank my friends, who put up with me taking my laptop everywhere
with me so I could work on the book and kept Stephanie company while I was working on this
book. Special thanks to Jessop, Lauren, and Henry.

Shawn Grimes

Working on this book has been an immense pleasure, but it was a task that I could not have faced
without the full support of my family. I thank every one of them for supporting me and providing
suggestions when I was stuck. A huge “thank you” as well goes to my mother, for all her help and
support, no matter the occasion.

It has been a terrific experience working with Shawn. Ever since I met him and his wonderful
wife, Stephanie, I have particularly enjoyed working on a huge variety of iOS projects with them
both. Shawn’s technical experience has helped guide me through many tasks with ease, and his
generous nature makes him incredibly easy to work with. When he originally brought the project
of writing this book to me, I was apprehensive, but with his assistance it was easily turned into the
completed product that you see today.

I would like to thank everyone I have worked with in writing this book. Anselm, Ralph, and
Mary have been fantastic reviewers, and it was through their intense and dedicated focus that this
book has turned out so well. This book also would never have seen the light of day if not for the
incredible organizational efforts of both Mark and Anita, as well as the multitude of other
individuals at Apress.

Finally, I would like to especially thank all of my friends, of whom there are too many to
name individually, who have helped me throughout the process of writing this book. Through my
countless hours spent writing, they have constantly been a source of support, providing constant
and often incredible suggestions, even if they could not decipher the subject. If not for their
original insistence and encouragement to take on such a project, I would never have reached this
point.

Colin Francis

http://

xiii

Introduction

Once you have already acquired an understanding of the syntax structure of programming in
Objective-C for iOS development, the most important part of creating applications is learning to
work with the various tools and frameworks provided by Apple. In order to fully develop iPhone
and iPad applications, you must have a detailed understanding not only of your development
environment, but also of the various elements and functionalities that you are able to use.
Regardless of whether your application is playing music, taking pictures, printing documents, or
filtering images, this book will help guide you through the setup and building of your
functionality.

What to Expect from This Book
The first few chapters of this book are devoted to acquiring a basic understanding of your
development environment. You will learn a variety of ways to work within Xcode and Interface
Builder, as well as the various standard user interface elements with which you can build your
application. The remaining 13 chapters focus on specific examples, or recipes, of a variety of
different applications, in order to demonstrate exactly how to implement each functionality from
start to finish.

How This Book Is Organized
The example-based chapters of this book do not particularly build off of one another, in the hope
that you can simply open up to any chapter of specific interest and start building a certain type of
application. However, it is highly recommended that you read the first three chapters in order to
acquire a solid understanding of working with Xcode and Interface Builder, if you have not
already. Some of the methods used in these early chapters, such as those used to create
properties, are referenced throughout the text and should be fully understood.

Throughout this book, it is assumed that you are developing in the latest versions of iOS (5.0)
and Xcode (4.2) at the time of writing. This means that every recipe in this text assumes that you
will be using ARC (Automatic Reference Counting), and as such does not include significant
memory management. This also means that depending on when you are reading this, your
results may look slightly different, though the basic functionality should remain similar.

Many of the recipes in this book cannot be fully tested on the iOS simulator, and as such will
require both an Apple device and a provisioning profile, which can be acquired when you
subscribe to Apple’s iOS Developer Program. Each recipe that cannot be tested in the simulator
will mention this fact.

http://

■ INTRODUCTION

xiv

Source Code and Errata
All the source code used in this book is available online for download at www.apress.com, and it is
entirely free for use in any application, whether commercial or personal. A number of people
have worked hard to keep this code as perfect and error-free as possible, but a few typos or bugs
may become apparent with extensive use. Any corrections to the text or code are available in this
book’s “Errata” section, also at www.apress.com.

Contact Information
If you have any questions or comments regarding the book or its source code, we would be happy
to assist. You can contact either author:

Colin Francis:
E-mail: cmfrancis24@gmail.com

Shawn Grimes:
E-Mail: shawn@shawnsbits.com
Web: www.shawnsbits.com

http://www.apress.com
http://www.apress.com
mailto:cmfrancis24@gmail.com
mailto:shawn@shawnsbits.com
http://www.shawnsbits.com
http://

1

 Chapter

Xcode 4 Tips and Tricks

Xcode 4 brought forth a number of changes to the look and feel of Xcode as well as

changes in functionality. As with any major change to the way people do things, it was

met with mixed reviews and some complaints. In this chapter, we’ll steer clear of the

shortcomings of Xcode 4 and insted focus on its strengths and improvements, which are

many.

Xcode 4: An Introduction
The very first thing you’ll notice about Xcode 4 is its unified interface window. Everything

has been brought into one window, and the new interface has introduced the common

interface element of tabs instead of multiple windows.

Figure 1–1 shows an example of the Xcode user interface, including its various display

panes. These panels help you to navigate, build, and debug your application. Their

visibility can be adjusted easily using the View buttons in the upper right-hand corner in

order to provide more viewing space for the Editor.

1

http://

CHAPTER 1: Xcode 4 Tips and Tricks 2

Figure 1–1. The Xcode interface

Even Interface Builder has been included in the single window interface of Xcode 4. With

the inclusion of Interface Builder, Apple has built some swift functionality to help you go

from visual interface to functioning code. Figure 1–2 shows Interface Builder being used

to construct an application’s user interface. This will be covered more in Chapter 2.

http://

CHAPTER 1: Xcode 4 Tips and Tricks 3

Figure 1–2. Interface Builder

With the Assistant Editor, you can easily see two related files side by side. This is very

useful when working with class headers and implementation files because you can

easily modify both files in a single view. By using the small navigation area at the top of

each pane, you can either select specific files to show together, or specify

“Counterparts” to automatically show the related header or implementation file, as

shown in Figure 1–3.

http://

CHAPTER 1: Xcode 4 Tips and Tricks 4

Figure 1–3. The Assistant Editor

A feature of Xcode 4 that is sure to save you time is Fix-It. This feature tries to detect

common programming mistakes and offers suggestions on how to fix them. It does this

while you are writing the code rather than waiting for you to run a build command. This

makes it a great time saver for common mistakes.

Xcode 4 also features better source control integration with Git. You are now given the

option to create a local Git repository every time you start a new project, and modified

files are clearly marked in the Navigator pane. The Timeline Editor view will even show

you changes that you’ve made since the last check-in or compare your current file to

any past file version in the repository. This view back in time is very similar to the Time

Machine backup interface in Snow Leopard, as shown in Figure 1–4.

Figure 1–4. Timeline Editor displaying recent revisions

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1: Xcode 4 Tips and Tricks 5

Build a Lite and Full Version in One Xcode Project

Offering a lite version of your app is a great way to give customers a chance to try your

app before buying it. Maintaining two code bases, however, can be quite tiresome and

get out of hand as you implement new features into your app. While the ability to

maintain two build targets was available in Xcode 3, Xcode 4 has made it even easier.

Select your project file in the Navigator area, and then select the build target for your

project. Now press D to duplicate the target. You will be prompted to “Duplicate

Only” or “Duplicate and Transition to iPad.” Click Duplicate Only to create a new target

that will be used for your Lite build, as shown in Figure 1–5. This will result in a separate

build target with which you can implement a second version.

Figure 1–5. Project duplication options

Rename the new target with an appending “Lite”. You will also want to go to the Build

Settings tab and find the Product Name attribute under the Packaging heading in order

to append “Lite” to the app name. Now that the build name is set, you need a way to

differentiate between the two builds in your source code. For that, scroll down and find

the Preprocessor Macros, and add a new macro named LITE_VERSION. Make sure to

add the new macro for the Debug and Release build settings. Figure 1–6 shows an

example of these changes.

Figure 1–6. “Lite” application configuration

http://

CHAPTER 1: Xcode 4 Tips and Tricks 6

If you build and run that now, you will end up with a second app on your device with the

name “SampleApp Lite” as the title, but it runs the same code as the regular version of

the app, as demonstrated in Figure 1–7. Keep in mind that the two targets must have

separate bundle identifiers in order to show up as separate apps. This is the default

setting, but be careful when making changes.

Figure 1–7. Two versions of the same application

To build different features into your app, you will need to utilize that preprocessor macro

you created. Anywhere in your code that you want to specify different code for your lite

version vs. the full version, use the following #ifdef directive:

#ifdef LITE_VERSION
//Stuff for Lite version
Self.labelAppName.text=@”Sample App Lite”;
#else
//Stuff for Full version
Self.labelAppName.text=@”Sample App Full”;
#endif

http://

CHAPTER 1: Xcode 4 Tips and Tricks 7

Build and compile the two apps on the simulator, and you will see that the apps change

the code they compile and run based on the preprocessor macro and the power of the

#ifdef directive. Figure 1–8 demonstrates the result of this configuration.

Figure 1–8. Full and “lite” applications

NOTE: You can also control what files are included in each build. For instance, you may not need

to include the full version artwork in the lite version. Click your Lite project target and go to the

Build Phases tab. Now expand the Copy Bundle Resources ribbon, and remove or add any files

that are specific to the lite version.

Zombie Hunter

Occasionally, you will run into an error described only as “EXC_BAD_ACCESS,” and

unfortunately, it doesn’t tell you in which line the bad access is occurring. This is caused

when you have released a variable and then tried to access that freed object. When an

http://

CHAPTER 1: Xcode 4 Tips and Tricks 8

object is no longer there and you try to access it, the term is a zombie object. Enter the

zombie hunter, the NSZombieEnabled flag. This is not new to Xcode 4, but where you set

the flag can be difficult to find in Xcode 4. Go to the Product menu and select “Edit

Scheme…”. Now select the Run step and click the Arguments tab. Under the

Environment Variables section, add NSZombieEnabled and set the value equal to YES,

as shown in Figure 1–9.

Figure 1–9. Enabling NSZombieEnabled

The next time you run your code, the zombies will be identified in the Debug window.

Figure 1–10 displays an example of a zombie caught by Xcode.

http://

CHAPTER 1: Xcode 4 Tips and Tricks 9

Figure 1–10. A zombie identified

Version Control with Xcode 4

Version control can be a daunting concept to new developers, but it is something worth

learning. Once you have started using version control, you will wonder how you ever got

along without it. Its benefits for teams of developers are fairly obvious. Individual team

members can work on different parts of an app without stepping on each other’s code.

Single developers can benefit from version control as well. With multiple branches, you

can add features to your app without disturbing the previous released version. If a bug is

discovered in your released version, you can switch branches and fix the bug without

impacting the future version of your app. Then you can merge the two versions and have

a new version that contains the bug fixes and the new features. All the while, you can

reach back to any point in time and see changes that were made to your code.

Xcode 4 introduced version control into the Xcode environment. Initially, it supported

only local Git repositories, but Xcode 4.2 has brought remote repositories to the

environment. This is great news if you are part of a development team or if you work on

multiple machines. Remote repositories also provide a safe place for your code in case

of computer failure or loss.

Creating a Local Repository

Whenever you start a new project in Xcode 4, you are given the option to create a local

Git repository, as shown in Figure 1–11. If you select this box, Xcode will create the local

repository and automatically add the project files it thinks are necessary.

http://

CHAPTER 1: Xcode 4 Tips and Tricks 10

Figure 1–11. Creating a Git repository

As you make changes to your project and its files, their source control status will be

displayed in the navigator window. “A” is for when a file has been added to your project,

and “M” is for when it has been modified since the last check-in. Figure 1–12 shows a

navigation pane with multiple files with these statuses.

http://

CHAPTER 1: Xcode 4 Tips and Tricks 11

Figure 1–12. Modified and added project files

You can filter the navigator contents so that you see only the files that are pending

changes to the source control repository by clicking the middle icon in the bottom of the

navigator pane, as shown in Figure 1–13.

http://

CHAPTER 1: Xcode 4 Tips and Tricks 12

Figure 1–13. Filtered modified files

To commit your changes back into your local repository, go to File ➤ Source Control ➤

Commit or C. The Commit window will be presented. By clicking a modified file, you

will see your edited version in the left pane and the current version in the repository in

the right pane. All of your changes will be highlighted so that you can easily see the

differences between the two files. Figure 1–14 displays such a window with highlighted

changes.

Figure 1–14. Viewing file changes for committal

http://

CHAPTER 1: Xcode 4 Tips and Tricks 13

Worth mentioning is the fact that the left pane is a live editor, so if you see something

that should not be committed, such as an NSLog statement, this is your chance to

comment it out or make the necessary changes.

Xcode does a good job of suggesting which files should be committed. You do not want

to version control your workspace file (*.xcworkspace) or your userdata directory

(xcuserdata). Generally Xcode will not check those files, and you will note the “?” mark

icon next to the files. This means they are not currently under version control, nor should

they be. Figure 1–15 shows these non-version-controlled files/directories.

Figure 1–15. Disabled version control for certain directories

At the bottom of the commit window, as shown in Figure 1–16, is where you need to

enter a message about the changes you have made before committing. Your commit

message should be a descriptive summary of the changes you have made to your code,

such as “added such and such feature.”

Figure 1–16. Commit message

Branching and Merging

Branches are copies of your project that you can work on without disturbing the main

branch, also known as the master branch. They allow you to add features and fixes

without affecting the main build.

To manage your repository, you can go to Window Organizer or 2 and click the

Repositories tab. In this view, you will see a list of repositories that Xcode knows about.

http://

CHAPTER 1: Xcode 4 Tips and Tricks 14

As shown in Figure 1–17, you can click the Branches folder under a repository to see a

list of branches available to Xcode for this repository.

Figure 1–17. Repositories tab in Organizer

When you select a branch, you will see a list of the latest commits to that branch. The

information includes who made the commit and their commit message.

Create a new branch to start adding a main menu to your app. Click the Add Branch

button at the bottom of the Organizer window. In the window shown in Figure 1–18, type

a branch name and click the check box next to “Automatically switch to this branch”.

This will duplicate the code in the master branch into a new branch called “MainMenu,”

and then it will switch you to that branch.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1: Xcode 4 Tips and Tricks 15

Figure 1–18. Creating a branch

Now that you are working in the MainMenu branch, you can add a new view controller

for the main menu without affecting the rest of the app source code. After adding the

view controller and coding it up, you can commit this back to the source code

repository. Again, this will affect only the MainMenu branch and not make any changes

to the master branch.

To merge the two branches, you want to switch to the branch that you want to merge

the changes into. You are done coding up the MainMenu, and you want to put it into the

master branch, so you are going to switch to the master branch. This is done from the

Organizer window, so press 2.

Click the project folder, and then click the Switch Branch button on the bottom right.

Select the branch you want to switch to—master in this case—and click OK. This will

switch your active branch back to the master branch, and now you can merge the two

branches together. Figure 1–19 highlights these steps.

http://

CHAPTER 1: Xcode 4 Tips and Tricks 16

Figure 1–19. Switch branch

Go back to the Xcode window and click File ➤ Source Control ➤ Merge. You will be

prompted to select which branch you want to merge into the current branch (master), as

shown in Figure 1–20. When you click Choose, you will see the commit changes

window.

Figure 1–20. Merging a branch with the current branch

This commit changes window is very similar to the one you saw before with one minor

change: at the bottom of the code review panes, you will see four icons. If each branch

contains a file that has been modified in both branches, these icons will allow you to

decide which one takes precedence. The icons are, in order from left to right, “Merge

the left file first and then the right,” “Keep the left file changes only,” “Keep the right file

http://

CHAPTER 1: Xcode 4 Tips and Tricks 17

changes only,” and “Merge the right file first and then the left.” These icons are shown in

Figure 1–21. This is very useful for resolving conflicts if two people have made changes

to the same file or if a file has been modified in both branches.

Figure 1–21. Specify the change precedence for merging

Clicking the Merge button will combine the MainMenu branch into the master branch. If

you look at the master branches commit history in the Organizer view (2), you will

see that the commits from the MainMenu branch have been combined with the master

branch commits.

Remote Repositories

Up until this point, you have been working with local repositories. In Xcode 4.2, support

for remote repositories was added. This allows you to store your code online where you

can get to it from any computer and allows multiple users to access your code. Another

benefit of remote repositories is storing your source code offsite in case of sudden

device failure or worse.

To add a remote repository, go to the Organizer view (2) on the Repositories tab and

select the repository you want to add a remote option to. Click the Remotes folder under

the project repository, and click Add Remote at the bottom. This will bring up a view

similar to Figure 1–22. Enter a name for your remote repository and the location, and

then click Create.

http://

CHAPTER 1: Xcode 4 Tips and Tricks 18

Figure 1–22. Adding a remote repository

Now that you have a remote repository, you can push and pull your code from the

remote repository to keep things up to date. This is not the same as a commit. A commit

or merge affects only your local copy. You need to then push your code to the remote

repository to update the remote repository.

GitHub

A very popular online repository for Git projects is GitHub, found at www.github.com.

GitHub offers the ability to remotely store your code in either a public or private

repository. This allows small teams of developers to work on one project together or

individual developers to remotely store their code repository. Up until now, you had to

use third-party software or the command-line version of Git to push your changes to a

remote repository. With the inclusion of remote repositories in Xcode, it’s easy to work

with GitHub and to store your source code remotely.

Before you add the project to Xcode, you should create a repository on GitHub. You’ll

need an account on GitHub to do this; follow the very detailed instructions to set up

your account. Once you’ve created a repository on GitHub, copy the entire HTTP access

path on the Source tab, as shown in Figure 1–23. This will be the remote location of your

repository.

http://www.github.com
http://

CHAPTER 1: Xcode 4 Tips and Tricks 19

Figure 1–23. Finding the HTTP access path of a repository

Setting up GitHub in Xcode is very similar to setting up any remote repository. Go to the

Organizer view (2) on the Repositories tab, and select the Remotes folder beneath the

repository you want to add to your GitHub repository. Now click Add Remote at the

bottom of the window, paste the HTTP location into the location field (as is done in

Figure 1–24), add a name, and click Create.

Figure 1–24. Configuring a Git repository

After clicking Create, you will see a place to enter your GitHub credentials at the bottom

of the Organizer window. Your username should already be filled in, so all you need to

enter is your password. Now go back to your main Xcode window, and use File ➤ Source

Control ➤ Push. In a window reflecting Figure 1–25, you will be prompted to select the

remote repository to push the code to. Select the GitHub repository, and click Push.

Xcode will now send your code to your GitHub project repository. Using the GitHub web

interface, verify that your changes and changelog have been uploaded properly. Now

other developers can check this code out using their own GitHub accounts and the File

➤ Source Control ➤ Pull… menu option.

http://

CHAPTER 1: Xcode 4 Tips and Tricks 20

Figure 1–25. Specifying a GitHub repository

Source Control Best Practices

These are some tips for working with source control repositories:

1. Try not to work on the master branch directly. Instead, work on branches that you

can then merge back into the master branch when you are ready.

2. When working with remote branches, always perform a pull on your working

branch before starting to code. This will ensure that you are working on the most

recent code revision.

3. Try not to push code to the remote repository that does not compile. While you

want to check in often to ensure availability, it is always best if your code at least

builds without errors before pushing it to a remote repository.

4. Use commit messages that are descriptive about the changes you made. Not only

will this help you to manage your code, but also you can easily see what features

you have added and list them when you submit your app for review.

Steve and the ARC

Xcode 4.2 introduced Automatic Reference Counting (ARC) as a way to help developers

focus more on writing great apps and spend less time on memory management. As any

developer new to Objective-C, and some who have been at it for a while, you will likely

struggle with memory management concepts. Retain this, release that, autorelease

what? If those three methods baffle you, then fear not, Xcode 4.2 is for you! Even if you

are comfortable with memory management, you will see benefits from migrating your

code to using ARC.

ARC is a compile time memory management method. It does not add performance

overhead to your running apps because it is compiled into the code before you build it.

This is a different concept than garbage collection, a method of memory management

that Java developers are familiar with. With ARC, the compiler (LLVM version 3.0)

automatically adds retain and release calls by analyzing your objects and determining

when objects are no longer referenced. While a pointer to an object exists, the object

http://

CHAPTER 1: Xcode 4 Tips and Tricks 21

will exist. After it has synthetically added the memory management methods, it compiles

the binary for running and deployment.

Without ARC, the following code would produce a memory leak because the return

value is not autoreleased:

-(NSString *) cityStateZip {
 return [[NSString alloc] initWithFormat:@”%@, %@ %@”, self.city, self.state,
self.zip];
}

Without any changes to the code, ARC will compile this method and add the

autorelease at compile time to remediate the memory leak.

ARC Rules

The following are some rules to follow while working with an ARC-enabled project:

1. You cannot call retain, release, or autorelease in your code. You cannot

override or implement these methods either.

2. Because release statements are no longer needed, you must no longer

implement a dealloc method in your classes.

3. You cannot create structs anymore. Instead, you must utilize custom Objective-C

subclasses.

4. You cannot use casual casting such as the following:

NSString *B = (NSString *)A;

The solution is to use the __bridge directive:

NSString *B = (__bridge NSString *)b;

5. You cannot use NSAutoreleasePool; instead you can use @autoreleasepool.

Using ARC

Every new project template in Xcode 4.2 uses ARC and the LLVM v3.0 compiler by

default. There is nothing special that you need to do. ARC-enabled projects are also

compatible with iOS 4.

Converting Older Projects to ARC

One day, we will look back and not even remember writing code with retain, release,

and autorelease calls. Until that day, we’ll need to work on existing projects and migrate

to the ARC method of memory management to keep them current and to also take

advantage of the performance improvements. Apple highly encourages that all projects

move to LLVM 3.0 and ARC. They have provided a way to convert your old projects to

use ARC.

Open your old project and make sure it builds correctly before you make any changes.

http://

CHAPTER 1: Xcode 4 Tips and Tricks 22

NOTE: This might also be a good time to commit your changes to your Git repository and push

your changes to a remote repository for safekeeping.

Next go to Edit ➤ Refactor ➤ Convert to Objective-C ARC. Xcode will ask you which targets to

convert. Select your targets and click Precheck. Figure 1–26 shows a sample target

selection.

NOTE: Make sure you are set to build for device and not the simulator.

Figure 1–26. Selecting targets to convert to ARC

The precheck will begin and analyze your code to see what changes need to be made to

your project before the conversion can begin. A notification will be displayed if there are

issues, as shown in Figure 1–27; you can see them in the navigator pane under build

results, an example of which is shown in Figure 1–28.

http://

CHAPTER 1: Xcode 4 Tips and Tricks 23

Figure 1–27. ARC conversion issues must be corrected.

Figure 1–28. List of ARC conversion issues

http://

CHAPTER 1: Xcode 4 Tips and Tricks 24

You will need to correct any issues before proceeding with the conversion. Once the

issues have been corrected, you will be prompted to start the conversion. Figure 1–29

shows a window detailing the conversion process. The first step is to take a snapshot of

your application’s source code so you can revert back. The next window will show you

any changes that are going to be made to your code. It is the same window that you

have seen when you commit changes to a source control repository. The most common

changes include removing dealloc methods and autorelease and retain statements.

Properties are also specified to be either “strong” or “weak.” “Strong” corresponds to

the former “retain” statement, while “weak” results in immediate de-allocation of an

object as soon as no other strong pointers refer to it.

Figure 1–29. Conversion to ARC

After you have reviewed the changes, you can click Accept, and Xcode will make the

necessary changes. Build your project, and make sure it builds correctly after the

changes have been made.

You can verify that your project is using the LLVM 3.0 compiler by checking your target

compiler settings, as shown in Figure 1–30.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1: Xcode 4 Tips and Tricks 25

Figure 1–30. Verifying the LLVM 3.0 compiler

To verify that you are using ARC in your project, navigate to your target Build Settings

and go to the “Apple LLVM compiler 3.0 – Language” section. You should now see the

Objective-C Automatic Reference Counting setting is equal to Yes. Figure 1–31

demonstrates this verification.

Figure 1–31. Verifying ARC

Quick Tips

Xcode has a variety of intricacies built into it that can greatly improve your development

experience. Listed in this section are a few shortcuts meant to expedite common tasks

and make building applications a simpler process.

Comments

To quickly comment out a block of code, select the code with your mouse and then

press / on the keyboard; each line will be commented out. Need to turn the comment

off? Just repeat the procedure and the lines will be uncommented.

Autocomplete

Xcode 4 improved greatly upon the previous autocompletion functionality that works as

you type. This is a big help to let you know what methods are available and to increase

your coding efficiency. If the autocomplete isn’t showing up or you want to know what is

available for an object, hit the Esc key to bring up a list of available methods.

http://

CHAPTER 1: Xcode 4 Tips and Tricks 26

Quick Indent/Unindent

Xcode 4 does a pretty good job of managing your indents, but if you ever find yourself

needing some custom indentation or to manage your own indenting, use [to unindent

and] to indent manually. This works great for blocks of code as well; just select the

block with your mouse and use the keyboard shortcuts.

Quickly Switch Between Header and Implementation Files

You have just added a new property or object to your class header file, and now you

want to switch to the implementation file to start writing the code for that object.

Pressing +Up/Down will switch you between the two files. Figure 1–32 displays a

common use of the Assistant Editor.

Xcode 4 also offers a new split pane view that will show related files, called the Assistant

view. To enable this view, you can click the Assistant view icon at the top of the screen,

or press +,(option+command+comma) to load the Assistant view.

NOTE: The keyboard shortcut works best if you are looking at the implementation file; execute

the command, and it will automatically load the header file in the right pane.

Figure 1–32. Selecting the Assistant Editor

Class Documentation

Can’t remember all the properties or methods of a class? You can get a reminder with a

-click of an object type, and a pop-up will be displayed with a description of the

object, as shown in Figure 1–33. From this pop-up, you can also view the object’s

documentation or the header file.

http://

CHAPTER 1: Xcode 4 Tips and Tricks 27

Figure 1–33. Accessing class documentation

A similar shortcut is to -click any object or class to jump to its definition.

Open File in Assistant Editor

You can -click any file in the navigator pane to open it in the Assistant Editor. You can

also -click any file, and a diagram, such as that shown in Figure 1–34, resembling the

Xcode interface will pop up. Select a region in the diagram to open the file in the

corresponding pane in Xcode.

Figure 1–34. Configuring the Assistant Editor

Behaviors

Xcode 4 introduced behaviors to the editing interface. These allow you to run custom

commands or scripts when performing actions in Xcode. Access behaviors by going to

Xcode ➤ Behaviors ➤ Edit Behaviors. Figure 1–35 shows the resulting opened window.

You can customize the actions available on the left side of the pane with behaviors

found on the right pane. For instance, one behavior that I like to use is to open a

separate tab that contains build errors. This preserves my editing tab and allows me to

http://

CHAPTER 1: Xcode 4 Tips and Tricks 28

pick up where I left off after the build succeeds, or fails, as is usually the case. The

behavior in Figure 1–35 will create or show the tab named Build Results, show the Issue

navigator, show the debugger pane, and navigate to the first issue found (if any).

Figure 1–35. Configuring behaviors

You can also add custom behaviors that are performed with a shortcut key. Click the +

at the bottom of the behaviors pane, and set a name for your custom behavior. Now

click the command key symbol () at the end of the line to set your keyboard shortcut.

Summary
Apple has provided iOS developers with an updated application development

environment in Xcode 4. While not perfect, it does offer many improvements over

previous versions and is worthy of some praise. The transition between Xcode 3 and 4

may be difficult and time-consuming, but once you have been converted, you will be

writing code more efficiently and easily in the new interface.

New enhancements, such as source control with remote repositories, will make your

project development with teams more seamless and provide independent developers

with the ability to remotely store source code for safekeeping.

http://

29

 Chapter

Introduction to Interface
Builder

One of the many changes introduced in Xcode 4 was the consumption of Interface

Builder into the main Xcode application. Interface Builder became a core component of

Xcode and was able to run in the same windows and tabs as Xcode. The change was

more than just a simple embedding of one application into another. As you will see in

this chapter, the way that Interface Builder interacts with your source code makes it

more of a well-intentioned integration into Xcode.

Interface Builder Walkthrough
When you click on a .xib (user interface) file in the navigator pane of Xcode, Interface

Builder will seamlessly load into the editor pane. Generally, when I’m working with .xib

files, I will close the navigator pane and show the utility area on the right. This gives me

the most screen real estate for visually creating the interfaces, as shown in Figure 2–1.

2

4

http://

CHAPTER 2: Introduction to Interface Builder 30

Figure 2–1. Interface Builder in use

By clicking an object in the outline view dock on the left side, you can see the object’s

attributes and settings in the inspector pane on the right side. The inspector pane

should be very familiar to anyone who has worked with Interface Builder before. The

object browser has also been integrated into the library pane below the inspector pane.

This creates one-stop shopping for your .xib design needs.

Our Forces Combined…
With the integration of Interface Builder into Xcode, it extends beyond just two tools in

one. Just as in the cartoon Voltron, when the combination of individual tiger robots

resulted in an incredible defender of the galaxy, Interface Builder when combined with

the Assistant Editor view creates a super tool for source code. Figure 2–2 shows a prime

example of this useful combination.

http://

CHAPTER 2: Introduction to Interface Builder 31

Figure 2–2. Using Interface Builder with the Assistant Editor

When the Assistant Editor is visible and you select one of the objects in the .xib’s

object browser on the left, any existing header file for the associated view controller is

loaded. At first this appears to be minimally useful. You can see your code and the .xib

file. The real magic comes when you ! -click-drag one of those objects to the interface

(.h) file. As Figure 2–3 shows, a blue line will extend into the code, and when you release

it in the right pane of the Assistant Editor, you will be prompted to create an outlet.

http://

CHAPTER 2: Introduction to Interface Builder 32

Figure 2–3. Connecting an outlet automatically

When you release the mouse button, Xcode will prompt you for the name of this outlet

connection, as shown in Figure 2–4. After you specify a name and click Connect, Xcode

will create all the necessary code to connect the .xib’s object to your interface (.h) file

and implementation (.m) file.

Figure 2–4. Configuring an outlet’s creation

The header file now looks like this:

//
// sample1ViewController.h
#import <UIKit/UIKit.h>

http://

CHAPTER 2: Introduction to Interface Builder 33

@interface sample1ViewController : UIViewController {
 UILabel *labelHelloWorld;
}

@property (strong, nonatomic) IBOutlet UILabel *labelHelloWorld;

@end

And the relevant code from the implementation (.m) file now looks like this:

//
// sample1ViewController.m
#import "sample1ViewController.h"

@implementation sample1ViewController
@synthesize labelHelloWorld;

- (void)viewDidUnload
{
 [self setLabelHelloWorld:nil];
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

@end

You can use the same steps to create IBActions for buttons and other objects. ! -click-

drag from a button or similar object in the .xib to the implementation (.h) file and

release. This time, change the drop-down menu for Connection from Outlet to Action. If

this option does not appear, the wrong type of object was selected. Figures 2–5 and 2–6

detail the process of configuring an action in this way.

Figure 2–5. Creating an action

http://

CHAPTER 2: Introduction to Interface Builder 34

Figure 2–6. Configuring an action

You can specify the name of the action, the type, the event to trigger the action on, and

the arguments to send. Just like the Outlet connection, the code will be updated with

placeholders to support your new action.

The interface (.h) file now includes the IBAction declaration:

//
// sample1ViewController.h
#import <UIKit/UIKit.h>

@interface sample1ViewController : UIViewController {
 UILabel *labelHelloWorld;
}

@property (strong, nonatomic) IBOutlet UILabel *labelHelloWorld;
- (IBAction)tickleTheLabel:(id)sender;

@end

And the implementation (.m) file includes a method placeholder for you to complete:

- (IBAction)tickleTheLabel:(id)sender {
}

I’m going to complete the tickleTheLabel method with the following code:

- (IBAction)tickleTheLabel:(id)sender {
 self.labelHelloWorld.text=@"That tickled";
}

Figures 2–7 and 2–8 show that now, when the app is run and the button touched, the

labelHelloWorld is updated.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2: Introduction to Interface Builder 35

Figure 2–7. Original view Figure 2–8. View after action performed

http://

CHAPTER 2: Introduction to Interface Builder 36

Touches Too
One of the new features implemented into Interface Builder is the ability to assign touch

gesture recognizers to objects directly in Interface Builder. The various gestures are

available in the lower right section of Xcode, resembling the pane shown in Figure 2–9.

Figure 2–9. Available gesture recognizers

To add a gesture recognizer to an object in a .xib, just drag and drop the gesture

recognizer from the object browser onto the object you want to add it to, similarly to that

shown in Figure 2–10. This will add the gesture recognizer to the Objects list in the .xib
project file, as shown in Figure 2–11.

http://

CHAPTER 2: Introduction to Interface Builder 37

Figure 2–10. Adding a gesture recognizer to an element

http://

CHAPTER 2: Introduction to Interface Builder 38

Figure 2–11. Resulting gesture recognizer in the outline view

Before you proceed, it’s important that user interaction is enabled for the object that you

want to add the gesture recognizer to. In this case, you attached it to the Hello World

label, and you can set user interaction to true by clicking the label and going to the

Attributes inspector tab. Under the View options, click the check box next to User

Interaction Enabled, as shown in Figure 2–12. This will ensure that the object responds

to gesture recognizers.

http://

CHAPTER 2: Introduction to Interface Builder 39

Figure 2–12. The Attributes inspector

By clicking the gesture recognizer in the .xib’s dock outline view, you can set the

settings for the gesture recognizer in the Attributes inspector pane. Figure 2–13

demonstrates the various configurations that can be applied to this recognizer.

http://

CHAPTER 2: Introduction to Interface Builder 40

Figure 2–13. Adjusting attributes of gesture recognizer

Now that the settings have been enabled, you can connect the gesture to an IBAction

by following the same procedures as ! -click-drag from the gesture recognizer object to

the interface (.h) file in the Assistant Editor pane. In the resulting pop-up, resembling

Figure 2–14, specify a name and click Connect. The placeholders for that action will be

added to your code just as before.

Figure 2–14. Connecting an action to the label

Now your interface file looks like this:

//
// sample1ViewController.h

http://

CHAPTER 2: Introduction to Interface Builder 41

#import <UIKit/UIKit.h>

@interface sample1ViewController : UIViewController {
 UILabel *labelHelloWorld;
 UITapGestureRecognizer *tapTheLabel;
}

@property (strong, nonatomic) IBOutlet UILabel *labelHelloWorld;
- (IBAction)tickleTheLabel:(id)sender;
- (IBAction)tapTheLabel:(id)sender;

@end

And I’ve made the new “tapTheLabel” action in the implementation (.m) file look like this:

- (IBAction)tapTheLabel:(id)sender {
 self.labelHelloWorld.text=@"Tap Tap Tap";
}

Now when the app is run and the label is tapped, you get the following two screens in

Figures 2–15 and 2–16.

Figure 2–15. Application’s starting view Figure 2–16. View after label tapped

http://

CHAPTER 2: Introduction to Interface Builder 42

Adjusting Tint
If you wanted to give your app a different look and feel by customizing the navigation

bar or tool bar, you used to have to create your own custom classes; but in Xcode 4.2,

you can now customize certain design elements with the new tint property.

UINavigationBar, UIToolBar, UISearchBar, and UISegmentedControl all respond to this

setting and are available in Interface Builder. Other controls respond to tinting as well,

but the property is not available in Xcode and must be changed with code. To update

the tint, select an object in your .xib that supports the tint property, and in the inspector

pane you should see the Tint control, as shown in Figure 2–18. Figure 2–17

demonstrates a view with drastically altered tint on several elements.

Figure 2–17. A view with tint

Figure 2–18. Adjusting tint in the Attributes inspector

6

http://

CHAPTER 2: Introduction to Interface Builder 43

NOTE: The UISegmentedControl supports tint in Xcode only in the Bar or Bezeled style.

Rapid App Development with Storyboarding
Remember the days when you had to use paper and pen to sketch out design flows for your

apps? Then came flowcharting software, in which you could digitally record your workflows

and processes, but it was a manual process to convert those workflows into source code.

Apple has provided a new tool called Storyboards that provides a visual representation of an

app’s workflow and can then produce a working framework for your app.

So What’s in a Story(board)?

A storyboard is a collection of .xib files packaged together along with some metadata

about the views and their relationships to each other. It is the ultimate separation of

views from models and controllers that you have been hearing about since the early

days of Model-View-Controller (MVC) programming. The storyboard has two main

components: scenes and segues.

Scenes

Scenes are any view that fills the screen of the device. They contain UI objects and are

controlled by view controllers (or subclasses of view controllers). This is almost exactly

like the .xib files that you are familiar with editing in Interface Builder. Figure 2–19

displays three different scenes in a storyboard that you will soon build.

http://

CHAPTER 2: Introduction to Interface Builder 44

Figure 2–19. Editing scenes

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2: Introduction to Interface Builder 45

Segues

Segues are the transitions that present subsequent views in a storyboard. The segue

can present a view with a push, as a modal view, as a pop-over, or with a custom

transition. A segue is of the class UIStoryboardSegue and contains three properties:

sourceViewController, destinationViewController, and identifier. The identifier is

an NSString that can be used to validate that a segue is the segue you are expecting.

You would normally initiate a segue based on an action from the user. This can be the

touching of a button or tableview cell, or it could be the result of a gesture recognizer.

Segues are represented on the storyboard by a line connecting two scenes, as shown in

Figure 2–20.

Figure 2–20. A segue connecting two scenes

http://

CHAPTER 2: Introduction to Interface Builder 46

Telling a Story

Storyboards are available in all of the application templates in Xcode 4.2 with the

exception of the empty project template. When creating a new project, just select the

option to “Use storyboard” when setting the options for the new project. In this case,

you will name the project “aboutUs”, as demonstrated in Figure 2–21.

Figure 2–21. Configuring for storyboard use

Once the project is created, you will see the storyboard option has been populated on

the target Summary tab and an additional field has been added to the Info tab (as shown

in Figures 2–22 and 2–23), “Main storyboard file base name”.

Figure 2–22. Main storyboard info

http://

CHAPTER 2: Introduction to Interface Builder 47

Figure 2–23. Storyboard target settings

Finally, in the project navigator pane, you will see the MainStoryboard.storyboard file, as

Figure 2–24 demonstrates. Click on this file to load it into Interface Builder and start

building your storyboard.

Figure 2–24. Storyboard file

In this example, you are going to build a simple project that displays information about

your company. The storyboard starts off with a view that is controlled by the

aboutUsViewController it created as part of the project. I’m going to add some objects

http://

CHAPTER 2: Introduction to Interface Builder 48

(UILabel, UITextView, and two UIButtons) to the view to make it a little more informative

to the user. Refer to Figure 2–25 for the view to build.

Figure 2–25. aboutUsViewController view

Now I want to embed this view into a navigation controller, and Xcode 4.2 makes this an

easy task. As shown in Figure 2–26, select the view and go to the menu option Editor ➤

Embed In ➤ Navigation Controller. This will create a navigation controller and add it to your

storyboard as well as create a segue between the navigation view and your aboutUsView.

The resulting segue will be represented with an arrow, as in Figure 2–27.

http://

CHAPTER 2: Introduction to Interface Builder 49

Figure 2–26. Embedding a view in a controller

http://

CHAPTER 2: Introduction to Interface Builder 50

Figure 2–27. Resulting embedded view display

Now I’m going to add a new UIViewController object to the storyboard where you can

put your contact information. It’s as simple as dragging a UIViewController object, as

well as a UIView, from the object library to the storyboard. I set up the view by adding a

UILabel as the heading, and then I add a few more UILabels for the contact information.

Figure 2–28 displays the result of these additions.

http://

CHAPTER 2: Introduction to Interface Builder 51

Figure 2–28. Configured scenes

In order to connect the new contact information view to the About Us view, you are

going to click on the “Contact Us” UIButton on the About Us view and ! -click-drag to

the Contact Info view. This is the same action used to connect outlets and actions, and

that is exactly what you are going to do. You are going to connect the Contact Us

button to the performSegueWithIdentifier action. When you release the mouse button,

a pop-up will display, asking which action you want to connect to, and you can select

performSegueWithIdentifier:sender. These steps, along with the resulting segue, are

demonstrated in Figures 2–29 and 2–30.

http://

CHAPTER 2: Introduction to Interface Builder 52

Figure 2–29. Configuring segue action

Figure 2–30. Perform segue pop-up

When the connection is made, the UINavigationBar is automatically added to the view.

If you specify titles for each one, the result will resemble Figure 2–31.

http://

CHAPTER 2: Introduction to Interface Builder 53

Figure 2–31. Connected scenes with segue

One habit to get into is providing your segues with an identifier. This will help future-

proof your apps if you end up connecting multiple segues to one view. You will be able

to check the identifier of the calling segue to see the path the user took to reach that

view and respond accordingly. You can set the identifier of a segue by selecting it in the

storyboard and viewing its properties in the inspector pane, as shown in Figure 2–32.

Figure 2–32. Setting segue identifiers

If you run this app now, Figures 2–33 and 2–34 show you that the Contact Us button will

work and will load the Contact Info view without having written any code whatsoever.

http://

CHAPTER 2: Introduction to Interface Builder 54

Figure 2–33. Main simulated view Figure 2–34. Resulting segue performed

What about the other button, “Our Apps”? You want to create a new view that lists your

other apps so you can get some cross promotion. The first thing I think of when I hear

the word “list” is UITableViewController. And storyboarding takes

UITableViewController to a whole new level of convenience.

I’m going to drag a UITableViewController to the storyboard, creating an Apps Table

view. The first thing that you will notice is that this looks a little different than the regular

UITableViewController available in Interface Builder. There is something called

Prototype Cells at the top, as in Figure 2–35. With storyboards, you can customize the

layout and objects of a UITableViewCell with something called a prototype. We’ll go into

this further later on.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2: Introduction to Interface Builder 55

Figure 2–35. Inserting a UITableView into a scene

Select the Table View, and in the Attributes inspector, change Content from Dynamic

Prototypes to Static Cells. I’m also going to change the style to Grouped because I like

the look of the rounded edges of the cells. Figures 2–36 and 2–37 show these steps and

their result.

Figure 2–36. Static Cells configuration

http://

CHAPTER 2: Introduction to Interface Builder 56

Figure 2–37. Grouped cells

Since every cell is going to have the same layout, I’m going to delete the bottom two

cells so that I can quickly duplicate the top cell. Now I will customize the remaining cell

with a UIImageView to hold the app icon and two UILabels for the app name and

description, as shown in Figure 2–38.

Figure 2–38. Customized cell

Select the remaining cell now that it has been designed to your specifications, and " -

click-drag to duplicate it below. Repeat again to add a third row to the UITableView, as

demonstrated in Figure 2–39.

Figure 2–39. Duplicating cells

Now you can customize each image and label in the UITableView to list the three apps

you’ll be displaying, resulting in a view resembling Figure 2–40.

http://

CHAPTER 2: Introduction to Interface Builder 57

Figure 2–40. Customizing duplicated cells

All that is left is to connect your button in the About Us view to this new view. Select the

button in the About Us view, and ! -click-drag to the UITableView you just created. Your

storyboard now looks something like that shown in Figure 2–41.

Figure 2–41. Newly connected table controller

http://

CHAPTER 2: Introduction to Interface Builder 58

And when you run the application, both buttons on the About Us view will now work,

demonstrated in Figure 2–42. And you can load the pages without ever having written a

bit of code.

Figure 2–42. The three resulting views of your application

Passing Data Between Scenes

The previous app segment works well enough without any code, but just by adding a

little bit of code behind the scenes, you can create an even more powerful interface in a

very short period of time.

When you see a UITableView, you almost instinctively know that there is likely to be a

detailed view attached to it when you touch one of the cells. Let us add that detail view

now. Drag and drop a new UIViewController object named AppDetailsViewController

onto the storyboard, and add a UIImage, UILabel, UITextView, and two UIButtons to it,

resembling Figure 2–43.

http://

CHAPTER 2: Introduction to Interface Builder 59

Figure 2–43. User interface for detail view

You want each of the UITableViewCells to segue to this App Details view when touched,

so ! -click-drag from the UITableViewCell to the detail view. Just as before, a pop-up

will display the available actions, and you should select

“performSegueWithIdentifier:selector:”, as demonstrated in Figures 2–44 and 2–45.

http://

CHAPTER 2: Introduction to Interface Builder 60

Figure 2–44. Connecting a cell to the detail view

Figure 2–45. Selecting a segue action

You will see the segue connecting the table to the App Details view controller. Just as is

shown in Figure 2–46, select the segue and enter an identifier for it in the Attributes

inspector.

http://

CHAPTER 2: Introduction to Interface Builder 61

Figure 2–46. Configuring detail segue identifier

Repeat the process for the other two UITableViewCells, and use the same segue

identifier for each connection since you are going to execute the same code for each

segue. You should now see three segues linking the two views, similar to Figure 2–47.

Figure 2–47. Multiple segues connecting a UITableView to a view controller

You’ve gotten this far without using any code, but that convenience is about to end. You

need to start generating some dynamic content on the App Details view controller, and

you are going to need to dive into some code for that.

First you are going to create a custom class to hold information about your apps. Since

this is a static list of apps at the moment, I’m going to create a very basic subclass of

NSObject to hold the data. Use the menu option File➤➤ New ➤ New File…, and select

“Objective-C class” from the Cocoa Touch templates, as demonstrated in Figure 2–48.

http://

CHAPTER 2: Introduction to Interface Builder 62

Figure 2–48. Selecting the “Objective-C class” template to make a new basic class

Now, as shown in Figure 2–49, select NSObject from the “Subclass of” drop-down if it is

not already specified.

Figure 2–49. Ensuring the “Subclass of” field is specified to “NSObject” to create an Object subclass

http://

CHAPTER 2: Introduction to Interface Builder 63

And finally, set the class name to MyAppClass. This is shown in Figure 2–50, but just as

before, newer versions of Xcode may have this combined with the previous step of

specifying the “Subclass of” field.

Figure 2–50. Specifying the class name—on newer versions of Xcode, this may be included in the previous
screen.

You want this class to have the following interface (.h):

// MyAppClass.h
#import <Foundation/Foundation.h>

@interface MyAppClass : NSObject

@property(strong, nonatomic) NSString *appName;
@property(strong, nonatomic) UIImage *iconImage;
@property(strong, nonatomic) NSString *appDescription;
@property(strong, nonatomic) NSURL *appStoreURL;
@property(strong, nonatomic) NSURL *webSiteURL;

+(MyAppClass *)appWithAppID:(int)appID;

@end

http://

CHAPTER 2: Introduction to Interface Builder 64

And the implementation file (.m) should look like this:

#import "MyAppClass.h"

@implementation MyAppClass

@synthesize appName;
@synthesize iconImage;
@synthesize appDescription;
@synthesize appStoreURL;
@synthesize webSiteURL;

+(MyAppClass *)appWithAppID:(int)appID{
 MyAppClass *newApp=[[MyAppClass alloc] init];
 newApp.appName=[NSString stringWithFormat:@"App %i Name", appID];
 newApp.iconImage=[UIImage imageNamed:[NSString stringWithFormat:@"app%iicon.png",
appID]];
 newApp.appDescription=[NSString stringWithFormat:@"This is the description for App
%i", appID];
 newApp.appStoreURL=[NSURL URLWithString:[NSString stringWithFormat:@"itms-
apps://itunes.com/apps/%iappName", appID]];
 newApp.webSiteURL=[NSURL URLWithString:[NSString
stringWithFormat:@"http://www.shawnsbits.com/apps/%iappName", appID]];
 return newApp;
}

- (id)init
{
 self = [super init];
 if (self) {
 // Initialization code here.
 }

 return self;
}

@end

NOTE: If you are wondering where all the memory management has gone, see the section on

Automatic Reference Counting, called “Steve and the ARC,” in Chapter 1.

So that sets up your data object, but now you need to code up your detail view

controller to display the attributes of the MyAppClass object. You will need a custom view

controller class to control the view. Create a new file with File➤➤ New➤➤ New File…, and

select “UIViewController subclass” from the Cocoa Touch templates, as Figure 2–51

demonstrates.

http://www.shawnsbits.com/apps/%iappName
http://

CHAPTER 2: Introduction to Interface Builder 65

Figure 2–51. Selecting the “UIViewController subclass” template to create a file pre-configured with important
UIViewController methods

Now, as in Figure 2–52, make it a subclass of UIViewController (if not specified by

default), and make sure that the check box for “With XIB for user interface” is not

selected. You will be using your storyboard for the XIB.

http://

CHAPTER 2: Introduction to Interface Builder 66

Figure 2–52. Configuring a UIViewController subclass

Name the new class AppDetailsViewController, and use the following interface (.h) file

definition:

// AppDetailsViewController.h

#import <UIKit/UIKit.h>
#import "MyAppClass.h"

@interface AppDetailsViewController : UIViewController

@property (strong, nonatomic) MyAppClass *selectedApp;
@property (strong, nonatomic) IBOutlet UILabel *labelAppName;
@property (strong, nonatomic) IBOutlet UIImageView *imageAppIcon;
@property (strong, nonatomic) IBOutlet UITextView *textViewAppDescription;
@property (strong, nonatomic) IBOutlet UIButton *buttonAppStore;
@property (strong, nonatomic) IBOutlet UIButton *buttonWebSite;

-(IBAction) loadAppStore:(id) sender;
-(IBAction) loadWebSite:(id)sender;

@end

This interface file will create the outlets that you need for your view and also create the

two IBActions that will be assigned to your UIButtons. The implementation file (.m) looks

like this:

// AppDetailsViewController.m

#import "AppDetailsViewController.h"

http://

CHAPTER 2: Introduction to Interface Builder 67

@implementation AppDetailsViewController

@synthesize selectedApp;
@synthesize labelAppName;
@synthesize imageAppIcon;
@synthesize textViewAppDescription;
@synthesize buttonAppStore;
@synthesize buttonWebSite;

-(IBAction) loadAppStore:(id) sender{
 [[UIApplication sharedApplication] openURL:self.selectedApp.appStoreURL];
}
-(IBAction) loadWebSite:(id)sender{
 [[UIApplication sharedApplication] openURL:self.selectedApp.webSiteURL];
}

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.labelAppName.text=selectedApp.appName;
 self.imageAppIcon.image=selectedApp.iconImage;
 self.textViewAppDescription.text=selectedApp.appDescription;
}

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
 if (self) {
 // Custom initialization
 }
 return self;
}

- (void)didReceiveMemoryWarning
{
 // Releases the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc. that aren’t in use.
}

- (void)viewDidUnload
{
 [super viewDidUnload];
 self.labelAppName = nil;
 self.imageAppIcon = nil;
 self.textViewAppDescription = nil;
 self.buttonAppStore = nil;
 self.buttonWebSite = nil;
}

-
(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientatio
n
{
 // Return YES for supported orientations

http://

CHAPTER 2: Introduction to Interface Builder 68

 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}

@end

This controller class will populate the view with the properties of the MyAppClass object

“selectedApp”. Now you need to attach this view controller to the view and connect the

outlets and IBActions. Go back to the storyboard editor, and select the view controller

object at the bottom of the App Details view, as shown in Figure 2–53.

Figure 2–53. Selecting a view controller

Now you can select the Identity inspector in the inspector tab and set the class to your

new custom AppDetailsViewController class. Figure 2–54 demonstrates how to do this.

http://

CHAPTER 2: Introduction to Interface Builder 69

Figure 2–54. Specifying a view controller

Connect all of the objects to their corresponding outlets, following Figure 2–55.

Figure 2–55. Configuring elements to properties

To connect the actions, you reverse the process. You ! -click-drag from the UIButtons

to the view or view controller object and select the corresponding IBAction from the

pop-up, as in Figure 2–56.

Figure 2–56. Connecting actions

You can now accept a MyAppClass object and display it properly on the App Details

view, but now you need to send this object when you load this view. To do this, you will

http://

CHAPTER 2: Introduction to Interface Builder 70

configure the previous view (Apps Table View list) to send the object when it performs

the segue. It turns out that there is a method for this; it is called -
(void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender;. You can

override this method in a custom UITableViewController to send the selected object.

First, you will need a new custom UITableViewController class. Create a new file with

File ➤ New ➤ New File…, and select “UIViewController class” from the Cocoa Touch

templates, as shown in Figure 2–57.

Figure 2–57. Specifying a UIViewController subclass file

This time, you want it to be a subclass of UITableViewController, and again, make sure

that you do not create a XIB for the new class, as in Figure 2–58.

http://

CHAPTER 2: Introduction to Interface Builder 71

Figure 2–58. Configuring a UITableViewController subclass

Name the class “AppListTableViewController”. There are no changes needed for the

interface file (.h), so you will jump straight to the implementation file (.m). The first thing

you want to do is clear out the methods for the tableView data source and tableView

delegate because you are using statically defined UITableViewCells in your storyboard.

So delete or comment out the following methods:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath

At the top of your implementation file, import the two custom classes you created:

#import "AppDetailsViewController.h"
#import "MyAppClass.h"

Now override the prepareForSegue method with the following code:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender{
 if([segue.identifier isEqualToString:@"AppDetailsLoadFromTableViewCell"]){
 AppDetailsViewController *appDetailsVC = segue.destinationViewController;
 appDetailsVC.selectedApp=[MyAppClass appWithAppID:[[self.tableView
indexPathForSelectedRow] row]+1];
 }
}

http://

CHAPTER 2: Introduction to Interface Builder 72

This code checks to ensure you are responding to the correct segue in case you add

additional segues in the future. Afterward, it acquires the currently selected row of the

tableView and adds 1 to it (because your apps start at 1 but your row counts start at 0).

It then creates an object of class MyAppClass using that appID and the convenience

method appWithAppID: that you created. This new object is assigned to the selectedApp

property of the destinationViewController (an instance of AppDetailsViewController).

Before proceeding to test this application, make sure that the

AppListTableViewController has been set as the class for the App List table view

controller.

If you run your app now, you’ll see that each of the UITableViewCells will load a different

app detail into the detailsViewController. Figure 2–59 demonstrates a simulated result

of this application.

Figure 2–59. Resulting detail views in your simulated application

UITableViewCell Prototypes

The app is working as intended up to this point, but what if you add new apps to your

inventory? With your current app layout, it would mean having to update your

UITableView with new cells for each new app item. Wouldn’t it be easier if you loaded

the UITableView dynamically so you didn’t have to update the storyboard XIB each time

you had a new app?

First, you’ll create a custom UITableViewCell class that has outlets that model your

existing UITableViewCells. Use the menu option File ➤ New ➤ New File…, and select

http://

CHAPTER 2: Introduction to Interface Builder 73

“Objective-C class” from the Cocoa Touch templates. Create a subclass of

UITableViewCell, and name it “AppUITableViewCellClass”, as in Figure 2–60.

Figure 2–60. Configuring a UITableViewCell subclass

In the interface file (.h), create two UILabel outlet properties and a UIImage outlet

property. It should look like this:

// AppUITableViewCellClass.h

#import <UIKit/UIKit.h>

@interface AppUITableViewCellClass : UITableViewCell

@property (strong, nonatomic) IBOutlet UILabel *labelAppName;
@property (strong, nonatomic) IBOutlet UIImageView *imageAppIcon;
@property (strong, nonatomic) IBOutlet UILabel *labelAppDescription;

@end

All that’s left to do is synthesize those properties in the implementation file (.m):

// AppUITableViewCellClass.m

#import "AppUITableViewCellClass.h"

@implementation AppUITableViewCellClass

@synthesize labelAppName;
@synthesize imageAppIcon;
@synthesize labelAppDescription;

@end

http://

CHAPTER 2: Introduction to Interface Builder 74

Switch back to your storyboard view, and switch the UITableView content mode to

Dynamic Prototypes using the Attributes inspector, just as in Figure 2–61.

Figure 2–61. Reselecting Dynamic Prototypes

Your table view should now look something like Figure 2–62. You will notice that the

segues you had created to the App Detail view are now gone, along with your static cell

layouts.

Figure 2–62. Your new table view

Drag the UIImageView and UILabel objects to the UITableViewCell prototype, along with

their contents “App Name Label” and “App Description”, as shown in Figure 2–63. Then

http://

CHAPTER 2: Introduction to Interface Builder 75

set the class on the UITableViewCell to your custom AppUITableViewCellClass in the

Identity inspector pane.

Figure 2–63. Configuring cells as a custom subclass of UITableViewCell

Now ! -click-drag from the UITableViewCell to the App Name label, and when you

release the mouse button, the pop-up with the list of outlets should be displayed. Select

the labelAppName outlet. Connect the other objects in the UITableViewCell. Figure 2–64

demonstrates the first of these steps.

Figure 2–64. Connecting cell elements to outlets

You also need to set the Table View Cell Identifier field in the Attributes inspector, as

shown in Figure 2–65.

Figure 2–65. Setting the cell identifier

Now ! -click-drag from the UITableViewCell to the App Detail view controller to create

the segue, as shown in Figure 2–66.

http://

CHAPTER 2: Introduction to Interface Builder 76

Figure 2–66. Reconfiguring detail view segues

And set the identifier for the segue by selecting the segue and setting it in the Attributes

inspector, as Figure 2–67 demonstrates.

Figure 2–67. Setting the new segue identifier

Now you need to add the AppUITableViewCellClass and the datasource methods to the

AppListTableViewController implementation file (.m).

// AppListTableViewController.m

#import "AppListTableViewController.h"
#import "AppDetailsViewController.h"
#import "MyAppClass.h"
#import "AppUITableViewCellClass.h"

@implementation AppListTableViewController

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender{
 if([segue.identifier isEqualToString:@"AppDetailsLoadFromTableViewCell"]){
 AppDetailsViewController *appDetailsVC = segue.destinationViewController;
 appDetailsVC.selectedApp=[MyAppClass appWithAppID:[[self.tableView
indexPathForSelectedRow] row]+1];
 }
}

#pragma mark - Table view data source
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

http://

CHAPTER 2: Introduction to Interface Builder 77

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return 3;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 //Set the CellIdentifier that you set in the storyboard
 static NSString *CellIdentifier = @"appCell";

 AppUITableViewCellClass *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[AppUITableViewCellClass alloc]
initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier];
 }

 //Configure the cell
 MyAppClass *appForCell=[MyAppClass appWithAppID:indexPath.row+1];
 cell.labelAppName.text=appForCell.appName;
 cell.labelAppDescription.text=appForCell.appDescription;
 cell.imageAppIcon.image=appForCell.iconImage;

 return cell;
}

Now when you run the app, the app UITableView will load as before using the one

prototype cell and the datasource. Figure 2–68 shows the simulated result of your

newest updates to your application. In this instance, you are still using static data for the

MyAppClass, but this app could easily be extended to use a core data object model or

even pull a list of apps from a remote XML file on your server so that it is truly dynamic.

Those features will be covered more in Chapters 10 (Data Storage Recipes) and 11

(Core Data Recipes).

http://

CHAPTER 2: Introduction to Interface Builder 78

Figure 2–68. New application’s views after the latest changes

Adding a Storyboard to an Existing Project

You’ve created this “About Us” app, which works well, but it is pretty unimpressive on

its own. It is meant to be included in your other apps so that you can easily show

information about your company in any of your apps and also cross-promote your app

library easily.

Apple has provided an API for storyboards so that they can easily be included in existing

apps that may not leverage storyboards yet. The UIStoryboard class provides the

method +storyboardWithName:bundle: that will load a storyboard with the given name.

You can then load the initial view controller in the storyboard with the method –
instantiateInitialViewController.

Let’s create a new project called “Chapter2Project” without storyboards. Use the menu

option File ➤ New ➤ New Project… to create a new single view application. The window in

which you do this will resemble Figure 2–69.

http://

CHAPTER 2: Introduction to Interface Builder 79

Figure 2–69. Selecting a single view application

And this time, you will call the project “Chapter2Project” and make sure that Use

Storyboard is not selected, just as in Figure 2–70. If your version of Xcode includes it,

make sure the Use Automatic Reference Counting box is checked as well. If your

version also includes a field for Class Prefix, set this to Chapter2Project.

http://

CHAPTER 2: Introduction to Interface Builder 80

Figure 2–70. Configuring a new project without storyboards

Using the navigation pane of this new project, create a new group under the project

named “AboutUsStoryBoard”, the result of which is shown in Figure 2–71.

Figure 2–71. Adding a subgroup to the project

Now select Chapter2ProjectViewController.xib, and add a UIButton that will launch

your About Us view when you touch it. Your view should resemble that shown in

Figure 2–72.

http://

CHAPTER 2: Introduction to Interface Builder 81

Figure 2–72. Configured view controller’s interface

Let’s go ahead and connect that About Us button to an IBAction by using the Assistant

Editor and doing a ! -click-drag from the UIButton to the

Chapter2ProjectViewController interface file (.h). Change the connection type to

Action, and enter showAboutUsView for the Name, as shown in Figure 2–73.

Figure 2–73. Configuring the UIButton’s action

http://

CHAPTER 2: Introduction to Interface Builder 82

Before you can complete that method placeholder, you need to copy your About Us files

to this project. Switch to the About Us project, and, so you don’t get the About Us

storyboard confused with any future storyboards you might add to projects, you should

rename the storyboard. In the project navigator pane, change the name of

MainStoryboard.storyboard to AboutUs.storyboard. If you have opted to create a

universal app, this will initially be called MainStoryboard_iPhone.storyboard instead. In

Figure 2–74, you can see the storyboard file renamed to the new name.

Figure 2–74. Renaming the storyboard file for the new project

Now select all the files in the AboutUs group except the aboutUsAppDelegate.h/.m files,

and copy them to the Chapter2Project project in the AboutUs group you created

previously. If you move these files via “drag and drop,” make sure that the box marked

“Copy items into destination group’s folder” is checked in the resulting transfer window.

Figure 2–75 shows the resulting navigator pane with your files copied from your previous

project.

http://

CHAPTER 2: Introduction to Interface Builder 83

Figure 2–75. Copying storyboard files into your new project

Now you can complete that IBAction you created in the

Chapter2ProjectViewController implementation file (.m). Select

Chapter2ProjectViewController.m in the project navigator pane, and import the

aboutUsViewController.h header file. Then scroll down to the bottom of the code where

the IBAction method placeholder is, and complete it so the file looks like this:

// Chapter2ProjectViewController.m

#import "Chapter2ProjectViewController.h"
#import "aboutUsViewController.h"

@implementation Chapter2ProjectViewController
…
- (IBAction)showAboutUsView:(id)sender {
 UIStoryboard *aboutUsStoryboard=[UIStoryboard storyboardWithName:@"AboutUs"
bundle:nil];
 aboutUsViewController *aboutUsVC=[aboutUsStoryboard
instantiateInitialViewController];
 [self presentViewController:aboutUsVC animated:YES completion:nil];

http://

CHAPTER 2: Introduction to Interface Builder 84

}
@end

When the project is run and the button is touched, your storyboard will load and all the

subsequent views will load, resulting in a view resembling those shown in Figure 2–76.

Figure 2–76. Resulting application with storyboard loaded

But there is a problem. There is no way to close your About Us view controller when you

are done. The easiest method would be to add a Back button to the view in your

storyboard that dismisses the view.

First you define the IBAction that your Back button is going to trigger in your

aboutUsViewController interface file (.h):

// aboutUsViewController.h

#import <UIKit/UIKit.h>

@interface aboutUsViewController : UIViewController

-(IBAction)closeAboutUs:(id)sender;

http://

CHAPTER 2: Introduction to Interface Builder 85

@end

Then implement the method in the aboutUsViewController implementation file (.m):

// aboutUsViewController.m

#import "aboutUsViewController.h"

@implementation aboutUsViewController

-(IBAction)closeAboutUs:(id)sender{
 [self dismissViewControllerAnimated:YES completion:nil];
}

Open AboutUs.storyboard, and add a UIBarButtonItem object with a title of “Back” to

the UINavigationBar in the About Us view. Then connect this UIBarButtonItem to the

IBAction closeAboutUs by doing a ! -click-drag from the UIBarButtonItem to the View

Controller status bar and then selecting the closeAboutUs event from the pop-up. These

steps are demonstrated in Figure 2–77.

Figure 2–77. Connecting the bar button to a segue action

Now when you run the application, you will be able to launch the About Us story board

and get back to your main app. Don’t forget that you should add this UIBarButtonItem

and method to the main About Us project so that when you copy it to future projects,

you don’t run into the same issue.

Summary
The first thing you will notice in Xcode 4 is that Interface Builder is no longer a separate

application. The changes, however, go much deeper and represent a truly integrated

experience. Interface Builder has extended the ease of drag-and-drop interface building

into code generation when combined with the Assistant Editor view.

The Storyboards tool takes your interface building even further and allows you to rapidly

build working prototypes of your applications. Your storyboard diagrams are no longer

thrown away when the coding starts but are an integral part of the application

development process and can be utilized by controllers. This new feature takes the

Model-View-Controller from an abstract best practice and makes it a tangible

application development process.

http://

87

 Chapter

Application Design
Elements

Every occupation has its own specific set of materials, tools, and methods, and

aperson’s skill and understanding of this equipment arealmost always what definehis or

hersuccess in the given field. In iOS development, you are given a great many

components and functionalities from which you can assemble your applications. Having

a full and practical understanding of these tools allows any developer to considerably

improve the quality of any work he or shecontributes to.

In this chapter, you will systematically go through the design elements that iOS

developers are initially given, discussing their purpose, use, implementation,

functionality, and general guidelines for acquiring the best possible result from each

item. Through this approach, you can acquire a better understanding of how best to

utilize the tools given to youto create higher-quality applications.

Cocoa Touch Controls
Cocoa Touch includes a nice variety of items known as “controls,” which are the main

objects used by an application to interact with the user. All of these elements, some of

which are entirely new to iOS 5.0, allow you to build a more advanced yet simpler user

interface with which to operate your applications.

UILabel

The UILabel class is easily one of the most basic and fundamental controls with

which you can interact with your user by displaying information. A variety of other

elements make use of UILabels, making them the foundation of nearly any user

interface. Figure 3–1 is the simplest example of a UILabel.

3

http://

CHAPTER 3: Application Design Elements 88

Figure 3–1. A simple UILabel

The primary way that you deal with a UILabel is simply by setting its text using either the

-setText: method or, more simply, the text property. However, the class also has a

variety of other properties you can set to customize your display even more, including

the following:

 font

 textColor

 textAlignment

 enabled: You can easily dim or undim labels with this property, as a

disabled UILabel is displayed dimmed out.

For a more precise control of a text display, you can also create a drop shadow using

the shadowColorandshadowOffsetproperties. The shadowOffset property takes a CGSize

type, which you can create using the CGSizeMake() function. This function takes two

parameters, a width and a height, which specify where your shadow is placed in

reference to the label. For example, if you configure a shadow with the following code,

then the resulting UILabel will resemble Figure 3–2.

myLabel.shadowColor = [UIColor blackColor];
myLabel.shadowOffset = CGSizeMake(2.0, 2.0);

Figure 3–2. Heavily shadowed text

Compare this to a UILabel with no shadow, as in Figure 3–3.

Figure 3–3. A label with no shadow

As you can see, by specifying shadowOffset width of 2.0 and a height of 2.0, you made

your label’s shadow appear shifted 2 points to the right and 2 points down from the

original text. As you can guess, negative values for these will cause a shadow to move

left and up respectively.

It is often helpful to an application’s graphic design to make use of the UILabel’s

shadow, but it is often difficult to determine the ideal specifications to use. In general, it

is safe to say that less is more, and a very subtle change, such as a gray shadow with an

offset of (1.0, 1.0), will help improve the visual quality of an application. Figure 3–4

features one UILabel without a shadow compared to one with a gray shadow and an

offset of (1.0, 1.0), in order to demonstrate the difference in visual appeal.

http://

CHAPTER 3: Application Design Elements 89

Figure 3–4. A label with no shadow compared with a one square point shadow

The UILabel also has properties highlightedTextColor, which you can specify,

andhighlighted, which allows you to specifically highlight a label. However, no

highlighting color will be applied unless one is specified with the highlightedTextColor
property.

The UILabel, like many other elements you deal with, has a property called

userInteractionEnabled. This property must be set to YES in order for any kind of

gestures, such as a tap, to have any effect with a UILabel.

UIButton

As the cornerstone of two-way user interaction, the UIButton allows you to actively give

your users clear options in their abilities within an application.

There are a variety of pre-defined types of UIButtons that you can very easily use. You

can set the type of a button by way of the class method +buttonWithType:, which takes

the following possible pre-defined values.

 UIButtonTypeCustom

 UIButtonTypeRoundedRect

 UIButtonTypeDetailDisclosure

 UIButtonTypeInfoLight

 UIButtonTypeInfoDark

 UIButtonTypeContactAdd

If no value is specified for the property, the Custom type is assumed, giving you the

most freedom in customizing the view of your button.

In general, you will probably use a UIButtonTypeRoundedRect button if you simply want

to give a simple button with text, but if you have a more complex button, including one

that is image-based, you will probably use the UIButtonTypeCustom option. This way, you

can more easily control the background settings of the button to ensure your visual

theme stays well maintained.

Whenever you are dealing with a UIButton, you must always consider the possible

“state” of the button, whether it is currently being selected. For this reason, most of the

UIButton methods include a parameter for a UIControlState. For example, in order to

set a UIButton’s text, rather than accessing the titleLabel property, you should use the

-setTitle:forState: property. For example, you may configure a UIButton like so:

http://

CHAPTER 3: Application Design Elements 90

UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
[button setTitle:@"Test" forState:UIControlStateNormal];
[button setTitle:@"Selected" forState:UIControlStateHighlighted];

Remember that whenever you create a view element programmatically, you should set

its frame to specify the location, and then add it as a subview of whichever view it

belongs in.

[button setFrame:CGRectMake(10, 10, 100, 44)];
[self.view addSubview:button];

The button title on a UIButton is simply a UILabel, so you can customize fonts and

shadows quite easily with such methods as -titleColorForState: and -
titleShadowColorForState:.

A UIButton also allows quite easily for two different images to be placed inside of it: a

background image and a foreground image. You can easily set these with the -
setBackgroundImage:forState:and setImage:forState: methods.

In order to programmatically add actions for a UIButton to perform, use the -
addTarget:action:forControlEvents:method.

[button addTarget:self action:@selector(buttonPressed:)
forControlEvents:UIControlEventTouchUpInside];

From here, you can define your -buttonPressed: method to do whatever you prefer. If

you implement your action in this manner, a reference to the UIButton will be passed to

the method as the first parameter. This allows you a great deal of power in reacting to a

multitude of different events with a single method by simply checking the properties of

the “sender” element and acting accordingly. As a simple example, the following

implementation will display in the log the text of whichever button was pressed.

-(void)buttonPressed:(UIButton *)sender
{
NSLog(@"%@", sender.titleLabel.text);
}

UISegmentedControl

The UISegmentedControl class is essentially an extension of the UIButton. It allows you

to not only make selections, but alsopreserve those selections indefinitely, until another

selection is made. They are particularly designed for situations in which one of multiple

options will always be selected, such as choosing the type of display in a Maps

application, or simply for configuring settings in a game.

UISegmentedControl elements are made up of multiple “segments,” with each one

having either a string or an image inside them, as in Figure 3–5.

Figure 3–5. A simple UISegmentedControl

http://

CHAPTER 3: Application Design Elements 91

Each segment has an index referring to it, starting with the first segment having index 0.

Just like with the UIButton, you can add actions to a UISegmentedControl to be

performed any time the selected segment is changed using the -
addTarget:action:forControlEvents:method, like so:

[self.segConaddTarget:self action:@selector(segmentChanged:)
forControlEvents:UIControlEventValueChanged];

When building instances of UISegmentedControl, you can specify an initial set of items to

display using the -initWithItems: method after allocating the object. From there, you

can add segments using the -insertSegmentWithImage:atIndex:animated:and-
insertSegmentWithTitle:atIndex:animated: methods, and remove them using -
removeSegmentAtIndex:animated: or -removeAllSegments:.

At any point, you can always access the current number of items in the control using the

numberOfSegments property, and access the currently selected index with

selectedSegmentIndex.

Once you have a specific index you want to access, you can use -
setImage:forSegmentAtIndex:, imageForSegmentAtIndex:,

setTitle:forSegmentAtIndex:, and titleForSegmentAtIndex: to modify or utilize your

UISegmentedControl as needed! The following is an example of an action for the

UISegmentedControl, which replaces the text of a newly selected segment with the

square of its previous value.

-(void)segmentChanged:(UISegmentedControl *)sender
{
int index = sender.selectedSegmentIndex;
NSString *title = [sender titleForSegmentAtIndex:index];
int x = [title intValue]*[title intValue];
NSString *newTitle = [[NSNumber numberWithInt:x] stringValue];
 [sender setTitle:newTitle forSegmentAtIndex:index];
}

UITextField

The UITextField is easily the most customizable form of user input, as well as the most

heavily used, as it allows you to easily take input from a user to be processed. You even

have the ability to apply auto-correct to the user input, though this should be used

sparingly to avoid unwanted corrections.

If you want to add a UITextField to a view, the easiest way to do it is to place it in the

view in your XIBfile, as in Figure 3–6. You can then connect it to your header file as a

property, and configure it in your -viewDidLoad method.

One of the absolutely most important things to remember whenever you are dealing with

a UITextField (or other text-based inputs that you will deal with later) is that at some

point, a keyboard will likely end up covering half of your screen. You need to plan for

this as a designer by making sure your UITextField is in the top half of the screen or

moves up to the top half of the screen when the keyboard appears. You can set up

http://

CHAPTER 3: Application Design Elements 92

actions to be performed when the keyboard appears or disappears by registering for the

following notifications:

 UIKeyboardWillShowNotification

 UIKeyboardDidShowNotification

 UIKeyboardWillHideNotification

 UIKeyboardDidHideNotification

Figure 3–6. Adding a UITextView to a XIB interface

While in Interface Builder, you can also do some easy configuration of your UITextField.

You can make all these changes programmatically using UITextField properties, but

Interface Builder makes them a great deal easier, especially the keyboard settings such

as Capitalization and Auto-Correction. Figure 3–7 is a view of the Attribute inspector

containing these settings. As shown, the “Correction” type defaults to “Default”,

resulting in the general response you often see when typing messages.

1

http://

CHAPTER 3: Application Design Elements 93

Figure 3–7. Configuring a UITextField in the utilities pane

It is also very easy to programmatically customize the view of a UITextField through the

use of the leftView, rightView, inputView, and inputAccessoryView properties.

One of the most important properties of a UITextField is the delegate property, which

receives a variety of method calls relating to the actions of a UITextField. Whichever

object is set as the delegate (usually the view controller in whose view the UITextField

is shown) must conform to the UITextFieldDelegate protocol.

The UITextFieldDelegate protocol specifies a variety of methods to manage the editing

of a UITextField. You can use the -textFieldShouldBeginEditing:and-
textFieldShouldEndEditing: methods to either enable or disable the beginning or

ending of editing. (Return NO in either of these to disable the given action.)

You can also use -textFieldDidBeginEditing:and-textFieldDidEndEditing: to do any

movement of elements around to make sure that the keyboard does not block your

UITextField.

In terms of editing the UITextField’s text, the UITextFieldDelegate offers a few

methods to help customize the actions of your text field. -
textField:shouldChangeCharactersInRange:replacementString: is useful for actively

http://

CHAPTER 3: Application Design Elements 94

parsing text as it is entered. The -textFieldShouldClear:method also allows you a voice

in whether a UITextField clears.

Quite possibly the most useful UITextFieldDelegate protocol method is the -
textFieldShouldReturn: method, as it often serves as the main method by which you

can implement the dismissing of the keyboard. Most users are used to pressing the

return key to finish editing a UITextField, so you can simply implement this method like

so:

-(BOOL)textFieldShouldReturn:(UITextField *)textField
{
 [textField resignFirstResponder];
return YES;
}

By using the -resignFirstResponder method, your UITextField gives up its role as the

current key element, dismissing the keyboard.Yourresulting app, as simulated in Figure 3–8,

will allow you to dismiss a keyboard with the pressing of the return key.

Figure 3–8. An app with enabled functionality for dismissing the keyboard

6

http://

CHAPTER 3: Application Design Elements 95

UISlider

The UISlider provides a very nice and simple UI element for allowing a user to smoothly

adjust values, as shown in Figure 3–9.

Figure 3–9. A simple UISlider

These sliders are fairly easy to set up and configure. You can use Interface Builder to do

most of the value setup, or you can set values programmatically. The most important

properties to configure are the minimumValue, maximumValue, and initial value. You can

set the initial value when you set up your XIB file, or in code by simply setting the value

of the slider in your -viewDidLoad.

Beyond these essential properties, you can also greatly customize the appearance of

the slider, including specifying customized track images and thumb images. You can

also specify images to place on either end of the UISlider to help represent your

maximum and minimum values using the minimumValueImage and maximumValueImage

properties. For example, if your UISlider deals with an audio player’s volume, your

minimum value image may be an image of a speaker, and the maximum value image

might be the same speaker but with sound waves emanating from it.

You can create actions to be performed upon the changing of a UISlider’s value

through two methods:

1. Declare a method of return type (IBAction) in your header file, and then connect

the UISlider in your XIB file to this method by holding ! and dragging from the

slider to the method header.

2. Use the -addTarget:action:forControlEvents: method, as shown here:

[self.mySlider addTarget:self action:@selector(valueChanged:)
forControlEvents:UIControlEventValueChanged];

The UISlider also has a property called continuous, which determines whether the

value changes are reported continuously. If not, whichever action you have associated

with the slider will be called only when users finish adjusting the value, rather than

repeatedly as they move the thumb.

If you wish to cause the value of your slider to change programmatically, rather than

having the user adjust it (possibly due to some other event), you should use the -
setValue:animated: method, rather than simply setting the value property, in order to

provide a smoother transition to the user.

http://

CHAPTER 3: Application Design Elements 96

UISwitch

The UISwitch acts very similarly to the UISlider, but allows the user to choose only a

Boolean value, either “On” (as in Figure 3–10) or “Off”. These are very often used in

Settings areas of applications to allow users to easily customize their preferences.

Figure 3–10. An enabled UISwitch

The UISwitch works the exact same way as the UISlider in terms of adding actions to

be performed upon the changing of the value, though significantly simplified due to the

Boolean nature of the switch. Just as before, -addTarget:action:forControlEvents: is

used to connect a method to the switch. You can also access the value of the switch

using the onproperty, and animate the changing of its value using the -setOn:animated:

method.

UIActivityIndicatorView

Often an application may be currently working on a task that does not happen

immediately. This could be a process of downloading files from a server or even simply

a task dealing with a large amount of data requiring some significant amount of time to

complete. As the developer, you should always strive to keep your user informed of

such activities. For this, you have the UIActivityIndicatorView, shown in Figure 3–11.

A UIActivityIndicatorView is a simple element that is used to display whether an

activity is going on in the background. However, it allows for only two states: in

progress, and not in progress. To switch between these, you can use the –
startAnimating and -stopAnimatingmethods. You can also access whether the

indicator is currently animating through the –isAnimating method. If you do not have

any particular use of the indicator once your task is finished, you can use the

hidesWhenStopped property.

Figure 3–11. A UIActivityIndicatorView element

For this element, you are fairly limited in your customization options in that you are given

only properties to adjust the color and size. First, you have the

activityIndicatorViewStyle property, which takes three possible values:

 UIActivityIndicatorViewStyleWhiteLarge

 UIActivityIndicatorViewStyleWhite

 UIActivityIndicatorViewStyleGray

http://

CHAPTER 3: Application Design Elements 97

These three values differ only in size and color, and should be chosen from to maximize

visual display quality.

If none of the foregoingstyles fit your application’s design very well, you can also specify

a different color, through the UIColor class, using the color property.

UIProgressView

Following along the lines of the UIActivityIndicatorView, you have the UIProgressView.

This acts very similarly to a UISlider in that it displays a value (although limited to scaling

between 0 and 1), but does not allow for any user input. This element is most often used

for displaying some amount of progress of a task completed, as in Figure 3–12, as an

alternative to simply using a UIActivityIndicatorView to show that progress is

occurring.

Figure 3–12. A UIProgressView in use

Just like the UIActivityIndicatorView, UIProgressViews can be created with a style,

accessed through the progressViewStyle property, which has the following possible

values:

UIProgressViewStyleDefault:Standard style chosen for

UIProgressViews

UIProgressViewStyleBar:Style often used inside of a toolbar

The most important property of the UIProgressView is, naturally, the amount of progress.

This value, which ranges between 0.0 and 1.0, can be accessed through the progress
property. You can also set this property using the -setProgress:animated: method to

improve your application’s visual quality.

Aside from the progressViewStyle, the UIProgressView allows for decent appearance

customization of the tint color and image for both the progress displayed, as well as the

track upon which it rests. These are all respectively accessed through the

progressTintColor, progressImage, trackTintColor, and trackImage properties.

UIPageControl

For dealing with applications with “paging,” a very useful little UI element is the

UIPageControl, shown in Figure 3–13. This device acts mainly as an indicator to users as

to which page they are currently on, though it can also be used to directly manipulate an

application, usually by changing the current page. For an excellent example of this

utility, look at the bottom of your device’s Weather app.

Figure 3–13. A UIPageControl

http://

CHAPTER 3: Application Design Elements 98

When using a UIPageControl, you can easily access multiple values associated with it

through such properties as currentPage and numberOfPages. If your application happens

to have a possibility of havingonlyone page at some point, you may also make use of the

hidesForSinglePage property.

Just as with the UISlider and UISwitch, you can add actions to a UIPageControl to be

performed on the changing of the currentPage value using the -
addTarget:selector:forControlEvents: method in conjunction with the

UIControlEventValueChanged event. This method would ideally handle the actual

changing of your application’s display to display the newly selected page.

If, upon the changing of the currentPage, you decide there might be some reason to not

have the display of the UIPageControl update immediately, you can set the

defersCurrentPageDisplayproperty to YES, causing it to wait until the -
updateCurrentPageDisplay method is called before adjusting the display. This property

defaults to NO otherwise.

Unfortunately, you are incredibly limited in terms of customizing the appearance of a

UIPageControl. However, you are given a very useful method called -
sizeForNumberOfPages:,which allows you to easily find the minimum size needed to

display a UIPageControl with any given number of pages.

Anytime you make use of a UIPageControl element, you want to make sure the indicator

does not at all interfere visually with the pages that it manages. The element should

therefore, according to Apple’s Interface Guidelines, be centered between the bottom of

the “pages” and the bottom of the screen.

UIStepper

The UIStepper is an element entirely new in iOS 5.0,intended to streamline an

application’s use of incremental values. It is equipped with “+” and “-” buttons for the

user, but does not actually display its associated value, as in Figure 3–14. This task is

left up to the developer to implement as is appropriate for each application.

Figure 3–14. The new UIStepper

The main property of the UIStepper is its value property, which you can access in order

to update your display accordingly. This value can be easily configured with a variety of

properties:

 minimumValue: The minimum number that the value can reach

 maximumValue: The maximum value

 stepValue: The amount by which value is incremented upon the use of

the stepping buttons

http://

CHAPTER 3: Application Design Elements 99

 wraps: If this property is set to YES, your minimum and maximum values

will wrap together. Thus, if your value is incremented to exceed the

maximumValue, it will wrap around to the minimumValue, and vice versa.

 autorepeat: This property allows the UIStepper buttons to be held in

order to repeatedly increment the value without having to repeatedly

tap the element.

 continuous: Specifies whether value change events are sent every time

the valueproperty changes or only if the user has finished changing the

value, as used with the autorepeatproperty

As before, you can assign actions to be performed upon the changing of the

valueproperty using the -addTarget:selector:forControlEvents: method with

UIControlEventValueChanged.

Once your UIStepper is fully configured, the only concept to keep in mind when

designing your application is to make sure that your user interface informs the user

clearly as to which value a UIStepper changes.

Data Views
In iOS you have access to a variety of subclasses of UIView, known collectively as “data

views,” that allow you to easily place content in your application in very specific ways

depending on the type of your application.

UIImageView

One of the most intuitive and important data views in Cocoa Touch is the UIImageView

class. This view element, along with its properties and methods, is optimized to help the

developer display and manage images within an application.

The core properties of a UIImageView are its image and highlightedImage properties.

Both of these will be instances of the UIImage class, with the highlightedImage being

displayed only if the image is selected. You can create and specify these images

programmatically by using the -initWithImage:or-initWithImage:highlightedImage:

designated initializers, or by simply setting the properties individually. An example is as

follows:

self.myImageView = [[UIImageView alloc] initWithImage:[UIImage
imageNamed:@"myImage.png"]];

If you make use of the +imageNamed:method to create your UIImage, you will need to

make sure that your actual image file is imported into your project. You can do this by

dragging the file from the Finder into Xcode. When you do this, a dialog will appear, and

you need to make sure that the option marked “Copy items into destination group’s

folder (if needed)” is checked, as in Figure 3–15.

http://

CHAPTER 3: Application Design Elements 100

Figure 3–15. Pop-up dialog for adding files to a project

The UIImageView class also has built-in functionality to allow for animating multiple

images by making use of the following properties:

 animationImages: This property, an NSArray of UIImage objects,

specifies the actual images to be animated.

 highlightedAnimationImages: This acts just like the

animationImagesproperty, but for when the UIImageView is highlighted.

 animationDuration:This value, created as an NSTimeInterval,

represents the total time for all the images in animationImages to cycle

through. The value, if unspecified, defaults to the number of images

multiplied by 1/30 of a second.

 animationRepeatCount: Quite simply, this value specifies how many

times the cycle of images will repeat. If set to 0, the default, the

animation will repeat indefinitely.

Once your UIImageView’s animation properties are configured, you can manage the

actual animation using the -startAnimating, -stopAnimating, and isAnimatingmethods.

One of the most important properties to keep in mind when dealing with a UIImageView

is the contentMode property. While this is actually inherited from UIView, it tends to

become very important when dealing with images. The contentMode property essentially

specifies how the view will respond to dealing with content whose aspect ratio does not

fit well with the view it is placed in, such as a rectangular image being shown by a

http://

CHAPTER 3: Application Design Elements 101

square UIImageView. There are a variety of options for this property, all of which are fully

documented in the Apple documentation, but most of the time you will probably opt for

UIViewContentModeScaleAspectFill. This option may end up clipping part of an image

out, but it will be certain to fill the entire space of the presenting view, improving design

quality. If, for any reason, you require the image to not be clipped and would prefer the

empty space, you can use the UIViewContentModeScaleAspectFit value.

UITextView

The UITextView class is incredibly similar to a UITextField in that it allows the user to

input text. However, its visual design allows for significantly greater quantities of text, as

shown in Figure 3–16.

Figure 3–16. Using a UITextView in a XIB

Most of the UITextView properties are very similar to the UITextField properties, such

as text, font, and textColor. Other useful properties to configure your text are

editable, which specifies whether the text can be edited, as well as textAlignment. You

can even specify what kind of data the text view detects, such as phone numbers or e-

mail addresses, using the dataDetectorTypes value.

http://

CHAPTER 3: Application Design Elements 102

Just like the UITextField, the UITextView has a delegateproperty that receives multiple

actions depending on what happens in the UITextView. This property must conform to

the UITextViewDelegate protocol.

Most of the UITextViewDelegate methods are the exact same as those in the

UITextFieldDelegate protocol discussed earlier. However, the UITextViewDelegate does

not have any method to indicate when the return key has been pressed, making it harder

to determine when the keyboard should be dismissed using the -resignFirstResponder

method. Instead, you can implement the -
textView:shouldChangeTextInRange:replacementText: method.

- (BOOL)textView:(UITextView *)textView shouldChangeTextInRange:(NSRange)range
 replacementText:(NSString *)text
{
if ([text isEqualToString:@"\n"])
 {
 [textView resignFirstResponder];
return FALSE;
 }
return TRUE;
}

With a UITextView, the pressing of the return key causes a text of “\n” to be added to

the current text, so you can simply have this method wait for such an input, and dismiss

the keyboard accordingly. In your application, you may wish to allow the user to end

lines in your text view, so this implementation may not be ideal.

In terms of customization, you can easily customize the text attributes of the text field

through the aforementioned properties, but you also have some level of customization

over the view itself. You can access the actual input view using the inputViewproperty,

as well as an inputAccessoryView. This accessory view, when non-nil, is displayed

above the keyboard that appears once the UITextView is being edited, allowing you to

attach a custom toolbar to your keyboard if desired.

It is also possible for any class to receive notifications about the state of a UITextView

by becoming an observer to any of the following notifications:

 UITextViewTextDidBeginEditingNotification

 UITextViewTextDidChangeNotification

 UITextViewTextDidEndEditingNotification

Just as with the UITextField, one of the most important design aspects of the

UITextView is to remember that at any given moment, a massive keyboard could be

taking up half of your screen. As a developer, you should make sure that your

UITextVieweitheris in an area that will not be blocked by the keyboard, or moves to such

an area once the keyboard appears. See the previous “UITextField” section for more

explanation on how to receive notifications when the keyboard appears and disappears.

http://

CHAPTER 3: Application Design Elements 103

UIScrollView

The UIScrollView class is incredibly useful for dealing with large amounts of content

that you cannot fit in a single view, but belongs all in the same page. This could be a list

of pictures to be displayed or simply a very large image that you want to be able to

zoom and scroll with.

The content of a UIScrollView is defined as any subviews inside of it, so you can simply

use the -addSubview: method to add content to your UIScrollView.

Absolutely any time that you use a UIScrollView, it is necessary to set the contentSize

property. This specifies to the UIScrollView exactly how much scrolling in any direction

to allow. Generally, this will be whatever the size of your content is, so if your content is

a UIImageView with a UIImage of size 800x640, you will want the content size to be the

same. Alternatively, if you want your UIScrollView not to be able to scroll in one

direction, you might make that direction’s aspect of your contentSize smaller.

You can also adjust the contentInsetandcontentOffset to further customize the

displaying of your content. The latter of these can even be animated using the -
setContentOffset:animated: method.

The scrolling properties of a UIScrollView are incredibly easy to configure both in the

XIBfile and programmatically. The most important of these properties follow:

 scrollEnabled: Specifies whether the UIScrollView can scroll;you can

use this property to “lock” the view.

 directionalLockEnabled: This property, if enabled, restricts the

UIScrollView to scroll in only one direction at any given time, either

vertical or horizontal.

 scrollsToTop: This enables or disables the ability of the user to tap the

status bar at the top of the screen in order to scroll the UIScrollView

to the top of its content.

 pagingEnabled: If this property is enabled, the scrolling gravitates to

multiples of the view’s bounds, rather than simply allowing constant

scrolling throughout the content. This, in conjunction with a

UIPageController, is very useful if you are using a UIScrollView to

display multiple pages of content.

One of the most useful methods of a UIScrollView is -scrollRectToVisible:animated:,

as it allows you to scroll specifically to any given area of the content based on the needs

of your application.

Among many other properties, there also exist ones to manage the “bouncing” of the

UIScrollView when the user flicks the scroll view past its bounds, such as the bounces,

alwaysBounceVertical, and alwaysBounceHorizontal properties.

http://

CHAPTER 3: Application Design Elements 104

The developer also has control over the “scroll indicator,” the thin bar(s) on the bottom

or sides showing how far the view has scrolled. You can adjust these using the

indicatorStyle, scrollIndicatorInsets, showsHorizontalScrollIndicator, and

showsVerticalScrollIndicatorproperties. You can even manually flash the indicators

using the -flashScrollIndicators method.

Aside from scrolling and panning, UIScrollViews also have a zooming ability naturally

built into them. In order to implement this functionality, you must simply change the

maximumZoomScaleand/or minimumZoomScaleproperties to values other than 1.0.

The UIScrollView also has a delegate property that responds to a variety of events that

occur within the UIScrollView. This object, which must conform to the

UIScrollViewDelegate protocol, has multiple methods for responding to both the

beginnings and endings of any scrolling, flicking, or zooming event. Refer to the Apple

documentation for full details on all these methods.

UIWebView

The UIWebView class is a useful data presentation class for an application that “wraps”

some kind of web application.

You can create a UIWebView in your view controller’s XIBfile very easily, which also

allows you to easily edit most of the properties of a UIWebView in the Attributes

inspector. These properties, such as the dataDetectorTypes (similar to those used in a

UITextView), are also accessible programmatically.

A UIWebView can load data from the Web in a variety of ways, depending on the type of

content you need to manage. The loading of content is managed through multiple

methods, including -loadData:MIMEType:textEncodingName:baseURL:, -

loadHTMLString:baseURL:, and -loadRequest:. The simplest of these, -loadRequest:,

takes a parameter of type NSURLRequest. This class is essentially a wrapped NSURL with

extra properties specifically pertaining to accessing content online, such as a

timeoutIntervalor a cachePolicy. Once your content is loading, you can also make use

of the -stopLoading or -reload methods as you wish.

MKMapView

The MKMapView is a data presentation class specifically used in conjunction with the

MapKit framework to present the user with a map. For more information on this

framework, including the detailed use of this view, refer toChapter5, MapKit Recipes.

UITableView

The UITableView is an incredibly powerful class for data presentation, based on the idea

of presenting large amounts of data that is all formatted similarly. We have devoted

Chapter 9, UTTableViewRecipes,to covering the general use of this class and fully

explaining the nuances of developing table-based applications.

http://

CHAPTER 3: Application Design Elements 105

UIPickerView

A UIPickerView is similar to a UITableView, though it is not quite as complex and

customizable. It allows the user to be presented with a variety of similarly formatted

options, and rotate through them in order to select a specific option, as in Figure 3–17.

Figure 3–17. The default UIPickerView

The UIPickerView is set up similarly to the UITableView through the use of both a

dataSource property and a delegate property. These properties must respectively

conform to the UIPickerViewDataSource and UIPickerViewDelegate protocols, and are

usually set to the UIViewController that will present the UIPickerView.

The UIPickerViewDataSource protocol requires only two methods, which define the

physical configuration of the UIPickerView in terms of “rows” and “components.”

Components are vertical sections into which your view is split that allow you to easily

choose multiple values at once. Rows contain the individual options in each component

that can be chosen by the user.

You can configure the number of components, as well as the number of rows per

component, through the data source methods -numberOfComponentsInPickerView:and-
pickerView:numberOfRowsInComponent:.

The visual setup of a UIPickerView is handled through multiple delegate methods:

 pickerView:rowHeightForComponent:: Specifies the height of each row

in a given component

 pickerView:widthForComponent:: Specifies the width of each

component; your components will not automatically be fit into the

UIPickerView, so make sure that the total width of your components is

not more than the width of the UIPickerView.

 pickerView:titleForRow:forComponent:: Use this method to give a

simple text to be displayed in each row.

 pickerView:viewForRow:forComponent:reusingView:: You can use this

if you wish to display more than a simple text in a row. Try to make

use of the reusingView: parameter to improve performance.

 pickerView:didSelectRow:inComponent:: This method is called every

time a component stops rotating and lands on a specific row, allowing

your application to update properly elsewhere.

http://

CHAPTER 3: Application Design Elements 106

Here is a sample configuration:

#pragma mark - Data Source methods
-(NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView
{
return 3;
}
-(NSInteger)pickerView:(UIPickerView *)pickerView
numberOfRowsInComponent:(NSInteger)component
{
return 3;
}
#pragma mark - Delegate methods
-(CGFloat)pickerView:(UIPickerView *)pickerView
rowHeightForComponent:(NSInteger)component
{
return 30;
}
-(CGFloat)pickerView:(UIPickerView *)pickerView widthForComponent:(NSInteger)component
{
return 100;
}
-(void)pickerView:(UIPickerView *)pickerView didSelectRow:(NSInteger)row
inComponent:(NSInteger)component
{
NSLog(@"Selected. Row:%i, Component:%i", row, component);
}
-(NSString *)pickerView:(UIPickerView *)pickerView titleForRow:(NSInteger)row
forComponent:(NSInteger)component
{
return [NSString stringWithFormat:@"R:%i, C:%i", row, component];
}

This will configure the UIPickerView shown in Figure 3–18, along with logging each

selected row within each component.

Figure 3–18. A UIPickerView configured by rows and columns

Once your UIPickerView is configured, you can access the selected row in each

component using the -selectedRowInComponent:method.

You can also toggle the appearance of the center bar that signifies the chosen rows

through the showsSelectionIndicator property.

http://

CHAPTER 3: Application Design Elements 107

UIDatePickerView

The UIDatePickerView is a specialized version of a UIPickerView configured to handle

any selection of times, dates, or countdowns, shown in Figure 3–19. The class is not

actually a subclass of UIPickerView, but instead has a customized UIPickerView as a

subview.

Figure 3–19. The specialized UIDatePickerView

This class has a property called datePickerMode, which allows you to select from

multiple values, representing types of pickers, to fit your specific situation.

UIDatePickerModeTime: Selects a time

UIDatePickerModeDate: Selects a date

UIDatePickerModeDateAndTime: Selects both a date and time in one picker

UIDatePickerModeCountDownTimer: Selects a countdown timer to be set

In order to be informed of changes to selected rows, add a method as an action to your

UIDatePickerView to be called upon UIControlEventValueChanged events, just as with

several of your previously discussed elements.

You can configure the different modes of a UIDatePickerView through such properties

as maximumDate, minimumDate, minuteInterval, and countDownDuration.

If you wish to programmatically change the date displayed by a UIDatePickerView, you

can set the date property, but this will not animate the change. It is recommended that

you use the -setDate:animated: method to make such changes if the UIPickerView is

visible.

Gesture Recognizers
In iOS you are able to improve the functionality of your application by adding “gesture

recognizers” to instances or subclasses of UIView. “Gesture” refers to a touch-based

event driven by the user, such as a tap, swipe, or pinch. These elements can then

perform actions in your application, extending your normal functionality. Though it is

possible to create your own subclasses of UIGestureRecognizer, you will focus on those

already incorporated into iOS 5.0.

http://

CHAPTER 3: Application Design Elements 108

Whenever using a UIGestureRecognizer, it is important to remember that a large

percentage of users will not know to look for the existence of the gestures that you can

implement. Therefore, you should implement a UIGestureRecognizeronlyin order to

expedite a task that can be performed elsewhere. Essential functions should not be built

into these without explicitly informing the user.

The UIGestureRecognizer class is itself an abstract class that defines the behavior of

multiple subclasses, each representing different gestures. However, no matter the

subclass, a gesture recognizer is added to any UIView by use of the -
addGestureRecognizer: method. To add an instance of UITapGestureRecognizer called

tapGesture to your entire view controller’s view, for example, you write the following:

[self.view addGestureRecognizer:tapGesture];

TIP: Any subclass of UIGestureRecognizer can be added to any instance or subclass of

UIView, so you can easily build custom gesture functionality into nearly any element, resulting

in very flexible applications.

Some elements, such as UILabels, will not respond to any UIGestureRecognizers unless

their userInteractionEnabled property is set to YES.

The UIGestureRecognizer property state allows you to evaluate the current condition of

any specific subclass as its gesture is recognized. It has multiple different possible

values, each representing a possible step of the gesture recognition process:

1. UIGestureRecognizerStatePossible: Indicates a gesture is possibly in the process

of being performed, but its requirements have not yet been met

2. UIGestureRecognizerStateBegan: Indicates a continuous gesture has been

recognized and is continuing

3. UIGestureRecognizerStateChanged: Signifies a change to an already begun

continuous gesture

4. UIGestureRecognizerStateEnded: Indicates a gesture has finished

5. UIGestureRecognizerStateCancelled: A gesture recognizer has received touches

to cancel a continuous gesture.

6. UIGestureRecognizerStateRecognized: Equivalent to

UIGestureRecognizerStateEnded

Especially when dealing with continuous gestures, you can run into an issue where

several of these states cause a UIGestureRecognizer to perform its action, resulting in a

method being called repeatedly unnecessarily. By checking the state property for

specific states, you can help avoid this.

Ideally, you will set up a single method to be called by any and all instances of

UIGestureRecognizer subclasses, and simply differentiate them inside the method. You

can make use of the +isKindOfClass method, as well as the multiple properties of each

http://

CHAPTER 3: Application Design Elements 109

subclass, and even the view the gesture was recognized in, in order to identify which of

multiple UIGestureRecognizer objects performed your action. This action will have the

following handler:

-(void)handleGesture:(UIGestureRecognizer *)gestureRecognizer;

Another useful functionality that all UIGestureRecognizer subclasses inherit is the ability

to determine exactly where in a view the gesture was performed through the use of the -
locationInView: and -locationOfTouch:inView: methods. By using these values, you

can easily adjust your application’s behavior depending on the specific location of a

touch within a single view. One example of this would be to draw at the point of a user’s

touch, allowing users to essentially draw on their screen.

All subclasses of UIGestureRecognizer inherit the delegate property, which can be set

to the view controller containing the recognizer’s view. This property conforms to the

UIGestureRecognizerDelegate protocol, and allows the view controller extra control in

responding to gestures.

Multiple subclasses of UIGestureRecognizer allow for gestures that require multiple

touches to be recognized. When dealing with these, it is important to keep in mind the

maximum number of touches each device can handle. As of the writing of this text, the

iPhone can handle up to five touches, while the iPad can handle up to eleven.

UITapGestureRecognizer

A UITapGestureRecognizer recognizes, as you can guess, when the user taps on its

assigned view.

You are able to create very specific gesture functionalities by adjusting the

numberOfTapsRequired and numberOfTouchesRequired. By setting both properties to 2,

for example, you can look specifically for events of when the user taps the screen twice

with two fingers. Your configuration would look like so:

UITapGestureRecognizer *tapGesture = [[UITapGestureRecognizer alloc] initWithTarget:self
action:@selector(handleGesture:)];

tapGesture.numberOfTapsRequired = 2;
tapGesture.numberOfTouchesRequired = 2;
[self.view addGestureRecognizer:tapGesture];

When you implement handleGesture:, you should make sure to look for the

UIGestureRecognizerStateEnded state with any UITapGestureRecognizer.

UISwipeGestureRecognizer

The UISwipeGestureRecognizer recognizes when the user swipes across a screen with

one or more fingers. The swipe is a discrete gesture, so its action is called only once.

The UISwipeGestureRecognizer class has the property direction, which specifies the

direction in which the swipe must occur to be recognized. Possible values are

http://

CHAPTER 3: Application Design Elements 110

UISwipeGestureRecognizerDirectionRight, UISwipeGestureRecognizerDirectionLeft,

UISwipeGestureRecognizerDirectionUp, and UISwipeGestureRecognizerDirectionDown.

This class also has a numberOfTouchesRequired, allowing you to specify multi-touch

swipe gestures in your application.

UIPanGestureRecognizer

The UIPanGestureRecognizer class recognizes “panning” gestures, which are continuous

gestures. As such, you generally perform actions with them in reaction to either the

UIGestureRecognizerStateChanged or UIGestureRecognizerStateEnded states.

Pan gestures can be configured with both minimum and maximum numbers of touches,

allowing you to create a range of allowable touch numbers. Use the

maximumNumberOfTouches and minimumNumberOfTouches properties to implement this.

With a UIPanGestureRecognizer, you can access the distance moved, as well as the

velocity of a gesture, through the use of the -translationInView: and -velocityInView:

methods.

In most cases of using a UIPanGestureRecognizer, it is important to reset the translation

and/or velocity values of the pan gesture after acquiring and using them. If you don’t,

your values will accumulate, resulting in abnormally large values very quickly.

The following is a sample implementation, extracted from your -handleGesture: method,

to drag and drop the view that your pan was recognized in.

if ([gestureRecognizer isKindOfClass:[UIPanGestureRecognizer class]])
 {
UIPanGestureRecognizer *pan = (UIPanGestureRecognizer *)gestureRecognizer;
if (pan.state == UIGestureRecognizerStateChanged || pan.state ==
UIGestureRecognizerStateEnded)
 {
CGPoint movement = [pan translationInView:pan.view];
 [pan.view setCenter:CGPointMake(pan.view.center.x + movement.x,
pan.view.center.y + movement.y)];
 [pan setTranslation:CGPointZero inView:pan.view];
 }
 }

If you did not reset your translation to zero after moving your view, your translations

would build up rapidly, violently throwing your view off of the screen.

If you experience a Linker error when using the CGPointZero value, add the

CoreGraphics.framework library to your project.

UILongPressGestureRecognizer

The UILongPressGestureRecognizer looks for “long presses,” which are simply when the

user holds one or more fingers in the same position for longer than a normal tap.

http://

CHAPTER 3: Application Design Elements 111

Just as with several of the previous gesture recognizers, you can specify a required

number of taps, as well as a number of fingers/touches used using the

numberOfTapsRequired and numberOfTouchesRequired properties.

This subclass of UIGestureRecognizer has extra properties to configure the nature of the

“long press.” The minimumPressDuration specifies how long a touch must be held for

before the recognizer’s state turns to UIGestureRecognizerStateBegan. The

allowableMovementproperty, which takes a float, specifies how much “wiggle-room” the

user has before the long-press gesture fails. This value should be made large enough

that a normal person can easily hold the touch, but not so large as to allow for

significant movement that could cross multiple elements.

A UILongPressGestureRecognizer will trigger its action both when it begins and when it

ends, which can cause unwanted behavior. Generally, you will want to respond only to

the UIGestureRecognizerStateBegan state, so that the user can easily be notified that the

gesture has been recognized.

UIPinchGestureRecognizer

This subclass of UIGestureRecognizer looks for pinch gestures, which involve a user

moving two touches toward or away from each other. This class is continuous, meaning

it stays active as long as the pinch is held, but has constantly changing values.

You are able to access two properties from each pinch gesture:

1. scale: The scaling factor created by the pinch

2. velocity: The velocity of the given pinch gesture

Depending on your use, you will want to look for different values of state.

UIRotationGestureRecognizer

This class recognizes a fairly uncommon gesture: a rotation. This gesture is composedof

a user moving two fingers in a circular motion.

Information about the gesture performed can be accessed through the

rotationandvelocity properties, similar to the UIPinchGestureRecognizer.

View Controllers
When you design iOS applications, you tend to organize your view controllers in fairly

consistent ways based on the flow of data in your application. Built into Cocoa Touch

are multiple special subclasses of the UIViewController class that allow you to easily

organize, customize, and present your data depending on your type of application. By

combining these controllers, you can create complex organizational schemes for your

applications to present information to the user in the most optimized manner.

http://

CHAPTER 3: Application Design Elements 112

UINavigationController

The UINavigationController is by far one of the most commonly used classes in terms

of workflow design and view presentation. It not only helps to organize transitions from

one view to another, but also provides a highly customizable toolbar across the top of

each view in order to help present and manage different parts of an application. These

classes can then be placed into other organizational controllers, allowing you to create a

nested flow of information from one level of your application to another.

A UINavigationController starts off with a “root view controller,” which is the view

controller that will be visible if no others are added to it. Then, other view controllers can

be either “pushed” onto a stack of controllers, or “popped” off using various methods.

Views in a UINavigationController’s stack are displayed from the top down, so pushing

a new view controller instructs the UINavigationController to display it. Likewise, when

you pop off the current view controller, it is removed from the view, revealing the next

controller in the stack.

Creating a UINavigationController is as simple as creating any other class. You can

use a handy designated initializer called -initWithRootViewController: to set your root

view, or you can simply call the -init method (after allocating), and then use the -
pushViewController:animated:method to push in your root view.

Figure 3–20 features a configured UINavigationController with multiple elements.

http://

CHAPTER 3: Application Design Elements 113

Figure 3–20. A UINavigationController with left and right buttons and a toolbar

The top edge of this view, presented in a UINavigationController, features the

navigation bar. This area is meant to direct users in their navigation throughout your

application through three features:

 Title: The center of the navigation bar features the title of the presented

view controller. This can easily be set in each -viewDidLoad method by

changing the title property inherited from the UIViewController class.

(e.g.,self.title = @“More Info”). You can also create a custom title

view.

 Back Button: The left side of the navigation bar, if the root view

controller is not currently shown, automatically contains an arrowed

button, and by default contains the title of the previously shown view

controller, so as to help the user navigate back.

http://

CHAPTER 3: Application Design Elements 114

 Right Bar Item(s): The right side of the navigation bar is by default

empty, but can be configured using either the rightBarButtonItem or

rightBarButtonItems properties (the latter for adding multiple items).

On an iPhone, you most likely will not have more than one or two small

buttons here, but an iPad has space for a larger quantity. Usually

buttons in this location provide options to manipulate or operate on

information shown in the current view controller, such as a

UITableView’s edit button or a button to open up a printing interface.

The aforementioned properties are accessed through the navigation

item, i.e.,self.navigationItem.rightBarButtonItem.

The bottom edge of the view in Figure 3–20containsthe navigation toolbar, which comes

built into the UINavigationController. This toolbar is by default hidden, but can be

easily shown by setting the toolbarHidden property on UINavigationController to NO, or

by using the -setToolbarHidden:animated: method (to animate the change). Be careful

when doing this, however, as the state of the toolbar, whether it is hidden or shown,

remains the same across the pushing and popping of view controllers until the property

is set again. This means you may have to make use of the -viewWillAppear:animated:

and -viewWillDisappear:animated: methods in each view controller to show or hide the

toolbar as appropriate.

The contents of the UIToolbar are easily set, not by the UINavigationController, but

instead by the UIViewController that is currently on top of the stack. By calling -
setToolbarItems: with each view controller in your -viewDidLoad methods, you can

easily implement a differently configured toolbar in each view controller. The following

example, taken from a view controller’s -viewDidLoad, shows how an individual

controller’s toolbar can be easily built.

[self setToolbarItems:[NSArray arrayWithObject:[[UIBarButtonItem alloc]
initWithTitle:@"Toolbar Button "style:UIBarButtonItemStyleBordered target:nil
action:NULL]] animated:NO];

By simply changing the target and action to an actual value and selector, you will easily

be able to implement functionality in your toolbar’s buttons.

The UINavigationController also has a delegate property, which conforms to the

UINavigationControllerDelegate protocol. Utilize this to gain extra control over actions

performed right before and after view controllers are pushed or popped from the stack.

UITabBarController

Another special view controller, almost as ubiquitously used as the

UINavigationController, is the UITabBarController. This class is specially designed to

handle applications that contain multiple sections or “tabs,” each with their own flow of

information. The Twitter application has an excellent example of this implementation.

Each tab can include other controllers, including UINavigationController objects,

allowing for more complex networks of view controllers. The UITabBarController,

however, should not be placed inside of any other controllers, as it is unsupported by

the iOS API.

http://

CHAPTER 3: Application Design Elements 115

Each view controller in a UITabBarController has a tab, which by default is populated

with the view controller’s title, and no image. Creating a new instance of the

UITabBarItem and setting it as the view controller’s tabBarItem will override this,

allowing you to add images and slightly customize your tabs.

The -viewDidLoad method for each view controller is not actually called until the specific

tab containing that view controller is selected, which means that any configuration done

in this method, such as setting a title, does not occur right away, leaving you with

unlabeled tabs until they are selected. Setting the view controller’s title when it is

declared can simply solve this, though adding the title configuration into the view

controller’s designated initializer will work as well.

Figure 3–21 features a screenshot of a simple UITabBarController with three tabs, each

with configured titles and system-based images, as well as the sample code used to

create it.

Figure 3–21. A UITabBarController configured with three tabs

This uses the following configuration code, taken from an -
application:didFinishLaunchingWithOptions: method, assuming that two

http://

CHAPTER 3: Application Design Elements 116

UIViewController subclasses, MainViewController and SecondViewController, have

been created and imported to the application delegate file.

self.viewController = [[MainViewController alloc] initWithNibName:@"MainViewController"
bundle:nil];
self.viewController.title = @"First";
self.viewController.tabBarItem = [[UITabBarItem alloc]
initWithTabBarSystemItem:UITabBarSystemItemFeatured tag:0];

__strong SecondViewController *second = [[SecondViewController alloc] init];
second.title = @"Second";
second.tabBarItem = [[UITabBarItem alloc]
initWithTabBarSystemItem:UITabBarSystemItemDownloads tag:1];

__strong SecondViewController *third = [[SecondViewController alloc] init];
third.title = @"third";
third.tabBarItem = [[UITabBarItem alloc]
initWithTabBarSystemItem:UITabBarSystemItemRecents tag:2];

__strong UITabBarController *tabcon = [[UITabBarController alloc] init];
[tabcon setViewControllers:[NSArray arrayWithObjects:self.viewController, second, third,
nil]];

self.window.rootViewController = tabcon;

UISplitViewController

The UISplitViewController is another element built to help organize other view

controllers. This class, however, is available only when developing for the iPad, as it

requires a large amount of space to utilize. It features two UIViewControllers, a “master

pane” and a “detail pane.” The master pane is displayed in a narrower view on the left

side of the screen, with the remainder taken up by the detail pane, as in Figure 3–22.

Generally this setup is used to select an item from the master pane and give details on

that item in the detail pane.

http://

CHAPTER 3: Application Design Elements 117

Figure 3–22. The iPad-specific UISplitViewController

Figure 3–22 shows a pre-configured UISplitViewController-based application created

from the Master-Detail Application template. If you wish to build your application using

this controller, this template can easily help you get started. This option can be found in

the first menu presented upon creating a new project, shown in Figure 3–23. Like the

Empty Application template, it also provides an option to include the Core Data

framework and automatic setup.

http://

CHAPTER 3: Application Design Elements 118

Figure 3–23. Using the Master-Detail Application template to create a pre-configured UISplitViewController

The UISplitViewController class has two properties, viewControllers and delegate.

The former of these is an NSArray that must contain exactly two controllers: first the

master pane controller, then the detail pane controller.

By default, if the iPad is portrait-oriented, the master pane is not shown. You can adjust

this through the UISplitViewControllerDelegate protocol method -
splitViewController:shouldHideViewController:inOrientation:.Generally the

delegate property of a UISplitViewController is set to the view controller for your detail

pane, as it contains the relevant information of your application.

When using a UISplitViewController, be careful to ensure that all parts of your view are

clear in their related actions and controllers. Avoid placing toolbars in both panes, as

they might appear connected. Make sure also that any selection made in your master

pane visibly persists, so that the user can always tell which item was selected to display

the current view.

UIPopoverController

The UIPopoverController class is an element specific only to the iPad. It is used to

present information over top of your current view, usually to present options to users as

to how they want to proceed. UIPopoverControllers are very convenient to implement

as their location can easily be specified to any location, improving the visual flow of your

application.

http://

CHAPTER 3: Application Design Elements 119

Figure 3–24 is from Chapter 13 (Data Transmission Recipes), Recipe 13–2,dealing with

mailing and printing material, in which you presented a UIPopoverController from a

UIBarButtonItem to select a saved image to display.

Figure 3–24. Your example from Chapter 13 (Data TransmissionRecipes) of a UIPopoverController

A UIPopoverController is easily configured to contain a content view using the

designated initializer -initWithContentViewController:, and the content size can be

configured using -setPopoverContentSize:animated:.If you wish to change the content

view of a UIPopoverController while it is currently visible, you can make use of the -
setContentViewController:animated: method.

The UIPopoverController class has a delegate protocol with methods -

popoverControllerShouldDismissPopover:and-popoverControllerDidDismissPopover:.

These can easily be used to make sure any user data is saved before a pop-over is

dismissed.

When presenting a pop-over, you can make use of either the -
presentPopoverFromRect:inView:permittedArrowDirections:animated: method, or the

-presentPopoverFromBarButtonItem:permittedArrowDirections:animated: method. The

former is generally used for presenting from any element in your main view, while the

http://

CHAPTER 3: Application Design Elements 120

latter is used when presenting a pop-over from any item in a toolbar. Using these

methods in their correct situation will drastically improve the visual organization quality

of your application.

When designing iPad applications making use of a UIPopoverController, always keep in

mind the overall visual quality of the view. Make sure your pop-over does not cover the

entire screen, and that its arrow points to the element that caused it to appear.

Usually you want to avoid placing any kind of “dismiss” button inside of a

UIPopoverController’s content view, as the user can simply dismiss the pop-over by

tapping outside of the pop-over.

If you have the option of displaying multiple pop-over controllers from a single view, try

to write your application in such a way that opening one pop-over closes any others that

are open, so as to avoid obscuring the entire view.

UIPageViewController

The UIPageViewController is a controller new to iOS 5.0, designed specifically to help

organize applications that deal with multiple “pages” of content that are organized on

the same level of information.

An instance of UIPageViewController has its content views set using -
setViewControllers:direction:animated:completion:.

The spineLocation property is used to customize the visual animation method of your

page turning. You can imagine your application as a book, with the spineLocation

referring to the pivot point of your page turning.

This class also has two properties, a delegateanddataSource, thathelp to configure the

page view controller. The dataSource, which conforms to the

UIPageViewControllerDataSource protocol, allows you to specially configure your view

controller’s order through the -
pageViewController:viewControllerBeforeViewController:and-
pageViewController:viewControllerAfterViewController: methods. The

delegateproperty deals more with the visual setup of the controller, with the

UIPageViewControllerDelegate protocol method -
pageViewController:spineLocationForInterfaceOrientation:.

Modal Controllers

Amodalview controller is any view controller that is presented “modally,” meaning it is

shown either on top of or in place of its presenting controller. These can be anything

from a normal UIViewController subclass to a specific view element. The general use of

any modal view controller is to either provide or request specific information from the

user, so you generally will not want to modally present a controller that implements the

main functionality of your application.

http://

CHAPTER 3: Application Design Elements 121

Modal view controllers are presented by other view controllers using the -
presentModalViewController:animated: method. Changing the modalTransitionStyle

property, inherited from UIViewController, can set the style of animation. This property

takes the following possible values, whose names give excellent description as to their

style:

 UIModalTransitionStyleCoverVertical

 UIModalTransitionStyleFlipHorizontal

 UIModalTransitionStyleCrossDissolve

 UIModalTransitionStylePartialCurl

The differences between these options tend to be fairly cosmetic, especially when

implementing modal presentation on an iPhone, although the

UIModalTransitionStylePartialCurlstyle will, instead of covering the entire view, reveal

only the lower area in the modal view controller. This is good for providing small

amounts of information, such as your developer’s information, without having to

populate the entire view.

If you make use of the UIModalTransitionStylePartialCurltransition style, avoid

placing any UITextField or UITextView elements in the modal controller, as the

keyboard will end up covering the entire modal controller, keeping your users from

seeing what they are entering.

When developing on the iPhone, modal view controllers will always require the entire

screen. However, on the iPad, you are able to customize the appearance of the

controller in your view. The modalPresentationStyle property defines how your view

controller is presented on an iPad, taking the following possible values:

 UIModalPresentationFullScreen: Presents the modal controller over

the entire device screen

 UIModalPresentationPageSheet:Displays the controller with the width

set as the device’s portrait width, leaving the presenting controller

visible on either side; the background is then dimmed to bring focus to

the presented controller.

 UIModalPresentationFormSheet: Centers the modal controller on the

iPad screen, at a smaller display size than the presenting controller; if

the keyboard is visible, the view is shifted up to remain visible, and all

uncovered areas are dimmed.

 UIModalPresentationCurrentContext: The view is presented exactly as

its presenting controller is. This is particularly useful when dealing with

a split-pane controller or other view that does not fill the entire screen.

Whenever implementing a modal view controller, you need to be able to dismiss it

programmatically. Dismissal can be implemented by calling the -
dismissModalViewControllerAnimated:method from either the modal controller or the

presenting controller. If you wish to dismiss your view from the presenting controller, you

http://

CHAPTER 3: Application Design Elements 122

will need to define a delegate method for your modal controller to call when it is ready to

be dismissed. This method can also be used to pass information gathered from your

modal controller back into its parent controller.

Temporary User Interface Elements
Many applications deal with instances where user input is required at various points in

an application, but only at that certain point. For these situations, incorporating an

element directly into a view as a permanent element becomes wasteful of the precious

space that you have to use. Instead, you can make use of certain elements that are

shown when input or output is required, and then are dismissed afterward.

UIAlertView

A UIAlertView is an incredibly simple yet effective class. Most of the time it is used to

present information, though it can be configured to allow text input.

A UIAlertView has a property alertViewStyle, which specifies the type of alert

presented, with possible values:

 UIAlertViewStyleDefault

 UIAlertViewStyleSecureTextInput

 UIAlertViewStylePlainTextInput

 UIAlertViewStyleLoginAndPasswordInput

The default style refers to a simple alert presenting information, while the remaining

three all allow text input. Their names give a straightforward idea of their specific uses.

The simplest way to configure a Default-styled UIAlertView is through its designated

initializer,-initWithTitle:message:delegate:cancelButtonTitle:otherButtonTitles:.

The next example demonstrates the purpose of the configuration properties.

The following code will configure the UIAlertView shown in Figure 3–25.

UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Title" message:@"This is our
message" delegate:self cancelButtonTitle:@"Ok" otherButtonTitles:@"Other Button", nil];

Figure 3–25. A UIAlertView presented

Once your UIAlertView is fully configured, it can be presented quite simply by calling

the -show method.

[alert show];

http://

CHAPTER 3: Application Design Elements 123

The UIAlertView also has a delegateproperty, as you set in the initializer, which you

have set to your view controller in this example. This property conforms to the

UIAlertViewDelegate protocol. It contains multiple methods called upon the presenting,

cancelling, or dismissing of a UIAlertView. More importantly, though, is its -
alertView:clickedButtonAtIndex: method, which allows your application to specifically

react to each different button pressed.

If you wish to manually dismiss a UIAlertView, possibly by some outside event or after a

certain amount of time, you can call the -dismissWithClickedButtonIndex:animated:

method.

In general, the UIAlertView is used to present or request information in response to

specific events, such as changes in outside conditions that affect your application, or

loss in availability of some service.

UIActionSheet

The UIActionSheet class is often used in cases of presenting a user with multiple

options to choose from so that an application knows how to proceed. It consists of a

variety of large labeled buttons, which can have certain colors depending on the nature

of their effect on the application, as in Figure 3–26.

Figure 3–26. A simple UIActionSheet configured with multiple buttons

The UIActionSheet has a property actionSheetStyle. Unlike the similar property in

UIAlertView, this simply determines the cosmetic style of the action sheet, with possible

values:

 UIActionSheetStyleAutomatic

 UIActionSheetStyleDefault

 UIActionSheetStyleBlackTranslucent

 UIActionSheetStyleBlackOpaque

The automatic style will simply mimic, if specified, the visual style of the bottom bar.

Otherwise, it will revert to the UIActionSheetStyleDefault value.

http://

CHAPTER 3: Application Design Elements 124

The simplest way to set up a UIActionSheet is through its designated initializer,
initWithTitle:delegate:cancelButtonTitle:destructiveButtonTitle:otherButtonTitl
es:. The following line, for example, will reproduce the UIActionSheet displayed in

Figure 3–26.

UIActionSheet *actionSheet = [[UIActionSheet alloc] initWithTitle:@"Title" delegate:self
cancelButtonTitle:@"Cancel" destructiveButtonTitle:@"Delete" otherButtonTitles:@"Other
Button 1", @"Other Button 2", nil];

As you can see, the Cancel button tends to be a darker color to indicate its result, as it is

most often used to implement cancellation of some behavior. The Destructive button,

however, is a bright red color in order to indicate that it usually implements some kind of

method that will permanently delete user data.

When presenting a UIActionSheet, you must take into account the device being used.

Due to the smaller screen of the iPhone compared to the iPad, a UIActionSheet will only

ever be presented from the bottom of the view. On the iPad, however, multiple methods

can be used to present the action sheet from any specified point, bar button item,

toolbar, tab bar, or view.

The device being used also brings in certain considerations aboutbutton use. On the

iPhone, tapping outside of a UIActionSheet does nothing, so a Cancel button is

absolutely necessary. On the iPad, however, a user can usually dismiss the action sheet

by tapping outside of the actual sheet. Unless the action sheet is being presented inside

of a UIPopoverController, then a Cancel button is fairly unnecessary, and can be

confusing.

Just as with the UIAlertView, you can manually dismiss a UIActionSheet using -
dismissWithClickedButtonIndex:animated:.

Finally, your UIActionSheet’sdelegate property, which conforms to the

UIActionSheetDelegate protocol, allows you to react to the presenting, cancellation, and

dismissing of your action sheet, as well as the selection of each button. By implementing

the -actionSheet:clickedButtonAtIndex: method, you can implement specific

functionality in accordance with the selection of each option.

Summary
By this point, you should have an excellent understanding of the various elements of

iOSdesign and development. We have reviewed the most commonly used design

objects, and their general guidelines, as well as their most common implementations

and little nuances of their use. Once you have a key understanding of the many options

a developer has in creating anapplication, designing and creating useful, well-designed,

and visually appealing products become simply second nature.

http://

125

 Chapter

Location Recipes

The Core Location framework provides a new way to provide information to applications

that is relevant to where the device is geographically located. With the features of this

framework, your application can accurately tell where a device is located and even what

direction it is facing. There is a variety of applications that have successfully seized

opportunities to utilize location-aware information, such as Facebook and Foursquare.

iOS 5 continues to improve on the possibilities available and provides new features to

convert human-readable locations into geographical locations.

There are three main capabilities that we will deal with in this chapter: location services,

GPS, and the magnetometer. Location services are the bare essential functionality that

allows your application to access the location of the user. On top of this, by using

assisted GPS, you can greatly improve your location accuracy (often at the price of

battery life). The magnetometer is included on certain newer devices, which allows an

application access to both the heading and bearing of a device.

Supported Devices
The first thing you need to consider when you are planning to incorporate location-

based services into your application is what devices will support those services. Not all

Apple devices are created equal, or rather not all of them include the capability to

support location services. Specifically, none of the iPod Touches includes a GPS, and

they can provide the device’s location only based on a WiFi connection (if available and

connected). Refer to Table 4–1 to see the supported location capabilities of current

Apple devices.

Table 4–1. Location-Supported Devices

iP
h

o
n

e

iP
h

o
n

e

iP
h

o
n

e

iP
h

o
n

e

iP
o

d

iP
o

d

iP
o

d

iP
o

d

iP
a

d

iP
a

d

iP
a

d
 2

iP
a

d
 2

Assisted GPS - X X X - - - - - X X X

Magnetometer - - X X - - - - - X X X

4

http://

CHAPTER 4: Location Recipes 126

Requiring Location Services
If your application is completely dependent on location services, you may want to

prevent it from being loaded on a device that does not support location services. You

can require GPS, magnetometer, or location services in general. Place these

requirements only if these capabilities are absolutely critical to the functionality of your

application. To configure these requirements, click the project in the navigator pane, and

select your project target in the editor window.

If you wish to add these requirements to an existing project, select the Info tab and add

a row to the Custom iOS Target Properties listing. You can add a row by clicking the

small “+” icon to the right of the key name, or to the right of the name of any existing

rows. The key you want to add is “Required device capabilities” or

UIRequiredDeviceCapabilities. There is no difference between these two names, as the

latter will automatically be replaced by the former. This key contains an array of values

that reference device capabilities that are required for a device to run your application.

Expand the key, and add the required capabilities as items in the key, as highlighted in

Figure 4–1.

Figure 4–1. Specifying required device capabilities for an application

If you require just location services (i.e., knowing only the general location of a user

without heading or GPS accuracy), adding the location services item alone is enough. If,

however, your application requires GPS accuracy, then you may want to add the GPS

requirement. If you include the GPS item, you should also include the location services

item. And finally, if your device needs to know the heading of the device, you can

include the magnetometer as a required capability.

How Do I Know Where I Am?
There are two primary methods for finding the location of a device: standard location

service and significant location change service. Which one you use will depend on how

http://

CHAPTER 4: Location Recipes 127

accurate you need that information to be and how often you need to be notified that a

device’s location has changed.

The standard location service provides more accurate location information and will

invoke the GPS if the accuracy requested requires it. This greater accuracy comes at a

cost in terms of a longer time to get an accurate location and an increased drain of the

battery. If you are going to use the standard location service, you should use it with

precision and only when necessary. We’ll discuss some best practices and techniques

for using this service later in this chapter.

The significant location change service provides some flexibility and is recommended for

most applications that don’t need highly accurate location information. For instance, if

you need to know only the town or city that someone is in, the significant location

change service is perfectly acceptable. You will get a fast response without using a lot

of battery power because it uses the cellular signal to determine the device’s location.

Another additional benefit of the significant location change service is its ability to run in

the background on the device. Your app does not have to be running in the foreground

to receive location updates from this service.

These two services work in very similar ways. They require a CLLocationManager object

to be instantiated that sets up the location services and specifies how it is to be used.

The CLLocationManager object will also have a delegate defined. This delegate should

respond to at least two methods:

– locationManager:didUpdateToLocation:fromLocation:
– locationManager:didFailWithError:

The implementation of these methods for each service will be discussed in the recipes

that follow.

Recipe 4–1: Getting Device Location Information
To get the most accurate location information about a device, you are going to use the

standard location service. Let’s start by creating a new single view application called

Chapter4SampleProject to implement this functionality. If your version of Xcode allows

you to specify a class prefix, enter Chapter4SampleProject again.

The first thing you need to do when adding location services to an application is add the

Core Location framework library to the application. The location of frameworks has

changed slightly from Xcode 3 to Xcode 4. You will now find them when you select the

project in the navigator pane and select your project’s target. Switch over to the Build

Phases tab, and expand the Link Binary With Libraries area to see the included

frameworks, resembling Figure 4–2. Clicking the + button will allow you to add the Core

Location framework to your project, as shown in Figure 4–3.

http://

CHAPTER 4: Location Recipes 128

Figure 4–2. Clicking the + button to add a framework

Figure 4–3. Selecting CoreLocation.framework to add it to your project

Now you’re going to set up your XIB to display the location information. Click the

Chapter4SampleProject.xib file in the navigator pane, and Interface Builder will be

loaded. You’re going to drag a UILabel and UISwitch object onto the XIB. The UILabel

will be used to display the location information, and the UISwitch will be used to turn

location services on and off. You’re going to set the initial state of the UISwitch to Off in

the Attributes Inspector tab of the utilities pane. Your XIB now resembles Figure 4–4.

http://

CHAPTER 4: Location Recipes 129

Figure 4–4. User interface for displaying simple location information

Now create some outlet properties and actions. Turn on the Assistant Editor, and select

the UIView in the XIB. ! -click-drag from the UILabel to the interface file (.h) to create an

outlet. In the pop-up that is displayed, name the UILabel “labelLocation”, as

demonstrated in Figure 4–5.

Figure 4–5. Connect your UILabel to an outlet

Repeat the same process with the UISwitch, but this time change the Connection type

to Action and name the action “toggleLocationServices”, following Figure 4–6.

http://

CHAPTER 4: Location Recipes 130

Figure 4–6. Creating an action to be performed by the switch

Import the Core Location framework into the Chapter4SampleProjectViewController

interface file (.h) by putting the following line at the top of the interface file:

#import <CoreLocation/CoreLocation.h>

You should also define a CLLocationManager object at this time, and for convenience,

you will set the view controller to also be the CLLocationManagerDelegate. This object

will act as your “hub” of action for dealing with all location-based services. Your

interface file should now look like this:

// Chapter4SampleProjectViewController.h

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

@interface Chapter4SampleProjectViewController : UIViewController
<CLLocationManagerDelegate> {
 UILabel *labelLocation;
 CLLocationManager *_locationManager;
}

@property (strong, nonatomic) IBOutlet UILabel *labelLocation;

- (IBAction)toggleLocationServices:(id)sender;
@end

Now that the interface has been defined, you can move to the implementation file (.m)

and start implementing these methods and objects. The first thing you’re going to tackle

is the toggleLocationServices:sender: action. When the user touches this control,

you’ll want to check if location services are available to you. If they are not available, you

will present an alert view stating that location services must be enabled to continue.

if(![CLLocationManager locationServicesEnabled]){
 UIAlertView *alertLocation = [[UIAlertView alloc] initWithTitle:@"Location
Error" message:@"Location services must be enabled for this feature to work"
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [alertLocation show];
 return;
 }

http://

CHAPTER 4: Location Recipes 131

If the location service is available, you will need to check the status of the control. If it

has been set to “on”, you’ll want to check if your CLLocationManager object has been

instantiated. If it hasn’t, you will want to instantiate it and set its properties and delegate.

For the standard location service, you should always set the desiredAccuracy and

distanceFilter properties of the CLLocationManager object.

The desiredAccuracy property tells the Core Location framework how accurate (in

meters) you want your location information to be. The accuracy, however, is not

guaranteed, and the device will try to use the resources available to it to get information

as close to your desired accuracy as possible. Apple recommends being as

conservative as possible with this setting. If you don’t need to know the street address

of the current device, use a higher accuracy setting. There are a number of constants

available to use for your convenience:

kCLLocationAccuracyBestForNavigation
kCLLocationAccuracyBest
kCLLocationAccuracyNearestTenMeters
kCLLocationAccuracyHundredMeters
kCLLocationAccuracyKilometer
kCLLocationAccuracyThreeKilometers

As you can see, those constants that specify distances are restricted to the metric

system. If you are not quite familiar with these distance units, a meter is slightly longer

than a yard, and a kilometer is just over half (6/10) of a mile.

The distanceFilter property is how far a device has to move (again in meters) before

you want to be notified (via your delegate) of its new position. The only constant

provided for this property is kCLDistanceFilterNone, which will report all changes in

location to your delegate.

One other property that you should always set when using location services is the

purpose property. When the user is prompted to allow your application access to his or

her location, the string in the purpose property is displayed, telling the user what you

plan to do with his or her device’s location information.

Once you’ve set the properties and the delegate, you can start the location services by

calling the startUpdatingLocation method on your CLLocationManager.

Stopping the location services is a matter of calling stopUpdatingLocation on the

CLLocationManager object. You will want to do this if they flip the UISwitch to off. After

adding code to start and stop your CLLocationManager, your action method should look

like this:

- (IBAction)toggleLocationServices:(id)sender {
 //Display an UIAlertView if locationServices are not enabled and return
 if(![CLLocationManager locationServicesEnabled]){
 UIAlertView *alertLocation = [[UIAlertView alloc] initWithTitle:@"Location
Error" message:@"Location services must be enabled for this feature to work"
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [alertLocation show];
 return;
 }

 //Future Proof: Make sure it's a UISwitch calling this action

http://

CHAPTER 4: Location Recipes 132

 if([sender isKindOfClass:[UISwitch class]]){
 UISwitch *locationSwitch=(UISwitch *)sender;
 //Check if switch is "on"
 if(locationSwitch.on){
 //Check if _locationManager has been instantiated yet
 if(_locationManager==nil){
 //Instantiate _locationManager
 _locationManager = [[CLLocationManager alloc] init];
 _locationManager.desiredAccuracy=kCLLocationAccuracyBest;
 _locationManager.distanceFilter=1;
_locationManager.purpose=@"We will only use your location information to display your
present location. We will not send it or record it.";
_locationManager.delegate=self;
 }
 //Start updating location
 [_locationManager startUpdatingLocation];
 }else{
 //Check if _locationManager has been instantiated yet
 if(_locationManager!=nil){
 //Stop updating location
 [_locationManager stopUpdatingLocation];
 }
 }
 }
}

The delegate methods need to be set up next. These methods are called when a

location update is received or when there is an error getting the location. You will work

with the error delegate method first. The most common source of an error is when the

user is prompted to allow location services for your app and the user declines to allow

your app access to his or her location. If this happens, you will stop requesting the

location updates by calling the stopUpdatingLocation method:

-(void)locationManager:(CLLocationManager *)manager didFailWithError:(NSError *)error{
 if(error.code == kCLErrorDenied){
[manager stopUpdatingLocation];
 }
}

The delegate method that handles location updates is a little more involved. The

method, – locationManager:didUpdateToLocation:fromLocation:, delivers three

objects: the CLLocationManager that made the location update request, the newLocation,

and the oldLocation. The two location objects are of class CLLocation. This object

contains a lot of valuable information, including the location coordinate, accuracy

information, and the timestamp of the location update. You will implement this method

like so:

-(void)locationManager:(CLLocationManager *)manager didUpdateToLocation:(CLLocation
*)newLocation fromLocation:(CLLocation *)oldLocation{
 //Check to make sure this is a recent location event
 NSDate *eventDate=newLocation.timestamp;
 NSTimeInterval eventInterval=[eventDate timeIntervalSinceNow];
 if(abs(eventInterval)<30.0){
 //Check to make sure the event is accurate
 if(newLocation.horizontalAccuracy>=0 && newLocation.horizontalAccuracy<20){
 self.labelLocation.text=newLocation.description;

http://

CHAPTER 4: Location Recipes 133

 }
 }
}

Before your app processes a CLLocation object, you want to check that the timestamp

of the location object is recent. Core Location has a habit of presenting the last known

location as the first call to the delegate method before it has a lock on the new location.

There is no need to process a location object that represents the device’s location at

some point in history when you need to know where it is now. To do this, you can use

code similar to the following to process only location events that have occurred within

20 seconds of the current time:

 //Check to make sure this is a recent location event
 NSDate *eventDate=newLocation.timestamp;
 NSTimeInterval eventInterval=[eventDate timeIntervalSinceNow];
 if(abs(eventInterval)<30.0){
 //…process event
 }

The other property you need to check before you process an event is its accuracy.

Again, there is no need to process an event if it is not within the accuracy bounds that

you are expecting. It might be better to wait for the device to obtain a more accurate

reading than to present bad information to the user. The CLLocation object contains two

accuracy properties: horizontalAccuracy and verticalAccuracy.

The horizontalAccuracy property represents the radius of the circle, in meters, that the

location could be located within. You can see this circle in the built-in Maps application

when you are showing your location. A negative value indicates that the coordinate is

invalid.

The verticalAccuracy property is how far, plus or minus in meters, the altitude of the

device could be off. Again, a negative value indicates an invalid altitude reading. If the

device does not have a GPS, the verticalAccuracy property will always be negative

because a GPS is needed to determine the device’s altitude.

Here is some sample code to handle horizontalAccuracy:

 if(newLocation.horizontalAccuracy>=0 && newLocation.horizontalAccuracy<20){
 //…process event
 }

One more property that I want to discuss is the description property. The description

property returns the location information of a CLLocation object in an NSString format. It

is a very easy method for seeing what location information is being returned by the

device. I don’t recommend showing this string to the end user directly, as it contains a

great deal of information, and thus is not well formatted for display to the user, but it

could be useful for debugging and verifying that location information is being updated

and is correct/accurate. For this project, you have set your labelLocation text to the

newLocation.description value, resulting in the previous completed delegate method.

With Xcode 4.2, you can now simulate location information in the iOS simulator. Prior to

this fantastic feature, you would load up your application onto your test device and then

go running outside to test out the location features. Most of the time you would miss

http://

CHAPTER 4: Location Recipes 134

something and have to do this over and over again. However, it certainly was a great

way to get developers out of their chairs and into the sunlight.

Launch the Chapter4SampleProject on the iOS simulator. When you touch the UISwitch

to “On”, you will be prompted to allow this application access to your device’s location.

You will notice in Figure 4–7 that the string you set in the purpose property of your

CLLocationManager is displayed. Click OK to continue.

Figure 4–7. Your application requesting location permissions

After clicking OK, you will notice that your labelLocation is not updating even though

the UISwitch is on, as in Figure 4–8.

http://

CHAPTER 4: Location Recipes 135

Figure 4–8. Simulated application without any location data

This is because you haven’t started any location simulations yet. In the iOS simulator, go

to the menu Debug ➤ Location ➤ Freeway Drive, and the labelLocation should start to update

with information about the pre-recorded drive that Apple has provided. Figure 4–9 shows

a sample of information delivered by the simulated drive.

http://

CHAPTER 4: Location Recipes 136

Figure 4–9. Displaying simulated location information

Recipe 4–2: Significant Location Changes
The significant location change service provides two significant benefits: it is fast and it

can run in the background. A lot of the code used between the two location services is

the same, and the setup is virtually identical, but I will point out the differences. Let’s

start a new single view project named Chapter4SignificantLocationTracker, with an

identically named class prefix if your version of Xcode allows.

Start by adding the Core Location framework to the project. If you need a reminder of

how to add this framework, go back to the previous section to see the steps.

To enable background location services, you need to add a key to the Info.plist.

Select the project in the navigator pane, and select your project’s target. Switch over to

the Info tab, and add a row to the Custom iOS Target Properties listing. The key you

want to add is “Required background modes” or UIBackgroundModes. Now add the “App

registers for location updates” to Item 0. Your result should resemble Figure 4–10.

http://

CHAPTER 4: Location Recipes 137

Figure 4–10. Specifying location changes as a required background mode

You are going to set up the .xib file exactly as you did in the previous section, as shown

by Figure 4–11.

Figure 4–11. Your familiar user interface

http://

CHAPTER 4: Location Recipes 138

Connect the location label to an outlet named labelLocation, and connect the UISwitch

to an action named toggleLocationServices, as shown in Figures 4–12 and 4–13.

Figure 4–12. Connecting your newest UILabel to an outlet

Figure 4–13. Creating your toggling action

Your interface file (.h) is going to be set up exactly the same:

// Chapter4SignificantLocationTrackerViewController.h

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

@interface Chapter4SignificantLocationTrackerViewController : UIViewController
<CLLocationManagerDelegate>{
 CLLocationManager *_locationManager;
 UILabel *labelLocation;
}
@property (strong, nonatomic) IBOutlet UILabel *labelLocation;
- (IBAction)toggleLocationServices:(id)sender;

@end

Now switch to your implementation file (.m) and scroll down to the -
(IBAction)toggleLocationServices:(id)sender method. You’ll start by checking that

location services are enabled and presenting a UIAlertView if they are not:

 //Check if location services are enabled
 if(![CLLocationManager locationServicesEnabled]){
 UIAlertView *alertLocation = [[UIAlertView alloc] initWithTitle:@"Location
Services Needed" message:@"Location services are needed to make this app functional"
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles: nil];

http://

CHAPTER 4: Location Recipes 139

 [alertLocation show];
 return;
 }

The rest of the code will be very similar to what you have done before, with a few

exceptions. The first is that you do not need to specify the desiredAccuracy and

distanceFilter properties. You should still specify the purpose property so users will

know what you are going to do with their location.

if([sender isKindOfClass:[UISwitch class]]){
 UISwitch *locationSwitch=(UISwitch *)sender;
 if(locationSwitch.on){
 //Check if _locationManager has been instantiated
 if(_locationManager==nil){
 //Instantiate _locationManager
 _locationManager = [[CLLocationManager alloc] init];
 _locationManager.purpose=@"We will only use your location locally. We
will not record it or send it to anyone";
 _locationManager.delegate=self;
 }
….

The other significant change is that you will call the

startMonitoringSignificantLocationChanges method on the location manager when

you are ready to start receiving location changes. So now your action looks like this:

- (IBAction)toggleLocationServices:(id)sender {
 //Check if location services are enabled
 if(![CLLocationManager locationServicesEnabled]){
 UIAlertView *alertLocation = [[UIAlertView alloc] initWithTitle:@"Location
Services Needed" message:@"Location services are needed to make this app functional"
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles: nil];
 [alertLocation show];
 return;
 }

 //Future proof, make sure sender is UISwitch
 if([sender isKindOfClass:[UISwitch class]]){
 UISwitch *locationSwitch=(UISwitch *)sender;
 if(locationSwitch.on){
 //Check if _locationManager has been instantiated
 if(_locationManager==nil){
 //Instantiate _locationManager
 _locationManager = [[CLLocationManager alloc] init];
 _locationManager.purpose=@"We will only use your location locally. We
will not record it or send it to anyone";
 _locationManager.delegate=self;
 }
 //Start updating location changes
 [_locationManager startMonitoringSignificantLocationChanges];
 }else{
 if(_locationManager!=nil){
 //Stop monitoring for location changes
 [_locationManager stopMonitoringSignificantLocationChanges];
 }
 }
 }

http://

CHAPTER 4: Location Recipes 140

}

Now you have to set up the delegate methods. The simplest to define is the -
(void)locationManager:(CLLocationManager *)manager didFailWithError:(NSError
*)error method:

-(void)locationManager:(CLLocationManager *)manager didFailWithError:(NSError *)error{
 if(error.code==kCLErrorDenied){
 [manager stopMonitoringSignificantLocationChanges];
 }
}

For the -(void)locationManager:(CLLocationManager *)manager
didUpdateToLocation:(CLLocation *)newLocation fromLocation:(CLLocation
*)oldLocation method, you will do something a little different. In addition to updating

the location label, you will also generate a local notification so that you can see when a

location is updated while your app is not running.

You are going to start by performing checks to make sure the newLocation timestamp is

recent and that it is valid (by checking that the horizontalAccuracy is positive):

 NSDate *eventDate=newLocation.timestamp;
 NSTimeInterval eventInterval = [eventDate timeIntervalSinceNow];
 if(abs(eventInterval)<30.0){
 if(newLocation.horizontalAccuracy>=0){
 …

If the app is running, you will not see the UILocalNotification unless you implement the

delegate method application:didReceiveLocalNotification: in the app delegate.

Instead of doing that now, you are just going to update the location label with the new

location description while the app is open with self.labelLocation.text =
newLocation.description;.

To create the UILocalNotification, you’ll use the following recipe:

 UILocalNotification *locationNotification = [[UILocalNotification alloc]
init];
 locationNotification.alertBody=[NSString stringWithFormat:@"New Location:
%.3f, %.3f", newLocation.coordinate.latitude, newLocation.coordinate.longitude];
 locationNotification.alertAction=@"Ok";
 locationNotification.soundName = UILocalNotificationDefaultSoundName;
 //Increment the applicationIconBadgeNumber
 locationNotification.applicationIconBadgeNumber=[[UIApplication
sharedApplication] applicationIconBadgeNumber]+1;
 [[UIApplication sharedApplication]
presentLocalNotificationNow:locationNotification];

The complete code of your delegate method is as follows:

-(void)locationManager:(CLLocationManager *)manager didUpdateToLocation:(CLLocation
*)newLocation fromLocation:(CLLocation *)oldLocation{
 NSDate *eventDate=newLocation.timestamp;
 NSTimeInterval eventInterval = [eventDate timeIntervalSinceNow];
 NSLog(@"Event Interval: %f", eventInterval);
 NSLog(@"Accuracy: %f", newLocation.horizontalAccuracy);
 if(abs(eventInterval)<30.0){
 if(newLocation.horizontalAccuracy>=0){

http://

CHAPTER 4: Location Recipes 141

 self.labelLocation.text = newLocation.description;
 UILocalNotification *locationNotification = [[UILocalNotification alloc]
init];
 locationNotification.alertBody=[NSString stringWithFormat:@"New Location:
%.3f, %.3f", newLocation.coordinate.latitude, newLocation.coordinate.longitude];
 locationNotification.alertAction=@"Ok";
 locationNotification.soundName = UILocalNotificationDefaultSoundName;
 //Increment the applicationIconBadgeNumber
 locationNotification.applicationIconBadgeNumber=[[UIApplication
sharedApplication] applicationIconBadgeNumber]+1;
 [[UIApplication sharedApplication]
presentLocalNotificationNow:locationNotification];
 }
 }
}

Upon this new app, you will be able to receive local notifications for each significant

location change, even while the application is not in the foreground. These changes will

then be reflected in a notification badge on the app’s icon, as well as a normal device

notification.

Recipe 4–3: Determining Magnetic Bearing
Modern iPhones and iPad 2s now contain hardware, the magnetometer, which can be

used to determine which direction the device is being held. The measurement is based

on the device’s position in relation to the magnetic north pole of the earth. The magnetic

poles are not the same as the geographic poles of the earth. Magnetic north is located in

Northern Canada and moves slowly by approximately 55–60km per year toward the

west as the earth’s core changes.

Implementing heading tracking is very similar to implementing any of the location

tracking services we have discussed so far. You will include the Core Location

framework in your project, create a CLLocationManager object, and define its delegate

and delegate methods.

By default, it is assumed that the device heading is measured with the device held in

portrait mode with the top of the device away from the user. You can change this setting

by setting the headingOrientation property on the CLLocationManager object. The

options for this property are as follows:

CLDeviceOrientationPortrait (default)
CLDeviceOrientationPortraitUpsideDown
CLDeviceOrientationLandscapeLeft
CLDeviceOrientationLandscapeRight

Let us start by creating a new single view application project named

Chapter4HeadingTracking. If your version of Xcode allows for specifying a class prefix,

supply “Chapter4HeadingTracking” again. You start by including the Core Location

framework in your project by selecting the project in the navigator pane and selecting

the project’s target. Add the Core Location framework into the project just as you did at

the beginning of the chapter.

http://

CHAPTER 4: Location Recipes 142

Next you can set up the XIB to display your heading. Click the

Chapter4HeadingTrackingViewController.xib file in the navigator pane, and Interface

Builder will be loaded. Like with the previous recipes, you are going to drag a UILabel

and UISwitch object onto the XIB. The UILabel will be used to display the heading

information, and the UISwitch will be used to turn heading tracking services on and off.

You’re going to set the initial state of the UISwitch to Off in the Attributes inspector

pane. Your XIB now looks like Figure 4–14.

Figure 4–14. Your still-familiar user interface setup

With the .xib file laid out, let’s create some outlet properties and actions. Turn on the

Assistant Editor and select the UIView in the XIB. ! -click-drag from the UILabel to the

interface file (.h) to create an outlet. In the pop-up that is displayed, name the UILabel

“labelHeading”. These steps should resemble Figures 4–15 and 4–16.

http://

CHAPTER 4: Location Recipes 143

Figure 4–15. Connecting a UILabel outlet

Figure 4–16. Configuring the label’s outlet

Repeat the same process with the UISwitch, but this time change the Connection type

to Action and name the action “switchHeadingServices”, as shown in Figure 4–17.

Figure 4–17. Creating your switch’s action

In your interface file (.h) for Chapter4HeadingTrackingViewController, import the Core

Location framework and set the view controller to comply with the

CLLocationManagerDelegate protocol. Then define a CLLocationManager instance

variable. The interface file should now resemble the following:

// Chapter4HeadingTrackingViewController.h

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

http://

CHAPTER 4: Location Recipes 144

@interface Chapter4HeadingTrackingViewController : UIViewController
<CLLocationManagerDelegate>{
 CLLocationManager *_locationManager;
 UILabel *labelHeading;
}

@property (strong, nonatomic) IBOutlet UILabel *labelHeading;
- (IBAction)switchHeadingServices:(id)sender;
@end

Switch to the implementation file (.m), and scroll to the bottom to start defining the

switchHeadingService method. As with location services, you will start by checking that

heading services are available by checking the return of [CLLocationManager
headingAvailable]. Then you will verify that the sender is UISwitch:

if([CLLocationManager headingAvailable]){
 if([sender isKindOfClass:[UISwitch class]]){
 UISwitch *headingSwitch=(UISwitch *)sender;
 …

If the headingSwitch is “on”, you will check to make sure the instance variable

_locationManager is instantiated and instantiate it if it has not been. When creating an

instance of CLLocationManager that is going to track heading changes, you should

specify the headingFilter property. This property specifies how far (in degrees) that

your heading has to change before your delegate method is called. Then, as with the

other location tracking services, you will specify the purpose property to tell the user

what you intend to use the location information for and finally the delegate of the

CLLocationManager. Once the instance variable has been instantiated, you can call

startUpdatingHeading to start the heading tracking services, and you will also update

your label so you can see the progress you are making:

if(headingSwitch.on){
 if(_locationManager==nil){
 _locationManager=[[CLLocationManager alloc] init];
 _locationManager.headingFilter=5;
 _locationManager.purpose=@"We will use your location to tell you
where you are headed";
 _locationManager.delegate=self;
 }
 [_locationManager startUpdatingHeading];
 self.labelHeading.text=@"Starting heading tracking...";
}else{
 ….

Next you will turn off heading tracking services if the switch has been moved to the off

position, so the completed method looks like this:

- (IBAction)switchHeadingServices:(id)sender {
 if([CLLocationManager headingAvailable]){
 if([sender isKindOfClass:[UISwitch class]]){
 UISwitch *headingSwitch=(UISwitch *)sender;
 if(headingSwitch.on){
 if(_locationManager==nil){
 _locationManager=[[CLLocationManager alloc] init];
 _locationManager.headingFilter=5;

http://

CHAPTER 4: Location Recipes 145

 _locationManager.purpose=@"We will use your location to tell you
where you are headed";
 _locationManager.delegate=self;
 }
 [_locationManager startUpdatingHeading];
 self.labelHeading.text=@"Starting heading tracking...";
 }else{
 self.labelHeading.text=@"Turned heading tracking off";
 if(_locationManager!=nil){
 [_locationManager stopUpdatingHeading];
 }
 }
 }
 }else{
 self.labelHeading.text=@"Heading services unavailable";
 }
}

The delegate methods need to be defined next. With heading tracking services, there

are three delegate methods that need to be defined:

– locationManager:didFailWithError:
– locationManager:didUpdateHeading:
– locationManagerShouldDisplayHeadingCalibration:

The first method, didFailWithError, is the same delegate method you have

implemented with the location tracking services discussed previously. You want to turn

off heading tracking services if there is an error (most likely caused because the user is

not granting you access to his or her location services):

-(void)locationManager:(CLLocationManager *)manager didFailWithError:(NSError *)error{
 if(error.code==kCLErrorDenied){
 [manager stopUpdatingHeading];
 self.labelHeading.text=@"ERROR: Heading tracking is denied";
 }
}

The next method, didUpdateHeading, handles when the change in heading of the device

has exceeded your headingFilter property. In your instance, you are going to check the

timestamp to make sure it is a recent reading, and then you are going to make sure the

headingAccuracy property is positive. The headingAccuracy property will be negative if

the heading is invalid. Finally, you will update the labelHeading with the

magneticHeading reading.

-(void)locationManager:(CLLocationManager *)manager didUpdateHeading:(CLHeading
*)newHeading{
 NSDate *headingDate=newHeading.timestamp;
 NSTimeInterval headingInterval=[headingDate timeIntervalSinceNow];
 if(abs(headingInterval)<30){
 if(newHeading.headingAccuracy<0)
 return;

 self.labelHeading.text=[NSString stringWithFormat:@"Your new heading is: %.1f°",
newHeading.magneticHeading];
 }
}

http://

CHAPTER 4: Location Recipes 146

NOTE: Use " + +8 (Option+Shift+8) to insert the degree (°) symbol.

The last delegate method you need to implement is

locationManagerShouldDisplayHeadingCalibration. This method determines whether

the heading calibration screen should be presented. This is the scene that prompts a

user to move his or her device in a figure-eight pattern so that it can calibrate the

magnetometer. I haven’t run into an instance where I would not want to display this

scene yet, so I always return YES:

-(BOOL)locationManagerShouldDisplayHeadingCalibration:(CLLocationManager *)manager{
 return YES;
}

Figure 4–18 shows what the calibration screen looks like if the device is unable to easily

calibrate. When testing this application, you may not actually see this screen, but it is

important to have it enabled as a precaution.

Figure 4–18. Heading calibration screen

This is an application that will not work in the simulator. You will have to load it onto an

actual device to test it.

Recipe 4–4: Specifying True Bearing
You have figured out how to get the magnetic north heading, but what about true north?

The difference between magnetic north and true north is called declination. Declination

can vary greatly depending on where you are on the planet, but if you know where you

are, you can calculate declination. And with an iPhone or iPad 2, if the device knows

http://

CHAPTER 4: Location Recipes 147

where it is located, the device will do the calculation for you and provide it in the

trueHeading property of a CLHeading object.

To clarify, if you combine location-tracking services with heading tracking services, you

can find out a device’s orientation in reference to true north. All you need to do is also

call the startUpdatingLocation method on your CLLocationManager to get the true north

heading.

You can start a new project or expand on the project from the previous recipe. Select

the Chapter4HeadingTrackingViewController.xib file, and add a second label for the

true heading, as in Figure 4–19.

Figure 4–19. New user interface with an added label

Connect this new label to an outlet named “labelTrueHeading” by showing the

Assistant Editor pane and doing a ! -click-drag from the label to the interface file (.h),

as in Figure 4–20.

http://

CHAPTER 4: Location Recipes 148

Figure 4–20. Configuring your additional label’s outlet

Your interface file (.h) should now look like the following block. If your version of Xcode

does not create the UILabel instance variables in addition to the properties, do not

worry, as these are optional.

// Chapter4HeadingTrackingViewController.h
// Chapter4HeadingTracking

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

@interface Chapter4HeadingTrackingViewController : UIViewController
<CLLocationManagerDelegate>{
 CLLocationManager *_locationManager;
 UILabel *labelHeading;
 UILabel *labelTrueHeading;
}

@property (strong, nonatomic) IBOutlet UILabel *labelHeading;
@property (strong, nonatomic) IBOutlet UILabel *labelTrueHeading;
- (IBAction)switchHeadingServices:(id)sender;
@end

There are only some minor changes that need to be made to your code. First, you need

to call startUpdatingLocation and stopUpdatingLocation in your

switchHeadingServices method:

if(headingSwitch.on){
 if(_locationManager==nil){
 _locationManager=[[CLLocationManager alloc] init];
 _locationManager.headingFilter=5;
 _locationManager.purpose=@"We will use your location to tell you where
you are headed";
 _locationManager.delegate=self;
 }
 [_locationManager startUpdatingHeading];
 [_locationManager startUpdatingLocation];
 self.labelHeading.text=@"Starting heading tracking...";

http://

CHAPTER 4: Location Recipes 149

}else{
 self.labelHeading.text=@"Turned heading tracking off";
 if(_locationManager!=nil){
 [_locationManager stopUpdatingHeading];
 [_locationManager stopUpdatingLocation];
 }
}

Now, in your didUpdateHeading method, you will add a new statement to check the

trueHeading value. If the trueHeading is negative, it is invalid, so you want to use the

trueHeading property only if it is greater than or equal to 0:

if(newHeading.headingAccuracy<0)
 return;

 if(newHeading.trueHeading>=0){
 self.labelTrueHeading.text=[NSString stringWithFormat:@"Your true heading
is: %.1f°", newHeading.trueHeading];
 }

 self.labelHeading.text=[NSString stringWithFormat:@"Your magnetic heading is:
%.1f°", newHeading.magneticHeading];

Your custom methods in your implementation file (.m) look like the following:

//
// Chapter4HeadingTrackingViewController.m

#import "Chapter4HeadingTrackingViewController.h"

@implementation Chapter4HeadingTrackingViewController
@synthesize labelHeading;
@synthesize labelTrueHeading;
- (IBAction)switchHeadingServices:(id)sender {
 if([CLLocationManager headingAvailable]){
 if([sender isKindOfClass:[UISwitch class]]){
 UISwitch *headingSwitch=(UISwitch *)sender;
 if(headingSwitch.on){
 if(_locationManager==nil){
 _locationManager=[[CLLocationManager alloc] init];
 _locationManager.headingFilter=5;
 _locationManager.purpose=@"We will use your location to tell you
where you are headed";
 _locationManager.delegate=self;
 }
 [_locationManager startUpdatingHeading];
 [_locationManager startUpdatingLocation];
 self.labelHeading.text=@"Starting heading tracking...";
 }else{
 self.labelHeading.text=@"Turned heading tracking off";
 if(_locationManager!=nil){
 [_locationManager stopUpdatingHeading];
 [_locationManager stopUpdatingLocation];
 }
 }
 }
 }else{
 self.labelHeading.text=@"Heading services unavailable";

http://

CHAPTER 4: Location Recipes 150

 }
}

-(void)locationManager:(CLLocationManager *)manager didFailWithError:(NSError *)error{
 if(error.code==kCLErrorDenied){
 [manager stopUpdatingHeading];
 self.labelHeading.text=@"ERROR: Heading tracking is denied";
 }
}

-(void)locationManager:(CLLocationManager *)manager didUpdateHeading:(CLHeading
*)newHeading{
 NSDate *headingDate=newHeading.timestamp;
 NSTimeInterval headingInterval=[headingDate timeIntervalSinceNow];
 if(abs(headingInterval)<30){
 if(newHeading.headingAccuracy<0)
 return;

 if(newHeading.trueHeading>=0){
 self.labelTrueHeading.text=[NSString stringWithFormat:@"Your true heading
is: %.1f°", newHeading.trueHeading];
 }

 self.labelHeading.text=[NSString stringWithFormat:@"Your magnetic heading is:
%.1f°", newHeading.magneticHeading];
 }
}

-(BOOL)locationManagerShouldDisplayHeadingCalibration:(CLLocationManager *)manager{
 return YES;
}

Upon testing this application, you will be able to get a simple readout of your device’s

headings, both based on magnetic heading and true heading. Like the other recipes in

this chapter that make use of the magnetometer, this functionality will work only on a

physical device, and not the simulator.

Recipe 4–5: Region Monitoring
Core Location provides a method for monitoring when a device enters or exits a circular

region. This could be used by an application to trigger an alert when a device enters the

vicinity of a certain location, like triggering an alert to pick up milk when you get near the

grocery store. You could also use it to send a notification to your family when you leave

work to let them know that you are on your way home. There are many possibilities

available if you let your imagination do a little wandering.

A Thing or Two About Regions

Regions are defined by a center coordinate and a radius measured in meters (again, a

meter is just over three feet or a yard). The monitoring method triggers an event only

when you cross a region boundary. It will not trigger an event if the device exists in the

http://

CHAPTER 4: Location Recipes 151

region when the monitoring starts. Events are triggered only when a device enters or

exits a region.

Once you create a CLLocationManager object, you can register multiple regions for

monitoring using the startMonitoringForRegion:desiredAccuracy: method. The regions

that you register for monitoring are persistent across multiple launches of your

application. If your application is not running when a boundary event occurs, your

application is automatically relaunched in the background so that it can process the

event. All of the regions you set up previously will be available in the monitoredRegions

property of the CLLocationManager object.

Regions are shared system-wide, and there is a limited number of regions that can be

monitored at a given time. You should always limit the number of defined regions that

you are currently monitoring so as not to consume the system resources. You should

remove regions for monitoring that are not near the device’s current location. For

instance, there is no need to monitor for regions in Maryland, if the device is on the West

Coast. The error kCLErrorRegionMonitoringFailure will be presented to the

locationManager:monitoringDidFailForRegion:withError: delegate method if space is

unavailable when you try to register a new region for monitoring.

Welcome to Baltimore!

In this project, you are going to create a region for the city of Baltimore, MD and

welcome visitors to the city when they enter it. You will start by creating a new single

view application named “Chapter4RegionMonitoring”. If your version of Xcode allows for

the setting of a class prefix, use the same name of “Chapter4RegionMonitoring”. The

first thing to do is include the Core Location framework in your project by selecting the

project in the navigator pane and then selecting the project’s target. Go to the Build

Phases tab, and expand the Link Binary With Libraries area to see the included

frameworks, and add the framework as you have done in the previous sections.

With the library added, you can create the .xib file. Select the

Chapter4RegionMonitoringViewController.xib in the navigator pane to open up

Interface Builder. Add a UILabel and a UISwitch. Set the UISwitch initial state to “Off”. It

should resemble Figure 4–21.

http://

CHAPTER 4: Location Recipes 152

Figure 4–21. Your quite familiar user interface

Using the Assistant Editor, connect the outlets and actions by doing a ! -click-drag

from the .xib file to the interface file (.h). Create a UILabel outlet named

“labelRegionInfo” and an IBAction for the UISwitch named “regionMonitoringToggle”,

following Figures 4–22, 4–23, 4–24, and 4–25.

Figure 4–22. Connecting a UILabel to an outlet

http://

CHAPTER 4: Location Recipes 153

Figure 4–23. Configuring UILabel outlet

Figure 4–24. Connecting a UISwitch’s action

Figure 4–25. Configuring the toggling action

You need to import the Core Location framework into your interface file (.h) and create a

CLLocationManager instance variable. Then declare your view controller as complying

with the CLLocationManagerDelegate protocol. Your interface file (.h) for the view

controller now looks like this:

// Chapter4RegionMonitoringViewController.h

http://

CHAPTER 4: Location Recipes 154

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

@interface Chapter4RegionMonitoringViewController : UIViewController
<CLLocationManagerDelegate>{
 CLLocationManager *_locationManager;
 UILabel *labelRegionInfo;
}

@property (strong, nonatomic) IBOutlet UILabel *labelRegionInfo;
- (IBAction)regionMonitoringToggle:(id)sender;

@end

Switching to the implementation file (.m), you can implement your region tracking

methods. The first thing you will make sure of is that region monitoring is available and

enabled. Scroll to the bottom of Chapter4RegionMonitoringViewController.m and add

the following to the - (IBAction)regionMonitoringToggle:(id)sender method:

//Check if region monitoring is available
if([CLLocationManager regionMonitoringAvailable] && [CLLocationManager
regionMonitoringEnabled]){
 ….
}else{
 self.labelRegionInfo.text=@"Region monitoring is not available on this device";
}

In the same method, you will want to instantiate your CLLocationManager instance

variable if it is not already created and make sure that it is your UISwitch calling the

method:

 //Check if region monitoring is available
 if([CLLocationManager regionMonitoringAvailable] && [CLLocationManager
regionMonitoringEnabled]){
 //Make sure sender is UISwitch
 if([sender isKindOfClass:[UISwitch class]]){
 UISwitch *regionSwitch=(UISwitch *) sender;
 //If UISwitch is turned On
 if(regionSwitch.on){
 if(_locationManager==nil){
 _locationManager=[[CLLocationManager alloc] init];
 _locationManager.purpose=@"To welcome you to Baltimore";
 _locationManager.delegate=self;
 }
…

You need to define the center coordinate of the region you want to monitor and the

radius of the region. Be careful when specifying the radius because if it is too large, the

monitoring will fail. You can check to make sure your radius is within the radius bounds

by comparing it to the maximumRegionMonitoringDistance property of the

CLLocationManager object. Once you have the center coordinate and radius, you create

the CLRegion object and provide it with an identifier for future reference:

CLLocationCoordinate2D baltimoreCoordinate=CLLocationCoordinate2DMake(39.2963, -76.613);
int regionRadius=3000;
if(regionRadius>_locationManager.maximumRegionMonitoringDistance){
regionRadius=_locationManager.maximumRegionMonitoringDistance;

http://

CHAPTER 4: Location Recipes 155

}
CLRegion *baltimoreRegion=[[CLRegion alloc]
initCircularRegionWithCenter:baltimoreCoordinate
 radius:regionRadius
 identifier:@"baltimoreRegion"];

Once the region has been created, you can start monitoring for boundary events of that

region by telling your CLLocationManager instance object about the region and setting

the accuracy at which you want to monitor for the event:

[_locationManager startMonitoringForRegion:baltimoreRegion
 desiredAccuracy:kCLLocationAccuracyHundredMeters];

One last thing you want to do is turn off region monitoring if the user slides the UISwitch

to the “Off” position. To do this, you will access the monitoredRegions property of your

CLLocationManager instance variable and turn off region monitoring for all of the

currently monitored regions. You could also choose to selectively turn off specific

regions by utilizing the identifier property of the CLRegion.

}else{
 //If UISwitch is turned Off
 if(_locationManager!=nil){
 for (CLRegion *monitoredRegion in [_locationManager
monitoredRegions]) {
 [_locationManager stopMonitoringForRegion:monitoredRegion];
 self.labelRegionInfo.text=[NSString stringWithFormat:@"Turned
off region monitoring fore : %@", monitoredRegion.identifier];
 }
 }
}

The delegate methods need to be defined as well. There are two delegate methods for

handling boundary events and one for handling errors:

locationManager:didEnterRegion:
locationManager:didExitRegion:
locationManager:monitoringDidFailForRegion:withError:

There are two main error codes that are related to region monitoring. One is

kCLErrorRegionMonitoringDenied, and it is used when the user of the device has

specifically denied access to region monitoring. The other is

kCLErrorRegionMonitoringFailure, and it is used when monitoring for a specific region

has failed, usually because the system has no more region resources available to the

application.

-(void)locationManager:(CLLocationManager *)manager monitoringDidFailForRegion:(CLRegion
*)region withError:(NSError *)error{
 switch (error.code) {
 case kCLErrorRegionMonitoringDenied:
 {
 self.labelRegionInfo.text=@"Region monitoring is denied on this device";
 break;
 }
 case kCLErrorRegionMonitoringFailure:
 {

http://

CHAPTER 4: Location Recipes 156

 self.labelRegionInfo.text=[NSString stringWithFormat:@"Region monitoring
failed for region: %@", region.identifier];
 break;
 }
 default:
 {
 self.labelRegionInfo.text=[NSString stringWithFormat:@"An unhandled error
occured: %@", error.description];
 break;
 }
 }
}

Did enter and did exit can perform any function that you want, and since the application

could be in the background when the boundary event occurs, you will use local

notifications in addition to updating the label to let the user know the event occurred:

-(void)locationManager:(CLLocationManager *)manager didEnterRegion:(CLRegion *)region{
 self.labelRegionInfo.text = @"Welcome to Baltimore!";
 UILocalNotification *locationNotification = [[UILocalNotification alloc] init];
 locationNotification.alertBody=@"Welcome to Baltimore!";
 locationNotification.alertAction=@"Ok";
 locationNotification.soundName = UILocalNotificationDefaultSoundName;
 [[UIApplication sharedApplication]
presentLocalNotificationNow:locationNotification];
}
-(void)locationManager:(CLLocationManager *)manager didExitRegion:(CLRegion *)region{
 self.labelRegionInfo.text = @"Thanks for visiting Baltimore! Come back soon!";
 UILocalNotification *locationNotification = [[UILocalNotification alloc] init];
 locationNotification.alertBody=@"Thanks for visiting Baltimore! Come back soon!";
 locationNotification.alertAction=@"Ok";
 locationNotification.soundName = UILocalNotificationDefaultSoundName;
 [[UIApplication sharedApplication]
presentLocalNotificationNow:locationNotification];

}

In order to test this functionality using the iOS simulator, you must be able to feed

custom coordinates in to be simulated. Like the freeway simulation in previous recipes,

you can enter custom coordinates by navigating to Debug ➤ Location ➤ Custom

Location…, from which you can enter your own coordinates to test with.

Recipe 4–6: Reverse and Forward Geocoding
Location coordinates are useful to applications, but they are not very friendly to human

beings. When is the last time you wrote your address using latitude and longitude

coordinates? It’s just not human-friendly. Human locations are expressed in names that

reference countries, states, cities, etc. So when a device’s user asks, “Where am I?”, the

user doesn’t want to know the GPS coordinates—the user wants to know what town or

city he or she is in.

Fortunately, Apple has provided a method for converting location coordinates into a

human-readable format. The method is called reverse geocoding, and the Core Location

http://

CHAPTER 4: Location Recipes 157

framework in iOS 5 provides it. In versions of iOS prior to 5, the Map Kit framework

provided this feature.

Here are some best practices to be aware of when using reverse geocoding:

You should send only one geocoding request at a time.

If the user performs an action that will result in the same location being

geocoded, the results should be reused rather than requesting the

same location multiple times.

You should not send more than one geocoding request per minute.

You should check to see if the user has moved a significant distance

before calling another geocoding request.

Do not perform a geocoding request if the user will not see the results

(such as if your application is running in the background).

A device must have network access to perform a geocoding request.

Geocoding is performed using the CLGeocoder class. You instantiate a CLGeocoder object

and then pass it a coordinate and a block of code to perform once it has performed the

geocoding. This is a little different than the other location recipes discussed thus far that

used delegate methods.

Let’s create a new single view application that will tell us where we are called

“Chapter4Geocoder”. If you can specify a class prefix, use the same name of

“Chapter4Geocoder”. Add the Core Location framework to the application by selecting

the project in the navigator pane and selecting the target. Now click the Build Settings

tab, expand the area labeled Link Binary With Libraries, and add the Core Location

framework as you did in previous recipes.

Select the Chapter4GeocoderViewController.xib file to load Interface Builder, and add a

UILabel and rounded UIButton to the XIB, resembling Figure 4–26.

http://

CHAPTER 4: Location Recipes 158

Figure 4–26. Geocoding user interface

Using the Assistant Editor, ! -click-drag the UILabel to the interface file (.h) to create

an outlet named “labelGeocodeInfo”. Repeat the process with the UIButton to an action

named “actionWhereAmI”. These steps are demonstrated by Figures 4–27, 4–28, and

4–29.

Figure 4–27. Connecting your UILabel’s outlet

http://

CHAPTER 4: Location Recipes 159

Figure 4–28. Connecting a UISwitch’s action

Figure 4–29. Configuring an action’s creation

Import the Core Location library into the Chapter4GeocoderViewController interface file

(.h), and define the view controller as complying with the CLLocationManagerDelegate

protocol. This is used only to get the device’s current location; it is not necessary for

geocoding.

You will also create an instance variable of class CLLocationManager to get the current

location of the device and an instance of CLGeocoder to perform the geocoding. When

completed, the interface file should resemble this:

// Chapter4GeocoderViewController.h

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

@interface Chapter4GeocoderViewController : UIViewController
<CLLocationManagerDelegate>{
 CLLocationManager *_locationManager;
 CLGeocoder *_geoCoder;
 UILabel *labelGeocodeInfo;
}

@property (strong, nonatomic) IBOutlet UILabel *labelGeocodeInfo;

http://

CHAPTER 4: Location Recipes 160

- (IBAction)actionWhereAmI:(id)sender;
@end

Switch to the Chapter4GeocoderViewController implementation file (.m), and scroll to the

bottom to implement the method actionWhereAmI. Since this has been covered in

previous recipes in this chapter, I’m not going to go into detail about this, but I will cover

some highlights. You want to follow the best practices of geocoding and not geocode a

location that is too near to one you have already geocoded or that is too recent, so

you’re going to set your distanceFilter property on your CLLocationManager object to

500 meters. You are also going to set your desired accuracy to the constant

kCLLocationAccuracyHundredMeters so that you get a faster response from the location

tracking services and limit the drain on the battery.

- (IBAction)actionWhereAmI:(id)sender {
 if([CLLocationManager locationServicesEnabled]){
 if([sender isKindOfClass:[UIButton class]]){
 if(_locationManager==nil){
 _locationManager=[[CLLocationManager alloc] init];
 _locationManager.purpose=@"To tell you where you are";
 _locationManager.delegate=self;
 _locationManager.distanceFilter=500;
 _locationManager.desiredAccuracy=kCLLocationAccuracyHundredMeters;
 }
 [_locationManager startUpdatingLocation];
 self.labelGeocodeInfo.text=@"Getting location...";
 }
 }else{
 self.labelGeocodeInfo.text=@"Location services are unavailable";
 }
}

Now you will add your delegate methods for the CLLocationManager object. The first is

the didFailWithError method:

-(void)locationManager:(CLLocationManager *)manager didFailWithError:(NSError *)error{
 if(error.code==kCLErrorDenied){
 self.labelGeocodeInfo.text=@"Location information denied";
 }
}

Next is the didUpdateToLocation delegate method to be defined. You will start with the

standard checks to make sure the newLocation timestamp property is recent and that it

is accurate:

-(void)locationManager:(CLLocationManager *)manager didUpdateToLocation:(CLLocation
*)newLocation fromLocation:(CLLocation *)oldLocation{
 NSDate *locationDate=newLocation.timestamp;
 NSTimeInterval locationInterval=[locationDate timeIntervalSinceNow];
 if(abs(locationInterval)<30){
 if(newLocation.horizontalAccuracy<0)
 return;
…

You will check if the _geoCoder instance variable has been instantiated, and if not, you

will create it. Then you will also make sure that you stop any existing geocoding services

before performing a new one:

http://

CHAPTER 4: Location Recipes 161

//Instantiate _geoCoder if it has not been already
if(_geoCoder==nil)
_geoCoder=[[CLGeocoder alloc] init];

//Only one geocoding instance per action
//so stop any previous geocoding actions before starting this one
if([_geoCoder isGeocoding])
[_geoCoder cancelGeocode];

Finally, you will start your reverse geocoding process and define the completion handler.

The completion handler receives two objects, an NSArray of CLPlacemarks named

placemarks and an NSError. If the array contains one or more objects, then the reverse

geocode was successful. If not, then you can check the error code for details. The

resulting didUpdateToLocation method is as follows:

-(void)locationManager:(CLLocationManager *)manager didUpdateToLocation:(CLLocation
*)newLocation fromLocation:(CLLocation *)oldLocation{
 NSDate *locationDate=newLocation.timestamp;
 NSTimeInterval locationInterval=[locationDate timeIntervalSinceNow];
 if(abs(locationInterval)<30){
 if(newLocation.horizontalAccuracy<0)
 return;

 //Instantiate _geoCoder if it has not been already
 if(_geoCoder==nil)
 _geoCoder=[[CLGeocoder alloc] init];

 //Only one geocoding instance per action
 //so stop any previous geocoding actions before starting this one
 if([_geoCoder isGeocoding])
 [_geoCoder cancelGeocode];

 [_geoCoder reverseGeocodeLocation:newLocation
 completionHandler:^(NSArray* placemarks, NSError* error){
 if([placemarks count]>0){
 CLPlacemark *foundPlacemark=[placemarks objectAtIndex:0];
 self.labelGeocodeInfo.text=[NSString stringWithFormat:@"You
are in: %@", foundPlacemark.description];
 }else if(error.code==kCLErrorGeocodeCanceled){
 NSLog(@"Geocoding cancelled");
 }else if(error.code==kCLErrorGeocodeFoundNoResult){
 self.labelGeocodeInfo.text=@"No geocode result found";
 }else if(error.code==kCLErrorGeocodeFoundPartialResult){
 self.labelGeocodeInfo.text=@"Partial geocode result";
 }else{
 self.labelGeocodeInfo.text=[NSString
stringWithFormat:@"Unknown error: %@", error.description];
 }
 }];

 //Stop updating location until they click the button again
 [manager stopUpdatingLocation];
 }
}

http://

CHAPTER 4: Location Recipes 162

Upon testing this application, you should be able to receive the location, including street

name, city, country, and other valuable information of the given device. This can of

course be tested on a physical device, or in the simulator using the same location-

simulating functions you have used previously.

Getting Coordinates from Place Names
iOS 5 has introduced forward geocoding as well. This means that you can pass a

CLGeocoder object an address and receive the coordinates for that address as a result.

The CLGeocoder processes address strings as a parameter, and the more information

you can provide about an address, the more accurate the resulting forward geocode will

be. If the geocode process results in multiple coordinates being identified as possible

matches, these coordinates will be returned in the NSArray placemarks of the

completionHandler. A sample implementation of this could be as follows:

CLGeocoder *_geoCoder=[[CLGeocoder alloc] init];
[_geoCoder geocodeAddressString:@”2400 Boston Street, Baltimore, MD, USA”
 completionHandler:^(NSArray* placemarks, NSError* error){
 for (CLPlacemark* aPlacemark in placemarks)
 {
 // Process the placemark.
 }
}];

Summary
The Core Location framework is a powerful framework that can be utilized by any

number of application features. As demonstrated in this chapter, you can determine

where a device is located, which direction a device is facing, and when a device enters

or exits a specific region. Beyond those powerful features, you can also perform lookups

on geographical coordinates to determine human-readable location information to be

presented to your end user as well as provide complementary services to perform the

reverse.

Apple has walked a fine line of making powerful features available to developers while

also respecting a user’s privacy and the battery drain on a device. As developers, we

should work to deliver exciting features and functionality in our applications while

maintaining the same level of respect for our users. The use of the purpose property on a

CLLocationManager object and judicious use of location services are steps in the right

direction.

http://

163

 Chapter

Map Kit Recipes

The Map Kit framework is an incredibly powerful and useful toolkit that adds immense

functionality to the location services that iOS devices offer. The framework’s key focus is

the ability to place a user-interactive map in an application, with countless other features

expanding functionality, allowing for a nearly entirely customizable mapping interface.

iOS 5 has continued to improve the capabilities of Map Kit, improving developer

capability and making map-based applications increasingly dynamic and useful.

For all projects in this chapter, as in all other chapters, make sure that ARC (Automatic

Reference Counting) is enabled.

Recipe 5–1: Showing a Map with the Device’s
Location
The core foundation of any Map Kit application is the actual displaying of the world map.

In this section, you will go over how to create a Map Kit application, display a map, and

allow the map to show the user’s location.

You will start by creating a new project using the Single View Application template, as

shown by Figure 5–1.

5

http://

CHAPTER 5: Map Kit Recipes 164

Figure 5–1. Selecting a single view application

Figure 5–2 shows the configuration settings you will use for this project. Your version of

Xcode may also include a box for Use Automatic Reference Counting. Make sure this

box is always checked. You can name the project Chapter5Recipe1.

Figure 5–2. Configuring your project

http://

CHAPTER 5: Map Kit Recipes 165

To begin, you will need to add the Map Kit framework and the Core Location framework

to the project. In the navigator pane, select the Chapter5Recipe1 project file, and then

make sure the Chapter5Recipe1 target is selected in the Editor view (if not already

selected). Click the Build Phases tab, and expand the Link Binary With Libraries section.

Click the + button to add the frameworks to the labels, as highlighted in Figure 5–3, and

use the resulting pop-up resembling Figure 5–4 to add the required frameworks.

Figure 5–3. Clicking the + button to add a framework

Figure 5–4. Selecting the Core Location and Map Kit frameworks

Now that the frameworks have been added, you can start to build your interface. Select

the view controller’s .xib file from the navigation pane, and drag a MKMapView from the

objects browser to the workspace so that it fills the view.

Next, add a UILabel on top of the MKMapView that will be used to display the device’s

latitude and longitude. Figure 5–5 shows an example of what your user interface will

resemble.

http://

CHAPTER 5: Map Kit Recipes 166

Figure 5–5. .xib file with MKMapView and UILabel

Using the Assistant Editor, drag a connection from the MKMapView to the

SBViewController interface file (.h) with a ! -click-drag from the MKMapView to the

SBViewController file, as demonstrated in Figures 5–6 and 5–7.

NOTE: If the interface file is not shown in the second pane of the Assistant Editor, make sure you

click your view controller in the workspace.

http://

CHAPTER 5: Map Kit Recipes 167

Figure 5–6. Connecting the MKMapView to an outlet

Name the MKMapView outlet “mapViewUserMap”.

Figure 5–7. Configuring the map view outlet

Repeat the same steps with the UILabel, and name the outlet “labelUserLocation”.

Your user interface is fully set up, so you can simply focus on the interface file (.h) now.

Select the SBViewController.h file in the navigation pane. There are two additions you

need to make to this class interface before moving to the implementation file. The first is

to add the MapKit/MapKit.h framework library to the class with an import statement, and

the second is to define the class as complying with the MKMapViewDelegate protocol.

Apple recommends that when you use a MapView, you should assign it a delegate object.

The completed interface file (.h) looks like this:

// SBViewController.h
// Chapter5Recipe1

http://

CHAPTER 5: Map Kit Recipes 168

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@interface SBViewController : UIViewController <MKMapViewDelegate> {
 MKMapView *mapViewUserMap;
 UILabel *labelUserLocation;
}

@property (strong, nonatomic) IBOutlet MKMapView *mapViewUserMap;
@property (strong, nonatomic) IBOutlet UILabel *labelUserLocation;

@end

Switch to the implementation file, SBViewController.m, and let’s start by setting up the

MKMapView in the viewDidLoad method. Whenever you use an MKMapView object, you

should set its delegate and its region.

The region is the portion of the map that is currently being displayed. The region

consists of a center coordinate and a distance in latitude and longitude to show

surrounding the center coordinate. If you are like most people, you don’t think of

distances in latitudinal and longitudinal degrees, so you can use the method

MKCoordinateRegionMakeWithDistance to create a region using a center coordinate and

meters surrounding the coordinate. If you are unfamiliar with the metric system, a meter

is just a tiny bit longer than a yard.

In this recipe, I chose to start with the map initially panned to show my hometown of

Baltimore, MD. I define a coordinate for this location and then define a region that

contains the area 10km x 10km around this center coordinate.

 //Set MKMapView delegate
 self.mapViewUserMap.delegate=self;

 //Set MKMapView starting region
 CLLocationCoordinate2D coordinateBaltimore = CLLocationCoordinate2DMake(39.303, -
76.612);
 self.mapViewUserMap.region=
 MKCoordinateRegionMakeWithDistance(coordinateBaltimore,
 10000,
 10000);

Two optional properties worth mentioning are .zoomEnabled and .scrollEnabled. These

two properties control the interactions a user can have with the map. They can prevent a

user from zooming or panning a map, respectively.

 //Optional Controls
// self.mapViewUserMap.zoomEnabled=NO;
// self.mapViewUserMap.scrollEnabled=NO;

Finally, you will define the map as showing the user’s location. This is easily done with

the .showUserLocation property. Setting this property to YES will start the Core Location

tracking methods and prompt the user to authorize location tracking for this application.

http://

CHAPTER 5: Map Kit Recipes 169

NOTE: Just because showUserLocation is set to YES, the user’s location is not automatically

visible on the map. To determine if the location is visible in the current region of the map, use the

property userLocationVisible.

After you have told the map that you want to show the user location, you can also tell

the map to track the user location by setting the .userTrackingMode property or using

the method setUserTrackingMode:animated:. This property accepts three possible

values:

 MKUserTrackingModeNone: Does not track the user’s location; the map

can be moved to a region that does not contain the user’s location.

 MKUserTrackingModeFollow: Map will be panned to keep the user’s

location at the center. The top of the map will be North. If the user

pans the map manually, tracking will stop.

 MKUserTrackingModeFollowWithHeading: Map will be panned to keep

the user’s location at the center, and the map will be rotated so that

the user’s heading is at the top of the map. If the user pans the map

manually, tracking will stop.

Initially, you are going to set userTrackingMode to MKUserTrackingModeFollow, but later I

will show how to give users the ability to control the tracking mode themselves. The

following if statement will confirm that location services have already been enabled on

the device.

 //Control User Location on Map
 if ([CLLocationManager locationServicesEnabled])
 {
 mapViewUserMap.showsUserLocation = YES;
 [mapViewUserMap setUserTrackingMode:MKUserTrackingModeFollow animated:YES];
 }

In whole, your viewDidLoad method looks like the following:

- (void)viewDidLoad
{
 [super viewDidLoad];

 //Set MKMapView delegate
 self.mapViewUserMap.delegate=self;

 //Set MKMapView starting region
 CLLocationCoordinate2D coordinateBaltimore = CLLocationCoordinate2DMake(39.303, -
76.612);
 self.mapViewUserMap.region=
 MKCoordinateRegionMakeWithDistance(coordinateBaltimore,
 10000,
 10000);

 //Optional Controls
// self.mapViewUserMap.zoomEnabled=NO;

http://

CHAPTER 5: Map Kit Recipes 170

// self.mapViewUserMap.scrollEnabled=NO;

 //Control User Location on Map
 if ([CLLocationManager locationServicesEnabled])
 {
 mapViewUserMap.showsUserLocation = YES;
 [mapViewUserMap setUserTrackingMode:MKUserTrackingModeFollow animated:YES];
 }
}

The next important thing is the viewDidUnload method. Whenever you set a delegate for

an object, you should set the delegate = nil before you release the object in order to

avoid any memory issues. So you’ll need to add a line in your viewDidUnload to set the

delegate to nil on self.mapViewUserMap:

- (void)viewDidUnload
{
 self.mapViewUserMap.delegate=nil;
 [self setMapViewUserMap:nil];
 [self setLabelUserLocation:nil];
 [super viewDidUnload];
}

The last thing you will do is set up one of the mapView delegate methods to update the

label with the user’s current location. You will use the –mapView:didUpdateUserLocation:
delegate method. Your implementation of the method will look like this:

-(void)mapView:(MKMapView *)mapView didUpdateUserLocation:(MKUserLocation
*)userLocation{
 self.labelUserLocation.text=
 [NSString
 stringWithFormat:@"Current Location: %.5f°, %.5f°",
 userLocation.coordinate.latitude,
 userLocation.coordinate.longitude];
}

You have enough of a start that you can now run your app on the simulator. You can run

the app by using the keyboard shortcut " R. When the app launches on the simulator,

the user will be prompted to allow the app access to his or her location. Figure 5–8

shows your application displaying this exact prompt.

http://

CHAPTER 5: Map Kit Recipes 171

Figure 5–8. App’s prompt to access location

If you click OK and you are looking at the city of Baltimore on your device (and there is

no sign of your location on the map), then you may need to start the location debug

services. On the simulator, go to the menu option Debug ➤ Location ➤ Freeway Drive, and

this will start the location simulation services on the simulator. The map should pan to

the new location (a drive recorded in California) and update the location label.

One of the problems users will experience with this recipe is if they try to manually pan

the map, the user location tracking stops. Apple has provided a new UIBarButtonItem

class named MKUserTrackingBarButtonItem. This button can be added to any UIToolBar

or UINavigationbar and will toggle the user tracking modes on the specified map view.

You initialize the MKUserTrackingBarButtonItem by passing it the MKMapView that you

want it to control with the initWithMapView: method.

To set this up, you’ll add a UIToolbar to your .xib file in Interface Builder and create an

outlet for it named “toolbarMapTools”. You can delete the default BarButtonItem it adds

to the toolbar or your viewDidLoad method will override it. If you delete it from the .xib

file, your user interface will now resemble Figure 5–9.

http://

CHAPTER 5: Map Kit Recipes 172

Figure 5–9. Adding a toolbar to the bottom of the .xib

Now you will add your MKUserTrackingBarButtonItem in code. Switch to the view

controller implementation file, SBViewController.m, and scroll to the viewDidLoad

method. Add the following code at the bottom of viewDidLoad:

 //Create BarButtonItem for controller user location tracking
 MKUserTrackingBarButtonItem *trackingBarButton =
 [[MKUserTrackingBarButtonItem alloc] initWithMapView:self.mapViewUserMap];

 //Add UserTrackingBarButtonItem to UIToolbar
 [self.toolbarMapTools
 setItems:[NSArray arrayWithObject:trackingBarButton]
 animated:YES];

With this new add-on, users can manually pan the map and then get back to tracking

their location with the push of this new bar button. Figure 5–10 demonstrates the user-

tracking functionality you have implemented.

http://

CHAPTER 5: Map Kit Recipes 173

Figure 5–10. Simulated application with panning and user tracking

NOTE: MKUserLocationFollowWithHeading is not functional in the iOS Simulator.

Recipe 5–2: Marking Locations with Pins
Often, one of the most useful things about having a map is to see not only where the

user is, but also where whatever the user is looking for is as well. To do this, you add

annotations to your map. This recipe will build on top of the previous recipe.

First, you need to define your annotations by creating a subclass of NSObject. To do this,

go to File ➤ New ➤ New File, and under the Cocoa Touch category, choose “Objective-C

class,” as in Figure 5–11.

http://

CHAPTER 5: Map Kit Recipes 174

Figure 5–11. Creating an Objective-C class to act as an annotation

Name your class something clear like “MyAnnotation”, and make sure it is a subclass of

NSObject, as shown in Figure 5–12.

Figure 5–12. Configuring your NSObject subclass

http://

CHAPTER 5: Map Kit Recipes 175

Click Next and then Create to add the class to your project.

The next thing to do is set up your MyAnnotation to conform to the MKAnnotation

protocol. This will require an import statement for <MapKit/MapKit.h> in your header file,

as well as a required coordinate property. You will also be implementing the optional

title and subtitle properties, and creating an initWithCoordinate method. The code

to do this is as follows:

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>

@interface MyAnnotation : NSObject <MKAnnotation>
{
 NSString *title;
 NSString *subtitle;
}

@property (nonatomic) CLLocationCoordinate2D coordinate;
@property (nonatomic, copy) NSString *title;
@property (nonatomic, copy) NSString *subtitle;

-(id) initWithCoordinate:(CLLocationCoordinate2D) aCoordinate;

@end

Make sure to synthesize these three properties in your MyAnnotation.m implementation

file. This file will read like so:

#import "MyAnnotation.h"

@implementation MyAnnotation

@synthesize coordinate, title, subtitle;

-(id) initWithCoordinate:(CLLocationCoordinate2D) aCoordinate
{
 self=[super init];
 if (self){
 coordinate = aCoordinate;
 }
 return self;
}

@end

Now you need to define how your MKMapView deals with annotations back in your view

controller’s implementation file. To do this, you will implement the following -
mapView:viewForAnnotation: method. This method is quite similar to that used to make

views for TableView cells. Be sure to import your MyAnnotation.h file into your view

controller, or this will not compile.

- (MKAnnotationView *)mapView:(MKMapView *)mapView
viewForAnnotation:(id<MKAnnotation>)annotation
{
 if ([annotation isKindOfClass:[MyAnnotation class]]) //Ensures the User's location
is not affected.
 {

http://

CHAPTER 5: Map Kit Recipes 176

 static NSString *annotationIdentifier=@"annotationIdentifier";
 //Try to get an unused annotation, similar to uitableviewcells
 MKAnnotationView *annotationView=[self.mapViewUserMap
dequeueReusableAnnotationViewWithIdentifier:annotationIdentifier];
 annotationView.annotation = annotation;
 //If one isn't available, create a new one
 if(!annotationView)
 {
 annotationView=[[MKPinAnnotationView alloc] initWithAnnotation:annotation
reuseIdentifier:annotationIdentifier];
 }

 //Optional properties to change
 annotationView.canShowCallout = YES;
 annotationView.rightCalloutAccessoryView = [UIButton
buttonWithType:UIButtonTypeDetailDisclosure]; //Creates button on right of callout
 return annotationView;
 }
 return nil;
}

Your two optional properties, canShowCallout and rightCalloutAccessoryView, are very

useful for making interactive maps. The first causes a small callout to pop up if a pin is

pressed, and the second changes the appearance of the right side of the callout. By

default, the text in the callout will be the title and subtitle of the annotation, meaning that

if you intend to show callouts, your annotations should have at least a title.

Finally, the last thing to do is to create your annotations with their information and add

them to the map. You create a mutable array to store your annotations, and then add

the array of annotations to your mapView, as follows. This code goes in your viewDidLoad

method.

//Create and add Annotations
 NSMutableArray *annotations = [[NSMutableArray alloc] initWithCapacity:2];
 MyAnnotation *ann1 = [[MyAnnotation alloc]
initWithCoordinate:CLLocationCoordinate2DMake(25.802, -80.132)];
 ann1.title = @"Miami";
 ann1.subtitle = @"Annotation1";
 MyAnnotation *ann2 = [[MyAnnotation alloc]
initWithCoordinate:CLLocationCoordinate2DMake(39.733, -105.018)];
 ann2.title = @"Denver";
 ann2.subtitle = @"Annotation2";
 [annotations addObject:ann1];
 [annotations addObject:ann2];

 [self.mapViewUserMap addAnnotations:annotations];

I chose to make your pins drop in Miami and Denver, but any coordinates will work just

as well. If you run this app now, you should see your normal map, but with a couple of

pins stuck in, as in Figure 5–13. You will probably need to zoom out in order to see

them; this can be done in the simulator by holding # , to simulate a pinch, and dragging.

http://

CHAPTER 5: Map Kit Recipes 177

Figure 5–13. Application with map and pins

Oftentimes it may be useful to have an application in which a map’s annotations are

moveable by dragging them across the map. Implementing this functionality is incredibly

simple, and can be done by adding a single line to your -viewForAnnotation: delegate

method:

annotationView.draggable = YES;

As long as you have synthesized your annotation’s coordinate property, your pins (or

any other AnnotationView you decide to use) will be draggable.

Recipe 5–3: Creating Custom Annotations
While the majority of the time the default MKPinAnnotationView objects are incredibly

useful, you may at some point decide you want a different image instead of the pin to

represent an annotation on your map. This could be anything from an image of your

friend representing his or her hometown, to your logo representing your company’s

location. In order to create a custom annotation view, you will be subclassing the

http://

CHAPTER 5: Map Kit Recipes 178

MKAnnotationView class. You will also be customizing your callouts to display more than

simply a title and subtitle.

First, you must create your project the same way as earlier in this chapter, naming it

“customAnnotationViews”, and add your Map Kit and Core Location frameworks. You

will then add your Map Kit to your view controller, making sure to use your #import

statements for both <MapKit/MapKit.h> and <CoreLocation/CoreLocation.h>, and

setting your view controller to conform to the MKMapViewDelegate protocol (refer to the

beginning of this chapter on how to perform these tasks). You must also not forget to

set your MapView’s delegate to your view controller, by modifying your -viewDidLoad

method like so:

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.mapViewUserMap.delegate = self;
}

Before going any further, you will import the image that you will be using instead of a pin

into your project. For this, I have chosen a small image called “avatar.png”, shown here

in Figure 5–14.

Figure 5–14. Custom annotation image

Obviously this image is too large to use on a map, so you will be scaling it down later.

The best way to import the file is to simply drag the file from the Finder into your

navigation pane. I prefer to put such files under the Supporting Files group. In the dialog

that appears, make sure the box marked “Copy items into destination group’s folder (if

needed)” is checked. Figure 5–15 should resemble the window in which this option

appears, with the specific box at the top.

http://

CHAPTER 5: Map Kit Recipes 179

Figure 5–15. Making sure the “Copy items” box is checked when adding files

Next, you will create your annotation class. Select File ➤ New ➤ New File…, and under

“Cocoa Touch” select “Objective-C class”. On the next screen, you will name your class

“MyAnnotation”, and make sure it is a subclass of NSObject. Figure 5–16 shows this

configuration.

http://

CHAPTER 5: Map Kit Recipes 180

Figure 5–16. Subclassing NSObject to create annotations

After clicking Next and then Create, you will begin to edit this class.

The first thing you need to do is import your frameworks with the following lines:

#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

Next, you will make sure that your class conforms to the MKAnnotation protocol. To do

this, you add <MKAnnotation> to the header of your class, and you will declare three

properties: coordinate, title, and subtitle. You will also declare a designated

initialization method in order to create your annotations with coordinates. Your header

file will look like so after all these changes:

#import <Foundation/Foundation.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

@interface MyAnnotation : NSObject <MKAnnotation>

@property (nonatomic) CLLocationCoordinate2D coordinate;
@property (nonatomic, copy) NSString *title;
@property (nonatomic, copy) NSString *subtitle;

-(id)initWithCoordinate:(CLLocationCoordinate2D)coord;
@end

Now you simply need to build your implementation file. Since you are not doing anything

horribly complex with these annotations, simply their views, your MyAnnotation.m file will

look like so:

http://

CHAPTER 5: Map Kit Recipes 181

#import "MyAnnotation.h"

@implementation MyAnnotation

@synthesize coordinate, title, subtitle;
-(id)initWithCoordinate:(CLLocationCoordinate2D)coord
{
 self = [super init];
 if (self)
 {
 self.coordinate = coord;
 }
 return self;
}
@end

Now you can proceed to create your subclass of MKAnnotationView. Start off by going to

File ➤ New ➤ New File…, and under “Cocoa Touch” choose “Objective-C class”, just as

before. On the next screen, you will name your class “CustomAnnotationView”. The key

here is to make sure you set the parent object correctly. Under “Subclass of”, replace

“NSObject” by typing MKAnnotationView in its place, as shown in Figure 5–17.

Figure 5–17. Subclassing MKAnnotationView

Click Next and then Create to proceed.

In the header file of your CustomAnnotationView, you will need to declare only one

method to initialize your class, so that your header file looks like so:

#import <MapKit/MapKit.h>

@interface CustomAnnotationView : MKAnnotationView

http://

CHAPTER 5: Map Kit Recipes 182

-(id)initWithAnnotation:(id <MKAnnotation>) annotation reuseIdentifier:(NSString
*)annotationIdentifier;
@end

You may notice that this is the exact same name as the MKAnnotationView’s designated

initializer. This is done on purpose, in order to make your subclassing as simple as

possible. In your implementation file, you will start this method by simply starting the

view off as if it were a regular MKAnnotationView by calling the super’s designated

initializer:

-(id)initWithAnnotation:(id <MKAnnotation>) annotation reuseIdentifier:(NSString
*)annotationIdentifier
{
 self = [super initWithAnnotation:annotation reuseIdentifier:annotationIdentifier];
 return self;
}

Now, you can add to this initWithAnnotation:reuseIdentifier: method to customize

your view. First, you will create the UIImage that you will set as your view’s image to be

used instead of the pin, and set it as your image.

UIImage *myImage = [UIImage imageNamed:@"avatar.png"];
self.image = myImage;

It is highly unlikely that the image that you have used is of an appropriate size to be used

on a map. To offset this, you will standardize the size of these custom views by setting

the frame of the view, and changing the content scaling mode to best scale your image.

self.frame = CGRectMake(0, 0, 40, 40);
self.contentMode = UIViewContentModeScaleAspectFill;

If necessary, you can also adjust the position of the image relative to the coordinates by

using the centerOffset property. This is especially useful if the image you are using has

a particular point, such as a pin or arrow, that you would like to have at the exact

coordinates. The centerOffset property takes a CGPoint value, with the easiest way to

make one being through the CGPointMake() function.

self.centerOffset = CGPointMake(1, 1);

Overall, your full method, along with a quick check to ensure that the annotation was

initialized correctly, will resemble that shown here.

-(id)initWithAnnotation:(id <MKAnnotation>) annotation reuseIdentifier:(NSString
*)annotationIdentifier
{
 self = [super initWithAnnotation:annotation reuseIdentifier:annotationIdentifier];
 if (self)
 {
 //Create your UIImage to be used.
 UIImage *myImage = [UIImage imageNamed:@"avatar.png"];
 //Set your view's image
 self.image = myImage;
 //Standardize your AnnotationView's size.
 self.frame = CGRectMake(0, 0, 40, 40);
 //Use contentMode to ensure best scaling of image
 self.contentMode = UIViewContentModeScaleAspectFill;
 //Use centerOffset to adjust the image's position

http://

CHAPTER 5: Map Kit Recipes 183

 self.centerOffset = CGPointMake(1, 1);

 }
 return self;
}

NOTE: All your customization points are placed in the if (self){} block in order to ensure

that your view has been correctly initialized. This is not entirely necessary, but merely a matter of

good practice. In the case that your self is not correctly initialized, the condition will evaluate as

false, causing the method to simply return nil.

Now that your custom classes are all set up, you can return to your view controller in

order to implement your map’s delegate method. This is done almost exactly the same

as with a regular implementation, but you must change the type of MKAnnotationView

created from “MKPinAnnotationView” to your “CustomAnnotationView”. Remember that

your application will not work if you have not imported the MyAnnotation.h and

CustomAnnotationView.h files.

- (MKAnnotationView *)mapView:(MKMapView *)mapView
viewForAnnotation:(id<MKAnnotation>)annotation
{
 if ([annotation isKindOfClass:[MyAnnotation class]])
 {
 static NSString *annotationIdentifier=@"annotationIdentifier";
 MKAnnotationView *annotationView=[self.mapViewUserMap
dequeueReusableAnnotationViewWithIdentifier:annotationIdentifier];
 annotationView.annotation = annotation;
 if(!annotationView)
 {
 annotationView=[[CustomAnnotationView alloc] initWithAnnotation:annotation
reuseIdentifier:annotationIdentifier];
 }

 annotationView.canShowCallout = YES;
 return annotationView;
 }
 return nil;
}

Finally, all you need to run this is some test data. In your -viewDidLoad method, you will

add the following lines to create a few annotations and add them to your map. You will

give them each a title and subtitle as well for testing purposes.

MyAnnotation *test1 = [[MyAnnotation alloc]
initWithCoordinate:CLLocationCoordinate2DMake(37.68, -97.33)];
test1.title = @"test1";
test1.subtitle = @"subtitle";
MyAnnotation *test2 = [[MyAnnotation alloc]
initWithCoordinate:CLLocationCoordinate2DMake(41.500, -81.695)];
test2.title = @"test2";
test2.subtitle = @"subtitle2";
[self.mapViewUserMap addAnnotation:test1];
[self.mapViewUserMap addAnnotation:test2];

http://

CHAPTER 5: Map Kit Recipes 184

NOTE: Even if an MKAnnotationView’s canShowCallout property is set to YES, the callout

will not display unless the view’s annotation has been given a title. The subtitle is optional.

At this point, when you run the app, you should see your two annotations appear on the

map with your image (shrunk down to a reasonable size) over Wichita, KS and

Cleveland, OH. Figure 5–18 is the simulation of this app.

Figure 5–18. Application with map and custom annotations

Now you will add a few extra lines of code to customize your callouts.

First, you will place an image to the left of the annotation’s title and subtitle. This is done

through the use of the annotationView’s property leftCalloutAccessoryView. Your

CustomAnnotationView class inherits a getter method for this from MKAnnotationView,

so we will override this to make all our custom views display a specific image. You will

do this by adding the following method to your CustomAnnotationView.m file.

-(UIView *)leftCalloutAccessoryView
{

http://

CHAPTER 5: Map Kit Recipes 185

 UIImageView *imageView = [[UIImageView alloc] initWithImage:[UIImage
imageNamed:@"avatar.png"]];
 imageView.frame = CGRectMake(0, 0, 20, 20);
 imageView.contentMode = UIViewContentModeScaleAspectFill;
 return imageView;
}

This is very similar to the way you set your image for the annotation view, but with an

extra step of having to create a UIImageView to hold your avatar.png image. You resize

it down again (this time even smaller) and then return it. Since UIImageView is a subclass

of UIView, this works perfectly well.

Just as you can edit the leftCalloutAccessoryView, you can do the same thing on the

right side of the callout. Here, you’ll simply place a small disclosure button that can then

be used to perform further functions.

-(UIView *)rightCalloutAccessoryView
{
 return [UIButton buttonWithType:UIButtonTypeDetailDisclosure];
}

With this addition, your annotation callouts will resemble those in Figure 5–19.

http://

CHAPTER 5: Map Kit Recipes 186

Figure 5–19. Map with custom annotations and callouts

At this point, your callouts are all set up visually, but there’s a massive amount of

potential in having those buttons inside the callouts that you haven’t tapped into yet.

Most map-based apps that use buttons on their callouts will usually use the button to

push another view controller onto the screen. An application focused on displaying the

locations of a specific business on the map might allow the user to view all the details or

pictures from a specific location.

In order to increase your functionality, you will implement another one of your map’s

delegate methods, -mapView:annotationView:calloutAccessoryControlTapped:, and

have it present a modal view controller. For demonstration purposes, you will have it

display only your particular annotation’s title and subtitle, but it is quite easy to see how

this could be used much more extensively.

First, you will create your new view controller to be presented modally. Go to File ➤ New

➤ New File…. Under “Cocoa Touch”, select “UIViewController subclass”. Name the file

“DetailViewController”, and make sure that the box marked Targeted for iPad is

http://

CHAPTER 5: Map Kit Recipes 187

unchecked (unless you are developing on the iPad), and the box marked With XIB for

User Interface is checked, as in Figure 5–20.

Figure 5–20. Configuring a detail view controller

Up next, you will go into your DetailViewController’s .xib file, and add in your labels.

Drag two UILabels from the object library out into the view. Change their names to “title”

and “subtitle”. Your user interface will look like Figure 5–21.

http://

CHAPTER 5: Map Kit Recipes 188

Figure 5–21. DetailViewController .xib view

Now, you will connect these two labels over to your DetailViewController’s header file.

Just as with your MKMapView, hold ! and drag the labels over into your header file. You

will name their respective properties titleLabel and subtitleLabel.

Next, in the rest of your DetailViewController, you will need a couple of NSString

variables to store your title and subtitle, so you will simply declare them as instance

variables. You will also need to declare a designated initializer method that takes two

NSStrings that you will set your labels to. Your header file will now look like so:

#import <UIKit/UIKit.h>

@interface DetailViewController : UIViewController {
 UILabel *titleLabel;
 UILabel *subtitleLabel;
 NSString *myTitle;
 NSString *mySubtitle;
}

@property (strong, nonatomic) IBOutlet UILabel *titleLabel;
@property (strong, nonatomic) IBOutlet UILabel *subtitleLabel;

-(id)initWithTitle:(NSString *)title subtitle:(NSString *)subtitle;
@end

The implementation of your designated initializer will look like so:

-(id)initWithTitle:(NSString *)title subtitle:(NSString *)subtitle

http://

CHAPTER 5: Map Kit Recipes 189

{
 self = [super init];
 if (self)
 {
 myTitle = title;
 mySubtitle = subtitle;
 }
 return self;
}

Finally, you need to add the following two lines to your -viewDidLoad method in order to

set your labels’ text once the view is loaded.

self.titleLabel.text = myTitle;
self.subtitleLabel.text = mySubtitle;

Finally, you are ready to implement your map’s delegate method back in your main view

controller. In this method, you will create your DetailViewController and give it the

necessary text, set it to do only a partial curl transition, and then present it. After you

have correctly imported your header file using #import “DetailViewController.h”, your

method implementation will look like so:

-(void)mapView:(MKMapView *)mapView annotationView:(MKAnnotationView *)view
calloutAccessoryControlTapped:(UIControl *)control
{
 MyAnnotation *ann = view.annotation;
 DetailViewController *dvc = [[DetailViewController alloc] initWithTitle:ann.title
subtitle:ann.subtitle];
 dvc.modalTransitionStyle = UIModalTransitionStylePartialCurl;
 [self presentViewController:dvc animated:YES completion:^{}];
}

NOTE: It is necessary to declare the variable ann as an instance of MyAnnotation in order to

assure the compiler that the annotation you are being given will have the properties of .title

and .subtitle that you are asking for.

Once this code has been added, your application should resemble Figure 5–22 when a

detail disclosure button is pressed.

http://

CHAPTER 5: Map Kit Recipes 190

Figure 5–22. Application responding to the tapping of callouts

Recipe 5–4: Adding Overlays to a Map
Annotations are not the only thing that can be added to a map. Here, you will go over

how to add overlays to a map, which can take on a variety of shapes, from circles to

polygons to lines. This recipe will build off of the first recipe in this chapter.

You will be adding two kinds of overlays to your MapView, both polygon overlays and line

overlays. The process to add these is very similar to that of adding annotations, but you

do not have to create a separate class for the overlays like you did with the annotations.

First, you will implement the MapView delegate method to tell your MapView how to deal

with overlays. You will be setting up your method to handle both polygons and lines by

using the class methods to check the type of overlay.

-(MKOverlayView *)mapView:(MKMapView *)mapView viewForOverlay:(id)overlay{
 if([overlay isKindOfClass:[MKPolygon class]]){
 MKPolygonView *view = [[MKPolygonView alloc] initWithOverlay:overlay];

http://

CHAPTER 5: Map Kit Recipes 191

 //Display settings
 view.lineWidth=1;
 view.strokeColor=[UIColor blueColor];
 view.fillColor=[[UIColor blueColor] colorWithAlphaComponent:0.5];
 return view;
 }
 else if ([overlay isKindOfClass:[MKPolyline class]])
 {
 MKPolylineView *view = [[MKPolylineView alloc] initWithOverlay:overlay];

 //Display settings
 view.lineWidth = 3;
 view.strokeColor = [UIColor blueColor];
 return view;
 }
 return nil;
}

Now you just need to create your overlays and add them to the MapView by adding the

following code to –viewDidLoad.

//Create and Add Overlays
 NSMutableArray *overlays = [[NSMutableArray alloc] initWithCapacity:2];
 CLLocationCoordinate2D polyCoords[5]={
 CLLocationCoordinate2DMake(39.9, -76.6),
 CLLocationCoordinate2DMake(36.7, -84.0),
 CLLocationCoordinate2DMake(33.1, -89.4),
 CLLocationCoordinate2DMake(27.3, -80.8),
 CLLocationCoordinate2DMake(39.9, -76.6)
 };
 MKPolygon *Poly = [MKPolygon polygonWithCoordinates:polyCoords count:5];
 [overlays addObject:Poly];
 CLLocationCoordinate2D pathCoords[2] = {
 CLLocationCoordinate2DMake(46.8, -100.8),
 CLLocationCoordinate2DMake(43.7, -70.4)
 };
 MKPolyline *pathLine = [MKPolyline polylineWithCoordinates:pathCoords count:2];
 [overlays addObject:pathLine];
 [self.mapViewUserMap addOverlays:overlays];

CAUTION: When making MKPolygons, your last coordinate point should be the same as your

first one. If not, you will have issues getting the correct shapes.

When you run the app now, you should see the screen in Figure 5–23 when you zoom

out on the map. You will also notice the polygon and line that we’ve set up are rather

strange in shape and location, as they are simply meant to demonstrate what you can

do with overlays on a MapView.

http://

CHAPTER 5: Map Kit Recipes 192

Figure 5–23. Map with geometric and path overlays

Overlays are incredibly useful in Map Kit apps, and can also be very easily customized.

Most of the properties such as color or line width can be changed, allowing you to fully

customize how your app looks and acts. Overlays can also be created from circles, as

well as other user-defined shapes. Refer to the Apple documentation for details on how

to use any of these other functions.

Recipe 5–5: Grouping Annotations by Location
A common issue when it comes to using annotations on a map view is the possibility of

having very large numbers of annotations very close to each other, cluttering up the

screen and making the application difficult to use. The solution is to group annotations

together based on location and the size of the visible map. You will use a simple

algorithm that compares location coordinates every time the visible region changes.

http://

CHAPTER 5: Map Kit Recipes 193

First, you need to create your project, naming it “HotspotMap”, with a class prefix of

“CSD”, add the Map Kit and Core Location, and be sure to import them into your

classes. Refer to Recipe 5–1 in this chapter for details on how to do this.

As is necessary when adding annotations to a map (see Recipe 5–2), you need to create

a subclass of NSObject that conforms to the MKAnnotation protocol. Create the class by

making a new file, choosing “Objective-C class”, and making sure it is a subclass of

NSObject. You will call your class “Hotspot”, as shown in Figure 5–24.

Figure 5–24. Configuring the Hotspot class

You will define your class with a few different properties. Since it is conforming to the

MKAnnotation protocol, you will need a coordinate, as well as two NSStrings, a title,

and a subtitle. You will also need a designated initialization method in order to create

your annotations with coordinates. You will define these in your header file, like so:

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>
#import <CoreLocation/CoreLocation.h>

@interface Hotspot : NSObject <MKAnnotation>

@property (nonatomic) CLLocationCoordinate2D coordinate;
@property (nonatomic, copy) NSString *title;
@property (nonatomic, copy) NSString *subtitle;
-(id)initWithCoordinate:(CLLocationCoordinate2D) c;

@end

http://

CHAPTER 5: Map Kit Recipes 194

NOTE: Pay close attention to the import statements in this code, as well as the protocol directive

<MKAnnotation> in the interface header. Without these, your app will not run correctly.

Now you simply need to synthesize these properties and implement your initialization

method in your .m file, like so:

@synthesize coordinate, title, subtitle;
-(id)initWithCoordinate:(CLLocationCoordinate2D) c
{
 self=[super init];
 if(self){
 coordinate = c;
 }
 return self;
}

Next, you will move over to your view controller. The first thing to do is put your MapView

in using Interface Builder, and link it over to your header file. In this example, I have

named your MKMapView “mapViewUserMap”. (Refer to Recipe 5–1 in this chapter on how

to do this.) Also be sure to set your MapView’s delegate to your view controller in –
viewDidLoad, with the following line of code:

self.mapViewUserMap.delegate = self;

You will also need a few helper variables throughout your program. First, you need a

variable of type CLLocationDegrees, with which you will keep track of your current zoom

level. Second, you will need a mutable array property, which you will use to hold all of

your hotspots. Your header file will look something like this:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

#import "Hotspot.h"

@interface CSDViewController : UIViewController <MKMapViewDelegate>
{
 MKMapView *mapViewUserMap;
 CLLocationDegrees zoom;
}

@property (strong, nonatomic) IBOutlet MKMapView *mapViewUserMap;
@property (strong, nonatomic) NSMutableArray *places;
@end

Next, in your implementation file, after synthesizing your places property, you’ll define a

few constants that will set up your starting coordinates and grouping parameters. These

will also be used to help generate some random locations for demonstration purposes.

Place the following statements before your import statements in the .m file.

#define centerLat 39.2953
#define centerLong -76.614
#define spanDeltaLat 4.9
#define spanDeltaLong 5.8

http://

CHAPTER 5: Map Kit Recipes 195

#define scaleLat 9.0
#define scaleLong 11.0

Before you get any further, you need to remember a very important aspect of dealing

with NSArrays as properties, in that they do not automatically allocate or initialize

themselves in their synthesized accessor method. You will need to define your own

accessor method in order to lazily instantiate the array. Since you will be making 1,000

testing locations soon, you will give the array an initial capacity of 1,000, like so:

-(NSMutableArray *)places
{
 if (!places)
 {
 places = [[NSMutableArray alloc] initWithCapacity:1000];
 }
 return places;
}

Next, you will need some testing data. The following two methods will generate a good

1,000 hotspots for you to use, all within fairly close proximity to each other, so that you

can see what kind of issue you are working with.

-(float)RandomFloatStart:(float)a end:(float)b
{
 float random = ((float) rand()) / (float) RAND_MAX;
 float diff = b - a;
 float r = random * diff;
 return a + r;
}
-(void)loadDummyPlaces
{
 srand((unsigned)time(0));

 for (int i=0; i<1000; i++)
 {
 Hotspot *place=[[Hotspot alloc]
initWithCoordinate:CLLocationCoordinate2DMake([self RandomFloatStart:37.0
end:42.0],[self RandomFloatStart:-72.0 end:-79.0])];
 place.title = [NSString stringWithFormat:@"Place %d title",i];
 place.subtitle = [NSString stringWithFormat:@"Place %d subtitle",i];
 [self.places addObject:place];
 }
}

Now that you have your testing data, you’ll make sure your –viewDidLoad method is all

set up to do what you need. It should look like so:

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.mapViewUserMap.delegate = self;
 [self loadDummyPlaces];
 [self.mapViewUserMap addAnnotations:self.places]; //For setup purposes only. This
line will be unnecessary when grouping is implemented.
 CLLocationCoordinate2D centerPoint = {centerLat, centerLong};
 MKCoordinateSpan coordinateSpan = MKCoordinateSpanMake(spanDeltaLat,
spanDeltaLong);

http://

CHAPTER 5: Map Kit Recipes 196

 MKCoordinateRegion coordinateRegion = MKCoordinateRegionMake(centerPoint,
coordinateSpan);

 [self.mapViewUserMap setRegion:coordinateRegion];
 [self.mapViewUserMap regionThatFits:coordinateRegion];
}

Before you finish up your initial setup, you’ll jump down to your -viewDidUnload method

and add in a few lines to keep your memory clean. The following two lines will help

recycle memory if you ever want to use this class in a larger application later.

[self.places removeAllObjects];
self.places = nil;

Finally, you will need to implement your map’s viewForAnnotation method so that you

can correctly display your pins. This is very similar to your previous recipe, as shown

here:

- (MKAnnotationView *)mapView:(MKMapView *)mV viewForAnnotation:(id
<MKAnnotation>)annotation{

 // if it's the user location, just return nil.
 if ([annotation isKindOfClass:[MKUserLocation class]]){
 return nil;
 }
 else{
 static NSString *StartPinIdentifier = @"PinIdentifier";
 MKPinAnnotationView *startPin = (id)[mV
dequeueReusableAnnotationViewWithIdentifier:StartPinIdentifier];
 if (startPin == nil) {
 startPin = [[MKPinAnnotationView alloc] initWithAnnotation:annotation
reuseIdentifier:StartPinIdentifier];
 }
 startPin.canShowCallout = YES;
 return startPin;
 }
}

At this point, if you run the application, you should see a view resembling Figure 5–25, a

perfect illustration of the problem you are trying to solve. Now that you have your test

data set up, you will work on implementing the solution.

http://

CHAPTER 5: Map Kit Recipes 197

Figure 5–25. A map with far too many annotations

In order to properly iterate through your annotations and group them, you will be going

through each hotspot and determining how it should be placed. If it is close to another

pin that has already been dropped, it will be considered “found,” and will be removed

from the map. If not, you will add it to the list of those already in the map, and add it to

the map itself as an annotation. The following method provides an efficient

implementation, and should be placed in your view controller’s .m file.

-(void)group:(NSArray *)hotspots{
 float latDelta=self.mapViewUserMap.region.span.latitudeDelta/scaleLat;
 float longDelta=self.mapViewUserMap.region.span.longitudeDelta/scaleLong;
 NSMutableArray *visibleHotspots=[[NSMutableArray alloc] initWithCapacity:0];

 for (Hotspot *current in hotspots) {
 CLLocationDegrees lat = current.coordinate.latitude;
 CLLocationDegrees longi = current.coordinate.longitude;

 bool found=FALSE;
 for (Hotspot *tempHotspot in visibleHotspots) {

http://

CHAPTER 5: Map Kit Recipes 198

 if(fabs(tempHotspot.coordinate.latitude-lat) < latDelta &&
fabs(tempHotspot.coordinate.longitude-longi)<longDelta){
 [self.mapViewUserMap removeAnnotation:current];
 found=TRUE;
 break;
 }
 }
 if (!found) {
 [visibleHotspots addObject:current];
 [self.mapViewUserMap addAnnotation:current];
 }
 }
}

NOTE: In this method, you use the fabs function. This is different from the abs function in that it

is specifically used for floats. Using the abs function here would result in grouping only at the

integer level of coordinates, and your app would not work correctly.

Next, you need to deal with your application re-grouping the points every time the visible

section of the map is changed. This is fairly easy to do by implementing the following

delegate method:

-(void)mapView:(MKMapView *)mapView regionDidChangeAnimated:(BOOL)animated{
 if (zoom!=mapView.region.span.longitudeDelta) {
 [self group:places];
 zoom=mapView.region.span.longitudeDelta;
 }
}

NOTE: When implementing these methods, make sure that any methods that use the –group:

method are implemented after it, otherwise the compiler will complain. Another way to solve this

problem is to simply define –(void)group(NSArray *)hotspots; in your header file.

This method will check to see if the user has zoomed in or out, and if so, re-group the

annotations accordingly. Now you just need to make one change to your –viewDidLoad

method. You can remove the following line, as its function will be performed by your

group: method.

[self.mapViewUserMap addAnnotations:self.places];

You actually should not need to call [self group:self.places]; at the end of your

viewDidLoad method, because when the map is first displayed, your delegate method -
mapView: regionDidChangeAnimated: will be called, and will do the initial grouping

automatically.

Upon running the app now, you should see your map populated with significantly fewer

annotations, with a somewhat regular distance in between them, as in Figure 5–26.

Upon zooming in or out, you can see annotations appear or disappear respectively as

the map changes.

http://

CHAPTER 5: Map Kit Recipes 199

Figure 5–26. Grouped annotations by location

Now that you have successfully grouped your annotations, you may choose to animate

your pins as they are added to drop down, so that your ungrouping transition looks

smoother. This can be done with a simple “startPin.animatesDrop = YES;” in your

viewForAnnotation: method, directly after the “startPin.canShowCallout = YES;” line.

While your annotations are correctly grouping at this point, you have a new issue, in that

you cannot easily tell whether a single annotation is standing on its own, or if it is

encapsulating multiple hotspots. In order to correct this, you will add in functionality to

allow hotspots to keep track of the number of other hotspots they represent.

First, you will need to go to your Hotspot class, and add in an NSMutableArray property,

“places”. You will also add a few method definitions that you will use shortly to help

manage this array. The following lines need to be added to “Hotspot.h”.

@property (nonatomic, strong) NSMutableArray *places;
-(void)addPlace:(Hotspot *)hotspot;
-(int)placesCount;

http://

CHAPTER 5: Map Kit Recipes 200

Not only do you need to implement these methods, but you also need to change your –
initWithCoordinate: method in order to ensure that your places array is correctly

created. You will also have to implement your own version of your title property’s

getter, so that the callout title will show the number of hotspots represented. Your

implementation file now looks like so:

#import "Hotspot.h"
@implementation Hotspot
@synthesize coordinate, title, subtitle;
@synthesize places;
-(id)initWithCoordinate:(CLLocationCoordinate2D) c
{
 self=[super init];
 if(self){
 coordinate = c;
 self.places = [[NSMutableArray alloc] initWithCapacity:0];
 }
 return self;
}
-(NSString *)title
{
 if ([self placesCount] == 1)
 {
 return title;
 }
 else
 return [NSString stringWithFormat:@"%i Places", [self.places count]];
}
-(void)addPlace:(Hotspot *)hotspot
{
 [self.places addObject:hotspot];
}
-(int)placesCount{
 return [self.places count];
}
-(void)cleanPlaces{
 [self.places removeAllObjects];
 [self.places addObject:self];
}
@end

The foregoing -placesCount method is not necessary; it just makes accessing the

number of places represented by a single hotspot slightly easier. Your -cleanPlaces

method will be used simply to reset the places array whenever you re-group your

annotations. All you have to do now is make sure your -group: method correctly calls -
cleanPlaces by adding the following two lines in their appropriate places, which you will

see in the full method implementation that follows.

[hotspots makeObjectsPerformSelector:@selector(cleanPlaces)];
[tempHotspot addPlace:current];

Your full -group: method should now look like so:

-(void)group:(NSArray *)hotspots{
 float latDelta=self.mapViewUserMap.region.span.latitudeDelta/scaleLat;
 float longDelta=self.mapViewUserMap.region.span.longitudeDelta/scaleLong;

http://

CHAPTER 5: Map Kit Recipes 201

 //New lines:
 [hotspots makeObjectsPerformSelector:@selector(cleanPlaces)];
 //End of new lines.
 NSMutableArray *visibleHotspots=[[NSMutableArray alloc] initWithCapacity:0];

 for (Hotspot *current in hotspots) {
 CLLocationDegrees lat = current.coordinate.latitude;
 CLLocationDegrees longi = current.coordinate.longitude;
 bool found=FALSE;
 for (Hotspot *tempHotspot in visibleHotspots) {
 if(fabs(tempHotspot.coordinate.latitude-lat) < latDelta &&
fabs(tempHotspot.coordinate.longitude-longi)<longDelta){
 [self.mapViewUserMap removeAnnotation:current];
 found=TRUE;
 //New lines:
 [tempHotspot addPlace:current];
 //End of new lines.
 break;
 }
 }
 if (!found) {
 [visibleHotspots addObject:current];
 [self.mapViewUserMap addAnnotation:current];
 }
 }
}

Now you have a fairly easy way to determine whether any given hotspot is representing

any other hotspots, but only by selecting that specific hotspot. It would be much better

if you could easily see which hotspots are groups, and which are individuals. To do this,

you will give each hotspot a pointer to its own MKPinAnnotationView. From there, you

can control which color they are based on the number of places they represent.

First, you will add the following property to your hotspot file. Don’t forget to @synthesize

it in the .m file!

@property (nonatomic, strong) MKPinAnnotationView *annotationView;

Next you need to tell your map’s delegate how to display the pins correctly, as shown in

the new version of your -viewForAnnotation: method here.

- (MKAnnotationView *)mapView:(MKMapView *)mV viewForAnnotation:(id
<MKAnnotation>)annotation{

 // if it's the user location, just return nil.
 if ([annotation isKindOfClass:[MKUserLocation class]]){
 return nil;
 }
 else{
 static NSString *StartPinIdentifier = @"PinIdentifier";
 MKPinAnnotationView *startPin = (id)[mV
dequeueReusableAnnotationViewWithIdentifier:StartPinIdentifier];
 if (startPin == nil) {
 startPin = [[MKPinAnnotationView alloc] initWithAnnotation:annotation
reuseIdentifier:StartPinIdentifier];
 }
 startPin.canShowCallout = YES;

http://

CHAPTER 5: Map Kit Recipes 202

 startPin.animatesDrop = YES;
 //NEW CODE
 Hotspot *place = annotation;
 place.annotationView = startPin;
 if ([place placesCount] > 1)
 {
 startPin.pinColor = MKPinAnnotationColorGreen;
 }
 else if ([place placesCount] == 1)
 {
 startPin.pinColor = MKPinAnnotationColorRed;
 }
 //END OF NEW CODE
 return startPin;
 }
}

This will make all of your annotations correctly appear as either green or red, depending

on whether they are groups or individualized. However, if you zoom in on a specific

green annotation, it will not correctly change color as it goes from a group to an

individual. As your final step, to correct this, you will add code to our -
mapView:regionDidChangeAnimated: to change the pin color based on the number of

places represented, as shown here.

-(void)mapView:(MKMapView *)mapView regionDidChangeAnimated:(BOOL)animated{
 if (zoom!=mapView.region.span.longitudeDelta) {
 [self group:places];
 zoom=mapView.region.span.longitudeDelta;
 //NEW CODE
 NSSet *visibleAnnotations = [mapView
annotationsInMapRect:mapView.visibleMapRect];
 for (Hotspot *place in visibleAnnotations)
 {
 if ([place placesCount] > 1)
 place.annotationView.pinColor = MKPinAnnotationColorGreen;
 else
 place.annotationView.pinColor = MKPinAnnotationColorRed;
 }
 //END OF NEW CODE
 }
}

Now, any pins that represent groups of hotspots will be green, while individual ones will

be red, as demonstrated in Figure 5–27.

http://

CHAPTER 5: Map Kit Recipes 203

Figure 5–27. Grouped annotations with number-specific colors

Summary
The Map Kit framework is probably one of the most popularly used frameworks, purely

for its powerful yet incredibly flexible ability to provide a fully customizable yet simplistic

map interface. In this chapter, you have discussed the major capabilities of Map Kit,

from locating the user, to adding annotations and overlays, to even the important issue

of annotation grouping. However, you have only scratched the surface of the capabilities

of Map Kit, especially in the areas of map-based problem solving. A quick look at the

Map Kit documentation reveals the various other commands, methods, and properties

you did not cover, which range from isolating particular sections of a map to entirely

customizing how touch events are handled by the map. The effectiveness of these

countless capabilities is limited only by the developer’s imagination.

http://

205

 Chapter

Camera Recipes

There are a great number of mobile applications that make use of interaction with the

device’s camera, including such tasks as taking images, recording videos, and providing

overlay, such as with augmented-reality applications. iOS developers have a great deal

of control in how they can interact with any given device’s hardware. In this chapter, you

will go over multiple ways to access and use these functionalities, from simple, pre-

defined interfaces to incredibly flexible, custom implementations.

NOTE: The iOS simulator does not support camera hardware. In order to test most recipes in this

chapter, they must be run on a physical device.

Recipe 6–1: Taking Pictures
iOS has an incredibly handy and simple interface built into it to utilize your device’s

camera through fairly standard, pre-defined settings. Through these, you can set up

basic camera-focused apps, allowing users to take pictures and video from inside an

app. Here, you will go over the basics of starting the camera interface in order to capture

a still image.

You will again start by creating a new project using the Single View Application

template, as shown in Figure 6–1.

6

http://

CHAPTER 6: Camera Recipes 206

Figure 6–1. Creating a single view application

You will name your project “Chapter6Recipe1”. Set the Class Prefix to Capture, as

shown in Figure 6–2, and, if your version of Xcode includes it, make sure that Use

Automatic Reference Counting is enabled.

Figure 6–2. Specifying your project settings

http://

CHAPTER 6: Camera Recipes 207

Click Next and then Create to start the project.

In order to access your camera in the pre-defined way that you will be using, you do not

need to import any extra frameworks into your project, so you will proceed to build your

user interface.

You will be making a simple project that will allow you to pull up your camera, take a

picture, and then display the most recently taken image on your screen.

First, you need to switch over to your view controller’s .xib file, which, if you used all the

same names as shown in Figure 6–3, will be called CaptureViewController.xib. From

the object library on the right-hand side of the screen, click and drag out a UIImageView

into your view, and rearrange it to fill the entire view. Next, you will drag out a UIButton

into your view, which will be used to access the camera, so you will set its text to say

“Change Image” by double-clicking the button’s text.

Figure 6–3. CaptureViewController’s user interface

Next, make sure that you are in Assistant Editor mode by selecting the middle “editing”

button in the top right area of your screen, as shown in Figure 6–4. This will allow you to

view both your interface file and your header file at the same time and work across them

synchronously.

Figure 6–4. Selecting the Assistant Editor

http://

CHAPTER 6: Camera Recipes 208

Once in the Assistant Editor mode, create an outlet for your UIImageView called

“imageViewRecent”. Repeat this process for your UIButton, naming it “cameraButton”.

Figure 6–5 shows the resulting window of these operations.

Figure 6–5. Completed user interface with connected outlets and actions

Before you leave this setup, you will declare an action for your button to perform when it

is pressed, called -cameraButtonPressed:, by adding a method declaration to your

header file, and then connecting your UIButton to it by holding ! (Ctrl), clicking the

button, dragging a blue line up to the method name in the header file, and releasing it.

When you do this, the method declaration should become highlighted, and a small

message box will display saying “Connect Action”. Your method declaration will look

like so:

- (IBAction)cameraButtonPressed:(id)sender;

Now that your interface file is put together, you can switch over to view your

CaptureViewController.m file.

The first thing you will do for simple aesthetics’ sake is to change the background color

of your UIImageView to gray so that it is easier to distinguish from your UIButton when

there is no image set as the background. To do this, place the following line of code into

the -viewDidLoad method.

self.imageViewRecent.backgroundColor = [UIColor lightGrayColor];

Next, you will be handling what your app will do when your Change Image button is

pressed. Since your button is already hooked up to perform your -

http://

CHAPTER 6: Camera Recipes 209

cameraButtonPressed: method, all you need to do is implement this method. You will be

using an instance of the UIImagePickerController class to access your camera.

Whenever dealing with the camera hardware on iOS, it is essential that, as a developer,

you include a function to have your app check for hardware availability. This is done

through the static UIImagePickerController method +isSourceTypeAvailable:, which

takes several pre-defined constants as arguments. The options for this method are as

follows:

UIImagePickerControllerSourceTypeCamera
UIImagePickerControllerSourceTypePhotoLibrary
UIImagePickerControllerSourceTypeSavedPhotosAlbum

You will be using the first choice here, UIImagePickerControllerSourceTypeCamera.

UIImagePickerControllerPhotoLibrary is used to access all the stored photos on the

device, while UIImagePickerControllerSavedPhotosAlbum is used to access only the

Camera Roll album.

For your application, you will check if the Camera source type is available, and if not,

display a UIAlertView saying so, by using the following code in your -viewDidLoad

method.

if ([UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera] == NO)
 {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Error"
message:@"Camera Unavailable" delegate:self cancelButtonTitle:@"Cancel"
otherButtonTitles:nil, nil];
 [alert show];
 return;
 }

If you are running this application in the simulator, you will notice that this condition

always evaluates to true, resulting in your error message, as demonstrated in Figure 6–6.

As mentioned earlier, the simulator has no camera functionality, so in order to fully test

this application, you will need to test it on a physical device.

http://

CHAPTER 6: Camera Recipes 210

Figure 6–6. Simulation of your app, which does not support camera use

Now you can handle the case that you actually hope for, in which the Camera is

available. First, you will create an instance of UIImagePickerController, naming it

imagePicker.

 UIImagePickerController *imagePicker = [[UIImagePickerController alloc] init];

Next, you will set the delegate and source type of imagePicker to be your view controller

and UIImagePickerControllerSourceTypeCamera, respectively.

imagePicker.delegate = self;
 imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;

Finally, you will present your UIImagePickerController modally.

[self presentModalViewController:imagePicker animated:YES];

In its entirety, your method to handle your button presses should now look like so:

-(IBAction)cameraButtonPressed:(id)sender
{

http://

CHAPTER 6: Camera Recipes 211

 if ([UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera] == NO)
 {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Error"
message:@"Camera Unavailable" delegate:self cancelButtonTitle:@"Cancel"
otherButtonTitles:nil, nil];
 [alert show];
 return;
 }
 UIImagePickerController *imagePicker = [[UIImagePickerController alloc] init];
 imagePicker.delegate = self;
 imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;
 [self presentModalViewController:imagePicker animated:YES];
}

By setting up your view controller as the delegate for your UIImagePickerController,

you are required to ensure that your view controller conforms to a couple of protocols,

specifically the UIImagePickerController and UINavigationController protocols. You

will add these to your class’s header file, so that it now looks like so:

#import <UIKit/UIKit.h>
@interface CaptureViewController : UIViewController <UIImagePickerControllerDelegate,
UINavigationControllerDelegate>
{
 UIImageView *imageViewRecent;
 UIButton *cameraButton;
}

@property (strong, nonatomic) IBOutlet UIImageView *imageViewRecent;
@property (strong, nonatomic) IBOutlet UIButton *cameraButton;
-(IBAction)cameraButtonPressed:(id)sender;
@end

Now that you have set up your view controller to successfully present your

UIImagePickerController, you need to handle how your view controller reacts to the

completion of the UIImagePickerController’s selection, when a picture has been taken

and selected for use. You will do this through the use of the delegate method -
imagePickerController:didFinishPickingMediaWithInfo:. This method gives the

delegate an instance of NSDictionary called info, with keys referring to the selected

media.

First, you create an instance of UIImage to point to the selected image.

UIImage *originalImage = (UIImage *) [info
objectForKey:UIImagePickerControllerOriginalImage];

Next you will save this image to your device’s album, so that the picture is usable

outside of this app. Alternatively, if you did not want your app to save several pictures as

you use it for testing, you could comment out this line:

UIImageWriteToSavedPhotosAlbum (originalImage, nil, nil , nil);

Now you set your UIImageView’s image to be the chosen image, and also change the

content mode of the UIImageView.

self.imageViewRecent.image = originalImage;
self.imageViewRecent.contentMode = UIViewContentModeScaleAspectFill;

http://

CHAPTER 6: Camera Recipes 212

NOTE: The UIImagePickerController class does not support landscape orientation for

taking pictures. You compensate for this by changing the contentMode of your UIImageView

to UIViewContentModeScaleAspectFill so that your image fills the screen. Alternatively,

UIViewContentModeScaleAspectFit could also be used to fit the entire landscape image on

the screen, though it will not fill the view.

Finally, you will dismiss your UIImagePickerController.

[self dismissModalViewControllerAnimated:YES];

As a whole, your delegate method’s implementation will look like so:

- (void) imagePickerController: (UIImagePickerController *) picker
 didFinishPickingMediaWithInfo: (NSDictionary *) info
{
 UIImage *originalImage = (UIImage *) [info objectForKey:
 UIImagePickerControllerOriginalImage];
 UIImageWriteToSavedPhotosAlbum (originalImage, nil, nil , nil);
 self.imageViewRecent.image = originalImage;
 self.imageViewRecent.contentMode = UIViewContentModeScaleAspectFill;
 [self dismissModalViewControllerAnimated:YES];
}

You will also implement another UIImagePickerController delegate method to handle

the cancellation of an image selection:

- (void) imagePickerControllerDidCancel: (UIImagePickerController *) picker
{
 [self dismissModalViewControllerAnimated:YES];
}

As an optional setting, you could also allow your camera interface to be editable,

allowing the user to crop and frame the picture she or he has taken. In order to do this,

you simply have to set the UIImagePickerController’s allowsEditing property to “YES”,

and, in order to acquire this edited image, you would replace the first three lines of code

in your previous -imagePickerController:didFinishPickingMediaWithInfo: method

with the following lines:

UIImage *editedImage = (UIImage *)[info
objectForKey:UIImagePickerControllerEditedImage];
UIImageWriteToSavedPhotosAlbum (editedImage, nil, nil , nil);
self.imageViewRecent.image = editedImage;

Assuming that you are able to run this app on a physical device, your app should now

be able to correctly access the device’s camera, select a picture, and set it as a

background, as shown in Figure 6–7.

http://

CHAPTER 6: Camera Recipes 213

Figure 6–7. Your app with a photo set as the background

Recipe 6–2: Recording Video
Your UIImagePickerController is actually significantly more flexible in its use than how

you’ve been using it so far, especially since you’ve been using it almost exclusively for

still images. Here, you’ll go through how to set up your UIImagePickerController to

handle both still images and video as well.

For this recipe, you will be building off of the code that you have already set up in the

previous recipe, as it already includes the entire setup that you need. Your app will have

the added functionality of being able to record and save videos.

First, you need to edit the properties of your UIImagePickerController to specify the

allowable media types, through the use of the UIImagePickerController class method

+availableMediaTypesForSourceType:, so that your -cameraButtonPressed: will now

look like so:

-(IBAction)cameraButtonPressed:(id)sender
{
 if ([UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera] == NO)
 {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Error"
message:@"Camera Unavailable" delegate:self cancelButtonTitle:@"Cancel"
otherButtonTitles:nil, nil];
 [alert show];
 return;

http://

CHAPTER 6: Camera Recipes 214

 }
 UIImagePickerController *imagePicker = [[UIImagePickerController alloc] init];
 imagePicker.delegate = self;
 imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;
 imagePicker.mediaTypes = [UIImagePickerController
availableMediaTypesForSourceType:UIImagePickerControllerSourceTypeCamera];
 [self presentModalViewController:imagePicker animated:YES];
}

Next, you need to instruct your application on how to handle when a user records and

uses a video. You will add the following code to your UIImagePickerController’s

delegate method:

NSString *mediaType = [info objectForKey: UIImagePickerControllerMediaType];

 if (CFStringCompare ((__bridge CFStringRef) mediaType, kUTTypeMovie, 0)
 == kCFCompareEqualTo) {

 NSString *moviePath = [[info objectForKey: UIImagePickerControllerMediaURL]
path];

 if (UIVideoAtPathIsCompatibleWithSavedPhotosAlbum (moviePath))
 {
 UISaveVideoAtPathToSavedPhotosAlbum (moviePath, nil, nil, nil);
 }
 }

The first thing you will probably notice is that there is an error focused on kUTTypeMovie,

saying that it is undefined. In order to fix this, you need to import the Mobile Core

Services framework into your project, and then add the following import statement to

the header of your view controller. The beginning of Recipe 6–4 contains a detailed

demonstration of how to add a framework to a project if you are unfamiliar with this

process.

#import <MobileCoreServices/MobileCoreServices.h>

Essentially, all you are doing here is comparing the media type of the saved file. Your

main issue comes into play when you attempt to compare mediaType, an NSString, with

kUTTypeMovie, which is of type CFStringRef. You accomplish this by casting your

NSString down to a CFStringRef. iOS 5 has made this process slightly more

complicated with the introduction of Automatic Reference Counting (ARC), because

ARC deals with Objective-C object types such as NSString, but not with C types like

CFStringRef. You create a bridged casting by placing “__bridge” before your

CFStringRef, as shown earlier, in order to instruct ARC to no longer deal with this object.

If all has gone well, your app should now be able to record video!

Recipe 6–3: Editing Videos
While your UIImagePickerController offers an extremely convenient way to record and

save video files, it does nothing to allow you to edit them. Luckily, iOS has another built-

in controller called UIVideoEditorController, which you will use to allow your recorded

videos to be edited.

http://

CHAPTER 6: Camera Recipes 215

You will build this fairly simple recipe off of your second project, in which you added

video functionality to your UIImagePickerController.

First, you will make a second button in your view controller’s interface file, giving it the

title “Edit Video”, and the name editButton. You will also hook it up to an action, -
editButtonPressed:, as shown in Figure 6–8.

Figure 6–8. New user interface with editing button

Next, you define an NSString property to store the path to your most recently

selected/edited video, as shown on the right in Figure 6–8, keeping care to @synthesize

it and then setting it to “nil” in -viewDidUnload:

@property (nonatomic, strong) NSString *recentMovie;

You will need to add to your UIImagePickerController’s delegate method a statement

to store your recently created video’s path by adding the following line:

 self.recentMovie = moviePath;

Your delegate method now looks like so:

- (void) imagePickerController: (UIImagePickerController *) picker
 didFinishPickingMediaWithInfo: (NSDictionary *) info
{
 NSString *mediaType = [info objectForKey: UIImagePickerControllerMediaType];

 if (CFStringCompare ((__bridge CFStringRef) mediaType, kUTTypeMovie, 0)
 == kCFCompareEqualTo) {

http://

CHAPTER 6: Camera Recipes 216

 NSString *moviePath = [[info objectForKey: UIImagePickerControllerMediaURL]
path];
 self.recentMovie = moviePath;

 if (UIVideoAtPathIsCompatibleWithSavedPhotosAlbum (moviePath))
 {
 UISaveVideoAtPathToSavedPhotosAlbum (moviePath, nil, nil, nil);
 }
 }

 else
 {
 UIImage *originalImage = (UIImage *) [info objectForKey:
 UIImagePickerControllerOriginalImage];

 UIImageWriteToSavedPhotosAlbum (originalImage, nil, nil , nil);
 self.imageViewRecent.image = originalImage;
 }
 [self dismissModalViewControllerAnimated:YES];
}

You will implement your -editButtonPressed: action now in order to display a video to

be edited if one exists, or to otherwise display an alert view telling you of your user’s

error.

-(void)editButtonPressed:(id)sender
{
 if (self.recentMovie)
 {
 UIVideoEditorController *editor = [[UIVideoEditorController alloc] init];
 editor.videoPath = self.recentMovie;
 editor.delegate = self;
 [self presentModalViewController:editor animated:YES];
 }
 else
 {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Error" message:@"No
Video Recorded Yet" delegate:self cancelButtonTitle:@"Cancel" otherButtonTitles:nil,
nil];
 [alert show]; }
}

Keep in mind that at this point you will need to make sure your view controller is listed

as conforming to the UIVideoEditorControllerDelegate and

UINavigationControllerDelegate protocols in your header file.

Finally, you only need to implement a few delegate methods for your

UIVideoEditorController. First, here is a delegate method to handle a successful

editing/trimming of the video:

-(void)videoEditorController:(UIVideoEditorController *)editor
didSaveEditedVideoToPath:(NSString *)editedVideoPath
{
 self.recentMovie = editedVideoPath;
 if (UIVideoAtPathIsCompatibleWithSavedPhotosAlbum (editedVideoPath))
 {
 UISaveVideoAtPathToSavedPhotosAlbum (editedVideoPath, nil, nil, nil);

http://

CHAPTER 6: Camera Recipes 217

 }
 [self dismissModalViewControllerAnimated:YES];
}

As you can see, your application will set the newly edited video as your next video to be

edited, so that you can create increasingly trimmed clips. It will also save each edited

version to your photo album as well if possible.

Lastly, you need one more delegate method to handle the cancellation of your

UIVideoEditorController.

-(void)videoEditorControllerDidCancel:(UIVideoEditorController *)editor
{
 [self dismissModalViewControllerAnimated:YES];
}

Upon testing on a physical device, your application should now successfully allow you

to edit your videos! Figure 6–9 shows a view of your application giving you the option to

edit a recorded video.

Figure 6–9. View seen while recording video

Recipe 6–4: Custom Camera Overlays
There are quite a variety of applications that implement the camera interface, but also

implement a custom overlay, such as for displaying constellations on the sky, or simply

implementing their own custom camera controls. Here, you will learn to do a basic

http://

CHAPTER 6: Camera Recipes 218

implementation of a custom overlay over your camera’s screen, continuing from your

previous recipe’s project.

You need to build your custom UIView to be used as a custom overlay

programmatically, meaning you will not be using a XIB interface. You will be adjusting

certain specific properties of the buttons that you put in, so the first thing you need to do

is import the QuartzCore interface into your project, which means adding an import

statement into your header file.

#import <QuartzCore/QuartzCore.h>

You will create a method, -customView:, that will take your UIImagePicker as an

argument and return your UIView.

-(UIView *)customView:(UIImagePickerController *)imagePicker;
{
 UIView *view = [[UIView alloc] initWithFrame:CGRectMake(0, 0, 280, 480)];
 view.backgroundColor = [UIColor clearColor];

 UIButton *flashButton = [[UIButton alloc] initWithFrame:CGRectMake(10, 10, 120,
44)];
 flashButton.backgroundColor = [UIColor colorWithRed:.5 green:.5 blue:.5 alpha:.5];
 [flashButton setTitle:@"Flash Auto" forState:UIControlStateNormal];
 [flashButton setTitleColor:[UIColor whiteColor] forState:UIControlStateNormal];
 flashButton.layer.cornerRadius = 10.0;

 UIButton *changeCameraButton = [[UIButton alloc] initWithFrame:CGRectMake(190, 10,
120, 44)];
 changeCameraButton.backgroundColor = [UIColor colorWithRed:.5 green:.5 blue:.5
alpha:.5];
 [changeCameraButton setTitle:@"Rear Camera" forState:UIControlStateNormal];
 [changeCameraButton setTitleColor:[UIColor whiteColor]
forState:UIControlStateNormal];
 changeCameraButton.layer.cornerRadius = 10.0;

 UIButton *takePictureButton = [[UIButton alloc] initWithFrame:CGRectMake(100, 432,
120, 44)];
 takePictureButton.backgroundColor = [UIColor colorWithRed:.5 green:.5 blue:.5
alpha:.5];
 [takePictureButton setTitle:@"Click!" forState:UIControlStateNormal];
 [takePictureButton setTitleColor:[UIColor whiteColor]
forState:UIControlStateNormal];
 takePictureButton.layer.cornerRadius = 10.0;

 [flashButton addTarget:self action:@selector(toggleFlash:)
forControlEvents:UIControlEventTouchUpInside];
 [changeCameraButton addTarget:self action:@selector(toggleCamera:)
forControlEvents:UIControlEventTouchUpInside];
 [takePictureButton addTarget:imagePicker action:@selector(takePicture)
forControlEvents:UIControlEventTouchUpInside];

 [view addSubview:flashButton];
 [view addSubview:changeCameraButton];
 [view addSubview:takePictureButton];

 return view;
}

http://

CHAPTER 6: Camera Recipes 219

Here, you have defined your UIView as well as your buttons to be put in it, given them

their actions to perform, and added them into the view. You set the title of each button

to be either its starting value or its purpose. You also set your cornerRadius so that your

buttons will have rounded corners. One of the most important details here is that you set

your buttons to be semi-transparent, as they will be placed over your camera’s display.

You do not want to cover up any of your picture, so they have to be at least partially

see-through.

Now you need to simply implement your two toggling methods, -toggleCamera: and -
toggleFlash:. You will need a few extra instance variables in your class to deal with

these properly, including two BOOLs to keep track of your settings, as well as a pointer

to a UIImagePickerController to pass around your camera interface. Your view

controller’s header file should now look like so:

#import <UIKit/UIKit.h>
#import <MobileCoreServices/MobileCoreServices.h>
#import <QuartzCore/QuartzCore.h> //Need this!

@interface CaptureViewController : UIViewController <UIImagePickerControllerDelegate,
UINavigationControllerDelegate>
{
 UIImageView *imageViewRecent;
 UIButton *cameraButton;
 UIImagePickerController *currentPicker;
 BOOL flashOn;
 BOOL frontCameraUsed;
}

@property (strong, nonatomic) IBOutlet UIImageView *imageViewRecent;
@property (strong, nonatomic) IBOutlet UIButton *cameraButton;

-(IBAction)cameraButtonPressed:(id)sender;
@end

Next, add the following line to -cameraButtonPressed: after imagePicker is created.

currentPicker = imagePicker;

Also add the following line to the camera’s -
imagePickerController:didFinishPickingMediaWithInfo: delegate method in order to

“release” your currentPicker’s value. This can go at the very end of the method, after

the view controller has been dismissed.

currentPicker = nil;

Now you can successfully define your -toggleFlash: and -toggleCamera: methods like

so:

-(void)toggleFlash:(UIButton *)sender
{
 if (flashOn)
 {
 currentPicker.cameraFlashMode = UIImagePickerControllerCameraFlashModeOff;
 flashOn = NO;
 [sender setTitle:@"Flash Off" forState:UIControlStateNormal];
 }

http://

CHAPTER 6: Camera Recipes 220

 else
 {
 currentPicker.cameraFlashMode = UIImagePickerControllerCameraFlashModeOn;
 flashOn = YES;
 [sender setTitle:@"Flash On" forState:UIControlStateNormal];
 }
}
-(void)toggleCamera:(UIButton *)sender
{
 if (frontCameraUsed)
 {
 currentPicker.cameraDevice = UIImagePickerControllerCameraDeviceRear;
 frontCameraUsed = NO;
 [sender setTitle:@"Rear Camera" forState:UIControlStateNormal];
 }
 else
 {
 currentPicker.cameraDevice = UIImagePickerControllerCameraDeviceFront;
 frontCameraUsed = YES;
 [sender setTitle:@"Front Camera" forState:UIControlStateNormal];
 }
}

Finally, you simply need to change the visibility of the camera controls by adding two

more lines to your -cameraButtonPressed: method, just before your controller is

presented.

imagePicker.showsCameraControls = NO;
imagePicker.cameraOverlayView = [self customView:imagePicker];

Your camera should now have a wonderful little overlay with a couple of buttons that

change how it works, as in Figure 6–10. You can see that from here, you can create your

own custom overlays and easily change their functions to fit nearly any situation.

http://

CHAPTER 6: Camera Recipes 221

Figure 6–10. Custom overlay view over a camera

Recipe 6–5: AV Framework and Capture Sessions
While the UIImagePickerController and UIVideoEditorController interfaces are

incredibly useful, they certainly aren’t as customizable as they could be. Using the AV

framework, you can create an immensely more customizable camera interface. Here,

you will be creating essentially your own version of the camera, but in such a way that

further customization is incredibly easy, by using a different method known as an

AVCaptureSession.

First, you will create a new project, called “Chapter6Recipe5”, using a class prefix of

“CustomCamera”.

You will need a variety of different frameworks linked to your project. Navigate to the

project’s main settings, select CustomCamera under Targets, and then flip over to the

Build Phases tab, resembling Figure 6–11.

http://

CHAPTER 6: Camera Recipes 222

Figure 6–11. Preparing to add frameworks to your project

Under Link Binary With Libraries, you will use the + button to add several other

frameworks. Search for and add the following frameworks:

 AV Foundation

 Core Graphics

 Core Video

 Core Media

You will actually not need to type any import statements for any of these except for the

AV Foundation one. Go ahead and add the following import lines to the header file of

your main view controller.

#import <AVFoundation/AVFoundation.h>
#import <AVFoundation/AVCaptureInput.h>

Next, you’ll switch over to your view controller’s .xib file to do a bit of quick setup.

Here, all you need to do is drag a UIButton over to your view, and then connect it to

your header file, naming it startButton. You need to make an action for this button to

perform, so you will declare the following method header, and connect your startButton

to it.

-(IBAction)startPressed:(id)sender;

Once these changes have been made, your user interface and code should resemble

Figure 6–12 in the Assistant Editor.

http://

CHAPTER 6: Camera Recipes 223

Figure 6–12. User interface with configured outlet and action

Next, switching away from your XIB/header file combination to view the header and

implementation files, you will define a new kind of property for your view controller, like

so.

@property (strong, nonatomic) AVCaptureSession *captureSession;

You must, as always, remember to “@synthesize captureSession;” and do

“self.captureSession = nil” in your implementation file and -viewDidUnload respectively.

Next, you will be writing your -viewDidLoad method to prepare your view, create your

AVCaptureSession, and set it up as you desire. You will add the following sets of lines to

your method after the call [super viewDidLoad];.

First, you must create your AVCaptureSession, and give it a resolution preset, like so:

self.captureSession = [[AVCaptureSession alloc] init];
self.captureSession.sessionPreset = AVCaptureSessionPresetMedium;

Next, you will create an instance of AVCaptureDevice, with which you will specify your

input device, which in this case will be the device’s rear camera (assuming one is

accessible). You specify this through the use of the AVCaptureDevice class method

+defaultDeviceWithMediaType:, which can take a variety of different arguments,

depending on the type of media desired, the most prominent of which are

AVMediaTypeVideo and AVMediaTypeAudio.

AVCaptureDevice *device = [AVCaptureDevice defaultDeviceWithMediaType:AVMediaTypeVideo];

http://

CHAPTER 6: Camera Recipes 224

Next, you need to create an instance of AVCaptureDeviceInput in order to specify your

chosen device as an input for your capture session. You will also include a check to

make sure the input has been correctly created before adding it to your session.

NSError *error = nil;
 AVCaptureDeviceInput *input = [AVCaptureDeviceInput deviceInputWithDevice:device
error:&error];
 if (!input)
 {
 NSLog(@"Input Error");
 }
 else
 {
 [self.captureSession addInput:input];
 }

Next, you will set up an output for your capture session, like so:

AVCaptureVideoDataOutput *output = [[AVCaptureVideoDataOutput alloc] init];
 [self.captureSession addOutput:output];
 output.videoSettings =
 [NSDictionary dictionaryWithObject:[NSNumber
numberWithInt:kCVPixelFormatType_32BGRA]
 forKey:(id)kCVPixelBufferPixelFormatTypeKey];

 dispatch_queue_t queue = dispatch_queue_create("MyQueue", NULL);
 [output setSampleBufferDelegate:self queue:queue];
 dispatch_release(queue);

Here, you have created an AVCaptureVideoDataOutput, which is commonly used when a

developer’s goal is to deal with raw video input frame-by-frame, as opposed to simply

saving a video as a whole. Other types of AVCaptureOutputs include the following:

 AVCaptureMovieFileOutput: Used for saving whole video files

 AVCaptureAudioDataOutput: Used for processing audio data

 AVCaptureStillImageOutput: Used for extracting specific still images

from a session (This type of output could also be used to perform your

current goal.)

You have also dispatched an extra queue to handle the processing of your frames that

you will end up seeing later.

The last part of your -viewDidLoad will be the creation of an

AVCaptureVideoPreviewLayer, with which you will be able to see exactly what your

camera is viewing in the app. You will set your preview layer to be the layer of your main

view, but with a slightly altered height, so as not to block your button from being visible.

AVCaptureVideoPreviewLayer *previewLayer = [AVCaptureVideoPreviewLayer
layerWithSession:self.captureSession];
 UIView *aView = self.view;
 previewLayer.frame = CGRectMake(0, 0, self.view.frame.size.width,
self.view.frame.size.height-70);
 [aView.layer addSublayer:previewLayer];

http://

CHAPTER 6: Camera Recipes 225

A Note on AVCaptureVideoPreviewLayer

The most significant part of the concept of an AVCaptureVideoPreviewLayer is not its

visual output, but instead its power to be manipulated. Just like any other CALayer, it can

be repositioned, rotated, and resized. At this point, you are no longer bound to using the

entire screen to record video as you are with the UIImagePicker, meaning you could

have your preview layer in one part of the screen and other information for the user in

another. As with almost every part of iOS development, the possibilities of use are

limited only by the developer’s imagination.

Since you set your current view controller as the delegate for your

AVCaptureVideoDataOutput, you will need to implement the

AVCaptureVideoDataOutputSampleBufferDelegate protocol. Your header file should now

look like so:

#import <UIKit/UIKit.h>
#import <AVFoundation/AVFoundation.h>
#import <AVFoundation/AVCaptureInput.h>

@interface CustomCameraViewController : UIViewController
<AVCaptureVideoDataOutputSampleBufferDelegate>{
 UIImageView *imageViewDisplay;
 UIButton *startButton;
 BOOL capture;
}

@property (strong, nonatomic) IBOutlet UIButton *startButton;
@property (strong, nonatomic) AVCaptureSession *captureSession;
-(IBAction)startPressed:(id)sender;
@end

Make sure to note the new addition also of the BOOL instance variable capture. You will

be using this to keep track of whether your session’s frames will be processed.

Next, you will implement your AVCaptureVideoDataOutputSampleBuffer’s delegate

method, like so:

- (void)captureOutput:(AVCaptureOutput *)captureOutput
didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer
 fromConnection:(AVCaptureConnection *)connection {

 if (capture)
 {
 UIImage *chosenImage = [self imageFromSampleBuffer:sampleBuffer];
 UIImageWriteToSavedPhotosAlbum (chosenImage, nil, nil , nil);
 capture = NO;
 }
}

As you can see, you are simply checking if your capture BOOL evaluates to a “YES”,

and if so, you acquire the image of the given video frame, and then save it to your

device’s photo album. By setting capture to “NO” immediately afterward, you limit your

http://

CHAPTER 6: Camera Recipes 226

app to capture only one frame per button press. It should be fairly easy to see how this

could be expanded to include any number of frames.

You must also define your -imageFromSampleBuffer: that you just used, as follows,

making sure that it is defined above your delegate method.

- (UIImage *) imageFromSampleBuffer:(CMSampleBufferRef) sampleBuffer
{
 // Get a CMSampleBuffer's Core Video image buffer for the media data
 CVImageBufferRef imageBuffer = CMSampleBufferGetImageBuffer(sampleBuffer);
 // Lock the base address of the pixel buffer
 CVPixelBufferLockBaseAddress(imageBuffer, 0);

 // Get the number of bytes per row for the pixel buffer
 void *baseAddress = CVPixelBufferGetBaseAddress(imageBuffer);

 // Get the number of bytes per row for the pixel buffer
 size_t bytesPerRow = CVPixelBufferGetBytesPerRow(imageBuffer);
 // Get the pixel buffer width and height
 size_t width = CVPixelBufferGetWidth(imageBuffer);
 size_t height = CVPixelBufferGetHeight(imageBuffer);

 // Create a device-dependent RGB color space
 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

 // Create a bitmap graphics context with the sample buffer data
 CGContextRef context = CGBitmapContextCreate(baseAddress, width, height, 8,
 bytesPerRow, colorSpace,
kCGBitmapByteOrder32Little | kCGImageAlphaPremultipliedFirst);
 // Create a Quartz image from the pixel data in the bitmap graphics context
 CGImageRef quartzImage = CGBitmapContextCreateImage(context);
 // Unlock the pixel buffer
 CVPixelBufferUnlockBaseAddress(imageBuffer,0);

 // Free up the context and color space
 CGContextRelease(context);
 CGColorSpaceRelease(colorSpace);

 // Create an image object from the Quartz image
 UIImage *image = [UIImage imageWithCGImage:quartzImage];

 // Release the Quartz image
 CGImageRelease(quartzImage);

 return (image);
}

Now, you will implement a fairly simple capturing toggle method to handle your button

presses.

-(void)startPressed:(id)sender
{
 if (!capture)
 {
 capture = YES;
 }
 else

http://

CHAPTER 6: Camera Recipes 227

 {
 capture = NO;
 }
}

One of the most important steps to remember is to actually “start” and “stop” your

AVCaptureSession. Since you want your camera’s display to be visible any time the app

is open, you will start your session in your -viewWillAppear method and stop it in your -
viewWillDisappear method, the two of which will now look like so:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 [self.captureSession startRunning];
}
- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];
 [self.captureSession stopRunning];
}

If you run this app on your device now, you will probably notice that all the saved images

that you take look like they were taken in landscape mode, and then rotated to fit in

portrait, obviously not filling up the entire screen anymore. You fix this by changing the

video orientation of your session’s output connections by changing your -
viewWillAppear: method to appear like so:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 [self.captureSession startRunning];

 NSArray *array = [[self.captureSession.outputs objectAtIndex:0] connections];
 for (AVCaptureConnection *connection in array)
 {
 connection.videoOrientation = AVCaptureVideoOrientationPortrait;
 }
}

If you run the app now on your device, you will be able to see a preview of what your

camera is recording, and whenever you press the button, the current frame will be saved

to your photo library, as in Figure 6–13. While you haven’t included any fancy animations

to make it look like a camera, this is incredibly useful as far as a basic camera goes,

especially given your new ability to fully customize its behavior in a frame-by-frame case

or as a whole video (if you add a second output).

http://

CHAPTER 6: Camera Recipes 228

Figure 6–13. Your app displaying a preview of the camera’s view

Recipe 6–6: Programmatically Recording Video
Now that you have covered some of the basics of using AVFoundation, you will

implement a slightly more complicated project using it. This time, your application will be

recording full video, rather than simply capturing specific frames. You will also add an

audio input device so that your video has sound included.

First, you must make your new project, this time titled “Chapter6Recipe6”, with class

prefix “CustomVideo”.

As usual, the first thing to do is to acquire the following necessary frameworks using the

Link Binary With Libraries section in your project’s Build Phases tab.

AV Foundation: You will use this to deal with your camera and microphone.

Assets Library: This is for saving the video that you will record to your device.

In Interface Builder, add a UIButton to the bottom center of the view controller’s view,

just like in the previous recipe, giving it the default label “Record”. When you connect

this to the header file, give the UIButton the name button. Be sure to also create an

action for this button to perform called -recordPressed: (see earlier recipes on how to

do this).

http://

CHAPTER 6: Camera Recipes 229

Just like in your previous recipe, you will be building your AVCaptureSession to manage

your camera’s input and the output of your video, so you will start off by adding a few

variables, properties, and protocols to your view controller’s header file.

 First, you will need an instance variable of type BOOL called

recording, which will simply keep track of whether your video is

recording.

 Second, you need to create two properties that will be used to store

pointers to your AVCaptureSession session and your

AVCaptureMovieFileOutput output, the latter of which will be your

AVCaptureOutput device.

 Third, you need to include an import statement for the AV Foundation

framework in your header file.

 Finally, you will need to tell the compiler that your view controller

conforms to the AVCaptureFileOutputRecordingDelegate protocol.

With all these changes, your view controller’s header file will now look like so:

#import <UIKit/UIKit.h>
#import <AVFoundation/AVFoundation.h>
#import <AssetsLibrary/AssetsLibrary.h>

@interface CustomVideoViewController : UIViewController
<AVCaptureFileOutputRecordingDelegate>{
 UIButton *button;
 BOOL recording;
}

@property (strong, nonatomic) IBOutlet UIButton *button;

@property (strong, nonatomic) AVCaptureSession *session;
@property (strong, nonatomic) AVCaptureMovieFileOutput *output;

-(IBAction)recordPressed:(id)sender;
@end

Now that your header file is all set up, you will switch over to your implementation file.

First, since you have set up two of your own properties, session and output, you

absolutely have to remember to @synthesize both of them at the top of your

implementation file. You should also remember to set them both equal to nil in your -
viewDidUnload method.

Next, as with the previous recipe, you will start to build your -viewDidLoad method.

First, you must allocate your AVCaptureSession, like so:

self.session = [[AVCaptureSession alloc] init];
self.session.sessionPreset = AVCaptureSessionPresetMedium;

Next, you will create two instances of AVCaptureDevice, one for your rear camera, and

one for your microphone, and then create AVCaptureDeviceInputs for each of them and

add them to your session.

http://

CHAPTER 6: Camera Recipes 230

AVCaptureDevice *device = [AVCaptureDevice defaultDeviceWithMediaType:AVMediaTypeVideo];

NSError *error = nil;
AVCaptureDeviceInput *input = [AVCaptureDeviceInput deviceInputWithDevice:device
error:&error];

NSArray *devices = [AVCaptureDevice devicesWithMediaType:AVMediaTypeAudio];

AVCaptureDeviceInput *mic = [[AVCaptureDeviceInput alloc] initWithDevice:[devices
objectAtIndex:0] error:nil];
if (!input || !mic)
 {
 NSLog(@"Input Error");
 }
 else
 {
 [self.session addInput:input];
 [self.session addInput:mic];
 }

Now you create your AVCaptureOutput and add it to the session. You will make sure any

connections that your output has have their video orientations set correctly.

self.output = [[AVCaptureMovieFileOutput alloc] init];

 NSArray *connections = self.output.connections;
 for (AVCaptureConnection *connection in connections)
 {
 if ([connection isVideoOrientationSupported])
 connection.videoOrientation = AVCaptureVideoOrientationPortrait;
 }
 if ([self.session canAddOutput:self.output])
 [self.session addOutput:self.output];

You will need to be able to see your camera’s view, so you’ll set up an instance of

AVCaptureVideoPreviewLayer.

AVCaptureVideoPreviewLayer *previewLayer = [AVCaptureVideoPreviewLayer
layerWithSession:self.session];
UIView *aView = self.view;
previewLayer.frame = CGRectMake(0, 0, self.view.frame.size.width,
self.view.frame.size.height-70);
[aView.layer addSublayer:previewLayer];

Finally, you simply need to start your AVCaptureSession. You’ll also set your recording

instance to NO just to ensure it has the correct starting value.

[self.session startRunning];
 recording = NO;

In its entirety, your -viewDidLoad method now looks so:

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.session = [[AVCaptureSession alloc] init];
 self.session.sessionPreset = AVCaptureSessionPresetMedium;

http://

CHAPTER 6: Camera Recipes 231

 AVCaptureDevice *device = [AVCaptureDevice
defaultDeviceWithMediaType:AVMediaTypeVideo];

 NSError *error = nil;
 AVCaptureDeviceInput *input = [AVCaptureDeviceInput deviceInputWithDevice:device
error:&error];

 NSArray *devices = [AVCaptureDevice devicesWithMediaType:AVMediaTypeAudio];

 AVCaptureDeviceInput *mic = [[AVCaptureDeviceInput alloc] initWithDevice:[devices
objectAtIndex:0] error:nil];

 if (!input || !mic)
 {
 NSLog(@"Input Error");
 }
 else
 {
 [self.session addInput:input];
 [self.session addInput:mic];
 }

 self.output = [[AVCaptureMovieFileOutput alloc] init];

 NSArray *connections = self.output.connections;
 for (AVCaptureConnection *connection in connections)
 {
 if ([connection isVideoOrientationSupported])
 connection.videoOrientation = AVCaptureVideoOrientationPortrait;
 }
 if ([self.session canAddOutput:self.output])
 [self.session addOutput:self.output];

 AVCaptureVideoPreviewLayer *previewLayer = [AVCaptureVideoPreviewLayer
layerWithSession:self.session];
 UIView *aView = self.view;
 previewLayer.frame = CGRectMake(0, 0, self.view.frame.size.width,
self.view.frame.size.height-70);
 [aView.layer addSublayer:previewLayer];

 [self.session startRunning];
 recording = NO;
}

TIP: Adding sound to your videos is not a complicated process in this method! All that is required

is to add the audio input device to your session, and the AVCaptureSession will do the rest for

you.

You will of course need to define how your application handles when the user presses

your UIButton. This will be a fairly simple toggle function to start and stop your

AVCaptureOutput.

-(IBAction)recordPressed:(id)sender
{

http://

CHAPTER 6: Camera Recipes 232

 if (!recording)
 {
 [self.button setTitle:@"Stop" forState:UIControlStateNormal];
 recording = YES;
 NSURL *fileURL = [self tempFileURL];
 [self.output startRecordingToOutputFileURL:fileURL recordingDelegate:self];
 }
 else
 {
 [self.button setTitle:@"Record" forState:UIControlStateNormal];
 [self.output stopRecording];
 recording = NO;
 }
}

You probably noticed that you called the method -tempFileURL in order to set up your

AVCaptureOutput early. This method, in short, returns a path for your recorded video to

be temporarily saved on your device. If there is already a file saved at the location, it will

delete that file. (This way, you never use more than one video’s worth of disk space.)

- (NSURL *) tempFileURL
{
 NSString *outputPath = [[NSString alloc] initWithFormat:@"%@%@",
NSTemporaryDirectory(), @"output.mov"];
 NSURL *outputURL = [[NSURL alloc] initFileURLWithPath:outputPath];
 NSFileManager *manager = [[NSFileManager alloc] init];
 if ([manager fileExistsAtPath:outputPath])
 {
 [manager removeItemAtPath:outputPath error:nil];
 }
 return outputURL;
}

The last major step to set up your video is to set up your AVCaptureMovieFileOutput’s

delegate. It will check if there were any errors in recording the video to a file, and then

save your video file into your Asset Library.

- (void)captureOutput:(AVCaptureFileOutput *)captureOutput
didFinishRecordingToOutputFileAtURL:(NSURL *)outputFileURL
 fromConnections:(NSArray *)connections
 error:(NSError *)error {

 BOOL recordedSuccessfully = YES;
 if ([error code] != noErr) {
 // A problem occurred: Find out if the recording was successful.
 id value = [[error userInfo]
objectForKey:AVErrorRecordingSuccessfullyFinishedKey];
 if (value) {
 recordedSuccessfully = [value boolValue];
 }
 }
 ALAssetsLibrary *library = [[ALAssetsLibrary alloc] init];

 [library writeVideoAtPathToSavedPhotosAlbum:outputFileURL
 completionBlock:^(NSURL *assetURL, NSError *error)
 {
 if (error)

http://

CHAPTER 6: Camera Recipes 233

 {
 NSLog(@"Error writing") ;
 }

 }];
}

Finally, to improve the functionality of your app’s design, you will make your -
viewWillAppear: and -viewWillDisappear: have a hand in your session’s starting and

stopping, so that you don’t end up with a session running in the background or not

running when you can see it.

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 if (![self.session isRunning])
 {
 [self.session startRunning];
 }
}
- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];
 if ([self.session isRunning])
 {
 [self.session stopRunning];
 }
}

This app will look almost identical to the previous recipe’s app, the main difference

being the type of media saved. In the previous recipe, you were saving individual frames

as images to your library, but here you will be saving recorded video with sound.

Recipe 6–7: Capturing Video Frames
For a large number of applications that utilize videos, a thumbnail image is often used to

“represent” a given video. Adding on to your previous recipe, you will be adding in a

capability to create a thumbnail image based on a specific point in your video. You will

implement two different ways to do this, with one method based on the

AVCaptureSession, and the other based on your saved video.

First, you will capture a still image from your AVCaptureSession using a different type of

AVCaptureOutput, known as an AVCaptureStillImageOutput.

TIP: This first method of taking images has the added ability to automatically play a shutter

sound when an image is taken!

First, you will add a couple of UIImageViews to your view controller’s XIB file, which will

be used to display the still images that you capture. You will connect them to your

header file as usual, naming them imageViewThumb and imageViewThumb2. If desired, you

can set their background color to something other than the default color so that they

http://

CHAPTER 6: Camera Recipes 234

can be distinguished from your view before your images are put in them. Figure 6–14

shows your resulting XIB file.

Figure 6–14. Setting up your user interface for thumbnails

Next you will need a property to keep track of your AVCaptureStillImageOutput, which

you will declare and synthesize in your view controller as stillImageOutput, making sure

to remember to set it to nil in your -viewDidUnload.

Your third step is to add this output to your AVCaptureSession in your -viewDidLoad

method, which will now look like so:

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.imageViewThumb.backgroundColor = [UIColor whiteColor];

 self.session = [[AVCaptureSession alloc] init];
 self.session.sessionPreset = AVCaptureSessionPresetMedium;

 AVCaptureDevice *device = [AVCaptureDevice
defaultDeviceWithMediaType:AVMediaTypeVideo];

 NSError *error = nil;
 AVCaptureDeviceInput *input = [AVCaptureDeviceInput deviceInputWithDevice:device
error:&error];

 NSArray *devices = [AVCaptureDevice devicesWithMediaType:AVMediaTypeAudio];

http://

CHAPTER 6: Camera Recipes 235

 AVCaptureDeviceInput *mic = [[AVCaptureDeviceInput alloc] initWithDevice:[devices
objectAtIndex:0] error:nil];

 if (!input || !mic)
 {
 NSLog(@"Input Error");
 }
 else
 {
 [self.session addInput:input];
 [self.session addInput:mic];
 }

 self.output = [[AVCaptureMovieFileOutput alloc] init];

 NSArray *connections = self.output.connections;
 for (AVCaptureConnection *connection in connections)
 {
 if ([connection isVideoOrientationSupported])
 connection.videoOrientation = AVCaptureVideoOrientationPortrait;
 }
 if ([self.session canAddOutput:self.output])
 [self.session addOutput:self.output];

 /////////NEW STILL IMAGE OUTPUT CODE
 self.stillImageOutput = [[AVCaptureStillImageOutput alloc] init];
 NSDictionary *outputSettings = [[NSDictionary alloc] initWithObjectsAndKeys:
 AVVideoCodecJPEG, AVVideoCodecKey, nil];
 [self.stillImageOutput setOutputSettings:outputSettings];

 if ([self.session canAddOutput:stillImageOutput])
 {
 [self.session addOutput:stillImageOutput];
 }
 else
 {
 NSLog(@"Unable to add still image output");
 }
 /////////END OF NEW STILL IMAGE OUTPUT CODE
 AVCaptureVideoPreviewLayer *previewLayer = [AVCaptureVideoPreviewLayer
layerWithSession:self.session];
 UIView *aView = self.view;
 previewLayer.frame = CGRectMake(0, 0, self.view.frame.size.width,
self.view.frame.size.height-70);
 [aView.layer addSublayer:previewLayer];

 [self.session startRunning];
 recording = NO;
 // Do any additional setup after loading the view, typically from a nib.
}

Next, you will define the method that will actually capture your image and save it to your

device.

- (void) captureStillImage
{
 AVCaptureConnection *stillImageConnection = [self.stillImageOutput.connections
objectAtIndex:0];

http://

CHAPTER 6: Camera Recipes 236

 if ([stillImageConnection isVideoOrientationSupported])
 [stillImageConnection setVideoOrientation:AVCaptureVideoOrientationPortrait];

 [[self stillImageOutput]
captureStillImageAsynchronouslyFromConnection:stillImageConnection

completionHandler:^(CMSampleBufferRef imageDataSampleBuffer, NSError *error)
 {
 ALAssetsLibraryWriteImageCompletionBlock completionBlock = ^(NSURL *assetURL,
NSError *error)
 {};

 if (imageDataSampleBuffer != NULL)
 {
 NSData *imageData = [AVCaptureStillImageOutput
jpegStillImageNSDataRepresentation:imageDataSampleBuffer];
 ALAssetsLibrary *library = [[ALAssetsLibrary alloc] init];

 UIImage *image = [[UIImage alloc] initWithData:imageData];
 self.imageViewThumb.image = image;
 [library writeImageToSavedPhotosAlbum:[image CGImage]
 orientation:(ALAssetOrientation)[image imageOrientation]
 completionBlock:completionBlock];
 }
 else
 completionBlock(nil, error);

 }];
}

Finally, you simply need to tell your application when to perform this -
captureStillImage by placing a call to it in your recordPressed: method. I chose to

have it take the picture right at the beginning of the recording, though it could also go at

the end. Your method will now look like so:

-(IBAction)recordPressed:(id)sender
{
 if (!recording)
 {
 [self.button setTitle:@"Stop" forState:UIControlStateNormal];
 recording = YES;
 NSURL *fileURL = [self tempFileURL];
 [self.output startRecordingToOutputFileURL:fileURL recordingDelegate:self];

 //////CAPTURE IMAGE
 [self captureStillImage];
 }
 else
 {
 [self.button setTitle:@"Record" forState:UIControlStateNormal];
 [self.output stopRecording];
 recording = NO;
 }
}

At this point, your application, if run on a device, will successfully record a video as well

as take a still image at the beginning (or end if you chose) of your recording. While this is

http://

CHAPTER 6: Camera Recipes 237

of course very useful, it doesn’t quite have that full customizability that you may desire.

Next, you will implement a use of the class AVAssetImageGenerator, which can not only

generate multiple images from a single video, but also create them at varied, specified

times in the video.

First, you will need to link your binary with the Core Media framework. Do this as you

have with all other framework links. You will not need any import statements for this

framework. It will simply act as a reference for your compiler.

Next, you will add a property to your class of type AVAssetImageGenerator, making sure

to synthesize and later to set it to nil correctly. Name this property imageGenerator.

You have already defined your delegate method to handle the successful saving of a

video to a URL, so you will add to that your -
captureOutput:didFinishRecordingToOutputFileAtURL:fromConnections:error:

method, in order to access the URL and generate your images from it. Your method

should now look like so, with comments identifying the newly added lines:

- (void)captureOutput:(AVCaptureFileOutput *)captureOutput
didFinishRecordingToOutputFileAtURL:(NSURL *)outputFileURL
 fromConnections:(NSArray *)connections
 error:(NSError *)error {

 BOOL recordedSuccessfully = YES;
 if ([error code] != noErr) {
 // A problem occurred: Find out if the recording was successful.
 id value = [[error userInfo]
objectForKey:AVErrorRecordingSuccessfullyFinishedKey];
 if (value) {
 recordedSuccessfully = [value boolValue];
 }
 }
 ALAssetsLibrary *library = [[ALAssetsLibrary alloc] init];
 [library writeVideoAtPathToSavedPhotosAlbum:outputFileURL
 completionBlock:^(NSURL *assetURL, NSError *error)
 {
 if (error)
 {
 NSLog(@"Error writing") ;
 }

 }];

 ////////////START OF NEW STILL IMAGE CODE
 AVURLAsset *myAsset = [[AVURLAsset alloc] initWithURL:outputFileURL
options:[NSDictionary dictionaryWithObject:@"YES"
forKey:AVURLAssetPreferPreciseDurationAndTimingKey]];

 self.imageGenerator = [AVAssetImageGenerator assetImageGeneratorWithAsset:myAsset];
 self.imageGenerator.appliesPreferredTrackTransform = YES; //Makes sure images are
correctly rotated.

 Float64 durationSeconds = CMTimeGetSeconds([myAsset duration]);
 CMTime half = CMTimeMakeWithSeconds(durationSeconds/2.0, 600);
 NSArray *times = [NSArray arrayWithObjects: [NSValue valueWithCMTime:half], nil];

http://

CHAPTER 6: Camera Recipes 238

 [self.imageGenerator generateCGImagesAsynchronouslyForTimes:times
 completionHandler:^(CMTime requestedTime, CGImageRef image, CMTime
actualTime,AVAssetImageGeneratorResult result, NSError *error)
 {
 NSString *requestedTimeString = (__bridge NSString *)CMTimeCopyDescription(NULL,
requestedTime);
 NSString *actualTimeString = (__bridge NSString *)CMTimeCopyDescription(NULL,
actualTime);
 NSLog(@"Requested: %@; actual %@", requestedTimeString, actualTimeString);

 if (result == AVAssetImageGeneratorSucceeded)
 {
 self.imageViewThumb2.image = [UIImage imageWithCGImage:image];
 }

 if (result == AVAssetImageGeneratorFailed)
 {
 NSLog(@"Failed with error: %@", [error localizedDescription]);
 }
 if (result == AVAssetImageGeneratorCancelled)
 {
 NSLog(@"Canceled");
 }
 }];
 ///////END OF STILL IMAGE CODE
}

Your application can now correctly capture still images from a video in two different

ways, and you should be able to see a clear view of each method on your device, as in

Figure 6–15.

http://

CHAPTER 6: Camera Recipes 239

Figure 6–15. Recording application with two different thumbnails

NOTE: You may notice that with the second method, the creating of the image takes significantly

longer than the first. This is probably a method that would be better used at a point when the

user cannot see the image in question until it has been successfully created.

Summary
As a developer, you have a great deal of choice when it comes to dealing with your

device’s camera. The pre-defined interfaces such as UIImagePickerController and

UIVideoEditorController are incredibly useful and well designed, but Apple’s

implementation of the AV Foundation framework allows for infinitely more possibilities.

Everything from dealing with video, audio, and still images is possible. Even a quick

glance at the full documentation will reveal countless other functionalities that you have

not gone over here, including everything from device capabilities (such as the video

camera’s LED “torch”), to the implementation of your own “Touch-To-Focus”

functionality. We live in a world where images, audio, and video fly around the world in a

matter of seconds, and as developers we must be able to design and create innovative

solutions that fit in with our media-based community.

http://

241

 Chapter

Multimedia Recipes

In the words of Aldous Huxley, “After silence, that which comes nearest to expressing

the inexpressible is music.” We live in a world where we are surrounded by sound and

music. From the most subtle background tune in an advertisement, to the immense

blast of the electric guitar at a rock concert, sound plays an integral part in our world in

all its varieties, and to ignore this fact in our development process would be detrimental

to both the user experience and the developer community. Music and audio have a

tremendous impact on our lives, and as developers, it is our responsibility to translate

this force into our applications in order to bring the most complete and ideal experience

to users, even if they don’t even notice.

Throughout this chapter, a variety of recipes will make use of accessing the iPod library

on the device on which the app is run. In order to fully test these, you should ensure that

there are at least a few songs in your device’s music library.

Recipe 7–1: Playing Audio
If you ask almost any random person what they think of when they hear the words

“iPhone” and “audio,” they will probably be thinking along the lines of their iPod and the

thousands of songs they have downloaded. What most users tend to overlook, despite

its immense importance, is the concept of background audio and sound effects. These

sound clips and tunes may go completely unnoticed by the user in normal use, but in

terms of app functionality and design they can tremendously improve the quality of an

app. It may be the little “shutter click” when you take a picture, or the background music

of a game that gets stuck in your head after you play it for too long, but regardless of

whether the user notices, it can make a world of difference. The iOS “AV Foundation”

framework provides an incredibly simple way to access, play, and manipulate sound

files, known as the AVAudioPlayer. Here you will create a sample project that will allow

you to play an audio file, as well as allow the user to manipulate the clip’s playback.

First, you will create a new project, naming it “Chapter7Recipe1”. Here, I have used the

class prefix “Player”. As with most of the previous recipes, you can use the Single View

Application template to make your project. Ensure the Storyboard check box is

7

http://

CHAPTER 7: Multimedia Recipes 242

unchecked, while the Use Automatic Reference Counting box is checked, so that your

configuration resembles Figure 7–1.

Figure 7–1. Configuring your project’s settings

The first thing you need to do is link your project with a few frameworks that you will use

to play your sound. Select your project in the navigation pane, and then navigate to

Targets ➤ SoundCheck. Select the Build Phases tab, and drop down the section titled

“Link Binary With Libraries”, as shown in Figure 7–2.

http://

CHAPTER 7: Multimedia Recipes 243

Figure 7–2. Project before adding frameworks

Next, click the + button, and add the following two frameworks:

1. AV Foundation: This includes the AVAudioPlayer class, which you will be using to

play audio.

2. Audio Toolbox: You will use this framework to implement a button to play the

“vibrate” sound on your device.

Next, switch over to your view controller’s header file. You will import your frameworks’

header files by adding the following import statements:

#import <AVFoundation/AVFoundation.h>
#import <AudioToolbox/AudioToolbox.h>

Now you will go build your view in the view controller’s XIB file. You will be creating your

view to include sliders for your audio player’s pan, volume, and rate, as well as buttons

that will play and pause the player, and a third button to play the device’s “vibrate”

system sound. You will also be monitoring your audio player’s channel levels via labels

at the top of the view. Set up your view so it looks like Figure 7–3.

http://

CHAPTER 7: Multimedia Recipes 244

Figure 7–3. Your view controller’s XIB file with default values set

You need your slider’s values to match the possible values of the properties they

control. Using the Attribute inspector, adjust the minimum and maximum values of your

“rate” slider to 0.5 and 2.0 (corresponding to half speed and 2x speed), respectively, and

the same values for the “pan” slider to -1 and 1 (correspond to left pan and right pan).

The “volume” slider’s default values should already be fine, as the volume property goes

from 0 to 1.

As you have done in your past recipes, you will connect some of your view objects over

to your header file by holding ! (Ctrl) and dragging from the element over to the view

controller’s header file. Name the UISliders sliderRate, sliderPan, and sliderVolume

as appropriate. Your UIButtons will be vibrateButton, playButton, and pauseButton.

Your two level-monitoring UILabels at the top (which I have given default values so far of

“0.0”) will be averageLabel and peakLabel. You will define three methods (of type

IBAction, not void) in your header file, one for each button, and connect your buttons to

them by holding ! and dragging from the button to the action definition. You will also

define three more methods for your UISlider’s to be connected to as well. Your header

file should now look like so:

#import <UIKit/UIKit.h>
#import <AVFoundation/AVFoundation.h>
#import <AudioToolbox/AudioToolbox.h>

@interface PlayerViewController : UIViewController

http://

CHAPTER 7: Multimedia Recipes 245

@property (strong, nonatomic) IBOutlet UIButton *vibrateButton;
@property (strong, nonatomic) IBOutlet UIButton *playButton;
@property (strong, nonatomic) IBOutlet UIButton *pauseButton;
@property (strong, nonatomic) IBOutlet UISlider *sliderVolume;
@property (strong, nonatomic) IBOutlet UISlider *sliderPan;
@property (strong, nonatomic) IBOutlet UISlider *sliderRate;
@property (strong, nonatomic) IBOutlet UILabel *averageLabel;
@property (strong, nonatomic) IBOutlet UILabel *peakLabel;
-(IBAction)vibratePressed:(id)sender;
-(IBAction)playPressed:(id)sender;
-(IBAction)pausePressed:(id)sender;

-(IBAction)volumeSliderChanged:(UISlider *)sender;
-(IBAction)panSliderChanged:(UISlider *)sender;
-(IBAction)rateSliderChanged:(UISlider *)sender;

@end

You will also add a property to your header file to keep track of your AVAudioPlayer,

written like so:

@property (nonatomic, strong) AVAudioPlayer *player;

Synthesize this new property in your implementation file, and add the following lines to

your -viewDidUnload method to make sure your application is as efficient as possible in

memory use.

self.player.delegate = nil;
[self setPlayer:nil];

The last step in your header file is to make your view controller conform to the

AVAudioPlayerDelegate protocol.

@interface PlayerViewController : UIViewController <AVAudioPlayerDelegate>

Before you proceed, you need to select and import the sound file that your application

will be playing. The file I use is called systemCheck.mp3, and the following code will

reflect this file name. You will need to change any file name or file type according to the

file that you choose. You should consult Apple’s documentation on which file types are

appropriate, but it is fairly safe to assume that most commonly used file types such as

.wav or .mp3 will work.

In order to catch any errors in playing files, you can implement one of the methods in the

AVAudioPlayerDelegate protocol:

-(void)audioPlayerDecodeErrorDidOccur:(AVAudioPlayer *)player error:(NSError *)error
{
 NSLog(@"Error playing file: %@", [error localizedDescription]);
}

Find your sound clip in the Finder, and then click and drag the file into your project in

Xcode. My preference is to put such files in the Supporting Files group, but this is

entirely optional. A dialog will appear prompting you to choose options for adding the

file. The only change you may need to make is to make sure that the box next to “Copy

items into destination group’s folder (if needed)” is checked, as in Figure 7–4.

http://

CHAPTER 7: Multimedia Recipes 246

Figure 7–4. Pop-up dialog for importing files—make sure the first box is checked.

Now that you have your sound file, you can implement your -viewDidLoad method to set

up your AVAudioPlayer.

- (void)viewDidLoad
{
 [super viewDidLoad];
 NSString *fileName = @"systemCheck";
 NSString *fileType = @"mp3";
 NSString *soundFilePath = [[NSBundle mainBundle] pathForResource:fileName
ofType:fileType];
 NSURL *soundFileURL = [NSURL fileURLWithPath:soundFilePath];

 NSError *error;
 self.player = [[AVAudioPlayer alloc] initWithContentsOfURL:soundFileURL
error:&error];
 self.player.enableRate = YES; //Allows us to change the playback rate.
 self.player.meteringEnabled = YES; //Allows us to monitor levels
 self.player.delegate = self;
 self.sliderVolume.value = self.player.volume;
 self.sliderRate.value = self.player.rate;
 self.sliderPan.value = self.player.pan;

 [self.player prepareToPlay]; //Preload audio to decrease lag

 NSTimer *timer = [NSTimer scheduledTimerWithTimeInterval:0.1 target:self
selector:@selector(updateLabels) userInfo:nil repeats:YES];

 [timer fire];
}

http://

CHAPTER 7: Multimedia Recipes 247

As you can see, you’ve gotten the URL for your sound file, and then created your

AVAudioPlayer with it. You set up the enableRate property to allow you to change the

playback rate, and set the meteringEnabled property to allow you to monitor the player’s

levels. You called the optional -prepareToPlay on your player in order to pre-load the

sound file, hopefully making your application slightly faster. You created a timer at the

end, which will perform your -updateLabels method ten times a second. This way you

can have your labels updating at a nearly constant rate.

Let’s put in a simple implementation of the -updateLabels method.

-(void)updateLabels
{
 [self.player updateMeters];
 self.averageLabel.text = [NSString stringWithFormat:@"%f", [self.player
averagePowerForChannel:0]];
 self.peakLabel.text = [NSString stringWithFormat:@"%f", [self.player
peakPowerForChannel:0]];
}

You need to call -updateMeters anytime that you use the -averagePowerForChannel or -
peakPowerForChannel methods in order to get the most up-to-date information, as these

values do not automatically refresh. Both methods take an NSUInteger argument that

specifies the channel to retrieve information for. By giving it the value of 0, you specify

the left channel for a stereo track, or the single channel for a mono track. Given that you

are dealing with only a basic use of the functionality, channel 0 is a good default.

Next, you will implement your action methods for your UISliders, which will be

performed every time the slider’s value is changed.

-(void)volumeSliderChanged:(UISlider *)sender
{
 self.player.volume = sender.value;
}
-(void)panSliderChanged:(UISlider *)sender
{
 self.player.pan = sender.value;
}
-(void)rateSliderChanged:(UISlider *)sender
{
 self.player.rate = sender.value;
}

Now, you will implement your button action methods, which are also quite simple.

-(void)vibratePressed:(id)sender
{
 AudioServicesPlaySystemSound(kSystemSoundID_Vibrate);
}
-(void)playPressed:(id)sender
{
 [self.player play];
}
-(void)pausePressed:(id)sender
{
 [self.player pause];
}

http://

CHAPTER 7: Multimedia Recipes 248

The AudioServicesPlaySystemSound() is a function defined in the Audio Toolbox that

plays pre-defined system sounds, such as the one just shown, which causes the phone

to vibrate. You can also register your own sound systems with certain file types.

NOTE: While most of the AV Foundation functionalities that you are currently working with will

work on the simulator using your computer’s microphone and speakers, the foregoing vibrate

sound will not. You will need a physical device to test this functionality.

At this point, your app should be able to successfully play and pause your music, and

you can adjust your playback rate, pan, and volume, and monitor your output levels.

Whenever you are dealing with an app that has sound or music involved, there is always

a concern that your app may be interrupted by a phone call or text, and you should

always include functionality to deal with these concerns. This is done through the

AVAudioPlayer delegate methods. Since you have already set your view controller as

your AVAudioPlayer’s delegate, you simply need to implement these methods to pause

and play your sound clip when an interruption begins or ends, respectively.

-(void)audioPlayerBeginInterruption:(AVAudioPlayer *)player
{
 [self.player pause];
}
-(void)audioPlayerEndInterruption:(AVAudioPlayer *)player
{
 [self.player play];
}

This is an incredibly simple implementation of these delegate methods. For your app,

you may choose to add in further functionality to possibly save data or any other tasks

that might need to be done before an application is interrupted.

You should now be able to see the flexibility with which you can use the AVAudioPlayer,

despite its simplistic use. By using multiple instances of AVAudioPlayer, you can

implement complex audio designs using multiple sounds at the same time. One could

possibly have a background music track running in one AVAudioPlayer, and have one or

two others to handle event-based sound effects. The power, simplicity, and flexibility of

the AVAudioPlayer class are what make it so popularly used among iOS developers.

Recipe 7–2: Recording Audio
Now that you have dealt with the key concept of playing audio, you can deal with the

reverse: recording audio. This process is very similar in both structure and

implementation to playing audio. You will use the AVAudioRecorder class to do your

recording in conjunction with another AVAudioPlayer to handle the playback of your

recording.

Make a new project, titling it “Chapter7Recipe2”, with a class prefix “Recording”, using

the Single View Application template.

http://

CHAPTER 7: Multimedia Recipes 249

You will need to import the AV Foundation framework into your project again. See the

previous recipe on how to do this. Unlike the previous recipe, you will not need the

Audio Toolbox framework, as you will not include the device vibrate function in this

project. Make sure to add the following import statement to your view controller’s

header file.

#import <AVFoundation/AVFoundation.h>

Next, you will set up your view in your controller’s XIB file, so that it looks like Figure 7–5.

Figure 7–5. User interface for recording and playing audio

Next, you will connect your two buttons, as well as your two monitoring labels, over to

your header file. Switch over to the Assistant Editor. By holding ! (Ctrl) and dragging

from your view elements to your header file, connect your buttons and labels to your

header file. For this project, I have named the buttons recordButton, playButton,

averageLevel, and peakLevel.

You will also define two action methods for your buttons to perform, named -
recordPressed: and -playPressed:, and connect your buttons to them. To do this, hold

! (Ctrl) again, and drag from each button in the XIB file to its respective action in your

header file.

Before you proceed to your implementation file, you will add an instance variable,

named url, of type NSURL, to your header file, to keep track of your recording’s saved

locations. Finally, you need to add in two more properties, one for your AVAudioPlayer,

http://

CHAPTER 7: Multimedia Recipes 250

named player, and one for your AVAudioRecorder, named audioRecorder. Make sure to

properly handle these by synthesizing them in your implementation file, and setting them

to nil (as well as their delegates) in your -viewDidUnload method. At this point, your

header file should look like so:

#import <UIKit/UIKit.h>
#import <AVFoundation/AVFoundation.h>

@interface RecordingViewController : UIViewController {
 NSURL *url;
}

@property (strong, nonatomic) IBOutlet UIButton *recordButton;
@property (strong, nonatomic) IBOutlet UIButton *playButton;
@property (strong, nonatomic) IBOutlet UILabel *averageLevel;
@property (strong, nonatomic) IBOutlet UILabel *peakLevel;

@property (strong, nonatomic) AVAudioRecorder *audioRecorder;
@property (strong, nonatomic) AVAudioPlayer *player;

-(IBAction)recordPressed:(id)sender;
-(IBAction)playPressed:(id)sender;

@end

Now, you will write your -viewDidLoad method, which is quite similar to that in the

previous recipe.

- (void)viewDidLoad
{
 [super viewDidLoad];
 url = [self tempFileURL];
 self.audioRecorder = [[AVAudioRecorder alloc] initWithURL:url settings:nil
error:nil];
 self.audioRecorder.meteringEnabled = YES;

 NSTimer *timer = [NSTimer scheduledTimerWithTimeInterval:0.01 target:self
selector:@selector(updateLabels) userInfo:nil repeats:YES];
 [timer fire];

 [self.audioRecorder prepareToRecord];
}

Just as in the previous recipe, you are sending your AVAudioRecorder the -
prepareToRecord action in order to help improve your application’s running speed. You

have again set up a timer to repeatedly update your level-monitoring labels.

The foregoing implementation uses the method -tempFileURL to retrieve your URL,

which is implemented as follows. In order to avoid a compiler warning, make sure to

include this method before the -viewDidLoad method, or simply place its handler of -
(NSURL *)tempFileURL: in the header file.

- (NSURL *) tempFileURL
{
 NSString *outputPath = [[NSString alloc] initWithFormat:@"%@%@",
NSTemporaryDirectory(), @"recording.wav"];
 NSURL *outputURL = [[NSURL alloc] initFileURLWithPath:outputPath];

http://

CHAPTER 7: Multimedia Recipes 251

 NSFileManager *manager = [[NSFileManager alloc] init];
 if ([manager fileExistsAtPath:outputPath])
 {
 [manager removeItemAtPath:outputPath error:nil];
 }
 return outputURL;
}

Your -updateLabels method is again implemented like so:

-(void)updateLabels
{
 [self.audioRecorder updateMeters];
 self.averageLevel.text = [NSString stringWithFormat:@"%f", [self.audioRecorder
averagePowerForChannel:0]];
 self.peakLevel.text = [NSString stringWithFormat:@"%f", [self.audioRecorder
peakPowerForChannel:0]];
}

Finally, you just need to implement your buttons’ actions.

-(void)recordPressed:(id)sender
{
 if ([self.audioRecorder isRecording])
 {
 [self.audioRecorder stop];
 [self.recordButton setTitle:@"Record" forState:UIControlStateNormal];
 }
 else
 {
 [self.audioRecorder record];
 [self.recordButton setTitle:@"Stop" forState:UIControlStateNormal];
 }
}
-(void)playPressed:(id)sender
{
 NSFileManager *manager = [[NSFileManager alloc] init];
 NSString *outputPath = [[NSString alloc] initWithFormat:@"%@%@",
NSTemporaryDirectory(), @"recording.wav"];
 if (![self.player isPlaying])
 {
 if ([manager fileExistsAtPath:outputPath])
 {
 self.player = [[AVAudioPlayer alloc] initWithContentsOfURL:url error:nil];
 [self.player play];
 [self.playButton setTitle:@"Pause" forState:UIControlStateNormal];
 }
 }
 else
 {
 [self.player pause];
 [self.playButton setTitle:@"Play" forState:UIControlStateNormal];
 }
}

http://

CHAPTER 7: Multimedia Recipes 252

CAUTION: In the foregoing implementation, it is incredibly important to include the check to

confirm that a file exists at the given path, in case the user presses the “play” button when no

sound has been recorded yet. Initializing an AVAudioPlayer with a URL with no file in it will

cause your application to throw an exception.

At this point, your application will now successfully record and play a sound. Before you

can be finished, you need to implement an AVAudioPlayerDelegate method in order to

handle the ending of your playback. First, you need to make sure the view controller

conforms to the AVAudioPlayerDelegate protocol, so the top of your view controller’s

header file now looks like so:

@interface RecordingViewController : UIViewController <AVAudioPlayerDelegate>

Now you need to make your view controller your player’s delegate in your -
playPressed: method after it has been created with the following line.

self.player.delegate = self;

Finally, you can implement your delegate method.

-(void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player successfully:(BOOL)flag
{
 [self.playButton setTitle:@"Play" forState:UIControlStateNormal];
}

As with the previous recipe, you can implement delegate methods for both your

AVAudioRecorder and your AVAudioPlayer to handle interruptions such as phone calls or

text messages by pausing and re-starting your recording or playback.

Other useful methods for AVAudioRecorder that you have not implemented here include

the -pause method, which pauses recording, but allows for the -play method to be

called again to continue recording to the same file, and the -recordForDuration method,

which allows you to specify a limitation on recording time.

As you can see, the AVAudioRecorder and AVAudioPlayer can work incredibly well in

conjunction to provide a complete yet simple audio interface for the user.

Recipe 7–3: Accessing the iPod Library
So far you have been able to deal with playing and manipulating sound files that you

have included in your project, but there is an easy way to access a significantly larger

supply of sound files: by accessing the user’s music library.

Here you will make another new project, this time called “MusicPick”. First, you need to

link your project with the Media Player framework, and as usual add an import statement

for it to your view controller.

You will set up your view to work as a basic music player, so it looks like Figure 7–6.

http://

CHAPTER 7: Multimedia Recipes 253

Figure 7–6. User interface for queuing music from the iPod library

Make sure to connect all four buttons, naming them playButton, prevButton,

nextButton, and queueButton. Your slider will be sliderVolume, and your “info” UILabel

will be infoLabel.

You will also define five actions for your elements, which will be -playPressed:, -
prevPressed:, -nextPressed:, -queuePressed:, and -volumeChanged:. Make sure to

connect each element to its respective action.

You will also define two properties in your header file, one of type

MPMusicPlayerController called player, which you will use to play music, and one of

type called MPMediaItemCollection called myCollection, which will help you keep track

of your chosen tracks to play. Finally, you will make your view controller the delegate for

a class called MPMediaPickerController, which will allow your user to select music to

play, by conforming to the MPMediaPickerControllerDelegate protocol. Overall, your

header file should now look like so:

#import <UIKit/UIKit.h>
#import <MediaPlayer/MediaPlayer.h>

@interface MainViewController : UIViewController <MPMediaPickerControllerDelegate>

@property (strong, nonatomic) IBOutlet UIButton *queueButton;
@property (strong, nonatomic) IBOutlet UIButton *prevButton;
@property (strong, nonatomic) IBOutlet UIButton *playButton;

http://

CHAPTER 7: Multimedia Recipes 254

@property (strong, nonatomic) IBOutlet UIButton *nextButton;
@property (strong, nonatomic) IBOutlet UISlider *sliderVolume;
@property (strong, nonatomic) IBOutlet UILabel *infoLabel;

@property (strong, nonatomic) MPMediaItemCollection *myCollection;
@property (strong, nonatomic) MPMusicPlayerController *player;

-(IBAction)queuePressed:(id)sender;
-(IBAction)prevPressed:(id)sender;
-(IBAction)playPressed:(id)sender;
-(IBAction)nextPressed:(id)sender;

-(IBAction)volumeChanged:(id)sender;
@end

Make sure to synthesize both player and myCollection, and properly handle them in -
viewDidUnload as well, as usual.

Now, you can set up your -viewDidLoad method.

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.infoLabel.text = @"...";

 self.player = [MPMusicPlayerController applicationMusicPlayer];

 [self setNotifications];

 [self.player beginGeneratingPlaybackNotifications];

 [self.player setShuffleMode:MPMusicShuffleModeOff];
 self.player.repeatMode = MPMusicRepeatModeNone;

 self.sliderVolume.value = self.player.volume;
}

The MPMusicPlayerController class has two important class methods that allow you to

access an instance of the class. The one you used previously,

+applicationMusicPlayer, returns an application-specific music player. This option can

be useful for keeping your music separate from the device’s actual iPod, but has the

downside of being unable to play once the app enters the background. Alternatively, you

can use the +iPodMusicPlayer, which allows for continuous play despite being in the

background. The main thing to keep in mind in this case, however, is that your player

may already have a nowPlayingItem from the actual iPod that you should be able to

handle.

Whenever you use an instance of MPMusicPlayerController, it is recommended to

register for notifications for whenever the playback state changes, or whenever the

currently playing song changes. You will do this in your -setNotifications method, like

so:

-(void)setNotifications
{
 NSNotificationCenter *notificationCenter = [NSNotificationCenter defaultCenter];

http://

CHAPTER 7: Multimedia Recipes 255

 [notificationCenter
 addObserver: self
 selector: @selector (handle_NowPlayingItemChanged:)
 name: MPMusicPlayerControllerNowPlayingItemDidChangeNotification
 object: self.player];

 [notificationCenter
 addObserver: self
 selector: @selector (handle_PlaybackStateChanged:)
 name: MPMusicPlayerControllerPlaybackStateDidChangeNotification
 object: self.player];

 [notificationCenter addObserver:self
 selector:@selector(volumeChangedHardware:)

name:@"AVSystemController_SystemVolumeDidChangeNotification"
 object:nil];
}

You have also included a third notification registration in order to make sure you know

any time the user adjusts the device volume using the device’s side buttons. This way,

your application can be used just like a regular music player.

Each of these notifications performs a selector, which are defined as follows.

-(void)volumeChangedHardware:(id)sender
{
 [self.sliderVolume setValue:self.player.volume animated:YES];
}
- (void) handle_PlaybackStateChanged: (id) notification
{
 MPMusicPlaybackState playbackState = [self.player playbackState];

 if (playbackState == MPMusicPlaybackStateStopped)
 {
 [self.playButton setTitle:@"Play" forState:UIControlStateNormal];
 self.infoLabel.text = @"...";
 [self.player stop];
 }
 else if (playbackState == MPMusicPlaybackStatePaused)
 {
 [self.playButton setTitle:@"Play" forState:UIControlStateNormal];
 }
 else if (playbackState == MPMusicPlaybackStatePlaying)
 {
 [self.playButton setTitle:@"Pause" forState:UIControlStateNormal];
 }
}
- (void) handle_NowPlayingItemChanged: (id) notification
{
 MPMediaItem *currentItemPlaying = [self.player nowPlayingItem];
 if (currentItemPlaying)
 {
 NSString *info = [NSString stringWithFormat:@"%@ - %@", [currentItemPlaying
valueForProperty:MPMediaItemPropertyTitle], [currentItemPlaying
valueForProperty:MPMediaItemPropertyArtist]];
 self.infoLabel.text = info;

http://

CHAPTER 7: Multimedia Recipes 256

 }
 else
 {
 self.infoLabel.text = @"...";
 }
 if (self.player.playbackState == MPMusicPlaybackStatePlaying)
 {
 [self.playButton setTitle:@"Pause" forState:UIControlStateNormal];
 }
}

As you can see, when the device’s volume is changed, you will simply animate your

slider to adjust to the new value. When the playback state of the device is changed, you

are simply adjusting your view based on the new state. Whenever the currently playing

song is changed, you are updating your user interface to display basic information about

whichever media item is now playing.

Next, you will define two of your MPMediaPickerController’s delegate methods to

handle both cancellation and successful selection of media.

-(void)mediaPickerDidCancel:(MPMediaPickerController *)mediaPicker
{
 [self dismissModalViewControllerAnimated:YES];
}
-(void)mediaPicker:(MPMediaPickerController *)mediaPicker
didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection
{
 [self updateQueueWithMediaItemCollection:mediaItemCollection];
 [self dismissModalViewControllerAnimated:YES];
}

An MPMediaItemCollection is a group of media items that were selected, which you can

then queue up in your MPMusicPlayerController and iterate through. You will update

your player’s queue by defining the -updateQueueWithMediaItemCollection: method.

-(void)updateQueueWithMediaItemCollection:(MPMediaItemCollection *)collection
{
 if (collection)
 {
 if (self.myCollection == nil)
 {
 self.myCollection = collection;
 [self.player setQueueWithItemCollection: self.myCollection];
 [self.player play];
 }
 else
 {
 BOOL wasPlaying = NO;
 if (self.player.playbackState == MPMusicPlaybackStatePlaying) {
 wasPlaying = YES;
 }

 MPMediaItem *nowPlayingItem = self.player.nowPlayingItem;
 NSTimeInterval currentPlaybackTime = self.player.currentPlaybackTime;

 NSMutableArray *combinedMediaItems =
 [[self.myCollection items] mutableCopy];

http://

CHAPTER 7: Multimedia Recipes 257

 NSArray *newMediaItems = [collection items];
 [combinedMediaItems addObjectsFromArray: newMediaItems];

 [self setMyCollection:
 [MPMediaItemCollection collectionWithItems:
 (NSArray *) combinedMediaItems]];

 [self.player setQueueWithItemCollection:self.myCollection];

 self.player.nowPlayingItem = nowPlayingItem;
 self.player.currentPlaybackTime = currentPlaybackTime;

 if (wasPlaying)
 {
 [self.player play];
 }
 }
 }
}

This method may seem complex, but it is actually a fairly linear progression. First, after

checking to make sure that the collection is not nil, you check to see if there is any

previous queue set up. If not, you simply set your player’s queue to this collection. If so,

you combine the two collections, set your player’s queue as the result, and then restore

your playback to where it previously was.

TIP: If the queue is updated while an MPMusicPlayerController is currently playing, you will

probably notice a small break in your playback as the queue is updated. This can be worked

around by using a BOOL flag to update the queue only between songs.

You can fairly simply define all of your methods that are performed by your buttons and

slider to perform their respective commands.

-(void)queuePressed:(id)sender
{
 MPMediaPickerController *picker = [[MPMediaPickerController alloc]
initWithMediaTypes:MPMediaTypeMusic];
 picker.delegate = self;
 picker.allowsPickingMultipleItems = YES;
 picker.prompt =
 NSLocalizedString (@"Add songs to play",
 "Prompt in media item picker");
 [self presentModalViewController:picker animated:YES];
}
-(void)prevPressed:(id)sender
{
 if ([self.player currentPlaybackTime] > 5.0)
 {
 [self.player skipToBeginning];
 }
 else
 {
 [self.player skipToPreviousItem];
 }

http://

CHAPTER 7: Multimedia Recipes 258

}
-(void)volumeChanged:(id)sender
{
 if (self.player.volume != self.sliderVolume.value)
 {
 self.player.volume = self.sliderVolume.value;
 }
}
-(void)playPressed:(id)sender
{
 if ((myCollection != nil) && (self.player.playbackState !=
MPMusicPlaybackStatePlaying))
 {
 [self.player play];
 [self.playButton setTitle:@"Pause" forState:UIControlStateNormal];
 }
 else if (self.player.playbackState == MPMusicPlaybackStatePlaying)
 {
 [self.player pause];
 [self.playButton setTitle:@"Play" forState:UIControlStateNormal];
 }
}
-(void)nextPressed:(id)sender
{
 [self.player skipToNextItem];
}

As you can see, you have given users a five-second window in which to use the

Previous button to skip to the previous song, before they must first skip back to the

beginning of the current song.

Your very last step in this project is to fully implement your -viewDidUnload method to

correctly handle your player’s setup. Since you registered as an observer for three

different kinds of notifications at the beginning of your application, you need to remove

your view controller as an observer of these values. You will also be sure to -stop your

MPMusicPlayerController and set its queue to nil. In its entirety, the method will look

like so:

- (void)viewDidUnload
{
 [self.player stop];
 [self.player setQueueWithItemCollection:nil];
 [[NSNotificationCenter defaultCenter]
 removeObserver: self
 name: MPMusicPlayerControllerNowPlayingItemDidChangeNotification
 object: self.player];

 [[NSNotificationCenter defaultCenter]
 removeObserver: self
 name: MPMusicPlayerControllerPlaybackStateDidChangeNotification
 object: self.player];

 [[NSNotificationCenter defaultCenter] removeObserver:self
name:@"AVSystemController_SystemVolumeDidChangeNotification" object:nil];

 [self.player endGeneratingPlaybackNotifications];

http://

CHAPTER 7: Multimedia Recipes 259

 self.myCollection = nil;
 self.player = nil;
 [self setQueueButton:nil];
 [self setPrevButton:nil];
 [self setPlayButton:nil];
 [self setNextButton:nil];
 [self setSliderVolume:nil];
 [self setInfoLabel:nil];
 [super viewDidUnload];
}

One thing to note when you run this application is that until you start playing music, you

will not be able to adjust your AVAudioPlayer’s volume by using the external volume

buttons, as these will still control the ringer volume, as opposed to the playback volume.

Once you select a song to play, you will receive full control over the playback volume

through these buttons.

You can probably see the pure power that this framework provides the developer. By

being able to access the user’s own library, you can open up a whole new level of audio

customization for your application by the user, with possibilities ranging from selecting

music to awake to, to specifying your own background music to a game. By giving a

user the power of choice and personalization, your application’s marketability and

functionality increase tenfold.

Querying Media

Now that you have seen a very simple way to allow the user to select music, you can

implement an even more powerful way to query, filter, and sort music from the user’s

media library.

Here you will simply be taking the previous recipe and adding functionality to it,

specifically by allowing the user to type the name of an artist and then querying the

library for music by that artist.

First, you will add a UIButton as well as a UITextField to your XIB remaining from your

previous recipe, so that your view now looks like Figure 7–7.

http://

CHAPTER 7: Multimedia Recipes 260

Figure 7–7. User interface for querying music

Make sure to correctly connect this button to an action called -queryPressed: and the

text field to a property called textFieldArtist.

The first thing you will do with your new UITextField is to set its delegate to your view

controller by adding the following lines to your -viewDidLoad.

self.textFieldArtist.delegate = self;
self.textFieldArtist.enablesReturnKeyAutomatically = YES;

Make sure to adjust your header file to declare that your view controller will conform to

the UITextFieldDelegate protocol.

Next, you need to implement the following UITextField delegate method to have your

text field correctly dismiss the keyboard upon the pressing of the return key.

-(BOOL)textFieldShouldReturn:(UITextField *)textField
{
 [textField resignFirstResponder];
 return NO;
}

You may choose to also include a call to -queryPressed: (which you will implement

momentarily) from the -textFieldShouldReturn: method, so that when the return key is

pressed the query is automatically performed. I opted against doing this in case the user

wants to wait to perform the query after the current song has finished.

http://

CHAPTER 7: Multimedia Recipes 261

Next implement the -queryPressed: method.

-(void)queryPressed:(id)sender
{
 NSString *artist = self.textFieldArtist.text;
 if (artist != nil && artist != @"")
 {
 MPMediaPropertyPredicate *artistPredicate = [MPMediaPropertyPredicate
predicateWithValue:artist forProperty:MPMediaItemPropertyArtist
comparisonType:MPMediaPredicateComparisonContains];
 MPMediaQuery *query = [[MPMediaQuery alloc] init];
 [query addFilterPredicate:artistPredicate];

 NSArray *result = [query items];
 if ([result count] > 0)
 {
 [self updateQueueWithMediaItemCollection:[MPMediaItemCollection
collectionWithItems:result]];
 }
 else
 self.infoLabel.text = @"Artist Not Found.";
 }
}

As you can see, querying the media library is a fairly simple process, which at its bare

minimum requires only an instance of the MPMediaQuery class. You can then add

MPMediaPropertyPredicates to a query to make it more specific.

Using MPMediaPropertyPredicates requires a decent knowledge of the different

MPMediaItemProperties, so that you can know exactly what kind of information you can

acquire. Not all MPMediaItemProperties are filterable, and the filterable properties are

also different if you are dealing specifically with a podcast. You should refer to the Apple

documentation on MPMediaItem for a full list of properties, but following is a list of the

most commonly used ones:

 MPMediaItemPropertyMediaType

 MPMediaItemPropertyTitle

 MPMediaItemPropertyAlbumTitle

 MPMediaItemPropertyArtist

 MPMediaItemPropertyArtwork

TIP: Whenever you are using the MPMediaItemPropertyArtwork, you can use the -

imageWithSize: method defined in MPMediaItemPropertyArtwork to create a UIImage

from the artwork.

http://

CHAPTER 7: Multimedia Recipes 262

A Few Notes on MPMediaPropertyPredicates:

3. Whenever multiple filter predicates specifying different properties are added to a

query, the predicates are evaluated using the AND operator, meaning that if you

specify an artist name and an album name, you will receive only songs by that

artist AND from that specific album.

4. Do not add two filter predicates of the same property to a query, as the resulting

behavior is not defined. If you wish to query a database for multiple specific

values of the same property, such as filtering for all songs by two different artists,

the better method is to simply create two queries, and then combine their results

afterward.

5. The comparisonType property of an MPMediaPropertyPredicate helps specify how

exact you want your predicate to be. A value of

MPMediaPredicateComparisonEqualTo returns only items with the string exactly

equal to the given one, while a value of MPMediaPredicateComparisonContains, as

shown earlier, returns items that contain the given string, proving to be usually a

less specific search.

As an added functionality, MPMediaQuerys can also be given a “grouping property”, so

that they automatically group their results. You could, for example, filter a query by a

specific artist, but group according to the album name. In this way, you can retrieve all

the songs by a specific artist but iterate through them as if they were in albums, as

demonstrated by the following code, which could be added to your -queryPressed:

method, in which the following query object is created.

[query setGroupingType: MPMediaGroupingAlbum];

 NSArray *albums = [query collections];
 for (MPMediaItemCollection *album in albums)
 {
 MPMediaItem *representativeItem = [album representativeItem];
 NSString *albumName = [representativeItem valueForProperty:
MPMediaItemPropertyAlbumTitle];
 NSLog (@"%@", albumName);
 }

You can also set a grouping type by using class methods, such as +albumsQuery, for

MPMediaQuery, which will create your query instance with a pre-set grouping property.

Recipe 7–4: Background Playing and Now Playing
Info
So far you have seen multiple techniques for dealing with audio in iOS, from playing a

single sound, to accessing the library, to utilizing the iPod player. Each technique tends

to have its pros, cons, and specific uses depending on the goal of your application.

http://

CHAPTER 7: Multimedia Recipes 263

However, when all these functionalities are used in conjunction, the possibilities for your

app become nearly limitless. Here, you will combine the use of the AVFoundation,

MPMediaQuery, MPMediaPickerController, and MPNowPlayingInfoCenter (a new iOS 5.0

feature!) to create your own version, albeit a less pretty one, of the iPod user interface

such that your music can continue to play even if your application is in the background.

Make a new project using the Single View Application template, naming it

“Chapter7Recipe3”, with class prefix “Main”.

Next, you will make sure all the frameworks you need are imported. Go ahead and link

the following frameworks to your project, exactly as you have in all the previous recipes

in this chapter.

 AVFoundation.framework: You will use this to play your audio files.

 MediaPlayer.framework: This will allow you to access your library and

media files.

 CoreMedia.framework: You won’t use any classes from this framework,

but you will need some of the CMTime functions to help deal with your

audio player.

Add the following import statements to your view controller’s header file. You do not

need one for the Core Media framework in this project.

#import <MediaPlayer/MediaPlayer.h>
#import <AVFoundation/AVFoundation.h>

Your view controller is also going to end up as the delegate for several objects, so add

protocol statements to your header file for the following protocols:

 UITextFieldDelegate

 AVAudioSessionDelegate

 MPMediaPickerControllerDelegate

Next you will set up your app to be able to continue playing music once it has entered

the background of the device. The first thing you need to do is declare a property of type

AVAudioSession, called session. Make sure to @synthesize it, and then in your -
viewDidUnload set it to nil as usual.

@property (nonatomic, strong) AVAudioSession *session;

Next, add the following code to your -viewDidLoad method:

self.session = [AVAudioSession sharedInstance];
self.session.delegate = self;
[self.session setCategory:AVAudioSessionCategoryPlayback error:nil];
[self.session setActive:YES error:nil];

By specifying that your session’s category is of type AVAudioSessionCategoryPlayback,

you are telling your device that your application’s main focus is playing music, and

should therefore be allowed to continue playing audio while the application is in the

background.

http://

CHAPTER 7: Multimedia Recipes 264

You need to also make sure your session is deactivated when you are done with it, so

add the following line to your -viewDidUnload method.

[self.session setActive:NO error:nil];

Now that you have configured your AVAudioSession, you need to edit your application’s

.plist file in order to specify that your application, when in the background, must be

allowed to run audio. You can usually find this file in the Supporting Files group of your

project. If not, you can find the file in your project’s folder, as in Figure 7–8.

Figure 7–8. Finding the .plist file

By default, this file should open in Xcode, resembling Figure 7–9.

http://

CHAPTER 7: Multimedia Recipes 265

Figure 7–9. Editing the .plist file

Under the Editor menu, select Add Item. A new item should appear, looking like Figure 7–10.

Figure 7–10. Setting the application category

For the Application Category item, open the drop-down menu by clicking the pair of

arrows, and then select “Required Background modes”.

Drop down the values list for this new item by clicking the arrow on the left. You will edit

the value for “Item 0”. Drop down the menu on the right side, and select “App plays

audio”, as in Figure 7–11. Alternatively, you could type audio into the value field, and

once you press the return key, Xcode will change the value correctly.

Figure 7–11. Specifying background audio capabilities

Your application should now be ready to play audio while in the background state!

http://

CHAPTER 7: Multimedia Recipes 266

Next, you will build your user interface in your XIB file. Set up your view so that it looks

like Figure 7–12.

Figure 7–12. User interface for your custom music player

For the purposes of this project, the following variable names will be assigned to the

shown view elements, so connect each element over to your header file using the name

shown here:

 infoLabel: Your UILabel at the top of the view, which will display the

information of the current song

 textFieldSong: Your UITextField, which you put a placeholder text of

“Song” inside

 queryButton: The upper UIButton with the title “Query”

 artworkImageView: Your UIImageView, which will display album artwork

for songs

 libraryButton: Large “Library” UIButton.

 playButton: Middle “Play” UIButton

 nextButton: Right-side “Next” UIButton

 prevButton: Left-side “Prev” UIButton

http://

CHAPTER 7: Multimedia Recipes 267

Define actions for the five buttons that you will use and connect each button to its

respective method. Your method declarations should look like so:

-(IBAction)queryPressed:(id)sender;
-(IBAction)nextPressed:(id)sender;
-(IBAction)prevPressed:(id)sender;
-(IBAction)playPressed:(id)sender;
-(IBAction)libraryPressed:(id)sender;

Next, you will declare the additional property objects that you will need to run your

application. For each of the following properties, make sure you synthesize each one

and properly set it to nil at the end of your application. First, you will be using an

instance of the AVQueuePlayer class to play and queue up your sound files, so you will

declare one of them as a property:

@property (nonatomic, strong) AVQueuePlayer *player;

In order to manage your player, you will need two copies as NSMutableArrays of its

playlist. One will have all the queued items in their original MPMediaItem class (which you

can access media information for), while the other will have them all after they have been

converted to instances of AVPlayerItem (which you can play through your

AVQueuePlayer). You will also have a property of type NSUInteger in order to help keep

track of the currently playing item. These properties will be declared like so, making sure

to correctly synthesize and nil each one:

@property (nonatomic, strong) NSMutableArray *playlist;
@property (nonatomic, strong) NSMutableArray *myCollection;
@property (nonatomic) NSUInteger currentIndex;

The first thing you will do now in your implementation file is finish writing your -
viewDidLoad method, so that it now looks like so:

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.session = [AVAudioSession sharedInstance];
 self.session.delegate = self;
 [self.session setCategory:AVAudioSessionCategoryPlayback error:nil];
 [self.session setActive:YES error:nil];

 self.textFieldSong.delegate = self;
 [self.playButton setTitle:@"Play" forState:UIControlStateNormal];
}

The only new code here was to confirm that the title for your playButton is set correctly,

and to set your view controller as the delegate for your UITextField. Implement the

UITextFieldDelegate method to handle dismissing the keyboard like so:

-(BOOL)textFieldShouldReturn:(UITextField *)textField
{
 [textField resignFirstResponder];
 return NO;
}

You will also need to override the getter for your playlist in order to ensure that it

correctly initializes.

http://

CHAPTER 7: Multimedia Recipes 268

-(NSMutableArray *)playlist
{
 if (!playlist)
 {
 playlist = [[NSMutableArray alloc] initWithCapacity:5];
 }
 return playlist;
}

You will also override the getter for currentIndex, so that it always returns the correct

index of the currently playing item.

-(NSUInteger)currentIndex
{
 currentIndex = [self.playlist indexOfObject:self.player.currentItem];
 return currentIndex;
}

Next you will implement a method that will update your user interface every time the

song changes.

-(void)updateNowPlaying
{
 if (self.player.currentItem != nil)
 {
 MPMediaItem *nowPlaying = [self.myCollection objectAtIndex:self.currentIndex];
// NSLog(@"%@", [nowPlaying valueForProperty:MPMediaItemPropertyTitle]);

 self.infoLabel.text = [NSString stringWithFormat:@"%@ - %@", [nowPlaying
valueForProperty:MPMediaItemPropertyTitle], [nowPlaying
valueForProperty:MPMediaItemPropertyArtist]];

 UIImage *artwork = [[nowPlaying valueForProperty:MPMediaItemPropertyArtwork]
imageWithSize:self.artworkImageView.frame.size];
 if (artwork)
 {
 self.artworkImageView.image = artwork;
 }
 else
 {
 self.artworkImageView.image = nil;
 }
 if ([MPNowPlayingInfoCenter class])
 {
 NSString *title = [nowPlaying valueForProperty:MPMediaItemPropertyTitle];
 NSString *artist = [nowPlaying valueForProperty:MPMediaItemPropertyArtist];
 NSDictionary *currentlyPlayingTrackInfo = [NSDictionary
dictionaryWithObjects:[NSArray arrayWithObjects:title, artist, nil] forKeys:[NSArray
arrayWithObjects:MPMediaItemPropertyTitle, MPMediaItemPropertyArtist, nil]];
 [MPNowPlayingInfoCenter defaultCenter].nowPlayingInfo =
currentlyPlayingTrackInfo;
 }
 }
 else
 {
 self.infoLabel.text = @"...";
 [self.playButton setTitle:@"Play" forState:UIControlStateNormal];
 self.artworkImageView.image = nil;

http://

CHAPTER 7: Multimedia Recipes 269

 }
}

The method just shown, aside from updating your user interface to display the current

song information, also takes advantage of a new feature in iOS 5, called the

MPNowPlayingInfoCenter! This class allows the developer to place information on the

device’s lock screen, or on other devices when the application is displaying info through

AirPlay. You can pass information to it by setting the nowPlayingInfo property of the

+defaultCenter to a dictionary of values and properties that you created.

To make use of the foregoing MPNowPlayingInfoCenter implementation, you must make

a few specific additions in your code. Specifically, none of this functionality will work if

your application cannot handle remote control events. To do this, start by implementing

the -remoteControlReceivedWithEvent: method that handles remote events.

- (void) remoteControlReceivedWithEvent: (UIEvent *) receivedEvent {
 if (receivedEvent.type == UIEventTypeRemoteControl) {

 switch (receivedEvent.subtype) {

 case UIEventSubtypeRemoteControlTogglePlayPause:
 [self playPressed:nil];
 break;

 case UIEventSubtypeRemoteControlPreviousTrack:
 [self prevPressed:nil];
 break;

 case UIEventSubtypeRemoteControlNextTrack:
 [self nextPressed:nil];
 break;

 default:
 break;
 }
 }
}

This aforementioned method will be called when the user taps the Pause, Previous, and

Next buttons on the lock screen or the multitasking screen. All you have to do is have

them call your methods to play, advance, and rewind your player, which you will

implement later.

Next, in order to receive these remote control events, you must modify your -
viewDidAppear:animated: and -viewWillDisappear:animated: methods.

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 [[UIApplication sharedApplication] beginReceivingRemoteControlEvents];
 [self becomeFirstResponder];
}
- (void)viewWillDisappear:(BOOL)animated
{
 [[UIApplication sharedApplication] endReceivingRemoteControlEvents];
 [self resignFirstResponder];

http://

CHAPTER 7: Multimedia Recipes 270

 [super viewWillDisappear:animated];
}

Finally, in order for these previous two methods to work correctly and allow your view

controller to become the first responder, you must override the -
canBecomeFirstResponder method like so:

-(BOOL)canBecomeFirstResponder
{
 return YES;
}

If these extra steps are not followed, your application will not be able to make use of any

“Now Playing” information in the lock screen or multitasking bar.

In order to assist in keeping your two NSMutableArrays in sync, you will define a method

that will take an NSArray of MPMediaItems and return an NSArray of the same items, but

essentially converted to the AVPlayerItem.

-(NSArray *)AVPlayerItemsFromArray:(NSArray *)items
{
 NSMutableArray *array = [[NSMutableArray alloc] initWithCapacity:[items count]];
 NSURL *url;
 for (MPMediaItem *current in items)
 {
 url = [current valueForProperty:MPMediaItemPropertyAssetURL];
 AVPlayerItem *playerItem = [AVPlayerItem playerItemWithURL:url];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(playerItemDidReachEnd:)
 name:AVPlayerItemDidPlayToEndTimeNotification
 object:playerItem];

 if (playerItem != nil)
 [array addObject:playerItem];
 }
 return array;
}

In order to later be able to tell when a song has finished playing and act accordingly, you

will need to add your view controller as an observer, as shown earlier. It is fairly

convenient to include the -addObserver call in this method since you can so easily

access all the AVPlayerItems that you will be using.

While you are dealing with your NSNotificationCenter, make sure that all the observers

you just added will be properly removed. Add the following lines to your -viewDidUnload.

for (AVPlayerItem *playerItem in self.playlist)
 {
 [[NSNotificationCenter defaultCenter] removeObserver:self
name:AVPlayerItemDidPlayToEndTimeNotification object:playerItem];
 }

The implementation for the -playerItemDidReachEnd: method that you’ve specified to

run any time a song ends is quite simple, as shown here.

http://

CHAPTER 7: Multimedia Recipes 271

- (void)playerItemDidReachEnd:(NSNotification *)notification
{
 [self performSelector:@selector(updateNowPlaying) withObject:nil afterDelay:0.5];
}

I have included the half-second delay here to ensure that the -updateNowPlaying call

does not execute until the AVQueuePlayer has completely moved on to playing the next

item.

Next you’ll implement your two methods that will be used whenever you need to update

or add to your playlist.

-(void)updatePlaylistWithArray:(NSArray *)collection
{
 if (([self.playlist count] == 0) || (self.player.currentItem == nil))
 {
 [self.myCollection removeAllObjects];
 self.playlist = [NSMutableArray arrayWithArray:collection];
 self.player = [[AVQueuePlayer alloc] initWithItems:self.playlist];
 [self.player play];
 }
 else
 {
 AVPlayerItem *currentItem = [self.playlist lastObject];
 for (AVPlayerItem *item in collection)
 {
 if ([self.player canInsertItem:item afterItem:currentItem])
 {
 [self.player insertItem:item afterItem:currentItem];
 currentItem = item;
 }
 }
 [self.playlist addObjectsFromArray:collection];
 }
}

-(void)updateMyCollectionWithArray:(NSArray *)mediaItems
{
 if ([self.myCollection count] == 0)
 {
 self.myCollection = [NSMutableArray arrayWithArray:mediaItems];
 }
 else
 {
 [self.myCollection addObjectsFromArray:mediaItems];
 }
}

Your -playPressed: and -nextPressed: methods are quite simple in their

implementation since AVQueuePlayer inherits from the AVPlayer class, and has a nice

little method for advancing to the next item in the queue.

-(void)playPressed:(id)sender
{
 if (self.playlist.count > 0)
 {

http://

CHAPTER 7: Multimedia Recipes 272

 if ([[self.playButton titleForState:UIControlStateNormal]
isEqualToString:@"Play"])
 {
 [self.player play];
 [self.playButton setTitle:@"Pause" forState:UIControlStateNormal];
 }
 else
 {
 [self.player pause];
 //Scrub back half a second to give the user a little lead-in when they
resume playing
 [self.player seekToTime:CMTimeSubtract(self.player.currentTime,
CMTimeMakeWithSeconds(0.5, 1.0)) completionHandler:^(BOOL finished)
 {
 [self.playButton setTitle:@"Play" forState:UIControlStateNormal];
 }];
 }
 [self updateNowPlaying];
 }
}
-(void)nextPressed:(id)sender
{
 [self.player advanceToNextItem];
 if (self.player.currentItem == nil)
 {
 [self.playlist removeAllObjects];
 [self.myCollection removeAllObjects];
 }
 [self updateNowPlaying];
}

Unfortunately, the AVQueuePlayer does not include any easy implementation for moving

backward in a queue, so your implementation of the -prevPressed: method is slightly

more complex, and just involves a bit of swapping around of your AVPlayerItems.

-(void)prevPressed:(id)sender
{
 if (CMTimeCompare(self.player.currentTime, CMTimeMake(5.0, 1)) > 0)
 {
 [self.player seekToTime:kCMTimeZero];
 }
 else
 {
 [self.player pause];

 AVPlayerItem *current = self.player.currentItem;
 if (current != [self.playlist objectAtIndex:0])
 {
 AVPlayerItem *previous = [self.playlist objectAtIndex:[self.playlist
indexOfObject:current]-1];
 if ([self.player canInsertItem:previous afterItem:current])
 {
 [current seekToTime:kCMTimeZero];
 [previous seekToTime:kCMTimeZero];

 [self.player insertItem:previous afterItem:current];
 [self.player advanceToNextItem];

http://

CHAPTER 7: Multimedia Recipes 273

 [self.player removeItem:current];
 [self.player insertItem:current afterItem:previous];
 }
 else
 {
 NSLog(@"Error: Could not insert");
 }
 }
 else
 {
 [self.player seekToTime:kCMTimeZero];
 }

 [self.player play];
 }
 [self updateNowPlaying];
}

The CMTimeMake() function that you just used is a very flexible function that takes two

inputs. The first represents the number of time units you want, and the second

represents the timescale, where 1 represents a second, 2 represents half a second, and

so on. A call of CMTimeMake(100, 10) would make 100 units of (1/10) seconds each,

resulting in 10 seconds.

The function of your Query button will be to use an MPMediaQuery to retrieve any songs in

the library that contain the word or phrase in your UITextField. This implementation is

fairly straightforward, once you remember to update both of your NSMutableArrays

afterward.

-(void)queryPressed:(id)sender
{
 MPMediaQuery *query = [[MPMediaQuery alloc] init];
 NSString *title = self.textFieldSong.text;
 MPMediaPropertyPredicate *songPredicate = [MPMediaPropertyPredicate
predicateWithValue:title forProperty:MPMediaItemPropertyTitle
comparisonType:MPMediaPredicateComparisonContains];
 [query addFilterPredicate:songPredicate];

 [self updatePlaylistWithArray:[self AVPlayerItemsFromArray:[query items]]];
 [self updateMyCollectionWithArray:[query items]];

 [self.playButton setTitle:@"Pause" forState:UIControlStateNormal];

 [self updateNowPlaying];
 if ([self.textFieldSong isFirstResponder])
 [self.textFieldSong resignFirstResponder];
}

Finally, you can set up your -libraryPressed: method, which will bring up an

MPMediaPickerController, allowing you to select multiple songs for queuing.

-(void)libraryPressed:(id)sender
{
 MPMediaPickerController *picker = [[MPMediaPickerController alloc]
initWithMediaTypes:MPMediaTypeMusic];
 picker.delegate = self;
 picker.allowsPickingMultipleItems = YES;

http://

CHAPTER 7: Multimedia Recipes 274

 picker.prompt = @"Choose Some Music!";
 [self presentModalViewController:picker animated:YES];
}

You will need to implement two delegate methods to correctly handle the

MPMediaPickerController. First, here is the delegate method for a cancellation:

-(void)mediaPickerDidCancel:(MPMediaPickerController *)mediaPicker
{
 [self dismissModalViewControllerAnimated:YES];
}

Second, you have the delegate method for a successful media choice, which will look

very similar to the -queryPressed: method.

-(void)mediaPicker:(MPMediaPickerController *)mediaPicker
didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection
{
 [self updatePlaylistWithArray:[self AVPlayerItemsFromArray:[mediaItemCollection
items]]];
 [self updateMyCollectionWithArray:[mediaItemCollection items]];
 [self.playButton setTitle:@"Pause" forState:UIControlStateNormal];
 [self updateNowPlaying];

 [self dismissModalViewControllerAnimated:YES];
}

You may, while testing this application, notice the slight issue of the fact that you have

not included a way to clear the queue and reset the app without playing or skipping

through to the end of the queue. This is not a problem if your queue is only a few songs

long, but if you queue any more than that, you will probably want to incorporate some

method to clear out your queue by resetting your NSMutableArrays and removing all the

items from your player’s queue. For testing purposes, however, simply closing the

application by double-tapping the device’s home button, holding a long press over the

application’s icon, and then closing it will do.

Your music queuing player should now be fully functional! When you test the app, it

should continue to play music even after the application has entered the background of

your device! Figure 7–13 demonstrates your application playing a song, along with its

Now Playing functionality and ability to receive remote control events.

http://

CHAPTER 7: Multimedia Recipes 275

Figure 7–13. Your application playing a song while displaying Now Playing information in the multitasking bar

Summary
The complete multimedia experience is one that goes beyond a simple matter of

whether the user can listen to music. Sound, as a product, is much more about the tiny

details that make it just a little bit better, whether it’s a quick fade-out when pausing, or

the ability to more quickly find a song. From recording music to filtering media items to

creating volume ramps, every extra detail that you, as a developer, take the care to

include in your applications will eventually result in a significantly more powerful tool that

your audience can enjoy. In iOS development, Apple has provided an incredibly

powerful set of multimedia-based functionalities to make use of, and, as a quick search

in the iTunes app store will show, the development community has gone above and

beyond the call of duty in fully utilizing these in order to provide our audience, the users,

with a multimedia environment beyond imagination.

http://

277

 Chapter

User Data Recipes

No two people are alike, and, in the same way, no two iOS devices are alike, as the

information that one device stores is incredibly dependent on the person who uses it.

We populate our devices with our lives, including our photos, calendars, notes,

contacts, and music. As developers, it is incredibly important to be able to access all of

this information regardless of the device, so that we may incorporate it into our

applications and provide a more unique, user-specific interface. In this chapter, we will

cover a variety of methods for dealing with user-based data, dealing first with the

calendar, and then with the address book.

Recipe 8–1: Working with NSCalendar and NSDate
Many different applications are often used for time- and date-based calculations. This

could be anything from converting calendars, to sorting to-do lists, to telling the user

how much time remains before an alarm will go off. In order to use the more intricate

event-based user interface, you must have a solid understanding of the simpler NSDate-

focused APIs. Here, you will implement a simple application to illustrate the use of the

NSDate, NSCalendar, and NSDateComponents classes by converting dates from the popular

Gregorian calendar to the Hebrew calendar.

Create a new project called “Chapter8Recipe1”, with the class prefix “Main,” using the

Single View Application template. You will not need to utilize any extra frameworks.

Switch over to your view controller’s XIB file. Set up your XIB file to resemble the one

shown in Figure 8–1.

8

http://

CHAPTER 8: User Data Recipes 278

Figure 8–1. User interface for calendar conversion

You will need to set up properties to represent each UITextField. Once your view is set

up, connect each UITextField to your header file with the following property names as

appropriate.

 textFieldGMonth

 textFieldGDay

 textFieldGYear

 textFieldHMonth

 textFieldHDay

 textFieldHYear

The “G” and “H” in these property names refer to whether the given UITextField is on

the Gregorian or Hebrew side of the application.

You do not need to connect the UIButtons to outlets, but make sure they are connected

to respective actions -convertToHebrew: and -convertToGregorian:.

Always keep in mind that whenever you are dealing with an application that takes user

input, such as the UITextFields here, there is always a possibility of a keyboard popping

up and covering the bottom half of your screen. Plan your design accordingly by placing

all UITextFields in the upper half of the view!

http://

CHAPTER 8: User Data Recipes 279

In order to better control all these UITextFields, you will need to make your view

controller the delegate for them all. First, add <UITextFieldDelegate> to your controller’s

header line, so that it now looks like so:

@interface MainViewController : UIViewController <UITextFieldDelegate>

Next, you will set all the UITextField delegates to your view controller by adding the

following code to your -viewDidLoad method:

for (UITextField *field in self.view.subviews)
 {
 if ([field respondsToSelector:@selector(setDelegate:)])
 {
 field.delegate = self;
 }
 }

In this for loop, the -respondsToSelector: method call is necessary, otherwise your

application will throw an NSException. In general, this is a fairly good method to use

whenever you are dealing with the possibility of multiple types of objects in an array.

Next, define the UITextFieldDelegate method -textFieldShouldReturn: to properly

dismiss the keyboard.

-(BOOL)textFieldShouldReturn:(UITextField *)textField
{
 [textField resignFirstResponder];
 return NO;
}

The first new class that you will see here is the NSCalendar class. This is essentially used

to set a standard for the dates that you will later refer to. The NSCalendar method also

allows you to perform several useful functions dealing with a calendar, such as changing

which day a week starts on, or changing the time zone used. The NSCalendar class also

acts as a bridge between the NSDate and NSDateComponents classes that you will see

later.

You will be using two instances of the NSCalendar class in order to translate dates from

the Gregorian calendar to the Hebrew calendar. You will make these properties of your

class.

@property (nonatomic, strong) NSCalendar *gregorianCalendar;
@property (nonatomic, strong) NSCalendar *hebrewCalendar;

Go ahead and synthesize these two properties as you would any other property. You

will, however, need to implement custom implementations of the getter methods for

each of these properties.

-(NSCalendar *)gregorianCalendar
{
 if (!gregorianCalendar)
 {
 gregorianCalendar = [[NSCalendar alloc]
initWithCalendarIdentifier:NSGregorianCalendar];
 }

http://

CHAPTER 8: User Data Recipes 280

 return gregorianCalendar;
}

-(NSCalendar *)hebrewCalendar
{
 if (!hebrewCalendar)
 {
 hebrewCalendar = [[NSCalendar alloc]
initWithCalendarIdentifier:NSHebrewCalendar];
 }
 return hebrewCalendar;
}

These method overrides are necessary in order to make sure that your calendars are

initialized with their correct calendar types. Alternatively, you could simply initialize your

calendars in your -viewDidLoad method to be created when the app launches.

There are a large variety of different calendar types that are available for use, including

but not limited to the following:

NSBuddhistCalendar

NSIslamicCalendar

NSJapaneseCalendar

Given the immense multicultural nature of today’s technological world, you may find it

quite necessary to make use of some of these calendars! Consult the Apple

documentation for a full list of possible calendar types.

Now that your setup is done, you can implement your conversion method, starting with

the conversion from Gregorian to Hebrew.

-(void)convertToGregorian:(id)sender
{
 NSDateComponents *hComponents = [[NSDateComponents alloc] init];
 [hComponents setDay:[self.textFieldHDay.text integerValue]];
 [hComponents setMonth:[self.textFieldHMonth.text integerValue]];
 [hComponents setYear:[self.textFieldHYear.text integerValue]];

 NSDate *hebrewDate = [self.hebrewCalendar dateFromComponents:hComponents];

 NSUInteger unitFlags = NSDayCalendarUnit | NSMonthCalendarUnit |
 NSYearCalendarUnit;

 NSDateComponents *hebrewDateComponents = [self.gregorianCalendar
components:unitFlags fromDate:hebrewDate];

 self.textFieldGDay.text = [[NSNumber numberWithInteger:hebrewDateComponents.day]
stringValue];
 self.textFieldGMonth.text = [[NSNumber numberWithInteger:hebrewDateComponents.month]
stringValue];
 self.textFieldGYear.text = [[NSNumber numberWithInteger:hebrewDateComponents.year]
stringValue];
}

http://

CHAPTER 8: User Data Recipes 281

As you can see, you are using a combination of NSDateComponents, NSDate, and

NSCalendar to perform this conversion.

The NSDateComponents class is used to define the details that make up an NSDate, such

as the day, month, year, time, etc. Here, only the month, day, and year are being

specified.

As mentioned earlier, you use an instance of the NSCalendar to create an instance of

NSDate out of the components that you have defined.

One of the more confusing parts of this method is the use of the NSUInteger unitFlags,

which is formatted quite unusually. Whenever you specify creating an instance of

NSDateComponents out of an NSDate, you need to specify exactly which components to

include from the date. You can specify these flags, called NSCalendarUnits, through the

use of the NSUInteger, as shown.

Other types of NSCalendarUnits include the following, among many others:

 NSSecondCalendarUnit

 NSWeekOfYearCalendarUnit

 NSEraCalendarUnit

 NSTimeZoneCalendarUnit

As you can see, the specificity with which you can create instances of NSDate is highly

customizable, allowing you to perform unique calculations and comparisons. For a full

list of NSCalendarUnit values, refer to the NSCalendar class reference in Apple’s

developer API.

Since the values of NSDateComponents are of type NSInteger, you must first convert them

to instances of NSNumber, and then take their -stringValue before you set them into your

text fields.

Once you have defined your conversion from one calendar to the other, the reverse is

incredibly simple, as you just need to change which text fields and calendar you use.

-(void)convertToHebrew:(id)sender
{
 NSDateComponents *gComponents = [[NSDateComponents alloc] init];
 [gComponents setDay:[self.textFieldGDay.text integerValue]];
 [gComponents setMonth:[self.textFieldGMonth.text integerValue]];
 [gComponents setYear:[self.textFieldGYear.text integerValue]];

 NSDate *gregorianDate = [self.gregorianCalendar dateFromComponents:gComponents];

 NSUInteger unitFlags = NSDayCalendarUnit | NSMonthCalendarUnit |
 NSYearCalendarUnit;

 NSDateComponents *hebrewDateComponents = [self.hebrewCalendar components:unitFlags
fromDate:gregorianDate];

 self.textFieldHDay.text = [[NSNumber numberWithInteger:hebrewDateComponents.day]
stringValue];

http://

CHAPTER 8: User Data Recipes 282

 self.textFieldHMonth.text = [[NSNumber numberWithInteger:hebrewDateComponents.month]
stringValue];
 self.textFieldHYear.text = [[NSNumber numberWithInteger:hebrewDateComponents.year]
stringValue];
}

Your application should now be able to correctly convert instances of NSDate between

calendars, as shown in Figure 8–2! Try experimenting with different dates or even

different calendars to see what kinds of powerful date conversions you can do.

Figure 8–2. Application successfully converting calendar dates

Recipe 8–2: Fetching Events
Now that you have covered how to deal with basic date conversions and calculations,

you can go much more into detail on dealing specifically with events and calendars,

including interacting with the user’s own events and schedule. The next few recipes will

all compound in order to create a complete utilization of the Event Kit framework.

http://

CHAPTER 8: User Data Recipes 283

First, create a new project using the Single View Application template. I have called mine

“Chapter8Recipe2”, with class prefix “Main”.

Next, you need to import the Event Kit framework into your project. You can refer to

earlier recipes on exactly how to do this.

In order to use your Event Kit framework, you need to add the following line to your main

view controller’s header file:

#import <EventKit/EventKit.h>

For this recipe, you will simply be accessing and logging your device’s already

scheduled events, so you will not be dealing at all with your view controller’s XIB file.

Whenever you’re dealing with the Event Kit framework, the main element you will be

working with most is your EKEventStore. This class will be an incredibly powerful tool in

allowing you to access, delete, and save events to your calendars. You will create a

property of this type in your header file like so:

@property (strong, nonatomic) EKEventStore *eventStore;

Make sure to @synthesize this property, and then set it to nil in your -viewDidUnload.

The implementation for this first recipe to log your events is incredibly simple. You will

simply modify your -viewDidLoad. After initializing your eventStore property, you will

create a specific version of the NSPredicate class that will allow you to query for events.

Specifically, you will query for all the dates in your device’s calendar within the next 48

hours. Your method will look like so:

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.eventStore = [[EKEventStore alloc] init];
 NSDate *now = [NSDate date];
 NSDate *tomorrow = [NSDate dateWithTimeIntervalSinceNow:(2*24.0*60*60)];
 NSPredicate *predicate = [self.eventStore predicateForEventsWithStartDate:now
endDate:tomorrow calendars:nil];
 NSArray *events = [self.eventStore eventsMatchingPredicate:predicate];
 for (EKEvent *event in events)
 {
 NSLog(@"%@", event.title);
 }
}

The +date method is a nice little way to very easily get the current date and time

represented as an NSDate. The +dateWithTimeIntervalSinceNow: method takes a float

value as a parameter, representing the number of seconds you want your time interval to

include. A quick calculation of 2*24*60*60 seconds gives you a two-day range for which

to query.

You create your predicate using the -
predicateForEventsWithStartDate:endDate:calendars: method for the EKEventStore

class. By passing a value of nil to the calendars parameter of this method, you specify

that you want your predicate to be applied to all calendars.

http://

CHAPTER 8: User Data Recipes 284

To finally get your array of EKEvents, you simply call the EKEventStore method -
eventsMatchingPredicate: as shown in the previous snippet, and you can now iterate

through your events and act accordingly.

You will need to test this application on a device in order for it to access your calendar

and print valid information. Make sure that your device actually has events scheduled to

serve as your test data. Since the only output you are creating here is in the log, you will

also need to run this application on your device from Xcode, so as to capture the output.

Recipe 8–3: Displaying Events in a UITableView
Now that you are able to access your events, you will start by creating a better interface

with which to deal with them. You will implement a grouped UITableView to display your

events.

First, you need to add your UITableView into your XIB file. Go ahead and drag out a

UITableView element from your library, and make it take up the entire view. In the

Attribute inspector, make sure that the “Style” of the table view is set to “Grouped”, as

shown in Figure 8–3.

http://

CHAPTER 8: User Data Recipes 285

Figure 8–3. Configuring your grouped UITableView

Next, connect your UITableView to your view controller’s header file. The property used

here will be called tableViewEvents.

Before you switch over to your implementation file, you will define two more properties

that you will use. First, an NSArray called calendars will be used to hold references to all

the calendars in your EKEventStore. Second, an instance of NSMutableDictionary will be

used to store all your events based on which calendar they belong to. Make sure to

properly synthesize these, and also make sure they are set to nil in -viewDidUnload.

@property (nonatomic, strong) NSMutableDictionary *events;
@property (nonatomic, strong) NSArray *calendars;

The first thing you need to do is set up a newer version of your -viewDidLoad method in

order to properly populate your array and dictionary, as well as to make sure your

UITableView is properly set up.

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.tableViewEvents.delegate = self;

http://

CHAPTER 8: User Data Recipes 286

 self.tableViewEvents.dataSource = self;

 self.eventStore = [[EKEventStore alloc] init];
 self.calendars = [self.eventStore calendars];

 [self fetchEvents];
}

The new -fetchEvents method will contain your code to actually query the eventStore

for your events. Since you will be sorting your events by the calendar they belong to,

you will perform a different query for each calendar, rather than just one for all events.

-(void)fetchEvents
{
 self.events = nil;
 self.events = [[NSMutableDictionary alloc] initWithCapacity:[self.calendars count]];

 for (EKCalendar *cal in self.calendars)
 {
 NSPredicate *calPredicate = [self.eventStore
predicateForEventsWithStartDate:[NSDate date] endDate:[NSDate
dateWithTimeIntervalSinceNow:(2*24.0*60*60)] calendars:[NSArray arrayWithObject:cal]];
 //Passing nil to calendars means to search all calendars.

 NSArray *eventsInThisCalendar = [self.eventStore
eventsMatchingPredicate:calPredicate];
 if (eventsInThisCalendar != nil)
 {
 [self.events setObject:eventsInThisCalendar forKey:cal.title];
 }
 }
}

As you can see, you will be storing your events in an NSMutableDictionary by using the

titles of your calendars as keys, with their objects being arrays of events that belong to

that specific calendar.

Before you continue, you need to specify that your view controller will conform to certain

protocols in order for your compile to allow it to be set as the delegate and data source

of your view controller. After adding the UITableViewDelegate and

UITableViewDataSource protocols, your header file should now resemble the following:

#import <UIKit/UIKit.h>
#import <EventKit/EventKit.h>

@interface MainViewController : UIViewController <UITableViewDelegate,
UITableViewDataSource>{
 UITableView *tableViewEvents;
}

@property (nonatomic, strong) EKEventStore *eventStore;
@property (strong, nonatomic) IBOutlet UITableView *tableViewEvents;

@property (nonatomic, strong) NSMutableDictionary *events;
@property (nonatomic, strong) NSArray *calendars;
@end

http://

CHAPTER 8: User Data Recipes 287

In order to properly implement a grouped UITableView, you need to implement a method

to specify exactly how many sections you will need. Since you have one section per

calendar, this method is nice and easy.

-(NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return [self.calendars count];
}

You can also implement a method to specify your section titles, in an equally simple

manner.

-(NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section
{
 return [[self.calendars objectAtIndex:section] title];
}

You will also need to implement a method to determine the number of rows in each

group, as given by the count of the array returned by your dictionary for a given section.

-(NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 NSString *title = [[self.calendars objectAtIndex:section] title];
 NSArray *eventsInThisCalendar = [self.events objectForKey:title];
 return [eventsInThisCalendar count];
}

Finally, you can build your most important method for dealing with a UITableView, which

will define how your table’s cells are created.

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil)
 {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleValue1
reuseIdentifier:CellIdentifier];
 }

 cell.accessoryType = UITableViewCellAccessoryDetailDisclosureButton;
 cell.textLabel.backgroundColor = [UIColor clearColor];
 cell.textLabel.font = [UIFont systemFontOfSize:19.0];

 cell.textLabel.text = [[[self.events objectForKey:[[self.calendars
objectAtIndex:indexPath.section] title]] objectAtIndex:indexPath.row] title];

 return cell;
}

As you can see, aside from a fairly generic setup of your cell’s view, all you have done is

specify the title of any given row through a short, albeit slightly convoluted, call to your

array and dictionary.

http://

CHAPTER 8: User Data Recipes 288

Your application should now be able to give you a nice display of all the events currently

in your calendar!

Recipe 8–4: Viewing, Editing, and Deleting Events
Next, you can look into how to allow your user to view, edit, and delete events through

pre-defined classes in the Event Kit UI framework.

Continuing from your previous recipe, the first thing you need to do is add another

framework to your project. This time, add EventKitUI.framework. Import this

framework’s header file into your class with an import statement.

#import <EventKitUI/EventKitUI.h>

In this recipe, you will be assigning your view controller as the delegate for a couple of

other view controllers, so you will go ahead and add their protocols to your header file.

Here is the total list of protocols your view controller should now contain:

 UITableViewDelegate

 UITableViewDataSource

 EKEventViewDelegate

 EKEventEditViewDelegate

First, you will implement behavior for when a user selects a specific row in your

UITableView. You will use an instance of the EKEventViewController to display

information on the selected event. To do this, you use the UITableView’s data source

method, -tableView:DidSelectRowAtIndexPath:.

-(void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath
{
 EKEventViewController *eventVC = [[EKEventViewController alloc] init];
 eventVC.event = [[self.events objectForKey:[[self.calendars
objectAtIndex:indexPath.section] title]] objectAtIndex:indexPath.row];
 eventVC.delegate = self;
 eventVC.allowsEditing = YES;
 UINavigationController *navcon = [[UINavigationController alloc]
initWithRootViewController:eventVC];
 [self presentModalViewController:navcon animated:YES];
 [tableView deselectRowAtIndexPath:indexPath animated:YES];
}

You will need to implement the EKEventViewController’s delegate method, -
eventViewController:didCompleteWithAction:, in order to properly handle the

completed use of your event’s details. Here, you have a fairly simple implementation that

either saves or deletes the event from your event store, depending on the action given.

-(void)eventViewController:(EKEventViewController *)controller
didCompleteWithAction:(EKEventViewAction)action
{
 EKEvent *event = controller.event;
 if (action == EKEventViewActionDeleted)

http://

CHAPTER 8: User Data Recipes 289

 {
 [self.eventStore removeEvent:event span:EKSpanThisEvent error:nil];
 }
 else
 {
 [self.eventStore saveEvent:event span:EKSpanFutureEvents error:nil];
 }
 [self fetchEvents];
 [self.tableViewEvents reloadData];
 [self dismissModalViewControllerAnimated:YES];
}

The values you have used for the span: parameter of the saving and deleting methods

are restricted to one of the two values you have used here. As you can probably tell,

they specify whether your save or removal should apply only to the specific event, or to

all of its recurrences as well.

Keep in mind that the fact that the user deletes an event in the EKEventViewController

does not mean that it has been removed from the eventStore. You need to manually

remove it, and then call your -fetchEvents method as well as your table’s -reloadData

method to update your UITableView.

For extra functionality, you will also make your cell’s detail disclosure buttons allow the

user to proceed directly to editing an event’s information through the use of the

EKEventEditViewController. First, you will implement a method to handle the pressing

of the disclosure buttons.

-(void)tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath
{
 EKEventEditViewController *eventEditVC = [[EKEventEditViewController alloc] init];
 eventEditVC.event = [[self.events objectForKey:[[self.calendars
objectAtIndex:indexPath.section] title]] objectAtIndex:indexPath.row];
 eventEditVC.eventStore = self.eventStore;
 eventEditVC.editViewDelegate = self;
 [self presentModalViewController:eventEditVC animated:YES];
}

Just like with the EKEventViewController, you need to define a delegate method for your

EKEventEditViewController.

-(void)eventEditViewController:(EKEventEditViewController *)controller
didCompleteWithAction:(EKEventEditViewAction)action
{
 if (action == EKEventEditViewActionDeleted)
 {
 [self.eventStore removeEvent:controller.event span:EKSpanThisEvent error:nil];
 }
 else if (action == EKEventEditViewActionSaved)
 {
 [self.eventStore saveEvent:controller.event span:EKSpanThisEvent error:nil];
 }
 [self fetchEvents];
 [self.tableViewEvents reloadData];
 [self dismissModalViewControllerAnimated:YES];
}

http://

CHAPTER 8: User Data Recipes 290

Finally, you need to define one extra method in order to use an

EKEventEditViewController, which will allow you to specify one calendar to be used for

the creation of new events. In this implementation, you will simply return the default

calendar for this task that the device is already using.

-(EKCalendar
*)eventEditViewControllerDefaultCalendarForNewEvents:(EKEventEditViewController
*)controller
{
 return [self.eventStore defaultCalendarForNewEvents];
}

Just to ensure that your view always displays the most recent information, you will add

to your -viewwillAppear: method in order to consistently refresh both your current data

as well as your UITableView. The method will now appear like so:

- (void)viewWillAppear:(BOOL)animated
{
 [self fetchEvents];
 [self.tableViewEvents reloadData];
 [super viewWillAppear:animated];
}

At this point, your application can now successfully allow the user to view and edit the

details of an event in two different ways, through the use of either an

EKEventViewController (Figure 8–4) or an EKEventEditViewController (Figure 8–5).

Figure 8–4. EKEventViewController

http://

CHAPTER 8: User Data Recipes 291

Figure 8–5. EKEventEditViewControl

Recipe 8–5: Creating Simple Events
While it is fairly simple to allow users to create an event by themselves, we, as

developers, should always attempt to simplify the lives of the users. The less that users

have to do on their own, the happier they tend to be with the final product. To this end, it

is important to be able to create and edit events programmatically, such that users never

even have to see an EKEventEditViewController.

Again, building off of the previous recipe, you will first go into your view controller’s XIB

file.

Add a UIToolbar element to the top of your view. You will have to move the top of your

UITableView down by the height of the toolbar, which defaults to 44 points. Go ahead

and delete the UIBarButtonItem that is inside the toolbar by default; you will implement

the items inside your toolbar programmatically.

Connect your UIToolbar to your view controller’s header file using the property name

toolBarTop.

You will be adding a button to your toolBarTop to allow you to create a new EKEvent, so

you will define in advance the header for your method to perform this task.

-(void)addPressed:(UIButton *)sender;

Next, you will edit your -viewDidLoad method to accommodate your newest features.

http://

CHAPTER 8: User Data Recipes 292

- (void)viewDidLoad
{
 [super viewDidLoad];

 ///////////////START OF NEW CODE
 UIBarButtonItem *addButton = [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemAdd target:self
action:@selector(addPressed:)];
 UIBarButtonItem *fixedSpace = [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemFixedSpace target:nil action:NULL];
 fixedSpace.width = 265;
 [self.toolBarTop setItems:[NSArray arrayWithObjects:fixedSpace, addButton, nil]];
 ///////////////END OF NEW CODE

 self.tableViewEvents.delegate = self;
 self.tableViewEvents.dataSource = self;

 self.eventStore = [[EKEventStore alloc] init];
 self.calendars = [self.eventStore calendars];

 [self fetchEvents];
}

When your addButton is pressed, you will have your application present a modal view

controller in order to take an input from the user as to the name of the new event to be

created. In order to do this, you need to create another view controller from scratch.

Go to File ➤ New File…, and make sure to choose the “UIViewController subclass”

option, as shown in Figure 8–6.

Figure 8–6. Subclassing UIViewController

http://

CHAPTER 8: User Data Recipes 293

Name your subclass “EventAddViewController”, making sure that it will be created with

a XIB file, as is done in Figure 8–7.

Figure 8–7. Configuring your new view controller

Set up your new view controller’s XIB file to resemble the one in Figure 8–8.

http://

CHAPTER 8: User Data Recipes 294

Figure 8–8. User interface for event creation

Remember that here you are using a UITextField, which means at some point the

bottom half of your view will be taken up by a keyboard, so you must take care not to let

anything be hidden by this unnecessarily.

Connect your UITextField as well as your UIButton to your view controller’s header file

with the respective property names textFieldTitle and doneButton. Define also the

header for an action called -donePressed:, as shown here, and connect doneButton to

this action.

-(IBAction)donePressed:(id)sender;

Rather than have this class do any specific work with the Event Kit, you will simply have

it return the submitted string to a delegate view controller. In order to do this, you first

must declare a protocol for the delegate to conform to, by adding the following protocol

declaration to the top of your header file:

@protocol EventAddViewControllerDelegate <NSObject>

-(void)EventAddViewController:(EventAddViewController *)controller
didSubmitTitle:(NSString *)title;

@end

http://

CHAPTER 8: User Data Recipes 295

Your compiler will complain about this circular reference of a class to itself before it has

been declared, so add this extra line above the protocol declaration in order to assure

the compiler that the EventAddViewController is, in fact, declared.

@class EventAddViewController;

Since, as noted previously, you are using a UITextField, you should have your new view

controller conform to the UITextFieldDelegate protocol. Make this so.

Finally, declare a property of type id that conforms to your protocol for this view

controller called delegate. Make sure to properly synthesize and handle this in your

implementation file as always.

@property (strong, nonatomic) id <EventAddViewControllerDelegate> delegate;

In its entirety, your header file should now look like so:

#import <UIKit/UIKit.h>

@class EventAddViewController;

@protocol EventAddViewControllerDelegate <NSObject>
-(void)EventAddViewController:(EventAddViewController *)controller
didSubmitTitle:(NSString *)title;
@end

@interface EventAddViewController : UIViewController <UITextFieldDelegate>

@property (strong, nonatomic) IBOutlet UITextField *textFieldTitle;
@property (strong, nonatomic) IBOutlet UIButton *doneButton;
@property (strong, nonatomic) id <EventAddViewControllerDelegate> delegate;
-(IBAction)donePressed:(id)sender;

@end

Your implementation for this view controller will be incredibly simple, as its function will

be served entirely by a delegate method.

First, you must modify your -viewDidLoad method to set your UITextField’s delegate.

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.textFieldTitle.delegate = self;
}

Second, you implement a very simple UITextField delegate method to handle the

pressing of the “return” button.

-(BOOL)textFieldShouldReturn:(UITextField *)textField
{
 [textField resignFirstResponder];
 return NO;
}

Finally, you implement your -donePressed: method to call your view controller’s delegate

method.

http://

CHAPTER 8: User Data Recipes 296

-(void)donePressed:(id)sender
{
 [self.delegate EventAddViewController:self didSubmitTitle:self.textFieldTitle.text];
}

You can now switch back to your MainViewController. The first thing to remember is to

add the newly created protocol to your view controller, so that, in its final stage, your

header file reads like so:

#import <UIKit/UIKit.h>
#import <EventKit/EventKit.h>
#import <EventKitUI/EventKitUI.h>
#import "EventAddViewController.h"

@interface MainViewController : UIViewController <UITableViewDelegate,
UITableViewDataSource, EKEventViewDelegate, EKEventEditViewDelegate,
EventAddViewControllerDelegate>

@property (strong, nonatomic) IBOutlet UIToolbar *toolBarTop;

@property (nonatomic, strong) EKEventStore *eventStore;
@property (strong, nonatomic) IBOutlet UITableView *tableViewEvents;

@property (nonatomic, strong) NSMutableDictionary *events;
@property (nonatomic, strong) NSArray *calendars;
-(void)addPressed:(UIButton *)sender;
@end

You can now implement the -addPressed: method that you hinted at earlier to display

your new view controller.

-(void)addPressed:(UIButton *)sender
{
 EventAddViewController *addVC = [[EventAddViewController alloc] init];
 addVC.delegate = self;
 [self presentModalViewController:addVC animated:YES];
}

Finally, you can create your EventAddViewController’s delegate method, which will take

the submitted string, and create a new event with it.

-(void)EventAddViewController:(EventAddViewController *)controller
didSubmitTitle:(NSString *)title
{
 EKEvent *event = [EKEvent eventWithEventStore:self.eventStore];
 event.title = title;
 event.calendar = [self.eventStore defaultCalendarForNewEvents];
 event.startDate = [NSDate dateWithTimeIntervalSinceNow:60*60*24.0];
 event.endDate = [NSDate dateWithTimeInterval:60*60.0 sinceDate:event.startDate];
 [self.eventStore saveEvent:event span:EKSpanThisEvent error:nil];
 [self fetchEvents];
 [self.tableViewEvents reloadData];
 [self dismissModalViewControllerAnimated:YES];
}

http://

CHAPTER 8: User Data Recipes 297

I have chosen an incredibly simple method for creating these new events for the sake of

demonstration, as you can see in the fact that you have simply made any events created

in this way always be a day in advance, and last only an hour. Most likely in your

application you would choose a more complex or user-input-based method for creating

EKEvents.

NOTE: The code we have used here may generate a “Could not load source: 6” log in Xcode. Do

not worry about this, as it does not hinder your app from functioning correctly.

Recipe 8–6: Recurring Events
The Event Kit framework provides an incredibly powerful API for developers to be able

to programmatically work with recurring events. Here, you will simply add to the

previous recipes in order to have your application also add in a recurring event to your

calendar.

In your -EventAddViewController:didSubmitTitle: method that you have created, you

will simply add in extra code to create a recurring EKEvent based on the same title as the

normal one. Start by adding the following code to set up the new EKEvent.

EKEvent *recurringEvent = [EKEvent eventWithEventStore:self.eventStore];
 recurringEvent.title = [NSString stringWithFormat:@"Recurring %@", title];
 recurringEvent.calendar = [self.eventStore defaultCalendarForNewEvents];
 recurringEvent.startDate = [NSDate dateWithTimeIntervalSinceNow:60*60*24.0];
 recurringEvent.endDate = [NSDate dateWithTimeInterval:60*60.0
sinceDate:event.startDate];

Next, you must create an instance of the class EKRecurrenceRule to provide to your

event. This class is an incredibly flexible method with which to programmatically

implement recurrent events, due to the sheer possibility of recurrence combinations.

With only one method, a developer can create nearly any combination of recurrences

imaginable. You will define a slightly complex one here:

EKRecurrenceRule *rule = [[EKRecurrenceRule alloc]
 initRecurrenceWithFrequency:EKRecurrenceFrequencyDaily
 interval:2
 daysOfTheWeek:[NSArray
arrayWithObjects:[EKRecurrenceDayOfWeek dayOfWeek:2], [EKRecurrenceDayOfWeek
dayOfWeek:3], nil]
 daysOfTheMonth:nil
 monthsOfTheYear:nil
 weeksOfTheYear:nil
 daysOfTheYear:nil
 setPositions:nil
 end:[EKRecurrenceEnd
recurrenceEndWithOccurrenceCount:20]];

You would then add this rule to your event with the following line of code. The

recurrenceRules property used is inherited from the EKCalendarItem class as of iOS 5.0.

recurringEvent.recurrenceRules = [NSArray arrayWithObject:rule];

http://

CHAPTER 8: User Data Recipes 298

The function of each parameter of this method is listed as follows. For any parameter,

passing a value of nil indicates a lack of restriction.

 InitRecurrenceWithFrequency: This specifies a basic level of how

often the event will repeat, whether on a daily, weekly, monthly, or

annual basis.

 Interval: Specifies the interval of repetition based on the frequency. A

recurring event with a weekly frequency and an interval of 3 will repeat

every three weeks.

 DaysOfTheWeek: This property takes an NSArray of objects that must be

accessed through the EKRecurrenceDayOfWeek +dayOfWeek method,

which takes an integer parameter representing the day of the week,

starting with 1 referring to Sunday. By setting this parameter, a

developer can create an event to repeat every few days, but only if the

event falls on specified days of the week.

 MonthsOfTheYear: Similar to DaysOfTheWeek, this parameter specifies

which months to restrict a recurring event to. It is valid only for events

with a yearly frequency.

 WeeksOfTheYear: Just like MonthsOfTheYear, this is restricted only to

events with an annual frequency, but with specific weeks to restrict

instead of months.

 DaysOfTheYear: Another parameter restricted to annually recurring

events, this allows you to specify only certain days, counting from

either the beginning or the end of the year, to filter a specific event to.

 SetPositions: This parameter is the ultimate filter, allowing you to

entirely restrict the event you have created to only specific days of the

year. In this way, an event that repeats daily could, for example, be

restricted to occur only on the 28th, 102nd, and 364th days of the year

for whatever reason a developer might choose.

 End: This parameter requires a class call to the EKRecurrenceEnd class,

and specifies when your event will no longer repeat. The two class

methods to choose between are as follows:

 +recurrenceEndWithEndDate: Allows the developer to specify a

date after which the event will no longer repeat

 +recurrenceEndWithOccurenceCount: Restricts an event’s

repetition to a limited number of occurrences

Based on all this, you can see that the recurring event you have created for

demonstration will repeat every two days, but only on either a Monday or a Tuesday, up

to a limit of 20 occurrences.

Based on the different functionalities you have implemented, you should be able to see

exactly how much possibility there is in using the Event Kit framework to interact with a

http://

CHAPTER 8: User Data Recipes 299

user’s schedule and events. Regardless of whether you wish to allow a user to interact

with his or her schedule or you prefer a more programmatic, behind-the-scenes

approach, the tools needed to perform your goal are easily available and incredibly

simple to use, despite having immense flexibility.

Recipe 8–7: Basic Address Book Access
One of the absolutely most imperative functionalities in any modern device is the ability

to store contact information, and, as such, you should take care to develop applications

that can take advantage of this important data. In this recipe, you will cover three basic

functionalities for accessing and dealing with a device’s contacts list.

First, make a new project called “Chapter8Recipe7”, with class prefix “Main”, using the

Single View Application template.

You will need to add in two extra frameworks to your project for this recipe:

AddressBook.framework, and AddressBookUI.framework.

Next, switch over to your view controller’s XIB file, and make a view that resembles the

one in Figure 8–9.

Figure 8–9. XIB file for accessing contact info

http://

CHAPTER 8: User Data Recipes 300

Connect these elements to your header file using the following property names:

firstLabel

lastLabel

phoneLabel

cityLabel

stateLabel

You will not need a property for the UIButton, as you will not need to make any changes

to it for this recipe.

Define an action in your header file for your button to perform called -findPressed:, like

so:

-(IBAction)findPressed:(id)sender;

Now that your interface is set up, you will make sure that your header file is correctly

written. First, add the following two import statements to make sure that you can use

your Address Book and Address Book UI frameworks.

#import <AddressBook/AddressBook.h>
#import <AddressBookUI/AddressBookUI.h>

You will be using an instance of the class ABPeoplePickerNavigationController, and

setting its peoplePickerDelegate property to your view controller, so you need to add a

protocol implementation to your header file. Make your view controller conform to the

ABPeoplePickerNavigationControllerDelegate protocol. Your header file, in its entirety,

should now look like so:

#import <UIKit/UIKit.h>
#import <AddressBook/AddressBook.h>
#import <AddressBookUI/AddressBookUI.h>

@interface MainViewController : UIViewController
<ABPeoplePickerNavigationControllerDelegate>

@property (strong, nonatomic) IBOutlet UILabel *firstLabel;
@property (strong, nonatomic) IBOutlet UILabel *lastLabel;
@property (strong, nonatomic) IBOutlet UILabel *phoneLabel;
@property (strong, nonatomic) IBOutlet UILabel *stateLabel;
@property (strong, nonatomic) IBOutlet UILabel *cityLabel;
-(IBAction)findPressed:(id)sender;
@end

Switch over to your implementation file, and implement a simple -viewDidLoad method

to reset the text on your UILabels.

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.firstLabel.text = @"...";
 self.lastLabel.text = @"...";
 self.phoneLabel.text = @"...";
 self.cityLabel.text = @"...";

http://

CHAPTER 8: User Data Recipes 301

 self.stateLabel.text = @"...";
}

You will implement the -findPressed: method you defined earlier to create an instance

of ABPeoplePickerNavigationController, set its delegate, and then present it modally.

-(void)findPressed:(id)sender
{
 ABPeoplePickerNavigationController *picker =[[ABPeoplePickerNavigationController
alloc] init];
 picker.peoplePickerDelegate = self;
 [self presentModalViewController:picker animated:YES];
}

Now you just need to create your delegate methods, of which there are three you are

required to implement. The first, and simplest, is for when the picker controller is

canceled.

-(void)peoplePickerNavigationControllerDidCancel:(ABPeoplePickerNavigationController
*)peoplePicker
{
 [self dismissModalViewControllerAnimated:YES];
}

Next, you will define your main delegate method to handle the selection of a contact.

You will go through this method implementation step-by-step to discuss each part.

First, your method header looks like so:

-(BOOL)peoplePickerNavigationController:(ABPeoplePickerNavigationController
*)peoplePicker shouldContinueAfterSelectingPerson:(ABRecordRef)person

The first odd thing you may notice about this header is that the variable person is of type

ABRecordRef, which does not have a “*” after it. This essentially means that person is not

a pointer, and thus will not be used to call methods. Instead, you will use pre-defined

functions that utilize and access it. As you will see, many parts of the Address Book

framework utilize this more “C-based” style.

Inside the method body, you will first perform your easiest accesses, which will be for

the first and last names of the chosen contact.

self.firstLabel.text = (__bridge_transfer NSString *)ABRecordCopyValue(person,
kABPersonFirstNameProperty);
self.lastLabel.text = (__bridge_transfer NSString *)ABRecordCopyValue(person,
kABPersonLastNameProperty);

The ABRecordCopyValue() function will be your go-to call for any kind of accessing data

in this section. It takes two parameters, the first being the ABRecordRef that you want to

access, and the second being a pre-defined PropertyID that instructs the function on

which piece of data to retrieve.

There are two types of values that can be dealt with by this function: single values and

multi-values. For these first two calls, you are dealing only with single values, for which

the ABRecordCopyValue() function returns a type of CFStringRef. You can cast this up to

an NSString by adding the (__bridge_transfer NSString *) code in front of the value.

http://

CHAPTER 8: User Data Recipes 302

The __bridge_transfer command is new to iOS 5 with Automatic Reference Counting

(ARC), and simply specifies that ARC will now handle the value being “bridged.”

The next value you can access is the person’s phone number, which is a multi-value.

Multi-values are usually used for the properties of a person for which multiple entries

can be given, such as the address, phone number, or e-mail. When you copy this, you

will receive a variable of type ABMultiValueRef, which you can then use to access a

specific value.

ABMultiValueRef multi = ABRecordCopyValue(person, kABPersonPhoneProperty);
CFStringRef phoneNumber = ABMultiValueCopyValueAtIndex(multi, 0);
self.phoneLabel.text = (__bridge_transfer NSString *)phoneNumber;
CFRelease(phoneNumber);

By using the call ABMultiValueCopyValueAtIndex(multi, 0);, you have specified that

you want the first phone number stored for the given user. From there, you can set your

label’s text just as you did before.

Since you created a new CFStringRef phoneNumber to point to your value, you should

release it with the CFRelease() command, as shown in the previous snippet.

The next multi-value you will deal with will be the main address of the chosen contact.

When dealing with the address, an extra step is required, as an address is stored as a

CFDictionary. You will retrieve this dictionary using the

ABMultiValueCopyValueAtIndex() function again, and then query its values:

ABMultiValueRef address = ABRecordCopyValue(person, kABPersonAddressProperty);
 if (ABMultiValueGetCount(address) > 0)
 {
 CFDictionaryRef dictionary = ABMultiValueCopyValueAtIndex
 (address, 0);
 CFStringRef cityKey = kABPersonAddressCityKey;
 CFStringRef stateKey = kABPersonAddressStateKey;
 self.cityLabel.text = (__bridge_transfer NSString
*)CFDictionaryGetValue(dictionary, (void *)cityKey);
 self.stateLabel.text = (__bridge_transfer NSString
*)CFDictionaryGetValue(dictionary, (void *)stateKey);

 CFRelease(dictionary);
 CFRelease(cityKey);
 CFRelease(stateKey);
 }
 else
 {
 self.cityLabel.text = @"...";
 self.stateLabel.text = @"...";
 }

Finally, you can dismiss your modal view controller, as well as add your return value for

this method. As a whole, your method should look like so:

-(BOOL)peoplePickerNavigationController:(ABPeoplePickerNavigationController
*)peoplePicker shouldContinueAfterSelectingPerson:(ABRecordRef)person
{
 self.firstLabel.text = (__bridge_transfer NSString *)ABRecordCopyValue(person,
kABPersonFirstNameProperty);

http://

CHAPTER 8: User Data Recipes 303

 self.lastLabel.text = (__bridge_transfer NSString *)ABRecordCopyValue(person,
kABPersonLastNameProperty);

 ABMultiValueRef multi = ABRecordCopyValue(person, kABPersonPhoneProperty);
 CFStringRef phoneNumber = ABMultiValueCopyValueAtIndex(multi, 0);
 self.phoneLabel.text = (__bridge_transfer NSString *)phoneNumber;
 CFRelease(phoneNumber);

 ABMultiValueRef address = ABRecordCopyValue(person, kABPersonAddressProperty);
 if (ABMultiValueGetCount(address) > 0)
 {
 CFDictionaryRef dictionary = ABMultiValueCopyValueAtIndex
 (address, 0);
 CFStringRef cityKey = kABPersonAddressCityKey;
 CFStringRef stateKey = kABPersonAddressStateKey;
 self.cityLabel.text = (__bridge_transfer NSString
*)CFDictionaryGetValue(dictionary, (void *)cityKey);
 self.stateLabel.text = (__bridge_transfer NSString
*)CFDictionaryGetValue(dictionary, (void *)stateKey);

 CFRelease(dictionary);
 CFRelease(cityKey);
 CFRelease(stateKey);
 }
 else
 {
 self.cityLabel.text = @"...";
 self.stateLabel.text = @"...";
 }

 [self dismissModalViewControllerAnimated:YES];
 return NO;
}

There is a third method you must implement in order to correctly conform to your

protocol, which handles the selection of a specific contact’s property. However, since

this recipe is simply returning after the selection of a contact, this method will not

actually be called. You will give it a simple implementation similar to your cancellation

method.

-(BOOL)peoplePickerNavigationController:(ABPeoplePickerNavigationController
*)peoplePicker shouldContinueAfterSelectingPerson:(ABRecordRef)person
property:(ABPropertyID)property identifier:(ABMultiValueIdentifier)identifier
{
 [self dismissModalViewControllerAnimated:YES];
 return NO;
}

CAUTION: Whenever you are copying values from an ABRecordRef, include a check to make

sure that a value exists, like you did with the address. The previous code assumed that the first

name, last name, and phone number exist, but an empty query can result in your application

throwing an exception.

http://

CHAPTER 8: User Data Recipes 304

Your application should now be able to access the address book, select a user, and

display the information for which you have queried, as demonstrated by Figures 8–10

and 8–11.

Figure 8–10. Address book contact listing

http://

CHAPTER 8: User Data Recipes 305

Figure 8–11. Your application's display of contact info

While you have not included code to access all the possible values for an ABRecordRef,

you should be able to use any combination of the utilized functions to access whichever

ones you need.

Recipe 8–8: Setting Contact Information
Just as important as being able to access values is being able to set them. To this end,

you will implement two different methods for creating and setting values of a contact

and adding it to your device’s address book.

First, make a new project called “Chapter8Recipe8”, with the class prefix “Main”, using

the Single View Application template.

Add in AddressBook.framework and AddressBookUI.framework to your project just as you

have been doing.

You will start out with an incredibly simple user interface that allows users to create a

new contact themselves, so in your view controller’s XIB file, add a single UIButton,

connected to an action called -newContactPressed:, as shown by Figure 8–12.

http://

CHAPTER 8: User Data Recipes 306

Figure 8–12. Simple XIB setup for creating contacts

Next, you need to import your frameworks into your header file and configure your view

controller’s protocol to conform to. Conform your view controller to the

ABNewPersonViewControllerDelegate protocol, and then add the usual two import

statements.

#import <AddressBook/AddressBook.h>
#import <AddressBookUI/AddressBookUI.h>

Now, you will create an incredibly simple implementation, for which you have to define

only two methods: the action to handle the selection of your button, and the delegate

method for an ABNewPersonViewController.

Your action method will look like so:

-(void)newContactPressed:(id)sender
{
 ABNewPersonViewController *view = [[ABNewPersonViewController alloc] init];
 view.newPersonViewDelegate = self;

 UINavigationController *newNavigationController = [[UINavigationController alloc]
initWithRootViewController:view];
 [self presentModalViewController:newNavigationController animated:YES];
}

Here is the delegate method:

http://

CHAPTER 8: User Data Recipes 307

-(void)newPersonViewController:(ABNewPersonViewController *)newPersonView
didCompleteWithNewPerson:(ABRecordRef)person
{
 if (person == NULL)
 {
 NSLog(@"User Cancelled Creation");
 }
 else
 NSLog(@"Successfully Created New Person");
 [self dismissModalViewControllerAnimated:YES];
}

Unlike most modal view controllers that you deal with, the ABNewPersonViewController

has only one delegate method that handles both success and cancellation, as opposed

to others that have one method for each. As you can see, you differentiate between

each result by checking to see if the ABRecordRef person parameter is not NULL. Since

this parameter is not a pointer, you compare it to the NULL value instead of nil.

At this point, you should be able to allow your user to create a new contact to be added

to the address book, as your simulated app in Figure 8–13 shows.

Figure 8–13. A blank ABNewPersonViewController

http://

CHAPTER 8: User Data Recipes 308

While you have provided users with a great deal of flexibility as to how they want their

contacts to be set up, you have also provided them with a great deal of work to do, in

that they have to type in every value that they want. You will next see how to

programmatically create records and set their values.

First, modify your user interface to include a series of UITextFields, each with a

Placeholder text value describing their use, resembling Figure 8–14.

Figure 8–14. User interface for specifying new contact info

Connect each UITextField to your header file with the following respective property

names:

 textFieldFirst

 textFieldLast

 textFieldPhone

 textFieldStreet

 textFieldCity

 textFieldState

 textFieldZip

Now, you can implement your code to create a new contact. To do this, you must obtain

an ABRecordRef through the function ABPersonCreate(), and then set its values. The

http://

CHAPTER 8: User Data Recipes 309

overall code for this will appear like so, which can be added to your -
newContactPressed: method.

ABMutableMultiValueRef multi =
 ABMultiValueCreateMutable(kABMultiStringPropertyType);
 CFErrorRef anError = NULL;
 ABMultiValueIdentifier multivalueIdentifier;
 bool didAdd, didSet;

 didAdd = ABMultiValueAddValueAndLabel(multi, (__bridge
CFStringRef)self.textFieldPhone.text,
 kABPersonPhoneMobileLabel,
&multivalueIdentifier);
 if (!didAdd)
 {
 NSLog(@"Error Adding Phone Number");
 }

 ABRecordRef aRecord = ABPersonCreate();

 ABRecordSetValue(aRecord, kABPersonFirstNameProperty, (__bridge
CFStringRef)self.textFieldFirst.text, nil);
 ABRecordSetValue(aRecord, kABPersonLastNameProperty, (__bridge
CFStringRef)self.textFieldLast.text, nil);

 didSet = ABRecordSetValue(aRecord, kABPersonPhoneProperty, multi, &anError);
 if (!didSet)
 {
 NSLog(@"Error Setting Phone Value");
 }
 CFRelease(multi);

 ABMutableMultiValueRef address =
 ABMultiValueCreateMutable(kABDictionaryPropertyType);

 // Set up keys and values for the dictionary.
 CFStringRef keys[5];
 CFStringRef values[5];
 keys[0] = kABPersonAddressStreetKey;
 keys[1] = kABPersonAddressCityKey;
 keys[2] = kABPersonAddressStateKey;
 keys[3] = kABPersonAddressZIPKey;
 keys[4] = kABPersonAddressCountryKey;
 values[0] = (__bridge CFStringRef)self.textFieldStreet.text;
 values[1] = (__bridge CFStringRef)self.textFieldCity.text;
 values[2] = (__bridge CFStringRef)self.textFieldState.text;
 values[3] = (__bridge CFStringRef)self.textFieldZip.text;
 values[4] = CFSTR("USA");

 CFDictionaryRef aDict = CFDictionaryCreate(kCFAllocatorDefault,(void *)keys,
 (void *)values,5,
 &kCFCopyStringDictionaryKeyCallBacks,
 &kCFTypeDictionaryValueCallBacks);

 ABMultiValueIdentifier dictionaryIdentifier;
 bool didAddAddress;

http://

CHAPTER 8: User Data Recipes 310

 didAddAddress = ABMultiValueAddValueAndLabel(address, aDict, kABHomeLabel,
&dictionaryIdentifier);
 if (!didAddAddress)
 {
 NSLog(@"Error Adding Address");
 }

 CFRelease(aDict);

 ABRecordSetValue(aRecord, kABPersonAddressProperty, address, nil);

By inspecting this code, you can view the different techniques for creating and setting

each type of property, from single values, to multi-values, to the dictionary-based

address multi-value.

As with before, you must use the __bridge command in order to move your NSString
variables out of ARC.

You now have two choices as to how to implement the creation of your new person in

your device. A very user-friendly method would be to then load up your

ABNewPersonViewController as before, but this time give it the created ABPersonRef to

populate itself with. You can do this by setting the controller’s displayedPerson
property, by adding the following line.

 view.displayedPerson = aRecord;

If you choose this option, your application will bring up the views shown in Figure 8–15

in order to create a new contact. Notice that the new contact’s information must be

approved by the user in order to complete its creation. Tap to edit any of the text fields

in the contact if the Done button appears grayed out.

http://

CHAPTER 8: User Data Recipes 311

Figure 8–15. On the left, your app specifying new contact information, with resulting contact created on the right

Your second option would be to scrap the use of the ABNewPersonViewController and

simply create your contact programmatically, saving the user the extra step of approving

the contact. Since you already have your ABPersonRef, this is actually fairly simply done

in a few lines of code, which would replace the code to set up and display an

ABNewPersonViewController.

ABAddressBookRef addressBook = ABAddressBookCreate();
ABAddressBookAddRecord(addressBook, aRecord, nil);
ABAddressBookSave(addressBook, nil);

The ABAddressBookCreate() function is very simple, and simply returns an

ABAddressBookRef of your device’s address book. After adding the record using

ABAddressBookAddRecord(), you simply have to save your changes.

No matter which option chosen, you still need to release two more variables before the

end of your method, like so:

CFRelease(aRecord);
CFRelease(address);

http://

CHAPTER 8: User Data Recipes 312

Recipe 8–9: Viewing Contacts
Now that we have gone over accessing and setting values, a very simple next step is to

discuss how to set up a view controller to see a contact’s details.

In a new project called “Chapter8Recipe9”, with class prefix “MainViewController”, after

importing the Address Book and Address Book UI frameworks and adding the

appropriate #import statements for each, add a UITableView to your view controller.

Connect it to your header file with the property name tableViewContacts. Make your

view controller conform to the UITableViewDelegate, UITableViewDataSource, and

ABPersonViewControllerDelegate protocols as well.

Create a property of type (NSArray *) called contacts to store your contact list.

Overall, your header file should look like so:

#import <UIKit/UIKit.h>
#import <AddressBook/AddressBook.h>
#import <AddressBookUI/AddressBookUI.h>

@interface MainViewController : UIViewController <UITableViewDelegate,
UITableViewDataSource, ABPersonViewControllerDelegate>

@property (strong, nonatomic) IBOutlet UITableView *tableViewContacts;
@property (strong, nonatomic) NSArray *contacts;
@end

Before we continue, you will need to set your main view controller inside of a

UINavigationController. Switch over to the implementation file for your app delegate,

and change your -application:DidFinishLaunchingWithOptions: method to look like

so:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 self.viewController = [[MainViewController alloc]
initWithNibName:@"MainViewController" bundle:nil];
 UINavigationController *navcon = [[UINavigationController alloc]
initWithRootViewController:self.viewController];
 self.window.rootViewController = navcon;
 [self.window makeKeyAndVisible];
 return YES;
}

Now, back in your view controller’s implementation file, create a method to update your

array of contacts like so:

-(void)updateContacts
{
 ABAddressBookRef addressBook = ABAddressBookCreate();
 CFArrayRef people = ABAddressBookCopyArrayOfAllPeople(addressBook);
 self.contacts = (__bridge NSArray *)people;
 CFRelease(people);

http://

CHAPTER 8: User Data Recipes 313

}

This should make your -viewDidLoad method very simple to implement.

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.tableViewContacts.delegate = self;
 self.tableViewContacts.dataSource = self;
 self.title = @"Contacts Table";
 [self updateContacts];
}

You should also change your -viewWillAppear: method to refresh your table in case of

any changes made outside of the application.

- (void)viewWillAppear:(BOOL)animated
{
 [self updateContacts];
 [self.tableViewContacts reloadData];
 [super viewWillAppear:animated];
}

Now you implement your UITableView data source methods. You need one to specify

the number of rows you have:

-(NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return [[NSNumber numberWithInt:[self.contacts count]] intValue];
}

You will have a fairly simple method for creating your cells, based on the accessing

code that you used in previous recipes.

-(UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil)
 {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleValue1
reuseIdentifier:CellIdentifier];
 }

 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 cell.textLabel.backgroundColor = [UIColor clearColor];
 cell.textLabel.font = [UIFont systemFontOfSize:19.0];

 ABRecordRef current = (__bridge ABRecordRef)[self.contacts
objectAtIndex:indexPath.row];

 NSString *firstName = (__bridge_transfer NSString *)ABRecordCopyValue(current,
kABPersonFirstNameProperty);
 NSString *lastName = (__bridge_transfer NSString *)ABRecordCopyValue(current,
kABPersonLastNameProperty);

http://

CHAPTER 8: User Data Recipes 314

 cell.textLabel.text = [NSString stringWithFormat:@"%@ %@", firstName, lastName];

 return cell;
}

The third data source method you need is for the selection of a cell, which will present

an instance of ABPersonViewController with the selected contact’s information.

-(void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath
{
 ABRecordRef chosen = (__bridge ABRecordRef)[self.contacts
objectAtIndex:indexPath.row];

 ABPersonViewController *view = [[ABPersonViewController alloc] init];
 view.personViewDelegate = self;
 view.displayedPerson = chosen;
 view.allowsEditing = NO;

 [self.navigationController pushViewController:view animated:YES];
 [tableView deselectRowAtIndexPath:indexPath animated:NO];
}

Finally, you just need to implement the ABPersonViewController’s delegate method to

handle the selection of a property. This method can simply return a BOOL that will

decide whether the user will be able to call or text a phone number, or any other default

property for a value, from your application.

-(BOOL)personViewController:(ABPersonViewController *)personViewController
shouldPerformDefaultActionForPerson:(ABRecordRef)person property:(ABPropertyID)property
identifier:(ABMultiValueIdentifier)identifier
{
 return YES;
}

Your application should have a very rudimentary table view displaying the names of all

the contacts in your phone, assuming that you have only individuals listed in your

contact list, as opposed to any groups. Figure 8–16 demonstrates the resulting view of

selecting a record in your custom-made contact list. Whenever dealing with an

ABRecordRef for which you are not sure whether it is an ABPersonRef or an ABGroupRef,

you should always include code to check for each case and act accordingly.

http://

CHAPTER 8: User Data Recipes 315

Figure 8–16. Contact info displayed after selecting a row in your table

Summary
As you can see, there are a great variety of methods and functionalities for interacting

with any specific user’s personal data. From recurring events, to multiple calendars, to

the vast number of contacts and phone numbers that most users have, all of this

information can be used to personalize an application for each and every customer,

while developing generically for all of them. In terms of user experience, being able to

access, display, and edit all this information allows us as developers to create more

powerful, more unique, and more useful applications, which in the end will translate to a

happier customer, and a higher-quality product.

http://

317

 Chapter

UITableView Recipes

All day, every single day, we are receiving information. Whether in the form of video,

radio, music, e-mails, 140-character messages, or even sights and sounds, there is

always new data to acquire and process. As developers, we work to create and manage

the medium between this information and the end users through data organization and

display. We must be able to take the immense stream of information available and

process it down to simple, concise pieces that our specific audience will be interested

in. On top of this, we also have to make our data look visually appealing, while still

maintaining efficiency and organization. In iOS development, one of our greatest tools in

this goal is the UITableView: an incredibly flexible yet simple interface designed to be

easy to use for both developers and customers. Throughout this chapter, we will focus

on the step-by-step methodology for creating, implementing, and customizing these

useful tools.

Recipe 9–1: Creating an Ungrouped Table
There are two kinds of UITableViews you can use in iOS: the grouped table and the

ungrouped table. Your use of one or the other will depend on any given application, but

you will start by focusing on an ungrouped table due to its ease of implementation.

In order to build a fully functional and customizable UITableView-based application, you

will be starting from the ground up with an empty application, and ending up with a

useful table to display information about various countries. Make a new project, and

select the Empty Application template, as in Figure 9–1. This will give you only an

application delegate, from which you can build all of your view controllers.

9

http://

CHAPTER 9: UITableView Recipes 318

Figure 9–1. Selecting an empty application to start from scratch

You will be using a single project throughout this entire chapter, so, rather than naming

projects by recipe name, give your project whichever name you prefer (I chose

“Countries”, since the application will be focused on displaying information about

different countries), and create your project. I have used the class prefix “Main”, which

will apply only to your app delegate files since you are using an empty application.

Since you used an empty application, you will start by making your main view controller,

which will contain your UITableView.

Create a new file, and select the UIViewController Subclass template.

On the next screen, enter a name for your view controller, and make sure that the class

is listed as a subclass of UIViewController. Name it “MainTableViewController”.

NOTE: Some may find it more convenient to create a subclass of UITableViewController, as

you are immediately given a UITableView as well as some of the methods required to use it.

The downside of this method is that the UITableView given in the controller’s XIB file is more

difficult to configure and re-frame. For this reason, you are using a UIViewController

subclass, and you will simply add in your UITableView, and its methods, yourself.

Since you will be focusing on the idea of a table in your application, you will start by

dragging a UITableView out from the library into your view. Rather than making the

table take up the entire view, you will shrink it down a bit to have a 20-point padding

around it. Switch to the main view, and change the background color to a light gray so

http://

CHAPTER 9: UITableView Recipes 319

that you can differentiate it from your UITableView. This will result in the display shown

in Figure 9–2.

Figure 9–2. Configuring a UITableView in a XIB file

Connect your UITableView to a property in your header file using the property name

tableViewCountries.

Next, switch over to your view controller’s header file. You will need your view controller

to conform to a couple of protocols in order to fully implement your UITableView. Add

the UITableViewDelegate and UITableViewDataSource protocols, so your header now

looks like so:

 @interface MainTableViewController : UIViewController <UITableViewDelegate,
UITableViewDataSource>

Next, you will need a property of type NSArray to store the information that you will use

to display your table’s information, called countries. Make sure to properly synthesize

this array, and set its pointer equal to nil in your -viewDidUnload method.

 @property (strong, nonatomic) NSMutableArray *countries;

Before you continue to implement your view controller, you need to set up your model to

store your data.

Create a new file as before, but choose the “Objective-C class” template. Name your

class “Country”, and make sure that it is a subclass of NSObject, as in Figure 9–3.

http://

CHAPTER 9: UITableView Recipes 320

Figure 9–3. Creating your Country class as a subclass of NSObject

For your application, you will make your Country objects have four properties: three

NSStrings referring to a country’s name, capital city, and motto, and a UIImage that will

contain the country’s flag. Define these properties in your Country.h header file like so:

 @property (nonatomic, strong) NSString *name;
 @property (nonatomic, strong) NSString *capital;
 @property (nonatomic, strong) NSString *motto;
 @property (nonatomic, strong) UIImage *flag;

As with your view controllers, you need to synthesize all these properties in your

implementation file. Unlike your view controllers, however, you do not need to set them

equal to nil in any method, since there is no -viewdidUnload method.

 @synthesize name, capital, motto, flag;

Now that your model is set up, you can return to your view controller. The compiler will

need to be able to access the methods of the new Country class that you have just set

up, so add the following import statement to the header of your view controller.

 #import "Country.h"

Now, you can set up your data to be used in your UITableView. Before you proceed,

make sure you have downloaded the image files for the flags that you will be using for

the countries you add. Here, I will use those of the United States, England (as opposed

to the UK), Scotland, France, and Spain. Here I have used some public domain flag

images from Wikipedia, more of which are available at

http://en.wikipedia.org/wiki/Gallery_of_country_flags.

http://en.wikipedia.org/wiki/Gallery_of_country_flags
http://

CHAPTER 9: UITableView Recipes 321

CAUTION: Whenever you are working with images, watch carefully for any and all copyright

issues. Public domain images, such as those used here from Wikipedia, are free to use and fairly

easy to find.

Once you have the files all downloaded and visible in the Finder, select and drag all of

them into your project in Xcode under Supporting Files. A dialog will appear with options

for adding the files to your project. Make sure that the option labeled “Copy items into

destination group’s folder (if needed)” is checked, as in Figure 9–4.

Figure 9–4. Dialog for adding files; make sure the first box is checked.

In your -viewDidLoad method, you will make your testing data with the five countries I

mentioned earlier by adding the following code:

 Country *usa = [[Country alloc] init];
 usa.name = @"United States of America";
 usa.motto = @"E Pluribus Unum";
 usa.capital = @"Washington, D.C.";
 usa.flag = [UIImage imageNamed:@"usa.png"];

 Country *france = [[Country alloc] init];
 france.name = @"French Republic";
 france.motto = @"Liberté, Égalité, Fraternité";
 france.capital = @"Paris";
 france.flag = [UIImage imageNamed:@"france.png"];

 Country *england = [[Country alloc] init];
 england.name = @"England";

http://

CHAPTER 9: UITableView Recipes 322

 england.motto = @"Dieu et mon droit";
 england.capital = @"London";
 england.flag = [UIImage imageNamed:@"england.png"];

 Country *scotland = [[Country alloc] init];
 scotland.name = @"Scotland";
 scotland.motto = @"In My Defens God Me Defend";
 scotland.capital = @"Edinburgh";
 scotland.flag = [UIImage imageNamed:@"scotland.png"];

 Country *spain = [[Country alloc] init];
 spain.name = @"Kingdom of Spain";
 spain.motto = @"Plus Ultra";
 spain.capital = @"Madrid";
 spain.flag = [UIImage imageNamed:@"spain.png"];

Make sure to add all these Country objects to your array with the following line:

 self.countries = [NSMutableArray arrayWithObjects:usa, france, england, scotland,
spain, nil];

Now that your testing data is all set up, you will focus on the construction of your

UITableView through the use of its delegate and data source methods. Start by setting

these two properties to your view controller in your -viewDidLoad with the following

lines.

 self.tableViewCountries.delegate = self;
 self.tableViewCountries.dataSource = self;

You can also set the title for the view controller, which will appear at the top your of

navigation bar with a simple command.

 self.title = @"Countries";

For the sake of organization, all the methods that a UITableView can call are split into

two groups, the delegate methods and the data source methods. Delegate methods are

used to handle any kind of visual elements of the UITableView, such as the row height of

cells. Data source methods, on the other hand, deal with the information displayed in

the UITableView, such as the configuration of any given cell’s information.

In order to correctly create an ungrouped UITableView, there are two main methods that

you must correctly implement.

First, you need to specify to your UITableView how many rows will be displayed via the -
tableView:numberOfRowsInSection: method.

-(NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return [self.countries count];
}

Since your table is ungrouped, you have only one section, so this method is nice and

easy.

Second, you must create a method to specify how the UITableView’s cells are

configured using the -tableView:cellForRowAtIndexPath: method. Here is a generic

implementation of this method that you will modify for your data.

http://

CHAPTER 9: UITableView Recipes 323

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil)
{
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 cell.textLabel.font = [UIFont systemFontOfSize:19.0];
 cell.detailTextLabel.font = [UIFont systemFontOfSize:12];
 }

 cell.textLabel.text=[NSString stringWithFormat:@"Cell %i", indexPath.row];

 return cell;
}

Whenever you are dealing with a UITableView, it is pretty much always a good idea to

“reuse” cells. Since most of the time not all the cells in a UITableView will be currently in

the view of the user, you are able to reuse any cells that are not currently being

displayed through the use of the UITableView method -
dequeueReusableCellWithIdentifier:, allowing you to save on both memory and time,

since you can perform any generic setup, such as font size, background color, etc., only

on the initial creation of the cell.

In the previous sample, you can see that you first attempt to de-queue a reusable cell. If

none are available (i.e., if cell is nil), then you create a new cell and give it a generic

setup that can be reused for all of your cells. Then, no matter whether the cell was de-

queued or created, you update the text to the appropriate value.

It is even possible to set up multiple differently configured cells, and specify which one

is used or reused via the CellIdentifier.

The last task you need to do to get your program running is ensure that the application

delegate, at the start of your program, will present your view controller. Xcode did not do

this for you already because you chose the empty template.

In your application delegate implementation, import the header file of your view

controller so that the compiler doesn’t complain.

 #import "MainTableViewController.h"

You will need to set up properties in your application delegate’s header file to store both

your UINavigationController and your main view controller. Create these like so:

 @property (nonatomic, strong) UINavigationController *navcon;
 @property (nonatomic, strong) MainTableViewController *tableVC;

Make sure to synthesize both with the following line in your application delegate

implementation file.

 @synthesize navcon, tableVC;

http://

CHAPTER 9: UITableView Recipes 324

Now you just need to create your UINavigationController to display and manage the

view controller and add its view as a subview of your application’s window. Overall, your

-application:didFinishLaunchingWithOptions: method should look like so:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

 self.tableVC = [[MainTableViewController alloc] init];
 self.navcon = [[UINavigationController alloc] initWithRootViewController:tableVC];

 [self.window addSubview:navcon.view];
 [self.window makeKeyAndVisible];
 return YES;
}

Upon running this project in the simulator, you will see a basic view of a UITableView

with some generic information, as in Figure 9–5.

Figure 9–5. Basic application with a UITableView

http://

CHAPTER 9: UITableView Recipes 325

Now that your application is up, running, and displaying some kind of information, you

can work on your specific implementation.

To configure your -tableView:cellForRowAtIndexPath: method to properly fit your data,

the first thing you need to do is change the display style of your rows. Modify the

allocation/initialization line in your method to resemble the following:

cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellIdentifier];

There are four different UITableViewCell styles that you can use, each with a slightly

different display:

 UITableViewCellStyleDefault: Only one label, as shown in Figure 9–5

 UITableViewCellStyleSubtitle: Just like the Default style, but with a

second subtitle line underneath the main text

 UITableViewCellStyleValue1: Two text lines, with the primary line on

the left side of the cell and the secondary detail text label on the right

 UITableViewCellStyleValue2: Two text lines with the focus on the

detail text label

Of these four styles, only the UITableViewCellStyleDefault style has only one line of

text.

Next, you can set the cell’s text label to actually be the name of the country, rather than

simply the count of the cell. Adjust the setting of the cell.textLabel.text property that

is done last in the method to the following:

 cell.textLabel.text = [(Country *)[self.countries objectAtIndex:indexPath.row]
name];

All you had to do here was grab the respective Country object, and call the -name

method on it that was synthesized.

You can set the subtitle of the text very similarly using the detailTextLabel property of

the cell.

 cell.detailTextLabel.text = [(Country *)[self.countries objectAtIndex:indexPath.row]
capital];

The UITableViewCell class also has a property called imageView, which, when given an

image, places the given image to the left of the title label. Implement this by adding the

following line to your cell configuration:

 cell.imageView.image = [(Country *)[self.countries objectAtIndex:indexPath.row]
flag];

You’ll probably notice that if you run your program now, all of your flags will appear, but

with widely varying aspect ratios, making your view look less professional. Setting the

frame of the cell’s imageView will not fix this problem, so here is a quick solution.

First, define a method that will redraw a UIImage into a given size, like so:

http://

CHAPTER 9: UITableView Recipes 326

+ (UIImage *)scale:(UIImage *)image toSize:(CGSize)size
{
 UIGraphicsBeginImageContext(size);
 [image drawInRect:CGRectMake(0, 0, size.width, size.height)];
 UIImage *scaledImage = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 return scaledImage;
}

Place this method’s handler in your header file to avoid any potential compiler problems.

This handler will be written like so:

+ (UIImage *)scale:(UIImage *)image toSize:(CGSize)size;

Then, you can adjust your image setting lines of code to utilize this method.

UIImage *flag = [(Country *)[self.countries objectAtIndex:indexPath.row] flag];
cell.imageView.image = [MainTableViewController scale:flag toSize:CGSizeMake(115, 75)];

After all these configurations, your newly configured -
tableView:cellForRowAtIndexPath: method should resemble the following:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil)
 {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellIdentifier];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 cell.textLabel.font = [UIFont systemFontOfSize:19.0];
 cell.detailTextLabel.font = [UIFont systemFontOfSize:12];
 }

 cell.textLabel.text = [(Country *)[self.countries objectAtIndex:indexPath.row]
name];
 cell.detailTextLabel.text = [(Country *)[self.countries objectAtIndex:indexPath.row]
capital];

 UIImage *flag = [(Country *)[self.countries objectAtIndex:indexPath.row] flag];
 cell.imageView.image = [MainTableViewController scale:flag toSize:CGSizeMake(115,
75)];

 return cell;
}

Your resulting application, if you run it, should resemble Figure 9–6, complete with

country information and flag images!

http://

CHAPTER 9: UITableView Recipes 327

Figure 9–6. Your table populated with country information

A Note on Rounded Corners

Whenever you look at any well-made iOS application, you will probably notice that

almost every single element will have its corners rounded. This is one of those small

details that most people don’t notice, but can dramatically improve the visual quality of

an application, and is actually fairly simple to implement with just two steps.

First, add the following import line to your view controller’s header file:

 #import <QuartzCore/QuartzCore.h>

Once you’ve done that, you can access the layer property of any class that inherits

from UIView, which has a cornerRadius property that can be set. Here you’ll go ahead

and round the corners on your UITableView by adding the following line to your -
viewDidLoad method, resulting in your app resembling Figure 9–7.

 self.tableViewCountries.layer.cornerRadius = 8.0;

http://

CHAPTER 9: UITableView Recipes 328

Figure 9–7. Your UITableView with newly rounded corners

So now that you have a nice little table with your five countries set up and looking good,

you can work on extending beyond the basic functionality of the UITableView. First,

you’ll focus on the most straightforward ability of a UITableView: to act upon the

selection of a specific row.

For the purpose of this recipe, you will build your application in such a way that upon the

selection of a row, a separate view controller is presented that will display all the known

information about the selected country.

First, create a new file, and choose the “UIViewController subclass” template as before,

naming it “CountryInfoViewController”.

Construct this controller’s view in its XIB file to resemble the one shown in Figure 9–8 by

using a combination of UILabels, UITextFields, and a UIImageView. I have added a

slight shadow to the “Country Title” UILabel as shown in Figure 9–8 through the use of

the Attribute inspector, which, though optional, adds quite a bit to the visual design of

the layout.

http://

CHAPTER 9: UITableView Recipes 329

Figure 9–8. CountryInfoViewController’s XIB file and configuration

Connect each UITextField, the UIImageView, and the top “Country Name” UILabel to

your view controller with the following respective property names:

 nameLabel

 textFieldCapital

 textFieldMotto

 imageViewFlag

After switching over to your new view controller’s header file, add the

UITextFieldDelegate protocol to the header, since you will need to be able to

manipulate the behavior of your UITextFields.

In order to make your view controller as generic as possible, you will give it a property of

your Country class in order to hold the currently displayed data. This way, you will

simply populate your view with the necessary data, and if desired, you could even make

it possible to easily re-populate with different data without changing views. Add an

import statement for the Country class.

#import "Country.h"

Create the Country property like so, and then make sure to synthesize it in the

implementation file and set it to nil in -viewDidUnload.

@property (strong, nonatomic) Country *currentCountry;

http://

CHAPTER 9: UITableView Recipes 330

You will later be implementing a delegate method for this CountryInfoViewController to

be able to call, so create a protocol for this by adding the following class and protocol

declarations before the header declaration.

@class CountryInfoViewController;

@protocol CountryInfoDelegate <NSObject>
-(void)countryInfoViewControllerDidFinish:(CountryInfoViewController *)countryVC;
@end

Now you will add a delegate property to your CountryInfoViewController, making sure

that it is required to conform to the protocol you just created. Make sure to synthesize

and nullify it just as with any other property.

@property (strong, nonatomic) id <CountryInfoDelegate> delegate;

In entirety, your header file should resemble the following code.

#import <UIKit/UIKit.h>
#import "Country.h"

@class CountryInfoViewController;
@protocol CountryInfoDelegate <NSObject>

-(void)countryInfoViewControllerDidFinish:(CountryInfoViewController *)countryVC;

@end

@interface CountryInfoViewController : UIViewController <UITextFieldDelegate>

@property (strong, nonatomic) IBOutlet UILabel *nameLabel;
@property (strong, nonatomic) IBOutlet UIImageView *imageViewFlag;
@property (strong, nonatomic) IBOutlet UITextField *textFieldCapital;
@property (strong, nonatomic) IBOutlet UITextField *textFieldMotto;

@property (strong, nonatomic) Country *currentCountry;
@property (strong, nonatomic) id <CountryInfoDelegate> delegate;

@end

Now, in the CountryInfoViewController implementation file, create a method to

populate the view.

-(void)populateViewWithCountry:(Country *)country
{
 self.currentCountry = country;

 self.imageViewFlag.image = country.flag;
 self.nameLabel.text = country.name;
 self.textFieldCapital.text = country.capital;
 self.textFieldMotto.text = country.motto;
}

You will want this method to be called after your view is loaded, but right before your

view is displayed, so you will implement the -viewWillAppear:animated: method like so:

-(void)viewWillAppear:(BOOL)animated
{

http://

CHAPTER 9: UITableView Recipes 331

 [self populateViewWithCountry:self.currentCountry];
}

You will want to be able to dismiss the keyboard after editing your UITextFields, so

implement the -textFieldShouldReturn: delegate method.

-(BOOL)textFieldShouldReturn:(UITextField *)textField
{
 [textField resignFirstResponder];
 return NO;
}

In your -viewDidLoad, configure the two UITextFields by setting their delegates to the

view controller.

self.textFieldMotto.delegate = self;
self.textFieldCapital.delegate = self;

Since you are allowing the user to make changes to your data, you should include a

button to “Revert” back to the original data before it has been overwritten. You will add

this to the right side of your navigation bar by adding the following code to the -
viewDidLoad method.

UIBarButtonItem *revertButton = [[UIBarButtonItem alloc] initWithTitle:@"Revert"
style:UIBarButtonItemStyleBordered target:self action:@selector(revert)];

self.navigationItem.rightBarButtonItems = [NSArray arrayWithObject:revertButton];

NOTE: The rightBarButtonItems property of the UINavigationItem class is a new

addition to iOS 5. It allows the user to set multiple objects to appear in the right side of a

UINavigationBar. This was possible in previous versions of iOS, but was slightly more difficult

as it required a custom-viewed UIBarButtonItem made out of UIToolbar containing the

desired items.

Your entire -viewDidLoad method should look like this:

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.textFieldMotto.delegate = self;
 self.textFieldCapital.delegate = self;

 UIBarButtonItem *revertButton = [[UIBarButtonItem alloc] initWithTitle:@"Revert"
style:UIBarButtonItemStyleBordered target:self action:@selector(revert)];
 self.navigationItem.rightBarButtonItems = [NSArray arrayWithObject:revertButton];
}

The selector “revert” that you specified as your revertButton’s action is easily

implemented:

-(void)revert
{
 [self populateViewWithCountry:self.currentCountry];

http://

CHAPTER 9: UITableView Recipes 332

}

The last thing you need to do is implement functionality to save any changes to the

given Country upon returning to your MainTableViewController. You will implement your

-viewWillDisappear:animated: to do this.

-(void)viewWillDisappear:(BOOL)animated
{
 self.currentCountry.capital = self.textFieldCapital.text;
 self.currentCountry.motto = self.textFieldMotto.text;
 [self.delegate countryInfoViewControllerDidFinish:self];
}

Switch back over to the header file of your MainTableViewController, and add the

CountryInfoDelegate protocol that you created to the header. You will need to import

the class you created first.

#import "CountryInfoViewController.h"

To make your implementation of the CountryInfoViewController delegate method

easier, you will want to create an instance variable that will refer to the index path of

whichever row was selected, so that you can save processing power by refreshing only

that row. After you add the variable of type NSIndexPath, called selectedIndexPath, your

header file should now look like so:

#import <UIKit/UIKit.h>
#import <QuartzCore/QuartzCore.h>
#import "Country.h"
#import "CountryInfoViewController.h"

@interface MainTableViewController : UIViewController <UITableViewDelegate,
UITableViewDataSource, CountryInfoDelegate>{

 NSIndexPath *selectedIndexPath;
}

@property (strong, nonatomic) IBOutlet UITableView *tableViewCountries;
@property (strong, nonatomic) NSMutableArray *countries;

@end

You can now implement the CountryInfoViewController’s delegate method like so:

-(void)countryInfoViewControllerDidFinish:(CountryInfoViewController *)countryVC
{
 if (selectedIndexPath)
 {
 [tableViewCountries beginUpdates];
 [self.tableViewCountries reloadRowsAtIndexPaths:[NSArray
arrayWithObject:selectedIndexPath] withRowAnimation:UITableViewRowAnimationNone];
 [tableViewCountries endUpdates];
 }
 selectedIndexPath = nil;
}

http://

CHAPTER 9: UITableView Recipes 333

The -beginUpdates and -endUpdates methods, though unnecessary here, are very useful

for reloading data in a UITableView, as they specify that any calls to reload data in

between them should be animated. Since all of your reloading of data occurs while the

UITableView is off-screen, this is not quite necessary, but it does not harm your

application.

Finally, in order to actually act upon the selection of a given row in a UITableView, all you

need to do is implement the UITableView’s delegate method -
tableView:didSelectRowAtIndexPath:.

-(void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath
{
 [tableView deselectRowAtIndexPath:indexPath animated:YES];

 selectedIndexPath = indexPath;

 Country *chosenCountry = [self.countries objectAtIndex:indexPath.row];
 CountryInfoViewController *infoVC = [[CountryInfoViewController alloc] init];
 infoVC.delegate = self;
 infoVC.currentCountry = chosenCountry;

 [self.navigationController pushViewController:infoVC animated:YES];
}

The UITableView class also has multiple other methods for dealing with the selection or

deselection of a row, including -tableView:willSelectRowAtIndexPath: (which is called

before its -tableView:didSelectRowAtIndexPath counterpart), as well as -
tableView:willDeselectRowAtIndexPath: and -tableView:didDeselectRowAtIndexPath:.

Through the use of these four delegate methods, you can fully customize the behavior of

a UITableView to fit any application.

Upon running this project now, you will able to view and edit country information, as in

Figure 9–9.

http://

CHAPTER 9: UITableView Recipes 334

Figure 9–9. The resulting display of your CountryInfoViewController

Enhanced User Interaction

When you’re dealing with applications that focus on UITableViews, you often may want

to allow the user to access multiple different views from the same table. For example,

the Phone application on an iPhone has a voicemail tab, which displays a UITableView

containing the various voicemails left on the phone. The user can then either play the

voicemail by selecting a row from the table, or, by selecting a smaller blue button on the

right side of the row, view the contact information of the original caller. You can

implement a similar behavior by implementing another UITableView delegate method.

First, you must change the type of “accessory” of the cells in your UITableView. This

refers to the icon displayed on the far right side of any given row. In your -
tableView:cellForRowAtIndexPath: method, find the following line:

 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;

http://

CHAPTER 9: UITableView Recipes 335

Change this value to UITableViewCellAccessoryDetailDisclosureButton. This will give

us the nice little blue button that can respond to touches. The four possible values for

this property are as follows:

 UITableViewCellAccessoryNone: Specifies a lack of accessory

 UITableViewCellAccessoryDisclosureIndicator: Adds a gray arrow on

the right side of a row, as you have been using up until now

 UITableViewCellAccessoryDetailDisclosureButton: Your most recent

choice that specifies an interaction-enabled button

 UITableViewCellAccessoryCheckmark: Adds a checkmark to a given

row; this is especially useful in conjunction with the -

tableView:didSelectRowAtIndexPath: method in order to add and

remove checkmarks from a list as you find necessary.

NOTE: While these four available accessory types are pretty useful and will cover almost any

generic use, it’s certainly easy to think of a reason to want something entirely different over on

the right side of your row. You can easily customize a UITableViewCell’s accessory through

the accessoryView property to be any other UIView subclass.

Now that you turned your accessory into a button, it is actually incredibly easy to

implement an action to handle this interaction. You implement another UITableView

delegate method, -tableView:accessoryButtonTappedForRowWithIndexPath:. For your

testing purposes, you’ll make this action the exact same as that of a row selection, with

an extra NSLog(), though it should be very easy to see how you could implement

different behavior.

-(void)tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath
{
 [tableView deselectRowAtIndexPath:indexPath animated:YES];

 selectedIndexPath = indexPath;

 Country *chosenCountry = [self.countries objectAtIndex:indexPath.row];
 CountryInfoViewController *infoVC = [[CountryInfoViewController alloc] init];
 infoVC.delegate = self;
 infoVC.currentCountry = chosenCountry;

 NSLog(@"Accessory Button Tapped");
 [self.navigationController pushViewController:infoVC animated:YES];
}

When you run this app, tapping the accessory buttons should run your newest

functionalities, as shown in Figure 9–10.

http://

CHAPTER 9: UITableView Recipes 336

Figure 9–10. Your UITableView with detail-disclosure buttons responding to events

A Note on Cell View Customization

Just like with the accessory view, several other parts of a UITableViewCell are

customizable by way of their views. The UITableViewCell class includes several

properties for other views that you can edit, including the following:

 imageView: The UIImageView to the left of the textLabel in a cell, as

shown by your flags in the previous example; if no image is given to

this view, then the cell will appear as if the UIImageView did not exist

(as opposed to a blank UIImageView taking up space).

 contentView: The main UIView of the UITableViewCell, which includes

all the text; you may wish to customize this to implement a more

powerful or versatile UITableViewCell.

 backgroundView: A UIView set to nil in plain-style tables (like you have

used so far), and otherwise for grouped tables; this view will appear

behind all other views in the table, so it is great for specifically

customizing the visual display of the cell.

http://

CHAPTER 9: UITableView Recipes 337

 selectedBackgroundView: This UIView is inserted above the

backgroundView but behind all other views when a cell is selected. It

can also be easily given an alpha animation (fading opacity in or out)

by use of the -setSelected:animated: action.

 multipleSelectionBackgroundView: This UIView acts just like the

selectedBackgroundView, but is used for when a UITableView is

enabled to allow the selection of multiple rows.

 accessoryView: As discussed earlier, this allows you to create entirely

different views for a row’s accessory, so you could implement your

own custom display and behavior beyond the pre-set values.

 editingAccessoryView: This is similar to the accessoryView property

but specifically for when a UITableView is in “editing” mode, which you

will see in detail soon.

While most developers stick to the pretty generic UITableView since it fits well with the

iOS design theme, if you look around you can find some pretty creative implementations

of custom views. All this extra customization may add a lot of development time to your

project, but a high-quality, custom UITableView will certainly stand out in an application

for its uniqueness.

Recipe 9–2: Editing a UITableView
If you look at almost any UITableView in an application you commonly use, such as your

device’s music player, you’ll probably notice that you can edit the table in some way. In

your Music application, you can swipe across a row in order to reveal a Delete button,

which can then remove an item from a table. In your Mail application, you can press the

Edit button in the upper right-hand corner to allow the selection of multiple messages for

deletion, movement, and other functions. Both of these functionalities are based on the

concept of “editing” a UITableView.

The first thing you can look at is the idea of putting your UITableView into “editing”

mode, since for your users to be able to use your editing functionality, they need to be

able to access it. You will do this by adding an Edit button to the top right-hand corner

of your view. Surprisingly enough, this is very easy to do by adding the following line to

your -viewDidLoad method.

self.navigationItem.rightBarButtonItem = self.editButtonItem;

This editButtonItem property is not actually a property that you need to define, as it is

pre-set for every UIViewController subclass. The especially great thing about this

button is that it is programmed not only to call a specific method already, but also to

toggle its text between “Edit” and “Done”.

http://

CHAPTER 9: UITableView Recipes 338

The editButtonItem by default is set to call the method -setEditing:animated:, which

you will create a simple implementation for:

-(void)setEditing:(BOOL)editing animated:(BOOL)animated
{
 [super setEditing:editing animated:animated];
 [self.tableViewCountries setEditing:editing animated:animated];
}

The main ideas of this method are simple, in that first you call the super method, which

will handle the toggling of the button’s text, and then you set the editing mode of your

UITableView according to the parameters given.

At this point, your application’s Edit button will trigger the editing mode of the

UITableView, allowing you to reveal the Delete buttons for any given row. However,

since you haven’t actually implemented any behavior for these buttons, you won’t

actually be able to delete any rows from your table yet. To do this, you must first

implement one more delegate method, -
tableView:commitEditingStyle:forRowAtIndexPath:.

Here’s a pretty basic implementation of this method that you’ll start with:

-(void)tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (editingStyle == UITableViewCellEditingStyleDelete)
 {
 Country *deletedCountry = [self.countries objectAtIndex:indexPath.row];
 [self.countries removeObject:deletedCountry];

 [tableViewCountries deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
withRowAnimation:UITableViewRowAnimationAutomatic];
 }
}

It is very important in this method that you make sure to delete the actual piece of data

from your model before removing the row(s) from your UITableView, just like how in the

previous example you first delete the country from your array, and then remove its row.

Otherwise, your application will throw an exception.

Now when you run your app, you can tap the Edit button to put your UITableView into

editing mode, resembling Figure 9–11.

http://

CHAPTER 9: UITableView Recipes 339

Figure 9–11. Your UITableView in editing mode, with functionality for removing rows

UITableView Row Animations

In the method you just added, you specified a specific animation type to be performed

upon the deletion of a row, called UITableViewRowAnimationAutomatic. The parameter

that accepts this value has various other pre-set values with which you can customize

the visual behavior of your rows, including the following:

 UITableViewRowAnimationBottom

 UITableViewRowAnimationFade

 UITableViewRowAnimationLeft

 UITableViewRowAnimationMiddle

 UITableViewRowAnimationNone

 UITableViewRowAnimationRight

 UITableViewRowAnimationTop

http://

CHAPTER 9: UITableView Recipes 340

The animation type that you choose won’t make any significant difference in how your

application performs, but it can certainly change how an application looks and feels to

the end user. It’s best to play around with these and see which animation looks best in

your application.

At this point, your method should now be able to handle the deletion of rows from your

table! Since you wrote your program to re-create your data every time the application

runs, it should be pretty easy to test this out. When you are about to delete a row from a

table, your table will resemble Figure 9–12.

Figure 9–12. Deleting a row from a table

But Wait, There’s More!

Deletion is not the only kind of editing that can occur in a UITableView. While not used

quite as often, iOS includes functionality to allow rows to be created and inserted with

the same method with which they were deleted.

http://

CHAPTER 9: UITableView Recipes 341

The default editing style for any row in a UITableView is

UITableViewCellEditingStyleDelete, so in order to implement row insertion, you need

to change this. For fun, you will give every other row an “insertion” editing style by

implementing the -tableView:editingStyleForRowAtIndexPath: method.

-(UITableViewCellEditingStyle)tableView:(UITableView *)tableView
editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath
{
 if ((indexPath.row % 2) == 1)
 {
 return UITableViewCellEditingStyleInsert;
 }
 return UITableViewCellEditingStyleDelete;
}

Just as before, you will need to specify the behavior to be followed upon the selection of

an Insertion button. You will add a case to your -
tableView:commitEditingStyle:forRowAtIndexPath: so the method now looks like so:

-(void)tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (editingStyle == UITableViewCellEditingStyleDelete)
 {
 Country *deletedCountry = [self.countries objectAtIndex:indexPath.row];
 [self.countries removeObject:deletedCountry];

 [tableViewCountries deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
withRowAnimation:UITableViewRowAnimationAutomatic];
 }
 else if (editingStyle == UITableViewCellEditingStyleInsert)
 {
 Country *copiedCountry = [self.countries objectAtIndex:indexPath.row];
 Country *newCountry = [[Country alloc] init];
 newCountry.name = copiedCountry.name;
 newCountry.flag = copiedCountry.flag;
 newCountry.capital = copiedCountry.capital;
 newCountry.motto = copiedCountry.motto;

 [self.countries insertObject:newCountry atIndex:indexPath.row+1];

 [self.tableViewCountries insertRowsAtIndexPaths:[NSArray
arrayWithObject:[NSIndexPath indexPathForRow:indexPath.row+1
inSection:indexPath.section]] withRowAnimation:UITableViewRowAnimationRight];
 }
}

You can see that you have gone with a pretty easy implementation for insertion, in that

all you have done is inserted a copy of the row selected. It should be noted that by

changing the index values in this method, you could easily insert objects to nearly any

row in the table; it is not necessary to insert into only the following row.

As with the deletion, you must make sure that your data model is updated before your

table view is, so you add the new Country to your array before you insert the new row

into your UITableView.

http://

CHAPTER 9: UITableView Recipes 342

Upon running your app and editing your table, you will be able to see both deletion and

insertion buttons, as in Figure 9–13.

Figure 9–13. Editing a UITableView with insertion or deletion

There are two other UITableView delegate methods that can be used in combination

with editing to further customize your application’s behavior.

 The -tableView:willBeginEditingRowAtIndexPath: method allows you

to get a kind of “first look” at whichever row was selected for editing,

and act accordingly.

 The -tableView:didEndEditingRowAtIndexPath: method can be used

as a completion block, in that you can specify any actions you deem

necessary to be performed with a row, but only after a row’s editing

has finished.

http://

CHAPTER 9: UITableView Recipes 343

Recipe 9–3: Re-ordering a UITableView
Now that we have covered deletion and insertion of rows, the next logical step in terms

of functionality of a table would be to make it so that you can move your rows around.

This is actually pretty simple to incorporate given how you have set up your application.

 First, you have to specify exactly which of your rows are allowed to move using -
tableView:canMoveRowAtIndexPath:.

-(BOOL)tableView:(UITableView *)tableView canMoveRowAtIndexPath:(NSIndexPath *)indexPath
{
 return YES;
}

I’ve chosen the easy way out of this by simply making them all editable, but you can

easily change this depending on your application.

Now, you simply need to implement a delegate to update your data model upon the

successful movement of a row.

-(void)tableView:(UITableView *)tableView moveRowAtIndexPath:(NSIndexPath
*)sourceIndexPath toIndexPath:(NSIndexPath *)destinationIndexPath
{
 [self.countries exchangeObjectAtIndex:sourceIndexPath.row
withObjectAtIndex:destinationIndexPath.row];
 [self.tableViewCountries reloadData];
}

Just as with insertion, you must make sure to correct your array to match the re-

ordering, but the UITableView handles the actual swapping of rows automatically.

For extra control over the re-ordering of the table, you can implement an extra method

called -tableView:targetIndexPathForMoveFromRowAtIndexPath:. This delegate method

is called every time a cell is dragged over another cell as a possible movement, and its

normal use is for “retargeting” a destination row. In this way, you can check the

proposed destination and either confirm it or reject the proposed move and return a

different destination.

Although you haven’t implemented functionality to confirm or reject your proposed

movements, your application will now be able to successfully move and re-order your

rows in addition to your previous deletion and copying functionalities, as in Figure 9–14.

http://

CHAPTER 9: UITableView Recipes 344

Figure 9–14. Your table with some re-ordering of cells

Recipe 9–4: Creating a Grouped UITableView
Now that you have nearly completely gone through all the basics of using an ungrouped

UITableView, you can now adjust your application to consider a “grouped” approach. All

the functionalities you implemented with an ungrouped table also apply to a grouped

one, so you will not have to make a great deal of changes to implement this.

The absolute first thing you need to do in order to use a grouped table is to switch the

“Style” of the UITableView from “Plain” to “Grouped”. The easiest way to do this is in

your view controller’s XIB file by selecting your UITableView, and changing the style in

the Attribute inspector, resulting in a display similar to Figure 9–15.

http://

CHAPTER 9: UITableView Recipes 345

Figure 9–15. Configuring a “grouped” UITableView

The specific option you are looking for is in the top of your Attribute inspector under the

“Style” of the “Table View”, as shown here in Figure 9–16.

Figure 9–16. Modifying the table’s “Style” to create a grouped UITableView

While this is the only thing necessary in order to change the style of your table, the

problem is that up until now, your data model has been formatted for an ungrouped

style. You don’t even have your data grouped at all. To remedy this, you will change the

organization with which your data is stored.

Rather than having one array containing all five of your countries, you will separate your

countries into their groups, with each group being an NSMutableArray, and then put

these arrays into a larger NSMutableArray. (Although a better practice would be to make

these immutable, I have chosen a mutable version to make editing your data model from

the table a more simple process.)

For your application, you will divide your five Country objects into two categories: one of

countries in the United Kingdom, and one of all the others.

http://

CHAPTER 9: UITableView Recipes 346

First, you need to create two more NSMutableArrays to be your subarrays, so add these

two properties, making sure to properly handle them (synthesize!) in your

implementation file. You will end up with a total of three NSMutableArray properties.

@property (strong, nonatomic) NSMutableArray *countries;
@property (strong, nonatomic) NSMutableArray *unitedKingdomCountries;
@property (strong, nonatomic) NSMutableArray *nonUKCountries;

Now you’ll change your -viewDidLoad method to accommodate this change. Delete the

following line from this method:

 self.countries = [NSMutableArray arrayWithObjects:usa, france, england, scotland,
spain, nil];

Now replace that line with the following to properly organize your countries.

 self.unitedKingdomCountries = [NSMutableArray arrayWithObjects:england, scotland,
nil];
 self.nonUKCountries = [NSMutableArray arrayWithObjects:usa, france, spain, nil];
 self.countries = [NSMutableArray arrayWithObjects:unitedKingdomCountries,
nonUKCountries, nil];

Now is the slightly tricky part, where you have to make sure all of your data source and

delegate methods are adjusted to your new format. You have to include first a retrieval

of the group’s array, and then retrieve a specific country from there in each method.

First, you’ll change your -tableView:cellForRowAtIndexPath:. It should now look like so:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil)
 {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellIdentifier];
 cell.accessoryType = UITableViewCellAccessoryDetailDisclosureButton;
 cell.textLabel.font = [UIFont systemFontOfSize:19.0];
 cell.detailTextLabel.font = [UIFont systemFontOfSize:12];
 }

 NSArray *group = [self.countries objectAtIndex:indexPath.section];
 Country *country = [group objectAtIndex:indexPath.row];
 cell.textLabel.text = country.name;
 cell.detailTextLabel.text = country.capital;
 UIImage *flag = country.flag;
 cell.imageView.image = [MainTableViewController scale:flag toSize:CGSizeMake(115,
75)];

 return cell;
}

Up next is -tableView:numberOfRowsInSection:.

-(NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{

http://

CHAPTER 9: UITableView Recipes 347

 NSArray *group = [self.countries objectAtIndex:section];
 return [group count];
}

Here is -tableView:didSelectRowAtIndexPath:.

-(void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath
{
 [tableView deselectRowAtIndexPath:indexPath animated:YES];

 selectedIndexPath = indexPath;
 /////BEGIN MODIFIED CODE FOR GROUPED TABLE
 NSArray *group = [self.countries objectAtIndex:indexPath.section];
 Country *chosenCountry = [group objectAtIndex:indexPath.row];
 /////END OF MODIFIED CODE
 CountryInfoViewController *infoVC = [[CountryInfoViewController alloc] init];
 infoVC.delegate = self;
 infoVC.currentCountry = chosenCountry;

 [self.navigationController pushViewController:infoVC animated:YES];
}

Here is -tableView:accessoryButtonTappedForRowWithIndexPath:.

 -(void)tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath
{
 [tableView deselectRowAtIndexPath:indexPath animated:YES];

 selectedIndexPath = indexPath;
 ////BEGIN MODIFIED CODE FOR GROUPED TABLE
 NSArray *group = [self.countries objectAtIndex:indexPath.section];
 Country *chosenCountry = [group objectAtIndex:indexPath.row];
 ////END MODIFIED CODE FOR GROUPED TABLE
 CountryInfoViewController *infoVC = [[CountryInfoViewController alloc] init];
 infoVC.delegate = self;
 infoVC.currentCountry = chosenCountry;

 NSLog(@"Accessory Button Tapped");
 [self.navigationController pushViewController:infoVC animated:YES];
}

For the -tableView:moveRowAtIndexPath:toIndexPath: method, you will make a quick

assumption that you are moving only rows that are in the same section to make your

coding easier. You will notice when you run the application later that this actually works

well, as with your current implementation, the UITableView will not allow a Country to

switch groups, just as is expected in this particular application. For an application where

it may be reasonable to have objects change groups, you will want to be sure to include

code to do so accordingly.

-(void)tableView:(UITableView *)tableView moveRowAtIndexPath:(NSIndexPath
*)sourceIndexPath toIndexPath:(NSIndexPath *)destinationIndexPath
{
 NSMutableArray *group = [self.countries objectAtIndex:sourceIndexPath.section];
//Assume same Section
 if (destinationIndexPath.row < [group count])
 {

http://

CHAPTER 9: UITableView Recipes 348

 [group exchangeObjectAtIndex:sourceIndexPath.row
withObjectAtIndex:destinationIndexPath.row];
 }
 [self.tableViewCountries reloadData];
}

The last method you must fix is -tableView:commitEditingStyle:forRowAtIndexPath:,

which will look like so:

-(void)tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (editingStyle == UITableViewCellEditingStyleDelete)
 {
 //////Changed code
 NSMutableArray *group = [self.countries objectAtIndex:indexPath.section];
 Country *deletedCountry = [group objectAtIndex:indexPath.row];
 [group removeObject:deletedCountry];
 //////End of changed code

 [tableViewCountries deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
withRowAnimation:UITableViewRowAnimationAutomatic];
 }
 else if (editingStyle == UITableViewCellEditingStyleInsert)
 {
 //////More changed code!
 NSMutableArray *group = [self.countries objectAtIndex:indexPath.section];
 Country *copiedCountry = [group objectAtIndex:indexPath.row];
 Country *newCountry = [[Country alloc] init];
 newCountry.name = copiedCountry.name;
 newCountry.flag = copiedCountry.flag;
 newCountry.capital = copiedCountry.capital;
 newCountry.motto = copiedCountry.motto;

 [group insertObject:newCountry atIndex:indexPath.row+1];
 //////End of changed code

 [self.tableViewCountries insertRowsAtIndexPaths:[NSArray
arrayWithObject:[NSIndexPath indexPathForRow:indexPath.row+1
inSection:indexPath.section]] withRowAnimation:UITableViewRowAnimationRight];
 }
}

Finally, since you did switch your UITableView over to a “grouped” style, you need to

implement just two extra methods to ensure correct functionality.

First, you need to specify exactly how many sections your UITableView will have with the

following method:

-(NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return [self.countries count];
}

Second, you should specify “headers” for each section, which will basically be the titles

for your groups. Since you already know how your data is formatted, this is pretty easy

to do.

http://

CHAPTER 9: UITableView Recipes 349

-(NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section
{
 if (section == 0)
 {
 return @"United Kingdom Countries";
 }
 return @"Non-United Kingdom Countries";
}

If your data model was more complicated, you would probably want to have the names

of your groups stored somewhere with the groups themselves. Using an NSDictionary

would be a particularly good way to use this by making the headers, as strings, the keys

for your NSArray group objects.

The UITableViewDelegate protocol also includes a method that allows the developer to

customize the text displayed in a Delete button when editing a UITableView. This

method is entirely optional, and will vary in its use based on the needs of any given

application.

-(NSString *)tableView:(UITableView *)tableView
titleForDeleteConfirmationButtonForRowAtIndexPath:(NSIndexPath *)indexPath
{
 return NSLocalizedString(@"Remove", @"Delete");
}

After all these changes, running your app should result in a view similar to that in

Figure 9–17.

http://

CHAPTER 9: UITableView Recipes 350

Figure 9–17. Your application with grouped items and section headers

As one final addition that you can make for your table, you can also add “footers” to

your sections. These work just like headers, but, as you might guess, appear on the

bottom of your groups. Here’s a quick method to add some (slightly silly) footers to your

UITableView.

-(NSString *)tableView:(UITableView *)tableView
titleForFooterInSection:(NSInteger)section
{
 if (section == 0)
 return @"I'm a footer!";
 return @"Me too, I guess...";
}

In keeping with all the other vastly customizable parts of a UITableView, these headers

and footers are also incredibly easy to customize beyond a simple NSString. If you use

the methods -tableView:viewForHeaderInSection: and -
tableView:viewForFooterInSection:, you can programmatically create your own

subview to be used as a header or footer, allowing for full control over your

UITableView’s display.

http://

CHAPTER 9: UITableView Recipes 351

At this point, you now have a fully functional grouped UITableView, complete with all the

same abilities as your ungrouped one! Figure 9–18 shows the final result of your setup.

Figure 9–18. Your completed grouped UITableView with both headers and footers

Summary
Throughout this entire chapter, you have seen how to programmatically create a

UITableView, step-by-step, for two kinds of styles: “plain” and “grouped.” You have also

been given a glimpse at the amount of customization control the developer has over the

view and display of a UITableView, though the full Apple documentation has a great deal

more to say on the subject. You have even included a great deal of functionality into

your UITableViews to provide them with the most powerful user interface. However, the

key to UITableViews is not how they work, but the data that they present. It is up to you

as a developer to find the information that users want or need, and present it to them in

the most efficient, flexible way possible. A UITableView is a fantastic tool, but the

purpose it serves is by far more important, and this is what will ultimately be the final

product that you deliver to your customers.

http://

353

 Chapter

Data Storage Recipes

When working in iOS, one of the most important topics to understand is the concept,

use, and implementation of persistence. This term refers to the idea of having

information be saved and retrieved, or “persist,” through the closing or restarting of an

application. Just as pages from books written thousands of years ago can still be read,

we are able to make use of certain key concepts in iOS to allow our information, from

the simplest of values to the most complex of data structures, to stay stored in our

device for indefinite periods of time. We will cover a variety of methods of persistence

throughout this chapter with different advantages, disadvantages, general uses, and

complexities, so that we can develop a full understanding of the best method of storage

for any given situation.

Recipe 10–1: Using NSUserDefaults
When developing applications, we very often run into issues where we simply need to

store simple values, such as strings, numbers, or Boolean values. While there are a

variety of ways to store data, the easiest of these is NSUserDefaults, built specifically for

such combinations.

The NSUserDefaults class is a simple implementation used to store basic values, such

as instances of NSString, NSNumber, BOOL, etc. It can also be used to store more

complex data structures, such as NSArray or NSDictionary, as long as they do not

contain massive amounts of data. Any kind of image should not be stored with

NSUserDefaults. In this way, it is excellent for storing any kind of preference or option for

an application.

Start off by creating a new project called “Stubborn” (since you want your information to

stick around).

Select the Single View Application template to create a simple application for you to

configure. After entering your name and ensuring the device is set to the iPhone family,

as in Figure 10–1, click through to finish creating your project.

10

http://

CHAPTER 10: Data Storage Recipes 354

Figure 10–1. Configuring your Stubborn project

Now, in your newly created view controller’s XIB file, you will start off by setting up your

basic user interface. Drag and drop three UILabels, two UITextFields, a UISwitch, and a

UIActivityIndicatorView so as to create the view shown in Figure 10–2.

http://

CHAPTER 10: Data Storage Recipes 355

Figure 10–2. Your view controller’s XIB for storing values

As you can probably guess, you will simply be using text fields to set the text of your

labels, and using the switch to control whether the activity indicator view is animating.

Next, connect each of these elements in your XIB file to a property in your view

controller’s header file by holding ! (Ctrl), and click-dragging from each element into

your header file. This will automatically create your property, synthesize it, and add a

statement to nullify it in the application’s -viewDidUnload method. The following header

file excerpt shows the property names you will use to manage each element.

#import <UIKit/UIKit.h>

@interface MainViewController : UIViewController

@property (strong, nonatomic) IBOutlet UILabel *firstLabel;
@property (strong, nonatomic) IBOutlet UILabel *secondLabel;
@property (strong, nonatomic) IBOutlet UILabel *animateLabel;
@property (strong, nonatomic) IBOutlet UITextField *firstNameTextField;
@property (strong, nonatomic) IBOutlet UITextField *lastNameTextField;
@property (strong, nonatomic) IBOutlet UISwitch *animateSwitch;
@property (strong, nonatomic) IBOutlet UIActivityIndicatorView *activityIndicator;

@end

Up next, you need to conform your view controller to the UITextFieldDelegate protocol

in order to gain more control over the actions of each UITextField. The header line of

http://

CHAPTER 10: Data Storage Recipes 356

your view controller’s header file (the second line in the preceding code) will now look

like so:

@interface MainViewController : UIViewController<UITextFieldDelegate>

Next, update your -viewDidLoad method in your view controller’s interface file to set

both text field delegates.

- (void)viewDidLoad
{
 [super viewDidLoad];
self.firstNameTextField.delegate = self;
self.lastNameTextField.delegate = self;
}

Now you can write a method to access the NSUserDefaults class and save the desired

values of your view.

-(void)updateDefaults
{
//Acquire Values
NSString *first = self.firstNameTextField.text;
NSString *last = self.lastNameTextField.text;
BOOL animating = self.activityIndicator.isAnimating;

//Acquire Shared Instance
NSUserDefaults *userDefaults = [NSUserDefaults standardUserDefaults];

//Set Objects/Values to Persist
 [userDefaults setObject:first forKey:@"firstName"];
 [userDefaults setObject:last forKey:@"lastName"];
 [userDefaults setBool:animating forKey:@"animating"];

//Save Changes
 [userDefaults synchronize];
}

As shown in this method, it is always important to remember to call the -synchronize

method when you have finished making changes to the NSUserDefaults object in order

to save your data.

Along with the +standardUserDefaults method, which retrieves a shared instance of the

NSUserDefaults class, this class also has a class method, +resetStandardUserDefaults,

used to completely wipe all saved stored values for an application.

You can implement your UITextFieldDelegate protocol methods to now handle the

entering of data to automatically save newly entered text.

-(BOOL)textFieldShouldReturn:(UITextField *)textField
{
 [textField resignFirstResponder];
return NO;
}

-(void)textFieldDidEndEditing:(UITextField *)textField
{
if (textField == self.firstNameTextField)

http://

CHAPTER 10: Data Storage Recipes 357

 {
self.firstLabel.text = textField.text;
 }
else if (textField == self.lastNameTextField)
 {
self.secondLabel.text = textField.text;
 }
 [self updateDefaults];
}

For your UISwitch, you will also create a method to handle the changing of its value.

-(void)switchValueChanged:(UISwitch *)sender
{
if (sender.on)
 {
 [self.activityIndicator startAnimating];
self.animateLabel.text = @"Animating";
 }
else
 {
 [self.activityIndicator stopAnimating];
self.animateLabel.text = @"Stopped";
 }
 [self updateDefaults];
}

In order to assign this method to be called by your UISwitch, you need to modify your -
viewDidLoad again.

- (void)viewDidLoad
{
 [super viewDidLoad];
self.firstNameTextField.delegate = self;
self.lastNameTextField.delegate = self;

 [self.animateSwitch addTarget:self action:@selector(switchValueChanged:)
forControlEvents:UIControlEventValueChanged];
}

At this point, your application should be able to easily save your values entered, but you

still need to include functionality to reload these values in case your application is

closed. You will create a single method to access the NSUserDefaults class again, check

for any stored values, and display them as appropriate.

-(void)setValuesFromDefaults
{
//Acquire Shared Instance
NSUserDefaults *userDefaults = [NSUserDefaults standardUserDefaults];

//Acquire Values
NSString *first = [userDefaults objectForKey:@"firstName"];
NSString *last = [userDefaults objectForKey:@"lastName"];
BOOL animating = [userDefaults boolForKey:@"animating"];

//Display Values Appropriately
if (first != nil)
 {

http://

CHAPTER 10: Data Storage Recipes 358

self.firstNameTextField.text = first;
self.firstLabel.text = first;
 }
if (last != nil)
 {
self.lastNameTextField.text = last;
self.secondLabel.text = last;
 }
if (animating)
 {
self.animateLabel.text = @"Animating";
if (self.activityIndicator.isAnimating == NO)
 {
 [self.activityIndicator startAnimating];
 }
 }
else
 {
self.animateLabel.text = @"Stopped";
if (self.activityIndicator.isAnimating == YES)
 {
 [self.activityIndicator stopAnimating];
 }
 }
 [self.animateSwitch setOn:animating animated:NO];
}

Finally, you just need to adjust your -viewDidLoad method again in order to load any

saved preferences upon the running of the application.

- (void)viewDidLoad
{
 [super viewDidLoad];
self.firstNameTextField.delegate = self;
self.lastNameTextField.delegate = self;

 [self.animateSwitch addTarget:self action:@selector(switchValueChanged:)
forControlEvents:UIControlEventValueChanged];

 [self setValuesFromDefaults];
}

At this point, your application can successfully save your values! If you run your

application on the iOS simulator or on your device, change the values, and then close

and reopen it, your values should have been set as they were. Remember that to fully

close an application on newer devices you must double-tap the home button, press and

hold on the app icons that appear, and then press the “-” mark on the desired app.

Keep in mind also to be careful closing an application in this way if running the project

through Xcode, as your application may crash. In this case, you should use the Stop

button in Xcode to close your app instead. Though you cannot quite tell, Figure 10–3

shows an application that has been closed and reopened multiple times with the values

persisting!

http://

CHAPTER 10: Data Storage Recipes 359

Figure 10–3. Your application persisting information

NOTE: Though you did not use a great variety of values to store with NSUserDefaults in this

short recipe, there are in fact methods to store almost any type of lightweight value, including

Bool, Float, Integer, Double, and URL. For any kind of more complex object, such as an

NSString, NSArray, or NSDictionary, you use the general -setObject:forKey: method.

Recipe 10–2: Managing Files
While the NSUserDefaults class is especially useful for doing quick persistence of light

data, it is not nearly as efficient for dealing with large objects, such as videos, music, or

images. For these more complex items, you can make use of iOS’s file management

system.

You will create a new application to display a table of “Hotspots,” which you will be able

to edit and add to, while persisting all of your data. While these objects will be fairly

http://

CHAPTER 10: Data Storage Recipes 360

lightweight, and thus able to be stored in NSUserDefaults, you will make use of the file

management system for demonstration purposes.

To start off, you will build your application’s user interface without worrying about data

persistence. Create a new project using the Single View Application template, following

the exact same process as the previous recipe.

First, you will go through and create your Hotspot class. Create a new file, making sure

to select the “Objective-C class” template using the dialog shown in Figure 10–4.

Figure 10–4. Creating an NSObject subclass

On the next screen, enter your file’s name as “Hotspot”, and make sure the subclass

field is set to “NSObject”. Click through to create your file.

In your Hotspot class’s header file, Hotspot.h, define a series of NSString properties to

represent the data for this object.

#import <Foundation/Foundation.h>

@interface Hotspot : NSObject

@property (nonatomic, strong) NSString *name;
@property (nonatomic, strong) NSString *address;
@property (nonatomic, strong) NSString *city;
@property (nonatomic, strong) NSString *state;

@end

In the implementation file Hotspot.m, add a single synthesize command for these four

properties.

http://

CHAPTER 10: Data Storage Recipes 361

@synthesize name, city, state, address;

Next, you will create another view controller to manage the creation and editing of any

Hotspot objects by the user. Create a new file, and select the “UIViewController

subclass” template. Provide the class name “HotspotInfoViewController”, and make

sure the subclass field is set to “UIViewController”, as in Figure 10–5. Make sure also

that the box marked “With XIB for user interface” is also checked.

Figure 10–5. Configuring your new view controller

In the newly created controller’s XIB file, HotspotInfoViewController.xib, create your

user interface to mirror that shown in Figure 10–6.

http://

CHAPTER 10: Data Storage Recipes 362

Figure 10–6. Configuring the HotspotInfoViewController.xib file

Connect each UITextField element to your view controller’s header file using the

respective property identifiers textFieldName, textFieldAddress, textFieldCity, and

textFieldState. You will not need to define a property for your UIButton, but connect it

to an IBAction -saveButtonPressed:. These changes should add the following property

and method declarations to your header file.

@property (strong, nonatomic) IBOutlet UITextField *textFieldName;
@property (strong, nonatomic) IBOutlet UITextField *textFieldAddress;
@property (strong, nonatomic) IBOutlet UITextField *textFieldCity;
@property (strong, nonatomic) IBOutlet UITextField *textFieldState;
- (IBAction)saveButtonPressed:(id)sender;

This class will need a Hotspot property to reference the Hotspot currently being viewed.

Add an import statement for the Hotspot class.

#import "Hotspot.h"

Declare the Hotspot property.

@property (strong, nonatomic) IBOutlet Hotspot *hotspot;

You will also create a delegate property to handle the completion of this class’s use.

Define the protocol “HotspotInfoDelegate” by adding the following code above the main

“interface” section of the header file.

@class HotspotInfoViewController;

http://

CHAPTER 10: Data Storage Recipes 363

@protocol HotspotInfoDelegate <NSObject>
-(void)HotspotInfoViewController:(HotspotInfoViewController *)hotspotInfoVC
didReturnHotspot:(Hotspot *)hotspot isNew:(BOOL)isNew;
@end

You can now declare your delegate property like so:

@property (strong, nonatomic) id<HotspotInfoDelegate> delegate;

Make sure that both the delegate and hotspot properties are properly synthesized, and

that both are set to nil in your controller’s -viewDidUnload method.

Finally, you will make this view controller the delegate to all four of the UITextField

elements that you added, so make sure this class conforms to the UITextFieldDelegate

protocol by adding the <UITextFieldDelegate> code to your interface line.

In its entirety, your HotspotInfoViewController.h file should now look like so:

#import <UIKit/UIKit.h>
#import "Hotspot.h"

@class HotspotInfoViewController;

@protocol HotspotInfoDelegate <NSObject>
-(void)HotspotInfoViewController:(HotspotInfoViewController *)hotspotInfoVC
didReturnHotspot:(Hotspot *)hotspot isNew:(BOOL)isNew;
@end

@interface HotspotInfoViewController : UIViewController<UITextFieldDelegate>

@property (strong, nonatomic) IBOutlet UITextField *textFieldName;
@property (strong, nonatomic) IBOutlet UITextField *textFieldAddress;
@property (strong, nonatomic) IBOutlet UITextField *textFieldCity;
@property (strong, nonatomic) IBOutlet UITextField *textFieldState;
- (IBAction)saveButtonPressed:(id)sender;

@property (strong, nonatomic) Hotspot *hotspot;

@property (strong, nonatomic) id<HotspotInfoDelegate> delegate;

@end

In your HotspotInfoViewController’s implementation file, you will add a method to

populate the view with a given Hotspot’s information.

-(void)populateWithHotspot
{
self.textFieldName.text = hotspot.name;
self.textFieldAddress.text = hotspot.address;
self.textFieldCity.text = hotspot.city;
self.textFieldState.text = hotspot.state;
}

This method will then be called in your -viewDidLoad method, which will also configure

your user interface.

- (void)viewDidLoad
{
 [super viewDidLoad];

http://

CHAPTER 10: Data Storage Recipes 364

self.textFieldName.placeholder = @"Name";
self.textFieldAddress.placeholder = @"Address";
self.textFieldCity.placeholder = @"City";
self.textFieldState.placeholder = @"State";

self.textFieldName.delegate = self;
self.textFieldAddress.delegate = self;
self.textFieldCity.delegate = self;
self.textFieldState.delegate = self;

if (self.hotspot != nil)
 {
 [self populateWithHotspot];
 }
}

If you did not put the code for the -populateWithHotspot method above that of your -
viewDidLoad, you will need to add a method signature for the former to your header file.

Include a simple method to dismiss the keyboard when the user is done editing a
UITextField

-(BOOL)textFieldShouldReturn:(UITextField *)textField
{
 [textField resignFirstResponder];
 return NO;
}

Finally, your -saveButtonPressed: will be written to either save the current Hotspot, if

one was given, or create a new one. This object will then be passed back to your

delegate property through the -HotspotInfoViewController:didReturnHotspot:isNew:

method to be properly handled.

- (IBAction)saveButtonPressed:(id)sender
{
BOOL isNew;
if (self.hotspot != nil)
 {
self.hotspot.name = self.textFieldName.text;
self.hotspot.address = self.textFieldAddress.text;
self.hotspot.city = self.textFieldCity.text;
self.hotspot.state = self.textFieldState.text;1
 isNew = NO;
 }
else
 {
Hotspot *newHotspot = [[Hotspot alloc] init];
 newHotspot.name = self.textFieldName.text;
 newHotspot.address = self.textFieldAddress.text;
 newHotspot.city = self.textFieldCity.text;
 newHotspot.state = self.textFieldState.text;
self.hotspot = newHotspot;
 isNew = YES;

http://

CHAPTER 10: Data Storage Recipes 365

 }
 [self.delegate HotspotInfoViewController:self didReturnHotspot:self.hotspot
isNew:isNew];
}

Now, you can build your main view controller. In this class’s XIB file, add a UITableView

to fill the entire view, resembling Figure 10–7.

Figure 10–7. Adding a UITableView to your main view controller

Connect this UITableView to your header file using the property name

tableViewHotspots.

Create an NSMutableArray property in your main view controller’s header file to hold the

Hotspot objects.

@property (strong, nonatomic) NSMutableArray *hotspots;

Add the following two import statements to this header file.

#import "HotspotInfoViewController.h"
#import "Hotspot.h"

Finally, make sure that this controller is told to conform to the UITableViewDelegate and

UITableViewDataSource protocols, as well as the HotspotsInfoDelegate protocol that

you created.

After all these changes, your header file should resemble the following:

http://

CHAPTER 10: Data Storage Recipes 366

#import <UIKit/UIKit.h>
#import "HotspotInfoViewController.h"
#import "Hotspot.h"

@interface MainViewController : UIViewController<UITableViewDelegate,
UITableViewDataSource, HotspotInfoDelegate>

@property (strong, nonatomic) IBOutlet UITableView *tableViewHotspots;
@property (strong, nonatomic) NSMutableArray *hotspots;

@end

In the implementation file for this class, after synthesizing the hotspots property, you

need to declare a custom getter method to ensure that your array is properly created.

-(NSMutableArray *)hotspots
{
if (!hotspots)
 {
 hotspots = [[NSMutableArray alloc] initWithCapacity:10];
 }
return hotspots;
}

You will write your -viewDidLoad method to set the UITableView’s delegate and

dataSource properties, as well as configure the user interface to work inside a

UINavigationController.

- (void)viewDidLoad
{
[super viewDidLoad];
self.title = @"Hotspots";

self.tableViewHotspots.delegate = self;
self.tableViewHotspots.dataSource = self;

UIBarButtonItem *addButton = [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemAdd target:self
action:@selector(newHotspot:)];
self.navigationItem.rightBarButtonItem = self.editButtonItem;
self.navigationItem.leftBarButtonItem = addButton;
}

The -newHotspot: selector used will be easily implemented to present an instance of

your HotspotInfoViewController, with no hotspot pre-set.

-(void)newHotspot:(id)sender
{
 HotspotInfoViewController *hotspotVC = [[HotspotInfoViewController alloc] init];
 hotspotVC.delegate = self;
 [self.navigationController pushViewController:hotspotVC animated:YES];
}

In order to respond to the completed use of a HotspotInfoViewController, you should

implement the HotspotInfoDelegate method that you specified earlier.

-(void)HotspotInfoViewController:(HotspotInfoViewController *)hotspotInfoVC
didReturnHotspot:(Hotspot *)hotspot isNew:(BOOL)isNew

http://

CHAPTER 10: Data Storage Recipes 367

{
if (isNew)
 {
 [self.hotspots addObject:hotspot];
 }
 [self.tableViewHotspots reloadData];

 [self.navigationController popViewControllerAnimated:YES];
}

You will also make slight changes to the behavior of your view controller in order to

handle the disappearing and re-appearing of your view by overriding the following two

methods.

- (void)viewWillAppear:(BOOL)animated
{
 self.title = @"Hotspots";
 [super viewWillAppear:animated];
}

- (void)viewDidDisappear:(BOOL)animated
{
 self.title = @"Cancel";
 [super viewDidDisappear:animated];
}

Now to configure your UITableView, you must specify the number of rows to display,

which will be based off of the count of your hotspots array.

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
return [self.hotspots count];
}

You will configure the display of your table’s cells to simply display the name and address

of each Hotspot object.

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath*)indexPath
{
static NSString *CellIdentifier = @"Cell";

UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil)
 {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellIdentifier];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }

Hotspot *currentHotspot = [self.hotspots objectAtIndex:indexPath.row];

 cell.textLabel.text = currentHotspot.name;
 cell.detailTextLabel.text = currentHotspot.address;

return cell;
}

http://

CHAPTER 10: Data Storage Recipes 368

You will implement your table such that the selection of a row presents a

HotspotInfoViewController with that row’s information, so that the user can easily edit

any given object.

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath
{
 [self.tableViewHotspots deselectRowAtIndexPath:indexPath animated:YES];

 HotspotInfoViewController *hotspotVC = [[HotspotInfoViewController alloc] init];
 hotspotVC.delegate = self;
 hotspotVC.hotspot = [self.hotspots objectAtIndex:indexPath.row];
 [self.navigationController pushViewController:hotspotVC animated:YES];
}

Finally, you will also make your UITableView allow for both the rearranging and deletion

of objects. To allow editing and deletion, you need to implement the following two

methods.

- (BOOL)tableView:(UITableView *)tableView canEditRowAtIndexPath:(NSIndexPath
*)indexPath
{
return YES;
}

- (void)tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath
{
if (editingStyle == UITableViewCellEditingStyleDelete)
 {
 [self.hotspots removeObjectAtIndex:indexPath.row];
 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
withRowAnimation:UITableViewRowAnimationFade];
 }
}

You must also override the -setEditing:animated: method to properly entwine your

UITableView and your Edit button.

-(void)setEditing:(BOOL)editing animated:(BOOL)animated
{
 [super setEditing:editing animated:animated];
 [self.tableViewHotspots setEditing:editing animated:animated];
}

To allow for the rearranging of cells, the following two methods will also be added.

- (BOOL)tableView:(UITableView *)tableView canMoveRowAtIndexPath:(NSIndexPath
*)indexPath
{
return YES;
}

- (void)tableView:(UITableView *)tableView moveRowAtIndexPath:(NSIndexPath
*)fromIndexPath toIndexPath:(NSIndexPath *)toIndexPath
{
Hotspot *movingHotspot = [self.hotspots objectAtIndex:fromIndexPath.row];

http://

CHAPTER 10: Data Storage Recipes 369

 [self.hotspots removeObject:movingHotspot];
 [self.hotspots insertObject:movingHotspot atIndex:toIndexPath.row];
 [self.tableViewHotspots reloadData];
}

Finally, before you test your app, you will need to modify your application delegate’s

implementation file to put your view controller in a UINavigationController. Adjust your

-application:didFinishLaunchingWithOptions: method to resemble the following.

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.viewController = [[MainViewController alloc]
initWithNibName:@"MainViewController" bundle:nil];
 __strong UINavigationController *navcon = [[UINavigationController alloc]
initWithRootViewController:self.viewController];
 self.window.rootViewController = navcon;
 [self.window makeKeyAndVisible];
 return YES;
}

Your user interface is now fully set up, allowing you to create Hotspot objects to be

displayed, edited, or removed from a UITableView, as shown in Figure 10–8 after some

sample data has been created.

http://

CHAPTER 10: Data Storage Recipes 370

Figure 10–8. Your app’s UITableView with sample data

Now, the only task left to do with this application is to be able to save your data,

persisting it between uses.

In order to implement persistence in your application, you will make use of the file

system, as well as the concepts of “archiving” and “unarchiving” objects.

In order to archive, or “encode” any given object, it, and all the properties stored within

it, must be specifically told how to be encoded. For any pre-made iOS object, such as

an NSArray or NSDictionary this is already done. However, in order to encode your

Hotspot objects, you will need to add some specific instructions on how they are to be

handled.

In your Hotspot.h class, specify that your class will conform to the NSCoding protocol by

changing your @interface line to the following:

@interface Hotspot : NSObject<NSCoding>

Now, you must implement the -encodeWithCoder: method to specify how a Hotspot

object is coded for saving.

http://

CHAPTER 10: Data Storage Recipes 371

- (void) encodeWithCoder:(NSCoder *)encoder
{
 [encoder encodeObject:self.name forKey:@"name"];
 [encoder encodeObject:self.address forKey:@"address"];
 [encoder encodeObject:self.city forKey:@"city"];
 [encoder encodeObject:self.state forKey:@"state"];
}

In the reverse process of loading data, you must implement the -initWithCoder:

method to create instances of the Hotspot class using archived data. By using the same

keys as in the preceding method, you can easily pull out the NSString objects that you

need.

- (id)initWithCoder:(NSCoder *)decoder
{
self = [super init];
if (self)
 {
self.name = [decoder decodeObjectForKey:@"name"];
self.address = [decoder decodeObjectForKey:@"address"];
self.city = [decoder decodeObjectForKey:@"city"];
self.state = [decoder decodeObjectForKey:@"state"];
 }
return self;
}

Now, back in your main view controller, you can create a method to save your data to a

specific file.

-(void)saveData
{
NSString *rootPath = [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES) objectAtIndex:0];
NSString *savePath = [rootPath stringByAppendingPathComponent:@"hotspotsData"];
NSFileManager *fileManager = [NSFileManager defaultManager];
NSMutableData *saveData = [[NSMutableData alloc] init];

NSKeyedArchiver *archiver = [[NSKeyedArchiver alloc]
initForWritingWithMutableData:saveData];
 [archiver encodeObject:self.hotspots forKey:@"DataArray"];
 [archiver finishEncoding];

 [fileManager createFileAtPath:savePath contents:saveData attributes:nil];
}

This method consists of the following steps:

1. Acquire the root directory path in which you will save your data. You have

specified the “Documents Directory”, though there are other possible directories

to use depending on your application’s needs.

2. Append a file name “hotspotsData” onto the root path to create the data file’s

path.

3. Acquire a shared instance of the NSFileManager class.

4. Acquire an empty instance of NSMutableData.

http://

CHAPTER 10: Data Storage Recipes 372

5. Encode your hotspots NSArray with the key “DataArray” using the

NSKeyedArchiver class. The resulting encoded data will be in the NSMutableData

saveData object you acquired.

a. Though you cannot see the actual code of it, the -
encodeObject:forKey: call will make use of the -encodeWithCoder:

method you defined in your Hotspot.m file to archive all the

Hotspot objects in your array.

6. Using the NSFileManager, create your file at the specified path, using your

encoded data. If a file already exists at this path, it will be overwritten, which

works quite well for your application.

Now, to work in the reverse process, you can create a -loadData method like so:

-(void)loadData
{
NSString *rootPath = [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES) objectAtIndex:0];
NSString *savePath = [rootPath stringByAppendingPathComponent:@"hotspotsData"];
NSFileManager *fileManager = [NSFileManager defaultManager];
if ([fileManager fileExistsAtPath:savePath])
 {
NSData *data = [fileManager contentsAtPath:savePath];
NSKeyedUnarchiver *unarchiver = [[NSKeyedUnarchiver alloc] initForReadingWithData:data];
self.hotspots = [unarchiver decodeObjectForKey:@"DataArray"];
 }
}

This method works almost the same as the previous one in reverse, as it acquires

NSData from a specific file path, unarchives it, and then creates your NSArray back from

the decoded data. Just as the encodeObject:forKey: method made use of your -
encodeWithCoder:, the decodeObjectForKey: method will make use of the -
initWithCoder: method for all the objects involved in your decoded object, including

your NSArray and all the Hotspots it contains.

Now, you simply need to place calls to your two new methods in the correct places. Add

a call to -loadData to your -viewDidLoad method.

[self loadData];

Add method signatures for both the -saveData and -loadData methods to your view

controller’s header file to avoid any compiler problems.

You will need to add calls to the -saveData method every time your array is altered,

including in the following methods:

-(void)HotspotInfoViewController:(HotspotInfoViewController *)hotspotInfoVC
didReturnHotspot:(Hotspot *)hotspot isNew:(BOOL)isNew
{
 if (isNew)
 {
 [self.hotspots addObject:hotspot];
 }
 [self.tableViewHotspots reloadData];

http://

CHAPTER 10: Data Storage Recipes 373

 //New call to save data
 [self saveData];

 [self.navigationController popViewControllerAnimated:YES];
}
- (void)tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (editingStyle == UITableViewCellEditingStyleDelete)
 {
 [self.hotspots removeObjectAtIndex:indexPath.row];
 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
withRowAnimation:UITableViewRowAnimationFade];
 //New call to save data
 [self saveData];
 }
}
- (void)tableView:(UITableView *)tableView moveRowAtIndexPath:(NSIndexPath
*)fromIndexPath toIndexPath:(NSIndexPath *)toIndexPath
{
 Hotspot *movingHotspot = [self.hotspots objectAtIndex:fromIndexPath.row];
 [self.hotspots removeObject:movingHotspot];
 [self.hotspots insertObject:movingHotspot atIndex:toIndexPath.row];
 [self.tableViewHotspots reloadData];
 //New call to save data
 [self saveData];
}

Once these calls have been added, your application will be able to automatically save

any new changes to your data to an outside file, to be read upon the reopening of the

application!

In your demo application, you did not implement any saving of images to file, even

though this is one of the most effective and common uses of the iOS file management

system. This process is even simpler than the foregoing implementation. In order to save

an image, acquire the NSData object representing the image, and then use the

NSFileManager method -createFileAtPath:contents:attributes to write out the data.

Alternatively, you can use the NSData method -writeToFile:atomically: to perform the

same task.

To acquire the data representing a UIImage, you can make use of the

UIImagePNGRepresentation() or UIImageJPEGRepresentation() functions, which both

return NSData. To re-build a UIImage using NSData read from a file, use the

+imageWithData: or -initWithData: methods.

Core Data
So far you have dealt with the very quick implementation of NSUserDefaults for

lightweight values, as well as the file management systemfor more complex or larger

amounts of data. While using the file management system is incredibly powerful for

storing data, it can easily become quite cumbersome when dealing with complex data

http://

CHAPTER 10: Data Storage Recipes 374

models of intertwined classes. For such cases of complex data models made up of

lightweight objects, the best option for persistence becomes Core Data. This framework,

based around a MySQL table system, allows for easy creation, manipulation, and

persistence of intricate class interactions and properties. The use of this class is quite

complex, and thus is covered in great detail in the next chapter.

Recipe 10–3: Persistence with iCloud
One of the most expansive additions to iOS with the release of iOS 5.0 is the ability to

create applications that have access to the new iCloud service. By using concepts

similar to the file management system from the previous recipe, you are able to save,

persist, and load data, not just in a local device, but also across multiple devices using

the same application.

Throughout this section, all recipes will require access to an iOS development program,

as well as a physical iOS device.

In order to configure an application for use with iCloud, a variety of configuration tasks

must first be completed. Start by creating a new project using the Single View

Application template as before. Make sure your project name is “iCloudTest”, and your

class prefix is “iCloudStore”. While these values normally do not make much difference

in your applications, it will help simplify this demonstration if your names follow those

used in this recipe. Your project configuration should resemble Figure 10–9.

Figure 10–9. Configuring an application to work with iCloud

http://

CHAPTER 10: Data Storage Recipes 375

First, you must configure your project to allow for “entitlements.” In your new project,

navigate to the project’s Target settings, and scroll down to the bottom section called

“Entitlements”. Click the check box labeled “Enable Entitlements”, as shown in the

bottom of Figure 10–10, to have Xcode automatically generate your entitlements file.

Figure 10–10. Enabling entitlements to allow communication with iCloud

Next, you need to generate a special “App ID” for this application. In your web browser,

log into the iOS Developer’s Member Center at

http://developer.apple.com/membercenter/. Navigate to the iOS Provisioning Portal,

and then move to the App IDs section. Click the button titled “New App ID”.

The next screen you see will prompt you to enter a description, as well as a bundle

identifier. Set the description to “iCloudTest”. For the bundle identifier, you need to enter

the exact same identifier that Xcode has given your app. This can be found at the top of

the project’s Targets settings, above the Entitlements section, as in Figure 10–11. It will

most likely have a format along the lines of “com.domainName.iCloudTest”. Copy the

text listed under “Identifier” into the Bundle Identifier line in your browser.

http://developer.apple.com/membercenter/
http://

CHAPTER 10: Data Storage Recipes 376

Figure 10–11. Finding the identifier for your app to configure

In Figure 10–11, my identifier is “com.ColinFrancis.iCloudTest”, so I will copy this to my

browser as the bundle identifier, as in Figure 10–12.

Figure 10–12. Copying your project’s identifier into the Bundle Identifier field

Upon creating this new App ID, you will be returned to your table of created App IDs.

Find the one that you just created, and click the Configure link.

In this screen, all you need to do is check the box labeled “Enable for iCloud”, shown in

Figure 10–13. If a dialog appears warning you of having to manually regenerate profiles,

simply click OK.

http://

CHAPTER 10: Data Storage Recipes 377

Figure 10–13. Enabling iCloud for your certificate

Click Done to finish configuring your App ID.

Next, move down to the Provisioning tab listed on the left-hand side of the screen

underneath the App IDs tab. Click on the New Profile button to begin creating a new

provisioning profile.

Name this new profile “iCloudProfile”. Select your certificate that you should already

have as an iOS developer. Set the App ID field to your recently made “iCloudTest” App

ID, and make sure to check the boxes next to whichever devices you want to test this

application on. Figure 10–14 shows my configuration screen, which yours should

resemble with your own information.

Figure 10–14. Creating a new provisioning profile for your iCloud app

Click Submit to return to your list of provisioning profiles. You should see your new

profile listed. If its status is listed as “Pending”, simply refresh the page until it says

“Active”.

http://

CHAPTER 10: Data Storage Recipes 378

Next, click the Download button next to your newly created profile to download it to

your computer.

Once your file has finished downloading (it shouldn’t take long), drag the file from the

Finder to the Xcode icon in your dock to import it into Xcode. This should bring up the

Organizer window as well, which will list all of your provisioning profiles.

Finally, in the Organizer, while your device is connected to your computer, drag the new

profile from the displayed list to the Provisioning Profiles section under your device,

shown in Figure 10–15.

Figure 10–15. Copying your new profile into the Provisioning Profiles section of your device

At this point, your device is fully configured to run the project you have created.

You must perform one last step in your project in order for the application to physically

be able to use the iCloud services. You will need to define a constant in your view

controller with the “Ubiquity Container URL”. This NSString will essentially be your

developer account’s ID prefixed to your bundle identifier. For example, if you have your

bundle identifier “com.domainName.iCloudTest” and account ID “12345ABCDE”, the

URL will be “12345ABCDE.com.domainName.iCloudTest”. If you are unsure of your

account ID, you can find it by navigating to the Member Center again and going to the

Your Account tab. If you are using an individual account, it will be listed under your

name next to “Individual ID”.

Throughout this project, you will use the example URL of

“12345ABCDE.com.domainName.iCloudTest”. Make sure that you change this

according to your own account ID and domain name.

Add the following definition to the top of your iCloudStoreViewController.m file so that

you can reference it later.

#define UBIQUITY_CONTAINER_URL @"12345ABCDE.com.domainName.iCloudTest"

In order for your application to work properly, you must also make sure that your

entitlements file has been properly configured with this same URL. Navigate to your

entitlements file, and make sure the values for both com.apple.developer.ubiquity-
container-identifiers (Item 0) and com.apple.developer.ubiquity-kvstore-
identifier are set to this value. Xcode should have automatically set these, but it is

best to always confirm this setup. If not, set them, as shown in Figure 10–16.

http://

CHAPTER 10: Data Storage Recipes 379

Figure 10–16. Confirming the correct configuration of your entitlements file

Now that your application and device are configured to work with iCloud, you can

continue to build your actual application.

In order to build a simple program to save a text document to iCloud, you need to make

use of the UIDocument abstract class. Your subclass of this will contain all the

information needed to encode your text information into a file that can be saved online.

Create a new file and select the “Objective-C class” template. The easiest way to

configure this file is to start off by naming the NSObject class as the parent class. You

will change the actual superclass shortly. Name the file “MyDocument”.

Once your class has been created, modify the @interface line of the MyDocument.h file to

the following in order to specify your class as a subclass of UIDocument.

@interface MyDocument : UIDocument

You will give this class only one property, userText, of type NSString, which will store

the text to be encoded and decoded. Make sure to synthesize this property in the

implementation file. Your MyDocument.h file should look like so:

#import <Foundation/Foundation.h>

@interface MyDocument : UIDocument

@property (strong, nonatomic) NSString *userText;

@end

http://

CHAPTER 10: Data Storage Recipes 380

Now, you must, at a bare minimum, implement two classes to correctly subclass

UIDocument: -contentsForType:error: and -loadFromContents:ofType:error:. These

methods will essentially act as your encoding and decoding methods respectively,

similar to the previous recipe.

Your first method will return an NSData object representing your userText property.

-(id)contentsForType:(NSString *)typeName error:(NSError *__autoreleasing *)outError
{
return [NSData dataWithBytes:[self.userText UTF8String] length:[self.userText length]];
}

Your second method will do the reverse, building an NSString out of raw data and

setting it to your property.

-(BOOL) loadFromContents:(id)contents ofType:(NSString *)typeName error:(NSError
*__autoreleasing *)outError
{
if ([contents length] >0)
 {
self.userText = [[NSString alloc] initWithBytes:[contents bytes] length:[contents
length] encoding:NSUTF8StringEncoding];
 }
else
 {
self.userText = @"";
 }
return YES;
}

Now that your data model is configured (yes, it is that simple!), you can move on to

building your user interface. Switch over to the iCloudStoreViewController.xib file and,

using a UITextView and a UIButton, set up the view shown in Figure 10–17.

http://

CHAPTER 10: Data Storage Recipes 381

Figure 10–17. A simple user interface to save text

Make sure to leave the lower half of the view entirely blank, as the keyboard used to edit

your UITextView will cover this area.

You may also wish to change some of the background colors of your main UIView and

UITextView to clearly separate them. I made them different shades of gray, as shown

later in Figure 10–19.

Connect the UITextView to your view controller’s header file using the textViewDisplay

property. Make sure to synthesize and properly handle this property as usual. Connect

the UIButton to an IBAction with the handler -savePressed:.

You will also need several other properties to help perform your iCloud operations. Add

an import statement for the MyDocument.h file.

#import "MyDocument.h"

Add the following three properties as well, making sure to synthesize each and nil them

in -viewDidUnload as usual.

@property (strong, nonatomic) MyDocument *document;
@property (strong, nonatomic) NSURL *ubiquityURL;
@property (strong, nonatomic) NSMetadataQuery *metadataQuery;

http://

CHAPTER 10: Data Storage Recipes 382

Next, you will implement your -viewDidLoad method to create a query for iCloud to

search for any saved versions of your document by using the NSFileManager and

NSMetadataQuery classes.

- (void)viewDidLoad
{
 [super viewDidLoad];

NSFileManager *filemgr = [NSFileManager defaultManager];

self.ubiquityURL = [[filemgr URLForUbiquityContainerIdentifier:UBIQUITY_CONTAINER_URL]
URLByAppendingPathComponent:@"Documents"];

if (self.ubiquityURL != nil)
 {
if ([filemgr fileExistsAtPath:[self.ubiquityURLpath]] == NO)
 [filemgr createDirectoryAtURL:self.ubiquityURL
withIntermediateDirectories:YES
attributes:nil
error:nil];

self.ubiquityURL = [self.ubiquityURL URLByAppendingPathComponent:@"document.doc"];

self.metadataQuery = [[NSMetadataQuery alloc] init];
 [self.metadataQuery setPredicate:[NSPredicate
predicateWithFormat:@"%K like 'document.doc'",
NSMetadataItemFSNameKey]];
 [self.metadataQuery setSearchScopes:[NSArray
arrayWithObjects:NSMetadataQueryUbiquitousDocumentsScope,nil]];

 [[NSNotificationCenter defaultCenter]
addObserver:self
selector:@selector(metadataQueryDidFinishGathering:)
name: NSMetadataQueryDidFinishGatheringNotification
object:metadataQuery];
 [self.metadataQuery startQuery];
 }
}

This method contains the following steps to create a query for any saved data:

1. Acquire the ubiquityURL using the -URLForUbiquityContainerIdentifier:

method. This call uses your identifier that you defined earlier based on your

account ID and domain name. If this value is not nil, then your device and

application are correctly configured to store documents in iCloud.

2. Ensure that the property directories exist at the target URL by using the -

createDirectoryAtURL:withIntermediateDirectories:attributes:error:

method.

3. Append the file name “document.doc” onto the full URL.

4. Create an instance of NSMetadataQuery with a predicate for your file name and a

search scope for ubiquitous documents.

http://

CHAPTER 10: Data Storage Recipes 383

5. Add the view controller as an observer for the completion of the query.

6. Start the query.

After calling this method, your application will be off attempting to find any information

stored on iCloud. In order to react to its results, you must implement the -
metadataQueryDidFinishGathering: selector you mentioned in the previous notification

registration.

- (void)metadataQueryDidFinishGathering: (NSNotification *)notification
{
NSMetadataQuery *query = [notification object];
 [query disableUpdates];

 [[NSNotificationCenter defaultCenter]
removeObserver:self
name:NSMetadataQueryDidFinishGatheringNotification
object:query];

 [query stopQuery];
NSArray *results = [[NSArray alloc] initWithArray:[query results]];

if ([results count] == 1)
 {
self.ubiquityURL = [[results lastObject] valueForAttribute:NSMetadataItemURLKey];
self.document = [[MyDocument alloc] initWithFileURL:ubiquityURL];

 [self.document openWithCompletionHandler:^(BOOL success)
 {
if (success)
 {
NSLog(@"Opened iCloud doc");
self.textViewDisplay.text = self.document.userText;
 }
else {
NSLog(@"Failed to open iCloud doc");
 }
 }];
 }
else
 {
self.document = [[MyDocument alloc] initWithFileURL:self.ubiquityURL];
 [self.document saveToURL:self.ubiquityURL forSaveOperation:
UIDocumentSaveForCreating completionHandler:^(BOOL success)
 {
if (success)
 {
NSLog(@"File created and saved to iCloud");
 }
else
 {
NSLog(@"Error, could not save file to iCloud");
 }
 }];
 }
}

http://

CHAPTER 10: Data Storage Recipes 384

This method completes your search for any previously stored information in iCloud by

running through the following steps:

1. Retrieves the original NSMetadataQuery object in order to disable any further

updates, remove the view controller as an observer, and stop the query.

2. Create an NSArray of documents found using the results property of

NSMetadataQuery.

3. Acquire the last/only object in this array, and then create a UIDocument using its

key-valued URL.

4. Open the document, and, upon completion, display the document’s text to the

user.

This method also includes code for the case in which no documents (or more than one)

are found. In this case, the program attempts to save an empty file directly to iCloud, so

that the file will exist in the future.

At this point, your application will be able to load any previously stored text from iCloud,

so you simply need to implement a saving functionality to have any information to

retrieve! The process of saving data is much simpler than retrieving it.

- (void)savePressed:(id)sender
{
self.document.userText = self.textViewDisplay.text;
 [self.document saveToURL:self.ubiquityURL
forSaveOperation:UIDocumentSaveForOverwriting completionHandler:^(BOOL success)
 {
if (success)
 {
NSLog(@"Written to iCloud");
 }
else
 {
NSLog(@"Error writing to iCloud");
 }
 }];
}

Before you continue on to test your application, you must make sure that your test

device is properly configured to work with iCloud. In the Settings app on your device,

navigate to the iCloud section. In order for this application to properly store data, your

iCloud account must be properly configured and verified. This will require you to have

verified your e-mail address and registered it as your Apple ID. The item marked

“Documents & Data” should also be set to “On”, as in Figure 10–18. You can, of course,

easily configure this once your account is verified.

http://

CHAPTER 10: Data Storage Recipes 385

Figure 10–18. Documents and Data must be enabled to store information in iCloud.

Assuming your device is correctly configured, your simple application should be able to

correctly store documents using the user’s iCloud account, allowing you to easily persist

data across multiple devices, application shutdowns, and even through system resets,

as shown by Figure 10–19 with a few slightly altered background colors, as mentioned

earlier.

http://

CHAPTER 10: Data Storage Recipes 386

Figure 10–19. Your application with text saved and loaded from iCloud

Recipe 10–4: Storing Key-Value Data in iCloud
Just as you were able to easily persist a variety of lightweight objects locally using the

NSUserDefaults class at the beginning of this chapter, you are able to implement the

same type of storage using the iCloud service. You will add this functionality to your

application by keeping a count of the number of times that the text has been saved.

While this may not seem like much, the ability to have such simple values remain

synchronized in the same application across multiple devices opens up a whole world of

development power.

All key-value data handling with iCloud is done through the NSUbiquitousKeyValueStore

class. You will add an instance of this class as a property to your

iCloudStoreViewController file, making sure to synthesize and nil it as appropriate.

@property (strong, nonatomic) NSUbiquitousKeyValueStore *keyStore;

Next, you will do a slight rearrangement of your user interface to include two UILabels,

of which one will display your save count. Your view will now resemble Figure 10–20.

http://

CHAPTER 10: Data Storage Recipes 387

Figure 10–20. Rearranging your XIB file with two new UILabels

Connect the right UILabel (displaying the text “N” in Figure 10–20) to your header using

the property countLabel.

@property (strong, nonatomic) IBOutlet UILabel *countLabel;

You can configure your application to immediately check for any count upon loading by

adding the following code to the end of your -viewDidLoad method.

self.keyStore = [[NSUbiquitousKeyValueStore alloc] init];
double count = [self.keyStore doubleForKey:@"count"];
self.countLabel.text = [NSString stringWithFormat:@"%f", count];

The following line, added after the foregoing ones, will allow you to receive notifications

upon the changing of any values in your NSUbiquitousKeyValueStore, allowing you to

keep your information updated across multiple devices.

[[NSNotificationCenter defaultCenter] addObserver:self selector:
@selector(countChangeExternally:) name:
NSUbiquitousKeyValueStoreDidChangeExternallyNotification object:self.keyStore];

You can implement the -countChangeExternally: method quite simply to set your

UILabel’s text.

-(void)countChangeExternally:(id)sender
{
double count = [self.keyStore doubleForKey:@"count"];

http://

CHAPTER 10: Data Storage Recipes 388

self.countLabel.text = [NSString stringWithFormat:@"%f", count];
}

Finally, you need to instruct your savePressed: method to correctly update this value.

You will do this only if your text is successfully saved, so your updated method will look

like so:

- (void)savePressed:(id)sender
{
self.document.userText = self.textViewDisplay.text;
 [self.document saveToURL:self.ubiquityURL
forSaveOperation:UIDocumentSaveForOverwriting completionHandler:^(BOOL success)
 {
if (success)
 {
NSLog(@"Written to iCloud");
double count = [self.countLabel.text doubleValue];
 count += 1;
self.countLabel.text = [NSString stringWithFormat:@"%f", count];
 [self.keyStore setDouble:count forKey:@"count"];
 [self.keyStore synchronize];
 }
else
 {
NSLog(@"Error writing to iCloud");
 }
 }];
}

Your application should now be able to easily store your lightweight double value to

keep track of your save count, as shown in Figure 10–21!

http://

CHAPTER 10: Data Storage Recipes 389

Figure 10–21. The app with both text and key-value information stored through iCloud

Summary
Data persistence is almost always one of the most important considerations in

developing an application. Developers must consider the type of data they wish to store,

how much of it, how it connects, and whether their application might even stretch

across multiple devices. From there, the choice must be made to decide which

approach to use to storing data, whether it is the simple NSUserDefaults method, the

powerful file management system, or the intricate Core Data framework (as discussed in

the next chapter). In iOS 5.0, the new addition of access to the iCloud service has

revolutionized the way that applications can store data, allowing persistence of data in

near real time across devices running the same application. As memory, storage, and

mobile applications continue to grow in size, importance, and relevance in the

technological world, these topics will become even significantly more relevant. By firmly

understanding the most up-to-date concepts of data persistence in iOS, you are able to

always keep your users updated with the fastest, most efficient, and most powerful

methods of storing data possible.

http://

391

 Chapter

Core Data Recipes

One of the most common problems that developers face is the concept of persistence,

or more simply, storing data. For certainly a very high percentage of applications, it is

not enough to simply store information in your variables, as everything will be lost as

soon as the application is closed. While the previous chapter covered a wide variety of

options for storing data between uses, none of them can quite compare to the

versatility, power, and simplicity of Core Data.

There are a great many resources, including entire books (I highly recommend Pro Core

Data for iOS, by Michael Privat and Robert Warner) that focus simply on the topic of

Core Data. It would be ridiculous to assume that you could cover every part of such a

multi-faceted concept in one chapter. For this reason, you will, instead of building your

Core Data interface from the ground up, use pre-built Xcode templates in order to

provide the easiest demonstration of the Core Data concepts. This way, you, as a

developer, can more easily acquire a grasp of Core Data applications, and later focus on

more targeted, complex points of the subject through other, more dedicated sources.

What Is Core Data?
Core Data is persistence. Not only is Core Data persistence, but also it is by far one of

the best methods for implementing persistence in iOS.

Put simply, Core Data, in conjunction with Xcode, allows a developer to perform three

main tasks:

1. Create a data model

2. Persist information

3. Access data

First, it is important to understand exactly what a data model is. This term applies

essentially to whatever structure any given application’s data is built around. This could

be anything as simple as an NSString or an NSArray in a simple application, all the way

11

http://

CHAPTER 11: Core Data Recipes 392

up to a complex, interconnected system of object types, each with their own properties,

methods, and pointers to other objects.

Next, you should have a basic understanding of the various types of objects and classes

that are involved in Core Data when you need to create, save, and retrieve information,

and how you use them.

1. NSManagedObjectModel: This is an unusual class, because you don’t quite ever

deal with it directly when you are writing code if you use a template. This is how

iOS refers to your data model, which you will create later. When you create your

project for the first recipe shortly, you will see an instance of this type in your

application delegate, and you will see it used in some pre-generated methods, but

aside from that, you will have no reason to deal with this class programmatically.

2. NSPersistentStoreCoordinator: This class is one that you very rarely will need to

deal with. It works mostly in the background of an application to “coordinate”

between your application and the underlying database or “Persistent Store”, but

you will not need to send any actions to it. The most important part of this class

that you need to know about is the “type” of persistent store that is being used.

There are three types of persistent stores:

a. NSSQLiteStoreType

b. NSBinaryStoreType

c. NSInMemoryStoreType

The default value is the first, NSSQLiteStoreType, specifying that you are using a

persistent store built around the SQLite foundation. You will continue to use this

type for your applications.

Depending on your application, you may also find the NSInMemoryStoreType
useful, even though it does not actually persist data between application uses.

This may be more suited to an application that caches information from a remote

source, and thus needs a data model built around Core Data, but does not

actually need to store the information, as it can be retrieved again from the remote

source.

3. NSManagedObjectContext: This class, unlike the previous two, is one that you will

be dealing with quite often. In the simplest terms, this class acts as a sort of

“workspace” for your information. Any time you need to retrieve or store

information, you will need a pointer to this class to perform the action. For this

reason, a very common practice in Core Data–based applications is to “pass

around” a pointer to this class between each part of the application by giving

each view controller an NSManagedObjectContext property.

http://

CHAPTER 11: Core Data Recipes 393

4. NSFetchedResultsController: This is the primary class for actually “fetching”

results through the NSManagedObjectContext. It is not only very powerful, but also

very easy to use, especially in conjunction with a UITableView. You will see plenty

of examples of using this class throughout this chapter.

You will utilize a variety of other classes specific to Core Data throughout this chapter,

but these are more easily explained once you have gone through the creation of your

data model.

Recipe 11–1: Creating a Data Model
For this entire chapter, you will create a new project called “MusicSchool”. Make sure to

select the Empty Application template, as in Figure 11–1.

Figure 11–1. Creating an empty application to start from scratch

On the next screen, when you enter the project name of “MusicSchool”, be sure to

select the box labeled “Use Core Data”. This is the easiest way to get a nice template for

using Core Data, which will simplify your life greatly, pre-generating a great deal of

necessary code. Set the class prefix to “Main”, and make sure the Use Automatic

Reference Counting box is checked as well, as shown in Figure 11–2. The Company

Identifier should be changed to your own name or company name.

http://

CHAPTER 11: Core Data Recipes 394

Figure 11–2. Configuring your project to use Core Data

Click Create on the next screen to finish the creation of your project as usual.

Now that you have set up your project to use a Core Data template, you actually have a

lot of the work involved in using the Core Data framework already done for you, so you

are able to move directly on to building your data model.

As you’ve probably guessed already, your data model will be built to represent the idea

of a music school, specifically focusing on the teachers and students. Before you

proceed to do anything in Xcode, you need to plan out exactly how your model will

work.

When working with a data model, the first kind of item you have to make is an “entity.”

An entity is essentially the Core Data equivalent of an object, and represents an object in

the exact same way.

In the same way that objects (or NSObjects in Objective-C) have properties, entities have

“attributes.” These are the simpler pieces of data associated with any given entity, such

as a name, age, or birthday, that do not require a pointer to any other entity.

Whenever you want one entity to have a pointer to another, you use a “relationship.” A

relationship can be either “to-one” or “to-many,” referring to whether an entity has a

pointer to one instance of another entity or multiple ones. When dealing with the “to-

many” relationship, you will notice that the entity will have a pointer to a set of multiple

other entities. Entities can easily have relationships that point to themselves, which

might be the case of a Person entity having a relationship to another Person, in the form

of a spouse. You can also set up “inverse relationships,” which act as paths back and

forth between entities. For example, a Teacher entity might have a “to-many”

http://

CHAPTER 11: Core Data Recipes 395

relationship to a Student entity called “students”, and the Student’s relationship to the

Teacher, called “teachers”, will be the inverse of this. With this, you can access any

Teacher’s list of Students and their respective list of Teachers quite easily.

So for your data model, you will have three entities with their respective attributes and

relationships like so:

1. Teacher

a. Attributes: Name, age, primary language, and number of years

teaching

b. Relationships: Students (to-many) and Instruments (to-many)

2. Student

a. Attributes: Name, age, primary language, and skill level

b. Relationships: Teacher (to-one) and Instrument (to-one)

3. Instrument

c. Attributes: Name and family

d. Relationships: Students (to-many) and Teachers (to-many)

While all these relationships going back and forth between your objects may seem a bit

convoluted, this will actually allow you to create a very well-defined data model from

which you can query nearly any piece of information you need from another. For

example, you might be able to easily find all the teachers who play the piano, and then

access their respective names.

Now that you have your data model planned out, you can build this in Xcode. Switch

over to view your data model file, which will probably be called

MusicSchool.xcdatamodeld if you used the “MusicSchool” project name. Your view

should resemble Figure 11–3.

http://

CHAPTER 11: Core Data Recipes 396

Figure 11–3. Your empty data model

If your window instead resembles Figure 11–4, you should change to the first Editor style

of the two options in the lower-right of the Xcode window. For this recipe, you will use

only the first Editor style to actually configure your data model.

z

http://

CHAPTER 11: Core Data Recipes 397

Figure 11–4. The graphical Editor style

You can easily change the Editor style for configuring a data model through the selection

in the lower right-hand corner of your screen. Select the left option of the two, which will

be the first of the two previous figures, so that the selector looks like Figure 11–5.

Figure 11–5. Make sure to select the first Editor style for these recipes.

Next, you will add your three entities. You can do this from either the Editor menu, or by

using the Add Entity button in the lower-central area of your view, which resembles

Figure 11–6.

Figure 11–6. Use this button to create new entities.

You will immediately be able to change the name of the entity, so rename it to “Teacher”

and hit return.

Repeat this twice more to create the “Student” and “Instrument” entities. It is easier to

create all your entities first, rather than trying to configure each after you create it, as you

need them to build your relationships. Afterward, if you select the Teacher entity, your

entities list should resemble Figure 11–7.

http://

CHAPTER 11: Core Data Recipes 398

Figure 11–7. Rename your entities to match your data plan.

You will start by configuring your Teacher entity, so make sure this one is selected.

Next, under the Attributes area for the Teacher entity, click the + button four times, once

for each of your attributes. Name each attribute according to your plan (“name”, “age”,

“language”, and “years” will do fine). For each attribute, you must also choose a “Type”.

Use the “String” type for the “name” and “language” attributes, and the “Integer 16”

type for the others, as in Figure 11–8.

NOTE: The different types of integer (i.e., Integer 16, 32, 64), refer to the number of bits used to

store each value. These numbers restrict the highest values you can use, as a 16-bit value can

store only values up to 65,535. A 32-bit value can store values up to 4,294,967,295, and a 64-

bit can hold massive values on the scale of 1018. Since your numbers are fairly low, you can

simply use the “Integer 16” type.

Figure 11–8. Configuring the Teacher entity’s attributes

Now under the Relationships area, add two relationships using the + button. Name them

“students” and “instruments”, and make sure their destination values are set

accordingly, as in Figure 11–9. (“Student” for the students relationship, and so on.) Until

you create more relationships in other entities, you cannot set up your “Inverse”

relationships yet.

Figure 11–9. Configuring the Teacher entity’s relationships

http://

CHAPTER 11: Core Data Recipes 399

Pull up the Data Model inspector just as you would pull up the Attributes inspector for

any view element in a XIB file. After selecting one of the created relationships, check the

box in the inspector labeled “To-Many Relationship”, as in Figure 11–10. Make sure to

do this for both of the Teacher relationships, since they both are “to-many” according to

your plan.

Figure 11–10. Configuring relationships to be “To-Many”

While you will most likely not need to worry about most of the other values in this

inspector (at least for your purposes), one of the values of higher import is the Delete

Rule drop-down menu, as shown in Figure 11–10. This value specifies exactly how this

relationship is handled when an instance of the given entity is deleted from the

NSManagedObjectContext. It has four possible values:

1. No Action: This is probably the most dangerous value, as it simply allows related

objects to continue to attempt to access the deleted object, which could easily

lead to accessing problems without proper care.

2. Nullify: The default value, this specifies that the relationship will be nullified upon

deletion, and will thus return a nil value.

3. Cascade: This value can be slightly dangerous to use, as it specifies that if one

object is deleted, all of the objects it is related to via this Delete Rule will also be

deleted, so as to avoid having nil values. If you’re not careful with this, you can

delete unexpectedly large amounts of data, though it can also be very good for

keeping your data clean. You may use this, for example, in the case of a “folder”

with multiple objects. When a folder is deleted, you would want to delete all the

contained objects as well.

http://

CHAPTER 11: Core Data Recipes 400

4. Deny: This will prevent the object from being deleted as long as the relationship

does not point to nil.

You will keep the Delete Rule on “Nullify” for your recipe.

Now, after selecting the Student entity that you will now configure, add your four

attributes (“age”, “language, “name”, and “skill”), with their appropriate types, as in

Figure 11–11 (“String” for all but the age, which will be “Integer 16” again).

Figure 11–11. Configuring the Student entity’s attributes

Create another two relationships, “instrument” and “teacher”, with their respective

destinations. You can now also set the “Inverse” relationship of the teacher relationship

to the value of “students”, as shown in Figure 11–12. The students relationship in your

Teacher entity will automatically now be given the teacher relationship you just made as

its inverse as well.

NOTE: Inverse relationships are not always required, though they tend to make the organization

and flow of your application a little bit better, allowing you to more easily access any piece of

data you need from any other piece of data.

If you look back at your original plan for your data model, you will see that the two

relationships for the Student are not meant to be “to-many,” so you don’t have to make

this change.

Figure 11–12. Configuring the Student entity’s relationships

Now, you shall configure your third entity, the Instrument. It will have two attributes of

type “String”, called “name” and “family”, as in Figure 11–13.

http://

CHAPTER 11: Core Data Recipes 401

Figure 11–13. Configuring the Instrument entity’s attributes

You will create your two relationships as “teachers” and “students” with their respective

destinations. You should be able to set inverse relationships for both of these, as is

done in Figure 11–14.

Figure 11–14. Configuring the Instrument entity’s relationships

Finally, make sure to specify that both of these relationships are “to-many” in the Data

Model inspector, just as before.

This is actually all you need to do to create your data model! If you switch over to the

second Editor style, you can even see a neat little graphic of your interconnect entities,

their attributes, and their relationships, where a single arrow represents a “to-one”

relationship, and a double arrow represents a “to-many” relationship. The blocks may

initially appear all stacked on top of each other, but if you drag them apart, your display

should resemble Figure 11–15.

http://

CHAPTER 11: Core Data Recipes 402

Figure 11–15. The resulting graphical view of your finished data model

Recipe 11–2: Working with NSManagedObjects
Now that you have your data model set up, you can start to build your application’s

actual user interface.

You will build your application in such a way that you can view three different tabs, each

with a UITableView displaying all of an entity in your data, with each tab displaying a

different entity. Rather than build three different view controllers with nearly the exact

same setup, you will simply build one, then customize the information displayed.

Create a new UIViewController subclass file called “MainTableViewControlle in your

project. In your XIB file, add a UITableView to your view, and connect it to the view

controller’s header file with the property name tableViewMain. Refer to Chapter 8 for

specific instructions on how to do this.

You can go ahead and make this UITableView fill the whole view, and leave it as a

“Plain” style, as in Figure 11–16.

http://

CHAPTER 11: Core Data Recipes 403

Figure 11–16. Setting up your UITableView

Go ahead and set your delegate and data source for your table in the -viewDidLoad
method with the following two lines:

self.tableViewMain.delegate = self;
self.tableViewMain.dataSource = self;

You will of course have to add the UITableViewDelegate and UITableViewDataSource
protocols to your view controller’s header file.

Add the following line to your -viewDidLoad method as well to create an Add button in

your navigation bar. You will implement the action for it to perform later.

self.navigationItem.rightBarButtonItem = [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemAdd target:self action:@selector(add)];

You will need to add a few more properties to your view controller to keep track of your

Core Data objects. Add the following three properties, making sure to properly

synthesize and handle them.

@property (nonatomic, strong) NSEntityDescription *entityDescription;
@property (nonatomic, strong) NSFetchedResultsController *fetchedResultsController;
@property (nonatomic, strong) NSManagedObjectContext *managedObjectContext;

An instance of the NSEntityDescription class is, in rather redundant terms, a

description of an entity. In its simplest use, you simply give it a name. Then, when you

http://

CHAPTER 11: Core Data Recipes 404

query your database via the NSManagedObjectContext with this NSEntityDescription, it

specifically fetches instances of the specified entity.

Your entityDescription property will allow you to easily keep track of whether a view

controller is fetching data for Teachers, Students, or Instruments. The

fetchedResultsController will keep track of your fetched data, and the

managedObjectContext property allows you to make any necessary requests for data.

Next, you need to implement the required delegate and data source methods for your

UITableView. First, the method to specify the number of rows:

-(NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return [[self.fetchedResultsController fetchedObjects] count];
}

As shown, the NSFetchedResultsController class contains a method -fetchedObjects,

which returns an NSArray of the objects that were queried for.

Here is your method to configure your UITableView’s cells:

-(UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil)
{
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellIdentifier];
 cell.accessoryType = UITableViewCellAccessoryDetailDisclosureButton;
 cell.textLabel.font = [UIFont systemFontOfSize:19.0];
 cell.detailTextLabel.font = [UIFont systemFontOfSize:12];
 }

 NSManagedObject *object = [self.fetchedResultsController
objectAtIndexPath:indexPath];
 cell.textLabel.text = [object valueForKey:@"name"];

 if ([object.entity.name isEqualToString:@"Instrument"])
 {
 cell.detailTextLabel.text = [object valueForKey:@"family"];
 }
 else
 {
 cell.detailTextLabel.text = [[object valueForKey:@"age"] stringValue];
 }
 return cell;
}

As you can see, you are able to access attributes of your entities by using the

NSManagedObject class to point to an instance of an entity, then using the -valueForKey:

method to query specific attributes. You will later see an even easier, more natural way

http://

CHAPTER 11: Core Data Recipes 405

to do this, but it is important to understand the concepts of NSManagedObject as a class

that can represent any entity.

You may also notice that you don’t have to access the row value of the indexPath to give

to your NSFetchedResultsController. This is one of the niceties of using Core Data, in

that the results of a fetch request are very easy to implement into a UITableView.

Now that your UITableView is set up, you simply need to make sure that your view

controller actually gets the information that it needs to display. You will set up a

separate method for this like so:

-(void)fetchResults
{
 NSFetchRequest *fetchRequest = [NSFetchRequest
fetchRequestWithEntityName:self.entityDescription.name];
 NSString *cacheName = [self.entityDescription.name
stringByAppendingString:@"Cache"];

 NSSortDescriptor *sortDescriptor = [NSSortDescriptor sortDescriptorWithKey:@"name"
ascending:YES];
 [fetchRequest setSortDescriptors:[NSArray arrayWithObject:sortDescriptor]];

 self.fetchedResultsController = [[NSFetchedResultsController alloc]
initWithFetchRequest:fetchRequest managedObjectContext:self.managedObjectContext
sectionNameKeyPath:nil cacheName:cacheName];
 BOOL success;
 NSError *error;
 success = [self.fetchedResultsController performFetch:&error];
 if (!success)
 {
 NSLog(@"%@", [error localizedDescription]);
 }
}

If you need to, add the handler of this method to your header file to avoid any compiler

warnings (i.e., if you implement this method after your -viewDidLoad).

Considering the importance of the previous method, it’s important to understand the

exact steps required in order to perform the “fetch” for data.

1. The first thing you need for a fetch is an instance of the NSFetchRequest class.

Here, you have used a designated initializer to specify an NSEntityDescription,

though you can also add it later using the -setEntity: method.

2. While not required, you have set up a “cache name” to be used with your fetch

request, with a different cache for each entity. This allows you to slightly improve

the speed of your application if you are making frequent fetch requests, as a local

cache is first checked to see if the request has already been performed.

http://

CHAPTER 11: Core Data Recipes 406

3. Every instance of NSFetchRequest is required to have at least one

NSSortDescriptor associated with it. Here, you have specified a very simple

alphabetic sort of the name property for each of your entities. Once all your

NSSortDescriptors have been created, they must be attached to the

NSFetchRequest using the -setSortDescriptors: method.

4. Once your NSFetchRequest is fully configured, you can fully initialize your

NSFetchedResultsController using your NSFetchRequest and your

NSManagedObjectContext. The last two parameters are both optional, though you

have specified a cacheName for optimization. You can set both of these to nil if

you wish to ignore them.

5. Finally, you must use the performFetch: method to actually complete your fetch

request and retrieve your stored data. With this method, you can pass a pointer to

an NSError, as shown previously, to keep track of and log any errors that occur

with a fetch.

Finally, you will add a quick line to call this method in the -viewDidLoad method.

[self fetchResults];

In entirety, your -viewDidLoad method should look like so:

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.tableViewMain.delegate = self;
 self.tableViewMain.dataSource = self;

 self.navigationItem.rightBarButtonItem = [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemAdd target:self action:@selector(add)];

 [self fetchResults];
}

Now that you have finished configuring your view controller, you need to go back to your

application delegate and set up your basic navigation system to use it.

First, in your application delegate header file, add an import statement for your view

controller’s header file to appease the compiler.

#import "MainTableViewController.h"

Now you will declare all of your view controllers as properties of your application

delegate. You will also set up each view controller in a UINavigationController, and all

three of these inside a UITabBarController, just to get a nice flow of information. Add all

the following properties to your application delegate, making sure to synthesize them as

always.

@property (strong, nonatomic) MainTableViewController *teacherTable;
@property (strong, nonatomic) MainTableViewController *studentTable;
@property (strong, nonatomic) MainTableViewController *instrumentTable;

http://

CHAPTER 11: Core Data Recipes 407

@property (strong, nonatomic) UINavigationController *teacherNavcon;
@property (strong, nonatomic) UINavigationController *studentNavcon;
@property (strong, nonatomic) UINavigationController *instrumentNavcon;

@property (strong, nonatomic) UITabBarController *tabBarController;

Now you need to change up your -application:didFinishLaunchingWithOptions:

method in the Application Delegate class to correctly configure all of your view

controllers. Overall, it will look like so:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.backgroundColor = [UIColor whiteColor];

 self.teacherTable = [[MainTableViewController alloc] init];
 self.teacherTable.entityDescription = [NSEntityDescription entityForName:@"Teacher"
inManagedObjectContext:self.managedObjectContext];
 self.teacherTable.managedObjectContext = self.managedObjectContext;
 self.teacherTable.title = @"Teachers";

 self.studentTable = [[MainTableViewController alloc] init];
 self.studentTable.entityDescription = [NSEntityDescription entityForName:@"Student"
inManagedObjectContext:self.managedObjectContext];
 self.studentTable.managedObjectContext = self.managedObjectContext;
 self.studentTable.title = @"Students";

 self.instrumentTable = [[MainTableViewController alloc] init];
 self.instrumentTable.entityDescription = [NSEntityDescription
entityForName:@"Instrument" inManagedObjectContext:self.managedObjectContext];
 self.instrumentTable.managedObjectContext = self.managedObjectContext;
 self.instrumentTable.title = @"Instruments";

 self.teacherNavcon = [[UINavigationController alloc]
initWithRootViewController:self.teacherTable];
 self.studentNavcon = [[UINavigationController alloc]
initWithRootViewController:self.studentTable];
 self.instrumentNavcon = [[UINavigationController alloc]
initWithRootViewController:self.instrumentTable];

 self.tabBarController = [[UITabBarController alloc] init];
 [self.tabBarController setViewControllers:[NSArray
arrayWithObjects:self.teacherNavcon, self.studentNavcon, self.instrumentNavcon, nil]];

 [self.window addSubview:self.tabBarController.view];
 [self.window makeKeyAndVisible];
 return YES;
}

The configuration for each of your MainTableViewControllers was fairly simple, with all

you had to do being to set up an NSEntityDescription, give it a pointer to your

NSManagedObjectContext, and then give it a title to display in your UITabBarController.

At this point, if you run your application, all you’ll see is a few empty tables (just as in

Figure 11–17), and with good reason. You don’t have any data yet! Unfortunately, you

http://

CHAPTER 11: Core Data Recipes 408

haven’t built your -add method yet, so don’t go pressing that + button until you do, since

you will crash your application.

Figure 11–17. Your three empty UITableViews

For your preliminary recipe, you can start by simply programmatically creating a new

object in each view controller to be displayed. Add the following code to your

MainViewController’s -viewDidLoad method, making sure it is before the call to -
fetchResults.

NSManagedObject *add = [[NSManagedObject alloc] initWithEntity:self.entityDescription
insertIntoManagedObjectContext:self.managedObjectContext];
 if (![self.entityDescription.name isEqualToString:@"Instrument"])
 {
 [add setValue:@"Jim" forKey:@"name"];
 [add setValue:[NSNumber numberWithInt:42] forKey:@"age"];
 }
 else
 {
 [add setValue:@"Trumpet" forKey:@"name"];
 [add setValue:@"Brass" forKey:@"family"];
 }

http://

CHAPTER 11: Core Data Recipes 409

Now when you run the app, some temporary data will be displayed, as shown by

Figure 11–18.

Figure 11–18. Your semi-populated UITableView

While you have created a new instance of each of your entities in your

NSManagedObjectContext, you’ll probably notice that these objects are not persisting

every time you run this application, as you are not seeing an increasing list with every

run. This is because you did not save the changes you made to the

NSManagedObjectContext. You can do this by adding the following after the previous

additions, but still before the call to -fetchRequest.

NSError *error;
 BOOL success = [self.managedObjectContext save:&error];
 if (!success)
 {
 NSLog(@"%@", [error localizedDescription]);
 }

You’ll notice that this is very similar to the -performFetch: method that you used in -
fetchResults, in that you send it a pointer to an instance of NSError in order to log any

http://

CHAPTER 11: Core Data Recipes 410

issues. As with before, this is totally optional, and you could pass nil as this parameter,

but for best practices it is safer to include the logging.

If you run your application a few times, changing the name, you can accumulate a few

different pieces of data to display. Figure 11–19 shows your application after having

been run a few times to collect some data.

Figure 11–19. Your app preserving and creating new data

To make your program run a bit better, you can go ahead and implement that -add
method, so that you can create new data from inside the app. Typically, you would want

to create separate view controllers to allow the user to input the information for a new

object, but for your purposes, the key concept is simply to be able to add objects.

-(void)add
{
 NSManagedObject *add = [[NSManagedObject alloc]
initWithEntity:self.entityDescription
insertIntoManagedObjectContext:self.managedObjectContext];
 if (![self.entityDescription.name isEqualToString:@"Instrument"])
 {

http://

CHAPTER 11: Core Data Recipes 411

 [add setValue:@"Peter" forKey:@"name"];
 [add setValue:[NSNumber numberWithInt:35] forKey:@"age"];
 }
 else
 {
 [add setValue:@"Guitar" forKey:@"name"];
 [add setValue:@"Strings" forKey:@"family"];
 }

 NSError *error;
 BOOL success = [self.managedObjectContext save:&error];
 if (!success)
 {
 NSLog(@"%@", [error localizedDescription]);
 }

 [self fetchResults];

 [self.tableViewMain reloadData];
}

In the previous method, you must make sure to call the -fetchResults method once you

are done creating the new object, but before you reload your UITableView’s data, in

order to make sure that your NSFetchedResultsController contains the most recent

changes.

Just as Core Data makes a UITableView very easy to populate, it is also very easy to

implement deletion of items from a UITableView in conjunction with the Core Data

classes. You can implement your UITableView’s -
tableView:commitEditingStyle:forRowAtIndexPath: like so:

-(void)tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (editingStyle == UITableViewCellEditingStyleDelete)
 {
 NSManagedObject *deleted = [self.fetchedResultsController
objectAtIndexPath:indexPath];
 [self.managedObjectContext deleteObject:deleted];
 NSError *error;
 BOOL success = [self.managedObjectContext save:&error];
 if (!success)
 {
 NSLog(@"%@", [error localizedDescription]);
 }
 [self fetchResults];
 [self.tableViewMain deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
withRowAnimation:UITableViewRowAnimationRight];
 }
}

While it is certainly possible to allow deletion only by having the user swipe over a row, it

is generally a good idea to also provide an Edit button, in case the user is unfamiliar with

the swiping functionality. To do this, you first need to make a simple adjustment to your

-viewDidLoad method to create the button, which will now resemble the following:

http://

CHAPTER 11: Core Data Recipes 412

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.tableViewMain.delegate = self;
 self.tableViewMain.dataSource = self;

 /////Adjusted code to add Edit button
 UIBarButtonItem *addButton = [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemAdd target:self action:@selector(add)];
 UIBarButtonItem *editButton = self.editButtonItem;
 self.navigationItem.rightBarButtonItems = [NSArray arrayWithObjects:addButton,
editButton, nil];
 /////End of adjusted code

 [self fetchResults];
}

Now you just need a quick implementation of the -setEditing:animated: method to get

your nice little animations correct.

-(void)setEditing:(BOOL)editing animated:(BOOL)animated
{
 [super setEditing:editing animated:animated];
 [self.tableViewMain setEditing:editing animated:animated];
}

Upon running your app now, you’ll notice you can not only add, but also delete

information from your table, just as is done in Figure 11–20.

http://

CHAPTER 11: Core Data Recipes 413

Figure 11–20. Your app, adding and deleting data

Recipe 11–3: Subclassing NSManagedObject
Now that you have your basic UITableView set up to display the information you can

store with Core Data, it’s time to improve a bit on your program design. The first thing

you can do is an incredible time saver that will make programming with Core Data

significantly easier. You will be subclassing the NSManagedObject class for each of the

entities that you created. Unlike most subclassing, however, this is incredibly easy to set

up.

First, switch back to view your MusicSchool.xcdatamodeld file in which you created your

entities.

The next step can be done individually, but you will create your three subclasses all at

once. Select each entity from the view by holding the “command” key and clicking each

one, so that all three become highlighted. You will also notice that all of their combined

attributes and relationships will be visible as well, as shown in Figure 11–21.

http://

CHAPTER 11: Core Data Recipes 414

The NSManagedObject subclassing technique that you will be using creates a subclass

based on which entity or entities are selected, so it is important to make sure that all the

entities you want subclasses for are selected.

Figure 11–21. Selecting all three entities to be turned into NSManagedObject subclasses

Next, under the File menu, select New ➤ New File… to bring up the New File dialog.

Navigate to the Core Data section under iOS, and select the “NSManagedObject

subclass” option, as shown in Figure 11–22.

http://

CHAPTER 11: Core Data Recipes 415

Figure 11–22. Selecting the “NSManagedObject subclass” template to automatically generate classes for your
entities

Click through, and hit Create to have Xcode create your three NSManagedObject

subclasses.

By subclassing the NSManagedObject class, you have effectively turned your entities into

classes that you can use and manipulate normally, especially when it comes to

accessing their attributes. Now, rather than having to use the -setValue:forKey: and -
valueForKey: methods, you can simply use the setter and getter methods, or, more

simply, the properties created with the same names as your attributes. This also allows

you to more easily specify exactly which entity any given instance of NSManagedObject is

associated with, so that your compiler can assist you in accessing properties and

methods for that entity.

To demonstrate these abilities, you can rewrite your -
tableView:cellForRowAtIndexPath: method to first cast your NSManagedObject down to

its appropriate subclass, and then populate your cell’s content using the subclass

properties.

First, make sure to import the newly created header files into your view controller.

#import "Instrument.h"
#import "Student.h"
#import "Teacher.h"

Once this is taken care of, you can implement your simplified method.

-(UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath

http://

CHAPTER 11: Core Data Recipes 416

{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil)
 {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellIdentifier];
 cell.accessoryType = UITableViewCellAccessoryDetailDisclosureButton;
 cell.textLabel.font = [UIFont systemFontOfSize:19.0];
 cell.detailTextLabel.font = [UIFont systemFontOfSize:12];
 }

 NSManagedObject *object = [self.fetchedResultsController
objectAtIndexPath:indexPath];

 if ([object.entity.name isEqualToString:@"Instrument"])
 {
 Instrument *instrument = (Instrument *)object;
 cell.textLabel.text = instrument.name;
 cell.detailTextLabel.text = instrument.family;
 }
 else if ([object.entity.name isEqualToString:@"Student"])
 {
 Student *student = (Student *)object;
 cell.textLabel.text = student.name;
 cell.detailTextLabel.text = [student.age stringValue];
 }
 else
 {
 Teacher *teacher = (Teacher *)object;
 cell.textLabel.text = teacher.name;
 cell.detailTextLabel.text = [teacher.age stringValue];
 }

 return cell;
}

You can also simplify your -add method that creates your test data like so.

-(void)add
{
 NSManagedObject *add = [[NSManagedObject alloc]
initWithEntity:self.entityDescription
insertIntoManagedObjectContext:self.managedObjectContext];
 if ([self.entityDescription.name isEqualToString:@"Teacher"])
 {
 Teacher *teacher = (Teacher *)add;
 teacher.name = @"Peter";
 teacher.age = [NSNumber numberWithInt:36];
 }
 else if ([self.entityDescription.name isEqualToString:@"Instrument"])
 {
 Instrument *instrument = (Instrument *)add;
 instrument.name = @"Guitar";
 instrument.family = @"Strings";
 }

http://

CHAPTER 11: Core Data Recipes 417

 else
 {
 Student *student = (Student *)add;
 student.name = @"Andrew";
 student.age = [NSNumber numberWithInt:18];
 }

 NSError *error;
 BOOL success = [self.managedObjectContext save:&error];
 if (!success)
 {
 NSLog(@"%@", [error localizedDescription]);
 }

 [self fetchResults];

 [self.tableViewMain reloadData];
}

Again, this doesn’t really affect how your application runs, but it makes your life a great

deal easier in terms of coding and debugging.

By using this subclassing technique, you will probably find yourself having fewer issues

with runtime errors when using Core Data, as your compiler will now be able to confirm

that you are accessing the correct properties for any given subclass.

Just as you are able to access and edit the attributes of your subclassed

NSManagedObjects, you can do the same with the relationships that your entities share.

You will change your program such that if a Teacher is selected, a list of Instruments

entered appears, and when one of these Instruments is selected, that Instrument is

added to the set of instruments for that Teacher. You may also notice that because you

have your relationships set up with inverses to each other, a relationship set one way will

also be set in the reverse. In your case, when you add the Instrument into the

instruments set of a Teacher, that Teacher will also be added into the teachers set of

the Instrument.

For demonstration purposes, you will implement this behavior only between Teachers

and Instruments, but it should be easy to see how you would fully implement similar

behavior between all three entities, allowing the user to connect any Teacher with his or

her Students and Instruments.

First, you will declare an instance variable in your MainTableViewController’s header file

of type Teacher, to help keep track of the selected Teacher.

__strong Teacher *selectedTeacher;

Next, you will need to declare a new property called delegate of the same type as the

class, which you will use to connect your multiple view controllers. Make sure to

synthesize and nil this property as appropriate.

@property (nonatomic, strong) MainTableViewController *delegate;

Declare also the header for a method for your delegate property to perform, like so:

http://

CHAPTER 11: Core Data Recipes 418

-(void)MainTableViewController:(MainTableViewController *)mainTableVC
didSelectInstrument:(Instrument *)instrument;

Your header file (MainTableViewController.h) should now resemble the following:

#import <UIKit/UIKit.h>
#import "Instrument.h"
#import "Student.h"
#import "Teacher.h"

@interface MainTableViewController : UIViewController <UITableViewDelegate,
UITableViewDataSource>{

 __strong Teacher *selectedTeacher;
}

@property (strong, nonatomic) IBOutlet UITableView *tableViewMain;

@property (nonatomic, strong) NSEntityDescription *entityDescription;
@property (nonatomic, strong) NSFetchedResultsController *fetchedResultsController;
@property (nonatomic, strong) NSManagedObjectContext *managedObjectContext;

@property (nonatomic, strong) MainTableViewController *delegate;

-(void)MainTableViewController:(MainTableViewController *)mainTableVC
didSelectInstrument:(Instrument *)instrument;

@end

Next, you will use the delegate property in conjunction with your UITableView’s row

selection method to build your new, albeit selective, functionality.

-(void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath
{
 [self.tableViewMain deselectRowAtIndexPath:indexPath animated:YES];
 if ([self.entityDescription.name isEqualToString:@"Teacher"])
 {
 selectedTeacher = [self.fetchedResultsController objectAtIndexPath:indexPath];
 MainTableViewController *selectInstrument = [[MainTableViewController alloc]
init];
 selectInstrument.entityDescription = [NSEntityDescription
entityForName:@"Instrument" inManagedObjectContext:self.managedObjectContext];
 selectInstrument.managedObjectContext = self.managedObjectContext;
 selectInstrument.delegate = self;
 [self.navigationController pushViewController:selectInstrument animated:YES];
 }
 else if ([self.entityDescription.name isEqualToString:@"Instrument"] &&
(self.delegate != nil))
 {
 [self.delegate MainTableViewController:self
didSelectInstrument:[self.fetchedResultsController objectAtIndexPath:indexPath]];
 [self.navigationController popViewControllerAnimated:YES];
 }
}

http://

CHAPTER 11: Core Data Recipes 419

You can now implement the delegate method you recently declared to add the chosen

Instrument to the selectedTeacher, and then save the changes to the

NSManagedObjectContext.

-(void)MainTableViewController:(MainTableViewController *)mainTableVC
didSelectInstrument:(NSManagedObject *)instrument
{
 [selectedTeacher addInstrumentsObject:instrument];
 NSError *saveError;
 BOOL success = [self.managedObjectContext save:&saveError];
 if (!success)
 {
 NSLog(@"%@", [saveError localizedFailureReason]);
 }
}

Since you didn’t flesh out a full system for the user to create custom data, you will need

to adjust your -add method a few times, running your application each time, to create

some different data in order to fully test this functionality.

Recipe 11–4: Filtering Your Fetch Requests
When you’re using your instances of NSFetchRequest to get information from your

NSManagedObjectContext, you are in no way limited to only requesting all of a specific

entity. Through the use of the NSPredicate class, you can easily refine your results to

nearly any subset depending on your application.

For your application, you will implement your filtering behavior to be applied upon the

tapping of the Accessory button in your UITableViews, with different actions depending

on the type of NSManagedObject tapped.

 If the Accessory button is tapped in your Teachers table, you will

display another UITableView of all the instruments that the selected

Teacher is associated with.

 Tapping the accessory button in your Students table will display a

table of all other students of the same age as the one selected.

 In your Instruments table, you will filter your data to display all other

Instruments with the same family as the selected one.

All of these behaviors will be implemented by setting an NSPredicate to your

NSFetchRequest with the specified predicate.

First, you will add a property to your MainTableViewController to keep track of this

NSPredicate so that it can be easily created and used to perform fetch requests.

@property (nonatomic, strong) NSPredicate *predicate;

You can implement your UITableView’s delegate method like so:

-(void)tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath

http://

CHAPTER 11: Core Data Recipes 420

{
 if (![self.title isEqualToString:@"Filtered"])
 {
 MainTableViewController *filtered = [[MainTableViewController alloc] init];
 filtered.title = @"Filtered";
 filtered.managedObjectContext = self.managedObjectContext;

 if ([self.entityDescription.name isEqualToString:@"Teacher"])
 {
 filtered.entityDescription = [NSEntityDescription
entityForName:@"Instrument" inManagedObjectContext:self.managedObjectContext];
 NSSet *instruments = [(Teacher *)[self.fetchedResultsController
objectAtIndexPath:indexPath] instruments];
 filtered.predicate = [NSPredicate predicateWithFormat:@"self IN %@",
instruments];
 }
 else if ([self.entityDescription.name isEqualToString:@"Student"])
 {
 filtered.entityDescription = self.entityDescription;
 filtered.predicate = [NSPredicate predicateWithFormat:@"age=%i", [[(Student
*)[self.fetchedResultsController objectAtIndexPath: indexPath] age] intValue]];
 }
 else
 {
 filtered.entityDescription = self.entityDescription;
 filtered.predicate = [NSPredicate predicateWithFormat:@"family=%@",
[(Instrument *)[self.fetchedResultsController objectAtIndexPath:indexPath]family]];
 }

 [self.navigationController pushViewController:filtered animated:YES];
 }
}

As you can see, you have used a couple of different styles of predicates in your

implementation. You have a simple comparing predicate comparing the family property

with a value, and then you have a predicate to check for an object contained in a set for

the Teacher.

Whenever you need to specify a certain value in a predicate, you can use “%@”, and

then pass the value afterward, as shown in the previous code block. In case you are

unfamiliar with these kinds of values, called “format specifiers,” some of the more

common ones include the following:

 %@: This can be used to represent either a NSString value, or simply a

reference to an object, as you used previously.

 %i: This represents an integer.

 %f: This represents a float.

 %d: This represents a double value.

These specifiers, which originated in the C programming language for printing formatted

strings, are most often used in conjunction with either the NSLog() command or when

http://

CHAPTER 11: Core Data Recipes 421

displaying information for the user. For example, you may have a piece of code for

testing to log a simple counter, which would look like so:

for (int n=0; n < 100; n++)
 {
 NSLog(@"%i", n);
 }

Whenever you are referring to the object being evaluated with a predicate, you use the

keyword “self”, as shown in the first NSPredicate.

There is a great deal of documentation on creating NSPredicates with different formats

and methods, which allow the developer a great deal of power in creating filters for their

results. Refer to the Apple documentation for more information on creating more

complex predicates.

Just before you are quite finished with this setup, you also need to modify your -
fetchResults method to take the NSPredicate into account. The new method will look

like so:

-(void)fetchResults
{
 NSFetchRequest *fetchRequest = [NSFetchRequest
fetchRequestWithEntityName:self.entityDescription.name];
 NSString *cacheName = [self.entityDescription.name
stringByAppendingString:@"Cache"];

 ////////////New Predicate code
 if (self.predicate != nil)
 {
 [fetchRequest setPredicate:self.predicate];
 }
 ////////////End of new code

 NSSortDescriptor *sortDescriptor = [NSSortDescriptor sortDescriptorWithKey:@"name"
ascending:YES];
 [fetchRequest setSortDescriptors:[NSArray arrayWithObject:sortDescriptor]];

 self.fetchedResultsController = [[NSFetchedResultsController alloc]
initWithFetchRequest:fetchRequest managedObjectContext:self.managedObjectContext
sectionNameKeyPath:nil cacheName:cacheName];

 BOOL success;
 NSError *error;
 success = [self.fetchedResultsController performFetch:&error];
 if (!success)
 {
 NSLog(@"%@", [error localizedDescription]);
 }
}

At this point, if you run your application, you can see some examples of the filtered

results, such as the filtering of Instruments by family in Figure 11–23.

http://

CHAPTER 11: Core Data Recipes 422

Figure 11–23. Your app displaying filtered results

Recipe 11–5: Versioning
For almost any application, you will most likely need to make changes to your Core Data

model at one point or another. Xcode gives you a very nice, easy way to do this in such

a way that you can keep all your old models easily in case you have any issues, through

a process called “versioning.”

The first step you will take is to create a new version of your data model, which you can

base off of the one you already have. First, select your MusicSchool.xcdatamodeld file in

your navigator pane on the left.

In the Editor menu, select Add Model Version…. A simple dialog will appear, allowing you

to specify the name of the new version model, as well as which model to base the new

one off of. Since you have only the one model so far, it will be your only choice. Name

the new model “MusicSchool2”, as in Figure 11–24.

http://

CHAPTER 11: Core Data Recipes 423

Figure 11–24. Creating a new version

Click Finish, and your new model will be created.

Now, you can make some changes to your data model. For the purposes of your

application, you will be making only fairly simple changes so that your migration, which

you will deal with shortly, is a simple process. In order to keep with a lightweight

migration, you should stick to only the following possible changes:

Adding or removing entities, attributes, or relationships

Renaming properties or entities

Changing whether an attribute is optional

For your new data model, you will simply add two attributes: first, an NSString called

size to your Instrument entity, and another NSString called range, also to the Instrument

entity. The resulting attributes table will resemble Figure 11–25.

Figure 11–25. Adding new attributes to your Instrument entity

http://

CHAPTER 11: Core Data Recipes 424

Next, you need to specify this newest model version to be the one that your application

actually uses. First, select the top level of your .xcdatamodel files, which will be listed as

having the file type “xcdatamodeld”, and have the drop-down menu of your two actual

data model files, as in Figure 11–26. (This one specifies which of the two is actually

being selected.)

Figure 11–26. Viewing your project’s data models; the currently used one is listed as the main file.

Next, you need to bring up the File inspector. You can do this either by navigating from

the View menu to Utilities ➤ Show File Inspector, or by bringing up the Utilities pane on the

right side of the screen, and then selecting the first tab, as shown in Figure 11–27.

CAUTION: Xcode does not currently allow you to delete data model files from your project. Be

careful when creating new versions, as you will not be able to easily remove them once they are

created. In Figure 11–27, you can see a buildup of multiple data model files that are not needed

or used.

http://

CHAPTER 11: Core Data Recipes 425

Figure 11–27. Using the File inspector to set the current version

Under the Versioned Core Data Model section, you need to change the current model to

your new “MusicSchool2”, specifically shown in Figure 11–28.

Figure 11–28. Selecting a different current version

At this point, you will notice that a small green check mark has been placed next to the

new model version, signifying that it is now the current version, as in Figure 11–29.

Figure 11–29. Your new model file set as the current version

If you try to run this application immediately, depending on how complex your changes

were, your application might possibly crash upon running with a very strange reason of

“The model used to open the store is incompatible with the one used to create the

store”. This essentially means that you are trying to migrate data from an old model to a

new one, and it does not know what to do. Luckily, for those lightweight migrations, this

is easy to fix.

Navigate over to your application delegate implementation file, and find the -
persistentStoreCoordinator method. Look for the following line:

http://

CHAPTER 11: Core Data Recipes 426

if (![__persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
configuration:nil URL:storeURL options:nil error:&error])

You will specify an instance of NSDictionary to pass as the options parameter of this

method. Add the following code before the previous if statement.

NSDictionary *options = [NSDictionary dictionaryWithObjectsAndKeys:[NSNumber
numberWithBool:YES], NSMigratePersistentStoresAutomaticallyOption, [NSNumber
numberWithBool:YES], NSInferMappingModelAutomaticallyOption, nil];

Make sure to set this dictionary as the actual parameter so that the if statement reads

like so now:

if (![__persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
configuration:nil URL:storeURL options:options error:&error])

Any lightweight migrations will now automatically take place, making your job immensely

easier.

If your app runs perfectly fine without this change, then you do not need to worry about

this step, but know that you may have to at some point.

An Irritating Error
Sometimes when dealing with versioning, you may run into a problem where an error is

thrown by the method that states that the store could not be found. An easy, albeit

frustrating solution to this is to delete your persistent store using the following command

in the event of an error by adding this line inside the previously referenced if statement.

[[NSFileManager defaultManager] removeItemAtURL:storeURL error:nil];

Your if statement would then resemble the following code in this case. Keep in mind

that you do not at all need or want to add this code unless you encounter this specific

problem.

if (![__persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
configuration:nil URL:storeURL options:options error:&error])
 {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 [[NSFileManager defaultManager] removeItemAtURL:storeURL error:nil];

 abort();
 }

After running this application once, your persistent store will be reset, so you should be

able to remove this line from the method once your application is working correctly

again. This way, your app does not go and reset your data without your explicit

expectation.

While this should fix the problem, you will unfortunately lose all of your saved data, so it

is generally best to avoid this drastic measure.

At this point, your application will work again, and you can add code to take advantage

of your newer model version. However, since you have not updated your

NSManagedObject subclasses, you will not be able to access any of your new attributes

http://

CHAPTER 11: Core Data Recipes 427

without using the -valueForKey: method. Since you made changes only to the

Instrument entity, you will refresh only your Instrument subclass.

First, delete the Instrument subclass files. You can choose to fully delete the files, rather

than simply their references, since you will not need this version of it anymore, and you

can always re-create it from the data model again if you have to revert. The dialog with

which to do this will resemble Figure 11–30.

Figure 11–30. Deleting your Instrument subclass files; use the Delete option, as you will re-create them.

Now you can go through the exact same steps as before to create your subclass.

In your data model file, select the Instrument entity, then navigate to File ➤ New ➤ New

File….

Under Core Data for iOS, choose the “NSManagedObject subclass” template (as in

Figure 11–31), and then click through to create your new subclass.

Figure 11–31. Re-creating your NSManagedObject subclass for your newest version

http://

CHAPTER 11: Core Data Recipes 428

You’ll now see that your Instrument class contains all the necessary properties and

methods to handle the added attributes in your new, versioned data model!

Summary
Throughout this chapter, we have covered the basics of Core Data, one of the most

integral parts of iOS development, due to its power and simplicity of use when it comes

to data modeling, persistence, and access. However, we have by no means detailed

every facet in the Core Data framework, or even touched on every general subject

related to it. You can easily find entire books devoted to the subject of Core Data, and

you probably should, in order to get a more complete view of exactly how much ability

you have in controlling how your data is stored. The overview here has demonstrated a

basic use of the framework and explained the key concepts needed to get started

working with Core Data, so that you can implement simple persistence in your

applications without worrying about the more esoteric complexities.

http://

429

 Chapter

Core Motion Recipes

The last two chapters spent an incredible amount of time on dealing with information

stored and persisted inside a device’s memory. Now, we will deal with an entirely

opposite topic: data from the outside world—not in the sense of data given by the user,

but instead, data collected by the device about the universe in which it exists at any

given second. By retrieving information about the outside world, a developer can

specifically build applications focused on enhancing the user’s experience based on his

or herphysical situation. This could be anything from simply detecting the orientation of

the device to incorporating rotation into a racing game’s steering system, to using an

accelerometer to measure the acceleration of a roller coaster. Through the use of the

Core Motion framework, we are able to accesswith great ease a variety of hardware built

into our iOS device in order to acquire such unique information, from magnetic fields, to

accelerations, both by gravity and otherwise, to rotation rates, about the specific

situation of our device.

For all but the first recipe in this chapter, you will need a physical device with which to

test functionality, since youwill be dealing with information generated by the physical

presence of a device.

Recipe 12–1: Registering Shake Events
Before we dive into the Core Motion framework, we can first deal with a related topic:

the shaking of a device. A large number of applications utilize this functionality in a

variety of ways, with results ranging from the shuffling of songs to the refreshing of

information. While this implementation does not necessarily rely on the Core Motion

framework, its key concept of being able to detect physical changes to your device

makes it an important functionality to understand.

You will create a very simple application to detect and log the shaking of the device.

From there, you will start to build an app that can read and display motion information.

Start off by creating a new project called “Measurements”, which you will use

throughout this chapter. For your simple application, you will use the Single View

12

http://

CHAPTER 12: Core Motion Recipes 430

Application template, as in Figure 12–1, so that you can be saved some work on putting

your application delegate together.

Once you select the template, enter the project name, make sure that your class prefix is

set to “Main” and that only the box marked “Use Automatic Reference Counting” is

checked, and then click through to create your project.

Figure 12–1. Creating a single view application

The first task involved in configuring the shaking functionality is that you need to instruct

your application to post a notification any time the device is shaken (not stirred). To do

this, you will need to subclass the UIWindow class. Create a new file using the

“Objective-C class” template under the iOS Cocoa Touch section, as in Figure 12–2.

http://

CHAPTER 12: Core Motion Recipes 431

Figure 12–2. Subclassing UIWindow by making an Objective-C class

Go ahead and name the class “MainWindow”, and make sure that you enter

“UIWindow” in the “Subclass of” field, just as in Figure 12–3.

Figure 12–3. Configuring your UIWindow subclass

http://

CHAPTER 12: Core Motion Recipes 432

Click through to create this subclass, and then switch over to its implementation file,

called MainWindow.m.

In this class, you will be overriding the -motionEnded:withEvent: method in order to

properly handle the shaking of your device. Any time the device is shaken, this method

will automatically be called. You will write it to post a notification, which you can then

track in other classes.

-(void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event
{
if (motion == UIEventSubtypeMotionShake)
 {
 [[NSNotificationCenter defaultCenter] postNotificationName:@"NOTIFICATION_SHAKE"
object:event];
 }
}

If you are not quite familiar with the concept of the NSNotificationCenter and posting

notifications, you will quickly see that they are quite simple. Any given class can post

notifications to the NSNotificationCenter. Any class that is “observing” the center for

any notifications with the same “Name” will be notified, and can thus act accordingly.

This is a fantastic way to move information between classes based on real-time events,

and often deal with outside changes in userinput, such as adjustments to a device’s

volume or using remote controls with a music application.

Next you need to specify that your new subclass of UIWindow is the one that your

application should use. If you switch over to your application delegate, you will notice it

already has a UIWindow property with which it displays all of your views.

First, add an import statement to your app delegate header file to include the

MainWindow class.

#import "MainWindow.h"

Now in the app delegate implementation file, modify your -
application:DidFinishLaunchingWithOptions: method to read like so:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
//////////The only changed line!
self.window = [[MainWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
//////////Change only the previous line.

self.viewController = [[MainViewController alloc] initWithNibName:@"MainViewController"
bundle:nil];
self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
return YES;
}

By modifying the class with which you allocated and initialized your window property

from “UIWindow” to “MainWindow”, you threw a nice bit of polymorphism into your

code, in that the window property is of type UIWindow, but specifically behaves like a

http://

CHAPTER 12: Core Motion Recipes 433

MainWindow. Since MainWindow is a subclass of UIWindow, this won’t give you any

problems, and saves you from having to change the property type as well.

Now, you can switch over to your main view controller, where you need to register for

your “NOTIFICATION_SHAKE” notifications by modifying your -viewDidLoad method.

- (void)viewDidLoad
{
 [super viewDidLoad];

 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(shakeDetected:) name:@"NOTIFICATION_SHAKE" object:nil];

}

Since you passed the shakeDetected: selector as the designated action for these

notifications in the previous method, you need to implement this in order to avoid any

runtime exceptions. For now, your implementation will be very simple, but you will add

onto it later.

-(void)shakeDetected:(NSNotification *)paramNotification
{
NSLog(@"Just be careful not to drop it!");
}

While it may seem a little odd, you do not actually need a physical device to test out this

functionality. The iOS simulator includes a function to simulate a shaking motion on the

device, so that you can see if your application responds correctly.

When viewing your simulator, navigate in the Hardware menu to the “Shake Gesture”

(Ctrl+! Z) selection, as shown in Figure 12–4.

Figure 12–4. Simulating a shake gesture

You won’t see any kind of shaking animation in the simulator, but it should respond

appropriately to make your simple little log. Figure 12–5 demonstrates the output of your

application after “shaking” the simulator a couple of times.

http://

CHAPTER 12: Core Motion Recipes 434

Figure 12–5. Resulting output from “shaking”your simulator

If you connect your iOS device to Xcode and run through that, you’ll get the same result

once you give your device a bit of a shake!

Recipe 12–2: Accessing Raw Core Motion Data
Now that your application is set up with some basic shaking detection, you can start to

build the Core Motion framework in, which will allow you access to accelerometer,

gyroscope, and magnetometer information.

First, select your project, and then navigate to the Build Phases tab. Under Link Binary

With Libraries, click the + button, and select the item labeled “CoreMotion.framework”,

as in Figure 12–6.

Figure 12–6. Adding the CoreMotion framework

http://

CHAPTER 12: Core Motion Recipes 435

Now back in your main view controller’s header file, add the following import statement

so that you can access the Core Motion API.

#import <CoreMotion/CoreMotion.h>

The Core Motion framework relies extremely heavily on a single class called

CMMotionManager. This class acts as a hub through which you access all the hardware

that any given device is able to access. You will create an instance of this class in your

view controller as a property in order to constantly keep track of it.

@property (nonatomic, strong) CMMotionManager *motionManager;

In your view controller, make sure to synthesize this property, and then set it to nil in

your -viewDidUnload, as is standard.

Unfortunately, simply synthesizing a CMMotionManager object is not enough to ensure its

initialization (like an NSArray), so you will create a modified getter method to make up for

this. Luckily, there’s no complicated configuration needed to do this.

-(CMMotionManager *)motionManager
{
if (motionManager == nil)
 {
motionManager = [[CMMotionManager alloc] init];
 }
return motionManager;
}

Next up, you’ll start by setting up your user interface.You will start off by measuring the

output of three different instruments: the accelerometer, the gyroscope, and the

magnetometer. You will go more into detail on the purposes of these instruments soon,

but for now you must know that each of these will provide three different values for you

to view. As such, you will set up your view as shown in Figure 12–7.

http://

CHAPTER 12: Core Motion Recipes 436

Figure 12–7. Your view controller’s XIB setup

Make sure to connect the required UILabels to your view controller as properties so that

you can change their text! You can leave all the device name labels as well as the “X”,

“Y”, and “Z” labels alone, so you will connect only the UILabels thatwill show values

(they read as “0.0” right now), as well as the bottom Status label. You will use the

following property names in your code, organized by line:

 xAccLabel, yAccLabel, zAccLabel

 xGyroLabel, yGyroLabel, zGyroLabel

 xMagLabel, yMagLabel, zMagLabel

 statusLabel

You will also define a method in your header file to toggle whether you are currently

retrieving hardware updates, so add the following method declaration.

-(void)toggleUpdates;

When you’re done, your user interface should be fully set up for your initial application,

and your view controller’s header file, in its entirety, should look like so:

#import <UIKit/UIKit.h>
#import <CoreMotion/CoreMotion.h>

@interface MainViewController : UIViewController

http://

CHAPTER 12: Core Motion Recipes 437

@property (nonatomic, strong) CMMotionManager *motionManager;
@property (strong, nonatomic) IBOutlet UILabel *xAccLabel;
@property (strong, nonatomic) IBOutlet UILabel *yAccLabel;
@property (strong, nonatomic) IBOutlet UILabel *zAccLabel;

@property (strong, nonatomic) IBOutlet UILabel *xGyroLabel;
@property (strong, nonatomic) IBOutlet UILabel *yGyroLabel;
@property (strong, nonatomic) IBOutlet UILabel *zGyroLabel;

@property (strong, nonatomic) IBOutlet UILabel *xMagLabel;
@property (strong, nonatomic) IBOutlet UILabel *yMagLabel;
@property (strong, nonatomic) IBOutlet UILabel *zMagLabel;

@property (strong, nonatomic) IBOutlet UILabel *statusLabel;

-(void)toggleUpdates;
@end

Core Motion in Detail

In Core Motion, you are able to access three different pieces of hardware on a device,

assuming that the device is new enough to be equipped with said hardware.

1. Accelerometer: This piece of hardware measures acceleration (caused by gravity

or user acceleration) of a device in order to provide insight into the current

orientation of the device, as well as any accelerations of the device by the user in

a specific direction. This is particularly useful for detecting whether the device is

at an angle (and possibly rotating a view as a result).

Data from the accelerometer is presented in the form of a CMAccelerometerData

object. This object has just one property, acceleration, which has x, y, and z

values, representing the orientation or acceleration along any given axis.

2. Gyroscope: The gyroscope measures rotation rate of the device along multiple

axes.

Information from the gyroscope is enclosed in an instance of CMGyroData. This

class has the property rotationRate, with x, y, and z values, which represent the

rotation rate around a specific axis

3. Magnetometer: This device provides data regarding the magnetic field

passing through the device, usually based on the Earth’s magnetic field,

as well as any other magnetic fields nearby. Remember to be careful

when testing this feature, as placing any kind of powerful magnet near

your device could possibly cause harm to it.

When receiving information from the magnetometer, you access the

CMMagnetometerData class, which has a single property, magneticField, which

http://

CHAPTER 12: Core Motion Recipes 438

has x, y, and z values to represent the magnetic field through the device along

each axis.

For all three devices, all axes are the same. If you are holding your device facing you

with the bottom facing the ground, the xaxis cuts horizontally through your device, the

yaxis runs from top to bottom, and the zaxis runs through the center of the device

toward you.

You will start off by implementing your view controller to display the raw data for each of

these pieces of hardware.

Whenever you are dealing with any internal hardware, it is the developer’s responsibility

to include some way of confirming that the hardware being accessed is actually

available on any given device running the application. For this reason, any time you

access the Core Motion hardware, you will always make use of the following methods:

 -isAccelerometerAvailable

 -isGyroAvailable

 -isMagnetometerAvailable

All three of these methods simply return a BOOL value, with YES indicating that the

hardware is indeed accessible.

You will also make use of three other methods that check if any given hardware is

currently already active to correctly toggle your updates.

 -isAccelerometerActive

 -isGyroActive

 -isMagnetometerActive

Whenever you want to retrieve updates from a specific piece of hardware, you must set

an “update interval,” to specify how often you will receive updates, as shown in the

following example:

[self.motionManager setAccelerometerUpdateInterval:1.0/2.0]; //Update twice per second

There are two different methods by which you can receive updates from a particular

hardware component. First, you can simply tell the CMMotionManager to start receiving

updates from a device using -startAccelerometerUpdates, -startGyroUpdates, and -
startMagnetometerUpdates, and then query the info using the accelerometerData,

gyroData, and magnetometerData properties. This way is useful if you are not planning to

make use of your updates every single time they refresh.

The second method focuses more for the user who wants to always utilize the newest

data as it becomes available, as you are implementing here. You can make use of three

different methods that not only start updates, but also specify a handler block of code to

be performed upon updating, as well as a queue in which to perform the handler. These

are listed as follows:

 -startAccelerometerUpdatesToQueue:withHandler:

http://

CHAPTER 12: Core Motion Recipes 439

 -startGyroUpdatesToQueue:withHandler:

 -startMagnetometerUpdatesToQueue:withHandler:

For your simple uses, you will use the main queue to perform your handlers.

Combining all these methods discussed, you can build a simple section of code that, if

run, will start updating with data from the accelerometer. This code will be used to build

the method -toggleUpdates

if ([self.motionManager isAccelerometerAvailable] && ![self.motionManager
isAccelerometerActive])
 {
 [self.motionManager setAccelerometerUpdateInterval:1.0/2.0]; //Update twice per
second
 [self.motionManager startAccelerometerUpdatesToQueue:[NSOperationQueue
mainQueue] withHandler:^(CMAccelerometerData *accelerometerData, NSError *error)
 {
self.xAccLabel.text = [NSString stringWithFormat:@"%f",
accelerometerData.acceleration.x];
self.yAccLabel.text = [NSString stringWithFormat:@"%f",
accelerometerData.acceleration.y];
self.zAccLabel.text = [NSString stringWithFormat:@"%f",
accelerometerData.acceleration.z];
 }];
 }

As discussed earlier, you first check to make sure the hardware is both available and

inactive. Next you set your update interval, and then start asking for updates. The simple

handler you have specified will update your view’s information to include the raw data

that you have received.

Since you are in fact building a method to toggle these updates on and off, you can add

a following condition to turn off your updates.

else if ([self.motionManager isAccelerometerActive])
 {
 [self.motionManager stopAccelerometerUpdates];
self.xAccLabel.text = @"...";
self.yAccLabel.text = @"...";
self.zAccLabel.text = @"...";
 }

The other two instruments operate on the exact same principles. Overall, your -
toggleUpdates method will be written like so:

-(void)toggleUpdates
{
if ([self.motionManager isAccelerometerAvailable] &&
![self.motionManagerisAccelerometerActive])
 {
 [self.motionManager setAccelerometerUpdateInterval:1.0/2.0]; //Update twice per
second
 [self.motionManager startAccelerometerUpdatesToQueue:[NSOperationQueue
mainQueue] withHandler:^(CMAccelerometerData *accelerometerData, NSError *error)
 {
self.xAccLabel.text = [NSString stringWithFormat:@"%f",
accelerometerData.acceleration.x];

http://

CHAPTER 12: Core Motion Recipes 440

self.yAccLabel.text = [NSString stringWithFormat:@"%f",
accelerometerData.acceleration.y];
self.zAccLabel.text = [NSString stringWithFormat:@"%f",
accelerometerData.acceleration.z];
 }];
 }
else if ([self.motionManager isAccelerometerActive])
 {
 [self.motionManager stopAccelerometerUpdates];
self.xAccLabel.text = @"...";
self.yAccLabel.text = @"...";
self.zAccLabel.text = @"...";
 }

if ([self.motionManager isGyroAvailable] && ![self.motionManager isGyroActive])
 {
 [self.motionManage rsetGyroUpdateInterval:1.0/2.0];
 [self.motionManager startGyroUpdatesToQueue:[NSOperationQueue mainQueue]
withHandler:^(CMGyroData *gyroData, NSError *error)
 {
self.xGyroLabel.text = [NSString stringWithFormat:@"%f", gyroData.rotationRate.x];
self.yGyroLabel.text = [NSString stringWithFormat:@"%f", gyroData.rotationRate.y];
self.zGyroLabel.text = [NSString stringWithFormat:@"%f", gyroData.rotationRate.z];
 }];
 }
else if ([self.motionManager isGyroActive])
 {
 [self.motionManager stopGyroUpdates];
self.xGyroLabel.text = @"...";
self.yGyroLabel.text = @"...";
self.zGyroLabel.text = @"...";
 }

if ([self.motionManager isMagnetometerAvailable] && ![self.motionManager
isMagnetometerActive])
 {
 [self.motionManager setMagnetometerUpdateInterval:1.0/2.0];
 [self.motionManager startMagnetometerUpdatesToQueue:[NSOperationQueue mainQueue]
withHandler:^(CMMagnetometerData *magData, NSError *error)
 {
self.xMagLabel.text = [NSString stringWithFormat:@"%f", magData.magneticField.x];
self.yMagLabel.text = [NSString stringWithFormat:@"%f", magData.magneticField.y];
self.zMagLabel.text = [NSString stringWithFormat:@"%f", magData.magneticField.z];
 }];
 }
else if ([self.motionManager isMagnetometerActive])
 {
 [self.motionManager stopMagnetometerUpdates];
self.xMagLabel.text = @"...";
self.yMagLabel.text = @"...";
self.zMagLabel.text = @"...";
 }
}

For a little bit of fun, you’ll go ahead and make it so that your toggling is based on the

shaking of the device, so you will modify your -shakeDetected: method.

-(void)shakeDetected:(NSNotification *)paramNotification

http://

CHAPTER 12: Core Motion Recipes 441

{
if ([self.statusLabel.text isEqualToString:@"Updating"])
 {
self.statusLabel.text = @"Stopped";
 [self toggleUpdates];
 }
else
 {
self.statusLabel.text = @"Updating";
 [self toggleUpdates];
 }
}

Whenever you deal with the CMMotionManager, you should always make sure that all of

your updates are stopped at the end of your application, so you’ll set up your -
viewDidUnload:method like so:

- (void)viewDidUnload
{
if ([self.motionManager isAccelerometerAvailable] && [self.motionManager
isAccelerometerActive])
 {
 [self.motionManager stopAccelerometerUpdates];
 }
if ([self.motionManager isGyroAvailable] && [self.motionManager isGyroActive])
 {
 [self.motionManager stopGyroUpdates];
 }
if ([self.motionManager isMagnetometerAvailable] && [self.motionManager
isMagnetometerActive])
 {
 [self.motionManager stopMagnetometerUpdates];
 }

self.motionManager = nil;
 [self setXAccLabel:nil];
 [self setYAccLabel:nil];
 [self setZAccLabel:nil];
 [self setXGyroLabel:nil];
 [self setYGyroLabel:nil];
 [self setZGyroLabel:nil];
 [self setStatusLabel:nil];
 [self setXMagLabel:nil];
 [self setYMagLabel:nil];
 [self setZMagLabel:nil];
 [superview DidUnload];
}

You should also make sure that your application stops updating whenever it enters the

background, so switch over to your application delegate and implement-
applicationDidEnterBackground:.

- (void)applicationDidEnterBackground:(UIApplication *)application
{
if ([self.viewController.motionManager isAccelerometerAvailable] &&
[self.viewController.motionManager isAccelerometerActive])
 {

http://

CHAPTER 12: Core Motion Recipes 442

 [self.viewController.motionManager stopAccelerometerUpdates];
 }
if ([self.viewController.motionManager isGyroAvailable] &&
[self.viewController.motionManager isGyroActive])
 {
 [self.viewController.motionManager stopGyroUpdates];
 }
if ([self.viewController.motionManager isMagnetometerAvailable] &&
[self.viewController.motionManager isMagnetometerActive])
 {
 [self.viewController.motionManager stopMagnetometerUpdates];
 }
}

If you run the application now, a quick shake will start updating all your values, resulting

in a view similar to that in Figure 12–8.

Figure 12–8. Your application receiving raw device information

The main problem that you will probably notice with this setup is that your data doesn’t

really make much sense. It is raw, biased data that isn’t exactly very easy to use. Up

next, you’ll change your implementation around to get better using a fourth group of

values you can access from CMMotionManager: CMDeviceMotion.

Just like the accelerometer, gyroscope, and magnetometer, you can access

CMDeviceMotion by starting and stopping updates using very similar methods: -

http://

CHAPTER 12: Core Motion Recipes 443

startDeviceMotionUpdates and -startDeviceMotionUpdatesToQueue:withHandler:.

However, you also have two extra methods on top of these that allow you to specify a

“reference frame,”-startDeviceMotionUpdatesUsingReferenceFrame: and -
startDeviceMotionUpdatesUsingReferenceFrame:toQueue:WithHandler:. We will go over

the idea of the reference frame shortly.

When retrieving data using an instance of CMDeviceMotion (through the deviceMotion
property in your CMMotionManager), you can access five different properties.

1. attitude:This property is an instance of the CMAttitude class, which gives you an

incredibly detailed insight into the device’s orientation at a given time as

compared to a reference frame. In this class, you can access properties such as

roll, pitch, and yaw. These values, measured in radians, allow you an incredibly

accurate measurement of your device’s orientation.

2. rotationRate:This value, measured in radians per second, is just like the previous

rotationRate, but gives a more accurate reading by reducing device bias that

causes a still device to have nonzero rotation values.

3. gravity:Represents the acceleration caused solely by gravity on the device

4. userAcceleration:Represents the physical acceleration imparted on a device by

the user outside of gravitational acceleration

5. magneticField:This value is similar to the one you used before; however, it

removes any device bias, resulting in a significantly more accurate reading than

you had before.

NOTE: If you are unfamiliar with them, radians are a different way of measuring rotation from the

more commonly used degrees. They are based around the value pi (3.14…). A radian value of pi

or roughly 3.14 is equivalent to a 180-degree rotation, so any radian value can be converted to

degrees by dividing by pi, and then multiplying by 180.

You will go through your code and update it to use data only from the deviceMotion
property.

Since you now have two different acceleration-based properties you can access, you’ll

go specifically with the gravity property. I’ve changed the top UILabel intheview from

“Accelerometer” to “Gravity”, but this is, of course, optional.

Now, your -toggleUpdates method will look like so:

-(void)toggleUpdates
{
if ([self.motionManager isDeviceMotionAvailable] && ![self.motionManager
isDeviceMotionActive])
 {
 [self.motionManager setDeviceMotionUpdateInterval:1.0/2.0];
 [self.motionManager startDeviceMotionUpdatesToQueue:[NSOperationQueue mainQueue]
withHandler:^(CMDeviceMotion *motion, NSError *error)

http://

CHAPTER 12: Core Motion Recipes 444

 {
self.xAccLabel.text = [NSString stringWithFormat:@"%f", motion.gravity.x];
self.yAccLabel.text = [NSString stringWithFormat:@"%f", motion.gravity.y];
self.zAccLabel.text = [NSString stringWithFormat:@"%f", motion.gravity.z];

self.xGyroLabel.text = [NSString stringWithFormat:@"%f", motion.rotationRate.x];
self.yGyroLabel.text = [NSString stringWithFormat:@"%f", motion.rotationRate.y];
self.zGyroLabel.text = [NSString stringWithFormat:@"%f", motion.rotationRate.z];

self.xMagLabel.text = [NSString stringWithFormat:@"%f", motion.magneticField.field.x];
self.yMagLabel.text = [NSString stringWithFormat:@"%f", motion.magneticField.field.y];
self.zMagLabel.text = [NSString stringWithFormat:@"%f", motion.magneticField.field.z];
 }];
 }
else if ([self.motionManager isDeviceMotionActive])
 {
 [self.motionManager stopDeviceMotionUpdates];

self.xAccLabel.text = @"...";
self.yAccLabel.text = @"...";
self.zAccLabel.text = @"...";
self.xGyroLabel.text = @"...";
self.yGyroLabel.text = @"...";
self.zGyroLabel.text = @"...";
self.xMagLabel.text = @"...";
self.yMagLabel.text = @"...";
self.zMagLabel.text = @"...";
 }
}

You need to also change your -viewDidUnload method like so:

- (void)viewDidUnload
{
if ([self.motionManager isDeviceMotionAvailable] && [self.motionManager
isDeviceMotionActive])
 {
 [self.motionManager stopDeviceMotionUpdates];
 }

self.motionManager = nil;
 [self setXAccLabel:nil];
 [self setYAccLabel:nil];
 [self setZAccLabel:nil];
 [self setXGyroLabel:nil];
 [self setYGyroLabel:nil];
 [self setZGyroLabel:nil];
 [self setStatusLabel:nil];
 [self setXMagLabel:nil];
 [self setYMagLabel:nil];
 [self setZMagLabel:nil];
 [superview DidUnload];
}

In your application delegate, you will also update your -
applicationDidEnterBackground: method.

- (void)applicationDidEnterBackground:(UIApplication *)application

http://

CHAPTER 12: Core Motion Recipes 445

{
if ([self.viewController.motionManager isDeviceMotionAvailable] &&
[self.viewController.motionManager isDeviceMotionActive])
 {
 [self.viewController.motionManager stopDeviceMotionUpdates];
 }
}

So now if you run this application, you will probably notice that most of your values are

quite a bit more stable. You may also see all zeros for your magnetometer readings.

Move your device in afigure-eight motion to calibrate your magnetometer until these

values start updating.

Now that you have switched over to using the DeviceMotion, you will also add in fields to

show your pitch, yaw, and roll from your attitude property. Update your view to

resemble Figure 12–9, with your new value UILabel properties named rollLabel,

pitchLabel, and yawLabel.

Figure 12–9. Your new interface for displaying attitude

Attitude Properties

For your use of the CMAttitude class, you are accessing the three simplest values you

can from the class in order to determine device orientation.

1. roll: Specifies position of rotation around the yaxis

2. pitch: Specifies position of rotation around the xaxis

http://

CHAPTER 12: Core Motion Recipes 446

3. yaw: Specifies position of rotation around the zaxis

All three of these values are measured in radians, which means your displayed values

will range from 0 to roughly either 3.14 or -3.14 (meaning a rotation ofpi radians, which is

equal to 180 degrees).

Now you can update your -toggleUpdates: method again to include the new values to

be displayed.

-(void)toggleUpdates
{
if ([self.motionManager isDeviceMotionAvailable] && ![self.motionManager
isDeviceMotionActive])
 {
 [self.motionManager setDeviceMotionUpdateInterval:1.0/2.0];
 [self.motionManager startDeviceMotionUpdatesToQueue:[NSOperationQueue mainQueue]
withHandler:^(CMDeviceMotion *motion, NSError *error)
 {
self.xAccLabel.text = [NSString stringWithFormat:@"%f", motion.gravity.x];
self.yAccLabel.text = [NSString stringWithFormat:@"%f", motion.gravity.y];
self.zAccLabel.text = [NSString stringWithFormat:@"%f", motion.gravity.z];

self.xGyroLabel.text = [NSString stringWithFormat:@"%f", motion.rotationRate.x];
self.yGyroLabel.text = [NSString stringWithFormat:@"%f", motion.rotationRate.y];
self.zGyroLabel.text = [NSString stringWithFormat:@"%f", motion.rotationRate.z];

self.xMagLabel.text = [NSString stringWithFormat:@"%f", motion.magneticField.field.x];
self.yMagLabel.text = [NSString stringWithFormat:@"%f", motion.magneticField.field.y];
self.zMagLabel.text = [NSString stringWithFormat:@"%f", motion.magneticField.field.z];

//////NEW ATTITUDE CODE
self.rollLabel.text = [NSString stringWithFormat:@"%f", motion.attitude.roll];
self.pitchLabel.text = [NSString stringWithFormat:@"%f", motion.attitude.pitch];
self.yawLabel.text = [NSString stringWithFormat:@"%f", motion.attitude.yaw];
//////END OF NEW CODE
 }];
 }
else if ([self.motionManager isDeviceMotionActive])
 {
 [self.motionManager stopDeviceMotionUpdates];

self.xAccLabel.text = @"...";
self.yAccLabel.text = @"...";
self.zAccLabel.text = @"...";
self.xGyroLabel.text = @"...";
self.yGyroLabel.text = @"...";
self.zGyroLabel.text = @"...";
self.xMagLabel.text = @"...";
self.yMagLabel.text = @"...";
self.zMagLabel.text = @"...";

//////NEW ATTITUDE CODE
self.rollLabel.text = @"...";
self.pitchLabel.text = @"...";
self.yawLabel.text = @"...";
//////END OF NEW CODE
 }

http://

CHAPTER 12: Core Motion Recipes 447

}

Though it’s not exactly required, you will also specify a reference frame for your attitude,

so that you have some idea of what your device is being compared to, using the -
startDeviceMotionUpdatesUsingReferenceFrame:toQueue:withHandler:method. The

reference frame parameter of this method accepts four possible values as of iOS 5.0.

 CMAttitudeReferenceFrameXArbitraryZVertical: Specifies a reference

frame with the zaxis along the vertical and the xaxis along any arbitrary

direction; more simply, the device is flat and face-up.

 CMAttitudeReferenceFrameXArbitraryCorrectedZVertical:This is the

same as the previous value, but the magnetometer is used to provide

better accuracy. This option increases CPU usage, and also requires

the magnetometer to be both available and calibrated.

 CMAttitudeReferenceFrameXMagneticNorthZVertical: This reference

frame has the zaxis vertical as before, but with the xaxis directed

toward “magnetic north.” This option requires the magnetometer to be

available and calibrated, which means you will probably have to wave

your device around a bit before you can get any readings in your

application.

 CMAttitudeReferenceFrameXTrueNorthZVertical:This reference frame

is just like the previous, but the xaxis is directed toward “true north,”

rather than “magnetic north.” The location of the device must be

available in order for the device to be able to calculate the difference

between the two.

NOTE: When dealing with the magnetometer, you must be sure to understand the difference

between “magnetic north” and “true north.”Magnetic north is the magnetic north pole of the

Earth, which is where any compass will point. This point, however, is not constant due to

changes in the Earth’s core, moving more than 30 miles per year. True north refers to the

direction toward the actual north pole of the Earth, which stays constant.

You will choose the third option, CMAttitudeReferenceFrameXMagneticNorthZVertical,

for your application. Change your call to the -
startDeviceMotionUpdatesToQueue:withHandler: method to the following:

[self.motionManager
startDeviceMotionUpdatesUsingReferenceFrame:CMAttitudeReferenceFrameXMagneticNorthZVerti
cal toQueue:[NSOperationQueue mainQueue] withHandler:^(CMDeviceMotion *motion, NSError
*error)
 {
self.xAccLabel.text = [NSString stringWithFormat:@"%f", motion.gravity.x];
self.yAccLabel.text = [NSString stringWithFormat:@"%f", motion.gravity.y];
self.zAccLabel.text = [NSString stringWithFormat:@"%f", motion.gravity.z];

self.xGyroLabel.text = [NSString stringWithFormat:@"%f", motion.rotationRate.x];
self.yGyroLabel.text = [NSString stringWithFormat:@"%f", motion.rotationRate.y];

http://

CHAPTER 12: Core Motion Recipes 448

self.zGyroLabel.text = [NSString stringWithFormat:@"%f", motion.rotationRate.z];

self.xMagLabel.text = [NSString stringWithFormat:@"%f", motion.magneticField.field.x];
self.yMagLabel.text = [NSString stringWithFormat:@"%f", motion.magneticField.field.y];
self.zMagLabel.text = [NSString stringWithFormat:@"%f", motion.magneticField.field.z];

self.rollLabel.text = [NSString stringWithFormat:@"%f", motion.attitude.roll];
self.pitchLabel.text = [NSString stringWithFormat:@"%f", motion.attitude.pitch];
self.yawLabel.text = [NSString stringWithFormat:@"%f", motion.attitude.yaw];
 }];

Now, when you run your application, you may start off seeing “0.0” for all your values. If

you move your device around in a figure-eight motion to get your magnetometer

calibrated, they should start updating soon enough. You should notice now that if you

lay your device on a flat surface and then turn the device around the z axis, then at the

moment that your x axis is aligned with the Earth’s magnetic field, your yaw value should

get very close to zero, as in Figure 12–10.

Figure 12–10. Your application receiving calibrated device information

http://

CHAPTER 12: Core Motion Recipes 449

Recipe 12–3: Moving a UILabel with the
Accelerometer
Now that we have gone especially into detail on exactly how to access all of the data the

Core Motion can provide, you can create a simple implementation to actually

demonstrate its use beyond accessing values.You will simply modify your existing

application, so be sure to save a new copy of your project before you continue.

You will be changing your application to utilize the gravity property that you previously

accessed in order to move a UILabel around your view. To do this, you will require a

very small update interval for your device motion information, so you want to minimize

the actual amount of data you display. You will remove all but the statusLabel from your

view, so that your user interface will look like Figure 12–11. I have changed the UILabel

as well to match the instructions for your new functionality.

When you remove all the other UILabels from your view, you can leave your properties

all set up in your header file from your previous recipe if you want. While it takes up a

small amount of memory to still have them here, this will be fairly insignificant for your

purposes.

Figure 12–11. Your re-simplified user interface for moving a UILabel

Next, you can delete (or comment out) your line from your –toggleUpdates method that

resembles the following, which sets your update interval for your CMMotionManager.

http://

CHAPTER 12: Core Motion Recipes 450

[self.motionManager setDeviceMotionUpdateInterval:1.0/2.0];

If you choose not to set an update interval, the device will default to an incredibly small

value, meaning that your information will update very frequently.

You will also change your attitude’s reference frame to one that does not require any

calibration of the magnetometer so as to improve performance speed. Specifically, you

will use the CMAttitudeReferenceFrameXArbitraryCorrectedZVertical value.

Finally, you can add in your code to retrieve the gravity values, and then adjust your

UILabel’s frame based on them. Overall, your –toggleUpdates method will look like so:

-(void)toggleUpdates
{
if ([self.motionManager isDeviceMotionAvailable] && ![self.motionManager
isDeviceMotionActive])
 {
 [self.motionManager setDeviceMotionUpdateInterval:1.0/2.0];
 [self.motionManager
startDeviceMotionUpdatesUsingReferenceFrame:CMAttitudeReferenceFrameXArbitraryCorrectedZ
Vertical toQueue:[NSOperationQueue mainQueue] withHandler:^(CMDeviceMotion *motion,
NSError *error)
 {
int scale = 5.0;
CGRect labelRect = self.statusLabel.frame;
 labelRect.origin.x += motion.gravity.x * scale;
if (!CGRectContainsRect(self.view.bounds, labelRect))
 {
 labelRect.origin.x = self.statusLabel.frame.origin.x;
 }
 labelRect.origin.y -= motion.gravity.y *scale;
if (!CGRectContainsRect(self.view.bounds, labelRect))
 {
 labelRect.origin.y = self.statusLabel.frame.origin.y;
 }
 [self.statusLabel setFrame:labelRect];
 }];
 }
else if ([self.motionManager isDeviceMotionActive])
 {
 [self.motionManager stopDeviceMotionUpdates];
 }
}

You can also update your -shakeDetected: method to make more sense with your text:

-(void)shakeDetected:(NSNotification *)paramNotification
{
if ([self.statusLabel.text isEqualToString:@"Unlocked"])
 {
self.statusLabel.text = @"Locked";
 [self toggleUpdates];
 }
else
 {

http://

CHAPTER 12: Core Motion Recipes 451

self.statusLabel.text = @"Unlocked";
 [self toggleUpdates];
 }
}

If your application was not linked to the CoreGraphics framework by default, you will run

into a linker error, so make sure that this is done before running your app. To do this, the

procedure is the same as the one you did earlier with the CoreMotion framework, but

you do not need to use any actual #import statements.

Now, your newest application should give you a nice little UILabel that you can move

around by tilting the device, a screenshot of which is shown in Figure 12–12.

Figure 12–12. Your application with a UILabel moving based on the orientation of the device

Summary
We have gone into pretty specific detail about accessing the multiple different values

and information that the Core Motion framework has to offer. We were able to go from

raw data to more calibrated, functional values that we were then able to translate into a

mildly useful (if not slightly entertaining) application. Core Motion, however, is not a

framework that can simply be an entire application in itself. You can use it to acquire

values about your device, but you must then have the creativity to put them to use. From

http://

CHAPTER 12: Core Motion Recipes 452

a simple application to measure the rotation speed of a person flipping, to incorporating

the magnetometer into an augmented-reality application, Core Motion provides a basic

framework for accessing information, which can then translate into some of the most

powerful pieces of software in iOS.

http://

453

 Chapter

Data Transmission
Recipes

As time has progressed and technology has developed, one of the clearest trends to be

noticed is the growth in user-driven content. With the improvement of design

technologies, Internet connection speeds, and network availability, the amount of data

generated electronically per year has increased at a nearly unbelievable rate. The heart

of this matter is based around the idea of allowing users to easily take in and re-

distribute information. You can incorporate these same concepts into your development

through a variety of built-in classes in order to improve the functionality and usefulness

of your applications.

In this chapter, you will need only a physical device to implement texting functionality,

which you will build in your first recipe. All your other functionalities will be able to be

simulated.

Recipe 13–1: Composing Text Messages
Text messaging is quite easily one of the currently most incredibly popular methods of

transmitting data between individuals. It’s quick, easy, and powerful, and is used across

nearly all age groups. In iOS you can actually incorporate text messaging into your

applications in order to easily provide your users with the simple cross-application

functionality that can so easily improve the overall quality of an application.

Start off by creating a new project called “SendItOut”, which you will use throughout this

chapter, with a class prefix “Main”. Select the Single View Application template to create

a simple project, as in Figure 13–1.

13

http://

CHAPTER 13: Data Transmission Recipes 454

Figure 13–1. Creating a single view application

In order to fully demonstrate a few of the functionalities of this topic, you will specifically

choose to develop your application for the iPad, rather than the iPhone. Make sure the

Device Family is set accordingly in the next screen after entering the project’s name.

Since some of the functionalities you will test require a physical device to be fully

capable, you can make this application for the iPhone as well, and simply adjust the

view elements as you wish. Configure your project with the name “SendItOut”, class

prefix “Main”, and make sure the Use Automatic Reference Counting box is checked, as

in Figure 13–2.

http://

CHAPTER 13: Data Transmission Recipes 455

Figure 13–2. Configuring your project settings

After clicking through to create your project, switch over to your view controller’s XIB

file. In the utilities pane, set the orientation (under the Simulated Metrics section) to

landscape, and make sure that the background color is set to gray.

You will start off by adding a UITextView, with the default Lorem Ipsum text, to the top

half of your view, as well as a UIButton, with the label “Text Message”, to the bottom.

Connect these to your view controller with property names textViewInput and

textButton, and connect the button to an IBAction,-textPressed:.

Before you proceed, you will go ahead and round the corners of your UITextView to

improve your application’s visual quality. Add the following import statement to your

view controller’s header file.

#import <QuartzCore/QuartzCore.h>

Next add the following line to the end of your -viewDidLoad method.

self.textViewInput.layer.cornerRadius = 15.0;

Your view should now resemble that simulated in Figure 13–3 once you rotate your

simulator. This can be done through either the “Rotate Left” (! +left) or “Rotate Right”

(! +right) commands found in the Hardware menu of the iOS simulator.

http://

CHAPTER 13: Data Transmission Recipes 456

Figure 13–3. A simulated view of your user interface

Next, you will configure your view controller as the delegate for your UITextView. Add

the following line to your -viewDidLoad method.

self.textViewInput.delegate = self;

Next, you will add the MessageUI framework to your project. Do this under the Build

Phases tab of your project as usual, and add the required import statement to your view

controller’s header file.

#import <MessageUI/MessageUI.h>

You need to instruct your view controller to conform to certain protocols. Adjust your

header file so that the UITextViewDelegate, MFMessageComposeViewControllerDelegate,

and UINavigationControllerDelegate are all conformed to.

At this point, your fully set-up header file will now read like so:

#import <UIKit/UIKit.h>
#import <QuartzCore/QuartzCore.h>
#import <MessageUI/MessageUI.h>

http://

CHAPTER 13: Data Transmission Recipes 457

@interface MainViewController : UIViewController <UITextViewDelegate,
MFMessageComposeViewControllerDelegate, UINavigationControllerDelegate>

@property (strong, nonatomic) IBOutlet UITextView *textViewInput;
@property (strong, nonatomic) IBOutlet UIButton *textButton;
-(IBAction)textPressed:(id)sender;

@end

Now you will implement one of your UITextView’s delegate methods in order to ensure

that your keyboard is properly dismissed when the user taps the Enter key.

- (BOOL)textView:(UITextView *)textView shouldChangeTextInRange:(NSRange)range
 replacementText:(NSString *)text
{
if ([text isEqualToString:@"\n"])
 {
 [textView resignFirstResponder];
return FALSE;
 }
return TRUE;
}

Now you can implement your -textPressed: method such that the text of your

UITextView is transposed into a text message. You will simply set the recipient to a fake

number.

-(void)textPressed:(id)sender
{
if ([MFMessageComposeViewController canSendText])
 {
MFMessageComposeViewController *messageVC = [[MFMessageComposeViewController alloc]
init];
 messageVC.messageComposeDelegate = self;
 messageVC.recipients = [NSArray arrayWithObject:@"3015555309"];
 messageVC.body = self.textViewInput.text;
 [self presentModalViewController:messageVC animated:YES];
 }
else
 {
NSLog(@"Error, Text Messaging Unavailable");
 }
}

The implementation of this method should appear fairly straightforward. After using the

+canSendText method to check for texting availability, you created an instance of the

MFMessageComposeViewController class, and then configured it with your fake recipient,

as well as the intended text. Finally, you simply present the controller modally to allow

your user to review the text message before sending it.

The MFMessageComposeViewController andits counterpart you will encounter later, the

MFMailComposeViewController, are both classes that allow you to set their initial

conditions and present them, but they do not allow you any control of the class once it

has been shown. This is to ensure that the user has the final say in whether a message

or mail sends, rather than any application sending it without informing the user.

http://

CHAPTER 13: Data Transmission Recipes 458

You can implement your MFMessageComposeViewController’s messageComposeDelegate

method to handle the completion of the message like so:

-(void)messageComposeViewController:(MFMessageComposeViewController *)controller
didFinishWithResult:(MessageComposeResult)result
{
if (result == MessageComposeResultSent)
 {
self.textViewInput.text = @"Message sent.";
 }
else if (result == MessageComposeResultFailed)
 {
NSLog(@"Message Failed to Send!");
 }
 [self dismissModalViewControllerAnimated:YES];
}

Along with the two possible values of MessageComposeResults demonstrated in the

previous code, there is a third result,MessageComposeResultCancelled, which indicates

that the user cancelled the sending of the text message.

A new functionality in iOS 5.0 is the ability to receive notifications about the changing of

the availability of text messaging. You can register for such notifications by adding the

following line to the -viewDidLoad method:

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(availabilityChange:)
name:@"MFMessageComposeViewControllerTextMessageAvailabilityDidChangeNotification"
object:nil];

The selector specified here can easily be defined to simply inform you of the change. In

a full application, you might likely make use of a UIAlert to notify the user of this change

as well, but you will avoid this process for demonstration purposes.

-(void)availabilityChange:(id)sender
{
if ([MFMessageComposeViewController canSendText])
 {
NSLog(@"Text Messaging Available");
 }
else
 {
NSLog(@"Text Messaging Unavailable");
 }
}

Your application can now copy the body of your UITextView into a text message to be

sent off to your fake recipient! If you test this, however, keep in mind that the text

messaging functionality will not be available on the iOS simulator. You will have to test

this on your physical device with 3G capabilities. To test this application as it is exactly,

you will need a 3G-capable iPad, but you could edit the project to work for an iPhone

instead.

http://

CHAPTER 13: Data Transmission Recipes 459

Recipe 13–2: Composing E-mail

Just as you were able to create and configure text messages to be sent from your

application, you can also use the MessageUI framework that you dealt with in the

previous recipe to configure mail messages using the counterpart to the

MFMessageComposeViewController class, which is known as

MFMailComposeViewController.

Building upon your set-up application, you will add another button with the label “Mail”.

Use the property name mailButton, and assign it an action called -mailPressed:.

The setup for your -mailPressed: method is very similar to your previous -textPressed:

method. You will create your composing view controller, configure it, and then present it.

-(void)mailPressed:(id)sender
{
if ([MFMailComposeViewController canSendMail])
 {
MFMailComposeViewController *mailVC = [[MFMailComposeViewController alloc] init];
 [mailVC setSubject:@"SendItOut"];
 [mailVC setToRecipients:[NSArray arrayWithObject:@"test@example.com"]];
 [mailVC setMessageBody:self.textViewInput.text isHTML:NO];
 mailVC.mailComposeDelegate = self;
 [self presentModalViewController:mailVC animated:YES];
 }
else
 {
NSLog(@"Error: Mail Unavailable");
 }
}

As you can see, the MFMailComposeViewController has a few extra properties compared

to the MFMessageComposeViewController to specifically configure a more complex e-mail.

Since you set your mailComposeDelegate property to your view controller, you will need

to specify that it will conform to the MFMailComposeViewControllerDelegate protocol, in

addition to those already specified, so go ahead and add this to your header file.

The MFMailComposeViewControllerDelegate protocol defines only one method, which

you are required to implement in order to properly handle the completed use of the view

controller by the user. You will give this a simple implementation to log the result.

-(void)mailComposeController:(MFMailComposeViewController *)controller
didFinishWithResult:(MFMailComposeResult)result error:(NSError *)error
{
if (result == MFMailComposeResultSent)
NSLog(@"Mail Successfully Sent");
else if (result == MFMailComposeResultCancelled)
NSLog(@"Mail Cancelled");
else if (result == MFMailComposeResultFailed)
NSLog(@"Error, Mail Send Failed");
else if (result == MFMailComposeResultSaved)
NSLog(@"Mail Saved");
 [self dismissModalViewControllerAnimated:YES];
}

mailto:test@example.com"]]
http://

CHAPTER 13: Data Transmission Recipes 460

Now, your new application will be able to present a view controller for sending mail, as

shown in Figure 13–4. Unlike the MFMessageViewController, however, you can actually

test this functionality in the iOS simulator.

Figure 13–4.Your application composing an e-mail

Quite conveniently, you can easily test all the functionalities of the

MFMailComposeViewController using the simulator without any fear of sending out

multiple e-mails to any addresses, real or fake. The simulator will not actually send out

your test messages over the Internet, so you can easily test your mailComposeDelegate

method’s handling of the MailComposeResults.

One additional issue that you may have to deal with when making use of the

MFMailComposeViewController occurs if you allow the making of the recipients to be

based on userinput. It is highly possible that a user may incorrectly format a mail

address. This will not cause your application to throw an exception, though it may cause

your recipient to simply be ignored by the MFMailComposeViewController. You can either

format your user input to attempt to avoid this, or you can simply set up a regular

expression to verify if the given address fits the required format.

http://

CHAPTER 13: Data Transmission Recipes 461

Attaching Data to Mail

The MFMailComposeViewController includes functionality for you to attach data to your

e-mail from your application through the use of the -
addAttachmentData:mimeType:fileName: method. This method takes three parameters:

1. attachment:This instance of NSData refers to the actual data of the object

that you want to send. This means for any object you want to attach,

you will need to acquire the NSData for it.

2. mimeType: This property is an NSStringthat defines to the controller the

data type of the attachment. These values are not local to iOS, and so

are not defined in the Apple documentation. They can, however, be

easily found online. Wikipedia offers a very distinct article on all the

possible values

athttp://en.wikipedia.org/wiki/Internet_media_type. The MIME

type of a JPEG image, for example, is “image/jpeg”.

3. fileName: Use this NSString property to set the preferred name for the

file sent in the e-mail.

You will add functionality to your application to access the user’s image library, select

an image, and then use that image to attach to your e-mail.

Start off by adding a UIImageView underneath your UITextView, along with a UIButton

underneath that with the label “Get Image”. Your view will now resemble that simulated

in Figure 13–5.

http://

CHAPTER 13: Data Transmission Recipes 462

Figure 13–5.Your new user interface with ability to select an image

You will need properties imageViewContent andgetImageButton, along with the method -
getImagePressed: for these. You will be presenting a UIPopoverController from your

getImageButton, so make sure the sender type of this method is set to a UIButton*

instead of id. Go ahead and make a UIImageproperty as well, called selectedImage, to

store a reference to the chosen image, making sure to properly synthesize it.

Whenever you want to access the photo library of an iPad, you need to use a

UIImagePickerController set inside of a UIPopoverController. You will need to create a

UIPopoverController property called pop, and make sure to synthesize it as well.

Before you continue, instruct your view controller to conform to the

UIImagePickerControllerDelegate and UIPopoverControllerDelegate protocols. Overall

your header file should now resemble the following:

#import <UIKit/UIKit.h>
#import <QuartzCore/QuartzCore.h>
#import <MessageUI/MessageUI.h>

http://

CHAPTER 13: Data Transmission Recipes 463

@interface MainViewController : UIViewController <UITextViewDelegate,
MFMessageComposeViewControllerDelegate, UINavigationControllerDelegate,
MFMailComposeViewControllerDelegate, UIImagePickerControllerDelegate,
UIPopoverControllerDelegate>

@property (strong, nonatomic) IBOutlet UITextView *textViewInput;
@property (strong, nonatomic) IBOutlet UIButton *textButton;
@property (strong, nonatomic) IBOutlet UIButton *mailButton;
@property (strong, nonatomic) IBOutlet UIImageView *imageViewContent;
@property (strong, nonatomic) IBOutlet UIButton *getImageButton;
@property (strong, nonatomic) UIImage *selectedImage;
@property (strong, nonatomic) UIPopoverController *pop;

-(IBAction)textPressed:(id)sender;
-(IBAction)mailPressed:(id)sender;
-(IBAction)getImagePressed:(UIButton *)sender;
///Pay close attention to the above (UIButton *) parameter type.

@end

If you have correctly handled all your new properties so far, your -viewDidUnload:
method should resemble the following:

- (void)viewDidUnload
{
 [self setPop:nil];
 [self setSelectedImage:nil];
 [self setTextViewInput:nil];
 [self setTextButton:nil];
 [self setMailButton:nil];
 [self setImageViewContent:nil];
 [self setGetImageButton:nil];
 [super viewDidUnload];
}

Now, you can write your -getImagePressed: method to present your popover controller

with access to the photo library.

-(void)getImagePressed:(UIButton *)sender
{
UIImagePickerController *picker = [[UIImagePickerController alloc] init];
if ([UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypePhotoLibrary])
 {
 picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 picker.delegate = self;

self.pop = [[UIPopoverController alloc] initWithContentViewController:picker];
pop.delegate = self;
 [pop presentPopoverFromRect:sender.frame inView:self.view
permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
 }
}

Now you just need to implement your UIImagePickerControllerDelegate protocol

methods.

-(void)imagePickerControllerDidCancel:(UIImagePickerController *)picker

http://

CHAPTER 13: Data Transmission Recipes 464

{
 [self.pop dismissPopoverAnimated:YES];
}

-(void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
UIImage *image = [info valueForKey:@"UIImagePickerControllerOriginalImage"];
self.selectedImage = image;
self.imageViewContent.image = image;
self.imageViewContent.contentMode = UIViewContentModeScaleAspectFill;

 [self.pop dismissPopoverAnimated:YES];
}

At this point, your application can select an image and set it in your UIImageView. If you

are testing this application in the simulator, you will need to acquire at least one image

to put in your simulator’s photo library. You can do this by accessing the Safari app on

the simulator, finding an image online, then clicking and holding the image to save it to

the library. In Figure 13–6, your app is shown with an image already selected, with the

Get Image button then pressed again.

http://

CHAPTER 13: Data Transmission Recipes 465

Figure 13–6. Running your app and selecting an image to display

Now you can continue to add the chosen image into your e-mail.You will modify your -
mailPressed: method to include attaching the image if one has been selected.

-(void)mailPressed:(id)sender
{
if ([MFMailComposeViewController canSendMail])
 {
MFMailComposeViewController *mailVC = [[MFMailComposeViewController alloc] init];
 [mailVC setSubject:@"SendItOut"];
 [mailVC setToRecipients:[NSArray arrayWithObject:@"test@senditout.test"]];
 [mailVC setMessageBody:self.textViewInput.text isHTML:NO];
 mailVC.mailComposeDelegate = self;

/////NEW IMAGE CODE
if (self.selectedImage != nil)
 {
NSData *imageData = UIImageJPEGRepresentation(self.selectedImage, 1.0);
 [mailVC addAttachmentData:imageData mimeType:@"image/jpeg"
fileName:@"SelectedImage"];
 }
/////END OF NEW CODE

mailto:test@senditout.test"]]
http://

CHAPTER 13: Data Transmission Recipes 466

 [self presentModalViewController:mailVC animated:YES];
 }
else
 {
NSLog(@"Error: Mail Unavailable");
 }
}

Finally, you can modify your MFMailComposeViewController’s delegate method to

properly reset your application.

-(void)messageComposeViewController:(MFMessageComposeViewController *)controller
didFinishWithResult:(MessageComposeResult)result
{
if (result == MessageComposeResultSent)
 {
self.textViewInput.text = @"Message sent.";
self.selectedImage = nil;
self.imageViewContent.image = nil;
 }
else if (result == MessageComposeResultFailed)
 {
NSLog(@"Message Failed to Send!");
 }
 [self dismissModalViewControllerAnimated:YES];
}

If you test out the application in the simulator now and you attempt to send an e-mail

after selecting an image, you should see the chosen image placed into your message,

as in Figure 13–7.

http://

CHAPTER 13: Data Transmission Recipes 467

Figure 13–7.Your application composing e-mail with an attached image

Recipe 13–3: Printing an Image
Now that you have your application set up to be able to access both text and images,

you can continue to enhance your functionality by adding the ability to print.

Before you specifically work on printing, you will reconfigure your application’s user

interface a bit to include your view controller inside of a UINavigationController so that

you can get a nice toolbar across the top. To do this, adjust your application delegate’s

-application:didFinishLaunchingWithOptions method like so:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
// Override point for customization after application launch.
self.viewController = [[MainViewController alloc] initWithNibName:@"MainViewController"
bundle:nil];

/////CHANGED CODE

http://

CHAPTER 13: Data Transmission Recipes 468

__strong UINavigationController *navcon = [[UINavigationController alloc]
initWithRootViewController:self.viewController];
self.window.rootViewController = navcon;
/////END OF CHANGED CODE

 [self.window makeKeyAndVisible];
return YES;
}

You may also have to move up the lower buttons in your view a bit in order to make sure

they aren’t pushed off-screen by the navigation bar.

Add the following lines to the end of your -viewDidLoad method to configure your

navigation bar.

self.title = @"Send It Out!";

if ([UIPrintInteractionController isPrintingAvailable])
{
UIBarButtonItem *printButton = [[UIBarButtonItem alloc]
initWithTitle:@"Print"style:UIBarButtonItemStyleBorderedtarget:self
action:@selector(printPressed:)];

self.navigationItem.rightBarButtonItem = printButton;
}

This condition will confirm to you that printing is possible on whichever device you run

your application on before allowing the print button to be shown.

Now, you can continue on to implement your -printPressed: method in order to add

your printing functionality, primarily through the use of the

UIPrintInteractionController class. This class will be your “hub” of activity when it

comes to configuring print jobs. You will go through and discuss the steps to setup this

class individually before seeing the method as a whole.

Whenever you want to access an instance of a UIPrintInteractionController, you

simply call for a reference to the shared instance through the +sharedPrintController

class method.

UIPrintInteractionController *pic = [UIPrintInteractionController
sharedPrintController];

Up next, you must configure the printInfo property of your controller, which specifies

the settings for the print job.

UIPrintInfo *printInfo = [UIPrintInfo printInfo];
printInfo.outputType = UIPrintInfoOutputPhoto;
printInfo.jobName = self.title;
printInfo.duplex = UIPrintInfoDuplexLongEdge;

As you can see, you have set the outputType to specify an image. The three possible

values for this property are as follows:

 UIPrintInfoOutputPhoto: Used specifically for photos to be printed

 UIPrintInfoOutputGrayscale: Used when dealing only with black text

so as to improve performance

http://

CHAPTER 13: Data Transmission Recipes 469

 UIPrintInfoOutputGeneral: Used for any mix of graphics and text,

with or without color

You did not yet set this printInfo object as the printInfo of your controller because

you will do a little bit more configuration of it shortly.

Next, you have to do an interesting specification for your

UIPrintInteractionController. I say interesting because you absolutely have to do

one, and only one, of four possible tasks:

1. Set a single item to be printed.

2. Set multiple items to be printed.

3. Specify an instance of UIPrintFormatter to the controller to configure

the layout of your page.

4. Specify an instance of UIPrintPageRenderer, which can then have

multiple instances of UIPrintFormatter assigned to it to gain full

customization of your content layout over multiple pages.

You will start off with the simplest option of setting a single item to be printed. This item

must be either an image or a PDF file to use these simpler options, so you will choose to

simply print out your selectedImage.

UIImage *image = self.selectedImage;
pic.printingItem = image;

Now that you know what you want to print, you can check the orientation of the image

and configure your printInfo accordingly.

if (!pic.printingItem&& image.size.width> image.size.height)
 printInfo.orientation = UIPrintInfoOrientationLandscape;

pic.printInfo = printInfo;
pic.showsPageRange = YES;

Finally, you must simply present your UIPrintInteractionController. This class is

equipped with three different methods for presenting itself, depending on your specific

implementation.

 -presentFromBarButtonItem:animated:completionHandler:: If you are

writing for an iPad, this method is designed for use when

theapplication’s Print button is placed in a toolbar, such as yours.

 -presentFromRect:inView:animated:completionHandler:: This method

is also only for use with the iPad, but allows you to present the

controller from any part of the view. Usually, the rect specified will be

the frame of your Print button, wherever it is located.

http://

CHAPTER 13: Data Transmission Recipes 470

 -presentAnimated:completionHandler:: This method should be used

whenever implementing printing on an iPhone due to the smaller

screen.

With this final method call, your -printPressed:method in its entirety will look like so:

-(void)printPressed:(id)sender
{
if ([UIPrintInteractionController isPrintingAvailable] && (self.selectedImage != nil))
 {
UIPrintInteractionController *pic = [UIPrintInteractionController
sharedPrintController];

UIPrintInfo *printInfo = [UIPrintInfo printInfo];
 printInfo.outputType = UIPrintInfoOutputPhoto;
 printInfo.jobName = self.title;
 printInfo.duplex = UIPrintInfoDuplexLongEdge;

UIImage *image = self.selectedImage;
 pic.printingItem = image;

if (!pic.printingItem&& image.size.width> image.size.height)
 printInfo.orientation = UIPrintInfoOrientationLandscape;

 pic.printInfo = printInfo;
 pic.showsPageRange = YES;

 [pic presentFromBarButtonItem:sender animated:YES
completionHandler:^(UIPrintInteractionController *printInteractionController, BOOL
completed, NSError *error)
 {
if (!completed && (error != nil))
 {
NSLog(@"Error due to Domain: %@, Code: %@", error.domain, error.code);
 }
else
 {
NSLog(@"Printing Cancelled");
 }
 }];
 }
}

Now when you run your application, after selecting your image, a small controller will

appear once you press the print button, from which you can select a printer and further

configure your specific print job! Unfortunately, if you’re testing this in your simulator or

don’t have any wireless printers set up, you won’t see any available printers to use, as

shown in Figure 13–8.

http://

CHAPTER 13: Data Transmission Recipes 471

Figure 13–8.Your app with a new Print button, unable to find any AirPrint Printers

Luckily, when you installed the most recent version of Xcode, you were also given a

fantastic application called Printer Simulator. With this program, you will be able to fully

simulate print jobs from your application. It even gives you a PDF file of your simulated

output, so you can see exactly how your image would have turned out without wasting

any paper!

You can easily open this program by searching for it in Spotlight.

Upon running the Printer Simulator application, a variety of printer types will be

automatically registered for use. It will look similar to Figure 13–9.

http://

CHAPTER 13: Data Transmission Recipes 472

Figure 13–9. Printer Simulator registering multiple types of printers to simulate

Now, upon testing your application, you should see multiple different types of simulated

printers with which to test your application. You can choose different types to see how

your printout is affected by the style of printer, as in Figure 13–10.

Figure 13–10. Selecting a simulated printer from your app

Once you have selected a printer, you have the option to print multiple copies as well as

change the paper type before you print. At this point, you should start seeing activity in

your Printer Simulator, and shortly afterward, a PDF file will be opened with your final

printout, resembling that shown in Figure 13–11.

http://

CHAPTER 13: Data Transmission Recipes 473

Figure 13–11. Output of printing an image from a simulated printer

Recipe 13–4: Printing Plain Text
Expanding on your previous recipe, you will add functionality to make use of a print

formatter to allow you to print simple text.

First, you will modify your -viewDidLoad method to add an extra button to print the text

in your UITextView. Change the condition statement in the method that you’ve already

made to look like so:

if ([UIPrintInteractionController isPrintingAvailable])
 {
UIBarButtonItem *printButton = [[UIBarButtonItemalloc] initWithTitle:@"Print Image"
style:UIBarButtonItemStyleBordered target:self action:@selector(printPressed:)];

UIBarButtonItem *printTextButton = [[UIBarButtonItem alloc] initWithTitle:@"Print Text"
style:UIBarButtonItemStyleBordered target:self action:@selector(printTextPressed:)];

self.navigationItem.rightBarButtonItems = [NSArray arrayWithObjects:printButton,
printTextButton, nil];
 }

The new selector to print your text will then be implemented asfollows:

-(void)printTextPressed:(id)sender
{
if ([UIPrintInteractionController isPrintingAvailable])
 {

http://

CHAPTER 13: Data Transmission Recipes 474

UIPrintInteractionController *pic = [UIPrintInteractionController
sharedPrintController];

UIPrintInfo *printInfo = [UIPrintInfo printInfo];
 printInfo.outputType = UIPrintInfoOutputGeneral;
 printInfo.jobName = self.title;
 printInfo.duplex = UIPrintInfoDuplexLongEdge;
 pic.printInfo = printInfo;

UISimpleTextPrintFormatter *simpleTextPF = [[UISimpleTextPrintFormatter alloc]
initWithText:self.textViewInput.text];
 simpleTextPF.startPage = 0;
 simpleTextPF.contentInsets = UIEdgeInsetsMake(72.0, 72.0, 72.0, 72.0);
 simpleTextPF.maximumContentWidth = 6*72.0;

 pic.printFormatter = simpleTextPF;

 pic.showsPageRange = YES;

 [pic presentFromBarButtonItem:sender animated:YES
completionHandler:^(UIPrintInteractionController *printInteractionController, BOOL
completed, NSError *error)
 {
if (!completed && (error != nil))
 {
NSLog(@"Error due to Domain: %@, Code: %@", error.domain, error.code);
 }
else
 {
NSLog(@"Printing Cancelled");
 }
 }];
 }
}

There are two main differences between this method and its predecessor:

1. The outputType property in your UIPrintInfo is modified to the

UIPrintInfoOutputGeneral value, since you are no longer printing photos.

2. Instead of setting a UIImage to the printingItem property, you set an instance of

UISimpleTextPrintFormatter to the printFormatter property. This object is

initialized with the desired text, and then configured through its properties.

a. Values of 72.0 as insets translate to 1inch, so you have given

your output 1-inch insets, and specified a 6-inch width for your

content.

b. The statePageproperty will be used more at a later point, but

allows you to specify the page in your job for your formatter to

be applied to.

When printing simple text, it is also quite easy to apply the preceding method to printing

out HTML-formatted text. To do this, simply make use of a UIMarkupTextPrintFormatter

instead of a UISimpleTextPrintFormatter.

http://

CHAPTER 13: Data Transmission Recipes 475

Just as before, by using the Printer Simulator, you can generate your test output. Since

you set your text view’s text as the content of your print formatter, you will simply get a

document with some Lorem Ipsum text in it, as in Figure 13–12.

Figure 13–12. Output of the simulated printing of a simple text page

Recipe 13–5: Printing a View
Just as you can print text using a UISimpleTextPrintFormatter, you are easily able to

print the contents of a view using another subclass of UIPrintFormatter:

UIViewPrintFormatter.

Start by modifying your -viewDidLoad’s conditional setup to now appear like so:

if ([UIPrintInteractionController isPrintingAvailable])
 {
UIBarButtonItem *printButton = [[UIBarButtonItem alloc] initWithTitle:@"Print Image"
style:UIBarButtonItemStyleBorderedtarget:self action:@selector(printPressed:)];

UIBarButtonItem *printTextButton = [[UIBarButtonItem alloc] initWithTitle:@"Print Text"
style:UIBarButtonItemStyleBordered target:self action:@selector(printTextPressed:)];

UIBarButtonItem *printViewButton = [[UIBarButtonItem alloc] initWithTitle:@"Print View"
style:UIBarButtonItemStyleBordered target:self action:@selector(printViewPressed:)];

self.navigationItem.rightBarButtonItems = [NSArray arrayWithObjects:printButton,
printTextButton, printViewButton, nil];
 }

http://

CHAPTER 13: Data Transmission Recipes 476

Your newest printing method,-printViewPressed:, will closely resemble your previous

one, with the key change of using a UIViewPrintFormatter.

-(void)printViewPressed:(id)sender
{
if ([UIPrintInteractionController isPrintingAvailable])
 {
UIPrintInteractionController *pic = [UIPrintInteractionController
sharedPrintController];

UIPrintInfo *printInfo = [UIPrintInfo printInfo];
 printInfo.outputType = UIPrintInfoOutputGeneral;
 printInfo.jobName = self.title;
 printInfo.duplex = UIPrintInfoDuplexLongEdge;
 printInfo.orientation = UIPrintInfoOrientationLandscape;
 pic.printInfo = printInfo;

UIViewPrintFormatter *viewPF = [self.textViewInput viewPrintFormatter];

 pic.printFormatter = viewPF;
 pic.showsPageRange = YES;

 [pic presentFromBarButtonItem:sender animated:YES
completionHandler:^(UIPrintInteractionController *printInteractionController, BOOL
completed, NSError *error)
 {
if (!completed && (error != nil))
 {
NSLog(@"Error due to Domain: %@, Code: %@", error.domain, error.code);
 }
else
 {
NSLog(@"Printing Cancelled");
 }
 }];
 }
}

Unfortunately, the UIViewPrintFormatter is, at the moment, currently configured only to

provide printing views of three system views: UITextView, UIWebView, and MKMapView

(from the MapKit framework as discussed in Chapter 4). Since your application makes

use of only one of these, you will simply have it print your UITextView’s view, resulting in

an output like that in Figure 13–13.

http://

CHAPTER 13: Data Transmission Recipes 477

Figure 13–13. Simulated printing output, specifically of a UITextView

Despite the UIViewPrintFormatter’s limitations, it can be an incredibly easy to way

easily print out the contents of any text, map, or web page.

http://

CHAPTER 13: Data Transmission Recipes 478

Recipe 13–6: Formatted Printing with Page
Renderers
A page renderer is essentially what allows you to fully customize the content of any print

job. It allows you to not only format multiple pages with different print formatters, but

also draw custom content in the header, body, and footer of any page.

In order to use a page renderer, you must create a custom subclass of the

UIPrintPageRenderer class, from which you can override methods to customize the

content of your printing job.

Create a new file, using the Objective-C class template. When you enter your file name

of “SendItOutPageRenderer”, make sure that the file will be a subclass of

UIPrintPageRenderer, as in Figure 13–14.

Figure 13–14. Creating a UIPrintPageRenderer subclass

Click through to create your new file.

Next, define two NSString properties,title and author, to be printed in the header of

your renderer.

#import <UIKit/UIKit.h>

@interface SendItOutPageRenderer : UIPrintPageRenderer

@property (nonatomic, strong) NSString *title;
@property (nonatomic, strong) NSString *author;

@end

http://

CHAPTER 13: Data Transmission Recipes 479

In order to customize the layout of your specific page renderer, you can override

methods inherited from the UIPrintPageRenderer class. The way that this class is set up

is that the -drawPageAtIndex:inRect: method then calls four other methods:

 -drawHeaderForPageAtIndex:inRect:: Used to specify header content;

if the headerHeight property of the renderer is zero, this method will

not be called.

 -drawContentForPageAtIndex:inRect:: Draws custom content within

the page’s content rectangle

 -drawFooterForPageAtIndex:inRect:: Specifies footer content; this

method will also not be called if the renderer’s footerHeight property

is zero.

 -drawPrintFormatter:forPageAtIndex::Uses a combination of print

formatters and custom content to overlay or fill in a view

You are able to override any of thesefive methods (including -drawPageAtIndex:inRect:)

in order to customize your printing content. In your case, you will override the header,

footer, and print-formatter methods.

You will have your header print out the document’s author on the left, and the title on the

right. Your method will then look like so:

- (void)drawHeaderForPageAtIndex:(NSInteger)pageIndex inRect:(CGRect)headerRect
{
if (pageIndex != 0)
 {
UIFont *font = [UIFont fontWithName:@"Helvetica"size:12.0];
CGSize titleSize = [self.title sizeWithFont:font];

CGFloat drawXTitle = CGRectGetMaxX(headerRect) - titleSize.width;
CGFloat drawXAuthor = CGRectGetMinX(headerRect);
CGFloat drawY = CGRectGetMinY(headerRect);
CGPoint drawPointAuthor = CGPointMake(drawXAuthor, drawY);
CGPoint drawPointTitle = CGPointMake(drawXTitle, drawY);

 [self.title drawAtPoint:drawPointTitle withFont:font];
 [self.author drawAtPoint:drawPointAuthor withFont:font];
 }
}

Your footer-implementation method will look similar, and will print out a centered page

number. Since the page indexes start with 0, you must remember to increment all your

values by 1.

- (void)drawFooterForPageAtIndex:(NSInteger)pageIndex inRect:(CGRect)footerRect
{
UIFont *font = [UIFont fontWithName:@"Helvetica"size:12.0];
NSString *pageNumber = [NSString stringWithFormat:@"%d.", pageIndex+1];

CGSize pageNumSize = [pageNumber sizeWithFont:font];
CGFloat drawX = CGRectGetMaxX(footerRect)/2.0 - pageNumSize.width - 1.0;
CGFloat drawY = CGRectGetMaxY(footerRect) - pageNumSize.height;
CGPoint drawPoint = CGPointMake(drawX, drawY);

http://

CHAPTER 13: Data Transmission Recipes 480

 [pageNumber drawAtPoint:drawPoint withFont:font];
}

Finally, to deal with interlaced print formatters, you will implement the -
drawPrintFormatter:forPageAtIndex: method to overlay a simple text over your view.

This could easily be used to place some kind of “Proprietary Content” label over images

or documents in a more targeted application.

-(void)drawPrintFormatter:(UIPrintFormatter *)printFormatter
forPageAtIndex:(NSInteger)pageIndex
{
CGRect contentRect = CGRectMake(self.printableRect.origin.x,
self.printableRect.origin.y+self.headerHeight, self.printableRect.size.width,
self.printableRect.size.height-self.headerHeight-self.footerHeight);
 [printFormatter drawInRect:contentRect forPageAtIndex:pageIndex];

NSString *overlayText = @"Overlay Text";
UIFont *font = [UIFont fontWithName:@"Helvetica"size:26.0];
CGSize overlaySize = [overlayText sizeWithFont:font];

CGFloat xCenter = CGRectGetMaxX(self.printableRect)/2.0 - overlaySize.width/2.0;
CGFloat yCenter = CGRectGetMaxY(self.printableRect)/2.0 - overlaySize.height/2.0;
CGPoint overlayPoint = CGPointMake(xCenter, yCenter);

 [overlayText drawAtPoint:overlayPoint withFont:font];
}

In this method, it is important to note that you must draw the content of each

printFormattermanually using its own -drawInRect:forPageAtIndex: method. In order

to avoid covering your header or footer, you specified a drawing area restricted by the

headerHeight and footerHeight.

Now, back in your main view controller, make sure to import the newly created

SendItOutPageRenderer.h file.

#import "SendItOutPageRenderer.h"

Add a final extra UIBarButtonItem to present a Print Custom option to your user.

Including all functions from your previous recipes, your -viewDidLoad method should

now read like so:

- (void)viewDidLoad
{
 [super viewDidLoad];

 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(availabilityChange:)
name:@"MFMessageComposeViewControllerTextMessageAvailabilityDidChangeNotification"
object:nil];

self.textViewInput.layer.cornerRadius = 15.0;
self.textViewInput.delegate = self;

self.title = @"Send It Out!";

if ([UIPrintInteractionController isPrintingAvailable])
 {

http://

CHAPTER 13: Data Transmission Recipes 481

UIBarButtonItem *printButton = [[UIBarButtonItem alloc] initWithTitle:@"Print Image"
style:UIBarButtonItemStyleBordered target:self action:@selector(printPressed:)];

UIBarButtonItem *printTextButton = [[UIBarButtonItem alloc] initWithTitle:@"Print Text"
style:UIBarButtonItemStyleBordered target:self action:@selector(printTextPressed:)];

UIBarButtonItem *printViewButton = [[UIBarButtonItem alloc] initWithTitle:@"Print View"
style:UIBarButtonItemStyleBordered target:self action:@selector(printViewPressed:)];

UIBarButtonItem *printCustomButton = [[UIBarButtonItem alloc] initWithTitle:@"Print
Custom" style:UIBarButtonItemStyleBordered target:self
action:@selector(printCustomPressed:)];

self.navigationItem.rightBarButtonItems = [NSArray arrayWithObjects:printButton,
printTextButton, printViewButton, printCustomButton, nil];
 }
}

Finally, you can implement your -printCustomPressed: action.

-(void)printCustomPressed:(id)sender
{
if ([UIPrintInteractionControllerisPrintingAvailable])
 {
UIPrintInteractionController *pic = [UIPrintInteractionController
sharedPrintController];

UIPrintInfo *printInfo = [UIPrintInfoprintInfo];
 printInfo.outputType = UIPrintInfoOutputGeneral;
 printInfo.jobName = self.title;
 printInfo.duplex = UIPrintInfoDuplexLongEdge;
 printInfo.orientation = UIPrintInfoOrientationPortrait;
 pic.printInfo = printInfo;

UISimpleTextPrintFormatter *simplePF = [[UISimpleTextPrintFormatter alloc]
initWithText:[self.textViewInput.text stringByAppendingString:@"THIS TEXT IS MY FIRST
PAGE"]];
UIViewPrintFormatter *viewPF = [self.textViewInputview PrintFormatter];

SendItOutPageRenderer *sendPR = [[SendItOutPageRendereralloc] init];
 sendPR.title = @"My Print Job Title";
 sendPR.author = @"Document Author";
 sendPR.headerHeight = 72.0/2;
 sendPR.footerHeight = 72.0/2;
 [sendPR addPrintFormatter:simplePF startingAtPageAtIndex:0];
 [sendPR addPrintFormatter:viewPF startingAtPageAtIndex:1];

 pic.printPageRenderer = sendPR;

 pic.showsPageRange = YES;

 [pic presentFromBarButtonItem:sender animated:YES
completionHandler:^(UIPrintInteractionController *printInteractionController, BOOL
completed, NSError *error)
 {
if (!completed && (error != nil))
 {
NSLog(@"Error due to Domain: %@, Code: %@", error.domain, error.code);

http://

CHAPTER 13: Data Transmission Recipes 482

 }
else
 {
NSLog(@"Printing Cancelled");
 }
 }];
 }
}

This method includes the following extra steps from your previous recipe:

1. Create multiple print formatters to be given to different pages. Since you do not

have a UIWebView or MKMapView in this application, you have simply chosen to print

your UITextView’s text, as well as its overall view.

2. Create an instance of your SendItOutPageRenderer class, and configure it with a

title, author, headerHeight, and footerHeight. If you did not specify the last two

of these, your header and footer customization methods would not be called.

3. Add your print formatters to your page renderer, and assign this renderer to your

UIPrintInteractionController.

Upon testing this new functionality, your output will be a two-page text document,

complete with simple headers, footers, and even a text overlay, as shown in Figure 13–15.

Figure 13–15. Simulated printing output with a page renderer and multiple print formatters

Due to the simplicity of your application, the screenshot in Figure 13–15may not look like

much, but considering your application of custom headers, footers, overlay content, and

http://

CHAPTER 13: Data Transmission Recipes 483

page formatters, it actually gives a very good representation of the power of making use

of a page renderer for printing when striving for ideal customizations.

Summary
You are responsible, when creating your applications, to always have the user in mind.

Every single aspect of your application should be designed to both allow and helpthe

user to accomplish a goal, and each aspect should then be optimized to expedite these

goals. Functionalities to transmit data, such as sending text messages, constructing e-

mails, or creating printouts, tend to be overlooked as unnecessary in this process, and

most often erroneously. Developers must always be careful to think from the user’s

standpoint, and imagine what a user could do with any given feature. The simple

possibility of printing content for later use, or being able to easily e-mail an interesting

image to a friend, could easily be the dividing line between what makes a customer buy

your app over someone else’s. By understanding and utilizing these “extra”

functionalities, you are able to drastically improve the functionality of your applications in

order to better serve your endusers.

http://

485

 Chapter

Twitter Recipes

Since its incipience, the Twitter service has been rapidly expanding as a means of

communication, advertising, and even organization. Its use has become widespread

throughout modern technology and entertainment, allowing an unprecedented amount

of masscommunication. With the release of iOS 5.0, the addition of a Twitter framework

allows developers to work and program more efficiently with this incredible interface.

This has opened up a whole category of app possibilities, from sending simple tweets to

analyzing trending topics to suggesting articles to a user. By utilizing this framework in

our applications, we are able to incorporate a variety of functionalities into our

applications that allow us to communicate with the Twitter service, allowing users to

contribute further to the ever-growing worldwide network of communication.

Recipe 14–1: Composing Simple Tweets
The core foundation of the Twitter service is the idea of sending “tweets”. These are

composed of quick bits of information, limited to 140 characters, and sometimes

accompanied by an image or outside link. In the Twitter framework, you are able to

access a pre-configured class that can easily send out these messages.

When making use of the Twitter framework, any functionality you build that revolves

around accessing a specific Twitter account for sending or retrieving information will not

actually work on your iOS simulator, as you cannot connect it to a Twitter account.

Therefore, you will opt to test all of your Twitter-based recipes on a physical device.

In order to test those functionalities that require an account on your device, you need to

make sure that your device is configured with at least one Twitter account. You can

create an account through the Twitter website, or through the Twitter iOS app. Once you

have an account, you must provide your device with your login information. This

configuration can be accessed from your Settings app on your device, and will resemble

Figure 14–1.

14

http://

CHAPTER 14: Twitter Recipes 486

Figure 14–1. Configuring your Twitter account on your device

By having a Twitter account configured with your device, you will be able to fully test all

the functionality that you will create.

Next, you start by creating a new project called “Tweeter” in Xcode. Select the

SingleView Application template, and then click through to create your project. If you are

running the newest version of Xcode, make sure also that the box marked “Automatic

Reference Counting” is checked, as in Figure 14–2.

http://

CHAPTER 14: Twitter Recipes 487

Figure 14–2. Configuring project settings

For all the recipes in this chapter, you need to include the Twitter framework into your

project.

After selecting your project, navigate to the Build Phases tab, and in the section marked

“Link Binary With Libraries, click the + button. Find the item called Twitter.framework,

and add it, as shown in Figure 14–3.

http://

CHAPTER 14: Twitter Recipes 488

Figure 14–3. Adding the Twitter framework

You will also later need the Accounts framework, so repeat this process, adding the item

called Accounts.framework.

Add import statements to your view controller’s header file so that the compiler allows

you to use your added frameworks.

#import <Twitter/Twitter.h>
#import <Accounts/Accounts.h>

Next you will set up your initial user interface. Add a UIButton to your view, and connect

it to your controller using theproperty name simpleTweetButton. Connect it to an

IBAction method called -simpleTweetPressed:, as shown in Figure 14–4.

http://

CHAPTER 14: Twitter Recipes 489

Figure 14–4. Setting up a simple user interface

Let’s set up a convenience method to check if your application can send a tweet at any

given moment. If not, you will disable and dim your UIButton.

-(BOOL)checkCanTweet
{
if ([TWTweetComposeViewController canSendTweet])
 {
self.simpleTweetButton.enabled = YES;
self.simpleTweetButton.alpha = 1.0;
return YES;
 }
else
 {
self.simpleTweetButton.enabled = NO;
self.simpleTweetButton.alpha = 0.6;
return NO;
 }
}

This method makes use of the +canSendTweet class method of

TWTweetComposeViewController. You will be using this class to allow creation of simple

tweets shortly.

In order to make sure your view controller correctly rechecks your functionality, you will

place a call to this function in both -viewDidLoad and -viewWillAppear:animated:.

[self checkCanTweet];

http://

CHAPTER 14: Twitter Recipes 490

It is also possible that the device your application is on could have a Twitter account

configured at any moment, so you can also register for notifications to be sent upon the

changing of account information. Add the following line to your -viewDidLoad method.

[[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(checkCanTweet)
name:ACAccountStoreDidChangeNotification object:nil];

Now you will implement your -simpleTweetPressed: method to configure and send a

simple tweet.

-(void)simpleTweetPressed:(id)sender
{
if ([self checkCanTweet])
 {
TWTweetComposeViewController *tweet = [[TWTweetComposeViewController alloc] init];
 [tweet setInitialText:@"Posting a simple Tweet from my app!"];
 [tweet setCompletionHandler:^(TWTweetComposeViewControllerResult result)
 {
if (result == TWTweetComposeViewControllerResultDone)
 {
NSLog(@"Tweet Successfully Sent");
 }
else
 {
NSLog(@"Tweet Cancelled");
 }
 [self dismissModalViewControllerAnimated:YES];
 }];
 [self presentModalViewController:tweet animated:YES];
 }
}

As shown here, you can create an initial text for your tweet, as well as set a completion

handler to be called after your TWTweetComposeViewController is either cancelled or

completed.

You are able to add, in addition to your initial text, images and links to be attached to

your tweets by using the -addImage:and addURL: methods. Figure 14–5 demonstrates

your current configuration, along with an added link.

http://

CHAPTER 14: Twitter Recipes 491

Figure 14–5.Your view presenting a TWTweetComposeViewController

The three methods that are used to add content to your tweet, -setInitialText:,-
addImage:, and -addURL:, all return BOOL values indicating whether the content was

successfully added. These values will be NO if either the content does not fit in the tweet,

or if the controller has already been presented.

In order to ensure that the users always have the last say in what is sent in a tweet from

this controller, the developer is not allowed to set or add any content once it has been

presented.

If at any point you wish to remove content from a controller before it is presented, you

can make use of the -removeAllImages and -removeAllURLsmethods.

Recipe 14–2: Creating Simple TWRequests
Aside from the TWTweetComposeViewController, the only other class in the Twitter

framework is the TWRequest class. This class is incredibly general, and makes use of

Twitter’s specific API in order to send and request information. Through its use, you can

mimic the basic function of the TWTweetComposeViewController, as well as perform

nearly any command you want to incorporateinyour application with the Twitter service.

http://

CHAPTER 14: Twitter Recipes 492

It is important to remember that the Twitter API changes differently from the iOS API, so

any Twitter-specific code in this section may have to be updated to the newest version.

Sending Tweets via TWRequest
You will add another UIButton to your view in order to implement a more complex

functionality, with label “Post Tweet”, property name postTweetButton, and action

handler -postTweetPressed:. Place it underneath the first button, as in Figure 14–6.

Figure 14–6. Adding another button to your interface

You will implement your -postTweetPressed:.This method will contain the following

steps:

1. Access the device’s account store, which has access to any accounts registered

with the device.

2. Create an instance of ACAccountType to specify in your request for all stored

Twitter accounts.

3. Request access to all accounts of the specified type. The -

requestAccessToAccountsWithType:withCompletionHandler: method will prompt

the user as to whether the application has permission to access the accounts. If

permission has already been acquired by the application previously, the user will

not be prompted.

http://

CHAPTER 14: Twitter Recipes 493

4. Access an array of ACAccount objects from the account store referencing all

registered Twitter accounts on the device.

5. Access a specific account to post with.

6. Initialize an instance of TWRequest. This class is given instructions as to the

specific request being formed.

7. Set your chosen ACAccount to the TWRequest.

8. Perform your request and utilize your completion handler to analyze the results.

-(IBAction)postTweetPressed:(id)sender
{
ACAccountStore *accountStore = [[ACAccountStore alloc] init];

ACAccountType *accountType = [accountStore
accountTypeWithAccountTypeIdentifier:ACAccountTypeIdentifierTwitter];

 [accountStore requestAccessToAccountsWithType:accountType
withCompletionHandler:^(BOOL granted, NSError *error)
 {
if (granted)
 {
NSArray *accountsArray = [accountStore accountsWithAccountType:accountType];

if ([accountsArray count] >0)
 {
ACAccount *twitterAccount = [accountsArray objectAtIndex:0];

TWRequest *postRequest = [[TWRequest alloc] initWithURL:[NSURLURL
WithString:@"http://api.twitter.com/1/statuses/update.json"] parameters:[NSDictionary
dictionaryWithObject:@"Posted with a TWRequest!"forKey:@"status"]
requestMethod:TWRequestMethodPOST];

 [postRequest setAccount:twitterAccount];

 [postRequest performRequestWithHandler:^(NSData *responseData,
NSHTTPURLResponse *urlResponse, NSError *error)
 {
if ([urlResponse statusCode] == 200)
 {
NSLog(@"Tweet Posted");
 }
else
 {
NSLog(@"Error Posting Tweet");
 }
 }];
 }
 }
 }];
}

The key component to this method is, of course, the initialization of the TWRequest. Here

you have made careful use of the Twitter API in order to configure your tweet post with

three properties:

http://

CHAPTER 14: Twitter Recipes 494

URL: The string used to make your URL,

http://api.twitter.com/1/statuses/update.json, is specially used to

inform the Twitter service that you are initiating a status update.

Parameters:Youspecify an instance of NSDictionary with a single key

“status”, to which you assign an NSString with the actual text of your

tweet.

Request method: This parameter specifies the type of request that you

are making. Since you are posting a tweet, you use the

TWRequestMethodPOST value.

The interesting thing about posting tweets using this method is that your user does not

actually get a preview of the tweet before it is sent. In fact, the only indication the user

receives in this case is the request for access to the Twitter account. It is important to

keep the user’s best interests in mind when sending such posts, so as not to post

unwanted updates.

NOTE: As shown in the preceding method, you can evaluate the results of a TWRequest by

checking the statusCode of the urlResponse. If this value is 200, the request was

successfully completed. Otherwise, there was some sort of error. Refer to the Twitter API at

https://dev.twitter.com/docs/error-codes-responsesfor specific details on all the

various error codes.

Upon testing this app, you will be able to, after requiring permission, send tweets from

your device’s registered account without using the TWTweetComposeViewController.

Recipe 14–3: Retrieving Tweets
Now that you have covered two different methods with which you can post updates to

Twitter, you can apply the concepts used in the previous recipe, revolving around the

TWRequest class, in order to build an application that can acquire and display tweets.

You will build an application to display multiple different groups of tweets, so you will

use a UITabBarController to keep your content groups separate. Open up a new

project, and start off by selecting the Tabbed Application template, as in Figure 14–7.

http://api.twitter.com/1/statuses/update.json
https://dev.twitter.com/docs/error-codes-responsesfor
http://

CHAPTER 14: Twitter Recipes 495

Figure 14–7. Creating a tabbed application

On the next screen, enter your project name. Since you will be displaying groups of

tweets from a variety of sources, name your project “PulseOfTheWorld” with the class

prefix of “Main”. Make sure your application is configured for the iPhone device family

and that Automatic Reference Counting is enabled, so that your project settings are the

same as those in the previous recipe. Click through to create your project.

The template application will resemble that simulated here. Luckily for you, this layout is

exactly how you will start your application off, as demonstrated in Figure 14–8, so you

can display the raw data acquired from Twitter.

http://

CHAPTER 14: Twitter Recipes 496

Figure 14–8.Your generic tabbed application

NOTE: Since you have created a template application with two view controllers that you will

format similarly, the following configuration will include changes made to both controllers

simultaneously. Make sure to follow carefully and make all necessary changes to each view

controller.

You will first need to configure your user interface to be programmatically editable, so

first go into the XIB file for each of your two pre-made view controllers and connect both

the UILabel and UITextView to properties in your header files. You will use the

respective property names publicLabel and publicTextView in the first view controller,

and homeLabelandhomeTextView in the second view controller.

You can change the initial text of your view elements to fit your application a bit more.

Add the following lines to the -viewDidLoad of your first view controller.

self.publicLabel.text = @"Public Timeline";
self.publicTextView.text = @"Public Timeline data not retrieved yet.";

http://

CHAPTER 14: Twitter Recipes 497

Add the equivalent lines of code to your second view controller.

self.homeLabel.text = @"Home Timeline";
self.homeTextView.text = @"Home Timeline data not retrieved yet.";

You’ll also add a UIButton to each of your view controllers to actually trigger your

application to retrieve data. Name each button either “Get Public Timeline” or “Get

Home Timeline” as appropriate, and connect them to IBAction methods with handlers -
publicPressed: and -homePressed as well as to properties publicButton and

homeButton.

Before you proceed, you need to make sure to include your Twitter and Accounts

frameworks in your project. Follow the same procedure discussed in the previous

recipes to add them both, and make sure the correct import statements are added to

both view controllers.

#import <Twitter/Twitter.h>
#import <Accounts/Accounts.h>

Back in the XIB file, you need to slightly customize your UITextViews to work correctly

with your application. Make sure that for each UITextView the box marked “User

Interaction Enabled” is checked, as in Figure 14–9, in order to allow the views to scroll.

Figure 14–9. Enabling user interaction for your UITextViews

Now make sure to set each UITextView’s text alignment to the left, so that your raw data

is slightly more readable. I have also increased the size of these views so as to be able

to display more information at once.

At this point, your views should resemble Figure 14–10, with appropriately different text

for each controller.

http://

CHAPTER 14: Twitter Recipes 498

Figure 14–10.Your configured user interface

Also following is the header code for the first view controller that your program should

now resemble. The second view controller’s header file should be identical aside from

the different property and action names.

#import <UIKit/UIKit.h>
#import <Twitter/Twitter.h>
#import <Accounts/Accounts.h>

@interface MainFirstViewController : UIViewController
@property (strong, nonatomic) IBOutlet UILabel *publicLabel;
@property (strong, nonatomic) IBOutlet UITextView *publicTextView;
@property (strong, nonatomic) IBOutlet UIButton *publicButton;
-(IBAction)publicPressed:(id)sender;
@end

Following the lines of your previous recipes, you will create a method to check for

Twitter availability, and adjust your view accordingly. You need this method only in your

second view controller, so it will look like so:

-(BOOL)checkCanTweet
{
if ([TWTweetComposeViewController canSendTweet])
 {
self.homeButton.enabled = YES;
self.homeButton.alpha = 1.0;
return YES;
 }
else
 {

http://

CHAPTER 14: Twitter Recipes 499

self.homeButton.enabled = NO;
self.homeButton.alpha = 0.6;
return NO;
 }
}

Just as before, make sure to place a call to the -checkCanTweet method in both your -
viewDidLoad and -viewWillAppear:animated: methods.

Now you can go ahead and work on implementing your methods to request your tweets.

As you may have guessed, you will start off by retrieving data from the Public Timeline in

your first view controller, and data from the Home Timeline in the second. In this case,

the Home Timeline refers to the posts made by the current user, as well as any users

they are following, as opposed to the Public Timeline, which simply shows public

tweets. Because the Home Timeline is user-specific, you will need to make use of the

Accounts framework again to access your device’s registered Twitter account(s).

You will start off by implementing your -publicPressed: method in your first view

controller to retrieve public tweets with the following code.

- (IBAction)publicPressed:(id)sender
{
TWRequest *postRequest = [[TWRequest alloc] initWithURL:[NSURL
URLWithString:@"http://api.twitter.com/1/statuses/public_timeline.json"]
parameters:nilrequestMethod:TWRequestMethodGET];

 [postRequest performRequestWithHandler:^(NSData *responseData, NSHTTPURLResponse
*urlResponse, NSError * error)
 {
 NSString *output;
if ([urlResponse statusCode] == 200)
 {
 NSError *jsonParsingError;
NSArray *publicTimeline = [NSJSONSerialization JSONObjectWithData:responseData
options:0error:&jsonParsingError];

 output = [NSString stringWithFormat:@"Public timeline:\n%@",
publicTimeline];
 }
else
 {
 output = [NSString stringWithFormat:@"HTTP response status: %i\n",
[urlResponse statusCode]];
 }
 [self.publicTextView performSelectorOnMainThread:@selector(setText:)
withObject:output waitUntilDone:NO];
 }];
}

This method can be broken down into several points:

1. Because the Public Timeline is available openly, you did not need to access a

specific Twitter account to retrieve the data, so you went straight to configuring

your TWRequest.

http://

CHAPTER 14: Twitter Recipes 500

2. Similarly to your previous recipe, when creating your TWRequest, you used a URL

specific to Twitter to access your intended service. The URL used here,

http://api.twitter.com/1/statuses/public_timeline.json, is written to give

you the data from the Public Timeline specifically in the JSON format (as specified

by the “json” suffix).

3. Also when configuring the TWRequest, you must specify the “request method”

value TWRequestMethodGET, instead of the previous TWRequestMethodPOST. The

easiest way to view this is that you use the “GET” value to retrieve information,

and the “POST” value to send.

4. After confirming the successful response, you have to convert your received data

into a useful iOS format. Since you specified your data to use the JSON format,

you can make use of the NSJSONSerialization class method

+JSONObjectWithData:options:error:. This method converts your received JSON

data into either an NSDictionary or NSArray, depending on the format. In this

case, you receive an NSArray, whose contents you then place into the

NSStringoutput.

5. Any changing of the user interface must be performed in the main thread, so you

make use of the -performSelectorMainThread:withObject:waitUntilDone:

method to update your user interface with the given output.

It is also important to know that you are able to further customize your TWRequest by

specifying parameters, which determine what kind of results you receive. Every kind of

request has its own set of available parameters, so refer to the Twitter API to find more

information on specific options, which are set in an NSDictionary.

Now, in your second view controller, you can implement a similar solution to retrieve the

user’s Home Timeline data.

- (IBAction)homePressed:(id)sender
{
if ([self checkCanTweet])
 {
ACAccountStore *accountStore = [[ACAccountStore alloc] init];
ACAccountType *accountType = [accountStore
accountTypeWithAccountTypeIdentifier:ACAccountTypeIdentifierTwitter];

 [accountStore requestAccessToAccountsWithType:accountType
withCompletionHandler:^(BOOL granted, NSError *error)
 {
if (granted)
 {
NSArray *accountsArray = [accountStore accountsWithAccountType:accountType];
if ([accountsArray count] >0)
 {
ACAccount *twitterAccount = [accountsArray objectAtIndex:0];

TWRequest *postRequest = [[TWRequest alloc] initWithURL:[NSURL
URLWithString:@"http://api.twitter.com/1/statuses/home_timeline.json"] parameters:nil
requestMethod:TWRequestMethodGET];

http://api.twitter.com/1/statuses/public_timeline.json
http://

CHAPTER 14: Twitter Recipes 501

 [postRequest setAccount:twitterAccount];

 [postRequest performRequestWithHandler:^(NSData *responseData,
NSHTTPURLResponse *urlResponse, NSError *error)
 {
 NSString *output;

if ([urlResponse statusCode] == 200)
 {
 NSError *jsonParsingError;
NSArray *homeTimeline = [NSJSONSerialization JSONObjectWithData:responseData options:0
error:&jsonParsingError];

 output = [NSString stringWithFormat:@"Home timeline:\n%@",
homeTimeline];
 }
else
 {
 output = [NSString stringWithFormat:@"HTTP response status:
%i\n", [urlResponse statusCode]];
 }
 [self.homeTextView
performSelectorOnMainThread:@selector(setText:) withObject:output waitUntilDone:NO];
 }];
 }
 }
else
 {
self.homeTextView.text = @"Error, Twitter account access not granted.";
 }
 }];
 }
}

This method follows the same track as the previous one, with the following differences:

6. You included a quick check to -checkCanTweet in order to ensure that your device

is properly configured with a Twitter account.

7. Since you are accessing a specific user’s timeline, you include code to access the

device’s registered Twitter accounts, pick the first, and include it in the TWRequest.

8. A slightly different URL, this time

http://api.twitter.com/1/statuses/home_timeline.json, is used to request a

Home Timeline, as opposed to the Public Timeline.

If you run your application on a device at this point, you should be able to retrieve a

good 20 tweets worth of data to your phone and view their raw data. Figure 14–11

shows the beginning of the Public Timeline data at the moment of this writing.

http://api.twitter.com/1/statuses/home_timeline.json
http://

CHAPTER 14: Twitter Recipes 502

Figure 14–11. Sample public timeline data

As you scroll through this massive amount of data, you can get a general sense of the

format of the tweet data that you’ve received. You have an NSArray of a group of tweets,

with each one stored as an NSDictionary. The values you see in Figure 14–11 represent

the keys (on the left) and their related objects (on the right). These objects are formatted

as instances ofNSString, NSNumber, NSNull, or even more complex instances of NSArray

or NSDictionary. For example, to access the name of a tweet’s poster, you must access

a nested dictionary within your array. You first find the tweet in your array, then access

the NSDictionary containing user information through the “user” key, and then retrieve

the name with the “name” key. Using this information, you can begin to build a more

complete application to display your tweets.

First, you will create a simple data model to encapsulate your post data into custom

objects. Create a new file using the “Objective-C class” template. Name your class

“Post”, and make sure the subclass field is set to “NSObject”, as in Figure 14–12.

http://

CHAPTER 14: Twitter Recipes 503

Figure 14–12. Configuring your NSObject subclass called “Post”

Next you can define properties for your Post object to have. You will specify properties

for some of the most commonly used properties of a tweet, such as the text, user’s

name, and retweet count. You will also have properties to keep track of your actual

NSDictionaries of data in order to simplify accessing any additional values later.

In order to create your Post objects, you will use a designated initializer that will accept

the NSDictionary objects that you saw earlier as a parameter. Define these properties

and method so that your Post.h file reads like so:

#import <Foundation/Foundation.h>

@interface Post : NSObject

@property (nonatomic, strong) NSDictionary *postData;
@property (nonatomic, strong) NSDictionary *user;
@property (nonatomic, strong) NSString *text;
@property (nonatomic, strong) NSString *screenName;
@property (nonatomic, strong) NSString *name;
@property (nonatomic, strong) NSString *userDescription;
@property (nonatomic, strong) id retweetCount; //Could be NSString (100+) or NSNumber
@property (nonatomic, strong) UIImage *userImage;
-(Post *)initWithDictionary:(NSDictionary *)dictionary;

@end

As commented here, you have made the property retweetCount of type “id”, due to the

possibility of it having two different types of values. If you looked through your earlier

raw data, you might have noticed some posts with “retweet_count” values of numbers

http://

CHAPTER 14: Twitter Recipes 504

(i.e., 0, 10, etc.), and others with the string “100+”. By making your property a general

type, you can later check to see which value you ended up with for any given post.

You can synthesize all these properties in a single line in the Post.m file.

@synthesize name, text, user, postData, screenName, retweetCount, userDescription,
userImage;

Your initializer is fairly easy to set up, and just involves you querying your dictionaries

with the various keys you will use.

-(Post *)initWithDictionary:(NSDictionary *)dictionary
{
self = [super init];
if (self)
 {
self.postData = dictionary;
self.user = [dictionary objectForKey:@"user"];
self.text = [dictionary objectForKey:@"text"];
self.retweetCount = [dictionary objectForKey:@"retweet_count"];
self.name = [self.user objectForKey:@"name"];
self.screenName = [self.user objectForKey:@"screen_name"];
self.userDescription = [self.user objectForKey:@"description"];
NSString *imageURLString = [self.user objectForKey:@"profile_image_url"];
NSURL *imageURL = [NSURL URLWithString:imageURLString];
NSData *imageData = [NSData dataWithContentsOfURL:imageURL];
self.userImage = [UIImage imageWithData:imageData];
 }
return self;
}

In this method, you may notice that you have not chosen to dispatch an alternate thread

to retrieve your image data for each post. This will probably block your main thread for

an extra second or two, but since you have no need to display posts before their image

content is retrieved, you can work with the pause.

Now that your file is configured, you’ll need to use it in your two view controllers, so add

an import statement to each header file.

#import "Post.h"

Now, in each of your view controllers, you will add an NSArray property to store your

retrieved posts.

@property (strong, nonatomic) NSMutableArray *retrievedTweets;

After synthesizing this property, create a custom getter to ensure that the array is

correctly initialized.

-(NSMutableArray *)retrievedTweets
{
if (retrievedTweets == nil)
 {
retrievedTweets = [NSMutableArray arrayWithCapacity:20];
 }
return retrievedTweets;
}

http://

CHAPTER 14: Twitter Recipes 505

Now, you’ll do some rearranging of your user interface. Instead of simply giving a

UITextView of your output, you’ll organize your information into a UITableView. Remove

your previously created UIButton,UILabel, and UITextView from each view controller’s

XIB file and replace it with a UITableView, as shown in Figure 14–13. Connect this to a

property tableViewPosts in each respective view controller. I’ve also removed the

previously used properties, though this is optional, and requires removing several lines

of problematic code from your implementation file.

Figure 14–13. Adding a UITableView to your user interface

You’ll need to go back and modify your -viewDidLoad method to set your table view’s

delegate and data source. Since you already have your method to retrieve data built,

you can also include this.

- (void)viewDidLoad
{
[super viewDidLoad];
 [self publicPressed:nil];
self.tableViewPosts.delegate = self;
self.tableViewPosts.dataSource = self;
}

Your second view controller’s -viewDidLoad method will look the same, but with a call to

-homePressed:.

Make sure also to conform your view controllers to the UITableViewDelegate and

UITableViewDataSource protocols.

Now your updated version of your -publicPressed: method in your first view controller

will look like so:

http://

CHAPTER 14: Twitter Recipes 506

- (IBAction)publicPressed:(id)sender
{
 [self.retrievedTweets removeAllObjects];

TWRequest *postRequest = [[TWRequest alloc] initWithURL:[NSURL
URLWithString:@"http://api.twitter.com/1/statuses/public_timeline.json"] parameters:nil
requestMethod:TWRequestMethodGET];

 [postRequest performRequestWithHandler:^(NSData *responseData, NSHTTPURLResponse
*urlResponse, NSError *error)
 {
if ([urlResponse statusCode] == 200)
 {
 NSError *jsonParsingError;
NSArray *publicTimeline = [NSJSONSerialization JSONObjectWithData:responseData options:0
error:&jsonParsingError];
for (NSDictionary *dict in publicTimeline)
 {
Post *current = [[Post alloc] initWithDictionary:dict];
 [self.retrievedTweets addObject:current];
 }
 }
else
 {
NSLog(@"%@", [NSString stringWithFormat:@"HTTP response status: %i\n", [urlResponse
statusCode]]);
 }
 [self.tableViewPosts reloadData];
 }];
}

With similar changes, the -homePressed: method will appear as shown here:

- (IBAction)homePressed:(id)sender
{
if ([self checkCanTweet])
 {
ACAccountStore *accountStore = [[ACAccountStore alloc] init];
ACAccountType *accountType = [accountStore
accountTypeWithAccountTypeIdentifier:ACAccountTypeIdentifierTwitter];

 [accountStore requestAccessToAccountsWithType:accountType
withCompletionHandler:^(BOOL granted, NSError *error)
 {
if (granted)
 {
NSArray *accountsArray = [accountStore accountsWithAccountType:accountType];
if ([accountsArray count] >0)
 {
 [self.retrievedTweets removeAllObjects];

ACAccount *twitterAccount = [accountsArray objectAtIndex:0];

TWRequest *postRequest = [[TWRequest alloc] initWithURL:[NSURL
URLWithString:@"http://api.twitter.com/1/statuses/home_timeline.json"] parameters:nil
requestMethod:TWRequestMethodGET];
 [postRequest setAccount:twitterAccount];

http://

CHAPTER 14: Twitter Recipes 507

 [postRequest performRequestWithHandler:^(NSData *responseData,
NSHTTPURLResponse *urlResponse, NSError *error)
 {
if ([urlResponse statusCode] == 200)
 {
 NSError *jsonParsingError;
NSArray *homeTimeline = [NSJSONSerialization JSONObjectWithData:responseData options:0
error:&jsonParsingError];
for (NSDictionary *dict in homeTimeline)
 {
Post *current = [[Post alloc] initWithDictionary:dict];
 [self.retrievedTweets addObject:current];
 }
 }
else
 {
NSLog(@"%@", [NSString stringWithFormat:@"HTTP response status: %i\n", [urlResponse
statusCode]]);
 }
 [self.tableViewPosts reloadData];
 }];
 }
 }
else
 {
NSLog(@"Error, Twitter account access not granted.");
 }
 }];
 }
}

In the previous two methods, you needed to include a call to the -reloadData method in

order to make sure that your tables are correctly updated once all your data has been

fully retrieved. Otherwise, the tables will simply be displayed empty before you have

your information.

Now, you just need to implement your delegate and datasource methods to configure

your UITableViews.

-(NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
return [self.retrievedTweets count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
 {
static NSString *CellIdentifier = @"Cell";

UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil)
 {
cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellIdentifier];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }

http://

CHAPTER 14: Twitter Recipes 508

Post *current = [self.retrievedTweets objectAtIndex:indexPath.row];
 cell.textLabel.text = current.text;
 cell.detailTextLabel.text = current.screenName;
 cell.imageView.image = current.userImage;

return cell;
}

These two methods can be copied into both view controllers with no changes.

Upon running your application now, you will be able to view two different tables of

Twitter timelines, complete with text, screenname, and user image! Each table might

take a few seconds to load depending on your device’s connection speed.

If, when testing your application, you wish to have your tables update, you can remove

the -publicPressed: or -homePressed: calls from your -viewDidLoadmethods, and move

them into your -viewWillAppear:animated:methods.

Recipe 14–4: Filtering Tweets
In addition to the retrieving of tweets you have already done, you are also able to

specifically filter the posts that you receive based on a variety of criteria.

Building on your previous recipe, add a new view controller to your project, calling it

“MainSearchViewController”.

You will build this controller’s user interface to be similar to that of your first view

controller, with the exception of a UISearchBar that you will use to specify your search

parameters, as in Figure 14–14. Make sure that “Correction” has been turned off for this

search bar so that your user is not bothered by autocorrect.

http://

CHAPTER 14: Twitter Recipes 509

Figure 14–14. Adding a UISearchBar to your MainSearchViewController.xib file

Set the outlet name for the UISearchBar to be searchBarPosts.

After making sure to correctly import your frameworks and Post.h file into this new view

controller and setting the proper protocols to be conformed to, you can copy your

UITableView delegate/datasource methods from your first view controller. Make sure

also to set up your NSMutableArray property retrievedTweets, and copy its customized

getter.

In order to configure your UISearchBar, you will also need to conform your view

controller to the UISearchBarDelegate protocol.

Set up your -viewDidLoad like so:

- (void)viewDidLoad
{
 [superview DidLoad];

self.tableViewPosts.delegate = self;
self.tableViewPosts.dataSource = self;
self.searchBarPosts.delegate = self;
}

In your application delegate’s implementation file, import the new controller’s header file.

#import "MainSearchViewController.h"

Now you need to update your -application:didFinishLaunchingWithOptions:method

to include your newest view controller.

http://

CHAPTER 14: Twitter Recipes 510

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
// Override point for customization after application launch.
UIViewController *viewController1 = [[MainFirstViewController alloc]
initWithNibName:@"MainFirstViewController" bundle:nil];
UIViewController *viewController2 = [[MainSecondViewController alloc]
initWithNibName:@"MainSecondViewController" bundle:nil];
UIViewController *viewController3 = [[MainSearchViewController alloc]
initWithNibName:@"MainSearchViewController" bundle:nil];
self.tabBarController = [[UITabBarControlleralloc] init];
self.tabBarController.viewControllers = [NSArray arrayWithObjects:viewController1,
viewController2, viewController3, nil];
self.window.rootViewController = self.tabBarController;
 [self.window makeKeyAndVisible];
return YES;
}

You can also add a slightly altered designated initializer back in your

MainSearchViewController.m file to correctly set your new view controller:

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil
{
self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
if (self) {
self.title = NSLocalizedString(@"Filtered Posts", @"First");
self.tabBarItem.image = [UIImage imageNamed:@"first"];
 }
return self;
}

To fully configure your UISearchBar, you can create the delegate method -
shouldChangeTextInRange:replacementText:like so, assuming that your data retrieval

method in this controller will be called -searchPressed:.

-(BOOL)searchBar:(UISearchBar *)searchBar shouldChangeTextInRange:(NSRange)range
replacementText:(NSString *)text
{
if ([text isEqualToString:@"\n"])
 {
 [searchBar resignFirstResponder];
 [self searchPressed:searchBar.text];
return NO;
 }
return YES;
}

Now, you must consider the actual formatting of your request to Twitter. According to

the Twitter API, the best way to get a URL for a specific search is to enter the search

terms into the Twitter website search, and then modify the resulting URL that you are

redirected to. To give a simple example, a search for the word “test” will redirect you to

the URL http://twitter.com/#!/search/test. You then modify all but the suffix search

term of this to http://search.twitter.com/search.json?q=test. In order to process

simple search queries, you must correctly handle any spaces, hashmarks, “@” symbols,

http://search.twitter.com/search.json?q=test
http://

CHAPTER 14: Twitter Recipes 511

and quotation marks. In your code, you will have to manipulate your search terms to

implement this behavior.

First, you can do most of your character replacements in a single line.

searchText = [searchText stringByAddingPercentEscapesUsingEncoding:
NSUTF8StringEncoding];

This method will properly convert all the aforementioned symbols with the exception of

the “@” symbol, which you can manually replace like so:

NSMutableString *mutableText = [[NSMutableString alloc] initWithString:searchText];
[mutableText replaceOccurrencesOfString:@"@" withString:[NSString
stringWithFormat:@"%%40"] options:NSLiteralSearch range:NSMakeRange(0, [mutableText
length])];

Now, you can fully assemble your URL by appending this result on top of your general

search URL.

NSString *searchString = @"http://search.twitter.com/search.json?q=";
searchString = [searchString stringByAppendingString:mutableText];
NSURL *searchURL = [NSURL URLWithString:searchString];

With this functionality added into a method similar to your -publicPressed:, you end up

with the overall method written as follows:

- (IBAction)searchPressed:(NSString *)searchText
{
 [self.retrievedTweets removeAllObjects];

 searchText = [searchText stringByAddingPercentEscapesUsingEncoding:
NSUTF8StringEncoding];

NSMutableString *mutableText = [[NSMutableString alloc] initWithString:searchText];
 [mutableText replaceOccurrencesOfString:@"@"
withString:[NSStringstringWithFormat:@"%%40"] options:NSLiteralSearch
range:NSMakeRange(0, [mutableText length])];

// NSLog(@"Searching: %@", mutableText);

NSString *searchString = @"http://search.twitter.com/search.json?q=";
 searchString = [searchString stringByAppendingString:mutableText];
NSURL *searchURL = [NSURLURLWithString:searchString];

TWRequest *postRequest = [[TWRequest alloc] initWithURL:searchURL parameters:nil
requestMethod:TWRequestMethodGET];

 [postRequest performRequestWithHandler:^(NSData *responseData, NSHTTPURLResponse
*urlResponse, NSError *error)
 {
if ([urlResponse statusCode] == 200)
 {
 NSError *jsonParsingError;
NSDictionary *searchTimeline = [NSJSONSerialization JSONObjectWithData:responseData
options:0 error:&jsonParsingError];
NSArray *searchResults = [searchTimeline objectForKey:@"results"];
for (NSDictionary *dict in searchResults)
 {

http://search.twitter.com/search.json?q=
http://search.twitter.com/search.json?q=
http://

CHAPTER 14: Twitter Recipes 512

Post *current = [[Post alloc] initWithSearchDictionary:dict];
 [self.retrievedTweets addObject:current];
 }
// NSLog(@"Data Retrieved: HTTP response code %i", [urlResponse
statusCode]);
 }
else
 {
NSLog(@"%@", [NSString stringWithFormat:@"HTTP response status: %i\n", [urlResponse
statusCode]]);
 }
 [self.tableViewPosts reloadData];
 [self.tableViewPosts reloadInputViews];
 }];
}

Be careful to notice that in this case, the initial results you get after converting your

JSON formatted data to an Objective-C object are not in an NSArray. This time, they are

in an NSDictionary in order to provide extra information on the query. You can then

access your usual NSArray by accessing the “results” key, as shown here.

When you retrieve your posts from asearch in this manner, your data is formatted with

different keys than it was before. To make up for this, you will create a second

designated initializer,-initWithSearchDictionary:, for your Post object, as used in the

preceding method. This format does not give you quite as much information about the

user in the default setting, so you will access only what you can. Make sure also to add

this method’s handler to your Post.h file.

-(Post *)initWithSearchDictionary:(NSDictionary *)dictionary
{
self = [super init];
if (self)
 {
self.postData = dictionary;
self.screenName = [dictionary objectForKey:@"from_user"];
self.text = [dictionary objectForKey:@"text"];
NSString *imageURLString = [dictionary objectForKey:@"profile_image_url"];
NSURL *imageURL = [NSURL URLWithString:imageURLString];
NSData *imageData = [NSData dataWithContentsOfURL:imageURL];
self.userImage = [UIImage imageWithData:imageData];
 }
return self;
}

At this point, your application should now be able to search for specific texts, hashtags,

and users included in posts! You have included basic functionality to encompass the

most commonly used search terms, but the Twitter API allows for far more complex

queries to be made. For a full list of the variety of ways to format a search, refer to the

Twitter API at https://dev.twitter.com/docs/using-search.

When you run your application now, you should be able to search for different hashtags,

phrases, and usernames. Try searching for #miami and see what results you get!

https://dev.twitter.com/docs/using-search
http://

CHAPTER 14: Twitter Recipes 513

NOTE: If at any point you are unsure of the format of your JSON data retrieved from Twitter, you

can simply take the URL used to make your request and enter it in your web browser. You will

receive a text view of the exact same data you would have gotten. It can be a little difficult to

read due to a lack of space formatting, but you can look for the necessary layers of content

needed to build your application.

Summary
Throughout this chapter, we have gone over a great deal of sample code making use of

the Twitter framework, with subjects from pre-defined user interfaces to send tweets, to

custom-formatted requests to acquire specifically filtered data directly from Twitter. Our

basic implementations can easily serve as the groundwork of much more complex

applications. Integration with the Twitter service is not simply limited to posting and

displaying tweets, and can easily enhance the functionality and power of nearly any

application. Considering the popularity and consistent growth of Twitter itself, it is

certain that iOS’s integration can only become more profound, allowing developers

simpler access to one of the modern world’s most powerful web services.

http://

515

 Chapter

Image Recipes

Often times a developer is faced with an all-too common problem: Too much

information to display with not enough space to show it. For this, you turn to images.

Pictures and graphics allow you to convey a variety of information far beyond simple

text, combining emotion, information, and style. In iOS, you have multiple different

methods with which to create, utilize, manipulate, and display images. New to iOS 5.0

even is the ability to apply filters to images, allowing for drastic alteration of display with

very little actual code. By understanding these inherent functionalities and techniques in

iOS, you are able to more easily implement stronger, more powerful, and more

informative applications.

Recipe 15–1: Drawing Simple Shapes
From the youngest age, every person is taught the most basic of images, dealing with

shapes, colors, and pictures. In iOS too, you can start off with the basics of drawing

simple shapes in a view. Many concepts dealt with in these first implementations will

end up returning in more complex image-based recipes.

Start by creating a new project called “ShapesAndSizes”. Select the Single View

Application template, as in Figure 15–1, in order to build the simplest, ready-to-run pre-

configured application, and make sure the device family is set to “iPhone”. The box

marked “Use Automatic Reference Counting” should also be checked.

15

http://

CHAPTER 15: Image Recipes 516

Figure 15–1. Creating a single view application

Next, before building your user interface, you will start by implementing your custom

drawing code in a subclass of UIView.

Start by adding QuartzCore.framework and CoreGraphics.framework to your project by

navigating to your project’s Target settings. Under the Build Phases tab, in the Link

Binary With Libraries section, click the + button. Find the Quartz Core and Core

Graphics frameworks in the window resembling Figure 15–2, and add them both

separately.

http://

CHAPTER 15: Image Recipes 517

Figure 15–2. Adding the Core Graphics and Quartz Core frameworks

Next, create a new file called “MyView” using the “Objective-C class” template. When

you enter the name, make sure the “Subclass of” field is set to “UIView”.

In the header file of this new class, add the required two import statements for your

extra frameworks.

#import <QuartzCore/QuartzCore.h>
#import <CoreGraphics/CoreGraphics.h>

Now, to provide a simple view displaying a drawn rectangle and square, you will

implement the -drawRect: method as such:

- (void)drawRect:(CGRect)rect
{
CGContextRef context = UIGraphicsGetCurrentContext();

CGRect drawingRect = CGRectMake(0.0, 20.0f, 100.0f, 180.0f);
const CGFloat *rectColorComponents = CGColorGetComponents([[UIColor greenColor]
CGColor]);
CGContextSetFillColor(context, rectColorComponents);
CGContextFillRect(context, drawingRect);

CGRect ellipseRect = CGRectMake(140.0f, 200.0f, 75.0f, 50.0f);
const CGFloat *ellipseColorComponenets = CGColorGetComponents([[UIColor blueColor]
CGColor]);
CGContextSetFillColor(context, ellipseColorComponenets);

http://

CHAPTER 15: Image Recipes 518

CGContextFillEllipseInRect(context, ellipseRect);
}

This method makes use of the following steps to draw basic shapes:

1. Obtain a reference to the current “context,” represented by a CGContextRef.

2. Define a CGRect in which to draw.

3. Acquire color components for the desired color to fill each shape with.

4. Set the Fill Color.

5. Fill the specified shape using the CGContextFillRect() and

CGContextFillEllipseInRect() functions.

In order to actually display this in your pre-configured view, you must add an instance of

this class to your user interface. This can be done programmatically or through Interface

Builder (the latter of which you will demonstrate).

In your view controller’s XIB file, drag a UIView out from the utilities pane into your view,

placing it with 20-point margins on each edge, as shown in Figure 15–3.

Figure 15–3. Building your XIB file with a UIView

While your UIView is selected, navigate to the third tab in the right-hand panel. Under

the Custom Class section, make sure the Class field is changed from “UIView” to

“MyView”, in order to specify the custom UIView subclass to be used, resembling

Figure 15–4.

http://

CHAPTER 15: Image Recipes 519

Figure 15–4. Configuring the class of your UIView to MyView

Upon running this application, you will see the output of your drawing commands

converted into a visual display, resulting in your simulated view in Figure 15–5.

Figure 15–5. Your simple application drawing a rectangle and an ellipse

Thankfully, you are not at all limited to drawing only rectangles and ellipses! You are able

to use a few other functions to draw custom objects by creating “paths.” These paths

consist of a movement from point to point, connected by lines, in order to draw a

custom shape. Add the following code to your -drawRect: method to draw a gray

parallelogram.

CGContextBeginPath(context);
CGContextMoveToPoint(context, 0.0f, 0.0f);
CGContextAddLineToPoint(context, 100.0f, 0.0f);
CGContextAddLineToPoint(context, 140.0f, 100.0f);

http://

CHAPTER 15: Image Recipes 520

CGContextAddLineToPoint(context, 40.0f, 100.0f);
CGContextClosePath(context);
CGContextSetGrayFillColor(context, 0.4f, 0.85f);
CGContextSetGrayStrokeColor(context, 0.0, 0.0);
CGContextFillPath(context);

It is important to note that when creating these paths, you do not have to add a final line

back to your last point. By calling the CGContextClosePath() function, your shape will

automatically be closed between its ending point and starting point.

When you run your application now, you will see your view with a new parallelogram

created from your path, as in Figure 15–6.

Figure 15–6. Your application with a shape created from a custom path

Programming Screenshots

Just as you are able to put things into a CGContext, you are also quite easily able to take

them out. By making use of the UIGraphicsGetImageFromCurrentImageContext()

function, you can extract an image from whatever is currently drawn.

http://

CHAPTER 15: Image Recipes 521

In the MyView class, add a UIImage property, making sure to synthesize it.

@property (nonatomic, strong) UIImage *image;

Now at the end of your -drawRect: method, append the following code to draw the

image if it is non-nil.

if (self.image)
 {
 CGRect imageRect = CGRectMake(200.0f, 50.0f, 100.0f, 300.0f);
 [image drawInRect:imageRect];
 }

Add the same two import statements as earlier to your view controller, as well as a third

for your MyView class.

#import <QuartzCore/QuartzCore.h>
#import <CoreGraphics/CoreGraphics.h>
#import "MyView.h"

You will also need to reference your MyView object, so connect the one you already

added into the user interface to your view controller’s header file with the property

customView.

@property (strong, nonatomic) IBOutlet MyView *customView;

Add a UIButton labeled “Snapshot” to the bottom of your user interface. Connect it to

an IBAction method called -snapShotPressed:.

- (IBAction)snapshotPressed:(id)sender;

 This method will then be implemented like so:

-(IBAction)snapshotPressed:(id)sender
{
//Acquire image of current layer
UIGraphicsBeginImageContext(self.view.bounds.size);
CGContextRef context = UIGraphicsGetCurrentContext();
 [self.view.layer renderInContext:context];
UIImage *image = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

self.customView.image = image;
 [self.customView setNeedsDisplay];
}

This method makes use of the -setNeedsDisplay method in the UIView class to instruct

a UIView to re-call its -drawRect method in order to incorporate any recent changes.

Now, after testing the application again, upon pressing the Snapshot button, you should

see a smaller screenshot of your own screen appear on the right side of the view, as in

Figure 15–7.

http://

CHAPTER 15: Image Recipes 522

Figure 15–7. Your application having taken a screenshot, then scaled it into the view

While most of the functionalities you’ve built into this application have been pretty basic,

you will see a variety of them come back in more complex forms in the later, more

complex image recipes.

Recipe 15–2: Using UIImageViews
The absolutely simplest way of displaying an image in your application is by use of the

UIImageView class. You will start off by creating a simple application that can display an

image chosen by the user, and then build on top of it to take full advantage of iOS’s

image processing power.

In order to enhance the functionality of your application, you will specifically design it for

the iPad, and then make use of the UISplitViewController. Create a new project, and

select the Master-Detail Application template. On the next screen, after entering the

project name “ImageRecipes”, make sure the application’s device-family is set to

http://

CHAPTER 15: Image Recipes 523

“iPad”, and that the box marked “Use Automatic Reference Counting” is checked. No

other boxes should be marked, so that your dialog resembles Figure 15–8.

Figure 15–8. Configuring project settings

Upon creating your application, you will be given a nicely configured project with a

UISplitViewController already set up with master and detail view controllers. If your

simulator or device is in portrait mode, you will see only the view of the detail view

controller, but if you rotate to landscape then you will get a nice mix of both views. You

will not see both views when working in Interface Builder, but if you simulate the app,

the generic view will resemble Figure 15–9.

http://

CHAPTER 15: Image Recipes 524

Figure 15–9. An empty UISplitViewController

Now, you will configure the detail view controller to include a bit more content. Add a

UIImageView, as well as two UIButtons to your XIB’s interface so that your simulated

application will look like Figure 15–10.

http://

CHAPTER 15: Image Recipes 525

Figure 15–10. A simulated view of your configured user interface

In order to make sure that both your buttons and image view will be correctly centered

in your final display, first set them to the center of your XIB’s view as you normally

would. Then, you will set the “autosizing” options for each element. Open up the utilities

pane on the right side of your screen, and navigate to the fifth tab where you can set an

element’s frame, shown in Figure 15–11.

http://

CHAPTER 15: Image Recipes 526

Figure 15–11. Configuring autosizing to customize resizing behavior

Make sure that for each element, the Autosizing box, with its various red lines and

arrows, is configured exactly as shown in Figure 15–11. This will specify that each

element will, if the view changes, maintain its relative position to the top of the view and

stretch horizontally to maintain its general position.

Connect each element to your header file using the property names selectImageButton,

clearImageButton, and imageViewContent. Each UIButton will have its respective action,

-selectImagePressed: and -clearImagePressed:.

You will be configuring your application to display a UIPopoverController containing a

UIImagePickerController in order to allow users to select an image from their phone. To

do this, you will need your detail view controller to conform to several extra protocols:

UIImagePickerControllerDelegate, UINavigationControllerDelegate and

UIPopoverControllerDelegate.

@interface MainDetailViewController : UIViewController<UISplitViewControllerDelegate,
UIImagePickerControllerDelegate, UINavigationControllerDelegate,
UIPopoverControllerDelegate>

You will also create two extra properties in order to store your selected image, as well as

a reference to your UIPopoverController that you will use. Make sure both of these are

properly synthesized, as well as properly nullified in the -viewDidUnload method.

@property (strong, nonatomic) UIPopoverController *pop;
@property (strong, nonatomic) UIImage *selectedImage;

At this point, with your basic user interface configured, your overall detail view

controller’s header file should resemble the following.

#import <UIKit/UIKit.h>

http://

CHAPTER 15: Image Recipes 527

@interface MainDetailViewController : UIViewController<UISplitViewControllerDelegate,
UIImagePickerControllerDelegate, UIPopoverControllerDelegate,
UINavigationControllerDelegate>

@property (strong, nonatomic) id detailItem;

@property (strong, nonatomic) IBOutlet UILabel *detailDescriptionLabel;
@property (strong, nonatomic) IBOutlet UIButton *selectImageButton;
@property (strong, nonatomic) IBOutlet UIButton *clearImageButton;
@property (strong, nonatomic) IBOutlet UIImageView *imageViewContent;
-(IBAction)selectImagePressed:(id)sender;
-(IBAction)clearImagePressed:(id)sender;

@property (strong, nonatomic) UIPopoverController *pop;
@property (strong, nonatomic) UIImage *selectedImage;

@end

Now you can implement your -selectImagePressed: method to present an interface to

select a saved image to display.

-(void)selectImagePressed:(UIButton *)sender
{
UIImagePickerController *picker = [[UIImagePickerController alloc] init];
if ([UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypePhotoLibrary])
 {
 picker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 picker.delegate = self;

self.pop = [[UIPopoverController alloc] initWithContentViewController:picker];
pop.delegate = self;
 [pop presentPopoverFromRect:sender.frame inView:self.view
permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
 }
}

You can then implement your UIImagePickerControllerDelegate protocol methods to

properly handle the selection of an image or cancellation.

-(void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{
 [self.pop dismissPopoverAnimated:YES];
}
-(void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
UIImage *image = [info valueForKey:@"UIImagePickerControllerOriginalImage"];
self.selectedImage = image;
self.imageViewContent.image = image;
self.imageViewContent.contentMode = UIViewContentModeScaleAspectFill;

 [self.pop dismissPopoverAnimated:YES];
}

As you can see, you configure your selected image to be displayed in your UIImageView

by using the image property. You also set the contentMode property to

http://

CHAPTER 15: Image Recipes 528

UIViewContentModeScaleAspectFill, in order to ensure that the bounds of your

UIImageView are always filled by at least most of the image.

Finally, you can implement a simple method for -clearImagePressed: to allow your view

to be reset:

- (IBAction)clearImagePressed:(id)sender
{
self.selectedImage = nil;
self.imageViewContent.image = nil;
}

At this point, you can run your application, select an image, and display it in a

UIImageView, as in Figure 15–12!

Figure 15–12. Your application displaying an image in a UIImageView

If you are testing this application on the iOS simulator, you will need to actually have

some images saved to display. The easiest way to save images to the simulator’s photo

library is to use the Safari app on the simulator, navigate to your desired image, and

then click and hold the mouse on the image. You will be given an option to save the

image, and after this you can use it in your application.

http://

CHAPTER 15: Image Recipes 529

Recipe 15–3: Scaling Images
Often the images that your applications have to deal with can come from a variety of

sources, and usually will not fit your specific view’s display perfectly. To adjust for this,

you can implement methods to scale and resize your images.

You will configure your application to overall have a single image selected in your first

detail view controller. Upon selecting different rows in your master view controller’s

table, you will change the display in your detail view controller to a variety of images. For

now, you will configure your views to display your images as they are resized differently.

You will start off by creating a method to fully adjust the content of your detail view

controller. Add the following handler to your detail view controller’s header file.

-(void)configureDetailsWithImage:(UIImage *)image label:(NSString *)label
showsButtons:(BOOL)showButton;

You will implement this method like so:

-(void)configureDetailsWithImage:(UIImage *)image label:(NSString *)label
showsButtons:(BOOL)showsButton
{
self.selectedImage = image;
self.imageViewContent.image = image;
self.detailDescriptionLabel.text = label;
 if (showsButton == NO)
 {
self.selectImageButton.enabled = NO;
self.selectImageButton.hidden = YES;
self.clearImageButton.enabled = NO;
self.clearImageButton.hidden = YES;
 }
else if (showsButton == YES)
 {
self.selectImageButton.enabled = YES;
self.selectImageButton.hidden = NO;
self.clearImageButton.enabled = YES;
self.clearImageButton.hidden = NO;
 }
}

You will add a reference to the master view controller to your detail view controller to

allow your chosen image to be passed back. Add the following import statement (or

your own class name for the master view controller):

#import "MainMasterViewController.h"

Add the master view controller property, and make sure to synthesize it.

@property (strong, nonatomic) MainMasterViewController *masterViewController;

Add the following line to your -viewDidUnload method.

[self setMasterViewController:nil];

http://

CHAPTER 15: Image Recipes 530

Next, you will add a property to your master view controller class to store the chosen

image. Make sure to properly synthesize and handle it as usual.

@property (strong, nonatomic) UIImage *mainImage;

Back in your detail view controller, you will update your -
imagePickerController:didFinishPickingMediaWithInfo: method to also send the

chosen image back to the master view controller.

-(void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
UIImage *image = [info valueForKey:@"UIImagePickerControllerOriginalImage"];
self.selectedImage = image;

//New Line
self.masterViewController.mainImage = image;

self.imageViewContent.image = image;
self.imageViewContent.contentMode = UIViewContentModeScaleAspectFill;

 [self.pop dismissPopoverAnimated:YES];
}

You will also adjust the implementation of your -clearImagePressed: method

accordingly.

- (IBAction)clearImagePressed:(id)sender
{
self.selectedImage = nil;
self.imageViewContent.image = nil;
self.masterViewController.mainImage = nil;
}

In your master view controller, you will later implement code to utilize your images in the

actual table, so you will implement a custom setter method for the mainImage property to

reload the UITableView’s data.

-(void)setMainImage:(UIImage *)image
{
mainImage = image;
NSIndexPath *currentIndexPath = self.tableView.indexPathForSelectedRow;
 [self.tableView reloadData];
 [self.tableView selectRowAtIndexPath:currentIndexPath animated:YES
scrollPosition:UITableViewScrollPositionTop];
}

Next, you will create two different methods to resize an image. Add the following two

handlers to your detail view controller’s header file.

+ (UIImage *)scaleImage:(UIImage *)image toSize:(CGSize)size;
+ (UIImage *)aspectScaleImage:(UIImage *)image toSize:(CGSize)size;

The first method will simply recreate the image within a specified size, completely

ignoring the aspect ratio of the image.

+ (UIImage *)scaleImage:(UIImage *)image toSize:(CGSize)size
{

http://

CHAPTER 15: Image Recipes 531

UIGraphicsBeginImageContext(size);
 [image drawInRect:CGRectMake(0, 0, size.width, size.height)];
UIImage *scaledImage = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
return scaledImage;
}

The second will, with a little calculation, determine the best way to resize the image in

order to both preserve the aspect ratio and fit inside the given size.

+ (UIImage *)aspectScaleImage:(UIImage *)image toSize:(CGSize)size
{
UIGraphicsBeginImageContext(size);
if (image.size.height< image.size.width)
 {
float ratio = size.height/image.size.height;
 [image drawInRect:CGRectMake(0, 0, image.size.width*ratio, size.height)];
 }
else
 {
float ratio = size.width/image.size.width;
 [image drawInRect:CGRectMake(0, 0, size.width, image.size.height*ratio)];
 }
UIImage *aspectScaledImage = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
return aspectScaledImage;
}

To make sure your view controllers are properly interacting, add the following two lines

to your application delegate’s -application:didFinishLaunchingWithOptions: after

both view controllers have been created.

detailViewController.masterViewController = masterViewController;
masterViewController.detailViewController = detailViewController;

Now, to finish configuring the behavior of the master view controller, modify the

following delegate methods:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
if (self.mainImage == nil)
 {
return 1;
 }
else
 {
return 3;
 }
}
- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
static NSString *CellIdentifier = @"Cell";

UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier];

http://

CHAPTER 15: Image Recipes 532

 }

if (indexPath.row == 0)
 cell.textLabel.text = NSLocalizedString(@"Selected Image", @"Detail");
else if (indexPath.row == 1)
 cell.textLabel.text = NSLocalizedString(@"Resized Image", @"Detail");
else if (indexPath.row == 2)
 cell.textLabel.text = NSLocalizedString(@"Scaled Image", @"Detail");
return cell;
}
- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath
{
if (self.mainImage != nil)
 {
 UIImage *image;
 NSString *label;
BOOL showsButtons;
if (indexPath.row == 0)
 {
 image = self.mainImage;
 label = @"Select an Image to Display";
 showsButtons = YES;
 }
else if (indexPath.row == 1)
 {
 image = [MainDetailViewController scaleImage:self.mainImage
toSize:self.detailViewController.imageViewContent.frame.size];
 label = @"Chosen Image Resized";
 showsButtons = NO;
 }
else if (indexPath.row == 2)
 {
 image = [MainDetailViewController aspectScaleImage:self.mainImage
toSize:self.detailViewController.imageViewContent.frame.size];
 label = @"Chosen Image Scaled";
 showsButtons = NO;
 }
 [self.detailViewController configureDetailsWithImage:image label:label
showsButtons:showsButtons];
 }
}

Your original image, as shown previously, ended up expanding beyond the frame of the

UIImageView in order to maintain its aspect ratio. Since this can cause some issues in

blocking other elements, you would most likely want to use one of your resized images.

Upon running this application, you can see the quite vast differences in your options in

presenting differently sized images.

Figure 15–13 displays an example of the same image used previously, but resized

simply to fit within your image view’s frame.

http://

CHAPTER 15: Image Recipes 533

Figure 15–13. Your application displaying a resized image without scaling

As you can see, you have managed to fit the entire image into a smaller space, ensuring

that no other view elements are obstructed by your image. The issue with this option,

however, is that your image’s dimensions have been changed, resulting in a slightly

deformed picture. This may not be quite obvious with this particular image, but when

dealing with images of people, the distortion of physical features will become quite

obvious and unsightly. To solve this, you make use of the “aspect-scaled” image, as

displayed in Figure 15–14.

http://

CHAPTER 15: Image Recipes 534

Figure 15–14. An alternative method of scaling to remove distortion, resulting in clipping

Compared to the previous and original images, you can see that this image is clearly of

higher quality, as it lacks any distortion of size. Unfortunately, since you have chosen to

have your image “fill” the UIImageView, you end up with an image cropped from your

original. This kind of resizing works incredibly well if you need to create small thumbnails

from larger images, as the issue of cropping the image becomes fairly negligible with

more miniscule sizes.

Obviously, if you are not dealing with thumbnails, but instead with presenting large

pictures, then the above cropping is significantly less than ideal. You can hone your

image scaling method to allow your image to “fit” the image view, and simply give the

rest of the view a black background. With this change, your previous “thumbnail creation

method” will no longer be functional, so be sure to save a new copy of your project if

you want to keep a copy of the previous setup.

First, adjust your configuration method to the following code in order to change the

contentMode property of your UIImageView.

-(void)configureDetailsWithImage:(UIImage *)image label:(NSString *)label
showsButtons:(BOOL)showsButton

http://

CHAPTER 15: Image Recipes 535

{
self.selectedImage = image;
self.imageViewContent.image = image;
self.detailDescriptionLabel.text = label;
/////BEGIN NEW CODE
if ([label isEqualToString:@"Chosen Image Scaled"])
 {
self.imageViewContent.contentMode = UIViewContentModeScaleAspectFit;
self.imageViewContent.backgroundColor = [UIColor blackColor];
 }
else
 {
self.imageViewContent.contentMode = UIViewContentModeScaleAspectFill;
 }
/////END NEW CODE
if (showsButton == NO)
 {
self.selectImageButton.enabled = NO;
self.selectImageButton.hidden = YES;
self.clearImageButton.enabled = NO;
self.clearImageButton.hidden = YES;
 }
else if (showsButton == YES)
 {
self.selectImageButton.enabled = YES;
self.selectImageButton.hidden = NO;
self.clearImageButton.enabled = YES;
self.clearImageButton.hidden = NO;
 }
}

Your image scaling method will require a slightly different method of calculation to

correctly scale your images this way. The following code shows the new

implementation. Pay careful attention to the fact that you have changed the CGSize with

which you are creating your image context.

+ (UIImage *)aspectScaleImage:(UIImage *)image toSize:(CGSize)size
{
if (image.size.height< image.size.width)
 {
float ratio = size.height/image.size.height;
CGSize newSize = CGSizeMake(image.size.width*ratio, size.height);

UIGraphicsBeginImageContext(newSize);
 [image drawInRect:CGRectMake(0, 0, newSize.width, newSize.height)];
 }
else
 {
float ratio = size.width/image.size.width;
CGSize newSize = CGSizeMake(size.width, image.size.height*ratio);

UIGraphicsBeginImageContext(newSize);
 [image drawInRect:CGRectMake(0, 0, newSize.width, newSize.height)];
 }
UIImage *aspectScaledImage = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
return aspectScaledImage;

http://

CHAPTER 15: Image Recipes 536

}

With the newest changes, your images can now appear scaled down in size without

being clipped! By adding the black background to your UIImageView, you provide a

simple backdrop for your images to go on, allowing a very general, all-encompassing

functionality for displaying resized images, as in Figure 15–15.

Figure 15–15. Fitting your scaled image helps avoid clipping, but introduces background visibility of the
UIImageView.

In Review

You have covered three simple yet different methods for resizing a UIImage, each with

their own advantages and issues.

1. Your first method simply resized the image to a given size, regardless of aspect

ratio. While this kept your image from obstructing any other elements, it ended up

giving you a fair bit of distortion.

http://

CHAPTER 15: Image Recipes 537

2. By using a little math, you were able to scale down your image to a size while

manually maintaining the aspect ratio. The issue with this approach was that it

tended to crop out parts of your image in order to fill its given space. If you need

to create small thumbnails of images to be displayed together, this is a decent

way to implement it.

3. After reconfiguring your aspect resizing method, you were able to display an

aspect-locked, smaller image to fit entirely within your UIImageView. Since this

would, of course, leave blank space around the image, you applied a black

background. This is an especially useful technique to use when displaying large

images in an application that has no control over the original image size. It allows

for any image to be comfortably fit in a given space, yet maintains a visually

appealing black background no matter the case.

Recipe 15–4: Manipulating Images with Filters
The Core Image framework, a group of classes entirely new in iOS 5.0, allows you to

creatively apply a great variety of different types of “filters” to images.

Start by importing the CoreImage.framework library into your project. Navigate to your

application’s Build Phases tab, and then click the + button under the Link Binary With

Libraries area. In the dialog resembling Figure 15–16, find the Core Image framework,

and add it.

http://

CHAPTER 15: Image Recipes 538

Figure 15–16. Adding the Core Image framework to your project

Add an import statement for this framework to your main view controller’s header file.

#import <CoreImage/CoreImage.h>

Next add an NSMutableArray property to the same controller in order to store the filtered

images you will display. Make sure to properly synthesize and handle it as usual.

@property (strong, nonatomic) NSMutableArray *images;

This property will also need a custom getter to ensure it is properly initialized.

-(NSMutableArray *)images
{
if (!images)
 {
images = [[NSMutableArray alloc] initWithCapacity:3];
 }
return images;
}

Now, you will modify your -setMainImage: method again to include proper handling of

this array.

-(void)setMainImage:(UIImage *)image
{
 [self.images removeAllObjects];
if (image != nil)

http://

CHAPTER 15: Image Recipes 539

 {
 [self.images addObject:image];
 [self populateImagesWithImage:image];
 }

mainImage = image;
NSIndexPath *currentIndexPath = self.tableView.indexPathForSelectedRow;
 [self.tableView reloadData];
 [self.tableView selectRowAtIndexPath:currentIndexPath animated:YES
scrollPosition:UITableViewScrollPositionTop];
}

This method, -populateImagesWithImage:, which will contain most of your Core Image

code, will be implemented as follows. Remember to place the method declaration in

your header file as well.

-(void)populateImagesWithImage:(UIImage *)image
{
CIImage *main = [[CIImage alloc] initWithImage:image];

CIFilter *hueAdjust = [CIFilter filterWithName:@"CIHueAdjust"];
 [hueAdjust setDefaults];
 [hueAdjust setValue:main forKey:@"inputImage"];
 [hueAdjust setValue:[NSNumber numberWithFloat: 3.14/2.0f]
forKey:@"inputAngle"];
CIImage *outputHueAdjust = [hueAdjust valueForKey:@"outputImage"];
CIContext *context = [CIContext contextWithOptions:nil];
UIImage *outputImage1 = [UIImage imageWithCGImage:[context createCGImage:outputHueAdjust
fromRect:outputHueAdjust.extent]];
 [self.images addObject:outputImage1];

CIFilter *strFilter = [CIFilter filterWithName:@"CIStraightenFilter"];
 [strFilter setDefaults];
 [strFilter setValue:main forKey:@"inputImage"];
 [strFilter setValue:[NSNumber numberWithFloat:3.14f] forKey:@"inputAngle"];
CIImage *outputStr = [strFilter valueForKey:@"outputImage"];
UIImage *outputImage2 = [UIImage imageWithCGImage:[context createCGImage:outputStr
fromRect:outputStr.extent]];
 [self.images addObject:outputImage2];
}

As you can see from this method, creating a CIImage requires the following steps:

1. Obtain a CIImage of the intended input image.

2. Create a filter using a specific name key. The name defines which filter will be

applied, as well as its various parameters that can be used.

3. Reset all parameters of the filter to defaults for good measure.

4. Set the input image to the filter using the “inputImage” key.

5. Set any additional values related to the filter to customize output.

6. Retrieve the output CIImage using the “outputImage” key.

http://

CHAPTER 15: Image Recipes 540

7. Create a UIImage from the CIImage by use of a CIContext.

Here, you have chosen to apply two different filters: a “Hue Adjustment”, and a

“Straighten Filter”. The former will change the hue of your image, while the latter is used

to rotate an image to straighten it out.

NOTE: There are an incredibly large number of filters that can be applied to images, all with their

own specific parameters and keys. In order to find details for a specific filter, use the Apple

documentation at

http://developer.apple.com/library/ios/#DOCUMENTATION/GraphicsImaging/Re

ference/CoreImageFilterReference/Reference/reference.html.

Now, you can specify these newly created filtered images to your view controller by

modifying your -tableView:didSelectRowAtIndexPath: method again.

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath
{
if (self.mainImage != nil)
 {
 UIImage *image;
 NSString *label;
BOOL showsButtons;
if (indexPath.row == 0)
 {
 image = self.mainImage;
CGSize contentSize = self.detailViewController.imageViewContent.frame.size;
 image = [MainDetailViewController aspectScaleImage:image
toSize:contentSize];
 label = @"Select an Image to Display";
 showsButtons = YES;
 }
else
 {
 image = [self.images objectAtIndex:indexPath.row];
CGSize contentSize = self.detailViewController.imageViewContent.frame.size;
 image = [MainDetailViewController aspectScaleImage:image
toSize:contentSize];
 showsButtons = NO;

if (indexPath.row == 1)
 {
 label = @"Hue Adjustment";
 }
else if (indexPath.row == 2)
 {
 label = @"Straightening Filter";
 }
 }
 [self.detailViewController configureDetailsWithImage:image label:label
showsButtons:showsButtons];
 }
}

http://developer.apple.com/library/ios/#DOCUMENTATION/GraphicsImaging/Re
http://

CHAPTER 15: Image Recipes 541

As you can see, you have updated all of your displays to, instead of showing differently

resized examples of the same image, show the original image with its different filters.

You have adopted your third method of resizing images for all these to be displayed.

You will also update your -tableView:cellForRowAtIndexPath: to include your newest

implementation.

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
static NSString *CellIdentifier = @"Cell";

UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier];
 }

if (indexPath.row == 0)
 cell.textLabel.text = NSLocalizedString(@"Selected Image", @"Detail");
else if (indexPath.row == 1)
 cell.textLabel.text = NSLocalizedString(@"Hue Adjust", @"Detail");
else if (indexPath.row == 2)
 cell.textLabel.text = NSLocalizedString(@"Straighten Filter", @"Detail");
return cell;
}

Back in your detail view controller, you must make a few extra changes to fully configure

your new functionalities.

You will adjust your configuration method to a more general case, now that you are

formatting all of your display images similarly.

-(void)configureDetailsWithImage:(UIImage *)image label:(NSString *)label
showsButtons:(BOOL)showsButton
{
self.selectedImage = image;
self.imageViewContent.image = image;
self.detailDescriptionLabel.text = label;
self.imageViewContent.contentMode = UIViewContentModeScaleAspectFit;
self.imageViewContent.backgroundColor = [UIColor blackColor];
if (showsButton == NO)
 {
self.selectImageButton.enabled = NO;
self.selectImageButton.hidden = YES;
self.clearImageButton.enabled = NO;
self.clearImageButton.hidden = YES;
 }
else if (showsButton == YES)
 {
self.selectImageButton.enabled = YES;
self.selectImageButton.hidden = NO;
self.clearImageButton.enabled = YES;
self.clearImageButton.hidden = NO;
 }
}

http://

CHAPTER 15: Image Recipes 542

Finally, your UIImagePickerControllerDelegate protocol method will also require some

adjustment. The new code will resemble the following:

-(void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
UIImage *image = [info valueForKey:@"UIImagePickerControllerOriginalImage"];
self.selectedImage = image;

self.masterViewController.mainImage = image;
CGSize contentSize = self.imageViewContent.frame.size;
self.imageViewContent.image = [MainDetailViewController aspectScaleImage:image
toSize:contentSize];
self.imageViewContent.contentMode = UIViewContentModeScaleAspectFit;
self.imageViewContent.backgroundColor = [UIColor blackColor];

 [self.pop dismissPopoverAnimated:YES];
}

Upon running your application now, you will be able to see the outputs of your two types

of filters used.

Shown in Figure 15–17 is the example of your hue adjustment. Your chosen input angle

of 3.14/2.0 will drastically change the hues of your image.

http://

CHAPTER 15: Image Recipes 543

Figure 15–17. Your new application applying a hue adjustment filter

In the same application, your second filter, with its specified input angle of 3.14, will

rotate your given image by 180 degrees, as is done in Figure 15–18.

http://

CHAPTER 15: Image Recipes 544

Figure 15–18. Applying a straightening filter to rotate an image

You are also quite easily able to combine multiple filters in series by simply specifying

the output image of one filter as the input image of another. Add the following code to

the -populateImagesWithImage: method to create a combination filter.

CIFilter *seriesFilter = [CIFilter filterWithName:@"CIStraightenFilter"];
[seriesFilter setDefaults];
[seriesFilter setValue:outputHueAdjust forKey:@"inputImage"];
[seriesFilter setValue:[NSNumber numberWithFloat:3.14/2.0f] forKey:@"inputAngle"];
CIImage *outputSeries = [seriesFilter valueForKey:@"outputImage"];
UIImage *outputImage3 = [UIImage imageWithCGImage:[context createCGImage:outputSeries
fromRect:outputSeries.extent]];
[self.images addObject:outputImage3];

Update your -tableView:numberOfRowsInSection: method to show a fourth cell.

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
if (self.mainImage == nil)
 {
return 1;
 }
else

http://

CHAPTER 15: Image Recipes 545

 {
return 4;
 }
}

Add a fourth case to your -tableView:cellForRowAtIndexPath: method to display the

name of this fourth cell.

else if (indexPath.row == 3)
 cell.textLabel.text = NSLocalizedString(@"Series Filter", @"Detail");

Finally, add another case, directly after the others used to set label for rows 1 and 2, to

your -tableView:didSelectRowAtIndexPath: to correctly set the UILabel.

else if (indexPath.row == 3)
{
 label = @"Series Filter";
}

Now, upon testing the application, your new double-filter will combine the effects of your

previous two, resulting in a hue-adjusted and rotated image, as in Figure 15–19.

NOTE: The majority of the processing work, when dealing with the Core Image framework,

comes from when the UIImage is created from the CIImage using the CIContext. The

creation of a CIImage itself is a very fast operation. In your application, you have chosen to

create all of your filtered images at once in order to allow for quick navigation between each

display. This is why, upon selecting an image, your simulator may take a couple seconds to

actually display your images and refresh. If you were building this application for release, you

would want to convey in some way to the user that work is being done through a

UIActivityIndicatorView or UIProgressView.

http://

CHAPTER 15: Image Recipes 546

Figure 15–19. A series combination of hue adjustment and straightening filters

Now, you will make use of your earlier resizing functionality to create a thumbnail for

each filtered image, so that it can be displayed in your master’s UITableView.

Since you ended up taking your thumbnail-resizing method out of your previous recipe,

here is the method again that you will use.

+ (UIImage *)scaleImageThumbnail:(UIImage *)image toSize:(CGSize)size
{
UIGraphicsBeginImageContext(size);
if (image.size.height< image.size.width)
 {
float ratio = size.height/image.size.height;
 [image drawInRect:CGRectMake(0, 0, image.size.width*ratio, size.height)];
 }
else
 {
float ratio = size.width/image.size.width;
 [image drawInRect:CGRectMake(0, 0, size.width, image.size.height*ratio)];
 }
UIImage *aspectScaledImage = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

http://

CHAPTER 15: Image Recipes 547

return aspectScaledImage;
}

Make sure also to place this method’s handler in the detail view controller’s header file,

so that your master view controller is able to call it.

+ (UIImage *)scaleImageThumbnail:(UIImage *)image toSize:(CGSize)size;

Now, you just need to modify your -tableView:cellForRowAtIndexPath: again to include

the selection of an image for the cell’s imageView. In entirety, the method should

resemble the following code.

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
static NSString *CellIdentifier = @"Cell";

UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier];
 }

/////NEW THUMBNAIL CODE
if ([self.images count] >0)
 {
CGSize thumbnailSize = CGSizeMake(120, 75);
UIImage *displayImage = [self.images objectAtIndex:indexPath.row];
if (displayImage)
 {
UIImage *thumbnailImage = [MainDetailViewController scaleImageThumbnail:displayImage
toSize:thumbnailSize];
 cell.imageView.image = thumbnailImage;
 }
 }
/////END OF THUMBNAIL CODE

if (indexPath.row == 0)
 cell.textLabel.text = NSLocalizedString(@"Selected Image", @"Detail");
else if (indexPath.row == 1)
 cell.textLabel.text = NSLocalizedString(@"Hue Adjust", @"Detail");
else if (indexPath.row == 2)
 cell.textLabel.text = NSLocalizedString(@"Straighten Filter", @"Detail");
else if (indexPath.row == 3)
 cell.textLabel.text = NSLocalizedString(@"Series Filter", @"Detail");
return cell;
}

When you test your application now, your master view controller’s cells will each have a

scaled thumbnail version of the larger image they refer to, as in Figure 15–20.

http://

CHAPTER 15: Image Recipes 548

Figure 15–20. Your application with scaled (clipping) thumbnails

Recipe 15–5: Detecting Features
Along with the incredibly flexible use of filters, the Core Image framework has also

brought to iOS 5.0 the possibility of feature detection, allowing you to effectively

“search” images for key components, such as faces.

We will develop a new, smaller project to implement your new facial detection

application, rather than continuing on with your previous recipe. Create a new project for

the iPhone device family, making use of the Single View Application template, shown in

Figure 15–21.

http://

CHAPTER 15: Image Recipes 549

Figure 15–21. Creating a single view application

Once your project is created, add the Core Image framework to your project, just as in

the previous recipe.

Add two instances of UIImageView and a UIButton to your view, so as to resemble

Figure 15–22.

http://

CHAPTER 15: Image Recipes 550

Figure 15–22. Your view controller’s XIB setup

Connect each of the elements to your view controller. Your UIButton should have the

property name findFaceButton, and perform the action -findFacePressed:. Make your

upper UIImageView imageViewMain, and your lower one imageViewAlt.

#import <UIKit/UIKit.h>

@interface MainViewController : UIViewController

@property (strong, nonatomic) IBOutlet UIImageView *imageViewMain;
@property (strong, nonatomic) IBOutlet UIImageView *imageViewAlt;
@property (strong, nonatomic) IBOutlet UIButton *findFaceButton;
- (IBAction)findFacePressed:(id)sender;

@end

Next, find an image to be displayed in your application, and add it to your project. You

can do this by dragging the file from the Finder into your project’s navigation pane.

When the dialog for adding files appears, make sure the box marked “Copy items into

destination group’s folder (if needed)” is checked, as it is in Figure 15–23. In order to

properly test this application, try to find an image with an easily visible face.

http://

CHAPTER 15: Image Recipes 551

Figure 15–23. Pop-up dialog for adding files into your project

Now, you can build your -viewDidLoad method to configure your UIImageView elements,

as well as set the initial image to your main image view. Make sure to change the name

of the image (“testImage.JPG” in the following code) to your own file name.

- (void)viewDidLoad
{
 [super viewDidLoad];

self.imageViewMain.backgroundColor = [UIColor blackColor];
self.imageViewMain.contentMode = UIViewContentModeScaleAspectFit;
self.imageViewAlt.backgroundColor = [UIColor blackColor];
self.imageViewAlt.contentMode = UIViewContentModeScaleAspectFit;

UIImage *image = [UIImage imageNamed:@"testImage.JPG"];
if (image != nil)
 {
self.imageViewMain.image = image;
 }
else
 {
 [self.findFaceButton setTitle:@"No Image" forState:UIControlStateNormal];
self.findFaceButton.enabled = NO;
self.findFaceButton.alpha = 0.6;
 }
}

Finally you can implement your -findFacePressed: method to do your feature detection.

You will have this method determine the location of any faces in your given image,

http://

CHAPTER 15: Image Recipes 552

create a UIImage from the last face found, and then display it in your alternate image

view.

-(IBAction)findFacePressed:(id)sender
{
UIImage *image = self.imageViewMain.image;
CIImage *coreImage = [[CIImage alloc] initWithImage:image];
CIContext *context = [CIContext contextWithOptions:nil];
CIDetector *detector = [CIDetector detectorOfType:@"CIDetectorTypeFace"context:context
options:[NSDictionary dictionaryWithObjectsAndKeys:@"CIDetectorAccuracyHigh",
@"CIDetectorAccuracy", nil]];
NSArray *features = [detector featuresInImage:coreImage];

if ([features count] >0)
 {
CIImage *faceImage = [coreImage imageByCroppingToRect:[[features lastObject] bounds]];
UIImage *face = [UIImage imageWithCGImage:[context createCGImage:faceImage
fromRect:faceImage.extent]];
self.imageViewAlt.image = face;

 [self.findFaceButton setTitle:[NSString stringWithFormat:@"%i Face(s) Found",
[features count]] forState:UIControlStateNormal];
self.findFaceButton.enabled = NO;
self.findFaceButton.alpha = 0.6;
 }
else
 {
 [self.findFaceButton setTitle:@"No Faces Found"forState:UIControlStateNormal];
self.findFaceButton.enabled = NO;
self.findFaceButton.alpha = 0.6;
 }
}

This method contains the following steps:

1. Acquire a CIImage object from your initial UIImage.

2. Create a CIContext with which to analyze images.

3. Create an instance of CIDetector with type and options parameters.

a. The type parameter specifies the specific feature to identify.

Currently, the only possible value for this is CIDetectorTypeFace,

which allows you to specifically look for faces.

b. The options parameter allows you to specify the accuracy with

which you want to look for features. Low accuracy will be faster,

but high accuracy will be more precise.

4. Create an array of all the features found in your image. Since you specified the

CIDetectorTypeFace type, these objects will all be instances of the CIFaceFeature

class.

5. Create a CIImage using the -imageByCroppingToRect: method with the original

image, as well as the bounds specified by the last CIFaceFeature found in the

image. These bounds specify the CGRect in which the face exists.

http://

CHAPTER 15: Image Recipes 553

6. Create a UIImage out of your CIImage (done exactly as in the previous recipe), and

then display it in your UIImageView.

Upon running your application, you will be able to detect any faces inside your images,

the latter of which will be displayed in your lower UIImageView, as in Figure 15–24.

Figure 15–24. Your application detecting and cropping a face from an image

Summary
Images create our world. From the simplest of picture books that children love to read to

the massive amounts of visual data transmitted around the Internet through Twitter, e-

mail, Facebook, Tumblr, and every other web service, pictures and images have

certainly become one of the key foundations of modern culture. As such, by learning to

create, handle, manipulate, and display images in your applications, you are able to

acquire a significantly greater connection with your users, imparting a more powerful

emotional response and interacting with more flexibility and control than ever. From

building colored shapes to displaying photographs, to even the newest iOS 5.0

additions of manipulating images, you are able to create more interesting and useful

http://

CHAPTER 15: Image Recipes 554

applications. The Core Image framework even furthers this ability with the addition of

image filters, to create wildly different images, and facial detection software, to provide

more in-depth information from your application. At this point of technological

development, it seems quite fair to say that a picture being worth a thousand words is a

vast understatement.

http://

555

 Chapter

Game Kit Recipes

In this chapter, you are going to use a simple Hangman game and integrate it with Game

Center. Game Center allows you to enhance your game by providing easy methods for

implementing social features such as high scores, game achievements, and multiplayer

gameplay. Adding these features can not only provide more value to your game but also

extend the “replay factor” of your game.

You will start by adding high scores and achievements and ultimately finish by making

your game multiplayer. You can find the start of this project at

https://github.com/shawngrimes/HangmanMP.

Recipe 16–1: Starting with Game Center
Before you can start using Game Center, you will need to use iTunes Connect. If you

have already submitted an app or game to the iTunes App Store, you already know what

iTunes Connect is. For those who haven’t, iTunes Connect is where you manage the

apps that you are publishing. You will enter your apps metadata (description, keywords,

support URL, etc.) as well as any Apple-provided features that it will use, such as iAds,

In App Purchase, or, in this case, Game Center.

In order to use Game Center, you will need to tell iTunes Connect about your game so

you can start using the Game Center sandbox. The Game Center sandbox is a

development area where developers can test their Game Center integration without

impacting production scores or achievements.

iTunes Connect Setup

The first step to enabling Game Center integration is to create a bundle identifier in the

iOS Provisioning Portal if you have not done so for your app already. The bundle

identifier is used to identify all the related data for an app. For instance, if you have a

free and a paid version of your game and you want them to use the same high score

table, you would give them the same bundle identifier.

16

https://github.com/shawngrimes/HangmanMP
http://

CHAPTER 16: Game Kit Recipes 556

Visit the iOS Provisioning Portal on developer.apple.com, and click App IDs. Create your

new bundle identifier. The information shown in Figure 16–1 is the app information you

will use for this game.

Figure 16–1. Configuring your App ID

Now go to itunesconnect.apple.com, and click Manage Your Applications. If you have

not already submitted your app for review, click the Add New App button, revealing a

page resembling Figure 16–2. Enter the information for your new app, and click

Continue.

http://

CHAPTER 16: Game Kit Recipes 557

Figure 16–2. Entering your application information

Once you’ve entered all of the metadata about your app, including the screenshot and

app icon, you can enable Game Center. Click the Manage Game Center button, shown

in Figure 16–3, and then click Enable.

http://

CHAPTER 16: Game Kit Recipes 558

Figure 16–3. Accessing the Game Center Management page

Once enabled, you can configure leaderboards and achievements (more on those to

follow).

Project Setup

Now get your game code set up to use Game Center. Open your project (or the one

provided for this chapter) in Xcode.

Once Xcode is open, click your project name in the project navigator and select the

desired target. Go to the Build Phases tab, and expand the Link Binaries With Libraries

area. You want to add the Game Kit framework, so click the + button highlighted in

Figure 16–4.

http://

CHAPTER 16: Game Kit Recipes 559

Figure 16–4. Build Phases tab for adding frameworks

In the resulting pop-up resembling Figure 16–5, search for Game Kit and click Add.

Figure 16–5. Adding the Game Kit framework to a project

If your game can work without Game Center, then you’ll want to make this an optional

framework rather than a required one, in which case your frameworks list will resemble

Figure 16–6.

http://

CHAPTER 16: Game Kit Recipes 560

Figure 16–6. Configuring the Game Kit framework to be optional

If you want to require Game Center, then feel free to leave it as required, but you’ll need

to do one other step to require Game Center. Open the Info tab of your target, and add

“gamekit” to the list of required device capabilities, as in Figure 16–7.

Figure 16–7. Adding “gamekit” as a required device capability

While you are editing the Info tab, make sure your bundle identifier matches what you

put in iTunes Connect, as in Figure 16–8.

Figure 16–8. Confirming the correct bundle identifier in your app to be the same as was used in iTunes Connect

You can now include Game Center functionality in your code by adding the statement

#import <GameKit/GameKit.h> to your code. Start by making sure Game Center is

available on this device.

Checking for Game Center Support

First, create a method for checking for Game Center support. I’ll add it to the app

delegate so that you can check the state at any point in the game. Start by importing

http://

CHAPTER 16: Game Kit Recipes 561

Game Kit into the implementation file (.m), and create a method for checking the

availability of Game Center:

#import "HMAppDelegate.h"
#import <GameKit/GameKit.h>

@implementation HMAppDelegate
@synthesize window = _window;

+(BOOL) isGameCenterAvailable
{
 // Check for presence of GKLocalPlayer class.
 BOOL localPlayerClassAvailable = (NSClassFromString(@"GKLocalPlayer")) != nil;

 // The device must be running iOS 4.1 or later.
 NSString *reqSysVer = @"4.1";
 NSString *currSysVer = [[UIDevice currentDevice] systemVersion];
 BOOL osVersionSupported = ([currSysVer compare:reqSysVer
 options:NSNumericSearch] !=
NSOrderedAscending);

 return (localPlayerClassAvailable && osVersionSupported);
}

In your interface file (.h), add a declaration for isGameCenterAvailable so other classes

can use it and autocomplete will see it:

#import <UIKit/UIKit.h>

@interface HMAppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

+(BOOL) isGameCenterAvailable;

@end

Player Authentication

You want to authenticate your player as soon as possible. This is best done as soon as

your game is finished launching, so you’ll add a method to your app delegate

didFinishLaunchingWithOptions: method. First, though, switch to your interface file and

add a property for your local player to your app delegate so you can access it whenever

needed.

Since you imported GameKit.h into the implementation file, you’ll need to tell your

interface file that a class of GKLocalPlayer exists. You can do this with the following line

under the import statements in the interface file:

@class GKLocalPlayer;

Then add a property for GKLocalPlayer:

@property(strong, nonatomic) GKLocalPlayer *localPlayer;

The final app delegate interface file looks like this:

http://

CHAPTER 16: Game Kit Recipes 562

#import <UIKit/UIKit.h>

@class GKLocalPlayer;

@interface HMAppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;
@property(strong, nonatomic) GKLocalPlayer *localPlayer;

+(BOOL) isGameCenterAvailable;

@end

Switch over to the implementation file and synthesize your new property:

@synthesize localPlayer;

Change your didFinishLaunchingWithOptions: to look like the following. This will

authenticate the player and set the localPlayer property to the localPlayer:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 // Override point for customization after application launch.
 if([HMAppDelegate isGameCenterAvailable]){
 //If GameCenter is available, let's authenticate the user
 GKLocalPlayer *_localPlayer=[GKLocalPlayer localPlayer];
 [_localPlayer authenticateWithCompletionHandler:^(NSError *error) {
 if(localPlayer.isAuthenticated){
 self.localPlayer=localPlayer;
 }
 }];
 }
 return YES;
}

Some notes on this: you should always check the property isAuthenticated rather than

checking to see if there is an error. If there is an error, Game Kit may be able to

authenticate the user with cached data and authenticate anyway. You shouldn’t display

the errors to the user—Game Center will do that for you. The errors are mostly for

debugging.

That’s pretty much all there is to authenticating a user. When you run your app, it will

prompt you to log in or create a new account, as in Figure 16–9. Authenticated users

can be passed between apps, so if you or a user have authenticated to Game Center in

another app, this can be passed to your app without prompting you to log in again.

http://

CHAPTER 16: Game Kit Recipes 563

Figure 16–9. Your application prompting for a Game Center account

Recipe 16–2: Leaderboards
You are now able to authenticate your user. Let’s start storing some high scores.

Leaderboards, a.k.a. high scores, are a great way to increase replay value of your game

and encourage competition among friends. You first need to create a leaderboard in

iTunes Connect, so head over to itunesconnect.apple.com.

Setting Up iTunes Connect

Click Manage Your Applications, and then click your app that has Game Center enabled.

On the App Information page, click Manage Game Center, highlighted in Figure 16–10.

http://

CHAPTER 16: Game Kit Recipes 564

Figure 16–10. Accessing the Manage Game Center screen

Click Setup under the Leaderboard heading, shown in Figure 16–11.

Figure 16–11. The Game Center screen, from which you can set up a leaderboard

http://

CHAPTER 16: Game Kit Recipes 565

Once a leaderboard has gone live for an app, it cannot be deleted, so create them with

some thought. You can have up to 25 leaderboards per app. This allows you to create

multiple leaderboards for different difficulties or even one for each level of your game,

whatever makes the most sense. In your simple app, you are going to create only one

leaderboard.

Click the Add Leaderboard button, marked in Figure 16–12, to begin.

Figure 16–12. Your app’s list of leaderboards to be added to

Click the Choose button under Single Leaderboard, marked in Figure 16–13, to continue

with a stand-alone leaderboard.

Figure 16–13. Choosing leaderboard type

Fill in a name for the leaderboard and an identifier. The name is an internal name for

tracking purposes and will not be displayed to the player. (The display name is

configured in the next step when adding a language.) Now select the score format type;

in this case, I’m going to use a simple integer, but you can also use time-based, floats,

and currency. Select the sort order for your leaderboard. If you want high scores at the

top (typical), then sort “High to Low”; if you want your low scores at the top (for instance

in a golf game), then sort “Low to High”.

http://

CHAPTER 16: Game Kit Recipes 566

You will need to set up at least one language for the leaderboard. To do that, click the

Add Language button, shown in Figure 16–14.

Figure 16–14. Configuring a leaderboard

Now configure the localized language for that score as shown in Figure 16–15. Select

the language, and then enter a display name for the leaderboard; this is the name that

will be visible to the player in the game. You can set the formatting of the score and

what unit to call them (singular and plural); in this case, they are “point” and “points.”

Figure 16–15. Language display settings for a leaderboard

http://

CHAPTER 16: Game Kit Recipes 567

Once complete, click Save and then click Save on the leaderboards page as well.

Now, let’s dive into some code.

Setting Up Your Code

Open the HangmanMP project, and go to the GameScene.m file. Add the import statement

at the top of the file: #import <GameKit/GameKit.h>.

Let’s add a method to report the score under the @synthesize and instance variables:

- (void) reportScore: (int64_t) score forCategory: (NSString*) category
{
 GKScore *scoreReporter = [[GKScore alloc] initWithCategory:category];
 scoreReporter.value = score;
 [scoreReporter reportScoreWithCompletionHandler:^(NSError *error) {

 NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES);
 NSString *scoreFilePath = [NSString stringWithFormat:@"%@/scores.plist",[paths
objectAtIndex:0]];
 NSMutableDictionary *scoreDictionary=[NSMutableDictionary
dictionaryWithContentsOfFile:scoreFilePath];

 if (error != nil)
 {
 //There was an error so we need to save the score locally and resubmit later
 NSLog(@"Saving score for later");
 [scoreDictionary setValue:scoreReporter forKey:[NSDate date]];
 [scoreDictionary writeToFile:scoreFilePath atomically:YES];
 }
 }];
}

This method will try to report the score, but if it fails, it will save the score to a dictionary

and write that dictionary to a file so you can load the scores later. You can call this

method anywhere that you want to report the score to Game Center with a call similar to

this:
[self reportScore:playerScore forCategory:@"default_high_scores"];

You should also try to report any saved scores when you start the app, so switch over to

your app delegate implementation file (.m).

Add the following to the end of didFinishLaunchingWithOptions, before the line that

reads “return YES;”.

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES);
 NSString *scoreFilePath = [NSString stringWithFormat:@"%@/scores.plist",[paths
objectAtIndex:0]];
 NSMutableDictionary *scoreDictionary=[NSMutableDictionary
dictionaryWithContentsOfFile:scoreFilePath];

 for (NSDate *dateID in [scoreDictionary allKeys]) {
 NSLog(@"Reporting old score: %@", dateID);
 GKScore *scoreToReport=(GKScore *)[scoreDictionary objectForKey:dateID];

http://

CHAPTER 16: Game Kit Recipes 568

 [scoreToReport reportScoreWithCompletionHandler:^(NSError *error) {
 NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES);
 NSString *scoreFilePath = [NSString
stringWithFormat:@"%@/scores.plist",[paths objectAtIndex:0]];
 NSMutableDictionary *scoreDictionary=[NSMutableDictionary
dictionaryWithContentsOfFile:scoreFilePath];

 if (error != nil)
 {
 //There was an error so we need to save the score locally and resubmit
later
 [scoreDictionary setValue:scoreToReport forKey:scoreToReport.playerID];
 [scoreDictionary writeToFile:scoreFilePath atomically:YES];
 }
 }];

 }

This will take a look at the old scores written to file and try to send them to Game

Center.

Showing High Scores

High scores are no fun unless people see them. Your users can see the High Scores for

your game from within the Game Center app, but you can also give them a direct link to

the high scores very easily. Switch over to MainMenuScene.h.

You’ll want to import GameKit.h and also set MainMenuScene as a

GKLeaderboardViewControllerDelegate.

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>

@interface MainMenuScene : UIViewController <GKLeaderboardViewControllerDelegate>

@end

Now go to the implementation file (.m), and add two new methods to the top. The first

method will dismiss the GKLeaderboardViewController when you click Done:

- (void)leaderboardViewControllerDidFinish:(GKLeaderboardViewController*)viewController
{
 [self dismissModalViewControllerAnimated:YES];
}

The other method you need to add will show the actual GKLeaderboardViewController

view:

- (void) showLeaderboard
{
 GKLeaderboardViewController *leaderboardController = [[GKLeaderboardViewController
alloc] init];
 if (leaderboardController != nil)
 {
 leaderboardController.leaderboardDelegate = self;

http://

CHAPTER 16: Game Kit Recipes 569

 [self presentModalViewController: leaderboardController animated: YES];
 }
}

Now you can create a UIButton on the main menu scene and connect it to the

showLeaderboard method to display the leaderboards for your game. You can create the

button in the -viewDidLoad method:

- (void)viewDidLoad
{
 [super viewDidLoad];
 UIButton *buttonShowHighScores=[UIButton buttonWithType:UIButtonTypeRoundedRect];
 [buttonShowHighScores addTarget:self action:@selector(showLeaderboard)
forControlEvents:UIControlEventTouchUpInside];
 buttonShowHighScores.frame=CGRectMake(104, 302, 112, 44);
 [buttonShowHighScores setTitle:@"High Scores" forState:UIControlStateNormal];

 [self.view addSubview:buttonShowHighScores];
}

Recipe 16–3: Achievements
Achievements in games are similar to badges and other unlockables in other apps and

games. You provide your players with a notification when they reach certain milestones.

In the HangmanMP game, a good achievement might be if they get all the letters right in

a word without any mistakes. Let’s take a look at how you would implement that.

Setting Up iTunes Connect

As with other things you’ve done with Game Center, it all starts in iTunes Connect, so

head over there: itunesconnect.apple.com. Click Manage Your Applications, and then

click the app you have set up for Game Center. Now click Manage Game Center.

In the Game Center management page, click Set Up under Achievements, shown in

Figure 16–16.

http://

CHAPTER 16: Game Kit Recipes 570

Figure 16–16. Accessing the Achievements section from the Game Center screen

Each game can have up to 1,000 achievement points. These points can be assigned to

different achievements as you see fit, but each achievement can have a max of only 100

achievement points.

For now you are going to create a 50-point achievement, so go ahead and click Add

New Achievement, as in Figure 16–17.

Figure 16–17. Adding a new achievement for your app

This achievement will be for getting all the letters and no mistakes in a small word (six

letters or less). Your configuration is shown in Figure 16–18.

http://

CHAPTER 16: Game Kit Recipes 571

Figure 16–18. Configuring an achievement’s details

You can’t save an achievement until you add at least one language to it, so click Add

Language now. The resulting view will resemble Figure 16–19. Here, you can set the

achievement title as well as the “pre-earned” description. The pre-earned description

should detail how the achievement is earned. There is also an earned description, which

is the description shown after the achievement is earned. Finally, you will need an image

to represent the achievement. This should be a 512x512 72 ppi .png file.

http://

CHAPTER 16: Game Kit Recipes 572

Figure 16–19. Configuring achievement details in a specific language

Click Save and then Save again on the Achievement info page. And let’s write some

code…

Setting Up Your Code

This is going to be very similar to setting up leaderboards. Open up GameScene.m, and

add the following method:

- (void) reportAchievementIdentifier:(NSString*)identifier percentComplete:(float)
percent
{
 GKAchievement *achievement = [[GKAchievement alloc] initWithIdentifier:identifier];
 if (achievement)
 {
 achievement.percentComplete = percent;
 [achievement reportAchievementWithCompletionHandler:^(NSError *error)
 {
 if (error != nil)
 {
 //There was an error so we need to save the achievement locally and
resubmit later
 NSLog(@"Saving achievement for later");
 NSArray *paths =
NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *achievementFilePath = [NSString
stringWithFormat:@"%@/achievements.plist",[paths objectAtIndex:0]];
 NSMutableDictionary *achievementDictionary=[NSMutableDictionary
dictionaryWithContentsOfFile:achievementFilePath];

 [achievementDictionary setValue:achievement
forKey:achievement.identifier];

http://

CHAPTER 16: Game Kit Recipes 573

 [achievementDictionary writeToFile:achievementFilePath atomically:YES];
 }
 }];
 }
}

Now you just need to call this method with your achievement and the percentage

complete. Since in this case, you either have the achievement or you don’t, the

percentage complete will be 100 or 0, but you can use this snippet to report on the

completion of any achievement. This bit of code goes just after you report the score in

the -processGuess method.

if(unfoundLetters.location==NSNotFound){
 [self reportScore:playerScore forCategory:@"default_high_scores"];
 if(self.badGuessCount==0 && self.stringHiddenWord.length<=6){
 NSLog(@"Reporting achievement");
 [self reportAchievementIdentifier:@"no_mistakes_small_word"
percentComplete:100];
 }
….

Similar to how you reported saved scores in the app delegate, you should do the same

with achievements. So go to HMAppDelegate.m, modify your friend the

didFinishLaunchingWithOptions method, and add the following code before your return

statement.

 //Report saved achievements
 NSString *achievementFilePath = [NSString
stringWithFormat:@"%@/achievements.plist",[paths objectAtIndex:0]];
 NSMutableDictionary *achievementDictionary=[NSMutableDictionary
dictionaryWithContentsOfFile:achievementFilePath];
 for (id achievement in [achievementDictionary allKeys]){
 GKAchievement *achievementToReport=(GKAchievement *)[achievementDictionary
objectForKey:achievement];
 [achievementToReport reportAchievementWithCompletionHandler:^(NSError *error)
 {
 if (error != nil)
 {
 //There was an error so we need to save the achievement locally and
resubmit later
 NSLog(@"Saving achievement for later");
 NSArray *paths =
NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *achievementFilePath = [NSString
stringWithFormat:@"%@/achievements.plist",[paths objectAtIndex:0]];
 NSMutableDictionary *achievementDictionary=[NSMutableDictionary
dictionaryWithContentsOfFile:achievementFilePath];

 [achievementDictionary setValue:achievementToReport
forKey:achievement];
 [achievementDictionary writeToFile:achievementFilePath atomically:YES];
 }else{
 NSLog(@"Achievement reported");
 }
 }];
 }

http://

CHAPTER 16: Game Kit Recipes 574

Showing Achievements

This section is going to seem like déjà vu if you followed the “Leaderboard” section.

You’ll want to show players the achievements they’ve earned in your game, and the

easiest way to do that is to tie a button in your app to the

GKAchievementsViewController. Head over to MainMenuScene.m, and add the following

method:

-(void)achievementViewControllerDidFinish:(GKAchievementViewController *)viewController{
 [self dismissModalViewControllerAnimated:YES];
}

This will dismiss your GKAchievementViewController. To display it, you’ll add the

following function into MainMenuScene.m:

- (void) showAchievements
{
 GKAchievementViewController *achievements = [[GKAchievementViewController alloc]
init];
 if (achievements != nil)
 {
 achievements.achievementDelegate = self;
 [self presentModalViewController:achievements animated: YES];
 }
}

Connect a UIButton action call to that method, and then don’t forget to add

GKAchievementViewControllerDelegate to the MainMenuScene.h file:

//
// MainMenuScene.h
// HangmanMP

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>

@interface MainMenuScene : UIViewController <GKLeaderboardViewControllerDelegate,
GKAchievementViewControllerDelegate>

- (IBAction)actionShowHighScores:(id)sender;

@end

Now test the application by launching it in the simulator. You will be able to view your

newly created achievement, as in Figure 16–20.

http://

CHAPTER 16: Game Kit Recipes 575

Figure 16–20. Your application displaying your earned achievement

Recipe 16–4: Multiplayer
Adding a multiplayer option to your game greatly increases the replay factor of your

game because now the player can go outside the bounds of the computer and play

against real-life players on the Internet.

NOTE: You can’t test multiplayer in the simulator. Instead you’ll need two devices to test with, so

borrow a friend’s or pick up an old iPod touch somewhere.

Setting Up Your Code

For this recipe, you can skip right over the iTunes Connect portion because if you’ve

enabled Game Center, multiplayer is automatically made available as long as your game

supports it. So let’s jump right into some code.

The first thing you are going to do is update your MainMenuScene.h file. You’ll need to set

it as a GKMatchmakerViewControllerDelegate and also add a new action to host a

multiplayer game. It should look like this:

http://

CHAPTER 16: Game Kit Recipes 576

// MainMenuScene.h
// HangmanMP
//
#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>

@interface MainMenuScene : UIViewController <GKLeaderboardViewControllerDelegate,
GKAchievementViewControllerDelegate,GKMatchmakerViewControllerDelegate>

- (IBAction)actionShowHighScores:(id)sender;
- (IBAction)actionShowAchievements:(id)sender;
- (IBAction)actionHostMatch:(id)sender;

@end

Now switch over to the MainMenuScene.m file. You’ll create two standard methods

required by the GKMatchmakerViewControllerDelegate protocol,

matchmakerViewControllerWasCancelled and

matchmakerViewController:didFailWithError:

- (void)matchmakerViewControllerWasCancelled:(GKMatchmakerViewController*)viewController
{
 [self dismissModalViewControllerAnimated:YES];
}

- (void)matchmakerViewController:(GKMatchmakerViewController *)viewController
 didFailWithError:(NSError *)error
{
 [self dismissModalViewControllerAnimated:YES];
 [[[UIAlertView alloc] initWithTitle:@"Error" message:error.description delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil] show];
}

One final delegate protocol method you’ll need to add is

matchmakerViewController:didFindMatch:, and this is how you start to load a

multiplayer game.

- (void)matchmakerViewController:(GKMatchmakerViewController *)viewController
 didFindMatch:(GKMatch *)match
{
 [self dismissModalViewControllerAnimated:YES];
//Set up our game scene from the story board
 GameScene *gameSceneVC=[self.storyboard
instantiateViewControllerWithIdentifier:@"GameScene"];
//Set the match property on GameScene to the matchmaker match
 gameSceneVC.match=match;
//Set the delegate of the match to GameScene, more on this to come…
 match.delegate = gameSceneVC;
[self.navigationController pushViewController:gameSceneVC animated:YES];
}

Now you will create the action to actually start looking for matches with the

matchmakerViewController:

- (IBAction)actionHostMatch:(id)sender {
 if([GKLocalPlayer localPlayer].isAuthenticated){
 GKMatchRequest *request = [[GKMatchRequest alloc] init] ;
 request.minPlayers = 2;

http://

CHAPTER 16: Game Kit Recipes 577

 request.maxPlayers = 2;
 GKMatchmakerViewController *mmvc = [[GKMatchmakerViewController alloc]
initWithMatchRequest:request];
 mmvc.matchmakerDelegate = self;
 [self presentModalViewController:mmvc animated:YES];
 }
}

This will get us to start looking for matches, but if you want to be able to respond to

invitations, you’ll need to add an invitation handler. This should be added as soon as the

player is authenticated so that it can handle invitation requests as soon as possible. This

block of code will handle invites you send out and invites that you receive. Add the

following code in the -viewDidLoad method of MainMenuScene.m:

- (void)viewDidLoad
{
 [super viewDidLoad];
 [GKMatchmaker sharedMatchmaker].inviteHandler = ^(GKInvite *acceptedInvite,
 NSArray *playersToInvite) {
 // Insert application-specific code here to clean up any games in progress.
 if (acceptedInvite)
 {
 GKMatchmakerViewController *mmvc = [[GKMatchmakerViewController alloc]
initWithInvite:acceptedInvite];
 mmvc.matchmakerDelegate = self;
 [self presentModalViewController:mmvc animated:YES];
 }
 else if (playersToInvite)
 {
 GKMatchRequest *request = [[GKMatchRequest alloc] init];
 request.minPlayers = 2;
 request.maxPlayers = 2;
 request.playersToInvite = playersToInvite;
 GKMatchmakerViewController *mmvc = [[GKMatchmakerViewController alloc]
initWithMatchRequest:request];
 mmvc.matchmakerDelegate = self;
 [self presentModalViewController:mmvc animated:YES];
 }
 };
}

Now you’ll want to implement multiplayer game controls into your GameScene. Open

GameScene.h, and set it as a GKMatchDelegate. You can also set it as a

UIAlertViewDelegate (for later). Finally, you will add two new properties, GKMatch *match

and BOOL matchStarted. GameScene.h should now look like this:

// GameScene.h
// HangmanMP

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>

@interface GameScene : UIViewController <UITextFieldDelegate, GKMatchDelegate,
UIAlertViewDelegate>

@property (weak, nonatomic) IBOutlet UITextField *textFieldGuess;
@property (weak, nonatomic) IBOutlet UITextView *textViewGuesses;

http://

CHAPTER 16: Game Kit Recipes 578

@property (weak, nonatomic) IBOutlet UILabel *labelGuessedLetters;
@property (weak, nonatomic) IBOutlet UIImageView *imageViewHanger;
@property (weak, nonatomic) IBOutlet UILabel *labelLettersInWord;
@property (weak, nonatomic) IBOutlet UIScrollView *scrollViewContent;
@property (weak, nonatomic) IBOutlet UIActivityIndicatorView *activityIndicator;

@property(strong, nonatomic) NSMutableArray *arrayGuesses;
@property(strong, nonatomic) NSString *stringDifficulty;
@property(strong, nonatomic) NSString *stringHiddenWord;
@property(nonatomic) int badGuessCount;
@property(strong, nonatomic) GKMatch *match;
@property(nonatomic) BOOL matchStarted;

-(NSString *) getMagicWord;

@end

Switch to GameScene.m, and you have a few more changes to make to ensure that your

game can handle multiplayer sessions. First, you need to synthesize the two new

properties you created, so at the bottom of the @synthesize list, add this:

@synthesize match;
@synthesize matchStarted;

Now, you’ll create a method in GameScene.m for sending data to all users in your game.

This is just a generic function that will encode an NSDictionary and send it as an NSData

object.

- (void) sendData:(NSDictionary *)dictionaryToSend
{
 NSError *error;

 NSMutableData *dataToSend = [[NSMutableData alloc] init];
 NSKeyedArchiver *archiver = [[NSKeyedArchiver alloc]
initForWritingWithMutableData:dataToSend];
 [archiver encodeObject:dictionaryToSend forKey:@"DataDictionary"];
 [archiver finishEncoding];

 [match sendDataToAllPlayers:dataToSend withDataMode:GKMatchSendDataReliable
error:&error];
 if (error != nil)
 {
 NSLog(@"Error sending data: %@", error.description);
 }
}

Note this line:

[match sendDataToAllPlayers:dataToSend withDataMode:GKMatchSendDataReliable
error:&error];

You could also send the data withDataMode:GKMatchSendDataUnreliable if you didn’t

need to know every update of the player (for instance, if the player were moving on the

screen, you need to know only the current position, not where the player has been). In

this case, you do need to know that players receive your data (the word they are trying

to guess), so you will send with GKMatchSendDataReliable.

http://

CHAPTER 16: Game Kit Recipes 579

Before I show how to receive data, let’s take a look at setting up the match. Add the

following delegate method to notify your game whenever a player’s state changes. Once

all the players are in the game, the expectedPlayerCount will equal 0 and you are ready

to start your game. You need to know who is going to go first, so have each player

generate a random number with arc4random() between 0 and 999. Then send this

random number using your previous sendData method.

- (void)match:(GKMatch *)match player:(NSString *)playerID
didChangeState:(GKPlayerConnectionState)state
{
 switch (state)
 {
 case GKPlayerStateConnected:
 // handle a new player connection.
 break;
 case GKPlayerStateDisconnected:
 [[[UIAlertView alloc] initWithTitle:@"Warning" message@"Opponent left the
game" delegate:nil cancelButtonTitle:@"OK" otherButtonTitles:nil] show];
 break;
 }
 if (!self.matchStarted && match.expectedPlayerCount == 0)
 {
 self.matchStarted = YES;
 // handle initial match negotiation.
 randomPlayerStartKey=arc4random() % 1000;
 NSDictionary *dictionaryRandomStart=[NSDictionary
 dictionaryWithObject:[NSNumber
numberWithInt:randomPlayerStartKey]
 forKey:@"randomStartKey"];
 [self sendData:dictionaryRandomStart];

 }
}

So now you have your first piece of data to receive, the random number that was

generated. You’ll start by decoding the NSData received back into a dictionary. Then

you’ll check for the key randomStartKey; if it exists, you’ll check if it is larger than the

random number you generated. If your number is greater, then you will prompt for a

word that you will send to the opponent to guess. There are a few other handlers added

to complete the implementation: WordToGuess, gameWon, and gameLost.

- (void)match:(GKMatch *)match didReceiveData:(NSData *)data fromPlayer:(NSString
*)playerID
{
 NSKeyedUnarchiver *unarchiver = [[NSKeyedUnarchiver alloc]
initForReadingWithData:data];
 NSDictionary *myDictionary = [unarchiver decodeObjectForKey:@"DataDictionary"];
 [unarchiver finishDecoding];
 NSLog(@"Received Dict: %@", myDictionary);

 if([myDictionary valueForKey:@"randomStartKey"]!=nil){
 NSNumber *otherRandomStartKey=[myDictionary valueForKey:@"randomStartKey"];
 if([otherRandomStartKey integerValue]>randomPlayerStartKey){
 //If their random key is larger than mine, then they will send the word

 }else{

http://

CHAPTER 16: Game Kit Recipes 580

 //My random key is larger so I will send the word
 UIAlertView *wordPrompt=[[UIAlertView alloc] initWithTitle:@"Enter Word:"
message:@"Type the word they must decode" delegate:self cancelButtonTitle:@"Cancel"
otherButtonTitles:@"OK", nil];
 wordPrompt.alertViewStyle=UIAlertViewStylePlainTextInput;
 [wordPrompt show];
 }
 }else if([myDictionary valueForKey:@"WordToGuess"]!=nil){
//if they sent the word to guess
 [self setWord:[myDictionary valueForKey:@"WordToGuess"]];
 [self.activityIndicator stopAnimating];
 }else if([myDictionary valueForKey:@"gameWon"]!=nil){
//if they won the game
 int guessCount=[[myDictionary valueForKey:@"gameWon"] integerValue];
 [[[UIAlertView alloc] initWithTitle:@"Your Opponent Won!" message:[NSString
stringWithFormat:@"Better luck next time. %i bad guesses", guessCount] delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil] show];
 }else if([myDictionary valueForKey:@"gameLost"]!=nil){
 [[[UIAlertView alloc] initWithTitle:@"You Win!" message:@"They didn't guess your
word" delegate:nil cancelButtonTitle:@"OK" otherButtonTitles:nil] show];
 }
}

Since you prompt for the word to send, you should check your dictionary and make sure

it is a legitimate word. Since you set your class as a UIAlertViewDelegate in the .h file

and you set the delegate of the alert view prompt to self, you can add the following

method to process the submitted word before you send it to your opponent:

- (void)alertView:(UIAlertView *)alertView
didDismissWithButtonIndex:(NSInteger)buttonIndex{
 if(buttonIndex==1){
 NSLog(@"Alert View Text: %@", [alertView textFieldAtIndex:0].text);
 NSString *potentialWord=[alertView textFieldAtIndex:0].text;

 NSString *path = [[NSBundle mainBundle] pathForResource:@"wordlist"
 ofType:@"txt"];
 NSString *content = [NSString stringWithContentsOfFile:path
 encoding:NSUTF8StringEncoding
 error:NULL];

 NSArray *lines = [content componentsSeparatedByString:@"\n"];

 BOOL wordMatch=NO;
 while(wordMatch==NO){
 for (NSString *word in lines) {
 if([word isEqualToString:potentialWord]){
 NSDictionary *myDictionary = [NSDictionary
dictionaryWithObject:[alertView textFieldAtIndex:0].text forKey:@"WordToGuess"];
 [self sendData:myDictionary];
 wordMatch=YES;
 break;
 }
 }
 if(wordMatch==NO){
 UIAlertView *wordPrompt=[[UIAlertView alloc] initWithTitle:@"Word Not
Found" message:@"Your word was not found in the dictionary, please enter a new word for

http://

CHAPTER 16: Game Kit Recipes 581

your opponent to decode:" delegate:self cancelButtonTitle:@"Cancel"
otherButtonTitles:@"OK", nil];
 wordPrompt.alertViewStyle=UIAlertViewStylePlainTextInput;
 [wordPrompt show];
 }
 }
 }
}

Now that you have data going back and forth, you can send the game notifications (e.g.,

winning and losing) using the sendData method, but you should first see if you are in a

match. The following sample code shows how to check if you are in a match:

if(self.match){

 NSDictionary *dictionaryGameWon=[NSDictionary
 dictionaryWithObject:[NSNumber
numberWithInt:self.badGuessCount]
 forKey:@"gameWon"];
 [self sendData:dictionaryGameWon];

 }

The foregoing code would be placed toward the end of the -processGuess method in

GameScene.m.

-(void) processGuess:(NSString *)guessedLetter{
…
 if(unfoundLetters.location==NSNotFound){
 [self reportScore:playerScore forCategory:@"default_high_scores"];
 if(self.badGuessCount==0 && self.stringHiddenWord.length<=6){
 NSLog(@"Reporting achievement");
 [self reportAchievementIdentifier:@"no_mistakes_small_word"
percentComplete:100];
 }

 [[[UIAlertView alloc] initWithTitle:@"WINNER!" message:[NSString
stringWithFormat:@"You Win!\nScore:%i", playerScore] delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil] show];
 if(self.match){

 NSDictionary *dictionaryGameWon=[NSDictionary
 dictionaryWithObject:[NSNumber
numberWithInt:self.badGuessCount]
 forKey:@"gameWon"];
 [self sendData:dictionaryGameWon];

 }
 }
 }
}

This is the start of a multiplayer game and shows the sending of player information,

moves, and other data back and forth. If you have trouble with any of the foregoing

code, you can find the completed project at

https://github.com/shawngrimes/HangmanMP-Complete.

https://github.com/shawngrimes/HangmanMP-Complete
http://

CHAPTER 16: Game Kit Recipes 582

Summary
In this chapter, you’ve learned how to extend your game with Game Center and Game

Kit. You should be able to include high scores in your games to encourage competition

among players and establish bragging rights. You should also be able to implement

achievements that can give your players a feeling of accomplishment during long levels

or even easily provide mini-games within a game. Finally, you implemented basic

multiplayer functionality into the game to encourage even more social game play against

live opponents.

Developing iOS applications is a multifarious process: a combination of visual design

and programmatic functionality that requires a versatile skillset, as well as significant

dedication. Thankfully, Apple provides an excellent development toolset and

programming language to work with, both of which are constantly updated and

improved upon. With such a flexible language, tasks ranging from organizing massive

data stores, to complex web requests, to image filtering can be simplified, designed,

and implemented for some of the most widely used and powerful devices of our

generation. Whether you use this book as a simple reference or a full guide, we hope

that you are able to use these recipes to build stronger applications to help improve and

contribute to the world of iOS technology.

http://

 583

Index

■ A
-actionSheet:clickedButtonAtIndex:

method, 124

actionSheetStyle property, 123

activityIndicatorViewStyle property, 96

-addTarget:action:forControlEvents:

method, 90, 91, 95, 96

-addTarget:selector:forControlEvents:

method, 98, 99

-alertView:clickedButtonAtIndex:

method, 123

allowableMovement property, 111

alwaysBounceHorizontal property, 103

alwaysBounceVertical property, 103

animationDuration property, 100

animationImages property, 100

animationRepeatCount property, 100

Application design elements, 87

Cocoa Touch controls (see Cocoa

Touch controls)

data views

MKMapView, 104

UIDatePickerView, 107

UIImageView, 99–101

UIPickerView, 105–106

UIScrollView, 103–104

UITableView, 104

UITextView, 101–102

UIWebView, 104

gesture recognizers (see Gesture

recognizers)

temporary user interface elements

UIActionSheet, 123–124

UIAlertView, 122–123

view controllers (see View

controllers)

Automatic Reference Counting (ARC),

20

autocomplete, 25

class documentation, 26

configuring behaviors, 27

file opening, assistant editor, 27

header and implementation files, 26

project conversion, 21

issues, 22, 24

LLVM 3.0 compiler verification,

24

target selection, 22

quick indent/unindent, 26

rules, 21

+availableMediaTypesForSourceType:

method, 213

AVAudioRecorder

-pause method, 252

-playPressed: method, 249, 252

-prepareToRecord action, 250

recordPressed: method, 249

-tempFileURL, 250

-updateLabels method, 251–252

user interface, 249

viewDidUnload method, 249–250

AV Foundation, 222

AVCaptureAudioDataOutput, 224

AVCaptureMovieFileOutput, 224

AVCaptureStillImageOutput, 224

AVCaptureVideoDataOutput, 225

AVCaptureVideoDataOutputSampleBuff

erDelegate protocol, 225

AV framework and capture sessions

Assistant Editor, 222

AVCaptureDeviceInput, 224

AVCaptureVideoDataOutput, 224

http://

Index 584

AVCaptureVideoPreviewLayer,

224–228

AVMediaTypeAudio, 223

AVMediaTypeVideo, 223

configured outlet and action, 223

CustomCamera, 221

frameworks addition, 222

startButton, 222

UIButton, 222

UIImagePickerController interface,

221

UIVideoEditorController interface,

221

-viewDidLoad method, 223

XIB/header file, 223

■ B
-buttonPressed: method, 90

■ C
Camera recipes, 205

AV framework and capture sessions

Assistant Editor, 222

AVCaptureDeviceInput, 224

AVCaptureVideoDataOutput, 224

AVCaptureVideoPreviewLayer,

224–228

AVMediaTypeAudio, 223

AVMediaTypeVideo, 223

configured outlet and action, 223

CustomCamera, 221

frameworks addition, 222

startButton, 222

UIButton, 222

UIImagePickerController

interface, 221

UIVideoEditorController interface,

221

-viewDidLoad method, 223

XIB/header file, 223

capturing video frames

AVAssetImageGenerator, 237

AVCaptureOutput, 233

AVCaptureSession, 233

AVCaptureStillImageOutput, 233,

234

-captureOutput:didFinishRecord

ingToOutputFileAtURL:fromCon

nections:error: method,

237–238

captureStillImage, 235–236

imageGenerator, 237

imageViewThumb and

imageViewThumb2, 233

recording application, 239

recordPressed: method, 236

thumbnails, 234

UIImageViews, 233

-viewDidLoad method, 234–235

custom camera overlays, 221

-cameraButtonPressed: method,

219, 220

cornerRadius, 219

currentPicker’s value, 219

customView, 218

header file, 219

imagePicker, 219

QuartzCore interface, 218

-toggleFlash: and -toggleCamera:

methods, 219–220

UIImagePicker, 218

UIView, 218

editing videos

delegate method, 215–216

editButton, 215

editButtonPressed, 215, 216

NSString property, 215

recording video, 217

UIImagePickerController,

214–215

UINavigationControllerDelegate

protocol, 216

UIVideoEditorController, 214,

216–217

UIVideoEditorControllerDelegate

protocol, 216

programmatically recording video

Assets Library, 228

AV Foundation, 228

AVCaptureDevice, 229

http://

Index 585

AVCaptureDeviceInputs, 229

AVCaptureFileOutputRecording

Delegate protocol, 229

AVCaptureMovieFileOutput, 229,

232–233

AVCaptureOutput, 229–231

AVCaptureSession, 229

AVCaptureVideoPreviewLayer,

230

CustomVideo, 228

header file, 229

recordPressed, 228

tempFileURL, 232

UIButton, 228

viewDidLoad method, 230–231

viewDidUnload method, 229

-viewWillAppear: and -

viewWillDisappear:, 233

recording video, 213–214

taking pictures

allowsEditing property, 212

Assistant Editor mode, 207–208

cameraButton, 208

-cameraButtonPressed: method,

208, 209

CaptureViewController.m file, 208

CaptureViewController.xib, 207

Chapter6Recipe1, 206

connected outlets and actions,

208

contentMode, 212

imagePicker, 210–211

-imagePickerController:did

FinishPickingMediaWithInfo:

method, 211, 212

imageViewRecent, 208

NSDictionary, 211

photo set as background, 213

project settings, 206

single view application template,

205, 206

UIButton, 207, 208

UIImagePickerController class,

209–212

UIImageView, 207, 208, 211

-viewDidLoad method, 208, 209

-cameraButtonPressed: method, 213

CFStringRef, 214

CGPointZero value, 110

CGSizeMake() function, 88

Chapter4HeadingTrackingViewControlle

r.xib file, 142

Chapter4RegionMonitoringViewControll

er.m, 154

Cocoa Touch controls

UIActivityIndicatorView, 96–97

UIButton, 89–90

UILabel

CGSizeMake() function, 88

dim/undim labels, 88

font, 88

fundamental controls, 87

heavily shadowed text, 88

highlightedTextColor property, 89

label with no shadow, 88, 89

one square point shadow, 89

-setText: method, 88

shadowOffset property, 88

textAlignment, 88

textColor, 88

userInteractionEnabled, 89

UIPageControl, 97–98

UIProgressView, 97

UISegmentedControl class, 90–91

UISlider, 95

UIStepper, 98–99

UISwitch, 96

UITextField

app with enabled functionality, 94

configuration, 93

Interface Builder, 92

notifications, 92

UITextView addition, XIB

interface, 92

-viewDidLoad method, 91

XIBfile, 91

contentInsetandcontentOffset, 103

contentMode property, 100

Core data

data model creation

Automatic Reference Counting

box, 393–394

http://

Index 586

editor style, 397

instrument entity, 395, 400–401

MusicSchool, 393

MusicSchool.xcdatamodeld, 395

NSManagedObjectContext, 399

student entity, 395, 400

teacher entity, 394–395, 398–399

definition, 391

editor style, 397

file management system, 373

NSFetchedResultsController, 393

NSManagedObjectContext, 392

NSManagedObjectModel, 392

NSManagedObjects

-add method, 410

adding and deleting data,

412–413

-application:didFinishLaunch

ingWithOptions method, 407

delegate, 418

empty tables, 407–408

fetch requests filtering, 419–422

-fetchedObjects, 404

MainTableViewController, 402,

407, 417–418

MainViewController’s -

viewDidLoad method, 408

MusicSchool.xcdatamodeld file,

413–414

NSFetchedResultsController,

404, 405

NSFetchRequest, 419–422

NSManagedObject, 404

NSManagedObjectContext, 409

setEditing:animated:method, 412

subclass, 414–415

-tableView:cellForRowAtIndex

Path method, 415–417

temporary data, 409

UINavigationController, 406

UITableView, 402, 411

UITableViewDelegate and

UITableViewDataSource

protocols, 403

viewDidLoad method, 406

NSManagedObjectsNSEntityDescrip

tion, 403

NSPersistentStoreCoordinator, 392

NSString/NSArray, 391

storing data, 391

versioning

attributes, 423

definition, 422

file inspector, 424–425

if statement, 426

instrument subclass files, 427

MusicSchool2, 422

new model file set, 425

NSDictionary, 426

NSManagedObject subclass, 427

NSString, 423

persistentStoreCoordinator

method, 425

xcdatamodeld, 424

Core Graphics, 222

Core Media, 222

Core motion

accelerometer, 437, 449–451

accessCMDeviceMotion, 442

-applicationDidEnterBackground

method, 441, 444

attitude properties, 445–448

CMAttitude, 443

CMMotionManager, 438

data access

CMMotionManager, 435

framework, 434

-toggleUpdates method,

439–440, 443–444

UILabels, 439–440

XIB setup, 436

gravity Represents, 443

gyroscope, 437

hardware, 438

magneticField, 443

magnetometer, 437

raw device information, 442

registering shake events

MainWindow, 431

measurements, 429

http://

Index 587

-motionEndedwithEvent method,

432

NSNotificationCenter, 432

shake gesture, 433

shakeDetected, 433

shaking, 433

single view application, 430

UIWindow, 430–431

-viewDidLoad method, 433

rollLabel, pitchLabel, and yawLabel,

445

rotationRate, 443

-shakeDetected method, 440

-startDeviceMotionUpdates, 443

startDeviceMotionUpdatesToQueue

withHandler, 443

startDeviceMotionUpdatesUsingRef

erenceFrame, 443

UILabel, 449–451

userAcceleration Represents, 443

-viewDidUnload method, 441

Core Video, 222

CoreGraphics.framework library, 110

■ D
Data storage

core data,file management system,

373

iCloud

12345ABCDE.com.domainName.

iCloudTest, 378

App ID, 375

com.domainName.iCloudTest,

378

Documents & Data, 384

Enable Entitlements, 375

iCloudStoreViewController.m file,

378

iCloudStoreViewController.xib

file, 380

iOS 5.0, 374

metadataQueryDidFinishGathering,

383

MyDocument.h file, 379

NSFileManager and

NSMetadataQuery classes, 382

NSMetadataQuery, 384

project configuration, 374

Provisioning Profiles section, 378

storing key-value data, 386

text saved and loaded, 386

UIDocument: -

contentsForType:error: and

-loadFromContents:ofType:

error:, 380UIDocument abstract

class, 379

UITextView, 381

managing files

core data, 373

delegate property, 362–363

-encodeWithCoder method, 370

file management system, 360

Hotspot property, 362

Hotspot.h, 360

Hotspot.m, 360

HotspotInfoViewController.h file,

363

HotspotInfoViewController.xib,

362–363

HotspotsInfoDelegate protocol,

365

initWithCoder method, 371

iOS’s file management system,

359

-loadData method, 372

newHotspot, 366

NSArray, 372

NSDictionary, 370

NSFileManager, 371

NSIndexPath, 367–369

NSMutableArray, 365

NSObject subclass, 360

-populateWithHotspot method,

364

saveButtonPressed, 364

-saveData method, 372

Single View Application template,

360

UIApplication, 369

UINavigationController, 366

http://

Index 588

UITableView, 365, 367, 369

UITableViewCellEditingStyle, 373

UITableViewDelegate and

UITableViewDataSource

protocols, 365

<UITextFieldDelegate>, 363

UITextField element, 362

UIViewController subclass, 361

viewDidLoad method, 363

XIB for user interface, 361

NSUserDefaults, 357

Boolean values, 353

iOS simulator, 358

iPhone family, 353–354

persisting, 358

+resetStandardUserDefaults, 356

+standardUserDefaults method,

356

Stubborn, 353

synchronize method, 356

UISwitch, 357

UITextFieldDelegate protocol

methods, 355, 356

view controller’s XIB, 354, 355

viewDidLoad method, 356–358

viewDidUnload method, 355

Xcode, 358

Data transmission recipes, 453

attachment parameter, 461

composing e-mail, 459–460

data to mail attachament, 461–467

fileName parameter, 461

formatted printing, with page

renderers, 478

drawPageAtIndex:inRect:

method, 479–480

drawPrintFormatter:forPageAtInd

ex: method, 480

NSString properties, 478

printCustomPressed action,

481–483

UIPrintPageRenderer class, 478

getImagePressed method, 463

image printing, 467

printer simulator application,

471–473

UINavigationController, 467

UIPrintInfoOutputGeneral, 469

UIPrintInfoOutputGrayscale, 468

UIPrintInfoOutputPhoto, 468

UIPrintInteractionController,

469–470

mailPressed method, 459, 465–466

MFMailComposeViewController,

457–458, 461

MFMailComposeViewController’s

delegate method, 466–467

mimeType parameter, 461

plain text printing, 473

printFormatter property, 474–475

viewDidLoad method, 473–474

text messaging, 453

configuration, 455

description, 453

MFMessageComposeViewContro

ller, 457–458

single view application, 454

textPressed method, 457

UITextView’s delegate methods,

457

viewDidLoad method, 455–456

UIImagePickerControllerDelegate

protocol methods, 463–465

view printing, 475–477

dataDetectorTypes, 101

datePickerMode property, 107

defersCurrentPageDisplay property, 98

directionalLockEnabled property, 103

-dismissModalViewController

Animated:method, 121

-dismissWithClickedButton

Index:animated: method, 123,

124

■ E
E-mail composing, 459–460

■ F
-flashScrollIndicators method, 104

Formatted printing, 478–483

http://

Index 589

■ G
Game achievements, 569

code setup, 572–573

GKAchievementsViewController,

574–575

iTunes connect setup

configuration, 570–572

Game Center management, 569

new achievement addition, 570

MainMenuScene, 574–575

Game Center, 555

achievements see

checking for, 561

iTunes connect setup

App ID configuration, 556

application information, 556

management, 557–558

Leaderboards see

multiplayer, 575–581

player authentication, 561–563

project setup

Build Phases tab, 558

Game Kit framework, 559

iTunes connect, 560

Gesture recognizers

-addGestureRecognizer: method,

108

+isKindOfClass method, 108

-locationInView: method, 109

-locationOfTouch:inView: method,

109

UIGestureRecognizerDelegate

protocol, 109

UIGestureRecognizerStateBegan,

108

UIGestureRecognizerStateCancelled,

108

UIGestureRecognizerStateChanged,

108

UIGestureRecognizerStateEnded,

108

UIGestureRecognizerStatePossible,

108

UIGestureRecognizerStateRecognized,

108

UILongPressGestureRecognizer,

110–111

UIPanGestureRecognizer, 110

UIPinchGestureRecognizer, 111

UIRotationGestureRecognizer, 111

UISwipeGestureRecognizer,

109–110

UITapGestureRecognizer, 108, 109

userInteractionEnabled property,

108

GitHub, 18–20

■ H
handleGesture method, 109, 110

hidesForSinglePage property, 98

hidesWhenStopped property, 96

highlightedAnimationImages property,

100

highlightedImage properties, 99

highlightedTextColor property, 89

horizontalAccuracy property, 133

■ I, J
(IBAction)regionMonitoringToggle:(id)se

nder method, 154

iCloud

12345ABCDE.com.domainName.iCl

oudTest, 378

App ID, 375

com.domainName.iCloudTest, 378

Documents & Data, 384

Enable Entitlements, 375

iCloudStoreViewController.m file,

378

iCloudStoreViewController.xib file,

380

iOS 5.0, 374

metadataQueryDidFinishGathering,

383

MyDocument.h file, 379

NSFileManager and

NSMetadataQuery classes, 382

NSMetadataQuery, 384

project configuration, 374

http://

Index 590

Provisioning Profiles section, 378

storing key-value data, 386

text saved and loaded, 386

UIDocument: -

contentsForType:error: and -

loadFromContents:ofType:error:

UIDocument abstract class, 379

UITextView, 381

Image feature detection

files addition, 550–551

-findFacePressed method, 551–552

Single View Application template,

548

view controller’s XIB setup, 550

-viewDidLoad method, 551

+imageNamed:method, 99

Image printing, 467–473

Image recipes

filters

CIImage creation, 539

CoreImage.framework library,

537

hue adjustment, 542–543

image rotation, 543

NSMutableArray property, 538

populateImagesWithImage, 539,

544

-setMainImage, 538

-tableView:didSelectRowAt

IndexPath:, 540

-tableView:cellForRowAtIndex

Path:, 541

UIImagePickerControllerDelegate

protocol, 542

programming screenshots, 520–522

scaling images see Scaling images)

simple shapes

path creation, 519–520

QuartzCore and

CoreGraphics.framework,

516–518

rectangle and ellipse, 519

single view application, 515–516

UIView, 518–519

UIImageViews see

imageForSegmentAtIndex: method, 91

imageFromSampleBuffer, 226

-imagePickerController:did

FinishPickingMediaWithInfo:

delegate method, 219

-initWithContentViewController:

initializer, 119

initWithCoordinate method, 175

-initWithItems: method, 91

inputAccessoryView, 102

inputViewproperty, 102

-insertSegmentWithImage:

atIndex:animated: method, 91

insertSegmentWithTitle:atIndex:animated:

method, 91

Interface Builder

Assistant Editor, 30

inspector pane, 30

navigator pane, 29

outlet connection

action creation and configuration,

33

labelHelloWorld updation, 34

outlet creation, 32

placeholders, 34

storyboards see

Tint control, 42

touch gesture recognizers, 36

adjusting attributes, 39

attributes inspector, 38

gesture recognizer addition, 36

outline view, 38

placeholders, 40

tapTheLabel action, 41

iPod library

+applicationMusicPlayer, 254

buttons, 253

elements, 253

+iPodMusicPlayer, 254

MPMediaItemCollection, 253

MPMediaPickerController’s delegate

methods, 256

MPMusicPlayerController, 253

MusicPick, 252

player’s queue, 257

-setNotifications method, 254–256

http://

Index 591

-updateQueueWithMediaItem

Collection, 256–257

user interface, 252

-viewDidLoad method, 254

-viewDidUnload method, 258–259

■ K
kCLLocationAccuracyHundredMeters,

160

kUTTypeMovie, 214

■ L
Leaderboards

code setup, 567–568

high scores, 568

iTunes setup

configuration, 566

Game Center management,

561–563

language display settings, 566

setup, 564

type selection, 565

Local Git repository, Xcode 4

commit message, 13

creation, 9

disabled version control, 13

file changes, 12

filtered modified files, 12

modified and added project files, 10

Location recipes, 125

CLGeocoder object, 162

CLLocationManager object, 127

completionHandler, 162

Core Location framework, 125

device location information, 136

– locationManager:didUpdateTo

Location:fromLocation: method,

132

application without location data,

135

Chapter4SampleProject, 127

Chapter4SampleProjectViewCont

roller interface file (.h), 130

CLLocation object, 133

CLLocationManager object,

131–132

CLLocationManagerDelegate,

130

Core Location framework

addition, 127, 128

description property, 133

desiredAccuracy property, 131

distanceFilter property, 131

Interface Builder, 128

interface file, 130

kCLDistanceFilterNone property,

131

labelLocation, 133–135

location permissions request, 134

newLocation.description value,

133

NSString, 133

purpose property, 131, 134

startUpdatingLocation method,

131

stopUpdatingLocation method,

131, 132

toggleLocationServices:sender:

action, 130

UILabel, 128–129

UISwitch, 128, 129, 134

Xcode 4, 127

location services requirements, 126

magnetic bearing

_locationManager, 144

Chapter4HeadingTracking, 141

Chapter4HeadingTrackingView

Controller, 143–144

CLLocationManager object, 141

CLLocationManagerDelegate

protocol, 143

delegate methods, 145

didFailWithError method, 145

didUpdateHeading method, 145

heading calibration screen, 146

heading tracking services,

144–145

headingAccuracy property, 145

headingFilter property, 144, 145

headingOrientation property, 141

http://

Index 592

headingSwitch, 144

labelHeading, 145

locationManagerShouldDisplayH

eadingCalibration, 146

magnetic poles, 141

magneticHeading, 145

purpose property, 144

startUpdatingHeading, 144

switchHeadingService method,

143, 144

UILabel and UISwitch, 142–143

NSArray placemarks, 162

region monitoring

Chapter4RegionMonitoring, 151

Chapter4RegionMonitoringViewC

ontroller.xib, 151

CLLocationManager object, 151

CLLocationManagerDelegate

protocol, 153

CLRegion object, 154–155

custom coordinates, 156

delegate methods, 155

did enter and did exit, 156

identifier property, 155

implementation file (.m), 154

interface file (.h), 153–154

kCLErrorRegionMonitoringDenied,

155–156

kCLErrorRegionMonitoringFailure

error, 151, 155–156

locationManager:monitoringDidF

ailForRegion:withError: delegate

method, 151

maximumRegionMonitoringDista

nce property, 154

monitoredRegions property, 151,

155

startMonitoringForRegion:desired

Accuracy: method, 151

toggling action, 153

UILabel and UISwitch, 151–153

reverse and forward geocoding

action’s creation, 159

actionWhereAmI method, 158,

160

Chapter4Geocoder, 157

Chapter4GeocoderViewController

implementation file (.m), 160

Chapter4GeocoderViewController

interface file (.h), 159–160

Chapter4GeocoderViewController

.xib file, 157

CLGeocoder, 157

CLPlacemarks, 161

didFailWithError method, 160

didUpdateToLocation delegate

method, 160

didUpdateToLocation method,

161

distanceFilter property, 160

GPS coordinates, 156

labelGeocodeInfo, 158

latitude and longitude

coordinates, 156

newLocation timestamp property,

160

NSArray, 161

NSError, 161

placemarks, 161

UIButton, 157–158

UILabel, 157–158

UISwitch, 159

significant location changes, 126,

127

(IBAction)toggleLocationServices:

(id)sender method, 138

application:didReceiveLocalNotifi

cation: method, 140

Chapter4SignificantLocationTrac

ker, 136

delegate method, 140–141

desiredAccuracy property, 139

distanceFilter property, 139

implementation file (.m), 138

Info.plist, 136

interface file (.h), 138

labelLocation, 138

newLocation, 140

purpose property, 139

required background mode, 136,

137

http://

Index 593

self.labelLocation.text =

newLocation.description;, 140

startMonitoringSignificantLocatio

nChanges method, 139–140

toggleLocationServices, 138

toggling action, 138

UIAlertView, 138

UIBackgroundModes, 136

UILabel, 138

UILocalNotification, 140

standard location service, 126–127

supported devices, 125

true bearing

Chapter4HeadingTrackingViewC

ontroller.xib file, 147

CLHeading object, 147

declination, 146

didUpdateHeading method, 149

implementation file (.m), 149–150

interface file (.h), 148

labelTrueHeading, 147

startUpdatingLocation method,

147, 148

stopUpdatingLocation, 148

switchHeadingServices method,

148–149

trueHeading property, 147

user interface with label, 147

■ M
Map Kit recipes, 163

annotations grouping, location, 199

abs function, 198

-cleanPlaces method, 200

CLLocationDegrees, 194

delegate method, 198

fabs function, 198

full -group: method, 200–201

–group: method, 198

header file, 193

Hotspot class, 193, 199

HotspotMap, 193

hotspots, 195

implementation file, 200

initialization method, 194

–initWithCoordinate: method, 200

map with far too many

annotations, 197

-mapView:

regionDidChangeAnimated:

method, 198, 202

.m file, 194

MKAnnotation protocol, 193

MKMapView, 194

MKPinAnnotationView, 201

NSArrays, 195

.NSMutableArray property, 199

NSObject subclass, 193

places property, 194

-placesCount method, 200

view controller’s .m file, 197–198

–viewDidLoad method, 194–196

-viewDidUnload method, 196

viewForAnnotation method, 196,

201–202

viewForAnnotation: method, 199

–(void)group(NSArray *)hotspots,

198

with number-specific colors, 203

custom annotations

application, 184

avatar.png image, 178, 185

callouts, 186, 190

canShowCallout property, 184

centerOffset property, 182

CGPoint value, 182

CGPointMake() function, 182

coordinate, title, and subtitle

properties, 180

“Copy items into destination

group’s folder (if needed)”, 178,

179

CustomAnnotationView class,

181–182

CustomAnnotationView.m file,

184–185

DetailViewController .xib, 187,

188

full method, 182–183

header file, 180

http://

Index 594

#import “DetailViewController.h”,

189

initWithAnnotation:reuseIdentifier:

method, 182

leftCalloutAccessoryView, 184,

185

-mapView:annotationView:

calloutAccessoryControlTapped:

method, 186

MKAnnotationView class, 178,

182

MKAnnotationView subclass, 181

MKPinAnnotationView objects,

177, 183

MyAnnotation.h and

CustomAnnotationView.h files,

183

MyAnnotation.m file, 181

NSObject subclass, 180

NSString, 188–189

Objective-C class, 179

overlays addition, 190–192

titleLabel and subtitleLabel

properties, 188

UIImage, 182

UIImageView, 185

UIViewController subclass, 186

viewDidLoad method, 178, 183,

189

map with device’s location

application with panning and user

tracking, 173

BarButtonItem, 171

+ button, framework addition,

165

configuration settings, 164

Core Location and Map Kit

frameworks selection, 165

if statement, 169–170

initWithMapView: method, 171

labelUserLocation, 167

location access, 171

MapKit/MapKit.h framework

library, 167

–mapView:didUpdateUser

Location: delegate method, 170

MKCoordinateRegionMakeWithDi

stance method, 168

MKMapView outlet, 167

MKUserLocationFollowWithHeadi

ng, 173

MKUserTrackingBarButtonItem,

171, 172

MKUserTrackingModeFollow,

169

SBViewController interface file

(.h), 166, 167

SBViewController.h file, 167

self.mapViewUserMap, 170

setUserTrackingMode:animated:

method, 169

showUserLocation, 168–169

Single View Application template,

163, 164

toolbarMapTools, 171

userLocationVisible property, 169

.userTrackingMode property, 169

viewDidLoad method, 168, 171,

172

viewDidUnload method, 170

.xib file with MKMapView and

UILabel, 165–166

.zoomEnabled and .scrollEnabled

properties, 168

marking locations with pins

annotations addition, 176

annotation’s coordinate property,

177

application with map and pins,

177

canShowCallout property, 176

MyAnnotation, 175–176

NSObject subclass, 173, 174

Objective-C class, 173, 174

rightCalloutAccessoryView

property, 176

-viewForAnnotation: delegate

method, 177

-mapView:viewForAnnotation: method,

175

maximumNumberOfTouches property,

110

http://

Index 595

maximumZoomScaleand/or

minimumZoomScale properties,

104

mediaType, 214

minimumNumberOfTouches property,

110

minimumPressDuration, 111

MKMapViewDelegate protocol, 167,

178

MKUserTrackingBarButtonItem, 171

MKUserTrackingModeFollow, 169

MKUserTrackingModeFollowWithHeadi

ng, 169

MKUserTrackingModeNone, 169

modalPresentationStyle property, 121

modalTransitionStyle property, 121

Multimedia

-addObserver, 270

application category, 265

audio toolbox, 243

AudioServicesPlaySystemSound(),

248

AV foundation, 243

AVAudioPlayer delegate methods,

248

AVAudioPlayerDelegate protocol,

245

AVAudioRecorder

-pause method, 252

-playPressed: method, 249, 252

-prepareToRecord action, 250

recordPressed: method, 249

-tempFileURL, 250

-updateLabels method, 251–252

user interface, 249

viewDidUnload method, 249–250

-canBecomeFirstResponder, 270

CMTimeMake() function, 273

currentIndex, 268

+defaultCenter, 269

enableRate property, 247

frameworks addition, 242, 243

frameworks’ header files import, 243

iPod library (see

-libraryPressed: method, 273–274

MPMediaPropertyPredicates

comparisonType property, 262

MPMediaQuery, 262

NSArray, 270

NSMutableArray, 267

NSNotificationCenter, 270

NSUInteger argument, 247

playButton, 267

-playerItemDidReachEnd, 270

playlist, 267

-playPressed: and -nextPressed:

methods, 271

plist file, 264–265

-prevPressed: method, 272–273

querying media

MPMediaItemProperties, 261

textFieldArtist, 260

UIButton, 259

UITextField, 259

user interface, 260

-viewDidLoad, 260

-queryPressed: method, 260, 261,

274

-remoteControlReceivedWithEvent,

269

required background modes, 265

single view application template,

241, 242

slider’s values, 244, 245

sound clip, 245

UISliders, 247

updateLabels method, 247

-updateNowPlaying, 271

user interface, 266, 268

view controller’s XIB file, 243, 244

viewDidLoad method, 246, 263

viewDidUnload method, 245

-viewWillDisappear:animated:

methods

Multiplayer, 575–581

■ N, O
-numberOfComponentsInPickerView:

method, 105

numberOfSegments property, 91

http://

Index 596

numberOfTapsRequired property, 109,

111

numberOfTouchesRequired property,

109–111

NSManagedObjects

-add method, 410

adding and deleting data, 412–413

-application:didFinishLaunching

WithOptions method, 407

delegate, 418

empty tables, 407–408

fetch requests filtering, 419–422

-fetchedObjects, 404

MainTableViewController, 402, 407,

417–418

MainViewController’s -viewDidLoad

method, 408

MusicSchool.xcdatamodeld file,

413–414

NSFetchedResultsController, 404,

405

NSFetchRequest, 419–422

NSManagedObject, 404

NSManagedObjectContext, 409

setEditing:animated:method, 412

subclass, 414–415

-tableView:cellForRowAtIndexPath

method, 415–417

temporary data, 409

UINavigationController, 406

UITableView, 402, 411

UITableViewDelegate and

UITableViewDataSource

protocols, 403

viewDidLoad method, 406

NSUserDefaults, 357

Boolean values, 353

iOS simulator, 358

iPhone family, 353–354

persisting, 358

+resetStandardUserDefaults, 356

+standardUserDefaults method, 356

Stubborn, 353

synchronize method, 356

UISwitch, 357

UITextFieldDelegate protocol

methods, 355, 356

view controller’s XIB, 354, 355

viewDidLoad method, 356–358

viewDidUnload method, 355

Xcode, 358

■ P, Q
pagingEnabled property, 103

pickerView:didSelectRow:inComponent:

method, 105

-pickerView:numberOfRowsIn

Component: method, 105

pickerView:rowHeightForComponent:

method, 105

pickerView:titleForRow:forComponent:

method, 105

pickerView:viewForRow:forComponent:

reusingView: method, 105

pickerView:widthForComponent:

method, 105

Plain text printing, 473–475

-presentModalViewController:animated:

method, 121

-presentPopoverFromBarButton

Item:permittedArrowDirections:

animated: method, 119

-presentPopoverFromRect:

inView:permittedArrowDirections:

animated: method, 119

Printing

formatted, 478–483

image, 467–473

plain text, 473–475

view, 475–477

progressViewStyle property, 97

■ R
-removeAllSegments: method, 91

-removeSegmentAtIndex:animated:

method, 91

Required device capabilities, 126

-resignFirstResponder method, 94, 102

http://

Index 597

■ S
Scaling images

configuration, 529

detail view controller, 529

image resizing, 530–531

advantages and issues, 536–537

UIImageView, 532–536

imagePickerController, 530

MasterViewController, 529–530

scrollEnabled property, 103

-scrollRectToVisible:animated: method,

103

scrollsToTop property, 103

-selectedRowInComponent:method,

106

selectedSegmentIndex, 91

-setBackgroundImage:forState:

andsetImage:forState: methods,

90

-setContentOffset:animated: method,

103

-setContentViewController:animated:

method, 119

-setDate:animated: method, 107

-setImage:forSegmentAtIndex: method,

91

-setOn:animated: method, 96

-setPopoverContentSize:animated:

method, 119

-setProgress:animated: method, 97

setTitle:forSegmentAtIndex: method, 91

-setTitle:forState: property, 89

-setValue:animated: method, 95

shadowColorandshadowOffsetproperties,

88

Shake gesture, 433

showsSelectionIndicator property, 106

-sizeForNumberOfPages: method, 98

-startAnimating method, 96

-stopAnimating method, 96

Storyboards

aboutUsViewController view, 48

aboutUsViewController

implementation, 85

Back button, 84

configuration, 46

controllers interface, 80

UIButton action, 81

Contact Info view, 53

customized cells, 56

duplicating cells, 56

file copying, 82

file loading, 47

grouped cells, 56

loaded storyboard, 84

Main storyboard file base name, 46

performSegueWithIdentifier, 51

project configuration, 79

ProjectViewController, 83

renaming, 82

scenes, 43

segue identifier settings, 53

Segues, 45

single view application selection, 78

static cells configuration, 55

subgroup addition, 80

target settings, 47

UINavigationBar, 52

UITableView, 57

UITableViewCell prototypes, 72

AppUITableViewCellClass

addition, 76, 77

cell identifier, 75

configuring cells, 75

dynamic prototype reselection,

74

MyAppClass, 77

new table view, 74

outlet connection, 75

segue reconfiguration, 75

subclass, 73

UILabel and UIimage outlet

property, 73

UITableViewController, 54

UIViewController, 50

-stringValue, 281

■ T
tableView: cellForRowAtIndexPath:

method, 326

TableView cells, 175

http://

Index 598

tapGesture, 108

Text messaging, 453–458

textField:shouldChangeCharactersInRa

nge:replacementString:

method, 93

-textFieldDidBeginEditing: method, 93

-textFieldDidEndEditing: method, 93

-textFieldShouldBeginEditing: method,

93

-textFieldShouldEndEditing: method, 93

-textFieldShouldReturn: method, 94

-textView:shouldChangeTextIn

Range:replacementText:

method, 102

-titleColorForState: method, 90

titleForSegmentAtIndex: method, 91

-titleShadowColorForState: method, 90

Touch gesture recognizers, 36

adjusting attributes, 39

attributes inspector, 38

gesture recognizer addition, 36

outline view, 38

placeholders, 40

tapTheLabel action, 41

-translationInView: method, 110

Tweets

composing, 485

configuration, 485–487

description, 485

simpleTweetPressed method,

488–490

Twitter.framework, 487

TWTweetComposeViewController,

491

filtering, 508–512

retrieving, 494

homePressed method, 506–508

IBAction methods, 497

NSObject, 502–504

public timeline data, 502

publicPressed method, 499–501

tabbed application template,

494–496

UITableView, 505

UITextViews, 497–499

Twitter recipes, 485

description, 485

filtering tweets, 508–512

retrieving tweets, 494

homePressed method, 506–508

IBAction methods, 497

NSObject, 502–504

public timeline data, 502

publicPressed method, 499–501

tabbed application template,

494–496

UITableView, 505

UITextViews, 497–499

searchPressed method, 510–512

tweets composing, 485

configuration, 485–487

description, 485

simpleTweetPressed method,

488–490

Twitter.framework, 487

TWTweetComposeViewController,

491

TWRequests creation, 491

description, 491

postTweetPressed method,

492–493

sending Tweets via, 492–494

UISearchBar, 508–510

■ U
UIActionSheetDelegate protocol, 124

UIActionSheetStyleAutomatic value,

123

UIActionSheetStyleBlackOpaque value,

123

UIActionSheetStyleBlackTranslucent

value, 123

UIActionSheetStyleDefault value, 123

UIActivityIndicatorView, 97

UIActivityIndicatorViewStyleGray, 96

UIActivityIndicatorViewStyleWhite, 96

UIActivityIndicatorViewStyleWhiteLarge,

96

UIAlertViewDelegate protocol, 123

UIAlertViewStyleDefault, 122

http://

Index 599

UIAlertViewStyleLoginAndPasswordIn

put, 122

UIAlertViewStylePlainTextInput, 122

UIAlertViewStyleSecureTextInput, 122

UIBarButtonItem class, 171

UIButtonTypeContactAdd, 89

UIButtonTypeCustom, 89

UIButtonTypeDetailDisclosure, 89

UIButtonTypeInfoDark, 89

UIButtonTypeInfoLight, 89

UIButtonTypeRoundedRect, 89

UIControlEventValueChanged, 99

UIControlEventValueChanged events,

107

UIControlState, 89

UIDatePickerModeCountDownTimer,

107

UIDatePickerModeDate, 107

UIDatePickerModeDateAndTime, 107

UIDatePickerModeTime, 107

UIGestureRecognizerDelegate protocol,

109

UIGestureRecognizerStateBegan state,

111

UIGestureRecognizerStateChanged

state, 110

UIGestureRecognizerStateEnded state,

109, 110

UIImagePickerControllerPhotoLibrary,

209

UIImagePickerControllerSavedPhotosAl

bum, 209

UIImagePickerControllerSourceTypeCa

mera, 209

UIImageViews, 522

autosizing, 525–526

clearImagePressed, 528

IOS simulator, 528

project setting configuration, 523

simulated application, 524–525

UIImagePickerControllerDelegate

protocol, 527

UIPopoverController, 526

UISplitViewController, 523–524

UIKeyboardDidHideNotification, 92

UIKeyboardDidShowNotification, 92

UIKeyboardWillHideNotification, 92

UIKeyboardWillShowNotification, 92

UILabel

CGSizeMake() function, 88

dim/undim labels, 88

font, 88

fundamental controls, 87

heavily shadowed text, 88

highlightedTextColor property, 89

label with no shadow, 88, 89

one square point shadow, 89

-setText: method, 88

shadowOffset property, 88

textAlignment, 88

textColor, 88

userInteractionEnabled, 89

UIModalPresentationCurrentContext,

121

UIModalPresentationFormSheet, 121

UIModalPresentationFullScreen, 121

UIModalPresentationPageSheet, 121

UIModalTransitionStyleCoverVertical,

121

UIModalTransitionStyleCrossDissolve,

121

UIModalTransitionStyleFlipHorizontal,

121

UIModalTransitionStylePartialCurl, 121

UIModalTransitionStylePartialCurltransit

ion style, 121

UIModalTransitionStylePartialCurlstyle,

121

UINavigationController

back button, 113

configuration, 113

-initWithRootViewController:, 112

-pushViewController:animated:

method, 112

right bar item(s), 114

root view controller, 112

-setToolbarHidden:animated:

method, 114

-setToolbarItems: method, 114

title, 113

UINavigationControllerDelegate

protocol, 114

http://

Index 600

-viewDidLoad methods, 114

-viewWillAppear:animated: method, 114

viewWillDisappear:animated:

method, 114

UIPageControl, 97–98

UIPageViewController, 120

UIPickerViewDataSource protocol, 105

UIPickerViewDelegate protocol, 105

UIPopoverController, 118–120

UIProgressView, 97

UIProgressViewStyleBar:Style, 97

UIProgressViewStyleDefault:Standard

style, 97

UIRequiredDeviceCapabilities, 126

UIScrollViewDelegate protocol, 104

UISegmentedControl class, 90–91

UISlider, 95

UISplitViewController

detail pane, 116

iPad-specific UISplitViewController,

117

master pane, 116

Master-Detail Application template,

117, 118

NSArray, 118

-splitViewController:shouldHide

ViewController:inOrientation:

method, 118

UISplitViewControllerDelegate

protocol, 118

UIStepper, 98–99

UISwipeGestureRecognizerDirectionDown,

110

UISwipeGestureRecognizerDirectionLeft,

110

UISwipeGestureRecognizerDirectionRight,

110

UISwipeGestureRecognizerDirectionUp,

110

UISwitch, 96

UITabBarController

configuration, 115–116

UITabBarItem, 115

-viewDidLoad method, 115

UITableView

configuration, 284, 285

editing

deletion, 340

editButtonItem property, 337

row animations, 339–340

-setEditing:animated: method,

338

-tableView:commitEditingStyle:

forRowAtIndexPath:, 341–342

UITableView delegate methods,

342

-fetchEvents method, 286

group creation

accessoryButtonTappedForRow

WithIndexPath:, 347

commitEditingStyle:forRowAtInde

xPath:, 348

didSelectRowAtIndexPath, 347

moveRowAtIndexPath:toIndex

Path:, 347

NSDictionary, 349

NSMutableArray, 345

numberOfRowsInSection, 346

table’s “Style, 345

-tableView:viewForFooterIn

Section:, 350

-tableView:cellForRowAtIndex

Path:, 346

viewForHeaderInSection, 350

NSMutableDictionary, 286

tableViewEvents, 285

UITableViewDataSource protocols,

286

ungrouped table creation

adding files, 321

basic application, 324

-beginUpdates, 333

Cell View Customization,

336–337

cell.textLabel.text property, 325

cellForRowAtIndexPath: method,

322

CellIdentifier, 323

country objects, 320

CountryInfoViewController, 328,

330, 332

delegate methods, 322

http://

Index 601

-dequeueReusableCellWith

Identifier, 323

didFinishLaunchingWithOptions,

324

empty application, 317–318

-endUpdates, 333

enhanced user interaction,

334–336

flag images, 326

imageView, 325

layer property, 327

MainTableViewController, 318

numberOfRowsInSection:

method, 322

revertButton, 331

-tableView:cellForRowAtIndex

Path:, 325

tableViewCountries, 319–320

UIImage, 325

UINavigationController, 323–324

UITextFieldDelegate protocol,

329

-viewDidLoad method, 321–322

-viewWillAppear:animated:

method, 330

XIB file, 319

-viewDidUnload, 285

UITableViewCell prototypes, 72

AppUITableViewCellClass addition,

76, 77

cell identifier, 75

configuring cells, 75

dynamic prototype reselection, 74

MyAppClass, 77

new table view, 74

outlet connection, 75

segue reconfiguration, 75

subclass, 73

UILabel and UIimage outlet property,

73

UITextField

app with enabled functionality, 94

configuration, 93

Interface Builder, 92

notifications, 92

UITextView addition, XIB interface, 92

-viewDidLoad method, 91

XIBfile, 91

UITextFieldDelegate protocol, 93–94,

102

UITextViewDelegate protocol, 102

UITextViewTextDidBeginEditingNotifica

tion, 102

UITextViewTextDidChangeNotification,

102

UITextViewTextDidEndEditingNotification,

102

UIViewContentModeScaleAspectFill,

101, 212

UIViewContentModeScaleAspectFit,

101, 212

-updateCurrentPageDisplay method, 98

User data

address book

__bridge_transfer, 302

ABMultiValueCopyValueAtIndex()

function, 302–303

ABPeoplePickerNavigationContro

ller, 300–301

ABRecordCopyValue(), 301

ABRecordRef, 301

CFRelease() command, 302

-findPressed, 300

property names, 300

XIB file, 299

contact information setting, 305–311

events recurring, 297–299

fetching events, 282–284

NSCalendar and NSDate

calendar types, 280

NSDateComponents classes, 279

NSUInteger unitFlags, 281

UITextField, 278–279

user interface, calendar

conversion, 277, 278

simple events creation

delegate, 295

EKEvent, 291

EventAddViewController, 293,

296

MainViewController, 296

toolBarTop, 291

http://

Index 602

UITextField, 294

UIToolbar, 291

UIViewController subclass, 292

user interface, 293, 294

-viewDidLoad method, 291–292

UITableView

configuration, 284, 285

-fetchEvents method, 286

NSMutableDictionary, 286

tableViewEvents, 285

UITableViewDataSource

protocols, 286

-viewDidUnload, 285

viewing contacts, 312–315

viewing,editing,and deleting events,

288–291

■ V, W
-velocityInView: method, 110

verticalAccuracy property, 133

View controllers

modal controllers, 120–122

UINavigationController

back button, 113

configuration, 113

-initWithRootViewController:, 112

-pushViewController:animated:

method, 112

right bar item(s), 114

root view controller, 112

-setToolbarHidden:animated:

method, 114

-setToolbarItems: method, 114

title, 113

UINavigationControllerDelegate

protocol, 114

-viewDidLoad methods, 114

-viewWillAppear:animated:

method, 114

viewWillDisappear:animated:

method, 114

UIPageViewController, 120

UIPopoverController, 118–120

UISplitViewController

detail pane, 116

iPad-specific

UISplitViewController, 117

master pane, 116

Master-Detail Application

template, 117, 118

NSArray, 118

-splitViewController:shouldHide

ViewController:inOrientation:

method, 118

UISplitViewControllerDelegate

protocol, 118

UITabBarController

UITabBarItem, 115

-viewDidLoad method, 115

View printing, 475–477

-viewWillAppear method, 227

-viewWillDisappear method, 227

-(void)locationManager:

(CLLocationManager *)manager

didUpdateToLocation:(CLLocati

on *)newLocation

fromLocation:(CLLocation

*)oldLocation method, 140

■ X, Y
Xcode 4

ARC (see Automatic Reference

Counting (ARC))

lite and full version, 5–7

user interface, 1 see

Assistant Editor, 4

interface builder, 2, 3

Timeline Editor, 4

version control

branching and merging, 13–17

GitHub, 18–20

local Git repository see Local

Git repository, Xcode 4)

remote repositories, 17, 18

source control practices, 20

■ Z
Zombie Hunter, 7–9

http://

	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	What to Expect from This Book
	How This Book Is Organized

	Xcode 4 Tips and Tricks
	Xcode 4: An Introduction
	Creating a Local Repository
	Branching and Merging
	Remote Repositories
	GitHub
	Source Control Best Practices
	ARC Rules
	Using ARC
	Converting Older Projects to ARC
	Comments
	Autocomplete
	Quick Indent/Unindent
	Quickly Switch Between Header and Implementation Files
	Class Documentation
	Open File in Assistant Editor
	Behaviors

	Summary

	Introduction to Interface Builder
	Interface Builder Walkthrough
	Our Forces Combined…
	Touches Too
	Adjusting Tint
	Rapid App Development with Storyboarding
	Scenes
	Segues

	Summary

	Application Design Elements
	Cocoa Touch Controls
	Data Views
	Gesture Recognizers
	View Controllers
	Temporary User Interface Elements
	Summary

	Location Recipes
	Supported Devices
	Requiring Location Services
	How Do I Know Where I Am?
	Recipe 4–1: Getting Device Location Information
	Recipe 4–2: Significant Location Changes
	Recipe 4–3: Determining Magnetic Bearing
	Recipe 4–4: Specifying True Bearing
	Recipe 4–5: Region Monitoring
	Recipe 4–6: Reverse and Forward Geocoding
	Getting Coordinates from Place Names
	Summary

	Map Kit Recipes
	Recipe 5–1: Showing a Map with the Device’s Location
	Recipe 5–2: Marking Locations with Pins
	Recipe 5–3: Creating Custom Annotations
	Recipe 5–4: Adding Overlays to a Map
	Recipe 5–5: Grouping Annotations by Location
	Summary

	Camera Recipes
	Recipe 6–1: Taking Pictures
	Recipe 6–2: Recording Video
	Recipe 6–3: Editing Videos
	Recipe 6–4: Custom Camera Overlays
	Recipe 6–5: AV Framework and Capture Sessions
	A Note on AVCaptureVideoPreviewLayer

	Recipe 6–6: Programmatically Recording Video
	Recipe 6–7: Capturing Video Frames
	Summary

	Multimedia Recipes
	Recipe 7–1: Playing Audio
	Recipe 7–2: Recording Audio
	Recipe 7–3: Accessing the iPod Library
	Recipe 7–4: Background Playing and Now Playing Info
	Summary

	User Data Recipes
	Recipe 8–1: Working with NSCalendar and NSDate
	Recipe 8–2: Fetching Events
	Recipe 8–3: Displaying Events in a UITableView
	Recipe 8–4: Viewing, Editing, and Deleting Events
	Recipe 8–5: Creating Simple Events
	Recipe 8–6: Recurring Events
	Recipe 8–7: Basic Address Book Access
	Recipe 8–8: Setting Contact Information
	Recipe 8–9: Viewing Contacts
	Summary

	UITableView Recipes
	Recipe 9–1: Creating an Ungrouped Table
	Recipe 9–2: Editing a UITableView
	Recipe 9–3: Re-ordering a UITableView
	Recipe 9–4: Creating a Grouped UITableView
	Summary

	Data Storage Recipes
	Recipe 10–1: Using NSUserDefaults
	Recipe 10–2: Managing Files
	Core Data
	Recipe 10–3: Persistence with iCloud
	Recipe 10–4: Storing Key-Value Data in iCloud
	Summary

	Core Data Recipes
	What Is Core Data?
	Recipe 11–1: Creating a Data Model
	Recipe 11–2: Working with NSManagedObjects
	Recipe 11–3: Subclassing NSManagedObject
	Recipe 11–4: Filtering Your Fetch Requests
	Recipe 11–5: Versioning
	An Irritating Error
	Summary

	Core Motion Recipes
	Recipe 12–1: Registering Shake Events
	Recipe 12–2: Accessing Raw Core Motion Data
	Recipe 12–3: Moving a UILabel with the Accelerometer
	Summary

	Data Transmission Recipes
	Recipe 13–1: Composing Text Messages
	Recipe 13–3: Printing an Image
	Recipe 13–4: Printing Plain Text
	Recipe 13–5: Printing a View
	Recipe 13–6: Formatted Printing with Page Renderers
	Summary

	Twitter Recipes
	Recipe 14–1: Composing Simple Tweets
	Recipe 14–2: Creating Simple TWRequests
	Sending Tweets via TWRequest
	Recipe 14–3: Retrieving Tweets
	Recipe 14–4: Filtering Tweets
	Summary

	Image Recipes
	Recipe 15–1: Drawing Simple Shapes
	Recipe 15–2: Using UIImageViews
	Recipe 15–3: Scaling Images
	Recipe 15–4: Manipulating Images with Filters
	Recipe 15–5: Detecting Features
	Summary

	Game Kit Recipes
	Recipe 16–1: Starting with Game Center
	Recipe 16–2: Leaderboards
	Recipe 16–3: Achievements
	Recipe 16–4: Multiplayer
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I, J
	K
	L
	M
	N, O
	P, Q
	R
	S
	T
	U
	V, W
	X, Y
	Z

