

Vandad Nahavandipoor

iOS 7 Programming Cookbook

iOS 7 Programming Cookbook

by Vandad Nahavandipoor

Copyright © 2014 Vandad Nahavandipoor. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Rachel Roumeliotis

Production Editor: Christopher Hearse

Copyeditor: Zyg Group, LLC

Proofreader: Julie Van Keuren

Indexer: Angela Howard

Cover Designer: Randy Comer

Interior Designer: David Futato

Illustrator: Rebecca Demarest

October 2013: First Edition

Revision History for the First Edition:

2013-10-09: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449372422 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc., iOS 7 Programming Cookbook, the image of a Cowan’s shrew tenrec, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-37242-2

[QG]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449372422

Table of Contents

Preface. xi

1. Implementing Controllers and Views. 1
1.1. Displaying Alerts with UIAlertView 23
1.2. Creating and Using Switches with UISwitch 32
1.3. Customizing the UISwitch 36
1.4. Picking Values with the UIPickerView 39
1.5. Picking the Date and Time with UIDatePicker 45
1.6. Implementing Range Pickers with UISlider 50
1.7. Customizing the UISlider 54
1.8. Grouping Compact Options with UISegmentedControl 59
1.9. Presenting and Managing Views with UIViewController 63
1.10. Presenting Sharing Options with UIActivityViewController 67
1.11. Presenting Custom Sharing Options with UIActivityViewController 73
1.12. Implementing Navigation with UINavigationController 79
1.13. Manipulating a Navigation Controller’s Array of View Controllers 85
1.14. Displaying an Image on a Navigation Bar 86
1.15. Adding Buttons to Navigation Bars Using UIBarButtonItem 88
1.16. Presenting Multiple View Controllers with UITabBarController 94
1.17. Displaying Static Text with UILabel 101
1.18. Customizing the UILabel 105
1.19. Accepting User Text Input with UITextField 108
1.20. Displaying Long Lines of Text with UITextView 118
1.21. Adding Buttons to the User Interface with UIButton 123
1.22. Displaying Images with UIImageView 127
1.23. Creating Scrollable Content with UIScrollView 132
1.24. Loading Web Pages with UIWebView 137
1.25. Displaying Progress with UIProgressView 141
1.26. Constructing and Displaying Styled Texts 143

iii

1.27. Presenting Master-Detail Views with UISplitViewController 148
1.28. Enabling Paging with UIPageViewController 153
1.29. Displaying Popovers with UIPopoverController 158

2. Creating Dynamic and Interactive User Interfaces. 169
2.1. Adding Gravity to Your UI Components 171
2.2. Detecting and Reacting to Collisions Between UI Components 172
2.3. Animating Your UI Components with a Push 180
2.4. Attaching Multiple Dynamic Items to Each Other 184
2.5. Adding a Dynamic Snap Effect to Your UI Components 189
2.6. Assigning Characteristics to Your Dynamic Effects 192

3. Auto Layout and the Visual Format Language. 197
3.1. Placing UI Components in the Center of the Screen 201
3.2. Defining Horizontal and Vertical Constraints with the Visual Format
Language 203
3.3. Utilizing Cross View Constraints 210
3.4. Configuring Auto Layout Constraints in Interface Builder 217

4. Constructing and Using Table Views. 221
4.1. Populating a Table View with Data 225
4.2. Using Different Types of Accessories in a Table View Cell 229
4.3. Creating Custom Table View Cell Accessories 232
4.4. Enabling Swipe Deletion of Table View Cells 235
4.5. Constructing Headers and Footers in Table Views 237
4.6. Displaying Context Menus on Table View Cells 246
4.7. Moving Cells and Sections in Table Views 251
4.8. Deleting Cells and Sections from Table Views 257
4.9. Utilizing the UITableViewController for Easy Creation of Table Views 268
4.10. Displaying a Refresh Control for Table Views 274

5. Building Complex Layouts with Collection Views. 279
5.1. Constructing Collection Views 281
5.2. Assigning a Data Source to a Collection View 284
5.3. Providing a Flow Layout to a Collection View 285
5.4. Providing Basic Content to a Collection View 288
5.5. Feeding Custom Cells to Collection Views Using .xib Files 294
5.6. Handling Events in Collection Views 299
5.7. Providing a Header and a Footer in a Flow Layout 303
5.8. Adding Custom Interactions to Collection Views 308

iv | Table of Contents

5.9. Providing Contextual Menus on Collection View Cells 311

6. Storyboards. 315
6.1. Adding a Navigation Controller to a Storyboard 316
6.2. Passing Data from One Screen to Another 318
6.3. Adding a Tab Bar Controller to a Storyboard 325
6.4. Introducing Custom Segue Transitions to Your Storyboard 328
6.5. Placing Images and Other UI Components on Storyboards 332

7. Concurrency. 335
7.1. Constructing Block Objects 342
7.2. Accessing Variables in Block Objects 346
7.3. Invoking Block Objects 352
7.4. Performing UI-Related Tasks with GCD 354
7.5. Executing Non-UI Related Tasks Synchronously with GCD 358
7.6. Executing Non-UI Related Tasks Asynchronously with GCD 361
7.7. Performing Tasks after a Delay with GCD 368
7.8. Performing a Task Only Once with GCD 371
7.9. Grouping Tasks Together with GCD 373
7.10. Constructing Your Own Dispatch Queues with GCD 377
7.11. Running Tasks Synchronously with Operations 380
7.12. Running Tasks Asynchronously with Operations 387
7.13. Creating Dependency Between Operations 393
7.14. Creating Timers 395
7.15. Creating Concurrency with Threads 400
7.16. Invoking Background Methods 406
7.17. Exiting Threads and Timers 407

8. Security. 411
8.1. Enabling Security and Protection for Your Apps 418
8.2. Storing Values in the Keychain 422
8.3. Finding Values in the Keychain 424
8.4. Updating Existing Values in the Keychain 429
8.5. Deleting Exiting Values in the Keychain 432
8.6. Sharing Keychain Data Between Multiple Apps 434
8.7. Writing to and Reading Keychain Data from iCloud 440
8.8. Storing Files Securely in the App Sandbox 443
8.9. Securing Your User Interface 446

9. Core Location and Maps. 449
9.1. Creating a Map View 450
9.2. Handling the Events of a Map View 452

Table of Contents | v

9.3. Pinpointing the Location of a Device 453
9.4. Displaying Pins on a Map View 455
9.5. Displaying Pins with Different Colors on a Map View 459
9.6. Displaying Custom Pins on a Map View 465
9.7. Converting Meaningful Addresses to Longitude and Latitude 468
9.8. Converting Longitude and Latitude to a Meaningful Address 470
9.9. Searching on a Map View 472
9.10. Displaying Directions on the Map 475

10. Implementing Gesture Recognizers. 481
10.1. Detecting Swipe Gestures 483
10.2. Detecting Rotation Gestures 485
10.3. Detecting Panning and Dragging Gestures 489
10.4. Detecting Long-Press Gestures 491
10.5. Detecting Tap Gestures 495
10.6. Detecting Pinch Gestures 497

11. Networking, JSON, XML, and Sharing. 501
11.1. Downloading Asynchronously with NSURLConnection 501
11.2. Handling Timeouts in Asynchronous Connections 504
11.3. Downloading Synchronously with NSURLConnection 506
11.4. Modifying a URL Request with NSMutableURLRequest 508
11.5. Sending HTTP GET Requests with NSURLConnection 509
11.6. Sending HTTP POST Requests with NSURLConnection 511
11.7. Sending HTTP DELETE Requests with NSURLConnection 513
11.8. Sending HTTP PUT Requests with NSURLConnection 514
11.9. Serializing Arrays and Dictionaries into JSON 516
11.10. Deserializing JSON into Arrays and Dictionaries 518
11.11. Integrating Social Sharing into Your Apps 521
11.12. Parsing XML with NSXMLParser 525

12. Audio and Video. 531
12.1. Playing Audio Files 531
12.2. Handling Interruptions While Playing Audio 534
12.3. Recording Audio 535
12.4. Handling Interruptions While Recording Audio 542
12.5. Playing Audio over Other Active Sounds 543
12.6. Playing Video Files 547
12.7. Capturing Thumbnails from Video Files 551
12.8. Accessing the Music Library 554

13. Address Book. 563

vi | Table of Contents

13.1. Requesting Access to the Address Book 564
13.2. Retrieving a Reference to an Address Book 568
13.3. Retrieving All the People in the Address Book 571
13.4. Retrieving Properties of Address Book Entries 573
13.5. Inserting a Person Entry into the Address Book 577
13.6. Inserting a Group Entry into the Address Book 581
13.7. Adding Persons to Groups 584
13.8. Searching the Address Book 587
13.9. Retrieving and Setting a Person’s Address Book Image 592

14. Files and Folder Management. 601
14.1. Finding the Paths of the Most Useful Folders on Disk 603
14.2. Writing to and Reading from Files 605
14.3. Creating Folders on Disk 610
14.4. Enumerating Files and Folders 612
14.5. Deleting Files and Folders 618
14.6. Saving Objects to Files 621

15. Camera and the Photo Library. 625
15.1. Detecting and Probing the Camera 627
15.2. Taking Photos with the Camera 632
15.3. Taking Videos with the Camera 636
15.4. Storing Photos in the Photo Library 639
15.5. Storing Videos in the Photo Library 644
15.6. Retrieving Photos and Videos from the Photo Library 646
15.7. Retrieving Assets from the Assets Library 649
15.8. Editing Videos on an iOS Device 656

16. Multitasking. 663
16.1. Detecting the Availability of Multitasking 664
16.2. Completing a Long-Running Task in the Background 665
16.3. Adding Background Fetch Capabilities to Your Apps 669
16.4. Playing Audio in the Background 678
16.5. Handling Location Changes in the Background 682
16.6. Saving and Loading the State of Multitasking Apps 684
16.7. Handling Network Connections in the Background 688
16.8. Opting Out of Multitasking 691

17. Notifications. 693
17.1. Sending Notifications 694
17.2. Listening for and Reacting to Notifications 696
17.3. Listening and Reacting to Keyboard Notifications 700

Table of Contents | vii

17.4. Scheduling Local Notifications 707
17.5. Listening for and Reacting to Local Notifications 711
17.6. Handling Local System Notifications 714
17.7. Setting Up Your App for Push Notifications 718
17.8. Delivering Push Notifications to Your App 724
17.9. Reacting to Push Notifications 732

18. Core Data. 735
18.1. Creating a Core Data Model with Xcode 737
18.2. Generating Class Files for Core Data Entities 741
18.3. Creating and Saving Data Using Core Data 745
18.4. Reading Data from Core Data 747
18.5. Deleting Data from Core Data 750
18.6. Sorting Data in Core Data 752
18.7. Boosting Data Access in Table Views 754
18.8. Implementing Relationships in Core Data 761
18.9. Fetching Data in the Background 768
18.10. Using Custom Data Types in Your Core Data Model 772

19. Dates, Calendars, and Events. 779
19.1. Requesting Permission to Access Calendars 784
19.2. Retrieving Calendar Groups on an iOS Device 790
19.3. Adding Events to Calendars 792
19.4. Accessing the Contents of Calendars 796
19.5. Removing Events from Calendars 799
19.6. Adding Recurring Events to Calendars 803
19.7. Retrieving the Attendees of an Event 808
19.8. Adding Alarms to Calendars 811
19.9. Handling Event Changed Notifications 814
19.10. Presenting Event View Controllers 816
19.11. Presenting Event Edit View Controllers 822

20. Graphics and Animations. 827
20.1. Enumerating and Loading Fonts 833
20.2. Drawing Text 835
20.3. Constructing, Setting, and Using Colors 836
20.4. Drawing Images 841
20.5. Constructing Resizable Images 845
20.6. Drawing Lines 850
20.7. Constructing Paths 858
20.8. Drawing Rectangles 862
20.9. Adding Shadows to Shapes 866

viii | Table of Contents

20.10. Drawing Gradients 873
20.11. Moving Shapes Drawn on Graphic Contexts 882
20.12. Scaling Shapes Drawn on Graphic Contexts 886
20.13. Rotating Shapes Drawn on Graphic Contexts 889
20.14. Animating and Moving Views 890
20.15. Animating and Scaling Views 900
20.16. Animating and Rotating Views 901
20.17. Capturing a Screenshot of Your View into an Image 903

21. Core Motion. 907
21.1. Detecting the Availability of an Accelerometer 908
21.2. Detecting the Availability of a Gyroscope 910
21.3. Retrieving Accelerometer Data 911
21.4. Detecting Shakes on an iOS Device 915
21.5. Retrieving Gyroscope Data 916

22. iCloud. 919
22.1. Setting Up Your App for iCloud 920
22.2. Storing and Synchronizing Dictionaries in iCloud 924
22.3. Creating and Managing Folders for Apps in iCloud 929
22.4. Searching for Files and Folders in iCloud 936
22.5. Storing User Documents in iCloud 946
22.6. Managing the State of Documents in iCloud 961

23. Pass Kit. 965
23.1. Creating Pass Kit Certificates 968
23.2. Creating Pass Files 975
23.3. Providing Icons and Images for Passes 984
23.4. Preparing Your Passes for Digital Signature 987
23.5. Signing Passes Digitally 989
23.6. Distributing Passes Using Email 993
23.7. Distributing Passes Using Web Services 995
23.8. Enabling Your iOS Apps to Access Passes on iOS Devices 997
23.9. Interacting with Passbook Programmatically 1003

Index. 1007

Table of Contents | ix

Preface

This edition of the book is not just an update, but a total remake of the previous edition.
iOS 7 changed everything: the look and feel, the way we use our iOS devices, and most
importantly, the way we program for iOS devices. This called for a substantial rewrite
indeed. I have added roughly 50 new recipes to this book, talking about things such as
UIKit dynamics, collection views, the keychain, push notifications, and whatnot. I have
also gone through all the example codes and figures and updated them for iOS 7.

iOS 7 is a huge step forward for this amazing operating system that we all, as program‐
mers and users, have grown to love and enjoy programming for. You must have noticed
how the focus of iOS 7 is on being dynamic: how your UI should adapt to various
movements and motions that can be applied to the device. What I mean by that is Apple
wants developers to really look at the details of their apps and bring real-world physics
and dynamics into them. That’s why Apple introduced UIKit Dynamics to the SDK, and
that is why this book has a whole chapter dedicated to this concept. The more expensive
a high-end device such as the new iPhone becomes, the more demanding the users will
get as well. Nobody blames them, though! They have just bought a fantastic and top-
of-the-line new iPhone or iPad and they want to see amazing apps running on them,
leveraging all the capabilities that those devices have to offer.

That is why now more than ever developers have to get an in-depth knowledge of the
SDK and what the SDK has to offer to the developers so that we can create better and
faster apps for iOS users. Apple introduced a lot of cool new APIs to the iOS 7 SDK, and
we are going to explore them in this book.

The focus of iOS 7 is dynamics!

Before you read about this book, maybe you’d like to know about my background a bit
and how I can help you through this journey. I will just briefly let you know who I am
and how I got to love iOS. I started out writing Basic code for my Commodore 64 when
I was a kid. I then moved on to buy my own PC and started experimenting with Assembly
code. At first, it was 8-bit Assembly for DOS. I then moved onto writing my own hobby

xi

operating system, which was never really released as a commercial product, for 32-bit
Intel x86 CPU architectures.

Among all the programming languages that I have programmed in, Assembly and
Objective-C are the two that have really been different from the others, and I’ve really
liked them. Assembly because of the purity of the language: a command does only one
thing and does that one thing well. I believe that I like Objective-C for the same reason,
and in fact iOS shares the same trait with Assembly and Objective-C. Even though iOS
is an operating system and not a programming language, whatever it does, it does it best
and better than its rivals. From its simplicity to the sheer power that you can harvest
from the software and the hardware combined, using technologies such as GCD, the
bar that iOS has set in terms of ease of use and beauty is unprecedented.

This edition of the book has seen all the recipes inside all chapters completely renewed
for iOS 7. All screenshots have been updated, and many more recipes—such as those
related to security and the keychain, UI dynamics, collection views, push and local
notifications, and many more—have exclusively been written for this edition of the
book. I really have had a fun time writing this edition of the book, and packed as it is
with new features, I hope you’ll enjoy reading it. May it be a valuable addition to your
tech-book library.

Audience
I assume you are comfortable with the iOS development environment and know how
to create an app for the iPhone or iPad. This book does not get novice programmers
started but presents useful ways to get things done for iOS programmers ranging from
novices to experts.

Organization of This Book
In this book, we will discuss frameworks and classes that are available in the iOS 7 SDK.
This book does its best to teach you the latest and the greatest APIs. As you know, some
users of your apps may still be on older versions of iOS, so please consider those users
and choose your APIs wisely, depending on the minimum iOS version that you want to
target with your apps.

Apple has recommended that you write your apps so that they support and run on iOS
6 and iOS 7. This means you need to use the latest SDK as your base SDK (the SDK that
you use to compile your app) and choose iOS 6 as your target, if that’s what your business
requirements dictate. If you are required to write your app to support only iOS 7, then
you are in for a lot of fun, as you can use all the cool APIs that have been introduced in
iOS 7 and discussed in this book.

xii | Preface

Here is a concise breakdown of the material each chapter covers:

Chapter 1, Implementing Controllers and Views
Explains how Objective-C classes are structured and how objects can be instanti‐
ated. The chapter talks about properties and delegates and subscripting by keys and
indexes. Even if you are competent in Objective-C, I strongly suggest that you read
this chapter, even if you only skim through it, to understand the basic material that
is used in the rest of the book. In this chapter, we will also explore the common
usage of various UI components, such as alert views, segmented controls, switches,
and labels. We will also talk about customizing these components with the latest
APIs provided in the SDK.

Chapter 2, Creating Dynamic and Interactive User Interfaces
Talks about UIKit Dynamics, the newest addition to the UIKit framework. These
dynamics allow you to add real-life physics and dynamics to your UI components.
This will allow you to create even livelier user interfaces with very small effort on
your side.

Chapter 3, Auto Layout and the Visual Format Language
Explains how you can take advantage of Auto Layout in the iOS SDK in order to
construct your UI in such a way that it can be resized and stretched to pretty much
any screen dimension.

Chapter 4, Constructing and Using Table Views
Shows how you can work with table views to create professional-looking iOS ap‐
plications. Table views are very dynamic in nature, and as a result, programmers
sometimes have difficulty understanding how they should work with them. By
reading this chapter and trying out the example code, you will gain the knowledge
that is required to comfortably work with table views.

Chapter 5, Building Complex Layouts with Collection Views
Collection views have been available to OS X programmers for quite some time
now, and Apple decided to provide the same APIs to iOS programmers in the iOS
SDK. Collection views are very much like table views, but they are much more
configurable and dynamic. Where in table views we have the concept of sections
and rows in each section, collection views bring columns to the equation as well,
so that you can display many items in one row if you want to. In this chapter we
will have a look at all the great user interfaces that you can create using collection
views.

Chapter 6, Storyboards
Demonstrates the process of storyboarding, the new way to define the connections
between different screens in your app. The great thing about storyboarding is that
you don’t have to know anything about iOS programming to get a simple app run‐
ning. This helps product analysts, product owners, or designers who work inde‐
pendently of developers to gain knowledge of the UI components iOS offers and to

Preface | xiii

build more robust products. Programmers can also take advantage of storyboarding
to easily create prototypes. Storyboarding is just fun, whether you do it on paper
or using Xcode.

Chapter 7, Concurrency
As humans, we can do many things simultaneously without thinking much about
it. With advances in computer technology, mobile devices are also able to multitask,
and they provide programmers with tools and mechanisms that can accomplish
more than one task at the same time. This is called concurrency. In this chapter, you
will learn about Grand Central Dispatch, Apple’s preferred way of achieving con‐
currency in iOS. You will also learn about timers, threads, and operations.

Chapter 8, Security
iOS is a very secure operating system, and apps that we write for it also have to
adhere to certain security standards and practices. In this chapter, we will discuss
how you can take advantage of keychain APIs to make your apps more secure. We
will also talk about various steps that you can take to make your user interface more
secure.

Chapter 9, Core Location and Maps
Describes how you should use Map Kit and Core Location APIs to develop location-
aware iOS applications. First you will learn about maps, and then you will learn
how to detect a device’s location and tailor your maps with custom annotations.
You will also learn about geocoding and reverse geocoding, as well as some of the
methods of the Core Location framework, which are available only in iOS 7.

Chapter 10, Implementing Gesture Recognizers
Demonstrates how to use gesture recognizers, which enable your users to easily and
intuitively manipulate the graphical interface of your iOS applications. In this
chapter, you will learn how to use all available gesture recognizers in the iOS SDK,
with working examples tested on iOS 7.

Chapter 11, Networking, JSON, XML, and Sharing
Demonstrates the built-in JSON and XML parsers. On top of that, this chapter talks
about various networking APIs and how programmers can build social networking
into our apps to allow our users to share their creations and data to social networks
such as Facebook.

Chapter 12, Audio and Video
Discusses the AV Foundation and Media Player frameworks that are available on
the iOS SDK. You will learn how to play audio and video files and how to handle
interruptions, such as a phone call, while the audio or video is being played. This
chapter also explains how to record audio using an iOS device’s built-in micro‐
phone(s). At the end of the chapter, you will learn how to access the Music Library
and play its media content, all from inside your application.

xiv | Preface

Chapter 13, Address Book
Explains the Address Book framework and how to retrieve contacts, groups, and
their information from the Address Book database on an iOS device. The Address
Book framework is composed entirely of C APIs. Because of this, many Objective-
C developers find it difficult to use this framework, as compared with frameworks
that provide an Objective-C interface. After reading this chapter and trying the
examples for yourself, you will feel much more confident using the Address Book
framework.

Chapter 14, Files and Folder Management
One of the most important tasks that, as developers, we want to perform in our iOS
apps is manipulating files and folders. Whether this means creating, reading from,
writing to, or deleting them, this chapter contains enough material to get you up
and running with file and folder management in the iOS SDK.

Chapter 15, Camera and the Photo Library
Demonstrates how you can determine the availability of front- and back-facing
cameras on an iOS device. You will also learn how to access the photo library using
the Assets Library framework. At the end of the chapter, you will learn about editing
videos right on an iOS device using a built-in view controller.

Chapter 16, Multitasking
Shows multitasking-aware applications that run beautifully on iOS devices. You will
learn about background processing, including how to play audio and retrieve users’
locations in the background, as well as how to download content from a URL while
your application is running in the background. On top of that, we will explore some
of the new APIs that iOS 7 provides to us, in order to enable our apps to download
content periodically while in the background or even while our app is not even
running.

Chapter 17, Notifications
Notifications are objects that can be composed by a source and delivered to multiple
recipients. In this chapter, we will discuss notifications, including local notifications
and push notifications, along with how you can use the latest capabilities built into
Xcode to easily enable these features in your own apps.

Chapter 18, Core Data
Describes the details of Core Data stacks and what they are made out of. You will
then be able to design your own object-oriented data models right into Xcode, using
the Core Data model editor, and also create and retrieve your objects in Core Data.
On top of that, you will learn how to add your own custom data to Core Data and
how to search for data in the background thread, leaving your UI thread ready to
process user events.

Preface | xv

Chapter 19, Dates, Calendars, and Events
Demonstrates the use of the Event Kit and Event Kit UI frameworks in order to
manage calendars and events on an iOS device. You will see how to create, modify,
save, and delete events. You will also learn, through examples, how to add alarms
to calendar events and how to set up CalDAV calendars so that you can share a
single calendar among multiple devices.

Chapter 20, Graphics and Animations
Introduces the Core Graphics framework. You will learn how to draw images and
text on a graphics context; draw lines, rectangles, and paths; and much more. You
will also learn to use the new iOS SDK APIs to capture your views’ contents as
screenshots.

Chapter 21, Core Motion
Explains the Core Motion framework. Using Core Motion, you will access the ac‐
celerometer and the gyroscope on an iOS device. You will also learn how to detect
shakes on a device. Of course, not all iOS devices are equipped with an accelerom‐
eter and a gyroscope, so you will also learn how to detect the availability of the
required hardware.

Chapter 22, iCloud
Shows how to use the iCloud service, which ties devices together and allows them
to share data to provide a seamless user experience as the user moves from one
device to another.

Chapter 23, Pass Kit
Describes Passbook: a virtual wallet, if you will, capable of managing your coupons,
boarding passes, rail and bus tickets, and much more. In this chapter, you will learn
all there is to know in order to be able to create your own digitally signed passes
and distribute them to your users easily.

Additional Resources
From time to time, I refer to official Apple documentation. Some of Apple’s descriptions
are right on the mark, and there is no point in trying to restate them. Throughout this
book, I have listed the most important documents and guides in the official Apple doc‐
umentation that every professional iOS developer should read.

For starters, I suggest that you have a look at the iOS Human Interface Guidelines for
all iOS devices. This document will tell you everything you need to know about devel‐
oping engaging and intuitive user interfaces for all iOS devices. Every iOS programmer
should read this document. In fact, I believe this should be required reading for the
product design and development teams of any company that develops iOS applications.

xvi | Preface

http://bit.ly/QbdY0B

I also suggest that you skim through the “iOS App Programming Guide” in the iOS
Developer Library for some tips and advice on how to make great iOS applications.

iOS 7 brings with itself quite a lot of changes to how UI components appear on the
screen. We will talk at great length about these changes and how you, as the programmer,
can use the latest APIs to create great-looking apps for iOS 7. However, I would like to
suggest that you have a look at the iOS 7 UI Transition Guide provided by Apple, which
outlines all the UI changes that have now been made to the latest version of the SDK.

One of the things you will notice when reading Chapter 16 is the use of block objects.
This book concisely explains block objects, but if you require further details on the
subject, I suggest you read “A Short Practical Guide to Blocks”.

Throughout this book, you will see references to “bundles” and loading images and data
from bundles. You will read a concise overview about bundles in this book, but if you
require further information, head over to the “Bundle Programming Guide”.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Preface | xvii

http://bit.ly/Qi7JaZ
http://bit.ly/Qi7JaZ
http://bit.ly/190XxsL
http://bit.ly/TsSMNU
http://bit.ly/XdLKE6

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/iOS7_programming_cookbook.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “iOS 7 Programming Cookbook
by Vandad Nahavandipoor (O’Reilly). Copyright 2014 Vandad Nahavandipoor,
978-1-4493-7242-2.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both book and
video form from the world’s leading authors in technology and busi‐
ness.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

xviii | Preface

https://github.com/oreillymedia/iOS7_programming_cookbook
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/iOS7-Programming-Cookbook.

To comment or ask technical questions about this book, send email to bookques

tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Andy Oram, my lovely editor, has again done an amazing job going through all the
changes that I made in this edition of the book. In fact, the whole book is updated in
this edition, and all example codes and screenshots have also been updated. I’d like to
also thank Krzysztof Grobelny and Krzysztof Gutowski, my great friends and colleagues,
for tech-reviewing this book. Without their help, this book wouldn’t be in your hands.

I’d like to say thank you to Rachel Roumeliotis, for supporting me and Andy, among all
the other admin work that she did for us behind the scenes. Rachel, you may be quiet,
but we’d have to be blind not to notice your hard work in the background. Also, Meghan
Connolly of O’Reilly has been a fantastic sport, listening to my nagging about paper‐
work, and she has been absolute bliss to work with. A thank-you goes to Jessica Hosman
for helping us a great deal with Git issues. Even though I didn’t believe the simple sol‐
utions that she suggested to me would work, they did, and I looked like a fool.

Last but not least, thank you to Alina Rizzoni, Bruno Packham, and Thomas Packham
for being real friends. I feel blessed to know them, and I appreciate their help and
support.

Preface | xix

http://oreil.ly/iOS7-Programming-Cookbook
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Implementing Controllers and Views

1.0. Introduction
iOS 7 has introduced a lot of new features to users, as well as tons of new APIs for us
programmers to use and play with. You probably already know that the user interface
has drastically changed in iOS 7. This user interface had stayed intact all the way from
the first version of iOS till now, and because of this, many apps were coded on the
assumption that this user interface would not ever change. Graphic designers are now
faced with the challenge of creating the user interface and thinking about the user ex‐
perience in a way that makes it great for both pre- and post-iOS 7 user interfaces (UIs).

In order to write apps for iOS 7, you need to know some of the basics of the Objective-
C programming language that we will use throughout this book. Objective-C, as its
name implies, is based on C with extensions that allow it to make use of objects. Objects
and classes are fundamental in object-oriented programming (OOP) languages such as
Objective-C, Java, C++, and many others. In Objective-C, like any other object-oriented
language (OOL), you have not only access to objects, but also to primitives. For instance,
the number –20 (minus twenty) can be expressed simply as a primitive in this way:

NSInteger myNumber = -20;

This simple line of code will define a variable named myNumber with the data type of
NSInteger and sets its value to 20. This is how we define variables in Objective-C. A
variable is a simple assignment of a name to a location in memory. In this case, when
we set 20 as the value of the myNumber variable, we are telling the machine that will
eventually run this piece of code to put the aforementioned value in a memory location
that belongs to the variable myNumber.

All iOS applications essentially use the model-view-controller (MVC) architecture.
Model, view, and controller are the three main components of an iOS application from
an architectural perspective.

1

The model is the brain of the application. It does the calculations and creates a virtual
world for itself that can live without the views and controllers. In other words, think of
a model as a virtual copy of your application, without a face!

A view is the window through which your users interact with your application. It displays
what’s inside the model most of the time, but in addition to that, it accepts users’ inter‐
actions. Any interaction between the user and your application is sent to a view, which
then can be captured by a view controller and sent to the model.

The controller in iOS programming usually refers to the view controllers I just men‐
tioned. Think of a view controller as a bridge between the model and your views. This
controller interprets what is happening on one side and uses that information to alter
the other side as needed. For instance, if the user changes some field in a view, the
controller makes sure the model changes in response. And if the model gets new data,
the controller tells the view to reflect it.

In this chapter, you will learn how to create the structure of an iOS application and how
to use views and view controllers to create intuitive applications.

In this chapter, for most of the user interface (UI) components that we
create, we are using a Single View Application template in Xcode. To
reproduce the examples, follow the instructions in “Creating and Run‐
ning Our First iOS App” on page 2. Make sure that your app is uni‐

versal, as opposed to an iPhone or iPad app. A universal app can run
on both iPhone and iPad.

Creating and Running Our First iOS App
Before we dive any deeper into the features of Objective-C, we should have a brief look
at how to create a simple iOS app in Xcode. Xcode is Apple’s IDE (integrated develop‐
ment environment) that allows you to create, build, and run your apps on iOS Simulator
and even on real iOS devices. We will talk more about Xcode and its features as we go
along, but for now let’s focus on creating and running a simple iOS app. I assume that
you’ve already downloaded Xcode into your computer from the Mac App Store. Once
that step is taken care of, please follow these steps to create and run a simple iOS app:

1. Open Xcode if it’s not already open.

2. From the File menu, choose New Project...

3. In the New Project window that appears, on the lefthand side under the iOS cate‐
gory, choose Application and then on the righthand side choose Single View Ap‐
plication. Then press the Next button.

4. On the next screen, for the Product Name, enter a name that makes sense for you.
For instance, you can set the name of your product as My First iOS App. In the

2 | Chapter 1: Implementing Controllers and Views

Organization Name section, enter your company’s name, or if you don’t have a
company, enter anything else that makes sense to you. The organization name is
quite an important piece of information that you can enter here, but for now, you
don’t have to worry about it too much. For the Company Identifier field, enter
com.mycompany. If you really do own a company or you are creating this app for a
company that you work with, replace mycompany with the actual name of the com‐
pany in question. If you are just experimenting with development on your own,
invent a name. For the Devices section, choose Universal.

5. Once you are done setting the aforementioned values, simply press the Next button.

6. You are now being asked by Xcode to save your project to a suitable place. Choose
a suitable folder for your project and press the Create button.

7. As soon as your project is created, you are ready to build and run it. However, before
you begin, make sure that you’ve unplugged all your iOS devices from your com‐
puter. The reason behind this is that once an iOS device is plugged in, by default,
Xcode will attempt to build and run your project on the device, causing some issues
with provisioning profiles (which we haven’t talked about yet). So unplug your iOS
devices and then press the big Run button on the top-lefthand corner of Xcode. If
you cannot find the Run button, go to the Product menu and select the Run menu
item.

Voilà! Your first iOS app is running in iOS Simulator now. Even though the app is not
exactly impressive, simply displaying a white screen in the simulator, this is just the first
step toward our bigger goal of mastering the iOS SDK, so hold on tight as we embark
on this journey together.

Defining and Understanding Variables
All modern programming languages, including Objective-C, have the concept of vari‐
ables. Variables are simple aliases to locations in the memory. Every variable can have
the following properties:

1. A data type, which is either a primitive, such as an integer, or an object

2. A name

3. A value

You don’t always have to set a value for a variable, but you need to specify its type and
its name. Here are a few data types that you will need to know about when writing any
typical iOS app:

1.0. Introduction | 3

Mutable Versus Immutable
If a data type is mutable, you can change if after it is initialized. For
instance, you can change one of the values in a mutable array, or add
or remove values. In contrast, you must provide the values to an im‐
mutable data type when you initialize it, and cannot add to them,
remove them, or change them later. Immutable types are useful be‐
cause they are more efficient, and because they can prevent errors when
the values are meant to stay the same throughout the life of the data.

NSInteger and NSUInteger
Variables of this type can hold integral values such as 10, 20, etc. The NSInteger
type allows negative values as well as positive ones, but the NSUInteger data type
is the Unsigned type, hence the U in its name. Remember, the phrase unsigned in
programming languages in the context of numbers always means that the number
must not be negative. Only a signed data type can hold negative numbers.

CGFloat
Holds floating point variables with decimal points, such as 1.31 or 2.40.

NSString
Allows you to store strings of characters. We will see examples of this later.

NSNumber
Allows you to store numbers as objects.

id
Variables of type id can point to any object of any type. These are called untyped
objects. Whenever you want to pass an object from one place to another but do not
wish to specify its type for whatever reason, you can take advantage of this data
type.

NSDictionary and NSMutableDictionary
These are immutable and mutable variants of hash tables. A hash table allows you
to store a key and to associate a value to that key, such as a key named phone_num
that has the value 05552487700. Read the values by referring to the keys associated
with them.

NSArray and NSMutableArray
Immutable and mutable arrays of objects. An array is an ordered collection of items.
For instance, you may have 10 string objects that you want to store in memory. An
array could be a good place for that.

NSSet, NSMutableSet, NSOrderedSet, NSMutableOrderedSet
Sets are like arrays in that they can hold series of objects, but they differ from arrays
in that they contain only unique objects. Arrays can hold the same object multiple

4 | Chapter 1: Implementing Controllers and Views

times, but a set can contain only one instance of an object. I encourage you to learn
the difference between arrays and sets and use them properly.

NSData and NSMutableData
Immutable and mutable containers for any data. These data types are perfect when
you want to read the contents of a file, for instance, into memory.

Some of the data types that we talked about are primitive, and some are classes. You’ll
just have to memorize which is which. For instance, NSInteger is a primitive data type,
but NSString is a class, so objects can be instantiated of it. Objective-C, like C and C++,
has the concept of pointers. A pointer is a data type that stores the memory address
where the real data is stored. You should know by now that pointers to classes are
denoted using an asterisk sign:

NSString *myString = @"Objective-C is great!";

Thus, when you want to assign a string to a variable of type NSString in Objective-C,
you simply have to store the data into a pointer of type NSString *. However, if you are
about to store a floating point value into a variable, you wouldn’t specify it as a pointer
since the data type for that variable is not a class:

/* Set the myFloat variable to PI */

CGFloat myFloat = M_PI;

If you wanted to have a pointer to that floating point variable, you could do so as follows:

/* Set the myFloat variable to PI */

CGFloat myFloat = M_PI;

/* Create a pointer variable that points to the myFloat variable */

CGFloat *pointerFloat = &myFloat;

Getting data from the original float is a simple dereference (myFloat), whereas getting
the value of through the pointer requires the use of the asterisk (*pointerFloat). The
pointer can be useful in some situations, such as when you call a function that sets the
value of a floating-point argument and you want to retrieve the new value after the
function returns.

Going back to classes, we probably have to talk a bit more about classes before things
get lost in translation, so let’s do that next.

Creating and Taking Advantage of Classes
A class is a data structure that can have methods, instance variables, and properties,
along with many other features, but for now we are just going to talk about the basics.
Every class has to follow these rules:

1.0. Introduction | 5

• The class has to be derived from a superclass, apart from a few exceptions such as
NSObject and NSProxy classes, which are root classes. Root classes do not have a
superclass.

• It has to have a name that conforms to Cocoa’s naming convention for methods.

• It has to have an interface file that defines the interface of the class.

• It has to have an implementation where you implement the features that you have
promised to deliver in the interface of the class.

NSObject is the root class from which almost every other class is inherited. For this
example, we are going to add a class, named Person, to the project we created in “Cre‐
ating and Running Our First iOS App” on page 2. We are going to then add two prop‐

erties to this class, named firstName and lastName, of type NSString. Follow these
steps to create and add the Person class to your project:

1. In Xcode, while your project is open and in front of you, from the File menu, choose
New → File...

2. On the lefthand side, ensure that under the iOS main section you have chosen the
Cocoa Touch category. Once done, select the Objective-C Class item and press the
Next button.

3. In the Class section, enter Person.

4. In the “Subclass of ” section, enter NSObject.

5. Once done, press the Next button, at which point Xcode will ask where you would
like to save this file. Simply save the new class into the folder where you have placed
your project and its files. This is the default selection. Then press the Create button,
and you are done.

You now have two files added to your project: Person.h and Person.m. The former is the

interface and the latter is the implementation file for your Person class. In Objective-
C, .h files are headers, where you define the interface of each class, and .m files are

implementation files where you write the actual implementation of the class.

Now let’s go into the header file of our Person class and define two properties for the
class, of type NSString:

@interface Person : NSObject

@property (nonatomic, copy) NSString *firstName;

@property (nonatomic, copy) NSString *lastName;

@end

Just like a variable, definition of properties has its own format, in this particular order:

6 | Chapter 1: Implementing Controllers and Views

http://bit.ly/19zqpvs

1. The definition of the property has to start with the @property keyword.

2. You then need to specify the qualifiers of the property. nonatomic properties are
not thread-safe. We will talk about thread safety in Chapter 16. You can also specify
assign, copy, weak, strong, or unsafe_unretained as the property qualifiers. We
will read more about these soon too.

3. You then have to specify the data type of the property, such as NSInteger or
NSString.

4. Last but not least, you have to specify a name for the property. The name of the
property has to follow the Apple guidelines.

We said that properties can have various qualifiers. Here are the important qualifiers
that you need to know about:

strong

Properties of this type will be retained by the runtime. These can only be instances
of classes. In other words, you cannot retain a value into a property of type strong
if the value is a primitive. You can retain objects, but not primitives.

copy

The same as strong, but when you assign to properties of this type, the runtime
will make a copy of the object on the right side of the assignment. The object on
the righthand side of the assignment must conform to the NSCopying or NSMutable
Copying protocol.

assign

Objects or primitive values that are set as the value of a property of type assign will
not be copied or retained by that property. For primitive properties, this qualifier
will create a memory address where you can put the primitive data. For objects,
properties of this type will simply point to the object on the righthand side of the
equation.

unsafe_unretained

The same as the assign qualifier.

weak

The same as the assign qualifier with one big difference. In the case of objects,
when the object that is assigned to a property of this type is released from memory,
the runtime will automatically set the value of this property to nil.

We now have a Person class with two properties: firstName and lastName. Let’s go back
to our app delegate’s implementation (AppDelegate.m) file and instantiate an object of

type Person:

#import "AppDelegate.h"

#import "Person.h"

1.0. Introduction | 7

http://bit.ly/19gFFcX

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 Person *person = [[Person alloc] init];

 person.firstName = @"Steve";

 person.lastName = @"Jobs";

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

We are allocating and initializing our instance of the Person class in this example. You
may not know what that means yet, but continue to the “Adding Functionality to Classes
with Methods” on page 8 section and you will find out.

Adding Functionality to Classes with Methods
Methods are building blocks of classes. For instance, a class named Person can have
logical functionalities such as walk, breathe, eat, and drink. These functionalities are
usually encapsulated in methods.

A method can take parameters, which are variables that the caller passes when calling
the method and are visible only to the method. For instance, in a simple world, we would
have a walk method for our Person class. However, if you want, you can add a parameter
or argument to the method and name it walkingSpeed of type CGFloat, so that when
another programmer calls that method on your class, she can specify the speed at which
the person has to walk. You, as the programmer of that class, would then write the
appropriate code for your class to handle different speeds of walking. Don’t worry if this
all sounds like too much, but have a look at the following example, where I have added
a method to the implementation file we created in “Creating and Taking Advantage of
Classes” on page 5 for our Person class:

#import "Person.h"

@implementation Person

- (void) walkAtKilometersPerHour:(CGFloat)paramSpeedKilometersPerHour{

 /* Write the code for this method here */

}

- (void) runAt10KilometersPerHour{

 /* Call the walk method in our own class and pass the value of 10 */

8 | Chapter 1: Implementing Controllers and Views

 [self walkAtKilometersPerHour:10.0f];

}

@end

A typical method has the following qualities in Objective-C:

1. A prefix to tell the compiler whether the method is an instance method (-) or a class
method (+). An instance method can be accessed only after the programmer allo‐
cates and initializes an instance of your class. A class method can be accessed by
calling it directly from the class itself. Don’t worry if this all sounds complicated.
We will see examples of these methods in this book, so don’t get hung up on this
for now.

2. A data type for the method, if the method returns any value. In our example, we
have specified void, telling the compiler that we are not returning anything.

3. The first part of the method name followed by the first parameter. You don’t nec‐
essarily have to have any parameters for a method. You can have methods that take
no parameters.

4. The list of subsequent parameters following the first parameter.

Let me show you an example of a method with two parameters:

- (void) singSong:(NSData *)paramSongData loudly:(BOOL)paramLoudly{

 /* The parameters that we can access here in this method are:

 paramSongData (to access the song's data)

 paramLoudly will tell us if we have to sing the song loudly or not

 */

}

It’s important to bear in mind that every parameter in every method has an external and
an internal name. The external name is part of the method, whereas the internal part is
the actual name or alias of the parameter that can be used inside the method’s imple‐
mentation. In the previous example, the external name of the first parameter is sing‐
Song, whereas its internal name is paramSongData. The external name of the second
parameter is loudly, but its internal name is paramLoudly. The method’s name and the
external names of its parameters combine to form what is known as the selector for the
method. The selector for the aforementioned method in this case would be sing
Song:loudly:. A selector, as you will later see in this book, is the runtime identifier of
every method. No two methods inside a single class can have the same selector.

In our example, we have defined three methods for our Person class, inside its imple‐
mentation file (Person.m):

• walkAtKilometersPerHour:

• runAt10KilometersPerHour

1.0. Introduction | 9

• singSong:loudly:

If we want to be able to use any of these methods from the outside world—for instance,
from the app delegate—we should expose those methods in our interface file (Person.h):

#import <Foundation/Foundation.h>

@interface Person : NSObject

@property (nonatomic, copy) NSString *firstName;

@property (nonatomic, copy) NSString *lastName;

- (void) walkAtKilometersPerHour:(CGFloat)paramSpeedKilometersPerHour;

- (void) runAt10KilometersPerHour;

/* Do not expose the singSong:loudly: method to the outside world.

 That method is internal to our class. So why should we expose it? */

@end

Given this interface file, a programmer can call the walkAtKilometersPerHour: and
the runAt10KilometersPerHour methods from outside the Person class, but not the
singSong:loudly: method because it has not been exposed in the file. So let’s go ahead
and try to call all three of these methods from our app delegate to see what happens!

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 Person *person = [[Person alloc] init];

 [person walkAtKilometersPerHour:3.0f];

 [person runAt10KilometersPerHour];

 /* If you uncomment this line of code, the compiler will give

 you an error telling you this method doesn't exist on the Person class */

 //[person singSong:nil loudly:YES];

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Now we know how to define and call instance methods, but what about class methods?
Let’s first find out what class methods are and how they differ from instance methods.

An instance method is a method that relates to an instance of a class. For instance, in
our Person class, you can instantiate this class twice to create two distinct persons in a
hypothetical game that you are working on and have one of those persons walk at the
speed of 3 kilometers an hour while the other person walks at 2 kilometers an hour.

10 | Chapter 1: Implementing Controllers and Views

Even though you have written the code for the walking instance method only once,
when two separate instances of the Person class are created at runtime, the calls to the
instance methods will be routed to the appropriate instance of this class.

In contrast, class methods work on the class itself. For instance, in a game where you
have instances of a class named Light that light the scenery of your game, you may have
a dimAllLights class method on this class that a programmer can call to dim all lights
in the game, no matter where they are placed. Let’s have a look at an example of a class
method on our Person class:

#import "Person.h"

@implementation Person

+ (CGFloat) maximumHeightInCentimeters{

 return 250.0f;

}

+ (CGFloat) minimumHeightInCentimeters{

 return 40.0f;

}

@end

The maximumHeightInCentimeters method is a class method that returns the hypo‐
thetical maximum height of any person in centimeters. The minimumHeightInCentim
eters class method returns the minimum height of any person. Here is how we would
then expose these methods in the interface of our class:

#import <Foundation/Foundation.h>

@interface Person : NSObject

@property (nonatomic, copy) NSString *firstName;

@property (nonatomic, copy) NSString *lastName;

@property (nonatomic, assign) CGFloat currentHeight;

+ (CGFloat) maximumHeightInCentimeters;

+ (CGFloat) minimumHeightInCentimeters;

@end

We have also added a new floating point property to our Person class
named currentHeight. This allows instances of this class to be able to
store their height in memory for later reference, just like their first or
last names.

And in our app delegate, we would proceed to use these new methods like so:

1.0. Introduction | 11

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 Person *steveJobs = [[Person alloc] init];

 steveJobs.firstName = @"Steve";

 steveJobs.lastName = @"Jobs";

 steveJobs.currentHeight = 175.0f; /* Centimeters */

 if (steveJobs.currentHeight >= [Person minimumHeightInCentimeters] &&

 steveJobs.currentHeight <= [Person maximumHeightInCentimeters]){

 /* The height of this particular person is in the acceptable range */

 } else {

 /* This person's height is not in the acceptable range */

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Conforming to Requirements of Other Classes with Protocols
Objective-C has the concept of a protocol. This is a concept found in many other lan‐
guages (always under a different term, it seems); for instance, it is called an interface in
Java. A protocol, as its name implies, is a set of rules that classes can abide by in order
to be used in certain ways. A class that follows the rules is said to conform to the protocol.
Protocols are different from actual classes in that they do not have an implementation.
They are just rules. For instance, every car has wheels, doors, and a main body color,
among many other things. Let’s define these properties in a protocol named Car. Simply
follow these steps to create a header file that can contain our Car protocol:

1. In Xcode, while your project is open, from the File menu, select New → File...

2. In the new dialog, on the lefthand side, make sure that you’ve selected Cocoa Touch
under the iOS main category. Once done, on the righthand side of the dialog, choose
“Objective-C protocol” and then press the Next button.

3. On the next screen, under the Protocol section, enter Car as the protocol’s name
and then press the Next button.

4. You will now be asked to save your protocol on disk. Simply choose a location,
usually in your project’s folder, and press the Create button.

Xcode will now create a file for you named Car.h with content like this:

#import <Foundation/Foundation.h>

@protocol Car <NSObject>

12 | Chapter 1: Implementing Controllers and Views

@end

So let’s go ahead and define the properties for the Car protocol, as we discussed earlier
in this section:

#import <Foundation/Foundation.h>

@protocol Car <NSObject>

@property (nonatomic, copy) NSArray *wheels;

@property (nonatomic, strong) UIColor *bodyColor;

@property (nonatomic, copy) NSArray *doors;

@end

Now that our protocol has been defined, let’s create a class for a car, such as Jaguar, and
then make that class conform to our protocol. Simply follow the steps provided in
“Creating and Taking Advantage of Classes” on page 5 to create a class named Jaguar

and then make it conform to the Car protocol like so:

#import <Foundation/Foundation.h>

#import "Car.h"

@interface Jaguar : NSObject <Car>

@end

If you build your project now, you will notice that the compiler will give you a few
warnings such as this:

Auto property synthesis will not synthesize property declared in a protocol

This is simply telling you that your Jaguar class is attempting to conform to the Car
protocol but is not really implementing the required properties and/or methods in that
protocol. So you should now know that a protocol can have required or optional items,
and that you denote them by the @optional or the @required keywords. The default
qualifier is @required, and since in our Car protocol we didn’t specify the qualifier
explicitly, the compiler has chosen @required for us implicitly. Therefore, the Jaguar
class now has to implement everything that is required from it by the Car protocol, like
so:

#import <Foundation/Foundation.h>

#import "Car.h"

@interface Jaguar : NSObject <Car>

@property (nonatomic, copy) NSArray *wheels;

@property (nonatomic, strong) UIColor *bodyColor;

@property (nonatomic, copy) NSArray *doors;

@end

1.0. Introduction | 13

Perfect. Now you have an understanding of the basics of protocols and how they work
and how you can define them. We will read more about them later in this book, so what
you know right now about protocols is quite sufficient.

Storing Items in and Retrieving Them from Collections
Collections are instances of objects and can hold other objects. One of the primary
collections is an array, which instantiates either NSArray or NSMutableArray. You can
store any object in an array, and an array can contain more than one instance of the
same object. Here is an example where we create an array of three strings:

NSArray *stringsArray = @[

 @"String 1",

 @"String 2",

 @"String 3"

];

__unused NSString *firstString = stringsArray[0];

__unused NSString *secondString = stringsArray[1];

__unused NSString *thirdString = stringsArray[2];

The __unused macro tells the compiler not to complain when a vari‐
able, such as the firstString variable in our example, is declared but
never used. The default behavior of the compiler is that it throws a
warning to the console saying a variable is not used. Our brief exam‐
ple has declared the variables but not used them, so adding the afore‐
mentioned macro to the beginning of the variable declaration keeps
the compiler and ourselves happy.

A mutable array is an array that can be mutated and changed after it has been created.
An immutable array, like we saw, cannot be tampered with after it is created. Here is an
example of an immutable array:

NSString *string1 = @"String 1";

NSString *string2 = @"String 2";

NSString *string3 = @"String 3";

NSArray *immutableArray = @[string1, string2, string3];

NSMutableArray *mutableArray = [[NSMutableArray alloc]

 initWithArray:immutableArray];

[mutableArray exchangeObjectAtIndex:0 withObjectAtIndex:1];

[mutableArray removeObjectAtIndex:1];

[mutableArray setObject:string1 atIndexedSubscript:0];

14 | Chapter 1: Implementing Controllers and Views

NSLog(@"Immutable array = %@", immutableArray);

NSLog(@"Mutable Array = %@", mutableArray);

The output of this program is as follows:

Immutable array = (

 "String 1",

 "String 2",

 "String 3"

)

Mutable Array = (

 "String 1",

 "String 3"

)

Another very common collection found throughout iOS programs is a dictionary. Dic‐
tionaries are like arrays, but every object in a dictionary is assigned to a key so that later
you can retrieve the same object using the key. Here is an example:

NSDictionary *personInformation =

@{

 @"firstName" : @"Mark",

 @"lastName" : @"Tremonti",

 @"age" : @30,

 @"sex" : @"Male"

 };

NSString *firstName = personInformation[@"firstName"];

NSString *lastName = personInformation[@"lastName"];

NSNumber *age = personInformation[@"age"];

NSString *sex = personInformation[@"sex"];

NSLog(@"Full name = %@ %@", firstName, lastName);

NSLog(@"Age = %@, Sex = %@", age, sex);

The output of this program is:

Full name = Mark Tremonti

Age = 30, Sex = Male

You can also have mutable dictionaries, just as you can have mutable arrays. Mutable
dictionaries’ contents can be changed after they are instantiated. Here is an example:

NSDictionary *personInformation =

@{

 @"firstName" : @"Mark",

 @"lastName" : @"Tremonti",

 @"age" : @30,

 @"sex" : @"Male"

 };

NSMutableDictionary *mutablePersonInformation =

 [[NSMutableDictionary alloc] initWithDictionary:personInformation];

1.0. Introduction | 15

mutablePersonInformation[@"age"] = @32;

NSLog(@"Information = %@", mutablePersonInformation);

The output of this program is:

Information = {

 age = 32;

 firstName = Mark;

 lastName = Tremonti;

 sex = Male;

}

You can also take advantage of sets. Sets are like arrays but must contain a unique set of
objects. You cannot add the same instance of an object twice to the same set. Here is an
example:

NSSet *shoppingList = [[NSSet alloc] initWithObjects:

 @"Milk",

 @"Bananas",

 @"Bread",

 @"Milk", nil];

NSLog(@"Shopping list = %@", shoppingList);

If you run this program, the output will be:

Shopping list = {(

 Milk,

 Bananas,

 Bread

)}

Note how Milk was mentioned twice in our program but added to the set only once.
That’s the magic behind sets. You can also use mutable sets like so:

NSSet *shoppingList = [[NSSet alloc] initWithObjects:

 @"Milk",

 @"Bananas",

 @"Bread",

 @"Milk", nil];

NSMutableSet *mutableList = [NSMutableSet setWithSet:shoppingList];

[mutableList addObject:@"Yogurt"];

[mutableList removeObject:@"Bread"];

NSLog(@"Original list = %@", shoppingList);

NSLog(@"Mutable list = %@", mutableList);

And the output is:

Original list = {(

 Milk,

 Bananas,

16 | Chapter 1: Implementing Controllers and Views

 Bread

)}

Mutable list = {(

 Milk,

 Bananas,

 Yogurt

)}

There are two other important classes that you need to know about, now that we are
talking about sets and collections:

NSOrderedSet

An immutable set that keeps the order in which objects were added to it

NSMutableOrderedSet

The mutable version of the ordered set

By default, sets do not keep the order in which objects were added to them. Take the
following as an example:

NSSet *setOfNumbers = [NSSet setWithArray:@[@3, @4, @1, @5, @10]];

NSLog(@"Set of numbers = %@", setOfNumbers);

What gets printed to the screen after you run this program is:

Set of numbers = {(

 5,

 10,

 3,

 4,

 1

)}

But that is not the order in which we created the set. If you want to keep the order intact,
simply use the NSOrderedSet class instead:

NSOrderedSet *setOfNumbers = [NSOrderedSet orderedSetWithArray

 :@[@3, @4, @1, @5, @10]];

NSLog(@"Ordered set of numbers = %@", setOfNumbers);

And, of course, you can use the mutable version of an ordered set:

NSMutableOrderedSet *setOfNumbers =

 [NSMutableOrderedSet orderedSetWithArray:@[@3, @4, @1, @5, @10]];

[setOfNumbers removeObject:@5];

[setOfNumbers addObject:@0];

[setOfNumbers exchangeObjectAtIndex:1 withObjectAtIndex:2];

NSLog(@"Set of numbers = %@", setOfNumbers);

The results are shown here:

1.0. Introduction | 17

Set of numbers = {(

 3,

 1,

 4,

 10,

 0

)}

Before we move off the topic of sets, there is one other handy class that you may need
to know about. The NSCountedSet class can hold a unique instance of an object multiple
times. However, the way this is done is different from the way arrays perform the same
task. In an array, the same object can appear multiple times. But in a counted set, the
object will appear only once, but the set keeps a count of how many times the object
was added to the set and will decrement that counter each time you remove an instance
of the object. Here is an example:

NSCountedSet *setOfNumbers = [NSCountedSet setWithObjects:

 @10, @20, @10, @10, @30, nil];

[setOfNumbers addObject:@20];

[setOfNumbers removeObject:@10];

NSLog(@"Count for object @10 = %lu",

 (unsigned long)[setOfNumbers countForObject:@10]);

NSLog(@"Count for object @20 = %lu",

 (unsigned long)[setOfNumbers countForObject:@20]);

The output is:

Count for object @10 = 2

Count for object @20 = 2

The NSCountedSet class is mutable, despite what its name may lead
you to think.

Adding Object Subscripting Support to Your Classes
Traditionally, when accessing objects in collections such as arrays and dictionaries,
programmers had to access a method on the array or the dictionary to get or set that
object. For instance, this is the traditional way of creating a mutable dictionary, adding
two keys and values to it, and retrieving those values back:

NSString *const kFirstNameKey = @"firstName";

NSString *const kLastNameKey = @"lastName";

NSMutableDictionary *dictionary = [[NSMutableDictionary alloc] init];

18 | Chapter 1: Implementing Controllers and Views

[dictionary setValue:@"Tim" forKey:kFirstNameKey];

[dictionary setValue:@"Cook" forKey:kLastNameKey];

__unused NSString *firstName = [dictionary valueForKey:kFirstNameKey];

__unused NSString *lastName = [dictionary valueForKey:kLastNameKey];

But with all the advances in the LLVM compiler, this code can now be shortened to this:

NSString *const kFirstNameKey = @"firstName";

NSString *const kLastNameKey = @"lastName";

NSDictionary *dictionary = @{

 kFirstNameKey : @"Tim",

 kLastNameKey : @"Cook",

 };

__unused NSString *firstName = dictionary[kFirstNameKey];

__unused NSString *lastName = dictionary[kLastNameKey];

You can see that we are initializing the dictionary by providing the keys in curly brackets.
The same thing for arrays. Here is how we used to create and use arrays traditionally:

NSArray *array = [[NSArray alloc] initWithObjects:@"Tim", @"Cook", nil];

__unused NSString *firstItem = [array objectAtIndex:0];

__unused NSString *secondObject = [array objectAtIndex:1];

And now with object subscripting, we can shorten this code, as follows:

NSArray *array = @[@"Tim", @"Cook"];

__unused NSString *firstItem = array[0];

__unused NSString *secondObject = array[0];

LLVM didn’t even stop there. You can add subscripting to your own classes as well.
There are two types of subscripting:

Subscripting by key
With this, you can set the value for a specific key inside an object, just like you would
in a dictionary. You can also access/read-from values inside the object by providing
the key.

Subscripting by index
As with arrays, you can set/get values inside the object by providing an index to
that object. This makes sense for array-like classes where the elements lie in a natural
order that can be represented by an index.

For the first example, we are going to look at subscripting by key. To do this, we are
going to create a class named Person with a firstName and a lastName. Then we are
going to allow the programmer to change the first and last names by simply providing
the keys to those properties.

The reason you may want to add subscripting by key to a class like this is if your property
names are volatile and you want to allow the programmer to set the value of those

1.0. Introduction | 19

properties without having to worry about whether the names of those properties will
change later; otherwise, the programmer is better off using the properties directly. The
other reason for implementing subscripting by key is if you want to hide the exact
implementation/declaration of your properties from the programmer and not let her
access them directly.

In order to support subscripting by key on your own classes, you must implement the
following two methods on your class and put the method signatures in your class’s
header file; otherwise, the compiler won’t know that your class supports subscripting
by key.

#import <Foundation/Foundation.h>

/* We will use these as the keys to our firstName and lastName

 properties so that if our firstName and lastName properties' names

 change in the future in the implementation, we won't break anything

 and our class will still work, as we can simply change the value of

 these constants inside our implementation file */

extern NSString *const kFirstNameKey;

extern NSString *const kLastNameKey;

@interface Person : NSObject

@property (nonatomic, copy) NSString *firstName;

@property (nonatomic, copy) NSString *lastName;

- (id) objectForKeyedSubscript:(id<NSCopying>)paramKey;

- (void) setObject:(id)paramObject forKeyedSubscript:(id<NSCopying>)paramKey;

@end

The objectForKeyedSubscript: method will be called on your class whenever the
programmer provides a key and wants to read the value of that key in your class. The
parameter that will be given to you will obviously be the key from which the programmer
wants to read the value. To complement this method, the setObject:forKeyedSub
script: method will be called on your class whenever the programmer wants to set the
value for a specified key. So in our implementation, we want to check whether the given
keys are the first name and the last name keys, and if yes, we will set/get the values of
the first name and last name in our class:

#import "Person.h"

NSString *const kFirstNameKey = @"firstName";

NSString *const kLastNameKey = @"lastName";

@implementation Person

- (id) objectForKeyedSubscript:(id<NSCopying>)paramKey{

 NSObject<NSCopying> *keyAsObject = (NSObject<NSCopying> *)paramKey;

20 | Chapter 1: Implementing Controllers and Views

 if ([keyAsObject isKindOfClass:[NSString class]]){

 NSString *keyAsString = (NSString *)keyAsObject;

 if ([keyAsString isEqualToString:kFirstNameKey] ||

 [keyAsString isEqualToString:kLastNameKey]){

 return [self valueForKey:keyAsString];

 }

 }

 return nil;

}

- (void) setObject:(id)paramObject forKeyedSubscript:(id<NSCopying>)paramKey{

 NSObject<NSCopying> *keyAsObject = (NSObject<NSCopying> *)paramKey;

 if ([keyAsObject isKindOfClass:[NSString class]]){

 NSString *keyAsString = (NSString *)keyAsObject;

 if ([keyAsString isEqualToString:kFirstNameKey] ||

 [keyAsString isEqualToString:kLastNameKey]){

 [self setValue:paramObject forKey:keyAsString];

 }

 }

}

@end

So in this code, in the objectForKeyedSubscript: method, we are given a key, and we
are expected to return the object that is associated in our instance with that key. The
key that is given to us is an object that conforms to the NSCopying protocol. In other
words, it’s an object that we can make a copy of, if we want to. We expect the key to be
a string so that we can compare it with the predefined keys that we have declared on
top of our class, and if it matches, we will set the value of that property in our class. We
will then use the NSObject method named valueForKey: to return the value associated
with the given key. But obviously, before we do so, we ensure that the given key is one
of the keys that we expect. In the setObject:forKeyedSubscript: method we do the
exact opposite. We set the values for a given key instead of returning them.

Now, elsewhere in your app, you can instantiate an object of type Person and use the
predefined keys of kFirstNameKey and kLastNameKey to change the value of the first
Name and lastName properties like so:

Person *person = [Person new];

person[kFirstNameKey] = @"Tim";

person[kLastNameKey] = @"Cook";

__unused NSString *firstName = person[kFirstNameKey];

__unused NSString *lastName = person[kLastNameKey];

This code will achieve exactly the same effect as the more direct approach of setting the
properties of a class:

Person *person = [Person new];

person.firstName = @"Tim";

person.lastName = @"Cook";

1.0. Introduction | 21

__unused NSString *firstName = person.firstName;

__unused NSString *lastName = person.lastName;

You can also support subscripting by index, the same way arrays do. This is useful, as
mentioned before, to allow programmers to access objects that have a natural order
inside a class. But there are not many data structures besides arrays where it makes sense
to order and number elements, unlike subscripting by key, which applies to a wide range
of data structures. So the example I’ll use to illustrate subscripting by index is a bit
contrived. In our previous example, we had the Person class with a first and last name.
Now if you want to allow programmers to be able to read the first name by providing
the index of 0 and the last name by providing the index of 1, all you have to do is declare
the objectAtIndexedSubscript: and the setObject:atIndexedSubscript: methods
in the header file of your class, and then write the implementation. Here is how we
declare these methods in our Person class’s header file:

- (id) objectAtIndexedSubscript:(NSUInteger)paramIndex;

- (void) setObject:(id)paramObject atIndexedSubscript:(NSUInteger)paramIndex;

The implementation is also quite simple. We take the index and act upon it in a way that
makes sense to our class. We decided that the first name has to have the index of 0 and
the last name the index of 1. So if we get the index of 0 for setting a value, we set the
value of the first name to the incoming object, and so on:

- (id) objectAtIndexedSubscript:(NSUInteger)paramIndex{

 switch (paramIndex){

 case 0:{

 return self.firstName;

 break;

 }

 case 1:{

 return self.lastName;

 break;

 }

 default:{

 [NSException raise:@"Invalid index" format:nil];

 }

 }

 return nil;

}

- (void) setObject:(id)paramObject atIndexedSubscript:(NSUInteger)paramIndex{

 switch (paramIndex){

 case 0:{

 self.firstName = paramObject;

 break;

 }

 case 1:{

 self.lastName = paramObject;

22 | Chapter 1: Implementing Controllers and Views

 break;

 }

 default:{

 [NSException raise:@"Invalid index" format:nil];

 }

 }

}

Now we can test out what we’ve written so far, like so:

Person *person = [Person new];

person[kFirstNameKey] = @"Tim";

person[kLastNameKey] = @"Cook";

NSString *firstNameByKey = person[kFirstNameKey];

NSString *lastNameByKey = person[kLastNameKey];

NSString *firstNameByIndex = person[0];

NSString *lastNameByIndex = person[1];

if ([firstNameByKey isEqualToString:firstNameByIndex] &&

 [lastNameByKey isEqualToString:lastNameByIndex]){

 NSLog(@"Success");

} else {

 NSLog(@"Something is not right");

}

If you’ve followed all the steps in this recipe, you should see the value Success printed
to the console now.

1.1. Displaying Alerts with UIAlertView

Problem
You want to display a message to your users in the form of an alert. This could be used
to ask them to confirm an action, to ask for their username and password, or simply to
let them enter some simple text that you can use in your app.

Solution
Utilize the UIAlertView class.

Discussion
If you are an iOS user, you have most certainly already seen an alert view. Figure 1-1
depicts an example.

1.1. Displaying Alerts with UIAlertView | 23

Figure 1-1. Example of an alert view in iOS

The best way to initialize an alert view is to use its designated initializer:

- (void) viewDidAppear:(BOOL)paramAnimated{

 [super viewDidAppear:paramAnimated];

 UIAlertView *alertView = [[UIAlertView alloc]

 initWithTitle:@"Alert"

 message:@"You've been delivered an alert"

 delegate:nil

 cancelButtonTitle:@"Cancel"

 otherButtonTitles:@"Ok", nil];

 [alertView show];

}

24 | Chapter 1: Implementing Controllers and Views

When this alert view is displayed to the user, she will see something similar to that shown
in Figure 1-2.

Figure 1-2. A simple alert view displayed to the user

In order to display an alert view to the user, we use the alert view’s show method. Let’s
have a look at the description for each of the parameters that we passed to the initializer
of the alert view:

title

The string that the alert view will display on the top when it is shown to the user.
This string is Title in Figure 1-2.

message

The actual message that gets displayed to the user. In Figure 1-2, this message is set
to Message.

1.1. Displaying Alerts with UIAlertView | 25

delegate

The optional delegate object that we pass to the alert view. This object will get
notified whenever the alert’s state changes; for instance, when the user taps on a
button on the alert view. The object passed to this parameter must conform to the
UIAlertViewDelegate protocol.

cancelButtonTitle

A string that will get assigned to the cancel button on an alert view. An alert view
that has a cancel button usually asks the user for an action. If the user isn’t com‐
fortable with performing that action, he will press the cancel button. This button’s
title does not necessarily have to say Cancel. It is up to you to specify a title for this
button. This parameter is optional; you could put up a dialog box with no cancel
button.

otherButtonTitles

Titles of any other buttons that you want to have appear on the alert view. Separate
the titles with commas and make sure you terminate the list of titles with a nil,
which is called a sentinel. This parameter is optional.

It is possible to create an alert view without any buttons. But the view
cannot be dismissed by the user. If you create such a view, you, as the
programmer, need to make sure this alert view will get dismissed au‐
tomatically; for instance, three seconds after it is displayed. An alert
view without any buttons that does not dismiss itself automatically
gives a really poor user experience. Not only will your app get low
ratings on the App Store for blocking the UI from user access, but
chances are that your app will get rejected by Apple.

Alert views can take various styles. The UIAlertView class has a property called alert
ViewStyle of type UIAlertViewStyle:

typedef NS_ENUM(NSInteger, UIAlertViewStyle) {

 UIAlertViewStyleDefault = 0,

 UIAlertViewStyleSecureTextInput,

 UIAlertViewStylePlainTextInput,

 UIAlertViewStyleLoginAndPasswordInput

};

Here is what each of these styles will do:

UIAlertViewStyleDefault

This is the default style of an alert view, as we saw in Figure 1-2.

UIAlertViewStyleSecureTextInput

With this style, the alert view will contain a secure text field, which hides the actual
characters typed by the user. For instance, if you are asking the user for her online
banking credentials, you might choose this style of alert view.

26 | Chapter 1: Implementing Controllers and Views

UIAlertViewStylePlainTextInput

Under this style, the alert view will display a nonsecure text field to the user. This
style is great if you simply want to ask the user for a plain-text entry, such as her
phone number.

UIAlertViewStyleLoginAndPasswordInput

With this style, the alert view will display two text fields: a nonsecure one for a
username and a secure one for a password.

If you need to get notified when the user interacts with the alert view, specify a delegate
object to your alert view. This delegate must conform to the UIAlertViewDelegate
protocol. The most important method defined in this protocol is the alertView:click
edButtonAtIndex: method, which is called as soon as the user taps on one of the buttons
in the alert view. The button index is passed to you through the clickedButtonAtIn
dex parameter.

As an example, let’s display an alert view to the user and ask whether she would like to
visit a website in Safari after having pressed a link to that website available in our UI.
We will display two buttons on our alert view: Yes and No. In our alert view delegate,
we will detect which button she tapped on and will take action accordingly.

Let’s first implement two very simple methods that return the title of our two buttons:

- (NSString *) yesButtonTitle{

 return @"Yes";

}

- (NSString *) noButtonTitle{

 return @"No";

}

Now we need to make sure that we are conforming to the UIAlertViewDelegate pro‐
tocol in our view controller:

#import "ViewController.h"

@interface ViewController () <UIAlertViewDelegate>

@end

@implementation ViewController

...

The next step is to create and display our alert view to the user:

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 self.view.backgroundColor = [UIColor whiteColor];

1.1. Displaying Alerts with UIAlertView | 27

 NSString *message = @"Are you sure you want to open this link in Safari?";

 UIAlertView *alertView = [[UIAlertView alloc]

 initWithTitle:@"Open Link"

 message:message

 delegate:self

 cancelButtonTitle:[self noButtonTitle]

 otherButtonTitles:[self yesButtonTitle], nil];

 [alertView show];

}

So now, our alert view will look similar to that shown in Figure 1-3.

Figure 1-3. An alert view with Yes and No buttons

Now we need a way to know whether the user selected the Yes or the No option in our
alert view. For this, we will need to implement the alertView:clickedButtonAtIn
dex: method of our alert view delegate:

- (void) alertView:(UIAlertView *)alertView

 clickedButtonAtIndex:(NSInteger)buttonIndex{

28 | Chapter 1: Implementing Controllers and Views

 NSString *buttonTitle = [alertView buttonTitleAtIndex:buttonIndex];

 if ([buttonTitle isEqualToString:[self yesButtonTitle]]){

 NSLog(@"User pressed the Yes button.");

 }

 else if ([buttonTitle isEqualToString:[self noButtonTitle]]){

 NSLog(@"User pressed the No button.");

 }

}

Please bear in mind that in big projects where multiple developers work
on the same source code, it is usually easier to compare the titles of
buttons of alert views to respective strings, rather than picking which
button the user selected on an alert view based on the index of that
button. For the index solution to work, the programmer has to find
out the code that constructed the alert view and, based on the code,
find out which button has what index. In our solution, any develop‐
er, even without any knowledge as to how the alert view was construc‐
ted, can tell which if statement does what.

As you can see, we are using the buttonTitleAtIndex: method of UIAlertView. We
pass the zero-based index of a button inside that alert view to this method and will get
back the string that represents the title of that button, if any. Using this method, we can
determine which button the user has tapped on. The index of that button will be passed
to us as the buttonIndex parameter of the alertView:clickedButtonAtIndex: meth‐
od, but if you need the title of that button, you will then need to use the buttonTitleA
tIndex: method of UIAlertView. That is it; job done!

You can also use an alert view for text entry, such as to ask the user for his credit card
number or address. For this, as mentioned before, we need to use the UIAlert
ViewStylePlainTextInput alert view style. Here is an example:

- (void) viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 UIAlertView *alertView = [[UIAlertView alloc]

 initWithTitle:@"Credit Card Number"

 message:@"Please enter your credit card number:"

 delegate:self

 cancelButtonTitle:@"Cancel"

 otherButtonTitles:@"Ok", nil];

 [alertView setAlertViewStyle:UIAlertViewStylePlainTextInput];

 /* Display a numerical keypad for this text field */

 UITextField *textField = [alertView textFieldAtIndex:0];

 textField.keyboardType = UIKeyboardTypeNumberPad;

1.1. Displaying Alerts with UIAlertView | 29

 [alertView show];

}

If you run your app on the simulator now, you will get a result similar to Figure 1-4.

Figure 1-4. An alert view with plain-text input

We changed the alert view’s style to UIAlertViewStylePlainTextInput in this code,
but we did something else as well. We retrieved the reference to the first and the only
text field that we knew we would have on the alert view and used that text field’s reference
to change the keyboard type of the text field. For more information about text fields,
please refer to Recipe 1.19.

In addition to a plain-text entry, you can ask the user for secure text. You would normally
use this if the text that the user is entering is sensitive, such as a password (see
Figure 1-5). Here is an example:

- (void) viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 UIAlertView *alertView = [[UIAlertView alloc]

 initWithTitle:@"Password"

30 | Chapter 1: Implementing Controllers and Views

 message:@"Please enter your password:"

 delegate:self

 cancelButtonTitle:@"Cancel"

 otherButtonTitles:@"Ok", nil];

 [alertView setAlertViewStyle:UIAlertViewStyleSecureTextInput];

 [alertView show];

}

Figure 1-5. Secure text entry in an alert view

The UIAlertViewStyleSecureTextInput style is very similar to UIAlertViewStyle
PlainTextInput, except that the text field is set to substitute some neutral character for
each character of the entered text.

The next style, which is quite useful, displays two text fields, one for a username and
the other for a password. The first is a plain-text entry field and the other one is secure:

- (void) viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 UIAlertView *alertView = [[UIAlertView alloc]

 initWithTitle:@"Password"

1.1. Displaying Alerts with UIAlertView | 31

 message:@"Please enter your credentials:"

 delegate:self

 cancelButtonTitle:@"Cancel"

 otherButtonTitles:@"Ok", nil];

 [alertView setAlertViewStyle:UIAlertViewStyleLoginAndPasswordInput];

 [alertView show];

}

The result will look similar to that shown in Figure 1-6.

Figure 1-6. Login and password style of alert view

See Also
Recipe 1.19

1.2. Creating and Using Switches with UISwitch

Problem
You would like to give your users the ability to turn an option on or off.

32 | Chapter 1: Implementing Controllers and Views

Solution
Use the UISwitch class.

Discussion
The UISwitch class provides an On/Off control like the one shown in Figure 1-7 for
Auto-Capitalization, Auto-Correction, and so on.

Figure 1-7. UISwitch used in the Settings app on an iPhone

In order to create a switch, you can either use Interface Builder or simply create your
instance in code. Let’s do it through code. So next the challenge is to determine which
class to place your code in. It needs to be in a View Controller class, which we haven’t
discussed yet, but for the single-view application type of app we’re creating in this chap‐
ter, you can find the view controller’s .m (implementation) file as ViewController.m.

Open that file now.

Let’s create a property of type UISwitch and call it mainSwitch:

#import "ViewController.h"

@interface ViewController ()

1.2. Creating and Using Switches with UISwitch | 33

@property (nonatomic, strong) UISwitch *mainSwitch;

@end

@implementation ViewController

...

We can go ahead now and create our switch. Find the viewDidLoad method in your
view controller’s implementation file:

- (void)viewDidLoad{

 [super viewDidLoad];

}

Let’s create our switch and place it on our view controller’s view:

- (void)viewDidLoad{

 [super viewDidLoad];

 /* Create the switch */

 self.mainSwitch = [[UISwitch alloc] initWithFrame:

 CGRectMake(100, 100, 0, 0)];

 [self.view addSubview:self.mainSwitch];

}

So we are allocating an object of type UISwitch and using the initWithFrame: initializer
to initialize our switch. Note that the parameter that we have to pass to this method is
of type CGRect. A CGRect denotes the boundaries of a rectangle using the (x,y) position
of the top-left corner of the rectangle and its width and height. We can construct a
CGRect using the CGRectMake inline method, where the first two parameters passed to
this method are the (x,y) positions and the next two are the width and height of the
rectangle.

After we’ve created the switch, we simply add it to our view controller’s view.

Now let’s run our app on iOS Simulator. Figure 1-8 shows what happens.

Figure 1-8. A switch placed on a view

34 | Chapter 1: Implementing Controllers and Views

As you can see, the switch’s default state is off. We can change this by changing the value
of the on property of the instance of UISwitch. Alternatively, you can call the setOn:
method on the switch, as shown here:

[self.mainSwitch setOn:YES];

You can prettify the user interaction by using the setOn:animated: method of the
switch. The animated parameter accepts a Boolean value. If this Boolean value is set to
YES, the change in the switch’s state (from on to off or off to on) will be animated, just
as if the user were interacting with it.

Obviously, you can read from the on property of the switch to find out whether the
switch is on or off at the moment. Alternatively, you can use the isOn method of the
switch, as shown here:

if ([self.mainSwitch isOn]){

 NSLog(@"The switch is on.");

} else {

 NSLog(@"The switch is off.");

}

If you want to get notified when the switch gets turned on or off, you will need to add
your class as the target for the switch, using the addTarget:action:forControlEvents:
method of UISwitch, as shown here:

 [self.mainSwitch addTarget:self

 action:@selector(switchIsChanged:)

 forControlEvents:UIControlEventValueChanged];

Then implement the switchIsChanged: method. When the runtime calls this method
for the UIControlEventValueChanged event of the switch, it will pass the switch as the
parameter to this method, so you can find out which switch has fired this event:

- (void) switchIsChanged:(UISwitch *)paramSender{

 NSLog(@"Sender is = %@", paramSender);

 if ([paramSender isOn]){

 NSLog(@"The switch is turned on.");

 } else {

 NSLog(@"The switch is turned off.");

 }

}

Now go ahead and run the app on iOS Simulator. You will see messages similar to this
in the console window:

Sender is = <UISwitch: 0x6e13500;

 frame = (100 100; 79 27);

 layer = <CALayer: 0x6e13700>>

The switch is turned off.

1.2. Creating and Using Switches with UISwitch | 35

Sender is = <UISwitch: 0x6e13500;

 frame = (100 100; 79 27);

 layer = <CALayer: 0x6e13700>>

The switch is turned on.

1.3. Customizing the UISwitch

Problem
You have placed UISwitch instances on your UI and would now like to customize them
to match your UI.

Solution
Use one of the tint/image customization properties of the UISwitch, such as the tint
Color or the onTintColor.

Discussion
Apple has done a fantastic job of bringing customization to UI components such as the
UISwitch. In previous SDKs, developers were going as far as subclassing UISwitch just
to change its appearance and color. Now the iOS SDK makes this much simpler.

There are two main ways of customizing a switch:

Tint Colors
Tint colors are colors that you can apply to a UI component such as a UISwitch.
The tint color will be applied on top of the current color of the component. For
instance, in a normal UISwitch, you will be able to see different colors. When you
apply the tint color on top, the normal color of the control will be mixed with the
tint color, giving a flavor of the tint color on the UI control.

Images
A switch has two images:

On Image
The image that represents the on state of the switch. The width of this image is
77 points, and its height is 22.

Off Image
The image that represents the switch in its off state. This image, like the on state
of the switch, is 77 points in width and 22 points in height.

Figure 1-9 shows an example of the on and off images of a switch.

36 | Chapter 1: Implementing Controllers and Views

Figure 1-9. The on and off images on a UISwitch

Now that we know the two states (on and off) of a switch, let’s get started by learning
how we can change the tint color of the switch UI component. This can be achieved by
the use of three important properties of the UISwitch class. Each this property is of type
UIColor.

tintColor

This is the tint color that will be applied to the off state of the switch. Unfortunately,
Apple has not taken the time to name this property offTintColor instead of tint
Color to make it more explicit.

thumbTintColor

This is the tint color that will be applied to the little knob on the switch.

1.3. Customizing the UISwitch | 37

onTintColor

This tint color will be applied to the switch in its on state.

Here is a simple code snippet that will change the on-mode tint color of the switch to
red, the off-mode tint color to brown, and the knob’s tint color to green. It is not the
best combination of colors but will demonstrate what this recipe is trying to explain:

- (void)viewDidLoad

{

 [super viewDidLoad];

 /* Create the switch */

 self.mainSwitch = [[UISwitch alloc] initWithFrame:CGRectZero];

 self.mainSwitch.center = self.view.center;

 [self.view addSubview:self.mainSwitch];

 /* Customize the switch */

 /* Adjust the off-mode tint color */

 self.mainSwitch.tintColor = [UIColor redColor];

 /* Adjust the on-mode tint color */

 self.mainSwitch.onTintColor = [UIColor brownColor];

 /* Also change the knob's tint color */

 self.mainSwitch.thumbTintColor = [UIColor greenColor];

}

Now that we are done with the tint colors on a switch, let’s move on to customizing the
appearance of the switch using its on and off images, bearing in mind that custom on
and off images are only for iOS 6 or older. iOS 7 ignores on and off images and uses
only tint colors to customize its appearance. As mentioned before, both the on and the
off images in a switch should be 77 points wide and 22 points tall. For this, I have
prepared a new set of on and off images (in both normal and Retina resolutions). I have
added them to my Xcode project under the (Retina) names of On@2x.png and

Off@2x.png and I’ve also placed the non-Retina flavor of the same images in the project.

Now we have to construct our switch but assign our custom on and off images to the
switch, using the following properties on UISwitch:

onImage

As explained before, this will be the image that is displayed when the switch is in
its on mode.

offImage

The image that represents the switch when it is in off mode.

38 | Chapter 1: Implementing Controllers and Views

And here is our code snippet to achieve this new look:

- (void)viewDidLoad

{

 [super viewDidLoad];

 /* Create the switch */

 self.mainSwitch = [[UISwitch alloc] initWithFrame:CGRectZero];

 self.mainSwitch.center = self.view.center;

 /* Make sure the switch won't appear blurry on iOS Simulator */

 self.mainSwitch.frame = [self roundedValuesInRect:self.mainSwitch.frame];

 [self.view addSubview:self.mainSwitch];

 /* Customize the switch */

 self.mainSwitch.onImage = [UIImage imageNamed:@"On"];

 self.mainSwitch.offImage = [UIImage imageNamed:@"Off"];

}

See Also
Recipe 1.2

1.4. Picking Values with the UIPickerView

Problem
You want to allow the users of your app to select from a list of values.

Solution
Use the UIPickerView class.

Discussion
A picker view is a graphical element that allows you to display a series of values to your
users and allow them to pick one. The Timer section of the Clock app on the iPhone is
a great example of this (Figure 1-10).

1.4. Picking Values with the UIPickerView | 39

Figure 1-10. A picker view on top of the screen

As you can see, this specific picker view has two separate and independent visual ele‐
ments. One is on the left, and one is on the right. The element on the left is displaying
hours (such as 0, 1, 2 hours, etc.) and the one on the right is displaying minutes (such
as 10, 11, 12 mins, etc.). These two items are called components. Each component has
rows. Any item in any of the components is in fact represented by a row, as we will soon
see. For instance, in the left component, “0 hours” is a row, “1” is a row, etc.

Let’s go ahead and create a picker view on our view controller’s view. If you don’t know
where your view controller’s source code is, please have a look at Recipe 1.2, where this
subject is discussed.

First let’s go to the top of the .m (implementation) file of our view controller and define

our picker view:

40 | Chapter 1: Implementing Controllers and Views

@interface ViewController ()

@property (nonatomic, strong) UIPickerView *myPicker;

@end

@implementation ViewController

...

Now let’s create the picker view in the viewDidLoad method of our view controller:

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myPicker = [[UIPickerView alloc] init];

 self.myPicker.center = self.view.center;

 [self.view addSubview:self.myPicker];

}

It’s worth noting that in this example, we are centering our picker view at the center of
our view. When you run this app on iOS 7 Simulator, you will see a blank screen because
the picker on iOS 7 is white and so is the view controller’s background.

The reason this picker view is showing up as a plain white color is that we have not yet
populated it with any values. Let’s do that. We do that by specifying a data source for
the picker view and then making sure that our view controller sticks to the protocol that
the data source requires. The data source of an instance of UIPickerView must conform
to the UIPickerViewDataSource protocol, so let’s go ahead and make our view controller
conform to this protocol in the .m file:

@interface ViewController () <UIPickerViewDataSource, UIPickerViewDelegate>

@property (nonatomic, strong) UIPickerView *myPicker;

@end

@implementation ViewController

...

Good. Let’s now change our code in the implementation file to make sure we select the
current view controller as the data source of the picker view:

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myPicker = [[UIPickerView alloc] init];

 self.myPicker.dataSource = self;

 self.myPicker.center = self.view.center;

 [self.view addSubview:self.myPicker];

}

1.4. Picking Values with the UIPickerView | 41

After this, if you try to compile your application, you will get warnings from the compiler
telling you that you have not yet implemented some of the methods that the UIPicker
ViewDataSource protocol wants you to implement. The way to fix this is to press Com‐
mand+Shift+O, type in UIPickerViewDataSource, and press the Enter key on your
keyboard. That will send you to the place in your code where this protocol is defined,
where you will see something similar to this:

@protocol UIPickerViewDataSource<NSObject>

@required

// returns the number of 'columns' to display.

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView;

// returns the # of rows in each component..

- (NSInteger)pickerView:(UIPickerView *)pickerView

numberOfRowsInComponent:(NSInteger)component;

@end

Can you see the @required keyword there? That is telling us that whichever class wants
to become the data source of a picker view must implement these methods. Good deal.
Let’s go implement them in our view controller’s implementation file:

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView{

 if ([pickerView isEqual:self.myPicker]){

 return 1;

 }

 return 0;

}

- (NSInteger) pickerView:(UIPickerView *)pickerView

 numberOfRowsInComponent:(NSInteger)component{

 if ([pickerView isEqual:self.myPicker]){

 return 10;

 }

 return 0;

}

So what is happening here? Let’s have a look at what each one of these data source
methods expects:

numberOfComponentsInPickerView:

This method passes you a picker view object as its parameter and expects you to
return an integer, telling the runtime how many components you would like that
picker view to render.

42 | Chapter 1: Implementing Controllers and Views

pickerView:numberOfRowsInComponent:

For each component that gets added to a picker view, you will need to tell the system
how many rows you would like to render in that component. This method passes
you an instance of picker view, and you will need to return an integer indicating
the number of rows to render for that component.

So in this case, we are asking the system to display 1 component with only 10 rows for
a picker view that we have created before, called myPicker.

Compile and run your application on iPhone Simulator (Figure 1-11). Ewww, what is
that?

Figure 1-11. A picker view, not knowing what to render

It looks like our picker view knows how many components it should have and how many
rows it should render in that component but doesn’t know what text to display for each
row. That is something we need to do now, and we do that by providing a delegate to
the picker view. The delegate of an instance of UIPickerView has to conform to the
UIPickerViewDelegate protocol and must implement all the @required methods of
that protocol.

There is only one method in the UIPickerViewDelegate we are interested in: the pick
erView:titleForRow:forComponent: method. This method will pass you the index of
the current section and the index of the current row in that section for a picker view,

1.4. Picking Values with the UIPickerView | 43

and it expects you to return an instance of NSString. This string will then get rendered
for that specific row inside the component. In here, I would simply like to display the
first row as Row 1, and then continue to Row 2, Row 3, etc., till the end. Remember, we
also have to set the delegate property of our picker view:

self.myPicker.delegate = self;

And now we will handle the delegate method we just learned about:

- (NSString *)pickerView:(UIPickerView *)pickerView

 titleForRow:(NSInteger)row

 forComponent:(NSInteger)component{

 if ([pickerView isEqual:self.myPicker]){

 /* Row is zero-based and we want the first row (with index 0)

 to be rendered as Row 1, so we have to +1 every row index */

 return [NSString stringWithFormat:@"Row %ld", (long)row + 1];

 }

 return nil;

}

Now let’s run our app and see what happens (Figure 1-12).

Figure 1-12. A picker view with one section and a few rows

44 | Chapter 1: Implementing Controllers and Views

Picker views in iOS 6 and older can highlight the current selection using a property
called showsSelectionIndicator, which by default is set to NO. You can either directly
set the value of this property to YES or use the setShowsSelectionIndicator: method
of the picker view to turn this indicator on:

self.myPicker.showsSelectionIndicator = YES;

Now imagine that you have created this picker view in your final application. What is
the use of a picker view if we cannot detect what the user has actually selected in each
one of its components? Well, it’s good that Apple has already thought of that and given
us the ability to ask the picker view what is selected. Call the selectedRowInCompo
nent: method of a UIPickerView and pass the zero-based index of a component. The
method will return an integer indicating the zero-based index of the row that is currently
selected in that component.

If you need to modify the values in your picker view at runtime, you need to make sure
that your picker view reloads its data from its data source and delegate. To do that, you
can either force all the components to reload their data, using the reloadAllCompo
nents method, or you can ask a specific component to reload its data, using the reload
Component: method and passing the index of the component that has to be reloaded.

See Also
Recipe 1.2

1.5. Picking the Date and Time with UIDatePicker

Problem
You want to allow the users of your app to select a date and time using an intuitive and
ready-made user interface.

Solution
Use the UIDatePicker class.

Discussion
UIDatePicker is very similar to the UIPickerView class. The date picker is in fact a
prepopulated picker view. A good example of the date picker control is in the Calendar
app on the iPhone (Figure 1-13).

1.5. Picking the Date and Time with UIDatePicker | 45

Figure 1-13. A date picker shown at the center of the screen

Let’s get started by first declaring a property of type UIDatePicker. Then we’ll allocate
and initialize this property and add it to the view of our view controller:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UIDatePicker *myDatePicker;

@end

@implementation ViewController

...

And now let’s instantiate the date picker, as planned:

46 | Chapter 1: Implementing Controllers and Views

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myDatePicker = [[UIDatePicker alloc] init];

 self.myDatePicker.center = self.view.center;

 [self.view addSubview:self.myDatePicker];

}

Now let’s run the app and see how it looks in Figure 1-14.

Figure 1-14. A simple date picker

You can see that the date picker, by default, has picked today’s date. The first thing that
we need to know about date pickers is that they can have different styles or modes. This
mode can be changed through the datePickerMode property, which is of type UIDate
PickerMode:

typedef NS_ENUM(NSInteger, UIDatePickerMode) {

 UIDatePickerModeTime,

 UIDatePickerModeDate,

 UIDatePickerModeDateAndTime,

 UIDatePickerModeCountDownTimer,

};

Depending on what you need, you can set the mode of your date picker to any of the
values listed in the UIDatePickerMode enumeration. I’ll show some of these as we go
along.

1.5. Picking the Date and Time with UIDatePicker | 47

Now that you have successfully displayed a date picker on the screen, you can attempt
to retrieve its currently selected date using its date property. Alternatively, you can call
the date method on the date picker, like so:

NSDate *currentDate = self.myDatePicker.date;

NSLog(@"Date = %@", currentDate);

Just like the UISwitch class, a date picker sends action messages to its targets whenever
the user has selected a different date. To respond to these messages, the receiver must
add itself as the target of the date picker, using the addTarget:action:forControlE
vents: method, like so:

- (void) datePickerDateChanged:(UIDatePicker *)paramDatePicker{

 if ([paramDatePicker isEqual:self.myDatePicker]){

 NSLog(@"Selected date = %@", paramDatePicker.date);

 }

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myDatePicker = [[UIDatePicker alloc] init];

 self.myDatePicker.center = self.view.center;

 [self.view addSubview:self.myDatePicker];

 [self.myDatePicker addTarget:self

 action:@selector(datePickerDateChanged:)

 forControlEvents:UIControlEventValueChanged];

}

Now, every time the user changes the date, you will get a message from the date picker.

A date picker also lets you set the minimum and the maximum dates that it can display.
For this, let’s first switch our date picker mode to UIDatePickerModeDate and then,
using the maximumDate and the minimumDate properties, adjust this range:

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myDatePicker = [[UIDatePicker alloc] init];

 self.myDatePicker.center = self.view.center;

 self.myDatePicker.datePickerMode = UIDatePickerModeDate;

 [self.view addSubview:self.myDatePicker];

 NSTimeInterval oneYearTime = 365 * 24 * 60 * 60;

 NSDate *todayDate = [NSDate date];

 NSDate *oneYearFromToday = [todayDate

 dateByAddingTimeInterval:oneYearTime];

48 | Chapter 1: Implementing Controllers and Views

 NSDate *twoYearsFromToday = [todayDate

 dateByAddingTimeInterval:2 * oneYearTime];

 self.myDatePicker.minimumDate = oneYearFromToday;

 self.myDatePicker.maximumDate = twoYearsFromToday;

}

With these two properties, we can then limit the user’s selection on the date to a specific
range, as shown in Figure 1-15. In this example code, we have limited the user’s input
of dates to the range of one year to two years from now.

Figure 1-15. Minimum and maximum dates applied to a date picker

If you want to use the date picker as a countdown timer, you must set your date picker
mode to UIDatePickerModeCountDownTimer and use the countDownDuration property
of the date picker to specify the default countdown duration. For instance, if you want
to present a countdown picker to the user and set the default countdown duration to
two minutes, write code like this:

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myDatePicker = [[UIDatePicker alloc] init];

 self.myDatePicker.center = self.view.center;

 self.myDatePicker.datePickerMode = UIDatePickerModeCountDownTimer;

 [self.view addSubview:self.myDatePicker];

1.5. Picking the Date and Time with UIDatePicker | 49

 NSTimeInterval twoMinutes = 2 * 60;

 [self.myDatePicker setCountDownDuration:twoMinutes];

}

The results are shown in Figure 1-16.

Figure 1-16. A two-minute countdown duration set on a date picker

1.6. Implementing Range Pickers with UISlider

Problem
You would like to allow your users to specify a value within a range, using an easy-to-
use and intuitive UI.

Solution
Use the UISlider class.

50 | Chapter 1: Implementing Controllers and Views

Discussion
You’ve certainly seen sliders before. Figure 1-17 shows an example.

Figure 1-17. The volume slider in Control Center

To create a slider, instantiate an object of type UISlider. Let’s dive right in and create a
slider and place it on our view controller’s view. We’ll start with our view controller’s
implementation file:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UISlider *slider;

@end

@implementation ViewController

...

1.6. Implementing Range Pickers with UISlider | 51

And now let’s go to the viewDidLoad method and create our slider component. In this
code, we are going to give our slider a range between 0 and 100 and set its default position
to be halfway between start and end.

The range of a slider has nothing to do with its appearance. We use the
range specifiers of a slider to tell the slider to calculate its value based
on the relative position within the range. For instance, if the range of
a slider is provided as 0 to 100, when the knob on the slider is on the
leftmost part, the value property of the slider is 0, and if the knob is
to the rightmost side of the slider, the value property would be 100.

- (void)viewDidLoad{

 [super viewDidLoad];

 self.slider = [[UISlider alloc] initWithFrame:CGRectMake(0.0f,

 0.0f,

 200.0f,

 23.0f)];

 self.slider.center = self.view.center;

 self.slider.minimumValue = 0.0f;

 self.slider.maximumValue = 100.0f;

 self.slider.value = self.slider.maximumValue / 2.0;

 [self.view addSubview:self.slider];

}

What do the results look like? You can now run the app on the simulator and you’ll get
results like those shown in Figure 1-18.

Figure 1-18. A simple slider at the center of the screen

We used a few properties of the slider to get the results we wanted. What were they?

minimumValue

Specifies the minimum value of the slider’s range.

52 | Chapter 1: Implementing Controllers and Views

maximumValue

Specifies the maximum value of the slider’s range.

value

The current value of the slider. This is a read/write property, meaning that you can
both read from it and write to it. If you want the slider’s knob to be moved to this
value in an animated mode, you can call the setValue:animated: method of the
slider and pass YES as the animated parameter.

The little knob on a slider is called the thumb. If you wish to receive an event whenever
the slider’s thumb has moved, you must add your object as the target of the slider, using
the slider’s addTarget:action:forControlEvents: method:

- (void) sliderValueChanged:(UISlider *)paramSender{

 if ([paramSender isEqual:self.slider]){

 NSLog(@"New value = %f", paramSender.value);

 }

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.slider = [[UISlider alloc] initWithFrame:CGRectMake(0.0f,

 0.0f,

 200.0f,

 23.0f)];

 self.slider.center = self.view.center;

 self.slider.minimumValue = 0.0f;

 self.slider.maximumValue = 100.0f;

 self.slider.value = self.slider.maximumValue / 2.0;

 [self.view addSubview:self.slider];

 [self.slider addTarget:self

 action:@selector(sliderValueChanged:)

 forControlEvents:UIControlEventValueChanged];

}

If you run the application on the simulator now, you will notice that the sliderValue
Changed: target method gets called whenever and as soon as the slider’s thumb moves.
This might be what you want, but in some cases, you might need to get notified only
after the user has let go of the thumb on the slider and let it settle. If you want to wait
to be notified, set the continuous property of the slider to NO. This property, when set
to YES (its default value), will call the slider’s targets continuously while the thumb
moves.

The iOS SDK also gives you the ability to modify how a slider looks. For instance, the
thumb on the slider can have a different image. To change the image of the thumb,

1.6. Implementing Range Pickers with UISlider | 53

simply use the setThumbImage:forState: method and pass an image along with a sec‐
ond parameter that can take any of these values:

UIControlStateNormal

The normal state of the thumb, with no user finger on this component.

UIControlStateHighlighted

The image to display for the thumb while the user is moving her finger on this
component.

I have prepared two images: one for the normal state of the thumb and the other one
for the highlighted (touched) state of the thumb. Let’s go ahead and add them to the
slider:

[self.slider setThumbImage:[UIImage imageNamed:@"ThumbNormal.png"]

 forState:UIControlStateNormal];

[self.slider setThumbImage:[UIImage imageNamed:@"ThumbHighlighted.png"]

 forState:UIControlStateHighlighted];

And now let’s have a look and see how our normal thumb image looks in the simulator
(Figure 1-19).

Figure 1-19. A slider with a custom thumb image

1.7. Customizing the UISlider

Problem
You are using the default appearance of the UISlider UI component, and now you want
to customize this look and feel.

54 | Chapter 1: Implementing Controllers and Views

Solution
Either modify the tint colors of the different parts of the slider or provide your own
images for the parts.

Discussion
Apple has done a great job giving us methods to customize UI components in the iOS
SDK. One customization is to modify the tint colors of various parts of the UI compo‐
nent. Let’s take a simple UISlider as an example. I have broken it down into its different
UI components in Figure 1-20.

Figure 1-20. Different components of a UISlider

For each of these components in UISlider, a method and property exist that allow you
to change the appearance of the slider. The easiest of these properties to use are the ones
that modify the tint color of these components:

minimumTrackTintColor

This property sets the tint color of the minimum value track view.

thumbTintColor

This property, as its name shows, sets the tint color of the thumb view.

maximumTrackTintColor

This property sets the tint color of the maximum value track view.

All these properties are of type UIColor.

The following sample code instantiates a UISlider and places it at the center of the view
of the view controller. It also sets the tint color of the minimum value tracking view of
the slider to red, the tint color of the thumb view of the slider to black, and the tint color
of the maximum value tracking view of the slider to green:

1.7. Customizing the UISlider | 55

- (void)viewDidLoad{

 [super viewDidLoad];

 /* Create the slider */

 self.slider = [[UISlider alloc] initWithFrame:CGRectMake(0.0f,

 0.0f,

 118.0f,

 23.0f)];

 self.slider.value = 0.5;

 self.slider.minimumValue = 0.0f;

 self.slider.maximumValue = 1.0f;

 self.slider.center = self.view.center;

 [self.view addSubview:self.slider];

 /* Set the tint color of the minimum value */

 self.slider.minimumTrackTintColor = [UIColor redColor];

 /* Set the tint color of the thumb */

 self.slider.maximumTrackTintColor = [UIColor greenColor];

 /* Set the tint color of the maximum value */

 self.slider.thumbTintColor = [UIColor blackColor];

}

If you run the app now, you will see something similar to Figure 1-21.

Figure 1-21. The tint colors of all the different components of a slider are modified

Sometimes you may want to have more control over how a slider looks on the screen.
For this, tint colors may not be sufficient. That’s why Apple has provided other ways of
modifying the look and feel of a slider, allowing you to provide images for different
components in the slider. These images are the following:

Minimum value image
This is the image that will be displayed to the outer-left side of the slider. By default,
no image is provided for the minimum value image, so you cannot really see this

56 | Chapter 1: Implementing Controllers and Views

if you create a new slider on a view. You can use this image to give your users an
indication of what the minimum value in your slider may mean in the context of
your app. For instance, in an app where the user is allowed to increase or decrease
the brightness of the screen, the minimum value image may display a dim lightbulb,
suggesting to users that moving the thumb in the slider to the left (toward the
minimum value) will reduce the brightness of the screen further. To change this
image, use the setMinimumValueImage: instance method of the slider. The image
needs to be 23 points wide and 23 points tall. Obviously, for Retina displays, simply
provide the same image but twice as big.

Minimum track image
This is the image that will be displayed for the slider’s track on the left side of the
thumb. To change this image, use the setMinimumTrackImage:forState: instance
method of the slider. The image needs to be 11 points wide and 9 points tall and be
constructed as a resizable image (see Recipe 20.5).

Thumb image
The image for the thumb, the only moving component in the slider. To change this
image, use the setThumbImage:forState: instance method of the slider. The image
needs to be 23 points wide and 23 points tall.

Maximum track image
The image for the track of the slider to the right of the thumb. To change this image,
use the setMaximumTrackImage:forState: instance method of the slider. The im‐
age needs to be 11 points wide and 9 points tall and be constructed as a resizable
image (see Recipe 20.5).

Maximum value image
The maximum value image is the image that gets displayed on the outer-right side
of the slider. This is similar to the minimum value image but of course depicts the
maximum value of the slider instead. To continue the earlier example of a brightness
slider, the image for the maximum value can be a bright light with rays emitting
from it, suggesting to the user that the farther he moves the slider to the right, the
brighter the display gets. To change this image, use the setMaximumValueImage:
instance method of the slider. The image needs to be 23 points wide and 23 points
tall.

The images that you provide for the minimum and the maximum track
need to be resizable. For more information about resizable images, see
Recipe 20.5.

For the sake of this exercise, I have created five unique images for each one of the
components of the slider. I’ve made sure that the minimum and the maximum track

1.7. Customizing the UISlider | 57

images are resizable images. What I am trying to achieve with the customization of this
slider component is to make the user think that she is changing the temperature settings
of a room, where moving the slider to the left means less heat and moving to the right
means more heat. So here is the code that creates a slider and skins its various compo‐
nents:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UISlider *slider;

@end

@implementation ViewController

/*

 This method returns a resizable image for the

 minimum track component of the slider

 */

- (UIImage *) minimumTrackImage{

 UIImage *result = [UIImage imageNamed:@"MinimumTrack"];

 UIEdgeInsets edgeInsets;

 edgeInsets.left = 4.0f;

 edgeInsets.top = 0.0f;

 edgeInsets.right = 0.0f;

 edgeInsets.bottom = 0.0f;

 result = [result resizableImageWithCapInsets:edgeInsets];

 return result;

}

/*

 Similar to the previous method, this one returns the resizable maximum

 track image for the slider

 */

- (UIImage *) maximumTrackImage{

 UIImage *result = [UIImage imageNamed:@"MaximumTrack"];

 UIEdgeInsets edgeInsets;

 edgeInsets.left = 0.0f;

 edgeInsets.top = 0.0f;

 edgeInsets.right = 3.0f;

 edgeInsets.bottom = 0.0f;

 result = [result resizableImageWithCapInsets:edgeInsets];

 return result;

}

- (void)viewDidLoad{

 [super viewDidLoad];

 /* Create the slider */

 self.slider = [[UISlider alloc] initWithFrame:CGRectMake(0.0f,

 0.0f,

 218.0f,

 23.0f)];

58 | Chapter 1: Implementing Controllers and Views

 self.slider.value = 0.5;

 self.slider.minimumValue = 0.0f;

 self.slider.maximumValue = 1.0f;

 self.slider.center = self.view.center;

 [self.view addSubview:self.slider];

 /* Change the minimum value image */

 [self.slider setMinimumValueImage:[UIImage imageNamed:@"MinimumValue"]];

 /* Change the minimum track image */

 [self.slider setMinimumTrackImage:[self minimumTrackImage]

 forState:UIControlStateNormal];

 /* Change the thumb image for both untouched and touched states */

 [self.slider setThumbImage:[UIImage imageNamed:@"Thumb"]

 forState:UIControlStateNormal];

 [self.slider setThumbImage:[UIImage imageNamed:@"Thumb"]

 forState:UIControlStateHighlighted];

 /* Change the maximum track image */

 [self.slider setMaximumTrackImage:[self maximumTrackImage]

 forState:UIControlStateNormal];

 /* Change the maximum value image */

 [self.slider setMaximumValueImage:[UIImage imageNamed:@"MaximumValue"]];

}

The slider in iOS 7 has a completely new look, as you can guess, very
streamlined and slim and thin. The height of the minimum and max‐
imum track images in iOS 7 is only 1 point wide, so setting an image
for these components is absolutely useless and won’t look very good
anyway. Therefore, to skin these components of a UISlider in iOS 7,
it is recommended that you use the tint colors instead of assigning
custom images to it.

See Also
Recipe 1.6

1.8. Grouping Compact Options with UISegmentedControl

Problem
You would like to present a few options to your users from which they can pick an
option, through a UI that is compact, simple, and easy to understand.

1.8. Grouping Compact Options with UISegmentedControl | 59

Solution
Use the UISegmentedControl class, an example of which is shown in Figure 1-22.

Figure 1-22. A segmented control displaying four options

Discussion
A segmented control is a UI component that allows you to display, in a compact UI, a
series of options for the user to choose from. To show a segmented control, create an
instance of UISegmentedControl. Let’s start with our view controller’s .m file:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UISegmentedControl *mySegmentedControl;

@end

@implementation ViewController

...

And create the segmented control in the viewDidLoad method of your view controller:

- (void)viewDidLoad{

 [super viewDidLoad];

 NSArray *segments = [[NSArray alloc] initWithObjects:

 @"iPhone",

 @"iPad",

 @"iPod",

 @"iMac", nil];

 self.mySegmentedControl = [[UISegmentedControl alloc]

 initWithItems:segments];

 self.mySegmentedControl.center = self.view.center;

 [self.view addSubview:self.mySegmentedControl];

}

60 | Chapter 1: Implementing Controllers and Views

We are simply using an array of strings to provide the different options that our seg‐
mented control has to display. We initialize our segmented control using the in
itWithObjects: initializer and pass the array of strings and images to the segmented
control. The results will look like what we saw in Figure 1-22.

Now the user can pick one of the options in the segmented control. Let’s say she has
picked iPad. The segmented control will then change its user interface to show the user
what option she has selected, as depicted in Figure 1-23.

Figure 1-23. User has selected one of the items in a segmented control

Now the question is, how do you recognize when the user selects a new option in a
segmented control? The answer is simple. Just as with a UISwitch or a UISlider, use
the addTarget:action:forControlEvents: method of the segmented control to add
a target to it. Provide the value of UIControlEventValueChanged for the forControlE
vents parameter, because that is the event that gets fired when the user selects a new
option in a segmented control:

- (void) segmentChanged:(UISegmentedControl *)paramSender{

 if ([paramSender isEqual:self.mySegmentedControl]){

 NSInteger selectedSegmentIndex = [paramSender selectedSegmentIndex];

 NSString *selectedSegmentText =

 [paramSender titleForSegmentAtIndex:selectedSegmentIndex];

 NSLog(@"Segment %ld with %@ text is selected",

 (long)selectedSegmentIndex,

 selectedSegmentText);

 }

}

- (void)viewDidLoad{

 [super viewDidLoad];

1.8. Grouping Compact Options with UISegmentedControl | 61

 NSArray *segments = @[

 @"iPhone",

 @"iPad",

 @"iPod",

 @"iMac"

];

 self.mySegmentedControl = [[UISegmentedControl alloc]

 initWithItems:segments];

 self.mySegmentedControl.center = self.view.center;

 [self.view addSubview:self.mySegmentedControl];

 [self.mySegmentedControl addTarget:self

 action:@selector(segmentChanged:)

 forControlEvents:UIControlEventValueChanged];

}

If the user starts from the left side and selects each of the options in Figure 1-22, all the
way to the right side of the control, the following text will print out to the console:

Segment 0 with iPhone text is selected

Segment 1 with iPad text is selected

Segment 2 with iPod text is selected

Segment 3 with iMac text is selected

As you can see, we used the selectedSegmentIndex method of the segmented control
to find the index of the currently selected item. If no item is selected, this method returns
the value –1. We also used the titleForSegmentAtIndex: method. Simply pass the
index of an option in the segmented control to this method, and the segmented control
will return the text for that item. Simple, isn’t it?

As you might have noticed, once the user selects an option in a segmented control, that
option will get selected and will remain selected, as shown in Figure 1-23. If you want
the user to be able to select an option but you would like the button for that option to
bounce back to its original shape once it has been selected (just like a normal button
that bounces back up once it is tapped), you need to set the momentary property of the
segmented control to YES:

self.mySegmentedControl.momentary = YES;

One of the really neat features of segmented controls is that they can contain images
instead of text. To do this, simply use the initWithObjects: initializer method of the
UISegmentedControl class and pass the strings and images that will be used to initialize
the segmented UI control:

- (void)viewDidLoad{

 [super viewDidLoad];

 NSArray *segments = @[

 @"iPhone",

 [UIImage imageNamed:@"iPad"],

62 | Chapter 1: Implementing Controllers and Views

 @"iPod",

 @"iMac",

];

 self.mySegmentedControl = [[UISegmentedControl alloc]

 initWithItems:segments];

 CGRect segmentedFrame = self.mySegmentedControl.frame;

 segmentedFrame.size.height = 128.0f;

 segmentedFrame.size.width = 300.0f;

 self.mySegmentedControl.frame = segmentedFrame;

 self.mySegmentedControl.center = self.view.center;

 [self.view addSubview:self.mySegmentedControl];

}

In this example, the iPad file is simply an image of an iPad that’s been

added to our project.

In iOS 7, Apple has deprecated the segmentedControlStyle property of the
UISegmentedControl class, so segmented controls have only a single default style. We
can no longer modify this style.

1.9. Presenting and Managing Views with
UIViewController

Problem
You want to switch among different views in your application.

Solution
Use the UIViewController class.

Discussion
Apple’s strategy for iOS development was to use the model-view-controller (MVC) di‐
vision of labor. Views are what get displayed to users, while the model is the data that
the app manages, or the engine of the app. The controller is the bridge between the
model and the view. The controller, or in this case, the view controller, manages the
relationship between the view and the model. Why doesn’t the view do that instead?
Well, the answer is quite simple: the view’s code would get messy, and that design choice
would tightly couple our views with the model, which is not a good practice.

1.9. Presenting and Managing Views with UIViewController | 63

View controllers can be loaded from .xib files (for use with Interface Builder), or simply

be created programmatically. We will first have a look at creating a view controller
without a .xib file.

Xcode helps us create view controllers. Now that you have created an application using
the Empty Application template in Xcode, follow these steps to create a new view con‐
troller for your app:

1. In Xcode, select the File menu and then choose New → New File...

2. In the New File dialog, make sure iOS is the selected category on the left and that
Cocoa Touch is the chosen subcategory. Once you’ve done that, select the New
Objective-C class item on the righthand side and press Next, as shown in
Figure 1-24.

Figure 1-24. New Objective-C subclass

3. On the next screen, make sure that the “Subclass of ” the text field says UIView
Controller. Also make sure that neither the “Targeted for iPad” nor the “With XIB
for user interface” checkboxes is selected, as shown in Figure 1-25. Press Next.

64 | Chapter 1: Implementing Controllers and Views

Figure 1-25. A custom view controller with no .xib file

4. On the next screen (Save As), give your view controller’s file the name of “View‐
Controller” and then press the Create button, as shown in Figure 1-26.

5. Now find your application delegate’s .m file, which is usually called App

Delegate.m. In this file, declare a property of type ViewController:

#import "AppDelegate.h"

#import "ViewController.h"

@interface AppDelegate ()

@property (nonatomic, strong) ViewController *viewController;

@end

@implementation AppDelegate

...

1.9. Presenting and Managing Views with UIViewController | 65

Figure 1-26. Saving a view controller without a .xib file

6. Now find the application:didFinishLaunchingWithOptions: method of the app
delegate and instantiate the view controller and set it as the root view controller of
your window:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 self.viewController = [[ViewController alloc] initWithNibName:nil

 bundle:nil];

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 /* Make our view controller the root view controller */

 self.window.rootViewController = self.viewController;

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

66 | Chapter 1: Implementing Controllers and Views

Go ahead and run the app on the simulator. You will now see a plain white view on the
screen. Congratulations! You just created a view controller, and now you have access to
the view controller and its view object.

While creating the view controller (Figure 1-25), if you had selected the “With XIB for
user interface” checkbox, Xcode would have also generated a .xib file for you. In that

case, you can load your view controller from that .xib file by passing the .xib file’s name

(without the extension) to the initWithNibName parameter of the initWithNib
Name:bundle: method of the view controller, like so:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 self.viewController = [[ViewController alloc]

 initWithNibName:@"ViewController"

 bundle:nil];

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 /* Make our view controller the root view controller */

 self.window.rootViewController = self.viewController;

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

If you did create a .xib file while creating your view controller, you can now select that

file in Xcode and design your user interface with Interface Builder.

See Also
“Creating and Running Our First iOS App” on page 2

1.10. Presenting Sharing Options with
UIActivityViewController

Problem
You want to be able to allow your users to share content inside your apps with their
friends, through an interface similar to that shown in Figure 1-27 that provides different
sharing options available in iOS, such as Facebook and Twitter.

1.10. Presenting Sharing Options with UIActivityViewController | 67

Figure 1-27. The activity view controller displayed on an iOS device

Solution
Create an instance of the UIActivityViewController class and share your content
through this class, as we will see in the Discussion section of this recipe.

The instances of UIActivityViewController must be presented mo‐
dally on the iPhone and inside a popover on an iPad. For more infor‐
mation about popovers, refer to Recipe 1.29.

68 | Chapter 1: Implementing Controllers and Views

Discussion
There are many sharing options inside iOS, all built into the core of the OS. For instance,
Facebook and Twitter integration is now an integral part of the core of iOS, and you can
share pretty much any content from anywhere you want. Third-party apps like ours can
also use all the sharing functionalities available in iOS without having to think about
the low-level details of these services and how iOS provides these sharing options. The
beauty of this whole thing is that you mention what you want to share, and iOS will pick
the sharing options that are capable of handling those items. For instance, if you want
to share images and text, iOS will display many more items to you than if you want to
share an audio file.

Sharing data is very easy in iOS. All you have to do is instantiate the UIActivityView
Controller class using its initWithActivityItems:applicationActivities: initial‐
izer. Here are the parameters to this method:

initWithActivityItems

The array of items that you want to share. These can be instances of NSString,
UIImage, or instances of any of your custom classes that conform to the UIActivi
tyItemSource protocol. We will talk about this protocol later in detail.

applicationActivities

An array of instances of UIActivity that represent the activities that your own
application supports. For instance, you can indicate here whether your application
can handle its own sharing of images and strings. We will not go into detail about
this parameter for now and will simply pass nil as its value, telling iOS that we want
to stick to the system sharing options.

So let’s say that you have a text field where the user can enter text to be shared, and a
Share button right near it. When the user presses the Share button, you will simply pass
the text of the text field to your instance of the UIActivityViewController class. Here
is our code. We are writing this code for iPhone, so we will present our activity view
controller as a modal view controller.

Because we are putting a text field on our view controller, we need to make sure that we
are handling its delegate messages, especially the textFieldShouldReturn: method of
the UITextFieldDelegate protocol. Therefore, we are going to elect our view controller
as the delegate of the text field. Also, we are going to attach an action method to our
Share button. Once the button is tapped, we want to make sure there is something in
the text field to share. If there isn’t, we will simply display an alert to the user telling him
why we cannot share the content of the text field. If there is some text in the text field,
we will pop up an instance of the UIActivityViewController class. So let’s begin with
the implementation file of our view controller and define our UI components:

@interface ViewController () <UITextFieldDelegate>

@property (nonatomic, strong) UITextField *textField;

1.10. Presenting Sharing Options with UIActivityViewController | 69

@property (nonatomic, strong) UIButton *buttonShare;

@property (nonatomic, strong) UIActivityViewController *activityViewController;

@end

...

After this, we will write two methods for our view controller, each of which is able to
create one of our UI components and place it on our view controller’s view. One will
create the text field, and the other will create the button next to it:

- (void) createTextField{

 self.textField = [[UITextField alloc] initWithFrame:CGRectMake(20.0f,

 35.0f,

 280.0f,

 30.0f)];

 self.textField.translatesAutoresizingMaskIntoConstraints = NO;

 self.textField.borderStyle = UITextBorderStyleRoundedRect;

 self.textField.placeholder = @"Enter text to share...";

 self.textField.delegate = self;

 [self.view addSubview:self.textField];

}

- (void) createButton{

 self.buttonShare = [UIButton buttonWithType:UIButtonTypeRoundedRect];

 self.buttonShare.translatesAutoresizingMaskIntoConstraints = NO;

 self.buttonShare.frame = CGRectMake(20.0f, 80.0f, 280.0f, 44.0f);

 [self.buttonShare setTitle:@"Share" forState:UIControlStateNormal];

 [self.buttonShare addTarget:self

 action:@selector(handleShare:)

 forControlEvents:UIControlEventTouchUpInside];

 [self.view addSubview:self.buttonShare];

}

Once we are done with that, we just have to call these two methods in the viewDid
Load method of our view controller. This will allow the UI components to be placed on
the view of our view controller:

- (void)viewDidLoad{

 [super viewDidLoad];

 [self createTextField];

 [self createButton];

}

70 | Chapter 1: Implementing Controllers and Views

In the textFieldShouldReturn: method, all we do is dismiss the keyboard in order to
resign the text field’s active state. This simply means that when a user has been editing
the text field and then presses the Return or Enter button on the keyboard, the keyboard
should be dismissed. Bear in mind that the createTextField method that we just coded
has set our view controller as the delegate of the text field. So we have to implement the
aforementioned method as follows:

- (BOOL) textFieldShouldReturn:(UITextField *)textField{

 [textField resignFirstResponder];

 return YES;

}

Last but not least is the handler method of our button. As you saw, the createButton
method creates the button for us and elects the handleShare: method to handle the
touch down inside action of the button. So let’s code this method:

- (void) handleShare:(id)paramSender{

 if ([self.textField.text length] == 0){

 NSString *message = @"Please enter a text and then press Share";

 UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:nil

 message:message

 delegate:nil

 cancelButtonTitle:@"OK"

 otherButtonTitles:nil];

 [alertView show];

 return;

 }

 self.activityViewController = [[UIActivityViewController alloc]

 initWithActivityItems:@[self.textField.text]

 applicationActivities:nil];

 [self presentViewController:self.activityViewController

 animated:YES

 completion:^{

 /* Nothing for now */

 }];

}

Now if you run the app, enter some text in the text field, and then press the Share button,
you will see something similar to Figure 1-28.

1.10. Presenting Sharing Options with UIActivityViewController | 71

Figure 1-28. Sharing options displayed for the instance of string that we are trying to
share

You can also have sharing options displayed as soon as your view controller is displayed
on the screen. The viewDidAppear method of your view controller will be called when
the view of your view controller is displayed on the screen and is guaranteed to be in
the view hierarchy of your app, meaning that you can now display other views on top
of your view controller’s view.

Do not attempt to present the activity view controller in the viewDid
Load method of your view controller. At that stage in the app, your
view controller’s view is still not attached to the view hierarchy of the
application, so attempting to present a view controller on the view will
not work. Your view must be present in the hierarchy of the views for
your modal views to work.

72 | Chapter 1: Implementing Controllers and Views

For this reason, you need to present the sharing view controller in the
viewDidAppear method of your view controller.

See Also
Recipe 1.29

1.11. Presenting Custom Sharing Options with
UIActivityViewController

Problem
You want your app to participate in the list of apps that can handle sharing in iOS and
appear in the list of available activities displayed in the activity view controller (see
Figure 1-27).

You may need something like this, for example, when you have a text-editing app and
when the user presses the Share button, you want a custom item that says “Archive” to
appear in the activity view controller. When the user presses the Archive button, the
text inside your app’s editing area will get passed to your custom activity, and your
activity can then archive that text into the filesystem on the iOS device.

Solution
Create a class of type UIActivity. In other words, subclass the aforementioned class
and give a name (whatever you like) to your new class. Instances of the subclasses of
this class can be passed to the initWithActivityItems:applicationActivities: in‐
itializer of the UIActivityViewController class, and if they implement all the required
methods of the UIActivity class, iOS will display them in the activity view controller.

Discussion
The initWithActivityItems:applicationActivities: method’s first parameter ac‐
cepts values of different types. These values can be strings, numbers, images, etc.—any
object, really. When you present an activity controller with an array of arbitrary objects
passed to the initWithActivityItems parameter, iOS will go through all the available
system activities, like Facebook and Twitter, and will ask the user to pick an activity that
suits her needs best. After the user picks an activity, iOS will pass the type of the objects
in your array to the registered system activity that the user picked. Those activities can
then check the type of the objects you are trying to share and decide whether they can
handle those objects or not. They communicate this to iOS through a specific method
that they will implement in their classes.

1.11. Presenting Custom Sharing Options with UIActivityViewController | 73

So let’s say that we want to create an activity that can reverse any number of strings that
are handed to it. Remember that when your app initializes the activity view controller
through the initWithActivityItems:applicationActivities: method, it can pass
an array of arbitrary objects to the first parameter of this method. So our activity is going
to peek at all these objects in this arbitrary array, and if they are all strings, it is going to
reverse them and then display all the reversed strings in an alert view.

1. Subclass UIActivity as shown here:

#import <UIKit/UIKit.h>

@interface StringReverserActivity : UIActivity

@end

2. Since our activity is going to be responsible for displaying an alert view to the user
when an array of strings is passed to us, we need to ensure that our activity conforms
to the UIAlertViewDelegate protocol and marks our activity as “finished” when
the user dismisses the alert view, like so:

#import "StringReverserActivity.h"

@interface StringReverserActivity () <UIAlertViewDelegate>

@property (nonatomic, strong) NSArray *activityItems;

@end

@implementation StringReverserActivity

- (void) alertView:(UIAlertView *)alertView

 didDismissWithButtonIndex:(NSInteger)buttonIndex{

 [self activityDidFinish:YES];

}

3. Next, override the activityType method of your activity. The return value of this
method is an object of type NSString that is a unique identifier of your activity.
This value will not be displayed to the user and is just for iOS to keep track of your
activity’s identifier. There are no specific values that you are asked to return from
this method and no guidelines available from Apple, but we will follow the reverse-
domain string format and use our app’s bundle identifier and append the name of
our class to the end of it. So if our bundle identifier is equal to com.pixoli
ty.ios.cookbook.myapp and our class name is StringReverserActivity, we will
return com.pixolity.ios.cookbook.myapp.StringReverserActivity from this
method, like so:

- (NSString *) activityType{

 return [[NSBundle mainBundle].bundleIdentifier

74 | Chapter 1: Implementing Controllers and Views

 stringByAppendingFormat:@".%@", NSStringFromClass([self class])];

}

4. The next method to override is the activityTitle method, which should return
a string to be displayed to the user in the activity view controller. Make sure this
string is short enough to fit into the activity view controller:

- (NSString *) activityTitle{

 return @"Reverse String";

}

5. The next method is activityImage, which has to return an instance of UIImage
that gets displayed in the activity view controller. Make sure that you provide both
Retina and non-Retina versions of the image for both iPad and iPhone/iPod. The
iPad Retina image has to be 110×110 pixels and the iPhone Retina image has to be
86×86 pixels. Obviously, divide these dimensions by 2 to get the width and the
height of the non-Retina images. iOS uses only the alpha channel in this image, so
make sure your image’s background is transparent and that you illustrate your im‐
age with the color white or the color black. I have already created an image in my
app’s image assets section, and I’ve named the image “Reverse,” as you can see in
Figure 1-29. Here is our code, then:

- (UIImage *) activityImage{

 return [UIImage imageNamed:@"Reverse"];

}

Figure 1-29. Our asset category contains images for our custom activity

6. Implement the canPerformWithActivityItems: method of your activity. This
method’s parameter is an array that will be set when an array of activity items is
passed to the initializer of the activity view controller. Remember, these are objects
of arbitrary type. The return value of your method will be a Boolean indicating
whether you can perform your actions on any of the given items or not. For instance,
our activity can reverse any number of strings that it is given. So if we find one string
in the array, that is good enough for us because we know we will later be able to

1.11. Presenting Custom Sharing Options with UIActivityViewController | 75

reverse that string. If we are given an array of 1,000 objects that contains only 2
strings, we will still accept it. But if we are given an array of 1,000 objects, none of
which are of our acceptable type, we will reject this request by returning NO from
this method:

- (BOOL) canPerformWithActivityItems:(NSArray *)activityItems{

 for (id object in activityItems){

 if ([object isKindOfClass:[NSString class]]){

 return YES;

 }

 }

 return NO;

}

7. Now implement the prepareWithActivityItems: method of your activity, whose
parameter is of type NSArray. This method gets called if you returned YES from the
canPerformWithActivityItems: method. You have to retain the given array for
later use. You don’t really actually have to retain the whole array. You may choose
to retain only the objects that you need in this array, such as the string objects.

- (void) prepareWithActivityItems:(NSArray *)activityItems{

 NSMutableArray *stringObjects = [[NSMutableArray alloc] init];

 for (id object in activityItems){

 if ([object isKindOfClass:[NSString class]]){

 [stringObjects addObject:object];

 }

 }

 self.activityItems = [stringObjects copy];

}

8. Last but not least, you need to implement the performActivity method of your
activity, which gets called when iOS wants you to actually perform your actions on
the list of previously-provided arbitrary objects. In this method, basically, you have
to perform your work. In our activity, we are going to go through the array of string
objects that we extracted from this arbitrary array, reverse all of them, and display
them to the user using an alert view:

- (NSString *) reverseOfString:(NSString *)paramString{

 NSMutableString *reversed = [[NSMutableString alloc]

 initWithCapacity:paramString.length];

 for (NSInteger counter = paramString.length - 1;

 counter >= 0;

76 | Chapter 1: Implementing Controllers and Views

 counter--){

 [reversed appendFormat:@"%c", [paramString characterAtIndex:counter]];

 }

 return [reversed copy];

}

- (void) performActivity{

 NSMutableString *reversedStrings = [[NSMutableString alloc] init];

 for (NSString *string in self.activityItems){

 [reversedStrings appendString:[self reverseOfString:string]];

 [reversedStrings appendString:@"\n"];

 }

 UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:@"Reversed"

 message:reversedStrings

 delegate:self

 cancelButtonTitle:@"OK"

 otherButtonTitles:nil];

 [alertView show];

}

We are done with the implementation of our activity class. Now let’s go to our view
controller’s implementation file and display the activity view controller with our custom
activity in the list:

#import "ViewController.h"

#import "StringReverserActivity.h"

@implementation ViewController

- (void) viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 NSArray *itemsToShare = @[

 @"Item 1",

 @"Item 2",

 @"Item 3",

];

 UIActivityViewController *activity =

 [[UIActivityViewController alloc]

 initWithActivityItems:itemsToShare

 applicationActivities:@[[StringReverserActivity new]]];

 [self presentViewController:activity animated:YES completion:nil];

1.11. Presenting Custom Sharing Options with UIActivityViewController | 77

}

@end

When the app runs for the first time, you will see something similar to Figure 1-30 on
the screen.

Figure 1-30. Our custom Reverse String activity is showing in the list of available activi‐
ties

If you now tap on the Reverse String item in the list, you should see something similar
to that shown in Figure 1-31.

78 | Chapter 1: Implementing Controllers and Views

Figure 1-31. Our string reverser activity in action

See Also
Recipe 1.10

1.12. Implementing Navigation with
UINavigationController

Problem
You would like to allow your users to move from one view controller to the other with
a smooth and built-in animation.

Solution
Use an instance of UINavigationController.

1.12. Implementing Navigation with UINavigationController | 79

Discussion
If you’ve used an iPhone, iPod Touch, or iPad before, chances are that you have already
seen a navigation controller in action. For instance, if you go to the Settings app on your
phone and then press an option such as Wallpaper (Figure 1-32), you will see the Settings
main screen get pulled out of the screen from the left and the Wallpaper screen pushing
its way into the screen from the right. That is the magic of navigation controllers. They
allow you to push view controllers onto a stack and pop them from the stack. The view
controller on top of the stack is the top view controller and is the one seen by the user
at that moment. So only the top view controller gets displayed to the user and is changed
either by popping (removing) it or by pushing another view controller onto the stack.

Figure 1-32. Settings view controller pushing the Wallpaper view controller

80 | Chapter 1: Implementing Controllers and Views

Now we are going to add a navigation controller to our project, but we need a project
first. Please follow the instructions in Recipe 1.9 to create an empty application with a
simple view controller. In this recipe, we will expand on Recipe 1.9. Let’s start with
the .m file of our app delegate:

#import "AppDelegate.h"

#import "FirstViewController.h"

@interface AppDelegate ()

@property (nonatomic, strong) UINavigationController *navigationController;

@end

@implementation AppDelegate

...

Now we have to initialize our navigation controller using its initWithRootViewCon
troller: method and pass our root view controller as its parameter. Then we will set
the navigation controller as the root view controller of our window. Don’t get confused
here. UINavigationController is actually a subclass of UIViewController, and our
window’s rootViewController property accepts any object of type UIView

Controller, so if we want the root view controller of our window to be a navigation
controller, we simply set our navigation controller as the root view controller of the
window:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 FirstViewController *viewController = [[FirstViewController alloc]

 initWithNibName:nil

 bundle:nil];

 self.navigationController = [[UINavigationController alloc]

 initWithRootViewController:viewController];

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.rootViewController = self.navigationController;

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Now let’s run our app in the simulator, as shown in Figure 1-33.

1.12. Implementing Navigation with UINavigationController | 81

Figure 1-33. Our root view controller displayed inside a navigation controller

The root view controller’s implementation file is creating the button in
the center of the screen (shown in Figure 1-33). We will get to the
implementation of that file soon.

The first thing you might notice in Figure 1-33 is the bar on top of the screen. The screen
isn’t plain white anymore. What’s the new widget? A navigation bar. We will be using
that bar a lot for navigation, placing buttons there, and so forth. That bar is also capable
of displaying a title. Each view controller specifies a title for itself, and the navigation
controller will automatically display that title once the view controller is pushed into
the stack.

Let’s go to our root view controller’s implementation file, inside the viewDidLoad meth‐
od, and set the title property of our view controller to First Controller. We’ll also
create our button there. When the user presses this button, we want to display the second
view controller on the screen:

#import "FirstViewController.h"

#import "SecondViewController.h"

@interface FirstViewController ()

 @property (nonatomic, strong) UIButton *displaySecondViewController;

@end

@implementation FirstViewController

- (void) performDisplaySecondViewController:(id)paramSender{

 SecondViewController *secondController = [[SecondViewController alloc]

 initWithNibName:nil

82 | Chapter 1: Implementing Controllers and Views

 bundle:NULL];

 [self.navigationController pushViewController:secondController

 animated:YES];

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.title = @"First Controller";

 self.displaySecondViewController = [UIButton

 buttonWithType:UIButtonTypeSystem];

 [self.displaySecondViewController

 setTitle:@"Display Second View Controller"

 forState:UIControlStateNormal];

 [self.displaySecondViewController sizeToFit];

 self.displaySecondViewController.center = self.view.center;

 [self.displaySecondViewController

 addTarget:self

 action:@selector(performDisplaySecondViewController:)

 forControlEvents:UIControlEventTouchUpInside];

 [self.view addSubview:self.displaySecondViewController];

}

@end

Now let’s go and create this second view controller, without a .xib file, and call it Second

ViewController. Follow the same process that you learned in Recipe 1.9. Once you are
done creating this view controller, give it a title of Second Controller.

#import "SecondViewController.h"

@implementation SecondViewController

- (void)viewDidLoad{

 [super viewDidLoad];

 self.title = @"Second Controller";

}

Now what we want to do is “pop” from the second view controller back to the first view
controller, five seconds after the second view controller is displayed to the screen. For
that we are using the performSelector:withObject:afterDelay: method of NSOb
ject to call our new method, goBack, five seconds after our second view controller
successfully displays its view. In the goBack method, we are simply using the naviga
tionController property of our view controller (this is built into UIViewController
and is not something that we coded) to pop back to the instance of FirstViewControl
ler, using the popViewControllerAnimated: method of our navigation controller that
takes a Boolean as a parameter. If this Boolean value is set to YES, the transition back to

1.12. Implementing Navigation with UINavigationController | 83

the previous view controller will be animated, and if NO, it won’t be. When the second
view controller is displayed on the screen, you will see something similar to that shown
in Figure 1-34.

Figure 1-34. A view controller is pushed on top of another one

#import "SecondViewController.h"

@implementation SecondViewController

- (void)viewDidLoad{

 [super viewDidLoad];

 self.title = @"Second Controller";

}

- (void) goBack{

 [self.navigationController popViewControllerAnimated:YES];

}

- (void) viewDidAppear:(BOOL)paramAnimated{

 [super viewDidAppear:paramAnimated];

 [self performSelector:@selector(goBack)

 withObject:nil

 afterDelay:5.0f];

}

@end

You can see that the navigation bar is displaying the title of the top view controller and
even sports a back button that will take the user back to the previous view controller.
You can push as many view controllers as you like into the stack, and the navigation
controller will work the navigation bar to display the relevant back buttons that allow
the user to back through your application’s UI, all the way to the first screen.

So if you open the app in the simulator now and press the button on the first view
controller, you will see that the second view controller will automatically get displayed
on the screen. Wait five seconds now on the second view controller and it will auto‐
matically go back to the first view controller.

See Also
Recipe 1.9

84 | Chapter 1: Implementing Controllers and Views

1.13. Manipulating a Navigation Controller’s Array of View
Controllers

Problem
You would like to directly manipulate the array of view controllers associated with a
specific navigation controller.

Solution
Use the viewControllers property of the UINavigationController class to access and
modify the array of view controllers associated with a navigation controller:

- (void) goBack{

 /* Get the current array of View Controllers */

 NSArray *currentControllers = self.navigationController.viewControllers;

 /* Create a mutable array out of this array */

 NSMutableArray *newControllers = [NSMutableArray

 arrayWithArray:currentControllers];

 /* Remove the last object from the array */

 [newControllers removeLastObject];

 /* Assign this array to the Navigation Controller */

 self.navigationController.viewControllers = newControllers;

}

You can call this method inside any view controller in order to pop the last view con‐
troller from the hierarchy of the navigation controller associated with the current view
controller.

Discussion
An instance of the UINavigationController class holds an array of UIView
Controller objects. After retrieving this array, you can manipulate it in any way you
wish. For instance, you can remove a view controller from an arbitrary place in the array.

Manipulating the view controllers of a navigation controller directly by assigning an
array to the viewControllers property of the navigation controller will commit the
operation without a transition/animation. If you wish this operation to be animated,
use the setViewControllers:animated: method of the UINavigationController
class, as shown in the following snippet:

- (void) goBack{

 /* Get the current array of View Controllers */

 NSArray *currentControllers = self.navigationController.viewControllers;

1.13. Manipulating a Navigation Controller’s Array of View Controllers | 85

 /* Create a mutable array out of this array */

 NSMutableArray *newControllers = [NSMutableArray

 arrayWithArray:currentControllers];

 /* Remove the last object from the array */

 [newControllers removeLastObject];

 /* Assign this array to the Navigation Controller with animation */

 [self.navigationController setViewControllers:newControllers

 animated:YES];

}

1.14. Displaying an Image on a Navigation Bar

Problem
You want to display an image instead of text as the title of the current view controller
on the navigation controller.

Solution
Use the titleView property of the view controller’s navigation item:

- (void)viewDidLoad{

 [super viewDidLoad];

 /* Create an Image View to replace the Title View */

 UIImageView *imageView =

 [[UIImageView alloc]

 initWithFrame:CGRectMake(0.0f, 0.0f, 100.0f, 40.0f)];

 imageView.contentMode = UIViewContentModeScaleAspectFit;

 /* Load an image. Be careful, this image will be cached */

 UIImage *image = [UIImage imageNamed:@"Logo"];

 /* Set the image of the Image View */

 [imageView setImage:image];

 /* Set the Title View */

 self.navigationItem.titleView = imageView;

}

The preceding code must be executed in a view controller that is placed
inside a navigation controller.

86 | Chapter 1: Implementing Controllers and Views

I have already loaded an image into my project’s assets group and I’ve called this image
“Logo”. Once you run this app with the given code snippet, you’ll see something similar
to that shown in Figure 1-35.

Figure 1-35. An image view in our navigation bar

Discussion
The navigation item of every view controller can display two different types of content
in the title area of the view controller to which it is assigned:

• Simple text

• A view

If you want to use text, you can use the title property of the navigation item. However,
if you want more control over the title or if you simply want to display an image or any
other view up on the navigation bar, you can use the titleView property of the navi‐
gation item of a view controller. You can assign any object that is a subclass of the UIView
class. In our example, we created an image view and assigned an image to it. Then we
displayed it as the title of the current view controller on the navigation controller.

The titleView property of the navigation bar is just a simple view, but Apple recom‐
mends that you limit the height of this view to no more than 128 points. So think about
it in terms of the image. If you are loading an image that is 128 pixels in height, that will
translate to 64 points on a Retina display, so in that case you are fine. But if you are
loading an image that is 300 pixels in height, on a Retina display, that will translate to
150 points in height, so you’ll be clearly over the 128-points limit that Apple recom‐
mends for the title bar view height. To remedy this situation, you need to ensure that
your title view is never taller than 128 points height-wise and set the view’s content mode
to fill the view, instead of stretching the view to fit the content. This can be done by
setting the contentMode property of your title bar view to UIViewContentModeScaleAs
pectFit.

1.14. Displaying an Image on a Navigation Bar | 87

1.15. Adding Buttons to Navigation Bars Using
UIBarButtonItem

Problem
You want to add buttons to a navigation bar.

Solution
Use the UIBarButtonItem class.

Discussion
A navigation bar can contain different items. Buttons are often displayed on the left and
the right sides. These buttons are of class UIBarButtonItem and can take many different
shapes and forms. Let’s have a look at an example in Figure 1-36.

Figure 1-36. Different buttons displayed on a navigation bar

88 | Chapter 1: Implementing Controllers and Views

Navigation bars are of class UINavigationBar and can be created at any time and added
to any view. Just look at all the different buttons with different shapes that have been
added to the navigation bar in Figure 1-36. The ones on the top right have up and down
arrows, and the one on the top left has an arrow pointing to the left. We will have a look
at creating some of these buttons in this recipe.

For this recipe, you must follow the instructions in “Creating and
Running Our First iOS App” on page 2 to create an empty applica‐

tion. Then follow the instructions in Recipe 1.12 to add a navigation
controller to your app delegate.

In order to create a navigation button, we must do the following:

1. Create an instance of UIBarButtonItem.

2. Add that button to the navigation bar of a view controller using the view controller’s
navigationItem property. The navigationItem property allows us to interact with
the navigation bar. This property has two others on itself: rightBarButtonItem and
leftBarButtonItem. Both these properties are of type UIBarButtonItem.

Let’s then have a look at an example where we add a button to the right side of our
navigation bar. In this button, we will display the text “Add”:

- (void) performAdd:(id)paramSender{

 NSLog(@"Action method got called.");

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.title = @"First Controller";

 self.navigationItem.rightBarButtonItem =

 [[UIBarButtonItem alloc] initWithTitle:@"Add"

 style:UIBarButtonItemStylePlain

 target:self

 action:@selector(performAdd:)];

}

When we run our app now, we will see something similar to Figure 1-37.

Figure 1-37. A navigation button added to a navigation bar

1.15. Adding Buttons to Navigation Bars Using UIBarButtonItem | 89

That was easy. But if you are an iOS user, you probably have noticed that the system
apps that come preconfigured on iOS have a different Add button. Figure 1-38 shows
an example in the Alarm section of the Clock app on the iPhone (notice the + button
on the top right of the navigation bar).

Figure 1-38. The proper way of creating an Add button

It turns out that the iOS SDK allows us to create system buttons on the navigation bar.
We do that by using the initWithBarButtonSystemItem:target:action: initializer of
the UIBarButtonItem class:

- (void) performAdd:(id)paramSender{

 NSLog(@"Action method got called.");

}

- (void)viewDidLoad{

90 | Chapter 1: Implementing Controllers and Views

 [super viewDidLoad];

 self.title = @"First Controller";

 self.navigationItem.rightBarButtonItem =

 [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd

 target:self

 action:@selector(performAdd:)];

}

And the results are exactly what we were looking for (Figure 1-39).

Figure 1-39. A system Add button

The first parameter of the initWithBarButtonSystemItem:target:action: initializer
method of the navigation button can have any of the values listed in the UIBarButton
SystemItem enumeration:

typedef NS_ENUM(NSInteger, UIBarButtonSystemItem) {

 UIBarButtonSystemItemDone,

 UIBarButtonSystemItemCancel,

 UIBarButtonSystemItemEdit,

 UIBarButtonSystemItemSave,

 UIBarButtonSystemItemAdd,

 UIBarButtonSystemItemFlexibleSpace,

 UIBarButtonSystemItemFixedSpace,

 UIBarButtonSystemItemCompose,

 UIBarButtonSystemItemReply,

 UIBarButtonSystemItemAction,

 UIBarButtonSystemItemOrganize,

 UIBarButtonSystemItemBookmarks,

 UIBarButtonSystemItemSearch,

 UIBarButtonSystemItemRefresh,

 UIBarButtonSystemItemStop,

 UIBarButtonSystemItemCamera,

 UIBarButtonSystemItemTrash,

 UIBarButtonSystemItemPlay,

 UIBarButtonSystemItemPause,

 UIBarButtonSystemItemRewind,

 UIBarButtonSystemItemFastForward,

#if __IPHONE_3_0 <= __IPHONE_OS_VERSION_MAX_ALLOWED

 UIBarButtonSystemItemUndo,

 UIBarButtonSystemItemRedo,

#endif

#if __IPHONE_4_0 <= __IPHONE_OS_VERSION_MAX_ALLOWED

1.15. Adding Buttons to Navigation Bars Using UIBarButtonItem | 91

 UIBarButtonSystemItemPageCurl,

#endif

};

One of the really great initializers of the UIBarButtonItem class is the initWithCustom
View: method. As its parameter, this method accepts any view. This means we can even
add a UISwitch (see Recipe 1.2) as a button on the navigation bar. This won’t look very
good, but let’s give it a try:

- (void) switchIsChanged:(UISwitch *)paramSender{

 if ([paramSender isOn]){

 NSLog(@"Switch is on.");

 } else {

 NSLog(@"Switch is off.");

 }

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.view.backgroundColor = [UIColor whiteColor];

 self.title = @"First Controller";

 UISwitch *simpleSwitch = [[UISwitch alloc] init];

 simpleSwitch.on = YES;

 [simpleSwitch addTarget:self

 action:@selector(switchIsChanged:)

 forControlEvents:UIControlEventValueChanged];

 self.navigationItem.rightBarButtonItem =

 [[UIBarButtonItem alloc] initWithCustomView:simpleSwitch];

}

And Figure 1-40 shows the results.

Figure 1-40. A switch added to a navigation bar

You can create pretty amazing navigation bar buttons. Just take a look at what Apple
has done with the up and down arrows on the top-right corner of Figure 1-36. Let’s do
the same thing, shall we? Well, it looks like the button actually contains a segmented
control (see Recipe 1.8). So we should create a segmented control with two segments,
add it to a navigation button, and finally place the navigation button on the navigation
bar. Let’s get started:

- (void) segmentedControlTapped:(UISegmentedControl *)paramSender{

92 | Chapter 1: Implementing Controllers and Views

 switch (paramSender.selectedSegmentIndex){

 case 0:{

 NSLog(@"Up");

 break;

 }

 case 1:{

 NSLog(@"Down");

 break;

 }

 }

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.title = @"First Controller";

 NSArray *items = @[

 @"Up",

 @"Down"

];

 UISegmentedControl *segmentedControl = [[UISegmentedControl alloc]

 initWithItems:items];

 segmentedControl.momentary = YES;

 [segmentedControl addTarget:self

 action:@selector(segmentedControlTapped:)

 forControlEvents:UIControlEventValueChanged];

 self.navigationItem.rightBarButtonItem =

 [[UIBarButtonItem alloc] initWithCustomView:segmentedControl];

}

And Figure 1-41 shows what the output looks like.

Figure 1-41. A segmented control inside a navigation button

The navigationItem of every view controller also has two very interesting methods:

setRightBarButtonItem:animated:

Sets the navigation bar’s right button.

1.15. Adding Buttons to Navigation Bars Using UIBarButtonItem | 93

setLeftBarButtonItem:animated:

Sets the navigation bar’s left button.

Both methods allow you to specify whether you want the placement to be animated.
Pass the value of YES to the animated parameter if you want the placement to be ani‐
mated. Here is an example:

UIBarButtonItem *rightBarButton =

[[UIBarButtonItem alloc] initWithCustomView:segmentedControl];

[self.navigationItem setRightBarButtonItem:rightBarButton

 animated:YES];

See Also
“Creating and Running Our First iOS App” on page 2; Recipe 1.2; Recipe 1.8; Recipe 1.12

1.16. Presenting Multiple View Controllers with
UITabBarController

Problem
You would like to give your users the option to switch from one section of your app to
another, with ease.

Solution
Use the UITabBarController class.

Discussion
If you use your iPhone as an alarm clock, you have certainly seen a tab bar. Have a look
at Figure 1-38. The bottom icons labeled World Clock, Alarm, Stopwatch, and Timer
are parts of a tab bar. The whole black bar at the bottom of the screen is a tab bar, and
the aforementioned icons are tab bar items.

A tab bar is a container controller. In other words, we create instances of UITabBar
Controller and add them to the window of our application. For each tab bar item, we
add a navigation controller or a view controller to the tab bar, and those items will appear
as tab bar items. A tab bar controller contains a tab bar of type UITabBar. We don’t create
this object manually. We create the tab bar controller, and that will create the tab bar
object for us. To make things simple, remember that we instantiate a tab bar controller
and set the view controllers of that tab bar to instances of either UIViewController or
UINavigationController if we intend to have navigation controllers for each of the tab
bar items (aka, the view controllers set for the tab bar controller). Navigation controllers

94 | Chapter 1: Implementing Controllers and Views

are of type UINavigationController that are subclasses of UIViewController. There‐
fore, a navigation controller is a view controller, but view controllers of type UIView
Controller are not navigation controllers.

So let’s assume we have two view controllers with class names FirstViewController
and SecondViewController.

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 [self.window makeKeyAndVisible];

 FirstViewController *firstViewController = [[FirstViewController alloc]

 initWithNibName:nil

 bundle:NULL];

 SecondViewController *secondViewController = [[SecondViewController alloc]

 initWithNibName:nil

 bundle:NULL];

 UITabBarController *tabBarController = [[UITabBarController alloc] init];

 [tabBarController setViewControllers:@[firstViewController,

 secondViewController

]];

 self.window.rootViewController = tabBarController;

 return YES;

}

A tab bar, when displayed on the screen, will display tab bar items just like those we saw
in Figure 1-38. The name of each of these tab bar items comes from the title of the view
controller that is representing that tab bar item, so let’s go ahead and set the title for
both of our view controllers.

When a tab bar loads up, it loads only the view of the first view con‐
troller in its items. All other view controllers will be initialized, but
their views won’t be loaded. This means that any code that you have
written in the viewDidLoad of the second view controller will not get
executed until after the user taps on the second tab bar item for the
first time. So if you assign a title to the second view controller in its
viewDidLoad and run your app, you will find that the title in the tab
bar item is still empty.

1.16. Presenting Multiple View Controllers with UITabBarController | 95

For the first view controller, we choose the title First:

#import "FirstViewController.h"

@implementation FirstViewController

- (id)initWithNibName:(NSString *)nibNameOrNil

 bundle:(NSBundle *)nibBundleOrNil{

 self = [super initWithNibName:nibNameOrNil

 bundle:nibBundleOrNil];

 if (self != nil) {

 self.title = @"First";

 }

 return self;

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.view.backgroundColor = [UIColor whiteColor];

}

And for the second view controller, we pick the title Second:

#import "SecondViewController.h"

@implementation SecondViewController

- (id)initWithNibName:(NSString *)nibNameOrNil

 bundle:(NSBundle *)nibBundleOrNil{

 self = [super initWithNibName:nibNameOrNil

 bundle:nibBundleOrNil];

 if (self != nil) {

 self.title = @"Second";

 }

 return self;

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.view.backgroundColor = [UIColor whiteColor];

}

Now let’s run our app and see what happens (Figure 1-42).

96 | Chapter 1: Implementing Controllers and Views

Figure 1-42. A very simple tab bar populated with two view controllers

You can see that our view controllers do not have a navigation bar. What should we do?
It’s easy. Remember that a UINavigationController is actually a subclass of UIView
Controller. So we can add instances of navigation controllers to a tab bar, and inside
each navigation controller, we can load a view controller. What are we waiting for, then?

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 // Override point for customization after application launch.

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 [self.window makeKeyAndVisible];

 FirstViewController *firstViewController = [[FirstViewController alloc]

1.16. Presenting Multiple View Controllers with UITabBarController | 97

 initWithNibName:nil

 bundle:NULL];

 UINavigationController *firstNavigationController =

 [[UINavigationController alloc]

 initWithRootViewController:firstViewController];

 SecondViewController *secondViewController = [[SecondViewController alloc]

 initWithNibName:nil

 bundle:NULL];

 UINavigationController *secondNavigationController =

 [[UINavigationController alloc]

 initWithRootViewController:secondViewController];

 UITabBarController *tabBarController = [[UITabBarController alloc] init];

 [tabBarController setViewControllers:

 @[firstNavigationController, secondNavigationController]];

 self.window.rootViewController = tabBarController;

 return YES;

}

And the results? Exactly what we wanted (Figure 1-43).

As we can see in Figure 1-38, each tab bar item can have text and an image. We’ve learned
that, using the title property of a view controller, we can specify this text, but what
about the image? It turns out that every view controller has a property called tabItem.
This property is the tab item for the current view controller, and you can use this prop‐
erty to set the image of the tab bar item through the image property of the tab item. I’ve
already designed two images, a rectangle and a circle. I’m going to display them as the
tab bar item image for each of my view controllers. Here is code for the first view con‐
troller:

- (id)initWithNibName:(NSString *)nibNameOrNil

 bundle:(NSBundle *)nibBundleOrNil{

 self = [super initWithNibName:nibNameOrNil

 bundle:nibBundleOrNil];

 if (self != nil) {

 self.title = @"First";

 self.tabBarItem.image = [UIImage imageNamed:@"FirstTab"];

 }

 return self;

}

- (void)viewDidLoad{

98 | Chapter 1: Implementing Controllers and Views

 [super viewDidLoad];

 self.view.backgroundColor = [UIColor whiteColor];

}

And here it is for the second view controller:

- (id)initWithNibName:(NSString *)nibNameOrNil

 bundle:(NSBundle *)nibBundleOrNil{

 self = [super initWithNibName:nibNameOrNil

 bundle:nibBundleOrNil];

 if (self != nil) {

 self.title = @"Second";

 self.tabBarItem.image = [UIImage imageNamed:@"SecondTab"];

 }

 return self;

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.view.backgroundColor = [UIColor whiteColor];

}

Running the app in the simulator, we will see that the images are displayed properly
(Figure 1-44).

1.16. Presenting Multiple View Controllers with UITabBarController | 99

Figure 1-43. A tab bar displaying view controllers inside navigation controllers

100 | Chapter 1: Implementing Controllers and Views

Figure 1-44. Tab bar items with images

1.17. Displaying Static Text with UILabel

Problem
You want to display text to your users. You would also like to control the text’s font and
color.

Static text is text that is not directly changeable by the user at runtime.

1.17. Displaying Static Text with UILabel | 101

Solution
Use the UILabel class.

Discussion
Labels are everywhere in iOS. You can see them in practically every application, except
for games, where the content is usually rendered with OpenGL ES instead of the core
drawing frameworks in iOS. Figure 1-45 shows several labels in the Settings app on the
iPhone.

Figure 1-45. Labels as titles of each one of the settings

You can see that the labels are displaying text in the Settings app, such as “iCloud,”
“Phone,” “FaceTime,” “Safari,” etc.

To create a label, instantiate an object of type UILabel. Setting or getting the text of a
label can be done through its text property. So let’s first define a label in our view
controller’s implementation file:

102 | Chapter 1: Implementing Controllers and Views

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UILabel *myLabel;

@end

@implementation ViewController

...

Now in the viewDidLoad method, instantiate the label and tell the runtime where the
label has to be positioned (through its frame property) on the view to which it will be
added (in this case, our view controller’s view):

- (void)viewDidLoad{

 [super viewDidLoad];

 CGRect labelFrame = CGRectMake(0.0f,

 0.0f,

 100.0f,

 23.0f);

 self.myLabel = [[UILabel alloc] initWithFrame:labelFrame];

 self.myLabel.text = @"iOS 7 Programming Cookbook";

 self.myLabel.font = [UIFont boldSystemFontOfSize:14.0f];

 self.myLabel.center = self.view.center;

 [self.view addSubview:self.myLabel];

}

Now let’s run our app and see what happens (see Figure 1-46).

Figure 1-46. A label that is too small in width to contain its contents

1.17. Displaying Static Text with UILabel | 103

You can see that the contents of the label are truncated, with a trailing ellipsis, because
the width of the label isn’t enough to contain the whole contents. One solution would
be to make the width longer, but how about the height? What if we wanted the text to
wrap to the next line? OK, go ahead and change the height from 23.0f to 50.0f:

CGRect labelFrame = CGRectMake(0.0f,

 0.0f,

 100.0f,

 50.0f);

If you run your app now, you will get exactly the same results that you got in
Figure 1-46. You might ask, “I increased the height, so why didn’t the content wrap to
the next line?” It turns out that the UILabel class has a property called numberOf
Lines that needs to be adjusted to the number of lines the label has to wrap the text to,
in case it runs out of horizontal space. If you set this value to 3, it tells the label that you
want the text to wrap to a maximum of three lines if it cannot fit the text into one line:

- (void)viewDidLoad{

 [super viewDidLoad];

 CGRect labelFrame = CGRectMake(0.0f,

 0.0f,

 100.0f,

 70.0f);

 self.myLabel = [[UILabel alloc] initWithFrame:labelFrame];

 self.myLabel.numberOfLines = 3;

 self.myLabel.lineBreakMode = NSLineBreakByWordWrapping;

 self.myLabel.text = @"iOS 7 Programming Cookbook";

 self.myLabel.font = [UIFont boldSystemFontOfSize:14.0f];

 self.myLabel.center = self.view.center;

 [self.view addSubview:self.myLabel];

}

If you run the app now, you will get the desired results (see Figure 1-47).

In some situations, you might not know how many lines are re‐
quired to display a certain text in a label. In those instances, you need
to set the numberOfLines property of your label to 0.

If you want your label’s frame to stay static and you want the font inside your label to
adjust itself to fit into the boundaries of the label, you need to set the adjustsFontSi
zeToFitWidth property of your label to YES. For instance, if the height of our label was
23.0f, as we see in Figure 1-46, we could adjust the font of the label to fit into the
boundaries. Here is how it works:

- (void)viewDidLoad{

 [super viewDidLoad];

104 | Chapter 1: Implementing Controllers and Views

 CGRect labelFrame = CGRectMake(0.0f,

 0.0f,

 100.0f,

 23.0f);

 self.myLabel = [[UILabel alloc] initWithFrame:labelFrame];

 self.myLabel.adjustsFontSizeToFitWidth = YES;

 self.myLabel.text = @"iOS 7 Programming Cookbook";

 self.myLabel.font = [UIFont boldSystemFontOfSize:14.0f];

 self.myLabel.center = self.view.center;

 [self.view addSubview:self.myLabel];

}

Figure 1-47. A label wrapping its contents to three lines

1.18. Customizing the UILabel

Problem
You want to be able to customize the appearance of your labels, from shadow settings
to alignment settings.

Solution
Use the following properties of the UILabel class, depending on your requirements:

1.18. Customizing the UILabel | 105

shadowColor

This property is of type UIColor and, as its name shows, it specifies the color of the
drop shadow to render for your label. If you are setting this property, you should
also set the shadowOffset property.

shadowOffset

This property is of type CGSize, and it specifies the offset of the drop shadow from
the text. For instance, if you set this property to (1, 0), the drop shadow will appear
1 point to the right of the text. If you set this property to (1, 2), the drop shadow
will appear 1 point to the right and 2 points down from the text. If you set this
property to (–2, –10), the drop shadow will render 2 points to the left and 10 points
above the text.

numberOfLines

This property is an integer that specifies how many lines of text the label is able to
render. By default, this property’s value is set to 1, meaning any label that you create
by default can handle 1 line of text. If you want 2 lines of text, for instance, set this
property to 2. If you want unlimited lines of text to be rendered in your text field
or you simply don’t know how many lines of text you will end up displaying, set
this property to 0. (I know, it’s really strange. Instead of NSIntegerMax or something
similar, Apple has decided that 0 means unlimited!)

lineBreakMode

This property is of type NSLineBreakMode and specifies how you want to line-wrap
the text inside your text field. For instance, if you set this property to NSLineBreak
ByWordWrapping, words will be kept together, but the string will be wrapped to the
next line if there is not enough space to display it. Alternatively, if you set this
property to NSLineBreakByCharWrapping, words may be broken across lines when
text is wrapped. You would probably use NSLineBreakByCharWrapping only if the
space is very tight and you need to fit as much information as possible on the screen.
I personally do not recommend using this option if you want to keep a consistent
and clear user interface.

textAlignment

This property is of type NSTextAlignment and sets the horizontal alignment of the
text in your label. For instance, you can set the value of this property to
NSTextAlignmentCenter to horizontally center-align your text.

textColor

This property is of type UIColor and defines the color of the text inside the label.

font

This property of type UIFont specifies the font with which the text inside your label
will get rendered.

106 | Chapter 1: Implementing Controllers and Views

adjustsFontSizeToFitWidth

This property is of type BOOL. When set to YES, it will change the size of the font to
fit your label. For instance, if you have a small label and the text you are trying to
set in it is too big to fit, if this property is set to YES, the runtime will automatically
reduce the font size of your label to make sure the text will fit into the label. In
contrast, if this property is set to NO, the current line/word/character wrapping
option is taken into account and your text will be rendered in an incomplete manner
with just a few words being displayed.

Discussion
Labels are one of the easiest UI components we can utilize in our applications. Although
labels are simple, they are really powerful. Customization of labels is therefore very
important in order to deliver the best user experience. For this reason, Apple has given
us plenty of ways to customize the instances of UILabel. Let us have a look at an example.
We’ll create a simple single-view application with one view controller, place a simple
label at the center of the screen with a huge font, and write “iOS SDK” in it. We will set
the background color of our view to white, the text color of our label to black, and the
shadow color of our label to light gray. We will make sure a drop shadow appears at the
bottom-right side of our label. Figure 1-48 shows the effect our app should produce.

And here is our code to achieve this:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UILabel *label;

@end

@implementation ViewController

- (void)viewDidLoad{

 [super viewDidLoad];

 self.label = [[UILabel alloc] init];

 self.label.backgroundColor = [UIColor clearColor];

 self.label.text = @"iOS SDK";

 self.label.font = [UIFont boldSystemFontOfSize:70.0f];

 self.label.textColor = [UIColor blackColor];

 self.label.shadowColor = [UIColor lightGrayColor];

 self.label.shadowOffset = CGSizeMake(2.0f, 2.0f);

 [self.label sizeToFit];

 self.label.center = self.view.center;

 [self.view addSubview:self.label];

}

@end

1.18. Customizing the UILabel | 107

Figure 1-48. How our label is customized and rendered on the screen

See Also
Recipe 1.17; Recipe 1.26

1.19. Accepting User Text Input with UITextField

Problem
You want to accept text input in your user interface.

Solution
Use the UITextField class.

108 | Chapter 1: Implementing Controllers and Views

Discussion
A text field is very much like a label in that it can display text, but a text field can also
accept text entry at runtime. Figure 1-49 shows two text fields in the Twitter section of
the Settings app on an iPhone.

Figure 1-49. Text fields allowing text entry

A text field allows only a single line of text to be input/displayed. As a
result, the default height of a text field is only 31 points. In Interface
Builder, this height cannot be modified, but if you are creating your
text field in code, you can change the text field’s height. A change in
height, though, will not change the number of lines you can render in
a text field, which is always 1.

Let’s start with the implementation file of our view controller to define our text field:

#import "ViewController.h"

@interface ViewController ()

1.19. Accepting User Text Input with UITextField | 109

@property (nonatomic, strong) UITextField *myTextField;

@end

@implementation ViewController

...

And then let’s create the text field:

- (void)viewDidLoad{

 [super viewDidLoad];

 CGRect textFieldFrame = CGRectMake(0.0f,

 0.0f,

 200.0f,

 31.0f);

 self.myTextField = [[UITextField alloc]

 initWithFrame:textFieldFrame];

 self.myTextField.borderStyle = UITextBorderStyleRoundedRect;

 self.myTextField.contentVerticalAlignment =

 UIControlContentVerticalAlignmentCenter;

 self.myTextField.textAlignment = NSTextAlignmentCenter;

 self.myTextField.text = @"Sir Richard Branson";

 self.myTextField.center = self.view.center;

 [self.view addSubview:self.myTextField];

}

Before looking at the details of the code, let’s first have a look at the results (Figure 1-50).

Figure 1-50. A simple text field with center aligned text

110 | Chapter 1: Implementing Controllers and Views

In order to create this text field, we used various properties of UITextField.

borderStyle

This property is of type UITextBorderStyle and specifies how the text field should
render its borders.

contentVerticalAlignment

This value is of type UIControlContentVerticalAlignment and tells the text field
how the text should appear, vertically, in the boundaries of the control. If we didn’t
center the text vertically, it would appear on the top-left corner of the text field by
default.

textAlignment

This property is of type NSTextAlignment and specifies the horizontal alignment
of the text in a text field. In this example, we have centered the text horizontally.

text

This is a read/write property: you can both read from it and write to it. Reading
from it will return the text field’s current text, and writing to it will set the text field’s
text to the value that you specify.

A text field sends delegate messages to its delegate object. These messages get sent, for
instance, when the user starts editing the text inside a text field, when the user enters
any character into the text field (changing its contents in any way), and when the user
finishes editing the field (by leaving the field). To get notified of these events, set the
delegate property of the text field to your object. The delegate of a text field must
conform to the UITextFieldDelegate protocol, so let’s first take care of this:

@interface ViewController () <UITextFieldDelegate>

@property (nonatomic, strong) UITextField *myTextField;

@end

@implementation ViewController

Hold down the Command key on your computer and click the UITextFieldDelegate
protocol in Xcode. You will see all the methods that this protocol gives you control over.
Here are those methods with descriptions of when they get called:

textFieldShouldBeginEditing:

A method that returns a BOOL telling the text field (the parameter to this method)
whether it should start getting edited by the user or not. Return NO if you don’t want
the user to edit your text field. This method gets fired as soon as the user taps on
the text field with the goal of editing its content (assuming the text field allows
editing).

textFieldDidBeginEditing:

Gets called when the text field starts to get edited by the user. This method gets
called when the user has already tapped on the text field and the textFieldShould

1.19. Accepting User Text Input with UITextField | 111

BeginEditing: delegate method of the text field returned YES, telling the text field
it is OK for the user to edit the content of the text field.

textFieldShouldEndEditing:

Returns a BOOL telling the text field whether it should end its current editing session
or not. This method gets called when the user is about to leave the text field or the
first responder is switching to another data entry field. If you return NO from this
method, the user will not be able to switch to another text entry field, and the
keyboard will stay on the screen.

textFieldDidEndEditing:

Gets called when the editing session of the text field ends. This happens when the
user decides to edit some other data entry field or uses a button provided by the
supplier of the app to dismiss the keyboard shown for the text field.

textField:shouldChangeCharactersInRange:replacementString:

Gets called whenever the text inside the text field is modified. The return value of
this method is a Boolean. If you return YES, you say that you allow the text to be
changed. If you return NO, the change in the text of the text field will not be confirmed
and will not happen.

textFieldShouldClear:

Each text field has a clear button that is usually a circular X button. When the user
presses this button, the contents of the text field will automatically get erased. We
need to manually enable the clear button, though. If you have enabled the clear
button and you return NO to this method, that gives the user the impression that
your app isn’t working, so make sure you know what you are doing. It is a very poor
user experience if the user sees a clear button and presses it but doesn’t see the text
in the text field get erased.

textFieldShouldReturn:

Gets called when the user has pressed the Return/Enter key on the keyboard, trying
to dismiss the keyboard. You should assign the text field as the first responder in
this method.

Let’s mix this recipe with Recipe 1.17 and create a dynamic text label under our text
field. We’ll also display the total number of characters entered in our text field in the
label. Let’s start with our implementation file:

@interface ViewController () <UITextFieldDelegate>

@property (nonatomic, strong) UITextField *myTextField;

@property (nonatomic, strong) UILabel *labelCounter;

@end

@implementation ViewController

112 | Chapter 1: Implementing Controllers and Views

Now for the creation of the text field along with the label and the text field delegate
methods we require. We skip implementing many of the UITextFieldDelegate meth‐
ods, because we don’t need all of them in this example:

- (void) calculateAndDisplayTextFieldLengthWithText:(NSString *)paramText{

 NSString *characterOrCharacters = @"Characters";

 if ([paramText length] == 1){

 characterOrCharacters = @"Character";

 }

 self.labelCounter.text = [NSString stringWithFormat:@"%lu %@",

 (unsigned long)[paramText length],

 characterOrCharacters];

}

- (BOOL) textField:(UITextField *)textField

 shouldChangeCharactersInRange:(NSRange)range

 replacementString:(NSString *)string{

 if ([textField isEqual:self.myTextField]){

 NSString *wholeText =

 [textField.text stringByReplacingCharactersInRange:range

 withString:string];

 [self calculateAndDisplayTextFieldLengthWithText:wholeText];

 }

 return YES;

}

- (BOOL)textFieldShouldReturn:(UITextField *)textField{

 [textField resignFirstResponder];

 return YES;

}

- (void)viewDidLoad{

 [super viewDidLoad];

 CGRect textFieldFrame = CGRectMake(38.0f,

 30.0f,

 220.0f,

 31.0f);

 self.myTextField = [[UITextField alloc]

 initWithFrame:textFieldFrame];

 self.myTextField.delegate = self;

 self.myTextField.borderStyle = UITextBorderStyleRoundedRect;

 self.myTextField.contentVerticalAlignment =

1.19. Accepting User Text Input with UITextField | 113

 UIControlContentVerticalAlignmentCenter;

 self.myTextField.textAlignment = NSTextAlignmentCenter;

 self.myTextField.text = @"Sir Richard Branson";

 [self.view addSubview:self.myTextField];

 CGRect labelCounterFrame = self.myTextField.frame;

 labelCounterFrame.origin.y += textFieldFrame.size.height + 10;

 self.labelCounter = [[UILabel alloc] initWithFrame:labelCounterFrame];

 [self.view addSubview:self.labelCounter];

 [self calculateAndDisplayTextFieldLengthWithText:self.myTextField.text];

}

One important calculation we are doing is in the textField:shouldChangeCharacter
sInRange:replacementString: method. There, we declare and use a variable called
wholeText. When this method gets called, the replacementString parameter specifies
the string that the user has entered into the text field. You might be thinking that the
user can enter only one character at a time, so why can’t this field be a char? But don’t
forget that the user can paste a whole chunk of text into a text field, so this parameter
needs to be a string. The shouldChangeCharactersInRange parameter specifies where,
in terms of location inside the text field’s text, the user is entering the text. So using these
two parameters, we will create a string that first reads the whole text inside the text field
and then uses the given range to place the new text inside the old text. With this, we will
come up with the text that will appear in the text field after the textField:shouldChan
geCharactersInRange:replacementString: method returns YES. Figure 1-51 shows
how our app looks when it gets run on the simulator.

In addition to displaying text, a text field can also display a placeholder. A placeholder
is the text displayed before the user has entered any text in the text field, while the text
field’s text property is empty. This can be any string that you wish, and setting it will
help give the user an indication as to what this text field is for. Many use this placeholder
to tell the user what type of value she can enter in that text field. For instance, in
Figure 1-49, the two text fields (password and description) have placeholders that say
“Required,” etc. You can use the placeholder property of the text field to set or get the
current placeholder. Here is an example:

CGRect textFieldFrame = CGRectMake(38.0f,

 30.0f,

 220.0f,

 31.0f);

self.myTextField = [[UITextField alloc]

 initWithFrame:textFieldFrame];

self.myTextField.delegate = self;

114 | Chapter 1: Implementing Controllers and Views

self.myTextField.borderStyle = UITextBorderStyleRoundedRect;

self.myTextField.contentVerticalAlignment =

 UIControlContentVerticalAlignmentCenter;

self.myTextField.textAlignment = NSTextAlignmentCenter;

self.myTextField.placeholder = @"Enter text here...";

[self.view addSubview:self.myTextField];

Figure 1-51. Responding to delegate messages of a text field

The results are shown in Figure 1-52.

1.19. Accepting User Text Input with UITextField | 115

Figure 1-52. A placeholder is shown when the user has not entered any text in a text
field

Text fields have two really neat properties called leftView and rightView. These two
properties are of type UIView and are read/write. They appear, as their names imply, on
the left and the right side of a text field if you assign a view to them. One place you might
use a left view, for instance, is if you are displaying a currency text field where you would
like to display the currency of the user’s current country in the left view, as a UILabel.
Here is how we can accomplish that:

UILabel *currencyLabel = [[UILabel alloc] initWithFrame:CGRectZero];

currencyLabel.text = [[[NSNumberFormatter alloc] init] currencySymbol];

currencyLabel.font = self.myTextField.font;

[currencyLabel sizeToFit];

self.myTextField.leftView = currencyLabel;

self.myTextField.leftViewMode = UITextFieldViewModeAlways;

If we simply assign a view to the leftView or to the rightView properties of a text field,
those views will not appear automatically by default. When they show up on the screen
depends on the mode that governs their appearance, and you can control that mode

116 | Chapter 1: Implementing Controllers and Views

using the leftViewMode and rightViewMode properties, respectively. These modes are
of type UITextFieldViewMode:

typedef NS_ENUM(NSInteger, UITextFieldViewMode) {

 UITextFieldViewModeNever,

 UITextFieldViewModeWhileEditing,

 UITextFieldViewModeUnlessEditing,

 UITextFieldViewModeAlways

};

So if, for instance, you set the left view mode to UITextFieldViewModeWhileEditing
and assign a value to it, it will appear only while the user is editing the text field. Con‐
versely, if you set this value to UITextFieldViewModeUnlessEditing, the left view will
appear only while the user is not editing the text field. As soon as editing starts, the left
view will disappear. Let’s have a look at our code now in the simulator (Figure 1-53).

Figure 1-53. A text field with a left view

See Also
Recipe 1.17

1.19. Accepting User Text Input with UITextField | 117

1.20. Displaying Long Lines of Text with UITextView

Problem
You want to display multiple lines of text in your UI inside one scrollable view.

Solution
Use the UITextView class.

Discussion
The UITextView class can display multiple lines of text and contain scrollable content,
meaning that if the contents run off the boundaries of the text view, the text view’s
internal components allow the user to scroll the text up and down to see different parts
of the text. An example of a text view in an iOS app is the Notes app on the iPhone
(Figure 1-54).

Figure 1-54. The Notes app on the iPhone uses a text view to render text

Let’s create a text view and see how it works. We start off by declaring the text view in
our view controller’s implementation file:

118 | Chapter 1: Implementing Controllers and Views

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UITextView *myTextView;

@end

@implementation ViewController

Now it’s time to create the text view itself. We will make the text view as big as the view
controller’s view:

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myTextView = [[UITextView alloc] initWithFrame:self.view.bounds];

 self.myTextView.text = @"Some text here...";

 self.myTextView.contentInset = UIEdgeInsetsMake(10.0f, 0.0f, 0.0f, 0.0f);

 self.myTextView.font = [UIFont systemFontOfSize:16.0f];

 [self.view addSubview:self.myTextView];

}

Now let’s run the app in iOS Simulator and see how it looks (Figure 1-55).

Figure 1-55. A text view consuming the entire boundary of the screen

1.20. Displaying Long Lines of Text with UITextView | 119

If you tap on the text field, you will notice a keyboard pop up from the bottom of the
screen, concealing almost half the entire area of the text view. That means if the user
starts typing text and gets to the middle of the text view, the rest of the text that she types
will not be visible to her (Figure 1-56).

Figure 1-56. Keyboard concealing half the size of a text view

To remedy this, we have to listen for certain notifications:

UIKeyboardWillShowNotification

Gets sent by the system whenever the keyboard is brought up on the screen for any
component, be it a text field, a text view, etc.

UIKeyboardDidShowNotification

Gets sent by the system when the keyboard has already been displayed.

UIKeyboardWillHideNotification

Gets sent by the system when the keyboard is about to hide.

UIKeyboardDidHideNotification

Gets sent by the system when the keyboard is now fully hidden.

120 | Chapter 1: Implementing Controllers and Views

The keyboard notifications contain a dictionary, accessible through the
userInfo property, that specifies the boundaries of the keyboard on
the screen. This property is of type NSDictionary. One of the keys in
this dictionary is UIKeyboardFrameEndUserInfoKey, which contains
an object of type NSValue that itself contains the rectangular bound‐
aries of the keyboard when it is fully shown. This rectangular area is
denoted with a CGRect.

So our strategy is to find out when the keyboard is getting displayed and then somehow
resize our text view. For this, we will use the contentInset property of UITextView to
specify the margins of contents in the text view from top, left, bottom, and right:

- (void) handleKeyboardDidShow:(NSNotification *)paramNotification{

 /* Get the frame of the keyboard */

 NSValue *keyboardRectAsObject =

 [[paramNotification userInfo]

 objectForKey:UIKeyboardFrameEndUserInfoKey];

 /* Place it in a CGRect */

 CGRect keyboardRect = CGRectZero;

 [keyboardRectAsObject getValue:&keyboardRect];

 /* Give a bottom margin to our text view that makes it

 reach to the top of the keyboard */

 self.myTextView.contentInset =

 UIEdgeInsetsMake(0.0f,

 0.0f,

 keyboardRect.size.height,

 0.0f);

}

- (void) handleKeyboardWillHide:(NSNotification *)paramNotification{

 /* Make the text view as big as the whole view again */

 self.myTextView.contentInset = UIEdgeInsetsZero;

}

- (void) viewWillAppear:(BOOL)paramAnimated{

 [super viewWillAppear:paramAnimated];

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(handleKeyboardDidShow:)

 name:UIKeyboardDidShowNotification

 object:nil];

 [[NSNotificationCenter defaultCenter]

 addObserver:self

1.20. Displaying Long Lines of Text with UITextView | 121

 selector:@selector(handleKeyboardWillHide:)

 name:UIKeyboardWillHideNotification

 object:nil];

 self.myTextView = [[UITextView alloc] initWithFrame:self.view.bounds];

 self.myTextView.text = @"Some text here...";

 self.myTextView.font = [UIFont systemFontOfSize:16.0f];

 [self.view addSubview:self.myTextView];

}

- (void) viewWillDisappear:(BOOL)paramAnimated{

 [super viewWillDisappear:paramAnimated];

 [[NSNotificationCenter defaultCenter] removeObserver:self];

}

In this code, we start looking for keyboard notifications in viewWillAppear: and we
stop listening to keyboard notifications in viewWillDisappear:. Removing your view
controller as the listener is important, because when your view controller is no longer
displayed, you probably don’t want to receive keyboard notifications fired by any other
view controller. There may be times when a view controller in the background needs to
receive notifications, but these are rare, and you must normally make sure to stop lis‐
tening for notifications in viewWillDisappear:. I’ve seen many programmers break
their apps by not taking care of this simple logic.

If you intend to change your UI structure when the keyboard gets
displayed and when the keyboard is dismissed, the only method that
you can rely on is to use the keyboard notifications. Delegate messag‐
es of UITextField get fired when the text field is getting edited, wheth‐
er there is a soft keyboard on the screen or not. Remember, a user can
have a Bluetooth keyboard connected to his iOS device and use it to
edit the content of text fields and any other data entry in your apps. In
the case of a Bluetooth keyboard, no soft keyboard will be displayed
on the screen—and if you change your UI when your text fields start
to get edited, you might unnecessarily change the UI while the Blue‐
tooth keyboard user is editing text.

Now, if the user tries to enter some text into the text view, the keyboard will pop up, and
we take the height of the keyboard and assign that value as the bottom margin of the
contents inside the text view. This makes our text view’s contents smaller in size and
allows the user to enter as much text as she wishes without the keyboard blocking her
view.

122 | Chapter 1: Implementing Controllers and Views

1.21. Adding Buttons to the User Interface with UIButton

Problem
You want to display a button on your UI and handle the touch events for that button.

Solution
Use the UIButton class.

Discussion
Buttons allow users to initiate an action in your apps. For instance, the iCloud Settings
bundle in the Settings app presents a Delete Account button in Figure 1-57. If you press
this button, the iCloud app will take action. The action depends on the app. Not all apps
act the same when a Delete button is pressed by the user. Buttons can have images in
them as well as text, as we will soon see.

Figure 1-57. A Delete Account button

1.21. Adding Buttons to the User Interface with UIButton | 123

A button can assign actions to different triggers. For instance, a button can fire one
action when the user puts her finger down on the button and another action when she
lifts her finger off the button. These become actions, and the objects implementing the
actions become targets. Let’s go ahead and define a button in our view controller’s im‐
plementation file:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UIButton *myButton;

@end

@implementation ViewController

The default height of UIButton is 44.0f points in iOS 7.

Next, we move on to the implementation of the button (Figure 1-58):

- (void) buttonIsPressed:(UIButton *)paramSender{

 NSLog(@"Button is pressed.");

}

- (void) buttonIsTapped:(UIButton *)paramSender{

 NSLog(@"Button is tapped.");

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myButton = [UIButton buttonWithType:UIButtonTypeSystem];

 self.myButton.frame = CGRectMake(110.0f,

 200.0f,

 100.0f,

 44.0f);

 [self.myButton setTitle:@"Press Me"

 forState:UIControlStateNormal];

 [self.myButton setTitle:@"I'm Pressed"

 forState:UIControlStateHighlighted];

 [self.myButton addTarget:self

 action:@selector(buttonIsPressed:)

 forControlEvents:UIControlEventTouchDown];

 [self.myButton addTarget:self

124 | Chapter 1: Implementing Controllers and Views

 action:@selector(buttonIsTapped:)

 forControlEvents:UIControlEventTouchUpInside];

 [self.view addSubview:self.myButton];

}

Figure 1-58. A system button in the middle of the screen

In this example code, we are using the setTitle:forState: method of our button to
set two different titles for the button. The title is the text that gets displayed on the
button. A button can be in different states at different times—such as normal and high‐
lighted (pressed down)—and can display a different title in each state. So in this case,
when the user sees the button for the first time, he will read “Press Me.” Once he presses
the button, the title of the button will change to “I’m Pressed.”

1.21. Adding Buttons to the User Interface with UIButton | 125

We did a similar thing with the actions that the button fires. We used the addTarget:ac
tion:forControlEvents: method to specify two actions for our button:

1. An action to be fired when the user presses the button down.

2. Another action to be fired when the user has pressed the button and has lifted his
finger off the button. This completes a touch-up-inside action.

The other thing that you need to know about UIButton is that it must always be assigned
a type, which you do by initializing it with a call to the class method buttonWithType,
as shown in the example code. As the parameter to this method, pass a value of type
UIButtonType:

typedef NS_ENUM(NSInteger, UIButtonType) {

 UIButtonTypeCustom = 0,

 UIButtonTypeSystem NS_ENUM_AVAILABLE_IOS(7_0),

 UIButtonTypeDetailDisclosure,

 UIButtonTypeInfoLight,

 UIButtonTypeInfoDark,

 UIButtonTypeContactAdd,

 UIButtonTypeRoundedRect = UIButtonTypeSystem,

};

A button can also render an image. An image will replace the default look and feel of
the button. When you have an image or a series of images that you want to assign to
different states of a button, make sure your button is of type UIButtonTypeCustom. I
have prepared two images here: one for the normal state of the button and the other for
the highlighted (pressed) state. I will now create my custom button and assign the two
images to it.

UIImage *normalImage = [UIImage imageNamed:@"NormalBlueButton"];

UIImage *highlightedImage = [UIImage imageNamed:@"HighlightedBlueButton"];

self.myButton = [UIButton buttonWithType:UIButtonTypeCustom];

self.myButton.frame = CGRectMake(110.0f,

 200.0f,

 100.0f,

 44.0f);

[self.myButton setBackgroundImage:normalImage

 forState:UIControlStateNormal];

[self.myButton setTitle:@"Normal"

 forState:UIControlStateNormal];

[self.myButton setBackgroundImage:highlightedImage

 forState:UIControlStateHighlighted];

[self.myButton setTitle:@"Pressed"

 forState:UIControlStateHighlighted];

126 | Chapter 1: Implementing Controllers and Views

Figure 1-59 shows what the app looks like when we run it in iOS Simulator. We are using
the setBackgroundImage:forState: method of the button to set a background image.
With a background image, we can still use the setTitle:forState: methods to render
text on top of the background image. If your images contain text and you don’t need
the title for a button, you can instead use the setImage:forState: method or simply
remove the titles from the button.

Figure 1-59. A button with a background image

1.22. Displaying Images with UIImageView

Problem
You would like to display images to your users on your app’s UI.

Solution
Use the UIImageView class.

Discussion
The UIImageView is one of the least-complicated classes in the iOS SDK. As you know,
an image view is responsible for displaying images. There are no tips or tricks involved.
All you have to do is instantiate an object of type UIImageView and add it to your views.
Now, I have a picture of a MacBook Air, and I would like to display it in an image view.
Let’s start with our view controller’s implementation file:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UIImageView *myImageView;

@end

1.22. Displaying Images with UIImageView | 127

@implementation ViewController

Go ahead and instantiate the image view and place the image in it:

- (void)viewDidLoad{

 [super viewDidLoad];

 UIImage *macBookAir = [UIImage imageNamed:@"MacBookAir"];

 self.myImageView = [[UIImageView alloc] initWithImage:macBookAir];

 self.myImageView.center = self.view.center;

 [self.view addSubview:self.myImageView];

}

Now if we run the app, we will see something similar to Figure 1-60.

Figure 1-60. An image view that is too big to fit on the screen

128 | Chapter 1: Implementing Controllers and Views

I should mention that the MacBook Air image that I’m loading into this image view is
980×519 pixels, and as you can see, it certainly doesn’t fit into the iPhone screen. So how
do we solve this problem? First, we need to make sure that we are initializing our image
view using the initWithFrame: method, instead of the initWithImage: method, as the
latter will set the width and height of the image view to the exact width and height of
the image. So let’s remedy that first:

- (void)viewDidLoad{

 [super viewDidLoad];

 UIImage *macBookAir = [UIImage imageNamed:@"MacBookAir"];

 self.myImageView = [[UIImageView alloc] initWithFrame:self.view.bounds];

 self.myImageView.image = macBookAir;

 self.myImageView.center = self.view.center;

 [self.view addSubview:self.myImageView];

}

So how does the app look now? See Figure 1-61.

Figure 1-61. An image whose width is squished to fit the width of the screen

1.22. Displaying Images with UIImageView | 129

This isn’t really what we wanted to do, is it? Of course, we got the frame of the image
view right, but the way the image is rendered in the image view isn’t quite right. So what
can we do? We can rectify this by setting the contentMode property of the image view.
This property is of type UIContentMode:

typedef NS_ENUM(NSInteger, UIViewContentMode) {

 UIViewContentModeScaleToFill,

 UIViewContentModeScaleAspectFit,

 UIViewContentModeScaleAspectFill,

 UIViewContentModeRedraw,

 UIViewContentModeCenter,

 UIViewContentModeTop,

 UIViewContentModeBottom,

 UIViewContentModeLeft,

 UIViewContentModeRight,

 UIViewContentModeTopLeft,

 UIViewContentModeTopRight,

 UIViewContentModeBottomLeft,

 UIViewContentModeBottomRight,

};

Here is an explanation of some of the most useful values in the UIViewContentMode
enumeration:

UIViewContentModeScaleToFill

This will scale the image inside the image view to fill the entire boundaries of the
image view.

UIViewContentModeScaleAspectFit

This will make sure the image inside the image view will have the right aspect ratio
and fits inside the image view’s boundaries.

UIViewContentModeScaleAspectFill

This will makes sure the image inside the image view will have the right aspect ratio
and fills the entire boundaries of the image view. For this value to work properly,
make sure that you have set the clipsToBounds property of the image view to YES.

The clipsToBounds property of UIView denotes whether the sub‐
views of that view should be clipped if they go outside the bound‐
aries of the view. You use this property if you want to be absolutely
certain that the subviews of a specific view will not get rendered out‐
side the boundaries of that view (or that they do get rendered out‐
side the boundaries, depending on your requirements).

So to make sure the image fits into the image view’s boundaries and that the aspect ratio
of the image is right, we need to use the UIViewContentModeScaleAspectFit content
mode:

130 | Chapter 1: Implementing Controllers and Views

- (void)viewDidLoad{

 [super viewDidLoad];

 UIImage *macBookAir = [UIImage imageNamed:@"MacBookAir"];

 self.myImageView = [[UIImageView alloc] initWithFrame:self.view.bounds];

 self.myImageView.contentMode = UIViewContentModeScaleAspectFit;

 self.myImageView.image = macBookAir;

 self.myImageView.center = self.view.center;

 [self.view addSubview:self.myImageView];

}

And the results will be exactly what we expected (Figure 1-62).

Figure 1-62. The aspect ratio of image view is absolutely spot on

1.22. Displaying Images with UIImageView | 131

1.23. Creating Scrollable Content with UIScrollView

Problem
You have content that needs to get displayed on the screen, but it requires more real
estate than what the device’s screen allows for.

Solution
Use the UIScrollView class.

Discussion
Scroll views are one of the features that make iOS a really neat operating system. They
are practically everywhere. You’ve been to the Clock or the Contacts apps, haven’t you?
Have you seen how the content can be scrolled up and down? Well, that’s the magic of
scroll views.

There really is one basic concept you need to learn about scroll views: the content size,
which lets the scroll view conform to the size of what it’s displaying. The content size is
a value of type CGSize that specifies the width and the height of the contents of a scroll
view. A scroll view, as its name implies, is a subclass of UIView, so you can simply add
your views to a scroll view using its addSubview: method. However, you need to make
sure that the scroll view’s content size is set properly; otherwise, the contents inside the
scroll view won’t scroll.

As an example, let’s find a big image and load it to an image view. I will add the same
image that I used in Recipe 1.22: a MacBook Air image. I will add it to an image view
and place it in a scroll view. Then I will use the contentSize of the scroll view to make
sure this content size is equal to the size of the image (width and height). First, let’s start
with the implementation file of our view controller:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UIScrollView *myScrollView;

@property (nonatomic, strong) UIImageView *myImageView;

@end

@implementation ViewController

And let’s place the image view inside the scroll view:

- (void)viewDidLoad{

 [super viewDidLoad];

 UIImage *imageToLoad = [UIImage imageNamed:@"MacBookAir"];

 self.myImageView = [[UIImageView alloc] initWithImage:imageToLoad];

132 | Chapter 1: Implementing Controllers and Views

 self.myScrollView = [[UIScrollView alloc] initWithFrame:self.view.bounds];

 [self.myScrollView addSubview:self.myImageView];

 self.myScrollView.contentSize = self.myImageView.bounds.size;

 [self.view addSubview:self.myScrollView];

}

If you now load up the app in iOS Simulator, you will see that you can scroll the image
horizontally and vertically. The challenge here, of course, is to provide an image that is
bigger than the screen’s boundaries. For example, if you provide an image that is 20×20
pixels, the scroll view won’t be of much use to you. In fact, it would be wrong to place
such an image into a scroll view, as the scroll view would practically be useless in that
scenario. There would be nothing to scroll because the image is smaller than the screen
size.

One of the handy features of UIScrollView is support for delegation, so that it can report
really important events to the app through a delegate. A delegate for a scroll view must
conform to the UIScrollViewDelegate protocol. Here are some of the methods defined
in this protocol:

scrollViewDidScroll:

Gets called whenever the contents of a scroll view get scrolled.

scrollViewWillBeginDecelerating:

Gets called when the user scrolls the contents of a scroll view and lifts his finger off
the screen as the scroll view scrolls.

scrollViewDidEndDecelerating:

Gets called when the scroll view has finished scrolling its contents.

scrollViewDidEndDragging:willDecelerate:

Gets called when the user finishes dragging the contents of the scroll view. This
method is very similar to the scrollViewDidEndDecelerating: method, but you
need to bear in mind that the user can drag the contents of a scroll view without
scrolling the contents. She can simply put her finger on the content, move her finger
to any location on the screen and lift her finger, without giving the contents any
momentum to move. This is dragging as opposed to scrolling. Scrolling is similar
to dragging, but the user will give momentum to the contents’ movement by lifting
her finger off the screen while the content is being dragged around, and not waiting
for the content to stop before lifting her finger off the screen. Dragging is compa‐
rable to holding down the accelerator in a car or pedaling on a bicycle, whereas
scrolling is comparable to coasting in a car or on a bicycle.

1.23. Creating Scrollable Content with UIScrollView | 133

So let’s add some fun to our previous app. Now the goal is to set the alpha level of the
image inside our image view to 0.50f (half transparent) when the user starts to scroll
the scroll view and set this alpha back to 1.0f (opaque) when the user finishes scrolling.
Let’s begin by conforming to the UIScrollViewDelegate protocol:

#import "ViewController.h"

@interface ViewController () <UIScrollViewDelegate>

@property (nonatomic, strong) UIScrollView *myScrollView;

@property (nonatomic, strong) UIImageView *myImageView;

@end

@implementation ViewController

Then let’s implement this functionality:

- (void)scrollViewDidScroll:(UIScrollView *)scrollView{

 /* Gets called when user scrolls or drags */

 self.myScrollView.alpha = 0.50f;

}

- (void)scrollViewDidEndDecelerating:(UIScrollView *)scrollView{

 /* Gets called only after scrolling */

 self.myScrollView.alpha = 1.0f;

}

- (void)scrollViewDidEndDragging:(UIScrollView *)scrollView

 willDecelerate:(BOOL)decelerate{

 /* Make sure the alpha is reset even if the user is dragging */

 self.myScrollView.alpha = 1.0f;

}

- (void)viewDidLoad{

 [super viewDidLoad];

 UIImage *imageToLoad = [UIImage imageNamed:@"MacBookAir"];

 self.myImageView = [[UIImageView alloc] initWithImage:imageToLoad];

 self.myScrollView = [[UIScrollView alloc] initWithFrame:self.view.bounds];

 [self.myScrollView addSubview:self.myImageView];

 self.myScrollView.contentSize = self.myImageView.bounds.size;

 self.myScrollView.delegate = self;

 [self.view addSubview:self.myScrollView];

}

As you might have noticed, scroll views have indicators. An indicator is the little tracking
line that appears on the sides of a scroll view when its contents are getting scrolled and
moved. Figure 1-63 shows an example.

134 | Chapter 1: Implementing Controllers and Views

Figure 1-63. Black indicators appearing on the right and bottom of a scroll view

Indicators simply show the user where the current view is in relation to the content (top,
halfway down, etc.). You can control what the indicators look like by changing the value
of the indicatorStyle property. For instance, here I have changed the indicator style
of my scroll view to white:

self.myScrollView.indicatorStyle = UIScrollViewIndicatorStyleWhite;

One of the great features of scroll views is that they allow pagination. Pagination is the
same as scrolling, but locks the scrolling when the user moves to the next page. You have
perhaps already seen this if you’ve ever used the Photos app on the iPhone or iPad.
When you are looking at photos, you can swipe between them. Each swipe brings the
next or previous photo onto the screen. Your swiping never scrolls all the way to the
end or all the way to the start. When the scrolling starts, the scroll view detects the next
image to display, scrolls and bounces to that image, and stops the scrolling animation.

1.23. Creating Scrollable Content with UIScrollView | 135

That’s pagination. If you haven’t tried it already, I urge you to do so, because otherwise
I could go on and on and none of this would make sense unless you looked at an app
that supports pagination.

For this example code, I’ve prepared three images: an iPhone, an iPad, and a MacBook
Air. I’ve placed them in their individual image views and added them to a scroll view.
Then we can enable pagination by setting the value of the pagingEnabled property of
the scroll view to YES:

- (UIImageView *) newImageViewWithImage:(UIImage *)paramImage

 frame:(CGRect)paramFrame{

 UIImageView *result = [[UIImageView alloc] initWithFrame:paramFrame];

 result.contentMode = UIViewContentModeScaleAspectFit;

 result.image = paramImage;

 return result;

}

- (void)viewDidLoad{

 [super viewDidLoad];

 UIImage *iPhone = [UIImage imageNamed:@"iPhone"];

 UIImage *iPad = [UIImage imageNamed:@"iPad"];

 UIImage *macBookAir = [UIImage imageNamed:@"MacBookAir"];

 CGRect scrollViewRect = self.view.bounds;

 self.myScrollView = [[UIScrollView alloc] initWithFrame:scrollViewRect];

 self.myScrollView.pagingEnabled = YES;

 self.myScrollView.contentSize = CGSizeMake(scrollViewRect.size.width * 3.0f,

 scrollViewRect.size.height);

 [self.view addSubview:self.myScrollView];

 CGRect imageViewRect = self.view.bounds;

 UIImageView *iPhoneImageView = [self newImageViewWithImage:iPhone

 frame:imageViewRect];

 [self.myScrollView addSubview:iPhoneImageView];

 /* Go to next page by moving the x position of the next image view */

 imageViewRect.origin.x += imageViewRect.size.width;

 UIImageView *iPadImageView = [self newImageViewWithImage:iPad

 frame:imageViewRect];

 [self.myScrollView addSubview:iPadImageView];

 /* Go to next page by moving the x position of the next image view */

 imageViewRect.origin.x += imageViewRect.size.width;

 UIImageView *macBookAirImageView =

 [self newImageViewWithImage:macBookAir

 frame:imageViewRect];

 [self.myScrollView addSubview:macBookAirImageView];

}

136 | Chapter 1: Implementing Controllers and Views

Now we have three pages of scrollable content (Figure 1-64).

Figure 1-64. Scrolling through pages in a page-enabled scroll view

1.24. Loading Web Pages with UIWebView

Problem
You want to load a web page dynamically right inside your iOS app.

Solution
Use the UIWebView class.

1.24. Loading Web Pages with UIWebView | 137

Discussion
A web view is what the Safari browser uses on iOS to load web content. You have the
whole power of Safari in your iOS apps through the UIWebView class. All you have to
do is place a web view on your UI and use one of its loading methods:

loadData:MIMEType:textEncodingName:baseURL:

Loads an instance of NSData into the web view.

loadHTMLString:baseURL:

Loads an instance of NSString into the web view. The string should be a valid
HTML, or in other words, something that a web browser can render.

loadRequest:

Loads an instance of NSURLRequest. This is useful when you want to load the con‐
tents of a remote URL into a web view inside your application.

Let’s see an example. We’ll start with the implementation file of our view controller:

#import "ViewController.h"

@interface ViewController ()

@property(nonatomic, strong) UIWebView *myWebView;

@end

@implementation ViewController

Now I would like to load the string iOS 7 Programming Cookbook into the web view.
To prove, things are working as expected and that our web view is capable of rendering
rich text, I will go ahead and make the Cookbook part bold while leaving the rest of the
text intact (Figure 1-65):

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myWebView = [[UIWebView alloc] initWithFrame:self.view.bounds];

 [self.view addSubview:self.myWebView];

 NSString *htmlString = @"
iOS 7 Programming Cookbook";

 [self.myWebView loadHTMLString:htmlString

 baseURL:nil];

}

Figure 1-65. Loading rich text into a web view

138 | Chapter 1: Implementing Controllers and Views

Another way to use a web view is to load a remote URL into it. For this purpose, we can
use the loadRequest: method. Let’s go ahead and look at an example where we will load
Apple’s main page into a web view in our iOS app (Figure 1-66):

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myWebView = [[UIWebView alloc] initWithFrame:self.view.bounds];

 self.myWebView.scalesPageToFit = YES;

 [self.view addSubview:self.myWebView];

 NSURL *url = [NSURL URLWithString:@"http://www.apple.com"];

 NSURLRequest *request = [NSURLRequest requestWithURL:url];

 [self.myWebView loadRequest:request];

}

Figure 1-66. Apple’s home page loaded into a web view

It might take quite a while for a web view to load the contents that you pass to it. You
might have noticed that when loading content in Safari, you get a little activity indicator

1.24. Loading Web Pages with UIWebView | 139

in the top-left corner of the screen telling you that the device is busy loading the contents.
Figure 1-67 shows an example.

Figure 1-67. A progress bar indicating a loading process

iOS accomplishes this through delegation. We will subscribe as the delegate of a web
view, and the web view will notify us when it starts to load content. When the content
is fully loaded, we get a message from the web view informing us about this. We do this
through the delegate property of the web view. A delegate of a web view must conform
to the UIWebViewDelegate protocol.

Let’s go ahead and implement the little activity indicator in our view controller. Please
bear in mind that the activity indicator is already a part of the application and we don’t
have to create it. We can control it using the setNetworkActivityIndicatorVisi
ble: method of UIApplication. So let’s start with the implementation file of our view
controller:

@interface ViewController () <UIWebViewDelegate>

@property(nonatomic, strong) UIWebView *myWebView;

@end

@implementation ViewController

Then do the implementation. Here we will use three of the methods declared in the
UIWebViewDelegate protocol:

webViewDidStartLoad:

This method gets called as soon as the web view starts loading content.

webViewDidFinishLoad:

This method gets called as soon as the web view finishes loading content.

webView:didFailLoadWithError:

This method gets called when the web view stops loading content, for instance
because of an error or a broken network connection.

140 | Chapter 1: Implementing Controllers and Views

- (void)webViewDidStartLoad:(UIWebView *)webView{

 [[UIApplication sharedApplication] setNetworkActivityIndicatorVisible:YES];

}

- (void)webViewDidFinishLoad:(UIWebView *)webView{

 [[UIApplication sharedApplication] setNetworkActivityIndicatorVisible:NO];

}

- (void)webView:(UIWebView *)webView didFailLoadWithError:(NSError *)error{

 [[UIApplication sharedApplication] setNetworkActivityIndicatorVisible:NO];

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myWebView = [[UIWebView alloc] initWithFrame:self.view.bounds];

 self.myWebView.delegate = self;

 self.myWebView.scalesPageToFit = YES;

 [self.view addSubview:self.myWebView];

 NSURL *url = [NSURL URLWithString:@"http://www.apple.com"];

 NSURLRequest *request = [NSURLRequest requestWithURL:url];

 [self.myWebView loadRequest:request];

}

1.25. Displaying Progress with UIProgressView

Problem
You want to display a progress bar on the screen, depicting the progress of a certain
task; for instance, the progress of downloading a file from a URL.

Solution
Instantiate a view of type UIProgressView and place it on another view.

Discussion
A progress view is what programmers generally call a progress bar. An example of a
progress view is depicted in Figure 1-68.

1.25. Displaying Progress with UIProgressView | 141

Figure 1-68. A simple progress view

Progress views are generally displayed to users to show them the progress of a task that
has a well-defined starting and ending point. For instance, downloading 30 files is a
well-defined task with a specific starting and ending point. This task obviously finishes
when all 30 files have been downloaded. A progress view is an instance of UIProgress
View and is initialized using the designated initializer of this class, the initWithProg
ressViewStyle: method. This method takes in the style of the progress bar to be created
as a parameter. This parameter is of type UIProgressViewStyle and can therefore be
one of the following values:

UIProgressViewStyleDefault

This is the default style of the progress view. An example of this is the progress view
shown in Figure 1-68.

UIProgressViewStyleBar

This is similar to the UIProgressViewStyleDefault but is meant to be used for
progress views that are to be added to a toolbar.

An instance of UIProgressView defines a property called progress (of type float). This
property tells iOS how the bar inside the progress view should be rendered. This value
must be in the range +0 to +1.0. If the value of +0 is given, the progress bar won’t appear
to have started yet. A value of +1.0 shows progress of 100%. The progress depicted in
Figure 1-68 is 0.5 (or 50%).

To get used to creating progress views, let’s create one similar to what we saw in
Figure 1-68. First things first: define a property for your progress view:

#import "ViewController.h"

@interface ViewController ()

142 | Chapter 1: Implementing Controllers and Views

@property (nonatomic, strong) UIProgressView *progressView;

@end

@implementation ViewController

Then instantiate an object of type UIProgressView:

- (void)viewDidLoad{

 [super viewDidLoad];

 self.progressView = [[UIProgressView alloc]

 initWithProgressViewStyle:UIProgressViewStyleBar];

 self.progressView.center = self.view.center;

 self.progressView.progress = 20.0f / 30.0f;

 [self.view addSubview:self.progressView];

}

Obviously, creating a progress view is very straightforward. All you really need to do is
display your progress correctly, because the progress property of a progress view should
be in the range +0 to +1.0, which is a normalized value. So if you have 30 tasks to take
care of and you have completed 20 of them so far, you need to assign the result of the
following equation to the progress property of your progress view:

self.progressView.progress = 20.0f / 30.0f;

The reason the values 20 and 30 are passed to the equation as floating-
point values is to tell the compiler that the division has to happen on
floating-point values, producing a value with decimal numbers. If you
provided the integer division 20/30 to the compiler to place inside the
progress property of your progress view, you would get the integral
value of 0 out of the division, because the compiler will perform inte‐
ger division that truncates the result to the next lower integer. In short,
your progress view would show zero progress all the way to the end,
when 30/30 produces the result of 1; not of much value to the user.

1.26. Constructing and Displaying Styled Texts

Problem
You want to be able to display rich formatted text in your UI components without having
to create a separate UI component per attribute. For instance, you may want to display
one sentence that contains only one of its words written in bold, inside a UILabel.

1.26. Constructing and Displaying Styled Texts | 143

Solution
Construct an instance of the NSAttributedString or the mutable variant of it, the
NSMutableAttributedString, and either set it as the text of a UI component like the
UILabel component through its special attributed string property, or simply use the
attributed string’s built-in methods to draw the text on a canvas.

Discussion
Rich text is a thing of legend! A lot of us programmers have had the requirement to
display mixed-style strings in one line of text on our UI. For instance, in one line of text
you may have to display straight and italic text together, where one word is italic and
the rest of the words are regular text. Or you may have had to underline a word inside
a sentence. For this, some of us had to use Web Views, but that is not the optimal solution
because Web Views are quite slow in rendering their content, and that will definitely
impact the performance of your app. In iOS 7, we can start using attributed strings. I
don’t know what took Apple so long to introduce this feature to iOS, as Mac developers
have been using attributed strings for a long time now!

Before we begin, I want to clearly show you what I mean by attributed strings, using
Figure 1-69. Then we will set out on the journey to write the program to achieve exactly
this.

Figure 1-69. An attributed string is displayed on the screen inside a simple label

144 | Chapter 1: Implementing Controllers and Views

Just to be explicit, this text is rendered inside a single instance of the
UILabel class.

So what do we see in this example? I’ll list the pieces:

The text “iOS” with the following attributes:
• Bold font with size of 60 points

• Background color of black

• Font color of red

The text “SDK” with the following attributes:
• Bold font with size of 60 points

• White text color

• Light-gray shadow

• Red background color

The best way to construct attributed strings is to use the initWithString: method of
the mutable variant of the NSMutableAttributedString class and pass an instance of
the NSString to this method. This will create our attributed string without any attributes.
Then, to assign attributes to different parts of the string, we will use the setAttri
butes:range: method of the NSMutableAttributedString class. This method takes in
two parameters:

setAttributes

A dictionary whose keys are character attributes and the value of each key depends
on the key itself. Here are the most important keys that you can set in this dictionary:

NSFontAttributeName

The value of this key is an instance of UIFont and defines the font for the specific
range of your string.

NSForegroundColorAttributeName

The value for this key is of type UIColor and defines the color for your text for
the specific range of your string.

NSBackgroundColorAttributeName

The value of this key is of type UIColor and defines the background color on
which the specific range of your string has to be drawn.

NSShadowAttributeName

The value of this key must be an instance of the NSShadow and defines the
shadow that you want to use under the specific range of your string.

1.26. Constructing and Displaying Styled Texts | 145

range

A value of type NSRange that defines the starting point and the length of characters
to which you want to apply the attributes.

To see all the different keys that you can pass to this method, simply
browse the Apple documentation online for the NSMutableAttribu
tedString class. I will not put the direct URL to this documentation
here as Apple may change the URL at some point, but a simple search
online will do the trick.

We’ll break our example down into two dictionaries of attributes. The dictionary of
attributes for the word “iOS” can be constructed in this way in code:

NSDictionary *attributesForFirstWord = @{

 NSFontAttributeName : [UIFont boldSystemFontOfSize:60.0f],

 NSForegroundColorAttributeName : [UIColor redColor],

 NSBackgroundColorAttributeName : [UIColor blackColor]

 };

And the word “SDK” will be constructed using the following attributes:

NSShadow *shadow = [[NSShadow alloc] init];

shadow.shadowColor = [UIColor darkGrayColor];

shadow.shadowOffset = CGSizeMake(4.0f, 4.0f);

NSDictionary *attributesForSecondWord = @{

 NSFontAttributeName : [UIFont boldSystemFontOfSize:60.0f],

 NSForegroundColorAttributeName : [UIColor whiteColor],

 NSBackgroundColorAttributeName : [UIColor redColor],

 NSShadowAttributeName : shadow

 };

Putting it together, we will get the following code that not only creates our label, but
also sets its attributed text:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UILabel *label;

@end

@implementation ViewController

- (NSAttributedString *) attributedText{

 NSString *string = @"iOS SDK";

 NSMutableAttributedString *result = [[NSMutableAttributedString alloc]

 initWithString:string];

146 | Chapter 1: Implementing Controllers and Views

 NSDictionary *attributesForFirstWord = @{

 NSFontAttributeName : [UIFont boldSystemFontOfSize:60.0f],

 NSForegroundColorAttributeName : [UIColor redColor],

 NSBackgroundColorAttributeName : [UIColor blackColor]

 };

 NSShadow *shadow = [[NSShadow alloc] init];

 shadow.shadowColor = [UIColor darkGrayColor];

 shadow.shadowOffset = CGSizeMake(4.0f, 4.0f);

 NSDictionary *attributesForSecondWord = @{

 NSFontAttributeName : [UIFont boldSystemFontOfSize:60.0f],

 NSForegroundColorAttributeName : [UIColor whiteColor],

 NSBackgroundColorAttributeName : [UIColor redColor],

 NSShadowAttributeName : shadow

 };

 /* Find the string "iOS" in the whole string and sets its attribute */

 [result setAttributes:attributesForFirstWord

 range:[string rangeOfString:@"iOS"]];

 /* Do the same thing for the string "SDK" */

 [result setAttributes:attributesForSecondWord

 range:[string rangeOfString:@"SDK"]];

 return [[NSAttributedString alloc] initWithAttributedString:result];

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.label = [[UILabel alloc] init];

 self.label.backgroundColor = [UIColor clearColor];

 self.label.attributedText = [self attributedText];

 [self.label sizeToFit];

 self.label.center = self.view.center;

 [self.view addSubview:self.label];

}

@end

See Also
Recipe 1.17; Recipe 1.18

1.26. Constructing and Displaying Styled Texts | 147

Figure 1-70. Split view controller in the Settings app on the iPad

1.27. Presenting Master-Detail Views with
UISplitViewController

Problem
You want to take maximum advantage of the iPad’s relatively large screen by presenting
two side-by-side view controllers.

Solution
Use the UISplitViewController class.

Discussion
Split view controllers are present only on the iPad. If you’ve used an iPad, you’ve prob‐
ably already seen them. Just open the Settings app in landscape mode and have a look.
Can you see the split view controller there in Figure 1-70?

148 | Chapter 1: Implementing Controllers and Views

A split view controller has left and right sides. The left side displays the main settings,
and tapping on each one of those settings shows the details of that setting item on the
right side of the split view controller.

Never attempt to instantiate an object of type UISplitView

Controller on a device other than an iPad. This will raise an exception.

Apple has made it extremely easy to create split view controller based applications.
Simply follow these steps to create your app based on split view controllers:

1. In Xcode, navigate to the File menu and choose New → New Project...

2. In the New Project screen, pick iOS → Application on the left side and then pick

Master-Detail Application (as shown in Figure 1-71) and press Next.

3. In this screen, pick your product name and make sure your device family is Uni‐
versal. We want to make sure our app runs both on the iPhone and the iPad. Once
you are done, press Next (see Figure 1-72).

Figure 1-71. Picking the Master-Detail Application project template in Xcode

1.27. Presenting Master-Detail Views with UISplitViewController | 149

Figure 1-72. Setting the master-detail project settings in Xcode

4. Now pick where you would like to save your project. Once done, press the Create
button.

Now the project is created. In the Scheme breadcrumb button on the top-left corner of
Xcode, make sure your app is set to run on iPad Simulator instead of iPhone Simulator.
If you create a universal master-detail app in Xcode, Xcode makes sure that your app
runs on the iPhone as well, but when you run your app on the iPhone, the structure of
the app will be different. It will have a navigation controller with a view controller inside
it, whereas running the same app on the iPad will use a split view controller with two
view controllers inside it.

There are two files that are very important to note in the split view controller project
template:

MasterViewController
The master view controller that appears on the left side of the split view controller
on the iPad. On the iPhone, it is the first view controller that the user sees.

DetailViewController
The detail view controller that appears on the right side of the split view controller
on the iPad. On the iPhone, it is the view controller that gets pushed onto the stack
once the user taps on any of the items on the root (first, master) view controller.

150 | Chapter 1: Implementing Controllers and Views

Now you need to think about communication between the master and the detail view
controller. Do you want the communication to be done through the app delegate, or do
you want the master view controller to send messages to the detail view controller di‐
rectly? That’s really up to you.

If you run the app in iPad Simulator, you’ll notice that in landscape mode, you can see
our master and detail view controllers in the split view controller, but as soon as you
rotate the orientation to portrait, your master view controller is gone and is replaced
with a master navigation button on the top-left side of the navigation bar of the detail
view controller. Although this is good, we weren’t expecting it, since we were comparing
it with the Settings app on the iPad. If you rotate the settings app to portrait on an iPad,
you can still see both the master and the detail view controllers. How can we accomplish
this? It turns out Apple has exposed an API to us through which we can do it. Simply
go to the DetailViewController.m file and implement this method:

- (BOOL) splitViewController:(UISplitViewController *)svc

 shouldHideViewController:(UIViewController *)vc

 inOrientation:(UIInterfaceOrientation)orientation{

 return NO;

}

If you return NO from this method, iOS will not hide the master view controller in either
orientation, and both the master and the detail view controllers will be visible in both
landscape and portrait orientations. Now that we have implemented this method, we
won’t need those two methods anymore:

- (void)splitViewController:(UISplitViewController *)splitController

 willHideViewController:(UIViewController *)viewController

 withBarButtonItem:(UIBarButtonItem *)barButtonItem

 forPopoverController:(UIPopoverController *)popoverController{

 barButtonItem.title = NSLocalizedString(@"Master", @"Master");

 [self.navigationItem setLeftBarButtonItem:barButtonItem animated:YES];

 self.masterPopoverController = popoverController;

}

- (void)splitViewController:(UISplitViewController *)splitController

 willShowViewController:(UIViewController *)viewController

 invalidatingBarButtonItem:(UIBarButtonItem *)barButtonItem{

 [self.navigationItem setLeftBarButtonItem:nil animated:YES];

 self.masterPopoverController = nil;

}

These methods were there simply to manage the navigation bar button for us, but now
that we are not using that button anymore, we can get rid of the methods. You can
comment them out or just remove them from the DetailViewController.m file.

If you look inside your master view controller’s header file, you’ll notice something
similar to this:

1.27. Presenting Master-Detail Views with UISplitViewController | 151

#import <UIKit/UIKit.h>

@class DetailViewController;

@interface MasterViewController : UITableViewController

@property (strong, nonatomic) DetailViewController *detailViewController;

@end

As you can see, the master view controller has a reference to the detail view controller.
Using this connection, we can communicate selections and other values to the detail
view controller, as you will soon see.

By default, if you run your app now in iPad Simulator, you will see a UI similar to that
shown in Figure 1-73. The default implementation that Apple provides us with in the
master view controller has a mutable array that gets populated with instances of NSDate
every time you press the plus (+) button on the navigation bar of the master view con‐
troller. The default implementation is very simple, and you can modify it by learning a
bit more about table views. Please refer to Chapter 4 for more details about table views
and populating them.

Figure 1-73. An empty split view controller running on iPad Simulator

152 | Chapter 1: Implementing Controllers and Views

1.28. Enabling Paging with UIPageViewController

Problem
You want to create an app that works similarly to iBooks, where the user can flip through
the pages of a book as if it were a real book, to provide an intuitive and real user expe‐
rience.

Solution
Use UIPageViewController.

Discussion
Xcode has a template for page view controllers. It’s best to first see how they look before
reading an explanation of what they actually are. So follow these steps to create your
app to use page view controllers:

Page view controllers work on both the iPhone and the iPad.

1. In Xcode, go to the File menu and then choose New → New Project...

2. On the lefthand side of the New Project window, make sure you’ve selected iOS and
then Application. Once that is done, pick the Page-Based Application template from
the right side and press Next, as shown in Figure 1-74.

3. Now select a product name and make sure the device family that you’ve chosen is
Universal, as you normally would want your app to run on both the iPhone and the
iPad (see Figure 1-75). Once you are done, press Next.

4. Select where you want to save your project. Once you are done, press the Create
button. You have now successfully created your project.

1.28. Enabling Paging with UIPageViewController | 153

Figure 1-74. Creating a Page-Based Application in Xcode

Figure 1-75. Setting the project settings of a page-based app

154 | Chapter 1: Implementing Controllers and Views

You can now see that Xcode has created quite a few classes in your project. Let’s have a
quick look at what each one of these classes does:

Delegate Class

The app delegate simply creates an instance of the RootViewController class and
presents it to the user. There is one .xib for iPad and another one for iPhone, but

both are using the aforementioned class.

RootViewController

Creates an instance of UIPageViewController and adds that view controller to
itself. So the UI of this view controller is actually a mix of two view controllers: the
RootViewController itself and a UIPageViewController.

DataViewController

For every page in the page view controller, an instance of this class gets presented
to this user. This class is a subclass of UIViewController.

ModelController

This is simply a subclass of NSObject that conforms to the UIPageViewController
DataSource protocol. This class is the data source of the page view controller.

So you can see that a page view controller has both a delegate and a data source. With
Xcode’s default page-based application template, the root view controller becomes the
delegate and the model controller becomes the data source of the page view controller.
In order to understand how a page view controller really works, we need to understand
its delegation and data source protocols. Let’s start with the delegate, UIPageViewCon
trollerDelegate. This protocol has two important methods:

- (void)pageViewController:(UIPageViewController *)pageViewController

 didFinishAnimating:(BOOL)finished

 previousViewControllers:(NSArray *)previousViewControllers

 transitionCompleted:(BOOL)completed;

- (UIPageViewControllerSpineLocation)pageViewController

:(UIPageViewController *)pageViewController

spineLocationForInterfaceOrientation:(UIInterfaceOrientation)orientation;

The first method gets called when the user turns to the next or the previous page, or if
the user initiates the movement from one page to the other but decides against it while
the page is moving (in which case, the user gets sent back to the page she was on before).
The transitionCompleted will get set to YES if this was a successful page animation, or
set to NO if the user decided against the movement and cancelled it in the middle of the
animation.

The second method gets called whenever the device orientation changes. You can use
this method to specify the location of the spine for the pages by returning a value of
type UIPageViewControllerSpineLocation:

1.28. Enabling Paging with UIPageViewController | 155

typedef NS_ENUM(NSInteger, UIPageViewControllerSpineLocation) {

 UIPageViewControllerSpineLocationNone = 0,

 UIPageViewControllerSpineLocationMin = 1,

 UIPageViewControllerSpineLocationMid = 2,

 UIPageViewControllerSpineLocationMax = 3

};

This might be a bit confusing to you, but let me demonstrate. If we are using a UIPage
ViewControllerSpineLocationMin spine location, the page view controller will require
only one view controller to present to the user, and when the user goes to the next page,
a new view controller will be presented to him. However, if we set the spine location to
UIPageViewControllerSpineLocationMid, we will be required to display two view
controllers at the same time: one on the left and another on the right, with the spine
sitting between them. Let me show you what I mean. In Figure 1-76 you can see an
example of a page view controller in landscape mode, with the spine location set to
UIPageViewControllerSpineLocationMin.

Now if we return the spine location of UIPageViewControllerSpineLocationMid, we
will get results similar to Figure 1-77.

Figure 1-76. One view controller presented in a page view controller in landscape mode

156 | Chapter 1: Implementing Controllers and Views

As you can see in that image, the spine is located exactly in the center of the screen
between two view controllers. Once the user flips a page from right to the left, the page
rests on the left and the page view controller reveals a new view controller on the right
side. This whole logic is in this delegate method:

- (UIPageViewControllerSpineLocation)pageViewController

:(UIPageViewController *)pageViewController

spineLocationForInterfaceOrientation:(UIInterfaceOrientation)orientation;

We’ve now covered the delegate of the page view controller, but how about the data
source? The data source of a page view controller must conform to the UIPage
ViewControllerDataSource. This protocol exposes two important methods:

- (UIViewController *)pageViewController

:(UIPageViewController *)pageViewController

viewControllerBeforeViewController:(UIViewController *)viewController;

- (UIViewController *)pageViewController

:(UIPageViewController *)pageViewController

viewControllerAfterViewController:(UIViewController *)viewController;

The first method gets called when the page view controller already has a view controller
on the screen and needs to know which previous view controller to render. This happens
when the user decides to flip to the next page. The second method is called when the
page view controller needs to figure out which view controller to display after the view
controller that is being flipped.

Xcode, as you’ve already seen, has greatly simplified setting up a page-based application.
All you really need to do now is to provide content to the data model (ModelControl
ler) and off you go. If you need to customize the colors and images in your view con‐
trollers, do so by either using the Interface Builder to modify the storyboard files directly
or write your own code in the implementation of each of the view controllers.

1.28. Enabling Paging with UIPageViewController | 157

Figure 1-77. Two view controllers displayed in a page view controller in landscape
mode

1.29. Displaying Popovers with UIPopoverController

Problem
You want to display content on an iPad without blocking the whole screen.

Solution
Use popovers.

Discussion
Popovers are used to display additional information on the iPad screen. An example
can be seen in the Safari app on the iPad. When the user taps on the Bookmarks button,
she will see a popover displaying the bookmarks content on the screen (see Figure 1-78).

158 | Chapter 1: Implementing Controllers and Views

Figure 1-78. The bookmarks popover in the Safari app on an iPad

The default behavior of popovers is that when the user taps somewhere outside the
region of the popover, the popover will automatically get dismissed. You can ask the
popover to not get dismissed if the user taps on specific parts of the screen, as we will
see later. Popovers present their content by using a view controller. Note that you can
also present navigation controllers inside popovers, because navigation controllers are
a subclass of UIViewController.

Popovers can be used only on iPad devices. If you have a view con‐
troller whose code runs on both an iPad and on an iPhone, you need
to make sure that you are not instantiating the popover on a device
other than the iPad.

Popovers can be presented to the user in two ways:

1. From inside a navigation button, an instance of UIBarButtonItem

2. From inside a rectangular area in a view

1.29. Displaying Popovers with UIPopoverController | 159

When a device orientation is changed (the device is rotated), popovers are either dis‐
missed or hidden temporarily. You need to make sure that you give your users a good
experience by redisplaying the popover after the orientation change has settled, if pos‐
sible. In certain cases, your popover might get dismissed automatically after an orien‐
tation change. For instance, if the user taps on a navigation button in landscape mode
you might display a popover on the screen. Suppose your app is designed so that when
the orientation changes to portrait, the navigation button is removed from the naviga‐
tion bar for some reason. Now, the correct user experience would be to hide the popover
associated with that navigation bar after the orientation of the device is changed to
portrait. In some instances, though, you will need to play with popovers a bit to give
your users a good experience, because handling device orientation is not always as
straightforward as in the aforementioned scenario.

To create the demo popover app, we need to first come up with a strategy based on our
requirements. For this example, we want to build an app with a view controller loaded
inside a navigation controller. The root view controller will display a + button on the
right corner of its navigation bar. When the + button is tapped on an iPad device, it will
display a popover with two buttons on it. The first button will say “Photo,” and the
second button will say “Audio.” When the same navigation button is tapped on an iPhone
device, we will display an alert view with three buttons: the two aforementioned buttons,
and a cancel button so that the user can cancel the alert view if he wishes to. When these
buttons are tapped (whether on the alert view on an iPhone or the popover on an iPad),
we won’t really do anything. We will simply dismiss the alert view or the popover.

Go ahead and create a Single View universal project in Xcode and name the project
“Displaying Popovers with UIPopoverController.” Then, using the technique shown in
Recipe 6.1, add a navigation controller to your storyboard so that your view controllers
will have a navigation bar.

After this, we need to go into the definition of our root view controller and define a
property of type UIPopoverController:

#import "ViewController.h"

@interface ViewController () <UIAlertViewDelegate>

@property (nonatomic, strong) UIPopoverController *myPopoverController;

@property (nonatomic, strong) UIBarButtonItem *barButtonAdd;

@end

@implementation ViewController

<# Rest of your code goes here #>

You can see that we are also defining a property called barButtonAdd in our view con‐
troller. This is the navigation button that we will add on our navigation bar. Our plan
is to display our popover when the user taps on this button (you can read more about
navigation buttons in Recipe 1.15). However, we need to make sure we instantiate the

160 | Chapter 1: Implementing Controllers and Views

popover only if the device is an iPad. Before we implement our root view controller with
the navigation button, let’s go ahead and create a subclass of UIViewController and
name it PopoverContentViewController. We will display the contents of this view
controller inside our popover later. See Recipe 1.9 for information about view controllers
and ways of creating them.

The content view controller displayed inside the popover will have two buttons (as per
our requirements). However, this view controller will need to have a reference to the
popover controller in order to dismiss the popover when the user taps on any of the
buttons. For this, we need to define a property in our content view controller to refer
to the popover:

#import <UIKit/UIKit.h>

@interface PopoverContentViewController : UIViewController

/* We shouldn't define this as strong. That will create a retain cycle

 between the popover controller and the content view controller since the

 popover controller retains the content view controller and the view controller

 will retain the popover controller */

@property (nonatomic, weak) UIPopoverController *myPopoverController;

@end

And, also inside the implementation file of our content view controller, we declare our
bar buttons:

#import "PopoverContentViewController.h"

@interface PopoverContentViewController ()

@property (nonatomic, strong) UIButton *buttonPhoto;

@property (nonatomic, strong) UIButton *buttonAudio;

@end

@implementation PopoverContentViewController

<# Rest of your code goes here #>

After this, we’ll create our two buttons in the content view controller and link them to
their action methods. These methods will take care of dismissing the popover that is
displaying this view controller. Remember, the popover controller will be responsible
for assigning itself to the popoverController property of the content view controller:

- (BOOL) isInPopover{

 Class popoverClass = NSClassFromString(@"UIPopoverController");

 if (popoverClass != nil &&

 UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad &&

 self.myPopoverController != nil){

 return YES;

1.29. Displaying Popovers with UIPopoverController | 161

 } else {

 return NO;

 }

}

- (void) gotoAppleWebsite:(id)paramSender{

 if ([self isInPopover]){

 /* Go to website and then dismiss popover */

 [self.myPopoverController dismissPopoverAnimated:YES];

 } else {

 /* Handle case for iPhone */

 }

}

- (void) gotoAppleStoreWebsite:(id)paramSender{

 if ([self isInPopover]){

 /* Go to website and then dismiss popover */

 [self.myPopoverController dismissPopoverAnimated:YES];

 } else {

 /* Handle case for iPhone */

 }

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.preferredContentSize = CGSizeMake(200.0f, 125.0f);

 CGRect buttonRect = CGRectMake(20.0f,

 20.0f,

 160.0f,

 37.0f);

 self.buttonPhoto = [UIButton buttonWithType:UIButtonTypeSystem];

 [self.buttonPhoto setTitle:@"Photo"

 forState:UIControlStateNormal];

 [self.buttonPhoto addTarget:self

 action:@selector(gotoAppleWebsite:)

 forControlEvents:UIControlEventTouchUpInside];

 self.buttonPhoto.frame = buttonRect;

 [self.view addSubview:self.buttonPhoto];

 buttonRect.origin.y += 50.0f;

 self.buttonAudio = [UIButton buttonWithType:UIButtonTypeSystem];

162 | Chapter 1: Implementing Controllers and Views

 [self.buttonAudio setTitle:@"Audio"

 forState:UIControlStateNormal];

 [self.buttonAudio addTarget:self

 action:@selector(gotoAppleStoreWebsite:)

 forControlEvents:UIControlEventTouchUpInside];

 self.buttonAudio.frame = buttonRect;

 [self.view addSubview:self.buttonAudio];

}

Now in the viewDidLoad method of our root view controller, we will create our navi‐
gation button. Based on the device type, when the navigation bar is tapped, we will
display either a popover (on the iPad) or an alert view (on the iPhone):

- (void)viewDidLoad{

 [super viewDidLoad];

 /* See if this class exists on the iOS running the app */

 Class popoverClass = NSClassFromString(@"UIPopoverController");

 if (popoverClass != nil &&

 UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad){

 PopoverContentViewController *content =

 [[PopoverContentViewController alloc] initWithNibName:nil

 bundle:nil];

 self.myPopoverController = [[UIPopoverController alloc]

 initWithContentViewController:content];

 content.myPopoverController = self.myPopoverController;

 self.barButtonAdd =

 [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd

 target:self

 action:@selector(performAddWithPopover:)];

 } else {

 self.barButtonAdd =

 [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd

 target:self

 action:@selector(performAddWithAlertView:)];

 }

1.29. Displaying Popovers with UIPopoverController | 163

 [self.navigationItem setRightBarButtonItem:self.barButtonAdd

 animated:NO];

}

The popover controller sets a reference to itself in the content view
controller after its initialization. This is very important. A popover
controller cannot be initialized without a content view controller. Once
the popover is initialized with a content view controller, you can go
ahead and change the content view controller in the popover control‐
ler, but not during the initialization.

We have elected the performAddWithPopover: method to be invoked when the + nav‐
igation bar button is tapped on an iPad device. If the device isn’t an iPad, we’ve asked
the + navigation bar button to invoke the performAddWithAlertView: method. Let’s
go ahead and implement these methods and also take care of the delegate methods of
our alert view, so that we know what alert view button the user tapped on an iPhone:

- (NSString *) photoButtonTitle{

 return @"Photo";

}

- (NSString *) audioButtonTitle{

 return @"Audio";

}

- (void) alertView:(UIAlertView *)alertView

 didDismissWithButtonIndex:(NSInteger)buttonIndex{

 NSString *buttonTitle = [alertView buttonTitleAtIndex:buttonIndex];

 if ([buttonTitle isEqualToString:[self photoButtonTitle]]){

 /* Adding a photo ... */

 }

 else if ([buttonTitle isEqualToString:[self audioButtonTitle]]){

 /* Adding an audio... */

 }

}

- (void) performAddWithAlertView:(id)paramSender{

 [[[UIAlertView alloc] initWithTitle:nil

 message:@"Add..."

 delegate:self

 cancelButtonTitle:@"Cancel"

 otherButtonTitles:

 [self photoButtonTitle],

164 | Chapter 1: Implementing Controllers and Views

 [self audioButtonTitle], nil] show];

}

- (void) performAddWithPopover:(id)paramSender{

 [self.myPopoverController

 presentPopoverFromBarButtonItem:self.barButtonAdd

 permittedArrowDirections:UIPopoverArrowDirectionAny

 animated:YES];

}

If you now run your app on iPad Simulator and tap the + button on the navigation bar,
you will see an interface similar to Figure 1-79.

Figure 1-79. Our simple popover displayed when a navigation button was tapped

If you run the same universal app on iPhone Simulator and tap the + button on the
navigation bar, you will see results similar to Figure 1-80.

1.29. Displaying Popovers with UIPopoverController | 165

Figure 1-80. Popovers are replaced by alert view in a universal app

We used an important property of our content view controller: preferredContent
Size. The popover, when displaying its content view controller, will read the value of
this property automatically and will adjust its width and height to this size. Also, we
used the presentPopoverFromBarButtonItem:permittedArrowDirections:anima
ted: method of our popover in our root view controller to display the popover over a
navigation bar button. The first parameter to this method is the navigation bar button
from which the popover controller has to be displayed. The second parameter specifies
the direction of the popover when it appears, in relation to the object from which it
appears. For example, in Figure 1-79, you can see that our popover’s arrow is pointing
up toward the navigation bar button. The value that you pass to this parameter must be
of type UIPopoverArrowDirection:

typedef NS_OPTIONS(NSUInteger, UIPopoverArrowDirection) {

 UIPopoverArrowDirectionUp = 1UL << 0,

166 | Chapter 1: Implementing Controllers and Views

 UIPopoverArrowDirectionDown = 1UL << 1,

 UIPopoverArrowDirectionLeft = 1UL << 2,

 UIPopoverArrowDirectionRight = 1UL << 3,

 UIPopoverArrowDirectionAny = UIPopoverArrowDirectionUp |

 UIPopoverArrowDirectionDown |

 UIPopoverArrowDirectionLeft |

 UIPopoverArrowDirectionRight,

 UIPopoverArrowDirectionUnknown = NSUIntegerMax

};

See Also
Recipe 1.9; Recipe 1.15

1.29. Displaying Popovers with UIPopoverController | 167

CHAPTER 2

Creating Dynamic and Interactive
User Interfaces

2.0. Introduction
When the iPhone was released, it really set the standard for interactivity in mobile apps.
Apps were and still are amazingly interactive, in that you can manipulate various UI
components on the go to customize them to your needs. In iOS 7, Apple added a few
new classes to the iOS SDK, which you can use to add very interesting physics to your
app to make it even more interactive. For instance, if you look at the new iOS, you’ll
notice that background images that you can use as wallpapers are now more lively than
before because they can move and slide around as you move your device to the left,
right, etc. These are some of the various behaviors that the new SDK allows you to add
to your apps as well.

Let me give you another example. Let’s say that you have a photo-sharing application
that runs on the iPad. On the lefthand side of the screen, you have some pictures that
your app has pulled onto the screen from the user’s photo album, and on the right you
have a basket-like component where every photo that is placed into the basket will be
batch-shared on a social networking service like Facebook. You want to provide inter‐
activity on your UI with an animation so that the user can flick the pictures onto the
basket from the left, and the pictures will snap into the basket. This was all possible in
the past, but you had to know a fair bit about Core Animation and have a rather good
understanding of physics. With UI Dynamics, Apple’s new technology, a lot of these
things can be attached to your apps very easily. In fact, you can attach very interesting
physics and behaviors to your views with a few lines of code.

Apple has categorized these actions into behavior classes that you can attach to an
animator. Behaviors are simple classes that you can configure, while animators group
and manage various behaviors. For instance, you can add a gravity behavior to a button

169

on your view, and this will cause the button to fall from the top of the screen (if that’s
where you’ve placed it) all the way down and even outside the boundaries of your view.
Now, if you want to prevent that from happening and you allow your button to fall into
the view but snap to the bottom and go no farther than that, you will need to attach a
collision behavior to your animator as well. The animator will manage all the behaviors
that you’ve added to various views in your app, as well as their interactions. You won’t
have to worry about that. Here are a few classes that provide different behaviors for your
UI components:

UICollisionBehavior

Provides collision detection.

UIGravityBehavior

As its name implies, provides gravity behavior for your views.

UIPushBehavior

Allows you to simulate a push behavior on your views. Imagine yourself placing
your finger on the screen and then moving your finger gradually toward the top of
the screen. If a button with the push behavior is attached to the view, you can cause
it to move up as you move your finger up the screen, as if you are pushing it in the
real world.

UISnapBehavior

Allows views to snap to a specific point on the screen.

For every dynamic behavior, as discussed before, we will need an animator of type
UIDynamicAnimator. This animator needs to be initialized with what Apple calls a
reference view. The animator uses the reference view’s coordinate system to calculate
output of various behaviors. For instance, if you pass a view controller’s view as the
reference view of a dynamic animator, once you add a collision behavior to the animator,
you can ask the collision behavior to ensure that the items that are added to it will not
go outside the boundaries of the reference view. That means you can put all your UI
components within your reference view, even if they have gravity applied to them.

The reference view is also used as the context of the animations that the animator man‐
ages. For instance, if the animator wants to figure out whether two squares will collide
with each other, it uses Core Graphics methods to find where those two squares overlap
with each other in the context of their superview—in this case, the reference view.

In this chapter, we are going to explore the different combinations of these behaviors
and how you can add more interactivity to your apps with UIKit behaviors and ani‐
mators. We will start with simple examples and gradually build on top of what we’ve
learned and dig a bit deeper into more exciting examples.

170 | Chapter 2: Creating Dynamic and Interactive User Interfaces

2.1. Adding Gravity to Your UI Components

Problem
You want your UI components to have gravity, so that if they are dragged up to the top
of the screen, they will descend on their own. Combining this with the collision behavior
that you will learn later, you can create UI components that fall from their current
location until they collide with a path that you’ll specify.

Solution
Initialize an object of type UIGravityBehavior and add your UI components that need
gravity to this object. After you are done, create an instance of UIDynamicAnimator, add
your gravity behavior to the animator, and let the animator take care of the rest of the
work for you.

Discussion
For the purpose of this recipe, we are going to create a simple colored square view in
our single-view application and place that view at the center of the screen. We will then
add gravity to that view and watch it fall from the center all the way down and eventually
outside the bounds of the screen.

So let’s start by defining our animator and the view:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UIView *squareView;

@property (nonatomic, strong) UIDynamicAnimator *animator;

@end

@implementation ViewController

<# Rest of your view controller's code will go here #>

Next, we are going to create our little view, assign a color to it, and place it at the center
of our view controller’s view. Then we will create an instance of the UIGravityBehav
ior class using its initWithItems: initializer. This initializer takes in an array of objects
that conform to the UIDynamicItem protocol. By default, all instances of UIView conform
to this protocol, so as long as you have a view, you are good to go.

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 /* Create our little square view and add it to self.view */

 self.squareView = [[UIView alloc] initWithFrame:

 CGRectMake(0.0f, 0.0f, 100.0f, 100.0f)];

2.1. Adding Gravity to Your UI Components | 171

 self.squareView.backgroundColor = [UIColor greenColor];

 self.squareView.center = self.view.center;

 [self.view addSubview:self.squareView];

 /* Create the animator and the gravity */

 self.animator = [[UIDynamicAnimator alloc]

 initWithReferenceView:self.view];

 UIGravityBehavior *gravity = [[UIGravityBehavior alloc]

 initWithItems:@[self.squareView]];

 [self.animator addBehavior:gravity];

}

If you don’t want to add all your views to the gravity behavior as soon
as you initialize the behavior, you can add them later using the addI
tem: instance method of the UIGravityBehavior class. This method
also accepts any object that conforms to the aforementioned protocol.

Now if you run your app, as soon as your view controller’s view appears on screen, you
will see the colored view drop from the center of the screen all the way down and out
of the screen. It fails to stop because we have not given any collision boundaries to our
animator. The gravity behavior, just like real gravity, will pull the items down until they
hit a boundary, but since there is no boundary, the items will just keep dropping for all
eternity. We will remedy that later in this chapter by adding collision behaviors to our
items.

See Also
Recipe 2.0, “Introduction”

2.2. Detecting and Reacting to Collisions Between UI
Components

Problem
You want to specify collision boundaries between your UI components on the screen
so that they will not overlap one another.

Solution
Instantiate an object of type UICollisionBehavior and attach it to your animator ob‐
ject. Set the translatesReferenceBoundsIntoBoundary property of your collision be‐

172 | Chapter 2: Creating Dynamic and Interactive User Interfaces

havior to YES and ensure that your animator is initialized with your superview as its
reference value. This will ensure that the subviews that are the targets of your collision
behavior (as will be discussed soon) will not go outside the boundaries of your super‐
view.

Discussion
A collision behavior of type UICollisionBehavior takes in objects that conform to the
UIDynamicItem protocol. All views of type UIView already conform to this protocol, so
all you have to do is instantiate your views and add them to the collision behavior. A
collision behavior requires you to define the boundaries that the items in the animator
will not be able to go past. For instance, if you define a line that runs from the bottom-
left edge to the bottom-right edge of your reference view (the bottommost horizontal
line of your reference view), and add a gravity behavior to your view as well, those views
will be pulled down by gravity to the bottom of the view but will not be able to go further
because they will collide with the bottom edge of the view, defined by the collision
behavior.

If you want your reference view’s boundaries to be considered as the boundaries of your
collision detection behavior, just set the translatesReferenceBoundsIntoBoundary
property of the collision behavior’s instance to YES. If you want to add custom lines as
boundaries to your collision behavior, simply use the addBoundaryWithIdentifi
er:fromPoint:toPoint: instance method of the UICollisionBehavior class.

In this recipe, we are going to create two colored views, one on top of the other, and
then add gravity to our animator so that the views will fall down from the center of the
view controller’s view. Then we are going to add a collision behavior to the mix so that
the views will not overlap each other. In addition, they won’t go outside the boundaries
of the reference view (the view controller’s view).

So let’s begin by defining an array of our views and our animator:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) NSMutableArray *squareViews;

@property (nonatomic, strong) UIDynamicAnimator *animator;

@end

@implementation ViewController

<# Rest of your code goes here #>

2.2. Detecting and Reacting to Collisions Between UI Components | 173

Then when our view appears on the screen, we will set up the collision and the gravity
behaviors and add them to an animator:

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 /* Create the views */

 NSUInteger const NumberOfViews = 2;

 self.squareViews = [[NSMutableArray alloc] initWithCapacity:NumberOfViews];

 NSArray *colors = @[[UIColor redColor], [UIColor greenColor]];

 CGPoint currentCenterPoint = self.view.center;

 CGSize eachViewSize = CGSizeMake(50.0f, 50.0f);

 for (NSUInteger counter = 0; counter < NumberOfViews; counter++){

 UIView *newView =

 [[UIView alloc] initWithFrame:

 CGRectMake(0.0f, 0.0f, eachViewSize.width, eachViewSize.height)];

 newView.backgroundColor = colors[counter];

 newView.center = currentCenterPoint;

 currentCenterPoint.y += eachViewSize.height + 10.0f;

 [self.view addSubview:newView];

 [self.squareViews addObject:newView];

 }

 self.animator = [[UIDynamicAnimator alloc]

 initWithReferenceView:self.view];

 /* Create gravity */

 UIGravityBehavior *gravity = [[UIGravityBehavior alloc]

 initWithItems:self.squareViews];

 [self.animator addBehavior:gravity];

 /* Create collision detection */

 UICollisionBehavior *collision = [[UICollisionBehavior alloc]

 initWithItems:self.squareViews];

 collision.translatesReferenceBoundsIntoBoundary = YES;

 [self.animator addBehavior:collision];

}

The result will look similar to that shown in Figure 2-1.

174 | Chapter 2: Creating Dynamic and Interactive User Interfaces

Figure 2-1. Gravity and collision behaviors working hand in hand

This example shows that the collision behavior works perfectly when the translates
ReferenceBoundsIntoBoundary property’s value is set to YES. But what if we want to
specify custom boundaries? This is where we will use the addBoundaryWithIdentifi
er:fromPoint:toPoint: instance method of the collision behavior. Here are the pa‐
rameters that you should pass to this method:

addBoundaryWithIdentifier

A string identifier for your boundary. This is used so that later, if you want to get
the collision behavior back for your boundary, you could pass the same identifier
to the boundaryWithIdentifier: method and get your boundary object back. The
object is of type UIBezierPath, which can support quite complicated, curved
boundaries. But most programmers are likely to specify simple horizontal or ver‐
tical boundaries, which we’ll do here.

fromPoint

The starting point of your boundary, of type CGPoint.

2.2. Detecting and Reacting to Collisions Between UI Components | 175

toPoint

The ending point of your boundary, of type CGPoint.

So let’s imagine that you want to add a boundary to the bottom of your reference view
(in this case, the view of our view controller), but you don’t want this boundary to be at
the bottommost point of your view. Instead, you want this boundary to be 100 points
away from the bottommost point of the view. In that case, setting the translatesRe
ferenceBoundsIntoBoundary property of the collision behavior is not going to help
you, because you want a different boundary from the boundary provided by the refer‐
ence view. Instead, we will use the addBoundaryWithIdentifier:fromPoint:toP
oint: method like so:

/* Create collision detection */

UICollisionBehavior *collision = [[UICollisionBehavior alloc]

 initWithItems:self.squareViews];

[collision

 addBoundaryWithIdentifier:@"bottomBoundary"

 fromPoint:CGPointMake(0.0f, self.view.bounds.size.height - 100.0f)

 toPoint:CGPointMake(self.view.bounds.size.width,

 self.view.bounds.size.height - 100.0f)];

[self.animator addBehavior:collision];

Now, when we mix this up with gravity as before, our square views will fall to the bottom
of the reference view but won’t quite hit the bottom because our boundary is positioned
a bit higher. As part of this recipe, I am also going to demonstrate the ability to detect
collisions between various items that have been added to your collision behavior. The
UICollisionBehavior class has a property called collisionDelegate that will be the
delegate whenever a collision is detected on the items that have been added to the col‐
lision behavior. This delegate object has to conform to the UICollisionBehaviorDele
gate protocol, which has a few methods that you can implement. Here are two of the
most important methods in this protocol:

collisionBehavior:beganContactForItem:withBoundaryIdentifier:atPoint:

Gets called on the delegate when an item in your collision behavior collides with
one of the boundaries that you’ve added to the behavior.

collisionBehavior:endedContactForItem:withBoundaryIdentifier:atPoint:

Gets called when the item that hit the boundary has bounced off the boundary and
is no longer colliding with that boundary.

To demonstrate the delegate’s activities to you and show you how you could use it, we
are going to expand on our previous example. As soon as our square views hit the bottom
of our reference view’s boundary, we will set their color to red, enlarge them by 200%
in size, and then fade them out to simulate an explosion:

NSString *const kBottomBoundary = @"bottomBoundary";

@interface ViewController () <UICollisionBehaviorDelegate>

176 | Chapter 2: Creating Dynamic and Interactive User Interfaces

@property (nonatomic, strong) NSMutableArray *squareViews;

@property (nonatomic, strong) UIDynamicAnimator *animator;

@end

@implementation ViewController

- (void)collisionBehavior:(UICollisionBehavior*)paramBehavior

 beganContactForItem:(id <UIDynamicItem>)paramItem

 withBoundaryIdentifier:(id <NSCopying>)paramIdentifier

 atPoint:(CGPoint)paramPoint{

 NSString *identifier = (NSString *)paramIdentifier;

 if ([identifier isEqualToString:kBottomBoundary]){

 [UIView animateWithDuration:1.0f animations:^{

 UIView *view = (UIView *)paramItem;

 view.backgroundColor = [UIColor redColor];

 view.alpha = 0.0f;

 view.transform = CGAffineTransformMakeScale(2.0f, 2.0f);

 } completion:^(BOOL finished) {

 UIView *view = (UIView *)paramItem;

 [paramBehavior removeItem:paramItem];

 [view removeFromSuperview];

 }];

 }

}

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 /* Create the views */

 NSUInteger const NumberOfViews = 2;

 self.squareViews = [[NSMutableArray alloc] initWithCapacity:NumberOfViews];

 NSArray *colors = @[[UIColor redColor], [UIColor greenColor]];

 CGPoint currentCenterPoint = CGPointMake(self.view.center.x, 0.0f);

 CGSize eachViewSize = CGSizeMake(50.0f, 50.0f);

 for (NSUInteger counter = 0; counter < NumberOfViews; counter++){

 UIView *newView =

 [[UIView alloc] initWithFrame:

 CGRectMake(0.0f, 0.0f, eachViewSize.width, eachViewSize.height)];

 newView.backgroundColor = colors[counter];

 newView.center = currentCenterPoint;

 currentCenterPoint.y += eachViewSize.height + 10.0f;

2.2. Detecting and Reacting to Collisions Between UI Components | 177

 [self.view addSubview:newView];

 [self.squareViews addObject:newView];

 }

 self.animator = [[UIDynamicAnimator alloc]

 initWithReferenceView:self.view];

 /* Create gravity */

 UIGravityBehavior *gravity = [[UIGravityBehavior alloc]

 initWithItems:self.squareViews];

 [self.animator addBehavior:gravity];

 /* Create collision detection */

 UICollisionBehavior *collision = [[UICollisionBehavior alloc]

 initWithItems:self.squareViews];

 [collision

 addBoundaryWithIdentifier:kBottomBoundary

 fromPoint:CGPointMake(0.0f, self.view.bounds.size.height - 100.0f)

 toPoint:CGPointMake(self.view.bounds.size.width,

 self.view.bounds.size.height - 100.0f)];

 collision.collisionDelegate = self;

 [self.animator addBehavior:collision];

}

I’ll explain what is happening in our code here. First, we create two views and place
them on top of each other. These views are just two simple, colored squares, the second
on top of the first, added to the view of our view controller. As in our previous examples,
we are adding gravity to our animator so that once the animation kicks in, our views
will be dragged toward the bottom of the screen as if descending to the ground. Then,
instead of setting the boundaries of our reference view as the boundaries of collision,
we are using the addBoundaryWithIdentifier:fromPoint:toPoint method of our
collision behavior to create a boundary near the bottom of the screen—specifically, 100
points away from the bottommost point. This will create an invisible line segment that
runs from the left side to the right side of the screen, and prevents the views from falling
all the way down and out of the reference view.

Also, as you can see, we are setting our view controller as the delegate of the collision
behavior. This means that we get updates from the collision behavior telling us when a
collision has occurred. Once you learn that one has occurred, you will probably want
to find out whether it was with a boundary (such as the one we’ve created) or an item
on the scene. For instance, if you have various virtual walls that you’ve created on your
reference view and your small square views collide with one of those walls, you may
want to create a different effect (such as an explosion) based on which boundary they
hit. You can find out what the item collided with from the delegate method that gets

178 | Chapter 2: Creating Dynamic and Interactive User Interfaces

called on your view controller, which gives you the identifier of the boundary that the
item collided with. Knowing what the object is, you can then make a decision about
what to do with it.

In our example, we compare the identifier that comes back from the collision behavior
with our kBottomBoundary constant, which we assigned to our barrier when we created
it. We create an animation for the object that moves a square view down the screen,
using the gravity and the boundary that we set up. The boundary ensures that the view
won’t go past the 100-point limit that we have created at the bottom of the screen.

One of the interesting properties of the UIGravityBehavior class is collisionMode.
This property dictates how the collision should be managed in the animator. For in‐
stance, in our previous example, we saw a typical collision behavior added to an animator
without modifying the value of the collisionMode. In this case, the collision behavior
was detecting collisions between our small square views and the boundaries that we had
set around the reference view. However, this behavior can be changed by modifying the
value of the aforementioned property. Here are the values that you can set for this
property:

UICollisionBehaviorModeItems

Setting this value means that the collision behavior will detect collisions between
dynamic items, such as our small square views.

UICollisionBehaviorModeBoundaries

This tells the collision behavior that it has to detect collisions of dynamic items with
the boundaries that we have set up, such as the boundaries around our reference
view.

UICollisionBehaviorModeEverything

This dictates to the collision behavior that it has to detect all types of collisions,
regardless of whether they are boundaries, items, or something else. This is the
default value of this property.

The values that we just talked about can be mixed together using bit‐
wise OR operators so that you can create a combination of collision
modes that comply with your business requirements.

I suggest that you go on and change the value of the collisionMode property of the
collision behavior in our previous example to UICollisionBehaviorModeBoundaries
and then run the app. You will see that both of the square views will drop down to the
bottom of the screen near the boundaries that we set up, but instead of the items colliding
with each other, they will move into each other because the collision behavior doesn’t
care about or even notice the collision between them.

2.2. Detecting and Reacting to Collisions Between UI Components | 179

See Also
Recipe 2.1

2.3. Animating Your UI Components with a Push

Problem
You want to “flick” your views from one point to another.

Solution
Initialize a behavior object of type UIPushBehavior using its initWithItems:mode:
method, and for the mode, pass the value of UIPushBehaviorModeContinuous. Once
you are ready to start pushing the items toward an angle, issue the setAngle: method
on the push behavior to set the angle (in radians) for the behavior. After that, you will
need to set the magnitude, or the force behind the push. You can set this force using the
setMagnitude: method of the push behavior. The magnitude is calculated in this way:
each magnitude of 1 point will result in acceleration of 100 points per second squared
for your target views.

Discussion
Push behaviors, especially continuous pushes, are very useful. Let’s say you are working
on a scrapbook iPad app, and on top of the screen, you have created three slides, each
representing one of the scrapbook pages that the user has created. On the bottom of the
screen, you have various pictures that the user can drag and drop into the pages. One
way to allow the user to do this is to add a tap gesture recognizer (see Recipe 10.5) to
your reference view to track the tap and allow the pictures to be moved onto the target
slide, which will, in turn, simulate the dragging. The other, and perhaps better, way of
doing this is to use the push behavior that Apple has introduced into UIKit.

The push behavior is of type UIPushBehavior and has a magnitude and an angle. The
angle is measured in radians, and a magnitude of 1 point will result in acceleration of
100 points per second squared. We create push behaviors like we create any other be‐
haviors: we need to initialize them and then add them to an animator of type UIDyna
micAnimator.

For this example, we are going to create a view and place it at the center of our view
controller’s view. We are going to incorporate a collision behavior into our animator,
which will prevent our little view from going outside the bounds of our view controller’s
view. You learned this technique in Recipe 2.2. We are then going to add a tap gesture
recognizer (see Recipe 10.5) to our view controller’s view so that we will be notified
whenever a tap occurs.

180 | Chapter 2: Creating Dynamic and Interactive User Interfaces

When a tap is detected, we will calculate the angle between the tap point and the center
of our small square view. This will give us the angle, in radians, toward which we can
push the small square view. Then we will calculate the distance between the tap point
and the center of our small square view, which will then give us a value that can be used
as the magnitude of the push. This means that the magnitude will be larger the farther
away the tap point and the center of the small square view are.

In this recipe, I’m assuming that you are already familiar with the basics of trigonometry.
But if you aren’t, that’s OK too because all you really need are the formulas that I have
described in the example code for this recipe. In Figure 2-2, you can see how the angle
between two points is calculated, so I’m hoping that this will give us enough information
to write our solution to this problem.

Figure 2-2. Calculating the angle between two points

So let’s get started by declaring the relevant properties of our view controller:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UIView *squareView;

@property (nonatomic, strong) UIDynamicAnimator *animator;

@property (nonatomic, strong) UIPushBehavior *pushBehavior;

@end

2.3. Animating Your UI Components with a Push | 181

@implementation ViewController

<# Rest of your code goes here #>

Our example adds a collision and a push behavior to our animator.
The push behavior is added as a property to our class, whereas the
collision behavior is just a local variable. The reason behind this is that
once we are done adding the collision behavior to our animator, we
will leave the animator to calculate all collisions with the boundaries
of our reference view and we will no longer need to reference that
collision behavior. However, in the case of our push behavior, when we
handle taps, we will want to update the push behavior so that it push‐
es our item toward the tap point. That is why we need to have a ref‐
erence to the push behavior but not the collision.

The next stop is a method that creates our small square view for us and places it on our
view controller’s view:

- (void) createSmallSquareView{

 self.squareView =

 [[UIView alloc] initWithFrame:

 CGRectMake(0.0f, 0.0f, 80.0f, 80.0f)];

 self.squareView.backgroundColor = [UIColor greenColor];

 self.squareView.center = self.view.center;

 [self.view addSubview:self.squareView];

}

Right after that, we will use a tap gesture recognizer to detect taps on our view controller’s
view:

- (void) createGestureRecognizer{

 UITapGestureRecognizer *tapGestureRecognizer =

 [[UITapGestureRecognizer alloc] initWithTarget:self

 action:@selector(handleTap:)];

 [self.view addGestureRecognizer:tapGestureRecognizer];

}

These methods do all our work for us. Later, when our view gets dis‐
played on the screen, we will call these methods so that they can car‐
ry out their work.

And let’s not forget a method that will set up our collision and push behaviors:

- (void) createAnimatorAndBehaviors{

 self.animator = [[UIDynamicAnimator alloc]

182 | Chapter 2: Creating Dynamic and Interactive User Interfaces

 initWithReferenceView:self.view];

 /* Create collision detection */

 UICollisionBehavior *collision = [[UICollisionBehavior alloc]

 initWithItems:@[self.squareView]];

 collision.translatesReferenceBoundsIntoBoundary = YES;

 self.pushBehavior = [[UIPushBehavior alloc]

 initWithItems:@[self.squareView]

 mode:UIPushBehaviorModeContinuous];

 [self.animator addBehavior:collision];

 [self.animator addBehavior:self.pushBehavior];

}

To learn more about collision behaviors, please have a look at Recipe 2.2. Once we set
up all these methods, we need to call them when our view appears on the screen:

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 [self createGestureRecognizer];

 [self createSmallSquareView];

 [self createAnimatorAndBehaviors];

}

Brilliant. Now if you look at our implementation of the createGestureRecognizer
method, you will notice that we are installing our tap gesture recognizer on a method
in our view controller called handleTap:. In this method, we will calculate the distance
between the center point of the small square view and the point where the user tapped
on the reference view. This will give us the magnitude of the push force. We will also
calculate the angle between the center of the small square view and the tap point to
figure out the angle of the push.

- (void) handleTap:(UITapGestureRecognizer *)paramTap{

 /* Get the angle between the center of the square view

 and the tap point */

 CGPoint tapPoint = [paramTap locationInView:self.view];

 CGPoint squareViewCenterPoint = self.squareView.center;

 /* Calculate the angle between the center point of the square view and

 the tap point to find out the angle of the push

 Formula for detecting the angle between two points is:

 arc tangent 2((p1.x - p2.x), (p1.y - p2.y)) */

 CGFloat deltaX = tapPoint.x - squareViewCenterPoint.x;

 CGFloat deltaY = tapPoint.y - squareViewCenterPoint.y;

 CGFloat angle = atan2(deltaY, deltaX);

2.3. Animating Your UI Components with a Push | 183

 [self.pushBehavior setAngle:angle];

 /* Use the distance between the tap point and the center of our square

 view to calculate the magnitude of the push

 Distance formula is:

 square root of ((p1.x - p2.x)^2 + (p1.y - p2.y)^2) */

 CGFloat distanceBetweenPoints =

 sqrt(pow(tapPoint.x - squareViewCenterPoint.x, 2.0) +

 pow(tapPoint.y - squareViewCenterPoint.y, 2.0));

 [self.pushBehavior setMagnitude:distanceBetweenPoints / 200.0f];

}

I am not going to dive into trigonometry here, but this code uses a
basic formula taught in high school trigonometry to calculate the an‐
gle between two points in radians, along with the Pythagorean theo‐
rem to get the distance between two points. You can find these for‐
mulas by looking at the comments that I’ve left in the code, but if you
want a deeper understanding of things such as radians and angles,
please obtain a basic text on trigonometry.

Now if you run your app, you will first see a green small square view at the center of
your screen. Tap anywhere on the area around this view (the white area) to start moving
your green view. In this example, I am dividing the distance between the tap point and
the center point of the small square view by 200 to get a realistic push magnitude, but
you can increase the acceleration of your push behavior, such as by reducing this number
from 200 to 100. It’s best to experiment with different numbers to get the right feel for
your app.

See Also
Recipe 2.2

2.4. Attaching Multiple Dynamic Items to Each Other

Problem
You want to attach dynamic items, such as views, so that the movements in one will
cascade to the second view automatically. Alternatively, you want to attach a dynamic
item to an anchor point so that when that point moves (because your app or the user
moves it), the item will automatically move with it.

184 | Chapter 2: Creating Dynamic and Interactive User Interfaces

Solution
Instantiate an attachment behavior of type UIAttachmentBehavior, using the initWi
thItem:point:attachedToAnchor: instance method of this class. Add this behavior to
an animator (see Recipe 2.0, “Introduction”), which will take care of the dynamics and
the physics of movement.

Discussion
The attachment behavior is at first a bit difficult to understand. In simple terms, you
can set an anchor and then have a point follow that anchor. But I’d like to give you more
details.

Let’s say that you have a large photo on a flat desk. Now if you place your index finger
on the upper-right corner of the photo and start moving it around, the picture may
rotate around your fingertip, and may not go exactly straight toward the direction you
are moving it to. But if you move your finger to the center of the photo and move it
around, the photo will not rotate around your fingertip. You can create the same real-
life behavior using the attachment behavior in UIKit.

In this recipe, we want to create an effect similar to that explained in Figure 2-3.

In Figure 2-3 you can see that we have three views on our screen. The main view is in
the center and includes another small view at its top-right corner. The small view is the
point that will follow our anchor point, as explained earlier by my photo example. Last
but not least, we have the anchor point, which will be moved around the screen with a
pan gesture recognizer (see Recipe 10.3). The movements on this view will then cause
our view at the center of the screen to move as well. First, let’s declare the necessary
properties of our view controller:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UIView *squareView;

@property (nonatomic, strong) UIView *squareViewAnchorView;

@property (nonatomic, strong) UIView *anchorView;

@property (nonatomic, strong) UIDynamicAnimator *animator;

@property (nonatomic, strong) UIAttachmentBehavior *attachmentBehavior;

@end

@implementation ViewController

<# Rest of your view controller's code goes here #>

2.4. Attaching Multiple Dynamic Items to Each Other | 185

Figure 2-3. This is what we want to achieve with the attachment behavior in this recipe

The next thing we have to do is create our small square view. But this time, we are going
to put another view inside it. The smaller view, which will be at the top-right corner of
the parent view, will be connected virtually to the anchor point of the attachment be‐
havior, just as explained in the photo example:

- (void) createSmallSquareView{

 self.squareView =

 [[UIView alloc] initWithFrame:

 CGRectMake(0.0f, 0.0f, 80.0f, 80.0f)];

 self.squareView.backgroundColor = [UIColor greenColor];

 self.squareView.center = self.view.center;

 self.squareViewAnchorView = [[UIView alloc] initWithFrame:

 CGRectMake(60.0f, 0.0f, 20.0f, 20.0f)];

 self.squareViewAnchorView.backgroundColor = [UIColor brownColor];

186 | Chapter 2: Creating Dynamic and Interactive User Interfaces

 [self.squareView addSubview:self.squareViewAnchorView];

 [self.view addSubview:self.squareView];

}

Next up, the creation of the anchor point view:

- (void) createAnchorView{

 self.anchorView = [[UIView alloc] initWithFrame:

 CGRectMake(120.0f, 120.0f, 20.0f, 20.0f)];

 self.anchorView.backgroundColor = [UIColor redColor];

 [self.view addSubview:self.anchorView];

}

Then we need to create our pan gesture recognizer and the animator, as we have already
seen in other recipes in this chapter:

- (void) createGestureRecognizer{

 UIPanGestureRecognizer *panGestureRecognizer =

 [[UIPanGestureRecognizer alloc] initWithTarget:self

 action:@selector(handlePan:)];

 [self.view addGestureRecognizer:panGestureRecognizer];

}

- (void) createAnimatorAndBehaviors{

 self.animator = [[UIDynamicAnimator alloc]

 initWithReferenceView:self.view];

 /* Create collision detection */

 UICollisionBehavior *collision = [[UICollisionBehavior alloc]

 initWithItems:@[self.squareView]];

 collision.translatesReferenceBoundsIntoBoundary = YES;

 self.attachmentBehavior = [[UIAttachmentBehavior alloc]

 initWithItem:self.squareView

 point:self.squareViewAnchorView.center

 attachedToAnchor:self.anchorView.center];

 [self.animator addBehavior:collision];

 [self.animator addBehavior:self.attachmentBehavior];

}

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 [self createGestureRecognizer];

 [self createSmallSquareView];

 [self createAnchorView];

 [self createAnimatorAndBehaviors];

}

2.4. Attaching Multiple Dynamic Items to Each Other | 187

You can see how we are initializing our anchor behavior, using its initWithI
tem:point:attachedToAnchor: instance method. This method takes in the following
parameters:

initWithItem

The dynamic item, or in our example, the view, that has to be connected to the
anchor point.

point

The point inside the dynamic item that has to be connected to the anchor point.
This behavior uses the center point of the item to establish a connection to the
anchor point. But you can change that by providing a different value to this pa‐
rameter.

attachedToAnchor

The anchor point itself, measured as a CGPoint value.

Now that we have connected the square view’s top-right corner to an anchor point
(represented by the anchor point view), we need to demonstrate that by moving the
anchor point, we will indirectly also move the square view. If you look at the create
GestureRecognizer method that we wrote earlier, we created a pan gesture recognizer
that will track the user’s finger movements on the screen. We have elected the handle
Pan: method of our view to handle the gesture recognizer, and we will implement that
method like so:

- (void) handlePan:(UIPanGestureRecognizer *)paramPan{

 CGPoint tapPoint = [paramPan locationInView:self.view];

 [self.attachmentBehavior setAnchorPoint:tapPoint];

 self.anchorView.center = tapPoint;

}

What we are doing here is detecting the point of movement on our view and then moving
the anchor point to that point. After we do this, the attachment behavior will then move
our small square view as well.

See Also
Recipe 10.3; Recipe 2.0, “Introduction”

188 | Chapter 2: Creating Dynamic and Interactive User Interfaces

2.5. Adding a Dynamic Snap Effect to Your UI Components

Problem
Using an animation, you want to snap a view in your UI to a specific point on the screen,
with the elasticity of a real-world snap effect. This means that when your UI component
snaps to the given point, you will feel that it has elasticity built into it.

Solution
Instantiate an object of type UISnapBehavior and add it to an animator of type UIDyna
micAnimator.

Discussion
To really understand how the snap dynamic behavior works, think about a small amount
of jelly covered in oil with a string attached to it, sitting on a very smooth table. I know
that sentence sounds really odd. But bear with me. Now imagine from another point on
the table, pulling on that string to get the jelly to move from its initial point to the point
you ordered it to move to. With the oil all around it, the jelly will move smoothly from
that point to where you want it to go, and because it is jelly, it will wiggle when it snaps
to position. This behavior is exactly what you can achieve with the UISnapBehavior
class.

One of the use cases for this is when you have an app and some views on the screen,
such as images, and you want the user to be able to dictate where those views have to
be moved to create a customized UI for the user. One way of handling this is using the
technique that we learned in Recipe 2.3, but that solution is quite rigid and has its own
use cases. Here in this recipe, we have a view on our screen, and we want to allow the
user to tap anywhere on the screen to relocate the view. We will then snap that view to
the point where that tap originated.

So what we are going to do in this recipe is create a small view in the center of our view
controller’s view and then attach a tap gesture recognizer (Recipe 10.5) to our view
controller’s view. Whenever the user taps anywhere on the screen, we will snap the small
square view to that point. So let’s begin by defining the required properties of our view
controller:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UIView *squareView;

@property (nonatomic, strong) UIDynamicAnimator *animator;

@property (nonatomic, strong) UISnapBehavior *snapBehavior;

@end

2.5. Adding a Dynamic Snap Effect to Your UI Components | 189

@implementation ViewController

<# Rest of your code goes here #>

The next thing to do is create a method that will create our tap gesture recognizer for
us:

- (void) createGestureRecognizer{

 UITapGestureRecognizer *tap = [[UITapGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(handleTap:)];

 [self.view addGestureRecognizer:tap];

}

Just like the previous recipes, we also need to create a small view in the center of the
screen. I’ve chosen the center arbitrarily, so you can create it at a different point if you
want to. We will then snap this view to where the user taps on the screen. So here is our
method for creating this view:

- (void) createSmallSquareView{

 self.squareView =

 [[UIView alloc] initWithFrame:

 CGRectMake(0.0f, 0.0f, 80.0f, 80.0f)];

 self.squareView.backgroundColor = [UIColor greenColor];

 self.squareView.center = self.view.center;

 [self.view addSubview:self.squareView];

}

The next step is to create our animator (see Recipe 2.0, “Introduction”) and attach our
snap behavior to it. We will initialize the snap behavior of type UISnapBehavior using
its initWithItem:snapToPoint: method. This method takes two parameters:

initWithItem

The dynamic item (in this case, our view) that the snap behavior has to be applied
to. Just like all the other dynamic UI behaviors, this item has to conform to the
UIDynamicItem protocol. By default, all UIView instances conform to this protocol
so we are good to go.

snapToPoint

The point on the reference view (see Recipe 2.0, “Introduction”) that the dynamic
item has to snap to.

There is one very important thing to note about the snap behavior: for it to work on a
specific item, you will need to have at least one instance of the snap behavior for that
item already added to the animator but snapping the item to its current position. After
that, subsequent snaps will work properly. Let me demonstrate this to you. We will now

190 | Chapter 2: Creating Dynamic and Interactive User Interfaces

implement a method that will create the snap behavior and the animator and will add
the snap behavior to the animator:

- (void) createAnimatorAndBehaviors{

 self.animator = [[UIDynamicAnimator alloc]

 initWithReferenceView:self.view];

 /* Create collision detection */

 UICollisionBehavior *collision = [[UICollisionBehavior alloc]

 initWithItems:@[self.squareView]];

 collision.translatesReferenceBoundsIntoBoundary = YES;

 [self.animator addBehavior:collision];

 /* For now, snap the square view to its current center */

 self.snapBehavior = [[UISnapBehavior alloc]

 initWithItem:self.squareView

 snapToPoint:self.squareView.center];

 self.snapBehavior.damping = 0.5f; /* Medium oscillation */

 [self.animator addBehavior:self.snapBehavior];

}

As you can see, we are currently snapping the small square view to its current center,
essentially not moving it at all from its position. Later, when we detect tap gestures on
our screen, we will update the snap behavior. Also note that we are setting the damp
ing property of our snap behavior. This property will control the elasticity with which
your item will snap to place. Higher values mean less elasticity and therefore less wiggle
motion. This value can be anything from 0 to 1. Now when our view appears on the
screen, we will call all these methods to instantiate our small square view, set up the tap
gesture recognizer, and set up the animator and the snap behavior:

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 [self createGestureRecognizer];

 [self createSmallSquareView];

 [self createAnimatorAndBehaviors];

}

When we created the tap gesture recognizer in the createGestureRecognizer method
of our view controller, we asked the recognizer to report the taps to the handleTap:
method of our view controller. In this method, we will get the point where the user
tapped on the screen, and we will then update our snap behavior.

The important thing to note here is that you cannot just update the existing behavior
without reinstantiating it. So before we instantiate a new instance of the snap behavior,
we have to remove the old one (if any) and then add a new one to our animator. Each
animator can have only one snap behavior attached to a specific dynamic item, in this
case, our small square view. If you add multiple snap behaviors for the same dynamic
item to the same animator, the animator will ignore all your snap behaviors for that

2.5. Adding a Dynamic Snap Effect to Your UI Components | 191

item, because it won’t know which one to execute first. So to make the behavior work,
first remove all the snap behaviors for that item from your animator, using its remove
Behavior: method, and then add a new snap behavior like so:

- (void) handleTap:(UITapGestureRecognizer *)paramTap{

 /* Get the angle between the center of the square view

 and the tap point */

 CGPoint tapPoint = [paramTap locationInView:self.view];

 if (self.snapBehavior != nil){

 [self.animator removeBehavior:self.snapBehavior];

 }

 self.snapBehavior = [[UISnapBehavior alloc] initWithItem:self.squareView

 snapToPoint:tapPoint];

 self.snapBehavior.damping = 0.5f; /* Medium oscillation */

 [self.animator addBehavior:self.snapBehavior];

}

See Also
Recipe 10.5; Recipe 2.0, “Introduction”

2.6. Assigning Characteristics to Your Dynamic Effects

Problem
You like the default physics built into the dynamic behaviors of UIKit, but you want to
be able to assign different characteristics, such as mass and elasticity, to various items
that you control using dynamic behaviors.

Solution
Instantiate an object of type UIDynamicItemBehavior and assign your dynamic items
to it. Once instantiated, use the various properties of this class to change the charac‐
teristics of your dynamic items. Then add this behavior to your animator (see Recipe 2.0,
“Introduction”) and let the animator take care of the rest for you.

Discussion
Dynamic behaviors are great for adding real-life physics to items that conform to the
UIDynamicItem protocol, such as all views of type UIView. In some apps, though, you
may wish to explicitly specify the characteristics of a specific item. For instance, in an
app where you are using gravity and collision behaviors (see Recipe 2.1 and
Recipe 2.2), you may wish to specify that one of the items on your screen affected by

192 | Chapter 2: Creating Dynamic and Interactive User Interfaces

this gravity and the collision has to bounce harder than the other item when it collides
with a boundary. Another example is when you want to specify that an item, during all
the different dynamic animations that will be applied to it with an animator, should not
rotate at all.

These are all easily doable when you use instances of the UIDynamicItemBehavior class.
These instances are dynamic behaviors too, and you can add them to an animator using
the addBehavior: instance method of the UIDynamicAnimator class, as you have already
seen in this chapter. When you initialize an instance of this class, you can call the
initWithItems: initializer and pass your view, or any object that conforms to the
UIDynamicItem protocol. Alternatively, initialize your dynamic item behavior instance
using the init method and later add different objects to the behavior using the addI
tem: method.

Instances of the UIDynamicItemBehavior have properties that you can adjust in order
to customize the behavior of your dynamic items (views, for instance). Some of the most
important properties of this class are listed and explained here:

allowsRotation

A Boolean value that, when set to YES, as its name implies, allows your dynamic
items to get rotated by the animator during the animations that get applied to them.
You would ideally want the value of this property to be set to YES if you want to
mimic real-life physics, but if for any reason in your app you need to ensure that a
specific item never rotates, set this property to NO and attach the item to this be‐
havior.

resistance

The resistance of the item to movement. This can be from 0 to CGFLOAT_MAX. The
higher the value, the more resistant that item becomes to forces that you’ll apply to
it. For instance, if you add a gravity behavior to your animator and create a view in
the center of the screen with the resistance of CGFLOAT_MAX, the gravity won’t be
able to force that view down toward its center. The view will just be stuck where
you create it.

friction

A floating point value from 0.0 to 1.0 that specifies how much friction should be
applied to the edges of this item when other items hit it or slide by its edges. The
higher the value, the more friction applied to that item.

The more friction you put on an item, the more sticky that item becomes. This
stickiness will be contagious in that, when other items collide with the sticky item,
it will feel as if those items are sticking to the target item a bit more than usual. Just
think about the friction of tires on a car. The more friction between the tires and
the asphalt, the slower the car will move, but the better the grip it will have on
slippery roads. This is exactly the type of friction that this property will allow you
to assign to your items.

2.6. Assigning Characteristics to Your Dynamic Effects | 193

elasticity

A floating point from 0.0 to 1.0 that specifies how elastic an item should be. The
higher this value, the more elastic and jelly-like this item will appear to the eyes of
the animator. See Recipe 2.5 for an explanation of elasticity.

density

A floating point value between 0 and 1 (the default value is 1) that isn’t directly used
to affect your dynamic item’s behaviors but is used by the animator to calculate the
mass of your objects and to find out how that mass will affect your animations. For
instance, if you flick two items onto each other (see Recipe 2.3), and one of them
has a density of 1 and the other has a density of 0.5, the former item’s mass will be
more than the latter, given that both items are of the same width and height. The
animator calculates the mass of items using their density and size on screen. So if
you flick a small view with a high density at a big view with a very low density, the
small view may, depending on its size and the value of the density, be seen by your
animator as the item with more mass. The animator may push away the item that
appears larger on screen harder than the larger item will push the small item.

Let’s have a look at an example. This is loosely based on the example that we saw in
Recipe 2.2. In this example, we are going to place two views on top of each other, but
we are going to make the view on the bottom have a very high elasticity and the view
on top have quite a low elasticity. This way, when both views hit the bottom of the screen,
where they will collide with the bottom bounds of the screen, the view on the bottom
will jump around and bounce much more, due to its high elasticity, than the view on
the top. So let’s get started by defining the animator and other properties of our view
controller:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UIDynamicAnimator *animator;

@end

@implementation ViewController

<# Rest of your code goes here #>

Next, we will code a handy method that will be able to create views for us with a specific
center point and background colors. We will use this method to create two very similar
views with different background colors and center points:

- (UIView *) newViewWithCenter:(CGPoint)paramCenter

 backgroundColor:(UIColor *)paramBackgroundColor{

 UIView *newView =

 [[UIView alloc] initWithFrame:

 CGRectMake(0.0f, 0.0f, 50.0f, 50.0f)];

194 | Chapter 2: Creating Dynamic and Interactive User Interfaces

 newView.backgroundColor = paramBackgroundColor;

 newView.center = paramCenter;

 return newView;

}

Now when our view gets displayed on the screen, we will create these two views and add
them to the screen:

UIView *topView = [self newViewWithCenter:CGPointMake(100.0f, 0.0f)

 backgroundColor:[UIColor greenColor]];

UIView *bottomView = [self newViewWithCenter:CGPointMake(100.0f, 50.0f)

 backgroundColor:[UIColor redColor]];

[self.view addSubview:topView];

[self.view addSubview:bottomView];

Now we are going to add a gravity behavior to our views, as we learned in Recipe 2.1:

self.animator = [[UIDynamicAnimator alloc]

 initWithReferenceView:self.view];

/* Create gravity */

UIGravityBehavior *gravity = [[UIGravityBehavior alloc]

 initWithItems:@[topView, bottomView]];

[self.animator addBehavior:gravity];

We don’t want our views to fall off the bottom of the screen, so we are going to use what
we learned in Recipe 2.2 to set a boundary and collision behavior for our animator:

/* Create collision detection */

UICollisionBehavior *collision = [[UICollisionBehavior alloc]

 initWithItems:@[topView, bottomView]];

collision.translatesReferenceBoundsIntoBoundary = YES;

[self.animator addBehavior:collision];

Last but not least, we are going to add the dynamic behavior to our views, making the
view on top less elastic than the one on the bottom:

/* Now specify the elasticity of the items */

UIDynamicItemBehavior *moreElasticItem = [[UIDynamicItemBehavior alloc]

 initWithItems:@[bottomView]];

moreElasticItem.elasticity = 1.0f;

UIDynamicItemBehavior *lessElasticItem = [[UIDynamicItemBehavior alloc]

 initWithItems:@[topView]];

lessElasticItem.elasticity = 0.5f;

[self.animator addBehavior:moreElasticItem];

[self.animator addBehavior:lessElasticItem];

Now you can run your app and see how your views will bounce off the bottom of the
screen once they hit it (see Figure 2-4).

2.6. Assigning Characteristics to Your Dynamic Effects | 195

Figure 2-4. One view is more elastic than the other

See Also
Recipe 2.0, “Introduction”

196 | Chapter 2: Creating Dynamic and Interactive User Interfaces

CHAPTER 3

Auto Layout and the Visual
Format Language

3.0. Introduction
Aligning UI components has always been a big headache for programmers. Most of the
view controllers in complex iOS apps contain a lot of code just to set the frame of UI
components on the screen, align components horizontally/vertically, and make sure the
components look good on different iOS versions. Not only that, but some programmers
also want to use the same view controllers across various devices such as iPhones and
iPads. This adds a lot of complexity to the code. Apple has made it easier for us with
Auto Layout. It has brought Auto Layout from OS X over to iOS. We will be talking
about the details of Auto Layout in a moment, but let me just give you a brief intro‐
duction to it and explain what it is for.

Let’s say you have a button that you want to keep at the center of the screen. The relation
between the center of the button and the center of the view on which it resides can be
simply described like so:

• Button’s center.x is equal to view’s center.x.

• Button’s center.y is equal to view’s center.y.

Apple noticed that a lot of the positioning of UI components can be solved with a simple
formula:

object1.property1 = (object2.property2 * multiplier) + constant value

For instance, using this formula, I could simply center a button on its superview like so:

button.center.x = (button.superview.center.x * 1) + 0

button.center.y = (button.superview.center.y * 1) + 0

197

Using this formula, you can do some really funky things during the UI development of
your iOS apps that you could not do before. The aforementioned formula is wrapped
inside a class in the iOS SDK called NSLayoutConstraint. Every constraint that you
create (i.e., every instance of this class) represents only one constraint. For instance, if
you want to center your button on the view that owns the button, you have to center
the x and the y position of the button. That means you have to create two constraints.
Centering simply cannot be expressed by one constraint. However, later in this chapter
we will learn about the Visual Format Language, which is a great addition to the iOS
language and simplifies things even further in terms of UI layouts.

Constraints can be created by cross views. For instance, if you have two buttons on one
view and you want them to be 100 points apart vertically, you need to create the con‐
straint for this rule but add it to the common ancestor of both the buttons, which is
perhaps the view that owns both of them. These are the rules:

• If the constraint is between two views that sit on a common immediate parent view,
meaning that both these views have the same superview, add the constraints to the
parent view.

• If the constraint is between a view and its parent view, add the constraint to the
parent view.

• If the constraint is between two views that do not share the same parent view, add
the constraint to the common ancestor of the views.

Figure 3-1 is a graphical demonstration of how these constraints actually work.

Constraints are created using the constraintWithItem:attribute:related

By:toItem:attribute:multiplier:constant: class method of the NSLayoutCon
straint class. The parameters to this method are the following:

constraintWithItem

This is a parameter of type id and represents object1 in the formula that I mentioned
before.

attribute

This represents property1 in our formula and should be of type NSLayoutAttribute.

relatedBy

This represents the equals sign in our formula. The value of this parameter is of type
NSLayoutRelation and, as you will soon see, you can specify not only an equals
sign, but a greater-than or less-than sign here. We will talk about this in detail in
this chapter.

toItem

This parameter is of type id and represents object2 in our formula.

198 | Chapter 3: Auto Layout and the Visual Format Language

Figure 3-1. The relationship between constraints and the views they should be added to

attribute

This parameter is of type NSLayoutAttribute and represents property2 in our
formula.

multiplier

This parameter is of type CGFloat and represents multiplier in our formula.

constant

This parameter is also of type CGFloat and represents constant value in our formula.

After you create your constraints, you can simply add them to the appropriate view (see
Figure 3-1) using either one of these methods of the UIView class:

addConstraint:

This method can add a single constraint of type NSLayoutConstraint to the view.

3.0. Introduction | 199

addConstraints:

This method allows you to add an array of constraints to the view. The constraints
again have to be of type NSLayoutConstraint wrapped inside an array of type
NSArray.

There are many things that you can achieve with Auto Layout, as you will see in the rest
of this chapter. However, the more you dive in, the more you’ll realize that setting your
layout automatically will mean creating more and more constraints of type NSLayout
Constraint. You will notice that your code size keeps growing and becomes more dif‐
ficult to maintain. For this reason, Apple has created the Visual Format Language by
which you can express your constraints using simply ASCII characters. For instance, if
you have two buttons and you want the buttons to always be 100 points apart from each
other horizontally, you would express it using the Visual Format Language code written
like this:

[button1]-100-[button2]

Constraints with the Visual Format Language are created using the constraints
WithVisualFormat:options:metrics:views: class method of the NSLayoutCon
straint class. Here is a brief explanation of each one of the parameters to this method:

constraintsWithVisualFormat

The Visual Format Language expression, written as NSString.

options

A parameter of type NSLayoutFormatOptions. For Visual Format Language, we
usually pass 0 to this parameter.

metrics

A dictionary of constant values that you use in your Visual Format Language ex‐
pression. For the sake of simplicity, we will pass nil to this method for now.

views

This is a dictionary of views that you have written the constraint for in the first
parameter of this method. To construct this dictionary, simply use the NSDictio
naryOfVariableBindings C function and pass your view objects to this method.
It will then construct the dictionary for you. The keys in this dictionary are the view
names that you should be using in the first parameter to this method. Don’t worry
if this is all a bit strange right now and doesn’t make sense. Soon it will! Once you
see a few examples of this, it will all click.

With this basic information in hand, and without bloating our heads with too much
information, I believe it is time to dive straight into this chapter’s recipes and flex our
muscles with constraints a little bit. Are you ready? I know I am!

200 | Chapter 3: Auto Layout and the Visual Format Language

3.1. Placing UI Components in the Center of the Screen

Problem
You want to be able to place a UI component in the center of the screen. In other words,
you want to place a view at the center of its superview, using constraints.

Solution
Create two constraints: one to align the center.x position of the target view on its su‐
perview’s center.x position and the other to align the center.y position of the target view
on its superview’s center.y position.

Discussion
Let’s get started by first creating a simple button, which we will align at the center of the
screen. As mentioned in the Solution section of this recipe, all we have to do is make
sure the x and the y of the center of our button are the same as the x and y of the center
of the view on which the button resides. So for this, we will create two constraints and
add them to the view that owns the button, called the superview of the button. Here is
the simple code that will achieve this:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UIButton *button;

@end

@implementation ViewController

- (void)viewDidLoad{

 [super viewDidLoad];

 /* 1) Create our button */

 self.button = [UIButton buttonWithType:UIButtonTypeSystem];

 self.button.translatesAutoresizingMaskIntoConstraints = NO;

 [self.button setTitle:@"Button" forState:UIControlStateNormal];

 [self.view addSubview:self.button];

 UIView *superview = self.button.superview;

 /* 2) Create the constraint to put the button horizontally in the center */

 NSLayoutConstraint *centerXConstraint =

 [NSLayoutConstraint constraintWithItem:self.button

 attribute:NSLayoutAttributeCenterX

 relatedBy:NSLayoutRelationEqual

 toItem:superview

 attribute:NSLayoutAttributeCenterX

 multiplier:1.0f

3.1. Placing UI Components in the Center of the Screen | 201

 constant:0.0f];

 /* 3) Create the constraint to put the button vertically in the center */

 NSLayoutConstraint *centerYConstraint =

 [NSLayoutConstraint constraintWithItem:self.button

 attribute:NSLayoutAttributeCenterY

 relatedBy:NSLayoutRelationEqual

 toItem:superview

 attribute:NSLayoutAttributeCenterY

 multiplier:1.0f

 constant:0.0f];

 /* Add the constraints to the superview of the button */

 [superview addConstraints:@[centerXConstraint, centerYConstraint]];

}

@end

This view controller is trying to tell iOS that it supports all interface
orientations that the device supports, to demonstrate that the button
will indeed be placed in the center of the screen regardless of the type
of device and its orientation. However, before this method takes over,
you need to make sure you have enabled all required orientations
inside your project itself. To do this, navigate in Xcode to your target
properties, go to the General tab, find the Device Orientation sec‐
tion, and enable all the available orientations, as shown in Figure 3-2.

Figure 3-2. Enabling all supported interface orientations in Xcode for your target

Now if you run this app on the device or in the simulator, you will notice that a simple
button is displayed on the screen. Now rotate the device and note how the button stays
at the center of the screen. All of this was achieved without having to write a single line

202 | Chapter 3: Auto Layout and the Visual Format Language

of code for setting the frame of the button or listening to any type of orientation change
notification and adjusting the position of the button, thanks to Auto Layout. See
Figure 3-3. This approach is better simply because our code now will work on any device
in any orientation with any resolution. In contrast, if we were to set the frame of our UI
components, we would have to set the frame for each orientation on each device we
would want to support, because different iOS devices can have different screen resolu‐
tions. For instance, our app now will happily be able to run on an iPad or an iPhone
and will retain the button in the center of the screen, regardless of the orientation or the
resolution of the device and its display.

Figure 3-3. The button is at the center of the screen in every orientation

See Also
Recipe 3.2; Recipe 3.0, “Introduction”

3.2. Defining Horizontal and Vertical Constraints with the
Visual Format Language

Problem
You want to be able to define constraints that change the way a UI component is hori‐
zontally or vertically aligned on its superview.

3.2. Defining Horizontal and Vertical Constraints with the Visual Format Language | 203

Solution
Use the H: orientation specifier in the formatting string for your constraint to dictate
horizontal alignment and the V: orientation specifier to dictate vertical alignment.

Discussion
I won’t pretend the Visual Format Language is easy to understand. It is indeed very
cryptic. For this reason, I will give you a few examples that hopefully will clear things
up. All of these examples will change the horizontal alignment of a button on the screen:

The button has to maintain 100 points on each side from its superview’s edges.
H:|-100-[_button]-100-|

The button has to have a left distance of less than or equal to 100 points from the left
edge of its superview. It also has to have a width that is greater than or equal to 50
points and has to stay 100 points or less away from the right edge of its superview.

H:|-(<=100)-[_button(>=50)]-(<=100)-|

The button has to keep a standard left distance from the left edge of its superview (stan‐
dard distances are defined by Apple) and has to have a width of at least 100 and at
most 200 points.

H:|-[_button(>=100,<=200)]

As you can see, the formatting might take you some time to get used to. However, once
you get the hang of the basics of it, it will slowly start to make sense. The same rules
apply for vertical alignment, which uses the V: orientation specifier. For instance:

V:[_button]-(>=100)-|

This constraint will force the button to stick to the top of its superview (remember, this
is a vertical constraint, hence the “V” at its beginning) and keep a distance of at least
100 points from the bottom edge of its superview.

Let’s put the things that we have learned so far into practice. How about writing con‐
straints using the Visual Format Language that represent a UI similar to that depicted
in Figure 3-4?

Figure 3-4. The UI that we want to achieve using constraints and the Visual Format
Language

204 | Chapter 3: Auto Layout and the Visual Format Language

To help apps look consistent and make decisions easier for the design‐
ers of apps, Apple has designed standard distances or spaces between
UI components. The standards are described in Apple’s iOS Human
Interface Guidelines.

Before we dive into coding, let’s put down the constraints as we can see them in the
figure:

• The email field has standard vertical distance to the top of the view.

• The confirm email field has standard vertical distance to the email field.

• The Register button has standard vertical distance to the confirm email field.

• All components are horizontally centered in relation to the parent (super) view.

• Both the email and the confirm email fields have standard horizontal distance from
the left- and the righthand side of the superview.

• The width of the button is fixed at 128 points.

Shall we dig into the code now to achieve this? Let’s start by actually defining our con‐
straints in plain Visual Format Language on top of our view controller:

/* Email Text Field Constraints */

NSString *const kEmailTextFieldHorizontal = @"H:|-[_textFieldEmail]-|";

NSString *const kEmailTextFieldVertical = @"V:|-[_textFieldEmail]";

/* Confirm Email Text Field Constraints */

NSString *const kConfirmEmailHorizontal = @"H:|-[_textFieldConfirmEmail]-|";

NSString *const kConfirmEmailVertical =

@"V:[_textFieldEmail]-[_textFieldConfirmEmail]";

/* Register Button Constraint */

NSString *const kRegisterVertical =

@"V:[_textFieldConfirmEmail]-[_registerButton]";

It is immediately obvious that both text fields have both their horizontal and vertical
constraints defined in the Visual Format Language, but the Register button has only its
vertical constraint defined as a Visual Format Language expression. Why is that? It turns
out that center-aligning a UI component horizontally is not possible with the Visual
Format Language. For this, we are going to have to use the same technique that we
learned in Recipe 3.1. But that’s OK. Don’t let that stop you from enjoying the Visual
Format Language and finding out how powerful it truly is. Obviously nothing is perfect,
but that doesn’t mean we shouldn’t use it.

Now let’s define our UI components as private properties in the implementation file of
the view controller:

3.2. Defining Horizontal and Vertical Constraints with the Visual Format Language | 205

http://bit.ly/QkQrtU
http://bit.ly/QkQrtU

@interface ViewController ()

@property (nonatomic, strong) UITextField *textFieldEmail;

@property (nonatomic, strong) UITextField *textFieldConfirmEmail;

@property (nonatomic, strong) UIButton *registerButton;

@end

@implementation ViewController

<# Rest of your code goes here #>

What’s next? We need to actually construct our UI components in the implementation
file of the view controller. So we will write two handy methods that will help us do this.
Again, remember, we are not going to set the frame of these UI components. Auto Layout
will later help us with this:

- (UITextField *) textFieldWithPlaceholder:(NSString *)paramPlaceholder{

 UITextField *result = [[UITextField alloc] init];

 result.translatesAutoresizingMaskIntoConstraints = NO;

 result.borderStyle = UITextBorderStyleRoundedRect;

 result.placeholder = paramPlaceholder;

 return result;

}

- (void) constructUIComponents{

 self.textFieldEmail =

 [self textFieldWithPlaceholder:@"Email"];

 self.textFieldConfirmEmail =

 [self textFieldWithPlaceholder:@"Confirm Email"];

 self.registerButton = [UIButton buttonWithType:UIButtonTypeSystem];

 self.registerButton.translatesAutoresizingMaskIntoConstraints = NO;

 [self.registerButton setTitle:@"Register" forState:UIControlStateNormal];

}

The textFieldWithPlaceholder: method simply creates text fields that contain a given
placeholder text, and the constructUIComponents method creates the two text fields
using the previously mentioned method and the button. You have probably noticed that
we are setting the translatesAutoresizingMaskIntoConstraints property of all our
UI components to NO. This will force UIKit not to think that autoresizing masks have
something to do with Auto Layout constraints. As you know, you can set autoresizing
masks for your UI components and view controllers in code and Interface Builder, as
we learned in Chapter 1. Setting this property to NO makes sure that UIKit won’t mix
things up and won’t automatically translate autoresizing masks to Auto Layout con‐
straints. Setting this option is required if you are mixing Auto Layout properties of your
components with layout constraints. It is generally a good idea to set this property of

206 | Chapter 3: Auto Layout and the Visual Format Language

all your UI components to NO whenever you are working with Auto Layout constraints,
unless you explicitly want UIKit to translate autoresizing masks to Auto Layout con‐
straints.

We are constructing our UI components, but the viewDidLoad method of our view
controller obviously needs to add all three UI components to our view, so why not have
a little method that will help us with this?

- (void) addUIComponentsToView:(UIView *)paramView{

 [paramView addSubview:self.textFieldEmail];

 [paramView addSubview:self.textFieldConfirmEmail];

 [paramView addSubview:self.registerButton];

}

We are almost there. The next big task is to create methods that allow us to construct
and collect all the constraints into an array. For this, we have three methods that return
the constraints of each one of our UI components as an array. We also have a handy
fourth method that collects all the constraints from all three UI components and puts
them into one big array. Here is how we have implemented it:

- (NSArray *) emailTextFieldConstraints{

 NSMutableArray *result = [[NSMutableArray alloc] init];

 NSDictionary *viewsDictionary =

 NSDictionaryOfVariableBindings(_textFieldEmail);

 [result addObjectsFromArray:

 [NSLayoutConstraint constraintsWithVisualFormat:kEmailTextFieldHorizontal

 options:0

 metrics:nil

 views:viewsDictionary]

];

 [result addObjectsFromArray:

 [NSLayoutConstraint constraintsWithVisualFormat:kEmailTextFieldVertical

 options:0

 metrics:nil

 views:viewsDictionary]

];

 return [NSArray arrayWithArray:result];

}

- (NSArray *) confirmEmailTextFieldConstraints{

 NSMutableArray *result = [[NSMutableArray alloc] init];

3.2. Defining Horizontal and Vertical Constraints with the Visual Format Language | 207

 NSDictionary *viewsDictionary =

 NSDictionaryOfVariableBindings(_textFieldConfirmEmail, _textFieldEmail);

 [result addObjectsFromArray:

 [NSLayoutConstraint constraintsWithVisualFormat:kConfirmEmailHorizontal

 options:0

 metrics:nil

 views:viewsDictionary]

];

 [result addObjectsFromArray:

 [NSLayoutConstraint constraintsWithVisualFormat:kConfirmEmailVertical

 options:0

 metrics:nil

 views:viewsDictionary]

];

 return [NSArray arrayWithArray:result];

}

- (NSArray *) registerButtonConstraints{

 NSMutableArray *result = [[NSMutableArray alloc] init];

 NSDictionary *viewsDictionary =

 NSDictionaryOfVariableBindings(_registerButton, _textFieldConfirmEmail);

 [result addObject:

 [NSLayoutConstraint constraintWithItem:self.registerButton

 attribute:NSLayoutAttributeCenterX

 relatedBy:NSLayoutRelationEqual

 toItem:self.view

 attribute:NSLayoutAttributeCenterX

 multiplier:1.0f

 constant:0.0f]

];

 [result addObjectsFromArray:

 [NSLayoutConstraint constraintsWithVisualFormat:kRegisterVertical

 options:0

 metrics:nil

 views:viewsDictionary]

];

 return [NSArray arrayWithArray:result];

}

- (NSArray *)constraints{

 NSMutableArray *result = [[NSMutableArray alloc] init];

208 | Chapter 3: Auto Layout and the Visual Format Language

 [result addObjectsFromArray:[self emailTextFieldConstraints]];

 [result addObjectsFromArray:[self confirmEmailTextFieldConstraints]];

 [result addObjectsFromArray:[self registerButtonConstraints]];

 return [NSArray arrayWithArray:result];

}

It’s in fact the constraints instance method of our view controller that collects all the
constraints for all three UI components and returns them as one big array. Now for the
main part of the controller, the viewDidLoad method:

- (void)viewDidLoad{

 [super viewDidLoad];

 [self constructUIComponents];

 [self addUIComponentsToView:self.view];

 [self.view addConstraints:[self constraints]];

}

This method simply constructs the UI, adding the UI components and their constraints
to itself using the methods we wrote before. Great stuff, but how does it look on the
screen when we run the program? We have already seen how it looks in the portrait
mode of the device (see Figure 3-4) but let’s see how it will look once we rotate the
device’s orientation to landscape (Figure 3-5).

Figure 3-5. The constraints seem to be working just as fine in landscape as they work in
portrait mode

3.2. Defining Horizontal and Vertical Constraints with the Visual Format Language | 209

See Also
Recipe 3.0, “Introduction”; Recipe 3.1

3.3. Utilizing Cross View Constraints

Problem
You want to align a UI component in relation to another UI component, but these UI
components have different parents.

Solution
Utilizing Figure 3-1, make sure that you find the common UI superview between the
two UI components and add your constraint to that superview.

Discussion
Before going into too much detail, let’s first see what cross view constraints are all about.
I believe I can demonstrate it to you in a picture better than it can be explained in words,
so check out Figure 3-6.

Figure 3-6. The important cross view constraints between two buttons are depicted in
this photo

Many constraints have been applied to the views in this figure, but let’s start one by one
and break it down into small chunks:

210 | Chapter 3: Auto Layout and the Visual Format Language

• We have two gray views on the main view of our view controller. Both should have
standard space from the left and the right side of the view of the view controller.
There must be standard space from the top of the view to the top of the view on
top. There should be standard vertical space between the two gray views.

• There must be a button vertically centered in both gray views.

• The button on the top gray view should have standard space to the left of its su‐
perview.

• The button on the bottom gray view should have its lefthand side aligned with the
righthand side of the button in the top gray view. This is the cross view constraint
that is very important to us.

• The gray views should be able to get resized as the view of the view controller
changes orientation.

• The height of both gray views must be 100 points.

OK, let’s begin. We are going to do all this by starting from the viewDidLoad method of
our view controller. It’s always best to think of a clean way of putting all your methods
together. Obviously, in this example, we are working with quite a few constraints and
views, so how can we make the viewDidLoad method of our view controller clean? Like
this:

- (void)viewDidLoad{

 [super viewDidLoad];

 [self createGrayViews];

 [self createButtons];

 [self applyConstraintsToTopGrayView];

 [self applyConstraintsToButtonOnTopGrayView];

 [self applyConstraintsToBottomGrayView];

 [self applyConstraintsToButtonOnBottomGrayView];

}

We have simply broken our tasks down into different methods, which we are soon going
to implement. Let’s go ahead and define our views in the implementation file of our view
controller as an extension to our interface:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UIView *topGrayView;

@property (nonatomic, strong) UIButton *topButton;

@property (nonatomic, strong) UIView *bottomGrayView;

@property (nonatomic, strong) UIButton *bottomButton;

@end

3.3. Utilizing Cross View Constraints | 211

@implementation ViewController

<# Rest of your code goes here #>

The next step is to implement the createGrayViews method. As its name shows, this
method is responsible for creating our gray views on the screen:

- (UIView *) newGrayView{

 UIView *result = [[UIView alloc] init];

 result.backgroundColor = [UIColor lightGrayColor];

 result.translatesAutoresizingMaskIntoConstraints = NO;

 [self.view addSubview:result];

 return result;

}

- (void) createGrayViews{

 self.topGrayView = [self newGrayView];

 self.bottomGrayView = [self newGrayView];

}

Simple enough? Both gray views are getting added to the view of our view controller.
Great stuff. What’s next? We now need to implement the createButtons method, be‐
cause it is getting called in the viewDidLoad method of our view controller. This method
should simply create our buttons and place them on their associated gray views:

- (UIButton *) newButtonPlacedOnView:(UIView *)paramView{

 UIButton *result = [UIButton buttonWithType:UIButtonTypeSystem];

 result.translatesAutoresizingMaskIntoConstraints = NO;

 [result setTitle:@"Button" forState:UIControlStateNormal];

 [paramView addSubview:result];

 return result;

}

- (void) createButtons{

 self.topButton = [self newButtonPlacedOnView:self.topGrayView];

 self.bottomButton = [self newButtonPlacedOnView:self.bottomGrayView];

}

Again, as you can see in the createButtons method, after the creation of our gray views
and the buttons, we need to start applying the constraints to the gray views and the
buttons. We will start by applying the constraints to the top gray view. These constraints
must cover the following conditions:

• The top view has to have standard space from the left and the top of the view of the
view controller.

212 | Chapter 3: Auto Layout and the Visual Format Language

• The height of this gray view has to be 100 points.

- (void) applyConstraintsToTopGrayView{

 NSDictionary *views = NSDictionaryOfVariableBindings(_topGrayView);

 NSMutableArray *constraints = [[NSMutableArray alloc] init];

 NSString *const kHConstraint = @"H:|-[_topGrayView]-|";

 NSString *const kVConstraint = @"V:|-[_topGrayView(==100)]";

 /* Horizontal constraint(s) */

 [constraints addObjectsFromArray:

 [NSLayoutConstraint constraintsWithVisualFormat:kHConstraint

 options:0

 metrics:nil

 views:views]

];

 /* Vertical constraint(s) */

 [constraints addObjectsFromArray:

 [NSLayoutConstraint constraintsWithVisualFormat:kVConstraint

 options:0

 metrics:nil

 views:views]

];

 [self.topGrayView.superview addConstraints:constraints];

}

It’s important to note how we are constructing the vertical constraint of the top gray
view. You can see that we are using the (==100) format to specify that the height of the
top gray view has to be 100 points. The reason that the runtime is interpreting this value
as the height is because of the V: specifier that tells the runtime that the numbers we are
feeding into the system have something to do with the height and the vertical alignment
of the target view, rather than the width or the horizontal alignment.

The next thing that we need to take care of is to set the constraints for the button on the
top gray view. This is done through the applyConstraintsToButtonOnTopGrayView
method. This button will have the following constraints, as specified before:

• It should sit vertically in the center of the top gray view.

• It should have standard distance from the left of the top gray view.

• It should have no specific height or width defined and should fit its content, aka the
Button text that we’ve decided to put in it.

- (void) applyConstraintsToButtonOnTopGrayView{

3.3. Utilizing Cross View Constraints | 213

 NSDictionary *views = NSDictionaryOfVariableBindings(_topButton);

 NSMutableArray *constraints = [[NSMutableArray alloc] init];

 NSString *const kHConstraint = @"H:|-[_topButton]";

 /* Horizontal constraint(s) */

 [constraints addObjectsFromArray:

 [NSLayoutConstraint constraintsWithVisualFormat:kHConstraint

 options:0

 metrics:nil

 views:views]

];

 /* Vertical constraint(s) */

 [constraints addObject:

 [NSLayoutConstraint constraintWithItem:self.topButton

 attribute:NSLayoutAttributeCenterY

 relatedBy:NSLayoutRelationEqual

 toItem:self.topGrayView

 attribute:NSLayoutAttributeCenterY

 multiplier:1.0f

 constant:0.0f]

];

 [self.topButton.superview addConstraints:constraints];

}

We are all done with the top gray view and the button inside it. Time to move on to the
bottom gray view and its button. The method we should take care of now is the apply
ConstraintsToBottomGrayView method. This method will be setting the constraints
for the bottom gray view. Just to recap, the constraints that we have to create for this
view are:

• Must have standard distance from the left of the view of the view controller.

• Must have standard distance from the bottom of the top gray view.

• Must have the height of 100 points.

- (void) applyConstraintsToBottomGrayView{

 NSDictionary *views = NSDictionaryOfVariableBindings(_topGrayView,

 _bottomGrayView);

 NSMutableArray *constraints = [[NSMutableArray alloc] init];

 NSString *const kHConstraint = @"H:|-[_bottomGrayView]-|";

 NSString *const kVConstraint =

 @"V:|-[_topGrayView]-[_bottomGrayView(==100)]";

214 | Chapter 3: Auto Layout and the Visual Format Language

 /* Horizontal constraint(s) */

 [constraints addObjectsFromArray:

 [NSLayoutConstraint constraintsWithVisualFormat:kHConstraint

 options:0

 metrics:nil

 views:views]

];

 /* Vertical constraint(s) */

 [constraints addObjectsFromArray:

 [NSLayoutConstraint constraintsWithVisualFormat:kVConstraint

 options:0

 metrics:nil

 views:views]

];

 [self.bottomGrayView.superview addConstraints:constraints];

}

The vertical constraints for the bottom gray view may look a bit long in Visual Format
Language, but it’s very simple indeed. If you have a close look, you’ll notice that the
constraints are just aligning the top and the bottom gray view on the view of the view
controller using standard distance specifiers and the constant height of 100 points.

The next and perhaps the last UI component for which we have to write constraints is
the button on the bottom gray view. The method that will take care of this is called
applyConstraintsToButtonOnBottomGrayView. Before we implement this method,
let’s talk about the constraint requirements for the bottom button:

• It should be vertically aligned at the center of the bottom gray view.

• Its left side should be aligned with the right side of the button on the top gray view.

• It should have no specific height or width defined and should fit its content, aka the
Button text that we’ve decided to put in it.

- (void) applyConstraintsToButtonOnBottomGrayView{

 NSDictionary *views = NSDictionaryOfVariableBindings(_topButton,

 _bottomButton);

 NSString *const kHConstraint = @"H:[_topButton][_bottomButton]";

 /* Horizontal constraint(s) */

 [self.bottomGrayView.superview addConstraints:

 [NSLayoutConstraint constraintsWithVisualFormat:kHConstraint

 options:0

 metrics:nil

 views:views]

];

3.3. Utilizing Cross View Constraints | 215

 /* Vertical constraint(s) */

 [self.bottomButton.superview addConstraint:

 [NSLayoutConstraint constraintWithItem:self.bottomButton

 attribute:NSLayoutAttributeCenterY

 relatedBy:NSLayoutRelationEqual

 toItem:self.bottomGrayView

 attribute:NSLayoutAttributeCenterY

 multiplier:1.0f

 constant:0.0f]

];

}

Last but not least, we need to make sure our view controller tells the runtime that it is
able to handle all orientations, just to demonstrate the point of this recipe, so we should
override the supportedInterfaceOrientations method of UIViewController:

- (NSUInteger) supportedInterfaceOrientations{

 return UIInterfaceOrientationMaskAll;

}

We are done with this view controller now. Let’s run our app and see how it behaves in
portrait mode (see Figure 3-7).

Figure 3-7. Our app renders the UI components in portrait mode according to the re‐
quirements that we set

The moment of truth! How about in landscape mode? Do we dare run the app in land‐
scape and see whether it behaves as expected? Let’s give it a go (see Figure 3-8).

216 | Chapter 3: Auto Layout and the Visual Format Language

Figure 3-8. The same code behaves as expected in landscape mode

Perfect. I think we nailed it.

See Also
Recipe 3.0, “Introduction”

3.4. Configuring Auto Layout Constraints in Interface
Builder

Problem
You want to be able to utilize Interface Builder’s power in order to create your UI con‐
straints.

Solution
Follow these steps:

1. Open the XIB or storyboard file that you want to edit in Interface Builder.

2. In Interface Builder, make sure that you have selected the view object on which you
want to enable Auto Layout, simply by clicking on that view object.

3. Click the View → Utilities → Show File Inspector menu item.

3.4. Configuring Auto Layout Constraints in Interface Builder | 217

4. In the File Inspector, under the Interface Builder Document section, make sure that
the Use Autolayout check is enabled, as shown in Figure 3-9.

Figure 3-9. Enabling Auto Layout in Interface Builder

Discussion
Interface Builder can help us programmers a lot in creating constraints without much
involvement from us. Normally, before the introduction of Auto Layout to iOS, the
guideline bars that appeared on the screen while you moved UI components around on
a view were related to autosizing masks that you could also create in code, just like
Constraints. However, after switching on the Use Auto Layout option in Interface
Builder, the guidelines tell you something else. They are telling you about the constraints
that Interface Builder is creating for you in the background.

Let’s do a little experiment. Create a new Single View Application project in Xcode. This
will create an application with a single view controller for you. The class for your view
controller will be ViewController and the .xib file for this view controller will be View

Controller.xib. Simply click this file to let Interface Builder open it for you. Make sure

that the Use Autolayout option is ticked in the File Inspector, as explained in the Solution
section of this recipe.

Now from the Object Library, simply drag and drop a Button onto the center of the
screen until Interface Builder guidelines appear on the screen, telling you that the center
of the button is aligned with the center of the screen. From the Edit menu, now choose
the Show Document Outline. If you already have the Document Outline section of
Interface Builder open, this menu item will read Hide Document Outline, in which case
you don’t have to take any action. Now in the Document Outline, have a look under a
new blue-colored section that has been created for you, named Constraints. Expand the
constraints that Interface Builder has created for you for this button. What you see now
is quite similar to what is shown in Figure 3-10.

218 | Chapter 3: Auto Layout and the Visual Format Language

Figure 3-10. Interface Builder created Layout Constraints for us

Using Interface Builder, you can create a lot of constraints without having to write a
single line of code. There are times when the constraints that you want to define are so
complex that they are better off being written in the code. After deciding how you want
to lay out your UI components on the screen, you can tell whether it’s easier to use
Interface Builder, put it in your code, or do a mix of both.

See Also
Recipe 3.0, “Introduction”

3.4. Configuring Auto Layout Constraints in Interface Builder | 219

CHAPTER 4

Constructing and Using Table Views

4.0. Introduction
A table view is simply a scrolling view that is separated into sections, each of which is
further separated into rows. Each row is an instance of the UITableViewCell class, and
you can create custom table view rows by subclassing this class.

Using table views is an ideal way to present a list of items to users. You can embed images,
text, and other objects into your table view cells; you can customize their height, shape,
grouping, and much more. The simplicity of the structure of table views is what makes
them highly customizable.

A table view can be fed with data using a table view data source, and you can receive
various events and control the physical appearance of table views using a table view
delegate object. These are defined, respectively, in the UITableViewDataSource and
UITableViewDelegate protocols.

Although an instance of UITableView subclasses UIScrollView, table views can only
scroll vertically. This is more a feature than a limitation. In this chapter, we will discuss
the different ways of creating, managing, and customizing table views.

Table views can be utilized in two ways:

• By using the UITableViewController class. This class is similar to the UIView
Controller class (see Recipe 1.9) in that it is a view controller, but representing a
table instead of a normal view. The beauty of this class is that every instance of it
already conforms to the UITableViewDelegate and the UITableViewDataSource
protocols. So the table view controller by default becomes the data source and the
delegate of the table view that it controls. Therefore, in order to implement a method
of, for instance, the data source of the table view, all you have to do is implement it
in the table view controller instead of having to set the data source of your table
view manually to your view controller.

221

• By instantiating the UITableView class manually.

Both these methods are valid methods of creating table views. The first method is usually
used when you have a table view that fills its container (or the whole screen/window, if
the table view controller is the root view controller of the main window of your app).
The second method is usually used for situations where you want to display your table
view as a smaller part of your UI, perhaps taking half the width and/or height of the
screen. But nothing prevents you from using the second method and setting the width
and height of your table view to the width and height of your container window, so that
your table view fills the whole screen. We will explore both these methods in this chapter.

Let’s have a look at an example of creating a table view in our application. We are going
to see an example of table view controllers in Recipe 4.9, so for now, we will simply focus
on creating table views in code and adding them to an existing view controller.

The way to instantiate UITableView is through its initWithFrame:style: method. Let’s
see what parameters we have to pass to this method and what those parameters mean:

initWithFrame

This is a parameter of type CGRect. This specifies where the table view has to be
positioned in its superview. If you want your table view to simply cover your whole
view, pass the value of the bounds property of your view controller’s view to this
parameter.

style

This is a parameter of type UITableViewStyle that is defined in this way:

typedef NS_ENUM(NSInteger, UITableViewStyle) {

 UITableViewStylePlain,

 UITableViewStyleGrouped

};

Figure 4-1 shows the difference between a plain table view and a grouped table view.

We feed data to a table view using its data source, as we will see in Recipe 4.1. Table
views also have delegates that receive various events from the table view. Delegate objects
have to conform to the UITableViewDelegate protocol. There are some methods in this
protocol that are quite important to know:

tableView:viewForHeaderInSection:

Gets called on the delegate when the table view wants to render the header view of
a section. Each section of a table view can contain a header, some cells, and a footer.
We will talk about all these in this chapter. The header and footer are simple in‐
stances of UIView. This method is optional, but if you want to configure a header
for your table view sections, use this method to create that instance of the view and
return it as the return value. To read more about headers and footers in table views,
refer to Recipe 4.5.

222 | Chapter 4: Constructing and Using Table Views

Figure 4-1. Different types of table views

tableView:viewForFooterInSection:

Same as the tableView:viewForHeaderInSection: delegate method, but returns
the footer view. Like the header, the footer is optional but should be created here if
you want one. To read more about headers and footers in table views, refer to
Recipe 4.5.

tableView:didEndDisplayingCell:forRowAtIndexPath:

Gets called on your delegate object when a cell is scrolled off the screen. This is a
really handy method to have called on our delegate because you can delete objects
and remove them from memory, if those objects were associated with the cell that
is scrolled off the screen and you expect that you may no longer need them.

tableView:willDisplayCell:forRowAtIndexPath:

This method is called on the delegate of a table view whenever a cell is about to be
displayed on the screen.

4.0. Introduction | 223

You can set the delegate of a table view simply by setting the value of the delegate
property of an instance of UITableView to an object that conforms to the UITableView
Delegate protocol. If your table view is part of a view controller, you can simply make
your view controller the delegate of your table view, like so:

#import "ViewController.h"

@interface ViewController () <UITableViewDelegate>

@property (nonatomic, strong) UITableView *myTableView;

@end

@implementation ViewController

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myTableView = [[UITableView alloc]

 initWithFrame:self.view.bounds

 style:UITableViewStylePlain];

 self.myTableView.delegate = self;

 [self.view addSubview:self.myTableView];

}

@end

Think of the delegate of a table view as an object that listens to various events sent by
the table view, such as when a cell is selected or when the table view wants to figure out
the height of each of its cells.

It is mandatory for the delegate object to respond to messages that are
marked as @required by the UITableViewDelegate protocol. Re‐
sponding to other messages is optional, but the delegate must re‐
spond to any messages you want to affect the table view.

Messages sent to the delegate object of a table view carry a parameter that tells the
delegate object which table view has fired that message in its delegate. This is very
important to note because you might, under certain circumstances, require more than
one table view to be placed on one object (usually a view). Because of this, it is highly
recommended that you make your decisions based on which table view has actually sent
that specific message to your delegate object, like so:

- (CGFloat) tableView:(UITableView *)tableView

 heightForRowAtIndexPath:(NSIndexPath *)indexPath{

 if ([tableView isEqual:self.myTableView]){

 return 100.0f;

224 | Chapter 4: Constructing and Using Table Views

 }

 return 40.0f;

}

The location of a cell in a table view is represented by its index path. An index path is
the combination of the section and the row index, where the section index is the zero-
based index specifying which grouping or section each cell belongs to, and the cell index
is the zero-based index of that particular cell in its section.

4.1. Populating a Table View with Data

Problem
You would like to populate your table view with data.

Solution
Conform to the UITableViewDataSource protocol in an object and assign that object
to the dataSource property of a table view.

Discussion
Create an object that conforms to the UITableViewDataSource protocol and assign it
to a table view instance. Then, by responding to the data source messages, provide
information to your table view. For this example, let’s go ahead and declare the .m file

of our view controller, which will later create a table view on its own view, in code:

#import "ViewController.h"

static NSString *TableViewCellIdentifier = @"MyCells";

@interface ViewController () <UITableViewDataSource>

@property (nonatomic, strong) UITableView *myTableView;

@end

The TableViewCellIdentifier contains our cell identifiers as a static string variable.
Each cell, as you will learn soon, can have an identifier, which is great for reusing cells.
For now, think about this as a unique identifier for all the cells in our table view, nothing
more.

In the viewDidLoad method of our view controller, we create the table view and assign
our view controller as its data source:

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myTableView =

 [[UITableView alloc] initWithFrame:self.view.bounds

4.1. Populating a Table View with Data | 225

 style:UITableViewStylePlain];

 [self.myTableView registerClass:[UITableViewCell class]

 forCellReuseIdentifier:TableViewCellIdentifier];

 self.myTableView.dataSource = self;

 /* Make sure our table view resizes correctly */

 self.myTableView.autoresizingMask =

 UIViewAutoresizingFlexibleWidth |

 UIViewAutoresizingFlexibleHeight;

 [self.view addSubview:self.myTableView];

}

Everything is very simple in this code snippet except for the registerClass:forCe
llReuseIdentifier: method that we are calling on the instance of our table view. What
does this method do, you ask? The registerClass parameter of this method simply
takes a class name that denotes the type of object that you want your table view to load
when it renders each cell. Cells inside a table view all have to be direct or indirect an‐
cestors of the UITableViewCell class. This class on its own provides a lot of function‐
alities to programmers, but if you want to extend this class, you can simply subclass it
and add your new functionalities to your own class. So going back to the register
Class parameter of the aforementioned method, you have to pass the class name of
your cells to this parameter and then pass an identifier to the forCellReuseIdentifi
er parameter. The reason behind associating table view cell classes with identifiers is
that later, when you populate your table view, you can simply pass the same identifier
to the table view’s dequeueReusableCellWithIdentifier:forIndexPath: method and
have the table view instantiate the cell for you if one cannot be reused. This is great stuff,
because in previous versions of the iOS SDK, programmers had to instantiate these cells
themselves if a previous and reusable cell could not be retrieved from the table view.

Now we need to make sure our table view responds to the @required methods of the
UITableViewDataSource protocol. Press the Command+Shift+O key combination on
your keyboard, type this protocol name in the dialog, and then press the Enter key. This
will show you the required methods for this protocol.

The UITableView class defines a property called dataSource. This is an untyped object
that must conform to the UITableViewDataSource protocol. Every time a table view is
refreshed and reloaded using the reloadData method, the table view will call various
methods in its data source to find out about the data you intend to populate it with. A
table view data source can implement three important methods, two of which are
mandatory for every data source:

226 | Chapter 4: Constructing and Using Table Views

numberOfSectionsInTableView:

This method allows the data source to inform the table view of the number of
sections that must be loaded into the table.

tableView:numberOfRowsInSection:

This method tells the view controller how many cells or rows have to be loaded for
each section. The section number is passed to the data source in the numberOfRows
InSection parameter. The implementation of this method is mandatory in the data
source object.

tableView:cellForRowAtIndexPath:

This method is responsible for returning instances of the UITableViewCell class
as rows that have to be populated into the table view. The implementation of this
method is mandatory in the data source object.

So let’s go ahead and implement these methods in our view controller, one by one. First,
let’s tell the table view that we want it to render three sections:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView{

 if ([tableView isEqual:self.myTableView]){

 return 3;

 }

 return 0;

}

Then we tell the table view how many rows we want it to render for each section:

- (NSInteger)tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section{

 if ([tableView isEqual:self.myTableView]){

 switch (section){

 case 0:{

 return 3;

 break;

 }

 case 1:{

 return 5;

 break;

 }

 case 2:{

 return 8;

 break;

 }

 }

 }

 return 0;

}

4.1. Populating a Table View with Data | 227

So up to now, we have asked the table view to render three sections with three rows in
the first, five rows in the second, and eight rows in the third section. What’s next? We
have to return instances of UITableViewCell to the table view—the cells that we want
the table view to render:

- (UITableViewCell *) tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath{

 UITableViewCell *cell = nil;

 if ([tableView isEqual:self.myTableView]){

 cell = [tableView

 dequeueReusableCellWithIdentifier:TableViewCellIdentifier

 forIndexPath:indexPath];

 cell.textLabel.text = [NSString stringWithFormat:

 @"Section %ld, Cell %ld",

 (long)indexPath.section,

 (long)indexPath.row];

 }

 return cell;

}

Now if we run our app in iPhone Simulator, we will see the results of our work
(Figure 4-2).

When a table view is reloaded or refreshed, it queries its data source through the
UITableViewDataSource protocol, asking for various bits of information. Among the
important methods previously mentioned, the table view will first ask for the number
of sections. Each section is responsible for holding rows or cells. After the data source
specifies the number of sections, the table view will ask for the number of rows that have
to be loaded into each section. The data source gets the zero-based index of each section
and, based on this, can decide how many cells have to be loaded into each section.

The table view, after determining the number of cells in the sections, will continue to
ask the data source about the view that will represent each cell in each section. You can
allocate instances of the UITableViewCell class and return them to the table view. There
are, of course, properties that can be set for each cell, including the title, subtitle, and
color of each cell, among other properties.

228 | Chapter 4: Constructing and Using Table Views

Figure 4-2. A plain table view with three sections

4.2. Using Different Types of Accessories in a Table View
Cell

Problem
You want to grab users’ attention in a table view by displaying accessories and offer
different ways to interact with each cell in your table view.

Solution
Use the accessoryType of the UITableViewCell class, instances of which you provide
to your table view in its data source object:

4.2. Using Different Types of Accessories in a Table View Cell | 229

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath{

 UITableViewCell* result = nil;

 if ([tableView isEqual:self.myTableView]){

 result = [tableView

 dequeueReusableCellWithIdentifier:MyCellIdentifier

 forIndexPath:indexPath];

 result.textLabel.text =

 [NSString stringWithFormat:@"Section %ld, Cell %ld",

 (long)indexPath.section,

 (long)indexPath.row];

 result.accessoryType = UITableViewCellAccessoryDetailDisclosureButton;

 }

 return result;

}

- (NSInteger) tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section{

 return 10;

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myTableView = [[UITableView alloc]

 initWithFrame:self.view.bounds

 style:UITableViewStylePlain];

 [self.myTableView registerClass:[UITableViewCell class]

 forCellReuseIdentifier:MyCellIdentifier];

 self.myTableView.dataSource = self;

 self.myTableView.autoresizingMask =

 UIViewAutoresizingFlexibleWidth |

 UIViewAutoresizingFlexibleHeight;

 [self.view addSubview:self.myTableView];

}

230 | Chapter 4: Constructing and Using Table Views

Discussion
You can assign any of the values defined in the UITableViewCellAccessoryType enu‐
meration to the accessoryType property of an instance of the UITableViewCell class.
Two very useful accessories are the disclosure indicator and the detail disclosure but‐
ton. They both display a chevron indicating to users that if they tap on the associated
table view cell, a new view or view controller will be displayed. In other words, the users
will be taken to a new screen with further information about their current selector. The
difference between these two accessories is that the disclosure indicator produces no
event, whereas the detail disclosure button fires an event to the delegate when pressed.
In other words, pressing the button has a different effect from pressing the cell itself.
Thus, the detail disclosure button allows the user to perform two separate but related
actions on the same row.

Figure 4-3 shows these two different accessories on a table view. The first row has a
disclosure indicator, and the second row has a detail disclosure button.

Figure 4-3. Two table view cells with different accessories

If you tap any detail disclosure button assigned to a table view cell, you will immediately
realize that it truly is a separate button. Now the question is: how does the table view
know when the user taps this button?

Table views, as explained before, fire events on their delegate object. The detail disclosure
button on a table view cell also fires an event that can be captured by the delegate object
of a table view:

- (void) tableView:(UITableView *)tableView

 accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath{

 /* Do something when the accessory button is tapped */

 NSLog(@"Accessory button is tapped for cell at index path = %@", indexPath);

 UITableViewCell *ownerCell = [tableView cellForRowAtIndexPath:indexPath];

 NSLog(@"Cell Title = %@", ownerCell.textLabel.text);

}

4.2. Using Different Types of Accessories in a Table View Cell | 231

This code finds the table view cell whose detail disclosure button has been tapped and
prints the contents of the text label of that cell into the console screen. As a reminder,
you can display the console screen in Xcode by selecting Run → Console.

4.3. Creating Custom Table View Cell Accessories

Problem
The accessories provided to you by the iOS SDK are not sufficient, and you would like
to create your own accessories.

Solution
Assign an instance of the UIView class to the accessoryView property of any instance
of the UITableViewCell class:

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath{

 UITableViewCell* cell = nil;

 cell = [tableView dequeueReusableCellWithIdentifier:MyCellIdentifier

 forIndexPath:indexPath];

 cell.textLabel.text = [NSString stringWithFormat:@"Section %ld, Cell %ld",

 (long)indexPath.section,

 (long)indexPath.row];

 UIButton *button = [UIButton buttonWithType:UIButtonTypeSystem];

 button.frame = CGRectMake(0.0f, 0.0f, 150.0f, 25.0f);

 [button setTitle:@"Expand"

 forState:UIControlStateNormal];

 [button addTarget:self

 action:@selector(performExpand:)

 forControlEvents:UIControlEventTouchUpInside];

 cell.accessoryView = button;

 return cell;

}

As you can see, this code uses the performExpand: method as the selector for each
button. Here is the definition of this method:

- (void) performExpand:(UIButton *)paramSender{

 /* Handle the tap event of the button */

232 | Chapter 4: Constructing and Using Table Views

}

This example code snippet assigns a custom button to the accessory view of every row
in the targeted table. The result is shown in Figure 4-4.

Figure 4-4. Table view cells with custom accessory views

Discussion
An object of type UITableViewCell retains a property named accessoryView. This is
the view you can assign a value to if you are not completely happy with the built-in iOS
SDK table view cell accessories. After this property is set, Cocoa Touch will ignore the
value of the accessoryType property and will use the view assigned to the accessory
View property as the accessory assigned to the cell.

The code listed in this recipe’s Solution creates buttons for all the cells populated into
the table view. When a button is pressed in any cell, the performExpand: method gets
called, and if you are like me, you have probably already started thinking about how

4.3. Creating Custom Table View Cell Accessories | 233

you can determine which cell the sender button belongs to. So now we have to somehow
link our buttons with the cells to which they belong.

One way to handle this situation is to take advantage of the tag property of the button
instance. The tag property is a simple integer that people usually use to associate a view
with another object. For instance, if you want to associate the button with the third cell
in your table view, set the value of the button’s tag property to 3. But there is a problem
here: table views have sections, and every section can have n number of cells. We, there‐
fore, have to be able to determine the section as well as the cell that owns our button,
and since the tag can represent only one integer, this makes things more difficult. Instead
of a tag, therefore, we can ask for the superview of the accessory view, going recursively
up the chain of views until we find the cell of type UITableViewCell, like so:

- (UIView *) superviewOfType:(Class)paramSuperviewClass

 forView:(UIView *)paramView{

 if (paramView.superview != nil){

 if ([paramView.superview isKindOfClass:paramSuperviewClass]){

 return paramView.superview;

 } else {

 return [self superviewOfType:paramSuperviewClass

 forView:paramView.superview];

 }

 }

 return nil;

}

- (void) performExpand:(UIButton *)paramSender{

 /* Handle the tap event of the button */

 __unused UITableViewCell *parentCell =

 (UITableViewCell *)[self superviewOfType:[UITableViewCell class]

 forView:paramSender];

 /* Now do something with the cell if you want to */

}

This is a simple recursive method that accepts a view (in this case our button) and a
class name (in this case, UITableViewCell), then searches in the view’s super view hi‐
erarchy to find the super view that is of the given class. So it starts with the super view
of the given view, and if that super view is not of the required type, looks at the super
view’s super view, and so on until it finds the super view of the requested class. You can
see that we are using the Class structure as the first parameter to the superviewOf
Type:forView: method. This data type can hold any Objective-C class name, and it’s
great if you are looking for or asking for specific class names from the programmer.

234 | Chapter 4: Constructing and Using Table Views

4.4. Enabling Swipe Deletion of Table View Cells

Problem
You want your application users to be able to delete rows from a table view easily.

Solution
Implement the tableView:editingStyleForRowAtIndexPath: selector in the delegate
and the tableView:commitEditingStyle:forRowAtIndexPath: selector in the data
source of your table view:

- (UITableViewCellEditingStyle)tableView:(UITableView *)tableView

 editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath{

 return UITableViewCellEditingStyleDelete;

}

- (void) setEditing:(BOOL)editing

 animated:(BOOL)animated{

 [super setEditing:editing

 animated:animated];

 [self.myTableView setEditing:editing

 animated:animated];

}

- (void) tableView:(UITableView *)tableView

 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

 forRowAtIndexPath:(NSIndexPath *)indexPath{

 if (editingStyle == UITableViewCellEditingStyleDelete){

 /* First remove this object from the source */

 [self.allRows removeObjectAtIndex:indexPath.row];

 /* Then remove the associated cell from the Table View */

 [tableView deleteRowsAtIndexPaths:@[indexPath]

 withRowAnimation:UITableViewRowAnimationLeft];

 }

}

The tableView:editingStyleForRowAtIndexPath: method can enable deletions. It is
called by the table view, and its return value determines what the table view allows the

4.4. Enabling Swipe Deletion of Table View Cells | 235

user to do (insertion, deletion, etc.). The tableView:commitEdit

ingStyle:forRowAtIndexPath: method carries out the user’s requested deletion. The
latter method is defined in the delegate, but its functionality is a bit overloaded: not only
do you use the method to delete data, but you also have to delete rows from the table
here.

Discussion
The table view responds to the swipe by showing a button on the right side of the targeted
row (Figure 4-5). As you can see, the table view is not in editing mode, but the button
allows the user to delete the row.

This mode is enabled by implementing the tableView:editingStyleForRowAtIndex
Path: method (declared in the UITableViewDelegate protocol), whose return value
indicates whether the table should allow insertions, deletions, both, or neither. By im‐
plementing the tableView:commitEditingStyle:forRowAtIndexPath: method in the
data source of a table view, you can then get notified if a user has performed an insertion
or deletion.

Figure 4-5. Delete button appearing on a table view cell

236 | Chapter 4: Constructing and Using Table Views

The second parameter of the deleteRowsAtIndexPaths:withRowAnimation: method
allows you to specify an animation method that will be performed when rows are deleted
from a table view. Our example specifies that we want rows to disappear by moving
from right to left when deleted.

4.5. Constructing Headers and Footers in Table Views

Problem
You want to create a header and/or a footer for a table view.

Solution
Create a view (could be a label, image view, etc., anything that directly or indirectly
subclasses UIView), and assign that view to the header and/or the footer of a section of
a table view. You can also allocate a specific number of points in height for a header or
a footer, as we will soon see.

Discussion
A table view can have multiple headers and footers. Each section in a table view can
have its own header and footer, so if you have three sections in a table view, you can
have a maximum of three headers and a maximum of three footers. You are not obliged
to provide headers and footers for any of these sections. It is up to you to tell the table
view whether you want a header and/or a footer for a section, and you pass these views
to the table view through its delegate, should you wish to provide header(s)/footer(s)
for section(s) of your table view. Headers and footers in a table view become a part of
the table view, meaning that when the table view’s contents scroll, so do the header(s)
and footer(s) inside that table view. Let’s have a look at a sample header and footer in a
table view (Figure 4-6).

As you can see, the top section (with items such as “Check Spelling” and “Enable Caps
Lock”) has a footer that says “Double tapping the space bar will insert a period followed
by a space.” That is the footer of the top section of that table view. The reason why it is
a footer rather than a header is because it is attached to the bottom of that section rather
than the top. The last section in this table view also has a header that reads “SHORT‐
CUTS.” The reason why this is a header rather than a footer is because it appears on the
top of the section rather than the bottom.

4.5. Constructing Headers and Footers in Table Views | 237

Figure 4-6. A footer for the top section and the Shortcuts header for the last section of a
table view

Specifying the height of a header and footer in a section inside a table
view is done through methods defined in the UITableViewData
Source. Specifying the actual view that has to be displayed for the
header/footer of a section in a table view is done through methods
defined in the UITableViewDelegate protocol.

Let’s go ahead and create a simple app with one table view in it. Then let’s provide two
labels, of type UILabel, one as the header and the other as the footer of the only section
in our table view, and populate this one section with only three cells. In the header we
will place the text “Section 1 Header,” and in the footer label we will place the text “Section

238 | Chapter 4: Constructing and Using Table Views

1 Footer.” Starting with the implementation file of our root view controller, we will define
a table view:

#import "ViewController.h"

static NSString *CellIdentifier = @"CellIdentifier";

@interface ViewController () <UITableViewDelegate, UITableViewDataSource>

@property (nonatomic, strong) UITableView *myTableView;

@end

@implementation ViewController

Now we will create a grouped table view and load three cells into it:

- (UITableViewCell *) tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath{

 UITableViewCell *cell = nil;

 cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier

 forIndexPath:indexPath];

 cell.textLabel.text = [[NSString alloc] initWithFormat:@"Cell %ld",

 (long)indexPath.row];

 return cell;

}

- (NSInteger) tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section{

 return 3;

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myTableView =

 [[UITableView alloc] initWithFrame:self.view.bounds

 style:UITableViewStyleGrouped];

 [self.myTableView registerClass:[UITableViewCell class]

 forCellReuseIdentifier:CellIdentifier];

 self.myTableView.dataSource = self;

 self.myTableView.delegate = self;

 self.myTableView.autoresizingMask = UIViewAutoresizingFlexibleWidth |

 UIViewAutoresizingFlexibleHeight;

 [self.view addSubview:self.myTableView];

}

4.5. Constructing Headers and Footers in Table Views | 239

Here is the exciting part. We can now use two important methods (which are defined
in UITableViewDelegate) to provide a label for the header and another label for the
footer of the one section that we have loaded into our table view:

tableView:viewForHeaderInSection:

This method expects a return value of type UIView. The view returned from this
method will be displayed as the header of the section specified by the viewForHea
derInSection parameter.

tableView:viewForFooterInSection:

This method expects a return value of type UIView. The view returned from this
method will be displayed as the footer of the section specified by the viewForFoo
terInSection parameter.

Our task now is to implement these methods and return an instance of UILabel. On
the header label we will enter the text “Section 1 Header,” and on the footer label the
text “Section 1 Footer,” as we had planned:

- (UILabel *) newLabelWithTitle:(NSString *)paramTitle{

 UILabel *label = [[UILabel alloc] initWithFrame:CGRectZero];

 label.text = paramTitle;

 label.backgroundColor = [UIColor clearColor];

 [label sizeToFit];

 return label;

}

- (UIView *) tableView:(UITableView *)tableView

 viewForHeaderInSection:(NSInteger)section{

 if (section == 0){

 return [self newLabelWithTitle:@"Section 1 Header"];

 }

 return nil;

}

- (UIView *) tableView:(UITableView *)tableView

 viewForFooterInSection:(NSInteger)section{

 if (section == 0){

 return [self newLabelWithTitle:@"Section 1 Footer"];

 }

 return nil;

}

If you run your app on iOS Simulator now, you will certainly see something strange, as
shown in Figure 4-7.

240 | Chapter 4: Constructing and Using Table Views

Figure 4-7. The header and footer labels of a table view are not aligned properly

The reason for this misalignment of the labels and the omission of the header is that the
table view doesn’t really know the height of these views. To specify the height of the
header and footer views, you need to use the following two methods, which are defined
in the UITableViewDelegate protocol:

tableView:heightForHeaderInSection:

The return value of this method, of type CGFloat, specifies the height of the header
for a section in a table view. The section’s index is passed through the heightFo
rHeaderInSection parameter.

tableView:heightForFooterInSection:

The return value of this method, of type CGFloat, specifies the height of the footer
for a section in a table view. The section’s index is passed through the heightFo
rHeaderInSection parameter.

- (CGFloat) tableView:(UITableView *)tableView

 heightForHeaderInSection:(NSInteger)section{

 if (section == 0){

 return 30.0f;

 }

4.5. Constructing Headers and Footers in Table Views | 241

 return 0.0f;

}

- (CGFloat) tableView:(UITableView *)tableView

 heightForFooterInSection:(NSInteger)section{

 if (section == 0){

 return 30.0f;

 }

 return 0.0f;

}

Running the app, you can see that the height of the header and the footer labels is fixed.
There is still something wrong with the code we’ve written—the left margin of our
header and footer labels. Take a look for yourself in Figure 4-8.

Figure 4-8. The left margin of our header and footer labels is not correct

The reason for this is that the table view, by default, places header and footer views at x
point 0.0f. You might think that changing the frame of your header and footer labels

242 | Chapter 4: Constructing and Using Table Views

will fix this issue, but unfortunately it doesn’t. The solution to this problem is creating
a generic UIView and placing your header and footer labels on that view. Return the
generic view as the header/footer, but change the x position of your labels within the
generic view. We now need to modify our implementation of the tableView:viewFor
HeaderInSection: and the tableView:viewForFooterInSection: methods:

- (UIView *) tableView:(UITableView *)tableView

 viewForHeaderInSection:(NSInteger)section{

 UIView *header = nil;

 if (section == 0){

 UILabel *label = [self newLabelWithTitle:@"Section 1 Header"];

 /* Move the label 10 points to the right */

 label.frame = CGRectMake(label.frame.origin.x + 10.0f,

 5.0f, /* Go 5 points down in y axis */

 label.frame.size.width,

 label.frame.size.height);

 /* Give the container view 10 points more in width than our label

 because the label needs a 10 extra points left-margin */

 CGRect resultFrame = CGRectMake(0.0f,

 0.0f,

 label.frame.size.width + 10.0f,

 label.frame.size.height);

 header = [[UIView alloc] initWithFrame:resultFrame];

 [header addSubview:label];

 }

 return header;

}

- (UIView *) tableView:(UITableView *)tableView

 viewForFooterInSection:(NSInteger)section{

 UIView *footer = nil;

 if (section == 0){

 UILabel *label = [[UILabel alloc] initWithFrame:CGRectZero];

 /* Move the label 10 points to the right */

 label.frame = CGRectMake(label.frame.origin.x + 10.0f,

 5.0f, /* Go 5 points down in y axis */

 label.frame.size.width,

 label.frame.size.height);

 /* Give the container view 10 points more in width than our label

4.5. Constructing Headers and Footers in Table Views | 243

 because the label needs a 10 extra points left-margin */

 CGRect resultFrame = CGRectMake(0.0f,

 0.0f,

 label.frame.size.width + 10.0f,

 label.frame.size.height);

 footer = [[UIView alloc] initWithFrame:resultFrame];

 [footer addSubview:label];

 }

 return footer;

}

Now if you run your app, you will get results similar to Figure 4-9.

Figure 4-9. Our header and footer labels displayed in a table view

244 | Chapter 4: Constructing and Using Table Views

With the methods you just learned, you can even place images as the header/footer of
your table views. Instances of UIImageView have UIView as their superclass, so you can
easily place your images in image views and return them as headers/footers of a table
view. If all you want to place is text as the header/footer of table views, you can use two
handy methods defined in the UITableViewDataSource protocol, which will save you
a lot of hassle. Instead of creating your own labels and returning them as headers/footers
of your table view, you can simply use these methods:

tableView:titleForHeaderInSection:

The return value of this method is of type NSString. This string will automatically
be placed inside a label by the table view and will be displayed as the header of the
section, which is specified in the titleForHeaderInSection parameter.

tableView:titleForFooterInSection:

The return value of this method is of type NSString. This string will automatically
be placed inside a label by the table view and will be displayed as the footer of the
section, which is specified in the titleForFooterInSection parameter.

So to make our app’s code simpler, let’s get rid of our implementation of the table
View:viewForHeaderInSection: and the tableView:viewForFooterInSection:

methods and replace them with the implementation of the tableView:titleForHea
derInSection: and the tableView:titleForFooterInSection: methods:

- (NSString *) tableView:(UITableView *)tableView

 titleForHeaderInSection:(NSInteger)section{

 if (section == 0){

 return @"Section 1 Header";

 }

 return nil;

}

- (NSString *) tableView:(UITableView *)tableView

 titleForFooterInSection:(NSInteger)section{

 if (section == 0){

 return @"Section 1 Footer";

 }

 return nil;

}

Now run your app in iPhone Simulator, and you will see that the table view has auto‐
matically created a left-aligned label for the header and the footer of the only section in
our table view. In iOS 7, by default, the header and the footer are left-aligned. In earlier

4.5. Constructing Headers and Footers in Table Views | 245

versions of iOS, the header is left-aligned but the footer is center-aligned. In every
version, the table view can set the alignment of these labels (see Figure 4-10).

Figure 4-10. A table view rendering text in headers and footers

4.6. Displaying Context Menus on Table View Cells

Problem
You want to give your users the ability to use copy/paste options among other operations
that they can choose, by holding down one of their fingers on a table view cell in your
app.

246 | Chapter 4: Constructing and Using Table Views

Solution
Implement the following three methods of the UITableViewDelegate protocol in the
delegate object of your table view:

tableView:shouldShowMenuForRowAtIndexPath:

The return value of this method is of type BOOL. If you return YES from this method,
iOS will display the context menu for the table view cell whose index gets passed to
you through the shouldShowMenuForRowAtIndexPath parameter.

tableView:canPerformAction:forRowAtIndexPath:withSender:

The return value of this method is also of type BOOL. Once you allow iOS to display
a context menu for a table view cell, iOS will call this method multiple times and
pass you the selector of the action that you can choose to display in the context
menu or not. So, if iOS wants to ask you whether you would like to show the Copy
menu to be displayed to the user, this method will get called in your table view’s
delegate object and the canPerformAction parameter of this method will be equal
to @selector(copy:). We will read more information about this in this recipe’s
Discussion.

tableView:performAction:forRowAtIndexPath:withSender:

Once you allow a certain action to be displayed in the context menu of a table view
cell, when the user picks that action from the menu, this method will get called in
your table view’s delegate object. In here, you must do whatever needs to be done
to satisfy the user’s request. For instance, if it is the Copy menu that the user has
selected, you will need to use a pasteboard to place the chosen table view cell’s
content into the pasteboard.

Discussion
A table view can give a yes/no answer to iOS, allowing or disallowing the display of
available system menu items for a table view cell. iOS attempts to display a context menu
on a table view cell when the user has held down his finger on the cell for a certain period
of time, roughly about one second. iOS then asks the table view whose cell was the source
of the trigger for the menu. If the table view gives a yes answer, iOS will then tell the
table view what options can be displayed in the context menu, and the table view will
be able to say yes or no to any of those items. If there are five menu items available, for
instance, and the table view says yes to only two of them, then only those two items will
be displayed.

After the menu items are displayed to the user, the user can either tap on one of the
items or tap outside the context menu to cancel it. Once the user taps on one of the
menu items, iOS will send a delegate message to the table view informing it of the menu
item that the user has picked. Based on this information, the table view can make a
decision as to what to do with the selected action.

4.6. Displaying Context Menus on Table View Cells | 247

I suggest that we first see what actions are actually available for a context menu on a
table view cell, so let’s create our table view and then display a few cells inside it:

- (NSInteger) tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section{

 return 3;

}

- (UITableViewCell *) tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath{

 UITableViewCell *cell = nil;

 cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier

 forIndexPath:indexPath];

 cell.textLabel.text = [[NSString alloc]

 initWithFormat:@"Section %ld Cell %ld",

 (long)indexPath.section,

 (long)indexPath.row];

 return cell;

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myTableView = [[UITableView alloc]

 initWithFrame:self.view.bounds

 style:UITableViewStylePlain];

 [self.myTableView registerClass:[UITableViewCell class]

 forCellReuseIdentifier:CellIdentifier];

 self.myTableView.autoresizingMask =

 UIViewAutoresizingFlexibleWidth |

 UIViewAutoresizingFlexibleHeight;

 self.myTableView.dataSource = self;

 self.myTableView.delegate = self;

 [self.view addSubview:self.myTableView];

}

Now we will implement the three aforementioned methods defined in the UITable
ViewDelegate protocol and simply convert the available actions (of type SEL) to strings
and print them out to the console:

- (BOOL) tableView:(UITableView *)tableView

 shouldShowMenuForRowAtIndexPath:(NSIndexPath *)indexPath{

248 | Chapter 4: Constructing and Using Table Views

 /* Allow the context menu to be displayed on every cell */

 return YES;

}

- (BOOL) tableView:(UITableView *)tableView

 canPerformAction:(SEL)action

 forRowAtIndexPath:(NSIndexPath *)indexPath

 withSender:(id)sender{

 NSLog(@"%@", NSStringFromSelector(action));

 /* Allow every action for now */

 return YES;

}

- (void) tableView:(UITableView *)tableView

 performAction:(SEL)action

 forRowAtIndexPath:(NSIndexPath *)indexPath

 withSender:(id)sender{

 /* Empty for now */

}

Now run your app in the simulator or on the device. You will see three cells loaded into
the table view. Hold down your finger (if on a device) or your pointer (if using iOS
Simulator) on one of the cells and observe what gets printed out to the console window:

cut:

copy:

select:

selectAll:

paste:

delete:

_promptForReplace:

_showTextStyleOptions:

_define:

_addShortcut:

_accessibilitySpeak:

_accessibilitySpeakLanguageSelection:

_accessibilityPauseSpeaking:

makeTextWritingDirectionRightToLeft:

makeTextWritingDirectionLeftToRight:

These are all the actions that iOS will allow you to show your users, should you need
them. So for instance, if you would like to allow your users to have the Copy option, in
the tableView:canPerformAction:forRowAtIndexPath:withSender: method, sim‐
ply find out which action iOS is asking your permission for before displaying it, and
either return YES or NO:

4.6. Displaying Context Menus on Table View Cells | 249

- (BOOL) tableView:(UITableView *)tableView

 canPerformAction:(SEL)action

 forRowAtIndexPath:(NSIndexPath *)indexPath

 withSender:(id)sender{

 if (action == @selector(copy:)){

 return YES;

 }

 return NO;

}

The next step is to intercept what menu item the user actually selected from the context
menu. Based on this information, we can then take appropriate action. For instance, if
the user selected the Copy item in the context menu (see Figure 4-11), then we can use
UIPasteBoard to copy that cell into the pasteboard for later use:

- (void) tableView:(UITableView *)tableView

 performAction:(SEL)action

 forRowAtIndexPath:(NSIndexPath *)indexPath

 withSender:(id)sender{

 if (action == @selector(copy:)){

 UITableViewCell *cell = [tableView cellForRowAtIndexPath:indexPath];

 UIPasteboard *pasteBoard = [UIPasteboard generalPasteboard];

 [pasteBoard setString:cell.textLabel.text];

 }

}

Figure 4-11. The Copy action displayed inside a context menu on a table view cell

250 | Chapter 4: Constructing and Using Table Views

4.7. Moving Cells and Sections in Table Views

Problem
You want to move and shuffle cells and sections inside a table view, with smooth and
intuitive animations.

Solution
Use the moveSection:toSection: method of the table view to move a section to a new
position. You can also use the moveRowAtIndexPath:toIndexPath: method to move a
table view cell from its current place to a new place.

Discussion
Moving table view cells and sections differs from exchanging them. Let’s have a look at
an example that will make this easier to understand. Let’s say you have three sections in
your table view: sections A, B, and C. If you move Section A to Section C, the table view
will notice this move and will then shift Section B to the previous position of Section
A, and will move Section C to the previous position of Section B. However, if Section B
is moved to Section C, the table view will not have to move Section A at all, as it is sitting
on top and doesn’t interfere with the repositioning of Section B and C. In this case,
Section B will be moved to Section C and Section C to Section B. The same logic will be
used by the table view when moving cells.

To demonstrate this, let’s create a table view and preload it with three sections, each of
which contains three cells of its own. Let’s start with the implementation file of our view
controller:

#import "ViewController.h"

static NSString *CellIdentifier = @"CellIdentifier";

@interface ViewController () <UITableViewDelegate, UITableViewDataSource>

@property (nonatomic, strong) UITableView *myTableView;

@property (nonatomic, strong) NSMutableArray *arrayOfSections;

@end

Our view controller will become the data source of the table view. The table view has
sections, and each section has rows. We will keep an array of arrays; the first array is our
array of sections, which will itself contain other arrays that contain our cells. The ar
rayOfSections defined on top of the implementation file of our view controller will
bear that responsibility. Let’s go ahead and populate this array:

- (NSMutableArray *) newSectionWithIndex:(NSUInteger)paramIndex

 cellCount:(NSUInteger)paramCellCount{

4.7. Moving Cells and Sections in Table Views | 251

 NSMutableArray *result = [[NSMutableArray alloc] init];

 NSUInteger counter = 0;

 for (counter = 0;

 counter < paramCellCount;

 counter++){

 [result addObject:[[NSString alloc] initWithFormat:@"Section %lu Cell %lu",

 (unsigned long)paramIndex,

 (unsigned long)counter+1]];

 }

 return result;

}

- (NSMutableArray *) arrayOfSections{

 if (_arrayOfSections == nil){

 NSMutableArray *section1 = [self newSectionWithIndex:1

 cellCount:3];

 NSMutableArray *section2 = [self newSectionWithIndex:2

 cellCount:3];

 NSMutableArray *section3 = [self newSectionWithIndex:3

 cellCount:3];

 _arrayOfSections = [[NSMutableArray alloc] initWithArray:@[

 section1,

 section2,

 section3

]

];

 }

 return _arrayOfSections;

}

We shall then instantiate our table view and implement the necessary methods in the
UITableViewDataSource protocol to populate our table view with data:

- (NSInteger) numberOfSectionsInTableView:(UITableView *)tableView{

 return self.arrayOfSections.count;

}

- (NSInteger) tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section{

 NSMutableArray *sectionArray = self.arrayOfSections[section];

 return sectionArray.count;

}

252 | Chapter 4: Constructing and Using Table Views

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath{

 UITableViewCell *cell = nil;

 cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier

 forIndexPath:indexPath];

 NSMutableArray *sectionArray = self.arrayOfSections[indexPath.section];

 cell.textLabel.text = sectionArray[indexPath.row];

 return cell;

}

- (void)viewDidLoad{

 [super viewDidLoad];

 self.myTableView =

 [[UITableView alloc] initWithFrame:self.view.bounds

 style:UITableViewStyleGrouped];

 [self.myTableView registerClass:[UITableViewCell class]

 forCellReuseIdentifier:CellIdentifier];

 self.myTableView.autoresizingMask =

 UIViewAutoresizingFlexibleWidth |

 UIViewAutoresizingFlexibleHeight;

 self.myTableView.delegate = self;

 self.myTableView.dataSource = self;

 [self.view addSubview:self.myTableView];

}

Showtime! Shall we first have a look at how sections can be moved to a new position?
Let’s write a method that will move Section 1 to Section 3:

- (void) moveSection1ToSection3{

 NSMutableArray *section1 = self.arrayOfSections[0];

 [self.arrayOfSections removeObject:section1];

 [self.arrayOfSections addObject:section1];

 [self.myTableView moveSection:0

 toSection:2];

}

4.7. Moving Cells and Sections in Table Views | 253

I will leave it up to you to decide when you would like to invoke this method, as we don’t
have a button on our UI at the moment. You can simply create a navigation controller,
place a navigation button on it, and then invoke this method.

Once you run the app normally, you will see the sections lined up from 1 to 3, as in
Figure 4-12.

Figure 4-12. A table view with three sections, each containing three cells

After you invoke the moveSection1ToSection3 method, you will see that Section 1 gets
moved to Section 3, Section 3 moves to Section 2’s previous position, and finally Section
2 moves to Section 1’s previous position (Figure 4-13).

254 | Chapter 4: Constructing and Using Table Views

Figure 4-13. Section 1 is moved to Section 3, and other sections are subsequently moved
as well

Moving cells is very similar to moving sections. To move cells, all we have to do is use
the moveRowAtIndexPath:toIndexPath: method. Remember that you can move a cell
from one section to the same section, or to a new section. Let’s make it easy and move
Cell 1 in Section 1 to Cell 2 in the same section and see what happens:

- (void) moveCell1InSection1ToCell2InSection1{

 NSMutableArray *section1 = self.arrayOfSections[0];

 NSString *cell1InSection1 = section1[0];

 [section1 removeObject:cell1InSection1];

 [section1 insertObject:cell1InSection1

 atIndex:1];

4.7. Moving Cells and Sections in Table Views | 255

 NSIndexPath *sourceIndexPath = [NSIndexPath indexPathForRow:0

 inSection:0];

 NSIndexPath *destinationIndexPath = [NSIndexPath indexPathForRow:1

 inSection:0];

 [self.myTableView moveRowAtIndexPath:sourceIndexPath

 toIndexPath:destinationIndexPath];

}

So what is going on in this code? Well, we need to make sure our data source holds the
correct data that needs to be displayed in our table view after we have moved the cells
around, so we remove Cell 1 in Section 1 first. That moves Cell 2 to Cell 1, and Cell 3
to Cell 2, with a total of 2 cells in the array. Then we will insert Cell 1 into Index 1 (second
object) of the array. That will make our array contain Cell 2, Cell 1, and then Cell 3.
After that is done, we have actually moved the cells in our table view.

Let’s make this a bit more difficult. How about moving Cell 2 in Section 1 to Cell 1 in
Section 2?

- (void) moveCell2InSection1ToCell1InSection2{

 NSMutableArray *section1 = self.arrayOfSections[0];

 NSMutableArray *section2 = self.arrayOfSections[1];

 NSString *cell2InSection1 = section1[1];

 [section1 removeObject:cell2InSection1];

 [section2 insertObject:cell2InSection1

 atIndex:0];

 NSIndexPath *sourceIndexPath = [NSIndexPath indexPathForRow:1

 inSection:0];

 NSIndexPath *destinationIndexPath = [NSIndexPath indexPathForRow:0

 inSection:1];

 [self.myTableView moveRowAtIndexPath:sourceIndexPath

 toIndexPath:destinationIndexPath];

}

The results of this transition are shown in Figure 4-14.

256 | Chapter 4: Constructing and Using Table Views

Figure 4-14. Cell 2 in Section 1 is moved to Cell 1 in Section 2

4.8. Deleting Cells and Sections from Table Views

Problem
You want to delete sections and/or cells from table views using animations.

Solution
In order to delete sections from a table view, follow these steps:

1. First delete the section(s) in your data source, whether you are using a data model
like Core Data or a dictionary/array.

2. Invoke the deleteSections:withRowAnimation: instance method of UITable
View on your table view. The first parameter that you need to pass to this method
is of type NSIndexSet, and this object can be instantiated using the indexSetWi
thIndex: class method of NSIndexSet class, where the given index is an unsigned
integer. Using this approach, you will be able to delete only one section at a time. If

4.8. Deleting Cells and Sections from Table Views | 257

you intend to delete more than one section at a time, use the indexSetWithIndex
esInRange: class method of NSIndexSet to create the index set using a range, and
pass that index set to the aforementioned instance method of UITableView.

If you want to delete cells from your table view, follow these steps:

1. First, delete the cell(s) from your data source. Again, it doesn’t matter if you are
using Core Data, a simple dictionary, array, or anything else. The important thing
is to delete the objects that represent the table view cells from your data source.

2. Now, in order to delete the cells that correspond to your data objects, invoke the
deleteRowsAtIndexPaths:withRowAnimation: instance method of your table
view. The first parameter that you have to pass to this method is an array of type
NSArray that must contain objects of type NSIndexPath, with each index path rep‐
resenting one cell in the table view. Each index path has a section and a row and
can be constructed using the indexPathForRow:inSection: class method of
NSIndexPath class.

Discussion
In your UI code, sometimes you might need to delete cells and/or sections. For instance,
you might have a switch (of type UISwitch; see Recipe 1.2), and when the switch is
turned on by the user, you might want to insert a few rows into your table view. After
the switch is turned off by the user, you will then want to delete those rows. It’s not
always table view cells (rows) that you have to delete. Sometimes you might need to
delete a whole section or a few sections simultaneously from your table view. The key
for deleting cells and sections from table views is to first delete the data corresponding
to those cells/sections from your data source, and then call the appropriate deletion
method on the table view. After the deletion method finishes, the table view will refer
back to its data source object. If the number of cells/sections in the data source doesn’t
match the number of cells/sections in the table view after the deletion is complete, your
app will crash. But don’t worry—if you ever do make this mistake, the debug text that
gets printed to the console is descriptive enough to point you in the right direction.

Let’s have a look at how we can delete sections from a table view. For this recipe, we will
display a table view on a view controller that is displayed inside a navigation controller.
Inside the table view, we will display two sections, one for odd numbers and another
for even numbers. We will display only 1, 3, 5, and 7 for odd numbers and 0, 2, 4, and
6 for even numbers. For the first exercise, we are going to place a navigation bar button
on our navigation bar and make that button responsible for deleting the section with
odd numbers in it. Figure 4-15 shows what we want the results to look like.

258 | Chapter 4: Constructing and Using Table Views

Figure 4-15. The user interface to display two sections in a table view and a button that
will delete the Odd Numbers section

First things first. Let’s define our view controller:

#import "ViewController.h"

static NSString *CellIdentifier = @"NumbersCellIdentifier";

@interface ViewController () <UITableViewDataSource, UITableViewDelegate>

@property (nonatomic, strong) UITableView *tableViewNumbers;

@property (nonatomic, strong) NSMutableDictionary *dictionaryOfNumbers;

@property (nonatomic, strong) UIBarButtonItem *barButtonAction;

@end

The tableViewNumbers property is our table view. The barButtonAction property is
the bar button that we’ll display on the navigation bar. Last but not least, the

4.8. Deleting Cells and Sections from Table Views | 259

dictionaryOfNumbers property is our data source for the table view. In this dictionary,
we will place two values of type NSMutableArray that contain our numbers of type
NSNumber. They are mutable arrays, so that, later in this chapter, we will be able to delete
them individually from the arrays in the dictionary. We will keep the keys for these
arrays in our dictionary as static values in the implementation file of our view controller,
so that we can later simply extract them from the dictionary using the static keys (if the
keys were not static, finding our arrays in the dictionary would have to be done with
string comparison, which is slightly more time-consuming than simply associating the
object with a static key that doesn’t change during the lifetime of our view controller).
Now let’s define the static string keys for our arrays inside the data source dictionary:

static NSString *SectionOddNumbers = @"Odd Numbers";

static NSString *SectionEvenNumbers = @"Even Numbers";

@implementation ViewController

We now need to populate our data source dictionary with values before we create our
table view. Here is the simple getter method that will take care of populating the dic‐
tionary for us:

- (NSMutableDictionary *) dictionaryOfNumbers{

 if (_dictionaryOfNumbers == nil){

 NSMutableArray *arrayOfEvenNumbers =

 [[NSMutableArray alloc] initWithArray:@[

 @0,

 @2,

 @4,

 @6,

]];

 NSMutableArray *arrayOfOddNumbers =

 [[NSMutableArray alloc] initWithArray:@[

 @1,

 @3,

 @5,

 @7,

]];

 _dictionaryOfNumbers =

 [[NSMutableDictionary alloc]

 initWithDictionary:@{

 SectionEvenNumbers : arrayOfEvenNumbers,

 SectionOddNumbers : arrayOfOddNumbers,

 }];

 }

 return _dictionaryOfNumbers;

}

260 | Chapter 4: Constructing and Using Table Views

So far, so good? As you can see, we have two arrays, each of which contains some num‐
bers (one odd and the other even numbers) and we associate them with the SectionE
venNumbers and SectionOddNumbers keys that we declared before in the implementa‐
tion file of our view controller. Now let’s go ahead and instantiate our table view:

- (void)viewDidLoad

{

 [super viewDidLoad];

 self.barButtonAction =

 [[UIBarButtonItem alloc]

 initWithTitle:@"Delete Odd Numbers"

 style:UIBarButtonItemStylePlain

 target:self

 action:@selector(deleteOddNumbersSection:)];

 [self.navigationItem setRightBarButtonItem:self.barButtonAction

 animated:NO];

 self.tableViewNumbers = [[UITableView alloc]

 initWithFrame:self.view.frame

 style:UITableViewStyleGrouped];

 [self.tableViewNumbers registerClass:[UITableViewCell class]

 forCellReuseIdentifier:CellIdentifier];

 self.tableViewNumbers.autoresizingMask =

 UIViewAutoresizingFlexibleWidth |

 UIViewAutoresizingFlexibleHeight;

 self.tableViewNumbers.delegate = self;

 self.tableViewNumbers.dataSource = self;

 [self.view addSubview:self.tableViewNumbers];

}

The next thing we need to do is populate our table view with data inside our data source
dictionary:

- (NSInteger) numberOfSectionsInTableView:(UITableView *)tableView{

 return self.dictionaryOfNumbers.allKeys.count;

}

- (NSInteger) tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section{

 NSString *sectionNameInDictionary =

 self.dictionaryOfNumbers.allKeys[section];

4.8. Deleting Cells and Sections from Table Views | 261

 NSArray *sectionArray = self.dictionaryOfNumbers[sectionNameInDictionary];

 return sectionArray.count;

}

- (UITableViewCell *) tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath{

 UITableViewCell *cell = nil;

 cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier

 forIndexPath:indexPath];

 NSString *sectionNameInDictionary =

 self.dictionaryOfNumbers.allKeys[indexPath.section];

 NSArray *sectionArray = self.dictionaryOfNumbers[sectionNameInDictionary];

 NSNumber *number = sectionArray[indexPath.row];

 cell.textLabel.text = [NSString stringWithFormat:@"%lu",

 (unsigned long)[number unsignedIntegerValue]];

 return cell;

}

- (NSString *) tableView:(UITableView *)tableView

 titleForHeaderInSection:(NSInteger)section{

 return self.dictionaryOfNumbers.allKeys[section];

}

Our navigation button is linked to the deleteOddNumbersSection: selector. This is a
method we are going to code now. The purpose of this method, as its name implies, is
to find the section that corresponds to all odd numbers in our data source and the table
view and remove that section from both of these. Here is how we will do it:

- (void) deleteOddNumbersSection:(id)paramSender{

 /* First remove the section from our data source */

 NSString *key = SectionOddNumbers;

 NSInteger indexForKey = [[self.dictionaryOfNumbers allKeys]

 indexOfObject:key];

 if (indexForKey == NSNotFound){

 NSLog(@"Could not find the section in the data source.");

 return;

 }

 [self.dictionaryOfNumbers removeObjectForKey:key];

262 | Chapter 4: Constructing and Using Table Views

 /* Then delete the section from the table view */

 NSIndexSet *sectionToDelete = [NSIndexSet indexSetWithIndex:indexForKey];

 [self.tableViewNumbers deleteSections:sectionToDelete

 withRowAnimation:UITableViewRowAnimationAutomatic];

 /* Finally, remove the button from the navigation bar

 as it is not useful any longer */

 [self.navigationItem setRightBarButtonItem:nil animated:YES];

}

Simple enough. Now, when the user presses the navigation bar button, the Odd Numbers
section will disappear from the table view. You can note that there is an animation that
gets committed on the table view while the section is being deleted. This is because of
the UITableViewRowAnimationAutomatic animation type that we are passing to the
withRowAnimation: parameter of the deleteSections:withRowAnimation: method
of our table view. Now run the app in iOS Simulator and select Debug → Toggle Slow

Animations. Then attempt to press the navigation bar button and see what happens.
You can see the deletion animation in slow motion. It’s neat, isn’t it? After the deletion
is completed, our app will look similar to Figure 4-16.

Figure 4-16. The section containing odd numbers is removed from the table view

4.8. Deleting Cells and Sections from Table Views | 263

We now know how to delete sections from table views. Let’s move to deleting cells. We
are going to change the functionality of our navigation bar button so that when it is
pressed, it will delete all cells in all sections of our table view with a numerical value
greater than 2. That includes all odd and even numbers greater than 2. So let’s change
our navigation bar button item in the viewDidLoad method of our view controller:

- (void)viewDidLoad

{

 [super viewDidLoad];

 self.barButtonAction =

 [[UIBarButtonItem alloc]

 initWithTitle:@"Delete Numbers > 2"

 style:UIBarButtonItemStylePlain

 target:self

 action:@selector(deleteNumbersGreaterThan2:)];

 [self.navigationItem setRightBarButtonItem:self.barButtonAction

 animated:NO];

 self.tableViewNumbers = [[UITableView alloc]

 initWithFrame:self.view.frame

 style:UITableViewStyleGrouped];

 [self.tableViewNumbers registerClass:[UITableViewCell class]

 forCellReuseIdentifier:CellIdentifier];

 self.tableViewNumbers.autoresizingMask =

 UIViewAutoresizingFlexibleWidth |

 UIViewAutoresizingFlexibleHeight;

 self.tableViewNumbers.delegate = self;

 self.tableViewNumbers.dataSource = self;

 [self.view addSubview:self.tableViewNumbers];

}

Figure 4-17 shows the results of our app running in iPhone Simulator.

The navigation bar button is now connected to the deleteNumbersGreaterThan2:
selector. This is a method that we have to implement in our view controller, but before
jumping into coding it straightaway, let’s first define what this method should do:

1. Find both arrays of odd and even numbers in our data source and grab the index
paths (of type NSIndexPath) of those numbers that are greater than 2. We will use
these index paths to later delete the corresponding cells from the table view.

2. Delete all the numbers greater than 2 from our data source, in both the even and
odd number dictionaries.

264 | Chapter 4: Constructing and Using Table Views

3. Delete the relevant cells from the table view. We collected the index paths of these
cells in the first step.

4. Remove the navigation bar button, since it won’t be of any use after the relevant
cells have been deleted from the data source and the table view. Alternatively, if you
want, you could just disable this button—but I think removing the button provides
a better user experience, since a disabled button is really of no use to the user.

Figure 4-17. A button that will delete all cells containing a number greater than 2

- (void) deleteNumbersGreaterThan2:(id)paramSender{

 NSMutableArray *arrayOfIndexPathsToDelete =

 [[NSMutableArray alloc] init];

 NSMutableArray *arrayOfNumberObjectsToDelete =

 [[NSMutableArray alloc] init];

 /* Step 1: gather the objects we have to delete from our data source

 and their index paths */

 __block NSUInteger keyIndex = 0;

4.8. Deleting Cells and Sections from Table Views | 265

 [self.dictionaryOfNumbers enumerateKeysAndObjectsUsingBlock:

 ^(NSString *key, NSMutableArray *object, BOOL *stop) {

 [object enumerateObjectsUsingBlock:

 ^(NSNumber *number, NSUInteger numberIndex, BOOL *stop) {

 if ([number unsignedIntegerValue] > 2){

 NSIndexPath *indexPath =

 [NSIndexPath indexPathForRow:numberIndex

 inSection:keyIndex];

 [arrayOfIndexPathsToDelete addObject:indexPath];

 [arrayOfNumberObjectsToDelete addObject:number];

 }

 }];

 keyIndex++;

 }];

 /* Step 2: delete the objects from the data source */

 if ([arrayOfNumberObjectsToDelete count] > 0){

 NSMutableArray *arrayOfOddNumbers =

 self.dictionaryOfNumbers[SectionOddNumbers];

 NSMutableArray *arrayOfEvenNumbers =

 self.dictionaryOfNumbers[SectionEvenNumbers];

 [arrayOfNumberObjectsToDelete enumerateObjectsUsingBlock:

 ^(NSNumber *numberToDelete, NSUInteger idx, BOOL *stop) {

 if ([arrayOfOddNumbers indexOfObject:numberToDelete]

 != NSNotFound){

 [arrayOfOddNumbers removeObject:numberToDelete];

 }

 if ([arrayOfEvenNumbers indexOfObject:numberToDelete]

 != NSNotFound){

 [arrayOfEvenNumbers removeObject:numberToDelete];

 }

 }];

 }

 /* Step 3: delete the cells that correspond to the objects */

 [self.tableViewNumbers

 deleteRowsAtIndexPaths:arrayOfIndexPathsToDelete

 withRowAnimation:UITableViewRowAnimationAutomatic];

 [self.navigationItem setRightBarButtonItem:nil animated:YES];

}

266 | Chapter 4: Constructing and Using Table Views

After the user presses the button on the navigation bar, all cells containing a number
greater than 2 will be deleted from our data source, and the table view and our app will
look like Figure 4-18.

Figure 4-18. We have deleted all cells with a value greater than 2

See Also
Recipe 1.2

4.8. Deleting Cells and Sections from Table Views | 267

4.9. Utilizing the UITableViewController for Easy Creation
of Table Views

Problem
You want to be able to create table views quickly.

Solution
Use the UITableViewController view controller, which by default comes with a table
view controller.

Discussion
The iOS SDK contains a really handy class called UITableViewController that comes
predefined with a table view instance inside it. In order to take advantage of this class,
all you have to really do is create a new class that subclasses the aforementioned class.
Here, I will walk you through the steps necessary to create a new Xcode project that
utilizes the table view controller:

1. In Xcode, from the menu bar, choose File → New → Project...

2. On the lefthand side of the screen, make sure the iOS category is selected. Then
choose the Application subcategory. On the righthand side, choose the Empty Ap‐
plication template and then press the Next button, as shown in Figure 4-19.

3. On the next screen, simply choose a name for your project. Also make sure every‐
thing except for the Organization Name and the Company Identifier in your dialog
is the same as the one that I am demonstrating to you in Figure 4-20. Once you are
done, press the Next button.

4. On the next screen, you are given the opportunity to save your application to disk.
Simply save the application in a place that makes sense to you, and press the Create
button.

5. In Xcode, choose the File → New → File... menu.

6. In the dialog, make sure iOS is the main category on the lefthand side and that
Cocoa Touch is the subcategory that is selected. Then on the righthand side of the
dialog, choose the Objective-C class as shown in Figure 4-21.

7. On the next screen, you get to choose the superclass of your new class. This step is
very important. Make sure that you set your superclass to UITableView
Controller. Also make sure the rest of your settings are the same as those that I
am demonstrating in Figure 4-22. After you are done, press the Next button.

268 | Chapter 4: Constructing and Using Table Views

Figure 4-19. Creating a new empty application that will later contain our table view
controller

Figure 4-20. Configuring our new empty application in Xcode

4.9. Utilizing the UITableViewController for Easy Creation of Table Views | 269

Figure 4-21. Creating a new class for our table view controller

Figure 4-22. Setting the superclass of our new object that will become the table view
controller

270 | Chapter 4: Constructing and Using Table Views

8. On the next screen, you get the chance to save your table view controller in your
project. Go on, save it as the ViewController class and press the Create button.

9. In the implementation file of your app delegate, remember to import this view
controller’s header file and then create an instance of this class and set it as the root
view controller of your application, as shown here:

#import "AppDelegate.h"

#import "ViewController.h"

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 ViewController *controller = [[ViewController alloc]

 initWithStyle:UITableViewStylePlain];

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.rootViewController = controller;

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Now if you try to compile your project, you will see that the compiler will give you the
following warnings:

ViewController.m:47:2: Potentially incomplete method implementation.

ViewController.m:54:2: Incomplete method implementation.

This simply tells you that there are warnings that you have to take care of in the imple‐
mentation file of your view controller. If you open this file, you will see that Apple has
inserted #warning macros in the table view controller class template, which are causing
these warnings to be displayed on your screen. One warning is placed inside the num
berOfSectionsInTableView: method, and the other one is inside the tableView:num
berOfRowsInSection: method. The reason we are seeing these warnings is that we have
not coded the logic for these methods. The minimum information that the table view
controller must have is the number of sections to display, the number of rows to display,
and the cell object to be displayed for each row. The reason you are not seeing any
warnings for the lack of cell object implementation is that Apple by default provides a
dummy implementation of this method that creates empty cells for you.

4.9. Utilizing the UITableViewController for Easy Creation of Table Views | 271

The table view controller by default is the data source and the dele‐
gate of the table view. You do not have to specify a delegate or a data
source separately to the table view.

Now let’s go into the implementation of our table view controller and make sure that
we have an array of strings (just as an example) that we can feed into our table view:

#import "ViewController.h"

static NSString *CellIdentifier = @"Cell";

@interface ViewController ()

@property (nonatomic, strong) NSArray *allItems;

@end

@implementation ViewController

- (id)initWithStyle:(UITableViewStyle)style

{

 self = [super initWithStyle:style];

 if (self) {

 // Custom initialization

 self.allItems = @[

 @"Anthony Robbins",

 @"Steven Paul Jobs",

 @"Paul Gilbert",

 @"Yngwie Malmsteen"

];

 [self.tableView registerClass:[UITableViewCell class]

 forCellReuseIdentifier:CellIdentifier];

 }

 return self;

}

- (void) viewDidLoad{

 [super viewDidLoad];

}

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView{

 return 1;

}

- (NSInteger)tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section{

 return self.allItems.count;

}

- (UITableViewCell *)tableView:(UITableView *)tableView

272 | Chapter 4: Constructing and Using Table Views

 cellForRowAtIndexPath:(NSIndexPath *)indexPath{

 UITableViewCell *cell = [tableView

 dequeueReusableCellWithIdentifier:CellIdentifier

 forIndexPath:indexPath];

 cell.textLabel.text = self.allItems[indexPath.row];

 return cell;

}

@end

Now if we run our app, we will see something similar to what is shown in Figure 4-23.

Figure 4-23. Our strings are properly displayed in the table view

4.9. Utilizing the UITableViewController for Easy Creation of Table Views | 273

That’s pretty much all there is to know about table view controllers. Remember, as
mentioned before, that your table view controller is the delegate and the data source of
your table view now. So you can implement the methods in the UITableViewData
Source protocol as well as the UITableViewDelegate protocol’s methods right in the
implementation of your table view controller.

See Also
Recipe 4.1

4.10. Displaying a Refresh Control for Table Views

Problem
You want to display a nice refresh UI control on top of your table views that allows your
users to intuitively pull down the table view in order to update its contents. An example
of a refresh control is shown in Figure 4-24.

Figure 4-24. A refresh control is displayed on top of a table view

Solution
Simply create a table view controller (as discussed in Recipe 4.9) and set its refresh
Control property to a new instance of UIRefreshControl class, as shown here:

- (id)initWithStyle:(UITableViewStyle)style{

 self = [super initWithStyle:style];

 if (self) {

 [self.tableView registerClass:[UITableViewCell class]

 forCellReuseIdentifier:CellIdentifier];

274 | Chapter 4: Constructing and Using Table Views

 self.allTimes = [NSMutableArray arrayWithObject:[NSDate date]];

 /* Create the refresh control */

 self.refreshControl = [[UIRefreshControl alloc] init];

 self.refreshControl = self.refreshControl;

 [self.refreshControl addTarget:self

 action:@selector(handleRefresh:)

 forControlEvents:UIControlEventValueChanged];

 }

 return self;

}

Discussion
Refresh controls are simple visual indicators that appear on top of table views and tell
the user that something is about to get updated. For instance, prior to iOS 6, in order
to refresh your mailbox in the Mail app, you had to press a refresh button. In the new
iOS, now you can simply drag the list of your emails down, as if you wanted to see what’s
above there in the list that you haven’t read already. Once iOS detects this gesture of
yours, it will trigger a refresh. Isn’t that cool? Twitter’s iPhone app started this whole
thing when they added a refresh control to their apps, so kudos to them for this. Apple
has realized that this is in fact a really nice and intuitive way of updating table views and
has since added a dedicated component to the SDK to implement it. The class name for
this component is UIRefreshControl.

Create a new instance of this class simply by calling its init method. Once you are done,
add this instance to your table view controller, as described in the Solution section of
this recipe.

Now you’ll want to know when the user has triggered a refresh on your table view. To
do this, simply call the addTarget:action:forControlEvents: instance method of
your refresh control and pass the target object and a selector on that object that takes
care of the refresh for you. Pass UIControlEventValueChanged to the forControlE
vents parameter of this method.

Here—I want to demonstrate this to you. In this example, we will have a table view
controller that displays the date and time formatted as strings. Once the user refreshes
the list by pulling it down, we will add the current date and time again to the list and
refresh our table view. This way, every time the user pulls the list down, it triggers a
refresh that will allow us to add the current date and time to the list and refresh the table
view to display the new date and time. So let’s start in the implementation file of our
table view controller and define our refresh control and our data source:

#import "ViewController.h"

static NSString *CellIdentifier = @"Cell";

4.10. Displaying a Refresh Control for Table Views | 275

@interface ViewController ()

@property (nonatomic, strong) NSMutableArray *allTimes;

@property (nonatomic, strong) UIRefreshControl *refreshControl;

@end

@implementation ViewController

The allTimes property is a simple mutable array that will contain all the instances of
NSDate in it as the user refreshes the table view. We have already seen the initialization
of our table view controller in the Solution section of this recipe, so I won’t write it again
here. But as you saw there, we have hooked the UIControlEventValueChanged event of
our refresh control to a method called handleRefresh:. In this method, all we are going
to do is add the current date and time to our array of dates and times and then refresh
the table view:

- (void) handleRefresh:(id)paramSender{

 /* Put a bit of delay between when the refresh control is released

 and when we actually do the refreshing to make the UI look a bit

 smoother than just doing the update without the animation */

 int64_t delayInSeconds = 1.0f;

 dispatch_time_t popTime =

 dispatch_time(DISPATCH_TIME_NOW, delayInSeconds * NSEC_PER_SEC);

 dispatch_after(popTime, dispatch_get_main_queue(), ^(void){

 /* Add the current date to the list of dates that we have

 so that when the table view is refreshed, a new item will appear

 on the screen so that the user will see the difference between

 the before and the after of the refresh */

 [self.allTimes addObject:[NSDate date]];

 [self.refreshControl endRefreshing];

 NSIndexPath *indexPathOfNewRow =

 [NSIndexPath indexPathForRow:self.allTimes.count-1 inSection:0];

 [self.tableView

 insertRowsAtIndexPaths:@[indexPathOfNewRow]

 withRowAnimation:UITableViewRowAnimationAutomatic];

 });

}

Last but not least, we will provide the date to our table view through the table view’s
delegate and data source methods:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView{

 return 1;

}

276 | Chapter 4: Constructing and Using Table Views

- (NSInteger)tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section{

 return self.allTimes.count;

}

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath{

 UITableViewCell *cell = [tableView

 dequeueReusableCellWithIdentifier:CellIdentifier

 forIndexPath:indexPath];

 cell.textLabel.text = [NSString stringWithFormat:@"%@",

 self.allTimes[indexPath.row]];

 return cell;

}

Give this a go in either the simulator or the device. Once you open the app, at first you
will see only one date/time added to the list. Keep dragging the table view down to get
more items in the list (see Figure 4-24).

See Also
Recipe 4.9

4.10. Displaying a Refresh Control for Table Views | 277

CHAPTER 5

Building Complex Layouts with
Collection Views

5.0. Introduction
Table views are great. They really are. However, they are very rigid in that they always
render their content vertically. They aren’t grids and weren’t meant to act like grids.
However, as a programmer, you may find yourself in a situation where you want to draw
a grid-like component with columns and rows, and put different types of UI objects in
each one, or make each one interactive. In a table view, you essentially have one column
containing multiple rows. If you want to create an illusion of multiple columns, you will
have to provide a custom cell and make that cell look like it is constructed out of multiple
columns.

Collection views, just like table views, are based on the concept of cells, with each cell
containing an item or view that it renders on the screen. Cells in collection views are
reusable, just like in table views, and they can be dequeued and brought back to the
screen whenever possible and needed. But the layout can be almost anything you can
think of that works in two dimensions.

For this reason, Apple introduced collection views in version 6 of the iOS SDK. A col‐
lection view is simply a scroll view on steroids. It has a data source and a delegate, just
like a table view, but it has one property that sets it apart from table views or scroll views:
the layout object.

What the layout object does is essentially calculate where each item in the collection
view has to be placed. Apple has made this a bit complicated, though, by introducing a
concrete layout class for collection views that cannot be used by direct instantiation.
Instead, you have to instantiate a subclass of this class named UICollectionView
FlowLayout.

279

The flow layout arranges collection view cells on the screen in sections. Each section is
a group of collection view cells, just as in table views. However, in a collection view, a
section can be laid out on the screen in many ways, not necessarily vertically. For in‐
stance, you might have three rectangles, each containing its own little grid, as in
Figure 5-1.

Figure 5-1. A typical flow layout in a collection view

A typical way of laying sections out on the screen is in a grid-like fashion with rows and
columns, and that’s what the flow layout class does. If you want to stretch the limits of
the layout further, you have to modify the properties of the flow layout. And if what you
want differs quite a lot from what the flow layout provides, you will need to create your
own layout class. For instance, you would need a custom layout class to create the col‐
lection view in Figure 5-2. Here a custom layout class has laid out three sections and
their corresponding cells in quite a different way from a grid.

Figure 5-2. A custom layout in a collection view

280 | Chapter 5: Building Complex Layouts with Collection Views

5.1. Constructing Collection Views

Problem
You want to display a collection view on the screen.

Solution
Either use an instance of the UICollectionView as a subview of another view in your
app or (if you want a full-screen collection view) use the UICollectionViewControl
ler class.

Discussion
Just like table views, a collection view, as its name indicates, is a view and can be added
as a subview to other views. So when you are creating your app, think about whether
your collection view has to be the main view of a view controller or should appear as a
small portion of another view.

Let’s explore the full-screen scenario first. Follow these steps to create a simple app that
displays a full-screen collection view on the screen:

1. Open Xcode.

2. From the File menu, choose New, and then choose Project.

3. On the left, choose the iOS main category, and under that choose Application. On
the righthand side of the screen, choose Empty Application, and then press the Next
button.

4. On the next screen, enter your project information and ensure that the Use Auto‐
matic Reference Counting box is ticked, as shown in Figure 5-3. Once you are done
entering the relevant values, press the Next button.

5. You are now asked to save your project on disk. Choose a suitable place to save your
project, and then press the Create button.

6. Now that you have your project set up, create a new class in your project and call
it ViewController. This class has to subclass UICollectionViewController. You
won’t need a .xib file for this view controller, so skip that option, as shown in
Figure 5-4.

5.1. Constructing Collection Views | 281

Figure 5-3. Creating a new Empty Application project for our collection view

Figure 5-4. Adding a new collection view class to our project

282 | Chapter 5: Building Complex Layouts with Collection Views

7. Find and open the AppDelegate.m file in your project (your app delegate’s imple‐

mentation file), create an instance of your collection view, and make that collection
view the root view controller of your app, as shown here:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 /* Instantiate the collection view controller with a nil layout object.

 Note: this will throw an exception, but later we will learn how we can

 create layout objects and provide them to our collection views */

 ViewController *viewController = [[ViewController alloc]

 initWithCollectionViewLayout:nil];

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 /* Set the collection view as the root view controller of our window */

 self.window.rootViewController = viewController;

 [self.window makeKeyAndVisible];

 return YES;

}

If you run your app, it will crash with an exception complaining that
you have provided a nil layout object to your collection view, and the
runtime is right. You cannot do this. But I have not yet covered how
to instantiate layout objects and pass them to the collection view, so
for now, this is the best we can do. You will learn more about collec‐
tion view layout objects later in this chapter.

So far, we have seen how we can create a collection view controller, and this is good if
you want to display a full-screen collection view on the device. However, if you are
designing a custom component that is part of another/bigger view, you may simply want
to instantiate an object of type UICollectionView using its designated initializer, the
initWithFrame:collectionViewLayout: method.

In order to do that, you can simply instantiate the collection view using the aforemen‐
tioned initializer, and once initialized, add the collection view as the subview of another
view. For instance, if you want to add the collection view to the view of your view
controller, simply call the addSubview: method of the view of your view controller and
pass your collection view instance as the parameter to that method. Also, you will need
to ensure that you have set the delegate and the dataSource properties of your col‐
lection view to valid objects that conform to the UICollectionViewDelegate and the
UICollectionViewDataSource protocols, respectively. The rest is really easy and exactly

5.1. Constructing Collection Views | 283

the same as the techniques that you will learn in this chapter to provide data to your
collection view through the data source and to react to events through the delegate
object.

See Also
Recipe 5.0, “Introduction”

5.2. Assigning a Data Source to a Collection View

Problem
You want to provide data to a collection view to render the data on the screen.

Solution
Assign a data source to the collection view using the dataSource property of the UICol
lectionView class. Your data source has to be an object that conforms to the UICollec
tionViewDataSource protocol, and it goes without saying that your data source object
has to implement the required methods/properties of that protocol.

Discussion
The data source of the collection view, like that in table views, is responsible for pro‐
viding enough data to the collection view so that it can render its contents on the screen.
The way things are rendered on the screen is not the data source’s job. That is the layout’s
job. The cells that the layout displays on your collection view will ultimately be provided
by your collection view’s data source.

Here are the required methods of the UICollectionViewDataSource protocol that you
have to implement in your data source:

collectionView:numberOfItemsInSection:

This method returns an NSInteger that dictates to the collection view the number
of items that should be rendered in the given section. The given section is passed
to this method as an integer that represents the zero-based index of that section.
This is the same in table views.

collectionView:cellForItemAtIndexPath:

Your implementation of this method must return an instance of the UICollection
ViewCell that represents the cell at a given index path. The UICollectionView
Cell class subclasses the UICollectionReusableView class. In fact, any reusable
cell given to a collection view to render must either directly or indirectly subclass
UICollectionReusableView, as we will see later in this chapter. The index path will

284 | Chapter 5: Building Complex Layouts with Collection Views

be given to you in the cellForItemAtIndexPath parameter of this method. You
can query the section and the row indexes of the item from the index path.

Let’s go into the collection view controller’s implementation file (ViewController.m) that

we created in the Recipe 5.1, and implement the aforementioned collection view data
source methods:

#import "ViewController.h"

@implementation ViewController

/* For now, we won't return any sections */

- (NSInteger)collectionView:(UICollectionView *)collectionView

 numberOfItemsInSection:(NSInteger)section{

 return 0;

}

/* We don't yet know how we can return cells to the collection view so

 let's return nil for now */

- (UICollectionViewCell *)collectionView:(UICollectionView *)collectionView

 cellForItemAtIndexPath:(NSIndexPath *)indexPath{

 return nil;

}

@end

The code is complete for now, but if you remember from Recipe 5.1, if you try to run
this code, it will crash because the app delegate is setting the layout object of the col‐
lection view to nil. This problem is still there and will be solved in Recipe 5.3.

See Also
Recipe 5.0, “Introduction”; Recipe 5.1

5.3. Providing a Flow Layout to a Collection View

Problem
You want to provide a grid-like layout to your collection view so that your content can
render in a way similar to that shown in Figure 5-1.

Solution
Create an instance of the UICollectionViewFlowLayout class, instantiate your collec‐
tion view controller using the initWithCollectionViewLayout: designated initializer
of the UICollectionViewController class, and pass your layout object to this method.

5.3. Providing a Flow Layout to a Collection View | 285

Discussion
A flow layout can easily be instantiated, but before it can be passed to a collection view,
it has to be configured. Here we are going to discuss the various properties that you can
tweak on an instance of the UICollectionViewFlowLayout class and how they can affect
the rendering of your collection view cells:

minimumLineSpacing

A floating point value that dictates to the flow layout the minimum number of points
it has to reserve between each row. The layout object may decide to allocate more
space in order to make the layout look good, but it must not allocate less. If your
collection view is too small for the items to fit into it, your items will be clipped,
just like any other view in the iOS SDK.

minimumInteritemSpacing

A floating point value to indicate the minimum number of points that the layout
should reserve between cells on the same row. Again, this is the minimum number
of points, and the layout, depending on the size of the collection view, may decide
to increase this number.

itemSize

A CGSize that specifies the size of every cell in the collection view.

scrollDirection

A value of type UICollectionViewScrollDirection that tells the flow layout how
the collection view’s contents have to be scrolled. You can have the contents scroll
either vertically or horizontally, but not both. The default value of this property is
UICollectionViewScrollDirectionVertical, but you can change it to UICollec
tionViewScrollDirectionHorizontal.

sectionInset

A value of type UIEdgeInsets that specifies the margins around every section. The
margins are basically spaces that will not be occupied by any cells. You can use the
UIEdgeInsetsMake function to create these insets, which are made out of top, left,
bottom, and right edges, each of type float. Don’t worry if you find this explanation
confusing; we will look at an example soon.

For the rest of this recipe, I assume that you have already followed the instructions in
Recipe 5.1 and Recipe 5.2, so by now you should have an app that has a collection view
controller and an app delegate that displays that collection view controller as the root
view controller of the window. Now you are going to modify your app delegate to provide
a valid flow layout to our collection view controller:

#import "AppDelegate.h"

#import "ViewController.h"

@implementation AppDelegate

286 | Chapter 5: Building Complex Layouts with Collection Views

- (UICollectionViewFlowLayout *) flowLayout{

 UICollectionViewFlowLayout *flowLayout =

 [[UICollectionViewFlowLayout alloc] init];

 flowLayout.minimumLineSpacing = 20.0f;

 flowLayout.minimumInteritemSpacing = 10.0f;

 flowLayout.itemSize = CGSizeMake(80.0f, 120.0f);

 flowLayout.scrollDirection = UICollectionViewScrollDirectionVertical;

 flowLayout.sectionInset = UIEdgeInsetsMake(10.0f, 20.0f, 10.0f, 20.0f);

 return flowLayout;

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 /* Instantiate the collection view controller with a valid flow layout */

 ViewController *viewController =

 [[ViewController alloc]

 initWithCollectionViewLayout:[self flowLayout]];

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 /* Set the collection view as the root view controller of our window */

 self.window.rootViewController = viewController;

 [self.window makeKeyAndVisible];

 return YES;

}

Our collection view controller’s implementation stays the same as in Recipe 5.2. If you
run your app now, all you will see is a black screen because the default implementation
of our collection view controller doesn’t even set the background color of the collection
view to white. That’s all right for now. At least our app isn’t crashing anymore because
of a lack of layout objects.

See Also
Recipe 5.1; Recipe 5.2

5.3. Providing a Flow Layout to a Collection View | 287

5.4. Providing Basic Content to a Collection View

Problem
You have already set up a flow layout for your collection view, but you don’t know how
to render cells in your collection view.

Solution
Either use the UICollectionViewCell class directly to present your cells, or subclass
this class and provide further implementation on top of that class. In addition, you can
have a .xib file associated with your cell, as we will soon see.

Discussion

In this recipe, I assume that you’ve already gone through Recipe 5.3,
Recipe 5.2, and Recipe 5.1 and have already set your project up.

Let’s take this one step at a time and start with the fastest and easiest way of creating our
cells: instantiate objects of type UICollectionViewCell and feed them to our collection
view in our data source. The UICollectionViewCell class has a content view property
named contentView, where you can add your own views for display. You can also set
various other properties of the cell, such as its background color, which is what we are
going to do in this example. But before we begin, let’s first set the expectations of what
we are going to achieve in this example code and explain the requirements.

We are going to program a collection view with a flow layout that displays three sections,
each of which contains anywhere between 20 and 40 cells, with the first section’s cells
all being red, the second section’s cells all being green, and the third section’s cells all
being blue, as shown in Figure 5-5.

So let’s get started. In your collection view controller, create a method that can return
an array of three colors, which you will then assign to the cells for each section:

/* We will have 3 sections, so for each section, we will define a cell color.

 These are nothing but instances of UIColor that we will later apply to every

 cell in each section. */

- (NSArray *) allSectionColors{

 static NSArray *allSectionColors = nil;

 if (allSectionColors == nil){

 allSectionColors = @[

 [UIColor redColor],

288 | Chapter 5: Building Complex Layouts with Collection Views

 [UIColor greenColor],

 [UIColor blueColor],

];

 }

 return allSectionColors;

}

Figure 5-5. A simple collection view with flow layout displaying three sections with dif‐
ferent colors

After that, override the initWithCollectionViewLayout: designated initializer of your
collection view controller and register the UICollectionViewCell with a specific iden‐
tifier. Don’t worry if this makes no sense yet, but look at it this way: for every cell that
your collection view has to render, it will first look into a queue of reusable cells and
find out if a reusable cell exists. If so, the collection view will pull the cell from the queue,
and if not, it will create a new cell and return that to you for configuration.

In older versions of iOS, you had to manually create cells if the table view (collection
views didn’t exist in older versions of iOS) could not find a reusable cell. However, with
the introduction of newer APIs, what Apple has done with regard to reusable cells is
very interesting indeed. It has exposed new APIs for both collection and table views so

5.4. Providing Basic Content to a Collection View | 289

that you can register a call with the table or the collection view, and when you have to
configure a new cell, you simply ask the table or the collection view to give you a new
cell of that kind. If the cell exists in the reusable queue, it will be given to you. If not, the
table or the collection view will automatically create that cell for you. This is called
registering a reusable cell, and you can do it in two ways:

• Register a cell using a class name.

• Register a cell using a .xib file.

Both these ways of registering reusable cells are good and work perfectly with collection
views. To register a new cell with a collection view using the cell’s class name, use the
registerClass:forCellWithReuseIdentifier: method of the UICollectionView
class, where the identifier is a simple string that you provide to the collection view. When
you then attempt to retrieve reusable cells, you ask the collection view for the cell with
a given identifier. To register a .xib file with the collection view you need to use the
registerNib:forCellWithReuseIdentifier: instance method of your collection
view. The identifier of this method also works, as explained earlier in this paragraph.
The nib is an object of type UINib, which we will get to use later in this chapter.

- (instancetype) initWithCollectionViewLayout:(UICollectionViewLayout *)layout{

 self = [super initWithCollectionViewLayout:layout];

 if (self != nil){

 /* Register the cell with the collection view for easy retrieval */

 [self.collectionView registerClass:[UICollectionViewCell class]

 forCellWithReuseIdentifier:kCollectionViewCellIdentifier];

 }

 return self;

}

You can see that we are using the kCollectionViewCellIdentifier constant value as
the identifier for our cells. We need to define this in our view controller:

#import "ViewController.h"

static NSString *kCollectionViewCellIdentifier = @"Cells";

@implementation ViewController

The default implementation of your collection view will have one section unless you
implement the numberOfSectionsInCollectionView: method in your data source. We
want three sections for our collection view, so let’s implement this method:

- (NSInteger)numberOfSectionsInCollectionView

 :(UICollectionView *)collectionView{

 return [self allSectionColors].count;

}

290 | Chapter 5: Building Complex Layouts with Collection Views

Part of the requirement for our application was for each cell to contain at least 20 and
at most 40 cells. We can achieve this using the arc4random_uniform(x) function. It
returns positive integers between 0 and x, where x is the parameter that you provide to
this function. Therefore, to generate a number between 20 and 40, all we have to do is
add 20 to the return value of this function while setting x to 20 as well. With this knowl‐
edge, let’s implement the collectionView:numberOfItemsInSection: method of our
collection view’s data source:

- (NSInteger)collectionView:(UICollectionView *)collectionView

 numberOfItemsInSection:(NSInteger)section{

 /* Generate between 20 to 40 cells for each section */

 return 20 + arc4random_uniform(21);

}

Last but not least, we want to provide the cells to the collection view. For that we need
to implement the collectionView:cellForItemAtIndexPath: method of our collec‐
tion view’s data source:

- (UICollectionViewCell *)collectionView:(UICollectionView *)collectionView

 cellForItemAtIndexPath:(NSIndexPath *)indexPath{

 UICollectionViewCell *cell =

 [collectionView

 dequeueReusableCellWithReuseIdentifier:kCollectionViewCellIdentifier

 forIndexPath:indexPath];

 cell.backgroundColor = [self allSectionColors][indexPath.section];

 return cell;

}

Index paths simply contain a section number and a row number. So
an index path of 0, 1 means the first section’s second row, since the
indexes are zero-based. Or to denote the fifth row of the tenth sec‐
tion, the index path would be 9, 4. Index paths are extensively used in
table and collection views because they intrinsically embody the no‐
tion of sections and of cells in each section. Delegates and data sour‐
ces for tables and collection views work by communicating the target
cell to you using its index path. For instance, if the user taps a cell in
a collection view, you will receive its index path. Using the index path,
you can look at that cell’s underlying data structure (the data that was
used to construct that cell originally in your class).

5.4. Providing Basic Content to a Collection View | 291

As you can see, we are using the dequeueReusableCellWithReuseIdentifier:forIn
dexPath: instance method of our collection view to pull reusable cells out of the queue.
This method expects two parameters: the identifier of the cell that you have registered
earlier with the collection view, and the index path at which that cell should be rendered.
The index path is given to you in the same collectionView:cellForItemAtIndex
Path: method as a parameter, so the only thing that you do have to provide is the
identifier of the cell.

The return value of this method will be a cell of type UICollectionViewCell, which
you can configure. In this implementation, the only thing we have done is to set the
background color of the cell to the background color that we had chosen earlier for all
the cells in that section.

One last thing to do before we wrap this up is to set the background color of our col‐
lection view to white to make it look a bit better than the default pitch-black color. So
implement the viewDidLoad method of your collection view controller and set the
background color of your collection view right there:

- (void) viewDidLoad{

 [super viewDidLoad];

 self.collectionView.backgroundColor = [UIColor whiteColor];

}

An instance of UICollectionViewController has a view of type UI
View that can be accessed using its view property. Don’t confuse this
view with the collectionView property of your controller, which is
where the collection view itself sits.

The great thing about our solution in this recipe is that it works perfectly on both the
iPad and the iPhone. We saw how it looks on the iPad in Figure 5-5, and on the iPhone,
it looks like what’s shown in Figure 5-6.

292 | Chapter 5: Building Complex Layouts with Collection Views

Figure 5-6. Our simple collection view rendered on iPhone Simulator

See Also
Recipe 5.1; Recipe 5.2; Recipe 5.3

5.4. Providing Basic Content to a Collection View | 293

5.5. Feeding Custom Cells to Collection Views Using .xib
Files

Problem
You want to configure collection view cells in Interface Builder and feed those cells to
your collection view for rendering.

Solution
Follow these steps:

1. Create a subclass of the UICollectionViewCell and give it a name (we’ll use My
CollectionViewCell for this example).

2. Create an empty .xib file and name it MyCollectionViewCell.xib.

3. Drop a Collection View Cell from the Objects Library in Interface Builder onto
your empty .xib file (see Figure 5-7) and change the class name of the dropped
object in Interface Builder to MyCollectionViewCell (see Figure 5-8). Because you
make this association, when you load the .xib file programmatically, your custom
class of MyCollectionViewCell will automatically be loaded into memory. This is
pure magic!

Figure 5-7. The Collection View Cell UI object in the Object Library of Interface
Builder

294 | Chapter 5: Building Complex Layouts with Collection Views

Figure 5-8. Assigning our custom class to the .xib file of our custom collection view cell

4. Customize your cell in Interface Builder. For every UI component that you drop
on your cell, ensure that you create an associated IBOutlet either in the header or
the implementation file of your class (MyCollectionViewCell).

5. Register your nib with your collection view using the registerNib:forCellWi
thReuseIdentifier: instance method of your collection view. You can load your
nib into memory using the nibWithNibName:bundle: class method of the UINib
class, as we will see soon.

Discussion
As you read earlier in this recipe, you need to create a .xib file for your custom cell and
call that file MyCollectionViewCell.xib. Please do bear in mind that your .xib file doesn’t

necessarily have to be called that. It can be called anything you like. However, for the
sake of simplicity and so that readers can follow the same naming convention through‐
out this chapter, we will use the aforementioned name. So go ahead and create an emp‐
ty .xib file using the following steps:

1. In File → New → File...

2. On the lefthand side, under the iOS category, choose User Interface, and under the
righthand side, pick Empty.

5.5. Feeding Custom Cells to Collection Views Using .xib Files | 295

3. You are now asked for the device family of your .xib file. Simply choose iPhone for
device family.

4. You are now asked to save your .xib file to disk. Save your file as MyCollectionView

Cell.xib.

You also need to create a class that you can link to your .xib file’s contents. The class will
be named MyCollectionViewCell and will subclass UICollectionViewCell. You can
do this by following these steps:

1. In Xcode, choose File → New → File...

2. In the new file dialog, under the iOS category, choose Cocoa Touch. On the right‐
hand side, pick “Objective-C class.”

3. Name your class MyCollectionViewCell and choose UICollectionViewCell as its
superclass.

4. When asked to do so, save your file to disk.

Now you have to associate our class with our .xib file. To do this, follow these steps:

1. Open your MyCollectionViewCell.xib file in Interface Builder. In the Object Library,

simply find the Collection View Cell (see Figure 5-7) and drop it into your .xib file.
By default, this cell will be very small (50×50 points width and height) and will have
a black background color.

2. Explicitly select the cell on your .xib file by clicking on it. Open the Identity In‐
spector in Interface Builder and change the Class field’s value to MyCollection
ViewCell, as shown earlier in Figure 5-8.

The next thing you need to do is add some UI components to your cell. Later, when you
populate your collection view, we can change the value of those components. The best
component for this demonstration would be an image view, so while you have your
MyCollectionViewCell.xib file open in Interface Builder, drop an instance of UIImage

View onto it. Connect that image view to the header file of your cell (the MyCollection

ViewCell.h file) and name it imageViewBackgroundImage so that your cell’s header file

will look like this:

#import <UIKit/UIKit.h>

@interface MyCollectionViewCell : UICollectionViewCell

@property (weak, nonatomic) IBOutlet UIImageView *imageViewBackgroundImage;

@end

We are going to populate this image view with various images. For this recipe, I have
created three simple images that I’m going to use, each one 50×50 points in size. You

296 | Chapter 5: Building Complex Layouts with Collection Views

can use any other image that you wish, simply by doing a quick search on the Internet.
Once you’ve found your images, add them to your project. Ensure that the images are
named 1.png, 2.png, and 3.png, and that their @2x Retina counterparts are named

1@2x.png, 2@2x.png, and 3@2x.png.

In this example, we are going to display a user interface similar to that shown in
Figure 5-5, but instead of colors for cells, we are going to set the background image
view’s image to a random image. So it makes sense to base our code on what we wrote
for Recipe 5.4 because the output will be very similar.

The first modification that we have to make is to prepare a method in our app that can
return a random image to us. We have an array of images, as explained before. So after
instantiating the array, we need a handy little method that can grab a random image out
of the array for us:

- (NSArray *) allImages{

 static NSArray *AllSectionImages = nil;

 if (AllSectionImages == nil){

 AllSectionImages = @[

 [UIImage imageNamed:@"1"],

 [UIImage imageNamed:@"2"],

 [UIImage imageNamed:@"3"]

];

 }

 return AllSectionImages;

}

- (UIImage *) randomImage{

 return [self allImages][arc4random_uniform([self allImages].count)];

}

Next, we need to override our collection view controller’s designated initializer to reg‐
ister our MyCollectionViewCell nib with our collection view:

- (instancetype) initWithCollectionViewLayout:(UICollectionViewLayout *)layout{

 self = [super initWithCollectionViewLayout:layout];

 if (self != nil){

 /* Register the nib with the collection view for easy retrieval */

 UINib *nib = [UINib nibWithNibName:

 NSStringFromClass([MyCollectionViewCell class])

 bundle:[NSBundle mainBundle]];

 [self.collectionView registerNib:nib

 forCellWithReuseIdentifier:kCollectionViewCellIdentifier];

 }

5.5. Feeding Custom Cells to Collection Views Using .xib Files | 297

 return self;

}

Also, when asked how many sections we have, we will return a random number between
3 and 6. This is not really required—we could go with one section, but it won’t hurt to
have more. Also for each section, we want to have between 10 and 15 cells:

- (NSInteger)numberOfSectionsInCollectionView

 :(UICollectionView *)collectionView{

 /* Between 3 to 6 sections */

 return 3 + arc4random_uniform(4);

}

- (NSInteger)collectionView:(UICollectionView *)collectionView

 numberOfItemsInSection:(NSInteger)section{

 /* Each section has between 10 to 15 cells */

 return 10 + arc4random_uniform(6);

}

Last but not least, we will ask the collection view for the cells and configure them with
a random image:

- (UICollectionViewCell *)collectionView:(UICollectionView *)collectionView

 cellForItemAtIndexPath:(NSIndexPath *)indexPath{

 MyCollectionViewCell *cell =

 [collectionView

 dequeueReusableCellWithReuseIdentifier:kCollectionViewCellIdentifier

 forIndexPath:indexPath];

 cell.imageViewBackgroundImage.image = [self randomImage];

 cell.imageViewBackgroundImage.contentMode = UIViewContentModeScaleAspectFit;

 return cell;

}

As you can see, we are using our custom MyCollectionViewCell class
in our collection view controller. For the program to compile success‐
fully, you will need to include the header file for your cell into your
view controller’s implementation like so:

#import "ViewController.h"

#import "MyCollectionViewCell.h"

...

Run your app and you will see something similar to that shown in Figure 5-9. Of course
if you use different images from the ones I chose, your images will show up instead of
mine.

298 | Chapter 5: Building Complex Layouts with Collection Views

Figure 5-9. A collection view with custom cells loaded from a nib

See Also
Recipe 5.4

5.6. Handling Events in Collection Views

Problem
You want to be able to handle collection view events, such as taps.

Solution
Assign a delegate to your collection view. In some other cases, you may not even have
to do that. All you may need to do is listen for those events in your cell classes and handle
them right there.

5.6. Handling Events in Collection Views | 299

Discussion
Collection views have delegate properties that have to conform to the UICollection
ViewDelegate protocol. The delegate object will then receive various delegation calls
from the collection view informing the delegate of various events, such as a cell be‐
coming highlighted or selected. You need to know the difference between the highligh‐
ted and selected state of a collection view cell. When the user presses her finger down
on a cell in a collection view but doesn’t lift her finger up, the cell under her finger is
highlighted. When she presses her finger down and lifts her finger up to say she wants
to perform an action on the cell, that cell will then be selected.

Collection view cells of type UICollectionViewCell have two very useful properties,
highlighted and selected, that get set to YES when the cell becomes highlighted or
selected.

If all you want to do is change your cell’s visual presentation when it becomes selected,
you’re in luck, because cells of type UICollectionViewCell expose a property named
selectedBackgroundView of type UIView that you can set to a valid view. This view will
then get displayed on the screen once your cell becomes selected. Let’s demonstrate this
by building on top of what we created in Recipe 5.5. If you remember, in that example,
we created a custom cell that had a background image view property named image
ViewBackgroundImage, which covered the whole of the cell. We were loading custom
image instances into that image view. What we want now is to set the background color
of our cell to blue once the cell becomes selected. Because the image view is sitting on
top of everything else on our collection view, before we set the background color of our
cell, we need to ensure that our image view is see-through by changing the background
color of the image view to a clear color. The reason behind this is that an image view is
opaque by default, so if you place it on a view that has a background color, you won’t
be able to see the color of the view because the opaque image view will not be see-
through. Thus, in order for us to see the color of our image view’s super view, we will
set the image view’s background color to a clear and see-through color. So let’s get started:

#import "MyCollectionViewCell.h"

@implementation MyCollectionViewCell

- (void) awakeFromNib{

 [super awakeFromNib];

 self.imageViewBackgroundImage.backgroundColor = [UIColor clearColor];

 self.selectedBackgroundView = [[UIView alloc] initWithFrame:self.bounds];

 self.selectedBackgroundView.backgroundColor = [UIColor blueColor];

}

@end

That’s all, really! Now if you tap on any of the cells in your program, you will see that
the background color of the cell becomes blue.

300 | Chapter 5: Building Complex Layouts with Collection Views

There are more things that you may want to do with your collection view by listening
to various events that it sends. For instance, you may want to play a sound or an ani‐
mation once a cell becomes selected. Let’s say, when the user taps on a cell, that we want
to use an animation to hide the cell momentarily and then show it again, creating a
fading-out and fading-in animation. If this is the type of thing you want to do, start by
setting the delegate object of your collection view, because that’s really where you get a
lot of events reported back to you. Your delegate object, as mentioned before, has to
conform to the UICollectionViewDelegate protocol. This protocol contains a lot of
useful methods that you can implement. The following are some of the most important
methods in this protocol:

The UICollectionViewDelegateFlowLayout protocol, like the
UITableViewDelegate protocol that we discussed in Chapter 4, lets
you provide information about your items, such as width and height,
to the flow layout. You can either provide a generic size for all the flow
layout item sizes in one go so that all items will have the same size, or
you can respond to the relevant messages that you receive from the
flow layout delegate protocol, asking you to provide a size for individ‐
ual cells in the layout.

collectionView:didHighlightItemAtIndexPath:

Gets called on the delegate when a cell becomes highlighted.

collectionView:didUnhighlightItemAtIndexPath:

Gets called on the delegate when a cell comes out of the highlighted state. This
method gets called when the user successfully finishes the tap event (pushes her
finger on the item and lifts her finger off it, generating the tap gesture) or it can get
called if the user cancels her earlier highlighting of the cell by dragging her finger
out of the boundaries of the cell.

collectionView:didSelectItemAtIndexPath:

This method gets called on the delegate object when a given cell becomes selected.
The cell is always highlighted before it is selected.

collectionView:didDeselectItemAtIndexPath:

Gets called on the delegate object when the cell comes out of the selected state.

So let’s build an app according to our earlier requirements. We want to fade out the cell
and fade it back in when it becomes selected. In your UICollectionViewController
instance, implement the collectionView:didSelectItemAtIndexPath: method like
so:

5.6. Handling Events in Collection Views | 301

Our code is written inside our collection view controller, which by
default is automatically chosen by the system as both the data source
and the delegate of its collection view. It conforms to both the UICol
lectionViewDataSource and the UICollectionViewDelegate proto‐
cols. Therefore, you can simply implement any of the data source or
delegate methods directly in your collection view controller’s imple‐
mentation file.

#import "ViewController.h"

#import "MyCollectionViewCell.h"

static NSString *kCollectionViewCellIdentifier = @"Cells";

@implementation ViewController

- (void) collectionView:(UICollectionView *)collectionView

 didSelectItemAtIndexPath:(NSIndexPath *)indexPath{

 UICollectionViewCell *selectedCell =

 [collectionView cellForItemAtIndexPath:indexPath];

 const NSTimeInterval kAnimationDuration = 0.20;

 [UIView animateWithDuration:kAnimationDuration animations:^{

 selectedCell.alpha = 0.0f;

 } completion:^(BOOL finished) {

 [UIView animateWithDuration:kAnimationDuration animations:^{

 selectedCell.alpha = 1.0f;

 }];

 }];

}

...

We are using animations here in our example, but this is not the right place to explain
how animations work. If you require more information about composing simple ani‐
mations in iOS, refer to Chapter 20.

OK! That was easy. How about another example? Let’s say you want to make a cell twice
as big as its normal size when it becomes highlighted and then take it back to its original
size when it loses its highlighted state. That means, when the user presses her finger
down on the cell (before releasing her finger), the cell enlarges to twice its size and then,
when she releases her finger, the cell goes back to its original size. For this, we have to
implement the collectionView:didHighlightItemAtIndexPath: and the collection
View:didUnhighlightItemAtIndexPath: methods of the UICollectionViewDele
gate protocol in our collection view controller (remember, collection view controllers,
by default, conform to the UICollectionViewDelegate and the UICollectionViewDa
taSource protocols):

302 | Chapter 5: Building Complex Layouts with Collection Views

#import "ViewController.h"

#import "MyCollectionViewCell.h"

static NSString *kCollectionViewCellIdentifier = @"Cells";

const NSTimeInterval kAnimationDuration = 0.20;

@implementation ViewController

- (void) collectionView:(UICollectionView *)collectionView

 didHighlightItemAtIndexPath:(NSIndexPath *)indexPath{

 UICollectionViewCell *selectedCell =

 [collectionView cellForItemAtIndexPath:indexPath];

 [UIView animateWithDuration:kAnimationDuration animations:^{

 selectedCell.transform = CGAffineTransformMakeScale(2.0f, 2.0f);

 }];

}

- (void) collectionView:(UICollectionView *)collectionView

 didUnhighlightItemAtIndexPath:(NSIndexPath *)indexPath{

 UICollectionViewCell *selectedCell =

 [collectionView cellForItemAtIndexPath:indexPath];

 [UIView animateWithDuration:kAnimationDuration animations:^{

 selectedCell.transform = CGAffineTransformMakeScale(1.0f, 1.0f);

 }];

}

...

As you can see, we are using the CGAffineTransformMakeScale Core Graphics function
to create an affine transformation, and then assigning that to the cell itself to create the
visual effect of the cell growing twice as large, before shrinking back to its original size.
To learn more about this function, please read through Recipe 20.12.

See Also
Recipe 5.2; Recipe 5.3; Recipe 5.5; Recipe 20.12

5.7. Providing a Header and a Footer in a Flow Layout

Problem
You want to provide header and footer views for your collection view, just as in table
views, while using the flow layout.

5.7. Providing a Header and a Footer in a Flow Layout | 303

Solution
Follow these steps:

1. Create a .xib file for your header and another one for your footer.

2. Drag and drop, from Interface Builder’s Object Library, an instance of Collection
Reusable View into your .xib files. Ensure that the collection reusable view that you
dropped into your .xib file is the only view in your .xib file. This makes the reusable
view the root view of your .xib file, exactly the way that you should provide headers
and footers to the collection view.

3. If you want more control over how your .xib file behaves, create an Objective-C
class and associate your .xib file’s root view to your class. This ensures that when
your .xib file’s contents are loaded from disk by iOS, the associated class will also
be loaded into memory, giving you access to the view hierarchy in the .xib file.

4. Instantiate the registerNib:forSupplementaryViewOfKind:withReuseIdentifi
er: instance method of your collection view and register your nib files for the
UICollectionElementKindSectionHeader and UICollectionElementKindSec
tionFooter view kinds.

5. To customize your header and footer views when they are about to be displayed,
implement the collectionView:viewForSupplementaryElementOfKind:atIndex
Path: method of your collection view’s data source, and in there, issue the de
queueReusableSupplementaryViewOfKind:withReuseIdentifier:forIndex

Path: method of your collection view to dequeue a reusable header/footer of a given
kind.

6. Last but not least, ensure that you have set the size for your headers and footers by
setting the value of the headerReferenceSize and the footerReferenceSize
properties of your flow layout object. This step is very important: if you forget to
do this, you will not see your header or footer.

Discussion
All right, so now we have to create the .xib files for our custom headers and footers. Let’s
call these .xib files Header.xib and Footer.xib. We create them in the same exact way

described in Recipe 5.5, so I won’t explain that again here. Ensure that you have also
created an Objective-C class for your header and one for your footer. Name those Header
and Footer, respectively, and ensure they subclass UICollectionReusableView. Once
done, configure a label and a button in Interface Builder, and then drag and drop the
label into your Header file and the button into your Footer .xib file, and link them up
to your classes as shown in Figure 5-10 and Figure 5-11.

304 | Chapter 5: Building Complex Layouts with Collection Views

Figure 5-10. Configuring a header cell for a collection view in Interface Builder

Figure 5-11. Configuring a footer cell for a collection view in Interface Builder

I have linked my header’s label up to my Header class through an outlet property in the
Header.h file and named the outlet simply label:

#import <UIKit/UIKit.h>

@interface Header : UICollectionReusableView

@property (weak, nonatomic) IBOutlet UILabel *label;

@end

I’ve done the same thing for the footer, linking the button on my Footer .xib file to an
outlet in my Footer.h file and naming the outlet button:

5.7. Providing a Header and a Footer in a Flow Layout | 305

#import <UIKit/UIKit.h>

@interface Footer : UICollectionReusableView

@property (weak, nonatomic) IBOutlet UIButton *button;

@end

Now, in your collection view controller, define the identifiers for your header and footer
cells:

#import "ViewController.h"

#import "MyCollectionViewCell.h"

#import "Header.h"

#import "Footer.h"

static NSString *kCollectionViewCellIdentifier = @"Cells";

static NSString *kCollectionViewHeaderIdentifier = @"Headers";

static NSString *kCollectionViewFooterIdentifier = @"Footers";

@implementation ViewController

...

Now, in the initializer method of your collection view, register the collection view’s cell,
header cell, and footer cell using the nib files that we load into memory:

- (instancetype) initWithCollectionViewLayout:(UICollectionViewLayout *)layout{

 self = [super initWithCollectionViewLayout:layout];

 if (self != nil){

 /* Register the nib with the collection view for easy retrieval */

 UINib *nib = [UINib nibWithNibName:

 NSStringFromClass([MyCollectionViewCell class])

 bundle:[NSBundle mainBundle]];

 [self.collectionView registerNib:nib

 forCellWithReuseIdentifier:kCollectionViewCellIdentifier];

 /* Register the header's nib */

 UINib *headerNib = [UINib

 nibWithNibName:NSStringFromClass([Header class])

 bundle:[NSBundle mainBundle]];

 [self.collectionView registerNib:headerNib

 forSupplementaryViewOfKind:UICollectionElementKindSectionHeader

 withReuseIdentifier:kCollectionViewHeaderIdentifier];

 /* Register the footer's nib */

 UINib *footerNib = [UINib

 nibWithNibName:NSStringFromClass([Footer class])

 bundle:[NSBundle mainBundle]];

 [self.collectionView registerNib:footerNib

 forSupplementaryViewOfKind:UICollectionElementKindSectionFooter

 withReuseIdentifier:kCollectionViewFooterIdentifier];

306 | Chapter 5: Building Complex Layouts with Collection Views

 }

 return self;

}

The next thing you have to do is implement the collectionView:viewForSupplemen
taryElementOfKind:atIndexPath: method of your collection view to configure the
headers and footers and provide them back to the collection view:

- (UICollectionReusableView *)collectionView:(UICollectionView *)collectionView

 viewForSupplementaryElementOfKind:(NSString *)kind

 atIndexPath:(NSIndexPath *)indexPath{

 NSString *reuseIdentifier = kCollectionViewHeaderIdentifier;

 if ([kind isEqualToString:UICollectionElementKindSectionFooter]){

 reuseIdentifier = kCollectionViewFooterIdentifier;

 }

 UICollectionReusableView *view =

 [collectionView dequeueReusableSupplementaryViewOfKind:kind

 withReuseIdentifier:reuseIdentifier

 forIndexPath:indexPath];

 if ([kind isEqualToString:UICollectionElementKindSectionHeader]){

 Header *header = (Header *)view;

 header.label.text = [NSString stringWithFormat:@"Section Header %lu",

 (unsigned long)indexPath.section + 1];

 }

 else if ([kind isEqualToString:UICollectionElementKindSectionFooter]){

 Footer *footer = (Footer *)view;

 NSString *title = [NSString stringWithFormat:@"Section Footer %lu",

 (unsigned long)indexPath.section + 1];

 [footer.button setTitle:title forState:UIControlStateNormal];

 }

 return view;

}

Last but not least, ensure that your flow layout knows the dimensions of your collection
view’s header and footer cells. Following what we did in Recipe 5.3, change your app
delegate’s flowLayout method to the following:

- (UICollectionViewFlowLayout *) flowLayout{

 UICollectionViewFlowLayout *flowLayout =

 [[UICollectionViewFlowLayout alloc] init];

 flowLayout.minimumLineSpacing = 20.0f;

 flowLayout.minimumInteritemSpacing = 10.0f;

5.7. Providing a Header and a Footer in a Flow Layout | 307

 flowLayout.itemSize = CGSizeMake(80.0f, 120.0f);

 flowLayout.scrollDirection = UICollectionViewScrollDirectionVertical;

 flowLayout.sectionInset = UIEdgeInsetsMake(10.0f, 20.0f, 10.0f, 20.0f);

 /* Set the reference size for the header and the footer views */

 flowLayout.headerReferenceSize = CGSizeMake(300.0f, 50.0f);

 flowLayout.footerReferenceSize = CGSizeMake(300.0f, 50.0f);

 return flowLayout;

}

All ready to go! If you launch your app in iPad Simulator, you will see something similar
to that shown in Figure 5-12.

Figure 5-12. Headers and footers rendered in the collection view

See Also
Recipe 5.2; Recipe 5.3; Recipe 5.5

5.8. Adding Custom Interactions to Collection Views

Problem
You want to add your own gesture recognizers, such as pinch gesture recognizers, to a
collection view in order to enable custom behaviors on top of the existing ones.

308 | Chapter 5: Building Complex Layouts with Collection Views

Solution
Instantiate your gesture recognizer and then go through all the existing collection view
gesture recognizers to see whether a gesture recognizer similar to yours already exists.
If so, call the requireGestureRecognizerToFail: method on the existing gesture rec‐
ognizer and pass your own recognizer as the parameter to this method. This will ensure
that the collection view’s gesture recognizer that is similar to yours will grab the gestures
only if your gesture recognizer fails to process its data or its requirements/criteria aren’t
met. That means that if your gesture recognizer can process the gesture, it will, but if it
cannot, the gesture will be sent to the collection view’s existing gesture recognizers for
processing.

Once this is done, add your gesture recognizer to your collection view. Remember, in
an instance of UICollectionViewController, your collection view object is accessible
through the collectionView property of the controller and not the view property.

Discussion
The iOS API has already added a few gesture recognizers to collection views. So in order
to add your own gesture recognizers, on top of the existing collection, you first need to
make sure that your gesture recognizers will not interfere with the existing ones. To do
that, you have to first instantiate your own gesture recognizers and, as explained before,
look through the existing array of gesture recognizers on the collection view and call
the requireGestureRecognizerToFail: method on the one that is of the same class
type of gesture recognizer as the one you are attempting to add to the collection view.

Let’s have a look at an example. Our objective for this example is to add pinching for
zooming in and zooming out functionality to our collection view. We are going to build
this example on top of what we have already done in Recipe 5.5. So the first thing we
are going to do is add a pinch gesture recognizer to the collection of gesture recognizers
in our collection view, which must be done in the viewDidLoad method of the collection
view controller:

- (void) viewDidLoad{

 [super viewDidLoad];

 self.collectionView.backgroundColor = [UIColor whiteColor];

 UIPinchGestureRecognizer *pinch = [[UIPinchGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(handlePinches:)];

 for (UIGestureRecognizer *recognizer in

 self.collectionView.gestureRecognizers){

 if ([recognizer isKindOfClass:[pinch class]]){

 [recognizer requireGestureRecognizerToFail:pinch];

 }

 }

5.8. Adding Custom Interactions to Collection Views | 309

 [self.collectionView addGestureRecognizer:pinch];

}

The pinch gesture recognizer is set up to call the handlePinches: method of our view
controller. We’ll write this method now:

- (void) handlePinches:(UIPinchGestureRecognizer *)paramSender{

 CGSize DefaultLayoutItemSize = CGSizeMake(80.0f, 120.0f);

 UICollectionViewFlowLayout *layout =

 (UICollectionViewFlowLayout *)self.collectionView.collectionViewLayout;

 layout.itemSize =

 CGSizeMake(DefaultLayoutItemSize.width * paramSender.scale,

 DefaultLayoutItemSize.height * paramSender.scale);

 [layout invalidateLayout];

}

There are two very important parts to this code:

1. We are assuming that the default item size on our collection view’s flow layout was
set to have a width of 80 points and a height of 120 points. That’s how we set the
collection view’s flow layout in Recipe 5.3. We are then taking the scale factor that
came back from the pinch gesture recognizer and multiplying the size of the items
in our collection view by the pinch scale factor, which can cause our items to become
bigger or smaller in dimension, depending on how the user is controlling the
pinching on the screen.

2. After we change the default item size in our flow layout, we need to refresh the
layout. In table views, we used to refresh the sections, the rows, or the whole table
view, but here, we refresh or invalidate the layout that is attached to the collection
view in order to ask the collection view to redraw itself after a layout change. Since
a collection view can contain only one layout object at a time, invalidating that
layout object will force the whole collection view to reload. If we could have one
layout per section, we would be able to reload only the section(s) that are linked to
that layout, but for now, the whole collection view will be repainted when the layout
object is invalidated.

Now if you run your code, you will notice that you can use two fingers on the screen to
pinch inward and enlarge the size of the items on your collection view, or pinch outward
to make them smaller.

See Also
Recipe 5.3; Recipe 5.5

310 | Chapter 5: Building Complex Layouts with Collection Views

5.9. Providing Contextual Menus on Collection View Cells

Problem
You want to provide a menu to the user when she long-presses an item in your collection
view. Through this menu, she may then be able to copy an item, move an item, etc.

Solution
Contextual menus are built into collection views by default. To enable them, all you have
to do is implement the following methods from the UICollectionViewDelegate pro‐
tocol:

collectionView:shouldShowMenuForItemAtIndexPath:

The runtime passes the method an index path to an item. The method returns a
Boolean value indicating whether you want the collection view to display the con‐
textual menu for that item or not.

collectionView:canPerformAction:forItemAtIndexPath:withSender:

The runtime passes the method a selector of type SEL. You can check the selector
(usually by converting it to a string and then comparing it to a string representing
the action) and find out whether you want to allow that action to happen. Return
YES to allow the action to happen and NO to suppress it. Remember that you can
always convert a selector to a string using the NSStringFromSelector method. A
typical selector could be copy: or paste: for the copy and the paste contextual
menu items.

collectionView:performAction:forItemAtIndexPath:withSender:

Here you will perform the action that you allowed the collection view to display to
the user through earlier delegate methods.

Discussion
Without waiting around, we are going to extend the code that we wrote in Recipe 5.5
and allow a copy contextual menu to be displayed on our cells when the user long-presses
on them. When the user selects the copy menu item, we will copy the image inside the
cell onto the pasteboard so that the user can paste that image into other apps, such as
the Mail app.

The first thing we are going to do is implement the collectionView:shouldShowMenu
ForItemAtIndexPath: method in our collection view’s delegate. In our example, we are
using a collection view controller that is itself the delegate and the data source, so all we
have to do, really, is implement the aforementioned method in the collection view con‐
troller, like so:

5.9. Providing Contextual Menus on Collection View Cells | 311

- (BOOL) collectionView:(UICollectionView *)collectionView

 shouldShowMenuForItemAtIndexPath:(NSIndexPath *)indexPath{

 return YES;

}

Now we want to allow only the “copy” menu item to be displayed for the cells in our
collection view, for the sake of this example, so that you can see how you can filter the
available menu items and display only the ones you need:

- (BOOL) collectionView:(UICollectionView *)collectionView

 canPerformAction:(SEL)action

 forItemAtIndexPath:(NSIndexPath *)indexPath

 withSender:(id)sender{

 if (action == @selector(copy:)){

 return YES;

 }

 return NO;

}

You can see that we are not even converting the selector to a string to compare it with
strings such as copy:. All we are doing is using the equality operator to check whether
the requested selector matches our expectations. If so, we return YES, and if not, we
return NO.

Last but not least, we have to implement the collectionView:performAction:forIte
mAtIndexPath:withSender: method in our delegate to find out when the copy action
is called, and then copy the image of the selected cell onto the pasteboard, ready to be
pasted into another app by the user:

- (void) collectionView:(UICollectionView *)collectionView

 performAction:(SEL)action

 forItemAtIndexPath:(NSIndexPath *)indexPath

 withSender:(id)sender{

 if (action == @selector(copy:)){

 MyCollectionViewCell *cell = (MyCollectionViewCell *)[collectionView

 cellForItemAtIndexPath:indexPath];

 [[UIPasteboard generalPasteboard]

 setImage:cell.imageViewBackgroundImage.image];

 }

}

Now if you run the app and then long-press on one of the items in the collection view,
you will see a result similar to that shown in Figure 5-13.

312 | Chapter 5: Building Complex Layouts with Collection Views

Figure 5-13. A contextual menu item displayed for a cell in a collection view

See Also
Recipe 5.5

5.9. Providing Contextual Menus on Collection View Cells | 313

CHAPTER 6

Storyboards

6.0. Introduction
iOS programmers are all used to view controllers by now. We know how to use navi‐
gation controllers in order to push and pop view controllers. But Apple believes this can
be done more easily, and that’s the whole story behind storyboards. Storyboarding is the
new way of defining the connections between different screens in your app. For instance,
if you have 20 unique view controllers in your app that you coded a year ago and are
looking at the source code again now, you will need to find your way around the con‐
nections between these view controllers and to try to remember what view controller is
pushed when a certain action is taken by the user. This can be very difficult, especially
if you have not documented your code. Storyboards come to the rescue. With story‐
boards, you can view/create your entire app’s UI and the connections between view
controllers in one screen. It’s that simple.

To take advantage of storyboarding, you need to get acquainted with Interface Builder.
Don’t worry; it’s all covered in this chapter.

With storyboards, one screen’s worth of content is called a scene. The relation between
a scene and a storyboard on the iPhone can be compared to that between a view and a
view controller. In a scene, you put all your content on the screen to be presented to the
user at the same time. On the iPad, more than one scene can be presented to the user
at the same time because of the bigger screen.

Storyboarding supports transitioning from one scene to another. The equivalent of a
navigation controller pushing one view controller on top of another is a segue in story‐
boarding. Another type of transition is a modal view controller that slides a scene from
the bottom of the screen up to fill the screen temporarily. On the iPad, modal screens
usually appear in the center of the screen and dim the rest of the screen, to point out
that they are the main input at that moment.

315

6.1. Adding a Navigation Controller to a Storyboard

Problem
You want to be able to manage multiple view controllers inside a storyboard-based
application.

Solution
Set a navigation controller as the initial view controller of your storyboard file.

Discussion
When you create a new universal iOS app using the Single View Application template
in Xcode, you will get two storyboard files: Main_iPhone.storyboard and

Main_iPad.storyboard. If you view them in Interface Builder, you’ll notice that they

contain a view controller as their root controller. Figure 6-1 shows the contents of a
simple out-of-the-box iPhone storyboard file.

In order to change the root view controller of your storyboard file into a navigation
controller, all you have to do is the following:

1. Select your view controller on the canvas of the storyboard.

2. From the Edit menu, choose Embed In and then Navigation Controller (see
Figure 6-2).

Once you are done, you will notice that the root view controller of your storyboard is
now a navigation controller, as shown in Figure 6-3.

316 | Chapter 6: Storyboards

Figure 6-1. A view controller as the root of a storyboard file

6.1. Adding a Navigation Controller to a Storyboard | 317

Figure 6-2. Embedding your view controller in a navigation controller

Figure 6-3. A navigation controller is now the root controller of our storyboard

See Also
Recipe 6.0, “Introduction”

6.2. Passing Data from One Screen to Another

Problem
You want to pass data from one scene to another using storyboards.

318 | Chapter 6: Storyboards

Solution
Use segue objects.

Discussion
A segue is an object, just like any other object in Objective-C. To carry out a transition
from one scene to another, the storyboard runtime creates a segue object for that tran‐
sition. A segue is an instance of class UIStoryboardSegue. To start a transition, the
current view controller (which will get pushed out of the screen after the segue) receives
the prepareForSegue:sender: message, where the prepareForSegue parameter will
be an object of type UIStoryboardSegue. If you want to pass any data from the current
view controller to the view controller that is about to appear on the screen, you need to
do that in the prepareForSegue:sender: method.

For this recipe to make sense, you need to have followed the instruc‐
tions in Recipe 6.1 and created two view controllers inside a naviga‐
tion controller on your storyboard.

Let’s have a look at a real-life example of using segues. In this recipe, we are going to
display a view controller similar to that shown in Figure 6-4.

Whatever the user places in our text field will get passed to the second view controller
through a segue and will get set as the title of that view controller. The second view
controller’s canvas will be empty. So using the technique that you learned in
Recipe 6.1, place your first view controller inside a navigation controller. Now place
another view controller from the Object Library onto your storyboard and place a but‐
ton and a text field on the first view controller as well. You can make sure that the
arrangement of the text field and the button is similar to that shown in Figure 6-4, but
that is not required. You can arrange them any way you want. Now hold down the Ctrl
key on your keyboard and press your mouse down on the button. Drag and drop the
line that will appear on the screen onto the second view controller (Figure 6-5), and
from the dialog that appears, select the Push item. By doing this, you just made a con‐
nection from your button to the second view controller so that when the button is
pressed, the second view controller will be pushed onto the stack of the navigation
controller.

6.2. Passing Data from One Screen to Another | 319

Figure 6-4. The first view controller in our app with a text field and a button

Figure 6-5. Creating a connection from the press of the button to the second view
controller

320 | Chapter 6: Storyboards

You can see that Interface Builder has created a segue between the first and the second
view controller. Click that segue, and in the Attributes Inspector, give it an identifier of
pushSecondViewController, as shown in Figure 6-6.

Figure 6-6. Assigning an identifier to a segue

You might be asking: why do we need this identifier? The answer is that we will imple‐
ment a special method of our view controller that will first ask us whether it is OK for
a segue to happen or not. In that method we will check the text inside our text field, and
if that field is empty, we will not allow the user to go to the next screen. The method
that will get called in our view controller is the shouldPerformSegueWithIdentifi
er:sender: method of UIViewController. You can use the value that gets sent to its
shouldPerformSegueWithIdentifier parameter, of type NSString, to get the identifier
of the segue that is about to trigger. You will then be required to return a value of YES if
you are happy with the segue that will happen and NO if you aren’t. Returning NO will
prevent the segue with that identifier to get fired. But preventing a segue without giving
a clue to the user as to why you did so is not a good user experience. Because of this,
when the text field is empty and the user attempts to press the button to go to the next
screen, we will display the dialog in Figure 6-7.

6.2. Passing Data from One Screen to Another | 321

Figure 6-7. The user cannot go to the next screen without entering some text first

So let’s go ahead and implement our first view controller up to this point. I’m assuming
that you have already connected your text field to your view controller as an outlet of
the controller so that you can access its text property when the segue is about to happen.

#import "ViewController.h"

#import "SecondViewController.h"

@interface ViewController () <UITextFieldDelegate>

@property (weak, nonatomic) IBOutlet UITextField *textField;

@end

@implementation ViewController

- (void) viewDidLoad{

 [super viewDidLoad];

 self.title = @"First Screen";

}

- (BOOL) textFieldShouldReturn:(UITextField *)textField{

322 | Chapter 6: Storyboards

 [textField resignFirstResponder];

 return YES;

}

- (void) displayTextIsRequired{

 UIAlertView *alert = [[UIAlertView alloc]

 initWithTitle:nil

 message:@"Please enter some text in the text field"

 delegate:nil

 cancelButtonTitle:nil

 otherButtonTitles:@"OK", nil];

 [alert show];

}

- (BOOL) shouldPerformSegueWithIdentifier:(NSString *)identifier

 sender:(id)sender{

 /* Check if there is some text and if there isn't, display a message

 to the user and prevent her from going to the next screen */

 if ([identifier isEqualToString:@"pushSecondViewController"]){

 if ([self.textField.text length] == 0){

 [self displayTextIsRequired];

 return NO;

 }

 };

 return YES;

}

- (void) prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender{

 if ([segue.identifier isEqualToString:@"pushSecondViewController"]){

 SecondViewController *nextController =

 segue.destinationViewController;

 [nextController setText:self.textField.text];

 }

}

@end

The prepareForSegue:sender: method of our view controller is calling the set
Text: instance method of SecondViewController, which is, as its name shows, our
second view controller. We will simply implement that method in this way:

#import "SecondViewController.h"

@interface SecondViewController ()

6.2. Passing Data from One Screen to Another | 323

@end

@implementation SecondViewController

- (void) setText:(NSString *)paramText{

 self.title = paramText;

}

@end

That’s about it. Now if you run your app and enter, for instance, Hello, World!, in the
text field and press the button, you will see something similar to that shown in Figure 6-8.

Figure 6-8. Our text is successfully set as the title of the second view controller

See Also
Recipe 6.1

324 | Chapter 6: Storyboards

6.3. Adding a Tab Bar Controller to a Storyboard

Problem
You want to create an application based on a tab bar controller using storyboards.

Solution
Create a single-view application in Xcode and embed your first view controller in a tab
bar controller. After that, drag and drop more view controllers onto your storyboards
and establish a connection between them and the array of view controllers inside your
tab bar controller.

Discussion
So you’ve created a single-view application project in Xcode and you want to start using
tab bar controllers in your app. In order to achieve that, simply follow these steps:

1. Select the view controller on your storyboard in Interface Builder. From the Editor
menu, choose Embed In, and then choose Tab Bar Controller, as shown in
Figure 6-9.

Figure 6-9. Embedding your root view controller in a tab bar controller

6.3. Adding a Tab Bar Controller to a Storyboard | 325

2. Now, from the Object Library in Interface Builder, drag and drop a new instance
of View Controller onto your storyboard.

3. Hold down the Ctrl key on your keyboard and drag and drop your mouse from
within the tab bar controller onto the new view controller that you created
(Figure 6-10), and in the dialog that appears on the screen, choose view control‐
lers under the Relationship Segues section (Figure 6-11).

Figure 6-10. Connecting your view controller to the tab bar controller

326 | Chapter 6: Storyboards

Figure 6-11. Associating your view controller with the array of view controllers in our
tab bar controller

Now run your app in iOS Simulator. At the bottom of the screen, you will now see two
items, as shown in Figure 6-12. Each one of these items represents one of your view
controllers. Now, if you are like me, the tab bar controller-based applications that you
create usually contain navigation controllers in each of the tab items. If you want to
enable that functionality, use the technique that you learned in Recipe 6.1 to embed your
view controllers in navigation controllers (see Figure 6-13).

Figure 6-12. View controllers are successfully showing in the tab bar controller

6.3. Adding a Tab Bar Controller to a Storyboard | 327

Figure 6-13. Embedding your view controllers in navigation controllers inside a tab bar
controller

See Also
Recipe 6.1

6.4. Introducing Custom Segue Transitions to Your
Storyboard

Problem
You want to introduce and use a new type of storyboard transition in your storyboard
files so that the move from one view controller to another is done in a custom way—
for instance, with a custom animation.

328 | Chapter 6: Storyboards

Solution
Subclass UIStoryboardSegue and override its perform method to do your work.

Discussion
Storyboards, by default, offer a few useful segue types, such as push and modal. These
are great, but sometimes you may wish to perform a custom transition from one view
to the other. In these cases, it’s best to use a custom segue object. Let’s create a segue,
then. What we are going to do here is allow the first view controller to display the second
view controller with a flip transition. To do this, follow these steps:

1. Create a project based on the Single View Application template in Xcode.

2. In your storyboard file, create a second view controller and place a button in the
center of the first view controller. Hold down the Ctrl button on your keyboard and
drag and drop from the button onto the second view controller. At this point, a
dialog will appear on your screen asking what type of transition you want to asso‐
ciate with this segue. In that dialog, choose “custom” (see Figure 6-14).

Figure 6-14. Associating a custom segue with the action of our button

3. Now select your segue, and in the Attributes Inspector in Interface Builder, change
the class name of your segue to MySegue (see Figure 6-15). Don’t worry if this class
doesn’t exist already. We are going to code this class in this recipe.

6.4. Introducing Custom Segue Transitions to Your Storyboard | 329

Figure 6-15. Assigning a custom class name to our segue

4. Now in Xcode, create a new Objective-C class inside your project, name that class
MySegue (matching the name you assigned in the previous step), and ensure that
this class is a subclass of UIStoryboardSegue. Once your class is created for you,
implement the perform method of the class in this way:

#import "MySegue.h"

@implementation MySegue

- (void) perform{

 UIViewController *source = self.sourceViewController;

 UIViewController *destination = self.destinationViewController;

 [UIView transitionFromView:source.view

 toView:destination.view

 duration:0.50f

 options:UIViewAnimationOptionTransitionFlipFromTop

 completion:^(BOOL finished) {

 NSLog(@"Transitioning is finished");

 }];

330 | Chapter 6: Storyboards

}

@end

That’s it; we are done. Now you can run your app and see how pressing the button in
the first view controller will fire your custom segue, which in turn will flip the second
view controller onto the screen. For this recipe, we are using the transitionFrom
View:toView:duration:options:completion: class method of UIView to do our tran‐
sition. This method accepts quite a few parameters, each of which is explained here:

transitionFromView

The view from which the transition has to start. In the context of our segue, this is
the source view controller’s view.

toView

The view to which the transition has to go. In our segue, this is the destination view
controller’s view.

duration

The duration of the animation in seconds.

options

The type of animation that you want to perform. This value is of type UIViewAni
mationOptions. If you want to see all the options available to you, press Command
+Shift+O on your keyboard, type UIViewAnimationOptions, and then press the
Enter key.

completion

A completion block that will get called once the transition is finished.

Before we wrap up this recipe, there is one thing to bear in mind. The work that you do
(your custom transition) has to be done in the perform instance method of your custom
segue class. This means that, for instance, you cannot display an alert view to the user
in this method and expect her to press a Yes or No button based on her decision, and
then perform the transition. That won’t work. So think about what you want your segue
to do and whether subclassing UIStoryboardSegue is the best option for you.

See Also
Recipe 6.0, “Introduction”;Recipe 6.1;

6.4. Introducing Custom Segue Transitions to Your Storyboard | 331

6.5. Placing Images and Other UI Components on
Storyboards

Problem
You want to be able to place images, buttons, and other UI components onto your
storyboard files.

Solution
Use the Object Library in Interface Builder to look for various UI components. When
you are ready to place them on your storyboard files, simply drag and drop them. You
can then use the Attributes Inspector to configure those components.

Discussion
Let’s say that you want to place some images on your storyboard. In Interface Builder,
while you have your storyboard file open, hold down Ctrl+Alt+Command+3 on your
keyboard to get to the Object Library. In the Object Library, find the Image View com‐
ponent (Figure 6-16) and drag and drop it onto your main view controller. Now press
Alt+Command+4 simultaneously on your keyboard to open the Attributes Inspector.
In this panel, you can now configure your image view. To add an image to this image
view, simply add that image to your project. From the Attributes Inspector, while your
image view is selected, set its image property, as shown in Figure 6-17.

Every now and then, you may find yourself in a situation where you just cannot find
the right UI component in the Object Library but you are sure that the component exists.
I know that I have been in that situation. The Object Library gives you a really nice
search box where you can just type the name of the component that you are interested
in. To get to the search box, make sure that you have already selected the Object Library
by pressing its Ctrl+Alt+Command+3 shortcut, and then simply press Command+Alt
+L (see Figure 6-18).

332 | Chapter 6: Storyboards

Figure 6-16. Image view UI component in the Object Library

Figure 6-17. Setting the image property of an image view in the Attributes Inspector in
Interface Builder

The Attributes Inspector allows you to configure most of the very important properties
of various UI components that you drop onto your storyboards, but for certain things,
you may still need to dive into code.

6.5. Placing Images and Other UI Components on Storyboards | 333

Figure 6-18. The search box in the Object Library allows you to quickly find the object
you are looking for

See Also
Recipe 6.0, “Introduction”

334 | Chapter 6: Storyboards

CHAPTER 7

Concurrency

7.0. Introduction
Concurrency is achieved when two or more tasks are executed at the same time. Modern
operating systems have the ability to run tasks concurrently, even on one CPU. They
achieve this by giving every task a certain time slice from the CPU. For instance, if there
are 10 tasks to be executed in one second, all with the same priority, the operating system
will divide 1,000 milliseconds by 10 (tasks) and will give each task 100 milliseconds of
the CPU time. That means all these tasks will then be executed in the same second, and
they will appear to have been executed concurrently.

However, with advances in technology, now we have CPUs with more than one core.
This means that the CPU is truly capable of executing tasks at the same time. The
operating system will dispatch the tasks to the CPU and wait until they are done. It’s
that simple!

Grand Central Dispatch, or GCD for short, is a low-level C API that works with block
objects. The real use for GCD is to dispatch tasks to multiple cores without making you,
the programmer, worry about which core is executing which task. On Mac OS X, mul‐
ticore devices, including laptops, have been available to users for quite some time. With
the introduction of multicore devices such as the new iPad, programmers can write
amazing multicore-aware multithreaded apps for iOS.

At the heart of GCD are dispatch queues. Dispatch queues, as we will soon see, are pools
of threads managed by GCD on the host operating system, whether iOS or Mac OS X.
You will not be working with these threads directly. You will just work with dispatch
queues, dispatching tasks to these queues and asking the queues to invoke your tasks.
GCD offers several options for running tasks: synchronously, asynchronously, after a
certain delay, etc.

335

To start using GCD in your apps, you don’t have to import any special library into your
project. Apple has already incorporated GCD into various frameworks, including Core
Foundation and Cocoa/Cocoa Touch. All methods and data types available in GCD start
with a dispatch_ keyword. For instance, dispatch_async allows you to dispatch a task
on a queue for asynchronous execution, whereas dispatch_after allows you to run a
block of code after a given delay.

Before GCD and operations, programmers had to create their own threads to perform
tasks in parallel. For instance, an iOS developer would create a thread similar to this to
perform an operation 1,000 times:

- (void) doCalculation{

 /* Do your calculation here */

}

- (void) calculationThreadEntry{

 @autoreleasepool {

 NSUInteger counter = 0;

 while ([[NSThread currentThread] isCancelled] == NO){

 [self doCalculation];

 counter++;

 if (counter >= 1000){

 break;

 }

 }

 }

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 /* Start the thread */

 [NSThread detachNewThreadSelector:@selector(calculationThreadEntry)

 toTarget:self

 withObject:nil];

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

The programmer has to start the thread manually and then create the required structure
for the thread (entry point, autorelease pool, and thread’s main loop). When we write
the same code with GCD, we really won’t have to do much. We will simply place our
code in a block object and dispatch that block object to GCD for execution. Whether

336 | Chapter 7: Concurrency

that code gets executed on the main thread or any other thread depends on us. Here is
an example:

dispatch_queue_t queue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

size_t numberOfIterations = 1000;dispatch_async(queue, ^(void) {

 dispatch_apply(numberOfIterations, queue, ^(size_t iteration){

 /* Perform the operation here */

 });

});

In this chapter, you will learn all there is to know about GCD and how to use it to write
modern multithreaded apps for iOS and Mac OS X that will achieve blazing performance
on multicore devices such as the iPad 2.

We will be working with dispatch queues a lot, so please make sure that you fully un‐
derstand the concept behind them. There are three types of dispatch queues:

Main queue
This queue performs all its tasks on the main thread, which is where Cocoa and
Cocoa Touch require programmers to call all UI-related methods. Use the dis
patch_get_main_queue function to retrieve the handle to the main queue.

Concurrent queues
These are queues that you can retrieve from GCD in order to execute asynchronous
or synchronous tasks. Multiple concurrent queues can be executing multiple tasks
in parallel, without breaking a sweat. No more thread management, yippee! Use the
dispatch_get_global_queue function to retrieve the handle to a concurrent
queue.

Serial queues
These are queues that, no matter whether you submit synchronous or asynchronous
tasks to them, will always execute their tasks in a first-in-first-out (FIFO) fashion,
meaning that they can only execute one block object at a time. However, they do
not run on the main thread and therefore are perfect for a series of tasks that have
to be executed in strict order without blocking the main thread. Use the dis
patch_queue_create function to create a serial queue.

There are two ways to submit tasks to dispatch queues:

• Block objects (see Recipe 7.1)

• C functions

Block objects are the best way of utilizing GCD and its enormous power. Some GCD
functions have been extended to allow programmers to use C functions instead of block
objects. However, the truth is that only a limited set of GCD functions allow program‐

7.0. Introduction | 337

mers to use C functions, so please do read the recipe about block objects (Recipe 7.1)
before proceeding any further.

C functions that have to be supplied to various GCD functions should be of type dis
patch_function_t, which is defined as follows in the Apple libraries:

typedef void (*dispatch_function_t)(void *);

So if we want to create a function named, for instance, myGCDFunction, we would have
to implement it in this way:

void myGCDFunction(void * paramContext){

 /* Do the work here */

}

The paramContext parameter refers to the context that GCD allows
programmers to pass to their C functions when they dispatch tasks to
them. We will learn about this shortly.

Block objects that get passed to GCD functions don’t always follow the same structure.
Some must accept parameters and some shouldn’t, but none of the block objects sub‐
mitted to GCD return a value.

At any moment during the lifetime of your application, you can use multiple dispatch
queues at the same time. Your system has only one main queue, but you can create as
many serial dispatch queues as you want (within reason, of course), for whatever func‐
tionality you require for your app. You can also retrieve multiple concurrent queues and
dispatch your tasks to them. Tasks can be handed to dispatch queues in two forms: block
objects or C functions, as was explained earlier.

Block objects are packages of code that usually appear in the form of methods in
Objective-C. Block objects, together with Grand Central Dispatch (GCD), create a har‐
monious environment in which you can deliver high-performance multithreaded apps
in iOS and Mac OS X. What’s so special about block objects and GCD, you might ask?
It’s simple: no more threads! All you have to do is put your code in block objects and
ask GCD to take care of the execution of that code for you.

Perhaps the most important difference between block objects and tra‐
ditional function pointers is that block objects copy the values of lo‐
cal variables accessed inside the block objects and keep those copies
for local use. If the values of those variables change outside the scope
of the block object, you can be sure that the block object still keeps its
own copy of the variable. We will discuss this in more detail soon.

338 | Chapter 7: Concurrency

Block objects in Objective-C are what the programming field calls first-class objects.
This means you can build code dynamically, pass a block object to a method as a pa‐
rameter, and return a block object from a method. All of these things make it easier to
choose what you want to do at runtime and change the activity of a program. In par‐
ticular, block objects can be run in individual threads by GCD. Being Objective-C ob‐
jects, block objects can be treated like any other object.

Block objects are sometimes referred to as closures.

Constructing block objects is similar to constructing traditional C functions, as we will
see in Recipe 7.1. Block objects can have return values and can accept parameters.
Block objects can be defined inline or treated as a separate block of code, similar to a C
function. When created inline, the scope of variables accessible to block objects is con‐
siderably different from when a block object is implemented as a separate block of code.

GCD works with block objects. When performing tasks with GCD, you can pass a block
object whose code can get executed synchronously or asynchronously, depending on
which methods you use in GCD. Thus, you can create a block object that is responsible
for downloading a URL passed to it as a parameter. That single block object can then
be used in various places in your app synchronously or asynchronously, depending on
how you would like to run it. You don’t have to make the block object synchronous or
asynchronous per se; you will simply call it with synchronous or asynchronous GCD
methods and the block object will just work.

Block objects are quite new to programmers writing iOS and OS X apps. In fact, block
objects are not as popular as threads yet, perhaps because their syntax is a bit different
from pure Objective-C methods and more complicated. Nonetheless, block objects are
enormously powerful, and Apple is making a big push toward incorporating them into
Apple libraries. You can already see these additions in classes such as NSMutable
Array, where programmers can sort the array using a block object.

This chapter is dedicated entirely to constructing and using block objects in iOS and
Mac OS X apps, using GCD for dispatching tasks to the operating system, threads and
timers. I would like to stress that the only way to get used to block objects’ syntax is to
write a few of them for yourself. Have a look at the sample code in this chapter and try
implementing your own block objects.

Here, you will learn the basics of block objects, followed by some more advanced sub‐
jects, such as Grand Central Dispatch, Threads, Timers, Operations, and Operation
Queues. You will understand everything you need to know about block objects before
moving to the Grand Central Dispatch material. From my experience, the best way to

7.0. Introduction | 339

learn block objects is through examples, so you will see a lot of them in this chapter.
Make sure you try the examples for yourself in Xcode to really get the syntax of block
objects.

Operations can be configured to run a block of code synchronously or asynchronously.
You can manage operations manually or place them on operation queues, which facilitate
concurrency so that you do not need to think about the underlying thread management.
In this chapter, you will see how to use operations and operation queues, as well as basic
threads and timers, to synchronously and asynchronously execute tasks in applications.

Cocoa provides three different types of operations:

Block operations
These facilitate the execution of one or more block objects.

Invocation operations
These allow you to invoke a method in another, currently existing object.

Plain operations
These are plain operation classes that need to be subclassed. The code to be executed
will be written inside the main method of the operation object.

Operations, as mentioned before, can be managed with operation queues, which have
the data type NSOperationQueue. After instantiating any of the aforementioned oper‐
ation types (block, invocation, or plain operation), you can add them to an operation
queue and have the queue manage the operation.

An operation object can have dependencies on other operation objects and be instructed
to wait for the completion of one or more operations before executing the task associated
with it. Unless you add a dependency, you have no control over the order in which
operations run. For instance, adding them to a queue in a certain order does not guar‐
antee that they will execute in that order, despite the use of the term queue.

There are a few important things to bear in mind while working with operation queues
and operations:

• Operations, by default, run on the thread that starts them, using their start instance
method. If you want the operations to work asynchronously, you will have to use
either an operation queue or a subclass NSOperation and detach a new thread on
the main instance method of the operation.

• An operation can wait for the execution of another operation to finish before it
starts itself. Be careful not to create interdependent operations, a common mistake
known as a deadlock. In other words, do not tell operation A to depend on operation
B if B already depends on A; this will cause both to wait forever, taking up memory
and possibly hanging your application.

340 | Chapter 7: Concurrency

• Operations can be cancelled. So, if you have subclassed NSOperation to create cus‐
tom operation objects, you have to make sure to use the isCancelled instance
method to check whether the operation has been cancelled before executing the
task associated with the operation. For instance, if your operation’s task is to check
for the availability of an Internet connection every 20 seconds, it must call the
isCancelled instance method at the beginning of each run to make sure it has not
been cancelled before attempting to check for an Internet connection again. If the
operation takes more than a few seconds (such as when you download a file), you
should also check isCancelled periodically while running the task.

• Operation objects are key-value observing (KVO) compliant on various key paths
such as isFinished, isReady, and isExecuting. We will be discussing Key Value
Coding and Key Value Observing in a later chapter.

• If you plan to subclass NSOperation and provide a custom implementation for the
operation, you must create your own autorelease pool in the main method of the
operation, which gets called from the start method. We will discuss this in detail
later in this chapter.

• Always keep a reference to the operation objects you create. The concurrent nature
of operation queues might make it impossible for you to retrieve a reference to an
operation after it has been added to the queue.

Threads and timers are objects, subclassing NSObject. Spawning a thread requires more
work than creating timers, and setting up a thread loop itself is more difficult than simply
listening for a timer firing on a selector. When an application runs under iOS, the op‐
erating system creates at least one thread for that application, called the main thread.
Every thread and timer must be added to a run loop. A run loop, as its name implies, is
a loop during which different events can occur, such as a timer firing or a thread running.
Discussion of run loops is beyond the scope of this chapter, but we will refer to them
here and there in recipes.

Think of a run loop as a kind of loop that has a starting point, a condition for finishing,
and a series of events to process during its lifetime. A thread or timer is attached to a
run loop and in fact requires a run loop to function.

The main thread of an application is the thread that handles the UI events. If you perform
a long-running task on the main thread, you will notice that the UI of your application
will become unresponsive or slow to respond. To avoid this, you can create separate
threads and/or timers, each of which performs its own task (even if it is a long-running
task) but will not block the main thread.

7.0. Introduction | 341

7.1. Constructing Block Objects

Problem
You want to be able to write your own block objects or use block objects with iOS SDK
classes.

Solution
You just need to understand the basic differences between the syntax of block objects
and classic C functions. These differences are explained in the Discussion section.

Discussion
Block objects can either be inline or coded as independent blocks of code. Let’s start
with the latter type. Suppose you have a method in Objective-C that accepts two integer
values of type NSInteger and returns the difference of the two values, by subtracting
one from the other, as an NSInteger:

- (NSInteger) subtract:(NSInteger)paramValue

 from:(NSInteger)paramFrom{

 return paramFrom - paramValue;

}

That was very simple, wasn’t it? Now let’s translate this Objective-C code to a pure C
function that provides the same functionality to get one step closer to learning the syntax
of block objects:

NSInteger subtract(NSInteger paramValue, NSInteger paramFrom){

 return paramFrom - paramValue;

}

You can see that the C function is quite different in syntax from its Objective-C coun‐
terpart. Now let’s have a look at how we could code the same function as a block object:

NSInteger (^subtract)(NSInteger, NSInteger) = ^(NSInteger paramValue,

 NSInteger paramFrom){

 return paramFrom - paramValue;

};

Before I go into details about the syntax of block objects, let me show you a few more
examples. Suppose we have a function in C that takes a parameter of type NSUInteger

342 | Chapter 7: Concurrency

(an unsigned integer) and returns it as a string of type NSString. Here is how we im‐
plement this in C:

NSString* intToString (NSUInteger paramInteger){

 return [NSString stringWithFormat:@"%lu",

 (unsigned long)paramInteger];

}

To learn about formatting strings with system-independent format
specifiers in Objective-C, please refer to the String Programming
Guide in the iOS Developer Library on Apple’s website.

The block object equivalent of this C function is shown in Example 7-1.

Example 7-1. Example block object defined as function

NSString* (^intToString)(NSUInteger) = ^(NSUInteger paramInteger){

 NSString *result = [NSString stringWithFormat:@"%lu",

 (unsigned long)paramInteger];

 return result;

};

The simplest form of an independent block object would be a block object that returns
void and does not take in any parameters:

void (^simpleBlock)(void) = ^{

 /* Implement the block object here */

};

Block objects can be invoked in the exact same way as C functions. If they have any
parameters, you pass those as you would for a C function, and any return value can be
retrieved exactly as you would retrieve a C function’s return value. Here is an example:

NSString* (^intToString)(NSUInteger) = ^(NSUInteger paramInteger){

 NSString *result = [NSString stringWithFormat:@"%lu",

 (unsigned long)paramInteger];

 return result;

};

- (void) callIntToString{

 NSString *string = intToString(10);

7.1. Constructing Block Objects | 343

http://bit.ly/1bHamO2
http://bit.ly/1bHamO2

 NSLog(@"string = %@", string);

}

The callIntToString Objective-C method is calling the intToString block object by
passing the value 10 as the only parameter to this block object and placing the return
value of this block object in the string local variable.

Now that we know how to write block objects as independent blocks of code, let’s have
a look at passing block objects as parameters to Objective-C methods. We will have to
think a bit abstractly to understand the goal of the following example.

Suppose we have an Objective-C method that accepts an integer and performs some
kind of transformation on it, which may change depending on what else is happening
in the program. We know that we’ll have an integer as input and a string as output, but
we’ll leave the exact transformation up to a block object that can be different each time
the method runs. This method, therefore, will accept as parameters both the integer to
be transformed and the block that will transform it.

For the block object, we’ll use the same intToString block object that we implemented
earlier in Example 7-1. Now we need an Objective-C method that will accept an un‐
signed integer parameter and a block object as its parameter. The unsigned integer
parameter is easy, but how do we tell the method that it has to accept a block object of
the same type as the intToString block object? First we typedef the signature of the
intToString block object, which tells the compiler what parameters the block object
should accept:

typedef NSString* (^IntToStringConverter)(NSUInteger paramInteger);

This typedef just tells the compiler that block objects that accept an integer parameter
and return a string can simply be represented by an identifier named IntToString
Converter. Now let’s go ahead and write the Objective-C method that accepts both an
integer and a block object of type IntToStringConverter:

- (NSString *) convertIntToString:(NSUInteger)paramInteger

 usingBlockObject:(IntToStringConverter)paramBlockObject{

 return paramBlockObject(paramInteger);

}

All we have to do now is call the convertIntToString: method with the block object
of choice (Example 7-2).

Example 7-2. Calling the block object in another method

- (void) doTheConversion{

 NSString *result = [self convertIntToString:123

 usingBlockObject:intToString];

344 | Chapter 7: Concurrency

 NSLog(@"result = %@", result);

}

Now that we know something about independent block objects, let’s turn to inline block
objects. In the doTheConversion method we just saw, we passed the intToString block
object as the parameter to the convertIntToString:usingBlockObject: method.
What if we didn’t have a block object ready to be passed to this method? Well, that
wouldn’t be a problem. As mentioned before, block objects are first-class functions and
can be constructed at runtime. Let’s have a look at an alternative implementation of the
doTheConversion method (Example 7-3).

Example 7-3. Example block object defined as a function

- (void) doTheConversion{

 IntToStringConverter inlineConverter = ^(NSUInteger paramInteger){

 NSString *result = [NSString stringWithFormat:@"%lu",

 (unsigned long)paramInteger];

 return result;

 };

 NSString *result = [self convertIntToString:123

 usingBlockObject:inlineConverter];

 NSLog(@"result = %@", result);

Compare Example 7-3 to Example 7-1. I have removed the initial code that provided
the block object’s signature, which consisted of a name and argument, (^intToString)
(NSUInteger). I left the rest of the block object intact; it is now an anonymous object.
But this doesn’t mean I have no way to refer to the block object. I assign it using an
equals sign to a type and a name: IntToStringConverter inlineConverter. Now I can
use the data type to enforce proper use in methods and use the name to actually pass
the block object.

In addition to constructing block objects inline as just shown, we can construct a block
object while passing it as a parameter:

- (void) doTheConversion{

 NSString *result =

 [self convertIntToString:123

 usingBlockObject:^NSString *(NSUInteger paramInteger) {

 NSString *result = [NSString stringWithFormat:@"%lu",

 (unsigned long)paramInteger];

 return result;

 }];

7.1. Constructing Block Objects | 345

 NSLog(@"result = %@", result);

}

Compare this example with Example 7-2. Both methods use a block object through the
usingBlockObject syntax. But whereas the earlier version referred to a previously de‐
clared block object by name (intToString), this one simply creates a block object on
the fly. In this code, we constructed an inline block object that gets passed to the con
vertIntToString:usingBlockObject: method as the second parameter.

7.2. Accessing Variables in Block Objects

Problem
You want to understand the difference between accessing variables in Objective-C
methods and accessing those variables in block objects.

Solution
Here is a brief summary of what you must know about variables in block objects:

• Local variables in block objects work exactly the same as in Objective-C methods.

• For inline block objects, local variables constitute not only variables defined within
the block, but also the variables that have been defined in the method that imple‐
ments that block object. (Examples will come shortly.)

• You cannot refer to self in independent block objects implemented in an
Objective-C class. If you need to access self, you must pass that object to the block
object as a parameter. We will see an example of this soon.

• You can refer to self in an inline block object only if self is present in the lexical
scope inside which the block object is created.

• For inline block objects, local variables that are defined inside the block object’s
implementation can be read from and written to. In other words, the block object
has read/write access to variables defined inside the block object’s body.

• For inline block objects, variables local to the Objective-C method that implement
that block can only be read from, not written to. There is an exception, though: a
block object can write to such variables if they are defined with the __block storage
type. We will see an example of this as well.

• Suppose you have an object of type NSObject and inside that object’s implementa‐
tion you are using a block object in conjunction with GCD. Inside this block object,
you will have read/write access to declared properties of that NSObject inside which
your block is implemented.

346 | Chapter 7: Concurrency

• You can access declared properties of your NSObject inside independent block ob‐
jects only if you use the setter and getter methods of these properties. You cannot
access declared properties of an object using dot notation inside an independent
block object.

Discussion
Let’s first see how we can use variables that are local to the implementation of two block
objects. One is an inline block object and the other an independent block object:

void (^independentBlockObject)(void) = ^(void){

 NSInteger localInteger = 10;

 NSLog(@"local integer = %ld", (long)localInteger);

 localInteger = 20;

 NSLog(@"local integer = %ld", (long)localInteger);

};

Invoking this block object, the values we assigned are printed to the console window:

local integer = 10

local integer = 20

So far, so good. Now let’s have a look at inline block objects and variables that are local
to them:

- (void) simpleMethod{

 NSUInteger outsideVariable = 10;

 NSMutableArray *array = [[NSMutableArray alloc]

 initWithObjects:@"obj1",

 @"obj2", nil];

 [array sortUsingComparator:^NSComparisonResult(id obj1, id obj2) {

 NSUInteger insideVariable = 20;

 NSLog(@"Outside variable = %lu", (unsigned long)outsideVariable);

 NSLog(@"Inside variable = %lu", (unsigned long)insideVariable);

 /* Return value for our block object */

 return NSOrderedSame;

 }];

}

7.2. Accessing Variables in Block Objects | 347

The sortUsingComparator: instance method of NSMutableArray at‐
tempts to sort a mutable array. The goal of this example code is just to
demonstrate the use of local variables, so you don’t have to know what
this method actually does.

The block object can read and write its own insideVariable local variable. However,
the block object has read-only access to the outsideVariable variable by default. In
order to allow the block object to write to outsideVariable, we must prefix outside
Variable with the __block storage type:

- (void) simpleMethod{

 __block NSUInteger outsideVariable = 10;

 NSMutableArray *array = [[NSMutableArray alloc]

 initWithObjects:@"obj1",

 @"obj2", nil];

 [array sortUsingComparator:^NSComparisonResult(id obj1, id obj2) {

 NSUInteger insideVariable = 20;

 outsideVariable = 30;

 NSLog(@"Outside variable = %lu", (unsigned long)outsideVariable);

 NSLog(@"Inside variable = %lu", (unsigned long)insideVariable);

 /* Return value for our block object */

 return NSOrderedSame;

 }];

}

Accessing self in inline block objects is fine as long as self is defined in the lexical
scope inside which the inline block object is created. For instance, in this example, the
block object will be able to access self, since simpleMethod is an instance method of
an Objective-C class:

- (void) simpleMethod{

 NSMutableArray *array = [[NSMutableArray alloc]

 initWithObjects:@"obj1",

 @"obj2", nil];

 [array sortUsingComparator:^NSComparisonResult(id obj1, id obj2) {

 NSLog(@"self = %@", self);

 /* Return value for our block object */

348 | Chapter 7: Concurrency

 return NSOrderedSame;

 }];

}

You cannot, without a change in your block object’s implementation, access self in an
independent block object. Attempting to compile this code will give you a compile-time
error:

void (^incorrectBlockObject)(void) = ^{

 NSLog(@"self = %@", self); /* self is undefined here */

};

If you want to access self in an independent block object, simply pass the object that
self represents as a parameter to your block object:

void (^correctBlockObject)(id) = ^(id self){

 NSLog(@"self = %@", self);

};

- (void) callCorrectBlockObject{

 correctBlockObject(self);

}

You don’t have to assign the name self to this parameter. You can
simply call this parameter anything else. However, if you call this pa‐
rameter self, you can simply grab your block object’s code later and
place it in an Objective-C method’s implementation without having to
change every instance of your variable’s name to self for it to be
understood by the compiler.

Let’s have a look at declared properties and how block objects can access them. For inline
block objects, you can use dot notation to read from or write to declared properties of
self. For instance, let’s say we have a declared property of type NSString called string
Property in the class:

#import "AppDelegate.h"

@interface AppDelegate()

@property (nonatomic, copy) NSString *stringProperty;

@end

@implementation AppDelegate

Now we can simply access this property in an inline block object like so:

7.2. Accessing Variables in Block Objects | 349

- (void) simpleMethod{

 NSMutableArray *array = [[NSMutableArray alloc]

 initWithObjects:@"obj1",

 @"obj2", nil];

 [array sortUsingComparator:^NSComparisonResult(id obj1, id obj2) {

 NSLog(@"self = %@", self);

 self.stringProperty = @"Block Objects";

 NSLog(@"String property = %@", self.stringProperty);

 /* Return value for our block object */

 return NSOrderedSame;

 }];

}

In an independent block object, however, you cannot use dot notation to read from or
write to a declared property:

void (^incorrectBlockObject)(id) = ^(id self){

 NSLog(@"self = %@", self);

 /* Should use setter method instead of this */

 self.stringProperty = @"Block Objects"; /* Compile-time Error */

 /* Should use getter method instead of this */

 NSLog(@"self.stringProperty = %@",

 self.stringProperty); /* Compile-time Error */

};

Instead of dot notation in this scenario, use the getter and the setter methods of this
property:

void (^correctBlockObject)(id) = ^(id self){

 NSLog(@"self = %@", self);

 /* This will work fine */

 [self setStringProperty:@"Block Objects"];

 /* This will work fine as well */

 NSLog(@"self.stringProperty = %@",

 [self stringProperty]);

};

350 | Chapter 7: Concurrency

When it comes to inline block objects, there is one very important rule that you have to
remember: inline block objects copy the value for the variables in their lexical scope. If
you don’t understand what that means, don’t worry. Let’s have a look at an example:

typedef void (^BlockWithNoParams)(void);

- (void) scopeTest{

 NSUInteger integerValue = 10;

 BlockWithNoParams myBlock = ^{

 NSLog(@"Integer value inside the block = %lu",

 (unsigned long)integerValue);

 };

 integerValue = 20;

 /* Call the block here after changing the

 value of the integerValue variable */

 myBlock();

 NSLog(@"Integer value outside the block = %lu",

 (unsigned long)integerValue);

}

We are declaring an integer local variable and initially assigning the value of 10 to it.
We then implement the block object, but don’t call the block object yet. After the block
object is implemented, we simply change the value of the local variable that the block
object will later try to read when we call it. Right after changing the local variable’s value
to 20, we call the block object. You would expect the block object to print the value 20
for the variable, but it won’t. It will print 10, as you can see here:

Integer value inside the block = 10

Integer value outside the block = 20

What’s happening here is that the block object is keeping a read-only copy of the inte
gerValue variable for itself right where the block is implemented. You might be thinking:
why is the block object capturing a read-only value of the local variable integerValue?
The answer is simple, and we’ve already learned it in this section. Unless prefixed with
storage type __block, local variables in the lexical scope of a block object are just passed
to the block object as read-only variables. Therefore, to change this behavior, we could
change the implementation of the scopeTest method to prefix the integerValue vari‐
able with __block storage type, like so:

- (void) scopeTest{

 __block NSUInteger integerValue = 10;

 BlockWithNoParams myBlock = ^{

7.2. Accessing Variables in Block Objects | 351

 NSLog(@"Integer value inside the block = %lu",

 (unsigned long)integerValue);

 };

 integerValue = 20;

 /* Call the block here after changing the

 value of the integerValue variable */

 myBlock();

 NSLog(@"Integer value outside the block = %lu",

 (unsigned long)integerValue);

}

Now if we get the results from the console window after the scopeTest method is called,
we will see this:

Integer value inside the block = 20

Integer value outside the block = 20

This section should have given you sufficient information about using variables with
block objects. I suggest that you write a few block objects and use variables inside them,
assigning to them and reading from them, to get a better understanding of how block
objects use variables. Keep coming back to this section if you forget the rules that govern
variable access in block objects.

7.3. Invoking Block Objects

Problem
You’ve learned how to construct block objects, and now you want to execute your block
objects to get results.

Solution
Execute your block objects the same way you execute a C function, as shown in the
Discussion section.

Discussion
We’ve seen examples of invoking block objects in Recipes 7.1 and 7.2. This section
contains more concrete examples.

If you have an independent block object, you can simply invoke it just like you would
invoke a C function:

void (^simpleBlock)(NSString *) = ^(NSString *paramString){

 /* Implement the block object here and use the

352 | Chapter 7: Concurrency

 paramString parameter */

};

- (void) callSimpleBlock{

 simpleBlock(@"O'Reilly");

}

If you want to invoke an independent block object within another independent block
object, follow the same instructions by invoking the new block object just as you would
invoke a C method:

NSString *(^trimString)(NSString *) = ^(NSString *inputString){

 NSString *result = [inputString stringByTrimmingCharactersInSet:

 [NSCharacterSet whitespaceCharacterSet]];

 return result;

};

NSString *(^trimWithOtherBlock)(NSString *) = ^(NSString *inputString){

 return trimString(inputString);

};

- (void) callTrimBlock{

 NSString *trimmedString = trimWithOtherBlock(@" O'Reilly ");

 NSLog(@"Trimmed string = %@", trimmedString);

}

In this example, go ahead and invoke the callTrimBlock Objective-C method:

[self callTrimBlock];

The callTrimBlock method will call the trimWithOtherBlock block object, and the
trimWithOtherBlock block object will call the trimString block object in order to trim
the given string. Trimming a string is easy and can be done in one line of code, but this
example code shows how you can call block objects within block objects.

See Also
Recipe 7.1; Recipe 7.2

7.3. Invoking Block Objects | 353

7.4. Performing UI-Related Tasks with GCD

Problem
You are using GCD for concurrency, and you would like to know the best way of working
with UI-related APIs.

Solution
Use the dispatch_get_main_queue function.

Discussion
UI-related tasks have to be performed on the main thread, so the main queue is the only
candidate for UI task execution in GCD. We can use the dispatch_get_main_queue
function to get the handle to the main dispatch queue.

There are two ways of dispatching tasks to the main queue. Both are asynchronous,
letting your program continue even when the task is not yet executed:

dispatch_async function
Executes a block object on a dispatch queue.

dispatch_async_f function
Executes a C function on a dispatch queue.

The dispatch_sync method cannot be called on the main queue be‐
cause it will block the thread indefinitely and cause your application
to deadlock. All tasks submitted to the main queue through GCD must
be submitted asynchronously.

Let’s have a look at using the dispatch_async function. It accepts two parameters:

Dispatch queue handle
The dispatch queue on which the task has to be executed

Block object
The block object to be sent to the dispatch queue for asynchronous execution

Here is an example. This code will display an alert in iOS to the user, using the main
queue:

dispatch_queue_t mainQueue = dispatch_get_main_queue();

dispatch_async(mainQueue, ^(void) {

 [[[UIAlertView alloc] initWithTitle:@"GCD"

354 | Chapter 7: Concurrency

 message:@"GCD is amazing!"

 delegate:nil

 cancelButtonTitle:@"OK"

 otherButtonTitles:nil, nil] show];

});

As you’ve noticed, the dispatch_async GCD function has no param‐
eters or return value. The block object that is submitted to this func‐
tion must gather its own data in order to complete its task. In the code
snippet that we just saw, the alert view has all the values that it needs
to finish its task. However, this might not always be the case. In such
instances, you must make sure the block object submitted to GCD has
access in its scope to all the values that it requires.

Running this app in iOS Simulator, the user will get results similar to those shown in
Figure 7-1.

Figure 7-1. An alert displayed using asynchronous GCD calls

7.4. Performing UI-Related Tasks with GCD | 355

This might not seem very impressive, if you think about it. So what makes the main
queue truly interesting? The answer is simple: when you are getting the maximum per‐
formance from GCD to do some heavy calculation on concurrent or serial threads, you
might want to display the results to your user or move a component on the screen. For
that, you must use the main queue, because it is UI-related work. The functions shown
in this section are the only ways to get out of a serial or a concurrent queue while still
utilizing GCD to update your UI, so you can imagine how important they are.

Instead of submitting a block object for execution on the main queue, you can submit
a C function object. Submit all UI-related C functions for execution in GCD to the
dispatch_async_f function. We can get the same results as we got in Figure 7-1, using
C functions instead of block objects, with a few adjustments to the code.

As mentioned before, with the dispatch_async_f function, we can submit a pointer to
an application-defined context, which can then be used by the C function that gets called.
So let’s create a structure that holds values such as an alert view’s title and message, and
a cancel button’s title. When the app starts, we will put all the values in this structure
and pass it to the C function to display. Here is how we define the structure:

typedef struct{

 char *title;

 char *message;

 char *cancelButtonTitle;

} AlertViewData;

Now let’s go and implement a C function that we will later call with GCD. This C function
should expect a parameter of type void *, which we will then typecast to
AlertViewData *. In other words, we expect the caller of this function to pass us a
reference to the data for the alert view, encapsulated inside the AlertViewData structure:

void displayAlertView(void *paramContext){

 AlertViewData *alertData = (AlertViewData *)paramContext;

 NSString *title =

 [NSString stringWithUTF8String:alertData->title];

 NSString *message =

 [NSString stringWithUTF8String:alertData->message];

 NSString *cancelButtonTitle =

 [NSString stringWithUTF8String:alertData->cancelButtonTitle];

 [[[UIAlertView alloc] initWithTitle:title

 message:message

 delegate:nil

 cancelButtonTitle:cancelButtonTitle

 otherButtonTitles:nil, nil] show];

356 | Chapter 7: Concurrency

 free(alertData);

}

The reason we are freeing the context passed to us in here instead of
in the caller is that the caller is going to execute this C function asyn‐
chronously and cannot know when the C function will finish execut‐
ing. Therefore, the caller has to malloc enough space for the Alert
ViewData context, and the displayAlertView C function has to free
that space.

And now let’s call the displayAlertView function on the main queue and pass the
context (the structure that holds the alert view’s data) to it:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 dispatch_queue_t mainQueue = dispatch_get_main_queue();

 AlertViewData *context = (AlertViewData *)

 malloc(sizeof(AlertViewData));

 if (context != NULL){

 context->title = "GCD";

 context->message = "GCD is amazing.";

 context->cancelButtonTitle = "OK";

 dispatch_async_f(mainQueue,

 (void *)context,

 displayAlertView);

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

If you invoke the currentThread class method of the NSThread class, you will find out
that the block objects or the C functions you dispatch to the main queue are indeed
running on the main thread:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 dispatch_queue_t mainQueue = dispatch_get_main_queue();

 dispatch_async(mainQueue, ^(void) {

7.4. Performing UI-Related Tasks with GCD | 357

 NSLog(@"Current thread = %@", [NSThread currentThread]);

 NSLog(@"Main thread = %@", [NSThread mainThread]);

 });

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

The output of this code would be similar to that shown here:

Current thread = <NSThread: 0x4b0e4e0>{name = (null), num = 1}

Main thread = <NSThread: 0x4b0e4e0>{name = (null), num = 1}

Now that you know how to perform UI-related tasks using GCD, it is time we moved
to other subjects, such as performing tasks in parallel using concurrent queues (see
Recipes 7.5 and 7.6) and mixing the code with UI-related code if need be.

7.5. Executing Non-UI Related Tasks Synchronously
with GCD

Problem
You want to perform synchronous tasks that do not involve any UI-related code.

Solution
Use the dispatch_sync function.

Discussion
There are times when you want to perform tasks that have nothing to do with the UI
or that interact with the UI as well as doing other tasks that take up a lot of time. For
instance, you might want to download an image and display it to the user after it is
downloaded. The downloading process has absolutely nothing to do with the UI.

For any task that doesn’t involve the UI, you can use global concurrent queues in GCD.
These allow either synchronous or asynchronous execution. But synchronous execu‐
tion does not mean your program waits for the code to finish before continuing. It simply
means that the concurrent queue will wait until your task has finished before it continues
to the next block of code on the queue. When you put a block object on a concurrent
queue, your own program always continues right away without waiting for the queue
to execute the code. This is because concurrent queues, as their name implies, run their
code on threads other than the main thread. (There is one exception to this: when a task
is submitted to a concurrent or a serial queue using the dispatch_sync function, iOS

358 | Chapter 7: Concurrency

will, if possible, run the task on the current thread, which might be the main thread,
depending on where the code path is at the moment. This is an optimization that has
been programmed on GCD, as we shall soon see.)

If you submit a task to a concurrent queue synchronously, and at the same time submit
another synchronous task to another concurrent queue, these two synchronous tasks
will run asynchronously in relation to each other because they are running two different
concurrent queues. It’s important to understand this because sometimes, as we’ll see, you
want to make sure task A finishes before task B starts. To ensure that, submit them
synchronously to the same queue.

You can perform synchronous tasks on a dispatch queue using the dispatch_sync
function. All you have to do is provide it with the handle of the queue that has to run
the task and a block of code to execute on that queue.

Let’s look at an example. It prints the integers 1 to 1,000 twice, one complete sequence
after the other, without blocking the main thread. We can create a block object that does
the counting for us and synchronously call the same block object twice:

void (^printFrom1To1000)(void) = ^{

 NSUInteger counter = 0;

 for (counter = 1;

 counter <= 1000;

 counter++){

 NSLog(@"Counter = %lu - Thread = %@",

 (unsigned long)counter,

 [NSThread currentThread]);

 }

};

Now let’s go and invoke this block object using GCD:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 dispatch_queue_t concurrentQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_sync(concurrentQueue, printFrom1To1000);

 dispatch_sync(concurrentQueue, printFrom1To1000);

 // Override point for customization after application launch.

 [self.window makeKeyAndVisible];

 return YES;

}

7.5. Executing Non-UI Related Tasks Synchronously with GCD | 359

If you run this code, you might notice the counting taking place on the main thread,
even though you’ve asked a concurrent queue to execute the task. It turns out this is an
optimization by GCD. The dispatch_sync function will use the current thread—the
thread you’re using when you dispatch the task—whenever possible, as a part of an
optimization that has been programmed into GCD. Here is what Apple says about it:

As an optimization, this function invokes the block on the current thread when possible.

—Grand Central Dispatch (GCD)
Reference

To execute a C function instead of a block object, synchronously, on a dispatch queue,
use the dispatch_sync_f function. Let’s simply translate the code we’ve written for the
printFrom1To1000 block object to its equivalent C function, like so:

void printFrom1To1000(void *paramContext){

 NSUInteger counter = 0;

 for (counter = 1;

 counter <= 1000;

 counter++){

 NSLog(@"Counter = %lu - Thread = %@",

 (unsigned long)counter,

 [NSThread currentThread]);

 }

}

And now we can use the dispatch_sync_f function to execute the print

From1To1000 function on a concurrent queue, as demonstrated here:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 dispatch_queue_t concurrentQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_sync_f(concurrentQueue,

 NULL,

 printFrom1To1000);

 dispatch_sync_f(concurrentQueue,

 NULL,

 printFrom1To1000);

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

360 | Chapter 7: Concurrency

The first parameter of the dispatch_get_global_queue function specifies the priority
of the concurrent queue that GCD has to retrieve for the programmer. The higher the
priority, the more CPU timeslices will be provided to the code getting executed on that
queue. You can use any of these values for the first parameter to the dispatch_get_glob
al_queue function:

DISPATCH_QUEUE_PRIORITY_LOW

Fewer timeslices will be applied to your task than normal tasks.

DISPATCH_QUEUE_PRIORITY_DEFAULT

The default system priority for code execution will be applied to your task.

DISPATCH_QUEUE_PRIORITY_HIGH

More timeslices will be applied to your task than normal tasks.

The second parameter of the dispatch_get_global_queue function is
reserved, and you should always pass the value 0 to it.

In this section you saw how you can dispatch tasks to concurrent queues for synchro‐
nous execution. The next section shows asynchronous execution on concurrent queues,
while Recipe 7.10 will show you how to execute tasks synchronously and asynchro‐
nously on serial queues that you create for your applications.

See Also
Recipe 7.6; Recipe 7.10

7.6. Executing Non-UI Related Tasks Asynchronously with
GCD

Problem
You want to be able to execute non-UI related tasks asynchronously, with the help of
GCD.

Solution
This is where GCD can show its true power: executing blocks of code asynchronously
on the main, serial, or concurrent queues. I promise that, by the end of this section, you
will be completely convinced that GCD is the future of multithread applications, com‐
pletely replacing threads in modern apps.

7.6. Executing Non-UI Related Tasks Asynchronously with GCD | 361

In order to execute asynchronous tasks on a dispatch queue, you must use one of these
functions:

dispatch_async

Submits a block object to a dispatch queue (both specified by parameters) for asyn‐
chronous execution.

dispatch_async_f

Submits a C function to a dispatch queue, along with a context reference (all three
specified by parameters), for asynchronous execution.

Discussion
Let’s have a look at a real example. We’ll write an iOS app that is able to download an
image from a URL on the Internet. After the download is finished, the app should display
the image to the user. Here is the plan and how we will use what we’ve learned so far
about GCD in order to accomplish it:

1. We are going to launch a block object asynchronously on a concurrent queue.

2. Once in this block, we will launch another block object synchronously, using the
dispatch_sync function, to download the image from a URL. We do this because
we want the rest of the code in this concurrent queue to wait until the image is
downloaded. Therefore, we are only making the concurrent queue wait; not the rest
of the queues. Synchronously downloading a URL from an asynchronous code
block holds up just the queue running the synchronous function, not the main
thread. The whole operation is still asynchronous when we look at it from the main
thread’s perspective. All we care about is that we are not blocking the main thread
while downloading the image.

3. Right after the image is downloaded, we will synchronously execute a block object
on the main queue (see Recipe 7.4) in order to display the image to the user on the
UI.

The skeleton for the plan is as simple as this:

- (void) viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 dispatch_queue_t concurrentQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_async(concurrentQueue, ^{

 __block UIImage *image = nil;

 dispatch_sync(concurrentQueue, ^{

 /* Download the image here */

 });

362 | Chapter 7: Concurrency

 dispatch_sync(dispatch_get_main_queue(), ^{

 /* Show the image to the user here on the main queue */

 });

 });

}

The second dispatch_sync call, which displays the image, will be executed on the queue
after the first synchronous call, which downloads the image. That’s exactly what we
want, because we have to wait for the image to be fully downloaded before we can display
it to the user. So after the image is downloaded, we execute the second block object, but
this time on the main queue.

Let’s download the image and display it to the user now. We will do this in the viewDi
dAppear: instance method of a view controller displayed in an iPhone app:

- (void) viewDidAppear:(BOOL)paramAnimated{

 [super viewDidAppear:paramAnimated];

 dispatch_queue_t concurrentQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_async(concurrentQueue, ^{

 __block UIImage *image = nil;

 dispatch_sync(concurrentQueue, ^{

 /* Download the image here */

 /* iPad's image from Apple's website. Wrap it into two

 lines as the URL is too long to fit into one line */

 NSString *urlAsString =

 @"http://images.apple.com/mobileme/features"\

 "/images/ipad_findyouripad_20100518.jpg";

 NSURL *url = [NSURL URLWithString:urlAsString];

 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:url];

 NSError *downloadError = nil;

 NSData *imageData = [NSURLConnection

 sendSynchronousRequest:urlRequest

 returningResponse:nil

 error:&downloadError];

 if (downloadError == nil &&

 imageData != nil){

 image = [UIImage imageWithData:imageData];

7.6. Executing Non-UI Related Tasks Asynchronously with GCD | 363

 /* We have the image. We can use it now */

 }

 else if (downloadError != nil){

 NSLog(@"Error happened = %@", downloadError);

 } else {

 NSLog(@"No data could get downloaded from the URL.");

 }

 });

 dispatch_sync(dispatch_get_main_queue(), ^{

 /* Show the image to the user here on the main queue*/

 if (image != nil){

 /* Create the image view here */

 UIImageView *imageView = [[UIImageView alloc]

 initWithFrame:self.view.bounds];

 /* Set the image */

 [imageView setImage:image];

 /* Make sure the image is not scaled incorrectly */

 [imageView setContentMode:UIViewContentModeScaleAspectFit];

 /* Add the image to this view controller's view */

 [self.view addSubview:imageView];

 } else {

 NSLog(@"Image isn't downloaded. Nothing to display.");

 }

 });

 });

}

As you can see in Figure 7-2, we have successfully downloaded the image and also
created an image view to display the image to the user on the UI.

Let’s move on to another example. Let’s say that we have an array of 10,000 random
numbers that have been stored in a file on disk and we want to load this array into
memory, sort the numbers in an ascending fashion (with the smallest number appearing
first in the list), and then display the list to the user. The control used for the display
depends on whether you are coding this for iOS (ideally, you’d use an instance of
UITableView) or Mac OS X (NSTableView would be a good candidate). Since we don’t
have an array, why don’t we create the array first, then load it, and finally display it?

364 | Chapter 7: Concurrency

Figure 7-2. Downloading and displaying images to users, using GCD

Here are two methods that will help us find the location where we want to save the array
of 10,000 random numbers on disk on the device:

- (NSString *) fileLocation{

 /* Get the document folder(s) */

 NSArray *folders =

 NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

 NSUserDomainMask,

 YES);

 /* Did we find anything? */

 if ([folders count] == 0){

 return nil;

 }

7.6. Executing Non-UI Related Tasks Asynchronously with GCD | 365

 /* Get the first folder */

 NSString *documentsFolder = folders[0];

 /* Append the filename to the end of the documents path */

 return [documentsFolder

 stringByAppendingPathComponent:@"list.txt"];

}

- (BOOL) hasFileAlreadyBeenCreated{

 BOOL result = NO;

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 if ([fileManager fileExistsAtPath:[self fileLocation]]){

 result = YES;

 }

 return result;

}

Now the important part: we want to save an array of 10,000 random numbers to disk if
and only if we have not created this array before on disk. If we have, we will load the
array from disk immediately. If we have not created this array before on disk, we will
first create it and then move on to loading it from disk. At the end, if the array was
successfully read from disk, we will sort the array in an ascending fashion and finally
display the results to the user on the UI. I will leave displaying the results to the user up
to you:

- (void) viewDidAppear:(BOOL)paramAnimated{

 [super viewDidAppear:paramAnimated];

 dispatch_queue_t concurrentQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 /* If we have not already saved an array of 10,000

 random numbers to the disk before, generate these numbers now

 and then save them to the disk in an array */

 dispatch_async(concurrentQueue, ^{

 NSUInteger numberOfValuesRequired = 10000;

 if ([self hasFileAlreadyBeenCreated] == NO){

 dispatch_sync(concurrentQueue, ^{

 NSMutableArray *arrayOfRandomNumbers =

 [[NSMutableArray alloc]

 initWithCapacity:numberOfValuesRequired];

 NSUInteger counter = 0;

 for (counter = 0;

366 | Chapter 7: Concurrency

 counter < numberOfValuesRequired;

 counter++){

 unsigned int randomNumber =

 arc4random() % ((unsigned int)RAND_MAX + 1);

 [arrayOfRandomNumbers addObject:

 [NSNumber numberWithUnsignedInt:randomNumber]];

 }

 /* Now let's write the array to disk */

 [arrayOfRandomNumbers writeToFile:[self fileLocation]

 atomically:YES];

 });

 }

 __block NSMutableArray *randomNumbers = nil;

 /* Read the numbers from disk and sort them in an

 ascending fashion */

 dispatch_sync(concurrentQueue, ^{

 /* If the file has now been created, we have to read it */

 if ([self hasFileAlreadyBeenCreated]){

 randomNumbers = [[NSMutableArray alloc]

 initWithContentsOfFile:[self fileLocation]];

 /* Now sort the numbers */

 [randomNumbers sortUsingComparator:

 ^NSComparisonResult(id obj1, id obj2) {

 NSNumber *number1 = (NSNumber *)obj1;

 NSNumber *number2 = (NSNumber *)obj2;

 return [number1 compare:number2];

 }];

 }

 });

 dispatch_async(dispatch_get_main_queue(), ^{

 if ([randomNumbers count] > 0){

 /* Refresh the UI here using the numbers in the

 randomNumbers array */

 }

 });

 });

}

7.6. Executing Non-UI Related Tasks Asynchronously with GCD | 367

There is a lot more to GCD than synchronous and asynchronous block or function
execution. In Recipe 7.9, you will learn how to group block objects together and prepare
them for execution on a dispatch queue. I also suggest that you have a look at Recipes
7.7 and 7.8 to learn about other functionalities that GCD can provide to programmers.

See Also
Recipe 7.4; Recipe 7.7; Recipe 7.8

7.7. Performing Tasks after a Delay with GCD

Problem
You want to be able to execute code, but after a certain amount of delay, which you
would like to specify using GCD.

Solution
Use the dispatch_after and dispatch_after_f functions.

Discussion
With Core Foundation, you can invoke a selector in an object after a given period of
time, using the performSelector:withObject:afterDelay: method of the NSObject
class. Here is an example:

- (void) printString:(NSString *)paramString{

 NSLog(@"%@", paramString);

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 [self performSelector:@selector(printString:)

 withObject:@"Grand Central Dispatch"

 afterDelay:3.0];

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 // Override point for customization after application launch.

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

368 | Chapter 7: Concurrency

In this example, we are asking the runtime to call the printString: method after three
seconds of delay. We can do the same thing in GCD using the dispatch_after and
dispatch_after_f functions, each of which is described here:

dispatch_after

Dispatches a block object to a dispatch queue after a given period of time, specified
in nanoseconds. These are the parameters that this function requires:

Delay in nanoseconds
The number of nanoseconds GCD has to wait on a given dispatch queue
(specified by the second parameter) before it executes the given block object
(specified by the third parameter).

Dispatch queue
The dispatch queue on which the block object (specified by the third parameter)
has to be executed after the given delay (specified by the first parameter).

Block object
The block object to be invoked after the specified number of nanoseconds on
the given dispatch queue. This block object should have no return value and
should accept no parameters (see Recipe 7.1).

dispatch_after_f

Dispatches a C function to GCD for execution after a given period of time, specified
in nanoseconds. This function accepts four parameters:

Delay in nanoseconds
The number of nanoseconds GCD has to wait on a given dispatch queue
(specified by the second parameter) before it executes the given function
(specified by the fourth parameter).

Dispatch queue
The dispatch queue on which the C function (specified by the fourth parame‐
ter) has to be executed after the given delay (specified by the first parameter).

Context
The memory address of a value in the heap to be passed to the C function (for
an example, see Recipe 7.4).

C function
The address of the C function that has to be executed after a certain period of
time (specified by the first parameter) on the given dispatch queue (specified
by the second parameter).

7.7. Performing Tasks after a Delay with GCD | 369

Although the delays are in nanoseconds, it is up to iOS to decide the
granularity of dispatch delay, and this delay might not be as precise as
what you hope when you specify a value in nanoseconds.

Let’s have a look at an example for dispatch_after first:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 double delayInSeconds = 2.0;

 dispatch_time_t delayInNanoSeconds =

 dispatch_time(DISPATCH_TIME_NOW, delayInSeconds * NSEC_PER_SEC);

 dispatch_queue_t concurrentQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_after(delayInNanoSeconds, concurrentQueue, ^(void){

 /* Perform your operations here */

 });

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 // Override point for customization after application launch.

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

As you can see, the nanoseconds delay parameter for both the dispatch_after and
dispatch_after_f functions has to be of type dispatch_time_t, which is an abstract
representation of absolute time. To get the value for this parameter, you can use the
dispatch_time function as demonstrated in this sample code. Here are the parameters
that you can pass to the dispatch_time function:

Base time
If this value was denoted with B and the delta parameter was denoted with D, the
resulting time from this function would be equal to B + D. You can set this param‐
eter’s value to DISPATCH_TIME_NOW to denote now as the base time and then specify
the delta from now using the delta parameter.

Delta to add to base time
This parameter is the nanoseconds that will get added to the base time parameter
to create the result of this function.

For example, to denote a time three seconds from now, you could write your code like
so:

370 | Chapter 7: Concurrency

dispatch_time_t delay =

dispatch_time(DISPATCH_TIME_NOW, 3.0f * NSEC_PER_SEC);

Or to denote half a second from now:

dispatch_time_t delay =

dispatch_time(DISPATCH_TIME_NOW, (1.0 / 2.0f) * NSEC_PER_SEC);

Now let’s have a look at how we can use the dispatch_after_f function:

void processSomething(void *paramContext){

 /* Do your processing here */

 NSLog(@"Processing...");

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 double delayInSeconds = 2.0;

 dispatch_time_t delayInNanoSeconds =

 dispatch_time(DISPATCH_TIME_NOW, delayInSeconds * NSEC_PER_SEC);

 dispatch_queue_t concurrentQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_after_f(delayInNanoSeconds,

 concurrentQueue,

 NULL,

 processSomething);

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 // Override point for customization after application launch.

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

See Also
Recipe 7.1; Recipe 7.4

7.8. Performing a Task Only Once with GCD

Problem
You want to make sure a piece of code gets executed only once during the lifetime of
your application, even if it gets called more than once from different places in your code
(such as the initializer for a singleton).

7.8. Performing a Task Only Once with GCD | 371

Solution
Use the dispatch_once function.

Discussion
Allocating and initializing a singleton is one of the tasks that has to happen exactly once
during the lifetime of an app. I am sure you know of other scenarios where you had to
make sure a piece of code was executed only once during the lifetime of your application.

GCD lets you specify an identifier for a piece of code when you attempt to execute it. If
GCD detects that this identifier has been passed to the framework before, it won’t execute
that block of code again. The function that allows you to do this is dispatch_once,
which accepts two parameters:

Token
A token of type dispatch_once_t that holds the token generated by GCD when
the block of code is executed for the first time. If you want a piece of code to be
executed at most once, you must specify the same token to this method whenever
it is invoked in the app. We will see an example of this soon.

Block object
The block object to get executed at most once. This block object returns no values
and accepts no parameters.

dispatch_once always executes its task on the current queue being
used by the code that issues the call, be it a serial queue, a concur‐
rent queue, or the main queue.

Here is an example:

static dispatch_once_t onceToken;

void (^executedOnlyOnce)(void) = ^{

 static NSUInteger numberOfEntries = 0;

 numberOfEntries++;

 NSLog(@"Executed %lu time(s)", (unsigned long)numberOfEntries);

};

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 dispatch_queue_t concurrentQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

372 | Chapter 7: Concurrency

 dispatch_once(&onceToken, ^{

 dispatch_async(concurrentQueue,

 executedOnlyOnce);

 });

 dispatch_once(&onceToken, ^{

 dispatch_async(concurrentQueue,

 executedOnlyOnce);

 });

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

As you can see, although we are attempting to invoke the executedOnlyOnce block
object twice, using the dispatch_once function, in reality GCD is executing this block
object only once, since the identifier passed to the dispatch_once function is the same
both times.

Apple, in its Cocoa Fundamentals Guide, shows programmers how to create a singleton.
This source code is quite old and has not yet been updated to use GCD and Automatic
Reference Counting. We can change this model to make use of GCD and the dis
patch_once function in order to initialize a shared instance of an object, like so:

#import "MySingleton.h"

@implementation MySingleton

- (instancetype) sharedInstance{

 static MySingleton *SharedInstance = nil;

 static dispatch_once_t onceToken;

 dispatch_once(&onceToken, ^{

 SharedInstance = [MySingleton new];

 });

 return SharedInstance;

}

@end

7.9. Grouping Tasks Together with GCD

Problem
You want to group blocks of code together and ensure that all of them get executed by
GCD one by one, as dependencies of one another.

7.9. Grouping Tasks Together with GCD | 373

http://bit.ly/18PYUvs

Solution
Use the dispatch_group_create function to create groups in GCD.

Discussion
GCD lets us create groups, which allow you to place your tasks in one place, run all of
them, and get a notification at the end from GCD. This has many valuable applications.
For instance, suppose you have a UI-based app and want to reload the components on
your UI. You have a table view, a scroll view, and an image view. You want to reload the
contents of these components using these methods:

- (void) reloadTableView{

 /* Reload the table view here */

 NSLog(@"%s", __FUNCTION__);

}

- (void) reloadScrollView{

 /* Do the work here */

 NSLog(@"%s", __FUNCTION__);

}

- (void) reloadImageView{

 /* Reload the image view here */

 NSLog(@"%s", __FUNCTION__);

}

At the moment these methods are empty, but you can put the relevant UI code in them
later. Now we want to call these three methods, one after the other, and we want to know
when GCD has finished calling these methods so that we can display a message to the
user. For this, we should be using a group. You should know about three functions when
working with groups in GCD:

dispatch_group_create

Creates a group handle.

dispatch_group_async

Submits a block of code for execution on a group. You must specify the dispatch
queue on which the block of code has to be executed as well as the group to which
this block of code belongs.

dispatch_group_notify

Allows you to submit a block object that should be executed once all tasks added
to the group for execution have finished their work. This function also allows you
to specify the dispatch queue on which that block object has to be executed.

Let’s have a look at an example. As explained, in the example we want to invoke the
reloadTableView, reloadScrollView, and reloadImageView methods one after the

374 | Chapter 7: Concurrency

other and then display a message to the user once we are done. We can utilize GCD’s
powerful grouping facilities in order to accomplish this:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 dispatch_group_t taskGroup = dispatch_group_create();

 dispatch_queue_t mainQueue = dispatch_get_main_queue();

 /* Reload the table view on the main queue */

 dispatch_group_async(taskGroup, mainQueue, ^{

 [self reloadTableView];

 });

 /* Reload the scroll view on the main queue */

 dispatch_group_async(taskGroup, mainQueue, ^{

 [self reloadScrollView];

 });

 /* Reload the image view on the main queue */

 dispatch_group_async(taskGroup, mainQueue, ^{

 [self reloadImageView];

 });

 /* At the end when we are done, dispatch the following block */

 dispatch_group_notify(taskGroup, mainQueue, ^{

 /* Do some processing here */

 [[[UIAlertView alloc] initWithTitle:@"Finished"

 message:@"All tasks are finished"

 delegate:nil

 cancelButtonTitle:@"OK"

 otherButtonTitles:nil, nil] show];

 });

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

In addition to dispatch_group_async, you can also dispatch asynchronous C functions
to a dispatch group using the dispatch_group_async_f function.

GCDAppDelegate is simply the name of the class from which this ex‐
ample is taken. We have to use this class name in order to typecast a
context object so that the compiler will understand the commands.

7.9. Grouping Tasks Together with GCD | 375

Like so:

void reloadAllComponents(void *context){

 AppDelegate *self = (__bridge AppDelegate *)context;

 [self reloadTableView];

 [self reloadScrollView];

 [self reloadImageView];

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 dispatch_group_t taskGroup = dispatch_group_create();

 dispatch_queue_t mainQueue = dispatch_get_main_queue();

 dispatch_group_async_f(taskGroup,

 mainQueue,

 (__bridge void *)self,

 reloadAllComponents);

 /* At the end when we are done, dispatch the following block */

 dispatch_group_notify(taskGroup, mainQueue, ^{

 /* Do some processing here */

 [[[UIAlertView alloc] initWithTitle:@"Finished"

 message:@"All tasks are finished"

 delegate:nil

 cancelButtonTitle:@"OK"

 otherButtonTitles:nil, nil] show];

 });

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Since the dispatch_group_async_f function accepts a C function as
the block of code to be executed, the C function must have a refer‐
ence to self to be able to invoke instance methods of the current object
in which the C function is implemented. That is the reason behind
passing self as the context pointer in the dispatch_group_async_f
function. For more information about contexts and C functions, please
refer to Recipe 7.4.

376 | Chapter 7: Concurrency

Once all the given tasks are finished, the user will see a result similar to that shown in
Figure 7-3.

Figure 7-3. Managing a group of tasks with GCD

See Also
Recipe 7.4

7.10. Constructing Your Own Dispatch Queues with GCD

Problem
You want to create your own uniquely named dispatch queues.

Solution
Use the dispatch_queue_create function.

7.10. Constructing Your Own Dispatch Queues with GCD | 377

Discussion
With GCD, you can create your own serial dispatch queues (see Recipe 7.0, “Introduc‐
tion” to read about serial queues). Serial dispatch queues run their tasks in a first-in-
first-out (FIFO) fashion. The asynchronous tasks on serial queues will not be performed
on the main thread, however, making serial queues highly desirable for concurrent FIFO
tasks.

All synchronous tasks submitted to a serial queue will be executed on the current thread
being used by the code that is submitting the task, whenever possible. But asynchronous
tasks submitted to a serial queue will always be executed on a thread other than the main
thread.

We’ll use the dispatch_queue_create function to create serial queues. The first pa‐
rameter in this function is a C string (char *) that will uniquely identify that serial
queue in the system. The reason I am emphasizing system is because this identifier is a
system-wide identifier, meaning that if your app creates a new serial queue with the
identifier of serialQueue1 and somebody else’s app does the same, the results of creating
a new serial queue with the same name are undefined by GCD. Because of this, Apple
strongly recommends that you use a reverse DNS format for identifiers. Reverse DNS
identifiers are usually constructed in this way: com.COMPANY. PRODUCT. IDENTIFIER. For
instance, I could create two serial queues and assign these names to them:

com.pixolity.GCD.serialQueue1

com.pixolity.GCD.serialQueue2

After you’ve created your serial queue, you can start dispatching tasks to it using the
various GCD functions you’ve learned in this book.

Would you like to see an example? I thought so!

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 dispatch_queue_t firstSerialQueue =

 dispatch_queue_create("com.pixolity.GCD.serialQueue1", 0);

 dispatch_async(firstSerialQueue, ^{

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 5;

 counter++){

 NSLog(@"First iteration, counter = %lu", (unsigned long)counter);

 }

 });

 dispatch_async(firstSerialQueue, ^{

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 5;

378 | Chapter 7: Concurrency

 counter++){

 NSLog(@"Second iteration, counter = %lu", (unsigned long)counter);

 }

 });

 dispatch_async(firstSerialQueue, ^{

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 5;

 counter++){

 NSLog(@"Third iteration, counter = %lu", (unsigned long)counter);

 }

 });

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

If you run this code and have a look at the output printed to the console window, you
will see results similar to these:

First iteration, counter = 0

First iteration, counter = 1

First iteration, counter = 2

First iteration, counter = 3

First iteration, counter = 4

Second iteration, counter = 0

Second iteration, counter = 1

Second iteration, counter = 2

Second iteration, counter = 3

Second iteration, counter = 4

Third iteration, counter = 0

Third iteration, counter = 1

Third iteration, counter = 2

Third iteration, counter = 3

Third iteration, counter = 4

It’s obvious that, although we dispatched the block objects asynchronously to the serial
queue, the queue has executed their code in a FIFO fashion. We can modify the same
sample code to make use of dispatch_async_f function instead of the dis
patch_async function, like so:

void firstIteration(void *paramContext){

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 5;

 counter++){

 NSLog(@"First iteration, counter = %lu", (unsigned long)counter);

 }

7.10. Constructing Your Own Dispatch Queues with GCD | 379

}

void secondIteration(void *paramContext){

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 5;

 counter++){

 NSLog(@"Second iteration, counter = %lu", (unsigned long)counter);

 }

}

void thirdIteration(void *paramContext){

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 5;

 counter++){

 NSLog(@"Third iteration, counter = %lu", (unsigned long)counter);

 }

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 dispatch_queue_t firstSerialQueue =

 dispatch_queue_create("com.pixolity.GCD.serialQueue1", 0);

 dispatch_async_f(firstSerialQueue, NULL, firstIteration);

 dispatch_async_f(firstSerialQueue, NULL, secondIteration);

 dispatch_async_f(firstSerialQueue, NULL, thirdIteration);

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

7.11. Running Tasks Synchronously with Operations

Problem
You want to run a series of tasks synchronously.

Solution
Create operations and start them manually:

380 | Chapter 7: Concurrency

@interface AppDelegate ()

@property (nonatomic, strong) NSInvocationOperation *simpleOperation;

@end

The implementation of the application delegate is as follows:

- (void) simpleOperationEntry:(id)paramObject{

 NSLog(@"Parameter Object = %@", paramObject);

 NSLog(@"Main Thread = %@", [NSThread mainThread]);

 NSLog(@"Current Thread = %@", [NSThread currentThread]);

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSNumber *simpleObject = [NSNumber numberWithInteger:123];

 self.simpleOperation = [[NSInvocationOperation alloc]

 initWithTarget:self

 selector:@selector(simpleOperationEntry:)

 object:simpleObject];

 [self.simpleOperation start];

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

The output of this program (in the console window) will be similar to this:

Parameter Object = 123

Main Thread = <NSThread: 0x6810280>{name = (null), num = 1}

Current Thread = <NSThread: 0x6810280>{name = (null), num = 1}

As the name of this class implies (NSInvocationOperation), the main responsibility of
an object of this type is to invoke a method in an object. This is the most straightforward
way to invoke a method inside an object using operations.

Discussion
An invocation operation, as described in this chapter’s Introduction, is able to invoke a
method inside an object. “What is so special about this?” you might ask. The invocation
operation’s power can be demonstrated when it is added to an operation queue. With
an operation queue, an invocation operation can invoke a method in a target object
asynchronously and in parallel to the thread that started the operation. If you have a
look at the output printed to the console (in this recipe’s Solution), you will notice that

7.11. Running Tasks Synchronously with Operations | 381

the current thread inside the method invoked by the invocation operation is the same
as the main thread since the main thread in the application:didFinishLaunchingWi
thOptions: method started the operation using its start method. In Recipe 7.12, we
will learn how to take advantage of operation queues to run tasks asynchronously.

In addition to invocation operations, you can use block or plain operations to perform
tasks synchronously. Here is an example using a block operation to count numbers from
0 to 999 (inside the .m file of the application delegate):

@interface AppDelegate ()

@property (nonatomic, strong) NSBlockOperation *simpleOperation;

@end

@implementation AppDelegate

Here is the implementation of the application delegate (.m file):

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 self.simpleOperation = [NSBlockOperation blockOperationWithBlock:^{

 NSLog(@"Main Thread = %@", [NSThread mainThread]);

 NSLog(@"Current Thread = %@", [NSThread currentThread]);

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 1000;

 counter++){

 NSLog(@"Count = %lu", (unsigned long)counter);

 }

 }];

 /* Start the operation */

 [self.simpleOperation start];

 /* Print something out just to test if we have to wait

 for the block to execute its code or not */

 NSLog(@"Main thread is here");

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

If we run the application, we will see the values 0 to 999 printed out to the screen followed
by the “Main thread is here” message, like this:

Main Thread = <NSThread: 0x6810280>{name = (null), num = 1}

Current Thread = <NSThread: 0x6810280>{name = (null), num = 1}

...

Count = 991

382 | Chapter 7: Concurrency

Count = 992

Count = 993

Count = 994

Count = 995

Count = 996

Count = 997

Count = 998

Count = 999

Main thread is here

This proves that since the block operation was started in the application:didFinish
LaunchingWithOptions: method, which itself runs on the main thread, the code inside
the block was also running on the main thread. The main point to take from the log
messages is that the operation blocked the main thread and the main thread’s code
continued to be executed after the work for the block operation was done. This is a very
bad programming practice. In fact, iOS developers must perform any trick and use any
technique they know of to keep the main thread responsive so that it can do the key job
of processing users’ input. Here is what Apple has to say about this:

You should be careful what work you perform from the main thread of your application.
The main thread is where your application handles touch events and other user input.
To ensure that your application is always responsive to the user, you should never use the
main thread to perform long-running tasks or to perform tasks with a potentially un‐
bounded end, such as tasks that access the network. Instead, you should always move
those tasks onto background threads. The preferred way to do so is to wrap each task in
an operation object and add it to an operation queue, but you can also create explicit
threads yourself.

To read more about this subject, browse through the “Performance Tuning” document
in the iOS Reference Library, available at this URL.

In addition to invocation and block operations, you can also subclass NSOperation and
perform your task in that class. Before getting started, you must keep a few things in
mind while subclassing NSOperation:

• If you are not planning on using an operation queue, you have to detach a new
thread of your own in the start method of the operation. If you do not want to use
an operation queue and you do not want your operation to run asynchronously
from other operations that you start manually, you can simply call the main method
of your operation inside the start method.

• Two important methods in an instance of NSOperation must be overridden by your
own implementation of the operation: isExecuting and isFinished. These can be
called from any other object. In these methods, you must return a thread-safe value
that you can manipulate from inside the operation. As soon as your operation starts,
you must, through KVO, inform any listeners that you are changing the values that
these two methods return. We will see how this works in the example code.

7.11. Running Tasks Synchronously with Operations | 383

http://bit.ly/RGuYIJ

• You must provide your own autorelease pool inside the main method of the oper‐
ation in case your operation will be added to an operation queue at some point in
the future. You must make sure your operations work in both ways: whether you
start them manually or they get started by an operation queue.

• You must have an initialization method for your operations. There must be only
one designated initializer method per operation. All other initializer methods, in‐
cluding the default init method of an operation, must call the designated initializer
that has the greatest number of parameters. Other initializer methods must make
sure they pass appropriate parameters (if any) to the designated initializer.

Here is the declaration of the operation object (.h file):

#import <Foundation/Foundation.h>

@interface CountingOperation : NSOperation

/* Designated Initializer */

- (instancetype) initWithStartingCount:(NSUInteger)paramStartingCount

 endingCount:(NSUInteger)paramEndingCount;

@end

The implementation (.m file) of the operation might be a bit long, but hopefully it’s easy

to understand:

#import "CountingOperation.h"

@interface CountingOperation ()

@property (nonatomic, unsafe_unretained) NSUInteger startingCount;

@property (nonatomic, unsafe_unretained) NSUInteger endingCount;

@property (nonatomic, unsafe_unretained, getter=isFinished) BOOL finished;

@property (nonatomic, unsafe_unretained, getter=isExecuting) BOOL executing;

@end

@implementation CountingOperation

- (instancetype) init {

 return([self initWithStartingCount:0

 endingCount:1000]);

}

- (instancetype) initWithStartingCount:(NSUInteger)paramStartingCount

 endingCount:(NSUInteger)paramEndingCount{

 self = [super init];

 if (self != nil){

 /* Keep these values for the main method */

 _startingCount = paramStartingCount;

384 | Chapter 7: Concurrency

 _endingCount = paramEndingCount;

 }

 return(self);

}

- (void) main {

 @try {

 /* Here is our autorelease pool */

 @autoreleasepool {

 /* Keep a local variable here that must get set to YES

 whenever we are done with the task */

 BOOL taskIsFinished = NO;

 /* Create a while loop here that only exists

 if the taskIsFinished variable is set to YES or

 the operation has been cancelled */

 while (taskIsFinished == NO &&

 [self isCancelled] == NO){

 /* Perform the task here */

 NSLog(@"Main Thread = %@", [NSThread mainThread]);

 NSLog(@"Current Thread = %@", [NSThread currentThread]);

 NSUInteger counter = _startingCount;

 for (counter = _startingCount;

 counter < _endingCount;

 counter++){

 NSLog(@"Count = %lu", (unsigned long)counter);

 }

 /* Very important. This way we can get out of the

 loop and we are still complying with the cancellation

 rules of operations */

 taskIsFinished = YES;

 }

 /* KVO compliance. Generate the

 required KVO notifications */

 [self willChangeValueForKey:@"isFinished"];

 [self willChangeValueForKey:@"isExecuting"];

 _finished = YES;

 _executing = NO;

 [self didChangeValueForKey:@"isFinished"];

 [self didChangeValueForKey:@"isExecuting"];

 }

 }

 @catch (NSException * e) {

 NSLog(@"Exception %@", e);

 }

7.11. Running Tasks Synchronously with Operations | 385

}

@end

We can start this operation like so:

@interface AppDelegate ()

@property (nonatomic, strong) CountingOperation *simpleOperation;

@end

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 self.simpleOperation = [[CountingOperation alloc]

 initWithStartingCount:0

 endingCount:1000];

 [self.simpleOperation start];

 NSLog(@"Main thread is here");

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

If we run the code, we will see the following results in the console window, just as we
did when we used a block operation:

Main Thread = <NSThread: 0x6810260>{name = (null), num = 1}

Current Thread = <NSThread: 0x6810260>{name = (null), num = 1}

...

Count = 993

Count = 994

Count = 995

Count = 996

Count = 997

Count = 998

Count = 999

Main thread is here

See Also
Recipe 7.12

386 | Chapter 7: Concurrency

7.12. Running Tasks Asynchronously with Operations

Problem
You want to execute operations concurrently.

Solution
Use operation queues. Alternatively, subclass NSOperation and detach a new thread on
the main method.

Discussion
As mentioned in Recipe 7.11, operations, by default, run on the thread that calls the
start method. Usually we start operations on the main thread, but at the same time we
expect the operations to run on their own threads and not take the main thread’s time
slice. The best solution for us would be to use operation queues. However, if you want
to manage your operations manually, which I do not recommend, you can subclass
NSOperation and detach a new thread on the main method. Please refer to Recipe 7.15
for more information about detached threads.

Let’s go ahead and use an operation queue and add two simple invocation operations
to it. (For more information about invocation operations, please refer to this chapter’s
Introduction. For additional example code on invocation operations, please refer to
Recipe 7.11.) Here is the declaration (.m file) of the application delegate that utilizes an

operation queue and two invocation operations:

@interface AppDelegate ()

@property (nonatomic, strong) NSOperationQueue *operationQueue;

@property (nonatomic, strong) NSInvocationOperation *firstOperation;

@property (nonatomic, strong) NSInvocationOperation *secondOperation;

@end

@implementation AppDelegate

The inside of the implementation (.m file) of the application delegate is as follows:

- (void) firstOperationEntry:(id)paramObject{

 NSLog(@"%s", __FUNCTION__);

 NSLog(@"Parameter Object = %@", paramObject);

 NSLog(@"Main Thread = %@", [NSThread mainThread]);

 NSLog(@"Current Thread = %@", [NSThread currentThread]);

}

- (void) secondOperationEntry:(id)paramObject{

7.12. Running Tasks Asynchronously with Operations | 387

 NSLog(@"%s", __FUNCTION__);

 NSLog(@"Parameter Object = %@", paramObject);

 NSLog(@"Main Thread = %@", [NSThread mainThread]);

 NSLog(@"Current Thread = %@", [NSThread currentThread]);

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSNumber *firstNumber = @111;

 NSNumber *secondNumber = @222;

 self.firstOperation =[[NSInvocationOperation alloc]

 initWithTarget:self

 selector:@selector(firstOperationEntry:)

 object:firstNumber];

 self.secondOperation = [[NSInvocationOperation alloc]

 initWithTarget:self

 selector:@selector(secondOperationEntry:)

 object:secondNumber];

 self.operationQueue = [[NSOperationQueue alloc] init];

 /* Add the operations to the queue */

 [self.operationQueue addOperation:self.firstOperation];

 [self.operationQueue addOperation:self.secondOperation];

 NSLog(@"Main thread is here");

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Here is what is happening in the implementation of the code:

• We have two methods: firstOperationEntry: and secondOperationEntry:. Each
method accepts an object as a parameter and prints out the current thread, the main
thread, and the parameter to the console window. These are the entry methods of
the invocation operations that will be added to an operation queue.

• We initialize two objects of type NSInvocationOperation and set the target selector
to each operation entry point described previously.

• We then initialize an object of type NSOperationQueue. (It could also be created
before the entry methods.) The queue object will be responsible for managing the
concurrency in the operation objects.

388 | Chapter 7: Concurrency

• We invoke the addOperation: instance method of NSOperationQueue to add each
invocation operation to the operation queue. At this point, the operation queue may
or may not immediately start the invocation operations through their start meth‐
ods. However, it is very important to bear in mind that after adding operations to
an operation queue, you must not start the operations manually. You must leave
this to the operation queue.

Now let’s run the example code once and see the results in the console window:

[Running_Tasks_Asynchronously_with_OperationsAppDelegate firstOperationEntry:]

Main thread is here

Parameter Object = 111

[Running_Tasks_Asynchronously_with_OperationsAppDelegate secondOperationEntry:]

Main Thread = <NSThread: 0x6810260>{name = (null), num = 1}

Parameter Object = 222

Current Thread = <NSThread: 0x6805c20>{name = (null), num = 3}

Main Thread = <NSThread: 0x6810260>{name = (null), num = 1}

Current Thread = <NSThread: 0x6b2d1d0>{name = (null), num = 4}

Brilliant! This proves that the invocation operations are running on their own threads
in parallel to the main thread without blocking the main thread at all. Now let’s run the
same code a couple more times and observe the output in the console window. If you
do this, chances are that you will get a completely different result, such as this:

Main thread is here

[Running_Tasks_Asynchronously_with_OperationsAppDelegate firstOperationEntry:]

[Running_Tasks_Asynchronously_with_OperationsAppDelegate secondOperationEntry:]

Parameter Object = 111

Main Thread = <NSThread: 0x6810260>{name = (null), num = 1}

Current Thread = <NSThread: 0x68247c0>{name = (null), num = 3}

Parameter Object = 222

Main Thread = <NSThread: 0x6810260>{name = (null), num = 1}

Current Thread = <NSThread: 0x6819b00>{name = (null), num = 4}

You can clearly observe that the main thread is not blocked and that both invocation
operations are running in parallel with the main thread. This just proves the concur‐
rency in the operation queue when two nonconcurrent operations are added to it. The
operation queue manages the threads required to run the operations.

If we were to subclass NSOperation and add the instances of the new class to an op‐
eration queue, we would do things slightly differently. Keep a few things in mind:

• Plain operations that subclass NSOperation, when added to an operation queue,
will run asynchronously. For this reason, you must override the isConcurrent
instance method of NSOperation and return the value YES.

• You must prepare your operation for cancellation by checking the value of the
isCancelled method periodically while performing the main task of the operation
and in the start method before you even run the operation. The start method

7.12. Running Tasks Asynchronously with Operations | 389

will get called by the operation queue in this case after the operation is added to the
queue. In this method, check whether the operation is cancelled using the isCan
celled method. If the operation is cancelled, simply return from the start method.
If not, call the main method from inside the start method.

• Override the main method with your own implementation of the main task that is
to be carried out by the operation. Make sure to allocate and initialize your own
autorelease pool in this method and to release the pool just before returning.

• Override the isFinished and isExecuting methods of your operation and return
appropriate BOOL values to reveal whether the operation is finished or is executing
at the time.

Here is the declaration (.h file) of the operation:

#import <Foundation/Foundation.h>

@interface SimpleOperation : NSOperation

/* Designated Initializer */

- (instancetype) initWithObject:(NSObject *)paramObject;

@end

The implementation of the operation is as follows:

#import "SimpleOperation.h"

@interface SimpleOperation ()

@property (nonatomic, strong) NSObject *givenObject;

@property (nonatomic, unsafe_unretained, getter=isFinished) BOOL finished;

@property (nonatomic, unsafe_unretained, getter=isExecuting) BOOL executing;

@end

@implementation SimpleOperation

- (instancetype) init {

 return([self initWithObject:@123]);

}

- (instancetype) initWithObject:(NSObject *)paramObject{

 self = [super init];

 if (self != nil){

 /* Keep these values for the main method */

 _givenObject = paramObject;

 }

 return(self);

}

- (void) main {

 @try {

390 | Chapter 7: Concurrency

 @autoreleasepool {

 /* Keep a local variable here that must get set to YES

 whenever we are done with the task */

 BOOL taskIsFinished = NO;

 /* Create a while loop here that only exists

 if the taskIsFinished variable is set to YES or

 the operation has been cancelled */

 while (taskIsFinished == NO &&

 [self isCancelled] == NO){

 /* Perform the task here */

 NSLog(@"%s", __FUNCTION__);

 NSLog(@"Parameter Object = %@", _givenObject);

 NSLog(@"Main Thread = %@", [NSThread mainThread]);

 NSLog(@"Current Thread = %@", [NSThread currentThread]);

 /* Very important. This way we can get out of the

 loop and we are still complying with the cancellation

 rules of operations */

 taskIsFinished = YES;

 }

 /* KVO compliance. Generate the

 required KVO notifications */

 [self willChangeValueForKey:@"isFinished"];

 [self willChangeValueForKey:@"isExecuting"];

 _finished = YES;

 _executing = NO;

 [self didChangeValueForKey:@"isFinished"];

 [self didChangeValueForKey:@"isExecuting"];

 }

 }

 @catch (NSException * e) {

 NSLog(@"Exception %@", e);

 }

}

- (BOOL) isConcurrent{

 return YES;

}

@end

You can now use this operation class in any other class, such as your application delegate.
Here is the declaration of the application delegate to utilize this new operation class and
add it in an operation queue:

@interface AppDelegate ()

@property (nonatomic, strong) NSOperationQueue *operationQueue;

7.12. Running Tasks Asynchronously with Operations | 391

@property (nonatomic, strong) SimpleOperation *firstOperation;

@property (nonatomic, strong) SimpleOperation *secondOperation;

@end

@implementation AppDelegate

The implementation of the application delegate is as follows:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSNumber *firstNumber = @111;

 NSNumber *secondNumber = @222;

 self.firstOperation = [[SimpleOperation alloc]

 initWithObject:firstNumber];

 self.secondOperation = [[SimpleOperation alloc]

 initWithObject:secondNumber];

 self.operationQueue = [[NSOperationQueue alloc] init];

 /* Add the operations to the queue */

 [self.operationQueue addOperation:self.firstOperation];

 [self.operationQueue addOperation:self.secondOperation];

 NSLog(@"Main thread is here");

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

The results printed to the console window will be similar to what we saw earlier when
we used concurrent invocation operations:

Main thread is here

-[SimpleOperation main]

-[SimpleOperation main]

Parameter Object = 222

Parameter Object = 222

Main Thread = <NSThread: 0x6810260>{name = (null), num = 1}

Main Thread = <NSThread: 0x6810260>{name = (null), num = 1}

Current Thread = <NSThread: 0x6a10b90>{name = (null), num = 3}

Current Thread = <NSThread: 0x6a13f50>{name = (null), num = 4}

See Also
Recipe 7.11; Recipe 7.15

392 | Chapter 7: Concurrency

7.13. Creating Dependency Between Operations

Problem
You want to start a certain task only after another task has finished executing.

Solution
If operation B has to wait for operation A before it can run the task associated with it,
operation B has to add operation A as its dependency using the addDependency: in‐
stance method of NSOperation, as shown here:

[self.firstOperation addDependency:self.secondOperation];

Both the firstOperation and the secondOperation properties are of type NSInvoca
tionOperation, as we will see in this recipe’s Discussion. In this example code, the first
operation will not be executed by the operation queue until after the second operation’s
task is finished.

Discussion
An operation will not start executing until all the operations on which it depends have
successfully finished executing the tasks associated with them. By default, an operation,
after initialization, has no dependency on other operations.

If we want to introduce dependencies to the example code described in Recipe 7.12, we
can slightly modify the application delegate’s implementation and use the addDepend
ency: instance method to have the first operation wait for the second operation:

#import "AppDelegate.h"

@interface AppDelegate ()

@property (nonatomic, strong) NSInvocationOperation *firstOperation;

@property (nonatomic, strong) NSInvocationOperation *secondOperation;

@property (nonatomic, strong) NSOperationQueue *operationQueue;

@end

@implementation AppDelegate

- (void) firstOperationEntry:(id)paramObject{

 NSLog(@"First Operation - Parameter Object = %@",

 paramObject);

 NSLog(@"First Operation - Main Thread = %@",

 [NSThread mainThread]);

 NSLog(@"First Operation - Current Thread = %@",

 [NSThread currentThread]);

7.13. Creating Dependency Between Operations | 393

}

- (void) secondOperationEntry:(id)paramObject{

 NSLog(@"Second Operation - Parameter Object = %@",

 paramObject);

 NSLog(@"Second Operation - Main Thread = %@",

 [NSThread mainThread]);

 NSLog(@"Second Operation - Current Thread = %@",

 [NSThread currentThread]);

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSNumber *firstNumber = @111;

 NSNumber *secondNumber = @222;

 self.firstOperation = [[NSInvocationOperation alloc]

 initWithTarget:self

 selector:@selector(firstOperationEntry:)

 object:firstNumber];

 self.secondOperation = [[NSInvocationOperation alloc]

 initWithTarget:self

 selector:@selector(secondOperationEntry:)

 object:secondNumber];

 [self.firstOperation addDependency:self.secondOperation];

 self.operationQueue = [[NSOperationQueue alloc] init];

 /* Add the operations to the queue */

 [self.operationQueue addOperation:self.firstOperation];

 [self.operationQueue addOperation:self.secondOperation];

 NSLog(@"Main thread is here");

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Now if you execute the program, you will see a result similar to this in the console
window:

394 | Chapter 7: Concurrency

Second Operation - Parameter Object = 222

Main thread is here

Second Operation - Main Thread = <NSThread: 0x6810250>{name = (null), num = 1}

Second Operation - Current Thread = <NSThread: 0x6836ab0>{name = (null), num = 3}

First Operation - Parameter Object = 111

First Operation - Main Thread = <NSThread: 0x6810250>{name = (null), num = 1}

First Operation - Current Thread = <NSThread: 0x6836ab0>{name = (null), num = 3}

It’s quite obvious that although the operation queue attempted to run both operations
in parallel, the first operation had a dependency on the second operation, and therefore
the second operation had to finish before the first operation could run.

If at any time you want to break the dependency between two operations, you can use
the removeDependency: instance method of an operation object.

See Also
Recipe 7.12

7.14. Creating Timers

Problem
You would like to perform a specific task repeatedly with a certain delay. For instance,
you want to update a view on your screen every second that your application is running.

Solution
Use a timer:

- (void) paint:(NSTimer *)paramTimer{

 /* Do something here */

 NSLog(@"Painting");

}

- (void) startPainting{

 self.paintingTimer = [NSTimer

 scheduledTimerWithTimeInterval:1.0

 target:self

 selector:@selector(paint:)

 userInfo:nil

 repeats:YES];

}

- (void) stopPainting{

 if (self.paintingTimer != nil){

 [self.paintingTimer invalidate];

7.14. Creating Timers | 395

 }

}

- (void)applicationWillResignActive:(UIApplication *)application{

 [self stopPainting];

}

- (void)applicationDidBecomeActive:(UIApplication *)application{

 [self startPainting];

}

The invalidate method will also release the timer, so that we don’t have to do that
manually. As you can see, we have defined a property called paintingTimer that is
declared in this way in the implementation file (.m file):

#import "AppDelegate.h"

@interface AppDelegate ()

@property (nonatomic, strong) NSTimer *paintingTimer;

@end

@implementation AppDelegate

Discussion
A timer is an object that fires an event at specified intervals. A timer must be scheduled
in a run loop. Defining an NSTimer object creates a nonscheduled timer that does
nothing but is available to the program when you want to schedule it. Once you issue
a call, e.g. scheduledTimerWithTimeInterval:target:selector:userInfo:re

peats:, the time becomes a scheduled timer and will fire the event you request. A
scheduled timer is a timer that is added to a run loop. To get any timer to fire its target
event, we must schedule that timer on a run loop. This is demonstrated in a later example
where we create a nonscheduled timer and then manually schedule it on the main run
loop of the application.

Once a timer is created and added to a run loop, either explicitly or implicitly, the timer
will start calling a method in its target object (as specified by the programmer) every n
seconds (n is specified by the programmer as well). Because n is floating-point, you can
specify a fraction of a second.

There are various ways to create, initialize, and schedule timers. One of the easiest ways
is through the scheduledTimerWithTimeInterval:target:selector:userInfo:re
peats: class method of NSTimer. Here are the different parameters of this method:

scheduledTimerWithTimeInterval

This is the number of seconds the timer has to wait before it fires an event. For
example, if you want the timer to call a method in its target object twice per second,
you have to set this parameter to 0.5 (1 second divided by 2); if you want the target

396 | Chapter 7: Concurrency

method to be called four times per second, this parameter should be set to 0.25 (1
second divided by 4).

target

This is the object that will receive the event.

selector

This is the method signature in the target object that will receive the event.

userInfo

This is the object that will be retained in the timer for later reference (in the target
method of the target object).

repeats

This specifies whether the timer must call its target method repeatedly (in which
case this parameter has to be set to YES), or just once and then stop (in which case
this parameter has to be set to NO).

Once a timer is created and added to a run loop, you can stop and
release that timer using the invalidate instance method of the NSTim
er class. This not only will release the timer, but also will release the
object, if any, that was passed for the timer to retain during its life‐
time (e.g., the object passed to the userInfo parameter of the schedu
ledTimerWithTimeInterval:target:selector:userInfo:repeats:

class method of NSTimer). If you pass NO to the repeats parameter, the
timer will invalidate itself after the first pass and subsequently will
release the object it had retained (if any).

There are other methods you can use to create a scheduled timer. One of them is the
scheduledTimerWithTimeInterval:invocation:repeats: class method of NSTimer:

- (void) paint:(NSTimer *)paramTimer{

 /* Do something here */

 NSLog(@"Painting");

}

- (void) startPainting{

 /* Here is the selector that we want to call */

 SEL selectorToCall = @selector(paint:);

 /* Here we compose a method signature out of the selector. We

 know that the selector is in the current class so it is easy

 to construct the method signature */

 NSMethodSignature *methodSignature =

 [[self class] instanceMethodSignatureForSelector:selectorToCall];

 /* Now base our invocation on the method signature. We need this

7.14. Creating Timers | 397

 invocation to schedule a timer */

 NSInvocation *invocation =

 [NSInvocation invocationWithMethodSignature:methodSignature];

 [invocation setTarget:self];

 [invocation setSelector:selectorToCall];

 /* Start a scheduled timer now */

 self.paintingTimer = [NSTimer scheduledTimerWithTimeInterval:1.0

 invocation:invocation

 repeats:YES];

}

- (void) stopPainting{

 if (self.paintingTimer != nil){

 [self.paintingTimer invalidate];

 }

}

- (void)applicationWillResignActive:(UIApplication *)application{

 [self stopPainting];

}

- (void)applicationDidBecomeActive:(UIApplication *)application{

 [self startPainting];

}

Scheduling a timer can be compared to starting a car’s engine. A scheduled timer is a
running car engine. A nonscheduled timer is a car engine that is ready to be started but
is not running yet. We can schedule and unschedule timers whenever we want in the
application, just like we might need the engine of a car to be on or off depending on the
situation we are in. If you want to schedule a timer manually at a certain time in your
application, you can use the timerWithTimeInterval:target:selector:userInfo:re
peats: class method of NSTimer, and when you are ready, you can add the timer to your
run loop of choice:

- (void) startPainting{

 self.paintingTimer = [NSTimer timerWithTimeInterval:1.0

 target:self

 selector:@selector(paint:)

 userInfo:nil

 repeats:YES];

 /* Do your processing here and whenever you are ready,

 use the addTimer:forMode instance method of the NSRunLoop class

 in order to schedule the timer on that run loop */

 [[NSRunLoop currentRunLoop] addTimer:self.paintingTimer

 forMode:NSDefaultRunLoopMode];

}

398 | Chapter 7: Concurrency

The currentRunLoop and mainRunLoop class methods of NSRunLoop
return the current and main run loops of the application, as their
names imply.

Just like you can use the scheduledTimerWithTimeInterval:invocation:repeats:
variant of creating scheduled timers using invocations, you can also use the timerWith
TimeInterval:invocation:repeats: class method of NSTimer to create an unsched‐
uled timer using an invocation:

- (void) paint:(NSTimer *)paramTimer{

 /* Do something here */

 NSLog(@"Painting");

}

- (void) startPainting{

 /* Here is the selector that we want to call */

 SEL selectorToCall = @selector(paint:);

 /* Here we compose a method signature out of the selector. We

 know that the selector is in the current class so it is easy

 to construct the method signature */

 NSMethodSignature *methodSignature =

 [[self class] instanceMethodSignatureForSelector:selectorToCall];

 /* Now base our invocation on the method signature. We need this

 invocation to schedule a timer */

 NSInvocation *invocation =

 [NSInvocation invocationWithMethodSignature:methodSignature];

 [invocation setTarget:self];

 [invocation setSelector:selectorToCall];

 self.paintingTimer = [NSTimer timerWithTimeInterval:1.0

 invocation:invocation

 repeats:YES];;

 /* Do your processing here and whenever you are ready,

 use the addTimer:forMode instance method of the NSRunLoop class

 in order to schedule the timer on that run loop */

 [[NSRunLoop currentRunLoop] addTimer:self.paintingTimer

 forMode:NSDefaultRunLoopMode];

}

- (void) stopPainting{

 if (self.paintingTimer != nil){

 [self.paintingTimer invalidate];

 }

7.14. Creating Timers | 399

}

- (void)applicationWillResignActive:(UIApplication *)application{

 [self stopPainting];

}

- (void)applicationDidBecomeActive:(UIApplication *)application{

 [self startPainting];

}

The target method of a timer receives the instance of the timer that calls it as its pa‐
rameter. For instance, the paint: method introduced initially in this recipe demon‐
strates how the timer gets passed to its target method, by default, as the target method’s
one and only parameter:

- (void) paint:(NSTimer *)paramTimer{

 /* Do something here */

 NSLog(@"Painting");

}

This parameter provides you with a reference to the timer that is firing this method.
You can, for instance, prevent the timer from running again using the invalidate
method, if needed. You can also invoke the userInfo method of the NSTimer instance
in order to retrieve the object being retained by the timer (if any). This object is just an
object passed to the initialization methods of NSTimer, and it gets directly passed to the
timer for future reference.

7.15. Creating Concurrency with Threads

Problem
You would like to have maximum control over how separate tasks run in your applica‐
tion. For instance, you would like to run a long calculation requested by the user while
freeing the main UI thread to interact with the user and do other things.

Solution
Utilize threads in your application, like so:

- (void) downloadNewFile:(id)paramObject{

 @autoreleasepool {

 NSString *fileURL = (NSString *)paramObject;

 NSURL *url = [NSURL URLWithString:fileURL];

 NSURLRequest *request = [NSURLRequest requestWithURL:url];

 NSURLResponse *response = nil;

400 | Chapter 7: Concurrency

 NSError *error = nil;

 NSData *downloadedData =

 [NSURLConnection sendSynchronousRequest:request

 returningResponse:&response

 error:&error];

 if ([downloadedData length] > 0){

 /* Fully downloaded */

 } else {

 /* Nothing was downloaded. Check the Error value */

 }

 }

}

- (void)viewDidLoad {

 [super viewDidLoad];

 NSString *fileToDownload = @"http://www.OReilly.com";

 [NSThread detachNewThreadSelector:@selector(downloadNewFile:)

 toTarget:self

 withObject:fileToDownload];

}

Discussion
Any iOS application is made out of one or more threads. In iOS, a normal application
with one view controller could initially have up to four or five threads created by the
system libraries to which the application is linked. At least one thread will be created
for your application whether you use multiple threads or not. It is called the “main UI
thread” attached to the main run loop.

To understand how useful threads are, let’s do an experiment. Suppose we have three
loops:

- (void) firstCounter{

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 1000;

 counter++){

 NSLog(@"First Counter = %lu", (unsigned long)counter);

 }

}

- (void) secondCounter{

7.15. Creating Concurrency with Threads | 401

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 1000;

 counter++){

 NSLog(@"Second Counter = %lu", (unsigned long)counter);

 }

}

- (void) thirdCounter{

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 1000;

 counter++){

 NSLog(@"Third Counter = %lu", (unsigned long)counter);

 }

}

Very simple, aren’t they? All they do is go from 0 to 1,000, printing their counter num‐
bers. Now suppose you want to run these counters as we would normally do:

- (void) viewDidLoad{

 [super viewDidLoad];

 [self firstCounter];

 [self secondCounter];

 [self thirdCounter];

}

This code does not necessarily have to be in a view controller’s view
DidLoad method.

Now open the console window and run this application. You will see the first counter’s
complete run, followed by the second counter and then the third counter. This means
these loops are being run on the same thread. Each one blocks the rest of the thread’s
code from being executed until it finishes its loop.

What if we wanted all these counters to run at the same time? Of course, we would have
to create separate threads for each one. But wait a minute! We already learned that the
application creates threads for us when it loads and that whatever code we have been
writing so far in the application, wherever it was, was being executed in a thread. So we
just have to create two threads for the first and second counters and leave the third
counter to do its job in the main thread:

- (void) firstCounter{

 @autoreleasepool {

402 | Chapter 7: Concurrency

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 1000;

 counter++){

 NSLog(@"First Counter = %lu", (unsigned long)counter);

 }

 }

}

- (void) secondCounter{

 @autoreleasepool {

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 1000;

 counter++){

 NSLog(@"Second Counter = %lu", (unsigned long)counter);

 }

 }

}

- (void) thirdCounter{

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 1000;

 counter++){

 NSLog(@"Third Counter = %lu", (unsigned long)counter);

 }

}

- (void)viewDidLoad {

 [super viewDidLoad];

 [NSThread detachNewThreadSelector:@selector(firstCounter)

 toTarget:self

 withObject:nil];

 [NSThread detachNewThreadSelector:@selector(secondCounter)

 toTarget:self

 withObject:nil];

 /* Run this on the main thread */

 [self thirdCounter];

}

7.15. Creating Concurrency with Threads | 403

The thirdCounter method does not have an autorelease pool since it
is not run in a new detached thread. This method will be run in the
application’s main thread, which has an autorelease pool created for it
automatically at the startup of every Cocoa Touch application.

The calls to detachNewThreadSelector near the end of the code run the first and second
counters as separate threads. Now if you run the application, you will notice output such
as the following, in the console window:

Second Counter = 921

Third Counter = 301

Second Counter = 922

Second Counter = 923

Second Counter = 924

First Counter = 956

Second Counter = 925

First Counter = 957

Second Counter = 926

First Counter = 958

Third Counter = 302

Second Counter = 927

Third Counter = 303

Second Counter = 928

In other words, all three counters run at once and interleave their output randomly.

Every thread must create an autorelease pool. An autorelease pool internally keeps a
reference to objects that are being autoreleased before the pool itself is released. This is
a very important mechanism in a reference-counted memory management environ‐
ment such as Cocoa Touch, where objects can be autoreleased. Whenever we allocate
instances of objects, the retain count of the objects gets set to 1. If we mark the objects
as autorelease, the retain count remains at 1, but when the autorelease pool in which
the object was created is released, the autorelease object is also sent a release message.
If its retain count is still 1 at that point, the object gets deallocated.

Every thread requires an autorelease pool to be created for it as the first object that is
allocated in that thread. If you don’t do this, any object that you allocate in your thread
will leak when the thread exists. To understand this better, let’s have a look at the fol‐
lowing code:

- (void) autoreleaseThread:(id)paramSender{

 NSBundle *mainBundle = [NSBundle mainBundle];

 NSString *filePath = [mainBundle pathForResource:@"MacBookAir"

 ofType:@"png"];

 UIImage *image = [UIImage imageWithContentsOfFile:filePath];

404 | Chapter 7: Concurrency

 /* Do something with the image */

 NSLog(@"Image = %@", image);

}

- (void)viewDidLoad {

 [super viewDidLoad];

 [NSThread detachNewThreadSelector:@selector(autoreleaseThread:)

 toTarget:self

 withObject:self];

}

If you run this code and keep an eye on the console window, you might receive a message
similar to this:

*** __NSAutoreleaseNoPool(): Object 0x5b2c990 of

class NSCFString autoreleased with no pool in place - just leaking

*** __NSAutoreleaseNoPool(): Object 0x5b2ca30 of

class NSPathStore2 autoreleased with no pool in place - just leaking

*** __NSAutoreleaseNoPool(): Object 0x5b205c0 of

class NSPathStore2 autoreleased with no pool in place - just leaking

*** __NSAutoreleaseNoPool(): Object 0x5b2d650 of

class UIImage autoreleased with no pool in place - just leaking

This shows that the autorelease UIImage instance we created is creating a memory leak
—and, in addition, so is the NSString instance called FilePath and other objects that
would normally “magically” get deallocated. This is because in the thread, we forgot to
allocate and initialize an autorelease pool as the first thing we did. The following is the
correct code, which you can test for yourself to make sure it doesn’t leak:

- (void) autoreleaseThread:(id)paramSender{

 @autoreleasepool {

 NSBundle *mainBundle = [NSBundle mainBundle];

 NSString *filePath = [mainBundle pathForResource:@"MacBookAir"

 ofType:@"png"];

 UIImage *image = [UIImage imageWithContentsOfFile:filePath];

 /* Do something with the image */

 NSLog(@"Image = %@", image);

 }

}

- (void)viewDidLoad {

 [super viewDidLoad];

7.15. Creating Concurrency with Threads | 405

 [NSThread detachNewThreadSelector:@selector(autoreleaseThread:)

 toTarget:self

 withObject:self];

}

7.16. Invoking Background Methods

Problem
You want to know an easy way to create threads without having to deal with threads
directly.

Solution
Use the performSelectorInBackground:withObject: instance method of NSObject:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 [self performSelectorInBackground:@selector(firstCounter)

 withObject:nil];

 [self performSelectorInBackground:@selector(secondCounter)

 withObject:nil];

 [self performSelectorInBackground:@selector(thirdCounter)

 withObject:nil];

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

The counter methods are implemented in this way:

- (void) firstCounter{

 @autoreleasepool {

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 1000;

 counter++){

 NSLog(@"First Counter = %lu", (unsigned long)counter);

 }

 }

}

406 | Chapter 7: Concurrency

- (void) secondCounter{

 @autoreleasepool {

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 1000;

 counter++){

 NSLog(@"Second Counter = %lu", (unsigned long)counter);

 }

 }

}

- (void) thirdCounter{

 @autoreleasepool {

 NSUInteger counter = 0;

 for (counter = 0;

 counter < 1000;

 counter++){

 NSLog(@"Third Counter = %lu", (unsigned long)counter);

 }

 }

}

Discussion
The performSelectorInBackground:withObject: method creates a new thread in the
background for us. This is equivalent to creating a new thread for the selectors. The
most important thing we have to keep in mind is that since this method creates a thread
on the given selector, the selector must have an autorelease pool just like any other thread
in a reference-counted memory environment.

7.17. Exiting Threads and Timers

Problem
You would like to stop a thread or a timer, or prevent one from firing again.

Solution
For timers, use the invalidate instance method of NSTimer. For threads, use the can
cel method. Avoid using the exit method of threads, as it does not give the thread a
chance to clean up after itself, and your application will end up leaking resources:

NSThread *thread = /* Get the reference to your thread here */;

[thread cancel];

7.17. Exiting Threads and Timers | 407

NSTimer *timer = /* Get the reference to your timer here */;

[timer invalidate];

Discussion
Exiting a timer is quite straightforward; you can simply call the timer’s invalidate
instance method. After you call that method, the timer will not fire any more events to
its target object.

However, threads are a bit more complicated to exit. When a thread is sleeping and its
cancel method is called, the thread’s loop will still perform its task fully before exiting.
Let me demonstrate this for you:

- (void) threadEntryPoint{

 @autoreleasepool {

 NSLog(@"Thread Entry Point");

 while ([[NSThread currentThread] isCancelled] == NO){

 [NSThread sleepForTimeInterval:4];

 NSLog(@"Thread Loop");

 }

 NSLog(@"Thread Finished");

 }

}

- (void) stopThread{

 NSLog(@"Cancelling the Thread");

 [self.myThread cancel];

 NSLog(@"Releasing the thread");

 self.myThread = nil;

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 self.myThread = [[NSThread alloc]

 initWithTarget:self

 selector:@selector(threadEntryPoint)

 object:nil];

 [self performSelector:@selector(stopThread)

 withObject:nil

 afterDelay:3.0f];

 [self.myThread start];

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

408 | Chapter 7: Concurrency

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

This code creates an instance of NSThread and starts the thread immediately. The thread
sleeps for four seconds in every loop before performing its task. However, before the
thread is started, we are calling the stopThread method of the view controller (which
we have written) with a three-second delay. This method calls the cancel method of the
thread in an attempt to make the thread exit its loop. Now let’s run the application and
see what gets printed to the console screen:

...

Thread Entry Point

Cancelling the Thread

Releasing the thread

Thread Loop

Thread Finished

You can clearly see that the thread finished its current loop before exiting, even though
the request to cancel it was fired in the middle of the loop. This is a very common pitfall
that can be avoided simply by checking whether the thread is cancelled before attempt‐
ing to perform a task with external side effects inside the thread’s loop. We can rewrite
the example as follows so that the operation with an external effect (writing to the log)
checks first to make sure the thread hasn’t been cancelled:

- (void) threadEntryPoint{

 @autoreleasepool {

 NSLog(@"Thread Entry Point");

 while ([[NSThread currentThread] isCancelled] == NO){

 [NSThread sleepForTimeInterval:4];

 if ([[NSThread currentThread] isCancelled] == NO){

 NSLog(@"Thread Loop");

 }

 }

 NSLog(@"Thread Finished");

 }

}

- (void) stopThread{

 NSLog(@"Cancelling the Thread");

 [self.myThread cancel];

 NSLog(@"Releasing the thread");

 self.myThread = nil;

}

- (BOOL) application:(UIApplication *)application

7.17. Exiting Threads and Timers | 409

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 self.myThread = [[NSThread alloc]

 initWithTarget:self

 selector:@selector(threadEntryPoint)

 object:nil];

 [self performSelector:@selector(stopThread)

 withObject:nil

 afterDelay:3.0f];

 [self.myThread start];

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

410 | Chapter 7: Concurrency

CHAPTER 8

Security

8.0. Introduction
Security is at the heart of iOS and OS X. You can use security functions in iOS to store
data or files securely in different storage spaces. For instance, you can ask iOS to lock
and secure your app’s data files stored on disk if the user has enabled a passcode for her
device and her device is locked. If you do not explicitly ask for this, iOS will not use any
secure storage for your app, and your app data will be available to be read by a process
that has access to read your device’s filesystem. There are a variety of Mac applications
out there that can explore an iOS device’s filesystem without the iOS device being jail‐
broken.

Jailbreaking is the process of enabling root access and removing many
protection layers built on top of an operating system, such as iOS. For
instance, on a jailbroken device, an application can execute an un‐
signed binary. However, on a normal iOS device, for an app to be able
to get executed on the device, it has to be signed either by Apple
through the App Store, or through a verified iOS developer portal.

Apple has had Keychain Access in OS X for a long time. Keychain Access is a program
that allows OS X users to store data securely on their computers. Built on top of the
Common Data Security Architecture, or CDSA, the Keychain Access and other security
functionalities in OS X are available to programmers like us. Keychain Access can man‐
age various keychains. Every keychain itself can contain secure data such as passwords.
For instance, on your OS X machine, when you log into a website using Safari, you will
be prompted to either request for your password to be remembered by Safari or ignore
that request. If you ask Safari to remember your password, Safari will then store the
given password securely in your default keychain.

411

The OS X and iOS keychains differ in various ways, as listed here:

• In OS X, the user can have multiple keychains. In iOS, there is a single global key‐
chain.

• In OS X, a keychain can be locked by the user. In iOS, the default keychain gets
locked and unlocked as the device gets locked and unlocked.

• OS X has the concept of a default keychain that gets automatically unlocked by OS X
when the user logs in, as long as the default keychain has the same password as the
user’s account password. iOS, as just mentioned, has only one keychain and this
keychain, is unlocked by iOS by default.

To get a better understanding of the keychain on OS X, before we dig deeper into the
keychain and security concepts in iOS, I would like to demonstrate something to you.
Open Terminal on your Mac, type the following command, and press Enter:

security list-keychains

The output, depending on your machine’s setup and your username, may be very similar
to that shown here:

"/Users/vandadnp/Library/Keychains/login.keychain"

"/Library/Keychains/System.keychain"

You can see that I have two keychains, the first being the login keychain and the second
being the system keychain. To find out which keychain is the default keychain, type the
following command in Terminal, and then press Enter:

security default-keychain

On a typical OS X installation, this command will return a result similar to this:

"/Users/vandadnp/Library/Keychains/login.keychain"

The output indicates that my default keychain is the login keychain. So by default, all
passwords that I have asked various programs in my OS X installation to remember will
get stored in the default keychain unless the app in question decides that it needs to
store the password in a different keychain. The app will have to create that keychain if
it’s not already there.

Now let’s try something exciting. To find out what passwords are already stored in your
default keychain, assuming that the default keychain as we found out earlier was the
login.keychain, type the following command in Terminal and press Enter:

security dump-keychain login.keychain | grep "password" -i

412 | Chapter 8: Security

The dump-keychain argument to the security command in Terminal will dump the
whole contents of a keychain to the standard output. We used the grep command to
search for the passwords. The output of this command may be similar to the following,
depending on your computer’s remembered passwords:

"desc"<blob>="AirPort network password"

"desc"<blob>="AirPort network password"

"desc"<blob>="AirPort network password"

"desc"<blob>="AirPort network password"

"desc"<blob>="AirPort network password"

"desc"<blob>="AirPort network password"

"desc"<blob>="AirPort network password"

"desc"<blob>="AirPort network password"

"desc"<blob>="Web form password"

"desc"<blob>="Web form password"

"desc"<blob>="Web form password"

"desc"<blob>="Web form password"

OK, well, this is all great, but why am I talking about it, and how is it related to iOS? It
turns out that the architecture of the keychain in iOS is very similar to OS X, because
iOS was based on OS X’s source code. A lot of the concepts in iOS are similar to those
in OS X, and the keychain is no exception. There are some really important things to
note about the keychain in iOS, such as access groups and services. To ease you into the
subject, I will demonstrate how they apply to OS X, and then I will talk more about the
iOS implementation of the keychain.

On your Mac, press Command+space to open the Spotlight, or simply click the Spotlight
icon on the top menu bar on your screen. The Spotlight icon is shown in Figure 8-1.

Figure 8-1. Click the Spotlight icon on the menu bar in OS X

When the Spotlight opens, type in “Keychain Access” and press the Enter key to open
Keychain Access. On the lefthand side of Keychain Access, under the Keychains section,
click the login keychain and then, under the Category section on the lefthand side,
choose Passwords. Now you should be seeing an interface similar to that shown in
Figure 8-2.

8.0. Introduction | 413

Figure 8-2. The Keychain Access on Mac OS X

Keychain Access is the graphical user interface that sits on top of the keychain and
security APIs in OS X, giving you a nice, clean interface that hides a lot of the complexity
underneath the security frameworks in OS X. Now, if you have any passwords remem‐
bered by apps such as Safari, I need you to double-click one of the password items on
the righthand side of the Keychain Access screen to open a dialog similar to that shown
in Figure 8-3.

Figure 8-3. Keychain Access dialog displaying information for a saved password

414 | Chapter 8: Security

We need to know some of the properties of the password shown in Figure 8-3:

Name
The name of the password, which was assigned by the application that stored the
item. For instance, this one is a WiFi password for a network named 206-NET. This
name is also sometimes referred to as the label.

Kind
The kind of item that this is. In this case, the kind is AirPort network password. This
is a plain string and can be used to query the keychain later, as we will see.

Account
This is usually the key for the value that we want to store. The keychain uses a key-
value store, just as dictionaries do in Objective-C. The key is an arbitrary string,
and most applications that store items in the keychain store the key of the value in
this section.

Where
Often referred to as the service, this is the identifier of the service that stored this
item in the keychain. This identifier is something for you to remember, and the
keychain doesn’t really care about it too much as long as it makes sense to you. In
iOS, we usually set this service name to the bundle identifier of our apps to distin‐
guish our app’s stored values from other apps’ stored data. We will talk about this
in a short while.

You can also see the Show password checkbox in Figure 8-3. Pressing this checkbox will
ask for your permission to display the password for the item in question. If you enter
your password and give permission to display the password for this item, Keychain
Access will retrieve the secure password for you and display it on-screen.

We can use the security command in Terminal to fetch the exact same information.
If you type in Terminal the following command:

security find-generic-password -help

You will get an output similar to this:

Usage: find-generic-password [-a account] [-s service]

 [options...] [-g] [keychain...]

 -a Match "account" string

 -c Match "creator" (four-character code)

 -C Match "type" (four-character code)

 -D Match "kind" string

 -G Match "value" string (generic attribute)

 -j Match "comment" string

 -l Match "label" string

 -s Match "service" string

 -g Display the password for the item found

 -w Display only the password on stdout

8.0. Introduction | 415

If no keychains are specified to search, the default search list is used.

 Find a generic password item.

So if you pass the required parameters one by one to the security command, you will
be able to retrieve the properties of the password in question (Figure 8-3):

security find-generic-password

 -a "AirPort"

 -s "com.apple.network.wlan.ssid.206-NET"

 -D "AirPort network password"

 -l "206-NET"

 -g

 login.keychain

The -g command will, as you saw before, ask the security command to display the
password associated with the given item, if any. Therefore, when you type this command
in Terminal, you will be prompted to enter your account’s password before proceeding,
just as we were asked to put in our account’s password to show the password in
Figure 8-3.

In iOS, even though the whole operating system has one global keychain area, an ap‐
plication can still just read from and write to a sandboxed area of the global keychain.
Two apps that have been written by the same developer (signed by a provision profile
from the same iOS Developer Portal) can access a shared area of the keychain, but they
still maintain their own sandboxed access to their own keychain. Therefore, two apps,
named App X and App Y, developed by the same iOS developer, can access the following
keychain areas:

1. App X can access App X’s keychain area.

2. App Y can access App Y’s keychain area.

3. App X and App Y can both access a shared keychain area (using access groups, if
the programmer configures the app’s entitlements appropriately).

4. App X cannot read App Y’s keychain data, and App Y cannot read App X’s keychain
data.

iOS looks at an app’s entitlements to figure out what type of access it requires. Entitle‐
ments of an app are encoded inside the provision profile that is used to sign the app.
Let’s assume we have just created a new provision profile called KeychainTest_Dev.mo

bileprovision and placed it on our desktop. Using the following command, you can

extract the entitlements inside the profile, as follows:

cd ~/Desktop

That command will take you to your desktop, where you can issue the following com‐
mand to read the entitlements of your provision profile:

security cms -D -i KeychainTest_Dev.mobileprovision | grep -A12 "Entitlements"

416 | Chapter 8: Security

The security command shown here will decode the whole provi‐
sion profile, after which the grep command will look for the Entitle‐
ments section in the profile and will read 12 lines of text after the start
of the Entitlements section. If your entitlements contain more or less
text, you may need to adjust the -A12 argument to read more lines or
fewer.

The output of that command will potentially look like this, depending on your profile:

<key>Entitlements</key>

<dict>

 <key>application-identifier</key>

 <string>F3FU372W5M.com.pixolity.ios.cookbook.KeychainTest</string>

 <key>com.apple.developer.default-data-protection</key>

 <string>NSFileProtectionComplete</string>

 <key>get-task-allow</key>

 <true/>

 <key>keychain-access-groups</key>

 <array>

 <string>F3FU372W5M.*</string>

 </array>

</dict>

The important section that we are looking for is the keychain-access-groups section that
specifies the access groups for our keychain items. This is the group identifier of the
shared keychain for all apps developed by the same developer. In this case, the
F3FU372W5M is my iOS portal’s team ID, and the asterisk after that shows what access
groups in the keychain I can place my securely stored items in later. The asterisk in this
case means any group, so by default, this app will be able to access the keychain items
for any app that belongs to the aforementioned team. Don’t worry if this doesn’t make
that much sense for now. I can guarantee that by reading more about this subject in this
chapter, you will get to know all a programmer needs to use keychain in iOS.

It is absolutely crucial that you add the Security framework to your app before con‐
tinuing to read the recipes in this chapter. Most of the recipes in this chapter work with
the keychain services in iOS, which require the presence of the Security framework. The
iOS SDK 7 introduced the idea of modules, so that if you simply import the security
framework’s umbrella header into your project, LLVM will link your application to the
relevant security module; you won’t have to do the link manually. All you have to do is
ensure that the Enable Modules feature is enabled in your build settings and that you
import the following header file into your project:

#import <Security/Security.h>

Xcode 5 also added support for Capabilities, a new tab near the Build Settings tab. There,
you can easily add entitlements to your app or even enable the keychain without much
hassle. However, this hides almost every detail from you and doesn’t allow you to create

8.0. Introduction | 417

your own provision profiles. All you will be able to use are Wildcard provision profiles,
which is not what we usually use when adding push notifications and other capabilities
to our apps. I suggest that you have a look at this new tab simply by clicking on your
project file in Xcode, looking to the righthand side of the screen, and selecting Capa‐
bilities. You can then easily turn on or off features such as iCloud and Keychain Access.

8.1. Enabling Security and Protection for Your Apps

Problem
You want to store values in the keychain and enable secure file storage for your app.

Solution
Create a provision profile for your app that has file protection enabled.

Discussion
Provision profiles, as discussed earlier in Recipe 8.0, “Introduction”, contain entitle‐
ments that dictate to iOS how your app utilizes the security functionalities in the oper‐
ating system. On iOS Simulator, apps do not get codesigned and, therefore, these con‐
cepts will not make sense, but for debugging your app on a device or submitting your
app to the App Store, you need to ensure that your app is signed with the correct pro‐
vision profile, for both the Debug and the Release schemes.

I will show you the steps required to create a valid provision profile for your develop‐
ment, as well as Ad Hoc and the App Store. Follow these steps to create a valid devel‐
opment provision profile (with debugging enabled) for the apps that we are going to be
working on in this chapter of the book. We start by creating an App ID:

I am assuming that you have already created valid development and
distribution certificates for yourself.

1. Navigate to the iOS Dev Center and sign in with your username and password.

2. After you are signed in, find the iOS Developer Program section and choose Cer‐
tificates, Identifiers & Profiles.

3. On the lefthand side of the screen, find and navigate to the App IDs section of the
portal and press the plus button (+) to create a new App ID.

418 | Chapter 8: Security

https://developer.apple.com/devcenter/ios/index.action

4. In the Name section, enter the name “Security App.” You can actually enter anything
you want, but to avoid confusion in this chapter, it’s best to stick with the afore‐
mentioned name, which I will be using in examples.

5. Under the App Services section, check the Data Protection box and ensure that the
Complete Protection option is selected. Leave the rest of the settings intact.

6. Under the App ID Suffix section, ensure that the Explicit App ID option is selected,
and in the Bundle ID box, enter the dot-separated name of a service. I recommend
com.NAME.ios.cookbook.SecurityApp, where NAME is your company’s name. If
you don’t have a company, make up a name! I am using com.pixolity.ios.cook
book.SecurityApp in examples, but you need a unique name, so you can’t use mine.

7. After you are done, press the Continue button.

8. You should now be asked to confirm your settings before your App ID is created,
similar to the screen depicted in Figure 8-4.

Figure 8-4. Confirming your App ID settings before creating the App ID

8.1. Enabling Security and Protection for Your Apps | 419

9. When you are happy with your settings, press the Submit button to create your App
ID.

Beautiful! Now we have an App ID, but we still need to create our provision profiles. I
am going to walk you through creating your development provision profile, and I will
let you create the Ad Hoc and your App Store profiles on your own because the process
is almost identical. Follow these steps to create your development provision profile:

1. In the Certificates, Identifiers & Profiles section of the Developer Portal, choose the
Development section of the Provisioning Profiles category and press the plus button
(+).

2. In the screen that appears, under the Development section, choose the iOS App
Development option and press the Continue button.

3. When asked to choose your App ID, select the App ID that you created earlier. For
me, this would be the App ID shown in Figure 8-5. Once you are happy with your
selection, press the Continue button.

Figure 8-5. Choosing our new App ID for the new development provision profile

420 | Chapter 8: Security

4. Choose the development certificate(s) to which you want to link your profile. Then
press the Continue button.

5. Choose the list of devices on which your profile is allowed to be installed (only for
Development and Ad Hoc profiles, not for App Store). Press the Continue button.

6. On the next screen, where you are asked to specify a name for your profile, enter
something along the lines of “SecurityApp Dev Profile” and then press the Generate
button to create your provision profile.

7. Your profile is now ready to be downloaded (see Figure 8-6). Press the Download
button to download your profile.

Figure 8-6. A development profile is generated and ready to be downloaded

8. To install the profile, drag and drop the downloaded profile into iTunes. This will
install the profile with its original name into the ~/Library/MobileDevice/Provision

ing Profiles/ folder. I have seen many iOS developers install a provision profile by

double-clicking on it. While this does work, in that it installs the profile into the
aforementioned folder, it will destroy the original profile’s filename and will install
the profile using the SHA1 hash of the profile. If you later go into the aforemen‐
tioned folder, you won’t be able to tell which profile is which unless you look inside

8.1. Enabling Security and Protection for Your Apps | 421

the profiles for their names, so I strongly discourage this way of installing profiles.
It’s best to either drag and drop the downloaded profiles into iTunes or manually
paste the profiles into the aforementioned folder.

Brilliant. You now have the provision profile installed on your computer. Use the build
settings of your project to make sure that the correct profile is selected for the Debug
scheme. After you follow the same process for creating your Ad Hoc and App Store
profiles, you can ensure that your app is built with the correct Ad Hoc or App Store
profile for the Release scheme.

The provision profile that you created now will allow you to debug your apps on an iOS
device and store data onto the disk or into the keychain with ease.

See Also
Recipe 8.0, “Introduction”

8.2. Storing Values in the Keychain

Problem
You want to securely store sensitive data in the keychain.

Solution
Ensure that your app is linked against the Security framework. Then use the SecItemAdd
function to add a new item to your app’s keychain.

Discussion
Keychain APIs in both iOS and OS X are C APIs. That means we don’t have an Objective-
C bridge or layer on top of the C APIs, so they are a bit more difficult to use than normal
APIs. The key to learning the APIs is that the requests that we send to the keychain APIs
are usually packed inside dictionaries. For instance, if you want to ask the keychain
services to securely store a piece of data, you put your request—including the data that
you want to store, the key for that data, the identifier of your app, etc.—inside a dictio‐
nary and submit that dictionary to an API such as the SecItemAdd function. To store a
piece of value in the keychain, construct a dictionary with the following keys:

kSecClass

The value of this key is usually equal to kSecClassGenericPassword for storage of
secure pieces of data, such as strings.

422 | Chapter 8: Security

kSecAttrService

The value of this key is usually a string. This string usually is our app bundle iden‐
tifier.

kSecAttrAccount

The value of this key is a string that specifies the key to the value that we want to
store. This is an arbitrary string that should make sense to you and your app.

kSecValueData

The value of this key is an instance of NSData that you want to store for a given key
(kSecAttrAccount.)

The return value of the SecItemAdd function is of type OSStatus. The different values
that you can receive from this function are defined inside the SecBase.h file in your SDK,

so simply press the Command+Shift+O keys on your keyboard while in Xcode, type in
SecBase.h, and try to find the value errSecSuccess. After you find errSecSuccess in

an enumeration, you will be able to see the rest of the values that can be returned inside
a value of type OSStatus:

enum

{

 errSecSuccess = 0,

 errSecUnimplemented = -4,

 errSecParam = -50,

 errSecAllocate = -108,

 errSecNotAvailable = -25291,

 errSecDuplicateItem = -25299,

 errSecItemNotFound = -25300,

 errSecInteractionNotAllowed = -25308,

 errSecDecode = -26275,

 errSecAuthFailed = -25293,

};

If the SecItemAdd function succeeds, you will receive the errSecSuccess value as the
return value of this function. Otherwise, this function is indicating failure. So let’s put
all this together and write a small piece of code that can write a string value to the
keychain:

#import "AppDelegate.h"

#import <Security/Security.h>

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *key = @"Full Name";

 NSString *value = @"Steve Jobs";

 NSData *valueData = [value dataUsingEncoding:NSUTF8StringEncoding];

 NSString *service = [[NSBundle mainBundle] bundleIdentifier];

8.2. Storing Values in the Keychain | 423

 NSDictionary *secItem = @{

 (__bridge id)kSecClass : (__bridge id)kSecClassGenericPassword,

 (__bridge id)kSecAttrService : service,

 (__bridge id)kSecAttrAccount : key,

 (__bridge id)kSecValueData : valueData,

 };

 CFTypeRef result = NULL;

 OSStatus status = SecItemAdd((__bridge CFDictionaryRef)secItem, &result);

 if (status == errSecSuccess){

 NSLog(@"Successfully stored the value");

 } else {

 NSLog(@"Failed to store the value with code: %ld", (long)status);

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

If you run this app for the first time, assuming that you have followed the advice in
previous sections of this chapter to set up your profile correctly, you will receive the
errSecSuccess value from the SecItemAdd function. However, if you run the same app
again, you will receive the errSecDuplicateItem value. This is iOS’s way of telling you
that you cannot overwrite the existing value. In the world of keychain security, you
cannot overwrite an existing value. What you can do, though, is update the existing
value, as we will see later in this chapter.

See Also
Recipe 8.1

8.3. Finding Values in the Keychain

Problem
You want to query the keychain to find an existing item.

Solution
Use the SecItemCopyMatching function. Follow these steps:

424 | Chapter 8: Security

1. Construct a dictionary to pass to the aforementioned function. Add the kSec
Class key to the dictionary. Set the key’s value to reflect the type of item that you
are looking for. Usually the value should be kSecClassGenericPassword.

2. Add the kSecAttrService key to the dictionary. Set the key’s value to the service
string of the item you are looking for. In this chapter, for service names, we use our
app’s bundle identifier and we are setting the bundle identifiers of all our apps to
the same string, so that one can write to the keychain, another can read the same
data, etc.

3. Add the kSecAttrAccount key to the dictionary and set its value to the actual key
of the value that you previously stored in the keychain. If you followed the example
that we wrote in Recipe 8.2, the account name in this case would be the string “Full
Name.”

4. Add the kSecReturnAttributes attribute to the dictionary and set its value to
kCFBooleanTrue if you want to retrieve the attributes, such as the creation and
modification date, of the existing value in the keychain. If you want to retrieve the
actual value of the item you stored in the keychain, instead of the kSecReturnAt
tributes key, add the kSecReturnData key to your dictionary and set its value to
kCFBooleanTrue.

Once your dictionary is ready, you can pass it as the first parameter to the SecItemCo
pyMatching function. The second parameter is a pointer to an object that will be re‐
turned by this function. This pointer must be of type CFTypeRef *. This is a generic
data type, and the type depends on what you pass as the first parameter to the SecItem
CopyMatching function. For instance, if your dictionary contains the kSecReturnAt
tributes key, the second parameter to this function must be either NULL or a pointer
to a CFDictionaryRef opaque type. If you instead pass the kSecReturnData key to your
dictionary, the second parameter to this function must be of type CFDataRef, which is
an opaque type that will receive the actual data of the existing item. You can then convert
this data to an instance of NSString and work with it.

Discussion
Suppose you want to read the properties of the string that you wrote to the keychain in
Recipe 8.2. You can write your code in this way:

- (BOOL) application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *keyToSearchFor = @"Full Name";

 NSString *service = [[NSBundle mainBundle] bundleIdentifier];

 NSDictionary *query = @{

 (__bridge id)kSecClass : (__bridge id)kSecClassGenericPassword,

 (__bridge id)kSecAttrService : service,

8.3. Finding Values in the Keychain | 425

 (__bridge id)kSecAttrAccount : keyToSearchFor,

 (__bridge id)kSecReturnAttributes : (__bridge id)kCFBooleanTrue,

 };

 CFDictionaryRef valueAttributes = NULL;

 OSStatus results = SecItemCopyMatching((__bridge CFDictionaryRef)query,

 (CFTypeRef *)&valueAttributes);

 NSDictionary *attributes =

 (__bridge_transfer NSDictionary *)valueAttributes;

 if (results == errSecSuccess){

 NSString *key, *accessGroup, *creationDate, *modifiedDate, *service;

 key = attributes[(__bridge id)kSecAttrAccount];

 accessGroup = attributes[(__bridge id)kSecAttrAccessGroup];

 creationDate = attributes[(__bridge id)kSecAttrCreationDate];

 modifiedDate = attributes[(__bridge id)kSecAttrModificationDate];

 service = attributes[(__bridge id)kSecAttrService];

 NSLog(@"Key = %@\n \

 Access Group = %@\n \

 Creation Date = %@\n \

 Modification Date = %@\n \

 Service = %@", key, accessGroup, creationDate,

 modifiedDate, service);

 } else {

 NSLog(@"Error happened with code: %ld", (long)results);

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

When you run the app, results similar to the following will print to the console:

Key = Full Name

Access Group = F3FU372W5M.com.pixolity.ios.cookbook.SecurityApp

Creation Date = 2013-06-09 10:44:55 +0000

Modification Date = 2013-06-09 10:44:55 +0000

Service = com.pixolity.ios.cookbook.SecurityApp

That is great, but how can you now read the actual data of the value? The Solution section
of this recipe already answered this: you have to include the kSecReturnData in your
query. Once you do that, the second parameter to the SecItemCopyMatching function
will need to either be NULL or a pointer to a CFDataRef opaque variable, like so:

426 | Chapter 8: Security

#import "AppDelegate.h"

#import <Security/Security.h>

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *keyToSearchFor = @"Full Name";

 NSString *service = [[NSBundle mainBundle] bundleIdentifier];

 NSDictionary *query = @{

 (__bridge id)kSecClass : (__bridge id)kSecClassGenericPassword,

 (__bridge id)kSecAttrService : service,

 (__bridge id)kSecAttrAccount : keyToSearchFor,

 (__bridge id)kSecReturnData : (__bridge id)kCFBooleanTrue,

 };

 CFDataRef cfValue = NULL;

 OSStatus results = SecItemCopyMatching((__bridge CFDictionaryRef)query,

 (CFTypeRef *)&cfValue);

 if (results == errSecSuccess){

 NSString *value = [[NSString alloc]

 initWithData:(__bridge_transfer NSData *)cfValue

 encoding:NSUTF8StringEncoding];

 NSLog(@"Value = %@", value);

 } else {

 NSLog(@"Error happened with code: %ld", (long)results);

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

By default, the SecItemCopyMatching function looks for the first match in the keychain.
Let’s say that you have stored 10 secure items of class kSecClassGenericPassword in
the keychain and you want to query them all. How can you do that? The answer is simple.
Just add the kSecMatchLimit key into your query dictionary and provide the maximum
number of matching items that the keychain services have to look for in the keychain
or, alternatively, set the value of this key to kSecMatchLimitAll to find all matching
items. Once you include the kSecMatchLimit key into your query dictionary to the
SecItemCopyMatching function, the second parameter to this method will then require
a pointer to a CFArrayRef opaque type, and the items in this array will then be the items

8.3. Finding Values in the Keychain | 427

that you asked for. If you include the kSecReturnData key in your dictionary with the
value of @YES, the items in this array will be of type CFDataRef. However, if instead of
the kSecReturnData key, you included the kSecReturnAttributes key in your query
dictionary with the value of @YES, the items in your array will be of type CFDictionar
yRef containing the dictionary object that describes the found item.

Let’s have a look at an example that attempts to find all items in the keychain that match
a certain criteria:

#import "AppDelegate.h"

#import <Security/Security.h>

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *keyToSearchFor = @"Full Name";

 NSString *service = [[NSBundle mainBundle] bundleIdentifier];

 NSDictionary *query = @{

 (__bridge id)kSecClass : (__bridge id)kSecClassGenericPassword,

 (__bridge id)kSecAttrService : service,

 (__bridge id)kSecAttrAccount : keyToSearchFor,

 (__bridge id)kSecReturnData : (__bridge id)kCFBooleanTrue,

 (__bridge id)kSecMatchLimit : (__bridge id)kSecMatchLimitAll

 };

 CFArrayRef allCfMatches = NULL;

 OSStatus results = SecItemCopyMatching((__bridge CFDictionaryRef)query,

 (CFTypeRef *)&allCfMatches);

 if (results == errSecSuccess){

 NSArray *allMatches = (__bridge_transfer NSArray *)allCfMatches;

 for (NSData *itemData in allMatches){

 NSString *value = [[NSString alloc]

 initWithData:itemData

 encoding:NSUTF8StringEncoding];

 NSLog(@"Value = %@", value);

 }

 } else {

 NSLog(@"Error happened with code: %ld", (long)results);

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

428 | Chapter 8: Security

 return YES;

}

See Also
Recipe 8.2

8.4. Updating Existing Values in the Keychain

Problem
You have already stored a value in the keychain but now want to update it to a new value.

Solution
Given that you have been able to find the value in the keychain (see Recipe 8.3), you
can issue the SecItemUpdate function with your query dictionary as its first parameter
and a dictionary describing the change that you want to make to the existing value as
its second parameter. Usually this update dictionary (the second parameter to the
method) contains just one key (kSecValueData) and the value of this dictionary key is
the data to set for the existing key in the keychain.

Discussion
Let’s assume that, following the advice given in Recipe 8.2, you have stored the string
Steve Jobs with the key of Full Name in your app’s keychain but want to update that
value now. The first thing that you have to do is find out whether the existing value is
already in the keychain. For that, construct a simple query, as we have seen earlier in
this chapter:

NSString *keyToSearchFor = @"Full Name";

NSString *service = [[NSBundle mainBundle] bundleIdentifier];

NSDictionary *query = @{

 (__bridge id)kSecClass : (__bridge id)kSecClassGenericPassword,

 (__bridge id)kSecAttrService : service,

 (__bridge id)kSecAttrAccount : keyToSearchFor,

 };

Then query for that dictionary and see whether you can find the existing item in the
keychain:

OSStatus found = SecItemCopyMatching((__bridge CFDictionaryRef)query,

 NULL);

8.4. Updating Existing Values in the Keychain | 429

You don’t necessarily have to check for an existing value before at‐
tempting to update it. You can just attempt to update the value, and if
the item doesn’t exist, the SecItemUpdate function returns the value
of errSecItemNotFound to you. The choice is whether to search in the
keychain yourself or let SecItemUpdate do the check for you.

If this function returns the value of errSecSuccess, you know that your value is already
there. Note that we passed NULL as the second parameter. The reason behind this is that
we are not interested in retrieving the old value from the keychain. We just want to find
out whether the value exists, and we can find that out by checking the function’s return
value. If the return value is errSecSuccess, then we know the value has already been
stored and can be updated. So all we have to do is update it like so:

NSData *newData = [@"Mark Tremonti"

 dataUsingEncoding:NSUTF8StringEncoding];

NSDictionary *update = @{

 (__bridge id)kSecValueData : newData,

 };

OSStatus updated = SecItemUpdate((__bridge CFDictionaryRef)query,

 (__bridge CFDictionaryRef)update);

if (updated == errSecSuccess){

 NSLog(@"Successfully updated the existing value");

} else {

 NSLog(@"Failed to update the value. Error = %ld", (long)updated);

}

The update dictionary that we pass to the second parameter of the SecItemUpdate
function can contain more keys than the kSecValueData key that we used in our ex‐
ample. This dictionary can indeed contain any update to the existing item. For instance,
if you want to add a comment to the existing value (a comment is a string), you can
issue your update like so:

#import "AppDelegate.h"

#import <Security/Security.h>

@implementation AppDelegate

- (void) readExistingValue{

 NSString *keyToSearchFor = @"Full Name";

 NSString *service = [[NSBundle mainBundle] bundleIdentifier];

 NSDictionary *query = @{

 (__bridge id)kSecClass : (__bridge id)kSecClassGenericPassword,

 (__bridge id)kSecAttrService : service,

 (__bridge id)kSecAttrAccount : keyToSearchFor,

430 | Chapter 8: Security

 (__bridge id)kSecReturnAttributes : (__bridge id)kCFBooleanTrue,

 };

 CFDictionaryRef cfAttributes = NULL;

 OSStatus found = SecItemCopyMatching((__bridge CFDictionaryRef)query,

 (CFTypeRef *)&cfAttributes);

 if (found == errSecSuccess){

 NSDictionary *attributes =

 (__bridge_transfer NSDictionary *)cfAttributes;

 NSString *comments = attributes[(__bridge id)kSecAttrComment];

 NSLog(@"Comments = %@", comments);

 } else {

 NSLog(@"Error happened with code: %ld", (long)found);

 }

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *keyToSearchFor = @"Full Name";

 NSString *service = [[NSBundle mainBundle] bundleIdentifier];

 NSDictionary *query = @{

 (__bridge id)kSecClass : (__bridge id)kSecClassGenericPassword,

 (__bridge id)kSecAttrService : service,

 (__bridge id)kSecAttrAccount : keyToSearchFor,

 };

 OSStatus found = SecItemCopyMatching((__bridge CFDictionaryRef)query,

 NULL);

 if (found == errSecSuccess){

 NSData *newData = [@"Mark Tremonti"

 dataUsingEncoding:NSUTF8StringEncoding];

 NSDictionary *update = @{

 (__bridge id)kSecValueData : newData,

 (__bridge id)kSecAttrComment : @"My Comments",

 };

 OSStatus updated = SecItemUpdate((__bridge CFDictionaryRef)query,

 (__bridge CFDictionaryRef)update);

 if (updated == errSecSuccess){

 [self readExistingValue];

 } else {

8.4. Updating Existing Values in the Keychain | 431

 NSLog(@"Failed to update the value. Error = %ld", (long)updated);

 }

 } else {

 NSLog(@"Error happened with code: %ld", (long)found);

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

The important thing to note about this example code is the inclusion of the kSecAttr
Comment key in our update dictionary. Once the update is done, we are reading our
comment back using the same reading technique that we learned in Recipe 8.3.

See Also
Recipe 8.3; Recipe 8.2

8.5. Deleting Exiting Values in the Keychain

Problem
You want to delete a keychain item.

Solution
Use the SecItemDelete function.

Discussion
In Recipe 8.2, we learned how to store values in the keychain. In order to delete those
values, you will need to use the SecItemDelete function. This function takes only one
parameter: a dictionary of type CFDictionaryRef. You can take a normal dictionary
and bridge-convert it to an instance of CFDictionaryRef, as we have done in other
recipes in this chapter. The dictionary that you’ll pass to this method has to contain the
following keys:

kSecClass

The type of item that you want to delete. For instance kSecClassGenericPassword.

432 | Chapter 8: Security

kSecAttrService

The service that this item is hooked to. When you stored the item, you chose the
service for it, so you’ll need to provide the same service here. For instance, in pre‐
vious examples, we set the value of this key to our app’s bundle identifier. If that’s
what you did as well, simply provide your app’s bundle identifier for the value of
this key.

kSecAttrAccount

The value of this key is the key that has to be deleted.

Assuming you have followed Recipe 8.2, the keychain now has a generic password
(kSecClassGenericPassword) with the service name (kSecAttrService) equal to our
app’s bundle ID and the key (kSecAttrAccount) equal to Full Name. To delete this key,
here is what you’ll have to do:

#import "AppDelegate.h"

#import <Security/Security.h>

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *key = @"Full Name";

 NSString *service = [[NSBundle mainBundle] bundleIdentifier];

 NSDictionary *query = @{

 (__bridge id)kSecClass : (__bridge id)kSecClassGenericPassword,

 (__bridge id)kSecAttrService : service,

 (__bridge id)kSecAttrAccount : key

 };

 OSStatus foundExisting =

 SecItemCopyMatching((__bridge CFDictionaryRef)query, NULL);

 if (foundExisting == errSecSuccess){

 OSStatus deleted = SecItemDelete((__bridge CFDictionaryRef)query);

 if (deleted == errSecSuccess){

 NSLog(@"Successfully deleted the item");

 } else {

 NSLog(@"Failed to delete the item.");

 }

 } else {

 NSLog(@"Did not find the existing value.");

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

8.5. Deleting Exiting Values in the Keychain | 433

 return YES;

}

After you run this program, assuming that you’ve followed the instructions in
Recipe 8.2, you should see the NSLog on the console for a successful deletion. If not, you
can always read the return value of the SecItemDelete function to determine what the
issue was.

See Also
Recipe 8.2

8.6. Sharing Keychain Data Between Multiple Apps

Problem
You want two of your apps to be able to share keychain storage.

Solution
When storing your keychain data, specify the kSecAttrAccessGroup key in the dictio‐
nary that gets passed to the SecItemAdd function. The value of this key has to be the
access group, which you can find in the Entitlements section of your provision profile,
as explained in this chapter’s Introduction.

Discussion
Multiple apps from the same developer portal can share a keychain area. To avoid com‐
plications, we are going to limit our thoughts to only two apps for now, but this same
technique applies for any number of apps.

In order for two apps to be able to share a keychain area, the following criteria must be
met:

1. Both apps must have been signed using a provision profile originated from the same
iOS Developer Portal.

2. Both apps have to have the same Group ID in their provision profile. This is usually
the Team ID as selected by Apple. I suggest that you don’t change this group ID
when you create your own provision profiles.

3. The first app that stores the value in the keychain must specify the kSecAttrAc
cessGroup attribute for the keychain item that is getting stored. This access group
must be the same access group that is mentioned in your provision profile. Have a
look at this chapter’s Introduction to learn how to extract this value from your
provision profiles.

434 | Chapter 8: Security

4. The value stored in the keychain should have been stored with the kSecAttrSer
vice attribute set to a value that the two apps know about. This is usually the bundle
identifier of the app that actually stored the value. If both apps are created by you,
you know the bundle identifier of the app that stored the value. So you can read the
value in your other app by providing the bundle identifier of the first app for the
aforementioned key.

5. Both apps have to have a codesigning identity. This is a plist that contains the exact

same contents from the Entitlements section of your provision profile. You will then
have to set the path of this file in the Code Signing Entitlements of your build
settings. We will talk about this in greater detail in a short while.

Even though your app is signed with provision profiles that have entitlements in them
(please see this chapter’s Introduction), you will still need to explicitly tell Xcode about
your entitlements. The entitlements are nothing but a plist file with contents similar to

these, which I took from the Entitlements that I showed you how to print in the Intro‐
duction:

<plist version="1.0">

 <dict>

 <key>application-identifier</key>

 <string>F3FU372W5M.com.pixolity.ios.cookbook.SecondSecurityApp</string>

 <key>com.apple.developer.default-data-protection</key>

 <string>NSFileProtectionComplete</string>

 <key>get-task-allow</key>

 <true/>

 <key>keychain-access-groups</key>

 <array>

 <string>F3FU372W5M.*</string>

 </array>

 </dict>

</plist>

Note the keychain-access-groups key. That key’s value specifies the keychain group
to which the current app has access: F3FU372W5M.*. You will have to find your own
keychain access group in your Entitlements and use it in the example code in this recipe.
We are going to write two apps. The first will write information to the keychain, referring
to the keychain access group, and the second will read that information. The apps are
going to have different bundle identifiers and are generally two completely separate
apps, yet they will be able to share a keychain area.

The F3FU372W5M.* access group is my team ID’s keychain access group.
This value will certainly be different for you. Use the technique that
you learned in the Introduction section of this chapter to extract the
entitlements of your provision profiles.

8.6. Sharing Keychain Data Between Multiple Apps | 435

I am going to use the following settings for the first iOS app. You should replace them
with your own:

Bundle identifier
com.pixolity.ios.cookbook.SecurityApp

Keychain access group
F3FU372W5M.*

Provision profile
A provision profile specifically created for the bundle ID of this app

And here are my settings for the second app, or the app that can read the values stored
in the keychain by the first app:

Bundle identifier
com.pixolity.ios.cookbook.SecondSecurityApp

Keychain access group
F3FU372W5M.*

Provision profile
A provision profile specifically created for the bundle ID of this app, which differs
from the provision profile that was created for the first app

The most important thing that differentiates the first app (the keychain storing app)
from the second app (the keychain reading app) is the bundle identifiers. The first app
will use its own bundle identifier to store a value in the keychain and the second app
will use the first app’s bundle identifier to read that same value back from the keychain.
So let’s write the code for the first app. This code is very similar to what we saw in
Recipe 8.2. The only difference is that this new code will specify a keychain access group
when storing the data to the keychain:

#import "AppDelegate.h"

#import <Security/Security.h>

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *key = @"Full Name";

 NSString *service = [[NSBundle mainBundle] bundleIdentifier];

 NSString *accessGroup = @"F3FU372W5M.*";

 /* First delete the existing one if one exists. We don't have to do this

 but SecItemAdd will fail if an existing value is in the keychain. */

 NSDictionary *queryDictionary = @{

 (__bridge id)kSecClass : (__bridge id)kSecClassGenericPassword,

 (__bridge id)kSecAttrService : service,

 (__bridge id)kSecAttrAccessGroup : accessGroup,

436 | Chapter 8: Security

 (__bridge id)kSecAttrAccount : key,

 };

 SecItemDelete((__bridge CFDictionaryRef)queryDictionary);

 /* Then write the new value in the keychain */

 NSString *value = @"Steve Jobs";

 NSData *valueData = [value dataUsingEncoding:NSUTF8StringEncoding];

 NSDictionary *secItem = @{

 (__bridge id)kSecClass : (__bridge id)kSecClassGenericPassword,

 (__bridge id)kSecAttrService : service,

 (__bridge id)kSecAttrAccessGroup : accessGroup,

 (__bridge id)kSecAttrAccount : key,

 (__bridge id)kSecValueData : valueData,

 };

 CFTypeRef result = NULL;

 OSStatus status = SecItemAdd((__bridge CFDictionaryRef)secItem, &result);

 if (status == errSecSuccess){

 NSLog(@"Successfully stored the value");

 } else {

 NSLog(@"Failed to store the value with code: %ld", (long)status);

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

This starts by querying the keychain to find an existing item with a given key, service
name and keychain access group. If one exists, it deletes it from the keychain. We are
doing this just to ensure that later we can add the new value successfully. The SecIte
mAdd fails if you attempt to overwrite an existing value. So we delete the existing value
(if it exists) and write a new one. You could just as well attempt to find an existing value,
update it if it exists, and write a new one if it doesn’t exist. The latter approach is more
complicated and not necessary for our demonstration.

Before you can run this app, though, you need to set up your code signing entitlements.
To set the code signing entitlements of an app, follow these steps:

1. Use the technique that you learned in this chapter’s Introduction to extract the
entitlements of your provision profile.

2. Create a new plist in your app and call it Entitlements.plist. Paste the contents of the

entitlements of your provision profile, exactly as they are, into the Entitle

ments.plist file and save.

8.6. Sharing Keychain Data Between Multiple Apps | 437

3. Go to your build settings and look for Code Signing Entitlements. Set the value of
this section to $(TARGET_NAME)/Entitlements.plist. This means that Xcode has
to find the Entitlements.plist file in a folder that has the name of your target.

The reason behind this value is that if you create a project named
MyProject, Xcode will create a root directory (or SRCROOT)
called MyProject. Under that, it will create another folder called
MyProject under which your source codes will reside. Under
SRCROOT (or the top-level MyProject), it will create another
folder called MyProjectTests that will contain your unit/integra‐
tion/UI tests. Under this structure, your Entitlements.plist file will

be under MyProject/MyProject/Entitlements.plist. The Code Sign‐

ing Entitlements looks for the given plist file under SRCROOT, so
if you provide the value of MyProject/Entitlements.plist to it, it will
be happy! The $(TARGET_NAME) is a variable in Xcode that re‐
solves to the name of your target, which, by default, is the name
of your project. Therefore, in the case of MyProject, the value $
(TARGET_NAME)/Entitlements.plist will resolve to MyProject/
Entitlements.plist.

4. Build your app to ensure that everything is working fine.

If you get an error similar to this:

error: The data couldn't be read because it isn't in the correct format.

it means that your entitlements are in the wrong format. The common error that a lot
of iOS programmers make is to populate their entitlements file like so:

<plist version="1.0">

 <key>Entitlements</key>

 <dict>

 <key>application-identifier</key>

 <string>F3FU372W5M.com.pixolity.ios.cookbook.SecurityApp</string>

 <key>com.apple.developer.default-data-protection</key>

 <string>NSFileProtectionComplete</string>

 <key>get-task-allow</key>

 <true/>

 <key>keychain-access-groups</key>

 <array>

 <string>F3FU372W5M.*</string>

 </array>

 </dict>

</plist>

438 | Chapter 8: Security

Note that this entitlements file is invalid because it contains an orphan Entitlements
key on top. You will need to remove that key to make your entitlements file look like
this:

<plist version="1.0">

 <dict>

 <key>application-identifier</key>

 <string>F3FU372W5M.com.pixolity.ios.cookbook.SecurityApp</string>

 <key>com.apple.developer.default-data-protection</key>

 <string>NSFileProtectionComplete</string>

 <key>get-task-allow</key>

 <true/>

 <key>keychain-access-groups</key>

 <array>

 <string>F3FU372W5M.*</string>

 </array>

 </dict>

</plist>

Now that we have the writing app done, we can focus on the iOS app that can read the
data. These two are completely separate signed apps, each with its own provision profile:

#import "AppDelegate.h"

#import <Security/Security.h>

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *key = @"Full Name";

 /* This is the bundle ID of the app that wrote the data to the keychain.

 This is NOT this app's bundle ID. This app's bundle ID is

 com.pixolity.ios.cookbook.SecondSecurityApp. */

 NSString *service = @"com.pixolity.ios.cookbook.SecurityApp";

 NSString *accessGroup = @"F3FU372W5M.*";

 NSDictionary *queryDictionary = @{

 (__bridge id)kSecClass : (__bridge id)kSecClassGenericPassword,

 (__bridge id)kSecAttrService : service,

 (__bridge id)kSecAttrAccessGroup : accessGroup,

 (__bridge id)kSecAttrAccount : key,

 (__bridge id)kSecReturnData : (__bridge id)kCFBooleanTrue,

 };

 CFDataRef data = NULL;

 OSStatus found =

 SecItemCopyMatching((__bridge CFDictionaryRef)queryDictionary,

 (CFTypeRef *)&data);

 if (found == errSecSuccess){

8.6. Sharing Keychain Data Between Multiple Apps | 439

 NSString *value = [[NSString alloc]

 initWithData:(__bridge_transfer NSData *)data

 encoding:NSUTF8StringEncoding];

 NSLog(@"Value = %@", value);

 } else {

 NSLog(@"Failed to read the value with error = %ld", (long)found);

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Getting used to how the keychain works takes a while, but don’t worry if things don’t
work right out the box. Simply read the instructions given in this chapter, especially this
chapter’s Introduction, to get a better understanding of the keychain access group and
how that relates to your app’s entitlements.

See Also
Recipe 8.0, “Introduction”; Recipe 8.2

8.7. Writing to and Reading Keychain Data from iCloud

Problem
You want to store data in the keychain and have that data stored in the user’s iCloud
keychain so that it will be available on all her devices.

Solution
When adding your item to the keychain using the SecItemAdd function, add the kSe
cAttrSynchronizable key to the dictionary that you pass to that function. For the value
of this key, pass kCFBooleanTrue.

Discussion
When items are stored in the keychain with their kSecAttrSynchronizable key set to
kCFBooleanTrue, they will be stored in the user’s iCloud keychain. This means that the
items will be available on all the user’s devices as long as she is logged into them using
her iCloud account. If you want to simply read a value that you know is synchronized
to the user’s iCloud keychain, you need to specify the aforementioned key and the

440 | Chapter 8: Security

kCFBooleanTrue for this key as well, so that iOS will retrieve that value from the cloud
if it hasn’t already done so.

The example that we are going to see here is 99% similar to the example code that we
saw in Recipe 8.6. The difference is that, when we store or try to read from the keychain,
we specify the kSecAttrSynchronizable in our dictionary and set the value of this key
to kCFBooleanTrue. So let’s have a look at how we can store the value in the keychain
first:

#import "AppDelegate.h"

#import <Security/Security.h>

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *key = @"Full Name";

 NSString *service = [[NSBundle mainBundle] bundleIdentifier];

 NSString *accessGroup = @"F3FU372W5M.*";

 /* First delete the existing one if one exists. We don't have to do this

 but SecItemAdd will fail if an existing value is in the keychain. */

 NSDictionary *queryDictionary = @{

 (__bridge id)kSecClass : (__bridge id)kSecClassGenericPassword,

 (__bridge id)kSecAttrService : service,

 (__bridge id)kSecAttrAccessGroup : accessGroup,

 (__bridge id)kSecAttrAccount : key,

 (__bridge id)kSecAttrSynchronizable : (__bridge id)kCFBooleanTrue

 };

 SecItemDelete((__bridge CFDictionaryRef)queryDictionary);

 /* Then write the new value in the keychain */

 NSString *value = @"Steve Jobs";

 NSData *valueData = [value dataUsingEncoding:NSUTF8StringEncoding];

 NSDictionary *secItem = @{

 (__bridge id)kSecClass : (__bridge id)kSecClassGenericPassword,

 (__bridge id)kSecAttrService : service,

 (__bridge id)kSecAttrAccessGroup : accessGroup,

 (__bridge id)kSecAttrAccount : key,

 (__bridge id)kSecValueData : valueData,

 (__bridge id)kSecAttrSynchronizable : (__bridge id)kCFBooleanTrue

 };

 CFTypeRef result = NULL;

 OSStatus status = SecItemAdd((__bridge CFDictionaryRef)secItem, &result);

 if (status == errSecSuccess){

 NSLog(@"Successfully stored the value");

 } else {

8.7. Writing to and Reading Keychain Data from iCloud | 441

 NSLog(@"Failed to store the value with code: %ld", (long)status);

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Please read the notes in Recipe 8.6. You should now know that the
access group that has been provided in all these examples will be dif‐
ferent from developer to developer. This is usually the team ID that
Apple’s iOS Developer Portal will generate for each developer, which
is a random ID for that development team. You will need to change
this for your app to make sure it matches your team ID.

That’s the code for the app that stores values in the iCloud keychain. Now we have to
write the app that reads this data:

#import "AppDelegate.h"

#import <Security/Security.h>

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *key = @"Full Name";

 /* This is the bundle ID of the app that wrote the data to the

 iCloud keychain. This is NOT this app's bundle ID. This app's bundle ID is

 com.pixolity.ios.cookbook.SecondSecurityApp */

 NSString *service = @"com.pixolity.ios.cookbook.SecurityApp";

 NSString *accessGroup = @"F3FU372W5M.*";

 NSDictionary *queryDictionary = @{

 (__bridge id)kSecClass : (__bridge id)kSecClassGenericPassword,

 (__bridge id)kSecAttrService : service,

 (__bridge id)kSecAttrAccessGroup : accessGroup,

 (__bridge id)kSecAttrAccount : key,

 (__bridge id)kSecReturnData : (__bridge id)kCFBooleanTrue,

 (__bridge id)kSecAttrSynchronizable : (__bridge id)kCFBooleanTrue

 };

 CFDataRef data = NULL;

 OSStatus found =

 SecItemCopyMatching((__bridge CFDictionaryRef)queryDictionary,

 (CFTypeRef *)&data);

442 | Chapter 8: Security

 if (found == errSecSuccess){

 NSString *value = [[NSString alloc]

 initWithData:(__bridge_transfer NSData *)data

 encoding:NSUTF8StringEncoding];

 NSLog(@"Value = %@", value);

 } else {

 NSLog(@"Failed to read the value with error = %ld", (long)found);

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

There are a few things that you have to note about working with the iCloud keychain:

• Only passwords can be stored.

• The iCloud keychain is ubiquitous, meaning that it appears on multiple devices
belonging to the same iCloud user. If you write to one iCloud keychain, the same
item will be synchronized to all her devices. Similarly, if you delete an item, it will
be deleted from all her devices, so take extra caution.

It’s worth mentioning that all the other techniques that you learned in this chapter (such
as updating an existing keychain item; see Recipe 8.4) work with the iCloud keychain
as well.

See Also
Recipe 8.0, “Introduction”;Recipe 8.6

8.8. Storing Files Securely in the App Sandbox

Problem
You want iOS to protect the files in your app sandbox from being read without per‐
mission, perhaps by iOS file explorers available on the Internet.

Solution
Follow these steps:

1. Follow the steps in this chapter’s Introduction to create a provision profile that is
linked to an App ID that has Data Protection enabled.

8.8. Storing Files Securely in the App Sandbox | 443

2. Sign your app with the provision profile.

3. Set the Code Signing Entitlements of your app by following the instructions given
in Recipe 8.6.

4. Use the createFileAtPath:contents:attributes: method of an instance of
NSFileManager to store your file. For the attributes property, pass a dictionary
that contains the NSFileProtectionKey key. The value of this key can be one of the
following:

NSFileProtectionNone

This dictates that there should be no file protection on the stored file. A file
that is stored using this protection will be available to the app that writes it to
disk and to any free or commercially accessible file explorer apps on the Internet
that can expose the filesystem of an iOS device, even if the user’s device is locked
with a passcode. If you specify this key, you will be able to read from and write
to your file, even if the user’s device is locked.

NSFileProtectionComplete

This is the strongest protection that you can give to your files. By doing so, your
app will be able to read from and write to this file as long as the device is
unlocked. As soon as the device is locked, you won’t be able to read from or
write to the file. When you use this type of protection, free or commercial file
system explorers will not be able to read the contents of your files, even if the
user’s device is unlocked.

NSFileProtectionCompleteUnlessOpen

Very similar to NSFileProtectionComplete. The only difference is that, as its
name suggests, you will be able to access the file if you have already opened it,
even if the user subsequently locks the device. So after you first open the file,
you will be ensured access to it as long as your app doesn’t exit.

NSFileProtectionCompleteUntilFirstUserAuthentication

This means that your app will be able to read from and write to the file as soon
as the user unlocks her device for the first time. After that, you can continue
accessing the file, even if the user subsequently locks her device again.

Here is an example:

- (NSString *) filePath{

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 NSError *error = nil;

 NSURL *documentFolderUrl = [fileManager URLForDirectory:NSDocumentDirectory

 inDomain:NSUserDomainMask

 appropriateForURL:nil

 create:YES

 error:&error];

444 | Chapter 8: Security

 if (error == nil && documentFolderUrl != nil){

 NSString *fileName = @"MyFile.txt";

 NSString *filePath = [documentFolderUrl.path

 stringByAppendingPathComponent:fileName];

 return filePath;

 }

 return nil;

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 /*

 Prerequisites:

 1) Sign with a valid provision profile

 2) Your profile has to have complete-file-protection enabled.

 3) Add Code Signing Entitlements to your project

 */

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 if ([self filePath] != nil){

 NSData *dataToWrite = [@"Hello, World"

 dataUsingEncoding:NSUTF8StringEncoding];

 NSDictionary *fileAttributes = @{

 NSFileProtectionKey : NSFileProtectionComplete

 };

 BOOL wrote = [fileManager createFileAtPath:[self filePath]

 contents:dataToWrite

 attributes:fileAttributes];

 if (wrote){

 NSLog(@"Successfully and securely stored the file");

 } else {

 NSLog(@"Failed to write the file");

 }

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

8.8. Storing Files Securely in the App Sandbox | 445

Discussion
Your users trust your apps. That means that if you ask them for information such as
their first name and last name, they expect you, if storing those values, to store them in
a secure place and protect them from being retrieved by a hacker or somebody who may
have temporary access to their iOS devices.

Let’s imagine that you are working on a photo-editing application where the user can
hook up her camera to her iOS device, import her photos into your app, and use your
app to edit, save, and share those photos. You can do what a lot of app developers do,
which is import those photos into the Documents folder of your app, ready for editing.
The issue with this approach is that any freely available iOS device explorer on the
Internet can read the contents of the Documents folder on any app, even if the device
is locked. In order to protect the user’s data, you are expected to enable file protection
on the files that you store in your app’s sandbox. The file protection goes hand in hand
with the user’s device security, specifically her device’s passcode/password. If she has set
a passcode for her device, even if it is a simple passcode, and she locks her device, the
files that have been stored in your app sandbox with the NSFileProtectionComplete
key will not be accessible to outsiders, even those who may try to read the file using an
iOS device explorer.

So, when shipping your application, or even while developing it, set up your develop‐
ment and distribution provision profiles with file protection enabled and ensure that
the files that you store on disk are protected. Obviously, you don’t want to protect every
file if there is no need to. Just find out which files need to be protected from prying eyes,
apply your file protections on those files, and leave the rest of the files unprotected on
disk.

See Also
Recipe 8.0, “Introduction”; Recipe 8.6

8.9. Securing Your User Interface

Problem
You want to ensure that your UI conforms to some of the most common security guide‐
lines in iOS.

Solution
Follow these guidelines:

446 | Chapter 8: Security

• Ensure that all passwords and secure fields are entered, by the user, into instances
of UITextField with their secureTextEntry properties set to YES.

• If the user is on a screen that contains personal information, such as the user’s credit
card number or home address, set the hidden property of your app’s main window
to YES in the applicationWillResignActive: method of your app delegate, and
set the same property to NO (to show the window) in the applicationDidBecomeAc
tive: app delegate method. This will ensure that the screenshot that iOS takes of
your app’s UI when going to the background will not contain any of your window’s
contents in it. This method is recommended by Apple.

• Ensure that you validate the user’s input in your text fields/views before sending
them to a server.

• Using the mechanisms that you’ve learned in this chapter, secure the user’s entry if
you are storing it in files on disk or in the keychain.

• On screens where you accept a password or a numerical code for authentication,
once the view controller is no longer on the screen, clear those password/code fields
because the user won’t need them anymore. If you are not relinquishing ownership
of those view controllers, their contents will stay in the memory. This includes the
secure text field entries on those view controllers. It’s best to dispose of memory
that contains sensitive information as soon as you are done with that data.

Discussion
The only item in the list that requires more explanation is the second. When the user
is looking at an app on the screen of her iOS device and sends the app to the background
by pressing the Home screen, iOS puts the app into the inactive state and sends it to the
background. When the app is sent to the background, iOS takes a screenshot of the app’s
user interface as it appears on the screen and saves that file in the Library/Caches/Snap

shots/ folder inside your app’s sandbox. Once the user brings the app back to the fore‐

ground, iOS momentarily displays that screenshot to the user until the app comes back
alive and takes control of the screen. This makes the transition from background to
foreground look very smooth. Even though this adds value from the UX point of view,
it raises a security concern that if the screen that was in the screenshot contained sen‐
sitive information, that information will be present in the screenshot and subsequently
saved on disk. We cannot really disable this functionality in iOS, but we can neutralize
its negative security aspects for our app. The way to do this, and the way Apple recom‐
mends we do it, is to cover our app’s main window with another view or to hide our
app’s window by setting its hidden property to YES when our app becomes inactive and
setting this property back to NO (to make the window visible again) when our app be‐
comes active.

8.9. Securing Your User Interface | 447

A common mistake made by iOS developers trying to meet this secu‐
rity requirement is to attempt to set the value of the hidden property
of the keyWindow of their application to YES or NO. Even though the
keyWindow of your application instance will be a valid window when
your app is becoming inactive, it will be nil (or pointing to nothing)
when your app becomes active. Therefore, to avoid this mistake, sim‐
ply use the window property of your app delegate to hide or show the
window.

The other security concern raised was the lingering personal data in our view controllers.
Suppose you have a login view controller where the user can enter her username and
password. Once the Login button is tapped (for instance), you send the user’s credentials
to a server using HTTPS network connections, and once the user is authenticated, you
push another view controller on the screen. The problem with this approach is that the
username and the password that the user entered on the previous screen are still in
memory because the view controller is still in memory (remember, it is in the stack of
view controllers of your navigation controller).

The way to solve this and increase the security of your UI is to set the text property of
your (secure) text fields to nil just as you are pushing the second view controller on
the screen. Alternatively, override the viewWillDisappear: instance method of your
login view controller and set the text fields’ text property to nil right there. However,
you should be careful with this approach because the aforementioned instance method
of your view controller gets called anytime your view controller disappears—for in‐
stance, when the user switches from the tab on which your view controller sits into
another tab, and then comes back to your tab. That means your view controller disap‐
peared and then reappeared. So if you clear your text fields in this case, when the user
switches from the second tab back to the tab that contains your view controller, all the
values that she may have entered into your text fields will disappear and she will have
to type them all over again. You need to develop against your business requirements,
and there is no single right way of handling this situation.

See Also
Recipe 8.2; Recipe 8.8

448 | Chapter 8: Security

CHAPTER 9

Core Location and Maps

9.0. Introduction
The Core Location and Map Kit frameworks can be used to create location-aware and
map-based applications. The Core Location framework uses the device’s internal hard‐
ware to determine the current location of the device. The Map Kit framework enables
your application to display maps to your users, put custom annotations on the maps,
and so on. The availability of location services from a pure programming perspective
depends on the availability of hardware on the device; if the hardware is there, it must
be enabled and switched on for the Map Kit and Core Location frameworks to work.
An iOS device with GPS services can use 2G, EDGE, 3G, 4G, and other technologies to
determine the user’s location. Presently, almost all iOS devices support location services,
but it is good programming practice to check the availability of location services before
starting to use them, as we cannot predict whether in the future Apple will release a
device with all hardware required to support location services.

In the new LLVM compiler shipped with Xcode for iOS 7, Apple has introduced mod‐
ules. In older versions of the SDK and Xcode, to be able to use the Core Location and
Map Kit frameworks, you had to import those frameworks into your target manually.
But with the introduction of modules, all you have to do to use these frameworks is to
import their header files into your project’s classes like so:

#import <CoreLocation/CoreLocation.h>

#import <MapKit/MapKit.h>

This will then import the Core Location and the Map Kit frameworks into your projects
for you.

449

9.1. Creating a Map View

Problem
You want to instantiate and display a map on a view.

Solution
Create an instance of the MKMapView class and add it to a view or assign it as a subview
of your view controller. Here is the declaration part of the implementation of our view
controller that creates an instance of MKMapView and displays it full-screen on its view:

#import "ViewController.h"

#import <MapKit/MapKit.h>

@interface ViewController ()

@property (nonatomic, strong) MKMapView *myMapView;

@end

@implementation ViewController

This is a simple root view controller with a variable of type MKMapView. Later in the
implementation of this view controller (.m file), we will initialize the map and set its

type to Satellite, like so:

- (void)viewDidLoad{

 [super viewDidLoad];

 self.view.backgroundColor = [UIColor whiteColor];

 self.myMapView = [[MKMapView alloc]

 initWithFrame:self.view.bounds];

 /* Set the map type to Satellite */

 self.myMapView.mapType = MKMapTypeSatellite;

 self.myMapView.autoresizingMask =

 UIViewAutoresizingFlexibleWidth |

 UIViewAutoresizingFlexibleHeight;

 /* Add it to our view */

 [self.view addSubview:self.myMapView];

}

Discussion
Creating an instance of the MKMapView class is quite straightforward. We can simply
assign a frame to it using its constructor, and after the map is created, add it as a subview
of the view on the screen just so that we can see it.

450 | Chapter 9: Core Location and Maps

MKMapView is a subclass of UIView, so you can manipulate any map view
the way you manipulate an instance of UIView. We use a UIView prop‐
erty, for instance, in setting the backgroundColor property of our view.

If you haven’t already noticed, the MKMapView class has a property called mapType that
can be set to satellite, standard, or hybrid. In this example, we are using the satellite map
type (see Figure 9-1).

Figure 9-1. A satellite map view

You can change the visual representation type of a map view using the mapType property
of the MKMapView instance. Here are the different values you can use for this property:

9.1. Creating a Map View | 451

MKMapTypeStandard

Use this map type to display a standard map (this is the default).

MKMapTypeSatellite

Use this map type to display a satellite image map (as depicted in Figure 9-1).

MKMapTypeHybrid

Use this map type to display a standard map overlaid on a satellite image map.

9.2. Handling the Events of a Map View

Problem
You want to handle various events that a map view can send to its delegate.

Solution
Assign a delegate object that conforms to the MKMapViewDelegate protocol to the del
egate property of an instance of the MKMapView class:

- (void)viewDidLoad{

 [super viewDidLoad];

 /* Create a map as big as our view */

 self.myMapView = [[MKMapView alloc]

 initWithFrame:self.view.bounds];

 /* Set the map type to Satellite */

 self.myMapView.mapType = MKMapTypeSatellite;

 self.myMapView.delegate = self;

 self.myMapView.autoresizingMask =

 UIViewAutoresizingFlexibleWidth |

 UIViewAutoresizingFlexibleHeight;

 /* Add it to our view */

 [self.view addSubview:self.myMapView];

}

This code can easily run in the viewDidLoad method of a view controller object that has
a property named MapView of type MKMapView:

#import "ViewController.h"

#import <MapKit/MapKit.h>

@interface ViewController () <MKMapViewDelegate>

@property (nonatomic, strong) MKMapView *myMapView;

@end

452 | Chapter 9: Core Location and Maps

@implementation ViewController

Discussion
The delegate object of an instance of the MKMapView class must implement the methods
defined in the MKMapViewDelegate protocol in order to receive various messages from
the map view and, as we will see later, to provide information to the map view. Various
methods are defined in the MKMapViewDelegate protocol, such as the mapView
WillStartLoadingMap: method that will get called in the delegate object whenever the
map loading process starts. Bear in mind that a delegate for a map view is not a required
object, meaning that you can create map views without assigning delegates to them;
these views simply won’t respond to user manipulation.

Here is a list of some of the methods declared in the MKMapViewDelegate protocol and
what they are meant to report to the delegate object of an instance of MKMapView:

mapViewWillStartLoadingMap:

This method is called on the delegate object whenever the map view starts to load
the data that visually represents the map to the user.

mapView:viewForAnnotation:

This method is called on the delegate object whenever the map view is asking for
an instance of MKAnnotationView to visually represent an annotation on the map.
For more information about this, please refer to Recipe 9.4.

mapViewWillStartLocatingUser:

This method, as its name implies, gets called on the delegate object whenever the
map view starts to detect the user’s location. For information about finding a user’s
location, please refer to Recipe 9.3.

mapView:regionDidChangeAnimated:

This method gets called on the delegate object whenever the region displayed by
the map changes.

See Also
Recipe 9.3; Recipe 9.4

9.3. Pinpointing the Location of a Device

Problem
You want to find the latitude and longitude of a device.

9.3. Pinpointing the Location of a Device | 453

Solution
Use the CLLocationManager class:

- (void)viewDidLoad {

 [super viewDidLoad];

 if ([CLLocationManager locationServicesEnabled]){

 self.myLocationManager = [[CLLocationManager alloc] init];

 self.myLocationManager.delegate = self;

 [self.myLocationManager startUpdatingLocation];

 } else {

 /* Location services are not enabled.

 Take appropriate action: for instance, prompt the

 user to enable the location services */

 NSLog(@"Location services are not enabled");

 }

}

In this code, myLocationManager is a property of type CLLocationManager. The current
class is also the delegate of the location manager in this sample code.

Discussion
The Core Location framework in the SDK provides functionality for programmers to
detect the current spatial location of an iOS device. Because in iOS, the user is allowed
to disable location services using Settings, before instantiating an object of type
CLLocationManager, it is best to first determine whether location services are enabled
on the device.

The delegate object of an instance of CLLocationManager must con‐
form to the CLLocationManagerDelegate protocol.

This is how we will declare our location manager object in our view controller (the
object creating an instance of CLLocationManager does not necessarily have to be a view
controller):

#import "ViewController.h"

#import <CoreLocation/CoreLocation.h>

@interface ViewController () <CLLocationManagerDelegate>

@property (nonatomic, strong) CLLocationManager *myLocationManager;

@end

454 | Chapter 9: Core Location and Maps

@implementation ViewController

The implementation of our view controller is as follows:

- (void)locationManager:(CLLocationManager *)manager

 didUpdateToLocation:(CLLocation *)newLocation

 fromLocation:(CLLocation *)oldLocation{

 /* We received the new location */

 NSLog(@"Latitude = %f", newLocation.coordinate.latitude);

 NSLog(@"Longitude = %f", newLocation.coordinate.longitude);

}

- (void)locationManager:(CLLocationManager *)manager

 didFailWithError:(NSError *)error{

 /* Failed to receive user's location */

}

- (void)viewDidLoad {

 [super viewDidLoad];

 if ([CLLocationManager locationServicesEnabled]){

 self.myLocationManager = [[CLLocationManager alloc] init];

 self.myLocationManager.delegate = self;

 [self.myLocationManager startUpdatingLocation];

 } else {

 /* Location services are not enabled.

 Take appropriate action: for instance, prompt the

 user to enable the location services */

 NSLog(@"Location services are not enabled");

 }

}

The startUpdateLocation instance method of CLLocationManager reports the success
or failure of retrieving the user’s location to its delegate through the locationManag
er:didUpdateToLocation:fromLocation: method and the locationManager:did
FailWithError: method of its delegate object, in that order.

9.4. Displaying Pins on a Map View

Problem
You want to point out a specific location on a map to the user.

9.4. Displaying Pins on a Map View | 455

Solution
Use built-in map view annotations. Follow these steps:

1. Create a new class and call it MyAnnotation.

2. Make sure this class conforms to the MKAnnotation protocol.

3. Define a property for this class of type CLLocationCoordinate2D and name it
coordinate. Make sure you set it as a readonly property since the coordinate
property is defined as readonly in the MKAnnotation protocol.

4. Optionally, define two properties of type NSString, namely title and subtitle,
which will be able to carry the title and the subtitle information for your annotation
view. Both of these properties are readonly as well.

5. Create an initializer method for your class that will accept a parameter of type
CLLocationCoordinate2D. In this method, assign the passed location parameter to
the property that we defined in step 3. Since this property is readonly, it cannot be
assigned by code outside the scope of this class. Therefore, the initializer of this
class acts as a bridge here and allows us to indirectly assign a value to this property.
We will do the same thing for the title and subtitle properties.

6. Instantiate the MyAnnotation class and add it to your map using the addAnnota
tion: method of the MKMapView class.

Discussion
As explained in this recipe’s Solution, we must create an object that conforms to the
MKAnnotation protocol and later instantiate this object and pass it to the map to be
displayed. We will declare the header of this object like so:

#import <Foundation/Foundation.h>

#import <MapKit/MapKit.h>

@interface MyAnnotation : NSObject <MKAnnotation>

@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;

@property (nonatomic, copy, readonly) NSString *title;

@property (nonatomic, copy, readonly) NSString *subtitle;

- (instancetype) initWithCoordinates:(CLLocationCoordinate2D)paramCoordinates

 title:(NSString *)paramTitle

 subTitle:(NSString *)paramSubTitle;

@end

The .m file of the MyAnnotation class sets up the class to display location information

as follows:

456 | Chapter 9: Core Location and Maps

#import "MyAnnotation.h"

@implementation MyAnnotation

- (instancetype) initWithCoordinates:(CLLocationCoordinate2D)paramCoordinates

 title:(NSString *)paramTitle

 subTitle:(NSString *)paramSubTitle{

 self = [super init];

 if (self != nil){

 _coordinate = paramCoordinates;

 _title = paramTitle;

 _subtitle = paramSubTitle;

 }

 return self;

}

@end

Later, we will instantiate this class and add it to our map, for instance, in the .m file of

a view controller that creates and displays a map view:

#import "ViewController.h"

#import "MyAnnotation.h"

#import <MapKit/MapKit.h>

@interface ViewController () <MKMapViewDelegate>

@property (nonatomic, strong) MKMapView *myMapView;

@end

@implementation ViewController

- (void)viewDidLoad {

 [super viewDidLoad];

 /* Create a map as big as our view */

 self.myMapView = [[MKMapView alloc]

 initWithFrame:self.view.bounds];

 self.myMapView.delegate = self;

 /* Set the map type to Standard */

 self.myMapView.mapType = MKMapTypeStandard;

 self.myMapView.autoresizingMask =

 UIViewAutoresizingFlexibleWidth |

 UIViewAutoresizingFlexibleHeight;

 /* Add it to our view */

 [self.view addSubview:self.myMapView];

9.4. Displaying Pins on a Map View | 457

 /* This is just a sample location */

 CLLocationCoordinate2D location =

 CLLocationCoordinate2DMake(50.82191692907181, -0.13811767101287842);

 /* Create the annotation using the location */

 MyAnnotation *annotation =

 [[MyAnnotation alloc] initWithCoordinates:location

 title:@"My Title"

 subTitle:@"My Sub Title"];

 /* And eventually add it to the map */

 [self.myMapView addAnnotation:annotation];

}

@end

Figure 9-2 depicts the output of the program when run in iPhone Simulator.

Figure 9-2. A built-in pin dropped on a map

458 | Chapter 9: Core Location and Maps

9.5. Displaying Pins with Different Colors on a Map View

Problem
The default color for pins dropped on a map view is red. You want to be able to display
pins in different colors in addition to the default color.

Solution
Return instances of MKPinAnnotationView to your map view through the mapView:view
ForAnnotation: delegate method.

Every annotation that is added to an instance of MKMapView has a corresponding view
that gets displayed on the map view. These views are called annotation views. An an‐
notation view is an object of type MKAnnotationView, which is a subclass of UIView. If
the delegate object of a map view implements the mapView:viewForAnnotation: dele‐
gate method, the delegate object will have to return instances of the MKAnnotation
View class to represent (and optionally, customize) the annotation views to be displayed
on a map view.

Discussion
To set up our program so we can customize the color (choosing from the default SDK
pin colors) of the annotation view that gets dropped on a map view to represent the
annotation, we must return an instance of the MKPinAnnotationView class instead of
an instance of MKAnnotationView in the mapView:viewForAnnotation: delegate meth‐
od. Bear in mind that the MKPinAnnotationView class is a subclass of the MKAnnotation
View class.

- (MKAnnotationView *)mapView:(MKMapView *)mapView

 viewForAnnotation:(id <MKAnnotation>)annotation{

 MKAnnotationView *result = nil;

 if ([annotation isKindOfClass:[MyAnnotation class]] == NO){

 return result;

 }

 if ([mapView isEqual:self.myMapView] == NO){

 /* We want to process this event only for the Map View

 that we have created previously */

 return result;

 }

 /* First typecast the annotation for which the Map View has

 fired this delegate message */

 MyAnnotation *senderAnnotation = (MyAnnotation *)annotation;

9.5. Displaying Pins with Different Colors on a Map View | 459

 /* Using the class method we have defined in our custom

 annotation class, we will attempt to get a reusable

 identifier for the pin we are about

 to create */

 NSString *pinReusableIdentifier =

 [MyAnnotation

 reusableIdentifierforPinColor:senderAnnotation.pinColor];

 /* Using the identifier we retrieved above, we will

 attempt to reuse a pin in the sender Map View */

 MKPinAnnotationView *annotationView = (MKPinAnnotationView *)

 [mapView

 dequeueReusableAnnotationViewWithIdentifier:pinReusableIdentifier];

 if (annotationView == nil){

 /* If we fail to reuse a pin, then we will create one */

 annotationView = [[MKPinAnnotationView alloc]

 initWithAnnotation:senderAnnotation

 reuseIdentifier:pinReusableIdentifier];

 /* Make sure we can see the callouts on top of

 each pin in case we have assigned title and/or

 subtitle to each pin */

 [annotationView setCanShowCallout:YES];

 }

 /* Now make sure, whether we have reused a pin or not, that

 the color of the pin matches the color of the annotation */

 annotationView.pinColor = senderAnnotation.pinColor;

 result = annotationView;

 return result;

}

An annotation view must be reused by giving it an identifier (an NSString). By deter‐
mining which type of pin you would like to display on a map view and setting a unique
identifier for each type of pin (e.g., blue pins can be treated as one type of pin and red
pins as another), you must reuse the proper type of pin using the dequeueReusableAn
notationViewWithIdentifier: instance method of MKMapView as demonstrated in the
code.

We have set the mechanism of retrieving the unique identifiers of each pin in our custom
MyAnnotation class. Here is the .h file of the MyAnnotation class:

#import <Foundation/Foundation.h>

#import <MapKit/MapKit.h>

/* These are the standard SDK pin colors. We are setting

 unique identifiers per color for each pin so that later we

 can reuse the pins that have already been created with the same

 color */

460 | Chapter 9: Core Location and Maps

extern NSString *const kReusablePinRed;

extern NSString *const kReusablePinGreen;

extern NSString *const kReusablePinPurple;

@interface MyAnnotation : NSObject <MKAnnotation>

/* unsafe_unretained since this is not an object. We can skip this and leave

 it to the compiler to decide. weak or strong won't work as this is not

 an object */

@property (nonatomic, unsafe_unretained, readonly)

 CLLocationCoordinate2D coordinate;

@property (nonatomic, copy) NSString *title;

@property (nonatomic, copy) NSString *subtitle;

/* unsafe_unretained for the same reason as the coordinate property */

@property (nonatomic, unsafe_unretained) MKPinAnnotationColor pinColor;

- (instancetype) initWithCoordinates:(CLLocationCoordinate2D)paramCoordinates

 title:(NSString*)paramTitle

 subTitle:(NSString*)paramSubTitle;

+ (NSString *) reusableIdentifierforPinColor:(MKPinAnnotationColor)paramColor;

@end

Annotations are not the same as annotation views. An annotation is the location that
you want to show on a map, and an annotation view is the view that represents that
annotation on the map. The MyAnnotation class is the annotation, not the annotation
view. When we create an annotation by instantiating the MyAnnotation class, we can
assign a color to it using the pinColor property that we have defined and implemented.
When the time comes for a map view to display an annotation, the map view will call
the mapView:viewForAnnotation: delegate method and ask its delegate for an anno‐
tation view. The forAnnotation parameter of this method passes the annotation that
needs to be displayed. By getting a reference to the annotation, we can typecast the
annotation to an instance of MyAnnotation, retrieve its pinColor property, and based
on that, create an instance of MKPinAnnotationView with the given pin color and return
it to the map view.

This is the .m file of MyAnnotation:

#import "MyAnnotation.h"

NSString *const kReusablePinRed = @"Red";

NSString *const kReusablePinGreen = @"Green";

NSString *const kReusablePinPurple = @"Purple";

@implementation MyAnnotation

+ (NSString *) reusableIdentifierforPinColor:(MKPinAnnotationColor)paramColor{

9.5. Displaying Pins with Different Colors on a Map View | 461

 NSString *result = nil;

 switch (paramColor){

 case MKPinAnnotationColorRed:{

 result = kReusablePinRed;

 break;

 }

 case MKPinAnnotationColorGreen:{

 result = kReusablePinGreen;

 break;

 }

 case MKPinAnnotationColorPurple:{

 result = kReusablePinPurple;

 break;

 }

 }

 return result;

}

- (instancetype) initWithCoordinates:(CLLocationCoordinate2D)paramCoordinates

 title:(NSString*)paramTitle

 subTitle:(NSString*)paramSubTitle{

 self = [super init];

 if (self != nil){

 _coordinate = paramCoordinates;

 _title = paramTitle;

 _subtitle = paramSubTitle;

 _pinColor = MKPinAnnotationColorGreen;

 }

 return self;

}

@end

After implementing the MyAnnotation class, it’s time to use it in our application (in this
example, we will use it in a view controller). Here is the top of the implementation file
of the view controller:

#import "ViewController.h"

#import "MyAnnotation.h"

#import <MapKit/MapKit.h>

@interface ViewController () <MKMapViewDelegate>

@property (nonatomic, strong) MKMapView *myMapView;

@end

462 | Chapter 9: Core Location and Maps

@implementation ViewController

The implementation is in the .m file like so:

- (MKAnnotationView *)mapView:(MKMapView *)mapView

 viewForAnnotation:(id <MKAnnotation>)annotation{

 MKAnnotationView *result = nil;

 if ([annotation isKindOfClass:[MyAnnotation class]] == NO){

 return result;

 }

 if ([mapView isEqual:self.myMapView] == NO){

 /* We want to process this event only for the Map View

 that we have created previously */

 return result;

 }

 /* First typecast the annotation for which the Map View has

 fired this delegate message */

 MyAnnotation *senderAnnotation = (MyAnnotation *)annotation;

 /* Using the class method we have defined in our custom

 annotation class, we will attempt to get a reusable

 identifier for the pin we are about

 to create */

 NSString *pinReusableIdentifier =

 [MyAnnotation

 reusableIdentifierforPinColor:senderAnnotation.pinColor];

 /* Using the identifier we retrieved above, we will

 attempt to reuse a pin in the sender Map View */

 MKPinAnnotationView *annotationView = (MKPinAnnotationView *)

 [mapView

 dequeueReusableAnnotationViewWithIdentifier:pinReusableIdentifier];

 if (annotationView == nil){

 /* If we fail to reuse a pin, then we will create one */

 annotationView = [[MKPinAnnotationView alloc]

 initWithAnnotation:senderAnnotation

 reuseIdentifier:pinReusableIdentifier];

 /* Make sure we can see the callouts on top of

 each pin in case we have assigned title and/or

 subtitle to each pin */

 [annotationView setCanShowCallout:YES];

 }

 /* Now make sure, whether we have reused a pin or not, that

 the color of the pin matches the color of the annotation */

 annotationView.pinColor = senderAnnotation.pinColor;

9.5. Displaying Pins with Different Colors on a Map View | 463

 result = annotationView;

 return result;

}

- (void)viewDidLoad {

 [super viewDidLoad];

 /* Create a map as big as our view */

 self.myMapView = [[MKMapView alloc]

 initWithFrame:self.view.bounds];

 self.myMapView.delegate = self;

 /* Set the map type to Standard */

 self.myMapView.mapType = MKMapTypeStandard;

 self.myMapView.autoresizingMask =

 UIViewAutoresizingFlexibleWidth |

 UIViewAutoresizingFlexibleHeight;

 /* Add it to our view */

 [self.view addSubview:self.myMapView];

 /* This is just a sample location */

 CLLocationCoordinate2D location;

 location.latitude = 50.82191692907181;

 location.longitude = -0.13811767101287842;

 /* Create the annotation using the location */

 MyAnnotation *annotation =

 [[MyAnnotation alloc] initWithCoordinates:location

 title:@"My Title"

 subTitle:@"My Sub Title"];

 annotation.pinColor = MKPinAnnotationColorPurple;

 /* And eventually add it to the map */

 [self.myMapView addAnnotation:annotation];

}

The results are shown in Figure 9-3.

464 | Chapter 9: Core Location and Maps

Figure 9-3. A pin with an alternative color displayed on a map view

9.6. Displaying Custom Pins on a Map View

Problem
Instead of the default iOS SDK pins, you would like to display your own images as pins
on a map view.

Solution
Load an arbitrary image into an instance of the UIImage class and assign it to the image
property of the MKAnnotationView instance that you return to your map view as a pin:

- (MKAnnotationView *)mapView:(MKMapView *)mapView

 viewForAnnotation:(id <MKAnnotation>)annotation{

9.6. Displaying Custom Pins on a Map View | 465

 MKAnnotationView *result = nil;

 if ([annotation isKindOfClass:[MyAnnotation class]] == NO){

 return result;

 }

 if ([mapView isEqual:self.myMapView] == NO){

 /* We want to process this event only for the Map View

 that we have created previously */

 return result;

 }

 /* First typecast the annotation for which the Map View has

 fired this delegate message */

 MyAnnotation *senderAnnotation = (MyAnnotation *)annotation;

 /* Using the class method we have defined in our custom

 annotation class, we will attempt to get a reusable

 identifier for the pin we are about to create */

 NSString *pinReusableIdentifier =

 [MyAnnotation

 reusableIdentifierforPinColor:senderAnnotation.pinColor];

 /* Using the identifier we retrieved above, we will

 attempt to reuse a pin in the sender Map View */

 MKPinAnnotationView *annotationView = (MKPinAnnotationView *)

 [mapView

 dequeueReusableAnnotationViewWithIdentifier:

 pinReusableIdentifier];

 if (annotationView == nil){

 /* If we fail to reuse a pin, then we will create one */

 annotationView =

 [[MKPinAnnotationView alloc] initWithAnnotation:senderAnnotation

 reuseIdentifier:pinReusableIdentifier];

 /* Make sure we can see the callouts on top of

 each pin in case we have assigned title and/or

 subtitle to each pin */

 annotationView.canShowCallout = YES;

 }

 UIImage *pinImage = [UIImage imageNamed:@"BluePin"];

 if (pinImage != nil){

 annotationView.image = pinImage;

 }

 result = annotationView;

466 | Chapter 9: Core Location and Maps

 return result;

}

In this code, we are displaying an image named BluePin.png (in our application bundle)

for any pin that is dropped on the map. For the definition and the implementation of
the MyAnnotation class, refer to Recipe 9.5.

Discussion
The delegate object of an instance of the MKMapView class must conform to the MKMap
ViewDelegate protocol and implement the mapView:viewForAnnotation: method.
The return value of this method is an instance of the MKAnnotationView class. Any
object that subclasses the aforementioned class, by default, inherits a property called
image. Assigning a value to this property will replace the default image provided by the
Map Kit framework, as shown in Figure 9-4.

Figure 9-4. A custom image displayed on a map view

9.6. Displaying Custom Pins on a Map View | 467

See Also
Recipe 9.5

9.7. Converting Meaningful Addresses to Longitude and
Latitude

Problem
You have an address of a location and you want to find the spatial location (longitude,
latitude) of that address.

Solution
Use the geocodeAddressString:completionHandler: method of the CLGeocoder class.

Discussion
Reverse geocoding is the process of retrieving a meaningful address, city and country,
and so on, using spatial locations (Longitude, Latitude). Geocoding, on the other hand,
is the process of finding the spatial locations of a given address. Both geocoding and
reverse geocoding facilities are encapsulated into the CLGeocoder class in the Core
Location framework.

We geocode spatial locations by passing the address as NSString to the geocodeAd
dressString:completionHandler: method of the CLGeocoder class. The completion
Handler parameter of this method accepts a block object that returns no value and has
two parameters:

1. A placemarks array (of type NSArray), which will be set to the locations that matched
your search.

2. An error (of type NSError), which will get set to an error code if the geocoding fails.

Let’s go ahead and declare a property of type CLGeocoder first:

#import "ViewController.h"

#import <CoreLocation/CoreLocation.h>

@interface ViewController ()

@property (nonatomic, strong) CLGeocoder *myGeocoder;

@end

@implementation ViewController

Now, let’s go ahead and implement the code to geocode an address:

468 | Chapter 9: Core Location and Maps

- (void)viewDidLoad{

 [super viewDidLoad];

 /* We have our address */

 NSString *oreillyAddress =

 @"1005 Gravenstein Highway North, Sebastopol, CA 95472, USA";

 self.myGeocoder = [[CLGeocoder alloc] init];

 [self.myGeocoder

 geocodeAddressString:oreillyAddress

 completionHandler:^(NSArray *placemarks, NSError *error) {

 if (placemarks.count > 0 && error == nil){

 NSLog(@"Found %lu placemark(s).",

 (unsigned long)[placemarks count]);

 CLPlacemark *firstPlacemark = placemarks[0];

 NSLog(@"Longitude = %f",

 firstPlacemark.location.coordinate.longitude);

 NSLog(@"Latitude = %f",

 firstPlacemark.location.coordinate.latitude);

 }

 else if (placemarks.count == 0 &&

 error == nil){

 NSLog(@"Found no placemarks.");

 }

 else if (error != nil){

 NSLog(@"An error occurred = %@", error);

 }

 }];

}

Once the program is run, even in the simulator, you will get the following values printed
to the console window if you have a working and active network connection:

Found 1 placemark(s).

Longitude = -122.84159

Latitude = 38.410924

See Also
Recipe 9.8

9.7. Converting Meaningful Addresses to Longitude and Latitude | 469

9.8. Converting Longitude and Latitude to a Meaningful
Address

Problem
You have the latitude and longitude of a spatial location, and you want to retrieve the
address of this location.

Solution
Retrieving a meaningful address using spatial x and y coordinates is called reverse
geocoding. To do this, create and use an instance of the CLGeocoder class and provide a
completion block object, making sure that the block object has no return value and
accepts two parameters:

1. A placemarks array (of type NSArray), which will be set to the locations that matched
your search.

2. An error (of type NSError), which will get set to an error code if the reverse geo‐
coding fails.

After instantiating an object of type CLGeocoder, we will use its reverseGeocodeLoca
tion:completionHandler: method to do the reverse geocoding.

The top of the .m file of a simple view controller for this purpose is defined like so:

#import "ViewController.h"

#import <CoreLocation/CoreLocation.h>

@interface ViewController ()

@property (nonatomic, strong) CLGeocoder *myGeocoder;

@end

@implementation ViewController

You can do the reverse geocoding when your view loads:

- (void)viewDidLoad{

 [super viewDidLoad];

 CLLocation *location = [[CLLocation alloc]

 initWithLatitude:+38.4112810

 longitude:-122.8409780f];

 self.myGeocoder = [[CLGeocoder alloc] init];

 [self.myGeocoder

 reverseGeocodeLocation:location

 completionHandler:^(NSArray *placemarks, NSError *error) {

470 | Chapter 9: Core Location and Maps

 if (error == nil && placemarks.count > 0){

 CLPlacemark *placemark = placemarks[0];

 /* We received the results */

 NSLog(@"Country = %@", placemark.country);

 NSLog(@"Postal Code = %@", placemark.postalCode);

 NSLog(@"Locality = %@", placemark.locality);

 }

 else if (error == nil && placemarks.count == 0){

 NSLog(@"No results were returned.");

 }

 else if (error != nil){

 NSLog(@"An error occurred = %@", error);

 }

 }];

}

The placemarks array, if the operation is successful, will contain objects of type
CLPlacemark, which mark the addresses that match the longitude and latitude we passed
to the reverseGeocodeLocation:completionHandler: method. So all we have to do is
make sure that there were no errors, and that the array of placemarks contains at least
one placemark.

The NSLog methods in the preceding code write the reverse geocoded address to the
console window:

Country = United States

Postal Code = 95472

Locality = Sebastopol

Discussion
Each application has a limit on the number of reverse geocoding requests that it can
make each day. The amount depends on the backend provider for the location services
in iOS. There are various paid online services that expose third-party APIs to developers.
I cannot promote any of these services, but feel free to browse the Internet for them if
you would like to get rid of limitations that currently exist in the iOS SDK for reverse
geocoding spatial coordinates. To perform a reverse geocoding request, you must create
an instance of the CLGeocoder class. This class requires an active network connection
in order to process requests successfully. The reverse geocoded values are reported to
the completion handler block that is passed to the reverseGeocodeLocation:comple
tionHandler: method.

See Also
Recipe 9.7

9.8. Converting Longitude and Latitude to a Meaningful Address | 471

9.9. Searching on a Map View

Problem
You want to be able to provide search functionality to your users while they are viewing
a map view. For instance, you may want to allow your users to search for all restaurants
or gyms in a given region inside the map. So if the person is in the center of the town
and she can see her location on the map, she can simply type “restaurants” in the search
box and get your app to do the search for her.

Solution
Instantiate an object of type MKLocalSearchRequest and provide your search query,
such as “restaurants,” for the request. Then you can submit your request to the iOS SDK
using the MKLocalSearch class. The response that you get will be of type MKLocalSear
chResponse.

Discussion
Map views are great, they really are. But what use do they have for the user if all she can
see is just the map itself? The user may as well buy a traditional map on a piece of paper.
Users like their smartphones’ map capabilities because they are interactive. The user can
find things, search for locations, and get directions to an address. Apple has included
three really handy classes in the iOS SDK that allow us to search for locations on the
map. The searching is really easy. All you have to do is provide a text of what you are
actually looking for, such as “restaurants” or “cafes,” and the SDK will do the rest of the
job for you. For the purpose of this recipe, we are going to display a map view on our
view controller, ask the map view to display the user’s location, and track the user as she
moves around so that the center of the map is always the location of where the user is
right now.

Once our map view finds the user’s location (assuming that the user gives us permission
to find her location), we will issue a call to the MKLocalSearch class to fetch all the
restaurants around the user’s location. So let’s begin by creating a map view on the screen
and start tracking the user’s location. The first thing to do is define the map view:

#import "ViewController.h"

#import <MapKit/MapKit.h>

@interface ViewController () <MKMapViewDelegate>

@property (nonatomic, strong) MKMapView *myMapView;

@end

@implementation ViewController

Next, we have to create the map view:

472 | Chapter 9: Core Location and Maps

- (void)viewDidLoad {

 [super viewDidLoad];

 /* Create a map as big as our view */

 self.myMapView = [[MKMapView alloc]

 initWithFrame:self.view.bounds];

 self.myMapView.delegate = self;

 /* Set the map type to Standard */

 self.myMapView.mapType = MKMapTypeStandard;

 self.myMapView.autoresizingMask =

 UIViewAutoresizingFlexibleWidth |

 UIViewAutoresizingFlexibleHeight;

 self.myMapView.showsUserLocation = YES;

 self.myMapView.userTrackingMode = MKUserTrackingModeFollow;

 /* Add it to our view */

 [self.view addSubview:self.myMapView];}

We are using the showsUserLocation property of the map view. It’s a Boolean value,
which, when set to YES, makes the map view find the user’s location, assuming that she
has given us permission to. That is all good, but the default behavior of the map view is
to find the location and display an annotation on the map, but not to move the map’s
center location to zoom on the user’s location. In other words, if the current view on
the map view is on the United Kingdom and the user’s current location is somewhere
in New York, the user will still see her view of the United Kingdom on the map. We can
remedy this by setting the value of the userTrackingMode property of our map view to
MKUserTrackingModeFollow, which forces the map view to always keep the center of
the map view as the user’s location and adjust the map as the user moves.

Now that we have asked the map view to track the user’s location, we need to implement
the following map view delegates’ methods:

mapView:didFailToLocateUserWithError:

Gets called on the delegate when the map view has trouble finding the user’s loca‐
tion. In this method, we are going to display an alert to the user to let her know that
we had trouble finding her location.

mapView:didUpdateUserLocation:

Gets called on the delegate of the map whenever the user’s location is updated. So
this is always the successful path of our logic, and we can implement our local search
functionality in this method.

Let’s implement the mapView:didFailToLocateUserWithError: method first:

- (void) mapView:(MKMapView *)mapView

 didFailToLocateUserWithError:(NSError *)error{

9.9. Searching on a Map View | 473

 UIAlertView *alertView = [[UIAlertView alloc]

 initWithTitle:@"Failed"

 message:@"Could not get the user's location"

 delegate:nil cancelButtonTitle:@"OK"

 otherButtonTitles:nil];

 [alertView show];

}

Plain and simple. Next up, the mapView:didUpdateUserLocation: method:

- (void) mapView:(MKMapView *)mapView

 didUpdateUserLocation:(MKUserLocation *)userLocation{

 MKLocalSearchRequest *request = [[MKLocalSearchRequest alloc] init];

 request.naturalLanguageQuery = @"restaurants";

 MKCoordinateSpan span = MKCoordinateSpanMake(0.01, 0.01);

 request.region =

 MKCoordinateRegionMake(userLocation.location.coordinate, span);

 MKLocalSearch *search = [[MKLocalSearch alloc] initWithRequest:request];

 [search startWithCompletionHandler:

 ^(MKLocalSearchResponse *response, NSError *error) {

 for (MKMapItem *item in response.mapItems){

 NSLog(@"Item name = %@", item.name);

 NSLog(@"Item phone number = %@", item.phoneNumber);

 NSLog(@"Item url = %@", item.url);

 NSLog(@"Item location = %@", item.placemark.location);

 }

 }];

}

What we are doing in this method is simple. We are creating a local search request and
setting its naturalLanguageQuery property to the actual items that we want to find on
the map, in this case restaurants. Then, we are retrieving the user’s location and creating
a region of type MKCoordinateRegion out of that. The purpose of this is that we want
to find the region around the user and do our local search in there. The region tells the
location search engines that we want to limit our search to the given region. Once the
region is created, we will set that as the region property of the local search. As soon as
that is done, we can begin the search by sending our local search request to the start
WithCompletionHandler: instance method of the MKLocalSearch class. This method
accepts a block as a parameter. This block will get called when the search results come
back or an error occurs.

474 | Chapter 9: Core Location and Maps

The items that are found will be in the mapItems property of the response parameter of
your block object, and these map items will be of type MKMapItem. Each item has prop‐
erties such as name, phoneNumber, and url that will help you plot those points of interest
on the map, using the techniques that you learned in this chapter for displaying pins on
the map (see Recipe 9.4).

See Also
Recipe 9.4; Recipe 9.5; Recipe 9.6

9.10. Displaying Directions on the Map

Problem
You want to display directions on a map to show the user how to get from point A to
point B.

Solution
Instantiate an object of type MKDirections and issue the calculateDirectionsWith
CompletionHandler: instance method of that object. The completion handler will get
called and will pass you an object of type MKDirectionsResponse. Use the directions
response object to open the Maps app on your device, as you will soon learn.

Discussion
Directions to walk or drive can be displayed only in the Maps app on a device, so you
cannot display them inside an instance of a map view in your app. The way we will go
about displaying directions is very straightforward. In order to display the directions
on the Maps app, we need to create an instance of the MKDirections class. This class
will require us to have already prepared an instance of the MKDirectionsRequest.

In addition, to create the directions request, you need to create instances of the MKMapI
tem. Every map item will represent a point on the map. So the bottom line is that if you
want to display directions from point A to point B on the map, you need to represent
them as map items, create a request out of that, and then use the MKDirections class to
receive the directions. After receiving the directions, you have two choices:

• Process the directions yourself. For instance, using the technique that you learned
earlier in this chapter (see Recipe 9.4), you may want to retrieve all the gas stations
(placemarks) that are along the way from point A to point B and drop pins for those
gas stations on the map.

• Send the directions to the Maps app for rendering.

9.10. Displaying Directions on the Map | 475

In this recipe, we are going to explore the second option. So let’s assume that we want
to get driving directions from our current location to an arbitrary location on the map.
For the purpose of this recipe, I am going to set the destination address as Churchill
Square Shopping Center, Brighton, United Kingdom. Using the technique that you
learned in Recipe 9.7, you can convert this meaningful address to its latitude and lon‐
gitude, and then use that information to create an instance of the MKPlacemark class, as
we shall soon see.

So let’s get started. The first thing that we have to do is import the Core Location frame‐
work so that we can translate the aforementioned address to its raw coordinates (lati‐
tude, longitude). We will also import the MapKit framework so that we can create the
directions request. Using LLVM’s Modules feature, all we have to do is import these
frameworks into our app:

#import "AppDelegate.h"

#import <CoreLocation/CoreLocation.h>

#import <MapKit/MapKit.h>

@implementation AppDelegate

<# Rest of your code goes here #>

Now we use what we learned in Recipe 9.7 to convert our destination address to latitude
and longitude:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *destination = @"Churchill Square Shopping Center, \

 Brighton, United Kingdom";

 [[CLGeocoder new]

 geocodeAddressString:destination

 completionHandler:^(NSArray *placemarks, NSError *error) {

 <# Now we have the coordinates for the address #>

 }];

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

 // Override point for customization after application launch.

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

All the code that we write from here in this recipe will go inside the
completion block object of the geocodeAddressString:completion
Handler: method of the CLGeocoder class that we just wrote.

476 | Chapter 9: Core Location and Maps

The completion block will give us a reference to an error object. You need to read this
error object and, if an error comes back, handle it appropriately. I will leave that part to
you. So now let’s go and tell MapKit that we want the source of the directions to be where
we currently are. We will use the MKDirectionsRequest class to create a directions
request and set the value of the request’s source property to the value of the mapItem
ForCurrentLocation class method of the MKMapItem class:

if (error != nil){

 /* Handle the error here perhaps by displaying an alert */

 return;

}

MKDirectionsRequest *request = [[MKDirectionsRequest alloc] init];

request.source = [MKMapItem mapItemForCurrentLocation];

Earlier on, we created a string object that contained our destination address. Now that
we have its CLPlacemark instance, we need to convert it to an instance of MKPlace
mark that can be set as the value of the Destination property of our directions request,
like so:

/* Convert the CoreLocation destination

 placemark to a MapKit placemark */

/* Get the placemark of the destination address */

CLPlacemark *placemark = placemarks[0];

CLLocationCoordinate2D destinationCoordinates =

placemark.location.coordinate;

MKPlacemark *destination = [[MKPlacemark alloc]

 initWithCoordinate:destinationCoordinates

 addressDictionary:nil];

request.destination = [[MKMapItem alloc]

 initWithPlacemark:destination];

The MKDirectionsRequest class has a property named transportType that is of type
MKDirectionsTransportType:

typedef NS_OPTIONS(NSUInteger, MKDirectionsTransportType) {

 MKDirectionsTransportTypeAutomobile = 1 << 0,

 MKDirectionsTransportTypeWalking = 1 << 1,

 MKDirectionsTransportTypeAny = 0x0FFFFFFF

} NS_ENUM_AVAILABLE(10_9, 7_0);

Since we want to display driving directions from our source to the destination, we are
going to use the MKDirectionsTransportTypeAutomobile value in our recipe:

/* Set the transportation method to automobile */

request.transportType = MKDirectionsTransportTypeAutomobile;

Eventually, we will create an instance of the MKDirections class using its initWithRe
quest: initializer, which takes in as a parameter an instance of the MKDirectionsRe

9.10. Displaying Directions on the Map | 477

quest class. We already created and prepared this object with a map item indicating the
source and destination.

We will then use the calculateDirectionsWithCompletionHandler: instance method
of our directions class to get the directions from our source to destination map items.
This method takes in as a parameter a block object that will provide us with an object
of type MKDirectionsResponse and an error of type NSError that we can use to deter‐
mine whether an error occurred. The response object that will get passed to us will have
two very important properties: source and destination. These will be the same source
and destination map items that we set before. Once in this block, you can either use the
direction response and handle it manually, as explained before, or pass the source and
destination to the Maps app for rendering like so:

/* Get the directions */

MKDirections *directions = [[MKDirections alloc]

 initWithRequest:request];

[directions calculateDirectionsWithCompletionHandler:

 ^(MKDirectionsResponse *response, NSError *error) {

 /* You can manually parse the response, but in here we will take

 a shortcut and use the Maps app to display our source and

 destination. We didn't have to make this API call at all,

 as we already had the map items before, but this is to

 demonstrate that the directions response contains more

 information than just the source and the destination. */

 /* Display the directions on the Maps app */

 [MKMapItem

 openMapsWithItems:@[response.source, response.destination]

 launchOptions:@{

 MKLaunchOptionsDirectionsModeKey :

 MKLaunchOptionsDirectionsModeDriving}];

 }];

If we put all our code together now, we will get to a compact piece of code like this:

#import "AppDelegate.h"

#import <CoreLocation/CoreLocation.h>

#import <MapKit/MapKit.h>

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *destination = <# Place your destination address here #>;

 [[CLGeocoder new]

 geocodeAddressString:destination

 completionHandler:^(NSArray *placemarks, NSError *error) {

478 | Chapter 9: Core Location and Maps

 if (error != nil){

 /* Handle the error here perhaps by displaying an alert */

 return;

 }

 MKDirectionsRequest *request = [[MKDirectionsRequest alloc] init];

 request.source = [MKMapItem mapItemForCurrentLocation];

 /* Convert the CoreLocation destination

 placemark to a MapKit placemark */

 /* Get the placemark of the destination address */

 CLPlacemark *placemark = placemarks[0];

 CLLocationCoordinate2D destinationCoordinates =

 placemark.location.coordinate;

 MKPlacemark *destination = [[MKPlacemark alloc]

 initWithCoordinate:destinationCoordinates

 addressDictionary:nil];

 request.destination = [[MKMapItem alloc]

 initWithPlacemark:destination];

 /* Set the transportation method to automobile */

 request.transportType = MKDirectionsTransportTypeAutomobile;

 /* Get the directions */

 MKDirections *directions = [[MKDirections alloc]

 initWithRequest:request];

 [directions calculateDirectionsWithCompletionHandler:

 ^(MKDirectionsResponse *response, NSError *error) {

 /* You can manually parse the response, but in here we will take

 a shortcut and use the Maps app to display our source and

 destination. We didn't have to make this API call at all

 as we already had the map items before, but this is to

 demonstrate that the directions response contains more

 information than just the source and the destination. */

 /* Display the directions on the Maps app */

 [MKMapItem

 openMapsWithItems:@[response.source, response.destination]

 launchOptions:@{

 MKLaunchOptionsDirectionsModeKey :

 MKLaunchOptionsDirectionsModeDriving}];

 }];

 }];

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

 // Override point for customization after application launch.

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

9.10. Displaying Directions on the Map | 479

 return YES;

}

Once I run this app in the iOS simulator, because my current location is very close to
the destination location that I’ve chosen, I will see a result similar to that shown in
Figure 9-5.

Figure 9-5. Displaying directions on the map

See Also
Recipe 9.3

480 | Chapter 9: Core Location and Maps

CHAPTER 10

Implementing Gesture Recognizers

10.0. Introduction
Gestures are a combination of touch events. An example of a gesture can be found in
the default iOS Photo application, which allows the user to zoom into and out of a photo
while “pinching” the photo in and out using two fingers. Some of the most common
gesture event detection code is encapsulated into reusable classes built into the iOS SDK.
These classes can be used to detect swipe, pinch, pan, tap, drag, long-press, and rotation
gestures.

Gesture recognizers must be added to instances of the UIView class. A single view can
have more than one gesture recognizer. Once a view catches the gesture, that view will
be responsible for passing down the same gesture to other views in the hierarchy, if
needed.

Some touch events required by an application might be complicated to process and
might require the same event to be detectable in other views in the same application.
This introduces the requirements for reusable gesture recognizers. There are six gesture
recognizers in iOS SDK 5 and above:

• Swipe

• Rotation

• Pinch

• Pan

• Long-press

• Tap

The basic framework for handling a gesture through a built-in gesture recognizer is as
follows:

481

1. Create an object of the right data type for the gesture recognizer you want.

2. Add this object as a gesture recognizer to the view that will receive the gesture.

3. Write a method that is called when the gesture occurs and that takes the action you
want.

The method associated as the target method of any gesture recognizer must follow these
rules:

• It must return void.

• It must either accept no parameters, or accept a single parameter of type UIGesture
Recognizer in which the system will pass the gesture recognizer that calls this
method.

Here are two examples:

- (void) tapRecognizer:(UITapGestureRecognizer *)paramSender{

 /* */

}

- (void) tapRecognizer{

 /* */

}

Gesture recognizers are divided into two categories: discrete and continuous. Discrete
gesture recognizers detect their gesture events and, once detected, call a method in their
respective owners. Continuous gesture recognizers keep their owner objects informed
of the events as they happen and will call the method in their target object repeatedly
as the event happens and until it ends.

For instance, a double-tap event is discrete. Even though it consists of two taps, the
system recognizes that the taps occurred close enough together to be treated as a single
event. The double-tap gesture recognizer calls the method in its target object once the
double-tap event is detected.

An example of a continuous gesture recognizer is rotation. This gesture starts as soon
as the user starts the rotation and only finishes when the user lifts his fingers off the
screen. The method provided to the rotation gesture recognizer class gets called at short
intervals until the event is finished.

Gesture recognizers can be added to any instance of the UIView class using the addGes
tureRecognizer: method of the view, and when needed, they can be removed from the
view using the removeGestureRecognizer: method.

The UIGestureRecognizer class has a property named state. The state property rep‐
resents the different states the gesture recognizer can have throughout the recognition
process. Discrete and continuous gesture recognizers go through different sets of states.

482 | Chapter 10: Implementing Gesture Recognizers

Discrete gesture recognizers can pass through the following states:

1. UIGestureRecognizerStatePossible

2. UIGestureRecognizerStateRecognized

3. UIGestureRecognizerStateFailed

Depending on the situation, a discrete gesture recognizer might send the UIGestureR
ecognizerStateRecognized state to its target, or it might send the UIGestureRecogni
zerStateFailed state if an error occurs during the recognition process.

Continuous gesture recognizers take a different path in the states they send to their
targets:

1. UIGestureRecognizerStatePossible

2. UIGestureRecognizerStateBegan

3. UIGestureRecognizerStateChanged

4. UIGestureRecognizerStateEnded

5. UIGestureRecognizerStateFailed

A gesture recognizer’s state is changed to UIGestureRecognizer
StatePossible when it is gathering information about touch events
on a view and might at any point detect the relevant gesture. In addi‐
tion to the aforementioned states of a continuous gesture recognizer,
the UIGestureRecognizerStateCancelled state can also be gener‐
ated if anything interrupts the gesture. For instance, an incoming
phone call can interrupt a pan gesture. In that case, the state of the
gesture recognizer will be changed to UIGestureRecognizerStateCan
celled and no further messages will be called on the receiver object
by that gesture recognizer unless the user restarts the gesture sequence.

Again, if the continuous gesture recognizer stumbles upon a situation that cannot be
fixed internally, it will end with the UIGestureRecognizerStateFailed state instead of
UIGestureRecognizerStateEnded.

10.1. Detecting Swipe Gestures

Problem
You want to be able to detect when the user performs a swipe gesture on a view—for
instance, swiping a picture out of the window.

10.1. Detecting Swipe Gestures | 483

Solution
Instantiate an object of type UISwipeGestureRecognizer and add it to an instance of
UIView:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong)

 UISwipeGestureRecognizer *swipeGestureRecognizer;

@end

@implementation ViewController

- (void)viewDidLoad {

 [super viewDidLoad];

 /* Instantiate our object */

 self.swipeGestureRecognizer = [[UISwipeGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(handleSwipes:)];

 /* Swipes that are performed from right to

 left are to be detected */

 self.swipeGestureRecognizer.direction =

 UISwipeGestureRecognizerDirectionLeft;

 /* Just one finger needed */

 self.swipeGestureRecognizer.numberOfTouchesRequired = 1;

 /* Add it to the view */

 [self.view addGestureRecognizer:self.swipeGestureRecognizer];

}

A gesture recognizer could be created as a standalone object, but here, because we are
using it for just one view, we have created it as a property of the view controller that will
receive the gesture (self.swipeGestureRecognizer). This recipe’s Discussion shows
the handleSwipes: method used in this code as the target for the swipe gesture recog‐
nizer.

Discussion
The swipe gesture is one of the most straightforward motions that built-in iOS SDK
gesture recognizers will register. It is a simple movement of one or more fingers on a
view from one direction to another. The UISwipeGestureRecognizer, like other gesture
recognizers, inherits from the UIGestureRecognizer class and adds various function‐
alities to this class, such as properties that allow us to specify the direction in which the
swipe gestures have to be performed in order to be detected, or how many fingers the

484 | Chapter 10: Implementing Gesture Recognizers

user has to hold on the screen to be able to perform a swipe gesture. Please bear in mind
that swipe gestures are discrete gestures.

The handleSwipes: method that we used for the gesture recognizer instance can be
implemented in this way:

- (void) handleSwipes:(UISwipeGestureRecognizer *)paramSender{

 if (paramSender.direction & UISwipeGestureRecognizerDirectionDown){

 NSLog(@"Swiped Down.");

 }

 if (paramSender.direction & UISwipeGestureRecognizerDirectionLeft){

 NSLog(@"Swiped Left.");

 }

 if (paramSender.direction & UISwipeGestureRecognizerDirectionRight){

 NSLog(@"Swiped Right.");

 }

 if (paramSender.direction & UISwipeGestureRecognizerDirectionUp){

 NSLog(@"Swiped Up.");

 }

}

You can combine more than one direction in the direction proper‐
ty of an instance of the UISwipeGestureRecognizer class by using the
bitwise OR operand. In Objective-C, this is done with the pipe (|)
character. For instance, to detect diagonal swipes to the bottom-left
corner of the screen, you can combine the UISwipeGestureRecogni
zerDirectionLeft and UISwipeGestureRecognizerDirectionDown
values using the pipe character when constructing your swipe ges‐
ture recognizer. In the example, we are attempting to detect only swipes
from the right side to the left.

Although swipe gestures are usually performed with one finger, the number of fingers
required for the swipe gesture to be recognized can also be specified with the number
OfTouchesRequired property of the UISwipeGestureRecognizer class.

10.2. Detecting Rotation Gestures

Problem
You want to detect when a user is attempting to rotate an element on the screen using
her fingers.

10.2. Detecting Rotation Gestures | 485

Solution
Create an instance of the UIRotationGestureRecognizer class and attach it to your
target view:

- (void)viewDidLoad {

 [super viewDidLoad];

 self.helloWorldLabel = [[UILabel alloc] initWithFrame:CGRectZero];

 self.helloWorldLabel.text = @"Hello, World!";

 self.helloWorldLabel.font = [UIFont systemFontOfSize:16.0f];

 [self.helloWorldLabel sizeToFit];

 self.helloWorldLabel.center = self.view.center;

 [self.view addSubview:self.helloWorldLabel];

 self.rotationGestureRecognizer = [[UIRotationGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(handleRotations:)];

 [self.view addGestureRecognizer:self.rotationGestureRecognizer];

}

Discussion
The UIRotationGestureRecognizer, as its name implies, is the perfect candidate
among gesture recognizers to detect rotation gestures and to help you build more in‐
tuitive graphical user interfaces. For instance, when the user encounters an image on
the screen in your application in full-screen mode, it is quite intuitive for him to attempt
to correct the orientation by rotating the image.

The UIRotationGestureRecognizer class implements a property named rotation that
specifies the total amount and direction of rotation requested by the user’s gesture, in
radians. The rotation is determined from the fingers’ initial position (UIGestureRecog
nizerStateBegan) and final position (UIGestureRecognizerStateEnded).

To rotate UI elements that inherit from UIView class, you can pass the rotation property
of the rotation gesture recognizer to the CGAffineTransformMakeRotation function to
make an affine transform, as shown in the example.

The code in this recipe’s Solution passes the current object, in this case a view controller,
to the target of the rotation gesture recognizer. The target selector is specified as han
dleRotations:, a method we have to implement. But before we do that, let’s have a look
at the top of the implementation file of the view controller:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong)

 UIRotationGestureRecognizer *rotationGestureRecognizer;

486 | Chapter 10: Implementing Gesture Recognizers

@property (nonatomic, strong)

 UILabel *helloWorldLabel;

/* We can remove the nonatomic and the unsafe_unretained marks from this

 property declaration. On a float value, the compiler will generate both

 these for us automatically */

@property (nonatomic, unsafe_unretained)

 CGFloat rotationAngleInRadians;

@end

@implementation ViewController

Before we carry on, let’s have a look at what each one of these properties does and why
it is declared:

helloWorldLabel

This is a label we must create on the view of the view controller. Then we will write
the code to rotate this label whenever the user attempts to perform rotation gestures
on the view that owns this label (in this case, the view of the view controller).

rotationGestureRecognizer

This is the instance of the rotation gesture recognizer that we will later allocate and
initialize.

rotationAngleInRadians

This is the value we will query as the exact rotation angle of our label. Initially we
will set this to zero. Since the rotation angles reported by a rotation gesture recog‐
nizer are reset every time the rotation gesture is started again, we can keep the value
of the rotation gesture recognizer whenever it goes into the UIGestureRecognizer
StateEnded state. The next time the gesture is started, we will add the previous
value to the new value to get an overall rotation angle.

The size and the origin of the label does not matter much. Even the position of the label
isn’t that important, as we will only attempt to rotate the label around its center, no
matter where on the view the label is positioned. The only important thing to remember
is that in universal applications, the position of a label on a view controller used in
different targets (devices) must be calculated dynamically using the size of its parent
view. Otherwise, on different devices such as the iPad or the iPhone, it might appear in
different places on the screen.

Using the center property of the label, and setting that center location to the center of
the containing view, we will center-align the contents of the label. The rotation trans‐
formation that we will apply to this label rotates the label around its center—and left-
aligned or right-aligned labels whose actual frame is bigger than the minimum frame
required to hold their contents without truncation will appear to be rotating in an un‐
natural way and not on the center. If you are curious, go ahead and left- or right-align
the contents of the label and see what happens.

10.2. Detecting Rotation Gestures | 487

As we saw in this recipe’s Solution, the rotation gesture recognizer that we created will
send its events to a method called handleRotations:. Here is the implementation for
this method:

- (void) handleRotations:(UIRotationGestureRecognizer *)paramSender{

 if (self.helloWorldLabel == nil){

 return;

 }

 /* Take the previous rotation and add the current rotation to it */

 self.helloWorldLabel.transform =

 CGAffineTransformMakeRotation(self.rotationAngleInRadians +

 paramSender.rotation);

 /* At the end of the rotation, keep the angle for later use */

 if (paramSender.state == UIGestureRecognizerStateEnded){

 self.rotationAngleInRadians += paramSender.rotation;

 }

}

The way a rotation gesture recognizer sends us the rotation angles is very interesting.
This gesture recognizer is continuous, which means it starts finding the angles as soon
as the user begins her rotation gesture and sends updates to the handler method at
frequent intervals until the user is done. Each message treats the starting angle as zero
and reports the difference between the message’s starting point (which is the angle where
the previous message left off) and its ending point. Thus, the complete effect of the
gesture can be discovered only by adding up the angles reported by the different events.
Clockwise movement produces a positive angular value, whereas counterclockwise
movement produces a negative value.

If you are using iPhone Simulator instead of a real device, you can still
simulate the rotation gesture by holding down the Option key in the
simulator. You will see two circles appear on the simulator at the same
distance from the center of the screen, representing two fingers. If you
want to shift these fingers from the center to another location while
holding down the Alt key, press the Shift key and point somewhere
else on the screen. Where you leave your pointer will become the new
center for these two fingers.

Now we will simply assign this angle to the rotation angle of the label. But can you
imagine what will happen once the rotation is finished and another one starts? The
second rotation gesture’s angle will replace that of the first rotation in the rotation
value reported to the handler. For this reason, whenever a rotation gesture is finished,
we must keep the current rotation of the label. The value in each rotation gesture’s angle

488 | Chapter 10: Implementing Gesture Recognizers

must be added in turn, and we must assign the result to the label’s rotation transfor‐
mation as we saw before.

As we saw earlier, we used the CGAffineTransformMakeRotation function to create an
affine transformation. Functions in the iOS SDK that start with “CG” refer to the Core
Graphics framework. For programs that use Core Graphics to compile and link suc‐
cessfully, you must make sure the Core Graphics framework is added to the list of
frameworks. New versions of Xcode link a default project against the Core Graphics
framework automatically, so you don’t really have to worry about that.

Now that we are sure Core Graphics is added to the target, we can compile and run the
app.

See Also
Recipe 10.6

10.3. Detecting Panning and Dragging Gestures

Problem
You want the users of your application to be able to move GUI elements around using
their fingers.

Pan gestures are continuous movements of fingers on the screen; re‐
call that swipe gestures were discrete gestures. This means the meth‐
od set as the target method of a pan gesture recognizer gets called
repeatedly from the beginning to the end of the recognition process.

Solution
Use the UIPanGestureRecognizer class:

- (void)viewDidLoad {

 [super viewDidLoad];

 /* Let's first create a label */

 CGRect labelFrame = CGRectMake(0.0f, /* X */

 0.0f, /* Y */

 150.0f, /* Width */

 100.0f); /* Height */

 self.helloWorldLabel = [[UILabel alloc] initWithFrame:labelFrame];

 self.helloWorldLabel.text = @"Hello World";

 self.helloWorldLabel.backgroundColor = [UIColor blackColor];

 self.helloWorldLabel.textColor = [UIColor whiteColor];

10.3. Detecting Panning and Dragging Gestures | 489

 self.helloWorldLabel.textAlignment = NSTextAlignmentCenter;

 /* Make sure to enable user interaction; otherwise, tap events

 won't be caught on this label */

 self.helloWorldLabel.userInteractionEnabled = YES;

 /* And now make sure this label gets displayed on our view */

 [self.view addSubview:self.helloWorldLabel];

 /* Create the Pan Gesture Recognizer */

 self.panGestureRecognizer = [[UIPanGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(handlePanGestures:)];

 /* At least and at most we need only one finger to activate

 the pan gesture recognizer */

 self.panGestureRecognizer.minimumNumberOfTouches = 1;

 self.panGestureRecognizer.maximumNumberOfTouches = 1;

 /* Add it to our view */

 [self.helloWorldLabel addGestureRecognizer:self.panGestureRecognizer];

}

The pan gesture recognizer will call the handlePanGestures: method as its target
method. This method is described in this recipe’s Discussion.

Discussion
The UIPanGestureRecognizer, as its name implies, can detect pan gestures. The pan
gesture recognizer will go through the following states while recognizing the pan ges‐
ture:

1. UIGestureRecognizerStateBegan

2. UIGestureRecognizerStateChanged

3. UIGestureRecognizerStateEnded

We can implement the gesture recognizer target method as follows. The code will con‐
tinuously move the center of the label along with the user’s finger as UIGestureRecog
nizerStateChanged events are reported:

- (void) handlePanGestures:(UIPanGestureRecognizer*)paramSender{

 if (paramSender.state != UIGestureRecognizerStateEnded &&

 paramSender.state != UIGestureRecognizerStateFailed){

 CGPoint location = [paramSender

 locationInView:paramSender.view.superview];

490 | Chapter 10: Implementing Gesture Recognizers

 paramSender.view.center = location;

 }

}

To be able to move the label on the view of the view controller, we need
the position of the finger on the view, not the label. For this reason, we
are calling the locationInView: method of the pan gesture recogniz‐
er and passing the superview of the label as the target view.

Use the locationInView: method of the pan gesture recognizer to find the point of the
current panning finger(s). To detect multiple finger locations, use the locationOf
Touch:inView: method. Using the minimumNumberOfTouches and maximumNumberOf
Touches properties of the UIPanGestureRecognizer, you can detect more than one
panning touch at a time. In the example, for the sake of simplicity, we are trying to detect
only one finger.

During the UIGestureRecognizerStateEnded state, the reported x and
y values might not be a number; in other words, they could be equal
to NAN. That is why we need to avoid using the reported values dur‐
ing this particular state.

10.4. Detecting Long-Press Gestures

Problem
You want to be able to detect when the user taps and holds his finger on a view for a
certain period of time.

Solution
Create an instance of the UILongPressGestureRecognizer class and add it to the view
that has to detect long-tap gestures:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong)

 UILongPressGestureRecognizer *longPressGestureRecognizer;

@property (nonatomic, strong) UIButton *dummyButton;

@end

@implementation ViewController

10.4. Detecting Long-Press Gestures | 491

Here is the viewDidLoad instance method of the view controller that uses the long-press
gesture recognizer that we defined in the .m file:

- (void)viewDidLoad {

 [super viewDidLoad];

 self.dummyButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];

 self.dummyButton.frame = CGRectMake(0.0f,

 0.0f,

 72.0f,

 37.0f);

 [self.dummyButton setTitle:@"My button" forState:UIControlStateNormal];

 self.dummyButton.center = self.view.center;

 [self.view addSubview:self.dummyButton];

 /* First create the gesture recognizer */

 self.longPressGestureRecognizer =

 [[UILongPressGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(handleLongPressGestures:)];

 /* The number of fingers that must be present on the screen */

 self.longPressGestureRecognizer.numberOfTouchesRequired = 2;

 /* Maximum 100 points of movement allowed before the gesture

 is recognized */

 self.longPressGestureRecognizer.allowableMovement = 100.0f;

 /* The user must press 2 fingers (numberOfTouchesRequired) for

 at least 1 second for the gesture to be recognized */

 self.longPressGestureRecognizer.minimumPressDuration = 1.0;

 /* Add this gesture recognizer to our view */

 [self.view addGestureRecognizer:self.longPressGestureRecognizer];

}

If the long-press gesture recognizer is firing events to the receiver
object while the gesture is continuing on the user’s end, and a phone
call or any other interruption comes in, the state of the gesture recog‐
nizer will be changed to UIGestureRecognizerStateCancelled. No
further messages will be sent to the receiver object from that gesture
recognizer until the user initiates the actions required to start the rec‐
ognition process again; in this example, holding two fingers for at least
one second on the view of our view controller.

492 | Chapter 10: Implementing Gesture Recognizers

Our code runs on a view controller with a property named longPress
GestureRecognizer of type UILongPressGestureRecognizer. For
more information, refer to this recipe’s Discussion.

Discussion
The iOS SDK comes with a long-tap gesture recognizer class named UILongTapGes
tureRecognizer. A long-tap gesture is triggered when the user presses one or more
fingers (configurable by the programmer) on a UIView and holds the finger(s) for a
specific amount of time. Furthermore, you can narrow the detection of gestures down
to only those long-tap gestures that are performed after a certain number of fingers are
tapped on a view for a certain number of times and are then kept on the view for a
specified number of seconds. Bear in mind that long taps are continuous events.

Four important properties can change the way the long-tap gesture recognizer performs.

numberOfTapsRequired

This is the number of taps the user has to perform on the target view before the
gesture can be triggered. Bear in mind that a tap is not merely a finger positioned
on a screen. A tap is the movement of putting a finger down on the screen and
lifting the finger off. The default value of this property is 0.

numberOfTouchesRequired

This property specifies the number of fingers that must be touching the screen
before the gesture can be recognized. You must specify the same number of fingers
to detect the taps, if the numberOfTapsRequired property is set to a value larger
than 0.

allowableMovement

This is the maximum number of pixels that the fingers on the screen can be moved
before the gesture recognition is aborted.

minimumPressDuration

This property dictates how long, measured in seconds, the user must press his
finger(s) on the screen before the gesture event can be detected.

In the example, these properties are set as follows:

• numberOfTapsRequired: Default (we are not changing this value)

• numberOfTouchesRequired: 2

• allowableMovement: 100

• minimumPressDuration: 1

10.4. Detecting Long-Press Gestures | 493

With these values, the long-tap gesture will be recognized only if the user presses on the
screen and holds both fingers for 1 second (minimumPressDuration) without moving
her fingers more than 100 pixels around (allowableMovement).

Now when the gesture is recognized, it will call the handleLongPressGestures: meth‐
od, which we can implement in this way:

- (void) handleLongPressGestures:(UILongPressGestureRecognizer *)paramSender{

 /* Here we want to find the mid point of the two fingers

 that caused the long press gesture to be recognized. We configured

 this number using the numberOfTouchesRequired property of the

 UILongPressGestureRecognizer that we instantiated in the

 viewDidLoad instance method of this View Controller. If we

 find that another long press gesture recognizer is using this

 method as its target, we will ignore it */

 if ([paramSender isEqual:self.longPressGestureRecognizer]){

 if (paramSender.numberOfTouchesRequired == 2){

 CGPoint touchPoint1 =

 [paramSender locationOfTouch:0

 inView:paramSender.view];

 CGPoint touchPoint2 =

 [paramSender locationOfTouch:1

 inView:paramSender.view];

 CGFloat midPointX = (touchPoint1.x + touchPoint2.x) / 2.0f;

 CGFloat midPointY = (touchPoint1.y + touchPoint2.y) / 2.0f;

 CGPoint midPoint = CGPointMake(midPointX, midPointY);

 self.dummyButton.center = midPoint;

 } else {

 /* This is a long press gesture recognizer with more

 or less than 2 fingers */

 }

 }

}

One of the applications in iOS that uses long-tap gesture recognizers
is the Maps application. In this application, when you are looking at
different locations, press your finger on a specific location and hold it
for a while without lifting it off the screen. This will drop a pin on that
specific location.

494 | Chapter 10: Implementing Gesture Recognizers

10.5. Detecting Tap Gestures

Problem
You want to be able to detect when users tap on a view.

Solution
Create an instance of the UITapGestureRecognizer class and add it to the target view,
using the addGestureRecognizer: instance method of the UIView class. Let’s have a
look at the definition of the view controller:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong)

 UITapGestureRecognizer *tapGestureRecognizer;

@end

@implementation ViewController

The implementation of the viewDidLoad instance method of the view controller is as
follows:

- (void)viewDidLoad {

 [super viewDidLoad];

 /* Create the Tap Gesture Recognizer */

 self.tapGestureRecognizer = [[UITapGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(handleTaps:)];

 /* The number of fingers that must be on the screen */

 self.tapGestureRecognizer.numberOfTouchesRequired = 2;

 /* The total number of taps to be performed before the

 gesture is recognized */

 self.tapGestureRecognizer.numberOfTapsRequired = 3;

 /* Add this gesture recognizer to our view */

 [self.view addGestureRecognizer:self.tapGestureRecognizer];

}

Discussion
The tap gesture recognizer is the best candidate among gesture recognizers to detect
plain tap gestures. A tap event is the event triggered by the user touching and lifting his
finger(s) off the screen. A tap gesture is a discrete gesture.

10.5. Detecting Tap Gestures | 495

The locationInView: method of the UITapGestureRecognizer class can be used to
detect the location of the tap event. If the tap gesture requires more than one touch, the
locationOfTouch:inView: method of the UITapGestureRecognizer class can be called
to determine individual touch points. In the code, we have set the numberOfTouch
esRequired property of the tap gesture recognizer to 2. With this value set, the gesture
recognizer will require two fingers to be on the screen on each tap event. The number
of taps that are required for the gesture recognizer to recognize this gesture is set to 3,
using the numberOfTapsRequired property. We have provided the handleTaps: method
as the target method of the tap gesture recognizer:

- (void) handleTaps:(UITapGestureRecognizer*)paramSender{

 NSUInteger touchCounter = 0;

 for (touchCounter = 0;

 touchCounter < paramSender.numberOfTouchesRequired;

 touchCounter++){

 CGPoint touchPoint =

 [paramSender locationOfTouch:touchCounter

 inView:paramSender.view];

 NSLog(@"Touch #%lu: %@",

 (unsigned long)touchCounter+1,

 NSStringFromCGPoint(touchPoint));

 }

}

In this code, we are going through the number of touches that the tap gesture recognizer
was asked to look for. Based on that number, we are finding the location of each tap.
Depending on where you tap on the view on your simulator, you will get results similar
to this in the console window:

Touch #1: {107, 186}

Touch #2: {213, 254}

If you are using the simulator, you can simulate two touches at the
same time by holding down the Option key and moving your mouse
on the simulator’s screen. You will now have two concentric touch
points on the screen.

One function worth noting is the NSStringFromCGPoint method, which, as its name
implies, can convert a CGPoint structure to NSString. We use this function to convert
the CGPoint of each touch on the screen to an NSString, so that we can log it to the
console window using NSLog. You can bring up the console window with Run → Console.

496 | Chapter 10: Implementing Gesture Recognizers

10.6. Detecting Pinch Gestures

Problem
You want your users to be able to perform pinch gesture on a view.

Solution
Create an instance of the UIPinchGestureRecognizer class and add it to your target
view, using the addGestureRecognizer: instance method of the UIView class:

- (void)viewDidLoad {

 [super viewDidLoad];

 CGRect labelRect = CGRectMake(0.0f, /* X */

 0.0f, /* Y */

 200.0f, /* Width */

 200.0f); /* Height */

 self.myBlackLabel = [[UILabel alloc] initWithFrame:labelRect];

 self.myBlackLabel.center = self.view.center;

 self.myBlackLabel.backgroundColor = [UIColor blackColor];

 /* Without this line, our pinch gesture recognizer

 will not work */

 self.myBlackLabel.userInteractionEnabled = YES;

 [self.view addSubview:self.myBlackLabel];

 /* Create the Pinch Gesture Recognizer */

 self.pinchGestureRecognizer = [[UIPinchGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(handlePinches:)];

 /* Add this gesture recognizer to our view */

 [self.myBlackLabel

 addGestureRecognizer:self.pinchGestureRecognizer];

}

The view controller is defined in this way:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong)

 UIPinchGestureRecognizer *pinchGestureRecognizer;

@property (nonatomic, strong) UILabel *myBlackLabel;

@property (nonatomic, unsafe_unretained) CGFloat currentScale;

@end

10.6. Detecting Pinch Gestures | 497

Discussion
Pinching allows users to scale GUI elements up and down easily. For instance, the Safari
web browser on iOS allows users to pinch on a web page in order to zoom into the
contents being displayed. Pinching works in two ways: scaling up and scaling down. It
is a continuous gesture that must always be performed using two fingers on the screen.

The state of this gesture recognizer changes in this order:

1. UIGestureRecognizerStateBegan

2. UIGestureRecognizerStateChanged

3. UIGestureRecognizerStateEnded

Once the pinch gesture is recognized, the action method in the target object will be
called (and will continue to be called until the pinch gesture ends). Inside the action
method, you can access two very important properties of the pinch gesture recognizer:
scale and velocity. scale is the factor by which you should scale the x- and y-axes of
a GUI element to reflect the size of the user’s gesture. velocity is the velocity of the
pinch in pixels per second. The velocity is a negative value if the touch points are getting
closer to each other and a positive value if they are getting farther away from each other.

The value of the scale property can be provided to the CGAffineTransformMakeS
cale Core Graphics function in order to retrieve an affine transformation. This affine
transformation can be applied to the transform property of any instance of the UI
View class in order to change its transformation. We are using this function in this way:

- (void) handlePinches:(UIPinchGestureRecognizer*)paramSender{

 if (paramSender.state == UIGestureRecognizerStateEnded){

 self.currentScale = paramSender.scale;

 } else if (paramSender.state == UIGestureRecognizerStateBegan &&

 self.currentScale != 0.0f){

 paramSender.scale = self.currentScale;

 }

 if (paramSender.scale != NAN &&

 paramSender.scale != 0.0){

 paramSender.view.transform =

 CGAffineTransformMakeScale(paramSender.scale,

 paramSender.scale);

 }

}

498 | Chapter 10: Implementing Gesture Recognizers

Since the scale property of a pinch gesture recognizer is reset every time a new pinch
gesture is recognized, we are storing the last value of this property in an instance prop‐
erty of the view controller called currentScale. The next time a new gesture is recog‐
nized, we start the scale factor from the previously reported scale factor, as demonstrated
in the code.

10.6. Detecting Pinch Gestures | 499

CHAPTER 11

Networking, JSON, XML, and Sharing

11.0. Introduction
iOS apps, when connected to the Internet, become more lively. For example, imagine
an app that brings high-quality wallpapers to its users. The user can pick from a big list
of wallpapers and assign any of those images as his iOS background. Now consider an
app that does the same thing but adds to its list of wallpapers every day, week, or month.
The user comes back to the app, and voilà! Tons of new wallpapers are dynamically
added to the app. That is the magic of web services and the Internet. This can easily be
achieved with basic knowledge of networking, XML, JSON, and sharing options, along
with some creativity on the app developer’s part.

The iOS SDK allows us to connect to the Internet and retrieve and send data using the
NSURLConnection class. JSON serialization and deserialization will all be done using the
NSJSONSerialization class. XML parsing will be done using NSXMLParser, and the
Twitter connectivity will be done using the Twitter framework.

The iOS 7 SDK brings along new classes that we can take advantage of in this chapter.
One of these classes is the NSURLSession, which manages the connectivity to web serv‐
ices in a more thorough way than the NSURLConnection class does, as we shall see later
in this chapter.

11.1. Downloading Asynchronously with
NSURLConnection

Problem
You want to download a file from a URL, asynchronously.

501

Solution
Use the NSURLConnection class with an asynchronous request.

Discussion
There are two ways of using the NSURLConnection class. One is asynchronous, and the
other is synchronous. An asynchronous connection will create a new thread and does
its downloading process on the new thread. A synchronous connection will block the
calling thread while downloading content and doing its communication.

Many developers think that a synchronous connection blocks the main thread, but that
is incorrect. A synchronous connection will always block the thread from which it is
fired. If you fire a synchronous connection from the main thread, yes, the main thread
will be blocked. But if you fire a synchronous connection from a thread other than the
main thread, it will be like an asynchronous connection in that it won’t block your main
thread. In fact, the only difference between a synchronous and an asynchronous con‐
nection is that the runtime will create a thread for the asynchronous connection, while
it won’t do the same for a synchronous connection.

In order to create an asynchronous connection, we need to do the following:

1. Have our URL in an instance of NSString.

2. Convert our string to an instance of NSURL.

3. Place our URL in a URL Request of type NSURLRequest, or in the case of mutable
URLs, in an instance of NSMutableURLRequest.

4. Create an instance of NSURLConnection and pass the URL request to it.

We can create an asynchronous URL connection using the sendAsynchronousRe
quest:queue:completionHandler: class method of NSURLConnection. Here are the
parameters to this method:

sendAsynchronousRequest

A request of type NSURLRequest, as we already discussed.

queue

An operation queue. We can simply allocate and initialize a new operation queue
and pass it to this method, if we wish.

completionHandler

A block object to be executed when the asynchronous connection finishes its work
either successfully or unsuccessfully. This block object should accept three param‐
eters:

1. An object of type NSURLResponse, which encapsulates the response that the
server sent us, if any.

502 | Chapter 11: Networking, JSON, XML, and Sharing

2. Data of type NSData, if any. This data will be the data that the connection fetched
from the URL.

3. Error of type NSError if an error occurs.

The sendAsynchronousRequest:queue:completionHandler: meth‐
od doesn’t get called on the main thread, so make sure that, if you want
to perform a UI-related task, you are back on the main thread.

Enough talk. Let’s have a look at an example. In this example, we will try to fetch the
HTML contents of Apple’s home page and then print the contents as a string to the
console window:

NSString *urlAsString = @"http://www.apple.com";

NSURL *url = [NSURL URLWithString:urlAsString];

NSURLRequest *urlRequest = [NSURLRequest requestWithURL:url];

NSOperationQueue *queue = [[NSOperationQueue alloc] init];

[NSURLConnection

sendAsynchronousRequest:urlRequest

queue:queue

completionHandler:^(NSURLResponse *response,

 NSData *data,

 NSError *error) {

 if ([data length] >0 &&

 error == nil){

 NSString *html = [[NSString alloc] initWithData:data

 encoding:NSUTF8StringEncoding];

 NSLog(@"HTML = %@", html);

 }

 else if ([data length] == 0 &&

 error == nil){

 NSLog(@"Nothing was downloaded.");

 }

 else if (error != nil){

 NSLog(@"Error happened = %@", error);

 }

}];

It’s as simple as that. If you wanted to save the data that the connection downloaded for
us to disk, you could simply do so using the appropriate methods of the NSData that we
get from the completion block:

NSString *urlAsString = @"http://www.apple.com";

NSURL *url = [NSURL URLWithString:urlAsString];

NSURLRequest *urlRequest = [NSURLRequest requestWithURL:url];

NSOperationQueue *queue = [[NSOperationQueue alloc] init];

11.1. Downloading Asynchronously with NSURLConnection | 503

[NSURLConnection

 sendAsynchronousRequest:urlRequest

 queue:queue

 completionHandler:^(NSURLResponse *response,

 NSData *data,

 NSError *error) {

 if ([data length] >0 &&

 error == nil){

 /* Append the filename to the documents directory */

 NSURL *filePath =

 [[self documentsFolderUrl]

 URLByAppendingPathComponent:@"apple.html"];

 [data writeToURL:filePath atomically:YES];

 NSLog(@"Successfully saved the file to %@", filePath);

 }

 else if ([data length] == 0 &&

 error == nil){

 NSLog(@"Nothing was downloaded.");

 }

 else if (error != nil){

 NSLog(@"Error happened = %@", error);

 }

 }];

It’s that simple, really. In older versions of iOS SDK, URL connections used the delega‐
tion model, but now it’s all simply block-based, and you no longer have to worry about
implementing delegate methods.

11.2. Handling Timeouts in Asynchronous Connections

Problem
You want to set a wait limit—in other words, a timeout—on an asynchronous connec‐
tion.

Solution
Set the timeout on the URL request that you pass to the NSURLConnection class.

504 | Chapter 11: Networking, JSON, XML, and Sharing

Discussion
When instantiating an object of type NSURLRequest to pass to your URL connection,
you can use its requestWithURL:cachePolicy:timeoutInterval: class method and
pass the desired number of seconds of your timeout as the timeoutInterval parameter.

For instance, if you want to wait a maximum of 30 seconds to download the contents
of Apple’s home page using a synchronous connection, create your URL request like so:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *urlAsString = @"http://www.apple.com";

 NSURL *url = [NSURL URLWithString:urlAsString];

 NSURLRequest *urlRequest =

 [NSURLRequest

 requestWithURL:url

 cachePolicy:NSURLRequestReloadIgnoringLocalAndRemoteCacheData

 timeoutInterval:30.0f];

 NSOperationQueue *queue = [[NSOperationQueue alloc] init];

 [NSURLConnection

 sendAsynchronousRequest:urlRequest

 queue:queue

 completionHandler:^(NSURLResponse *response,

 NSData *data,

 NSError *error) {

 if ([data length] >0 && error == nil){

 NSString *html =

 [[NSString alloc] initWithData:data

 encoding:NSUTF8StringEncoding];

 NSLog(@"HTML = %@", html);

 }

 else if ([data length] == 0 && error == nil){

 NSLog(@"Nothing was downloaded.");

 }

 else if (error != nil){

 NSLog(@"Error happened = %@", error);

 }

 }];

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

11.2. Handling Timeouts in Asynchronous Connections | 505

What will happen here is that the runtime will try to retrieve the contents of the provided
URL. If this can be done before 30 seconds have elapsed and the connection is established
before the timeout occurs, then fine. If not, the runtime will provide you with a timeout
error in the error parameter of the completion block.

11.3. Downloading Synchronously with NSURLConnection

Problem
You want to download the contents of a URL, synchronously.

Solution
Use the sendSynchronousRequest:returningResponse:error: class method of
NSURLConnection. The return value of this method is data of type NSData.

Discussion
Using the sendSynchronousRequest:returningResponse:error: class method of
NSURLConnection, we can send a synchronous request to a URL. Now, remember: syn‐
chronous connections do not necessarily block the main thread! Synchronous connec‐
tions block the current thread, and if the current thread is the main thread, then the
main thread will be blocked. If you go on a global concurrent queue with GCD and then
initiate a synchronous connection, then you are not blocking the main thread.

Let’s go ahead and initiate our first synchronous connection and see what happens. In
this example, we will try to retrieve the home page of Yahoo!’s US website:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSLog(@"We are here...");

 NSString *urlAsString = @"http://www.yahoo.com";

 NSURL *url = [NSURL URLWithString:urlAsString];

 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:url];

 NSURLResponse *response = nil;

 NSError *error = nil;

 NSLog(@"Firing synchronous url connection...");

 NSData *data = [NSURLConnection sendSynchronousRequest:urlRequest

 returningResponse:&response

 error:&error];

 if ([data length] > 0 && error == nil){

 NSLog(@"%lu bytes of data was returned.",

506 | Chapter 11: Networking, JSON, XML, and Sharing

 (unsigned long)[data length]);

 }

 else if ([data length] == 0 && error == nil){

 NSLog(@"No data was returned.");

 }

 else if (error != nil){

 NSLog(@"Error happened = %@", error);

 }

 NSLog(@"We are done.");

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

If you run this app and then look at the console window, you will see something similar
to this printed out:

We are here...

Firing synchronous url connection...

252117 bytes of data was returned.

We are done.

So it’s obvious that the current thread printed the string We are here... to the console
window, waited for the connection to finish (as it was a synchronous connection that
blocks the current thread), and then printed the We are done. text to the console window.
Now let’s do an experiment. Let’s place the same exact synchronous connection inside
a global concurrent queue in GCD, which guarantees concurrency, and see what hap‐
pens:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSLog(@"We are here...");

 NSString *urlAsString = @"http://www.yahoo.com";

 NSLog(@"Firing synchronous url connection...");

 dispatch_queue_t dispatchQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_async(dispatchQueue, ^(void) {

 NSURL *url = [NSURL URLWithString:urlAsString];

 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:url];

 NSURLResponse *response = nil;

 NSError *error = nil;

11.3. Downloading Synchronously with NSURLConnection | 507

 NSData *data = [NSURLConnection sendSynchronousRequest:urlRequest

 returningResponse:&response

 error:&error];

 if ([data length] > 0 && error == nil){

 NSLog(@"%lu bytes of data was returned.",

 (unsigned long)[data length]);

 }

 else if ([data length] == 0 && error == nil){

 NSLog(@"No data was returned.");

 }

 else if (error != nil){

 NSLog(@"Error happened = %@", error);

 }

 });

 NSLog(@"We are done.");

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

The output will be similar to this:

We are here...

Firing synchronous url connection...

We are done.

252450 bytes of data was returned.

So in this example, the current thread carried on to print the We are done. text to the
console window without having to wait for the synchronous connection to finish read‐
ing from its URL. That is interesting, isn’t it? So this proves that a synchronous URL
connection won’t necessarily block the main thread, if managed properly. Synchronous
connections are guaranteed to block the current thread, though.

11.4. Modifying a URL Request with
NSMutableURLRequest

Problem
You want to adjust various HTTP headers and settings of a URL request before passing
it to a URL connection.

508 | Chapter 11: Networking, JSON, XML, and Sharing

Solution
This technique is the basis of many useful recipes shown later in this chapter. Use
NSMutableURLRequest instead of NSURLRequest.

Discussion
A URL request can be either mutable or immutable. A mutable URL request can be
changed after it has been allocated and initialized, whereas an immutable URL request
cannot. Mutable URL requests are the target of this recipe. You can create them using
the NSMutableURLRequest class.

Let’s have a look at an example where we will change the timeout interval of a URL
request after we have allocated and initialized it:

NSString *urlAsString = @"http://www.apple.com";

NSURL *url = [NSURL URLWithString:urlAsString];

NSMutableURLRequest *urlRequest =

 [NSMutableURLRequest requestWithURL:url];

[urlRequest setTimeoutInterval:30.0f];

Now let’s have a look at another example where we set the URL and the timeout of a
URL request after it has been allocated and initialized:

NSString *urlAsString = @"http://www.apple.com";

NSURL *url = [NSURL URLWithString:urlAsString];

NSMutableURLRequest *urlRequest = [NSMutableURLRequest new];

[urlRequest setTimeoutInterval:30.0f];

[urlRequest setURL:url];

In other recipes in this chapter, we will have a look at some of the really neat tricks that
we can perform using mutable URL requests.

11.5. Sending HTTP GET Requests with NSURLConnection

Problem
You want to send a GET request over the HTTP protocol and perhaps pass parameters
along your request to the receiver.

Solution
By convention, GET requests allow parameters through query strings of the familiar
form:

http://example.com/?param1=value1¶m2=value2...

11.5. Sending HTTP GET Requests with NSURLConnection | 509

You can use strings to provide the parameters in the conventional format.

Discussion
A GET request is a request to a web server to retrieve data. The request usually carries
some parameters, which are sent in a query string as part of the URL.

In order to test a GET call, you need to find a web server that accepts the GET method
and can send you some data back. This is simple. You may already know that when you
open a web page in your browser, your browser by default sends a GET request to that
end point, so you can use this recipe on any website of your liking.

To simulate sending query string parameters in a GET request to the same web service
using NSURLConnection, use a mutable URL request and explicitly specify your HTTP
method to GET using the setHTTPMethod: method of NSMutableURLRequest and put
your parameters as part of the URL, like so:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *urlAsString = <# Place the URL of the web server here #>;

 urlAsString = [urlAsString stringByAppendingString:@"?param1=First"];

 urlAsString = [urlAsString stringByAppendingString:@"¶m2=Second"];

 NSURL *url = [NSURL URLWithString:urlAsString];

 NSMutableURLRequest *urlRequest =

 [NSMutableURLRequest requestWithURL:url];

 [urlRequest setTimeoutInterval:30.0f];

 [urlRequest setHTTPMethod:@"GET"];

 NSOperationQueue *queue = [[NSOperationQueue alloc] init];

 [NSURLConnection

 sendAsynchronousRequest:urlRequest

 queue:queue

 completionHandler:^(NSURLResponse *response,

 NSData *data,

 NSError *error) {

 if ([data length] >0 && error == nil){

 NSString *html =

 [[NSString alloc] initWithData:data

 encoding:NSUTF8StringEncoding];

 NSLog(@"HTML = %@", html);

 }

 else if ([data length] == 0 && error == nil){

 NSLog(@"Nothing was downloaded.");

 }

 else if (error != nil){

510 | Chapter 11: Networking, JSON, XML, and Sharing

 NSLog(@"Error happened = %@", error);

 }

 }];

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

The urlAsString variable in this code is an Xcode variable template.
If you copy and paste this code into your Xcode project, the variable
will get displayed as shown in Figure 11-1. Before running this exam‐
ple code, ensure that you have assigned a valid URL to the aforemen‐
tioned variable.

Figure 11-1. A replaceable variable in Xcode

The only thing that you have to bear in mind is that the first parameter is prefixed with
a question mark, and any subsequent parameter is prefixed with an ampersand. That’s
really about it! Now you are using the HTTP GET method, and you know how to send
parameters as a query string.

11.6. Sending HTTP POST Requests with NSURLConnection

Problem
You want to call a web service using the HTTP POST method, and perhaps pass pa‐
rameters (as part of the HTTP body or in the query string) to the web service.

Solution
Just as with the GET method, we can use the POST method using NSURLConnection.
We must explicitly set our URL’s method to POST.

11.6. Sending HTTP POST Requests with NSURLConnection | 511

Discussion
Let’s write a simple app that can create an asynchronous connection and send a few
parameters as a query string and a few parameters in the HTTP body to a URL:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *urlAsString = <# Place the URL of the web server here #>;

 urlAsString = [urlAsString stringByAppendingString:@"?param1=First"];

 urlAsString = [urlAsString stringByAppendingString:@"¶m2=Second"];

 NSURL *url = [NSURL URLWithString:urlAsString];

 NSMutableURLRequest *urlRequest = [NSMutableURLRequest requestWithURL:url];

 [urlRequest setTimeoutInterval:30.0f];

 [urlRequest setHTTPMethod:@"POST"];

 NSString *body = @"bodyParam1=BodyValue1&bodyParam2=BodyValue2";

 [urlRequest setHTTPBody:[body dataUsingEncoding:NSUTF8StringEncoding]];

 NSOperationQueue *queue = [[NSOperationQueue alloc] init];

 [NSURLConnection

 sendAsynchronousRequest:urlRequest

 queue:queue

 completionHandler:^(NSURLResponse *response,

 NSData *data,

 NSError *error) {

 if ([data length] >0 && error == nil){

 NSString *html =

 [[NSString alloc] initWithData:data

 encoding:NSUTF8StringEncoding];

 NSLog(@"HTML = %@", html);

 }

 else if ([data length] == 0 &&

 error == nil){

 NSLog(@"Nothing was downloaded.");

 }

 else if (error != nil){

 NSLog(@"Error happened = %@", error);

 }

 }];

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

512 | Chapter 11: Networking, JSON, XML, and Sharing

 return YES;

}

The first parameter sent in the HTTP body does not have to be pre‐
fixed with a question mark, unlike the first parameter in a query string.

11.7. Sending HTTP DELETE Requests with
NSURLConnection

Problem
You want to call a web service using the HTTP DELETE method to delete a resource
from a URL, and perhaps pass parameters, as part of the HTTP body or in the query
string, to the web service.

Solution
Just as with the GET and POST methods, you can use the DELETE method using
NSURLConnection. You must explicitly set your URL’s method to DELETE.

Discussion
Let’s write a simple app that can create an asynchronous connection and send a few
parameters as a query string and a few parameters in the HTTP body to the aforemen‐
tioned URL, using the DELETE HTTP method:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *urlAsString = <# Place the URL of the web server here #>;

 urlAsString = [urlAsString stringByAppendingString:@"?param1=First"];

 urlAsString = [urlAsString stringByAppendingString:@"¶m2=Second"];

 NSURL *url = [NSURL URLWithString:urlAsString];

 NSMutableURLRequest *urlRequest =

 [NSMutableURLRequest requestWithURL:url];

 [urlRequest setTimeoutInterval:30.0f];

 [urlRequest setHTTPMethod:@"DELETE"];

 NSString *body = @"bodyParam1=BodyValue1&bodyParam2=BodyValue2";

 [urlRequest setHTTPBody:[body dataUsingEncoding:NSUTF8StringEncoding]];

 NSOperationQueue *queue = [[NSOperationQueue alloc] init];

11.7. Sending HTTP DELETE Requests with NSURLConnection | 513

 [NSURLConnection

 sendAsynchronousRequest:urlRequest

 queue:queue

 completionHandler:^(NSURLResponse *response,

 NSData *data,

 NSError *error) {

 if ([data length] >0 && error == nil){

 NSString *html =

 [[NSString alloc] initWithData:data

 encoding:NSUTF8StringEncoding];

 NSLog(@"HTML = %@", html);

 }

 else if ([data length] == 0 && error == nil){

 NSLog(@"Nothing was downloaded.");

 }

 else if (error != nil){

 NSLog(@"Error happened = %@", error);

 }

 }];

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

This example is very similar to what we have already read about in Recipe 11.5 and
Recipe 11.6. All we are doing differently here is setting the HTTP method of our con‐
nection to DELETE. The rest is really similar to what you already learned in the afore‐
mentioned recipes.

11.8. Sending HTTP PUT Requests with NSURLConnection

Problem
You want to call a web service using the HTTP PUT method to place a resource into
the web server, and perhaps pass parameters as part of the HTTP body or in the query
string, to the web service.

Solution
Just as with the GET, POST, and DELETE methods, we can use the PUT method using
NSURLConnection. We must explicitly set our URL’s method to PUT.

514 | Chapter 11: Networking, JSON, XML, and Sharing

Discussion
Let’s write a simple app that can create an asynchronous connection and send a few
parameters as a query string and a few parameters in the HTTP body to the aforemen‐
tioned URL using the PUT method:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *urlAsString = <# Place the URL of the web server here #>;

 urlAsString = [urlAsString stringByAppendingString:@"?param1=First"];

 urlAsString = [urlAsString stringByAppendingString:@"¶m2=Second"];

 NSURL *url = [NSURL URLWithString:urlAsString];

 NSMutableURLRequest *urlRequest =

 [NSMutableURLRequest requestWithURL:url];

 [urlRequest setTimeoutInterval:30.0f];

 [urlRequest setHTTPMethod:@"PUT"];

 NSString *body = @"bodyParam1=BodyValue1&bodyParam2=BodyValue2";

 [urlRequest setHTTPBody:[body dataUsingEncoding:NSUTF8StringEncoding]];

 NSOperationQueue *queue = [[NSOperationQueue alloc] init];

 [NSURLConnection

 sendAsynchronousRequest:urlRequest

 queue:queue

 completionHandler:^(NSURLResponse *response,

 NSData *data,

 NSError *error) {

 if ([data length] >0 && error == nil){

 NSString *html =

 [[NSString alloc] initWithData:data

 encoding:NSUTF8StringEncoding];

 NSLog(@"HTML = %@", html);

 }

 else if ([data length] == 0 && error == nil){

 NSLog(@"Nothing was downloaded.");

 }

 else if (error != nil){

 NSLog(@"Error happened = %@", error);

 }

 }];

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

11.8. Sending HTTP PUT Requests with NSURLConnection | 515

 [self.window makeKeyAndVisible];

 return YES;

}

The first parameter sent in the HTTP body does not have to be pre‐
fixed with a question mark, unlike the first parameter in a query string.

11.9. Serializing Arrays and Dictionaries into JSON

Problem
You want to serialize a dictionary or an array into a JSON object that you can transfer
over the network or simply save to disk.

Solution
Use the dataWithJSONObject:options:error: method of the NSJSONSerialization
class.

Discussion
The dataWithJSONObject:options:error: method of the NSJSONSerialization class
can serialize dictionaries and arrays that contain only instances of NSString, NSNum
ber, NSArray, NSDictionary variables, or NSNull for nil values. As mentioned, the object
that you pass to this method should be either an array or a dictionary.

Now let’s go ahead and create a simple dictionary with a few keys and values:

NSDictionary *dictionary =

@{

 @"First Name" : @"Anthony",

 @"Last Name" : @"Robbins",

 @"Age" : @51,

 @"children" : @[

 @"Anthony's Son 1",

 @"Anthony's Daughter 1",

 @"Anthony's Son 2",

 @"Anthony's Son 3",

 @"Anthony's Daughter 2"

],

 };

As you can see, this dictionary contains the first name, last name, and age of Anthony
Robbins. A key in the dictionary named children contains the names of Anthony’s chil‐
dren. This is an array of strings with each string representing one child. So by this time,

516 | Chapter 11: Networking, JSON, XML, and Sharing

the dictionary variable contains all the values that we want it to contain. It is now time
to serialize it into a JSON object:

NSError *error = nil;

NSData *jsonData = [NSJSONSerialization

 dataWithJSONObject:dictionary

 options:NSJSONWritingPrettyPrinted

 error:&error];

if ([jsonData length] > 0 && error == nil){

 NSLog(@"Successfully serialized the dictionary into data = %@",

 jsonData);

}

else if ([jsonData length] == 0 && error == nil){

 NSLog(@"No data was returned after serialization.");

}

else if (error != nil){

 NSLog(@"An error happened = %@", error);

}

The return value of the dataWithJSONObject:options:error: method is data of type
NSData. However, you can simply turn this data into a string and print it to the console
using the initWithData:encoding: initializer of NSString. Here is the complete ex‐
ample that serializes a dictionary into a JSON object, converts that object into a string,
and prints the string out to the console window:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSDictionary *dictionary =

 @{

 @"First Name" : @"Anthony",

 @"Last Name" : @"Robbins",

 @"Age" : @51,

 @"children" : @[

 @"Anthony's Son 1",

 @"Anthony's Daughter 1",

 @"Anthony's Son 2",

 @"Anthony's Son 3",

 @"Anthony's Daughter 2"

],

 };

 NSError *error = nil;

 NSData *jsonData = [NSJSONSerialization

 dataWithJSONObject:dictionary

 options:NSJSONWritingPrettyPrinted

 error:&error];

 if ([jsonData length] > 0 && error == nil){

 NSLog(@"Successfully serialized the dictionary into data.");

11.9. Serializing Arrays and Dictionaries into JSON | 517

 NSString *jsonString =

 [[NSString alloc] initWithData:jsonData

 encoding:NSUTF8StringEncoding];

 NSLog(@"JSON String = %@", jsonString);

 }

 else if ([jsonData length] == 0 && error == nil){

 NSLog(@"No data was returned after serialization.");

 }

 else if (error != nil){

 NSLog(@"An error happened = %@", error);

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 // Override point for customization after application launch.

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

When you run this app, the following results will get printed to the console window:

Successfully serialized the dictionary into data.

JSON String = {

 "Last Name" : "Robbins",

 "First Name" : "Anthony",

 "children" : [

 "Anthony's Son 1",

 "Anthony's Daughter 1",

 "Anthony's Son 2",

 "Anthony's Son 3",

 "Anthony's Daughter 2"

],

 "Age" : 51

}

11.10. Deserializing JSON into Arrays and Dictionaries

Problem
You have JSON data, and you want to deserialize it into a dictionary or an array.

Solution
Use the JSONObjectWithData:options:error: method of the NSJSONSerialization
class.

518 | Chapter 11: Networking, JSON, XML, and Sharing

Discussion
If you already have serialized your dictionary or array into a JSON object (encapsulated
inside an instance of NSData; see Recipe 11.9), you should be able to deserialize them
back into a dictionary or an array, using the JSONObjectWithData:options:error:
method of the NSJSONSerialization class. The object that is returned back by this
method will be either a dictionary or an array, depending on the data that we pass to it.
Here is an example:

/* Now try to deserialize the JSON object into a dictionary */

 error = nil;

 id jsonObject = [NSJSONSerialization

 JSONObjectWithData:jsonData

 options:NSJSONReadingAllowFragments

 error:&error];

 if (jsonObject != nil && error == nil){

 NSLog(@"Successfully deserialized...");

 if ([jsonObject isKindOfClass:[NSDictionary class]]){

 NSDictionary *deserializedDictionary = jsonObject;

 NSLog(@"Deserialized JSON Dictionary = %@",

 deserializedDictionary);

 }

 else if ([jsonObject isKindOfClass:[NSArray class]]){

 NSArray *deserializedArray = (NSArray *)jsonObject;

 NSLog(@"Deserialized JSON Array = %@", deserializedArray);

 }

 else {

 /* Some other object was returned. We don't know how to

 deal with this situation as the deserializer only

 returns dictionaries or arrays */

 }

 }

 else if (error != nil){

 NSLog(@"An error happened while deserializing the JSON data.");

 }

If now we mix this code with the code from Recipe 11.9, we can first serialize our
dictionary into a JSON object, deserialize that JSON object back into a dictionary, and
print out the results to make sure things went fine:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSDictionary *dictionary =

11.10. Deserializing JSON into Arrays and Dictionaries | 519

 @{

 @"First Name" : @"Anthony",

 @"Last Name" : @"Robbins",

 @"Age" : @51,

 @"Children" : @[

 @"Anthony's Son 1",

 @"Anthony's Daughter 1",

 @"Anthony's Son 2",

 @"Anthony's Son 3",

 @"Anthony's Daughter 2",

],

 };

 NSError *error = nil;

 NSData *jsonData = [NSJSONSerialization

 dataWithJSONObject:dictionary

 options:NSJSONWritingPrettyPrinted

 error:&error];

 if ([jsonData length] > 0 && error == nil){

 NSLog(@"Successfully serialized the dictionary into data.");

 /* Now try to deserialize the JSON object into a dictionary */

 error = nil;

 id jsonObject = [NSJSONSerialization

 JSONObjectWithData:jsonData

 options:NSJSONReadingAllowFragments

 error:&error];

 if (jsonObject != nil && error == nil){

 NSLog(@"Successfully deserialized...");

 if ([jsonObject isKindOfClass:[NSDictionary class]]){

 NSDictionary *deserializedDictionary = jsonObject;

 NSLog(@"Deserialized JSON Dictionary = %@",

 deserializedDictionary);

 }

 else if ([jsonObject isKindOfClass:[NSArray class]]){

 NSArray *deserializedArray = (NSArray *)jsonObject;

 NSLog(@"Deserialized JSON Array = %@", deserializedArray);

 }

 else {

 /* Some other object was returned. We don't know how to

 deal with this situation as the deserializer only

 returns dictionaries or arrays */

 }

520 | Chapter 11: Networking, JSON, XML, and Sharing

 }

 else if (error != nil){

 NSLog(@"An error happened while deserializing the JSON data.");

 }

 }

 else if ([jsonData length] == 0 && error == nil){

 NSLog(@"No data was returned after serialization.");

 }

 else if (error != nil){

 NSLog(@"An error happened = %@", error);

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 // Override point for customization after application launch.

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

The options parameter of the JSONObjectWithData:options:error: method accepts
one or a mixture of the following values:

NSJSONReadingMutableContainers

The dictionary or the array returned by the JSONObjectWithData:options:er
ror: method will be mutable. In other words, this method will return either an
instance of NSMutableArray or NSMutableDictionary, as opposed to an immutable
array or dictionary.

NSJSONReadingMutableLeaves

Leaf values will be encapsulated into instances of NSMutableString.

NSJSONReadingAllowFragments

Allows the deserialization of JSON data whose root top-level object is not an array
or a dictionary.

See Also
Recipe 11.9

11.11. Integrating Social Sharing into Your Apps

Problem
You want to provide sharing capabilities in your app so that your user can compose a
tweet or a Facebook status update on her device.

11.11. Integrating Social Sharing into Your Apps | 521

Solution
Incorporate the Social framework into your app and use the SLComposeViewControl
ler class to compose social sharing messages, such as tweets.

Discussion
The SLComposeViewController class is available in the Social framework and with the
Modules feature in the LLVM compiler. All you have to do to start using this framework
is import its umbrella header file into your project like so:

#import "ViewController.h"

#import <Social/Social.h>

@implementation ViewController

As Apple adds new social sharing options to the SDK, you can query the Social frame‐
work to find out, at runtime, which one of the services is available on the device that
runs your app. Because the particular services vary from device to device, you should
not try to use one until you make sure it is running. In order to query iOS for that, you
need to use the isAvailableForServiceType: class method of the SLComposeViewCon
troller class. The parameter that you pass to this method is of type NSString, and here
is a list of some of the valid parameters that you may pass to this method:

SOCIAL_EXTERN NSString *const SLServiceTypeTwitter;

SOCIAL_EXTERN NSString *const SLServiceTypeFacebook;

SOCIAL_EXTERN NSString *const SLServiceTypeSinaWeibo;

SOCIAL_EXTERN NSString *const SLServiceTypeTencentWeibo;

SOCIAL_EXTERN NSString *const SLServiceTypeLinkedIn;

Once you know a service is available, you can use the composeViewControllerForSer
viceType: class method of the SLComposeViewController class to get a new instance
of your social sharing view controller. After that, things are super easy. All you have to
do is use one or more of the following methods on your social sharing view controller:

setInitialText:

Sets the string that you want to share with others.

addImage:

Adds an image that has to be attached to your post.

addURL:

Adds a URL that you can share along with your text and image.

522 | Chapter 11: Networking, JSON, XML, and Sharing

The instance of the SLComposeViewController will also have a very handy property
called completionHandler, which is a block object of type SLComposeViewController
CompletionHandler. This completion handler will be called whenever the user finishes
the sharing process successfully (meaning that she sends the sharing post out to be
delivered by iOS to Twitter, Facebook, etc.) or if she cancels the dialog. A parameter of
type SLComposeViewControllerResult will be delivered to this method to denote the
type of event that happened, such as success or cancellation.

OK, enough talking. Let’s get to the real juicy stuff. Here we are going to look at a code
snippet that tries to find out whether the current device has Twitter sharing capabilities.
If it does, the code composes a simple tweet with a picture and URL and displays the
tweet dialog to the user, ready for tweeting:

- (void) viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 if ([SLComposeViewController

 isAvailableForServiceType:SLServiceTypeTwitter]){

 SLComposeViewController *controller =

 [SLComposeViewController

 composeViewControllerForServiceType:SLServiceTypeTwitter];

 [controller setInitialText:@"MacBook Airs are amazingly thin!"];

 [controller addImage:[UIImage imageNamed:@"MacBookAir"]];

 [controller addURL:[NSURL URLWithString:@"http://www.apple.com/"]];

 controller.completionHandler = ^(SLComposeViewControllerResult result){

 NSLog(@"Completed");

 };

 [self presentViewController:controller animated:YES completion:nil];

 } else {

 NSLog(@"The twitter service is not available");

 }

}

Once you run this app on a device that has Twitter integration enabled in the iOS set‐
tings, the user will see something similar to that shown in Figure 11-2.

11.11. Integrating Social Sharing into Your Apps | 523

Figure 11-2. Composing a simple tweet with the Social framework

With this information, you can then compose various other messages, such as Facebook
updates. All you have to do, really, as explained earlier, is to find out at runtime whether
the given service is enabled and then attempt to use it by adding text, images, and URLs
to your request.

One last thing to keep in mind is that the completion handler for your composer view
controllers may be called on a different thread from the one that you used to create the
controller. So remember that and use the techniques that you learned in Chapter 7 to
switch to the main thread inside the completion handler if you want to do something
UI related.

See Also
Recipe 11.0, “Introduction”

524 | Chapter 11: Networking, JSON, XML, and Sharing

11.12. Parsing XML with NSXMLParser

Problem
You want to parse an XML snippet or document.

Solution
Use the NSXMLParser class.

Discussion
The NSXMLParser uses a delegate model to parse XML content. Let’s go ahead and create
a simple XML file that contains the following data (save this file as MyXML.xml in your

project):

<?xml version="1.0" encoding="UTF-8"?>

<root>

 <person id="1">

 <firstName>Anthony</firstName>

 <lastName>Robbins</lastName>

 <age>51</age>

 </person>

 <person id="2">

 <firstName>Richard</firstName>

 <lastName>Branson</lastName>

 <age>61</age>

 </person>

</root>

Now define a property of type NSXMLParser:

#import "AppDelegate.h"

@interface AppDelegate () <NSXMLParserDelegate>

@property (nonatomic, strong) NSXMLParser *xmlParser;

@end

@implementation AppDelegate

You can also see that I have defined my app delegate as an XML parser delegate by
conforming to the NSXMLParserDelegate protocol, which is required for a delegate
object of an XML parser of type NSXMLParser. Now let’s read the MyXML.xml file from

the disk and pass it to your XML parser:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

11.12. Parsing XML with NSXMLParser | 525

 NSString *xmlFilePath = [[NSBundle mainBundle] pathForResource:@"MyXML"

 ofType:@"xml"];

 NSData *xml = [[NSData alloc] initWithContentsOfFile:xmlFilePath];

 self.xmlParser = [[NSXMLParser alloc] initWithData:xml];

 self.xmlParser.delegate = self;

 if ([self.xmlParser parse]){

 NSLog(@"The XML is parsed.");

 } else{

 NSLog(@"Failed to parse the XML");

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

We first read the contents of our file into an instance of NSData and then initialize our
XML parser with the initWithData:, using the data that we read from the XML file.
We then call the parse method of the XML parser to start the parsing process. This
method will block the current thread until the parsing process is finished. If you have
big XML files to parse, it is highly recommended that you use a global dispatch queue
to do the parsing.

To parse the XML file, we need to know the delegate methods defined in the
NSXMLParserDelegate protocol and their responsibilities:

parserDidStartDocument:

Called when the parsing starts.

parserDidEndDocument:

Called when the parsing ends

parser:didStartElement:namespaceURI:qualifiedName:attributes:

Called when the parser encounters and parses a new element in the XML document

parser:didEndElement:namespaceURI:qualifiedName:

Called when the parser has finished parsing the current element

parser:foundCharacters:

Called when the parser parses string contents of elements

Using these delegate methods, we can go ahead and define an object model for our XML
objects. Let’s first define an object to represent an XML element, in a class called XMLEle
ment:

526 | Chapter 11: Networking, JSON, XML, and Sharing

#import <Foundation/Foundation.h>

@interface XMLElement : NSObject

@property (nonatomic, copy) NSString *name;

@property (nonatomic, copy) NSString *text;

@property (nonatomic, copy) NSDictionary *attributes;

@property (nonatomic, strong) NSMutableArray *subElements;

@property (nonatomic, weak) XMLElement *parent;

@end

Now let’s implement our XMLElement class:

#import "XMLElement.h"

@implementation XMLElement

- (NSMutableArray *) subElements{

 if (_subElements == nil){

 _subElements = [[NSMutableArray alloc] init];

 }

 return _subElements;

}

@end

We want the subElements mutable array to be created only if it is nil when it is accessed,
so we place our allocation and initialization code for the subElements property of the
XMLElement class in its own getter method. If an XML element doesn’t have subelements
and we never use that property, there is no point allocating and initializing a mutable
array for that element. This technique is known as lazy allocation.

So now let’s go ahead and define an instance of XMLElement and call it rootElement.
Our plan is to start the parsing process and drill down the XML file as we parse it with
our delegate methods, until we have successfully parsed the whole file:

#import "AppDelegate.h"

#import "XMLElement.h"

@interface AppDelegate () <NSXMLParserDelegate>

@property (nonatomic, strong) NSXMLParser *xmlParser;

@property (nonatomic, strong) XMLElement *rootElement;

@property (nonatomic, strong) XMLElement *currentElementPointer;

@end

@implementation AppDelegate

The currentElementPointer will be the XML element that we are parsing at the mo‐
ment in our XML structure, so it can move up and down the structure as we parse the
file. Unlike the constantly changing currentElementPointer pointer, the rootElement

11.12. Parsing XML with NSXMLParser | 527

pointer will always be the root element of our XML, and its value will not change during
the course of parsing the XML file.

Let’s start the parsing process. The first method we want to take care of is the parser
DidStartDocument: method. In this method, we will simply reset everything:

- (void)parserDidStartDocument:(NSXMLParser *)parser{

 self.rootElement = nil;

 self.currentElementPointer = nil;

}

The next method is the parser:didStartElement:namespaceURI:qualifiedName:at
tributes: method. In this method, we will create the root element (if it has not been
created already). If any new element in the XML file is getting parsed, we will calculate
where in the structure of the XML we are and then add a new element object to our
current element object:

- (void) parser:(NSXMLParser *)parser

 didStartElement:(NSString *)elementName

 namespaceURI:(NSString *)namespaceURI

 qualifiedName:(NSString *)qName

 attributes:(NSDictionary *)attributeDict{

 if (self.rootElement == nil){

 /* We don't have a root element. Create it and point to it */

 self.rootElement = [[XMLElement alloc] init];

 self.currentElementPointer = self.rootElement;

 } else {

 /* Already have root. Create new element and add it as one of

 the subelements of the current element */

 XMLElement *newElement = [[XMLElement alloc] init];

 newElement.parent = self.currentElementPointer;

 [self.currentElementPointer.subElements addObject:newElement];

 self.currentElementPointer = newElement;

 }

 self.currentElementPointer.name = elementName;

 self.currentElementPointer.attributes = attributeDict;

}

Next up is the parser:foundCharacters: method. This method can get called multiple
times for the current element, so you need to make sure we are ready for multiple entries
into this method. For instance, if the text of an element is 4,000 characters long, the
parser might parse a maximum of 1,000 characters in the first go, then the next 1,000,
and so on. In that case, the parser would call your parser:foundCharacters: method
for the current element four times. You probably want to just accumulate the results
that get returned into a string:

- (void) parser:(NSXMLParser *)parser

 foundCharacters:(NSString *)string{

528 | Chapter 11: Networking, JSON, XML, and Sharing

 if ([self.currentElementPointer.text length] > 0){

 self.currentElementPointer.text =

 [self.currentElementPointer.text stringByAppendingString:string];

 } else {

 self.currentElementPointer.text = string;

 }

}

The next method to take care of is the parser:didEndElement:namespaceURI:quali
fiedName: method, which gets called when the parser encounters the end of an element.
Here you just need to point our XML element pointer back one level to the parent of
the current element—it’s as simple as this:

- (void) parser:(NSXMLParser *)parser

 didEndElement:(NSString *)elementName

 namespaceURI:(NSString *)namespaceURI

 qualifiedName:(NSString *)qName{

 self.currentElementPointer = self.currentElementPointer.parent;

}

Last but not least, you need to handle the parserDidEndDocument: method and dispose
of your currentElementPointer property:

- (void)parserDidEndDocument:(NSXMLParser *)parser{

 self.currentElementPointer = nil;

}

That is all. Now let’s go ahead and parse our document:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *xmlFilePath = [[NSBundle mainBundle] pathForResource:@"MyXML"

 ofType:@"xml"];

 NSData *xml = [[NSData alloc] initWithContentsOfFile:xmlFilePath];

 self.xmlParser = [[NSXMLParser alloc] initWithData:xml];

 self.xmlParser.delegate = self;

 if ([self.xmlParser parse]){

 NSLog(@"The XML is parsed.");

 /* self.rootElement is now the root element in the XML */

 XMLElement *element = self.rootElement.subElements[1];

 NSLog(@"%@", element.subElements);

 } else{

 NSLog(@"Failed to parse the XML");

 }

11.12. Parsing XML with NSXMLParser | 529

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Now you can use the rootElement property to traverse the structure of your XML.

530 | Chapter 11: Networking, JSON, XML, and Sharing

CHAPTER 12

Audio and Video

12.0. Introduction
The AV Foundation (Audio and Video Foundation) framework in the iOS SDK allows
developers to play and/or record audio and video with ease. In addition, the Media
Player framework allows developers to play audio and video files.

Before you can run the code in this chapter, you must add the AVFoundation.frame

work and MediaPlayer.framework frameworks to your Xcode project. With the new

LLVM compiler, all you have to do in order to include these frameworks into your app
is to import their umbrella header files into your app like so:

#import "AppDelegate.h"

#import <AVFoundation/AVFoundation.h>

#import <MediaPlayer/MediaPlayer.h>

@implementation AppDelegate

<# Rest of your app delegate code goes here #>

12.1. Playing Audio Files

Problem
You want to be able to play an audio file in your application.

Solution
Use the AV Foundation framework’s AVAudioPlayer class.

531

Discussion
The AVAudioPlayer class in the AV Foundation framework can play back all audio
formats supported by iOS. The delegate property of an instance of AVAudioPlayer
allows you to get notified by events, such as when the audio playback is interrupted or
when an error occurs as a result of playing an audio file. Let’s have a look at a simple
example that demonstrates how we can play an audio file from the application’s bundle:

- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player

 successfully:(BOOL)flag{

 NSLog(@"Finished playing the song");

 /* The [flag] parameter tells us if the playback was successfully

 finished or not */

 if ([player isEqual:self.audioPlayer]){

 self.audioPlayer = nil;

 } else {

 /* Which audio player is this? We certainly didn't allocate

 this instance! */

 }

}

- (void)viewDidLoad {

 [super viewDidLoad];

 dispatch_queue_t dispatchQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_async(dispatchQueue, ^(void) {

 NSBundle *mainBundle = [NSBundle mainBundle];

 NSString *filePath = [mainBundle pathForResource:@"MySong"

 ofType:@"mp3"];

 NSData *fileData = [NSData dataWithContentsOfFile:filePath];

 NSError *error = nil;

 /* Start the audio player */

 self.audioPlayer = [[AVAudioPlayer alloc] initWithData:fileData

 error:&error];

 /* Did we get an instance of AVAudioPlayer? */

 if (self.audioPlayer != nil){

 /* Set the delegate and start playing */

 self.audioPlayer.delegate = self;

 if ([self.audioPlayer prepareToPlay] &&

 [self.audioPlayer play]){

 /* Successfully started playing */

532 | Chapter 12: Audio and Video

 } else {

 /* Failed to play */

 }

 } else {

 /* Failed to instantiate AVAudioPlayer */

 }

 });

}

As you can see, the file’s data is loaded into an instance of NSData and then passed on
to AVAudioPlayer ’s initWithData:error: method. Because we need the actual, abso‐
lute path of the MP3 file to extract the data from that file, we invoke the mainBundle
class method of NSBundle to retrieve the information from the application’s configura‐
tion. The pathForResource:ofType: instance method of NSBundle can then be used to
retrieve the absolute path to a resource of a specific type, as demonstrated in the example
code.

The audioPlayerDidFinishPlaying:successfully: delegate method of the audio
player will get called on the delegate object of the player whenever, as the method’s name
indicates, the audio player finishes playing the audio file. Now, this does not necessarily
mean that the audio playback was finished after the whole audio file was finished playing.
There could have been an interruption—for instance, the audio channel may have gotten
occupied by another app that came to the foreground, causing your app to stop playing.
In this case, the aforementioned method gets called. This is a great place to release your
audio player if you no longer need it.

In the viewDidLoad method, we are using GCD to asynchronously load the song’s data
into an instance of NSData and use that as a feed to the audio player. We do this because
loading the data of an audio file can take a long time (depending on the length of the
audio file), and if we do this on the main thread, we run the risk of stalling the UI
experience. Because of this, we are using a global concurrent queue to ensure that the
code does not run on the main thread.

Since we are assigning the instance of AVAudioPlayer to a property named audioPlay
er, we must also see how this property is defined:

#import "ViewController.h"

#import <AVFoundation/AVFoundation.h>

@interface ViewController () <AVAudioPlayerDelegate>

@property (nonatomic, strong) AVAudioPlayer *audioPlayer;

@end

@implementation ViewController

As you can see, we have made the view controller the delegate of the audio player. This
way, we can receive messages from the system whenever the audio player, for instance,

12.1. Playing Audio Files | 533

is interrupted or has finished playing the song. With this information in hand, we can
make appropriate decisions in the application, such as starting to play another audio file.

See Also
Recipe 12.2; Recipe 12.5; Chapter 7

12.2. Handling Interruptions While Playing Audio

Problem
You want your AVAudioPlayer instance to resume playing after an interruption on an
iOS device, such as an incoming call.

Solution
Implement the audioPlayerBeginInterruption: and audioPlayerEndInterrup
tion:withOptions: methods of the AVAudioPlayerDelegate protocol in the delegate
object of your AVAudioPlayer instance:

- (void)audioPlayerBeginInterruption:(AVAudioPlayer *)player{

 /* Audio Session is interrupted. The player will be paused here */

}

- (void) audioPlayerEndInterruption:(AVAudioPlayer *)player

 withOptions:(NSUInteger)flags{

 if (flags == AVAudioSessionInterruptionOptionShouldResume &&

 player != nil){

 [player play];

 }

}

Discussion
On an iOS device, such as an iPhone, a phone call could interrupt the execution of the
foreground application. In that case, the audio session(s) associated with the application
will be deactivated, and audio files will not be played until the interruption has ended.
At the beginning and the end of an interruption, we receive delegate messages from the
AVAudioPlayer informing us of the different states the audio session is passing through.
After the end of an interruption, we can simply resume the playback of audio.

534 | Chapter 12: Audio and Video

Incoming phone calls cannot be simulated with iPhone Simulator. You
must always test your applications on a real device.

When an interruption occurs, the audioPlayerBeginInterruption: delegate method
of an AVAudioPlayer instance will be called. Here your audio session has been deacti‐
vated. In case of a phone call, the user can just hear his ringtone. When the interruption
ends (the phone call is finished or the user rejects the call), the audioPlayerEndInter
ruption:withOptions: delegate method of your AVAudioPlayer will be invoked. If the
withOptions parameter contains the value AVAudioSessionInterruptionOption
ShouldResume, you can immediately resume the playback of your audio player using
the play instance method of AVAudioPlayer.

The playback of audio files using AVAudioPlayer might show memo‐
ry leaks in Instruments when the application is being run on iPhone
Simulator. Testing the same application on an iOS device proves that
the memory leaks are unique to the simulator, not the device. I strong‐
ly suggest that you run, test, debug, and optimize your applications on
real devices before releasing them to the App Store.

12.3. Recording Audio

Problem
You want to be able to record audio files on an iOS device.

Solution
Use the AVAudioRecorder class in the AV Foundation framework.

Discussion
The AVAudioRecorder class in the AV Foundation framework facilitates audio recording
in iOS applications. To start a recording, you need to pass various pieces of information
to the initWithURL:settings:error: instance method of AVAudioRecorder:

The URL of the file where the recording should be saved
This is a local URL. The AV Foundation framework will decide which audio format
should be used for the recording based on the file extension provided in this URL,
so choose the extension carefully.

12.3. Recording Audio | 535

The settings that must be used before and while recording
Examples include the sampling rate, channels, and other information that will help
the audio recorder start the recording. This is a dictionary object.

The address of an instance of NSError where any initialization errors should be saved
to

The error information could be valuable later, and you can retrieve it from this
instance method in case something goes wrong.

The settings parameter of the initWithURL:settings:error: method is particularly
interesting. There are many keys that could be saved in the settings dictionary, but we
will discuss only some of the most important ones in this recipe:

AVFormatIDKey

The format of the recorded audio. Some of the values that can be specified for this
key are the following:

• kAudioFormatLinearPCM

• kAudioFormatAppleLossless

AVSampleRateKey

The sample rate that needs to be used for the recording.

AVNumberOfChannelsKey

The number of channels that must be used for the recording.

AVEncoderAudioQualityKey

The quality with which the recording must be made. Here are some of the values
that can be specified for this key:

• AVAudioQualityMin

• AVAudioQualityLow

• AVAudioQualityMedium

• AVAudioQualityHigh

• AVAudioQualityMax

With all this information in hand, we can go on and write an application that can record
audio input into a file and then play it using AVAudioPlayer. What we want to do,
specifically, is this:

1. Start recording audio in Apple Lossless format.

2. Save the recording into a file named Recording.m4a in the application’s Docu

ments directory.

536 | Chapter 12: Audio and Video

3. Five seconds after the recording starts, finish the recording process and immedi‐
ately start playing the file into which we recorded the audio input.

We will start by declaring the required properties in our view controller:

#import "ViewController.h"

#import <AVFoundation/AVFoundation.h>

@interface ViewController () <AVAudioPlayerDelegate, AVAudioRecorderDelegate>

@property (nonatomic, strong) AVAudioRecorder *audioRecorder;

@property (nonatomic, strong) AVAudioPlayer *audioPlayer;

@end

@implementation ViewController

When the view inside the view controller is loaded for the first time, we will attempt to
start the recording process and then stop the process, if successfully started, after five
seconds:

- (void) startRecordingAudio{

 NSError *error = nil;

 NSURL *audioRecordingURL = [self audioRecordingPath];

 self.audioRecorder = [[AVAudioRecorder alloc]

 initWithURL:audioRecordingURL

 settings:[self audioRecordingSettings]

 error:&error];

 if (self.audioRecorder != nil){

 self.audioRecorder.delegate = self;

 /* Prepare the recorder and then start the recording */

 if ([self.audioRecorder prepareToRecord] &&

 [self.audioRecorder record]){

 NSLog(@"Successfully started to record.");

 /* After 5 seconds, let's stop the recording process */

 [self performSelector:@selector(stopRecordingOnAudioRecorder:)

 withObject:self.audioRecorder

 afterDelay:5.0f];

 } else {

 NSLog(@"Failed to record.");

 self.audioRecorder = nil;

 }

 } else {

 NSLog(@"Failed to create an instance of the audio recorder.");

 }

12.3. Recording Audio | 537

}

- (void)viewDidLoad {

 [super viewDidLoad];

 /* Ask for permission to see if we can record audio */

 AVAudioSession *session = [AVAudioSession sharedInstance];

 [session setCategory:AVAudioSessionCategoryPlayAndRecord

 withOptions:AVAudioSessionCategoryOptionDuckOthers

 error:nil];

 if ([session requestRecordPermission]){

 [self startRecordingAudio];

 } else {

 NSLog(@"We don't have permission to record audio.");

 }

}

In iOS 7, users have to give permissions to apps that want to access the
microphone. This is why we are using AVAudioSession in our code
snippet to ask the user for permission before attempting to use the
microphone. The permission dialog that iOS will display to the user
will be similar to that shown in Figure 12-1.

In the startRecordingAudio method of the view controller, we attempt to instantiate
an object of type AVAudioRecorder and assign it to the audioRecorder property that
we declared in the same view controller earlier.

We are using an instance method called audioRecordingPath to determine the local
URL where we want to store the recording. This method is implemented like so:

- (NSURL *) audioRecordingPath{

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 NSURL *documentsFolderUrl =

 [fileManager URLForDirectory:NSDocumentDirectory

 inDomain:NSUserDomainMask

 appropriateForURL:nil

 create:NO

 error:nil];

 return [documentsFolderUrl

 URLByAppendingPathComponent:@"Recording.m4a"];

}

538 | Chapter 12: Audio and Video

Figure 12-1. iOS requires permission from the user for apps to access the microphone

The return value of this function is the document path of your application with the
name of the destination file appended to it. For instance, if the document path of your
application is:

/var/mobile/Applications/<# Your Application ID #>/Documents/

the destination audio recording path will be:

/var/mobile/Applications/<# Your Application ID #>/Documents/Recording.m4a

When instantiating the AVAudioRecorder, we are using a dictionary for the settings
parameter of the initialization method of the audio recorder, as explained before. This
dictionary is constructed using the audioRecordingSettings instance method, imple‐
mented in this way:

12.3. Recording Audio | 539

- (NSDictionary *) audioRecordingSettings{

 /* Let's prepare the audio recorder options in the dictionary.

 Later we will use this dictionary to instantiate an audio

 recorder of type AVAudioRecorder */

 return @{

 AVFormatIDKey : @(kAudioFormatAppleLossless),

 AVSampleRateKey : @(44100.0f),

 AVNumberOfChannelsKey : @1,

 AVEncoderAudioQualityKey : @(AVAudioQualityLow),

 };

}

You can see that five seconds after the recording successfully starts, we call the stopRe
cordingOnAudioRecorder method, implemented like so:

- (void) stopRecordingOnAudioRecorder:(AVAudioRecorder *)paramRecorder{

 /* Just stop the audio recorder here */

 [paramRecorder stop];

}

Now that we have asked the audio recorder to stop recording, we will wait for its delegate
messages to tell us when the recording has actually stopped. You shouldn’t assume that
the stop instance method of AVAudioRecorder instantly stops the recording. Instead, I
recommend that you wait for the audioRecorderDidFinishRecording:successful
ly: delegate method (declared in the AVAudioRecorderDelegate protocol) before pro‐
ceeding.

When the audio recording has actually stopped, we will attempt to play what was
recorded:

- (void)audioRecorderDidFinishRecording:(AVAudioRecorder *)recorder

 successfully:(BOOL)flag{

 if (flag){

 NSLog(@"Successfully stopped the audio recording process.");

 /* Let's try to retrieve the data for the recorded file */

 NSError *playbackError = nil;

 NSError *readingError = nil;

 NSData *fileData =

 [NSData dataWithContentsOfURL:[self audioRecordingPath]

 options:NSDataReadingMapped

 error:&readingError];

 /* Form an audio player and make it play the recorded data */

540 | Chapter 12: Audio and Video

 self.audioPlayer = [[AVAudioPlayer alloc] initWithData:fileData

 error:&playbackError];

 /* Could we instantiate the audio player? */

 if (self.audioPlayer != nil){

 self.audioPlayer.delegate = self;

 /* Prepare to play and start playing */

 if ([self.audioPlayer prepareToPlay] &&

 [self.audioPlayer play]){

 NSLog(@"Started playing the recorded audio.");

 } else {

 NSLog(@"Could not play the audio.");

 }

 } else {

 NSLog(@"Failed to create an audio player.");

 }

 } else {

 NSLog(@"Stopping the audio recording failed.");

 }

 /* Here we don't need the audio recorder anymore */

 self.audioRecorder = nil;

}

After the audio player is finished playing the song (if it does so successfully), the audio
PlayerDidFinishPlaying:successfully: delegate method will be called in the dele‐
gate object of the audio player. We will implement this method like so (this method is
defined in the AVAudioPlayerDelegate protocol):

- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player

 successfully:(BOOL)flag{

 if (flag){

 NSLog(@"Audio player stopped correctly.");

 } else {

 NSLog(@"Audio player did not stop correctly.");

 }

 if ([player isEqual:self.audioPlayer]){

 self.audioPlayer = nil;

 } else {

 /* This is not our player */

 }

}

12.3. Recording Audio | 541

As explained in Recipe 12.2, when playing audio files using AVAudioPlayer, we also
need to handle interruptions (such as incoming phone calls) when deploying the ap‐
plication on an iOS device and before releasing the application to the App Store:

- (void)audioPlayerBeginInterruption:(AVAudioPlayer *)player{

 /* The audio session has been deactivated here */

}

- (void)audioPlayerEndInterruption:(AVAudioPlayer *)player

 withOptions:(NSUInteger)flags{

 if (flags == AVAudioSessionInterruptionOptionShouldResume){

 [player play];

 }

}

Instances of AVAudioRecorder must also handle interruptions, just like instances of
AVAudioPlayer. These interruptions can be handled as explained in Recipe 12.4.

See Also
Recipe 12.2; Recipe 12.4

12.4. Handling Interruptions While Recording Audio

Problem
You want your AVAudioRecorder instance to be able to resume recording after an in‐
terruption, such as an incoming phone call.

Solution
Implement the audioRecorderBeginInterruption: and audioRecorderEndInterrup
tion:withOptions: methods of the AVAudioRecorderDelegate protocol in the dele‐
gate object of your audio recorder, and resume the recording process by invoking the
record instance method of your AVAudioRecorder when the interruption has ended:

- (void)audioRecorderBeginInterruption:(AVAudioRecorder *)recorder{

 NSLog(@"Recording process is interrupted");

}

- (void)audioRecorderEndInterruption:(AVAudioRecorder *)recorder

 withOptions:(NSUInteger)flags{

542 | Chapter 12: Audio and Video

 if (flags == AVAudioSessionInterruptionOptionShouldResume){

 NSLog(@"Resuming the recording...");

 [recorder record];

 }

}

Discussion
Just like audio players (instances of AVAudioPlayer), audio recorders of type AVAu
dioRecorder also receive delegate messages whenever the audio session associated with
them is deactivated because of an interruption. The two methods mentioned in this
recipe’s Solution are the best places to handle such interruptions. In the case of an
interruption to the audio recorder, you can invoke the record instance method of
AVAudioRecorder after the interruption to continue the recording process. However,
the recording will overwrite the previous recording, and all data recorded before the
interruption will be lost.

It is very important to bear in mind that when the delegate of your
audio recorder receives the audioRecorderBeginInterruption:

method, the audio session has already been deactivated, and invok‐
ing the resume instance method will not work on your audio record‐
er. After the interruption has ended, you must invoke the record in‐
stance method of your AVAudioRecorder to resume recording.

12.5. Playing Audio over Other Active Sounds

Problem
You either want to put other applications in silent mode while you play audio or play
audio on top of other applications’ audio playback (if any).

Solution
Use audio sessions to set the type of audio category your application uses.

Discussion
The AVAudioSession class was introduced in the AV Foundation framework. Every iOS
application has one audio session. This audio session can be accessed using the share
dInstance class method of the AVAudioSession class, like so:

AVAudioSession *audioSession = [AVAudioSession sharedInstance];

12.5. Playing Audio over Other Active Sounds | 543

After retrieving an instance of the AVAudioSession class, you can invoke the setCate
gory:error: instance method of the audio session object to choose among the different
categories available to iOS applications. Different values that can be set as the audio
session category of an application are listed here:

AVAudioSessionCategoryAmbient

This category will not stop the audio from other applications, but it will allow you
to play audio over the audio being played by other applications, such as the Music
app. The main UI thread of your application will function normally. The prepare
ToPlay and play instance methods of AVAudioPlayer will return with the value
YES. The audio being played by your application will stop when the user locks the
screen. The silent mode silences the audio playback of your application only if your
application is the only application playing an audio file. If you start playing audio
while the Music app is playing a song, putting the device in silent mode does not
stop your audio playback.

AVAudioSessionCategorySoloAmbient

This category is exactly like the AVAudioSessionCategoryAmbient category, except
that this category will stop the audio playback of all other applications, such as the
Music app. When the device is put into silent mode, your audio playback will be
paused. This also happens when the screen is locked. This is the default category
that iOS chooses for an application.

AVAudioSessionCategoryRecord

This stops other applications’ audio (e.g., the music) and also will not allow your
application to initiate an audio playback (e.g., using AVAudioPlayer). You can only
record audio in this mode. Using this category, calling the prepareToPlay instance
method of AVAudioPlayer will return YES, and the play instance method will return
NO. The main UI interface will function as usual. The recording of your application
will continue even if the iOS device’s screen is locked by the user.

AVAudioSessionCategoryPlayback

This category will silence other applications’ audio playback (such as the audio
playback of music applications). You can then use the prepareToPlay and play
instance methods of AVAudioPlayer to play a sound in your application. The main
UI thread will function as normal. The audio playback will continue even if the
screen is locked by the user or if the device is in silent mode.

AVAudioSessionCategoryPlayAndRecord

This category allows audio to be played and recorded at the same time in your
application. This will stop the audio playback of other applications when your audio
recording or playback begins. The main UI thread of your application will function
as normal. The playback and the recording will continue even if the screen is locked
or the device is in silent mode.

544 | Chapter 12: Audio and Video

AVAudioSessionCategoryAudioProcessing

This category can be used for applications that do audio processing, but not audio
playback or recording. By setting this category, you cannot play or record any audio
in your application. Calling the prepareToPlay and play instance methods of
AVAudioPlayer will return NO. Audio playback of other applications, such as the
Music app, will also stop if this category is set.

To give you an example of using AVAudioSession, let’s start an audio player that will
play its audio file over other applications’ audio playback. We will begin with the
declarations:

#import "ViewController.h"

#import <AVFoundation/AVFoundation.h>

@interface ViewController () <AVAudioPlayerDelegate>

@property (nonatomic, strong) AVAudioPlayer *audioPlayer;

@end

@implementation ViewController

Here is how we will alter the audio session and then load a song into the memory and
into an audio player for playing. We will do this in the viewDidLoad method of the view
controller:

- (void)viewDidLoad {

 [super viewDidLoad];

 NSError *audioSessionError = nil;

 AVAudioSession *audioSession = [AVAudioSession sharedInstance];

 if ([audioSession setCategory:AVAudioSessionCategoryAmbient

 error:&audioSessionError]){

 NSLog(@"Successfully set the audio session.");

 } else {

 NSLog(@"Could not set the audio session");

 }

 dispatch_queue_t dispatchQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_async(dispatchQueue, ^(void) {

 NSBundle *mainBundle = [NSBundle mainBundle];

 NSString *filePath = [mainBundle pathForResource:@"MySong"

 ofType:@"mp3"];

 NSData *fileData = [NSData dataWithContentsOfFile:filePath];

 NSError *audioPlayerError = nil;

 self.audioPlayer = [[AVAudioPlayer alloc]

 initWithData:fileData

12.5. Playing Audio over Other Active Sounds | 545

 error:&audioPlayerError];

 if (self.audioPlayer != nil){

 self.audioPlayer.delegate = self;

 if ([self.audioPlayer prepareToPlay] &&

 [self.audioPlayer play]){

 NSLog(@"Successfully started playing.");

 } else {

 NSLog(@"Failed to play the audio file.");

 self.audioPlayer = nil;

 }

 } else {

 NSLog(@"Could not instantiate the audio player.");

 }

 });

}

Next, we will move on to handling the AVAudioPlayerDelegate protocol’s methods:

- (void)audioPlayerBeginInterruption:(AVAudioPlayer *)player{

 /* The audio session has been deactivated here */

}

- (void)audioPlayerEndInterruption:(AVAudioPlayer *)player

 withOptions:(NSUInteger)flags{

 if (flags == AVAudioSessionInterruptionOptionShouldResume){

 [player play];

 }

}

- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player

 successfully:(BOOL)flag{

 if (flag){

 NSLog(@"Audio player stopped correctly.");

 } else {

 NSLog(@"Audio player did not stop correctly.");

 }

 if ([player isEqual:self.audioPlayer]){

 self.audioPlayer = nil;

 } else {

 /* This is not our audio player */

 }

}

546 | Chapter 12: Audio and Video

You can see that we are using the shared instance of the AVAudioSession class in the
viewDidLoad instance method of the view controller to set the audio category of the
application to AVAudioSessionCategoryAmbient in order to allow the application to
play audio files over other applications’ audio playback.

12.6. Playing Video Files

Problem
You would like to be able to play video files in your iOS application.

Solution
Use an instance of the MPMoviePlayerController class.

If you simply want to display a full-screen movie player, you can use
the MPMoviePlayerViewController class and push your movie play‐
er view controller into the stack of view controllers of a navigation
controller (for instance), or simply present your movie player view
controller as a modal controller on another view controller using the
presentMoviePlayerViewControllerAnimated: instance method of
UIViewController. In this recipe, we will use MPMoviePlayer
Controller instead of MPMoviePlayerViewController in order to get
full access to various settings that a movie player view controller does
not offer, such as windowed-mode video playback (not full-screen).

Discussion
The Media Player framework in the iOS SDK allows programmers to play audio and
video files, among other interesting things. To be able to play a video file, we will in‐
stantiate an object of type MPMoviePlayerController like so:

MPMoviePlayerController *newMoviePlayer =

[[MPMoviePlayerController alloc] initWithContentURL:url];

self.moviePlayer = newMoviePlayer;

In this code, moviePlayer is a property of type MPMoviePlayerController defined for
the current view controller. In older iOS SDKs, programmers had very little control over
how movies were played using the Media Player framework. With the introduction of
the iPad, the whole framework changed drastically to give more control to programmers
and allow them to present their contents with more flexibility than before.

An instance of MPMoviePlayerController has a property called view. This view is of
type UIView and is the view in which the media, such as video, will be played. As a

12.6. Playing Video Files | 547

programmer, you are responsible for inserting this view into your application’s view
hierarchy to present your users with the content being played. Since you get a reference
to an object of type UIView, you can shape this view however you want. For instance,
you can simply change the background color of this view to a custom color.

Many multimedia operations depend on the notification system. For instance, MPMovie
PlayerController does not work with delegates; instead, it relies on notifications. This
allows for a very flexible decoupling between the system libraries and the applications
that iOS programmers write. For classes such as MPMoviePlayerController, we start
listening for notifications that get sent by instances of that class. We use the default
notification center and add ourselves as an observer for a notification.

To be able to test the recipe, we need a sample .mov file to play with the movie player.

You can download an Apple-provided sample file from http://bit.ly/TtfcP7. Make sure
you download the H.264 file format. If this file is zipped, unzip it and rename it to
Sample.m4v. Now drag and drop this file into your application bundle in Xcode.

After doing this, we can go ahead and write a simple program that attempts to play the
video file for us. Here are the declarations:

#import "ViewController.h"

#import <MediaPlayer/MediaPlayer.h>

@interface ViewController ()

@property (nonatomic, strong) MPMoviePlayerController *moviePlayer;

@property (nonatomic, strong) UIButton *playButton;

@end

@implementation ViewController

Here is the implementation of the startPlayingVideo: method:

- (void) startPlayingVideo:(id)paramSender{

 /* First let's construct the URL of the file in our application bundle

 that needs to get played by the movie player */

 NSBundle *mainBundle = [NSBundle mainBundle];

 NSURL *url = [mainBundle URLForResource:@"Sample"

 withExtension:@"m4v"];

 /* If we have already created a movie player before,

 let's try to stop it */

 if (self.moviePlayer != nil){

 [self stopPlayingVideo:nil];

 }

 /* Now create a new movie player using the URL */

 self.moviePlayer = [[MPMoviePlayerController alloc] initWithContentURL:url];

 if (self.moviePlayer != nil){

548 | Chapter 12: Audio and Video

http://bit.ly/TtfcP7

 /* Listen for the notification that the movie player sends us

 whenever it finishes playing an audio file */

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(videoHasFinishedPlaying:)

 name:MPMoviePlayerPlaybackDidFinishNotification

 object:self.moviePlayer];

 NSLog(@"Successfully instantiated the movie player.");

 /* Scale the movie player to fit the aspect ratio */

 self.moviePlayer.scalingMode = MPMovieScalingModeAspectFit;

 [self.view addSubview:self.moviePlayer.view];

 [self.moviePlayer setFullscreen:YES

 animated:NO];

 /* Let's start playing the video in full screen mode */

 [self.moviePlayer play];

 } else {

 NSLog(@"Failed to instantiate the movie player.");

 }

}

As you can see, we manage the movie player’s view ourselves. If we add the view of the
movie player to the view controller’s view, we have to remove the view manually. This
view will not get removed from the view controller’s view even if we release the movie
player. The following method stops the video and then removes the associated view:

- (void) stopPlayingVideo:(id)paramSender {

 if (self.moviePlayer != nil){

 [[NSNotificationCenter defaultCenter]

 removeObserver:self

 name:MPMoviePlayerPlaybackDidFinishNotification

 object:self.moviePlayer];

 [self.moviePlayer stop];

 [self.moviePlayer.view removeFromSuperview];

 }

}

In the startPlayingVideo: instance method of the view controller, we are listening for
the MPMoviePlayerPlaybackDidFinishNotification notification that MKMoviePlayer
ViewController will send to the default notification center. We listen to this notification

12.6. Playing Video Files | 549

on the videoHasFinishedPlaying: instance method of the view controller. Here we
can be notified when the movie playback has finished and perhaps dispose of the movie
player object:

- (void) videoHasFinishedPlaying:(NSNotification *)paramNotification{

 /* Find out what the reason was for the player to stop */

 NSNumber *reason =

 paramNotification.userInfo

 [MPMoviePlayerPlaybackDidFinishReasonUserInfoKey];

 if (reason != nil){

 NSInteger reasonAsInteger = [reason integerValue];

 switch (reasonAsInteger){

 case MPMovieFinishReasonPlaybackEnded:{

 /* The movie ended normally */

 break;

 }

 case MPMovieFinishReasonPlaybackError:{

 /* An error happened and the movie ended */

 break;

 }

 case MPMovieFinishReasonUserExited:{

 /* The user exited the player */

 break;

 }

 }

 NSLog(@"Finish Reason = %ld", (long)reasonAsInteger);

 [self stopPlayingVideo:nil];

 }

}

You might have already noticed that we are invoking the stopPlayingVideo: instance
method that we implemented in the videoHasFinishedPlaying: notification handler.
We do this because the stopPlayingVideo: instance method takes care of unregistering
the object from the notifications received by the media player and removes the media
player from the superview. In other words, when the video stops playing, it does not
necessarily mean that the resources we allocated for that player have been deallocated.
We need to take care of that manually.

See Also
Recipe 12.7

550 | Chapter 12: Audio and Video

12.7. Capturing Thumbnails from Video Files

Problem
You are playing a video file using an instance of the MPMoviePlayerController class
and would like to capture a screenshot from the movie at a certain time.

Solution
Use the requestThumbnailImagesAtTimes:timeOption: instance method of MPMovie
PlayerController like so:

/* Capture the frame at the third second into the movie */

NSNumber *thirdSecondThumbnail = @3.0f;

/* We can ask to capture as many frames as we

 want. But for now, we are just asking to capture one frame */

/* Ask the movie player to capture this frame for us */

[self.moviePlayer

 requestThumbnailImagesAtTimes:@[thirdSecondThumbnail]

 timeOption:MPMovieTimeOptionExact];

Discussion
An instance of MPMoviePlayerController is able to capture thumbnails from the cur‐
rently playing movie, synchronously and asynchronously. In this recipe, we are going
to focus on asynchronous image capture for this class.

We can use the requestThumbnailImagesAtTimes:timeOption: instance method of
MPMoviePlayerController to asynchronously access thumbnails. When I say “asyn‐
chronously,” I mean that during the time the thumbnail is being captured and reported
to your designated object (as we will soon see), the movie player will continue its work
and will not block the playback. We must observe the MPMoviePlayerThumbnail
ImageRequestDidFinishNotification notification message the movie player sends to
the default notification center in order to find out when the thumbnails are available:

- (void) startPlayingVideo:(id)paramSender{

 /* First let's construct the URL of the file in our application bundle

 that needs to get played by the movie player */

 NSBundle *mainBundle = [NSBundle mainBundle];

 NSURL *url = [mainBundle URLForResource:@"Sample"

 withExtension:@"m4v"];

 /* If we have already created a movie player before,

 let's try to stop it */

 if (self.moviePlayer != nil){

12.7. Capturing Thumbnails from Video Files | 551

 [self stopPlayingVideo:nil];

 }

 /* Now create a new movie player using the URL */

 self.moviePlayer = [[MPMoviePlayerController alloc]

 initWithContentURL:url];

 if (self.moviePlayer != nil){

 /* Listen for the notification that the movie player sends us

 whenever it finishes playing an audio file */

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(videoHasFinishedPlaying:)

 name:MPMoviePlayerPlaybackDidFinishNotification

 object:self.moviePlayer];

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(videoThumbnailIsAvailable:)

 name:MPMoviePlayerThumbnailImageRequestDidFinishNotification

 object:self.moviePlayer];

 NSLog(@"Successfully instantiated the movie player.");

 /* Scale the movie player to fit the aspect ratio */

 self.moviePlayer.scalingMode = MPMovieScalingModeAspectFit;

 /* Let's start playing the video in full screen mode */

 [self.moviePlayer play];

 [self.view addSubview:self.moviePlayer.view];

 [self.moviePlayer setFullscreen:YES

 animated:YES];

 /* Capture the frame at the third second into the movie */

 NSNumber *thirdSecondThumbnail = @3.0f;

 /* We can ask to capture as many frames as we

 want. But for now, we are just asking to capture one frame */

 /* Ask the movie player to capture this frame for us */

 [self.moviePlayer

 requestThumbnailImagesAtTimes:@[thirdSecondThumbnail]

 timeOption:MPMovieTimeOptionExact];

 } else {

 NSLog(@"Failed to instantiate the movie player.");

 }

}

552 | Chapter 12: Audio and Video

You can see that we are asking the movie player to capture the frame at the third second
into the movie. Once this task is completed, the videoThumbnailIsAvailable: instance
method of the view controller will be called. Here is how we can access the captured
image:

- (void) videoThumbnailIsAvailable:(NSNotification *)paramNotification{

 MPMoviePlayerController *controller = [paramNotification object];

 if ([controller isEqual:self.moviePlayer]){

 NSLog(@"Thumbnail is available");

 /* Now get the thumbnail out of the user info dictionary */

 UIImage *thumbnail =

 [paramNotification.userInfo

 objectForKey:MPMoviePlayerThumbnailImageKey];

 if (thumbnail != nil){

 /* We got the thumbnail image. You can now use it here */

 }

 }

}

Since we started listening to the MPMoviePlayerThumbnailImageRequestDidFinishNo
tification notifications when we instantiated the movie player object in the start
PlayingVideo: method, we must also stop listening for this notification whenever we
stop the movie player (or whenever you believe is appropriate, depending on your ap‐
plication architecture):

- (void) stopPlayingVideo:(id)paramSender {

 if (self.moviePlayer != nil){

 [[NSNotificationCenter defaultCenter]

 removeObserver:self

 name:MPMoviePlayerPlaybackDidFinishNotification

 object:self.moviePlayer];

 [[NSNotificationCenter defaultCenter]

 removeObserver:self

 name:MPMoviePlayerThumbnailImageRequestDidFinishNotification

 object:self.moviePlayer];

 [self.moviePlayer stop];

 [self.moviePlayer.view removeFromSuperview];

 }

}

12.7. Capturing Thumbnails from Video Files | 553

When calling the requestThumbnailImagesAtTimes:timeOption: instance method of
MPMoviePlayerController, we can specify one of two values for timeOption: MPMo
vieTimeOptionExact or MPMovieTimeOptionNearestKeyFrame. The former gives us
the frame playing at the exact point we requested in the timeline of the video, whereas
the latter is less exact but uses fewer system resources and offers better performance
when capturing thumbnails from a video. MPMovieTimeOptionNearestKeyFrame is usu‐
ally adequate in terms of precision because it is just a couple of frames off.

12.8. Accessing the Music Library

Problem
You want to access an item that your user picks from her music library.

Solution
Use the MPMediaPickerController class:

MPMediaPickerController *mediaPicker = [[MPMediaPickerController alloc]

 initWithMediaTypes:MPMediaTypeAny];

Discussion
MPMediaPickerController is a view controller that the Music app displays to the user.
By instantiating MPMediaPickerController, you can present a standard view controller
to your users to allow them to select whatever item they want from the library and then
transfer the control to your application. This is particularly useful in games, for instance,
where the user plays the game and can have your application play his favorite tracks in
the background.

You can get information from the media picker controller by becoming its delegate
(conforming to MPMediaPickerControllerDelegate):

#import "ViewController.h"

#import <MediaPlayer/MediaPlayer.h>

@interface ViewController () <MPMediaPickerControllerDelegate>

@property (nonatomic, strong) MPMediaPickerController *mediaPicker;

@end

@implementation ViewController

Inside your displayMediaPicker: selector, implement the code required to display an
instance of the media picker controller and present it to the user as a modal view
controller:

- (void) displayMediaPicker{

554 | Chapter 12: Audio and Video

 self.mediaPicker = [[MPMediaPickerController alloc]

 initWithMediaTypes:MPMediaTypeAny];

 if (self.mediaPicker != nil){

 NSLog(@"Successfully instantiated a media picker.");

 self.mediaPicker.delegate = self;

 self.mediaPicker.allowsPickingMultipleItems = NO;

 [self.navigationController presentViewController:self.mediaPicker

 animated:YES

 completion:nil];

 } else {

 NSLog(@"Could not instantiate a media picker.");

 }

}

The allowsPickingMultipleItems property of the media picker controller lets you
specify whether users can pick more than one item from their library before dismissing
the media picker controller. This takes a BOOL value, so for now we just set it to NO; we
will later see what this looks like. Now let’s implement the various delegate messages
defined in the MPMediaPickerControllerDelegate protocol:

- (void) mediaPicker:(MPMediaPickerController *)mediaPicker

 didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection{

 NSLog(@"Media Picker returned");

 for (MPMediaItem *thisItem in mediaItemCollection.items){

 NSURL *itemURL =

 [thisItem valueForProperty:MPMediaItemPropertyAssetURL];

 NSString *itemTitle =

 [thisItem valueForProperty:MPMediaItemPropertyTitle];

 NSString *itemArtist =

 [thisItem valueForProperty:MPMediaItemPropertyArtist];

 MPMediaItemArtwork *itemArtwork =

 [thisItem valueForProperty:MPMediaItemPropertyArtwork];

 NSLog(@"Item URL = %@", itemURL);

 NSLog(@"Item Title = %@", itemTitle);

 NSLog(@"Item Artist = %@", itemArtist);

 NSLog(@"Item Artwork = %@", itemArtwork);

 }

 [mediaPicker dismissViewControllerAnimated:YES completion:nil];

}

12.8. Accessing the Music Library | 555

You can access different properties of each selected item using the valueForProper
ty: instance method of MPMediaItem. Instances of this class will be returned to your
application through the mediaItemCollection parameter of the mediaPicker:did
PickMediaItems: delegate message.

Now let’s write a program with a very simple GUI that allows us to ask the user to pick
one music item from his Music library. After he picks the music file, we will attempt to
play it using an MPMusicPlayerController instance. The GUI has two simple buttons:
Pick and Play, and Stop Playing. The first button will ask the user to pick an item from
his Music library to play, and the second button will stop the audio playback (if we are
already playing the song). We will start with the design of the UI of the application. Let’s
create it in a simple way, as shown in Figure 12-2.

Figure 12-2. A very simple UI for the media picker and AV Audio Player

Now let’s go ahead and define these two buttons in our view controller:

@interface ViewController ()

<MPMediaPickerControllerDelegate,AVAudioPlayerDelegate>

556 | Chapter 12: Audio and Video

@property (nonatomic, strong) MPMusicPlayerController *myMusicPlayer;

@property (nonatomic, strong) UIButton *buttonPickAndPlay;

@property (nonatomic, strong) UIButton *buttonStopPlaying;

@property (nonatomic, strong) MPMediaPickerController *mediaPicker;

@end

@implementation ViewController

When the view loads up, we will then instantiate these two buttons and place them on
the view:

- (void)viewDidLoad {

 [super viewDidLoad];

 self.title = @"Media picker...";

 self.buttonPickAndPlay = [UIButton buttonWithType:UIButtonTypeSystem];

 self.buttonPickAndPlay.frame = CGRectMake(0.0f,

 0.0f,

 200,

 37.0f);

 self.buttonPickAndPlay.center = CGPointMake(self.view.center.x,

 self.view.center.y - 50);

 [self.buttonPickAndPlay setTitle:@"Pick and Play"

 forState:UIControlStateNormal];

 [self.buttonPickAndPlay addTarget:self

 action:@selector(displayMediaPickerAndPlayItem)

 forControlEvents:UIControlEventTouchUpInside];

 [self.view addSubview:self.buttonPickAndPlay];

 self.buttonStopPlaying = [UIButton buttonWithType:UIButtonTypeSystem];

 self.buttonStopPlaying.frame = CGRectMake(0.0f,

 0.0f,

 200,

 37.0f);

 self.buttonStopPlaying.center = CGPointMake(self.view.center.x,

 self.view.center.y + 50);

 [self.buttonStopPlaying setTitle:@"Stop Playing"

 forState:UIControlStateNormal];

 [self.buttonStopPlaying addTarget:self

 action:@selector(stopPlayingAudio)

 forControlEvents:UIControlEventTouchUpInside];

 [self.view addSubview:self.buttonStopPlaying];

}

The two most important methods in the view controller are the displayMediaPicker
AndPlayItem and stopPlayingAudio:

- (void) stopPlayingAudio{

 if (self.myMusicPlayer != nil){

12.8. Accessing the Music Library | 557

 [[NSNotificationCenter defaultCenter]

 removeObserver:self

 name:MPMusicPlayerControllerPlaybackStateDidChangeNotification

 object:self.myMusicPlayer];

 [[NSNotificationCenter defaultCenter]

 removeObserver:self

 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification

 object:self.myMusicPlayer];

 [[NSNotificationCenter defaultCenter]

 removeObserver:self

 name:MPMusicPlayerControllerVolumeDidChangeNotification

 object:self.myMusicPlayer];

 [self.myMusicPlayer stop];

 }

}

- (void) displayMediaPickerAndPlayItem{

 self.mediaPicker =

 [[MPMediaPickerController alloc]

 initWithMediaTypes:MPMediaTypeAnyAudio];

 if (self.mediaPicker != nil){

 NSLog(@"Successfully instantiated a media picker.");

 self.mediaPicker.delegate = self;

 self.mediaPicker.allowsPickingMultipleItems = YES;

 self.mediaPicker.showsCloudItems = YES;

 self.mediaPicker.prompt = @"Pick a song please...";

 [self.view addSubview:self.mediaPicker.view];

 [self.navigationController presentViewController:self.mediaPicker

 animated:YES

 completion:nil];

 } else {

 NSLog(@"Could not instantiate a media picker.");

 }

}

When the media picker controller succeeds, the mediaPicker:didPickMediaItems
message will be called in the delegate object (in this case, the view controller). On the
other hand, if the user cancels the media player, we’ll get the mediaPicker:mediaPick
erDidCancel message. The following code implements the method that will be called
in each case:

558 | Chapter 12: Audio and Video

- (void) mediaPicker:(MPMediaPickerController *)mediaPicker

 didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection{

 NSLog(@"Media Picker returned");

 /* First, if we have already created a music player, let's

 deallocate it */

 self.myMusicPlayer = nil;

 self.myMusicPlayer = [[MPMusicPlayerController alloc] init];

 [self.myMusicPlayer beginGeneratingPlaybackNotifications];

 /* Get notified when the state of the playback changes */

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(musicPlayerStateChanged:)

 name:MPMusicPlayerControllerPlaybackStateDidChangeNotification

 object:self.myMusicPlayer];

 /* Get notified when the playback moves from one item

 to the other. In this recipe, we are only going to allow

 our user to pick one music file */

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(nowPlayingItemIsChanged:)

 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification

 object:self.myMusicPlayer];

 /* And also get notified when the volume of the

 music player is changed */

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(volumeIsChanged:)

 name:MPMusicPlayerControllerVolumeDidChangeNotification

 object:self.myMusicPlayer];

 /* Start playing the items in the collection */

 [self.myMusicPlayer setQueueWithItemCollection:mediaItemCollection];

 [self.myMusicPlayer play];

 /* Finally dismiss the media picker controller */

 [mediaPicker dismissViewControllerAnimated:YES completion:nil];

}

- (void) mediaPickerDidCancel:(MPMediaPickerController *)mediaPicker{

 /* The media picker was cancelled */

 NSLog(@"Media Picker was cancelled");

 [mediaPicker dismissViewControllerAnimated:YES completion:nil];

12.8. Accessing the Music Library | 559

}

We are listening for the events the music player generates through the notifications that
it sends. Here are the three methods that are going to be responsible for handling the
notifications we are listening to for the music player:

- (void) musicPlayerStateChanged:(NSNotification *)paramNotification{

 NSLog(@"Player State Changed");

 /* Let's get the state of the player */

 NSNumber *stateAsObject =

 [paramNotification.userInfo

 objectForKey:@"MPMusicPlayerControllerPlaybackStateKey"];

 NSInteger state = [stateAsObject integerValue];

 /* Make your decision based on the state of the player */

 switch (state){

 case MPMusicPlaybackStateStopped:{

 /* Here the media player has stopped playing the queue. */

 break;

 }

 case MPMusicPlaybackStatePlaying:{

 /* The media player is playing the queue. Perhaps you

 can reduce some processing that your application

 that is using to give more processing power

 to the media player */

 break;

 }

 case MPMusicPlaybackStatePaused:{

 /* The media playback is paused here. You might want

 to indicate by showing graphics to the user */

 break;

 }

 case MPMusicPlaybackStateInterrupted:{

 /* An interruption stopped the playback of the media queue */

 break;

 }

 case MPMusicPlaybackStateSeekingForward:{

 /* The user is seeking forward in the queue */

 break;

 }

 case MPMusicPlaybackStateSeekingBackward:{

 /* The user is seeking backward in the queue */

 break;

 }

 } /* switch (State){ */

}

560 | Chapter 12: Audio and Video

- (void) nowPlayingItemIsChanged:(NSNotification *)paramNotification{

 NSLog(@"Playing Item Is Changed");

 NSString *persistentID =

 [paramNotification.userInfo

 objectForKey:@"MPMusicPlayerControllerNowPlayingItemPersistentIDKey"];

 /* Do something with Persistent ID */

 NSLog(@"Persistent ID = %@", persistentID);

}

- (void) volumeIsChanged:(NSNotification *)paramNotification{

 NSLog(@"Volume Is Changed");

 /* The userInfo dictionary of this notification is normally empty */

}

By running the application and pressing the Pick and Play button on the view controller,
we will be presented with the media picker controller. Once the picker view controller
is displayed, the same Music UI will be presented to the user. After the user picks an
item (or cancels the whole dialog), we will get appropriate delegate messages called in
the view controller (since the view controller is the delegate of the media picker). After
the items are picked (we allow only one item in this recipe, though), we will start the
music player and start playing the whole collection.

If you want to allow your users to pick more than one item at a time, simply set the
allowsPickingMultipleItems property of your media picker controller to YES:

mediaPicker.allowsPickingMultipleItems = YES;

Sometimes when working with the media picker controller (MPMedia
PickerController), the “MPMediaPicker: Lost connection to iPod
library” message will be printed to the console screen. This is be‐
cause the media picker has been interrupted by an event, such as
syncing with iTunes while the picker was being displayed to the user.
Immediately, your mediaPickerDidCancel: delegate message will be
called as well.

12.8. Accessing the Music Library | 561

CHAPTER 13

Address Book

13.0. Introduction
On an iOS device, the Contacts application allows users to add contacts to, remove
contacts from, and manipulate their address books. An address book can be a collection
of people and groups. Each person can have properties such as first name, last name,
phone number, and email address. Some properties can have a single value, and some
can have multiple values. For instance, the first name of a person is one value, but the
phone number can be multiple values (e.g., if the user has two home phone numbers).

The AddressBook.framework framework in the iOS SDK allows you to interact with
the address book database on the device. You can get the array of all entities in the user’s
address book, insert and change values, and much more.

To use the address book-related functions in your application, using the latest LLVM
compiler features, all you have to do is import the following header file into your source
code:

#import "AppDelegate.h"

#import <AddressBook/AddressBook.h>

@implementation AppDelegate

<# Rest of your code goes here #>

You can use the Address Book framework on iOS Simulator, and you
will be happy to know that Apple has already prepopulated the Con‐
tacts database on the simulator so that you don’t have to do that by
yourself (see Figure 13-1).

563

Figure 13-1. The Contacts app on the simulator already contains prepopulated infor‐
mation

The examples in this chapter don’t try to handle all the different types
of errors that an Address Book API could throw. We simply check
whether an API succeeds or fails. In your app, however, you might need
to check these errors; for this reason, the code examples retrieve the
references to errors that might happen during calls to each of the
Address Book methods, just for your reference.

13.1. Requesting Access to the Address Book

Problem
You want to start accessing the user’s address book, which requires the user to have
granted your app access to the user’s address book database. You want to check whether
you have access so that you don’t receive a runtime error when you attempt access.

564 | Chapter 13: Address Book

Solution
In order to find the current authorization state of your app, call the function ABAddress
BookGetAuthorizationStatus in the Address Book framework. This function can re‐
turn any of the following values:

kABAuthorizationStatusNotDetermined

The user has not yet decided whether she would like to grant access to your appli‐
cation.

kABAuthorizationStatusDenied

The user has explicitly denied your application from having access to the address
book.

kABAuthorizationStatusAuthorized

The user has authorized your application to have access to the address book on her
device.

kABAuthorizationStatusRestricted

Parental controls or other permissions configured on the iOS device prevent your
app from accessing and interacting with the address book database on the device.

If you find out that the status that you received from the ABAddressBookGetAuthoriza
tionStatus function is kABAuthorizationStatusNotDetermined, you can use the
ABAddressBookRequestAccessWithCompletion function to ask for permission to ac‐
cess the user’s address book database. You have to pass two parameters to this function:

An address book reference of type ABAddressBookRef
The instance of the address book that you want to access.

A completion block of type ABAddressBookRequestAccessCompletionHandler
After you call this function, iOS will ask the user if she wants to grant access to your
application. Regardless of whether the user says yes or no, this block object will be
called and you will then, through a Boolean parameter, get to know whether the
answer was yes or no.

Discussion
Starting with iOS 6, Apple is quite rightly putting restrictions on how apps can access
users’ personal data, such as their contact information. This is done through a user
interface designed by Apple that asks the users explicitly whether they allow these apps
to access certain parts of their device and data, such as their address book database.
Since we are all good iOS-land citizens, we will adhere to these rules and make sure that
we access the user’s address book only if we have been granted permission to do so.

Regardless of what you want to do with the address book, whether to read from it or
write to it, you need to make sure that you have been granted sufficient privileges. If

13.1. Requesting Access to the Address Book | 565

you are not sure about whether you can access the address book, simply call the ABAd
dressBookGetAuthorizationStatus function as demonstrated in this recipe.

Here is a little example of what to do depending on what the ABAddressBookGetAuthor
izationStatus function returns to your application. In this example, we will call the
aforementioned function and just query the system about the authorization status of
our app with regards to the address book database. If we are authorized to access it, fine.
If we have been denied access, or if there is a system-wide restriction on address book
access, we will display an alert view on the screen. If we have not yet been given access,
we will ask the user for her permission to access the address book:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 CFErrorRef error = NULL;

 switch (ABAddressBookGetAuthorizationStatus()){

 case kABAuthorizationStatusAuthorized:{

 addressBook = ABAddressBookCreateWithOptions(NULL, &error);

 /* Do your work and once you are finished ... */

 if (addressBook != NULL){

 CFRelease(addressBook);

 }

 break;

 }

 case kABAuthorizationStatusDenied:{

 [self displayMessage:kDenied];

 break;

 }

 case kABAuthorizationStatusNotDetermined:{

 addressBook = ABAddressBookCreateWithOptions(NULL, &error);

 ABAddressBookRequestAccessWithCompletion

 (addressBook, ^(bool granted, CFErrorRef error) {

 if (granted){

 NSLog(@"Access was granted");

 } else {

 NSLog(@"Access was not granted");

 }

 if (addressBook != NULL){

 CFRelease(addressBook);

 }

 });

 break;

 }

 case kABAuthorizationStatusRestricted:{

 [self displayMessage:kRestricted];

 break;

 }

 }

 self.window = [[UIWindow alloc]

566 | Chapter 13: Address Book

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Now, when the user opens your app for the first time, undoubtedly, the authorization
status that will come back from ABAddressBookGetAuthorizationStatus will be equal
to kABAuthorizationStatusNotDetermined. At this point, we attempt to request per‐
mission using the ABAddressBookRequestAccessWithCompletion procedure. This will
cause the user to see something similar to Figure 13-2 on her screen, and she can choose
whether to grant or deny permission.

Figure 13-2. Our app asking for permission to access the address book database

13.1. Requesting Access to the Address Book | 567

13.2. Retrieving a Reference to an Address Book

Problem
You would like to work with a user’s contacts. To do this, first you need to get a reference
to the user’s address book database. This reference is what you use to retrieve entries,
as well as to make and save changes.

Solution
Use the ABAddressBookCreateWithOptions function in the Address Book framework.
As the option, pass NULL and pass a reference to an error object to get any errors that
may happen during the process:

addressBook = ABAddressBookCreateWithOptions(NULL, &error);

Discussion
To get a reference to the user’s address book database, you must first check whether you
have permission, as discussed in Recipe 13.1. After permission is granted to your app,
you can carry on to use the ABAddressBookCreateWithOptions function. This function
returns a value of type ABAddressBookRef that will be nil if the address book cannot
be accessed. You must check for nil values before accessing the address book reference
returned by this function. Attempting to modify a nil address book will terminate your
application with a runtime error.

After retrieving a reference to the user’s address book, you can start making changes to
the contacts, reading the entries, and so on. If you have made any changes to the address
book, the ABAddressBookHasUnsavedChanges function will tell you by returning the
value YES.

An instance of the address book database returned by the ABAddress
BookCreate function must be released when you are finished work‐
ing with it, using the CFRelease Core Foundation method, as demon‐
strated in our example code.

After determining whether changes were made to the address book database, you can
either save or discard these changes using the ABAddressBookSave or ABAddressBook
Revert procedure, respectively.

Here is a little example that will demonstrate this. In the implementation file of your
app delegate, define an instance variable of type ABAddressBookRef along with the error
strings that you want to display to the user should your app not be granted permission
to the address book:

568 | Chapter 13: Address Book

#import "AppDelegate.h"

#import <AddressBook/AddressBook.h>

NSString *const kDenied = @"Access to address book is denied";

NSString *const kRestricted = @"Access to address book is restricted";

ABAddressBookRef addressBook;

@implementation AppDelegate

<# Rest of your code goes here #>

Now we go straight into the application:didFinishLaunchingWithOptions: instance
method of our app delegate and start checking for the status of our app to see whether
we can access the address book:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 CFErrorRef error = NULL;

 switch (ABAddressBookGetAuthorizationStatus()){

 case kABAuthorizationStatusAuthorized:{

 addressBook = ABAddressBookCreateWithOptions(NULL, &error);

 [self useAddressBook:addressBook];

 if (addressBook != NULL){

 CFRelease(addressBook);

 }

 break;

 }

 case kABAuthorizationStatusDenied:{

 [self displayMessage:kDenied];

 break;

 }

 case kABAuthorizationStatusNotDetermined:{

 addressBook = ABAddressBookCreateWithOptions(NULL, &error);

 ABAddressBookRequestAccessWithCompletion

 (addressBook, ^(bool granted, CFErrorRef error) {

 if (granted){

 NSLog(@"Access was granted");

 [self useAddressBook:addressBook];

 } else {

 NSLog(@"Access was not granted");

 }

 if (addressBook != NULL){

 CFRelease(addressBook);

 }

 });

 break;

 }

 case kABAuthorizationStatusRestricted:{

 [self displayMessage:kRestricted];

13.2. Retrieving a Reference to an Address Book | 569

 break;

 }

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

You can see that if we already have or have just been granted permission to access the
user’s address book database, we are calling a method called useAddressBook:. In this
method, if we have made any changes to the address book, we will save them:

- (void) useAddressBook:(ABAddressBookRef)paramAddressBook{

 /* Work with the address book here */

 /* Let's see whether we have made any changes to the

 address book or not, before attempting to save it */

 if (ABAddressBookHasUnsavedChanges(paramAddressBook)){

 /* Now decide if you want to save the changes to

 the address book */

 NSLog(@"Changes were found in the address book.");

 BOOL doYouWantToSaveChanges = YES;

 /* We can make a decision to save or revert the

 address book back to how it was before */

 if (doYouWantToSaveChanges){

 CFErrorRef saveError = NULL;

 if (ABAddressBookSave(paramAddressBook, &saveError)){

 /* We successfully saved our changes to the

 address book */

 } else {

 /* We failed to save the changes. You can now

 access the [saveError] variable to find out

 what the error is */

 }

 } else {

 /* We did NOT want to save the changes to the address

 book so let's revert it to how it was before */

 ABAddressBookRevert(paramAddressBook);

 }

570 | Chapter 13: Address Book

 } else {

 /* We have not made any changes to the address book */

 NSLog(@"No changes to the address book.");

 }

}

We created the doYouWantToSaveChanges local variable and set it to
YES just to demonstrate that we can, if necessary, revert an address
book whose contents have been changed (reversion is done through
the ABAddressBookRevert procedure). You can add code, for in‐
stance, asking the user if he wants the changes to be saved or not, and
if not, you can revert the address book to its original state.

For more information about importing the Address Book framework into your appli‐
cation, please refer to this chapter’s Introduction.

13.3. Retrieving All the People in the Address Book

Problem
You want to retrieve all the contacts in the user’s address book.

Solution
Use the ABAddressBookCopyArrayOfAllPeople function to retrieve an array of all con‐
tacts:

- (void) readFromAddressBook:(ABAddressBookRef)paramAddressBook{

 NSArray *arrayOfAllPeople = (__bridge_transfer NSArray *)

 ABAddressBookCopyArrayOfAllPeople(paramAddressBook);

 NSUInteger peopleCounter = 0;

 for (peopleCounter = 0;

 peopleCounter < [arrayOfAllPeople count];

 peopleCounter++){

 ABRecordRef thisPerson =

 (__bridge ABRecordRef)

 [arrayOfAllPeople objectAtIndex:peopleCounter];

 NSLog(@"%@", thisPerson);

 /* Use the [thisPerson] address book record */

 }

}

13.3. Retrieving All the People in the Address Book | 571

Discussion
After accessing the user’s address book database, we can call the ABAddressBook
CopyArrayOfAllPeople function to retrieve an array of all the contacts in that address
book. The return value of this function is an immutable array of type CFArrayRef. You
can’t work with this type of array as you would work with instances of NSArray, but you
have two ways to traverse a CFArrayRef array. First, it natively supports two functions:

CFArrayGetCount

Gets the number of items in an instance of CFArrayRef. This is similar to the count
instance method of an NSArray.

CFArrayGetValueAtIndex

Retrieves an item at a specific location of an instance of CFArrayRef. This is similar
to the objectAtIndex: instance method of an NSArray.

Second, the CFArrayRef Core Foundation object is one of the objects that supports toll-
free bridging to its NS counterpart, NSArray. This means that we can simply bridge this
Core Foundation array and typecast it to an instance of NSArray. This works perfectly
under ARC, using the __bridge_transfer keyword. That keyword decreases the ref‐
erence count on the Core Foundation object, since our local array is a strong variable
by default and will retain its contents without us having to do anything else. Just as a
reminder, all local variables are strong variables, meaning that they will retain their
contents. In this case, the ABAddressBookCopyArrayOfAllPeople function returns a
Core Foundation array of all people in an address book. After we place the Core Foun‐
dation array into a local array (which will retain our Core Foundation array), we are
going to have to dispose of the original Core Foundation object, before it was retained
by the local variable (because of the strong local variable). Because of this, we are using
__bridge_transfer to decrease the retain count on the Core Foundation array and let
the strong local variable retain the toll-free array into an object of type NSArray.

The items that are put in an array of all people, retrieved by calling the ABAddressBook
CopyArrayOfAllPeople function, are of type ABRecordRef. In Recipe 13.4, you will see
how to access different properties of the entries, such as a person’s entry, in the address
book database.

See Also
Recipe 13.2

572 | Chapter 13: Address Book

13.4. Retrieving Properties of Address Book Entries

Problem
You have retrieved a reference to an item in the address book, such as a person’s entry,
and you want to retrieve that person’s properties, such as first and last names.

Solution
Use the ABRecordCopyValue function on the person’s Address Book record.

Discussion
The records in the address book database are of type ABRecordRef. Each record could
be either a group or a person. We have not discussed groups yet, so let’s focus on people.
Each person could have various types of information assigned to him, such as his first
name, last name, email address, and so on. Bear in mind that many of these values are
optional, and at the time of creating a new contact in the address book database, the
user can simply leave out fields such as phone number, middle name, email address,
URL, and so forth.

ABRecordCopyValue accepts an address book record and the property that has to be
retrieved as its two parameters. The second parameter is the property of the record that
we want to retrieve. Here are some of the common properties (all of these properties
are defined as constant values in the ABPerson.h header file):

kABPersonFirstNameProperty

This value will retrieve the first name of the given person. The return value is of
type CFStringRef, which can be cast to NSString with a bridge cast, so you can do
just about anything you want with the results.

kABPersonLastNameProperty

This value will retrieve the last name of the given person. Like the first name prop‐
erty, the return value will be of type CFStringRef, which again can be cast to
NSString.

kABPersonMiddleNameProperty

This value will retrieve the middle name of the given person. Like the first name
and the last name, the return value will be of type CFStringRef.

kABPersonEmailProperty

This will retrieve the given person’s email address. The return value in this case will
be of type ABMultiValueRef. This is a data type that can contain multiple values
inside it, like an array, but not exactly like an array. This type of data will be discussed
next.

13.4. Retrieving Properties of Address Book Entries | 573

Some of the values that we retrieve from the ABRecordCopyValue function are straight‐
forward, generic types, such as CFStringRef. But this function can also return more
complicated values, such as the email of a contact. The email could be further broken
down into home email address, work email address, and so on. Values that can be further
broken down like this are called multivalues in the Address Book framework. Various
functions allow us to work with multiple values (which are of type ABMultiValueRef):

ABMultiValueGetCount

Returns the number of value/label pairs that are inside the multivalue.

ABMultiValueCopyLabelAtIndex

Returns the label associated with a multivalue item at a specific index (indexes are
zero-based). For instance, if the user has three email addresses, such as work, home,
and test addresses, the index of the first (work) email address in the email multivalue
would be 0. This function will then retrieve the label associated with that address
(in this example, work). Please bear in mind that multivalues do not necessarily
have to have labels. Make sure you check for NULL values.

ABMultiValueCopyValueAtIndex

Returns the string value associated with a multivalue item at a specific index (in‐
dexes are zero-based). Suppose the user has work, home, and test email addresses.
If we provide the index 0 to this function, it will retrieve the given contact’s work
email address.

All Core Foundation array indexes are zero-based, just like their Co‐
coa counterpart array indexes.

Now let’s go ahead and write a simple method that can retrieve all the people in the
address book and print out their first name, last name, and email address objects, and
place it in our app delegate:

- (void) readFromAddressBook:(ABAddressBookRef)paramAddressBook{

 NSArray *allPeople = (__bridge_transfer NSArray *)

 ABAddressBookCopyArrayOfAllPeople(paramAddressBook);

 NSUInteger peopleCounter = 0;

 for (peopleCounter = 0;

 peopleCounter < [allPeople count];

 peopleCounter++){

 ABRecordRef thisPerson = (__bridge ABRecordRef)

 [allPeople objectAtIndex:peopleCounter];

 NSString *firstName = (__bridge_transfer NSString *)

574 | Chapter 13: Address Book

 ABRecordCopyValue(thisPerson, kABPersonFirstNameProperty);

 NSString *lastName = (__bridge_transfer NSString *)

 ABRecordCopyValue(thisPerson, kABPersonLastNameProperty);

 NSString *email = (__bridge_transfer NSString *)

 ABRecordCopyValue(thisPerson, kABPersonEmailProperty);

 NSLog(@"First Name = %@", firstName);

 NSLog(@"Last Name = %@", lastName);

 NSLog(@"Address = %@", email);

 }

}

We will obviously first ask for permission from the user whether or not we can access
the device’s address book database. Once permission is granted, we will call this method.
I will not be repeating the code that requests for permission again, since we have already
seen this code a few times in this chapter. Please refer to Recipe 13.1 for more infor‐
mation.

If you run this app in iOS Simulator for the latest iOS SDK, which has predefined con‐
tacts in the Contacts app, you will get the following printed to the console window:

First Name = Kate

Last Name = Bell

Label = _$!<Work>!$_, Localized Label =

 Work, Email = kate-bell@mac.com

Label = _$!<Work>!$_, Localized Label =

 Work, Email = www.creative-consulting-inc.com

First Name = Daniel

Last Name = Higgins

Label = _$!<Home>!$_, Localized Label =

 Home, Email = d-higgins@mac.com

First Name = John

Last Name = Appleseed

Label = _$!<Work>!$_, Localized Label =

 Work, Email = John-Appleseed@mac.com

First Name = Anna

Last Name = Haro

Label = _$!<Home>!$_, Localized Label =

 Home, Email = anna-haro@mac.com

First Name = Hank

Last Name = Zakroff

Label = _$!<Work>!$_, Localized Label =

 Work, Email = hank-zakroff@mac.com

First Name = David

Last Name = Taylor

It’s immediately visible that the multivalue field (email) cannot be read as a plain string
object. So, using the functions that we just learned, let’s go ahead and implement a

13.4. Retrieving Properties of Address Book Entries | 575

method to accept an object of type ABRecordRef, read that record’s multivalue email
field, and print the values out to the console:

- (void) logPersonEmails:(ABRecordRef)paramPerson{

 if (paramPerson == NULL){

 NSLog(@"The given person is NULL.");

 return;

 }

 ABMultiValueRef emails =

 ABRecordCopyValue(paramPerson, kABPersonEmailProperty);

 if (emails == NULL){

 NSLog(@"This contact does not have any emails.");

 return;

 }

 /* Go through all the emails */

 NSUInteger emailCounter = 0;

 for (emailCounter = 0;

 emailCounter < ABMultiValueGetCount(emails);

 emailCounter++){

 /* Get the label of the email (if any) */

 NSString *emailLabel = (__bridge_transfer NSString *)

 ABMultiValueCopyLabelAtIndex(emails, emailCounter);

 NSString *localizedEmailLabel = (__bridge_transfer NSString *)

 ABAddressBookCopyLocalizedLabel((__bridge CFStringRef)emailLabel);

 /* And then get the email address itself */

 NSString *email = (__bridge_transfer NSString *)

 ABMultiValueCopyValueAtIndex(emails, emailCounter);

 NSLog(@"Label = %@, Localized Label = %@, Email = %@",

 emailLabel,

 localizedEmailLabel,

 email);

 }

 CFRelease(emails);

}

- (void) readFromAddressBook:(ABAddressBookRef)paramAddressBook{

 NSArray *allPeople = (__bridge_transfer NSArray *)

 ABAddressBookCopyArrayOfAllPeople(paramAddressBook);

576 | Chapter 13: Address Book

 NSUInteger peopleCounter = 0;

 for (peopleCounter = 0;

 peopleCounter < [allPeople count];

 peopleCounter++){

 ABRecordRef thisPerson = (__bridge ABRecordRef)

 [allPeople objectAtIndex:peopleCounter];

 NSString *firstName = (__bridge_transfer NSString *)

 ABRecordCopyValue(thisPerson, kABPersonFirstNameProperty);

 NSString *lastName = (__bridge_transfer NSString *)

 ABRecordCopyValue(thisPerson, kABPersonLastNameProperty);

 NSLog(@"First Name = %@", firstName);

 NSLog(@"Last Name = %@", lastName);

 [self logPersonEmails:thisPerson];

 }

}

Calling the CFRelease procedure on a NULL value will crash your ap‐
plication. Make sure you check for NULL values before calling this Core
Foundation procedure.

Label values returned by the ABMultiValueCopyLabelAtIndex function are rather cryp‐
tic and hard to read. Examples are _$!<Other>!$_ and _$!<Home>!$_, which might be
set for email addresses with labels of Other and Home. However, if you want to retrieve
a plain and readable version of these labels, you can first copy the label using the
ABMultiValueCopyLabelAtIndex function and pass the return value of this function to
the ABAddressBookCopyLocalizedLabel function.

See Also
Recipe 13.2; Recipe 13.3

13.5. Inserting a Person Entry into the Address Book

Problem
You want to create a new person contact and insert it into the user’s address book.

13.5. Inserting a Person Entry into the Address Book | 577

Solution
Use the ABPersonCreate function to create a new person. Set the person’s properties
using the ABRecordSetValue function, and add the person to the address book using
the ABAddressBookAddRecord function.

Discussion
After accessing the address book database using the ABAddressBookCreate function,
you can start inserting new group and person records into the database. In this recipe,
we will concentrate on inserting new person records. For information about inserting
new groups into the address book, please refer to Recipe 13.6.

Use the ABPersonCreate function to create a new person record. Bear in mind that
calling this function is not enough to add the person record to the address book. You
must save the address book for your record to appear in the database.

By calling the ABPersonCreate function, you get a Core Foundation reference to a value
of type ABRecordRef. Now you can call the ABRecordSetValue function to set the various
properties of a new person entry. Once you are done, you must add the new person
record to the database. You can do this using the ABAddressBookAddRecord function.
After doing this, you must also save any unsaved changes to the address book database
in order to truly preserve your new person record. Do this by using the ABAddressBook
Save function.

So let’s combine all of this into a method that allows us to insert a new person entry into
the address book:

- (ABRecordRef) newPersonWithFirstName:(NSString *)paramFirstName

 lastName:(NSString *)paramLastName

 inAddressBook:(ABAddressBookRef)paramAddressBook{

 ABRecordRef result = NULL;

 if (paramAddressBook == NULL){

 NSLog(@"The address book is NULL.");

 return NULL;

 }

 if ([paramFirstName length] == 0 &&

 [paramLastName length] == 0){

 NSLog(@"First name and last name are both empty.");

 return NULL;

 }

 result = ABPersonCreate();

 if (result == NULL){

 NSLog(@"Failed to create a new person.");

578 | Chapter 13: Address Book

 return NULL;

 }

 BOOL couldSetFirstName = NO;

 BOOL couldSetLastName = NO;

 CFErrorRef setFirstNameError = NULL;

 CFErrorRef setLastNameError = NULL;

 couldSetFirstName = ABRecordSetValue(result,

 kABPersonFirstNameProperty,

 (__bridge CFTypeRef)paramFirstName,

 &setFirstNameError);

 couldSetLastName = ABRecordSetValue(result,

 kABPersonLastNameProperty,

 (__bridge CFTypeRef)paramLastName,

 &setLastNameError);

 CFErrorRef couldAddPersonError = NULL;

 BOOL couldAddPerson = ABAddressBookAddRecord(paramAddressBook,

 result,

 &couldAddPersonError);

 if (couldAddPerson){

 NSLog(@"Successfully added the person.");

 } else {

 NSLog(@"Failed to add the person.");

 CFRelease(result);

 result = NULL;

 return result;

 }

 if (ABAddressBookHasUnsavedChanges(paramAddressBook)){

 CFErrorRef couldSaveAddressBookError = NULL;

 BOOL couldSaveAddressBook =

 ABAddressBookSave(paramAddressBook,

 &couldSaveAddressBookError);

 if (couldSaveAddressBook){

 NSLog(@"Successfully saved the address book.");

 } else {

 NSLog(@"Failed to save the address book.");

 }

 }

 if (couldSetFirstName &&

 couldSetLastName){

 NSLog(@"Successfully set the first name \

 and the last name of the person.");

 } else {

 NSLog(@"Failed to set the first name and/or \

13.5. Inserting a Person Entry into the Address Book | 579

 last name of the person.");

 }

 return result;

}

In our app delegate, we will first check if we have permission to access the user’s address
book database. We have already seen this code in Recipe 13.1, so we won’t be repeating
it here. Once you have access, you can then call the createNewPersonInAddress
Book: method that we have written and pass the instance of the address book object to
this method.

The newPersonWithFirstName:lastName:inAddressBook: method that we imple‐
mented creates a new person entry in the address book database. After invoking this
function, you will see the results (as shown in Figure 13-3) in the Contacts application
on iOS Simulator.

Figure 13-3. A new person record is added to the address book

580 | Chapter 13: Address Book

Memory management on Core Foundation is quite different from what
you might be used to when writing applications for Cocoa Touch. As
this topic is beyond the scope of this book, please make sure you read
the “Memory Management Programming Guide for Core Founda‐
tion” documentation on Apple’s website.

13.6. Inserting a Group Entry into the Address Book

Problem
You want to categorize your contacts into groups.

Solution
Use the ABGroupCreate function.

Bear in mind that, as mentioned before, Core Foundation memory management is more
complex than what Xcode’s static analyzer could process. Therefore, attempting to use
the LLVM compiler to compile Core Foundation code with static analysis turned on
might give you a lot of warnings. You can ignore these and test the code with Instruments
to make sure your code does not leak, but I encourage you to familiarize yourself with
memory management in Core Foundation by reading Apple’s “Memory Management
Programming Guide for Core Foundation” document, as mentioned in the previous
section.

Discussion
After retrieving the reference to the address book database, you can call the ABGroup
Create function to create a new group entry. However, you must perform a few more
operations before you can insert this group into the address book operation. The first
thing you have to do is set the name of this group using the ABRecordSetValue function
with the kABGroupNameProperty property, as shown in the example code.

After the name of the group is set, add it to the address book database just like you add
a new person’s entry—using the ABAddressBookAddRecord function. For more infor‐
mation about adding a new person’s entry to the address book database, please read
Recipe 13.5.

13.6. Inserting a Group Entry into the Address Book | 581

http://bit.ly/1dWLlvx

Inserting a new group with a name that already exists in the address
book database will create a new group with the same name but with
no group members. In later recipes, we will learn how to avoid doing
this by first finding the groups in the database and making sure a group
with that name doesn’t already exist.

After adding the group to the address book, you also need to save the address book’s
contents using the ABAddressBookSave function.

So, with all this in mind, let’s go ahead and implement a method that allows us to create
a new group with any desired name in the Address Book database:

- (ABRecordRef) newGroupWithName:(NSString *)paramGroupName

 inAddressBook:(ABAddressBookRef)paramAddressBook{

 ABRecordRef result = NULL;

 if (paramAddressBook == NULL){

 NSLog(@"The address book is nil.");

 return NULL;

 }

 result = ABGroupCreate();

 if (result == NULL){

 NSLog(@"Failed to create a new group.");

 return NULL;

 }

 BOOL couldSetGroupName = NO;

 CFErrorRef error = NULL;

 couldSetGroupName = ABRecordSetValue(result,

 kABGroupNameProperty,

 (__bridge CFTypeRef)paramGroupName,

 &error);

 if (couldSetGroupName){

 BOOL couldAddRecord = NO;

 CFErrorRef couldAddRecordError = NULL;

 couldAddRecord = ABAddressBookAddRecord(paramAddressBook,

 result,

 &couldAddRecordError);

 if (couldAddRecord){

 NSLog(@"Successfully added the new group.");

582 | Chapter 13: Address Book

 if (ABAddressBookHasUnsavedChanges(paramAddressBook)){

 BOOL couldSaveAddressBook = NO;

 CFErrorRef couldSaveAddressBookError = NULL;

 couldSaveAddressBook =

 ABAddressBookSave(paramAddressBook,

 &couldSaveAddressBookError);

 if (couldSaveAddressBook){

 NSLog(@"Successfully saved the address book.");

 } else {

 CFRelease(result);

 result = NULL;

 NSLog(@"Failed to save the address book.");

 }

 } else {

 CFRelease(result);

 result = NULL;

 NSLog(@"No unsaved changes.");

 }

 } else {

 CFRelease(result);

 result = NULL;

 NSLog(@"Could not add a new group.");

 }

 } else {

 CFRelease(result);

 result = NULL;

 NSLog(@"Failed to set the name of the group.");

 }

 return result;

}

- (void) createNewGroupInAddressBook:(ABAddressBookRef)paramAddressBook{

 ABRecordRef personalCoachesGroup =

 [self newGroupWithName:@"Personal Coaches"

 inAddressBook:paramAddressBook];

 if (personalCoachesGroup != NULL){

 NSLog(@"Successfully created the group.");

 CFRelease(personalCoachesGroup);

 } else {

 NSLog(@"Could not create the group.");

 }

}

All we have to do now is to call the createNewGroupInAddressBook: method when our
app delegate starts, to make sure that it works as expected. Before you attempt to call
this method, though, do make sure that your app has the required permission to access

13.6. Inserting a Group Entry into the Address Book | 583

the user’s address book database. To read more about this, please have a look at
Recipe 13.1.

After running your code, you will see results like those shown in Figure 13-4 (you might
have created other groups already, so your address book might not look exactly like that
shown in the figure).

Figure 13-4. A new group created in the address book database

13.7. Adding Persons to Groups

Problem
You want to assign a person entry in the address book to a group.

584 | Chapter 13: Address Book

Solution
Use the ABGroupAddMember function.

Discussion
We learned to insert both person entries (in Recipe 13.5) and group entries (in
Recipe 13.6) into the address book database. In those recipes we implemented two cus‐
tom methods named newPersonWithFirstName:lastName:inAddressBook: and new
GroupWithName:inAddressBook:. Now we want to add the person entry to the group
we created and save the information to the address book database. Combining these
three recipes, we can use the following code to achieve our goal:

- (BOOL) addPerson:(ABRecordRef)paramPerson

 toGroup:(ABRecordRef)paramGroup

 saveToAddressBook:(ABAddressBookRef)paramAddressBook{

 BOOL result = NO;

 if (paramPerson == NULL ||

 paramGroup == NULL ||

 paramAddressBook == NULL){

 NSLog(@"Invalid parameters are given.");

 return NO;

 }

 CFErrorRef error = NULL;

 /* Now attempt to add the person entry to the group */

 result = ABGroupAddMember(paramGroup,

 paramPerson,

 &error);

 if (result == NO){

 NSLog(@"Could not add the person to the group.");

 return result;

 }

 /* Make sure we save any unsaved changes */

 if (ABAddressBookHasUnsavedChanges(paramAddressBook)){

 BOOL couldSaveAddressBook = NO;

 CFErrorRef couldSaveAddressBookError = NULL;

 couldSaveAddressBook = ABAddressBookSave(paramAddressBook,

 &couldSaveAddressBookError);

 if (couldSaveAddressBook){

 NSLog(@"Successfully added the person to the group.");

 result = YES;

 } else {

 NSLog(@"Failed to save the address book.");

 }

 } else {

13.7. Adding Persons to Groups | 585

 NSLog(@"No changes were saved.");

 }

 return result;

}

- (void) addPersonsAndGroupsToAddressBook:(ABAddressBookRef)paramAddressBook{

 ABRecordRef richardBranson = [self

 newPersonWithFirstName:@"Richard"

 lastName:@"Branson"

 inAddressBook:paramAddressBook];

 if (richardBranson != NULL){

 ABRecordRef entrepreneursGroup = [self

 newGroupWithName:@"Entrepreneurs"

 inAddressBook:paramAddressBook];

 if (entrepreneursGroup != NULL){

 if ([self addPerson:richardBranson

 toGroup:entrepreneursGroup

 saveToAddressBook:paramAddressBook]){

 NSLog(@"Successfully added Richard Branson \

 to the Entrepreneurs Group");

 } else {

 NSLog(@"Failed to add Richard Branson to the \

 Entrepreneurs group.");

 }

 CFRelease(entrepreneursGroup);

 } else {

 NSLog(@"Failed to create the Entrepreneurs group.");

 }

 CFRelease(richardBranson);

 } else {

 NSLog(@"Failed to create an entity for Richard Branson.");

 }

}

Once your app starts, you need to make sure it has permission to access and update the
user’s address book. For more information about this, please see Recipe 13.1. Once you
are sure that you have permission, you can call the addPersonsAndGroupsToAddress
Book: method and pass the instance of address book that you retrieved from the system
as a parameter to this method. Once that is done, we can see that the person entry we

586 | Chapter 13: Address Book

added to the “Entrepreneurs” group and to the database is, in fact, now inside this
address book group, as shown in Figure 13-5.

Figure 13-5. Adding a person to a group

See Also
Recipe 13.6

13.8. Searching the Address Book

Problem
You want to find a specific person or group in the address book database.

13.8. Searching the Address Book | 587

Solution
Use the ABAddressBookCopyArrayOfAllPeople and ABAddressBookCopyArrayO

fAllGroups functions to find all people and groups in the address book. Traverse the
returned arrays to find the information you are looking for. Alternatively, you can use
the ABAddressBookCopyPeopleWithName function to find an entry about a person with
a specific name.

Discussion
Up to this point, we have been inserting group and person entries into the address book
without checking whether such a group or person already exists. We can use the AB
AddressBookCopyArrayOfAllPeople and ABAddressBookCopyArrayOfAllGroups

functions to get the array of all people and groups in the address book and search in the
array to see whether the person or group entries we are about to insert into the address
book already exist. When we check whether strings match, we also have to check for
null strings (which we assume mean that the contacts match). Here are two methods
that will make use of these functions and that can also be used in other recipes:

- (BOOL) doesPersonExistWithFirstName:(NSString *)paramFirstName

 lastName:(NSString *)paramLastName

 inAddressBook:(ABRecordRef)paramAddressBook{

 BOOL result = NO;

 if (paramAddressBook == NULL){

 NSLog(@"The address book is null.");

 return NO;

 }

 NSArray *allPeople = (__bridge_transfer NSArray *)

 ABAddressBookCopyArrayOfAllPeople(paramAddressBook);

 NSUInteger peopleCounter = 0;

 for (peopleCounter = 0;

 peopleCounter < [allPeople count];

 peopleCounter++){

 ABRecordRef person = (__bridge ABRecordRef)

 [allPeople objectAtIndex:peopleCounter];

 NSString *firstName = (__bridge_transfer NSString *)

 ABRecordCopyValue(person, kABPersonFirstNameProperty);

 NSString *lastName = (__bridge_transfer NSString *)

 ABRecordCopyValue(person, kABPersonLastNameProperty);

 BOOL firstNameIsEqual = NO;

 BOOL lastNameIsEqual = NO;

588 | Chapter 13: Address Book

 if ([firstName length] == 0 && [paramFirstName length] == 0){

 firstNameIsEqual = YES;

 }

 else if ([firstName isEqualToString:paramFirstName]){

 firstNameIsEqual = YES;

 }

 if ([lastName length] == 0 && [paramLastName length] == 0){

 lastNameIsEqual = YES;

 }

 else if ([lastName isEqualToString:paramLastName]){

 lastNameIsEqual = YES;

 }

 if (firstNameIsEqual &&

 lastNameIsEqual){

 return YES;

 }

 }

 return result;

}

Similarly, we can check the existence of a group by first retrieving the array of all the
groups in the address book database, using the ABAddressBookCopyArrayOfAllGroups
function:

- (BOOL) doesGroupExistWithGroupName:(NSString *)paramGroupName

 inAddressBook:(ABAddressBookRef)paramAddressBook{

 BOOL result = NO;

 if (paramAddressBook == NULL){

 NSLog(@"The address book is null.");

 return NO;

 }

 NSArray *allGroups = (__bridge_transfer NSArray *)

 ABAddressBookCopyArrayOfAllGroups(paramAddressBook);

 NSUInteger groupCounter = 0;

 for (groupCounter = 0;

 groupCounter < [allGroups count];

 groupCounter++){

 ABRecordRef group = (__bridge ABRecordRef)

 [allGroups objectAtIndex:groupCounter];

 NSString *groupName = (__bridge_transfer NSString *)

13.8. Searching the Address Book | 589

 ABRecordCopyValue(group, kABGroupNameProperty);

 if ([groupName length] == 0 && [paramGroupName length] == 0){

 return YES;

 }

 else if ([groupName isEqualToString:paramGroupName]){

 return YES;

 }

 }

 return result;

}

We can use the doesGroupExistWithGroupName:inAddressBook: method in this way:

- (void) createGroupInAddressBook:(ABAddressBookRef)paramAddressBook{

 if ([self doesGroupExistWithGroupName:@"O'Reilly"

 inAddressBook:self.addressBook]){

 NSLog(@"The O'Reilly group already exists in the address book.");

 } else {

 ABRecordRef oreillyGroup = [self newGroupWithName:@"O'Reilly"

 inAddressBook:self.addressBook];

 if (oreillyGroup != NULL){

 NSLog(@"Successfully created a group for O'Reilly.");

 CFRelease(oreillyGroup);

 } else {

 NSLog(@"Failed to create a group for O'Reilly.");

 }

 }

}

For the implementation of the createNewGroupWithName:inAddressBook: method,
please refer to Recipe 13.6.

As we saw earlier, we have two ways of finding a person in the address book database:

• Retrieve the array of all people in the address book, using the ABAddressBookCopy
ArrayOfAllPeople function. Next, get each record inside the array and compare
the first and last name properties of each person with the strings you are looking
for. You can search in any of the properties assigned to that person in the address
book, including first name, last name, email, phone number, and so on.

590 | Chapter 13: Address Book

• Ask the Address Book framework to perform the search based on a composite name.
This is done using the ABAddressBookCopyPeopleWithName function.

Here is an example of using the ABAddressBookCopyPeopleWithName function to search
for a contact with a specific name:

- (BOOL) doesPersonExistWithFullName:(NSString *)paramFullName

 inAddressBook:(ABAddressBookRef)paramAddressBook{

 BOOL result = NO;

 if (paramAddressBook == NULL){

 NSLog(@"Address book is null.");

 return NO;

 }

 NSArray *allPeopleWithThisName = (__bridge_transfer NSArray *)

 ABAddressBookCopyPeopleWithName(paramAddressBook,

 (__bridge CFStringRef)paramFullName);

 if ([allPeopleWithThisName count] > 0){

 result = YES;

 }

 return result;

}

Here is how we can use the method that we just implemented:

- (void) createPersonInAddressBook:(ABAddressBookRef)paramAddressBook{

 if ([self doesPersonExistWithFullName:@"Anthony Robbins"

 inAddressBook:self.addressBook]){

 NSLog(@"Anthony Robbins exists in the address book.");

 } else {

 NSLog(@"Anthony Robbins does not exist in the address book.");

 ABRecordRef anthonyRobbins =

 [self newPersonWithFirstName:@"Anthony"

 lastName:@"Robbins"

 inAddressBook:self.addressBook];

 if (anthonyRobbins != NULL){

 NSLog(@"Successfully created a record for Anthony Robbins");

 CFRelease(anthonyRobbins);

 } else {

 NSLog(@"Failed to create a record for Anthony Robbins");

 }

 }

}

13.8. Searching the Address Book | 591

Using this function, you won’t have to know the full name to be able to find a contact
in the address book. You can just pass a part of the name—for instance, just the first
name—in order to find all the contacts with that specific first name.

The search performed by the ABAddressBookCopyPeopleWithName
function is case-insensitive.

13.9. Retrieving and Setting a Person’s Address Book
Image

Problem
You want to be able to retrieve and set the images of address book entries.

Solution
Use one of the following functions:

ABPersonHasImageData

Use this function to find out if an address book entry has an image set.

ABPersonCopyImageData

Use this function to retrieve the image data (if any).

ABPersonSetImageData

Use this function to set the image data for an entry.

Discussion
As mentioned in this recipe’s Solution, we can use the ABPersonCopyImageData function
to retrieve the data associated with an image of a person entry in the address book. We
can use this function in a method of our own to make it more convenient to use:

- (UIImage *) getPersonImage:(ABRecordRef)paramPerson{

 UIImage *result = nil;

 if (paramPerson == NULL){

 NSLog(@"The person is nil.");

 return NULL;

 }

 NSData *imageData = (__bridge_transfer NSData *)

 ABPersonCopyImageData(paramPerson);

592 | Chapter 13: Address Book

 if (imageData != nil){

 UIImage *image = [UIImage imageWithData:imageData];

 result = image;

 }

 return result;

}

The ABPersonSetImageData function sets the image data for a person entry in the ad‐
dress book. Since this function uses data, not the image itself, we need to get NSData
from UIImage. If we want the data pertaining to a PNG image, we can use the UIIma
gePNGRepresentation function to retrieve the PNG NSData representation of the image
of type UIImage. To retrieve JPEG image data from an instance of UIImage, use the
UIImageJPEGRepresentation function. Here is the method that will allow you to set
the image of a person entry in the address book database:

- (BOOL) setPersonImage:(ABRecordRef)paramPerson

 inAddressBook:(ABAddressBookRef)paramAddressBook

 withImageData:(NSData *)paramImageData{

 BOOL result = NO;

 if (paramAddressBook == NULL){

 NSLog(@"The address book is nil.");

 return NO;

 }

 if (paramPerson == NULL){

 NSLog(@"The person is nil.");

 return NO;

 }

 CFErrorRef couldSetPersonImageError = NULL;

 BOOL couldSetPersonImage =

 ABPersonSetImageData(paramPerson,

 (__bridge CFDataRef)paramImageData,

 &couldSetPersonImageError);

 if (couldSetPersonImage){

 NSLog(@"Successfully set the person's image. Saving...");

 if (ABAddressBookHasUnsavedChanges(paramAddressBook)){

 BOOL couldSaveAddressBook = NO;

 CFErrorRef couldSaveAddressBookError = NULL;

 couldSaveAddressBook =

 ABAddressBookSave(paramAddressBook,

 &couldSaveAddressBookError);

 if (couldSaveAddressBook){

13.9. Retrieving and Setting a Person’s Address Book Image | 593

 NSLog(@"Successfully saved the address book.");

 result = YES;

 } else {

 NSLog(@"Failed to save the address book.");

 }

 } else {

 NSLog(@"There are no changes to be saved!");

 }

 } else {

 NSLog(@"Failed to set the person's image.");

 }

 return result;

}

Now let’s write a simple application to demonstrate the use of these methods. In this
example code, we want to achieve the following:

• Create a simple view controller with two labels and two image views.

• Attempt to retrieve a contact with the first name “Anthony” and the last name
“Robbins” from our address book. If this contact doesn’t exist, we will create it.

• Retrieve the previous image (if any) of the contact and display it in the first image
view (the top image view).

• Set a new image for the contact, retrieved from our application bundle, and display
the new image in the second image view (the bottom image view).

Let’s get started. Here are the declarations of our view controller:

#import "ViewController.h"

#import <AddressBook/AddressBook.h>

NSString *const kDenied = @"Access to address book is denied";

NSString *const kRestricted = @"Access to address book is restricted";

@interface ViewController ()

@property (nonatomic, unsafe_unretained) ABAddressBookRef addressBook;

@property (nonatomic, strong) UILabel *labelOldImage;

@property (nonatomic, strong) UIImageView *imageViewOld;

@property (nonatomic, strong) UILabel *labelNewImage;

@property (nonatomic, strong) UIImageView *imageViewNew;

@end

@implementation ViewController

<# Rest of your code goes here #>

The next stop is the viewDidLoad method of our view controller, where we will instan‐
tiate our labels and image views and place them on our view controller’s view. We need

594 | Chapter 13: Address Book

to write our viewDidLoad method in a way that we can read a person’s image from the
address book and then set his image and display the new one, using the functions we’ve
learned about in this and other recipes in this chapter:

- (void) changeYPositionOfView:(UIView *)paramView

 to:(CGFloat)paramY{

 CGRect viewFrame = paramView.frame;

 viewFrame.origin.y = paramY;

 paramView.frame = viewFrame;

}

- (void) createLabelAndImageViewForOldImage{

 self.labelOldImage = [[UILabel alloc] initWithFrame:CGRectZero];

 self.labelOldImage.text = @"Old Image";

 self.labelOldImage.font = [UIFont systemFontOfSize:16.0f];

 [self.labelOldImage sizeToFit];

 self.labelOldImage.center = self.view.center;

 [self.view addSubview:self.labelOldImage];

 [self changeYPositionOfView:self.labelOldImage

 to:80.0f];

 self.imageViewOld = [[UIImageView alloc]

 initWithFrame:CGRectMake(0.0f,

 0.0f,

 100.0f,

 100.0f)];

 self.imageViewOld.center = self.view.center;

 self.imageViewOld.contentMode = UIViewContentModeScaleAspectFit;

 [self.view addSubview:self.imageViewOld];

 [self changeYPositionOfView:self.imageViewOld

 to:105.0f];

}

- (void) createLabelAndImageViewForNewImage{

 self.labelNewImage = [[UILabel alloc] initWithFrame:CGRectZero];

 self.labelNewImage.text = @"New Image";

 self.labelNewImage.font = [UIFont systemFontOfSize:16.0f];

 [self.labelNewImage sizeToFit];

 self.labelNewImage.center = self.view.center;

 [self.view addSubview:self.labelNewImage];

 [self changeYPositionOfView:self.labelNewImage

 to:210.0f];

 self.imageViewNew = [[UIImageView alloc]

 initWithFrame:CGRectMake(0.0f,

 0.0f,

 100.0f,

13.9. Retrieving and Setting a Person’s Address Book Image | 595

 100.0f)];

 self.imageViewNew.center = self.view.center;

 self.imageViewNew.contentMode = UIViewContentModeScaleAspectFit;

 [self.view addSubview:self.imageViewNew];

 [self changeYPositionOfView:self.imageViewNew

 to:235.0f];

}

- (void)viewDidLoad{

 [super viewDidLoad];

 [self createLabelAndImageViewForOldImage];

 [self createLabelAndImageViewForNewImage];

}

The next stop would be to ask the user for permission to access the device’s address book
database. The best place to do this is when we know our view has appeared on the screen
and that would be inside the viewDidAppear: instance method of our view controller.
In that method, we will simply query the system to see if our app has already been
authorized to access the user’s address book:

- (ABRecordRef) getPersonWithFirstName:(NSString *)paramFirstName

 lastName:(NSString *)paramLastName

 inAddressBook:(ABRecordRef)paramAddressBook{

 ABRecordRef result = NULL;

 if (paramAddressBook == NULL){

 NSLog(@"The address book is null.");

 return NULL;

 }

 NSArray *allPeople = (__bridge_transfer NSArray *)

 ABAddressBookCopyArrayOfAllPeople(paramAddressBook);

 NSUInteger peopleCounter = 0;

 for (peopleCounter = 0;

 peopleCounter < [allPeople count];

 peopleCounter++){

 ABRecordRef person = (__bridge ABRecordRef)

 [allPeople objectAtIndex:peopleCounter];

 NSString *firstName = (__bridge_transfer NSString *)

 ABRecordCopyValue(person, kABPersonFirstNameProperty);

 NSString *lastName = (__bridge_transfer NSString *)

 ABRecordCopyValue(person, kABPersonLastNameProperty);

 BOOL firstNameIsEqual = NO;

596 | Chapter 13: Address Book

 BOOL lastNameIsEqual = NO;

 if ([firstName length] == 0 &&

 [paramFirstName length] == 0){

 firstNameIsEqual = YES;

 }

 else if ([firstName isEqualToString:paramFirstName]){

 firstNameIsEqual = YES;

 }

 if ([lastName length] == 0 &&

 [paramLastName length] == 0){

 lastNameIsEqual = YES;

 }

 else if ([lastName isEqualToString:paramLastName]){

 lastNameIsEqual = YES;

 }

 if (firstNameIsEqual &&

 lastNameIsEqual){

 return person;

 }

 }

 return result;

}

- (void) updateImagesInAddressBook:(ABAddressBookRef)paramAddressBook{

 ABRecordRef anthonyRobbins = [self getPersonWithFirstName:@"Anthony"

 lastName:@"Robbins"

 inAddressBook:paramAddressBook];

 if (anthonyRobbins == NULL){

 NSLog(@"Couldn't find record. Creating one...");

 anthonyRobbins = [self newPersonWithFirstName:@"Anthony"

 lastName:@"Robbins"

 inAddressBook:paramAddressBook];

 if (anthonyRobbins == NULL){

 NSLog(@"Failed to create a new record for this person.");

 return;

 }

 }

 CFRetain(anthonyRobbins);

 self.imageViewOld.image = [self getPersonImage:anthonyRobbins];

 NSString *newImageFilePath =

 [[NSBundle mainBundle] pathForResource:@"Anthony Robbins"

13.9. Retrieving and Setting a Person’s Address Book Image | 597

 ofType:@"jpg"];

 UIImage *newImage = [[UIImage alloc]

 initWithContentsOfFile:newImageFilePath];

 NSData *newImageData = UIImagePNGRepresentation(newImage);

 if ([self setPersonImage:anthonyRobbins

 inAddressBook:paramAddressBook

 withImageData:newImageData]){

 NSLog(@"Successfully set this person's new image.");

 self.imageViewNew.image = [self getPersonImage:anthonyRobbins];

 } else {

 NSLog(@"Failed to set this person's new image.");

 }

 CFRelease(anthonyRobbins);

}

- (void) viewDidAppear:(BOOL)paramAnimated{

 [super viewDidAppear:paramAnimated];

 CFErrorRef error = NULL;

 switch (ABAddressBookGetAuthorizationStatus()){

 case kABAuthorizationStatusAuthorized:{

 self.addressBook = ABAddressBookCreateWithOptions(NULL, &error);

 [self updateImagesInAddressBook:self.addressBook];

 if (self.addressBook != NULL){

 CFRelease(self.addressBook);

 self.addressBook = NULL;

 }

 break;

 }

 case kABAuthorizationStatusDenied:{

 [self displayMessage:kDenied];

 break;

 }

 case kABAuthorizationStatusNotDetermined:{

 self.addressBook = ABAddressBookCreateWithOptions(NULL, &error);

 ABAddressBookRequestAccessWithCompletion

 (self.addressBook, ^(bool granted, CFErrorRef error) {

 if (granted){

 [self updateImagesInAddressBook:self.addressBook];

 } else {

 NSLog(@"Access was not granted");

 }

 if (self.addressBook != NULL){

 CFRelease(self.addressBook);

 self.addressBook = NULL;

 }

598 | Chapter 13: Address Book

 });

 break;

 }

 case kABAuthorizationStatusRestricted:{

 [self displayMessage:kRestricted];

 break;

 }

 }

}

The results are shown in Figure 13-6.

Figure 13-6. The old image for a contact is replaced by a new one

13.9. Retrieving and Setting a Person’s Address Book Image | 599

CHAPTER 14

Files and Folder Management

14.0. Introduction
iOS is based on OS X, which itself is based on the Unix operating system. In iOS, the
operating system’s full directory structure is not visible to an app because each app,
written by an iOS app developer, lives in its own sandbox. A sandbox environment is
exactly what it sounds like: a sanctioned area where only the app that owns the sandbox
can access the contents of the folder. Every app has its own sandbox folder and the
sandbox folders by default have subfolders that apps can access.

When an iOS app is installed on the device, the folder structure shown in Figure 14-1
will be created for that app by the system.

Name.app
Despite the odd name with the .app extension, this is a folder. The contents of your

main bundle will all go in here. For instance, all your app icons, your app binary,
your different branding images, fonts, sounds, etc., will all be placed in this folder
automatically when iOS installs your app on a device. The name is the product name
that you have set for your app. So if your app is called MyApp, the .app folder will
be called MyApp.app.

Documents/
This folder is the destination for all user-created content. Content that your app has
populated, downloaded, or created should not be stored in this folder.

Library/
You use this directory to store cached files, user preferences, and so on. Usually,
this folder on its own will not have any files sitting in it. It contains other folders
that will contain files.

601

Figure 14-1. Depiction of the iOS filesystem

The root folder of every application contains various other folders, which I will explain
here:

Library/Caches/
The folder where you store data that your app can later re-create, if need be. The
contents of this folder are not backed up by iOS. Also, iOS may remove the contents
of this folder if the device is running out of disk space while your app is not running!
So do not allow your app to rely on the contents of this folder too much; be prepared
to re-create this content. Once again: the contents of this folder will not be backed
up by iOS and can be deleted while your app is suspended.

602 | Chapter 14: Files and Folder Management

For instance, if your app is relying on files and folders that are to be created on disk,
this folder would not be the best place to store this data. You are better off storing
such files and folders in the /tmp folder.

Library/Preferences/
As the name indicates, this folder contains the preferences that your app wants to
remember between launches. We will talk about this in detail later. iOS does back
up the contents of this folder.

Library/Application Support/
The data that your app creates, not including the data created by the user, must be
stored in this folder. It is good to know that iOS backs up the contents of this folder.
This folder may not be created for you automatically, and you’ll have to create it
yourself if it doesn’t exist. We will talk about folder creation later in this chapter.

tmp/
These are temporary files that your app may create, download, and so on. The
contents of this folder are not backed up by iOS. For instance, you may download
a few photos from the Internet and store them in this folder in order to increase
the performance of your application, so that you won’t have to download the files
every time the user opens your app. This folder serves exactly this purpose. Make
sure that you are not storing any user-created documents or files in this folder.

Now you know the folders that iOS creates for you when your app is installed on an iOS
device. The next thing you want to do is find the path of the rest of the useful folders
that we just talked about, using the APIs that Apple has exposed to you (these will be
explained in this chapter).

14.1. Finding the Paths of the Most Useful Folders on Disk

Problem
You want to be able to find the path of some of the most useful folders that your app
has access to (e.g., the folders that we talked about in this chpater’s Introduction), so
that you can access their content or create new content in those folders.

Programmers need to use APIs that are exposed in the iOS SDK to find
the path of folders and/or files. In other words, you should never
assume the path of a folder or a file. You should always make sure that
you use the appropriate APIs to, for instance, find the paths that you
are looking for, such as the Documents folder. Never, ever assume that

this folder will be called Documents in your app’s bundle. Simply use

the appropriate APIs to find this path and, if you want to add or ac‐
cess files in the folder, attach your filenames to the end of this path.

14.1. Finding the Paths of the Most Useful Folders on Disk | 603

Solution
Use the URLsForDirectory:inDomains: instance method of the NSFileManager class.

Discussion
The NSFileManager class offers a lot of file- and folder-related operations that you can
do with iOS, right inside your apps, simply by making an instance of the class. I advise
against using the shared file manager provided by this class through the defaultMan
ager class method because it is not thread-safe. It is best to create and manage an instance
of the NSFileManager class for yourself.

The URLsForDirectory:inDomains: instance method of the NSFileManager class al‐
lows you to search for specific directories on the iOS filesystem, mostly in your app’s
sandbox. There are two parameters to this method:

URLsForDirectory:

This is the directory that you want to search for. Pass a value of type NSSearchPath
Directory enumeration to this parameter. I will talk more about this soon.

inDomains

This is where you look for the given directory. The value to this parameter must be
of type NSSearchPathDomainMask enumeration.

Suppose you want to find the path to your app’s Documents folder. This is how easily

you can find it:

NSFileManager *fileManager = [[NSFileManager alloc] init];

NSArray *urls = [fileManager URLsForDirectory:NSDocumentDirectory

 inDomains:NSUserDomainMask];

if ([urls count] > 0){

 NSURL *documentsFolder = urls[0];

 NSLog(@"%@", documentsFolder);

} else {

 NSLog(@"Could not find the Documents folder.");

}

As you can see, after creating our own instance of NSFileManager, we passed the NSDo
cumentDirectory value as the folder we are looking for and NSUserDomainMask as the
domain. Let’s go through some of the most important values that you can pass to each
one of the parameters to the URLsForDirectory:inDomains: instance method of the
NSFileManager class:

URLsForDirectory
NSLibraryDirectory

The library folder for the app.

604 | Chapter 14: Files and Folder Management

NSCachesDirectory

The caches folder, as explained before.

NSDocumentDirectory

The documents folder.

inDomains
NSUserDomainMask

Specifies that the search be performed in the current user’s folder. On OS X,
this folder would be ~/.

Using this method, you can then find other folders such as the caches folder, as shown

here:

NSFileManager *fileManager = [[NSFileManager alloc] init];

NSArray *urls = [fileManager URLsForDirectory:NSCachesDirectory

 inDomains:NSUserDomainMask];

if ([urls count] > 0){

 NSURL *cachesFolder = urls[0];

 NSLog(@"%@", cachesFolder);

} else {

 NSLog(@"Could not find the Caches folder.");

}

If you want to find the tmp folder, use the NSTemporaryDirectory() C function like so:

NSString *tempDirectory = NSTemporaryDirectory();

NSLog(@"Temp Directory = %@", tempDirectory);

When you execute this command on a device, the output will be similar to that
shown here:

Temp Directory = /private/var/mobile/

 Applications/<# Your application ID goes here #>/tmp/

See Also
Recipe 14.0, “Introduction”

14.2. Writing to and Reading from Files

Problem
You want to be able to save information to disk (e.g., text, data, images, etc.).

14.2. Writing to and Reading from Files | 605

Solution
Cocoa classes that allow you to store information, such as NSString, UIImage, and
NSData, all expose instance methods that allow you to store their data to disk under a
given path.

Discussion
In order to store text to disk, assuming that your text is stored in an instance of NSString
(or the immutable version of this class), you can use the writeToFile:atomically:en
coding:error: instance method of this class. This method works with strings that rep‐
resent the destination path. Here are the different parameters:

writeToFile

The path of the file to write to, as a string.

atomically

A Boolean that, if set to YES, will first write the file to a temporary space and will
then move the temporary file to the destination that you chose. This will ensure
that the contents of the file will be saved to disk first and then saved to its destination,
so that if iOS crashes before the file is saved to the final destination, your contents
will still be saved later when the OS is back up again. It is recommended to set this
value to YES when storing information that you don’t want to lose under any cir‐
cumstance while your app is running.

encoding

Encoding of the text that you want to write to the path. Programmers usually use
UTF8 for the encoding, using the NSUTF8StringEncoding constant value.

error

Takes a pointer to an NSError object so that if the saving operation fails, you will
be able to find the error that happened during the process. You can pass nil to this
parameter if you are not interested in knowing about the errors that may occur
during the saving process. Bear in mind that this function returns a Boolean value
and you can simply use this value to find out whether an error has occurred.

For instance, if you have some text that you want to temporarily store in your app, and
you don’t want it to be backed up by iOS, you can do the following:

NSString *someText = @"Random string that won't be backed up.";

NSString *destinationPath =

[NSTemporaryDirectory()

 stringByAppendingPathComponent:@"MyFile.txt"];

NSError *error = nil;

BOOL succeeded = [someText writeToFile:destinationPath

 atomically:YES

606 | Chapter 14: Files and Folder Management

 encoding:NSUTF8StringEncoding

 error:&error];

if (succeeded) {

 NSLog(@"Successfully stored the file at: %@", destinationPath);

} else {

 NSLog(@"Failed to store the file. Error = %@", error);

}

Also, after you are done, to make sure things went fine, you can attempt to read the
same string back into memory from the destination file, using the stringWithContent
sOfFile:encoding:error: class method of the NSString class. This will return back
the autorelease string that is the contents of the specified file. If you want to explicitly
instantiate an object of type NSString with the contents of the file, simply use the
initWithContentsOfFile:encoding:error: instance method of the NSString class
like so:

- (BOOL) writeText:(NSString *)paramText toPath:(NSString *)paramPath{

 return [paramText writeToFile:paramPath

 atomically:YES

 encoding:NSUTF8StringEncoding

 error:nil];

}

- (NSString *) readTextFromPath:(NSString *)paramPath{

 return [[NSString alloc] initWithContentsOfFile:paramPath

 encoding:NSUTF8StringEncoding

 error:nil];

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *filePath = [NSTemporaryDirectory()

 stringByAppendingPathComponent:@"MyFile.txt"];

 if ([self writeText:@"Hello, World!" toPath:filePath]){

 NSString *readText = [self readTextFromPath:filePath];

 if ([readText length] > 0){

 NSLog(@"Text read from disk = %@", readText);

 } else {

 NSLog(@"Failed to read the text from disk.");

 }

 } else {

 NSLog(@"Failed to write the file.");

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

14.2. Writing to and Reading from Files | 607

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

What we have done is created two convenient methods that allow us to write text to and
read text from a specified location. In our app delegate, then, we use these two methods
to write some text to the temp folder and then read the same text back to memory in

order to make sure our methods are working fine.

If you want to work with URLs encapsulated in instances of NSURL (or the mutable
version of it), you can use the writeToURL:atomically:encoding:error: instance
method instead.

Instances of NSURL can point to resources (files, directories, etc.) lo‐
cally or remotely. For example, an instance of NSURL can represent a
local file in the Documents folder of your app as easily as it can repre‐

sent the website URL for www.apple.com. This class simply gives you
functionality to access and work with URLs, regardless of which type
of URL they are.

Other classes in foundation have methods similar to those of NSString. Let’s take NSAr
ray as an example. You can save the contents of an array using the writeToFile:atom
ically: instance method of NSArray. In order to read the contents of an array from
disk, you can simply allocate an instance of the array and then initialize it using the
initWithContentsOfFile: initializer of the array. Here is an example of both of these:

NSString *filePath = [NSTemporaryDirectory()

 stringByAppendingPathComponent:@"MyFile.txt"];

NSArray *arrayOfNames = @[@"Steve", @"John", @"Edward"];

if ([arrayOfNames writeToFile:filePath atomically:YES]){

 NSArray *readArray = [[NSArray alloc] initWithContentsOfFile:filePath];

 if ([readArray count] == [arrayOfNames count]){

 NSLog(@"Read the array back from disk just fine.");

 } else {

 NSLog(@"Failed to read the array back from disk.");

 }

} else {

 NSLog(@"Failed to save the array to disk.");

}

608 | Chapter 14: Files and Folder Management

The writeToFile:atomically: instance method of NSArray class can
save only an array that contains objects of the following type:

• NSString

• NSDictionary

• NSArray

• NSData

• NSNumber

• NSDate

If you attempt to insert any other objects in the array, your data will
not be saved to disk, because this method first makes sure all the objects
in the array are of one of the aforementioned types. This is simply
because the Objective-C runtime will not otherwise have any idea how
to store your data to disk. For instance, suppose you create a class called
Person and create a first name and last name property for the class,
then instantiate an instance and add it to an array. How can an array
then save your person to disk? It simply cannot do that, as it won’t
know what it has to save to disk. This is a problem known as marshal‐
ling, and is solved by iOS only for the data types just listed.

Dictionaries are also very similar to arrays and have the same way of saving their data
to disk and reading data back into the dictionary. The method names are exactly the
same, and the rules of saving an array also apply to dictionaries. Here is an example:

NSString *filePath = [NSTemporaryDirectory()

 stringByAppendingPathComponent:@"MyFile.txt"];

NSDictionary *dict = @{

 @"first name" : @"Steven",

 @"middle name" : @"Paul",

 @"last name" : @"Jobs",

 };

if ([dict writeToFile:filePath atomically:YES]){

 NSDictionary *readDictionary = [[NSDictionary alloc]

 initWithContentsOfFile:filePath];

 /* Now compare the dictionaries and see if the one we read from disk

 is the same as the one we saved to disk */

 if ([readDictionary isEqualToDictionary:dict]){

 NSLog(@"The file we read is the same one as the one we saved.");

 } else {

 NSLog(@"Failed to read the dictionary from disk.");

 }

14.2. Writing to and Reading from Files | 609

} else {

 NSLog(@"Failed to write the dictionary to disk.");

}

As you can see, this example writes the dictionary to disk and then reads it back from
the same location. After reading, we compare the read dictionary to the one we saved
to disk in order to make sure they both contain the same data.

Up to now, we have been using high-level classes such as NSString and NSArray to save
our contents to disk. Now, what if we want to store a raw array of bytes to disk? That’s
easy too. Suppose we have an array of four characters and we want to save that to disk:

char bytes[4] = {'a', 'b', 'c', 'd'};

The easiest way of saving this raw array of bytes to disk is to encapsulate it in another
high-level data structure like NSData and then use the relevant methods of NSData to
write to and read from the disk. The saving and loading methods for an NSData are
virtually the same as those for NSArray and NSDictionary. Here is an example of saving
raw data to disk and reading it back from the disk:

NSString *filePath = [NSTemporaryDirectory()

 stringByAppendingPathComponent:@"MyFile.txt"];

char bytes[4] = {'a', 'b', 'c', 'd'};

NSData *dataFromBytes = [[NSData alloc] initWithBytes:bytes

 length:sizeof(bytes)];

if ([dataFromBytes writeToFile:filePath atomically:YES]){

 NSData *readData = [[NSData alloc] initWithContentsOfFile:filePath];

 if ([readData isEqualToData:dataFromBytes]){

 NSLog(@"The data read is the same data as was written to disk.");

 } else {

 NSLog(@"Failed to read the data from disk.");

 }

} else {

 NSLog(@"Failed to save the data to disk.");

}

See Also
Recipe 14.0

14.3. Creating Folders on Disk

Problem
You want to be able to create folders on disk to save some of your app’s files in them.

610 | Chapter 14: Files and Folder Management

Solution
Use the createDirectoryAtPath:withIntermediateDirectories:attributes:er
ror: instance method of the NSFileManager class, as shown here:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 NSString *tempDir = NSTemporaryDirectory();

 NSString *imagesDir = [tempDir stringByAppendingPathComponent:@"images"];

 NSError *error = nil;

 if ([fileManager createDirectoryAtPath:imagesDir

 withIntermediateDirectories:YES

 attributes:nil

 error:&error]){

 NSLog(@"Successfully created the directory.");

 } else {

 NSLog(@"Failed to create the directory. Error = %@", error);

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Discussion
The APIs exposed by NSFileManager are very easy to use, and it’s no surprise that you
can use them to create folders on disk in a few lines. The createDirectoryAtPath:with
IntermediateDirectories:attributes:error: method may look scary at first, but
it’s not that bad. I will explain the different parameters that you can pass to it:

createDirectoryAtPath

The path to the folder that has to be created.

withIntermediateDirectories

A Boolean parameter that, if set to YES, will create all the folders in the middle before
it creates the final folder. For instance, if you want to create a folder named im

ages in another folder named data inside the tmp folder of your app, but the data

folder doesn’t exist yet, you could easily ask to create the tmp/data/images/ folder

and set the withIntermediateDirectories parameter to YES. This will make the
system create the data for you as well as the images folder.

14.3. Creating Folders on Disk | 611

attributes

A dictionary of attributes that you can pass to the system in order to affect how
your folder will be created. We won’t be using these here, to keep things simple, but
you can change things such as the modification date and time, the creation date
and time, and other attributes of the created folder if you want to.

error

This parameter accepts a pointer to an error object of type NSObject, which will be
populated with any errors that may happen while the folder is being created. It’s
generally a good idea to pass an error object to this parameter, so that if the method
fails (returns NO), you can access the error and determine what went wrong.

See Also
Recipe 14.1

14.4. Enumerating Files and Folders

Problem
You either want to enumerate folders within a folder or you want to enumerate the list
of files inside a folder. The act of enumerating means that you simply want to find all
the folders and/or files within another folder.

Solution
Use the contentsOfDirectoryAtPath:error: instance method of the NSFileManager
class as shown here. In this example, we are enumerating all the files, folders, and sym‐
links under our app’s bundle folder:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 NSString *bundleDir = [[NSBundle mainBundle] bundlePath];

 NSError *error = nil;

 NSArray *bundleContents = [fileManager

 contentsOfDirectoryAtPath:bundleDir

 error:&error];

 if ([bundleContents count] > 0 &&

 error == nil){

 NSLog(@"Contents of the app bundle = %@", bundleContents);

 }

 else if ([bundleContents count] == 0 &&

 error == nil){

612 | Chapter 14: Files and Folder Management

 NSLog(@"Call the police! The app bundle is empty.");

 }

 else {

 NSLog(@"An error happened = %@", error);

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 // Override point for customization after application launch.

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Discussion
In some of your iOS apps, you may need to enumerate the contents of a folder. Let me
give you an example, in case this need is a bit vague right now. Imagine that the user
asked you to download 10 images from the Internet and cache them in your app. You
go ahead and save them, let’s say, in the tmp/images/ folder that you manually created.

Now the user closes your app and reopens it, and in your UI, you want to display the
list of already-downloaded files in a table view. How can you achieve this? Well, it’s easy.
All you have to do is enumerate the contents of the aforementioned folder using the
NSFileManager class. As you saw in the Solution section of this recipe, the contentsOf
DirectoryAtPath:error: instance method of the NSFileManager class returns an array
of NSString objects that will represent the files, folders, and symlinks within the given
folder. However, it is not easy to say which one is a folder, which one is a file, and so on.
To get more fine-grained detail from the file manager, invoke the contentsOfDirec
toryAtURL:includingPropertiesForKeys:options:error:. Let’s go through the dif‐
ferent parameters that you need to pass to this method:

contentsOfDirectoryAtURL

The path of the folder that you want to inspect. This path should be provided as an
instance of NSURL. Don’t worry about it if you don’t know how to construct this
instance. We will talk about it soon.

includingPropertiesForKeys

This is an array of properties that you would like iOS to fetch for every file, folder,
or item that it finds in the given directory. For instance, you can specify that you
want the creation date of the items to be returned in the results, as part of the URL
instance that is returned to you (in instances of NSURL that you get back from the
framework). Here is the list of some of the most important values that you can place
in this array:

NSURLIsDirectoryKey

Allows you to determine later whether one of the URLs returned is a directory.

14.4. Enumerating Files and Folders | 613

NSURLIsReadableKey

Allows you to determine later whether the returned URL is readable by your
app’s process.

NSURLCreationDateKey

Returns the creation date of the item in the returned URL.

NSURLContentAccessDateKey

Returns the last content access date in the returned results.

NSURLContentModificationDateKey

As its name indicates, this allows you to determine the last-modified date for
the returned URLs.

options

Only 0 or NSDirectoryEnumerationSkipsHiddenFiles may be entered for this
parameter. If the latter value is entered, as the name of the value shows, all hidden
items will be skipped during the enumeration.

error

A reference to an object that will be filled with an error should this method fail to
execute its job. It’s usually a good idea to provide error objects to these methods if
you can. You get more control over why things fail, should they ever fail.

Now that we have more control over how the items are enumerated, let’s enumerate all
the items in the .app folder and print out the creation, last-modified, and last-accessed

dates. We will also print out whether the items are hidden or not, and whether we have
read access to the files or not. The last thing we’ll print out will be whether the items
are directories or not. Let’s go:

- (NSArray *) contentsOfAppBundle{

 NSFileManager *manager = [[NSFileManager alloc] init];

 NSURL *bundleDir = [[NSBundle mainBundle] bundleURL];

 NSArray *propertiesToGet = @[

 NSURLIsDirectoryKey,

 NSURLIsReadableKey,

 NSURLCreationDateKey,

 NSURLContentAccessDateKey,

 NSURLContentModificationDateKey

];

 NSError *error = nil;

 NSArray *result = [manager contentsOfDirectoryAtURL:bundleDir

 includingPropertiesForKeys:propertiesToGet

 options:0

 error:&error];

 if (error != nil){

 NSLog(@"An error happened = %@", error);

614 | Chapter 14: Files and Folder Management

 }

 return result;

}

- (NSString *) stringValueOfBoolProperty:(NSString *)paramProperty

 ofURL:(NSURL *)paramURL{

 NSNumber *boolValue = nil;

 NSError *error = nil;

 [paramURL getResourceValue:&boolValue

 forKey:paramProperty

 error:&error];

 if (error != nil){

 NSLog(@"Failed to get property of URL. Error = %@", error);

 }

 return [boolValue isEqualToNumber:@YES] ? @"Yes" : @"No";

}

- (NSString *) isURLDirectory:(NSURL *)paramURL{

 return [self stringValueOfBoolProperty:NSURLIsDirectoryKey ofURL:paramURL];

}

- (NSString *) isURLReadable:(NSURL *)paramURL{

 return [self stringValueOfBoolProperty:NSURLIsReadableKey ofURL:paramURL];

}

- (NSDate *) dateOfType:(NSString *)paramType inURL:(NSURL *)paramURL{

 NSDate *result = nil;

 NSError *error = nil;

 [paramURL getResourceValue:&result

 forKey:paramType

 error:&error];

 if (error != nil){

 NSLog(@"Failed to get property of URL. Error = %@", error);

 }

 return result;

}

- (void) printURLPropertiesToConsole:(NSURL *)paramURL{

 NSLog(@"Item name = %@", [paramURL lastPathComponent]);

 NSLog(@"Is a Directory? %@", [self isURLDirectory:paramURL]);

 NSLog(@"Is Readable? %@", [self isURLReadable:paramURL]);

 NSLog(@"Creation Date = %@",

 [self dateOfType:NSURLCreationDateKey inURL:paramURL]);

 NSLog(@"Access Date = %@",

14.4. Enumerating Files and Folders | 615

 [self dateOfType:NSURLContentAccessDateKey inURL:paramURL]);

 NSLog(@"Modification Date = %@",

 [self dateOfType:NSURLContentModificationDateKey inURL:paramURL]);

 NSLog(@"-----------------------------------");

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSArray *itemsInAppBundle = [self contentsOfAppBundle];

 for (NSURL *item in itemsInAppBundle){

 [self printURLPropertiesToConsole:item];

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 // Override point for customization after application launch.

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

The output of this program will be something similar to that shown here:

Item name = Assets.car

Is a Directory? No

Is Readable? Yes

Creation Date = 2013-06-25 16:12:53 +0000

Access Date = 2013-06-25 16:12:53 +0000

Modification Date = 2013-06-25 16:12:53 +0000

Item name = en.lproj

Is a Directory? Yes

Is Readable? Yes

Creation Date = 2013-06-25 16:12:53 +0000

Access Date = 2013-06-25 16:15:02 +0000

Modification Date = 2013-06-25 16:12:53 +0000

Item name = Enumerating Files and Folders

Is a Directory? No

Is Readable? Yes

Creation Date = 2013-06-25 16:15:01 +0000

Access Date = 2013-06-25 16:15:04 +0000

Modification Date = 2013-06-25 16:15:01 +0000

616 | Chapter 14: Files and Folder Management

The important thing to note about this app is that we are using the
getResourceValue:forKey:error: instance method of the NSURL class
to get the value of each one of the keys that we are querying from the
file manager, such as the creation and modification date. We pass these
requirements to the file manager, asking it to fetch this information
for us. And then, once we have our URLs, we use the aforemen‐
tioned method to retrieve the different properties from the resulting
URLs.

So let’s have a look at the different parts of this app. I will simply explain what each one
of these methods that we have written does:

contentsOfAppBundle
This method searches the .app folder for all items (files, folders, symlinks, etc.) and

returns the result as an array. All items in the array will be of type NSURL and contain
their creation date, last modification date, and other attributes that we talked about
before.

stringValueOfBoolProperty:ofURL:
This method will fetch the string equivalent (Yes or No) of a Boolean property of a
URL. For instance, information about whether a URL is a directory or not is stored
as a binary, Boolean value. However, if we want to print this Boolean value out to
the console, we need to convert it to a string. We have two query items for each
URL that will return instances of NSNumber containing a Boolean value: NSURLIs
DirectoryKey and NSURLIsReadableKey. So instead of writing this conversion code
twice, methods are available to do the conversion of NSNumber to a string of Yes or
No for us.

isURLDirectory:
Takes in a URL and inspects it to see whether it is a directory. This method internally
uses the stringValueOfBoolProperty:ofURL: method and passes the NSURLIsDir
ectoryKey key to it.

isURLReadable:
Determines whether your app has read access to a given URL. This method also
internally uses the stringValueOfBoolProperty:ofURL: method and passes the
NSURLIsReadableKey key to it.

dateOfType:inURL:
Since we are going to inspect three types of properties in each URL that will be of
type NSDate, we have simply encapsulated the relevant code in this method, which
will take the key and will return the date associated with that key in a given URL.

OK, that’s about it, really. You now know how to enumerate folders and retrieve all items
within the folder. You even know how to retrieve different attributes for different items.

14.4. Enumerating Files and Folders | 617

See Also
Recipe 14.1; Recipe 14.2

14.5. Deleting Files and Folders

Problem
You have created some files and/or folders on disk and no longer need them, so you
would like to delete them.

Solution
Use the removeItemAtPath:error: or the removeItemAtURL:error: instance method
of the NSFileManager class. The former method takes the path as a string, and the latter
takes the path as a URL.

Discussion
Deleting files and folders is perhaps one of the easiest operations that you can perform
using a file manager. In iOS, you need to be mindful of where you store your files and
folders in the first place, and once you have done the storage, you need to get rid of files
and folders when you no longer need them. For instance, let’s create five text files in the
tmp/text folder and then delete them once we are done. In the meantime, we can enu‐

merate the contents of the folder before and after the deletion just to make sure things
are working fine. Also, as you know, the tmp/ folder exists when your app is installed,

but the tmp/text folder doesn’t. So we need to create it first. Once we are done with the

files, we will delete the folder as well:

/* Creates a folder at a given path */

- (void) createFolder:(NSString *)paramPath{

 NSError *error = nil;

 if ([self.fileManager createDirectoryAtPath:paramPath

 withIntermediateDirectories:YES

 attributes:nil

 error:&error] == NO){

 NSLog(@"Failed to create folder %@. Error = %@",

 paramPath,

 error);

 }

}

/* Creates 5 .txt files in the given folder, named 1.txt, 2.txt, etc */

- (void) createFilesInFolder:(NSString *)paramPath{

 /* Create 10 files */

 for (NSUInteger counter = 0; counter < 5; counter++){

618 | Chapter 14: Files and Folder Management

 NSString *fileName = [NSString stringWithFormat:@"%lu.txt",

 (unsigned long)counter+1];

 NSString *path = [paramPath stringByAppendingPathComponent:fileName];

 NSString *fileContents = [NSString stringWithFormat:@"Some text"];

 NSError *error = nil;

 if ([fileContents writeToFile:path

 atomically:YES

 encoding:NSUTF8StringEncoding

 error:&error] == NO){

 NSLog(@"Failed to save file to %@. Error = %@", path, error);

 }

 }

}

/* Enumerates all files/folders at a given path */

- (void) enumerateFilesInFolder:(NSString *)paramPath{

 NSError *error = nil;

 NSArray *contents = [self.fileManager contentsOfDirectoryAtPath:paramPath

 error:&error];

 if ([contents count] > 0 &&

 error == nil){

 NSLog(@"Contents of path %@ = \n%@", paramPath, contents);

 }

 else if ([contents count] == 0 &&

 error == nil){

 NSLog(@"Contents of path %@ is empty!", paramPath);

 }

 else {

 NSLog(@"Failed to enumerate path %@. Error = %@", paramPath, error);

 }

}

/* Deletes all files/folders in a given path */

- (void) deleteFilesInFolder:(NSString *)paramPath{

 NSError *error = nil;

 NSArray *contents = [self.fileManager contentsOfDirectoryAtPath:paramPath

 error:&error];

 if (error == nil){

 error = nil;

 for (NSString *fileName in contents){

 /* We have the file name, to delete it,

 we have to have the full path */

 NSString *filePath = [paramPath

 stringByAppendingPathComponent:fileName];

 if ([self.fileManager removeItemAtPath:filePath

 error:&error] == NO){

 NSLog(@"Failed to remove item at path %@. Error = %@",

14.5. Deleting Files and Folders | 619

 fileName,

 error);

 }

 }

 } else {

 NSLog(@"Failed to enumerate path %@. Error = %@", paramPath, error);

 }

}

/* Deletes a folder with a given path */

- (void) deleteFolder:(NSString *)paramPath{

 NSError *error = nil;

 if ([self.fileManager removeItemAtPath:paramPath error:&error] == NO){

 NSLog(@"Failed to remove path %@. Error = %@", paramPath, error);

 }

}

Bear in mind that the fileManager property, which we are using in various methods of
our app delegate, is a property of the app delegate itself and is defined in this way:

#import "AppDelegate.h"

@interface AppDelegate ()

@property (nonatomic, strong) NSFileManager *fileManager;

@end

@implementation AppDelegate

<# Rest of your app delegate code goes here #>

This example code combines a lot of the things that you have learned in this chapter,
from enumerating to creating to deleting files. It’s all in this example. As you can see
from the app’s starting point, we are performing six main tasks, all of which have their
associated methods to take care of them:

1. Creating the tmp/txt folder. We know the tmp folder will be created by iOS for every

app, but the txt doesn’t come already created by iOS when your app is installed on

the device.

2. Creating five text files in the tmp/txt folder.

3. Enumerating all the files in the tmp/txt folder just to prove that we successfully

created all five files in that folder.

4. Deleting the files that we created to prove the point of this recipe.

5. Enumerating the files again in the tmp/txt folder to demonstrate that the deletion

mechanism worked just fine.

620 | Chapter 14: Files and Folder Management

6. Deleting the tmp/txt folder, as we no longer need it. Again, as I mentioned before,

be mindful of what folders and files you create on disk. Disk space doesn’t grow on
trees! So if you don’t need your files and folders any longer, delete them.

Now you not only know how to create files and folders, but how to get rid of them when
you no longer need them.

See Also
Recipe 14.2

14.6. Saving Objects to Files

Problem
You have added a new class to your project, and you would like to be able to save this
object to disk as a file and then read it back from disk whenever required.

Solution
Make sure that your class conforms to the NSCoding protocol and implement all the
required methods of this method. Don’t worry; I will walk you through this in the
Discussion section of this recipe.

Discussion
There are two really handy classes in iOS SDK for this specific purpose, which in the
programming world is known as marshalling. They are called:

NSKeyedArchiver

A class that can archive or save the contents of an object or object tree by keys. Each
value in the class, let’s say each property, can be saved to the archive, using a key
that the programmer chooses. You will be given an archive file (we will talk more
about this) and you will just save your values using keys that you choose. Just like
a dictionary!

NSKeyedUnarchiver

This class does the reverse of the archiver class. It simply gives you the unarchived
dictionary and asks you to read the values into your object’s properties.

In order for the archiver and the unarchiver to work, you need to make sure that the
objects you are asking them to archive or unarchive conform to the NSCoding protocol.
Let’s start with a simple Person class. Here is the header file of our class:

#import <Foundation/Foundation.h>

14.6. Saving Objects to Files | 621

@interface Person : NSObject <NSCoding>

@property (nonatomic, copy) NSString *firstName;

@property (nonatomic, copy) NSString *lastName;

@end

Now if you don’t write any code for the implementation of this class and try to compile
your code, you will see that the compiler will start to throw warnings at you saying you
have not conformed to the NSCoding protocol and have not implemented its required
methods. The methods that we have to implement are as follows:

- (void)encodeWithCoder:(NSCoder *)aCoder

This method will give you a coder. You will use the coder just like you would use a
dictionary. Simply store your values in it using keys that you choose.

- (instancetype)initWithCoder:(NSCoder *)aDecoder;

This method gets called on your class when you try to unarchive your class using
NSKeyedUnarchiver. Simply read your values back from the NSCoder instance
passed to this method.

Now, using this information, let’s implement our class:

#import "Person.h"

NSString *const kFirstNameKey = @"FirstNameKey";

NSString *const kLastNameKey = @"LastNameKey";

@implementation Person

- (void)encodeWithCoder:(NSCoder *)aCoder{

 [aCoder encodeObject:self.firstName forKey:kFirstNameKey];

 [aCoder encodeObject:self.lastName forKey:kLastNameKey];

}

- (instancetype)initWithCoder:(NSCoder *)aDecoder{

 self = [super init];

 if (self != nil){

 _firstName = [aDecoder decodeObjectForKey:kFirstNameKey];

 _lastName = [aDecoder decodeObjectForKey:kLastNameKey];

 }

 return self;

}

@end

You can see that the way we are using the instance of the NSCoder class is really similar
to that of a dictionary except that, instead of setValue:forKey: in a dictionary, we are
using encodeObject:forKey:, and instead of objectForKey: in a dictionary, we are
using decodeObjectForKey:. All in all, very similar to the way we use dictionaries.

622 | Chapter 14: Files and Folder Management

We are done with this class. So let’s implement the archiving and unarchiving mecha‐
nism using the two aforementioned classes. Our plan is to first instantiate an object of
type Person, archive it, get rid of it in memory, read it back from file, and see whether
the unarchived value matches the value that we originally put in the class. We will be
implementing this in our app delegate, because it’s the easiest place to do this:

#import "AppDelegate.h"

#import "Person.h"

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 /* Define the name and the last name we are going to set in the object */

 NSString *const kFirstName = @"Steven";

 NSString *const kLastName = @"Jobs";

 /* Determine where we want to archive the object */

 NSString *filePath = [NSTemporaryDirectory()

 stringByAppendingPathComponent:@"steveJobs.txt"];

 /* Instantiate the object */

 Person *steveJobs = [[Person alloc] init];

 steveJobs.firstName = kFirstName;

 steveJobs.lastName = kLastName;

 /* Archive the object to the file */

 [NSKeyedArchiver archiveRootObject:steveJobs toFile:filePath];

 /* Now unarchive the same class into another object */

 Person *cloneOfSteveJobs =

 [NSKeyedUnarchiver unarchiveObjectWithFile:filePath];

 /* Check if the unarchived object has the same first name and last name

 as the previously-archived object */

 if ([cloneOfSteveJobs.firstName isEqualToString:kFirstName] &&

 [cloneOfSteveJobs.lastName isEqualToString:kLastName]){

 NSLog(@"Unarchiving worked");

 } else {

 NSLog(@"Could not read the same values back. Oh no!");

 }

 /* We no longer need the temp file, delete it */

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 [fileManager removeItemAtPath:filePath error:nil];

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

14.6. Saving Objects to Files | 623

 return YES;

}

So the archiving simply uses the archiveRootObject:toFile class method of the
NSKeyedArchiver class, which takes an object and a file on which the content of the file
has to be saved. Simple and easy. How about unarchiving? That is as easy as the archiving
process. All you have to do is just pass the archived file path to the unarchiveObject
WithFile: class method of the NSKeyedUnarchiver class, and that class will do the rest
for you.

See Also
Recipe 14.1

624 | Chapter 14: Files and Folder Management

CHAPTER 15

Camera and the Photo Library

15.0. Introduction
Most devices running iOS, such as the iPhone, are equipped with cameras. The most
recent iPhone has two cameras, and some iPhones may only have one. Some iOS devices
may not even have a camera. The UIImagePickerController class allows programmers
to display the familiar Camera interface to their users and ask them to take a photo or
shoot a video. The photos taken or the videos shot by the user with the UIImagePicker
Controller class then become accessible to the programmer.

In this chapter, you will learn how to let users take photos and shoot videos from inside
applications, access these photos and videos, and access the photos and videos that are
placed inside the photo library on an iOS device, such as the iPod Touch and iPad.

iOS Simulator does not support the Camera interface. Please test and
debug all your applications that require a Camera interface on a real
iOS device with a camera.

In this chapter, we will first attempt to determine whether a camera is available on the
iOS device running the application. You can also determine whether the camera allows
you (the programmer) to capture videos, images, or both. To do this, make sure you
have added the MobileCoreServices.framework framework to your target. Simply import

its umbrella framework into your application like so:

#import "AppDelegate.h"

#import <MobileCoreServices/MobileCoreServices.h>

@implementation AppDelegate

<# Rest of your code goes here #>

625

We will then move to other topics, such as accessing videos and photos from different
albums on an iOS device. These are the same albums that are accessible through the
Photos application built into iOS.

Accessing photos inside albums is more straightforward than accessing videos, however.
For photos, we will be given the address of the photo and we can simply load the data
of the image either in an instance of NSData or directly into an instance of UIImage.
For videos, we won’t be given a file address on the filesystem from which to load the
data of the video. Instead, we will be given an address such as this:

assets-library://asset/asset.MOV?id=1000000004&ext=MOV

For addresses such as this, we need to use the Assets Library framework. The Assets
Library framework allows us to access the contents accessible through the Photos ap‐
plication, such as videos and photos shot by the user. You can also use the Assets Library
framework to save images and videos on the device. These photos and videos will then
become accessible by the as well as other applications that wish to access these contents.

To make sure the recipes in this chapter compile correctly, ensure that both the Assets
Library and the Mobile Core Services frameworks are always included in your source
files. You can do this by simply importing their header files into your source codes,
assuming that you are using the latest version of the LLVM compiler that has support
for Modules:

#import "AppDelegate.h"

#import <MobileCoreServices/MobileCoreServices.h>

#import <AssetsLibrary/AssetsLibrary.h>

@implementation AppDelegate

<# Rest of your code goes here #>

To access the data of an asset given the URL to the asset, follow these steps:

1. Allocate and initialize an object of type ALAssetsLibrary. The Assets Library object
facilitates the bridge that you need in order to access the videos and photos acces‐
sible by the Photos application.

2. Use the assetForURL:resultBlock:failureBlock instance method of the Assets
Library object (allocated and initialized in step 1) to access the asset. An asset could
be an image, a video, or any other resource that Apple might later decide to add to
the . This method works with block objects. For more information about block
objects and GCD, please refer to Chapter 7.

3. Release the Assets Library object allocated and initialized in step 1.

At this point, you might be wondering: how do I access the data for the asset? The
resultBlock parameter of the assetForURL:resultBlock:failureBlock instance
method of the Assets Library object will need to point to a block object that accepts a

626 | Chapter 15: Camera and the Photo Library

single parameter of type ALAsset. ALAsset is a class provided by the Assets Library that
encapsulates an asset available to Photos and any other iOS application that wishes to
use these assets. For more information about storing photos and videos in the photo
library, please refer to Recipes 15.4 and 15.5. If you want to learn more about retrieving
photos and videos from the photo library and the Assets Library, please refer to Recipes
15.6 and 15.7.

15.1. Detecting and Probing the Camera

Problem
You want to know whether the iOS device running your application has a camera that
you can access. This is an important check to make before attempting to use the camera,
unless you are sure your application will never run on a device that lacks one.

Solution
Use the isSourceTypeAvailable: class method of UIImagePickerController with the
UIImagePickerControllerSourceTypeCamera value, like so:

- (BOOL) isCameraAvailable{

 return [UIImagePickerController isSourceTypeAvailable:

 UIImagePickerControllerSourceTypeCamera];

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 if ([self isCameraAvailable]){

 NSLog(@"Camera is available.");

 } else {

 NSLog(@"Camera is not available.");

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Discussion
Before attempting to display an instance of UIImagePickerController to your user for
taking photos or shooting videos, you must detect whether the device supports that

15.1. Detecting and Probing the Camera | 627

interface. The isSourceTypeAvailable: class method allows you to determine three
sources of data:

• The camera, by passing the UIImagePickerControllerSourceTypeCamera value to
this method.

• The photo library, by passing the value UIImagePickerControllerSourceTypePho
toLibrary to this method. This browses the root folder of the Photos directory on

the device.

• The Camera Roll folder in the Photos directory, by passing the UIImagePick

erControllerSourceTypeSavedPhotosAlbum value to this method.

If you want to check the availability of any of these facilities on an iOS device, you must
pass these values to the isSourceTypeAvailable: class method of UIImagePicker
Controller before attempting to present the interfaces to the user.

Now we can use the isSourceTypeAvailable: and availableMediaTypesForSource
Type: class methods of UIImagePickerController to determine first if a media source
is available (camera, photo library, etc.), and if so, whether media types such as image
and video are available on that media source:

- (BOOL)cameraSupportsMedia:(NSString *)paramMediaType

 sourceType:(UIImagePickerControllerSourceType)paramSourceType{

 __block BOOL result = NO;

 if ([paramMediaType length] == 0){

 NSLog(@"Media type is empty.");

 return NO;

 }

 NSArray *availableMediaTypes =

 [UIImagePickerController

 availableMediaTypesForSourceType:paramSourceType];

 [availableMediaTypes enumerateObjectsUsingBlock:

 ^(id obj, NSUInteger idx, BOOL *stop) {

 NSString *mediaType = (NSString *)obj;

 if ([mediaType isEqualToString:paramMediaType]){

 result = YES;

 *stop= YES;

 }

 }];

 return result;

}

628 | Chapter 15: Camera and the Photo Library

- (BOOL) doesCameraSupportShootingVideos{

 return [self cameraSupportsMedia:(__bridge NSString *)kUTTypeMovie

 sourceType:UIImagePickerControllerSourceTypeCamera];

}

- (BOOL) doesCameraSupportTakingPhotos{

 return [self cameraSupportsMedia:(__bridge NSString *)kUTTypeImage

 sourceType:UIImagePickerControllerSourceTypeCamera];

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 if ([self doesCameraSupportTakingPhotos]){

 NSLog(@"The camera supports taking photos.");

 } else {

 NSLog(@"The camera does not support taking photos");

 }

 if ([self doesCameraSupportShootingVideos]){

 NSLog(@"The camera supports shooting videos.");

 } else {

 NSLog(@"The camera does not support shooting videos.");

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

We are typecasting the kUTTypeMovie and the kUTTypeImage values to
NSString using __bridge. The reason behind this is that the two
aforementioned values are of type CFStringRef and we need to re‐
trieve their NSString representation. To help the static analyzer and
the compiler and to avoid getting warnings from the compiler, it is best
to do this typecasting.

Some iOS devices can have more than one camera. The two cameras might be called
the front and the rear cameras. To determine whether these cameras are available, use
the isCameraDeviceAvailable: class method of UIImagePickerController, like so:

15.1. Detecting and Probing the Camera | 629

- (BOOL) isFrontCameraAvailable{

 return [UIImagePickerController

 isCameraDeviceAvailable:UIImagePickerControllerCameraDeviceFront];

}

- (BOOL) isRearCameraAvailable{

 return [UIImagePickerController

 isCameraDeviceAvailable:UIImagePickerControllerCameraDeviceRear];

}

By calling these methods on an older iPhone with no rear camera, you will see that the
isFrontCameraAvailable method returns NO and the isRearCameraAvailable method
returns YES. Running the code on an iPhone with both front and rear cameras will prove
that both methods will return YES, as iPhone 5 devices are equipped with both front-
and rear-facing cameras.

If detecting which camera is present on a device isn’t enough for your application, you
can retrieve other settings using the UIImagePickerController class. One such setting
is whether flash capability is available for a camera on the device. You can use the
isFlashAvailableForCameraDevice: class method of UIImagePickerController to
determine the availability of a flash capability on the rear or front camera. Please bear
in mind that the isFlashAvailableForCameraDevice: class method of UIImagePick
erController checks the availability of the given camera device first, before checking
the availability of a flash capability on that camera. Therefore, you can run the methods
we will implement on devices that do not have front or rear cameras without a need to
first check if the camera is available.

- (BOOL) isFlashAvailableOnFrontCamera{

 return [UIImagePickerController isFlashAvailableForCameraDevice:

 UIImagePickerControllerCameraDeviceFront];

}

- (BOOL) isFlashAvailableOnRearCamera{

 return [UIImagePickerController isFlashAvailableForCameraDevice:

 UIImagePickerControllerCameraDeviceRear];

}

Now if we take advantage of all the methods that we wrote in this recipe and test them
in your app delegate (for example), we can see the results on different devices:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

630 | Chapter 15: Camera and the Photo Library

 if ([self isFrontCameraAvailable]){

 NSLog(@"The front camera is available.");

 if ([self isFlashAvailableOnFrontCamera]){

 NSLog(@"The front camera is equipped with a flash");

 } else {

 NSLog(@"The front camera is not equipped with a flash");

 }

 } else {

 NSLog(@"The front camera is not available.");

 }

 if ([self isRearCameraAvailable]){

 NSLog(@"The rear camera is available.");

 if ([self isFlashAvailableOnRearCamera]){

 NSLog(@"The rear camera is equipped with a flash");

 } else {

 NSLog(@"The rear camera is not equipped with a flash");

 }

 } else {

 NSLog(@"The rear camera is not available.");

 }

 if ([self doesCameraSupportTakingPhotos]){

 NSLog(@"The camera supports taking photos.");

 } else {

 NSLog(@"The camera does not support taking photos");

 }

 if ([self doesCameraSupportShootingVideos]){

 NSLog(@"The camera supports shooting videos.");

 } else {

 NSLog(@"The camera does not support shooting videos.");

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Here are the results when we run the application on the new iPhone:

The front camera is available.

The front camera is not equipped with a flash

The rear camera is available.

The rear camera is equipped with a flash

The camera supports taking photos.

The camera supports shooting videos.

Here is the output of the same code when run on iPhone Simulator:

15.1. Detecting and Probing the Camera | 631

The front camera is not available.

The rear camera is not available.

The camera does not support taking photos

The camera does not support shooting videos.

15.2. Taking Photos with the Camera

Problem
You want to ask the user to take a photo with the camera on his iOS device, and you
want to access that photo once the user is done.

Solution
Instantiate an object of type UIImagePickerController and present it as a modal view
controller on your current view controller. Here is our view controller’s declaration:

#import "ViewController.h"

#import <MobileCoreServices/MobileCoreServices.h>

@interface ViewController ()<UIImagePickerControllerDelegate,

 UINavigationControllerDelegate>

@end

@implementation ViewController

<# Rest of your code goes here #>

The delegate of an instance of UIImagePickerController must conform to the
UINavigationControllerDelegate and UIImagePickerControllerDelegate proto‐
cols. If you forget to include them in your source file(s), you’ll get warnings from the
compiler when assigning a value to the delegate property of your image picker controller.
Please bear in mind that you can still assign an object to the delegate property of an
instance of UIImagePickerController where that object does not explicitly conform
to the UIImagePickerControllerDelegate and UINavigationControllerDelegate
protocols, but implements the required methods in these protocols. I, however, suggest
that you give a hint to the compiler that the delegate object does, in fact, conform to the
aforementioned protocols in order to avoid getting compiler warnings.

In our view controller, we will attempt to display an image picker controller as a modal
view controller, like so:

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 static BOOL beenHereBefore = NO;

 if (beenHereBefore){

632 | Chapter 15: Camera and the Photo Library

 /* Only display the picker once as the viewDidAppear: method gets

 called whenever the view of our view controller gets displayed */

 return;

 } else {

 beenHereBefore = YES;

 }

 if ([self isCameraAvailable] &&

 [self doesCameraSupportTakingPhotos]){

 UIImagePickerController *controller =

 [[UIImagePickerController alloc] init];

 controller.sourceType = UIImagePickerControllerSourceTypeCamera;

 NSString *requiredMediaType = (__bridge NSString *)kUTTypeImage;

 controller.mediaTypes = [[NSArray alloc]

 initWithObjects:requiredMediaType, nil];

 controller.allowsEditing = YES;

 controller.delegate = self;

 [self presentViewController:controller animated:YES completion:nil];

 } else {

 NSLog(@"Camera is not available.");

 }

}

We are using the isCameraAvailable and doesCameraSupportTak
ingPhotos methods in this example. These methods are implement‐
ed and explained in Recipe 15.1.

In this example, we are allowing the user to take photos using the image picker. You
must have noticed that we are setting the delegate property of the image picker to
self, which refers to the view controller. For this, we have to make sure we have im‐
plemented the methods defined in the UIImagePickerControllerDelegate protocol,
like so:

- (void) imagePickerController:(UIImagePickerController *)picker

 didFinishPickingMediaWithInfo:(NSDictionary *)info{

 NSLog(@"Picker returned successfully.");

 NSLog(@"%@", info);

 NSString *mediaType = info[UIImagePickerControllerMediaType];

15.2. Taking Photos with the Camera | 633

 if ([mediaType isEqualToString:(__bridge NSString *)kUTTypeMovie]){

 NSURL *urlOfVideo = info[UIImagePickerControllerMediaURL];

 NSLog(@"Video URL = %@", urlOfVideo);

 }

 else if ([mediaType isEqualToString:(__bridge NSString *)kUTTypeImage]){

 /* Let's get the metadata. This is only for

 images. Not videos */

 NSDictionary *metadata = info[UIImagePickerControllerMediaMetadata];

 UIImage *theImage = info[UIImagePickerControllerOriginalImage];

 NSLog(@"Image Metadata = %@", metadata);

 NSLog(@"Image = %@", theImage);

 }

 [picker dismissViewControllerAnimated:YES completion:nil];

}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker{

 NSLog(@"Picker was cancelled");

 [picker dismissViewControllerAnimated:YES completion:nil];

}

Discussion
There are a couple of important things that you must keep in mind about the image
picker controller’s delegate. First, two delegate messages are called on the delegate object
of the image picker controller. The imagePickerController:didFinishPickingMedia
WithInfo: method gets called when the user finishes execution of the image picker (e.g.,
takes a photo and presses a button at the end), whereas the imagePickerController
DidCancel: method gets called when the image picker’s operation is cancelled.

Also, the imagePickerController:didFinishPickingMediaWithInfo: delegate meth‐
od contains information about the item that was captured by the user, be it an image or
a video. The didFinishPickingMediaWithInfo parameter is a dictionary of values that
tell you what the image picker has captured and the metadata of that item, along with
other useful information. The first thing you have to do in this method is to read the
value of the UIImagePickerControllerMediaType key in this dictionary. The object for
this key is an instance of NSString that could be one of these values:

kUTTypeImage

For a photo that was shot by the camera

634 | Chapter 15: Camera and the Photo Library

kUTTypeMovie

For a movie/video that was shot by the camera

The kUTTypeImage and kUTTypeMovie values are available in the Mo‐
bile Core Services framework and are of type CFStringRef. You can
simply typecast these values to NSString if needed.

After determining the type of resource created by the camera (video or photo), you can
access that resource’s properties using the didFinishPickingMediaWithInfo dictionary
parameter again.

For images (kUTTypeImage), you can access these keys:

UIImagePickerControllerMediaMetadata

This key’s value is an object of type NSDictionary. This dictionary contains a lot
of useful information about the image that was shot by the user. A complete dis‐
cussion of the values inside this dictionary is beyond the scope of this chapter.

UIImagePickerControllerOriginalImage

This key’s value is an object of type UIImage containing the image that was shot by
the user.

UIImagePickerControllerCropRect

If editing is enabled (using the allowsEditing property of UIImagePicker
Controller), the object of this key will contain the rectangle of the cropped area.

UIImagePickerControllerEditedImage

If editing is enabled (using the allowsEditing property of UIImagePicker
Controller), this key’s value will contain the edited (resized and scaled) image.

For videos (kUTTypeMovie) that are shot by the user, you can access the UIImagePick
erControllerMediaURL key in the didFinishPickingMediaWithInfo dictionary pa‐
rameter of the imagePickerController:didFinishPickingMediaWithInfo: method.
The value of this key is an object of type NSURL containing the URL of the video that
was shot by the user.

After you get a reference to the UIImage instance that the user took with the camera,
you can simply use that instance within your application.

The images shot by the image picker controller within your applica‐
tion are not saved to the Camera Roll by default.

15.2. Taking Photos with the Camera | 635

See Also
Recipe 15.1

15.3. Taking Videos with the Camera

Problem
You want to allow your user to shoot a video using his iOS device, and you would like
to be able to use that video from inside your application.

Solution
Use UIImagePickerController with the UIImagePickerControllerSourceTypeCa
mera source type and the kUTTypeMovie media type:

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 static BOOL beenHereBefore = NO;

 if (beenHereBefore){

 /* Only display the picker once as the viewDidAppear: method gets

 called whenever the view of our view controller gets displayed */

 return;

 } else {

 beenHereBefore = YES;

 }

 if ([self isCameraAvailable] &&

 [self doesCameraSupportTakingPhotos]){

 UIImagePickerController *controller =

 [[UIImagePickerController alloc] init];

 controller.sourceType = UIImagePickerControllerSourceTypeCamera;

 controller.mediaTypes = @[(__bridge NSString *)kUTTypeMovie];

 controller.allowsEditing = YES;

 controller.delegate = self;

 [self presentViewController:controller animated:YES completion:nil];

 } else {

 NSLog(@"Camera is not available.");

 }

}

636 | Chapter 15: Camera and the Photo Library

The isCameraAvailable and doesCameraSupportShootingVideos

methods used in this sample code are implemented and discussed in
Recipe 15.1.

We will implement the delegate methods of the image picker controller like so:

- (void) imagePickerController:(UIImagePickerController *)picker

 didFinishPickingMediaWithInfo:(NSDictionary *)info{

 NSLog(@"Picker returned successfully.");

 NSLog(@"%@", info);

 NSString *mediaType = info[UIImagePickerControllerMediaType];

 if ([mediaType isEqualToString:(__bridge NSString *)kUTTypeMovie]){

 NSURL *urlOfVideo = info[UIImagePickerControllerMediaType];

 NSLog(@"Video URL = %@", urlOfVideo);

 NSError *dataReadingError = nil;

 NSData *videoData =

 [NSData dataWithContentsOfURL:urlOfVideo

 options:NSDataReadingMapped

 error:&dataReadingError];

 if (videoData != nil){

 /* We were able to read the data */

 NSLog(@"Successfully loaded the data.");

 } else {

 /* We failed to read the data. Use the dataReadingError

 variable to determine what the error is */

 NSLog(@"Failed to load the data with error = %@",

 dataReadingError);

 }

 }

 [picker dismissViewControllerAnimated:YES completion:nil];

}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker{

 NSLog(@"Picker was cancelled");

 [picker dismissViewControllerAnimated:YES completion:nil];

}

15.3. Taking Videos with the Camera | 637

Discussion
Once you detect that the iOS device your application is running on supports video
recording, you can bring up the image picker controller with the UIImagePickerCon
trollerSourceTypeCamera source type and kUTTypeMovie media type to allow the users
of your application to shoot videos. Once they are done, the imagePickerControl
ler:didFinishPickingMediaWithInfo: delegate method will get called, and you can
use the didFinishPickingMediaWithInfo dictionary parameter to find out more about
the captured video (the values that can be placed inside this dictionary are thoroughly
explained in Recipe 15.2).

When the user shoots a video using the image picker controller, the video will be saved
in a temporary folder inside your application’s bundle, not inside the Camera Roll. The
following is an example of such a URL:

file://localhost/private/var/mobile/Applications/< APPID >/tmp/capture-
T0x104e20.tmp.TQ9UTr/capturedvideo.MOV

The value APPID in the URL represents your application’s unique iden‐
tifier, and will clearly be different depending on your application.

As the programmer, not only can you allow your users to shoot videos from inside your
application, but you can also modify how the videos are captured. You can change two
important properties of the UIImagePickerController class in order to modify the
default behavior of video recording:

videoQuality

This property specifies the quality of the video. You can choose a value such as
UIImagePickerControllerQualityTypeHigh or UIImagePickerControllerQuali
tyTypeMedium for the value of this property.

videoMaximumDuration

This property specifies the maximum duration of the video. This value is measured
in seconds.

For instance, if we were to allow the users to record high-quality videos for up to 30
seconds, we could simply modify the values of the aforementioned properties of the
instance of UIImagePickerController like so:

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 static BOOL beenHereBefore = NO;

 if (beenHereBefore){

638 | Chapter 15: Camera and the Photo Library

 /* Only display the picker once as the viewDidAppear: method gets

 called whenever the view of our view controller gets displayed */

 return;

 } else {

 beenHereBefore = YES;

 }

 if ([self isCameraAvailable] &&

 [self doesCameraSupportTakingPhotos]){

 UIImagePickerController *controller =

 [[UIImagePickerController alloc] init];

 controller.sourceType = UIImagePickerControllerSourceTypeCamera;

 controller.mediaTypes = @[(__bridge NSString *)kUTTypeMovie];

 controller.allowsEditing = YES;

 controller.delegate = self;

 /* Record in high quality */

 controller.videoQuality = UIImagePickerControllerQualityTypeHigh;

 /* Only allow 30 seconds of recording */

 controller.videoMaximumDuration = 30.0f;

 [self presentViewController:controller animated:YES completion:nil];

 } else {

 NSLog(@"Camera is not available.");

 }

}

See Also
Recipe 15.1

15.4. Storing Photos in the Photo Library

Problem
You want to be able to store a photo in the user’s photo library.

Solution
Use the UIImageWriteToSavedPhotosAlbum procedure:

- (void) imageWasSavedSuccessfully:(UIImage *)paramImage

 didFinishSavingWithError:(NSError *)paramError

15.4. Storing Photos in the Photo Library | 639

 contextInfo:(void *)paramContextInfo{

 if (paramError == nil){

 NSLog(@"Image was saved successfully.");

 } else {

 NSLog(@"An error happened while saving the image.");

 NSLog(@"Error = %@", paramError);

 }

}

- (void) imagePickerController:(UIImagePickerController *)picker

 didFinishPickingMediaWithInfo:(NSDictionary *)info{

 NSLog(@"Picker returned successfully.");

 NSLog(@"%@", info);

 NSString *mediaType = info[UIImagePickerControllerMediaType];

 if ([mediaType isEqualToString:(__bridge NSString *)kUTTypeImage]){

 UIImage *theImage = nil;

 if ([picker allowsEditing]){

 theImage = info[UIImagePickerControllerEditedImage];

 } else {

 theImage = info[UIImagePickerControllerOriginalImage];

 }

 SEL selectorToCall =

 @selector(imageWasSavedSuccessfully:didFinishSavingWithError:\

 contextInfo:);

 UIImageWriteToSavedPhotosAlbum(theImage,

 self,

 selectorToCall,

 NULL);

 }

 [picker dismissViewControllerAnimated:YES completion:nil];

}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker{

 NSLog(@"Picker was cancelled");

 [picker dismissViewControllerAnimated:YES completion:nil];

}

640 | Chapter 15: Camera and the Photo Library

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 static BOOL beenHereBefore = NO;

 if (beenHereBefore){

 /* Only display the picker once as the viewDidAppear: method gets

 called whenever the view of our view controller gets displayed */

 return;

 } else {

 beenHereBefore = YES;

 }

 if ([self isCameraAvailable] &&

 [self doesCameraSupportTakingPhotos]){

 UIImagePickerController *controller =

 [[UIImagePickerController alloc] init];

 controller.sourceType = UIImagePickerControllerSourceTypeCamera;

 controller.mediaTypes = @[(__bridge NSString *)kUTTypeImage];

 controller.allowsEditing = YES;

 controller.delegate = self;

 [self presentViewController:controller animated:YES completion:nil];

 } else {

 NSLog(@"Camera is not available.");

 }

}

The isCameraAvailable and doesCameraSupportTakingPhotos

methods used in this example are thoroughly explained in Recipe 15.1.

Discussion
Usually after a user is done taking a photo with her iOS device, she expects the photo
to be saved into her photo library. However, applications that are not originally shipped
with iOS can ask the user to take a photo, using the UIImagePickerController class,
and then process that image. In this case, the user will understand that the application
we provided might not save the photo to her photo library—it might simply use it
internally. For instance, if an instant messaging application allows users to transfer their
photos to each other’s devices, the user will understand that a photo he takes inside the

15.4. Storing Photos in the Photo Library | 641

application will not be saved to his photo library but will instead be transferred over the
Internet to the other user.

However, if you decide you want to store an instance of UIImage to the photo library
on the user’s device, you can use the UIImageWriteToSavedPhotosAlbum function. This
function accepts four parameters:

1. The image

2. The object that will be notified whenever the image is fully saved

3. A parameter that specifies the selector that has to be called on the target object
(specified by the second parameter) when the save operation finishes

4. A context value that will get passed to the specified selector once the operation is
done

Providing the second, third, and fourth parameters to this procedure is optional. If you
do provide the second and third parameters, the fourth parameter still remains optional.
For instance, this is the selector we have chosen in the example:

- (void) imageWasSavedSuccessfully:(UIImage *)paramImage

 didFinishSavingWithError:(NSError *)paramError

 contextInfo:(void *)paramContextInfo{

 if (paramError == nil){

 NSLog(@"Image was saved successfully.");

 } else {

 NSLog(@"An error happened while saving the image.");

 NSLog(@"Error = %@", paramError);

 }

}

When you attempt to use the UIImageWriteToSavedPhotosAlbum procedure to save a
photo in the user’s photo library, if it’s the first time your app is doing this on the device,
iOS will ask the user for permission (see Figure 15-1). This will allow the user to either
allow or disallow your app from storing photos in her photo library; after all, it’s her
device, and we should not be doing anything on it without the user’s consent. If the user
does give you permission, the UIImageWriteToSavedPhotosAlbum procedure will con‐
tinue to save the image. If the user does not give you permission, our completion handler
selector will still be called, but the didFinishSavingWithError parameter of it will be
set to a valid error instance.

642 | Chapter 15: Camera and the Photo Library

Figure 15-1. iOS is asking the user for permission before our app can store a photo in
her photo library

Now if the user denies permission to your app, every subsequent call to the UIImage
WriteToSavedPhotosAlbum procedure will fail until the user manually changes her de‐
vice’s settings (see Figure 15-2).

15.4. Storing Photos in the Photo Library | 643

Figure 15-2. Our app has not been given permission to access the user’s photo library

If the error parameter that you receive in this selector is equal to nil,
that means the image was saved in the user’s photo library successful‐
ly. Otherwise, you can retrieve the value of this parameter to deter‐
mine what the issue was.

15.5. Storing Videos in the Photo Library

Problem
You want to store a video accessible through a URL, such as a video in your application
bundle, to the photo library.

644 | Chapter 15: Camera and the Photo Library

Solution
Use the writeVideoAtPathToSavedPhotosAlbum:completionBlock: instance method
of ALAssetsLibrary:

#import "AppDelegate.h"

#import <AssetsLibrary/AssetsLibrary.h>

@interface AppDelegate ()

@property (nonatomic, strong) ALAssetsLibrary *assetsLibrary;

@end

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 self.assetsLibrary = [[ALAssetsLibrary alloc] init];

 NSURL *videoURL = [[NSBundle mainBundle] URLForResource:@"MyVideo"

 withExtension:@"MOV"];

 if (videoURL != nil){

 [self.assetsLibrary

 writeVideoAtPathToSavedPhotosAlbum:videoURL

 completionBlock:^(NSURL *assetURL, NSError *error) {

 if (error == nil){

 NSLog(@"no errors happened");

 } else {

 NSLog(@"Error happened while saving the video.");

 NSLog(@"The error is = %@", error);

 }

 }];

 } else {

 NSLog(@"Could not find the video in the app bundle.");

 }

 return YES;

}

Discussion
The Assets Library framework is a convenient bridge between developers and the photo
library. As mentioned in Recipe 15.6, the iOS SDK provides you with built-in GUI
components that you can use to access the contents of the photo library. However, you
might sometimes require direct access to these contents. In such instances, you can use
the Assets Library framework.

15.5. Storing Videos in the Photo Library | 645

After allocating and initializing the Assets Library object of type ALAssetsLibrary, you
can use the writeVideoAtPathToSavedPhotosAlbum:completionBlock: instance
method of this object to write a video from a URL to the photo library. All you have to
do is provide the URL of the video in NSURL form and a block object whose code will be
called when the video is saved. The block object must accept two parameters of type
NSURL and NSError.

If the error parameter is nil, the save process went well and you don’t have to worry
about anything. One of the common errors that iOS could return to you is similar to this:

Error Domain=ALAssetsLibraryErrorDomain Code=-3302 "Invalid data"

UserInfo=0x7923590 {NSLocalizedFailureReason=

There was a problem writing this asset because

the data is invalid and cannot be viewed or played.,

NSLocalizedRecoverySuggestion=Try with different data,

NSLocalizedDescription=Invalid data}

You will get this error message if you attempt to pass a URL that is not inside your
application bundle. The first parameter passed to the block object provided to the
writeVideoAtPathToSavedPhotosAlbum:completionBlock: method will point to the
Assets Library URL of the stored video. A sample URL of this kind will look like this:

assets-library://asset/asset.MOV?id=F9B5F733-487C-

 4418-8C8D-46ABC9FEE23B&ext=MOV

If it’s the first time your app is attempting to use the photo library on the user’s device,
iOS will ask the user whether to allow or disallow this operation. If the user does allow
it, your call to the writeVideoAtPathToSavedPhotosAlbum:completionBlock: will be
successful. If the user disallows the action, the error object inside your completion block
will be a valid error object that you can inspect and act upon. If the user has previously
disallowed your app from accessing her photo library, you won’t be able to change that
decision programmatically. Only she can allow access, by changing her decision in the
Settings app on her device, under the Privacy section.

In Recipe 15.7, we will learn how to use such a URL to load the data for the video file
into memory.

15.6. Retrieving Photos and Videos from the Photo
Library

Problem
You want users to be able to pick a photo or a video from their photo library and use it
in your application.

646 | Chapter 15: Camera and the Photo Library

Solution
Use the UIImagePickerControllerSourceTypePhotoLibrary value for the source type
of your UIImagePickerController and the kUTTypeImage or kUTTypeMovie value, or
both, for the media type, like so:

- (BOOL) isPhotoLibraryAvailable{

 return [UIImagePickerController isSourceTypeAvailable:

 UIImagePickerControllerSourceTypePhotoLibrary];

}

- (BOOL) canUserPickVideosFromPhotoLibrary{

 return [self

 cameraSupportsMedia:(__bridge NSString *)kUTTypeMovie

 sourceType:UIImagePickerControllerSourceTypePhotoLibrary];

}

- (BOOL) canUserPickPhotosFromPhotoLibrary{

 return [self

 cameraSupportsMedia:(__bridge NSString *)kUTTypeImage

 sourceType:UIImagePickerControllerSourceTypePhotoLibrary];

}

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 static BOOL beenHereBefore = NO;

 if (beenHereBefore){

 /* Only display the picker once as the viewDidAppear: method gets

 called whenever the view of our view controller gets displayed */

 return;

 } else {

 beenHereBefore = YES;

 }

 if ([self isPhotoLibraryAvailable]){

 UIImagePickerController *controller =

 [[UIImagePickerController alloc] init];

 controller.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;

 NSMutableArray *mediaTypes = [[NSMutableArray alloc] init];

 if ([self canUserPickPhotosFromPhotoLibrary]){

15.6. Retrieving Photos and Videos from the Photo Library | 647

 [mediaTypes addObject:(__bridge NSString *)kUTTypeImage];

 }

 if ([self canUserPickVideosFromPhotoLibrary]){

 [mediaTypes addObject:(__bridge NSString *)kUTTypeMovie];

 }

 controller.mediaTypes = mediaTypes;

 controller.delegate = self;

 [self presentViewController:controller animated:YES completion:nil];

 }

}

For the implementation of the cameraSupportsMedia:sourceType: method we are us‐
ing in this example, please refer to Recipe 15.1.

Discussion
To allow your users to pick photos or videos from their photo library, you must set the
sourceType property of an instance of UIImagePickerController to UIImagePick
erControllerSourceTypePhotoLibrary before presenting them with the image picker.
In addition, if you want to filter the videos or photos out of the items presented to your
users once the image picker is shown, exclude the kUTTypeMovie or kUTTypeImage value
(respectively) from the array of media types of the image picker (in the mediaTypes
property).

Bear in mind that setting the mediaTypes property of an image picker controller to nil
or an empty array will result in a runtime error.

After the user is done picking the image, you will get the usual delegate messages through
the UIImagePickerControllerDelegate protocol. For more information on how you
can implement the methods defined in this protocol for processing images, please refer
to Recipe 15.2.

See Also
Recipe 15.7

648 | Chapter 15: Camera and the Photo Library

15.7. Retrieving Assets from the Assets Library

Problem
You want to directly retrieve photos or videos from the photo library without the help
of any built-in GUI components.

Solution
Use the Assets Library framework. Follow these steps:

1. Allocate and initialize an object of type ALAssetsLibrary.

2. Provide two block objects to the enumerateGroupsWithTypes:usingBlock:fail
ureBlock: instance method of the Assets Library object. The first block will retrieve
all the groups associated with the type that we passed to this method. The groups
will be of type ALAssetsGroup. The second block returns an error in case of failure.

3. Use the enumerateAssetsUsingBlock: instance method of each group object to
enumerate the assets available in each group. This method takes a single parameter,
a block that retrieves information on a single asset. The block that you pass as a
parameter must accept three parameters, of which the first must be of type ALAsset.

4. After retrieving the ALAsset objects available in each group, you can retrieve various
properties of each asset, such as their type, available URLs, and so on. Retrieve these
properties using the valueForProperty: instance method of each asset of type
ALAsset. The return value of this method, depending on the property passed to it,
could be NSDictionary, NSString, or any other object type. We will see a few com‐
mon properties that we can retrieve from each asset soon.

5. Invoke the defaultRepresentation instance method of each object of type ALAs
set to retrieve its representation object of type ALAssetRepresentation. Each asset
in the Assets Library can have more than one representation. For instance, a photo
might have a PNG representation by default but a JPEG representation as well.
Using the defaultRepresentation method of each asset of type ALAsset, you can
retrieve the ALAssetRepresentation object and then use that to retrieve different
representations (if available) of each asset.

6. Use the size and the getBytes:fromOffset:length:error: instance methods of
each asset representation to load the asset’s representation data. You can then write
the read bytes into an NSData object or do whatever else you need to do in your
application. Additionally, for photos, you can use the fullResolutionImage, full
ScreenImage, and CGImageWithOptions: instance methods of each representation
to retrieve images of type CGImageRef. You can then construct a UIImage from
CGImageRef using the imageWithCGImage: class method of UIImage:

15.7. Retrieving Assets from the Assets Library | 649

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 static BOOL beenHereBefore = NO;

 if (beenHereBefore){

 /* Only display the picker once as the viewDidAppear: method gets

 called whenever the view of our view controller gets displayed */

 return;

 } else {

 beenHereBefore = YES;

 }

 [self.assetsLibrary

 enumerateGroupsWithTypes:ALAssetsGroupAll

 usingBlock:^(ALAssetsGroup *group, BOOL *stop) {

 [group enumerateAssetsUsingBlock:^(ALAsset *result,

 NSUInteger index,

 BOOL *stop) {

 /* Get the asset type */

 NSString *assetType = [result

 valueForProperty:ALAssetPropertyType];

 if ([assetType isEqualToString:ALAssetTypePhoto]){

 NSLog(@"This is a photo asset");

 }

 else if ([assetType isEqualToString:ALAssetTypeVideo]){

 NSLog(@"This is a video asset");

 }

 else if ([assetType isEqualToString:ALAssetTypeUnknown]){

 NSLog(@"This is an unknown asset");

 }

 /* Get the URLs for the asset */

 NSDictionary *assetURLs = [result

 valueForProperty:ALAssetPropertyURLs];

 NSUInteger assetCounter = 0;

 for (NSString *assetURLKey in assetURLs){

 assetCounter++;

 NSLog(@"Asset URL %lu = %@",

 (unsigned long)assetCounter,

 [assetURLs valueForKey:assetURLKey]);

 }

 /* Get the asset's representation object */

 ALAssetRepresentation *assetRepresentation =

 [result defaultRepresentation];

650 | Chapter 15: Camera and the Photo Library

 NSLog(@"Representation Size = %lld",

 [assetRepresentation size]);

 }];

 }

 failureBlock:^(NSError *error) {

 NSLog(@"Failed to enumerate the asset groups.");

 }];

}

Discussion
The Assets Library is broken down into groups. Each group contains assets, and each
asset has properties, such as URLs and representation objects.

You can retrieve all assets of all types from the Assets Library using the ALAssetsGrou
pAll constant passed to the enumerateGroupsWithTypes parameter of the enumerate
GroupsWithTypes:usingBlock:failureBlock: instance method of the Assets Library
object. Here is a list of values you can pass to this parameter to enumerate different
groups of assets:

ALAssetsGroupAlbum

Groups representing albums that have been stored on an iOS device through iTunes.

ALAssetsGroupFaces

Groups representing albums that contain face assets that were stored on an iOS
device through iTunes.

ALAssetsGroupSavedPhotos

Groups representing the saved photos in the photo library. These are accessible to
an iOS device through the Photos application as well.

ALAssetsGroupAll

All available groups in the Assets Library.

Now let’s write a simple application that retrieves the data for the first image found in
the Assets Library, creates a UIImageView out of it, and adds the image view to the view
of the current view controller. This way, we will learn how to read the contents of an
asset using its representation.

When the view controller displays its view, we will initialize the assets library object and
then start enumerating the assets library until we find the first photo. At that time, we
will use the representation of that asset (photo) to display the photo on the image view:

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 static BOOL beenHereBefore = NO;

15.7. Retrieving Assets from the Assets Library | 651

 if (beenHereBefore){

 /* Only display the picker once as the viewDidAppear: method gets

 called whenever the view of our view controller gets displayed */

 return;

 } else {

 beenHereBefore = YES;

 }

 self.assetsLibrary = [[ALAssetsLibrary alloc] init];

 dispatch_queue_t dispatchQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_async(dispatchQueue, ^(void) {

 [self.assetsLibrary

 enumerateGroupsWithTypes:ALAssetsGroupAll

 usingBlock:^(ALAssetsGroup *group, BOOL *stop) {

 [group enumerateAssetsUsingBlock:^(ALAsset *result,

 NSUInteger index,

 BOOL *stop) {

 __block BOOL foundThePhoto = NO;

 if (foundThePhoto){

 *stop = YES;

 }

 /* Get the asset type */

 NSString *assetType =

 [result valueForProperty:ALAssetPropertyType];

 if ([assetType isEqualToString:ALAssetTypePhoto]){

 NSLog(@"This is a photo asset");

 foundThePhoto = YES;

 *stop = YES;

 /* Get the asset's representation object */

 ALAssetRepresentation *assetRepresentation =

 [result defaultRepresentation];

 /* We need the scale and orientation to be able to

 construct a properly oriented and scaled UIImage

 out of the representation object */

 CGFloat imageScale = [assetRepresentation scale];

 UIImageOrientation imageOrientation =

 (UIImageOrientation)[assetRepresentation orientation];

 dispatch_async(dispatch_get_main_queue(), ^(void) {

652 | Chapter 15: Camera and the Photo Library

 CGImageRef imageReference =

 [assetRepresentation fullResolutionImage];

 /* Construct the image now */

 UIImage *image =

 [[UIImage alloc] initWithCGImage:imageReference

 scale:imageScale

 orientation:imageOrientation];

 if (image != nil){

 UIImageView *imageView =

 [[UIImageView alloc]

 initWithFrame:self.view.bounds];

 imageView.contentMode = UIViewContentModeScaleAspectFit;

 imageView.image = image;

 [self.view addSubview:imageView];

 } else {

 NSLog(@"Failed to create the image.");

 }

 });

 }

 }];

 }

 failureBlock:^(NSError *error) {

 NSLog(@"Failed to enumerate the asset groups.");

 }];

 });

}

We enumerate the groups and every asset in the groups. Then we find the first photo
asset and retrieve its representation. Using the representation, we construct a UIImage,
and from the UIImage, we construct a UIImageView to display that image on the view.
Quite simple, isn’t it?

For video files, we are dealing with a slightly different issue, as the ALAsset
Representation class does not have any methods that could return an object that en‐
capsulates the video files. For this reason, we have to read the contents of a video asset
into a buffer and perhaps save it to the Documents folder, where it is easier for us to

access later. Of course, the requirements depend on your application, but in this example
code, we will go ahead and find the first video in the Assets Library and store it in the
application’s Documents folder under the name Temp.MOV:

- (NSString *) documentFolderPath{

15.7. Retrieving Assets from the Assets Library | 653

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 NSURL *url = [fileManager URLForDirectory:NSDocumentDirectory

 inDomain:NSUserDomainMask

 appropriateForURL:nil

 create:NO

 error:nil];

 return url.path;

}

- (void)viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 static BOOL beenHereBefore = NO;

 if (beenHereBefore){

 /* Only display the picker once as the viewDidAppear: method gets

 called whenever the view of our view controller gets displayed */

 return;

 } else {

 beenHereBefore = YES;

 }

 self.assetsLibrary = [[ALAssetsLibrary alloc] init];

 dispatch_queue_t dispatchQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_async(dispatchQueue, ^(void) {

 [self.assetsLibrary

 enumerateGroupsWithTypes:ALAssetsGroupAll

 usingBlock:^(ALAssetsGroup *group, BOOL *stop) {

 __block BOOL foundTheVideo = NO;

 [group enumerateAssetsUsingBlock:^(ALAsset *result,

 NSUInteger index,

 BOOL *stop) {

 /* Get the asset type */

 NSString *assetType = [result

 valueForProperty:ALAssetPropertyType];

 if ([assetType isEqualToString:ALAssetTypeVideo]){

 NSLog(@"This is a video asset");

 foundTheVideo = YES;

 *stop = YES;

 /* Get the asset's representation object */

654 | Chapter 15: Camera and the Photo Library

 ALAssetRepresentation *assetRepresentation =

 [result defaultRepresentation];

 const NSUInteger BufferSize = 1024;

 uint8_t buffer[BufferSize];

 NSUInteger bytesRead = 0;

 long long currentOffset = 0;

 NSError *readingError = nil;

 /* Construct the path where the video has to be saved */

 NSString *videoPath =

 [[self documentFolderPath]

 stringByAppendingPathComponent:@"Temp.MOV"];

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 /* Create the file if it doesn't exist already */

 if ([fileManager fileExistsAtPath:videoPath] == NO){

 [fileManager createFileAtPath:videoPath

 contents:nil

 attributes:nil];

 }

 /* We will use this file handle to write the contents

 of the media assets to the disk */

 NSFileHandle *fileHandle =

 [NSFileHandle

 fileHandleForWritingAtPath:videoPath];

 do{

 /* Read as many bytes as we can put in the buffer */

 bytesRead =

 [assetRepresentation getBytes:(uint8_t *)&buffer

 fromOffset:currentOffset

 length:BufferSize

 error:&readingError];

 /* If we couldn't read anything, we will

 exit this loop */

 if (bytesRead == 0){

 break;

 }

 /* Keep the offset up to date */

 currentOffset += bytesRead;

 /* Put the buffer into an NSData */

 NSData *readData = [[NSData alloc]

 initWithBytes:(const void *)buffer

 length:bytesRead];

15.7. Retrieving Assets from the Assets Library | 655

 /* And write the data to file */

 [fileHandle writeData:readData];

 } while (bytesRead > 0);

 NSLog(@"Finished reading and storing the \

 video in the documents folder");

 }

 }];

 if (foundTheVideo){

 *stop = YES;

 }

 }

 failureBlock:^(NSError *error) {

 NSLog(@"Failed to enumerate the asset groups.");

 }];

 });

}

This is what’s happening in the sample code:

• We get the default representation of the first video asset that we find in the Assets
Library.

• We create a file called Temp.MOV in the application’s Documents folder to save the

contents of the video asset.

• We create a loop that runs as long as there is still data in the asset representation
waiting to be read. The getBytes:fromOffset:length:error: instance method of
the asset representation object reads as many bytes as we can fit into the buffer for
as many times as necessary until we get to the end of the representation data.

• After reading the data into the buffer, we encapsulate the data into an object of type
NSData using the initWithBytes:length: initialization method of NSData. We
then write this data to the file we created previously using the writeData: instance
method of NSFileHandle.

15.8. Editing Videos on an iOS Device

Problem
You want the user of your application to be able to edit videos straight from your
application.

656 | Chapter 15: Camera and the Photo Library

Solution
Use the UIVideoEditorController class. In this example, we will use this class in con‐
junction with an image picker controller. First we will ask the user to pick a video from
her photo library. After she does, we will display an instance of the video editor controller
and allow the user to edit the video she picked.

Discussion
The UIVideoEditorController in the iOS SDK allows programmers to display a video
editor interface to the users of their applications. All you have to do is provide the URL
of the video that needs to be edited and then present the video editor controller as a
modal view. You should not overlay the view of this controller with any other views, and
you should not modify this view.

Calling the presentModalViewController:animated: method imme‐
diately after calling the dismissModalViewControllerAnimated:

method of a view controller will terminate your application with a
runtime error. You must wait for the first view controller to be dis‐
missed and then present the second view controller. You can take ad‐
vantage of the viewDidAppear: instance method of your view control‐
lers to detect when your view is displayed. You know at this point that
any modal view controllers must have disappeared.

So let’s go ahead and declare the view controller and any necessary properties:

#import "ViewController.h"

#import <MobileCoreServices/MobileCoreServices.h>

#import <AssetsLibrary/AssetsLibrary.h>

@interface ViewController ()

<UINavigationControllerDelegate,

UIVideoEditorControllerDelegate,

UIImagePickerControllerDelegate>

@property (nonatomic, strong) NSURL *videoURLToEdit;

@property (nonatomic, strong) ALAssetsLibrary *assetsLibrary;

@end

@implementation ViewController

<# Rest of your code goes here #>

The next thing to do is handle different video editor delegate messages in the view
controller:

- (void)videoEditorController:(UIVideoEditorController *)editor

 didSaveEditedVideoToPath:(NSString *)editedVideoPath{

15.8. Editing Videos on an iOS Device | 657

 NSLog(@"The video editor finished saving video");

 NSLog(@"The edited video path is at = %@", editedVideoPath);

 [editor dismissViewControllerAnimated:YES completion:nil];

}

- (void)videoEditorController:(UIVideoEditorController *)editor

 didFailWithError:(NSError *)error{

 NSLog(@"Video editor error occurred = %@", error);

 [editor dismissViewControllerAnimated:YES completion:nil];

}

- (void)videoEditorControllerDidCancel:(UIVideoEditorController *)editor{

 NSLog(@"The video editor was cancelled");

 [editor dismissViewControllerAnimated:YES completion:nil];

}

When the view is displayed for the first time, we need to display a video picker to the
user. She will then be able to pick a video from her library, and we will then proceed to
allow her to edit that video:

- (BOOL) cameraSupportsMedia:(NSString *)paramMediaType

 sourceType:(UIImagePickerControllerSourceType)paramSourceType{

 __block BOOL result = NO;

 if ([paramMediaType length] == 0){

 NSLog(@"Media type is empty.");

 return NO;

 }

 NSArray *availableMediaTypes =

 [UIImagePickerController

 availableMediaTypesForSourceType:paramSourceType];

 [availableMediaTypes enumerateObjectsUsingBlock:

 ^(id obj, NSUInteger idx, BOOL *stop) {

 NSString *mediaType = (NSString *)obj;

 if ([mediaType isEqualToString:paramMediaType]){

 result = YES;

 *stop= YES;

 }

 }];

 return result;

}

- (BOOL) canUserPickVideosFromPhotoLibrary{

658 | Chapter 15: Camera and the Photo Library

 return [self cameraSupportsMedia:(__bridge NSString *)kUTTypeMovie

 sourceType:UIImagePickerControllerSourceTypePhotoLibrary];

}

- (BOOL) isPhotoLibraryAvailable{

 return [UIImagePickerController

 isSourceTypeAvailable:

 UIImagePickerControllerSourceTypePhotoLibrary];

}

- (void) viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 static BOOL beenHereBefore = NO;

 if (beenHereBefore){

 /* Only display the picker once as the viewDidAppear: method gets

 called whenever the view of our view controller gets displayed */

 return;

 } else {

 beenHereBefore = YES;

 }

 self.assetsLibrary = [[ALAssetsLibrary alloc] init];

 if ([self isPhotoLibraryAvailable] &&

 [self canUserPickVideosFromPhotoLibrary]){

 UIImagePickerController *imagePicker =

 [[UIImagePickerController alloc] init];

 /* Set the source type to photo library */

 imagePicker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;

 /* And we want our user to be able to pick movies from the library */

 imagePicker.mediaTypes = @[(__bridge NSString *)kUTTypeMovie];

 /* Set the delegate to the current view controller */

 imagePicker.delegate = self;

 /* Present our image picker */

 [self presentViewController:imagePicker animated:YES completion:nil];

 }

}

15.8. Editing Videos on an iOS Device | 659

We now need to know when the user is done picking a video, so let’s handle various
delegate methods of the image picker control:

- (void) imagePickerController:(UIImagePickerController *)picker

 didFinishPickingMediaWithInfo:(NSDictionary *)info{

 NSLog(@"Picker returned successfully.");

 NSString *mediaType = [info objectForKey:

 UIImagePickerControllerMediaType];

 if ([mediaType isEqualToString:(NSString *)kUTTypeMovie]){

 self.videoURLToEdit = [info objectForKey:UIImagePickerControllerMediaURL];

 }

 [picker dismissViewControllerAnimated:YES completion:^{

 if (self.videoURLToEdit != nil){

 NSString *videoPath = [self.videoURLToEdit path];

 /* First let's make sure the video editor is able to edit the

 video at the path in our documents folder */

 if ([UIVideoEditorController canEditVideoAtPath:videoPath]){

 /* Instantiate the video editor */

 UIVideoEditorController *videoEditor =

 [[UIVideoEditorController alloc] init];

 /* We become the delegate of the video editor */

 videoEditor.delegate = self;

 /* Make sure to set the path of the video */

 videoEditor.videoPath = videoPath;

 /* And present the video editor */

 [self presentViewController:videoEditor

 animated:YES

 completion:nil];

 self.videoURLToEdit = nil;

 } else {

 NSLog(@"Cannot edit the video at this path");

 }

 }

 }];

}

660 | Chapter 15: Camera and the Photo Library

- (void) imagePickerControllerDidCancel:(UIImagePickerController *)picker{

 NSLog(@"Picker was cancelled");

 self.videoURLToEdit = nil;

 [picker dismissViewControllerAnimated:YES completion:nil];

}

In the example, the user is allowed to pick any video from the photo library. Once she
does, we will display the video editor controller by providing the path of the video that
the video picker passes to us in a delegate method.

The video editor controller’s delegate gets important messages about the state of the
video editor. This delegate object must conform to the UIVideoEditorControllerDel
egate and UINavigationControllerDelegate protocols. In the example, we chose the
view controller to become the delegate of the video editor. Once the editing is done, the
delegate object receives the videoEditorController:didSaveEditedVideoToPath:
delegate method from the video editor controller. The path of the edited video will be
passed through the didSaveEditedVideoToPath parameter.

Before attempting to display the interface of the video editor to your users, you must
call the canEditVideoAtPath: class method of UIVideoEditorController to make sure
the path you are trying to edit is editable by the controller. If the return value of this
class method is YES, proceed to configuring and displaying the video editor’s interface.
If not, take a separate path, perhaps displaying an alert to your user.

See Also
Recipe 15.6; Recipe 15.7

15.8. Editing Videos on an iOS Device | 661

CHAPTER 16

Multitasking

16.0. Introduction
Multitasking enables background execution, which means the application can keep
working as usual—running tasks, spawning new threads, listening for notifications, and
reacting to events—but simply does not display anything on the screen or have any way
to interact with the user. When the user presses the Home button on his device, which
in previous versions of the iPhone and iPad would terminate the application, the ap‐
plication is now sent into the background.

When our application moves to the background (such as when the user presses the
Home button) and then back to the foreground (when the user selects the application
again), various messages are sent by the system and are expected to be received by an
object we designate as our application delegate. For instance, when our application is
sent to the background our application delegate will receive the applicationDidEnter
Background: method, and as the application comes back to the foreground for the user,
the application delegate will receive the applicationWillEnterForeground: delegate
message.

In addition to these delegate messages, iOS also sends notifications to the running ap‐
plication when it transitions the application to the background and from the back‐
ground to the foreground. The notification that gets sent when the application is moved
to the background is UIApplicationDidEnterBackgroundNotification, and the no‐
tification that gets sent when an application transitions from the background to the
foreground is UIApplicationWillEnterForegroundNotification. You can use the
default notification center to register for these notifications.

663

16.1. Detecting the Availability of Multitasking

Problem
You want to find out whether the iOS device running your application supports
multitasking.

Solution
Call the isMultitaskingSupported instance method of UIDevice, like so:

- (BOOL) isMultitaskingSupported{

 BOOL result = NO;

 if ([[UIDevice currentDevice]

 respondsToSelector:@selector(isMultitaskingSupported)]){

 result = [[UIDevice currentDevice] isMultitaskingSupported];

 }

 return result;

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 if ([self isMultitaskingSupported]){

 NSLog(@"Multitasking is supported.");

 } else {

 NSLog(@"Multitasking is not supported.");

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Discussion
Your application, depending on the iOS devices it targets, can be run and executed on
a variety of devices on different versions of iOS. For instance, you may be developing
your app using the latest iOS SDK but set the target iOS version (the minimum version
of iOS on which your app can run) to one version lower than the latest SDK version. In
this case, an older device with that OS version can still run your app, but that device
may not support multitasking. The golden rule in software development or even in life
(not trying to be philosophical) is that if you make an assumption, you’ll eventually be
wrong. So never make an assumption as to which device is currently running your app,

664 | Chapter 16: Multitasking

because as iOS developers, we limit our target audience by telling Xcode what the lowest
iOS version is that we support. We still want to make sure anyone running a current
iOS device can run our apps. So if you want to take advantage of the latest multitasking
capabilities of iOS in your apps, always ensure that you check for the availability of
multitasking, and if multitasking is not available, ensure that your app responds in an
appropriate way and perhaps chooses an alternative route of execution.

16.2. Completing a Long-Running Task in the Background

Problem
You want to borrow some time from iOS to complete a long-running task when your
application is being sent to the background.

Solution
Use the beginBackgroundTaskWithExpirationHandler: instance method of UIAppli
cation. After you have finished the task, call the endBackgroundTask: instance method
of UIApplication.

Discussion
When an iOS application is sent to the background, its main thread is paused. The
threads you create within your application using the detachNewThreadSelec
tor:toTarget:withObject: class method of NSThread are also suspended. If you are
attempting to finish a long-running task when your application is being sent to the
background, you must call the beginBackgroundTaskWithExpirationHandler: in‐
stance method of UIApplication to borrow some time from iOS. The backgroundTi
meRemaining property of UIApplication contains the number of seconds the applica‐
tion has to finish its job. If the application doesn’t finish the long-running task before
this time expires, iOS will terminate the application. Every call to the beginBackground
TaskWithExpirationHandler: method must have a corresponding call to endBack
groundTask: (another instance method of UIApplication). In other words, if you ask
for more time from iOS to complete a task, you must tell iOS when you are done with
that task. Once this is done and no more tasks are requested to be running in the back‐
ground, your application will be fully put into the background with all threads paused.

When your application is in the foreground, the backgroundTimeRemaining property
of UIApplication is equal to the DBL_MAX constant, which is the largest value a value of
type double can contain (the integer equivalent of this value is normally equal to ‒1 in
this case). After iOS is asked for more time before the application is fully suspended,
this property will indicate the number of seconds the application has before it finishes
running its task(s).

16.2. Completing a Long-Running Task in the Background | 665

You can call the beginBackgroundTaskWithExpirationHandler: method as many
times as you wish inside your application. The important thing to keep in mind is that
whenever iOS returns a token or a task identifier to your application with this method,
you must call the endBackgroundTask: method to mark the end of that task once you
are finished running the task. Failing to do so might cause iOS to terminate your ap‐
plication.

While in the background, applications are not supposed to be fully functioning and
processing heavy data. They are indeed only supposed to finish a long-running task. An
example could be an application that is calling a web service API and has not yet received
the response of that API from the server. During this time, if the application is sent to
the background, the application can request more time until it receives a response from
the server. Once the response is received, the application must save its state and mark
that task as finished by calling the endBackgroundTask: instance method of UIAppli
cation.

Let’s have a look at an example. I will start by defining a property of type UIBackground
TaskIdentifier in the app delegate. Also, let’s define a timer of type NSTimer, which
we will use to print a message to the console window every second when our app is sent
to the background:

#import "AppDelegate.h"

@interface AppDelegate ()

@property (nonatomic, unsafe_unretained)

UIBackgroundTaskIdentifier backgroundTaskIdentifier;

@property (nonatomic, strong) NSTimer *myTimer;

@end

@implementation AppDelegate

<# Rest of your code goes here #>

Now let’s move on to creating and scheduling our timer when the app gets sent to the
background:

- (BOOL) isMultitaskingSupported{

 BOOL result = NO;

 if ([[UIDevice currentDevice]

 respondsToSelector:@selector(isMultitaskingSupported)]){

 result = [[UIDevice currentDevice] isMultitaskingSupported];

 }

 return result;

}

- (void) timerMethod:(NSTimer *)paramSender{

666 | Chapter 16: Multitasking

 NSTimeInterval backgroundTimeRemaining =

 [[UIApplication sharedApplication] backgroundTimeRemaining];

 if (backgroundTimeRemaining == DBL_MAX){

 NSLog(@"Background Time Remaining = Undetermined");

 } else {

 NSLog(@"Background Time Remaining = %.02f Seconds",

 backgroundTimeRemaining);

 }

}

- (void)applicationDidEnterBackground:(UIApplication *)application{

 if ([self isMultitaskingSupported] == NO){

 return;

 }

 self.myTimer =

 [NSTimer scheduledTimerWithTimeInterval:1.0f

 target:self

 selector:@selector(timerMethod:)

 userInfo:nil

 repeats:YES];

 self.backgroundTaskIdentifier =

 [application beginBackgroundTaskWithExpirationHandler:^(void) {

 [self endBackgroundTask];

 }];

}

You can see that in the completion handler for our background task, we are calling the
endBackgroundTask method of our app delegate. This is a method that we have written,
and it looks like this:

- (void) endBackgroundTask{

 dispatch_queue_t mainQueue = dispatch_get_main_queue();

 __weak AppDelegate *weakSelf = self;

 dispatch_async(mainQueue, ^(void) {

 AppDelegate *strongSelf = weakSelf;

 if (strongSelf != nil){

 [strongSelf.myTimer invalidate];

 [[UIApplication sharedApplication]

 endBackgroundTask:self.backgroundTaskIdentifier];

 strongSelf.backgroundTaskIdentifier = UIBackgroundTaskInvalid;

 }

 });

}

16.2. Completing a Long-Running Task in the Background | 667

There are a couple of things we need to do to clean up after a long-running task:

1. End any threads or timers, whether they are foundation timers or they are created
with GCD.

2. End the background task by calling the endBackgroundTask: method of UIAppli
cation.

3. Mark our task as ended by assigning the value of UIBackgroundTaskInvalid to our
task identifiers.

Last but not least, when our app is brought to the foreground, if we still have our back‐
ground task running, we need to ensure that we get rid of it:

- (void)applicationWillEnterForeground:(UIApplication *)application{

 if (self.backgroundTaskIdentifier != UIBackgroundTaskInvalid){

 [self endBackgroundTask];

 }

}

In our example, whenever the application is put into the background, we ask for more
time to finish a long-running task (in this case, for instance, our timer’s code). In our
time, we constantly read the value of the backgroundTimeRemaining property of
UIApplication ’s instance and print that value out to the console. In the beginBack
groundTaskWithExpirationHandler: instance method of UIApplication, we provid‐
ed the code that will be executed just before our application’s extra time to execute a
long-running task finishes (usually about 5 to 10 seconds before the expiration of the
task). In here, we can simply end the task by calling the endBackgroundTask: instance
method of UIApplication.

When an application is sent to the background and the application has
requested more execution time from iOS, before the execution time is
finished, the application could be revived and brought to the fore‐
ground by the user again. If you had previously asked for a long-
running task to be executed in the background when the application
was being sent to the background, you must end the long-running task
using the endBackgroundTask: instance method of UIApplication.

See Also
Recipe 16.1

668 | Chapter 16: Multitasking

16.3. Adding Background Fetch Capabilities to Your Apps

Problem
You want your app to be able to fetch content in the background by using the new
capabilities introduced in iOS SDK.

Solution
Add the Background Fetch capability to your app.

Discussion
A lot of the apps that get submitted on a daily basis to the App Store have connectivity
to some servers. Some fetch data, some post data, etc. For a while, in iOS, the only way
for apps to fetch content in the background was to borrow some time from iOS, as you
can read about in Recipe 16.2, and the apps could use that time to complete their work
in the background. But this is a very active way of going about doing this. There is a
passive way as well, where your app sits there and then iOS gives your app some time
to do some processing in the background. So all you have to do is hook into this capa‐
bility and let iOS wake your app at a quiet moment and ask it to do some processing.
This is usually used for background fetches.

For instance, you may need to download some new content. Imagine the Twitter app.
All you are interested in when you open that app is to see new tweets. Up until now, the
only way to do this was for you to open the app and then let the app refresh the list of
tweets. But now iOS is able to wake the Twitter app in the background and ask it to
refresh its feed so that when you open the app, all the tweets on the screen are already
up to date.

The first thing that we have to do to enable background-fetching capabilities for our
app is to go to the Capabilities tab of the project settings, and under the Background
Modes slice, enable the “Background fetch” item, as shown in Figure 16-1.

There are two ways your app could use background fetches. One is when your app is in
the background and iOS wakes your app (without making it visible to the user) and asks
it to fetch some content. The other time is when your app is not started and iOS wakes
your app (again in the background), asking it to look for content to fetch. But how does
iOS know which apps to wake up and which ones not to? Well, the programmer has to
help iOS.

16.3. Adding Background Fetch Capabilities to Your Apps | 669

Figure 16-1. Enabling background fetch for our app

The way we do that is by calling the setMinimumBackgroundFetchInterval: instance
method of the UIApplication class. The parameter that you pass to this method is the
interval and the frequency at which you want iOS to wake up your app in the background
and ask it to fetch new data. The default value for this property is UIApplicationBack
groundFetchIntervalNever, meaning that iOS will never wake your app in the back‐
ground. But you can set this property’s value manually by passing the number of interval
seconds, or you can simply pass the value of UIApplicationBackgroundFetchInter
valMinimum to ask iOS to put minimal effort into waking up your app by not doing the
process too frequently.

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 [application setMinimumBackgroundFetchInterval:

 UIApplicationBackgroundFetchIntervalMinimum];

 return YES;

}

After you’ve done that, you will need to implement the application:performFetch
WithCompletionHandler instance method of your app delegate. The performFetch
WithCompletionHandler: parameter of this method will give you a block object that
you will have to call once your app is finished fetching data. This method, in general,
gets called in your app delegate when iOS wants your app to fetch new content in the
background, so you will have to respond to it and call the completion handler once you
are done. The block object that you have to call will accept a value of type UIBack
groundFetchResult:

typedef NS_ENUM(NSUInteger, UIBackgroundFetchResult) {

 UIBackgroundFetchResultNewData,

670 | Chapter 16: Multitasking

 UIBackgroundFetchResultNoData,

 UIBackgroundFetchResultFailed

} NS_ENUM_AVAILABLE_IOS(7_0);

So if iOS asks your app to fetch new content and you try to fetch the data but there is
no new data available, you will have to call the completion handler and pass the value
of UIBackgroundFetchResultNoData to it. This way, iOS will know that there was no
new content available for your app and can adjust its scheduling algorithm and AI in
order to not call your app so frequently. iOS is very smart about this indeed. Let’s imagine
that you ask iOS to call your app in the background so that you can retrieve new content.
If your server doesn’t give you any new updates, and for a whole week of your app being
woken up in the background on the user’s device you could not fetch any new data and
always passed UIBackgroundFetchResultNoData to the completion block of the afore‐
mentioned method, iOS will not wake your app as frequently. That will preserve pro‐
cessing power and, subsequently, battery.

For the purpose of this recipe, we are going to create a simple app that will retrieve news
items from a server. To avoid overcomplicating the recipe with server code, we are going
to fake the server calls. Let’s first create a class named NewsItem that has a date and a
text as its properties:

#import <Foundation/Foundation.h>

@interface NewsItem : NSObject

@property (nonatomic, strong) NSDate *date;

@property (nonatomic, copy) NSString *text;

@end

The class won’t have any implementation and will only carry information through its
properties. Now, back in your app delegate, define a mutable array of news items so that
in our table view controller, we can hook into that array and display the news items:

#import <UIKit/UIKit.h>

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (nonatomic, strong) UIWindow *window;

@property (nonatomic, strong) NSMutableArray *allNewsItems;

@end

Now lazily allocate this array so that it won’t be allocated and initialized unless it is
actually accessed by our app to preserve memory. Once the array is allocated, we will
add one new item to it:

#import "AppDelegate.h"

#import "NewsItem.h"

16.3. Adding Background Fetch Capabilities to Your Apps | 671

@implementation AppDelegate

- (NSMutableArray *) allNewsItems{

 if (_allNewsItems == nil){

 _allNewsItems = [[NSMutableArray alloc] init];

 /* Pre-populate the array with one item */

 NewsItem *item = [[NewsItem alloc] init];

 item.date = [NSDate date];

 item.text = [NSString stringWithFormat:@"News text 1"];

 [_allNewsItems addObject:item];

 }

 return _allNewsItems;

}

<# Rest of your app delegate code will go here #>

We will now implement a method in our app that will fake a server call. Basically, it will
toss a coin. More precisely, it will get a random integer between 0 and 1, inclusive. If
that number is 1, it will pretend like there is new server content, and if that value is 0,
it will pretend like there are no new server items to download. If this value turns out to
be 1, then it will add a new item to the list as well:

- (void) fetchNewsItems:(BOOL *)paramFetchedNewItems{

 if (arc4random_uniform(2) != 1){

 if (paramFetchedNewItems != nil){

 *paramFetchedNewItems = NO;

 }

 return;

 }

 [self willChangeValueForKey:@"allNewsItems"];

 /* Generate a new item */

 NewsItem *item = [[NewsItem alloc] init];

 item.date = [NSDate date];

 item.text = [NSString stringWithFormat:@"News text %lu",

 (unsigned long)self.allNewsItems.count + 1];

 [self.allNewsItems addObject:item];

 if (paramFetchedNewItems != nil){

 *paramFetchedNewItems = YES;

 }

 [self didChangeValueForKey:@"allNewsItems"];

}

672 | Chapter 16: Multitasking

The Boolean pointer parameter of this method will tell us whether there was any new
content that was added to the array.

Now let’s implement the background fetching mechanism of our app delegate as ex‐
plained before:

- (void) application:(UIApplication *)application

 performFetchWithCompletionHandler:(void (^)(UIBackgroundFetchResult))

 completionHandler{

 BOOL haveNewContent = NO;

 [self fetchNewsItems:&haveNewContent];

 if (haveNewContent){

 completionHandler(UIBackgroundFetchResultNewData);

 } else {

 completionHandler(UIBackgroundFetchResultNoData);

 }

}

Beautiful. In our table view controller, we will watch for changes to this array of items
in the app delegate, and as soon as the array’s contents are changed, we will refresh our
table view. We will be smart about this, though. If our app is in the foreground, we will
refresh the table view, but if our app is in the background, we will delay the refresh of
the table view until the app is brought back to the foreground:

#import "TableViewController.h"

#import "AppDelegate.h"

#import "NewsItem.h"

@interface TableViewController ()

@property (nonatomic, weak) NSArray *allNewsItems;

@property (nonatomic, unsafe_unretained) BOOL mustReloadView;

@end

@implementation TableViewController

- (void)viewDidLoad

{

 [super viewDidLoad];

 AppDelegate *appDelegate = [UIApplication sharedApplication].delegate;

 self.allNewsItems = appDelegate.allNewsItems;

 [appDelegate addObserver:self

 forKeyPath:@"allNewsItems"

 options:NSKeyValueObservingOptionNew

 context:NULL];

 [[NSNotificationCenter defaultCenter]

 addObserver:self

16.3. Adding Background Fetch Capabilities to Your Apps | 673

 selector:@selector(handleAppIsBroughtToForeground:)

 name:UIApplicationWillEnterForegroundNotification

 object:nil];

}

- (void) observeValueForKeyPath:(NSString *)keyPath

 ofObject:(id)object

 change:(NSDictionary *)change

 context:(void *)context{

 if ([keyPath isEqualToString:@"allNewsItems"]){

 if ([self isBeingPresented]){

 [self.tableView reloadData];

 } else {

 self.mustReloadView = YES;

 }

 }

}

- (void) handleAppIsBroughtToForeground:(NSNotification *)paramNotification{

 if (self.mustReloadView){

 self.mustReloadView = NO;

 [self.tableView reloadData];

 }

}

Last but not least, we will write the required methods of our table view data source to
feed the news items to the table view:

In this example code, we are dequeueing table view cells with the
identifier of Cell. The reason that the dequeueReusableCellWithIden
tifier:forIndexPath: method of our table view returns valid cells
instead of returning nil is that in our storyboard file, we have al‐
ready defined this identifier for the cell prototype of our table view. At
runtime, our storyboard is registering this prototype cell for iOS with
the given identifier, so that you can simply dequeue the cells with the
given identifier without having to register the cells in advance.

- (NSInteger)tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section{

 return self.allNewsItems.count;

}

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath{

 static NSString *CellIdentifier = @"Cell";

674 | Chapter 16: Multitasking

 UITableViewCell *cell = [tableView

 dequeueReusableCellWithIdentifier:CellIdentifier

 forIndexPath:indexPath];

 NewsItem *newsItem = self.allNewsItems[indexPath.row];

 cell.textLabel.text = newsItem.text;

 return cell;

}

- (void) dealloc{

 AppDelegate *appDelegate = [UIApplication sharedApplication].delegate;

 [appDelegate removeObserver:self forKeyPath:@"allNewsItems"];

 [[NSNotificationCenter defaultCenter] removeObserver:self];

}

For more information about table views, please refer to Chapter 4.

So now run your app and press the Home button to send your app to the background.
Go back to Xcode, and from the Debug menu, choose Simulate Background Fetch (see
Figure 16-2). Now open your app again without terminating it and see whether any new
content shows up in your table view. If not, it’s because we put the logic in our app that,
basically, tosses a coin and randomly decides whether there is new content on the server
or not. This is to fake the server calls. If you don’t get any new content, simply repeat
the simulation of background fetch in the Debug menu until you get new content.

Up until now, we have been processing background fetch requests by iOS while our app
was in the background, but what if our app has been completely terminated and is not
in the background anymore? How do we simulate that situation to find out whether our
app will still work? Well, it turns out that Apple has already thought about this. All you
have to do is choose the Manage Schemes menu item of the Product menu in Xcode,
and from there, duplicate the main scheme of your app by pressing the little (+) button
and then choosing Duplicate Scheme (see Figure 16-3).

16.3. Adding Background Fetch Capabilities to Your Apps | 675

Figure 16-2. Simulating a background fetch in Xcode

Figure 16-3. Duplicate your scheme to enable background fetch simulations from the
terminated app state

676 | Chapter 16: Multitasking

Now a new dialog will appear in front of you, similar to that shown in Figure 16-4, and
will ask you to set the various properties of the new scheme. In this dialog, enable the
“Launch due to a background fetch event” item and press the OK button.

Figure 16-4. Enabling your scheme to launch your app for background fetches

Now you will have two schemes in the Xcode for your app (see Figure 16-5). All you
have to do to launch your app for background fetches is to select the second scheme
that you just created and run your app in the simulator or on the device. This will not
bring your app to the foreground. Instead, it will send it a signal to fetch data in the
background, and that, in turn, will invoke the application:performFetchWithComple
tionHandler: method of your app delegate. If you have followed all the steps that were
explained in this recipe, you should have a fully working app in both scenarios: when
iOS wakes up your app from the background, and when your app is started afresh to
fetch data in the background.

16.3. Adding Background Fetch Capabilities to Your Apps | 677

Figure 16-5. Use the new scheme to start your app by simulating a background fetch

See Also
Recipe 16.2

16.4. Playing Audio in the Background

Problem
You are writing an application that plays audio files (such as a music player) and you
would like the audio files to be played even if your application is running in the back‐
ground.

Solution
Select your project file in the Navigator of Xcode. Then, from the Capabilities section,
switch on the Background Modes subsection. After the list of background modes is
given to you, tick on the Audio switch.

678 | Chapter 16: Multitasking

Now you can use the AV Foundation to play audio files, and your audio files will be
played even if your application is in the background.

Please bear in mind that playing audio in the background might not
work in iOS Simulator. You need to test this recipe on a real device.
On the simulator, chances are that the audio will stop playing once
your application is sent to the background.

Discussion
In iOS, applications can request that their audio files continue playing even if the ap‐
plication is sent to the background. AV Foundation’s AVAudioPlayer is an easy-to-use
audio player that we will employ in this recipe. Our mission is to start an audio player
and play a simple song, and while the song is playing, send the application to the back‐
ground by pressing the Home button. If you have successfully enabled the Audio back‐
ground mode (as explained in the Solution of this recipe) in our target, iOS will continue
playing the music from our app’s audio player, even in the background. While in the
background, we should only play music and provide our music player with the data that
is necessary for it to run. We should not be performing any other tasks, such as displaying
new screens.

Here is the declaration of a simple app delegate that starts an AVAudioPlayer:

#import "AppDelegate.h"

#import <AVFoundation/AVFoundation.h>

@interface AppDelegate () <AVAudioPlayerDelegate>

@property (nonatomic, strong) AVAudioPlayer *audioPlayer;

@end

@implementation AppDelegate

<# Rest of your code goes here #>

When our app opens, we will allocate and initialize our audio player, read the contents
of a file named MySong.mp4 into an instance of NSData, and use that data in the initial‐
ization process of our audio player:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 dispatch_queue_t dispatchQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_async(dispatchQueue, ^(void) {

 NSError *audioSessionError = nil;

 AVAudioSession *audioSession = [AVAudioSession sharedInstance];

16.4. Playing Audio in the Background | 679

 [audioSession setActive:YES error:nil];

 if ([audioSession setCategory:AVAudioSessionCategoryPlayback

 error:&audioSessionError]){

 NSLog(@"Successfully set the audio session.");

 } else {

 NSLog(@"Could not set the audio session");

 }

 NSBundle *mainBundle = [NSBundle mainBundle];

 NSString *filePath = [mainBundle pathForResource:@"MySong"

 ofType:@"mp3"];

 NSData *fileData = [NSData dataWithContentsOfFile:filePath];

 NSError *error = nil;

 /* Start the audio player */

 self.audioPlayer = [[AVAudioPlayer alloc] initWithData:fileData

 error:&error];

 /* Did we get an instance of AVAudioPlayer? */

 if (self.audioPlayer != nil){

 /* Set the delegate and start playing */

 self.audioPlayer.delegate = self;

 if ([self.audioPlayer prepareToPlay] &&

 [self.audioPlayer play]){

 NSLog(@"Successfully started playing...");

 } else {

 NSLog(@"Failed to play.");

 }

 } else {

 /* Failed to instantiate AVAudioPlayer */

 }

 });

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

In this example code, we are using AV audio sessions to silence music playback from
other applications (such as the Music application) before starting to play the audio. For

680 | Chapter 16: Multitasking

more information about audio sessions, please refer to Recipe 12.5. When in the back‐
ground, you are not limited to playing only the current audio file. If the currently playing
audio file (in the background) finishes playing, you can start another instance of
AVAudioPlayer and play a completely new audio file. iOS will adjust the processing
required for this, but there is no guarantee that while in the background, your applica‐
tion will be given permission to allocate enough memory to accommodate the data of
the new sound file.

You’ve probably noticed that in our code, we are electing our app delegate to become
the delegate of our audio player. We will implement the audio player delegate methods
like so:

- (void)audioPlayerBeginInterruption:(AVAudioPlayer *)player{

 /* Audio Session is interrupted.

 The player will be paused here */

}

- (void)audioPlayerEndInterruption:(AVAudioPlayer *)player

 withOptions:(NSUInteger)flags{

 /* Check the flags, if we can resume the audio,

 then we should do it here */

 if (flags == AVAudioSessionInterruptionOptionShouldResume){

 [player play];

 }

}

- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player

 successfully:(BOOL)flag{

 NSLog(@"Finished playing the song");

 /* The flag parameter tells us if the playback was successfully

 finished or not */

 if ([player isEqual:self.audioPlayer]){

 self.audioPlayer = nil;

 } else {

 /* This isn't our audio player! */

 }

}

For more information about playing audio and video, please refer to Chapter 12.

Another important thing to keep in mind is that while your application is running an
audio file in the background, the value returned by the backgroundTimeRemaining

16.4. Playing Audio in the Background | 681

property of UIApplication will not be changed. In other words, an application that
requests to play audio files in the background is not implicitly or explicitly asking iOS
for extra execution time.

16.5. Handling Location Changes in the Background

Problem
You are writing an application whose main functionality is processing location changes
using Core Location. You want the application to retrieve the iOS device location
changes even if the application is sent to the background.

Solution
Select your project file in the Navigator of Xcode. Then, from the Capabilities section,
switch on the Background Modes subsection. After the list of background modes is
given to you, tick on the Location switch.

Discussion
When your application is running in the foreground, you can receive delegate messages
from an instance of CLLocationManager telling you when iOS detects that the device is
at a new location. However, if your application is sent to the background and is no longer
active, the location delegate messages will not be delivered normally to your application.
They will instead be delivered in a batch when your application again becomes the
foreground application.

If you still want to be able to receive changes in the location of the user’s device while
running in the background, you must enable the Location updates capability of your
app, as described in the Solution section of this recipe. Once in the background, your
application will continue to receive the changes in the device’s location. Let’s test this in
a simple app with just the app delegate.

What I intend to do in this app is to keep a Boolean value in the app delegate, called
executingInBackground. When the app goes to the background, I will set this value to
YES; when the app comes back to the foreground, I will set this value to NO. When we
get location updates from CoreLocation, we will check this flag. If this flag is set to
YES, then we won’t do any heavy calculations or any UI update because, well, our app is
in the background, and as responsible programmers, we should not do heavy processing
while our app is in the background. If our app is in the foreground, however, we have
all the device’s processing power for the normal processing that we wish to do. We also
will attempt to get the best location change accuracy when our app is in the foreground;
when the app is sent to the background, we will be sure to ask for less accuracy in location

682 | Chapter 16: Multitasking

updates to ease the strain on the location sensors. So let’s go ahead and define our app
delegate:

#import "AppDelegate.h"

#import <CoreLocation/CoreLocation.h>

@interface AppDelegate () <CLLocationManagerDelegate>

@property (nonatomic, strong) CLLocationManager *myLocationManager;

@property (nonatomic, unsafe_unretained, getter=isExecutingInBackground)

BOOL executingInBackground;

@end

@implementation AppDelegate

<# Rest of your code goes here #>

Now let’s go ahead and create and start our location manager when our app starts:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 self.myLocationManager = [[CLLocationManager alloc] init];

 self.myLocationManager.desiredAccuracy = kCLLocationAccuracyBest;

 self.myLocationManager.delegate = self;

 [self.myLocationManager startUpdatingLocation];

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

You can see that we have set the desired accuracy of our location manager to a high level.
However, when we go to the background, we want to lower this accuracy to give iOS a
bit of a rest:

- (void)applicationDidEnterBackground:(UIApplication *)application{

 self.executingInBackground = YES;

 /* Reduce the accuracy to ease the strain on

 iOS while we are in the background */

 self.myLocationManager.desiredAccuracy = kCLLocationAccuracyHundredMeters;

}

When our app is awakened from the background, we can change this accuracy back to
a high level:

- (void)applicationWillEnterForeground:(UIApplication *)application{

 self.executingInBackground = NO;

 /* Now that our app is in the foreground again, let's increase the location

 detection accuracy */

16.5. Handling Location Changes in the Background | 683

 self.myLocationManager.desiredAccuracy = kCLLocationAccuracyBest;

}

Additionally, we would like to avoid doing any intense processing when we get a new
location from the location manager while our app is in the background, so we need to
handle the locationManager:didUpdateToLocation:fromLocation: delegate method
of our location manager in this way:

- (void)locationManager:(CLLocationManager *)manager

 didUpdateToLocation:(CLLocation *)newLocation

 fromLocation:(CLLocation *)oldLocation{

 if ([self isExecutingInBackground]){

 /* We are in the background. Do not do any heavy processing */

 } else {

 /* We are in the foreground. Do any processing that you wish */

 }

}

The simple rule here is that if we are in the background, we should be using the smallest
amount of memory and processing power to satisfy our application’s needs. So, by de‐
creasing the accuracy of the location manager while in the background, we are decreas‐
ing the amount of processing iOS has to do to deliver new locations to our application.

Depending on the version of iOS Simulator you are testing your ap‐
plications with, as well as the settings of your network connection and
many other factors that affect this process, background location pro‐
cessing might not work for you. Please test your applications, includ‐
ing the source code in this recipe, on a real device.

16.6. Saving and Loading the State of Multitasking Apps

Problem
You want the state of your iOS app to be saved when it is sent to the background and
for the same state to resume when the application is brought to the foreground.

Solution
Use a combination of the UIApplicationDelegate protocol’s messages sent to your
application delegate and the notifications sent by iOS to preserve the state of your
multitasking apps.

684 | Chapter 16: Multitasking

Discussion
When an empty iOS application (an application with just one window and no code
written for it) is run on an iOS device with support for multitasking for the first time
(not from the background), the following UIApplicationDelegate messages will be
sent to your app delegate, in this order:

1. application:didFinishLaunchingWithOptions:

2. applicationDidBecomeActive:

If the user presses the Home button on her iOS device, your app delegate will receive
these messages, in this order:

1. applicationWillResignActive:

2. applicationDidEnterBackground:

Once the application is in the background, the user can press the Home button twice
and select our application from the list of background applications. (The way our app
is brought to the foreground doesn’t really matter. For all we know, another app might
launch our app through URI schemes that we can expose in our app.) Once our appli‐
cation is brought to the foreground again, we will receive these messages in the appli‐
cation delegate, in this order:

1. applicationWillEnterForeground:

2. applicationDidBecomeActive:

In addition to these messages, we will also receive various notification messages from
iOS when our application is sent to the background or brought to the foreground again.

To save and load back the state of your apps, you need to think carefully about the tasks
you need to pause when going into the background and then resume when the appli‐
cation is brought to the foreground. Let me give you an example. As will be mentioned
in Recipe 16.7, network connections can be easily resumed by the system itself, so we
might not need to do anything special if we’re downloading a file from the network.
However, if you are writing a game, for instance, it is best to listen for the notifications
iOS sends when your application is being sent to the background, and to act accordingly.
In such a scenario, you can simply put the game engine into a paused state. You can also
put the state of the sound engine into a paused state if necessary.

After an application is sent to the background, it has about 10 seconds to save any
unsaved data and prepare itself to be brought to the foreground at any moment by the
user. You can optionally ask for extra execution time if required (further information
about this is available in Recipe 16.2).

16.6. Saving and Loading the State of Multitasking Apps | 685

Let’s demonstrate saving your state with an example. Suppose we are writing a game for
iOS. When our game is sent to the background, we want to do the following:

1. Put the game engine into a paused state.

2. Save the user’s score to disk.

3. Save the current level’s data to disk. This includes where the user is in the level, the
physical aspects of the level, the camera position, and so on.

When the user opens the application again, bringing the application to the foreground,
we want to do the following:

1. Load the user’s score from disk.

2. Load the level the user was playing the last time from disk.

3. Resume the game engine.

Now let’s say our app delegate is our game engine. Let’s define a few methods in the app
delegate’s header file:

#import <UIKit/UIKit.h>

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (nonatomic, strong) UIWindow *window;

/* Saving the state of our app */

- (void) saveUserScore;

- (void) saveLevelToDisk;

- (void) pauseGameEngine;

/* Loading the state of our app */

- (void) loadUserScore;

- (void) loadLevelFromDisk;

- (void) resumeGameEngine;

@end

We will proceed to place stub implementations of these methods in the implementation
file of our app delegate:

#import "AppDelegate.h"

@implementation AppDelegate

- (void) saveUserScore{

 /* Save the user score here */

}

- (void) saveLevelToDisk{

 /* Save the current level and the user's location on map to disk */

686 | Chapter 16: Multitasking

}

- (void) pauseGameEngine{

 /* Pause the game engine here */

}

- (void) loadUserScore{

 /* Load the user's location back to memory */

}

- (void) loadLevelFromDisk{

 /* Load the user's previous location on the map */

}

- (void) resumeGameEngine{

 /* Resume the game engine here */

}

<# Rest of your code goes here #>

Now we need to make sure that our app is able to handle interruptions, such as incoming
calls on an iPhone. On such occasions, our app won’t be sent to the background but will
become inactive. When the user finishes a phone call, for instance, iOS will bring our
app to the active state. So when our app becomes inactive, we need to make sure we are
pausing our game engine; when the app becomes active again, we can resume our game
engine. We don’t need to save anything to the disk when our app becomes inactive really
(at least in this example), because iOS will bring our app to its previous state once it
becomes active again:

- (void)applicationWillResignActive:(UIApplication *)application{

 [self pauseGameEngine];

}

- (void)applicationDidBecomeActive:(UIApplication *)application{

 [self resumeGameEngine];

}

And now, simply, when our app is sent to the background, we will save the state of our
game, and when our app is back in the foreground, we will load the state back:

- (void)applicationDidEnterBackground:(UIApplication *)application{

 [self saveUserScore];

 [self saveLevelToDisk];

 [self pauseGameEngine];

}

- (void)applicationWillEnterForeground:(UIApplication *)application{

 [self loadUserScore];

 [self loadLevelFromDisk];

 [self resumeGameEngine];

}

16.6. Saving and Loading the State of Multitasking Apps | 687

Not every application is a game. However, you can use this technique to load and save
the state of your application in the multitasking environment of iOS.

See Also
Recipe 16.2

16.7. Handling Network Connections in the Background

Problem
You are using instances of NSURLConnection to send and receive data to and from a web
server and are wondering how you can allow your application to work in the multi‐
tasking environment of iOS without connection failures.

Solution
Make sure you support connection failures in the block objects that you submit to your
connection objects.

Discussion
For applications that use NSURLConnection but do not borrow extra time from iOS when
they are sent to the background, connection handling is truly simple. Let’s go through
an example to see how an asynchronous connection will act if the application is sent to
the background and brought to the foreground again. For this, let’s send an asynchro‐
nous connection request to retrieve the contents of a URL (say, Apple’s home page):

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *urlAsString = @"http://www.apple.com";

 NSURL *url = [NSURL URLWithString:urlAsString];

 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:url];

 NSOperationQueue *queue = [[NSOperationQueue alloc] init];

 [NSURLConnection

 sendAsynchronousRequest:urlRequest

 queue:queue

 completionHandler:^(NSURLResponse *response,

 NSData *data,

 NSError *error) {

 if ([data length] > 0 &&

 error != nil){

 /* Date did come back */

 }

688 | Chapter 16: Multitasking

 else if ([data length] == 0 &&

 error != nil){

 /* No data came back */

 }

 else if (error != nil){

 /* Error happened. Make sure you handle this properly */

 }

 }];

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

I advise you to replace the Apple home page URL in this example with
the URL to a rather large file on the Internet. The reason is that if your
app is downloading a large file, you will have more time to play with
the app and send it to the background and bring it to the fore‐
ground. Whereas, if you are on a rather fast Internet connection and
you are just downloading Apple’s home page, chances are that the
connection is going to retrieve the data for you in a second or two.

In the foreground, our application will continue downloading the file. While down‐
loading, the user can press the Home button and send the application to the background.
What you will observe is true magic! iOS will automatically put the download process
into a paused state for you. When the user brings your application to the foreground
again, the downloading will resume without you writing a single line of code to handle
multitasking.

Now let’s see what happens with synchronous connections. We are going to download
a very big file on the main thread (a very bad practice—do not do this in a production
application!) as soon as our application launches:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 /* Replace this URL with the URL of a file that is rather big in size */

 NSString *urlAsString = @"http://www.apple.com";

 NSURL *url = [NSURL URLWithString:urlAsString];

 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:url];

 NSError *error = nil;

 NSData *connectionData = [NSURLConnection

 sendSynchronousRequest:urlRequest

16.7. Handling Network Connections in the Background | 689

 returningResponse:nil

 error:&error];

 if ([connectionData length] > 0 &&

 error == nil){

 }

 else if ([connectionData length] == 0 &&

 error == nil){

 }

 else if (error != nil){

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

If you run this application and send it to the background, you will notice that the ap‐
plication’s GUI is sent to the background, but the application’s core is never sent to the
background and the appropriate delegate messages— applicationWillResignAc
tive: and applicationDidEnterBackground: —will never be received. I have con‐
ducted this test on an iPhone.

The problem with this approach is that we are consuming the main thread’s time slice
by downloading files synchronously. We can fix this by either downloading the files
asynchronously on the main thread, as mentioned before, or downloading them syn‐
chronously on separate threads.

Take the previous sample code, for example. If we download the same big file synchro‐
nously on a global concurrent queue, the connection will be paused when the application
is sent to the background, and will resume once it is brought to the foreground again:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 dispatch_queue_t dispatchQueue =

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_async(dispatchQueue, ^(void) {

 /* Replace this URL with the URL of a file that is

 rather big in size */

 NSString *urlAsString = @"http://www.apple.com";

 NSURL *url = [NSURL URLWithString:urlAsString];

 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:url];

690 | Chapter 16: Multitasking

 NSError *error = nil;

 NSData *connectionData = [NSURLConnection

 sendSynchronousRequest:urlRequest

 returningResponse:nil

 error:&error];

 if ([connectionData length] > 0 &&

 error == nil){

 }

 else if ([connectionData length] == 0 &&

 error == nil){

 }

 else if (error != nil){

 }

 });

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

See Also
Recipe 16.2

16.8. Opting Out of Multitasking

Problem
You do not want your application to participate in multitasking.

Solution
Add the UIApplicationExitsOnSuspend key to your application’s main .plist file and

set the value to true:

<# Some keys and values #>

<key>UIApplicationExitsOnSuspend</key>

<true/>

<# Rest of the keys and values #>

16.8. Opting Out of Multitasking | 691

Discussion
In some circumstances, you might require your iOS applications not to be multitasking
(although I strongly encourage you to develop your applications to be multitasking-
aware). In such cases, you can add the UIApplicationExitsOnSuspend key to your
application’s main .plist file. Devices on the latest iOS versions that support multitasking

understand this value, and the OS will terminate an application with this key set to true
in the application’s .plist file. On earlier iOS versions without support for multitasking,

this value will have no meaning to the operating system and will be ignored.

When such an application runs on the latest iOS, the following application delegate
messages will be posted to your application:

1. application:didFinishLaunchingWithOptions:

2. applicationDidBecomeActive:

If the user presses the Home button on the device, the following messages will be sent
to your application delegate:

1. applicationDidEnterBackground:

2. applicationWillTerminate:

692 | Chapter 16: Multitasking

CHAPTER 17

Notifications

17.0. Introduction
Notifications are objects that can carry some data and be broadcast to multiple receivers.
They are very good for decomposing work into different pieces of code, but can very
easily get out of hand if you misuse them. You should understand the limitations of
notifications. We will talk more about their uses in this chapter and learn when you are
better off without them.

Three types of notifications are available in iOS:

A normal notification (an instance of NSNotification class)
This is a simple notification that your app can broadcast to all possible receivers
inside your app. iOS also broadcasts notifications of this type to your app while
your app is in the foreground, informing you of various system events that are
happening, such as the keyboard showing or being hidden. These notifications are
great for decoupling code, in that they can allow you to cleanly separate various
components in a complex iOS application.

A local notification (an instance of UILocalNotification class)
This is a notification that you schedule to be delivered to your app at a specific time.
Your app can receive it even if the app is in the background or not running at all,
and the app is started if the notification is delivered while your app is not running.
You would normally schedule a local notification if you want to ensure that your
app gets woken up (granted that the user permits this action, as we will see later) at
a specific time of the day.

Push notifications
This is a notification that is sent to an iOS device via a server. It is called a push
notification because your app doesn’t have to keep polling a server for notifications.
iOS maintains a persistent connection to Apple Push Notification Services servers

693

(APNS servers), and whenever a new push message is available, iOS will process
the message and send it to the app to which the push was designated.

We will refer to normal notifications herein as notifications. The word
normal is redundant in this context.

Local notifications are special in that they become visible to the user and the user can
take action on them. Based on the user’s action, your app will be notified by iOS to
handle the action. On the other hand, notifications are invisible items that you can
broadcast in your app and that your app has to handle. The user doesn’t directly have
to get involved unless you involve her as a result of receiving and processing the noti‐
fication. For instance, your app may send a notification to another part of your app,
which, upon receiving that notification, fires up an alert dialog. The user then has to get
involved and press a button on the alert dialog to dismiss it (for instance). This is indirect
involvement and is very much different from the direct involvement that local notifi‐
cations demand from users.

Notifications are a big part of OS X and iOS. iOS sends system-wide notifications to all
apps that are listening, and apps can send notifications as well. A system-wide, or
distributed, notification can be delivered only by iOS.

A notification is a simple concept represented by the NSNotification class in the iOS
SDK. A notification is posted by an object and can carry information. The object that
sends the notification will identify itself to the notification center while posting the
notification. The receiver of the notification can then probe the sender, perhaps using
its class name, to find out more about the sender, which is called the object of the noti‐
fication. A notification can also carry a user-info dictionary, which is a dictionary data
structure that can carry extra information about the notification. If no dictionary is
provided, this parameter is nil.

17.1. Sending Notifications

Problem
You want to decouple parts of your app and send a notification where it can be picked
up by another component in your app.

Solution
Compose an instance of NSNotification and broadcast it to your app using the class’s
postNotification: method. You can get an instance of the notification center using
its defaultCenter class method, like so:

694 | Chapter 17: Notifications

#import "AppDelegate.h"

NSString *const kNotificationName = @"NotificationNameGoesHere";

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSNotification *notification = [NSNotification

 notificationWithName:kNotificationName

 object:self

 userInfo:@{@"Key 1" : @"Value 1",

 @"Key 2" : @2}];

 [[NSNotificationCenter defaultCenter] postNotification:notification];

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Discussion
A notification object is encapsulated in an instance of the NSNotification class. A
notification object on its own is really nothing until it has been posted to the app using
a notification center. A notification object has three important properties:

Name
This is a string. When a listener starts listening for notifications, it has to specify
the name of the notification, as we will see later in this chapter. If you are posting
a notification in a class of yours, ensure that the name of that notification is well
documented, and even better, that you export that string symbol in your header
file. We are going to see an example of this soon in this recipe.

Sender object
You can optionally specify the object that is sending the notification. Usually this
will be set to self. But why do we need to even specify the sender of a notification?
This information is useful for the parts of the app that listen for notifications. Let’s
say that, in one of your classes, you are sending a notification with the name of
MyNotification and another class in your application is sending a notification with
the exact same name. When a listener starts listening for the MyNotification
notification, the receiver can specify which notification source it is interested in. So
the receiver can say that it wants to receive all notifications with the name of MyNo
tification coming from a specific object, but not from the second object. This
way, the receiver can really be in control. Even though you can leave the Sender

17.1. Sending Notifications | 695

Object field as nil when posting a notification, it is much better to set this property
to self, the object that is sending the notification.

User info dictionary
This is a dictionary object that you can attach to your notification object. The re‐
ceiver can then read this dictionary when it receives the notification. Think of this
as an opportunity to pass additional information to the receivers of your notifica‐
tion.

See Also
Recipe 17.0, “Introduction”

17.2. Listening for and Reacting to Notifications

Problem
You want to react to a notification that is being sent either by your app or by the system.

Solution
Listen to a particular notification by calling the addObserver:selector:name:ob
ject: method of the default notification center. This method has the following param‐
eters:

addObserver

The object that is going to observe a given notification. So if this is the current class,
put self here to point to the current instance of your class.

selector

The selector that will receive the notification. This selector has to have one param‐
eter of type NSNotification.

name

The name of the notification that you want to listen to.

object

The object that is going to send you the notification. For instance, if a notification
with the same name is being sent from two objects, you can narrow your target and
only listen for the notification that comes from Object A instead of both Object A
and Object B.

When you no longer want to receive notifications, issue the removeObserver: instance
method of the NSNotificationCenter class. Make sure that you do this because the
notification center retains instances of listener objects. You could encounter memory

696 | Chapter 17: Notifications

leaks or errors if the notification center retains an instance of your class after it has been
released, so make sure that you remove yourself from the observers list.

Discussion
An example can make this whole thing very easy. What we are going to do in this example
is create a class named Person and add two properties to it: a first name and a last name,
both of type NSString. Then in our app delegate, we are going to instantiate an object
of type Person. Instead of setting the first name and the last name of the person, we are
going to send a notification to the notification center, and in the user info dictionary of
the notification, we are going to put the first name and the last name of type
NSString. In the initialization method of our Person class, we are going to listen for the
notification that comes from the app delegate and then extract the first name and last
name from its user info dictionary and set the person’s properties to those values.

So here is the header file of our app delegate:

#import <UIKit/UIKit.h>

/* The name of the notification that we are going to send */

extern NSString *const kSetPersonInfoNotification;

/* The first-name key in the user-info dictionary of our notification */

extern NSString *const kSetPersonInfoKeyFirstName;

/* The last-name key in the user-info dictionary of our notification */

extern NSString *const kSetPersonInfoKeyLastName;

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (nonatomic, strong) UIWindow *window;

@end

And here is the implementation of our app delegate:

#import "AppDelegate.h"

#import "Person.h"

NSString *const kSetPersonInfoNotification = @"SetPersonInfoNotification";

NSString *const kSetPersonInfoKeyFirstName = @"firstName";

NSString *const kSetPersonInfoKeyLastName = @"lastName";

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 Person *steveJobs = [[Person alloc] init];

 NSNotification *notification =

 [NSNotification

 notificationWithName:kSetPersonInfoNotification

17.2. Listening for and Reacting to Notifications | 697

 object:self

 userInfo:@{kSetPersonInfoKeyFirstName : @"Steve",

 kSetPersonInfoKeyLastName : @"Jobs"}];

 /* The person class is currently listening for this notification. That class

 will extract the first name and last name from it and set its own first

 name and last name based on the userInfo dictionary of the notification. */

 [[NSNotificationCenter defaultCenter] postNotification:notification];

 /* Here is proof */

 NSLog(@"Person's first name = %@", steveJobs.firstName);

 NSLog(@"Person's last name = %@", steveJobs.lastName);

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

The important part is the implementation of the Person class (Person.m):

#import "Person.h"

#import "AppDelegate.h"

@implementation Person

- (void) handleSetPersonInfoNotification:(NSNotification *)paramNotification{

 self.firstName = paramNotification.userInfo[kSetPersonInfoKeyFirstName];

 self.lastName = paramNotification.userInfo[kSetPersonInfoKeyLastName];

}

- (instancetype) init{

 self = [super init];

 if (self != nil){

 NSNotificationCenter *center = [NSNotificationCenter defaultCenter];

 [center addObserver:self

 selector:@selector(handleSetPersonInfoNotification:)

 name:kSetPersonInfoNotification

 object:[[UIApplication sharedApplication] delegate]];

 }

 return self;

}

- (void) dealloc{

 [[NSNotificationCenter defaultCenter] removeObserver:self];

}

@end

698 | Chapter 17: Notifications

The value that you specify for the object parameter of the addObserv
er:selector:name:object: method is the object where you expect the
notification to originate. If any other object sends a notification with
the same name, your listener won’t be asked to handle that. You would
normally specify this object when you know exactly which object is
going to send the notification you want to listen to. This may not always
be possible, such as in a very complex application where one view
controller in one tab has to listen for notifications from another view
controller in another tab. In that case, the listener won’t necessarily
have a reference to the instance of the view controller from where the
notification will be originated, so in this case you can pass nil for the
parameter of the aforementioned method.

When you run this app, you will see the following printed to the console:

Person's first name = Steve

Person's last name = Jobs

So this was a notification that we sent and received from within our app. What about
system notifications? We will talk about them a bit more in detail later, but for now,
while in Xcode, press the Command+Shift+O key combinations (O for Open) and type
in UIWindow.h. Once you open this header file, look for UIKeyboardWillShowNotifi

cation and you will find a block of code like so:

//Each notification includes a nil object and a userInfo

//dictionary containing the beginning and ending keyboard frame in screen

//coordinates. Use the various UIView and UIWindow convertRect facilities

//to get the frame in the desired coordinate system. Animation key/value

//pairs are only available for the "will" family of notification.

UIKIT_EXTERN NSString *const UIKeyboardWillShowNotification;

UIKIT_EXTERN NSString *const UIKeyboardDidShowNotification;

UIKIT_EXTERN NSString *const UIKeyboardWillHideNotification;

UIKIT_EXTERN NSString *const UIKeyboardDidHideNotification;

That is Apple’s code. We wrote our code in exactly the same way. Apple is exposing the
notifications that the system sends and then documenting them. You need to do some‐
thing similar. When creating notifications that are sent by components from within
your app, make sure that you document them and tell programmers (maybe those on
your team working on the same app) what values they should be expecting from the
user info of your notification, along with anything else that they should know about
your notifications.

17.2. Listening for and Reacting to Notifications | 699

17.3. Listening and Reacting to Keyboard Notifications

Problem
You are allowing the user to enter text in your UI by using a component such as a text
field or a text view that requires the keyboard’s presence. However, when the keyboard
pops up on the screen, it obstructs a good half of your UI, rendering it useless. You want
to avoid this situation.

Solution
Listen to the keyboard notifications and move your UI components up or down, or
completely reshuffle them, so that although the keyboard is obstructing the screen, what
is essential to the user is still visible. For more information about the actual notifications
sent by the keyboard, please refer to the Discussion section of this recipe.

Discussion
iOS devices do not have a physical keyboard. They have a software keyboard that pops
up whenever the user has to enter some text into something like a text field (UIText
Field, described further in Recipe 1.19) or a text view (UITextView, described further
in Recipe 1.20). On the iPad, the user can even split the keyboard and move it up and
down. These are some of the edge cases that you might want to take care of when
designing your user interface. You can work with the UI designers in your company (if
you have access to such experts) and let them know about the possibility of the user
splitting the keyboard on the iPad. They will need to know about that before making
the art and creatives. We will discuss that edge case in this recipe.

Let’s have a look at the keyboard on the iPhone first. The keyboard can be displayed in
portrait and landscape mode. In portrait, the keyboard on an iPhone looks like
Figure 17-1.

The keyboard in landscape mode on an iPhone will look similar to that shown in
Figure 17-2.

On the iPad, however, the keyboard is a bit different. The most obvious difference is
that the keyboard is actually much bigger in size than the one on the iPhone, since the
iPad screen is physically bigger. The landscape keyboard on an iPad is obviously wider,
but contains the same keys as the portrait-mode keyboard. Also, the user can split the
keyboard if she wants to. This gives users better control over the keyboard but introduces
challenges for programmers and even more for UX and UI designers.

700 | Chapter 17: Notifications

Figure 17-1. Portrait-mode keyboard on an iPhone

Figure 17-2. The keyboard in landscape mode on an iPhone

iOS broadcasts various notifications related to the display of the keyboard on the screen.
Here is a list of these notifications and a brief explanation of each one:

17.3. Listening and Reacting to Keyboard Notifications | 701

UIKeyboardWillShowNotification

This notification is broadcast when the keyboard is about to be displayed on the
screen. This notification carries a user-info dictionary that contains various infor‐
mation about the keyboard, the animation that the keyboard uses to be displayed
on the screen, and more.

UIKeyboardDidShowNotification

This notification is broadcast when the keyboard is displayed on the screen.

UIKeyboardWillHideNotification

This notification is broadcast when the keyboard is about to be removed from the
screen. This notification carries a user-info dictionary that contains various infor‐
mation about the keyboard, the keyboard’s animation when it is hiding, the duration
of the animation, etc.

UIKeyboardDidHideNotification

This notification is broadcast when the keyboard becomes fully hidden after being
shown on the screen.

The UIKeyboardWillShowNotification and UIKeyboardWillHideNotification no‐
tifications carry a user-info dictionary. Here are the keys in those dictionaries that you
might be interested in:

UIKeyboardAnimationCurveUserInfoKey

The value of this key specifies the type of animation curve the keyboard is using to
show or hide itself. This key contains a value (encapsulated in an object of type
NSValue) of type NSNumber that itself contains an unsigned integer of type NSUIn
teger.

UIKeyboardAnimationDurationUserInfoKey

The value of this key specifies the duration, in seconds, of the animation that the
keyboard is using to show or hide itself. This key contains a value (encapsulated in
an object of type NSValue) of type NSNumber that itself contains a double value of
type double.

UIKeyboardFrameBeginUserInfoKey

The value of this key specifies the frame of the keyboard before the animation
happens. If the keyboard is about to be displayed, this is the frame before the key‐
board appears. If the keyboard is already displayed and is about to hide, it is the
frame of the keyboard as it is on the screen before it animates out of the screen.
This key contains a value (encapsulated in an object of type NSValue) of type CGRect.

702 | Chapter 17: Notifications

UIKeyboardFrameEndUserInfoKey

The value of this key specifies the frame of the keyboard after the animation hap‐
pens. If the keyboard is about to be displayed, this is the frame after the keyboard
is animated fully displayed. If the keyboard is already displayed and is about to hide,
it is the frame of the keyboard after it is fully hidden. This key contains a value
(encapsulated in an object of type NSValue) of type CGRect.

The frames that get reported by iOS as the beginning and ending
frames of the keyboard do not take into account the orientation of the
device. You need to convert the reported CGRect values to a relevant
orientation-aware coordinate, as we will see soon in this recipe.

Let’s have a look at an example here. We are going to create a simple single-view appli‐
cation that runs only on the iPhone and displays an image view and a text field. The text
field is going to be located at the bottom of the screen. So when the user taps on the text
field to enter some text into it, the keyboard will pop up and block the text field com‐
pletely. Our mission is to animate the contents of our view up to make them visible even
if the keyboard is displayed on the screen. We are going to use storyboards for this app.
In the view controller, we are going to fill the view with a scroll view and place the image
view and a text field in the scroll view, as shown in Figure 17-3.

The superview of the image view and the text field is a scroll view that
is filling the whole parent view’s space.

I have already hooked the scroll view, the image view, and the text field from the story‐
board into the implementation file of the view controller like so:

#import "ViewController.h"

@interface ViewController () <UITextFieldDelegate>

@property (weak, nonatomic) IBOutlet UIScrollView *scrollView;

@property (weak, nonatomic) IBOutlet UITextField *textField;

@property (weak, nonatomic) IBOutlet UIImageView *imageView;

@end

@implementation ViewController

...

17.3. Listening and Reacting to Keyboard Notifications | 703

Figure 17-3. A simple storyboard with an image view and a text field

Now that our outlets are hooked into properties in our view controller, we can start
listening to keyboard notifications:

- (void) viewWillAppear:(BOOL)paramAnimated{

 [super viewWillAppear:paramAnimated];

704 | Chapter 17: Notifications

 NSNotificationCenter *center = [NSNotificationCenter defaultCenter];

 [center addObserver:self selector:@selector(handleKeyboardWillShow:)

 name:UIKeyboardWillShowNotification object:nil];

 [center addObserver:self selector:@selector(handleKeyboardWillHide:)

 name:UIKeyboardWillHideNotification object:nil];

}

- (void)viewWillDisappear:(BOOL)paramAnimated{

 [super viewWillDisappear:paramAnimated];

 [[NSNotificationCenter defaultCenter] removeObserver:self];

}

A common mistake programmers make is to keep listening for key‐
board notifications when their view controller’s view is not on the
screen. They start listening for notifications in the viewDidLoad meth‐
od and remove themselves as the observer in the dealloc method. This
is a problematic approach because when your view is off the screen
and the keyboard is getting displayed on some other view, you should
not be adjusting any components on your view controller. Keep in
mind that keyboard notifications, just like any other notification, are
broadcast to all observer objects within the context of your applica‐
tion, so you need to take extra care that you do not react to key‐
board notifications while your view is off-screen.

In the previous code snippet, we started listening for keyboard-will-show notifications
on the handleKeyboardWillShow: instance method of our view controller, and expect
the keyboard-will-hide notifications on the handleKeyboardWillHide: method. These
methods are not coded yet. Let’s start with the first method, the handleKeyboardWill
Show:. What we have to do here is detect the height of the keyboard using the UIKey
boardFrameEndUserInfoKey key inside the user-info dictionary that gets sent to us for
this notification, and using that value to shift up our view’s contents by the height of the
keyboard. The good news is that we have placed the contents of our view in a scroll view,
so all we have to do is adjust the edge insets of the scroll view.

- (void) handleKeyboardWillShow:(NSNotification *)paramNotification{

 NSDictionary *userInfo = paramNotification.userInfo;

 /* Get the duration of the animation of the keyboard for when it

 gets displayed on the screen. We will animate our contents using

 the same animation duration */

 NSValue *animationDurationObject =

 userInfo[UIKeyboardAnimationDurationUserInfoKey];

 NSValue *keyboardEndRectObject = userInfo[UIKeyboardFrameEndUserInfoKey];

17.3. Listening and Reacting to Keyboard Notifications | 705

 double animationDuration = 0.0;

 CGRect keyboardEndRect = CGRectMake(0.0f, 0.0f, 0.0f, 0.0f);

 [animationDurationObject getValue:&animationDuration];

 [keyboardEndRectObject getValue:&keyboardEndRect];

 UIWindow *window = [UIApplication sharedApplication].keyWindow;

 /* Convert the frame from window's coordinate system to

 our view's coordinate system */

 keyboardEndRect = [self.view convertRect:keyboardEndRect

 fromView:window];

 /* Find out how much of our view is being covered by the keyboard */

 CGRect intersectionOfKeyboardRectAndWindowRect =

 CGRectIntersection(self.view.frame, keyboardEndRect);

 /* Scroll the scroll view up to show the full contents of our view */

 [UIView animateWithDuration:animationDuration animations:^{

 self.scrollView.contentInset =

 UIEdgeInsetsMake(0.0f,

 0.0f,

 intersectionOfKeyboardRectAndWindowRect.size.height,

 0.0f);

 [self.scrollView scrollRectToVisible:self.textField.frame animated:NO];

 }];

}

Our code is quite interesting and straightforward here. The only thing that may require
explanation is the CGRectIntersection function. What we are doing is retrieving the
rectangular shape (top, left, width, and height) of the keyboard at the end of its animation
when it gets displayed on the screen. Now that we have the dimensions of the keyboard,
using the CGRectIntersection function, we can detect how much of our view is getting
covered by the keyboard. So we take the frame of the keyboard and the frame of our
view to find out how much of our frame’s view is obscured by the frame of the keyboard.
The result will be a structure of type CGRect, which is the rectangular area on our view
that is obscured by the keyboard. Because we know the keyboard pops up from the
bottom of the screen and animates up, the area of concern to us is vertical, so we retrieve
the height of the intersection area and move up our contents by that much. We make
the duration of our animation the same as the one used by the keyboard, so that our
view and the keyboard move in sync.

The next stop is coding the handleKeyboardWillHide: method. This is where the key‐
board will hide and no longer cover our view. So in this method, all we have to do is

706 | Chapter 17: Notifications

reset the edge insets of our scroll view, shifting everything down and back to its initial
state:

- (void) handleKeyboardWillHide:(NSNotification *)paramSender{

 NSDictionary *userInfo = [paramSender userInfo];

 NSValue *animationDurationObject =

 [userInfo valueForKey:UIKeyboardAnimationDurationUserInfoKey];

 double animationDuration = 0.0;

 [animationDurationObject getValue:&animationDuration];

 [UIView animateWithDuration:animationDuration animations:^{

 self.scrollView.contentInset = UIEdgeInsetsZero;

 }];

}

Last but not least, because our view controller is the delegate of the text field, we need
to ensure that the keyboard dismisses when the user presses the Return key on her
keyboard after typing something into the text field:

- (BOOL) textFieldShouldReturn:(UITextField *)paramTextField{

 [paramTextField resignFirstResponder];

 return YES;

}

See Also
Recipe 1.19; Recipe 1.20

17.4. Scheduling Local Notifications

Problem
You are developing an app, such as an alarm clock or a calendar app, that needs to inform
the user of an event at a specific time, even if your app is not running or is in the
background.

Solution
Instantiate an object of type UILocalNotification, configure it (we will see how), and
schedule it using the scheduleLocalNotification: instance method of the UIAppli
cation class. You can get the instance of your application object using the sharedAp
plication class method of the UIApplication class.

17.4. Scheduling Local Notifications | 707

Discussion
A local notification is what gets presented to the user if your application is running in
the background or not running at all. You can schedule the delivery of a local notification
using the scheduleLocalNotification: instance method of UIApplication. If your
app is running in the foreground and a scheduled local notification is fired, no alert is
displayed to the user. Instead, iOS will silently, through an app delegate message, let you
know that the notification was fired. Don’t worry about this for now; we will go into
details about all this quite soon.

You can ask iOS to deliver a local notification to the user in the future when your
application is not even running. These notifications could also be recurring—for in‐
stance, every week at a certain time. However, extra care must be taken when you are
specifying the fire date for your notifications.

The cancelAllLocalNotifications instance method cancels the delivery of all pend‐
ing local notifications from your app.

A notification of type UILocalNotification has many properties. The most important
properties of a local notification are the following:

fireDate

This is a property of type NSDate that dictates to iOS when the instance of the local
notification has to be fired. This is required.

timeZone

This property is of type NSTimeZone and tells iOS in what time zone the given fire-
date is specified. You can get the current time zone using the timeZone instance
method of the NSCalendar class, and you can get the current calendar using the
currentCalendar class method of the aforementioned class.

alertBody

This property is of type NSString and dictates the text that has to be displayed to
the user when your notification is displayed on screen.

hasAction

A Boolean property that tells iOS whether your app wants to take action when the
notification happens. If you set this to YES, iOS displays the dialog specified by your
alertAction property (described next) to the user. If you set this to NO, iOS just
displays a dialog to the user indicating that the notification arrived.

alertAction

If the hasAction property is set to YES, this property has to be set to a localized
string that represents the action that the user can take on your local notification,
should the notification be fired when the user doesn’t have your app open in the
foreground. iOS will subsequently display the message in the notification center or

708 | Chapter 17: Notifications

in the lock screen. If the hasAction property has the value of NO, the alertAc
tion property’s value has to be nil.

applicationIconBadgeNumber

If this local notification is required to change your app’s icon badge number upon
being fired, this property can be set to the desired badge number for your app icon.
The value must be an integer. The proper way of assigning a value to this property
is to set it to the current app’s icon badge number, plus 1. You can get your app’s
current icon badge number using the applicationIconBadgeNumber property of
UIApplication class.

userInfo

This is an NSDictionary instance that can get attached to your notification and
received back by your app when the notification is delivered. We usually use these
dictionaries to include more information about the local notification, which can be
useful for us when we have the notification delivered to our app.

The hasAction and alertAction properties combine to allow the user to swipe on your
local notification in the notification center and, through that, make iOS open your app.
That is how a user can take action on a local notification. This is extremely useful,
especially if you are developing a calendar-like app where, for instance, you display a
local notification to the user when the birthday of her friend is approaching in a few
days. You can then allow her to take action on the notification. Perhaps, when she opens
your app, you could even present some virtual gift options that she could send to her
friend on his birthday.

The one thing that many programmers have issues with is the time zone of a local
notification. Let’s say the time is now 13:00 in London, the time zone is GMT+0, and
your application is currently running on a user’s device. You want to be able to deliver
a notification at 14:00 to your user, even if your application is not running at that time.
Now your user is on a plane at London’s Gatwick Airport and plans to fly to Stockholm,
where the time zone is GMT+1. If the flight takes 30 minutes, the user will be in Stock‐
holm at 13:30 GMT+0 (London time) and at 14:30 GMT+1 (Stockholm time). However,
when she lands, the iOS device will detect the change in the time zone of the system and
will change the user’s device time to 14:30. Your notification was supposed to occur at
14:00 (GMT+0), so as soon as the time zone is changed, iOS detects that the notification
is due to be displayed (30 minutes earlier, in fact, with the new time zone) and will
display your notification.

The issue is that your notification was supposed to be displayed at 14:00 GMT+0 or
15:00 GMT+1, and not 14:30 GMT+1. To deal with occasions such as this (which may
be more common than you think, with modern travel habits), when specifying the date
and time for your local notifications to be fired, you should also specify the time zone.

17.4. Scheduling Local Notifications | 709

Let’s put all this to the test and develop an app that can deliver a simple local notification
8 seconds after the user opens the app for the first time:

#import "AppDelegate.h"

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 UILocalNotification *notification = [[UILocalNotification alloc] init];

 /* Time and timezone settings */

 notification.fireDate = [NSDate dateWithTimeIntervalSinceNow:8.0];

 notification.timeZone = [[NSCalendar currentCalendar] timeZone];

 notification.alertBody =

 NSLocalizedString(@"A new item is downloaded.", nil);

 /* Action settings */

 notification.hasAction = YES;

 notification.alertAction = NSLocalizedString(@"View", nil);

 /* Badge settings */

 notification.applicationIconBadgeNumber =

 [UIApplication sharedApplication].applicationIconBadgeNumber + 1;

 /* Additional information, user info */

 notification.userInfo = @{@"Key 1" : @"Value 1",

 @"Key 2" : @"Value 2"};

 /* Schedule the notification */

 [[UIApplication sharedApplication] scheduleLocalNotification:notification];

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

This is all good, but local notifications are quite useless if we don’t know how to react
to them and how to handle them once they are fired. Read Recipe 17.5 to find out how
you can handle these notifications.

See Also
Recipe 17.0, “Introduction”

710 | Chapter 17: Notifications

17.5. Listening for and Reacting to Local Notifications

Problem
You know how to schedule local notifications (see Recipe 17.4), but now you have to
react to them when they are delivered to your app.

Solution
Implement the application:didReceiveLocalNotification: method of your app
delegate and read the UIApplicationLaunchOptionsLocalNotificationKey key of
your app’s launching options dictionary when the application:didFinishLaunching
WithOptions: method gets called on your app delegate. Read the Discussion section of
this recipe for more information on why you have to handle a local notification in two
places instead of just one.

Discussion
Depending on the state of your app when a local notification is delivered and acted
upon, you will have to handle it differently. Here are the different situations in which
iOS may deliver a scheduled local notification to your app:

The user has the app open in front of her while the local notification is delivered
In this case, the application:didReceiveLocalNotification: method is called
when the notification is delivered.

The user has sent the app to the background and the local notification is delivered
Once the user taps on the notification, iOS can launch your app. In this case, again,
the application:didReceiveLocalNotification: method of your app delegate
is called.

The app is not open or at all active when the local notification is delivered
In this case, the application:didFinishLaunchingWithOptions: method of your
app delegate is called and the UIApplicationLaunchOptionsLocalNotification
Key key inside the didFinishLaunchingWithOptions dictionary parameter of this
method contains the local notification that caused your app to be woken up.

The local notification is delivered while the user’s device is locked, whether the app is
active in the background or is not running at all

This will fire one of the previously mentioned ways of iOS opening your app, de‐
pending on whether your app was in the background or not while the user attempted
to open your app using the notification.

Let’s build on top of the example code that we learned about in Recipe 17.4. Regardless
of the state of our app when the notification is fired, we’ll handle it by displaying an alert
to the user. First, we are going to put what we learned in Recipe 17.4 into a separate

17.5. Listening for and Reacting to Local Notifications | 711

method so that we can just call that method and schedule a new local notification. The
reason for doing this is so that when our app opens, we can check whether it opened as
a result of the user tapping on a local notification in the notification center of iOS. If
yes, we won’t fire another local notification. Instead, we will act on the existing one.
However, if a local notification did not open our app, we will schedule a new one. So
here is the method in our app that schedules new local notifications to be delivered to
our app 8 seconds after the method is called:

- (void) scheduleLocalNotification{

 UILocalNotification *notification = [[UILocalNotification alloc] init];

 /* Time and timezone settings */

 notification.fireDate = [NSDate dateWithTimeIntervalSinceNow:8.0];

 notification.timeZone = [[NSCalendar currentCalendar] timeZone];

 notification.alertBody =

 NSLocalizedString(@"A new item is downloaded.", nil);

 /* Action settings */

 notification.hasAction = YES;

 notification.alertAction = NSLocalizedString(@"View", nil);

 /* Badge settings */

 notification.applicationIconBadgeNumber =

 [UIApplication sharedApplication].applicationIconBadgeNumber + 1;

 /* Additional information, user info */

 notification.userInfo = @{@"Key 1" : @"Value 1",

 @"Key 2" : @"Value 2"};

 /* Schedule the notification */

 [[UIApplication sharedApplication] scheduleLocalNotification:notification];

}

The method that we have written here is called scheduleLocalNotification. All it
does, as its name suggests, is create the notification object and ask iOS to schedule it.
Don’t confuse our custom method named scheduleLocalNotification with the iOS
method on UIApplication named scheduleLocalNotification: (note the colon at
the end of the iOS method). You can think of our method as a handy utility method that
does the hard work of scheduling a local notification by creating the notification and
delegating the scheduling activity to iOS.

Now, in our application:didFinishLaunchingWithOptions method, we will check
whether an existing notification was the reason our app opened in the first place. If yes,
we will act upon the existing local notification. If no, we will schedule a new one:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

712 | Chapter 17: Notifications

 if (launchOptions[UIApplicationLaunchOptionsLocalNotificationKey] != nil){

 UILocalNotification *notification =

 launchOptions[UIApplicationLaunchOptionsLocalNotificationKey];

 [self application:application didReceiveLocalNotification:notification];

 } else {

 [self scheduleLocalNotification];

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

In the preceding code, when an existing local notification caused our app to get
launched, we redirected the local notification to the application:didReceiveLocal
Notification: method, where we acted upon the existing notification and displayed
an alert to the user. Here is our simple implementation of the aforementioned method:

- (void) application:(UIApplication *)application

 didReceiveLocalNotification:(UILocalNotification *)notification{

 NSString *key1Value = notification.userInfo[@"Key 1"];

 NSString *key2Value = notification.userInfo[@"Key 2"];

 if ([key1Value length] > 0 &&

 [key2Value length] > 0){

 UIAlertView *alert =

 [[UIAlertView alloc] initWithTitle:nil

 message:@"Handling the local notification"

 delegate:nil

 cancelButtonTitle:@"OK"

 otherButtonTitles:nil];

 [alert show];

 }

}

Give it a go now. You can try different combinations. Open the app and then keep it in
the foregorund, send it to the background, or even close it permanently. Take a look at
how the app behaves in the various conditions that you put it in.

See Also
Recipe 17.0, “Introduction”; Recipe 17.4

17.5. Listening for and Reacting to Local Notifications | 713

17.6. Handling Local System Notifications

Problem
When your application is brought to the foreground, you want to be able to get notifi‐
cations about important system changes, such as the user’s locale changes.

Solution
Simply listen to one of the many system notifications that iOS sends to waking appli‐
cations. Some of these notifications are listed here:

NSCurrentLocaleDidChangeNotification

This notification is delivered to applications when the user changes her locale; for
instance, if the user switches her iOS device’s language from English to Spanish in
the Settings page of the device.

NSUserDefaultsDidChangeNotification

This notification is fired when the user changes the application’s settings in the
Settings page of the iOS device (if any settings are provided to the user).

UIDeviceBatteryStateDidChangeNotification

This notification gets sent whenever the state of the battery of the iOS device is
changed. For instance, if the device is plugged into a computer when the application
is in the foreground, and then unplugged when in the background, the applica‐
tion will receive this notification (if the application has registered for this notifica‐
tion). The state can then be read using the batteryState property of an instance
of UIDevice.

UIDeviceProximityStateDidChangeNotification

This notification gets sent whenever the state of the proximity sensor changes. The
last state is available through the proximityState property of an instance of UIDe
vice.

Discussion
When your application is in the background, a lot of things could happen! For instance,
the user might suddenly change the language of her iOS device through the Settings
page from English to Spanish. Applications can register themselves for such notifica‐
tions. These notifications will be coalesced and then delivered to a waking application.

Let me explain what I mean by the term coalesced. Suppose your application is in the
foreground and you have registered for UIDeviceOrientationDidChangeNotifica
tion notifications. Now the user presses the Home button and your application gets
sent to the background. The user then rotates the device from portrait to landscape
right, back to portrait, and then to landscape left. When the user brings your application

714 | Chapter 17: Notifications

to the foreground, you will receive only one notification of type UIDeviceOrientation
DidChangeNotification. This is coalescing. All the other orientations that happened
along the way before your application opens are not important (since your application
isn’t on the screen) and the system will not deliver them to your application. However,
the system will deliver at least one notification for each aspect of the system, such as
orientation, and you can then detect the most up-to-date orientation of the device.

Here is the implementation of a simple view controller that takes advantage of this
technique to determine changes in orientation:

#import "ViewController.h"

@implementation ViewController

- (void) orientationChanged:(NSNotification *)paramNotification{

 NSLog(@"Orientation Changed");

}

- (void)viewDidAppear:(BOOL)paramAnimated{

 [super viewDidAppear:paramAnimated];

 /* Listen for the notification */

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(orientationChanged:)

 name:UIDeviceOrientationDidChangeNotification

 object:nil];

}

- (void) viewDidDisappear:(BOOL)paramAnimated{

 [super viewDidDisappear:paramAnimated];

 /* Stop listening for the notification */

 [[NSNotificationCenter defaultCenter]

 removeObserver:self

 name:UIDeviceOrientationDidChangeNotification

 object:nil];

}

@end

Run the application on the device now. After the view controller is displayed on the
screen, press the Home button to send the application to the background. Now try
changing the orientation of the device a couple of times, and then relaunch the appli‐
cation. Observe the results, and you will see that initially when your application opens,
at most, one notification has been sent to the orientationChanged: method. You might
get a second call, though, if your view hierarchy supports orientation changes.

17.6. Handling Local System Notifications | 715

Now let’s say that your application exposes a settings bundle to the user. You want to get
notified of the changes the user has made to your application’s settings (while the ap‐
plication was in the background) as soon as your application is brought to the fore‐
ground. To do this, you should register for the NSUserDefaultsDidChangeNotifica
tion notification.

Applications written for iOS can expose a bundle file for their settings. These settings
are available to users through the Settings application on their device. To get a better
understanding of how this works, let’s create a settings bundle:

1. In Xcode, choose File → New File.

2. Make sure the iOS category is selected on the left.

3. Choose the Resources subcategory.

4. Choose Settings Bundle as the file type and click Next.

5. Set the filename as Settings.bundle.

6. Click Save.

Now you have a file in Xcode named Settings.bundle. Leave this file as it is, without

modifying it. Press the Home button on the device and go to the device’s Settings ap‐
plication. If you have named your application “Foo” you will see “Foo” in the Settings
application, as shown in Figure 17-4 (the name of the sample application I created is
“Handling Local System Notifications”).

Tap on your application’s name to see the settings your application exposes to the user.
What we want to know is when the user changes these settings, so that we can adjust
our application’s internal state if required. Let’s go ahead and start listening for the
NSUserDefaultsDidChangeNotification notification in our app delegate. When our
app terminates, obviously, we will remove our app delegate from the notification chain:

#import "AppDelegate.h"

@implementation AppDelegate

- (void) handleSettingsChanged:(NSNotification *)paramNotification{

 NSLog(@"Settings changed");

 NSLog(@"Notification Object = %@", paramNotification.object);

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(handleSettingsChanged:)

716 | Chapter 17: Notifications

 name:NSUserDefaultsDidChangeNotification

 object:nil];

 return YES;

}

- (void)applicationWillTerminate:(UIApplication *)application{

 [[NSNotificationCenter defaultCenter] removeObserver:self];

}

Figure 17-4. Our Settings.bundle displayed in the Settings app on iOS Simulator

17.6. Handling Local System Notifications | 717

Now try to change some of these settings while your application is running in the back‐
ground. After you are done, bring the application to the foreground, and you will see
that only one NSUserDefaultsDidChangeNotification notification will be delivered
to your application. The object attached to this notification will be of type NSUser
Defaults and will contain your application’s settings user defaults.

17.7. Setting Up Your App for Push Notifications

Problem
You want to configure your application so that you can push notifications from a server
to various devices.

Solution
Follow these steps:

1. Set up a provision profile for your app with push notifications enabled.

2. In your app, register the device for push notifications for your app.

3. Collect the device’s push notifications identifier for your app and send that to a
server.

In this recipe, we are going to discuss setting up and registering your
app for push notifications. We are not going to talk about the server
side of things yet. We will discuss that part in another recipe.

Discussion
Push notifications are similar to local notification in that they allow you to communicate
something with the user even when your app is not running. Although local notifications
are scheduled by your app, push notifications are configured and sent by a server to
Apple, and Apple will push the notifications to various devices around the world. The
server part of things needs to be done by us. We then compose the push notifications
and send them to Apple Push Notification Services servers (or APNS, as it is known).
APNS will then attempt to deliver our push notifications through a secure channel to
devices that we designated the push notifications to be delivered to.

For iOS apps to be able to receive push notifications, they have to have a valid provision
profile that has push notifications enabled. To configure your profile properly, follow
these steps:

718 | Chapter 17: Notifications

I am assuming that you have already set up your development and
distribution certificates in your developer portal. You can use Xcode’s
new Accounts settings to automatically configure your certificates.
Simply go to Xcode’s Preferences and then open the Accounts pane.
Add your Apple ID in the Accounts list and allow Xcode to config‐
ure your certificates for you.

1. Log into the iOS Dev Center.

2. Navigate to the Certificates, Identifiers & Profiles section on the righthand side.

3. In the Identifiers section, create a new App ID for yourself with a valid Explicit App
ID such as com.pixolity.ios.cookbook.PushNotificationApp. Note that this is
the reverse domain style name that I’ve picked for this example app. Pick a reverse
domain-style App ID that makes sense to you or your organization.

4. Under the App Services section of the new App ID page, ensure that you’ve enabled
the Push Notifications box as shown in Figure 17-5.

Figure 17-5. Enabling push notifications for an App ID

17.7. Setting Up Your App for Push Notifications | 719

http://bit.ly/19h9aLw

5. Once you are happy with the configuration of your App ID (see Figure 17-6), submit
the App ID to Apple.

6. After you have set all your App ID configurations, generate your App ID and then
navigate to the Provisioning Profiles section of the iOS portal.

7. Create a Development provision profile for your app. You can create the Ad Hoc
and the App Store versions later, but for now you just need the Development pro‐
vision profile to get started. The process is the same for Ad Hoc and App Store
profiles, so don’t worry. You can simply come back to this step when you are ready
to submit your app to the App Store, and you will be able to generate the Ad Hoc
and the App Store profiles.

Ensure that your new development provision profile is linked to the App ID that
you generated earlier. This is the first question that you will be asked when gener‐
ating the provision profile.

Figure 17-6. Creating an App ID with push notifications

720 | Chapter 17: Notifications

8. Once your profile is ready, download it and drag and drop it into iTunes on your
computer in order to install it. Avoid double-clicking on the profile to install it.
Doing so will change the name of the installed profile’s filename to the MD5 hash
name of the profile, which is very difficult to identify on disk. If you drag and drop
the profile in iTunes, iTunes will install the profile with its original name.

9. In your app’s build settings in Xcode, simply select to build with the provision profile
that you just created. Ensure that you are using this profile for Development and
use the App Store or Ad Hoc profile that you’ll create later for the Release scheme.

10. Drag and drop your provision profile into a text editor, such as TextEdit, on OS X
and find the Entitlements key in there. The entire section in my provision profile
looks like this:

<key>Entitlements</key>

<dict>

 <key>application-identifier</key>

 <string>F3FU372W5M.com.pixolity.ios.cookbook.PushNotificationApp</string>

 <key>aps-environment</key>

 <string>development</string>

 <key>get-task-allow</key>

 <true/>

 <key>keychain-access-groups</key>

 <array>

 <string>F3FU372W5M.*</string>

 </array>

</dict>

11. Create a new plist in your Xcode project and name it Entitlements.plist. Right-clic

that file in Xcode and select Open As and then Source Code. Your file’s contents
will initially look like this:

<plist version="1.0">

<dict/>

</plist>

12. Put the entitlements of your provision profile right into the Entitlements.plist file

so that its contents will look like this:

<plist version="1.0">

<dict>

 <key>application-identifier</key>

 <string>F3FU372W5M.com.pixolity.ios.cookbook.PushNotificationApp</string>

 <key>aps-environment</key>

 <string>development</string>

 <key>get-task-allow</key>

 <true/>

 <key>keychain-access-groups</key>

 <array>

17.7. Setting Up Your App for Push Notifications | 721

 <string>F3FU372W5M.*</string>

 </array>

</dict>

</plist>

The values shown here in our code snippets relate to the profiles that
I have created. The profile that you’ll create will have different values
and certainly will have a different App ID, so follow the previous steps
to create your App ID and profile properly, then grab the entitle‐
ments for your profile and place them in the Entitlements.plist file in

your project.

13. Now go to the build settings of your project, and in the Code Signing Entitlements
section, enter the value of $(SRCROOT)/$(TARGET_NAME)/Entitlements.plist if
you created your entitlements file under your project’s target folder, or enter
$(SRCROOT)/Entitlements.plist if you created the entitlements file under the root
folder of your source codes. If you are confused, simply try these two values, and
after setting them, try to build your project. If Xcode complains that it cannot find
the entitlements file, try the other value, and it should work. The Code Signing
Entitlements build setting requires the relative path of the entitlements file from
the root folder of your source code. So if you have placed this file into another folder,
you’ll have to manually calculate the path to the file and feed it to this field.

14. Build your project and make sure no error is thrown by Xcode. If you are getting
an error, it is probably because you have not set the proper provision profile to use
or you have entered the wrong path for the Code Signing Entitlements in your build
settings.

15. In your app delegate, invoke the registerForRemoteNotificationTypes: method
of your UIApplication and pass the values UIRemoteNotificationTypeAlert,
UIRemoteNotificationTypeBadge and UIRemoteNotificationTypeSound to that
method, as you can see here:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 [[UIApplication sharedApplication] registerForRemoteNotificationTypes:

 UIRemoteNotificationTypeAlert |

 UIRemoteNotificationTypeBadge |

 UIRemoteNotificationTypeSound];

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

722 | Chapter 17: Notifications

This will ensure that your app is registered to receive push notifications that can
carry alert messages, badge number modifications to your app icon, and also
sounds. Don’t worry about this for now. Just register your app for push notifications,
as shown before. Once you do this, iOS will send a push notification registration
request to APNS. Upon doing this, iOS will first ask the user for permission to
register your app for push notifications. The UI of that permission request by iOS
will look like Figure 17-7.

Figure 17-7. iOS displaying a push notifications permission request screen to the
user

16. Now implement the application:didRegisterForRemoteNotificationsWithDe
viceToken: method of your app delegate. This method is called when iOS

17.7. Setting Up Your App for Push Notifications | 723

successfully registers this device with the APNS and assigns a token to it. This token
is only for this app and only for this device.

17. Next, implement the application:didFailToRegisterForRemoteNotifications
WithError: method of your app delegate. This method is called if iOS fails to reg‐
ister your app for push notifications. This could happen if your profile is set up
incorrectly or the device doesn’t have an Internet connection, among many other
reasons. The didFailToRegisterForRemoteNotificationsWithError parameter
will give you an error of type NSError that you can analyze to find out the source
of the problem.

That was all you needed to know to set up your app to receive push notifications.

See Also
Recipe 17.0, “Introduction”

17.8. Delivering Push Notifications to Your App

Problem
You want to be able to send push notifications to users’ devices that are registered for
push notifications.

Solution
Ensure that you have collected their push notification token identifiers (see
Recipe 17.7). Then generate the SSL certificates that will be used by your web services
to send push notifications to devices. Once done, create a simple web service to send
push notifications to registered devices.

This recipe is a follow-up to Recipe 17.7. Ensure that you have read
and understood that recipe before proceeding with this one.

Discussion
In order to be able to communicate with the APNS, your web services need to do
handshaking with the APNS using an Apple-issued SSL certificate. To generate this
certificate, follow these steps:

1. Log into the iOS Dev Center.

2. Navigate to the Certificates, Identifiers & Profiles section on the righthand side.

724 | Chapter 17: Notifications

http://bit.ly/19h9aLw

3. In the App IDs section, find the App ID for your app that has push notifications set
up for it, select that App ID, and press the Settings button to configure it, as shown
in Figure 17-8.

Figure 17-8. Modifying the settings of an existing App ID

4. In the Push Notifications section of the settings, under the Development SSL Cer‐
tificate section, press the Create Certificate button (see Figure 17-9) and follow the
guidance that Apple will provide you to create your certificate. We are creating the
Development push notification SSL certificate for now, because we are solely fo‐
cusing on the development part. Later, when you are ready to ship your app to the
App Store, simply go through a similar process to create the Distribution version
of the SSL certificates.

5. Once your certificate is ready (see Figure 17-10), download it onto your computer
and double-click it to import it into your keychain.

17.8. Delivering Push Notifications to Your App | 725

Figure 17-9. Creating a Development SSL Certificate for push notifications

Figure 17-10. Development APNS SSL certificate is ready to download

726 | Chapter 17: Notifications

6. Now open Keychain Access on OS X and go to the Login keychain (if that’s your
default keychain). Under the My Certificates section, find the certificate that you
just imported into the keychain and expand it by clicking the little arrow button to
its lefthand side, in order to reveal the associated private key for that certificate (see
Figure 17-11).

Figure 17-11. The push notifications development certificate and its private key

7. Right-click the certificate and export it as a .cer certificate file (as opposed to

a .p12 file) and give it the name of PushCertificate.cer.

8. Right-click the private key and export it as a .p12 file (as opposed to a certificate

file) and give it the name of PushKey.p12. You will be asked to specify a password

for the private key. Make sure that you give it a password that you’ll be able to
remember later.

Great stuff. Now, for the purpose of this recipe and for the sake of simplicity, we are
going to use PHP to send a simple push notification to our device, which has already
been set up for push notifications in Recipe 17.7. Since setting up PHP on an Apache
server is not really the topic of this book, we are going to take a shortcut and use
MAMP. MAMP will install Apache and PHP on your machine if you don’t already have
them, so follow the instructions on the MAMP website. Once you install MAMP, the
root folder of your PHP files will be at /Applications/MAMP/htdocs/. In case the folder

changes in a future installation, open MAMP and navigate to the Preferences section,
and then navigate to Apache. You can then find the root folder of Apache there.

17.8. Delivering Push Notifications to Your App | 727

http://www.mamp.info

For our PHP script to be able to communicate with APNS, we need to feed it the SSL
certificate that we generated earlier in the iOS development portal. This is why we ex‐
tracted the .cer certification and the .p12 private key files, which we now need to feed

to our PHP script. The way this works is that we will use the openssl in Terminal to
combine the certificate and the .p12 private key into a PEM file. A discussion about

PEM files lies outside the scope of this book. In fact, you could write a whole book on
this subject. I will, however, let you know that you can get more information about the
subject by reading RFC 1421.

To create the PEM file, assuming that the PushKey.p12 and the PushCertificate.cer files

are exported on your desktop as you were instructed earlier, follow these steps:

1. Open Terminal in your OS X.

2. Type the following command in Terminal:

openssl x509 -in PushCertificate.cer -inform der -out PushCertificate.pem

3. Type the following command in Terminal to convert your .p12 file into a PEM file:

openssl pkcs12 -nocerts -in PushKey.p12 -out PushKey.pem

4. You will be asked to enter the password that you specified for this private key when
you exported it from Keychain Access. Also, once the importing password is
checked and verified, you will be asked by OpenSSL to specify a passphrase for the
resulting PEM file. The password needs to be at least four characters. Go ahead with
that and ensure that you’ll remember this password for later.

5. Now you have two PEM files on your desktop: PushCertificate.pem and Push

Key.pem. You need to combine the two into a single PEM file, the format recognized

by PHP. Use the following command to accomplish this task:

cat PushCertificate.pem PushKey.pem > PushCertificateAndKey.pem

6. Now let’s test if we can connect to the sandbox (test version, for development pur‐
poses) APNS server using the generated .pem files. So issue the following command

in Terminal:

openssl s_client -connect gateway.sandbox.push.apple.com:2195 \

 -cert PushCertificate.pem -key PushKey.pem

728 | Chapter 17: Notifications

http://www.ietf.org/rfc/rfc1421.txt

If everything goes well, you will be asked to enter the passphrase for your private key
file. Remember it? OK, then, enter that here. If your connection is successful, you will
see OpenSSL waiting for some input characters from you before closing the connection.
Type in something random and press the Enter key. The connection is then closed. This
means that your connection to the APNS server is successful with the given certificate
and private key.

It is now time to set up a simple PHP script to push a simple notification to our device.
But before we move forward any further, we need to get our device’s push notification
token in a format that can be understood by PHP. iOS encapsulates the push notification
token in an instance of NSData, but PHP has no notion of what that means. We need to
convert that token into a string that we can use in our PHP script. To do that, we will
read every byte in the token and convert that byte into its hexadecimal-string repre‐
sentation:

- (void) application:(UIApplication *)application

 didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken{

 /* Each byte in the data will be translated to its hex value like 0x01 or

 0xAB excluding the 0x part, so for 1 byte, we will need 2 characters to

 represent that byte, hence the * 2 */

 NSMutableString *tokenAsString = [[NSMutableString alloc]

 initWithCapacity:deviceToken.length * 2];

 char *bytes = malloc(deviceToken.length);

 [deviceToken getBytes:bytes];

 for (NSUInteger byteCounter = 0;

 byteCounter < deviceToken.length;

 byteCounter++){

 char byte = bytes[byteCounter];

 [tokenAsString appendFormat:@"%02hhX", byte];

 }

 free(bytes);

 NSLog(@"Token = %@", tokenAsString);

}

Run your app and see that the device token will get printed to the console like so:

Token = 05924634A8EB6B84437A1E8CE02E6BE6683DEC83FB38680A7DFD6A04C6CC586E

17.8. Delivering Push Notifications to Your App | 729

Take note of this device token, because we are going to use it in our PHP script:

<?php

/* We are using the sandbox version of the APNS for development. For production

 environments, change this to ssl://gateway.push.apple.com:2195 */

$apnsServer = 'ssl://gateway.sandbox.push.apple.com:2195';

/* Make sure this is set to the password that you set for your private key

 when you exported it to the .pem file using openssl on your OS X */

$privateKeyPassword = '1234';

/* Put your own message here if you want to */

$message = 'Welcome to iOS 7 Push Notifications';

/* Pur your device token here */

$deviceToken =

 '05924634A8EB6B84437A1E8CE02E6BE6683DEC83FB38680A7DFD6A04C6CC586E';

/* Replace this with the name of the file that you have placed by your PHP

 script file, containing your private key and certificate that you generated

 earlier */

$pushCertAndKeyPemFile = 'PushCertificateAndKey.pem';

$stream = stream_context_create();

stream_context_set_option($stream,

 'ssl',

 'passphrase',

 $privateKeyPassword);

stream_context_set_option($stream,

 'ssl',

 'local_cert',

 $pushCertAndKeyPemFile);

$connectionTimeout = 20;

$connectionType = STREAM_CLIENT_CONNECT | STREAM_CLIENT_PERSISTENT;

$connection = stream_socket_client($apnsServer,

 $errorNumber,

 $errorString,

 $connectionTimeout,

 $connectionType,

 $stream);

if (!$connection){

 echo "Failed to connect to the APNS server. Error no = $errorNumber
";

 exit;

} else {

 echo "Successfully connected to the APNS. Processing...</br>";

}

730 | Chapter 17: Notifications

$messageBody['aps'] = array('alert' => $message,

 'sound' => 'default',

 'badge' => 2,

);

$payload = json_encode($messageBody);

$notification = chr(0) .

 pack('n', 32) .

 pack('H*', $deviceToken) .

 pack('n', strlen($payload)) .

 $payload;

$wroteSuccessfully = fwrite($connection, $notification, strlen($notification));

if (!$wroteSuccessfully){

 echo "Could not send the message
";

}

else {

 echo "Successfully sent the message
";

}

fclose($connection);

Go through this script, even if you are not a PHP programmer, and read the comments.
Ensure that you replace the values in the PHP script with the correct values for you. For
instance, the device token used here is for my personal device. Use the device token that
you retrieved for your own device earlier in this recipe. The passphrases and the .pem

file locations may be different for you. What I’ve done in this recipe to make sure things
are easier is to place my PHP script in the same folder where I’ve placed my private key
and certificate .pem file (PushCertificateAndKey.pem) so that I can access the .pem file

using a simple filename.

If you’ve done everything right and followed the advice of this recipe, you should now
be able to open your PHP script in a web browser and see the notifications appear on
your device. The script sends the notification to the APNS server, which delivers it to
the device. When the push notification is delivered to the app, assuming it is displaying
the lock screen, you will see something on the device similar to that shown in
Figure 17-12.

17.8. Delivering Push Notifications to Your App | 731

Figure 17-12. A push notification displayed on the lock screen

See Also
Recipe 17.7

17.9. Reacting to Push Notifications

Problem
You have been able to deliver push notifications to your app after reading Recipe 17.8
but don’t know how to react to them in your app.

732 | Chapter 17: Notifications

Solution
Implement the application:didReceiveRemoteNotification: method of your app
delegate.

Discussion
The application:didReceiveRemoteNotification: method of your app delegate gets
called whenever a push notification is delivered to iOS and the user acts upon it in a
way that opens your app. This method gets called if your app is either in the foreground
or the background, but not completely terminated. For instance, the user can ignore the
push notification. In that case, the aforementioned method will not get called. If the
user presses the push notification, which in turn opens your app, iOS will open your
app and bring it to the foreground, after which the aforementioned method will get
called on your app delegate.

If your app is fully terminated and not in the background, the push notification that
triggers your app to wake up will be encapsulated by iOS in the launch options that will
be passed to the application:didFinishLaunchingWithOptions: method of your app
delegate. To retrieve the notification object, simply query the didFinishLaunchingWi
thOptions parameter of this method (which is of type NSDictionary) and look for the
UIApplicationLaunchOptionsRemoteNotificationKey key. The value of this key will
be the push notification object that started your app.

The didReceiveRemoteNotification parameter of this property carries a dictionary
of type NSDictionary. This dictionary will contain a root object called aps, and under
this object, you will have a dictionary with the following keys, depending on how the
server created the push notification (the server may not send all of these at once):

badge

The value of this key is a number indicating the badge number that has to be set for
your app’s icon.

alert

The message inside the push notification, of type String. The server may decide
to send you a modified version of this key’s value, which itself will be a dictionary
containing the keys body and show-view. If this modified version of the alert is sent
to you, the body key will contain the actual text of the body of the alert, and the
show-view key will contain a Boolean value indicating whether the action button
of the notification should be displayed to the user. The Action button allows the
user to tap the notification in the notification center in order to open your app.

sound

This is a string indicating the name of the sound file that your app needs to play.

17.9. Reacting to Push Notifications | 733

content-available

The value of this key is a number. If set to 1, it indicates that there is new content
available for the application to download from the server. The server can send this
to your app to request that it fetches from the server to retrieve a list of new items.
Your app doesn’t have to comply. Rather, this is a protocol between the server and
the client, and you can use it if it makes sense in your app.

See Also
Recipe 17.8

734 | Chapter 17: Notifications

CHAPTER 18

Core Data

18.0. Introduction
Core Data is a powerful framework on the iOS SDK that allows programmers to store
and manage data in an object-oriented way. Traditionally, programmers had to store
their data on disk using the archiving capabilities of Objective-C, or write their data to
files and manage them manually. With the introduction of Core Data, programmers
can simply interact with its object-oriented interface to manage their data efficiently. In
this chapter, you will learn how to use Core Data to create the model of your application
(in the model-view-controller software architecture).

Core Data interacts with a persistent store at a lower level that is not visible to the
programmer. iOS decides how the low-level data management is implemented. All the
programmer must know is the high-level API she is provided with. But understanding
the structure of Core Data and how it works internally is very important. Let’s create a
Core Data application to understand this a bit better.

With the new LLVM compiler, all you have to do in order to include Core Data into
your project is to include the umbrella header file, like so:

#import "AppDelegate.h"

#import <CoreData/CoreData.h>

@implementation AppDelegate

<# Rest of your code goes here #>

To be able to work with Core Data, you need to understand that a Core Data stack is
based on the following concepts:

Persistent store
The object that represents the actual data base on disk. We never use this object
directly.

735

Persistent store coordinator
The object that coordinates reading and writing of information from and to the
persistent store. The coordinator is the bridge between the managed object context
and the persistent store.

Managed object model (MOM)
This is a simple file on disk that will represent our data model. Think about it as
your database schema.

Managed object
This class represents an entity that we want to store in Core Data. Traditional da‐
tabase programmers would know such entities as tables. A managed object is of
type NSManagedObject, and its instances are placed on managed object contexts.
They adhere to the schema dictated by the managed object model, and they get
saved to a persistent store through a persistent store coordinator.

Managed object context (MOC)
This is a virtual board. That sounds strange, right? But let me explain. We create
Core Data objects in memory and set their properties and play with them. All this
playing is done on a managed object context. The context keeps track of all the
things that we are doing with our managed objects and even allows us to undo those
actions. Think of your managed objects on a context as toys that you have brought
on a table to play with. You can move them around, break them, move them out of
the table, and bring new toys in. That table is your managed object context, and
you can save its state when you are ready. When you save the state of the managed
object context, this save operation will be communicated to the persistent store
coordinator to which the context is connected, upon which the persistent store
coordinator will store the information to the persistent store and subsequently to
disk.

To add Core Data to your project and start using all the cool features that it has to offer,
simply create a project and when asked whether to add Core Data to it or not, check the
relevant box, as shown in Figure 18-1.

Once you create your project with Core Data, your app delegate will have some new
properties:

NSManagedObjectContext *managedObjectContext;

NSManagedObjectModel *managedObjectModel;

NSPersistentStoreCoordinator *persistentStoreCoordinator;

736 | Chapter 18: Core Data

You should already know these from the description earlier in this chapter. The context
is our playing table, the model is the schema of our data base and the coordinator is the
object that will help us save our context to disk. Plain and easy. OK then, let’s get started
with the rest of this chapter now.

Figure 18-1. Adding Core Data to a new Xcode project

18.1. Creating a Core Data Model with Xcode

Problem
You want to visually design the data model of your iOS application using Xcode.

Solution
Follow the instructions in this chapter’s Introduction to create a Core Data project.
Then find the file with the extension of xcdatamodel in your application bundle in Xcode

and click it to open the visual data editor, as shown in Figure 18-2.

18.1. Creating a Core Data Model with Xcode | 737

Figure 18-2. Visual data editor in Xcode

Discussion
Xcode’s visual data editor is a fantastic tool that allows programmers to design the data
model of their applications with ease. There are two important definitions you need to
learn before you can work with this tool:

Entity
Corresponds to a table in a database

Attribute
Corresponds to a column in a table

Entities will later become objects (managed objects) when we generate the code based
on our object model. This is explained in Recipe 18.2. For now, in this recipe, we will
concentrate on creating the data model in this tool.

In the editor, find the + button at the bottom. Click and hold on this button and then
select Add Entity from the menu that will appear, as shown in Figure 18-3.

Your new entity will be created and will be in a state where you can immediately rename
it after creation. Change the name of this entity to Person, as shown in Figure 18-4.

738 | Chapter 18: Core Data

Figure 18-3. Adding a new entity to our data model

Figure 18-4. Changing the name of the new entity to Person

Select the Person entity, then select the + button in the Attributes pane and create the
following three attributes for it (the results are shown in Figure 18-5).

• firstName (of type String).

• lastName (of type String).

• age (of type Integer 32).

18.1. Creating a Core Data Model with Xcode | 739

Figure 18-5. We have added three attributes to the Person entity

While you are in the data model editor, from the View menu in Xcode, choose Utilit‐
ies → Show Utilities. The utilities pane will open on the righthand side of Xcode. On

top, choose the Data Model Inspector button and make sure that you have clicked on
the Person entity that we just created. At this point, the Data Model inspector will be
populated with items relevant to the Person entity, as shown in Figure 18-6.

Figure 18-6. The Data Model Inspector shown on the right side of the Xcode window

Now click the firstName, lastName, and age attributes of the Person entity. Make sure
the firstName and the lastName attributes are not optional by unticking the Option
al checkbox and make sure the age field is optional by ticking the Optional checkbox.

OK, we are done creating the model. Choose File → Save to make sure your changes are

saved. To learn how to generate code based on the managed object you just created,
refer to Recipe 18.2.

740 | Chapter 18: Core Data

18.2. Generating Class Files for Core Data Entities

Problem
You followed the instructions in Recipe 18.1 and you want to know how to create code
based on your object model.

Solution
Follow these steps:

1. In Xcode, find the file with the xcdatamodel extension that was created for your

application when you created the application itself in Xcode. Click the file, and you
should see the editor on the righthand side of the Xcode window.

2. Select the Person entity that we created earlier (see Recipe 18.1).

3. Select File → New File in Xcode.

4. In the New File dialog, make sure you have selected iOS as the main category and
Core Data as the subcategory. Then choose the NSManagedObject subclass item
from the righthand side of the dialog and press Next, as shown in Figure 18-7.

Figure 18-7. Creating a managed object subclass in Xcode

18.2. Generating Class Files for Core Data Entities | 741

5. On the next screen, choose the managed object model that you want to save to disk
and ensure it is ticked. Once you are done, press the Next button (see Figure 18-8).

Figure 18-8. Selecting which managed object model to save on disk

You will see only one managed object model in the list if you have only
one model in your project. The reason we are seeing more than one
model in Figure 18-8 is that my workspace in Xcode contains vari‐
ous projects, each with its own model.

6. Now you will be asked to pick the entities that you want to export from your model
on disk as Objective-C files. Since we have created only one entity, the Person entity,
your list will look similar to that shown in Figure 18-9. Make sure the Person entity
is ticked, and then press the Next button.

7. At the last stage, you will be asked to save your entity on disk. Ensure that in the
Targets box, your project is ticked (see Figure 18-10); otherwise, the entity will not
be available to different source files in your code. Once you are happy, press the
Create button.

742 | Chapter 18: Core Data

Figure 18-9. Exporting the Person entity to disk as a managed object

Figure 18-10. Saving our entity on disk

18.2. Generating Class Files for Core Data Entities | 743

Now you will see two new files in your project, called Person.h and Person.m. Open the

contents of the Person.h file. It will look like the following:

#import <Foundation/Foundation.h>

#import <CoreData/CoreData.h>

@interface Person : NSManagedObject

@property (nonatomic, retain) NSNumber * age;

@property (nonatomic, retain) NSString * firstName;

@property (nonatomic, retain) NSString * lastName;

@end

The Person.m file is implemented for you in this way:

#import "Person.h"

@implementation Person

@dynamic age;

@dynamic firstName;

@dynamic lastName;

@end

There you go! We turned our managed object into a real definition and implementation.
In Recipe 18.3, you will learn how to instantiate and save a managed object of type
Person into the managed object context of your application.

Discussion
When you create your data model using the editor in Xcode, you are creating the data
relationships, entities, attributes, and so forth. However, to be able to use your model
in your app, you must generate the code for your model. If you view the .h and .m files

for your entities, you will realize that all the attributes are assigned dynamically. You
can even see the @dynamic directive in the .m file of your entities to tell the compiler

that it will fulfill the request of each attribute at runtime using dynamic method reso‐
lution.

None of the code that Core Data runs on your entities is visible to you, and there is no
need for it to be visible to the programmer in the first place. All you have to know is
that a Person entity has three attributes named firstName, lastName, and age. You can
assign values to these attributes (if they are read/write properties), and you can save to
and load them from the context, as we’ll see in Recipe 18.3.

744 | Chapter 18: Core Data

18.3. Creating and Saving Data Using Core Data

Problem
You have already created a managed object, and you want to instantiate it and insert
that instance into your app’s Core Data context.

Solution
Follow the instructions in Recipe 18.1 and Recipe 18.2. Now you can use the insertNe
wObjectForEntityForName:inManagedObjectContext: class method of NSEntityDe
scription to create a new object of a type specified by the first parameter of this method.
Once the new entity (the managed object) is created, you can modify it by changing its
properties. After you are done, save your managed object context using the save:
instance method of the managed object context.

I’ll assume that you have created a universal application in Xcode with the name Creating
and Saving Data Using Core Data; now, follow these steps to insert a new managed
object into the context:

1. Find the implementation file of your app delegate.

2. Import the Person.h file into the app delegate’s implementation file:

Person is the entity we created in Recipe 18.1.

#import "AppDelegate.h"

#import "Person.h"

@implementation AppDelegate

@synthesize managedObjectContext = _managedObjectContext;

@synthesize managedObjectModel = _managedObjectModel;

@synthesize persistentStoreCoordinator = _persistentStoreCoordinator;

<# Rest of your app delegate code goes here #>

3. In the application:didFinishLaunchingWithOptions: method of your shared
application delegate, write this code:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

18.3. Creating and Saving Data Using Core Data | 745

 Person *newPerson = [NSEntityDescription

 insertNewObjectForEntityForName:@"Person"

 inManagedObjectContext:self.managedObjectContext];

 if (newPerson != nil){

 newPerson.firstName = @"Anthony";

 newPerson.lastName = @"Robbins";

 newPerson.age = @51;

 NSError *savingError = nil;

 if ([self.managedObjectContext save:&savingError]){

 NSLog(@"Successfully saved the context.");

 } else {

 NSLog(@"Failed to save the context. Error = %@", savingError);

 }

 } else {

 NSLog(@"Failed to create the new person.");

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Discussion
Previous recipes showed how to create entities and generate code based on them using
the editor in Xcode. The next thing we need to do is start using those entities and
instantiate them. For this, we use NSEntityDescription and call its insertNewObject
ForEntityForName:inManagedObjectContext: class method. This will look up the
given entity (specified by its name as NSString) in the given managed object context.
If the entity is found, the method will return a new instance of that entity. This is similar
to creating a new row (managed object) in a table (entity) in a database (managed object
context).

Attempting to insert an unknown entity into a managed object con‐
text will raise an exception of type NSInternalInconsistencyExcep
tion.

After inserting a new entity into the context, we must save the context. This will flush
all the unsaved data of the context to the persistent store. We can do this using the save:

746 | Chapter 18: Core Data

instance method of our managed object context. If the BOOL return value of this method
is YES, we can be sure that our context is saved. In Recipe 18.4, you will learn how to
read the data back to memory.

18.4. Reading Data from Core Data

Problem
You want to be able to read the contents of your entities (tables) using Core Data.

Solution
Use an instance of NSFetchRequest:

- (BOOL) createNewPersonWithFirstName:(NSString *)paramFirstName

 lastName:(NSString *)paramLastName

 age:(NSUInteger)paramAge{

 BOOL result = NO;

 if ([paramFirstName length] == 0 ||

 [paramLastName length] == 0){

 NSLog(@"First and Last names are mandatory.");

 return NO;

 }

 Person *newPerson = [NSEntityDescription

 insertNewObjectForEntityForName:@"Person"

 inManagedObjectContext:self.managedObjectContext];

 if (newPerson == nil){

 NSLog(@"Failed to create the new person.");

 return NO;

 }

 newPerson.firstName = paramFirstName;

 newPerson.lastName = paramLastName;

 newPerson.age = @(paramAge);

 NSError *savingError = nil;

 if ([self.managedObjectContext save:&savingError]){

 return YES;

 } else {

 NSLog(@"Failed to save the new person. Error = %@", savingError);

 }

 return result;

}

18.4. Reading Data from Core Data | 747

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 [self createNewPersonWithFirstName:@"Anthony"

 lastName:@"Robbins"

 age:51];

 [self createNewPersonWithFirstName:@"Richard"

 lastName:@"Branson"

 age:61];

 /* Tell the request that we want to read the

 contents of the Person entity */

 /* Create the fetch request first */

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc]

 initWithEntityName:@"Person"];

 NSError *requestError = nil;

 /* And execute the fetch request on the context */

 NSArray *persons =

 [self.managedObjectContext executeFetchRequest:fetchRequest

 error:&requestError];

 /* Make sure we get the array */

 if ([persons count] > 0){

 /* Go through the persons array one by one */

 NSUInteger counter = 1;

 for (Person *thisPerson in persons){

 NSLog(@"Person %lu First Name = %@",

 (unsigned long)counter,

 thisPerson.firstName);

 NSLog(@"Person %lu Last Name = %@",

 (unsigned long)counter,

 thisPerson.lastName);

 NSLog(@"Person %lu Age = %ld",

 (unsigned long)counter,

 (unsigned long)[thisPerson.age unsignedIntegerValue]);

 counter++;

 }

 } else {

 NSLog(@"Could not find any Person entities in the context.");

 }

 self.window = [[UIWindow alloc] initWithFrame:

748 | Chapter 18: Core Data

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

In this code, we are using a counter variable inside a fast-
enumeration block. The reason we need the counter in this fast-
enumeration is for use in NSLog debugging messages that we are print‐
ing in order to see the index of the current enumerated person object
in the array. An alternative to this solution would have been to use a
classic for-loop with a counter variable.

For more information about fetch requests, please refer to this recipe’s Discussion.

Discussion
For those of you who are familiar with database terminology, a fetch request is similar
to a SELECT statement. In the SELECT statement, you specify which rows, with which
conditions, have to be returned from which table. With a fetch request, we do the same
thing. We specify the entity (table) and the managed object context (the database layer).
We can also specify sort descriptors for sorting the data we read. But first we’ll focus on
reading the data to make it simpler.

To be able to read the contents of the Person entity (we created this entity in Recipe 18.1
and turned it into code in Recipe 18.2), we must set the target entity name, in this case
Person, in the fetch request by using the initWithEntityName: method. Once the fetch
request is constructed successfully, all that’s left to do is execute the fetch request as we
saw in this recipe’s Solution.

The return value of the executeFetchRequest:error: instance method of NSMan
agedObjectContext is either nil (in case of an error) or an array of Person managed
objects. If no results are found for the given entity, the returned array will be empty.

See Also
Recipe 18.1; Recipe 18.2

18.4. Reading Data from Core Data | 749

18.5. Deleting Data from Core Data

Problem
You want to delete a managed object (a row in a table) from a managed object context
(your database).

Solution
Use the deleteObject: instance method of NSManagedObjectContext:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 [self createNewPersonWithFirstName:@"Anthony"

 lastName:@"Robbins"

 age:51];

 [self createNewPersonWithFirstName:@"Richard"

 lastName:@"Branson"

 age:61];

 /* Create the fetch request first */

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc]

 initWithEntityName:@"Person"];

 NSError *requestError = nil;

 /* And execute the fetch request on the context */

 NSArray *persons =

 [self.managedObjectContext executeFetchRequest:fetchRequest

 error:&requestError];

 /* Make sure we get the array */

 if ([persons count] > 0){

 /* Delete the last person in the array */

 Person *lastPerson = [persons lastObject];

 [self.managedObjectContext deleteObject:lastPerson];

 NSError *savingError = nil;

 if ([self.managedObjectContext save:&savingError]){

 NSLog(@"Successfully deleted the last person in the array.");

 } else {

 NSLog(@"Failed to delete the last person in the array.");

 }

 } else {

 NSLog(@"Could not find any Person entities in the context.");

 }

750 | Chapter 18: Core Data

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

In this example code, we are using the createNewPersonWithFirst
Name:lastName:age: method that we coded in Recipe 18.4.

Discussion
You can delete managed objects (records of a table in a database) using the deleteOb
ject: instance method of NSManagedObjectContext.

This method doesn’t return an error to you in any of its parameters, nor does it return
a BOOL value, so you really have no good way of knowing whether an object was suc‐
cessfully deleted using the managed object context. The best way to determine this is to
use that managed object’s isDeleted method.

With this information, let’s change the code that we wrote previously in this recipe:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 [self createNewPersonWithFirstName:@"Anthony"

 lastName:@"Robbins"

 age:51];

 [self createNewPersonWithFirstName:@"Richard"

 lastName:@"Branson"

 age:61];

 /* Create the fetch request first */

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc]

 initWithEntityName:@"Person"];

 NSError *requestError = nil;

 /* And execute the fetch request on the context */

 NSArray *persons =

 [self.managedObjectContext executeFetchRequest:fetchRequest

 error:&requestError];

 /* Make sure we get the array */

 if ([persons count] > 0){

18.5. Deleting Data from Core Data | 751

 /* Delete the last person in the array */

 Person *lastPerson = [persons lastObject];

 [self.managedObjectContext deleteObject:lastPerson];

 if ([lastPerson isDeleted]){

 NSLog(@"Successfully deleted the last person...");

 NSError *savingError = nil;

 if ([self.managedObjectContext save:&savingError]){

 NSLog(@"Successfully saved the context.");

 } else {

 NSLog(@"Failed to save the context.");

 }

 } else {

 NSLog(@"Failed to delete the last person.");

 }

 } else {

 NSLog(@"Could not find any Person entities in the context.");

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Once you run the app, you will get results similar to this printed to the console window:

Successfully deleted the last person...

Successfully saved the context.

18.6. Sorting Data in Core Data

Problem
You want to sort the managed objects (records) that you fetch from a managed object
context (database).

Solution
Create instances of NSSortDescriptor for each attribute (column, in the database
world) of an entity that has to be sorted. Add the sort descriptors to an array and assign
the array to an instance of NSFetchRequest using the setSortDescriptors: instance
method. In this example code, Sorting_Data_in_Core_DataAppDelegate is the class

752 | Chapter 18: Core Data

that represents the app delegate in a universal app. To understand how the Person entity
is created, please refer to Recipes 18.1 and 18.2:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 [self createNewPersonWithFirstName:@"Richard"

 lastName:@"Branson"

 age:61];

 [self createNewPersonWithFirstName:@"Anthony"

 lastName:@"Robbins"

 age:51];

 /* Create the fetch request first */

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc]

 initWithEntityName:@"Person"];

 NSSortDescriptor *ageSort =

 [[NSSortDescriptor alloc] initWithKey:@"age"

 ascending:YES];

 NSSortDescriptor *firstNameSort =

 [[NSSortDescriptor alloc] initWithKey:@"firstName"

 ascending:YES];

 fetchRequest.sortDescriptors = @[ageSort, firstNameSort];

 NSError *requestError = nil;

 /* And execute the fetch request on the context */

 NSArray *persons =

 [self.managedObjectContext executeFetchRequest:fetchRequest

 error:&requestError];

 for (Person *person in persons){

 NSLog(@"First Name = %@", person.firstName);

 NSLog(@"Last Name = %@", person.lastName);

 NSLog(@"Age = %lu", (unsigned long)[person.age unsignedIntegerValue]);

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

18.6. Sorting Data in Core Data | 753

Discussion
An instance of NSFetchRequest can carry with itself an array of NSSortDescriptor
instances. Each sort descriptor defines the attribute (column) on the current entity that
has to be sorted and whether the sorting has to be ascending or descending. For instance,
the Person entity we created in Recipe 18.1 has firstName, lastName, and age attributes.
If we want to read all the persons in a managed object context and sort them from
youngest to oldest, we would create an instance of NSSortDescriptor with the age key
and set it to be ascending:

NSSortDescriptor *ageSort =

[[NSSortDescriptor alloc] initWithKey:@"age"

 ascending:YES];

You can assign more than one sort descriptor to one fetch request. The
order in the array determines the order in which descriptors are pro‐
vided. In other words, The output is sorted according to the first de‐
scriptor of the array, and within that order, entries are sorted accord‐
ing to the second descriptor of the array, etc.

See Also
Recipe 18.4

18.7. Boosting Data Access in Table Views

Problem
In an application that uses table views to present managed objects to the user, you want
to be able to fetch and present the data in a more fluid and natural way than managing
your data manually.

Solution
Use fetched results controllers, which are instances of NSFetchedResultsController.

In this recipe, we are going to use storyboards to reduce the time that
it takes to develop the sample application in the Discussion section.
For more information about storyboards, please refer to Chapter 6).

754 | Chapter 18: Core Data

Discussion
Fetched results controllers work in the same way as table views. Both have sections and
rows. A fetched results controller can read managed objects from a managed object
context and separate them into sections and rows. Each section is a group (if you specify
it), and each row in a section is a managed object. You can then easily map this data to
a table view and display it to the user. There are a few very important reasons why you
might want to modify your application to use fetched results controllers:

• After a fetched results controller is created on a managed object context, any change
(insertion, deletion, modification, etc.) will immediately be reflected on the fetched
results controller as well. For instance, you could create your fetched results con‐
troller to read the managed objects of the Person entity. Then in some other place
in your application, you might insert a new Person managed object into the context
(the same context the fetched results controller was created on). Immediately, the
new managed object will become available in the fetched results controller. This is
just magical!

• With a fetched results controller, you can manage cache more efficiently. For in‐
stance, you can ask your fetched results controller to keep only N number of man‐
aged objects in memory per controller instance.

• Fetched results controllers are exactly like table views in the sense that they have
sections and rows, as explained before. You can use a fetched results controller to
present managed objects in the GUI of your application with table views with ease.

Here are some of the important properties and instance methods of fetched results
controllers (all are objects of type NSFetchedResultsController):

sections (property, of type NSArray)
A fetched results controller can group data together using a key path. The desig‐
nated initializer of the NSFetchedResultsController class accepts this grouping
filter through the sectionNameKeyPath parameter. The sections array will then
contain each grouped section. Each object in this array conforms to the NSFetche
dResultsSectionInfo protocol.

objectAtIndexPath: (instance method, returns a managed object)
Objects fetched with a fetched results controller can be retrieved using their section
and row index. Each section’s rows are numbered 0 through N-1, where N is the
total number of items in that section. An index path object comprises a section and
row index and perfectly matches the information needed to retrieve objects from
a fetched results controller. The objectAtIndexPath: instance method accepts in‐
dex paths. Each index path is of type NSIndexPath. If you need to construct a table
view cell using a managed object in a fetched results controller, simply pass the
index path object in the cellForRowAtIndexPath parameter of the tableView:cell
ForRowAtIndexPath: delegate method of a table view. If you want to construct an

18.7. Boosting Data Access in Table Views | 755

index path yourself anywhere else in your application, use the indexPathFor
Row:inSection: class method of NSIndexPath.

fetchRequest (property, of type NSFetchRequest)
If at any point in your application you believe you have to change the fetch request
object for your fetched results controllers, you can do so using the fetchRequest
property of an instance of NSFetchedResultsController. This is useful, for ex‐
ample, if you want to change the sort descriptors (refer to Recipe 18.6 for infor‐
mation about this) of the fetch request object after you have allocated and initialized
your fetched results controllers.

A fetched results controller also tracks the changes that happen in the context that it is
bound to. For instance, let’s say you have created your fetched results controller on View
Controller A, and on View Controller B you are deleting an object from your context.
As soon as you do that on View Controller B, your first view controller that owns the
fetched results controller will get notified, assuming that View Controller A is the del‐
egate of the fetched results controller. This is great and will come in handy. Imagine the
situation where you are developing an app and your app displays two view controllers
to the user. The root view controller is a table view controller that lists all the user’s
contacts, and the second view controller allows the user to add a new contact. As soon
as the user presses the Save button on the second view controller and goes back to the
list of her contacts, the list is already updated because of the delegation mechanism of
the fetched results controller.

In the previously described application, you would declare your table view controller
that lists all the user’s contacts in this way:

#import "PersonsListTableViewController.h"

#import "AppDelegate.h"

#import "Person.h"

#import "AddPersonViewController.h"

static NSString *PersonTableViewCell = @"PersonTableViewCell";

@interface PersonsListTableViewController ()

<NSFetchedResultsControllerDelegate>

@property (nonatomic, strong) UIBarButtonItem *barButtonAddPerson;

@property (nonatomic, strong) NSFetchedResultsController *frc;

@end

The bar button declared in the code will be a simple + button on the navigation bar that
allows the user to go to the Add Person view controller, where he will be able to add a
new contact to our managed object context. The fetched results controller will also be
used to actually fetch the persons from context and assist us in displaying them on our
table view.

756 | Chapter 18: Core Data

This is how we construct our fetched results controller:

/* Create the fetch request first */

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc]

 initWithEntityName:@"Person"];

NSSortDescriptor *ageSort =

[[NSSortDescriptor alloc] initWithKey:@"age"

 ascending:YES];

NSSortDescriptor *firstNameSort =

[[NSSortDescriptor alloc] initWithKey:@"firstName"

 ascending:YES];

fetchRequest.sortDescriptors = @[ageSort, firstNameSort];

self.frc =

[[NSFetchedResultsController alloc]

 initWithFetchRequest:fetchRequest

 managedObjectContext:[self managedObjectContext]

 sectionNameKeyPath:nil

 cacheName:nil];

self.frc.delegate = self;

NSError *fetchingError = nil;

if ([self.frc performFetch:&fetchingError]){

 NSLog(@"Successfully fetched.");

} else {

 NSLog(@"Failed to fetch.");

}

You can see that the fetched results controller is choosing the current table view con‐
troller as its own delegate. The delegate of the fetched results controller has to conform
to the NSFetchedResultsControllerDelegate protocol. Here are some of the most
important methods in this protocol:

controllerWillChangeContent:

Gets called on the delegate to let it know that the context that is backing the fetched
results controller has changed and that the fetched results controller is about to
change its contents to reflect that. We usually use this method to prepare our table
view for updates by calling the beginUpdates method on it.

controller:didChangeObject:atIndexPath:forChangeType:newIndexPath:

Gets called on the delegate to inform the delegate of specific changes made to an
object on the context. For instance, if you delete an object from the context, this
method gets called, and its forChangeType parameter will contain the value
NSFetchedResultsChangeDelete. Alternatively, if you insert a new object into the
context, this parameter will contain the value NSFetchedResultsChangeInsert.

18.7. Boosting Data Access in Table Views | 757

This method also gets called on your fetched results controller’s delegate method
when a managed object is updated, after the context is saved using the save: method
of the context.

controllerDidChangeContent:

Gets called on the delegate to inform it that the fetched results controller was re‐
freshed and updated as a result of an update to a managed object context. Generally,
programmers issue an endUpdates call on their table view within this method to
ask the table view to process all the updates that they submitted after a beginUp
dates method.

Here is a typical implementation of the aforementioned methods in the app whose
concept was explained earlier:

- (void) controllerWillChangeContent:(NSFetchedResultsController *)controller{

 [self.tableView beginUpdates];

}

- (void) controller:(NSFetchedResultsController *)controller

 didChangeObject:(id)anObject

 atIndexPath:(NSIndexPath *)indexPath

 forChangeType:(NSFetchedResultsChangeType)type

 newIndexPath:(NSIndexPath *)newIndexPath{

 if (type == NSFetchedResultsChangeDelete){

 [self.tableView

 deleteRowsAtIndexPaths:@[indexPath]

 withRowAnimation:UITableViewRowAnimationAutomatic];

 }

 else if (type == NSFetchedResultsChangeInsert){

 [self.tableView

 insertRowsAtIndexPaths:@[newIndexPath]

 withRowAnimation:UITableViewRowAnimationAutomatic];

 }

}

- (void) controllerDidChangeContent:(NSFetchedResultsController *)controller{

 [self.tableView endUpdates];

}

Now, obviously, we also talked about providing information to a table view using various
methods of the fetched results controller, such as the objectAtIndexPath: method. A
simple implementation of this method in a table view could look like this:

- (NSInteger)tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section{

 id <NSFetchedResultsSectionInfo> sectionInfo =

 self.frc.sections[section];

758 | Chapter 18: Core Data

 return sectionInfo.numberOfObjects;

}

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath{

 UITableViewCell *cell = nil;

 cell = [tableView dequeueReusableCellWithIdentifier:PersonTableViewCell

 forIndexPath:indexPath];

 Person *person = [self.frc objectAtIndexPath:indexPath];

 cell.textLabel.text =

 [person.firstName stringByAppendingFormat:@" %@", person.lastName];

 cell.detailTextLabel.text =

 [NSString stringWithFormat:@"Age: %lu",

 (unsigned long)[person.age unsignedIntegerValue]];

 return cell;

}

In this code, we are telling our table view controller to display as many cells as there are
instances of managed objects in our fetched results controller. While displaying each
cell, we retrieve the Person managed object from the fetched results controller and
configure our cell accordingly. Our table view controller, with no items in the managed
object context, could look like Figure 18-11.

Figure 18-11. An empty table view backed by a fetched results controller

18.7. Boosting Data Access in Table Views | 759

Now in the second view controller, where the user is allowed to add a new Person
instance to the managed object context, we will use the following method:

- (void) createNewPerson:(id)paramSender{

 AppDelegate *appDelegate = [[UIApplication sharedApplication] delegate];

 NSManagedObjectContext *managedObjectContext =

 appDelegate.managedObjectContext;

 Person *newPerson =

 [NSEntityDescription insertNewObjectForEntityForName:@"Person"

 inManagedObjectContext:managedObjectContext];

 if (newPerson != nil){

 newPerson.firstName = self.textFieldFirstName.text;

 newPerson.lastName = self.textFieldLastName.text;

 newPerson.age = @([self.textFieldAge.text integerValue]);

 NSError *savingError = nil;

 if ([managedObjectContext save:&savingError]){

 [self.navigationController popViewControllerAnimated:YES];

 } else {

 NSLog(@"Failed to save the managed object context.");

 }

 } else {

 NSLog(@"Failed to create the new person object.");

 }

}

This method reads the first name, last name, and age of the person to be created from
three text fields on the view controller. We don’t have to worry about the implementation
of those text fields, as that has nothing to do with what we are trying to learn in this
recipe. After this method gets called, we call the save: method on our managed object
context. This will in turn trigger the change in our fetched results controller in the first
table view controller, which in turn will refresh the table view.

One last thing is how we can allow the user to delete items on the first table view con‐
troller:

- (void) tableView:(UITableView *)tableView

 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

 forRowAtIndexPath:(NSIndexPath *)indexPath{

 Person *personToDelete = [self.frc objectAtIndexPath:indexPath];

 [[self managedObjectContext] deleteObject:personToDelete];

760 | Chapter 18: Core Data

 if ([personToDelete isDeleted]){

 NSError *savingError = nil;

 if ([[self managedObjectContext] save:&savingError]){

 NSLog(@"Successfully deleted the object");

 } else {

 NSLog(@"Failed to save the context with error = %@", savingError);

 }

 }

}

This code won’t even touch the fetched results controller directly, but it deletes the
selected person from the managed object context, which will refresh the fetched results
controller, that in turn refreshing the table view. To learn more about table views, please
refer to Chapter 4. The interface of our table view controller in deletion mode could
look like that shown in Figure 18-12.

Figure 18-12. Deletion mode of a table view controller that uses a fetched results con‐
troller

18.8. Implementing Relationships in Core Data

Problem
You want to be able to link your managed objects to each other: for instance, linking a
Person to the Home he lives in.

Solution
Use inverse relationships in the model editor.

18.8. Implementing Relationships in Core Data | 761

Discussion
Relationships in Core Data can be one-to-one, inverse one-to-many, or inverse many-
to-many. Here is an example of each type of relationship:

One-to-one relationship
An example is the relationship between a person and her nose. Each person can
have only one nose, and each nose can belong to only one person.

Inverse one-to-many relationship
An example is the relationship between an employee and his manager. The em‐
ployee can have only one direct manager, but his manager can have multiple em‐
ployees working for her. Here, the relationship of the employee with the manager
is one-to-one, but from the manager’s perspective, the relationship is one (manager)
to many (employees); hence the word inverse.

Inverse many-to-many relationship
An example is the relationship between a person and a car. One car can be used by
more than one person, and one person can have more than one car.

In Core Data, you can create one-to-one relationships, but I highly recommend that
you avoid doing so because, going back to the example in the preceding list, the person
will know what nose she has, but the nose will not know who it belongs to. Please note
that this is a different one-to-one model than what you might have seen in other database
management systems where Object A and Object B will be linked together when they
have a one-to-one relationship. In a Core Data one-to-one relationship, Object A will
know about Object B, but not the other way around. In an object-oriented programming
language such as Objective-C, it is always best to create inverse relationships so that
child elements can refer to parent elements of that relationship. In a one-to-many re‐
lationship, the object that can have associations with many other objects will retain a
set of those objects. The set will be of type NSSet. However, in a one-to-one relationship,
objects on both sides of the fence keep a reference to one another using the proper class
names of one another since, well, the relationship is one-to-one and an instance of one
object in another object can easily be represented with the class name of that object.

Let’s go ahead and create a data model that takes advantage of an inverse one-to-many
relationship:

1. In Xcode, find the xcdatamodel file that was created for you when you started your

Core Data project, as shown earlier in this chapter’s Introduction (refer to
Recipe 18.1 to create such a project).

2. Open the data model file in the editor by clicking on it.

3. Remove any entities that were created for you previously by selecting them and
pressing the Delete key on your keyboard.

762 | Chapter 18: Core Data

4. Create a new entity and name it Employee. Create three attributes for this entity,
named firstName (of type String), lastName (of type String), and age (of type
Integer 32), as shown in Figure 18-13.

Figure 18-13. The Employee entity with three attributes

5. Create another entity named Manager with the same attributes you created for the
Employee entity (firstName of type String, lastName of type String, and age of
type Integer 32). See Figure 18-14.

Figure 18-14. The Manager entity with three attributes

6. Create a new relationship for the Manager entity by first selecting the Manager entity
in the list and then pressing the + button in the bottom of the Relationships box
(see Figure 18-15).

18.8. Implementing Relationships in Core Data | 763

Figure 18-15. We have added a new relationship to the Manager entity

7. Set the name of the new relationship to employees (see Figure 18-16).

Figure 18-16. Changing the name of the new Manager-to-Employees relationship

8. Select the Employee entity and create a new relationship for it. Name the relationship
manager (see Figure 18-17).

764 | Chapter 18: Core Data

Figure 18-17. Changing the name of the new Employee-to-Manager relationship

9. Choose the Manager entity, and then select the employees relationship for the
Manager. In the Relationships box, choose Employee in the Destination drop-down
menu (because we want to connect a Manager to an Employee entity through this
relationship), set the Inverse box’s value to manager (because the manager relation‐
ship of the Employee will link an employee to her Manager), and tick the To-Many
Relationship box in Data Model inspector (see Recipe 18.1). The results are shown
in Figure 18-18.

Figure 18-18. The Manager inverse relationship established with employees

10. Select both your Employee and Manager entities, select File → New File, and create

the managed object classes for your model, as described in Recipe 18.2.

After creating the inverse one-to-many relationship, open the .h file of your Employee

entity:

18.8. Implementing Relationships in Core Data | 765

#import <Foundation/Foundation.h>

#import <CoreData/CoreData.h>

@class Manager;

@interface Employee : NSManagedObject

@property (nonatomic, retain) NSNumber * age;

@property (nonatomic, retain) NSString * firstName;

@property (nonatomic, retain) NSString * lastName;

@property (nonatomic, retain) Manager *manager;

@end

You can see that a new property has been added to this file. The property is named
manager and its type is Manager, meaning that from now on, if we have a reference to
any object of type Employee, we can access its manager property to access that specific
employee’s Manager object (if any). Let’s have a look at the .h file of the Manager entity:

#import <Foundation/Foundation.h>

#import <CoreData/CoreData.h>

@class Employee;

@interface Manager : NSManagedObject

@property (nonatomic, retain) NSNumber * age;

@property (nonatomic, retain) NSString * firstName;

@property (nonatomic, retain) NSString * lastName;

@property (nonatomic, retain) NSSet *employees;

@end

@interface Manager (CoreDataGeneratedAccessors)

- (void)addEmployeesObject:(Employee *)value;

- (void)removeEmployeesObject:(Employee *)value;

- (void)addEmployees:(NSSet *)values;

- (void)removeEmployees:(NSSet *)values;

@end

The employees property is also created for the Manager entity. The data type of this
object is NSSet. This simply means the employees property of any instance of the
Manager entity can contain 1 to N number of Employee entities (a one-to-many rela‐
tionship: one manager, many employees).

Another type of relationship that you might want to create is a many-to-many rela‐
tionship. Going back to the Manager to Employee relationship, with a many-to-many
relationship, any manager could have N number of employees, and one employee could
have N number of managers. To do this, follow the same instructions for creating a one-
to-many relationship, but select the Employee entity and then the manager relationship.

766 | Chapter 18: Core Data

Change this name to managers and tick the To-Many Relationship box, as shown in
Figure 18-19. Now the arrow has double arrowheads on both sides.

Figure 18-19. Creating a Many-to-Many relationship between the Manager and Em‐
ployee entities

Now if you open the Employee.h file, the contents will be different:

#import <Foundation/Foundation.h>

#import <CoreData/CoreData.h>

@class Manager;

@interface Employee : NSManagedObject

@property (nonatomic, retain) NSNumber * age;

@property (nonatomic, retain) NSString * firstName;

@property (nonatomic, retain) NSString * lastName;

@property (nonatomic, retain) NSSet *managers;

@end

@interface Employee (CoreDataGeneratedAccessors)

- (void)addManagersObject:(Manager *)value;

- (void)removeManagersObject:(Manager *)value;

- (void)addManagers:(NSSet *)values;

- (void)removeManagers:(NSSet *)values;

@end

You can see that the managers property of the Person entity is now a set. Since the
relationship from the employee to her managers is a set and so is the relationship from
the manager to the employees, this creates a many-to-many relationship in Core Data.

In your code, for a one-to-many relationship, you can simply create a new Manager
managed object (read how you can insert objects to a managed object context in
Recipe 18.3), save it to the managed object context, and then create a couple of Employ
ee managed objects and save them to the context as well. Now, to associate the manager

18.8. Implementing Relationships in Core Data | 767

with an employee, set the value of the manager property of an instance of Employee to
an instance of the Manager managed object. Core Data will then create the relationship
for you.

If you would like to retrieve all employees (of type Employee) that are associated to a
manager object (of type Manager), all you have to do is use the allObjects instance
method of the employees property of our manager object. This object is of type NSSet,
so you can use its allObjects instance method to retrieve the array of all employee
objects associated with a particular manager object.

18.9. Fetching Data in the Background

Problem
You want to perform fetches in your Core Data Stack, all in the background. This is
great if you want to ensure that you have a responsive user interface.

Solution
Before performing background fetches, create a new managed object context with the
concurrency type of NSPrivateQueueConcurrencyType. Then use the performBlock:
method of your new background context to perform your fetches in the background.
Once you are done and are ready to use your fetched objects in your UI, go back to the
UI thread using dispatch_async (see Recipe 7.4) and for every object that you fetched
in the background, issue the objectWithID: method on your main context. This will
bring those background-fetched objects to your foreground context, ready to be used
in your UI thread.

Discussion
Fetching on the main thread is not a good idea unless you have a very limited number
of items in your Core Data stack, because a fetch generally issues a search call to Core
Data. It then has to fetch some data for you, usually using a predicate. To make your UI
more responsive, it’s best that you issue your fetches on a background context.

You can have as many contexts as you want in your app, but there is one golden rule
here. You cannot pass managed objects between contexts on different threads, because
the objects are not thread safe. That means that if you fetch objects on a background
context, you cannot use them on the main thread. The correct way of passing managed
objects between threads is to fetch them on a background thread, and then bring them
into the main context (running on the main thread) using the objectWithID: method
of your main context. This method accepts an object of type NSManagedObjectID, so in
your background thread, instead of actually fetching the full managed objects, just fetch
their persistent IDs and then pass those IDs to the main context to get the full object

768 | Chapter 18: Core Data

for you. This means that you do your actual searches and fetches in the background,
grab the IDs of the objects that you found, and then pass those IDs to the main context
for retrieval. This way, the main context will get a persistent ID to the objects, and the
retrieval of those objects from the persistent store will be much faster than actually doing
your whole search on the main context.

For the purpose of this recipe, I’m going to assume that you’ve already created a managed
object model object named Person similar to that shown in Figure 18-20:

Figure 18-20. Our simple Core Data model for this recipe

With this model, before attempting to fetch anything from the stack, I’m going to pop‐
ulate the stack with 1,000 Person objects like so:

- (void) populateDatabase{

 for (NSUInteger counter = 0; counter < 1000; counter++){

 Person *person =

 [NSEntityDescription

 insertNewObjectForEntityForName:NSStringFromClass([Person class])

 inManagedObjectContext:self.managedObjectContext];

 person.firstName = [NSString stringWithFormat:@"First name %lu",

 (unsigned long)counter];

 person.lastName = [NSString stringWithFormat:@"Last name %lu",

 (unsigned long)counter];

 person.age = @(counter);

 }

 NSError *error = nil;

 if ([self.managedObjectContext save:&error]){

 NSLog(@"Managed to populate the database.");

 } else {

 NSLog(@"Failed to populate the database. Error = %@", error);

 }

}

18.9. Fetching Data in the Background | 769

Note how I am using the NSStringFromClass to change the name of
the Person class into a string and then instantiate objects of that type.
Some programmers prefer just to type "Person" as a literal string, but
the problem with hardcoding your string in such a manner is that, if
you change your mind later and want to change the name of the Per
son in your Core Data stack, the hardcoded string will stay there and
you may get crashes in your app at runtime as the model object named
Person no longer exists. But if you use the aforementioned function
to change the name of a class to a string, if that class’s name is changed,
or that class doesn’t exist anymore, you’ll get compile-time errors; and
before you ship your app, you’ll know that you have to fix those errors.

Before going any further with this recipe, I’m going to assume that you’ve already used
the method that we just wrote to populate your database. So here is the general idea of
how we are going to go about fetching our objects on a background context:

1. We will create a background context using the initWithConcurrencyType: ini‐
tializer of the NSManagedObjectContext class and pass the value of NSPrivate
QueueConcurrencyType to this method. This will give us a context that has its own
private dispatch queue, so if you call the performBlock: block on the context, the
block will be executed on a private background queue.

2. We are then going to set the value of the persistentStoreCoordinator property
of our background context to the instance of our persistent store coordinator. This
will bind our background context with our persistent store coordinator so that if
you issue a fetch on the background context, it will be able to fetch the data right
from disk or wherever the coordinator is storing the data.

3. We’ll issue a performBlock: call on our background context and then issue a fetch
request to look for all persons in the Core Data stack whose ages are between 100
and 200. Remember that the point of this exercise is not how realistic the data is.
We are just trying to demonstrate a background fetch. When constructing the fetch
request, we are going to set its resultType property’s value to NSManagedObjectI
DResultType. This will ensure that the results that come back from making this
fetch request are not actual managed objects, but just the object IDs. As explained
before, we don’t want to fetch managed objects because they are fetched on the
background context and therefore can’t be used on the main thread. So we will fetch
their IDs on the background context and then turn those IDs into real managed
objects on the main context, after which the objects can be used on the main thread.

770 | Chapter 18: Core Data

This is how we will construct our fetch request:

- (NSFetchRequest *) newFetchRequest{

 NSFetchRequest *request = [[NSFetchRequest alloc]

 initWithEntityName:

 NSStringFromClass([Person class])];

 request.fetchBatchSize = 20;

 request.predicate =

 [NSPredicate predicateWithFormat:@"(age >= 100) AND (age <= 200)"];

 request.resultType = NSManagedObjectIDResultType;

 return request;

}

And this is how we will go about creating our background context and then issue the
fetch request on it:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 __weak NSManagedObjectContext *mainContext = self.managedObjectContext;

 __weak AppDelegate *weakSelf = self;

 __block NSMutableArray *mutablePersons = nil;

 /* Set up the background context */

 NSManagedObjectContext *backgroundContext =

 [[NSManagedObjectContext alloc]

 initWithConcurrencyType:NSPrivateQueueConcurrencyType];

 backgroundContext.persistentStoreCoordinator =

 self.persistentStoreCoordinator;

 /* Issue a block on the background context */

 [backgroundContext performBlock:^{

 NSError *error = nil;

 NSArray *personIds = [backgroundContext

 executeFetchRequest:[weakSelf newFetchRequest]

 error:&error];

 if (personIds != nil && error == nil){

 mutablePersons = [[NSMutableArray alloc]

 initWithCapacity:personIds.count];

 /* Now go on the main context and get the objects on that

 context using their IDs */

 dispatch_async(dispatch_get_main_queue(), ^{

 for (NSManagedObjectID *personId in personIds){

 Person *person = (Person *)[mainContext

 objectWithID:personId];

18.9. Fetching Data in the Background | 771

 [mutablePersons addObject:person];

 }

 [weakSelf processPersons:mutablePersons];

 });

 } else {

 NSLog(@"Failed to execute the fetch request.");

 }

 }];

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

This code collects all the managed objects in an array and then calls the processPer
sons: method on our app delegate to process the results in the array. We will develop
this method like so:

- (void) processPersons:(NSArray *)paramPersons{

 for (Person *person in paramPersons){

 NSLog(@"First name = %@, last name = %@, age = %ld",

 person.firstName,

 person.lastName,

 (long)person.age.integerValue);

 }

}

See Also
Recipe 7.4; Recipe 18.4; Recipe 18.6

18.10. Using Custom Data Types in Your Core Data Model

Problem
You believe the choice of data types provided by Core Data doesn’t suit your needs. You
may need to use more data types, such as UIColor, in your model objects, but Core Data
doesn’t offer that data type out of the box.

Solution
Use transformable data types.

772 | Chapter 18: Core Data

Discussion
Core Data allows you to create properties on your model objects and assign data types
to those properties. Your choice is quite limited: a data type can be used in Core Data
only if it can be turned into an instance of NSData and back again. By default, there are
a number of popular classes, such as UIColor, that you cannot use for your properties.
So what is the way around it? The answer is transformable properties. Let me explain
the concept to you first.

So let’s say that we want to create a model object in Core Data and name that model
object Laptop. This object is going to have two properties: a model of type String and
a color that we want to be of type UIColor. Core Data does not offer that data type, so
we have to create a subclass of the NSValueTransformer class. Let’s name our class
ColorTransformer. Here are the things you have to do in the implementation of your
class:

1. Override the allowsReverseTransformation class method of your class and return
YES from it. This will tell Core Data that you can turn colors into data and data back
into colors.

2. Override the transformedValueClass class method of your class and return the
class name of NSData from it. The return value of this class method tells Core Data
what class you are transforming your custom value to. In this case, you are turning
UIColor to NSData, so we need to return the class name of NSData from this method.

3. Override the transformedValue: instance method of your transformer. In your
method, take the incoming value (which will in this case be an instance of UICol
or), transform it to NSData, and return that data back from this method.

4. Override the reverseTransformedValue: instance method of your transformer to
do the opposite: take the incoming value, which will be data, and transform it to
color.

Given this information, we are going to proceed to implementing our transformer as
follows. We store a color as data simply by taking it apart into integer components and
storing them in an array:

#import <UIKit/UIKit.h>

#import "ColorTransformer.h"

@implementation ColorTransformer

+ (BOOL) allowsReverseTransformation{

 return YES;

}

+ (Class) transformedValueClass{

 return [NSData class];

18.10. Using Custom Data Types in Your Core Data Model | 773

}

- (id) transformedValue:(id)value{

 /* Transform color to data */

 UIColor *color = (UIColor *)value;

 CGFloat red, green, blue, alpha;

 [color getRed:&red green:&green blue:&blue alpha:&alpha];

 CGFloat components[4] = {red, green, blue, alpha};

 NSData *dataFromColors = [[NSData alloc] initWithBytes:components

 length:sizeof(components)];

 return dataFromColors;

}

- (id) reverseTransformedValue:(id)value{

 /* Transform back from data to color */

 NSData *data = (NSData *)value;

 CGFloat components[4] = {0.0f, 0.0f, 0.0f, 0.0f};

 [data getBytes:components length:sizeof(components)];

 UIColor *color = [UIColor colorWithRed:components[0]

 green:components[1]

 blue:components[2]

 alpha:components[3]];

 return color;

}

@end

Now let’s go to our data model to create the Laptop managed object and create its
attributes/properties. Ensure that the color attribute is transformable, and while this
attribute is selected, press Alt+Command+3 on your keyboard to open the Model In‐
spector for this attribute. In the name field of the transformable class, enter the name of
your custom transformer, in this case, ColorTransformer, as shown in Figure 18-21.

774 | Chapter 18: Core Data

Figure 18-21. Setting up our model with a transformable attribute

Now use the technique that you learned in Recipe 18.2 to generate the class file for the
Laptop managed object. After doing that, go into the header file of this managed object
and you’ll notice that the color attribute of your class is of type id.

#import <Foundation/Foundation.h>

#import <CoreData/CoreData.h>

@interface Laptop : NSManagedObject

@property (nonatomic, retain) NSString * model;

@property (nonatomic, retain) id color;

@end

This is good, but to make it better and help the compiler catch issues for us if we assign
values of the incorrect type to this property, let’s manually change this data type to
UIColor:

#import <Foundation/Foundation.h>

#import <CoreData/CoreData.h>

18.10. Using Custom Data Types in Your Core Data Model | 775

/* Make sure to import this as UIColor is in UIKit */

#import <UIKit/UIKit.h>

@interface Laptop : NSManagedObject

@property (nonatomic, retain) NSString * model;

@property (nonatomic, retain) UIColor *color;

@end

So now we are going to put all the things we learned here to use. In our app delegate,
we will create an instance of Laptop and set its color to red. Then we will insert that into
our Core Data stack and try to read it back to see whether the color could successfully
be saved and then retrieved back from the database:

#import "AppDelegate.h"

#import "Laptop.h"

@implementation AppDelegate

@synthesize managedObjectContext = _managedObjectContext;

@synthesize managedObjectModel = _managedObjectModel;

@synthesize persistentStoreCoordinator = _persistentStoreCoordinator;

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 /* Save the laptop with a given color first */

 Laptop *laptop =

 [NSEntityDescription

 insertNewObjectForEntityForName:NSStringFromClass([Laptop class])

 inManagedObjectContext:self.managedObjectContext];

 laptop.model = @"model name";

 laptop.color = [UIColor redColor];

 NSError *error = nil;

 if ([self.managedObjectContext save:&error] == NO){

 NSLog(@"Failed to save the laptop. Error = %@", error);

 }

 /* Now find the same laptop */

 NSFetchRequest *fetch =

 [[NSFetchRequest alloc]

 initWithEntityName:NSStringFromClass([Laptop class])];

 fetch.fetchLimit = 1;

776 | Chapter 18: Core Data

 fetch.predicate = [NSPredicate predicateWithFormat:@"color == %@",

 [UIColor redColor]];

 error = nil;

 NSArray *laptops = [self.managedObjectContext

 executeFetchRequest:fetch

 error:&error];

 /* Check for 1 because out fetch limit is 1 */

 if (laptops.count == 1 && error == nil){

 Laptop *fetchedLaptop = laptops[0];

 if ([fetchedLaptop.color isEqual:[UIColor redColor]]){

 NSLog(@"Right colored laptop was fetched");

 } else {

 NSLog(@"Could not find the laptop with the given color.");

 }

 } else {

 NSLog(@"Could not fetch the laptop with the given color. \

 Error = %@", error);

 }

 return YES;

}

See Also
Recipe 18.1

18.10. Using Custom Data Types in Your Core Data Model | 777

CHAPTER 19

Dates, Calendars, and Events

19.0. Introduction
The Event Kit and Event Kit UI frameworks allow iOS developers to access the Calendar
database on an iOS device. You can insert, read, and modify events using the Event Kit
framework. The Event Kit UI framework allows you to present built-in SDK GUI ele‐
ments that allow the user to manipulate the Calendar database manually. In this chapter,
we will focus on the Event Kit framework first and then learn about the Event Kit UI
framework.

With the Event Kit framework, a programmer can modify the user’s Calendar database
without him knowing. However, this is not a very good practice. In fact, Apple prohibits
programmers from doing so and asks us to always notify users about any changes that
the program might make to the Calendar database. Here is a quote from Apple:

If your application modifies a user’s Calendar database programmatically, it must get
confirmation from the user before doing so. An application should never modify the
Calendar database without specific instruction from the user.

iOS comes with a built-in Calendar app that can work with different types of calendars,
such as local, CalDAV, and so forth. In this chapter, we will be working with different
types of calendars as well. To make sure you are prepared to run the code in some of
the recipes in this chapter, please create an iCloud account and log into that account
using your iOS device.

If you don’t already have an iCloud account, you can create one using your iOS device
again or using your Mac. To create an iCloud account on your Mac (which is a little
easier), you will need to:

1. Open System Preferences.

2. Head over to the iCloud item, as shown in Figure 19-1.

779

Figure 19-1. Find and press the iCloud icon in your System Preferences

3. You will be presented with a screen that asks you to log in with your existing iCloud
account. Assuming that you don’t already have one, you will need to select the
“Create an Apple ID...” option on the screen, which shows as a link (see Figure 19-2).

4. Follow the on-screen instructions until you have your iCloud account. After signing
into your iCloud account in System Preferences, you will see an interface similar
to that shown in Figure 19-3.

780 | Chapter 19: Dates, Calendars, and Events

Figure 19-2. System asking you to log into iCloud

Figure 19-3. Logged into an iCloud account on OS X

19.0. Introduction | 781

5. Now that you have your iCloud account, pull out your iOS device, head over to the
Settings app, and choose iCloud. There you can log into your iCloud account using
the credentials that you created for your account earlier. This will bring all your
iCloud calendars into your device. After you are logged in, ensure that your iCloud
Calendars option is in the “on” state, as shown in Figure 19-4.

Figure 19-4. iCloud Calendars needs to be enabled on your device

That was all you needed to know in order to set your iOS device up with an iCloud
account and enable calendar support on it. Now if you open the Calendar app on your
device and head to the Calendars section of the app, you will see an interface similar to
that shown in Figure 19-5. That is a confirmation that your iCloud account has been
set up properly and that you have been given, with your iCloud account, a series of
calendars that you can just use out of the box.

782 | Chapter 19: Dates, Calendars, and Events

Figure 19-5. iCloud Calendars are enabled in the Calendar app on an iOS device

To run the example code in this chapter, you must add the Event Kit framework, and in
some cases the Event Kit UI framework, to your application. Using the Modules feature
in the new LLVM compiler, all you have to do to include these two frameworks into
your projects is to import their appropriate umbrella headers into your source code,
like so:

#import "AppDelegate.h"

#import <EventKit/EventKit.h>

#import <EventKitUI/EventKitUI.h>

@implementation AppDelegate

<# Rest of your code goes here #>

19.0. Introduction | 783

iOS Simulator does not simulate the Calendar app. To test the recipes
in this chapter, you must run and debug your program on a real iOS
device. All examples in this chapter have been tested on the new iPhone
and the new iPad.

In most of the example code in this chapter, we will focus on manually reading and
manipulating events in a calendar. If you want to use the built-in iOS capabilities to
allow your users to quickly access their calendar events, please refer to Recipes 19.10
and 19.11.

19.1. Requesting Permission to Access Calendars

Problem
You want to add events or make other changes to the user’s calendar, but this requires
the user to give your app permission.

Solution
Invoke the authorizationStatusForEntityType: class method of the EKEventStore
class and pass one of the following values to it as its parameter:

EKEntityTypeEvent

Permission to access/add/delete/modify events in the user’s calendars.

EKEntityTypeReminder

Permission to access/add/delete/modify reminders in the user’s calendars.

The method returns one of the following values:

EKAuthorizationStatusAuthorized

Your app is authorized to access the given type of items (events or reminders).

EKAuthorizationStatusDenied

The user has previously denied your app’s access to the event store, and this remains
in force.

EKAuthorizationStatusNotDetermined

Your app has not attempted to access the event store before, so the user has not been
asked to grant or reject permission. In this case, you need to ask for permission
from the user to access the event store on her device using the requestAccessToEn
tityType:completion: instance method of the EKEventStore class.

EKAuthorizationStatusRestricted

Due to some other restrictions on the device, such as parental controls, your app
cannot access the event store on the device.

784 | Chapter 19: Dates, Calendars, and Events

Here is a code snippet that will handle all these cases for us:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 EKEventStore *eventStore = [[EKEventStore alloc] init];

 switch ([EKEventStore

 authorizationStatusForEntityType:EKEntityTypeEvent]){

 case EKAuthorizationStatusAuthorized:{

 [self extractEventEntityCalendarsOutOfStore:eventStore];

 break;

 }

 case EKAuthorizationStatusDenied:{

 [self displayAccessDenied];

 break;

 }

 case EKAuthorizationStatusNotDetermined:{

 [eventStore

 requestAccessToEntityType:EKEntityTypeEvent

 completion:^(BOOL granted, NSError *error) {

 if (granted){

 [self extractEventEntityCalendarsOutOfStore:eventStore];

 } else {

 [self displayAccessDenied];

 }

 }];

 break;

 }

 case EKAuthorizationStatusRestricted:{

 [self displayAccessRestricted];

 break;

 }

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

This code snippet uses some methods whose implementation will be
described in the Discussion section of this recipe.

19.1. Requesting Permission to Access Calendars | 785

Discussion
The more Apple works on iOS, the more it pays attention to the user’s privacy. So it is
no shock that apps that want to access the user’s event store, which contains all the
calendars that have events and reminders, have to ask the user for permission first. In
fact, if you don’t ask for permission and then attempt to access the user’s calendars, iOS
will block the execution of your app and will display a dialog to the user asking for
permission. This dialog looks similar to the one shown in Figure 19-6.

Figure 19-6. Asking the user to grant or reject permission to an app wanting to access
the event store on her device

Now as good citizens of the iOS land, it’s best that we ask the Event Kit framework for
permission to access the user’s event store before attempting to make the requests. The
requestAccessToEntityType:completion: instance method of the EKEventStore
class is the best way to do that. The requestAccessToEntityType parameter can be
either EKEntityTypeEvent or EKEntityTypeReminder, depending on whether you want
to access the events or the reminders, respectively, and the completion parameter needs
to be a block object of the following type:

786 | Chapter 19: Dates, Calendars, and Events

typedef void(^EKEventStoreRequestAccessCompletionHandler)

 (BOOL granted, NSError *error);

When you call this method, iOS asks the user to grant permission to your app to access
the event store on her iOS device. Depending on her decision, your app may or may not
get access. You can find that out by reading the value of the granted Boolean parameter
of the completion block. If this value is NO, you can then read the value of the error
parameter to determine what went wrong.

In the Solution section code snippet, we are calling some instance methods that are
supposed to display an error message to the user for the EKAuthorizationStatusDe
nied and the EKAuthorizationStatusRestricted return values of the authorization
StatusForEntityType: class method of the EKEventStore class. The implementation
of these two methods is extremely simple:

- (void) displayMessage:(NSString *)paramMessage{

 UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:nil

 message:paramMessage

 delegate:nil

 cancelButtonTitle:nil

 otherButtonTitles:@"OK", nil];

 [alertView show];

}

- (void) displayAccessDenied{

 [self displayMessage:@"Access to the event store is denied."];

}

- (void) displayAccessRestricted{

 [self displayMessage:@"Access to the event store is restricted."];

}

The methods just display an alert to the user letting her know that your app cannot
access the event store because it is being denied access. Now under the EKAuthoriza
tionStatusNotDetermined status, if the granted value is YES, we call the extractEven
tEntityCalendarsOutOfStore: instance method of our class. This is a method that will
take the instance of our event store and then try to use its calendarsForEntityType:
instance method to get a list of calendars for that specific event type. The parameter to
this method again can be either EKEntityTypeEvent or EKEntityTypeReminder, and
the return value that comes back from this method will be an array of calendars that
can handle events or reminders, respectively. The objects in the returned array will be
of type EKCalendar.

Instances of EKCalendar represent a calendar, as their name shows, in the user’s event
store. As you saw in Figure 19-5, the user may have different accounts on her device
and under each account, she may have different calendars. For instance, you can create
multiple calendars under your iCloud account. Each instance of the EKCalendar class
will represent one calendar object on the user’s device.

19.1. Requesting Permission to Access Calendars | 787

Instances of the EKCalendar class have some interesting properties, such as the follow‐
ing:

title

A string value that is set to the title of the calendar, such as “Birthdays.”

type

The type of the calendar. This value is of type EKCalendarType and can be equal to
EKCalendarTypeLocal, EKCalendarTypeCalDAV, etc. This is the type of the calen‐
dar. For instance, iCloud calendars can be CalDAV calendars, so by querying this
value, you can find out what type of calendar object you are dealing with. The type
of the calendar will in turn tell you what you can do and not do with that calendar.

CGColor

This is the color of the calendar. This is a Core Graphics color, and you can convert
it to UIColor by using the colorWithCGColor: class method of the UIColor class.

allowsContentModifications

This property will tell you if the current calendar allows you to make any modifi‐
cations to it. A modification could be an insertion, a deletion, or a simple change
of an existing event or reminder in that calendar.

As you saw earlier, the application:didFinishLaunchingWithOptions: method of
our app delegate was calling the extractEventEntityCalendarsOutOfStore: instance
method of our class. Using what you have learned about calendar objects, you can now
understand the implementation of this method:

- (void) extractEventEntityCalendarsOutOfStore:(EKEventStore *)paramStore{

 NSArray *calendarTypes = @[

 @"Local",

 @"CalDAV",

 @"Exchange",

 @"Subscription",

 @"Birthday",

];

 NSArray *calendars = [paramStore

 calendarsForEntityType:EKEntityTypeEvent];

 NSUInteger counter = 1;

 for (EKCalendar *calendar in calendars){

 /* The title of the calendar */

 NSLog(@"Calendar %lu Title = %@",

 (unsigned long)counter, calendar.title);

 /* The type of the calendar */

 NSLog(@"Calendar %lu Type = %@",

 (unsigned long)counter,

 calendarTypes[calendar.type]);

788 | Chapter 19: Dates, Calendars, and Events

 /* The color that is associated with the calendar */

 NSLog(@"Calendar %lu Color = %@",

 (unsigned long)counter,

 [UIColor colorWithCGColor:calendar.CGColor]);

 /* And whether the calendar can be modified or not */

 if ([calendar allowsContentModifications]){

 NSLog(@"Calendar %lu can be modified.",

 (unsigned long)counter);

 } else {

 NSLog(@"Calendar %lu cannot be modified.",

 (unsigned long)counter);

 }

 counter++;

 }

}

Once you run this code on your device, depending on how many calendars you have
already set up on your iCloud account and other calendars that may have been linked
to your computer, you will get results similar to those shown here, printed to your
console:

Calendar 1 Title = vandad.np@gmail.com

Calendar 1 Type = CalDAV

Calendar 1 Color = UIDeviceRGBColorSpace 0.160784 0.321569 0.639216 1

Calendar 1 can be modified.

Calendar 4 Title = Sportives

Calendar 4 Type = CalDAV

Calendar 4 Color = UIDeviceRGBColorSpace 0.694118 0.266667 0.054902 1

Calendar 4 can be modified.

Calendar 5 Title = Concerts

Calendar 5 Type = CalDAV

Calendar 5 Color = UIDeviceRGBColorSpace 0.184314 0.388235 0.0352941 1

Calendar 5 can be modified.

Calendar 6 Title = Schedule

Calendar 6 Type = CalDAV

Calendar 6 Color = UIDeviceRGBColorSpace 0.964706 0.309804 0 1

Calendar 6 can be modified.

Calendar 7 Title = Flat Viewing

Calendar 7 Type = CalDAV

Calendar 7 Color = UIDeviceRGBColorSpace 0.266667 0.654902 0.0117647 1

Calendar 7 can be modified.

See Also
Recipe 19.0, “Introduction”

19.1. Requesting Permission to Access Calendars | 789

19.2. Retrieving Calendar Groups on an iOS Device

Problem
The user has different calendar accounts, such as an iCloud account and a separate
CalDAV account, and a calendar named Calendar under both of these accounts. You
want to create an event under the calendar appropriately titled “Calendar” that belongs
to the user’s iCloud account, and not the other accounts that she may have on her iOS
device.

Solution
Find the event sources that are present in the user’s event store by going through the
sources array property in an instance of EKEventStore. This array will contain objects
of type EKSource, each of which represents a group of calendars in the event store on
the user’s device.

Discussion
Let’s not make anything complicated here. To make a long story short, users can have
different accounts (iCloud, Exchange, etc.). Each of these accounts, if they support cal‐
endars, is treated as an event source. An event source will then contain calendars.

To find a specific calendar with a given title, you first have to find that calendar in the
correct event source. For instance, the following code snippet attempts to find the event
source titled iCloud on the user’s device:

- (void) findIcloudEventSource{

 EKSource *icloudEventSource = nil;

 EKEventStore *eventStore = [[EKEventStore alloc] init];

 for (EKSource *source in eventStore.sources){

 if (source.sourceType == EKSourceTypeCalDAV &&

 [source.title caseInsensitiveCompare:@"iCloud"]){

 icloudEventSource = source;

 break;

 }

 }

 if (icloudEventSource != nil){

 NSLog(@"The iCloud event source was found = %@", icloudEventSource);

 } else {

 NSLog(@"Could not find the iCloud event source");

 }

}

790 | Chapter 19: Dates, Calendars, and Events

By following the instructions in Recipe 19.1, ensure that you have
already asked the user for permission to access the calendars on her
device.

If you look closely, we are also checking the type of the event source. This is because we
know that iCloud calendars are CalDAV; hence, finding the source not only by the title
“iCloud,” but also by its type gives us more precision in pinpointing the correct event
source.

Once you find your target EKSource event source, you can enumerate and go through
the different calendar objects that it holds by invoking the calendarsForEntityType:
instance method on it. As its parameter, pass EKEntityTypeEvent to look for calendars
that support events, or EKEntityTypeReminder to look for calendars that support re‐
minders. Bear in mind that the return value of the aforementioned method is of type
NSSet, not an array. But you can enumerate the items in that set just like you would an
array:

- (void) findIcloudEventSource{

 EKSource *icloudEventSource = nil;

 EKEventStore *eventStore = [[EKEventStore alloc] init];

 for (EKSource *source in eventStore.sources){

 if (source.sourceType == EKSourceTypeCalDAV &&

 [source.title caseInsensitiveCompare:@"iCloud"]){

 icloudEventSource = source;

 break;

 }

 }

 if (icloudEventSource != nil){

 NSLog(@"The iCloud event source was found = %@", icloudEventSource);

 NSSet *calendars = [icloudEventSource

 calendarsForEntityType:EKEntityTypeEvent];

 for (EKCalendar *calendar in calendars){

 NSLog(@"Calendar = %@", calendar);

 }

 } else {

 NSLog(@"Could not find the iCloud event source");

 }

}

19.2. Retrieving Calendar Groups on an iOS Device | 791

See Also
Recipe 19.1

19.3. Adding Events to Calendars

Problem
You would like to be able to create new events in users’ calendars.

Solution
Find the calendar you want to insert your event into (please refer to Recipe 19.1 and
Recipe 19.2). Create an object of type EKEvent using the eventWithEventStore: class
method of EKEvent and save the event into the user’s calendar using the saveE
vent:span:error: instance method of EKEventStore:

- (BOOL) createEventWithTitle:(NSString *)paramTitle

 startDate:(NSDate *)paramStartDate

 endDate:(NSDate *)paramEndDate

 inCalendar:(EKCalendar *)paramCalendar

 inEventStore:(EKEventStore *)paramStore

 notes:(NSString *)paramNotes{

 BOOL result = NO;

 /* If a calendar does not allow modification of its contents

 then we cannot insert an event into it */

 if (paramCalendar.allowsContentModifications == NO){

 NSLog(@"The selected calendar does not allow modifications.");

 return NO;

 }

 /* Create an event */

 EKEvent *event = [EKEvent eventWithEventStore:paramStore];

 event.calendar = paramCalendar;

 /* Set the properties of the event such as its title,

 start date/time, end date/time, etc. */

 event.title = paramTitle;

 event.notes = paramNotes;

 event.startDate = paramStartDate;

 event.endDate = paramEndDate;

 /* Finally, save the event into the calendar */

 NSError *saveError = nil;

 result = [paramStore saveEvent:event

 span:EKSpanThisEvent

 error:&saveError];

792 | Chapter 19: Dates, Calendars, and Events

 if (result == NO){

 NSLog(@"An error occurred = %@", saveError);

 }

 return result;

}

As you can see, this method expects a calendar object and an event store to create the
event in. In Recipe 19.2, we learned how to find event sources and the calendars that
are associated with those sources. We are therefore going to create some handy methods
that can search in all the available event sources, and all the available calendars in those
sources, for the specific calendar we are looking for. So here are our methods:

- (EKSource *) sourceInEventStore:(EKEventStore *)paramEventStore

 sourceType:(EKSourceType)paramType

 sourceTitle:(NSString *)paramSourceTitle{

 for (EKSource *source in paramEventStore.sources){

 if (source.sourceType == paramType &&

 [source.title

 caseInsensitiveCompare:paramSourceTitle] == NSOrderedSame){

 return source;

 }

 }

 return nil;

}

- (EKCalendar *) calendarWithTitle:(NSString *)paramTitle

 type:(EKCalendarType)paramType

 inSource:(EKSource *)paramSource

 forEventType:(EKEntityType)paramEventType{

 for (EKCalendar *calendar in [paramSource

 calendarsForEntityType:paramEventType]){

 if ([calendar.title

 caseInsensitiveCompare:paramTitle] == NSOrderedSame &&

 calendar.type == paramType){

 return calendar;

 }

 }

 return nil;

}

The sourceInEventStore:sourceType:sourceTitle: is able to find an event source
with a given type and title. For instance, you can find the iCloud event source by passing
EKSourceTypeCalDAV as the type and iCloud as the title and you will get the event source,

19.3. Adding Events to Calendars | 793

if it is present on the device. After you have the event source, use the calendarWithTi
tle:type:inSource:forEventType: method to get a specific calendar inside a given
event source. So if you want to find an iCloud calendar titled Calendar, assuming that
you’ve already found the event source, pass EKCalendarTypeCalDAV as the type of the
calendar and EKEntityTypeEvent as the event type.

Once you have these handy methods at your disposal, you can create a new event as
shown here:

- (void) insertEventIntoStore:(EKEventStore *)paramStore{

 EKSource *icloudSource = [self sourceInEventStore:paramStore

 sourceType:EKSourceTypeCalDAV

 sourceTitle:@"iCloud"];

 if (icloudSource == nil){

 NSLog(@"You have not configured iCloud for your device.");

 return;

 }

 EKCalendar *calendar = [self calendarWithTitle:@"Calendar"

 type:EKCalendarTypeCalDAV

 inSource:icloudSource

 forEventType:EKEntityTypeEvent];

 if (calendar == nil){

 NSLog(@"Could not find the calendar we were looking for.");

 return;

 }

 /* The event starts from today, right now */

 NSDate *startDate = [NSDate date];

 /* And the event ends this time tomorrow.

 24 hours, 60 minutes per hour and 60 seconds per minute

 hence 24 * 60 * 60 */

 NSDate *endDate = [startDate

 dateByAddingTimeInterval:24 * 60 * 60];

 /* Create the new event */

 BOOL createdSuccessfully = [self createEventWithTitle:@"My Concert"

 startDate:startDate

 endDate:endDate

 inCalendar:calendar

 inEventStore:paramStore

 notes:nil];

 if (createdSuccessfully){

 NSLog(@"Successfully created the event.");

794 | Chapter 19: Dates, Calendars, and Events

 } else {

 NSLog(@"Failed to create the event.");

 }

}

Discussion
To programmatically create a new event in a calendar on an iOS device, we must do the
following:

1. Allocate and initialize an instance of EKEventStore.

2. Find the calendar we want to save the event to (please refer to Recipe 19.2). We
must make sure the target calendar supports modifications by checking that the
calendar object’s allowsContentModifications property is YES. If it is not, you
must choose a different calendar or forgo saving the event.

3. Once you find your target calendar, create an event of type EKEvent using the
eventWithEventStore: class method of EKEvent.

4. Set the properties of the new event such as its title, startDate, and endDate.

5. Associate your event with the calendar that you found in step 2 using the calen
dars property of an instance of EKEvent.

6. Once you are done setting the properties of your event, add that event to the cal‐
endar using the saveEvent:span:error: instance method of EKEventStore. The
return value of this method (a BOOL value) indicates whether the event was suc‐
cessfully inserted into the Calendar database. If the operation fails, the NSError
object passed to the error parameter of this method will contain the error that has
occurred in the system while inserting this event.

If you attempt to insert an event without specifying a target calendar, or if you insert an
event into a calendar that cannot be modified, the saveEvent:span:error: instance
method of EKEventStore will fail with an error similar to this:

Error Domain=EKErrorDomain Code=1 "No calendar has been set."

UserInfo=0x15d860 {NSLocalizedDescription=No calendar has been set.}

Running our code on an iOS device, we will see an event created in the Calendar data‐
base, as shown in Figure 19-7.

19.3. Adding Events to Calendars | 795

Figure 19-7. Programmatically adding an event to a calendar

iOS syncs online calendars with the iOS calendar. These calendars could be Exchange,
CalDAV, and other common formats. Creating an event on a CalDAV calendar on an
iOS device will create the same event on the server. The server changes are also reflected
in the iOS Calendar database when the Calendar database is synced with the server.

See Also
Recipe 19.1

19.4. Accessing the Contents of Calendars

Problem
You want to retrieve events of type EKEvent from a calendar of type EKCalendar on an
iOS device.

796 | Chapter 19: Dates, Calendars, and Events

Solution
Follow these steps:

1. Instantiate an object of type EKEventStore.

2. Using the techniques that you learned earlier in this chapter, find the calendar object
that you want to inspect and read from.

3. Determine the time and date where you want to start the search in the calendar and
the time and date where the search must stop.

4. Pass the calendar object (found in step 2), along with the two dates you found in
step 3, to the predicateForEventsWithStartDate:endDate:calendars: instance
method of EKEventStore.

5. Pass the predicate created in step 4 to the eventsMatchingPredicate: instance
method of EKEventStore. The result of this method is an array of EKEvent objects
(if any) that fell between the given dates (step 3) in the specified calendar (step 2).

This code illustrates the preceding steps:

- (void) readEvents{

 /* Instantiate the event store */

 EKEventStore *eventStore = [[EKEventStore alloc] init];

 EKSource *icloudSource = [self sourceInEventStore:eventStore

 sourceType:EKSourceTypeCalDAV

 sourceTitle:@"iCloud"];

 if (icloudSource == nil){

 NSLog(@"You have not configured iCloud for your device.");

 return;

 }

 EKCalendar *calendar = [self calendarWithTitle:@"Calendar"

 type:EKCalendarTypeCalDAV

 inSource:icloudSource

 forEventType:EKEntityTypeEvent];

 if (calendar == nil){

 NSLog(@"Could not find the calendar we were looking for.");

 return;

 }

 /* The start date will be today */

 NSDate *startDate = [NSDate date];

 /* The end date will be 1 day from today */

 NSDate *endDate = [startDate dateByAddingTimeInterval:24 * 60 * 60];

19.4. Accessing the Contents of Calendars | 797

 /* Create the predicate that we can later pass to the

 event store in order to fetch the events */

 NSPredicate *searchPredicate =

 [eventStore predicateForEventsWithStartDate:startDate

 endDate:endDate

 calendars:@[calendar]];

 /* Make sure we succeeded in creating the predicate */

 if (searchPredicate == nil){

 NSLog(@"Could not create the search predicate.");

 return;

 }

 /* Fetch all the events that fall between

 the starting and the ending dates */

 NSArray *events = [eventStore eventsMatchingPredicate:searchPredicate];

 /* Go through all the events and print their information

 out to the console */

 if (events != nil){

 NSUInteger counter = 1;

 for (EKEvent *event in events){

 NSLog(@"Event %lu Start Date = %@",

 (unsigned long)counter,

 event.startDate);

 NSLog(@"Event %lu End Date = %@",

 (unsigned long)counter,

 event.endDate);

 NSLog(@"Event %lu Title = %@",

 (unsigned long)counter,

 event.title);

 counter++;

 }

 } else {

 NSLog(@"The array of events for this start/end time is nil.");

 }

}

This code is using the methods that we learned in Recipe 19.3 to find
an iCloud calendar. I highly encourage you to review that recipe if you
have not already done so or if you are having difficulty understand‐
ing how this code works.

798 | Chapter 19: Dates, Calendars, and Events

Discussion
As mentioned in this chapter’s Introduction, an iOS device can be configured with
different types of calendars using CalDAV (for iCloud, etc.), Exchange, and so on. Each
calendar that is accessible by the Event Kit framework is encompassed within an EKCa
lendar object. You can fetch events inside a calendar in different ways, but the easiest
way is to create and execute a specially formatted specification of dates and times, called
a predicate, inside an event store.

A predicate of type NSPredicate that we can use in the Event Kit framework can be
created using the predicateForEventsWithStartDate:endDate:calendars: instance
method of an EKEventStore. The parameters to this method are the following:

predicateForEventsWithStartDate

The starting date and time from when the events have to be fetched.

endDate

The ending date up until which the events will be fetched.

calendars

The array of calendars to search for events between the starting and ending dates.

Be sure to ask the user for her permission before attempting to access events or any
other objects in her calendars. You can learn more about this in Recipe 19.1.

See Also
Recipe 19.1

19.5. Removing Events from Calendars

Problem
You want to be able to delete a specific event or series of events from users’ calendars.

Solution
Use the removeEvent:span:commit:error: instance method of EKEventStore.

Discussion
The removeEvent:span:commit:error: instance method of EKEventStore can remove
an instance of an event or all instances of a recurring event. For more information about
recurring events, please refer to Recipe 19.6. In this recipe, we will only remove an
instance of the event and not the other instances of the same event in the calendar.

The parameters that we can pass to this method are the following:

19.5. Removing Events from Calendars | 799

removeEvent

This is the EKEvent instance to be removed from the calendar.

span

This is the parameter that tells the event store whether we want to remove only this
event or all the occurrences of this event in the calendar. To remove only the current
event, specify the EKSpanThisEvent value for the removeEvent parameter. To re‐
move all occurrences of the same event from the calendar, pass the EKSpanFu
tureEvents value for the parameter.

commit

A Boolean value that tells the event store if the changes have to be saved on the
remote/local calendar immediately or not.

error

This parameter can be given a reference to an NSError object that will be filled with
the error (if any), when the return value of this method is NO.

To demonstrate this, let’s use the event creation method that we implemented in
Recipe 19.3. What we can do then is to create an event in our iCloud calendar and after
it has been created, attempt to delete it from the event store:

- (void) deleteEventInStore:(EKEventStore *)paramEventStore{

 EKSource *icloudSource = [self sourceInEventStore:paramEventStore

 sourceType:EKSourceTypeCalDAV

 sourceTitle:@"iCloud"];

 if (icloudSource == nil){

 NSLog(@"You have not configured iCloud for your device.");

 return;

 }

 EKCalendar *calendar = [self calendarWithTitle:@"Calendar"

 type:EKCalendarTypeCalDAV

 inSource:icloudSource

 forEventType:EKEntityTypeEvent];

 if (calendar == nil){

 NSLog(@"Could not find the calendar we were looking for.");

 return;

 }

 /* Create the event first */

 /* The event starts from today, right now */

 NSDate *startDate = [NSDate date];

 /* And the event ends this time tomorrow.

 24 hours, 60 minutes per hour and 60 seconds per minute

 hence 24 * 60 * 60 */

800 | Chapter 19: Dates, Calendars, and Events

 NSDate *endDate = [startDate

 dateByAddingTimeInterval:24 * 60 * 60];

 NSString *eventTitle = @"My Event";

 BOOL createdSuccessfully = [self createEventWithTitle:eventTitle

 startDate:startDate

 endDate:endDate

 inCalendar:calendar

 inEventStore:paramEventStore

 notes:nil];

 if (createdSuccessfully == NO){

 NSLog(@"Could not create the event.");

 }

 BOOL removedSuccessfully = [self removeEventWithTitle:eventTitle

 startDate:startDate

 endDate:endDate

 inEventStore:paramEventStore

 inCalendar:calendar

 notes:nil];

 if (removedSuccessfully){

 NSLog(@"Successfully created and deleted the event");

 } else {

 NSLog(@"Failed to delete the event.");

 }

}

The sourceInEventStore:sourceType:sourceTitle: and calendarWithTi

tle:type:inSource:forEventType: methods that we are using in this example code
were described in Recipe 19.3. So I suggest you have a look at that recipe before pro‐
ceeding with this one. In this code, after finding our target calendar, we are creating a
dummy event in the calendar using the method described in Recipe 19.3. After that, we
attempt to remove that event. The method that allows us to remove an existing event is
coded this way:

- (BOOL) removeEventWithTitle:(NSString *)paramTitle

 startDate:(NSDate *)paramStartDate

 endDate:(NSDate *)paramEndDate

 inEventStore:(EKEventStore *)paramEventStore

 inCalendar:(EKCalendar *)paramCalendar

 notes:(NSString *)paramNotes{

 BOOL result = NO;

 /* If a calendar does not allow modification of its contents

 then we cannot insert an event into it */

 if (paramCalendar.allowsContentModifications == NO){

 NSLog(@"The selected calendar does not allow modifications.");

19.5. Removing Events from Calendars | 801

 return NO;

 }

 NSPredicate *predicate =

 [paramEventStore predicateForEventsWithStartDate:paramStartDate

 endDate:paramEndDate

 calendars:@[paramCalendar]];

 /* Get all the events that match the parameters */

 NSArray *events = [paramEventStore eventsMatchingPredicate:predicate];

 if ([events count] > 0){

 /* Delete them all */

 for (EKEvent *event in events){

 NSError *removeError = nil;

 /* Do not commit here, we will commit in batch after we have

 removed all the events that matched our criteria */

 if ([paramEventStore removeEvent:event

 span:EKSpanThisEvent

 commit:NO

 error:&removeError] == NO){

 NSLog(@"Failed to remove event %@ with error = %@",

 event,

 removeError);

 }

 }

 NSError *commitError = nil;

 if ([paramEventStore commit:&commitError]){

 result = YES;

 } else {

 NSLog(@"Failed to commit the event store.");

 }

 } else {

 NSLog(@"No events matched your input.");

 }

 return result;

}

802 | Chapter 19: Dates, Calendars, and Events

Since this method takes, as parameters, the calendar and the event store that the deletion
has to occur on, it really has to do minimal processing. It just takes the start and end
dates that we provide and creates a predicate to find the event that we are asking it to
delete. After the event is found, it invokes the removeEvent:span:commit:error: in‐
stance method of the event store. This method, as explained previously, can delete a
single event or an occurrence of events. For instance, you may have set an alarm on your
device to wake you up every day at 6 o’clock in the morning. This is a recurring event.
With what you learned here, you can delete one of the occurrences of that event but not
all of them. But don’t worry, we will soon learn about deleting recurring events in this
chapter.

In this example, we are not committing the deletion of every event one by one. We are
simply setting the commit parameter of the removeEvent:span:commit:error: method
to NO. After we are done, we are invoking the commit: method of the event store ex‐
plicitly. The reason for this is that we don’t really want to commit every single deletion.
That would create a lot of overhead. We can delete as many events as we need to and
then commit them all in one batch.

See Also
Recipe 19.1; Recipe 19.4

19.6. Adding Recurring Events to Calendars

Problem
You want to add a recurring event to a calendar.

Solution
In this example, we are creating an event that occurs on the same day, every month, for
an entire year. The steps are as follows:

1. Create an instance of EKEventStore.

2. Find a modifiable calendar inside the event store, as we saw in Recipe 19.3.

3. Create an object of type EKEvent (for more information, refer to Recipe 19.3).

19.6. Adding Recurring Events to Calendars | 803

4. Set the appropriate values for the event, such as its startDate and endDate (for
more information, refer to Recipe 19.3).

5. Instantiate an object of type NSDate that contains the exact date when the recurrence
of this event ends. In this example, this date is one year from today’s date.

6. Use the recurrenceEndWithEndDate: class method of EKRecurrenceEnd and pass
the NSDate you created in step 5 to create an object of type EKRecurrenceEnd.

7. Allocate and then instantiate an object of type EKRecurrenceRule using the ini
tRecurrenceWithFrequency:interval:end: method of EKRecurrenceRule. Pass
the recurrence end date that you created in step 6 to the end parameter of this
method. For more information about this method, please refer to this recipe’s
Discussion.

8. Assign the recurring event that you created in step 7 to the recurringRule property
of the EKEvent object that was created in step 3.

9. Invoke the saveEvent:span:error: instance method with the event (created in
step 3) as the saveEvent parameter and the value EKSpanFutureEvents for the span
parameter. This will create our recurring event for us.

The following code illustrates these steps:

- (BOOL) createRecurringEventInStore:(EKEventStore *)paramStore

 inCalendar:(EKCalendar *)paramCalendar{

 /* Create an event */

 EKEvent *event = [EKEvent eventWithEventStore:paramStore];

 /* Create an event that happens today and happens

 every month for a year from now */

 NSDate *eventStartDate = [NSDate date];

 /* The event's end date is one hour from the moment it is created */

 NSTimeInterval NSOneHour = 1 * 60 * 60;

 NSDate *eventEndDate = [eventStartDate dateByAddingTimeInterval:NSOneHour];

 /* Assign the required properties, especially

 the target calendar */

 event.calendar = paramCalendar;

 event.title = @"My Event";

 event.startDate = eventStartDate;

 event.endDate = eventEndDate;

 /* The end date of the recurring rule

 is one year from now */

 NSTimeInterval NSOneYear = 365 * 24 * 60 * 60;

 NSDate *oneYearFromNow = [eventStartDate

 dateByAddingTimeInterval:NSOneYear];

804 | Chapter 19: Dates, Calendars, and Events

 /* Create an Event Kit date from this date */

 EKRecurrenceEnd *recurringEnd =

 [EKRecurrenceEnd recurrenceEndWithEndDate:oneYearFromNow];

 /* And the recurring rule. This event happens every

 month (EKRecurrenceFrequencyMonthly), once a month (interval:1)

 and the recurring rule ends a year from now (end:RecurringEnd) */

 EKRecurrenceRule *recurringRule =

 [[EKRecurrenceRule alloc]

 initRecurrenceWithFrequency:EKRecurrenceFrequencyMonthly

 interval:1

 end:recurringEnd];

 /* Set the recurring rule for the event */

 event.recurrenceRules = @[recurringRule];

 NSError *saveError = nil;

 /* Save the event */

 if ([paramStore saveEvent:event

 span:EKSpanFutureEvents

 error:&saveError]){

 NSLog(@"Successfully created the recurring event.");

 return YES;

 } else {

 NSLog(@"Failed to create the recurring event %@", saveError);

 }

 return NO;

}

In this code, we are using some of the methods and code snippets that
we learned in Recipe 19.3. Have a look at the aforementioned recipe if
you are unfamiliar with adding nonrecurring events to a calendar
object.

Once you run this code on your device and go to the Calendar app and tap on the created
event, you will see something similar to that shown in Figure 19-8.

19.6. Adding Recurring Events to Calendars | 805

Figure 19-8. A recurring event has been added to a calendar

Discussion
A recurring event is an event that happens more than once. We can create a recurring
event just like a normal event. Please refer to Recipe 19.3 for more information about
inserting normal events into the Calendar database. The only difference between a re‐
curring event and a normal event is that you apply a recurring rule to a recurring event.
A recurring rule tells the Event Kit framework how the event has to occur in the future.

We create a recurring rule by instantiating an object of type EKRecurrenceRule using
the initRecurrenceWithFrequency:interval:end: initialization method. Here are
the parameters for this method:

initRecurrenceWithFrequency

Specifies whether you want the event to be repeated daily (EKRecurrenceFrequen
cyDaily), weekly (EKRecurrenceFrequencyWeekly), monthly (EKRecurrenceFre
quencyMonthly), or yearly (EKRecurrenceFrequencyYearly).

806 | Chapter 19: Dates, Calendars, and Events

interval

A value greater than zero that specifies the interval between each occurrence’s start
and end period. For instance, if you want to create an event that happens every
week, specify the EKRecurrenceFrequencyWeekly value with an interval of 1. If
you want this event to happen every other week, specify EKRecurrenceFrequency
Weekly with an interval of 2.

end

A date of type EKRecurrenceEnd that specifies the date when the recurring event
ends in the specified calendar. This parameter is not the same as the event’s end
date (the endDate property of EKEvent). The end date of an event specifies when
that specific event ends in the calendar, whereas the end parameter of the initRe
currenceWithFrequency:interval:end: method specifies the final occurrence of
the event in the database.

By editing this event (see Figure 19-9) in the Calendar application on an iOS device,
you can see that the event is truly a recurring event that happens every month, on the
same day the event was created, for a whole year.

Figure 19-9. Editing a recurring event in the Calendar app on an iOS device

19.6. Adding Recurring Events to Calendars | 807

See Also
Recipe 19.3

19.7. Retrieving the Attendees of an Event

Problem
You want to retrieve the list of attendees for a specific event.

Solution
Use the attendees property of an instance of EKEvent. This property is of type NSAr
ray and includes objects of type EKParticipant.

The example code that follows will retrieve all the events that happen today (whatever
the day may be) and print out useful event information, including the attendees of that
event, to the console window:

- (void) enumerateTodayEventsInStore:(EKEventStore *)paramStore

 calendar:(EKCalendar *)paramCalendar{

 /* Construct the starting date for today */

 NSDate *startDate = [NSDate date];

 /* The end date will be 1 day from now */

 NSTimeInterval NSOneDay = 1 * 24 * 60 * 60;

 NSDate *endDate = [startDate dateByAddingTimeInterval:NSOneDay];

 /* Create the predicate that we can later pass to

 the event store in order to fetch the events */

 NSPredicate *searchPredicate =

 [paramStore predicateForEventsWithStartDate:startDate

 endDate:endDate

 calendars:@[paramCalendar]];

 /* Make sure we succeeded in creating the predicate */

 if (searchPredicate == nil){

 NSLog(@"Could not create the search predicate.");

 return;

 }

 /* Fetch all the events that fall between the

 starting and the ending dates */

 NSArray *events = [paramStore eventsMatchingPredicate:searchPredicate];

 /* Array of NSString equivalents of the values

 in the EKParticipantRole enumeration */

 NSArray *attendeeRole = @[

 @"Unknown",

808 | Chapter 19: Dates, Calendars, and Events

 @"Required",

 @"Optional",

 @"Chair",

 @"Non Participant",

];

 /* Array of NSString equivalents of the values

 in the EKParticipantStatus enumeration */

 NSArray *attendeeStatus = @[

 @"Unknown",

 @"Pending",

 @"Accepted",

 @"Declined",

 @"Tentative",

 @"Delegated",

 @"Completed",

 @"In Process",

];

 /* Array of NSString equivalents of the values

 in the EKParticipantType enumeration */

 NSArray *attendeeType = @[

 @"Unknown",

 @"Person",

 @"Room",

 @"Resource",

 @"Group"

];

 /* Go through all the events and print their information

 out to the console */

 if (events != nil){

 NSUInteger eventCounter = 0;

 for (EKEvent *thisEvent in events){

 eventCounter++;

 NSLog(@"Event %lu Start Date = %@",

 (unsigned long)eventCounter,

 thisEvent.startDate);

 NSLog(@"Event %lu End Date = %@",

 (unsigned long)eventCounter,

 thisEvent.endDate);

 NSLog(@"Event %lu Title = %@",

 (unsigned long)eventCounter,

 thisEvent.title);

 if (thisEvent.attendees == nil ||

 [thisEvent.attendees count] == 0){

19.7. Retrieving the Attendees of an Event | 809

 NSLog(@"Event %lu has no attendees",

 (unsigned long)eventCounter);

 continue;

 }

 NSUInteger attendeeCounter = 1;

 for (EKParticipant *participant in thisEvent.attendees){

 NSLog(@"Event %lu Attendee %lu Name = %@",

 (unsigned long)eventCounter,

 (unsigned long)attendeeCounter,

 participant.name);

 NSLog(@"Event %lu Attendee %lu Role = %@",

 (unsigned long)eventCounter,

 (unsigned long)attendeeCounter,

 attendeeRole[participant.participantRole]);

 NSLog(@"Event %lu Attendee %lu Status = %@",

 (unsigned long)eventCounter,

 (unsigned long)attendeeCounter,

 attendeeStatus[participant.participantStatus]);

 NSLog(@"Event %lu Attendee %lu Type = %@",

 (unsigned long)eventCounter,

 (unsigned long)attendeeCounter,

 attendeeType[participant.participantType]);

 NSLog(@"Event %lu Attendee %lu URL = %@",

 (unsigned long)eventCounter,

 (unsigned long)attendeeCounter,

 participant.URL);

 attendeeCounter++;

 }

 }

 } else {

 NSLog(@"The array of events is nil.");

 }

}

In this code snippet, we are using vocabulary such as stores. If you are
not familiar with what stores are and how you can retrieve calendar
objects, please have a read through Recipe 19.2 before proceeding with
this recipe.

810 | Chapter 19: Dates, Calendars, and Events

Discussion
Different types of calendars, such as iCloud (CalDAV), can include participants in an
event. iOS allows users to add participants to a calendar on the server, although not to
the calendar on the iOS device. You can do this using iCloud, for instance.

Once the user adds participants to an event, you can use the attendees property of an
instance of EKEvent to access the participant objects of type EKParticipant. Each par‐
ticipant has properties such as the following:

name

This is the name of the participant. If you just specified the email address of a person
to add him to an event, this field will be that email address.

URL

This is usually the “mailto” URL for the attendee.

participantRole

This is the role the attendee plays in the event. Different values that can be applied
to this property are listed in the EKParticipantRole enumeration.

participantStatus

This tells us whether this participant has accepted or declined the event request.
This property could have other values, all specified in the EKParticipantStatus
enumeration.

participantType

This is of type EKParticipantType, which is an enumeration and, as its name im‐
plies, specifies the type of participant, such as group (EKParticipantTypeGroup)
or individual person (EKParticipantTypePerson).

See Also
Recipe 19.3; Recipe 19.4

19.8. Adding Alarms to Calendars

Problem
You want to add alarms to the events in a calendar.

Solution
Use the alarmWithRelativeOffset: class method of EKAlarm to create an instance of
EKAlarm. Add the alarm to an event using the addAlarm: instance method of EKEvent,
like so:

19.8. Adding Alarms to Calendars | 811

- (void) addAlarmToCalendar:(EKCalendar *)paramCalendar

 inStore:(EKEventStore *)paramStore{

 /* The event starts 60 seconds from now */

 NSDate *startDate = [NSDate dateWithTimeIntervalSinceNow:60.0];

 /* And end the event 20 seconds after its start date */

 NSDate *endDate = [startDate dateByAddingTimeInterval:20.0];

 EKEvent *eventWithAlarm = [EKEvent eventWithEventStore:paramStore];

 eventWithAlarm.calendar = paramCalendar;

 eventWithAlarm.startDate = startDate;

 eventWithAlarm.endDate = endDate;

 /* The alarm goes off 2 seconds before the event happens */

 EKAlarm *alarm = [EKAlarm alarmWithRelativeOffset:-2.0];

 eventWithAlarm.title = @"Event with Alarm";

 [eventWithAlarm addAlarm:alarm];

 NSError *saveError = nil;

 if ([paramStore saveEvent:eventWithAlarm

 span:EKSpanThisEvent

 error:&saveError]){

 NSLog(@"Saved an event that fires 60 seconds from now.");

 } else {

 NSLog(@"Failed to save the event. Error = %@", saveError);

 }

}

For information about event stores and calendars and the way to retrieve instances to
them, please see Recipe 19.2.

Discussion
An event of type EKEvent can have multiple alarms. Simply create the alarm using either
the alarmWithAbsoluteDate: or alarmWithRelativeOffset: class method of EKA
larm. The former method requires an absolute date and time (you can use the CFAbso
luteTimeGetCurrent function to get the current absolute time), whereas the latter
method requires a number of seconds relative to the start date of the event when the
alarm must be fired. For instance, if the event is scheduled for today at 6:00 a.m., and
we go ahead and create an alarm with the relative offset of –60 (which is counted in
units of seconds), our alarm will be fired at 5:59 a.m. the same day. Only zero and
negative numbers are allowed for this offset. Positive numbers will automatically be

812 | Chapter 19: Dates, Calendars, and Events

changed to zero by iOS. Once an alarm is fired, iOS will display the alarm to the user,
as shown in Figure 19-10.

Figure 19-10. iOS displaying an alert on the screen when an alarm is fired

You can use the removeAlarm: instance method of EKEvent to remove an alarm asso‐
ciated with that event instance.

See Also
Recipe 19.1

19.8. Adding Alarms to Calendars | 813

19.9. Handling Event Changed Notifications

Problem
You want to get notified in your application when the user changes the contents of the
Calendar database.

Solution
Register for the EKEventStoreChangedNotification notification:

- (void) eventsChanged:(NSNotification *)paramNotification{

 NSMutableArray *invalidatedEvents = [[NSMutableArray alloc] init];

 NSLog(@"Refreshing array of events...");

 for (EKEvent *event in self.eventsForOneYear){

 if ([event refresh] == NO){

 [invalidatedEvents addObject:event];

 }

 }

 if ([invalidatedEvents count] > 0){

 [self.eventsForOneYear removeObjectsInArray:invalidatedEvents];

 }

}

- (void) handleNotificationsInStore:(EKEventStore *)paramStore{

 EKSource *icloudSource = [self sourceInEventStore:paramStore

 sourceType:EKSourceTypeCalDAV

 sourceTitle:@"iCloud"];

 if (icloudSource == nil){

 NSLog(@"You have not configured iCloud for your device.");

 return;

 }

 EKCalendar *calendar = [self calendarWithTitle:@"Calendar"

 type:EKCalendarTypeCalDAV

 inSource:icloudSource

 forEventType:EKEntityTypeEvent];

 if (calendar == nil){

 NSLog(@"Could not find the calendar we were looking for.");

 return;

 }

 NSTimeInterval NSOneYear = 1 * 365 * 24 * 60 * 60;

814 | Chapter 19: Dates, Calendars, and Events

 NSDate *startDate = [NSDate date];

 NSDate *endDate = [startDate dateByAddingTimeInterval:NSOneYear];

 NSPredicate *predicate =

 [paramStore predicateForEventsWithStartDate:startDate

 endDate:endDate

 calendars:@[calendar]];

 NSArray *events = [paramStore eventsMatchingPredicate:predicate];

 self.eventsForOneYear = [[NSMutableArray alloc] initWithArray:events];

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(eventsChanged:)

 name:EKEventStoreChangedNotification

 object:nil];

}

In this code snippet, we are using some of the methods that we have already programmed
in earlier recipes in this chapter. For more information about these methods, please refer
to Recipe 19.2.

Discussion
Multitasking is possible on iOS. Imagine you have fetched a series of events from
EKEventStore into an array and you allow your user to work with them (edit them, add
to them, and remove from them). The user could simply switch from your applica‐
tion to the Calendar application and delete the same event she is trying to delete in your
application. Such a sequence of activities will generate an EKEventStoreChangedNoti
fication notification that you can choose to receive.

The EKEventStoreChangedNotification notification will be sent to your application
(at least, if you subscribe to this notification) even if your application is in the fore‐
ground. Because of this, you must make sure you treat this notification differently de‐
pending on whether your application is in the background or the foreground. Here are
a couple of things to consider:

• If you receive the EKEventStoreChangedNotification notification while your ap‐
plication is in the foreground, it is best to implement a mechanism to find out
whether the changes to the event store originated inside your own application or
came from someone else outside the application. If they came from outside the
application, you must make sure you are retaining the latest version of the events
in the store, and not the old events. If for any reason you copied one of the events
in the event store and kept the copy somewhere, you must call the refresh instance
method of that event of type EKEvent. If the return value of this method is YES, you

19.9. Handling Event Changed Notifications | 815

can keep the object in memory. If the return value is NO, you must dispose of the
object, because someone outside your application has deleted or somehow invali‐
dated the event.

• If you receive the EKEventStoreChangedNotification notification while your ap‐
plication is in the background, according to documentation from Apple, your ap‐
plication should not attempt to do any GUI-related processing and should, in fact,
use as little processing power as possible. You must therefore refrain from adding
new screens to, or modifying in any way, the GUI of your application.

• If you receive the EKEventStoreChangedNotification notification while your ap‐
plication is in the background, you must make note of it inside the application
(perhaps store this in a property of type BOOL) and react to this change when the
application is brought to the foreground again. Normally, if you receive any noti‐
fication about a change to an event while you are in the background, you should
retrieve all events stored in the application when you return to the foreground.

Coalescing is not enabled on the EKEventStoreChangedNotifica
tion event store notification. In other words, you can receive multi‐
ple notifications of the same type if a single event changes in the Cal‐
endar database. It is up to you to determine how and when you need
to refetch your retained events.

19.10. Presenting Event View Controllers

Problem
You want to use the built-in iOS SDK view controllers to display the properties of an
event in the Calendar database.

Solution
Create an instance of EKEventViewController and push it into a navigation controller
or present it as a modal view controller on another view controller.

Discussion
Users of iOS devices are already familiar with the interface they see on the Calendar
application. When they select an event, they can see that event’s properties and they
might be allowed to modify the event. To present a view to a user using built-in iOS
SDK event view controllers, we can instantiate an object of type EKEventView
Controller and assign an event of type EKEvent to its event property. Once that’s done,

816 | Chapter 19: Dates, Calendars, and Events

we can push the event view controller into our navigation controller and let iOS take
care of the rest.

We want to find an event (any event) in any of the calendars available on an iOS device,
from one year ago to now. We will use EKEventViewController to present that event
to the user. Here is the declaration of our view controller:

#import "ViewController.h"

#import <EventKit/EventKit.h>

#import <EventKitUI/EventKitUI.h>

@interface ViewController () <EKEventViewDelegate>

@property (nonatomic, strong) EKEventStore *eventStore;

@end

@implementation ViewController

Now in the viewDidAppear: method of our view controller, let’s go ahead and display
the instance of EKEventViewController on the first event we find in any of the calendars
on the device, from a year ago:

- (void) displayEventViewController{

 EKSource *icloudSource = [self sourceInEventStore:self.eventStore

 sourceType:EKSourceTypeCalDAV

 sourceTitle:@"iCloud"];

 if (icloudSource == nil){

 NSLog(@"You have not configured iCloud for your device.");

 return;

 }

 NSSet *calendars = [icloudSource

 calendarsForEntityType:EKEntityTypeEvent];

 NSTimeInterval NSOneYear = 1 * 365 * 24.0f * 60.0f * 60.0f;

 NSDate *startDate = [[NSDate date] dateByAddingTimeInterval:-NSOneYear];

 NSDate *endDate = [NSDate date];

 NSPredicate *predicate =

 [self.eventStore predicateForEventsWithStartDate:startDate

 endDate:endDate

 calendars:calendars.allObjects];

 NSArray *events = [self.eventStore eventsMatchingPredicate:predicate];

 if ([events count] > 0){

 EKEvent *event = events[0];

 EKEventViewController *controller = [[EKEventViewController alloc] init];

 controller.event = event;

 controller.allowsEditing = NO;

 controller.allowsCalendarPreview = YES;

19.10. Presenting Event View Controllers | 817

 controller.delegate = self;

 [self.navigationController pushViewController:controller

 animated:YES];

 }

}

- (void) viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 static BOOL beenHereBefore = NO;

 if (beenHereBefore){

 return;

 } else {

 beenHereBefore = YES;

 }

 self.eventStore = [[EKEventStore alloc] init];

 switch ([EKEventStore

 authorizationStatusForEntityType:EKEntityTypeEvent]){

 case EKAuthorizationStatusAuthorized:{

 [self displayEventViewController];

 break;

 }

 case EKAuthorizationStatusDenied:{

 [self displayAccessDenied];

 break;

 }

 case EKAuthorizationStatusNotDetermined:{

 [self.eventStore

 requestAccessToEntityType:EKEntityTypeEvent

 completion:^(BOOL granted, NSError *error) {

 if (granted){

 [self displayEventViewController];

 } else {

 [self displayAccessDenied];

 }

 }];

 break;

 }

 case EKAuthorizationStatusRestricted:{

 [self displayAccessRestricted];

 break;

 }

 }

818 | Chapter 19: Dates, Calendars, and Events

}

Last but not least, as you can see in the code, we have become the delegate object of the
event view controller, so let’s make sure we are handling the delegate methods if required:

- (void)eventViewController:(EKEventViewController *)controller

 didCompleteWithAction:(EKEventViewAction)action{

 switch (action){

 case EKEventViewActionDeleted:{

 NSLog(@"User deleted the event.");

 break;

 }

 case EKEventViewActionDone:{

 NSLog(@"User finished viewing the event.");

 break;

 }

 case EKEventViewActionResponded:{

 NSLog(@"User responsed to the invitation in the event.");

 break;

 }

 }

}

Once we run this application on an iOS device, we can see the built-in event view con‐
troller displaying the contents of the event that we have found (see Figure 19-11).

Figure 19-11. The built-in iOS event view controller

19.10. Presenting Event View Controllers | 819

Different properties of an instance of EKEventViewController that we can use to change
the behavior of this object are as follows:

allowsEditing

If this property’s value is set to YES, the Edit button will appear on the navigation
bar of the event view controller, allowing the user to edit the event. This happens
only on modifiable calendars and only for events that have been created by the user
on this device. For instance, if you create an event on the Web using Google Calendar
and the event appears in your iOS device, you are not allowed to edit that event.

allowsCalendarPreview

If this property’s value is set to YES and the event the user is viewing is an invitation,
the user will be given the option to view this current event in a calendar with other
events that have been scheduled on the same date.

event

This property must be set before presenting the event view controller. This will be
the event that the event view controller will display to the user.

When you push the event view controller, the Back button will appear with the title
“Back” by default, so you do not have to change it manually. However, if you decide to
change the Back button, you can do so by assigning a new object of type UIBarButton
Item to the backBarButtonItem property of your navigation item. In our example code,
we can modify the pushController: method to give our root view controller a custom
Back button before pushing the event view controller.

- (void) displayEventViewController{

 EKSource *icloudSource = [self sourceInEventStore:self.eventStore

 sourceType:EKSourceTypeCalDAV

 sourceTitle:@"iCloud"];

 if (icloudSource == nil){

 NSLog(@"You have not configured iCloud for your device.");

 return;

 }

 NSSet *calendars = [icloudSource

 calendarsForEntityType:EKEntityTypeEvent];

 NSTimeInterval NSOneYear = 1 * 365 * 24.0f * 60.0f * 60.0f;

 NSDate *startDate = [[NSDate date] dateByAddingTimeInterval:-NSOneYear];

 NSDate *endDate = [NSDate date];

 NSPredicate *predicate =

 [self.eventStore predicateForEventsWithStartDate:startDate

 endDate:endDate

 calendars:calendars.allObjects];

 NSArray *events = [self.eventStore eventsMatchingPredicate:predicate];

820 | Chapter 19: Dates, Calendars, and Events

 if ([events count] > 0){

 EKEvent *event = events[0];

 EKEventViewController *controller = [[EKEventViewController alloc] init];

 controller.event = event;

 controller.allowsEditing = YES;

 controller.allowsCalendarPreview = YES;

 controller.delegate = self;

 self.navigationItem.backBarButtonItem =

 [[UIBarButtonItem alloc] initWithTitle:@"Go Back"

 style:UIBarButtonItemStylePlain

 target:nil

 action:nil];

 [self.navigationController pushViewController:controller

 animated:YES];

 }

}

The results of this modification are depicted in Figure 19-12 (please note that in this
example, editing is enabled for the event view controller).

Figure 19-12. An edit view controller with editing enabled and a custom Back button

See Also
Recipe 19.11

19.10. Presenting Event View Controllers | 821

19.11. Presenting Event Edit View Controllers

Problem
You want to allow your users to edit (insert, delete, and modify) events in the Calendar
database from inside your application, using built-in SDK view controllers.

Solution
Instantiate an object of type EKEventEditViewController and present it on a navigation
controller.

Discussion
An instance of the EKEventEditViewController class allows us to present an event edit
view controller to the user. This view controller, depending on how we set it up, can
allow the user to either edit an existing event or create a new event. If you want this view
controller to edit an event, set the event property of this instance to an event object. If
you want the user to be able to insert a new event into the system, set the event property
of this instance to nil.

The editViewDelegate property of an instance of EKEventEditViewController is the
object that will receive delegate messages from this view controller telling the program‐
mer about the action the user has taken. One of the most important delegate messages
your delegate object must handle (a required delegate selector) is the eventEdit
ViewController:didCompleteWithAction: method. This delegate method will be
called whenever the user dismisses the event edit view controller in one of the possible
ways indicated by the didCompleteWithAction parameter. This parameter can have
values such as the following:

EKEventEditViewActionCanceled

The user pressed the Cancel button on the view controller.

EKEventEditViewActionSaved

The user saved (added/modified) an event in the Calendar database.

EKEventEditViewActionDeleted

The user deleted an event from the Calendar database.

Please make sure to dismiss the event edit view controller after receiving this delegate
message, if you are displaying the edit view controller as a modal view controller.

So let’s go ahead and define our view controller:

#import "ViewController.h"

#import <EventKitUI/EventKitUI.h>

#import <EventKit/EventKit.h>

822 | Chapter 19: Dates, Calendars, and Events

@interface ViewController () <EKEventEditViewDelegate>

@property (nonatomic, strong) EKEventStore *eventStore;

@end

@implementation ViewController

Now let’s try to find the first event from a year ago (whatever event that might be) and
allow the user to edit that event by displaying an edit event view controller:

- (void)eventEditViewController:(EKEventEditViewController *)controller

 didCompleteWithAction:(EKEventEditViewAction)action{

 switch (action){

 case EKEventEditViewActionCanceled:{

 NSLog(@"Cancelled");

 break;

 }

 case EKEventEditViewActionSaved:{

 NSLog(@"Saved");

 break;

 }

 case EKEventEditViewActionDeleted:{

 NSLog(@"Deleted");

 break;

 }

 }

 [self.navigationController dismissViewControllerAnimated:YES

 completion:nil];

}

- (void) displayEventEditController{

 EKSource *icloudSource = [self sourceInEventStore:self.eventStore

 sourceType:EKSourceTypeCalDAV

 sourceTitle:@"iCloud"];

 if (icloudSource == nil){

 NSLog(@"You have not configured iCloud for your device.");

 return;

 }

 NSSet *calendars = [icloudSource

 calendarsForEntityType:EKEntityTypeEvent];

 NSTimeInterval NSOneYear = 1 * 365 * 24.0f * 60.0f * 60.0f;

 NSDate *startDate = [[NSDate date] dateByAddingTimeInterval:-NSOneYear];

 NSDate *endDate = [NSDate date];

19.11. Presenting Event Edit View Controllers | 823

 NSPredicate *predicate =

 [self.eventStore predicateForEventsWithStartDate:startDate

 endDate:endDate

 calendars:calendars.allObjects];

 NSArray *events = [self.eventStore eventsMatchingPredicate:predicate];

 if ([events count] > 0){

 EKEvent *event = events[0];

 EKEventEditViewController *controller =

 [[EKEventEditViewController alloc] init];

 controller.event = event;

 controller.editViewDelegate = self;

 [self.navigationController presentViewController:controller

 animated:YES

 completion:nil];

 }

}

In this code we are using other methods that we have already devel‐
oped in various other recipes in this chapter. For more information,
please refer to Recipe 19.1 and Recipe 19.2.

Depending on the event that is found on the device, the user will see something simi‐
lar to Figure 19-13.

824 | Chapter 19: Dates, Calendars, and Events

Figure 19-13. An edit event view controller displaying an event

See Also
Recipe 19.10

19.11. Presenting Event Edit View Controllers | 825

CHAPTER 20

Graphics and Animations

20.0. Introduction
You’ve certainly seen applications with beautiful graphics effects on iOS devices. And
you’ve probably also encountered impressive animations in games and other apps.
Working together, the iOS runtime and Cocoa programming frameworks make possible
an amazing variety of graphics and animation effects with relatively simple coding. The
quality of these graphics and animations depends partly, of course, on the aesthetic
sensitivities of the programmer and artistic collaborators. But in this chapter, you’ll see
how much you can accomplish with modest programming skills.

I’ll dispense with conceptual background, preferring to introduce ideas such as color
spaces, transformation, and the graphics context as we go along. I’ll just mention a few
basics before leaping into code.

In Cocoa Touch, an app is made up of windows and views. An app with a UI has at least
one window that contains, in turn, one or more views. In Cocoa Touch, a window is an
instance of UIWindow. Usually, an app will open to the main window and the programmer
will then add views to the window to represent different parts of the UI: parts such as
buttons, labels, images, and custom controls. All these UI-related components are han‐
dled and drawn by UIKit.

Some of these things might sound relatively difficult to understand, but I promise you
that as we proceed through this chapter, you will understand them step by step with the
many examples I will give.

Apple has provided developers with powerful frameworks that handle graphics and
animations in iOS and OS X. Here are some of these frameworks and technologies:

827

UIKit
The high-level framework that allows developers to create views, windows, buttons,
and other UI related components. It also incorporates some of the low-level APIs
into an easier-to-use high-level API.

Quartz 2D
The main engine running under the hood to facilitate drawing in iOS; UIKit uses
Quartz.

Core Graphics
A framework that supports the graphics context (more on this later), loading im‐
ages, drawing images, and so on.

Core Animation
A framework that, as its name implies, facilitates animations in iOS.

When drawing on a screen, one of the most important concepts to grasp is the relation
between points and pixels. I’m sure you’re familiar with pixels, but what are points?
They’re the device-independent counterpart of pixels. Simply put, when writing your
iOS apps and asked to provide a width/height or any other measurements like these,
iOS reads your provided values as points, instead of pixels. For instance, if you want to
fill the whole screen on an iPhone 5, you will say that you want a width of 320 and height
of 568. However, we all know that the actual screen resolution of an iPhone 5 is 640 by
1136. This is the beauty of points: they take content scale factor into account.

Let me clarify what content scale factor is. It’s a simple floating point number that allows
iOS to calculate the actual number of pixels on the screen by looking at the logical
number of points that it can render on that screen. On an iPhone 5, the content scale
factor is 2.0, which tells iOS to multiply 320 by 2 to get the actual number of pixels that
the device can render horizontally and to multiply 568 by 2 to get the number of pixels
that the device can render vertically.

The origin point of the screen on an iOS device is the top-left corner.
Screens whose drawing origin is on the top-left corner are also re‐
ferred to as upper left origin, or ULO, screens. This means that point
(0, 0) is the topmost and leftmost point on the screen, and that posi‐
tive values of the x-axis extend toward the right, while positive val‐
ues of the y-axis extend toward the bottom. In other words, an x po‐
sition of 20 is farther right on the screen than a position of 10 is. On
the y-axis, point 20 is farther down than point 10.

In this chapter, we will be using view objects of type UIView to draw shapes, strings, and
everything else that’s visible on the screen.

828 | Chapter 20: Graphics and Animations

I assume you have the latest Xcode from Apple. If not, open App Store
on your OS X installation and search for and download Xcode.

In order to be able to incorporate some of these code snippets in an application, I will
first show you the required steps to create a new project in Xcode and subclass UI
View, where we can place the code:

1. Open Xcode.

2. From the File menu, select New → Project.

3. On the left side of the screen, make sure the iOS category is selected. Select Appli‐
cation under that category (see Figure 20-1).

4. On the right side of the screen, select single-view application, and press Next (see
Figure 20-1).

Figure 20-1. Creating a single-view application for iOS in Xcode

5. In the Product Name box (Figure 20-2), select a name for your project.

20.0. Introduction | 829

Figure 20-2. Setting the options for a new project in Xcode

6. In the Company Identifier box, enter a bundle identifier prefix, which will be pre‐
pended to the Product Name you chose. This is usually com.company.

7. In the Device Family, select Universal, and then press Next.

8. On the next screen, select where you want to save your project and press Create.

Now your Xcode project is open. On the left side of Xcode, expand your project files to
see all the files that Xcode created when you created the project. Now we will create a
view object for the view controller. Please follow these steps to do so:

1. Right-click the root folder of your project group in Xcode and select New File….

2. In the New File dialog box, make sure iOS is selected as the category on the left side,
and select Cocoa Touch as the subcategory (see Figure 20-3).

3. On the right side, select Objective-C class, and then press Next (see Figure 20-3).

4. On the next screen (Figure 20-4), make sure that the Subclass box has UIView
written inside it, and set your class name to View. Proceed to saving your file on
disk.

830 | Chapter 20: Graphics and Animations

Figure 20-3. Creating a new Objective-C class in Xcode

Figure 20-4. Creating a subclass of UIView

20.0. Introduction | 831

5. Now open your storyboard file for iPhone and select the view of your view con‐
troller. Expand the Utilities section of the Interface Builder and change the class
name of the view of your view controller to View, as shown in Figure 20-5.

Figure 20-5. Changing the class name of a view controller in storyboard

6. Since we created a universal app, you will need to do the same thing for your iPad
storyboard file. Usually these two files are named Main_iPhone.storyboard and

Main_iPad.storyboard.

Now we are ready to start coding. What we did was simply create a view class of type
UIView so that later in this chapter, we can change the code in that class. Then we used
Interface Builder to set the view controller’s view class to the same view object that we
created. This means that the view controller’s view will now be an instance of the View
class that we created.

832 | Chapter 20: Graphics and Animations

You have probably already looked at the contents of the view object that Xcode gener‐
ated. One of the most important methods inside this object is drawRect:. Cocoa Touch
automatically calls this method whenever it is time to draw the view and uses it to ask
the view object to draw its contents on the graphical context that Cocoa Touch auto‐
matically prepares for the view. A graphical context can be thought of as a canvas, of‐
fering an enormous number of properties, such as pen color, pen thickness, etc. Given
the context, you can start painting straight away inside the drawRect: method, and
Cocoa Touch will make sure that the attributes and properties of the context are applied
to your drawings. We will talk about this more later, but for now, let’s move on to more
interesting subjects.

20.1. Enumerating and Loading Fonts

Problem
You want to use fonts that come preinstalled on an iOS device in order to render some
text on the screen.

Solution
Use the UIFont class.

Discussion
Fonts are fundamental to displaying text on a graphical user interface. The UIKit frame‐
work provides programmers with high-level APIs that facilitate the enumerating, load‐
ing, and use of fonts. Fonts are encapsulated in the UIFont class in Cocoa Touch. Each
iOS device comes with built-in system fonts. Fonts are organized into families, and each
family contains faces. For instance, Helvetica is a font family, and Helvetica Bold is one
of the faces of the Helvetica family. To be able to load a font, you must know the font’s
face (that is, its name)—and to know the face, you have to know the family. So first, let’s
enumerate all the font families that are installed on the device, using the familyNames
class method of the UIFont class:

- (void) enumerateFonts{

 for (NSString *familyName in [UIFont familyNames]){

 NSLog(@"Font Family = %@", familyName);

 }

}

Running this program in iOS Simulator, I get results similar to this:

Font Family = Thonburi

Font Family = Academy Engraved LE

20.1. Enumerating and Loading Fonts | 833

Font Family = Snell Roundhand

Font Family = Avenir

Font Family = Marker Felt

Font Family = Geeza Pro

Font Family = Arial Rounded MT Bo

Font Family = Trebuchet MS

...

After getting the font families, we can enumerate the font names inside each family.
We’ll use the fontNamesForFamilyName: class method of the UIFont class and get back
an array of font names for the family name that we pass as a parameter:

- (void) enumerateFonts{

 for (NSString *familyName in [UIFont familyNames]){

 NSLog(@"Font Family = %@", familyName);

 for (NSString *fontName in

 [UIFont fontNamesForFamilyName:familyName]){

 NSLog(@"\t%@", fontName);

 }

 }

}

Running this code in iOS Simulator gives me the following results:

Font Family = Thonburi Thonburi-Bold Thonburi

Font Family = Academy Eng AcademyEngravedLetPla

Font Family = Snell Round SnellRoundhand-Bold SnellRoundhand-Black SnellRoundhand

 ...

So as you can see, Thonburi is the font family and Thonburi-Bold is one of the font
names in this family. Now that we know the font name, we can load the fonts into objects
of type UIFont using the fontWithName:size: class method of the UIFont class:

__unused UIFont *font = [UIFont fontWithName:@"Thonburi-Bold"

 size:12.0f];

If the result of the fontWithName:size: class method of the UIFont
class is nil, the given font name could not be found. Make sure that
the font name you have provided is available in the system by first
enumerating all the font families and then all font names available in
each family.

You can also use the systemFontOfSize: instance method of the UIFont class (or its
bold alternative, boldSystemFontOfSize:) to load local system fonts, whatever they
might be, from the device that is running your code. The default system font for iOS
devices is Helvetica.

834 | Chapter 20: Graphics and Animations

After you have loaded fonts, you can proceed to Recipe 20.2, where we will use the fonts
that we loaded here in order to draw text on a graphical context.

See Also
Recipe 20.2

20.2. Drawing Text

Problem
You want to be able to draw text on the screen of an iOS device.

Solution
Use the drawAtPoint:withFont: method of NSString.

Discussion
To draw text, we can use some really handy methods built into the NSString class, such
as drawAtPoint:withAttributes:. Before we proceed further, make sure that you have
followed the instructions in this chapter’s Introduction. You should now have a view
object, subclassed from UIView, named View. Open that file. If the drawRect: instance
method of the view object is commented out, remove the comments until you have that
method in your view object:

#import "View.h"

@implementation View

- (id)initWithFrame:(CGRect)frame

{

 self = [super initWithFrame:frame];

 if (self) {

 // Initialization code

 }

 return self;

}

- (void)drawRect:(CGRect)rect{

}

@end

The drawRect: method is where we’ll do the drawing, as mentioned before. Here we
can start loading the font, and then draw a simple string on the screen at point 40 on
the x-axis and 180 on the y-axis (Figure 20-6):

20.2. Drawing Text | 835

- (void)drawRect:(CGRect)rect{

 UIFont *helveticaBold = [UIFont fontWithName:@"HelveticaNeue-Bold"

 size:40.0f];

 NSString *myString = @"Some String";

 [myString drawAtPoint:CGPointMake(40, 180)

 withAttributes:@{

 NSFontAttributeName : helveticaBold

 }];

}

In this code, we are simply loading a bold Helvetica font at size 40, and using it to draw
the text Some String at point (40, 180).

Figure 20-6. A random string drawn on the graphical context of a view

20.3. Constructing, Setting, and Using Colors

Problem
You want to be able to obtain references to color objects in order to use them while you
are drawing various forms on a view, such as text, rectangles, triangles, and line
segments.

Solution
Use the UIColor class.

836 | Chapter 20: Graphics and Animations

Discussion
UIKit provides programmers with a high-level abstraction of colors, encapsulated in
the UIColor object. This class has a few really handy class methods, such as redColor,
blueColor, brownColor, and yellowColor. However, if the color you are looking for
isn’t one of the explicitly named UIColor methods, you can always use the color
WithRed:green:blue:alpha: class method of UIColor class to load the color that you
are looking for. The return value of this class method is a value of type UIColor. Here
are the parameters of this method:

red

The amount of red to use in the color. This value can be anything between 0.0f to
1.0f, where 0.0f omits all red and 1.0f makes the red component as dark as
possible.

green

The amount of green to mix with the red in the color. This value also ranges from
0.0f to 1.0f.

blue

The amount of blue to mix with the red and green in the color. This value also ranges
from 0.0f to 1.0f.

alpha

The opaqueness of the color. This value can range from 0.0f to 1.0f, with 1.0f
making the color completely opaque and 0.0f making the color completely trans‐
parent (in other words, invisible).

After you have an object of type UIColor, you can use its set instance method to make
the current graphics context use that color for subsequent drawing.

You can use the colorWithRed:green:blue:alpha: class method of
the UIColor class to load primary colors like red by simply passing
1.0f as the red parameter and 0.0f for the green and blue parame‐
ters. The alpha is up to you.

We will be using instance methods of the NSString class to draw text on the current
graphics context, as we shall soon discuss. Now let’s load a magenta color into an object
of type UIColor and then draw the text I Learn Really Fast on the view’s graphical
context using a bold Helvetica font of size 30 (see Recipe 20.1 for loading fonts):

- (void)drawRect:(CGRect)rect{

 /* Load the color */

 UIColor *magentaColor =[UIColor colorWithRed:0.5f

 green:0.0f

20.3. Constructing, Setting, and Using Colors | 837

 blue:0.5f

 alpha:1.0f];

 /* Set the color in the graphical context */

 [magentaColor set];

 /* Load the font */

 UIFont *helveticaBold = [UIFont fontWithName:@"HelveticaNeue-Bold"

 size:30.0f];

 /* Our string to be drawn */

 NSString *myString = @"I Learn Really Fast";

 /* Draw the string using the font. The color has

 already been set */

 [myString drawAtPoint:CGPointMake(25, 190)

 withAttributes:@{

 NSFontAttributeName : helveticaBold

 }];

}

The results are shown in Figure 20-7.

Figure 20-7. String drawn with a color on a graphical context

We can also use the drawWithRect:options:attributes:context: instance method
of the NSString class to draw text inside a rectangular space. The text will get stretched
to fit into that rectangle. UIKit will even wrap the text if it doesn’t fit horizontally within
the given rectangle. Rectangular bounds are encapsulated in CGRect structures. You can
use the CGRectMake function to create the bounds of a rectangle:

- (void)drawRect:(CGRect)rect{

 /* Load the color */

838 | Chapter 20: Graphics and Animations

 UIColor *magentaColor = [UIColor colorWithRed:0.5f

 green:0.0f

 blue:0.5f

 alpha:1.0f];

 /* Set the color in the graphical context */

 [magentaColor set];

 /* Load the font */

 UIFont *helveticaBold = [UIFont boldSystemFontOfSize:30];

 /* Our string to be drawn */

 NSString *myString = @"I Learn Really Fast";

 /* Draw the string using the font. The color has

 already been set */

 [myString drawWithRect:CGRectMake(100, /* x */

 120, /* y */

 100, /* width */

 200)

 options:NSStringDrawingUsesLineFragmentOrigin

 attributes:@{

 NSFontAttributeName : helveticaBold

 }

 context:nil];

}

The CGRectMake function takes four parameters:

x

The x position of the origin point of the rectangle in relation to the graphics context.
In iOS, this is the number of points heading right, starting from the left side of the
rectangle.

y

The y position of the origin point of the rectangle in relation to the graphics context.
In iOS, this is the number of points heading down, starting from the top of the
rectangle.

width

The width of the rectangle in points.

height

The height of the rectangle in points.

The output is shown in Figure 20-8.

20.3. Constructing, Setting, and Using Colors | 839

Figure 20-8. Drawing a string in a rectangular space

UIColor is really a UIKit wrapper around the Core Graphics class CGColor. When we
get as low level as Core Graphics, we suddenly gain more control over how we use the
color objects, and we can even determine the components from which the color is made.
Let’s say some other code passed you an object of type UIColor, and you want to detect
its red, green, blue, and alpha components. To get the components that make up a
UIColor object, follow these steps:

1. Use the CGColor instance method of the instance of the UIColor class. This will give
us a color object of type CGColorRef, which is a Core Graphics Color Reference
object.

2. Use the CGColorGetComponents function to get the components that construct the
color object.

3. Use the CGColorGetNumberOfComponents function to determine the number of
components that were used to construct the color (red + green + etc.) if need be.

Here is an example:

- (void) drawRect:(CGRect)rect{

 /* Load the color */

 UIColor *steelBlueColor = [UIColor colorWithRed:0.3f

 green:0.4f

 blue:0.6f

 alpha:1.0f];

 CGColorRef colorRef = steelBlueColor.CGColor;

 const CGFloat *components = CGColorGetComponents(colorRef);

 NSUInteger componentsCount = CGColorGetNumberOfComponents(colorRef);

840 | Chapter 20: Graphics and Animations

 NSUInteger counter = 0;

 for (counter = 0;

 counter < componentsCount;

 counter++){

 NSLog(@"Component %lu = %.02f",

 (unsigned long)counter + 1,

 components[counter]);

 }

}

The output that we get in the console window after running this code is:

Component 1 = 0.30

Component 2 = 0.40

Component 3 = 0.60

Component 4 = 1.00

See Also
Recipe 20.1

20.4. Drawing Images

Problem
You want to be able to draw images on the screen of an iOS device.

Solution
Use the UIImage class to load an image and then use the drawInRect: method of the
image to draw it on a graphics context.

Discussion
UIKit helps you draw images with ease. All you have to do is load your images in in‐
stances of type UIImage. The UIImage class provides various class and instance methods
to load your images. Here are some of the important ones in iOS:

imageNamed: class method
Loads the image (and caches the image if it can load it properly). The parameter to
this method is the name of the image in the bundle, such as Tree Texture.png.

imageWithData: class method
Loads an image from the data encapsulated in an instance of an NSData object that
was passed as the parameter to this method.

20.4. Drawing Images | 841

initWithContentsOfFile: instance method (for initialization)
Uses the given parameter as the path to an image that has to be loaded and used to
initialize the image object.

This path should be the full path to the image in the app bundle.

initWithData: instance method (for initialization)
Uses the given parameter of type NSData to initialize the image. This data should
belong to a valid image.

Please follow these steps to add an image to your Xcode project:

1. Find where the image is located in your computer.

2. Drag and drop the image into your image category, usually named images.xcas

sets. Xcode will do the rest for you.

You can retrieve Xcode’s icon by following these steps:

1. Find the Xcode app in the Finder.

2. Press Command+I on Xcode in the Finder to get information on
it.

3. Click the icon in the upper left of the Xcode Info window.

4. Press Command+C to copy it.

5. Open the Preview app.

6. Hit Command+V to paste the Xcode icon into a new image.

7. You will now have an ICNS file with five separate pages. Save it as
a PDF, and then delete all but the highest-resolution icon (page
1).

We will be drawing this image on a graphics context to demonstrate
how to draw images in this section of the book. I’ve already found the
file, and dragged and dropped that image into my iOS app. Now I have
an image called Xcode.png in my app project’s asset category. The im‐

age is shown in Figure 20-9.

842 | Chapter 20: Graphics and Animations

Figure 20-9. Xcode’s icon, found in your Xcode app

Here is the code for loading an image:

- (void)drawRect:(CGRect)rect{

 UIImage *image = [UIImage imageNamed:@"Xcode"];

 if (image != nil){

 NSLog(@"Successfully loaded the image.");

 } else {

 NSLog(@"Failed to load the image.");

 }

}

If you have the Xcode image in your app bundle, running this code will print Success

fully loaded the image. in the console. If you don’t have the image, Failed to load
the image. will get printed. For the remainder of this section, I assume you have this
image in your project’s asset category. Feel free to place other images in your app and
refer to those images instead of Xcode.png, which I will be using in example code.

The two easiest ways to draw an image of type UIImage on a graphics context are:

drawAtPoint: instance method of UIImage class
Draws the image at its original size at the given point. Construct the point using
the CGPointMake function.

drawInRect: instance method of UIImage class
Draws the image in the given rectangular space. To construct this rectangular space,
use the CGRectMake function:

20.4. Drawing Images | 843

- (void)drawRect:(CGRect)rect{

 /* Assuming the image is in your app bundle and we can load it */

 UIImage *xcodeIcon = [UIImage imageNamed:@"Xcode"];

 [xcodeIcon drawAtPoint:CGPointMake(0.0f,

 20.0f)];

 [xcodeIcon drawInRect:CGRectMake(50.0f,

 10.0f,

 40.0f,

 35.0f)];

}

The drawAtPoint: call shown in this code snippet will draw the image at its full size at
point (0, 20), and the drawInRect: call will draw the image at point (50, 10) at 40×35
points, as shown in Figure 20-10.

Figure 20-10. Drawing an image on a graphics context can be accomplished with two
different methods

844 | Chapter 20: Graphics and Animations

Aspect ratio is the ratio between the width and the height of an im‐
age (or a computer screen). Let’s assume you have an image that is
100×100 pixels. If you draw this image at point (0, 0) with a size of
(100, 200), you can immediately see on the screen that the image is
stretched in height (200 pixels instead of 100). The drawInRect: in‐
stance method of UIImage leaves it up to you how you want to draw
your images. In other words, it is you who has to specify the x, y, width,
and height of your image as it appears on the screen.

See Also
Recipe 15.6

20.5. Constructing Resizable Images

Problem
You want to be able to save some memory and disk space by creating resizable images
for your UI components. You may also want to be able to create different sizes of the
same UI component, such as a button, using only a single background image.

Resizable images refer to simple PNG or JPEG images that can be
loaded into an instance of UIImage.

Solution
Create a resizable image using the resizableImageWithCapInsets: instance method
of the UIImage class.

Discussion
Resizable images may sound a bit strange at first, but they make sense when you un‐
derstand the different display needs of your app. For instance, you may be working on
an iOS app where you want to provide a background image for your buttons. The bigger
the text in the button, the wider the button. So you now have two options on how you
want to provide the background images of your buttons:

• Create one image per size of button. This will add to the size of your bundle, con‐
sume more memory, and require much more work from you. In addition, any
change to the text requires a new image to make the button fit.

20.5. Constructing Resizable Images | 845

• Create one resizable image and use that throughout the app for all the buttons.

Without a doubt, the second option is much more appealing. So what are resizable
images? They are simply images that are divided into two virtual areas:

• An area that will not be stretched.

• An area that will be stretched to fit any size.

As you can see in Figure 20-11, we have created an image for a button. After a better
look at the image, you can clearly see that it is made out of a gradient. The area that I
have drawn a rectangle around is the area that can be cut out of the image. You might
be wondering why. Have a closer look! If I cut that area and made it only 1 pixel wide
and as tall as it is now, I could, in my app, put as many of those vertical slices that I cut
together to form the same area that is highlighted in this photo. See Figure 20-12.

Figure 20-11. An image with a redundant area is a great candidate for a resizable
image

Figure 20-12. Individual slices of the center section of the image are all the same

So how can one make this image smaller and still be able to construct a button out of
it? The answer is simple. In this case, where the image is consistently the same across
the length of the image, we will simply cut the center of it into a slice that is 1 point wide
while keeping it as tall as it is right now. Figure 20-13 shows what our image will look
like after this operation.

846 | Chapter 20: Graphics and Animations

Figure 20-13. The resizable area of the image is made into a 1-point-wide area

Now comes the interesting part! How can we tell the iOS SDK which part of the image
to keep intact and which part to stretch? It turns out that iOS SDK has already taken
care of this. First, load your image into memory using the UIImage APIs that you learned
in this chapter. After constructing an instance of UIImage with an image that you know
you can stretch, transform the image instance into a resizable image using the resiza
bleImageWithCapInsets: instance method of the same instance. The parameter that
this method takes is of type UIEdgeInsets, which is itself defined in this way:

typedef struct UIEdgeInsets {

 CGFloat top, left, bottom, right;

} UIEdgeInsets;

Edge insets are there to allow us to create what Apple calls nine-part images. A nine-
part image is an image that has the following nine components:

• Upper-left corner

• Top edge

• Upper-right corner

• Right edge

• Lower-right corner

• Bottom edge

• Lower-left corner

• Left edge

• Center

Figure 20-14 illustrates this concept much better than words can.

20.5. Constructing Resizable Images | 847

Figure 20-14. Illustration of a nine-part image

The purpose of storing an image as a nine-part image is that programmers can resize it
vertically and horizontally to pretty much any size they want. When the programmer
requires the image to be resized, some of these components will stay unchanged and
some will be resized. The parts that stay unchanged are the corners, which aren’t resized
at all. The other parts of the image will be resized as follows:

Top edge
This part of the image will be resized in its width but not in its height.

Right edge
This part of the image will be resized in its height but not in its width.

Bottom edge
This part of the image, just like the top edge, will be resized in its width, but not in
its height.

Left edge
Just like the right edge, this part of the image will be resized in its height, but not
in its width.

Center
Will be resized in both its width and its height.

The top, left, bottom, and right values of the inset mark the area that you don’t want to
stretch. For instance, if you specified the value of 10 for the left, 11 for the top, 14 for
the right, and 5 for the bottom, you are telling iOS to put a vertical line on the image at
10 points from the left, a horizontal line at 11 points from the top, another vertical line
at 14 points from the right, and a final horizontal line at 5 points from the bottom. The
rectangular area trapped between these virtual lines is the resizable area of the image
and the area outside this rectangle is not stretched. This may sound a bit confusing, but
imagine a rectangle (your image) and then you draw another rectangle inside it. The
inner rectangle is resizable but the outer rectangle stays intact. I think looking at a picture
demonstrating these values will clarify this (Figure 20-15).

848 | Chapter 20: Graphics and Animations

Figure 20-15. The stretchable portion of the image is defined by the edge insets

The left and right distances are really the same in Figure 20-15. So are
the top and the bottom distances. I have just set them to different values
to make the edge inset construction a bit more straightforward and
easier to understand. If all the values were the same, when we con‐
struct the edge insets later you may ask: which one is which?!

For an image like Figure 20-15, we should construct the edge inset like so:

UIEdgeInsets edgeInsets;

edgeInsets.left = 20.0f;

edgeInsets.top = 10.0f;

edgeInsets.right = 24.0f;

edgeInsets.bottom = 14.0f;

OK, now let’s go back to our example code. What we are trying to do here is use the
stretchable image that we created in Figure 20-13 for a real application. We will create
a button and place it at the center of our only view controller’s view. The button’s text
will read “Stretched Image on Button” and its size will be 200 points wide and 44 points
tall. Here is our code:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UIButton *button;

@end

@implementation ViewController

- (void)viewDidLoad{

 [super viewDidLoad];

 /* Instantiate the button */

 self.button = [UIButton buttonWithType:UIButtonTypeCustom];

 [self.button setFrame:CGRectMake(0.0f, 0.0f, 200.0f, 44.0f)];

 /* Set the title of the button */

20.5. Constructing Resizable Images | 849

 [self.button setTitle:@"Stretched Image on Button"

 forState:UIControlStateNormal];

 /* Adjust the font for our text */

 self.button.titleLabel.font = [UIFont systemFontOfSize:15.0f];

 /* Construct the stretchable image */

 UIImage *image = [UIImage imageNamed:@"Button"];

 UIEdgeInsets edgeInsets;

 edgeInsets.left = 14.0f;

 edgeInsets.top = 0.0f;

 edgeInsets.right = 14.0f;

 edgeInsets.bottom = 0.0f;

 image = [image resizableImageWithCapInsets:edgeInsets];

 /* Set the background image of the button */

 [self.button setBackgroundImage:image forState:UIControlStateNormal];

 [self.view addSubview:self.button];

 self.button.center = self.view.center;

}

@end

Now if you run the app, you will see something similar to Figure 20-16.

See Also
Recipe 20.4

20.6. Drawing Lines

Problem
You simply want to be able to draw lines on a graphics context.

Solution
Retrieve the handle to your graphics context and then use the CGContextMoveToPoint
and the CGContextAddLineToPoint functions to draw your line.

Discussion
When we talk about drawing shapes in iOS or OS X, we are implicitly talking about
paths. What are paths, you may ask? A path is constructed from one or more series of
points drawn on a screen. There is a big difference between paths and lines. A path can

850 | Chapter 20: Graphics and Animations

contain many lines, but a line cannot contain many paths. Think of paths as series of
points—it’s as simple as that.

Figure 20-16. A button is displayed on the screen with a stretchable background image

Lines have to be drawn using paths. Specify the start and end points, and then ask Core
Graphics to fill that path for you. Core Graphics realizes that you have created a line on
that path and will paint that path for you using the color that you specified (see
Recipe 20.3).

We will be talking about paths in more depth later (see Recipe 20.7), but for now let’s
focus on using paths to create straight lines. To do this, follow these steps:

1. Choose a color on your graphics context (see Recipe 20.3).

2. Retrieve the handle to the graphics context, using the UIGraphicsGetCurrentCon
text function.

3. Set the starting point for your line using the CGContextMoveToPoint procedure.

4. Move your pen on the graphics context using the CGContextAddLineToPoint pro‐
cedure to specify the ending point of your line.

20.6. Drawing Lines | 851

5. Create the path that you have laid out using the CGContextStrokePath procedure.
This procedure will draw the path using the current color that has been set on the
graphics context.

Optionally, you can use the CGContextSetLineWidth procedure to set the width of the
lines that you are drawing on a given graphics context. The first parameter to this pro‐
cedure is the graphics context that you are drawing on, and the second parameter is the
width of the line, expressed as a floating-point number (CGFloat).

In iOS, the line width is measured in logical points.

Here is an example:

- (void)drawRect:(CGRect)rect{

 /* Set the color that we want to use to draw the line */

 [[UIColor brownColor] set];

 /* Get the current graphics context */

 CGContextRef currentContext = UIGraphicsGetCurrentContext();

 /* Set the width for the line */

 CGContextSetLineWidth(currentContext,

 5.0f);

 /* Start the line at this point */

 CGContextMoveToPoint(currentContext,

 50.0f,

 10.0f);

 /* And end it at this point */

 CGContextAddLineToPoint(currentContext,

 100.0f,

 200.0f);

 /* Use the context's current color to draw the line */

 CGContextStrokePath(currentContext);

}

Running this code in iOS Simulator will show you results similar to Figure 20-17.

852 | Chapter 20: Graphics and Animations

Figure 20-17. Drawing a line on a current graphics context

Let me show you another example. As mentioned earlier, the CGContextAddLineTo
Point procedure specifies the end point of the current line. Now what if we have already
drawn a line from point (20, 20) to point (100, 100), and want to draw a line from (100,
100) to (300, 100)? You might think that after drawing the first line, we have to move
the pen to point (100, 100) using the CGContextMoveToPoint procedure, and then draw
the line to point (300, 100) using the CGContextAddLineToPoint procedure. While that
will work, there is a more efficient way to do this. After you call the CGContextAddLi
neToPoint procedure to specify the ending point of your current line, your pen’s position
will change to what you pass to this method. In other words, after you issue a method
using the pen, it leaves the pen’s position at the ending point of whatever it drew. So to
draw another line from the current ending point to another point, all you have to do is
call the CGContextAddLineToPoint procedure again with another ending point. Here
is an example:

20.6. Drawing Lines | 853

- (void)drawRect:(CGRect)rect{

 /* Set the color that we want to use to draw the line */

 [[UIColor brownColor] set];

 /* Get the current graphics context */

 CGContextRef currentContext = UIGraphicsGetCurrentContext();

 /* Set the width for the lines */

 CGContextSetLineWidth(currentContext,

 5.0f);

 /* Start the line at this point */

 CGContextMoveToPoint(currentContext,

 20.0f,

 20.0f);

 /* And end it at this point */

 CGContextAddLineToPoint(currentContext,

 100.0f,

 100.0f);

 /* Extend the line to another point */

 CGContextAddLineToPoint(currentContext,

 300.0f,

 100.0f);

 /* Use the context's current color to draw the lines */

 CGContextStrokePath(currentContext);

}

The results are shown in Figure 20-18. You can see that both lines are successfully drawn
without us having to move the pen for the second line.

The point where two lines meet is, not surprisingly, called a join. With Core Graphics,
you can specify what type of join you want to have between lines that are connected to
each other. To make your choice, you must use the CGContextSetLineJoin procedure.
It takes two parameters: a graphics context on which you are setting the join type, and
the join type itself, which must be of type CGLineJoin. CGLineJoin is an enumeration
of the following values:

kCGLineJoinMiter

Joins will be made out of sharp corners. This is the default join type.

854 | Chapter 20: Graphics and Animations

kCGLineJoinBevel

Joins will be squared off on the corner.

kCGLineJoinRound

As the name implies, this makes round joins.

Figure 20-18. Drawing two lines at once

Let’s have a look at an example. Let’s say we want to write a program that can draw
“rooftops” on a graphics context (three of them, one for each join type), and also draws
text below each rooftop describing the type of join it is using. Something similar to
Figure 20-19 will be the result.

20.6. Drawing Lines | 855

Figure 20-19. Three types of line joins in Core Graphics

To accomplish this, I’ve written a method named drawRooftopAtTopPointof:textTo
Display:lineJoin:, which takes three parameters:

1. A point at which the top of the rooftop should be placed.

2. The text to display inside the rooftop.

3. The join type to be used.

The code is as follows:

- (void) drawRooftopAtTopPointof:(CGPoint)paramTopPoint

 textToDisplay:(NSString *)paramText

 lineJoin:(CGLineJoin)paramLineJoin{

 /* Set the color that we want to use to draw the line */

856 | Chapter 20: Graphics and Animations

 [[UIColor brownColor] set];

 /* Get the current graphics context */

 CGContextRef currentContext = UIGraphicsGetCurrentContext();

 /* Set the line join */

 CGContextSetLineJoin(currentContext,

 paramLineJoin);

 /* Set the width for the lines */

 CGContextSetLineWidth(currentContext,

 20.0f);

 /* Start the line at this point */

 CGContextMoveToPoint(currentContext,

 paramTopPoint.x - 140,

 paramTopPoint.y + 100);

 /* And end it at this point */

 CGContextAddLineToPoint(currentContext,

 paramTopPoint.x,

 paramTopPoint.y);

 /* Extend the line to another point to

 make the rooftop */

 CGContextAddLineToPoint(currentContext,

 paramTopPoint.x + 140,

 paramTopPoint.y + 100);

 /* Use the context's current color to draw the lines */

 CGContextStrokePath(currentContext);

 /* Draw the text in the rooftop using a black color */

 [[UIColor blackColor] set];

 /* Now draw the text */

 CGPoint drawingPoint = CGPointMake(paramTopPoint.x - 40.0f,

 paramTopPoint.y + 60.0f);

 UIFont *font = [UIFont boldSystemFontOfSize:30.0f];

 [paramText drawAtPoint:drawingPoint

 withAttributes:@{NSFontAttributeName : font}];

}

Now let’s call this method in the drawRect: instance method of the view object where
we have a graphics context:

- (void)drawRect:(CGRect)rect{

 [self drawRooftopAtTopPointof:CGPointMake(160.0f, 40.0f)

 textToDisplay:@"Miter"

 lineJoin:kCGLineJoinMiter];

20.6. Drawing Lines | 857

 [self drawRooftopAtTopPointof:CGPointMake(160.0f, 180.0f)

 textToDisplay:@"Bevel"

 lineJoin:kCGLineJoinBevel];

 [self drawRooftopAtTopPointof:CGPointMake(160.0f, 320.0f)

 textToDisplay:@"Round"

 lineJoin:kCGLineJoinRound];

}

See Also
Recipe 20.3; Recipe 20.7

20.7. Constructing Paths

Problem
You want to be able to draw any shape that you wish on a graphics context.

Solution
Construct and draw paths.

Discussion
A series of points placed together can form a shape. A series of shapes put together
builds a path. Paths can easily be managed by Core Graphics. In Recipe 20.6, we worked
indirectly with paths using CGContext functions. But Core Graphics also has functions
that work directly with paths, as we shall soon see.

Paths belong to whichever graphics context they are drawn on. Paths do not have
boundaries or specific shapes, unlike the shapes we draw on them. But paths do have
bounding boxes. Please bear in mind that boundaries are not the same as bounding
boxes. Boundaries are limits above which you cannot draw on a canvas, while the
bounding box of a path is the smallest rectangle that contains all the shapes, points, and
other objects that have been drawn on that specific path. Think of paths as stamps, and
think of your graphics context as the envelope. Your envelope could be the same every
time you mail something to your friend, but what you put on that context (the stamp
or the path) can be different.

After you finish drawing on a path, you can then draw that path on the graphics context.
Developers familiar with game programming know the concept of buffers, which draw
their scenes and, at appropriate times, flush the images onto the screen. Paths are those

858 | Chapter 20: Graphics and Animations

buffers. They are like blank canvases that can be drawn on graphics contexts when the
time is right.

The first step in directly working with paths is to create them. The method creating the
path returns a handle that you use whenever you want to draw something on that path,
passing the handle to Core Graphics for reference. After you create the path, you can
add different points, lines, and shapes to it and then draw the path. You can either fill
the path or paint it with a stroke on a graphics context. Here are the methods you have
to work with:

CGPathCreateMutable function
Creates a new mutable path of type CGMutablePathRef and returns its handle. We
should dispose of this path once we are done with it, as you will soon see.

CGPathMoveToPoint procedure
Moves the current pen position on the path to the point specified by a parameter
of type CGPoint.

CGPathAddLineToPoint procedure
Draws a line segment from the current pen position to the specified position (again,
specified by a value of type CGPoint).

CGContextAddPath procedure
Adds a given path (specified by a path handle) to a graphics context, ready for
drawing.

CGContextDrawPath procedure
Draws a given path on the graphics context.

CGPathRelease procedure
Releases the memory allocated for a path handle.

CGPathAddRect procedure
Adds a rectangle to a path. The rectangle’s boundaries are specified by a CGRect
structure.

There are three important drawing methods that you can ask the CGContextDrawPath
procedure to perform:

kCGPathStroke

Draws a line (stroke) to mark the boundary or edge of the path, using the currently
selected stroke color.

kCGPathFill

Fills the area surrounded by the path with the currently selected fill color.

20.7. Constructing Paths | 859

kCGPathFillStroke

Combines stroke and fill. Uses the currently selected fill color to fill the path and
the currently selected stroke color to draw the edge of the path. We’ll see an example
of this method in the following section.

Let’s have a look at an example. We will draw a blue line from the top-left to the bottom-
right corner, and another from the top-right to the bottom-left corner, to create a gi‐
gantic X across the screen.

For this example, I have removed the status bar from the application
in iOS Simulator. If you don’t want to bother doing this, please con‐
tinue to the example code. With a status bar, the output of this code
will be only slightly different from the screenshot I’ll show. To hide the
status bar, find the Info.plist file in your Xcode project and add a key

to it named UIStatusBarHidden with the value of YES, as shown in
Figure 20-20. This will force your app’s status bar to be hidden when
it opens.

Figure 20-20. Hiding the status bar in an iOS app using the Info.plist file

- (void)drawRect:(CGRect)rect{

 /* Create the path */

 CGMutablePathRef path = CGPathCreateMutable();

 /* How big is our screen? We want the X to cover

 the whole screen */

860 | Chapter 20: Graphics and Animations

 CGRect screenBounds = [[UIScreen mainScreen] bounds];

 /* Start from top-left */

 CGPathMoveToPoint(path,

 NULL,

 screenBounds.origin.x,

 screenBounds.origin.y);

 /* Draw a line from top-left to bottom-right of the screen */

 CGPathAddLineToPoint(path,

 NULL,

 screenBounds.size.width,

 screenBounds.size.height);

 /* Start another line from top-right */

 CGPathMoveToPoint(path,

 NULL,

 screenBounds.size.width,

 screenBounds.origin.y);

 /* Draw a line from top-right to bottom-left */

 CGPathAddLineToPoint(path,

 NULL,

 screenBounds.origin.x,

 screenBounds.size.height);

 /* Get the context that the path has to be drawn on */

 CGContextRef currentContext = UIGraphicsGetCurrentContext();

 /* Add the path to the context so we can

 draw it later */

 CGContextAddPath(currentContext,

 path);

 /* Set the blue color as the stroke color */

 [[UIColor blueColor] setStroke];

 /* Draw the path with stroke color */

 CGContextDrawPath(currentContext,

 kCGPathStroke);

 /* Finally release the path object */

 CGPathRelease(path);

}

The NULL parameters getting passed to procedures such as
CGPathMoveToPoint represent possible transformations that can be
used when drawing the shapes and lines on a given path. For infor‐
mation about transformations, refer to Recipes 20.11, 20.12, and 20.13.

20.7. Constructing Paths | 861

You can see how easy it is to draw a path on a context. All you really have to remember
is how to create a new mutable path (CGPathCreateMutable), add that path to your
graphics context (CGContextAddPath), and draw it on a graphics context (CGContext
DrawPath). If you run this code, you will get an output similar to that shown in
Figure 20-21.

Figure 20-21. Drawing on a graphics context using paths

See Also
Recipe 20.6; Recipe 20.11; Recipe 20.12; Recipe 20.13

20.8. Drawing Rectangles

Problem
You want to be able to draw rectangles on a graphics context.

Solution
Use the CGPathAddRect to add a rectangle to a path and then draw that path on a graphics
context.

862 | Chapter 20: Graphics and Animations

Discussion
As we learned in Recipe 20.7, you can construct and use paths quite easily. One of the
procedures that you can use on paths in Core Graphics is CGPathAddRect, which lets
you draw rectangles as part of paths. Here is an example:

- (void)drawRect:(CGRect)rect{

 /* Create the path first. Just the path handle. */

 CGMutablePathRef path = CGPathCreateMutable();

 /* Here are our rectangle boundaries */

 CGRect rectangle = CGRectMake(10.0f,

 30.0f,

 200.0f,

 300.0f);

 /* Add the rectangle to the path */

 CGPathAddRect(path,

 NULL,

 rectangle);

 /* Get the handle to the current context */

 CGContextRef currentContext = UIGraphicsGetCurrentContext();

 /* Add the path to the context */

 CGContextAddPath(currentContext,

 path);

 /* Set the fill color to cornflower blue */

 [[UIColor colorWithRed:0.20f

 green:0.60f

 blue:0.80f

 alpha:1.0f] setFill];

 /* Set the stroke color to brown */

 [[UIColor brownColor] setStroke];

 /* Set the line width (for the stroke) to 5 */

 CGContextSetLineWidth(currentContext,

 5.0f);

 /* Stroke and fill the path on the context */

 CGContextDrawPath(currentContext,

 kCGPathFillStroke);

 /* Dispose of the path */

 CGPathRelease(path);

}

20.8. Drawing Rectangles | 863

Here we are drawing a rectangle on the path, filling it with cornflower blue, and stroking
the edges of the rectangle with brown. Figure 20-22 shows how the output will look
when we run the program.

Figure 20-22. Drawing a rectangle using paths

If you have multiple rectangles to draw, you can pass an array of CGRect objects to the
CGPathAddRects procedure. Here is an example:

- (void)drawRect:(CGRect)rect{

 /* Create the path first. Just the path handle. */

 CGMutablePathRef path = CGPathCreateMutable();

 /* Here are our first rectangle boundaries */

 CGRect rectangle1 = CGRectMake(10.0f,

864 | Chapter 20: Graphics and Animations

 30.0f,

 200.0f,

 300.0f);

 /* And the second rectangle */

 CGRect rectangle2 = CGRectMake(40.0f,

 100.0f,

 90.0f,

 300.0f);

 /* Put both rectangles into an array */

 CGRect rectangles[2] = {

 rectangle1, rectangle2

 };

 /* Add the rectangles to the path */

 CGPathAddRects(path,

 NULL,

 (const CGRect *)&rectangles,

 2);

 /* Get the handle to the current context */

 CGContextRef currentContext = UIGraphicsGetCurrentContext();

 /* Add the path to the context */

 CGContextAddPath(currentContext,

 path);

 /* Set the fill color to cornflower blue */

 [[UIColor colorWithRed:0.20f

 green:0.60f

 blue:0.80f

 alpha:1.0f] setFill];

 /* Set the stroke color to black */

 [[UIColor blackColor] setStroke];

 /* Set the line width (for the stroke) to 5 */

 CGContextSetLineWidth(currentContext,

 5.0f);

 /* Stroke and fill the path on the context */

 CGContextDrawPath(currentContext,

 kCGPathFillStroke);

 /* Dispose of the path */

 CGPathRelease(path);

}

Figure 20-23 shows how the output of this code will look when run in iOS Simulator.
The parameters that we pass to the CGPathAddRects procedure are (in this order):

20.8. Drawing Rectangles | 865

1. The handle to the path where we will add the rectangles.

2. The transformation, if any, to use on the rectangles. (For information about trans‐
formations, refer to Recipes 20.11, 20.12, and 20.13.)

3. A reference to the array holding the CGRect rectangles.

4. The number of rectangles in the array that we passed in the previous parameter. It
is very important that you pass exactly as many rectangles as you have in your array,
to avoid unknown behavior by this procedure.

Figure 20-23. Drawing multiple rectangles at once

See Also
Recipe 20.7; Recipe 20.11; Recipe 20.12; Recipe 20.13

20.9. Adding Shadows to Shapes

Problem
You want to be able to apply shadows to shapes that you draw on graphic contexts.

866 | Chapter 20: Graphics and Animations

Solution
Use the CGContextSetShadow procedure.

Discussion
It is easy to draw shadows using Core Graphics. The graphics context is the element that
bears the shadow. What that means is that you need to apply the shadow to the context,
draw the shapes that need the shadow, and then remove the shadow from the context
(or set a new context). We will see an example of this soon.

In Core Graphics, we can use two procedures to apply a shadow to a graphics context:

CGContextSetShadow procedure
This procedure, which creates black or gray shadows, accepts three parameters:

• The graphics context on which the shadow has to be applied.

• The offset, specified by a value of type CGSize, from the right and the bottom
part of each shape where the shadow has to be applied. The greater the x value
of this offset is, the farther to the right of each shape the shadow will extend.
The greater the y value of this offset is, the lower the shadow will extend.

• The blur value that has to be applied to the shadow, specified as a floating-point
value (CGFloat). Specifying 0.0f will cause the shadow to be a solid shape. The
higher this value goes, the more blurred the shadow will get. We will see an
example of this soon.

CGContextSetShadowWithColor procedure
This procedure accepts the exact same parameters as CGContextSetShadow, with
one addition. This fourth parameter, of type CGColorRef, sets the color of the shad‐
ow.

At the beginning of this section, I mentioned that the graphics context retains its shadow
properties until we explicitly remove the shadow. Let me make that point clearer by
showing you an example. Let us go ahead and write code that allows us to draw two
rectangles, the first one with a shadow and the second one without a shadow. We will
draw the first one in this way:

- (void) drawRectAtTopOfScreen{

 /* Get the handle to the current context */

 CGContextRef currentContext = UIGraphicsGetCurrentContext();

 CGContextSetShadowWithColor(currentContext,

 CGSizeMake(10.0f, 10.0f),

 20.0f,

 [[UIColor grayColor] CGColor]);

20.9. Adding Shadows to Shapes | 867

 /* Create the path first. Just the path handle. */

 CGMutablePathRef path = CGPathCreateMutable();

 /* Here are our rectangle boundaries */

 CGRect firstRect = CGRectMake(55.0f,

 60.0f,

 150.0f,

 150.0f);

 /* Add the rectangle to the path */

 CGPathAddRect(path,

 NULL,

 firstRect);

 /* Add the path to the context */

 CGContextAddPath(currentContext,

 path);

 /* Set the fill color to cornflower blue */

 [[UIColor colorWithRed:0.20f

 green:0.60f

 blue:0.80f

 alpha:1.0f] setFill];

 /* Fill the path on the context */

 CGContextDrawPath(currentContext,

 kCGPathFill);

 /* Dispose of the path */

 CGPathRelease(path);

}

- (void) drawRect:(CGRect)rect{

 [self drawRectAtTopOfScreen];

}

If we call this method in the drawRect: instance method of the view object, we will see
the rectangle drawn on the screen with a nice shadow just like we wanted it, as shown
in Figure 20-24.

868 | Chapter 20: Graphics and Animations

Figure 20-24. Shadow applied to a rectangle

Now let’s go ahead and draw a second rectangle after the first one. We won’t ask for a
shadow, but we’ll leave the shadow property of the graphics context as it was for the first
rectangle:

- (void) drawRectAtBottomOfScreen{

 /* Get the handle to the current context */

 CGContextRef currentContext = UIGraphicsGetCurrentContext();

 CGMutablePathRef secondPath = CGPathCreateMutable();

 CGRect secondRect = CGRectMake(150.0f,

 250.0f,

 100.0f,

 100.0f);

20.9. Adding Shadows to Shapes | 869

 CGPathAddRect(secondPath,

 NULL,

 secondRect);

 CGContextAddPath(currentContext,

 secondPath);

 [[UIColor purpleColor] setFill];

 CGContextDrawPath(currentContext,

 kCGPathFill);

 CGPathRelease(secondPath);

}

- (void)drawRect:(CGRect)rect{

 [self drawRectAtTopOfScreen];

 [self drawRectAtBottomOfScreen];

}

The drawRect: method first calls the drawRectAtTopOfScreen method, and right after
that calls the drawRectAtBottomOfScreen method. We haven’t asked for a shadow for
the drawRectAtBottomOfScreen rectangle, yet if you run the app, you will see something
similar to Figure 20-25.

It’s immediately obvious that the shadow is applied to the second rectangle at the bottom
of the screen. To avoid this, we will save the state of the graphics context before applying
the shadow effect and then restore the state when we want to remove the shadow effect.

Broadly speaking, saving and restoring the state of a graphics context is not limited to
shadows only. Restoring the state of a graphics context restores everything (fill color,
font, line thickness, etc.) to the values they had before you set them. So for instance, if
you applied fill and stroke colors in the meantime, those colors will be reset.

870 | Chapter 20: Graphics and Animations

Figure 20-25. A shadow is unintentionally applied to the second rectangle

You can save the state of a graphics context through the CGContextSaveGState proce‐
dure and restore the previous state through the CGContextRestoreGState procedure.
So if we modify the drawRectAtTopOfScreen procedure by saving the state of the
graphics context before applying the shadow, and restore that state after drawing the
path, we will have different results, shown in Figure 20-26:

- (void) drawRectAtTopOfScreen{

 /* Get the handle to the current context */

 CGContextRef currentContext = UIGraphicsGetCurrentContext();

 CGContextSaveGState(currentContext);

20.9. Adding Shadows to Shapes | 871

 CGContextSetShadowWithColor(currentContext,

 CGSizeMake(10.0f, 10.0f),

 20.0f,

 [[UIColor grayColor] CGColor]);

 /* Create the path first. Just the path handle. */

 CGMutablePathRef path = CGPathCreateMutable();

 /* Here are our rectangle boundaries */

 CGRect firstRect = CGRectMake(55.0f,

 60.0f,

 150.0f,

 150.0f);

 /* Add the rectangle to the path */

 CGPathAddRect(path,

 NULL,

 firstRect);

 /* Add the path to the context */

 CGContextAddPath(currentContext,

 path);

 /* Set the fill color to cornflower blue */

 [[UIColor colorWithRed:0.20f

 green:0.60f

 blue:0.80f

 alpha:1.0f] setFill];

 /* Fill the path on the context */

 CGContextDrawPath(currentContext,

 kCGPathFill);

 /* Dispose of the path */

 CGPathRelease(path);

 /* Restore the context to how it was

 when we started */

 CGContextRestoreGState(currentContext);

}

872 | Chapter 20: Graphics and Animations

Figure 20-26. Saving the state of the graphics context for accurate shadows

20.10. Drawing Gradients

Problem
You want to draw gradients on graphics contexts, using different colors.

Solution
Use the CGGradientCreateWithColor function.

20.10. Drawing Gradients | 873

Discussion
After learning about colors in Recipe 20.3, we’re ready to put these skills to better use
than drawing simple rectangles and colorful text!

Core Graphics allows programmers to create two types of gradients: axial and radial.
(We will discuss only axial gradients in this book.) Axial gradients are gradients that
start from one point with one color and end at another point with another color (al‐
though they can start and stop with the same color, which does not make them much
of a gradient). “Axial” means relating to an axis. The two points (start and end point)
create a line segment, which will be the axis on which the gradient will be drawn. An
example of an axial gradient is shown in Figure 20-27.

Figure 20-27. An axial gradient starting from the color blue and ending in the color
green

In order to create an axial gradient, you must call the CGGradientCreateWithCol
orComponents function. The return value of this function will be the new gradient of

874 | Chapter 20: Graphics and Animations

type CGGradientRef. This is the handle to the gradient. Once you are done with the
gradient, you must call the CGGradientRelease procedure, passing the handle to the
gradient that you had previously retrieved from CGGradientCreateWithColorCompo
nents.

The CGGradientCreateWithColorComponents function takes four parameters:

A color space
This is a container for a range of colors and must be of type CGColorSpaceRef. For
this parameter, we can just pass the return value of the CGColorSpaceCreateDevi
ceRGB function, which will give us an RGB color space.

An array of color components (for details, see Recipe 20.3)
This array has to contain red, green, blue, and alpha values, all represented as
CGFloat values. The number of elements in the array is tightly linked to the next
two parameters. Essentially, you have to include enough values in this array to
specify the number of locations in the fourth parameter. So if you ask for two lo‐
cations (the start and end point), you have to provide two colors in the array here.
And since each color is made out of red, green, blue, and alpha, this array has to
have 2×4 items: four for the first color and four for the second. Don’t worry if you
didn’t get all this; you will eventually understand it through the examples that follow
in this section.

Locations of colors in the array of colors
This parameter controls how quickly the gradient shifts from one color to another.
The number of elements must be the same as the value of the fourth parameter. If
we ask for four colors, for example, and we want the first color to be the starting
color and the last color to be the ending color in the gradient, we have to provide
an array of two items of type CGFloats, with the first item set to 0.0f (as in the first
item in the array of colors) and the second item set to 3.0f (as in the fourth item
in the array of colors). The values of the two intermediate colors determine how
the gradient actually inserts colors to get from the start to the end. Again, don’t
worry if this is too difficult to grasp. I will give you many examples to help you fully
understand the concept.

Number of locations
This specifies how many colors and locations we want.

Let’s have a look at an example. Suppose we want to draw the same gradient we saw in
Figure 20-27. Here’s how:

1. Pick the start and end points of the gradient—the axis along which it will shift. In
this case, I’ve chosen to move from left to right. Think of this as changing color as
you move along a hypothetical horizontal line. Along that line, we will spread the
colors so that every perpendicular line to this horizontal line contains only one
color. In this case, the perpendicular lines would be every vertical line in

20.10. Drawing Gradients | 875

Figure 20-27. Look at those vertical lines closely. Every single one contains only one
color, which runs all the way from the top to the bottom. That’s how axial gradients
work. OK, that’s enough theory—let’s go to the second step.

2. Now we have to create a color space to pass to the first parameter of the CGGra
dientCreateWithColorComponents function, as mentioned before:

CGColorSpaceRef colorSpace =

CGColorSpaceCreateDeviceRGB();

We will release this color space once we are done with it.

3. Select blue as the starting point (left) and green as the ending point (right), accord‐
ing to the colors chosen in Figure 20-27. The names I’ve selected (startColorCom
ponents and endColorComponents) are arbitrarily chosen to help us remember
what we’re doing with each color. We’ll actually use array positions to specify which
one is the start and which one is the end:

UIColor *startColor = [UIColor blueColor];

CGFloat *startColorComponents =

 (CGFloat *)CGColorGetComponents([startColor CGColor]);

UIColor *endColor = [UIColor greenColor];

CGFloat *endColorComponents =

 (CGFloat *)CGColorGetComponents([endColor CGColor]);

If you don’t remember the concept behind color components, I sug‐
gest that you look at Recipe 20.3 before you continue reading these
instructions.

4. After retrieving the components of each color, we place them all in one flat array
to pass to the CGGradientCreateWithColorComponents function:

CGFloat colorComponents[8] = {

 /* Four components of the orange color (RGBA) */

 startColorComponents[0],

 startColorComponents[1],

 startColorComponents[2],

 startColorComponents[3], /* First color = orange */

876 | Chapter 20: Graphics and Animations

 /* Four components of the blue color (RGBA) */

 endColorComponents[0],

 endColorComponents[1],

 endColorComponents[2],

 endColorComponents[3], /* Second color = blue */

};

5. Because we have only two colors in this array, we need to specify that the first is
positioned at the very beginning of the gradient (position 0.0) and the second at
the very end (position 1.0). So let’s place these indices in an array to pass to the
CGGradientCreateWithColorComponents function:

CGFloat colorIndices[2] = {

 0.0f, /* Color 0 in the colorComponents array */

 1.0f, /* Color 1 in the colorComponents array */

};

6. Now all we have to do is actually call the CGGradientCreateWithColorCompo
nents function with all these values that we generated:

CGGradientRef gradient = CGGradientCreateWithColorComponents

(colorSpace,

 (const CGFloat *)&colorComponents,

 (const CGFloat *)&colorIndices,

 2);

7. Fantastic! Now we have the gradient object in the gradient variable. Before we
forget, we have to release the color space that we created using the CGColorSpace
CreateDeviceRGB function:

CGColorSpaceRelease(colorSpace);

Now we’ll use the CGContextDrawLinearGradient procedure to draw the axial gradient
on a graphics context. This procedure takes five parameters:

Graphics context
Specifies the graphics context on which the axial gradient will be drawn.

Axial gradient
The handle to the axial gradient object. We created this gradient object using the
CGGradientCreateWithColorComponents function.

Start point
A point on the graphics context, specified by a CGPoint, that indicates the start point
of the gradient.

20.10. Drawing Gradients | 877

End point
A point on the graphics context, specified by a CGPoint, that indicates the end point
of the gradient.

Gradient drawing options
Specifies what happens if your start or end point isn’t at the edge of the graphical
context. You can use your start or end color to fill the space that lies outside the
gradient. Specify one of the following values for this parameter:

kCGGradientDrawsAfterEndLocation

Extends the gradient to all points after the ending point of the gradient

kCGGradientDrawsBeforeStartLocation

Extends the gradient to all points before the starting point of the gradient

0

Does not extend the gradient in any way

To extend colors on both sides, specify both the “after” and “before” parameters as a
logical OR (using the | operator). We’ll see an example later:

CGPoint startPoint, endPoint;

CGRect screenBounds = [[UIScreen mainScreen] bounds];

startPoint = CGPointMake(0.0f,

 screenBounds.size.height / 2.0f);

endPoint = CGPointMake(screenBounds.size.width,

 startPoint.y);

CGContextDrawLinearGradient (currentContext,

 gradient,

 startPoint,

 endPoint,

 0);

CGGradientRelease(gradient);

The gradient handle we are releasing at the end of this code was cre‐
ated in another code block in an earlier example.

The output of this code will obviously look similar to Figure 20-27. Because we started
the gradient from the leftmost point of the view and stretched it all the way to the
rightmost point, we couldn’t take advantage of all the values that could be passed to the
final gradient drawing options parameter of the CGContextDrawLinearGradient

878 | Chapter 20: Graphics and Animations

procedure. Let’s remedy that, shall we? How about we draw a gradient that looks similar
to that shown in Figure 20-28?

Figure 20-28. An axial gradient with start and end point color extensions

We will use the same procedure explained earlier in this section to code the result:

- (void)drawRect:(CGRect)rect{

 CGContextRef currentContext = UIGraphicsGetCurrentContext();

 CGContextSaveGState(currentContext);

 CGColorSpaceRef colorSpace =

 CGColorSpaceCreateDeviceRGB();

 UIColor *startColor = [UIColor orangeColor];

20.10. Drawing Gradients | 879

 CGFloat *startColorComponents =

 (CGFloat *)CGColorGetComponents([startColor CGColor]);

 UIColor *endColor = [UIColor blueColor];

 CGFloat *endColorComponents =

 (CGFloat *)CGColorGetComponents([endColor CGColor]);

 CGFloat colorComponents[8] = {

 /* Four components of the orange color (RGBA) */

 startColorComponents[0],

 startColorComponents[1],

 startColorComponents[2],

 startColorComponents[3], /* First color = orange */

 /* Four components of the blue color (RGBA) */

 endColorComponents[0],

 endColorComponents[1],

 endColorComponents[2],

 endColorComponents[3], /* Second color = blue */

 };

 CGFloat colorIndices[2] = {

 0.0f, /* Color 0 in the colorComponents array */

 1.0f, /* Color 1 in the colorComponents array */

 };

 CGGradientRef gradient = CGGradientCreateWithColorComponents

 (colorSpace,

 (const CGFloat *)&colorComponents,

 (const CGFloat *)&colorIndices,

 2);

 CGColorSpaceRelease(colorSpace);

 CGPoint startPoint, endPoint;

 startPoint = CGPointMake(120,

 260);

 endPoint = CGPointMake(200.0f,

 220);

 CGContextDrawLinearGradient (currentContext,

 gradient,

 startPoint,

 endPoint,

 kCGGradientDrawsBeforeStartLocation |

 kCGGradientDrawsAfterEndLocation);

880 | Chapter 20: Graphics and Animations

 CGGradientRelease(gradient);

 CGContextRestoreGState(currentContext);

}

It might be difficult to understand how mixing kCGGradientDrawsBeforeStartLoca
tion and kCGGradientDrawsAfterEndLocation values passed to the CGContextDraw
LinearGradient procedure is creating a diagonal effect like that shown in
Figure 20-28. So let’s remove those values and set the parameter of the CGContextDraw
LinearGradient procedure to 0, as we had it before. Figure 20-29 shows what the results
will be.

Figure 20-29. Axial gradient without stretched colors

20.10. Drawing Gradients | 881

It’s easy to conclude that the gradient in Figure 20-29 is the same gradient shown in
Figure 20-28. However, the gradient in Figure 20-28 extends the start and end points’
colors all the way across the graphics context, which is why you can see the whole screen
covered with color.

See Also
Recipe 20.3

20.11. Moving Shapes Drawn on Graphic Contexts

Problem
You want to move everything that is drawn on a graphics context to a new location,
without changing your drawing code—or you would simply like to displace your con‐
text’s contents with ease.

Solution
Use the CGAffineTransformMakeTranslation function to create an affine translation
transformation.

Discussion
Recipe 20.8 mentioned transformations. These are exactly what the name suggests:
changes to the way a graphic is displayed. Transformations in Core Graphics are objects
that you apply to shapes before they get drawn. For instance, you can create a translation
transformation. Translating what? you might be asking. A translation transformation
is a mechanism by which you can displace a shape or a graphics context.

Other types of transformations include rotation (see Recipe 20.13) and scaling (see
Recipe 20.12). These are all examples of affine transformations, which map each point
in the origin to another point in the final version. All the transformations we discuss in
this book will be affine transformations.

A translation transformation translates the current position of a shape on a path or
graphics context to another relative place. For instance, if you draw a point at location
(10, 20), apply a translation transformation of (30, 40) to it, and then draw it, the point
will be drawn at (40, 60), because 40 is the sum of 10+30 and 60 is the sum of 20+40.

In order to create a new translation transformation, we must use the CGAffineTrans
formMakeTranslation function, which will return an affine transformation of type
CGAffineTransform. The two parameters to this function specify the x and the y trans‐
lation in points.

882 | Chapter 20: Graphics and Animations

In Recipe 20.8, we saw that the CGPathAddRect procedure accepts, as its second pa‐
rameter, a transformation object of type CGAffineTransform. To displace a rectangle
from its original place to another, you can simply create an affine transformation spec‐
ifying the changes you want to make in the x and y coordinates and pass the transfor‐
mation to the second parameter of the CGPathAddRect procedure as shown here:

- (void)drawRect:(CGRect)rect{

 /* Create the path first. Just the path handle. */

 CGMutablePathRef path = CGPathCreateMutable();

 /* Here are our rectangle boundaries */

 CGRect rectangle = CGRectMake(10.0f,

 30.0f,

 200.0f,

 300.0f);

 /* We want to displace the rectangle to the right by

 100 points but want to keep the y position

 untouched */

 CGAffineTransform transform = CGAffineTransformMakeTranslation(100.0f,

 0.0f);

 /* Add the rectangle to the path */

 CGPathAddRect(path,

 &transform,

 rectangle);

 /* Get the handle to the current context */

 CGContextRef currentContext =

 UIGraphicsGetCurrentContext();

 /* Add the path to the context */

 CGContextAddPath(currentContext,

 path);

 /* Set the fill color to cornflower blue */

 [[UIColor colorWithRed:0.20f

 green:0.60f

 blue:0.80f

 alpha:1.0f] setFill];

 /* Set the stroke color to brown */

 [[UIColor brownColor] setStroke];

 /* Set the line width (for the stroke) to 5 */

 CGContextSetLineWidth(currentContext,

 5.0f);

 /* Stroke and fill the path on the context */

 CGContextDrawPath(currentContext,

 kCGPathFillStroke);

20.11. Moving Shapes Drawn on Graphic Contexts | 883

 /* Dispose of the path */

 CGPathRelease(path);

}

Figure 20-30 shows the output of this block of code when placed inside a view object.

Figure 20-30. A rectangle with an affine translation transformation

Compare Figure 20-30 with Figure 20-22. Can you see the difference? Check the source
code for both figures and you’ll see that the x and y points specified for both rectangles
in both code blocks are the same. It is just that in Figure 20-30, we have applied an affine
translation transformation to the rectangle when we added it to the path.

884 | Chapter 20: Graphics and Animations

In addition to applying transformations to shapes that get drawn to a path, we can apply
transformations to graphics contexts using the CGContextTranslateCTM procedure.
This applies a translation transformation on the current transformation matrix (CTM).
The current transformation matrix, although its name might be complex, is quite simple
to understand. Think of CTM as how your graphics context’s center is set up and how
each point that you draw gets projected onto the screen. For instance, when you ask
Core Graphics to draw a point at (0, 0), Core Graphics finds the center of the screen by
looking at the CTM. The CTM will then do some calculations and tell Core Graphics
that point (0, 0) is indeed at the top-left corner of the screen. Using procedures such as
CGContextTranslateCTM, you can change how CTM is configured and subsequently
force every shape drawn on the graphics context to be shifted to another place on the
canvas. Here is an example where we achieve the exact same effect we saw in Figure 20-30
by applying a translation transformation to the CTM instead of directly to the rectangle:

- (void)drawRect:(CGRect)rect{

 /* Create the path first. Just the path handle. */

 CGMutablePathRef path = CGPathCreateMutable();

 /* Here are our rectangle boundaries */

 CGRect rectangle = CGRectMake(10.0f,

 30.0f,

 200.0f,

 300.0f);

 /* Add the rectangle to the path */

 CGPathAddRect(path,

 NULL,

 rectangle);

 /* Get the handle to the current context */

 CGContextRef currentContext = UIGraphicsGetCurrentContext();

 /* Save the state of the context to revert

 back to how it was at this state, later */

 CGContextSaveGState(currentContext);

 /* Translate the current transformation matrix

 to the right by 100 points */

 CGContextTranslateCTM(currentContext,

 100.0f,

 0.0f);

 /* Add the path to the context */

 CGContextAddPath(currentContext,

 path);

 /* Set the fill color to cornflower blue */

 [[UIColor colorWithRed:0.20f

 green:0.60f

20.11. Moving Shapes Drawn on Graphic Contexts | 885

 blue:0.80f

 alpha:1.0f] setFill];

 /* Set the stroke color to brown */

 [[UIColor brownColor] setStroke];

 /* Set the line width (for the stroke) to 5 */

 CGContextSetLineWidth(currentContext,

 5.0f);

 /* Stroke and fill the path on the context */

 CGContextDrawPath(currentContext,

 kCGPathFillStroke);

 /* Dispose of the path */

 CGPathRelease(path);

 /* Restore the state of the context */

 CGContextRestoreGState(currentContext);

}

After running this program, you will notice that the results are exactly like those
shown in Figure 20-30.

See Also
Recipe 20.8; Recipe 20.12; Recipe 20.13

20.12. Scaling Shapes Drawn on Graphic Contexts

Problem
You want to scale shapes on your graphics context up and down dynamically.

Solution
Create an affine scale transformation using the CGAffineTransformMakeScale func‐
tion.

Discussion
Recipe 20.11 explained what a transformation is and how to apply it to shapes and
graphics contexts. One of the transformations that you can apply is scaling. You can
easily ask Core Graphics to scale a shape, such as a circle, to 100 times its original size.

To create an affine scale transformation, use the CGAffineTransformMakeScale func‐
tion, which returns a transformation object of type CGAffineTransform. If you want to

886 | Chapter 20: Graphics and Animations

apply a scale transformation directly to a graphics context, use the CGContextSca
leCTM procedure to scale the current transformation matrix (CTM). For more infor‐
mation about CTM, see Recipe 20.11.

Scale transformation functions take two parameters: one to scale the x-axis and the
other to scale the y-axis. Take another look at the rectangle in Figure 20-22. If we want
to scale this rectangle to half its normal length and width, shown in Figure 20-22, we
can simply scale the x- and the y- axis by 0.5 (half their original value), as shown here:

/* Scale the rectangle to half its size */

CGAffineTransform transform =

CGAffineTransformMakeScale(0.5f, 0.5f);

/* Add the rectangle to the path */

CGPathAddRect(path,

 &transform,

 rectangle);

Figure 20-31 shows what we will see after applying the scale transformation to the code
we wrote in Recipe 20.8.

Figure 20-31. Scaling a rectangle

In addition to the CGAffineTransformMakeScale function, you can use the CGCon
textScaleCTM procedure to apply a scale transformation to a graphics context. The
following code will achieve the exact same effect as the previous example, as you can
see in Figure 20-31:

- (void)drawRect:(CGRect)rect{

 /* Create the path first. Just the path handle. */

 CGMutablePathRef path = CGPathCreateMutable();

 /* Here are our rectangle boundaries */

 CGRect rectangle = CGRectMake(10.0f,

 30.0f,

 200.0f,

 300.0f);

20.12. Scaling Shapes Drawn on Graphic Contexts | 887

 /* Add the rectangle to the path */

 CGPathAddRect(path,

 NULL,

 rectangle);

 /* Get the handle to the current context */

 CGContextRef currentContext = UIGraphicsGetCurrentContext();

 /* Scale everything drawn on the current

 graphics context to half its size */

 CGContextScaleCTM(currentContext,

 0.5f,

 0.5f);

 /* Add the path to the context */

 CGContextAddPath(currentContext,

 path);

 /* Set the fill color to cornflower blue */

 [[UIColor colorWithRed:0.20f

 green:0.60f

 blue:0.80f

 alpha:1.0f] setFill];

 /* Set the stroke color to brown */

 [[UIColor brownColor] setStroke];

 /* Set the line width (for the stroke) to 5 */

 CGContextSetLineWidth(currentContext,

 5.0f);

 /* Stroke and fill the path on the context */

 CGContextDrawPath(currentContext,

 kCGPathFillStroke);

 /* Dispose of the path */

 CGPathRelease(path);

}

See Also
Recipe 20.11

888 | Chapter 20: Graphics and Animations

20.13. Rotating Shapes Drawn on Graphic Contexts

Problem
You want to be able to rotate the contents that you have drawn on a graphics context
without changing your drawing code.

Solution
Use the CGAffineTransformMakeRotation function to create an affine rotation
transformation.

Discussion

I strongly suggest that you read the material in Recipes 20.11 and in
20.12 before proceeding with this section. To avoid redundancy, I have
tried to keep material that has been taught in earlier sections out of
later sections.

Just like scaling and translation, you can apply rotation translation to shapes drawn on
paths and graphics contexts. You can use the CGAffineTransformMakeRotation func‐
tion and pass the rotation value in radians to get back a rotation transformation of type
CGAffineTransform. You can then apply this transformation to paths and shapes. If you
want to rotate the whole context by a specific angle, you must use the CGContextRota
teCTM procedure.

Let’s rotate the same rectangle we had in Figure 20-22 45 degrees clockwise (see
Figure 20-32). The values you supply for rotation must be in radians. Positive values
cause clockwise rotation, while negative values cause counterclockwise rotation:

/* Rotate the rectangle 45 degrees clockwise */

CGAffineTransform transform =

CGAffineTransformMakeRotation((45.0f * M_PI) / 180.0f);

/* Add the rectangle to the path */

CGPathAddRect(path,

 &transform,

 rectangle);

As we saw in Recipe 20.12, we can also apply a transformation directly to a graphics
context using the CGContextRotateCTM procedure.

See Also
Recipe 20.11; Recipe 20.12

20.13. Rotating Shapes Drawn on Graphic Contexts | 889

Figure 20-32. Rotating a rectangle

20.14. Animating and Moving Views

Problem
You want to animate the displacement of views.

Solution
Use the animation methods of UIView while displacing your views.

Discussion
There are various ways of performing animations in iOS: capabilities are provided at a
relatively low level, but also at a higher level. The highest level we can get is through
UIKit, which is what we will be discussing in this section. UIKit includes some low-level
Core Animation functionalities and presents us with a really clean API to work with.

The starting point for performing animations in UIKit is to call the beginAnima
tions:context: class method of the UIView class. Its first parameter is an optional name
that you choose for your animation, and the second is an optional context that you can
retrieve later to pass to delegate methods of the animations. We will talk about these
shortly.

After you start an animation with the beginAnimations:context: method, it won’t
actually take place until you call the commitAnimations class method of UIView class.

890 | Chapter 20: Graphics and Animations

The calculation you perform on a view object (such as moving it) between calling
beginAnimations:context: and commitAnimations will be animated after the commi
tAnimations call. Let’s have a look at an example.

As we saw in Recipe 20.4, I included in my assets category an image called Xcode.png.

This is Xcode’s icon, which I found by searching in Google Images (see Figure 20-9).
Now, in my view controller (see this chapter’s Introduction), I want to place this image
in an image view of type UIImageView and then move that image view from the top-left
corner of the screen to the bottom-right corner.

Here are the steps that complete this task:

1. Open the .m file of your view controller.

2. Define an instance of UIImageView as a property of the view controller, and call it
xcodeImageView, like so:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UIImageView *xcodeImageView;

@end

3. Load the Xcode.png image into an instance of UIImage when your view is loaded:

- (void) viewDidLoad{

 [super viewDidLoad];

 UIImage *xcodeImage = [UIImage imageNamed:@"Xcode"];

 self.xcodeImageView = [[UIImageView alloc]

 initWithImage:xcodeImage];

 /* Just set the size to make the image smaller */

 [self.xcodeImageView setFrame:CGRectMake(0.0f,

 30.0f,

 100.0f,

 100.0f)];

 self.view.backgroundColor = [UIColor whiteColor];

 [self.view addSubview:self.xcodeImageView];

}

4. Figure 20-33 shows how the view will look when we run the program in iOS
Simulator.

20.14. Animating and Moving Views | 891

Figure 20-33. Adding an image view to a view object

5. Now when the view appears on the screen, in the viewDidAppear: instance method
of the view controller, we will start the animation block for the image view and start
an animation that moves the image from its initial location at the top-left corner of
the screen to the bottom-right corner. We will make sure this animation happens
over a five-second time period:

- (void) viewDidAppear:(BOOL)paramAnimated{

 [super viewDidAppear:paramAnimated];

 /* Start from top left corner */

 [self.xcodeImageView setFrame:CGRectMake(0.0f,

 30.0f,

 100.0f,

 100.0f)];

 [UIView beginAnimations:@"xcodeImageViewAnimation"

 context:(__bridge void *)self.xcodeImageView];

 /* 5 seconds animation */

 [UIView setAnimationDuration:5.0f];

 /* Receive animation delegates */

 [UIView setAnimationDelegate:self];

 [UIView setAnimationDidStopSelector:

 @selector(imageViewDidStop:finished:context:)];

 CGRect endRect;

 endRect.origin.x = self.view.bounds.size.width - 100;

 endRect.origin.y = self.view.bounds.size.height - 100;

 endRect.size = CGSizeMake(100.0f, 100.0f);

 /* End at the bottom right corner */

 [self.xcodeImageView setFrame:endRect];

892 | Chapter 20: Graphics and Animations

 [UIView commitAnimations];

}

6. Provide the implementation for a imageViewDidStop:finished:context: dele‐
gate method for your view controller so that it gets called by UIKit when the ani‐
mation finishes. This is optional, and for this example I will just log some messages
to prove that the method was called. Later examples will show how you can use the
method to kick off other activity the moment the animation is finished:

- (void)imageViewDidStop:(NSString *)paramAnimationID

 finished:(NSNumber *)paramFinished

 context:(void *)paramContext{

 NSLog(@"Animation finished.");

 NSLog(@"Animation ID = %@", paramAnimationID);

 UIImageView *contextImageView = (__bridge UIImageView *)paramContext;

 NSLog(@"Image View = %@", contextImageView);

}

Now if you run the app, you will notice that as soon as your view gets displayed, the
image shown in Figure 20-33 will start moving toward the bottom-right corner, as
shown in Figure 20-34, over a period of five seconds.

Also, if you look at the output printed to the console, you will see something similar to
this if you wait for the animation to finish:

Animation finished.

Animation ID = xcodeImageViewAnimation

Image View = <UIImageView: 0x8eaee20;

 frame = (220 468; 100 100); opaque = NO;

 userInteractionEnabled = NO;

 layer = <CALayer: 0x8eaef10>>

20.14. Animating and Moving Views | 893

Figure 20-34. The image is animated to the bottom-right corner of the screen

Now let’s go through some of the concepts and how we actually animated this image
view. Here are the important class methods of UIView that you should know about when
performing animations using UIKit:

beginAnimations:context:

Starts an animation block. Any animatable property change that you apply to views
after calling this class method will be animated after the animation is committed.

setAnimationDuration:

Sets the duration of the animation in seconds.

setAnimationDelegate:

Sets the object that will receive delegate objects for various events that could happen
before, during, or after the animation. Setting a delegate object will not immediately

894 | Chapter 20: Graphics and Animations

start firing animation delegates. You must also use different setter class methods on
the view object to tell UIKit which selectors in your delegate object have to receive
which delegate messages.

setAnimationDidStopSelector:

Sets the method in the delegate object that has to be called when the animation
finishes. This method has to accept three parameters in this order:

1. An animation identifier of type NSString: this will contain the animation iden‐
tifier passed to the beginAnimations:context: class method of UIView when
the animation was started.

2. A “finished” indicator, of type NSNumber: this parameter contains a Boolean
value inside the NSNumber, which the runtime sets to YES if it could fully finish
the animation before it was stopped by the code. If this value is set to NO, it
means the animation was interrupted before it was completed.

3. A context of type void *: this is the context that was passed to the beginAni
mations:context: class method of UIView when the animation was started.

setAnimationWillStartSelector:

Sets the selector that has to be called in the delegate object when the animation is
about to start. The selector passed to this class method has to have two parameters,
in this order:

1. An animation identifier of type NSString: the runtime sets this to the animation
identifier passed to the beginAnimations:context: class method of UIView
when the animation was started.

2. A context of type void *: this is the context that was passed to the beginAni
mations:context: class method of UIView when the animation was started.

setAnimationDelay:

Sets a delay (in seconds) for the animation before it starts. If this value is set to
3.0f, for instance, the animation will start three seconds after it has been commit‐
ted.

setAnimationRepeatCount:

Sets the number of times an animation block has to repeat its animation.

Now that we know some of the most useful UIView class methods that help us animate
views, let’s look at another animation. In this example code, I want to have two image
views (both displaying the same image) appear on the screen at the same time: one at
the top-left corner and the other at the bottom-right corner, as shown in Figure 20-35.

20.14. Animating and Moving Views | 895

Figure 20-35. The starting position of the animation

In this section, I will call the top-left image image 1 and the bottom-
right image image 2.

In this code, we are going to create two images, as mentioned, in the top-left and bottom-
right corners. Next, we want image 1 to start moving toward image 2 over a three-second
period, and then fade away. While image 1 is approaching image 2, we want image 2 to
start its animation and move toward the top-left corner of the screen, where image 1
used to be. We also want image 2 to complete its animation over a three-second time
period and fade away at the end. This will look really cool when you run it on a device
or on iOS Simulator. Let me show you how to code it:

896 | Chapter 20: Graphics and Animations

1. On the top of the .m file of your view controller, define two image views:

@interface ViewController ()

@property (nonatomic, strong) UIImageView *xcodeImageView1;

@property (nonatomic, strong) UIImageView *xcodeImageView2;

@end

@implementation ViewController

2. In the viewDidLoad instance method of your view controller, initialize both of the
image views and place them on your view:

- (CGRect) bottomRightRect{

 CGRect endRect;

 endRect.origin.x = self.view.bounds.size.width - 100;

 endRect.origin.y = self.view.bounds.size.height - 100;

 endRect.size = CGSizeMake(100.0f, 100.0f);

 return endRect;

}

- (void) viewDidLoad{

 [super viewDidLoad];

 UIImage *xcodeImage = [UIImage imageNamed:@"Xcode"];

 self.xcodeImageView1 = [[UIImageView alloc]

 initWithImage:xcodeImage];

 self.xcodeImageView2 = [[UIImageView alloc]

 initWithImage:xcodeImage];

 /* Just set the size to make the images smaller */

 [self.xcodeImageView1 setFrame:CGRectMake(0.0f,

 0.0f,

 100.0f,

 100.0f)];

 [self.xcodeImageView2 setFrame:[self bottomRightRect]];

 self.view.backgroundColor = [UIColor whiteColor];

 [self.view addSubview:self.xcodeImageView1];

 [self.view addSubview:self.xcodeImageView2];

}

3. Implement an instance method called startTopLeftImageViewAnimation for your
view controller. This method, as its name suggests, will carry out the animation for

20.14. Animating and Moving Views | 897

image 1, moving it from the top-left corner of the screen to the bottom-right corner
while fading it out. Fading is accomplished simply by setting the alpha value to 0:

- (void) startTopLeftImageViewAnimation{

 /* Start from top left corner */

 [self.xcodeImageView1 setFrame:CGRectMake(0.0f,

 0.0f,

 100.0f,

 100.0f)];

 [self.xcodeImageView1 setAlpha:1.0f];

 [UIView beginAnimations:@"xcodeImageView1Animation"

 context:(__bridge void *)self.xcodeImageView1];

 /* 3 seconds animation */

 [UIView setAnimationDuration:3.0f];

 /* Receive animation delegates */

 [UIView setAnimationDelegate:self];

 [UIView setAnimationDidStopSelector:

 @selector(imageViewDidStop:finished:context:)];

 /* End at the bottom right corner */

 [self.xcodeImageView1 setFrame:[self bottomRightRect]];

 [self.xcodeImageView1 setAlpha:0.0f];

 [UIView commitAnimations];

}

4. When the animation for any of these image views stops, we intend to remove those
image views from their parent views, as they are not useful anymore. As we saw in
the startTopLeftImageViewAnimation method, we passed a delegate selector to
the setAnimationDidStopSelector: class method of UIView, and this selector will
get called when the animations for image 1 (as we saw before) and for image 2 (as
we will soon see) stop. Here is the implementation for this delegate selector:

- (void)imageViewDidStop:(NSString *)paramAnimationID

 finished:(NSNumber *)paramFinished

 context:(void *)paramContext{

 UIImageView *contextImageView = (__bridge UIImageView *)paramContext;

 [contextImageView removeFromSuperview];

}

898 | Chapter 20: Graphics and Animations

5. We also need a method that will animate image 2. There is a little difference between
how I’ve written the animation method for image 2 as compared to that for image
1. I want to be able to start image 2’s animation almost as image 1 is finishing its
animation. So if image 1 performs its animation in three seconds, I want image 2
to start its animation at second 2.0 in image 1’s animation, so that I can see image
2 starting to animate before image 1 gets to the bottom-right corner of the screen
and fades away. To accomplish this, I am starting both animations at the same time,
but the animation for image 2 will include a two-second delay at the beginning. So
if I start both animations at 1 p.m., image 1 will start its animation at 13:00:00 and
finish it at 13:00:03, while image 2 starts at 13:00:02 and finishes at 13:00:05. Here
is how we will animate image 2:

- (void) startBottomRightViewAnimationAfterDelay:(CGFloat)paramDelay{

 /* Start from bottom right corner */

 [self.xcodeImageView2 setFrame:[self bottomRightRect]];

 [self.xcodeImageView2 setAlpha:1.0f];

 [UIView beginAnimations:@"xcodeImageView2Animation"

 context:(__bridge void *)self.xcodeImageView2];

 /* 3 seconds animation */

 [UIView setAnimationDuration:3.0f];

 [UIView setAnimationDelay:paramDelay];

 /* Receive animation delegates */

 [UIView setAnimationDelegate:self];

 [UIView setAnimationDidStopSelector:

 @selector(imageViewDidStop:finished:context:)];

 /* End at the top left corner */

 [self.xcodeImageView2 setFrame:CGRectMake(0.0f,

 0.0f,

 100.0f,

 100.0f)];

 [self.xcodeImageView2 setAlpha:0.0f];

 [UIView commitAnimations];

}

6. Last but not least, we have to fire both the startTopLeftImageViewAnimation and
the startBottomRightViewAnimationAfterDelay: methods at the same time
when the view becomes visible:

20.14. Animating and Moving Views | 899

- (void) viewDidAppear:(BOOL)paramAnimated{

 [super viewDidAppear:paramAnimated];

 [self startTopLeftImageViewAnimation];

 [self startBottomRightViewAnimationAfterDelay:2.0f];

}

20.15. Animating and Scaling Views

Problem
You want to be able to animate the scaling up or down of your views.

Solution
Create a scale affine transformation for your view and use the UIView animation meth‐
ods to animate the scale transformation.

Discussion

I highly recommend that you read Recipe 20.14 before proceeding with
this section of the book.

In order to scale a view while animating it, you can either apply a scale transformation
to it within an animation block (see Recipe 20.12), or just increase the view’s width and/
or height.

Let’s have a look at scaling an image view by applying a scale transformation to it:

- (void) viewDidAppear:(BOOL)paramAnimated{

 [super viewDidAppear:paramAnimated];

 /* Place the image view at the center of the view of this view controller */

 self.xcodeImageView.center = self.view.center;

 /* Make sure no translation is applied to this image view */

 self.xcodeImageView.transform = CGAffineTransformIdentity;

 /* Begin the animation */

 [UIView beginAnimations:nil

 context:NULL];

 /* Make the animation 5 seconds long */

 [UIView setAnimationDuration:5.0f];

900 | Chapter 20: Graphics and Animations

 /* Make the image view twice as large in

 width and height */

 self.xcodeImageView.transform = CGAffineTransformMakeScale(2.0f,

 2.0f);

 /* Commit the animation */

 [UIView commitAnimations];

}

This code uses an affine scale transformation to scale the image view to become twice
as big as it originally was. The best thing about applying scale transformations to a view
is that the width and height are scaled using the center of the view as the center of the
scaling. Suppose that the center of your view is at point (100, 100) on the screen, and
you scale your view to be twice as big in width and height. The resulting view will have
its center remain at point (100, 100) on the screen, while being twice as big in each
direction. If you were to scale a view by increasing its frame’s width and height explicitly,
you would end up with the final view being located somewhere else on the screen. That’s
because when changing the frame of the image view to scale the width and height, you
are also changing the value of the x and the y of the frame, whether you want to or not.
Because of that, your image view will not be scaled up from its center. Fixing this issue
is outside the scope of this book, but feel free to play with it for a while, and maybe you
will find the solution. One hint that I will give you is that you can run two animations
at the same time in parallel: one for changing the width and height, and the other for
changing the center of the image view!

See Also
Recipe 20.12; Recipe 20.14

20.16. Animating and Rotating Views

Problem
You want to animate the rotation of your views.

Solution
Create a rotation affine transform and use the animation methods of UIView to animate
the rotation.

20.16. Animating and Rotating Views | 901

Discussion

I highly recommend that you read Recipe 20.14 before proceeding with
this section of the book.

In order to rotate a view while animating it, you must apply a rotation transformation
to it while in an animation block (see Recipe 20.12). Let’s have a look at some sample
code that will make this clearer. Let’s say we have an image named Xcode.png (see

Figure 20-9), and we want to display it in the center of the screen. After the image is
displayed, we want to rotate it 90 degrees over a five-second time period and then rotate
it back to its original orientation. So when the view appears on the screen, let’s rotate
the image view 90 degrees clockwise:

- (void) viewDidAppear:(BOOL)paramAnimated{

 [super viewDidAppear:paramAnimated];

 self.xcodeImageView.center = self.view.center;

 /* Begin the animation */

 [UIView beginAnimations:@"clockwiseAnimation"

 context:NULL];

 /* Make the animation 5 seconds long */

 [UIView setAnimationDuration:5.0f];

 [UIView setAnimationDelegate:self];

 [UIView setAnimationDidStopSelector:

 @selector(clockwiseRotationStopped:finished:context:)];

 /* Rotate the image view 90 degrees */

 self.xcodeImageView.transform =

 CGAffineTransformMakeRotation((90.0f * M_PI) / 180.0f);

 /* Commit the animation */

 [UIView commitAnimations];

}

We’ve chosen the clockwiseRotationStopped:finished:context: selector to get
called when the clockwise rotation animation finishes. In that method, we will be ro‐
tating the image view counterclockwise back to 0 degrees (where it originally was) over
a five-second time period:

- (void)clockwiseRotationStopped:(NSString *)paramAnimationID

 finished:(NSNumber *)paramFinished

 context:(void *)paramContext{

902 | Chapter 20: Graphics and Animations

 [UIView beginAnimations:@"counterclockwiseAnimation"

 context:NULL];

 /* 5 seconds long */

 [UIView setAnimationDuration:5.0f];

 /* Back to original rotation */

 self.xcodeImageView.transform = CGAffineTransformIdentity;

 [UIView commitAnimations];

}

As you saw in Recipe 20.14, Recipe 20.15, and in this section, there are many ways to
animate views (direct or indirect subclasses of UIView) and many properties that you
can modify while carrying out your animations. Be creative and inspect other properties
in UIView that you might have not previously known about. You may also want to take
a look at the documentation for UIView in Xcode Organizer.

See Also
Recipe 20.13; Recipe 20.14; Recipe 20.15

20.17. Capturing a Screenshot of Your View into an Image

Problem
You want to capture the contents of a view object within your app into an image and
perhaps save that image to disk or perform another action with it, such as allowing the
user to share it to her favorite social media network (see Recipe 11.11).

Solution
Follow these steps:

1. Use the UIGraphicsBeginImageContextWithOptions function to create a new im‐
age context. This new context will become the current context that subsequent
painting will happen on.

2. Invoke the drawViewHierarchyInRect: method of your UIView and, as a parameter
to this method, pass the boundaries of the view that you want drawn into the current
context.

3. Invoke the UIGraphicsGetImageFromCurrentImageContext method, whose re‐
turn value is an image representation of the current context. This is an image of
type UIImage.

20.17. Capturing a Screenshot of Your View into an Image | 903

4. Convert your image instance into data using the UIImagePNGRepresentation
function. This function will give you an object of type NSData.

5. Last but not least, issue the writeToUrl:atomically: instance method of your data
object to write the image data to a location on disk, if that’s what you wish to do.
Alternatively, you can perform any type of operation that you want with the image
once you have it as an instance of UIImage.

Discussion
Sometimes, programmers need to take a screenshot of the device’s screen, program‐
matically. One use case is when you’ve written a drawing app and you would like the
user to be able to save her drawing into a file, perhaps on iCloud, so that she can retrieve
it later.

Before saving or sharing an image this way, it must be drawn into an image context. An
image context is invisible to us, because we won’t even get a handle to it. However, any
drawing methods you call will affect the current image context. Think of image contexts
as invisible drawing canvases. They become visible only when you draw on them. You
get their image representation using the UIGraphicsGetImageFromCurrentImageCon
text function.

Using the new SDK, all you have to do to draw the contents of a view into the current
context is issue the drawViewHierarchyInRect: method on that view.

So let’s put what we learned to use. In this code snippet, we are going to place some
components on our view (using storyboards, described in Chapter 6). What you place
on your storyboard is not relevant. What we want to do, however, is capture the contents
of our view controller’s view into an image and then store that image in the Documents
folder on disk:

- (void) viewDidAppear:(BOOL)animated{

 [super viewDidAppear:animated];

 /* Capture the screenshot */

 UIGraphicsBeginImageContextWithOptions(self.view.bounds.size, YES, 0.0f);

 if ([self.view drawViewHierarchyInRect:self.view.bounds]){

 NSLog(@"Successfully draw the screenshot.");

 } else {

 NSLog(@"Failed to draw the screenshot.");

 }

 UIImage *screenshot = UIGraphicsGetImageFromCurrentImageContext();

 UIGraphicsEndImageContext();

 /* Save it to disk */

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 NSURL *documentsFolder = [fileManager URLForDirectory:NSDocumentDirectory

 inDomain:NSUserDomainMask

904 | Chapter 20: Graphics and Animations

 appropriateForURL:nil

 create:YES

 error:nil];

 NSURL *screenshotUrl = [documentsFolder

 URLByAppendingPathComponent:@"screenshot.png"];

 NSData *screenshotData = UIImagePNGRepresentation(screenshot);

 if ([screenshotData writeToURL:screenshotUrl atomically:YES]){

 NSLog(@"Successfully saved screenshot to %@", screenshotUrl);

 } else {

 NSLog(@"Failed to save screenshot.");

 }

}

Our code starts by creating a new image context and getting its image representation
using UIGraphicsGetImageFromCurrentImageContext. Once we have the image rep‐
resentation, we use NSFileManager to find the path of the Documents folder of our app
on disk (see Recipe 14.1). Last but not least, we get the data representation of our
screenshot image using the UIImagePNGRepresentation function so that we can store
it on disk. The UIImage class doesn’t allow us to save its contents on disk. We need to
get the PNG or the JPEG representation of the image, using the UIImageJPEGRepresen
tation function, to get the data that represents that image for that format (PNG/JPEG).
Once we have the data, we can save it to disk or perform other operations on it.

See Also
Recipe 11.11; Chapter 6

20.17. Capturing a Screenshot of Your View into an Image | 905

CHAPTER 21

Core Motion

21.0. Introduction
iOS devices are usually equipped with accelerometer hardware. Some iOS devices might
also include a gyroscope, such as the new iPhone and the new iPad. Before attempting
to use either the accelerometer or the gyroscope in your iOS applications, you must
check the availability of these sensors on the iOS device on which your app runs. Recipes
21.1 and 21.2 include techniques you can use to detect the availability of the acceler‐
ometer and gyroscope. With a gyroscope, iOS devices are able to detect motion in six
axes.

Let’s go through a situation that will show you the value of the gyroscope. The acceler‐
ometer cannot detect the rotation of the device around its vertical axis if you are holding
the device perfectly still in your hands, sitting in a computer chair, and rotating your
chair in a clockwise or counterclockwise fashion. From the standpoint of the floor or
the Earth, the device is rotating around the vertical axis, but it’s not rotating around its
own y-axis which is the vertical center of the device. So, the accelerometer does not
detect any motion.

However, the gyroscope included in some iOS devices allows us to detect such move‐
ments. This allows more fluid and flawless movement detection routines. This is typi‐
cally useful in games, where the developers need to know not only whether the device
is moving on the x-, y-, and z-axes (information they can get from the accelerometer),
but also whether it is changing in relation to the Earth along these directions, which
requires a gyroscope.

Programmers can use the Core Motion framework to access both the accelerometer
data and the gyroscope data (if available). All recipes in this chapter make use of the
Core Motion framework. With the new features in the LLVM compiler, all you have to
do in order to link your app with a system framework is to simply import that framework

907

on top of your header/implementation files and the compiler will do the actual import‐
ing of the framework into your app for you.

iOS Simulator does not simulate the accelerometer or the gyroscope hardware. How‐
ever, you can generate a shake with iOS Simulator using Hardware → Shake Gesture (see

Figure 21-1).

Figure 21-1. The Shake Gesture option in iOS Simulator

21.1. Detecting the Availability of an Accelerometer

Problem
In your program, you want to detect whether the accelerometer hardware is available.

Solution
Use the isAccelerometerAvailable method of CMMotionManager to detect the accel‐
erometer hardware. The isAccelerometerActive method can also be used to detect
whether the accelerometer hardware is currently sending updates to the program.

Let’s first make sure we have imported the required header files:

#import "AppDelegate.h"

#import <CoreMotion/CoreMotion.h>

@implementation AppDelegate

Next, go on to detect the availability of an accelerometer in the implementation file of
our app delegate:

908 | Chapter 21: Core Motion

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 CMMotionManager *motionManager = [[CMMotionManager alloc] init];

 if ([motionManager isAccelerometerAvailable]){

 NSLog(@"Accelerometer is available.");

 } else{

 NSLog(@"Accelerometer is not available.");

 }

 if ([motionManager isAccelerometerActive]){

 NSLog(@"Accelerometer is active.");

 } else {

 NSLog(@"Accelerometer is not active.");

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Accelerometer hardware might be available on the iOS device running your program.
This, however, does not mean the accelerometer hardware is sending updates to your
program. If the accelerometer or gyroscope is sending updates to your program, we say
it is active (which requires you to define a delegate object, as we will soon see).

If you run this code on iOS Simulator, you will get values similar to these in the console
window:

Accelerometer is not available.

Accelerometer is not active.

Running the same code on the new iPhone, you will get values similar to these:

Accelerometer is available.

Accelerometer is not active.

Discussion
An iOS device could have a built-in accelerometer. As we don’t yet know which iOS
devices might have accelerometer hardware built in and which ones won’t, it is best to
test the availability of the accelerometer before using it.

You can detect the availability of this hardware by instantiating an object of type
CMMotionManager and accessing its isAccelerometerAvailable method. This method
is of type BOOL and returns YES if the accelerometer hardware is available and NO if not.

21.1. Detecting the Availability of an Accelerometer | 909

In addition, you can detect whether the accelerometer hardware is currently sending
updates to your application (whether it is active) by issuing the isAccelerometerAc
tive method of CMMotionManager. You will learn about retrieving accelerometer data
in Recipe 21.3.

See Also
Recipe 21.3

21.2. Detecting the Availability of a Gyroscope

Problem
You want to find out whether the current iOS device that is running your program has
gyroscope hardware available.

Solution
Use the isGyroAvailable method of an instance of CMMotionManager to detect the
gyroscope hardware. The isGyroActive method is also available if you want to detect
whether the gyroscope hardware is currently sending updates to your program (in other
words, whether it is active):

#import "AppDelegate.h"

#import <CoreMotion/CoreMotion.h>

@implementation AppDelegate

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 CMMotionManager *motionManager = [[CMMotionManager alloc] init];

 if ([motionManager isGyroAvailable]){

 NSLog(@"Gryro is available.");

 } else {

 NSLog(@"Gyro is not available.");

 }

 if ([motionManager isGyroActive]){

 NSLog(@"Gryo is active.");

 } else {

 NSLog(@"Gryo is not active.");

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

910 | Chapter 21: Core Motion

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

iOS Simulator does not have gyroscope simulation in place. If you run this code on the
simulator, you will receive results similar to these in the console window:

Gyro is not available.

Gyro is not active.

If you run this code on an iOS device with a gyroscope, such as the new iPhone, the
results could be different:

Gyro is available.

Gyro is not active.

Discussion
If you plan to release an application that makes use of the gyroscope, you must make
sure other iOS devices without this hardware can run your application. If you are using
the gyroscope as part of a game, for instance, you must make sure other iOS devices
that are capable of running your application can play the game, although they might
not have a gyroscope installed. Not all iOS devices have a gyroscope. This recipe shows
you how to determine whether a device has a gyroscope.

To achieve this, you must first instantiate an object of type CMMotionManager. After this,
you must access the isGyroAvailable method (of type BOOL) and see whether the
gyroscope is available on the device running your code. You can also use the is
GyroActive method of the CMMotionManager instance to find out whether the gyroscope
is currently sending your application any updates. For more information about this,
please refer to Recipe 21.5.

See Also
Recipe 21.5

21.3. Retrieving Accelerometer Data

Problem
You want to ask iOS to send accelerometer data to your application.

21.3. Retrieving Accelerometer Data | 911

Solution
Use the startAccelerometerUpdatesToQueue:withHandler: instance method of
CMMotionManager. Here is our view controller that utilizes CMMotionManager to get ac‐
celerometer updates:

#import "ViewController.h"

#import <CoreMotion/CoreMotion.h>

@interface ViewController ()

@property (nonatomic, strong) CMMotionManager *motionManager;

@end

@implementation ViewController

We will now implement our view controller and take advantage of the startAccelero
meterUpdatesToQueue:withHandler: method of the CMMotionManager class:

- (void)viewDidLoad{

 [super viewDidLoad];

 self.motionManager = [[CMMotionManager alloc] init];

 if ([self.motionManager isAccelerometerAvailable]){

 NSOperationQueue *queue = [[NSOperationQueue alloc] init];

 [self.motionManager

 startAccelerometerUpdatesToQueue:queue

 withHandler:^(CMAccelerometerData *accelerometerData, NSError *error) {

 NSLog(@"X = %.04f, Y = %.04f, Z = %.04f",

 accelerometerData.acceleration.x,

 accelerometerData.acceleration.y,

 accelerometerData.acceleration.z);

 }];

 } else {

 NSLog(@"Accelerometer is not available.");

 }

}

Discussion
The accelerometer reports three-dimensional data (three axes) that iOS reports to your
program as x, y, and z values. These values are encapsulated in a CMAcceleration
structure:

typedef struct { double x; double y; double z;

} CMAcceleration;

If you hold your iOS device in front of your face with the screen facing you in portrait
mode:

912 | Chapter 21: Core Motion

• The x-axis runs from left to right at the horizontal center of the device, with values
ranging from ‒1 to +1 from left to right.

• The y-axis runs from bottom to top at the vertical center of the device, with values
ranging from ‒1 to +1 from bottom to top.

• The z-axis runs from the back of the device, through the device toward you, with
values ranging from ‒1 to +1 from back to front.

The best way to understand the values reported from the accelerometer hardware is by
taking a look at a few examples. Here is one: let’s assume you have your iOS device facing
you with the bottom of the device pointing to the ground and the top pointing up. If
you hold it perfectly still without tilting it in any specific direction, the values you have
for the x-, y-, and z-axes at this moment will be (x: 0.0, y: –1.0, z: 0.0). Now try the
following while the screen is facing you and the bottom of the device is pointing to the
ground:

1. Turn the device 90 degrees clockwise. The values you have at this moment are (x:
+1.0, y: 0.0, z: 0.0).

2. Turn the device a further 90 degrees clockwise. Now the top of the device must be
pointing to the ground. The values you have at this moment are (x: 0.0, y: +1.0, z:
0.0).

3. Turn the device a further 90 degrees clockwise. Now the top of the device must be
pointing to the left. The values you have right now are (x: ‒1.0, y: 0.0, z: 0.0).

4. Finally, if you rotate the device a further 90 degrees clockwise, where the top of the
device once again points to the sky and the bottom of the device points to the
ground, the values will be as they were originally (x: 0.0, y: ‒1.0, z: 0.0).

So, from these values, we can conclude that rotating the device around the z-axis changes
the x and y values reported by the accelerometer, but not the z value.

Let’s conduct another experiment. Hold the device again so it’s facing you with its bottom
pointing to the ground and its top pointing to the sky. The values that a program will
get from the accelerometer, as you already know, are (x: 0.0, y: ‒1.0, z: 0.0). Now try
these movements:

1. Tilt the device backward 90 degrees around the x-axis so that its top will be pointing
backward. In other words, hold it as though it is sitting face-up on a table. The
values you get at this moment will be (x: 0.0, y: 0.0, z: ‒1.0).

2. Now tilt the device backward 90 degrees again so that its back is facing you, its top
is facing the ground, and its bottom is facing the sky. The values you get at this
moment will be (x: 0.0, y: 1.0, z: 0.0).

21.3. Retrieving Accelerometer Data | 913

3. Tilt the device backward 90 degrees so that it’s facing the ground with its back facing
the sky and its top pointing toward you. The reported values at this moment will
be (x: 0.0, y: 0.0, z: 1.0).

4. And finally, if you tilt the device one more time in the same direction, so the device
is facing you and its top is facing the sky, the values you get will be the same values
you started with.

Therefore, we can observe that rotating the device around the x-axis changes the values
of the y- and z-axes, but not x. I encourage you to try the third type of rotation—around
the y-axis (pointing from top to bottom)—and observe the changes in the values re‐
ported for the x- and the z-axes.

To be able to receive accelerometer updates, you have two options:

• The startAccelerometerUpdatesToQueue:withHandler: instance method of
CMMotionManager.

This method will deliver accelerometer updates on an operation queue (of type
NSOperationQueue) and will require a basic knowledge of blocks that are used ex‐
tensively in Grand Central Dispatch (GCD). For more information about blocks,
please refer to Chapter 7.

• The startAccelerometerUpdates instance method of CMMotionManager.

Once you call this method, the accelerometer (if available) will start updating ac‐
celerometer data in the motion manager object. You need to set up your own thread
to continuously read the value of the accelerometerData property (of type
CMAccelerometerData) of CMMotionManager.

In this recipe, we are using the first method (with blocks). I highly recommend that you
first read Chapter 7 before proceeding with this recipe. The block we provide to the
startAccelerometerUpdatesToQueue:withHandler: instance method of CMMo

tionManager must be of type CMAccelerometerHandler:

typedef void (^CMAccelerometerHandler)(

 CMAccelerometerData *accelerometerData,

 NSError *error);

In other words, we must accept two parameters on the block. The first one must be of
type CMAccelerometerData, and the second must be of type NSError, as implemented
in our example code.

See Also
Recipe 21.1

914 | Chapter 21: Core Motion

21.4. Detecting Shakes on an iOS Device

Problem
You want to know when the user shakes an iOS device.

Solution
Use the motionEnded:withEvent: method of any object in your application that is of
type UIResponder. This could be your view controller(s) or even your main window
object.

Discussion
The motionEnded:withEvent: method of a responder object gets called whenever a
motion has been captured by iOS. The simplest implementation of this method is this:

- (void) motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event{

 /* Handle the motion */

}

The motion parameter, as you can see, is of type UIEventSubtype. One of the values of
type UIEventSubtype is UIEventSubtypeMotionShake, which is what we are interested
in. As soon as we detect this event, we know that the user has shaken her iOS device.
Now go to the implementation of your view controller and handle the motionEn
ded:withEvent: method:

- (void) motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event{

 if (motion == UIEventSubtypeMotionShake){

 UIAlertView *alert =

 [[UIAlertView alloc] initWithTitle:@"Shake"

 message:@"The device is shaken"

 delegate:nil

 cancelButtonTitle:@"OK" otherButtonTitles:nil];

 [alert show];

 }

}

If you now simulate a shake event even if you are on iOS Simulator (see this chapter’s
Introduction), you will see that our window prints the text “Detected a shake” to the
console window.

21.4. Detecting Shakes on an iOS Device | 915

21.5. Retrieving Gyroscope Data

Problem
You want to be able to retrieve information about the device’s motion from the gyroscope
hardware on an iOS device.

Solution
Follow these steps:

1. Find out whether the gyroscope hardware is available on the iOS device. Please refer
to Recipe 21.2 for directions on how to do this.

2. If the gyroscope hardware is available, make sure it is not already sending you
updates. Please refer to Recipe 21.2 for directions.

3. Use the setGyroUpdateInterval: instance method of CMMotionManager to set the
number of updates you want to receive per second. For instance, for 20 updates per
second (one second), set this value to 1.0/20.0.

4. Invoke the startGyroUpdatesToQueue:withHandler: instance method of
CMMotionManager. The queue object could simply be the main operation queue (as
we will see later), and the handler block must follow the CMGyroHandler format.

The following code implements these steps:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 CMMotionManager *manager = [[CMMotionManager alloc] init];

 if ([manager isGyroAvailable]){

 if ([manager isGyroActive] == NO){

 [manager setGyroUpdateInterval:1.0f / 40.0f];

 NSOperationQueue *queue = [[NSOperationQueue alloc] init];

 [manager

 startGyroUpdatesToQueue:queue

 withHandler:^(CMGyroData *gyroData, NSError *error) {

 NSLog(@"Gyro Rotation x = %.04f", gyroData.rotationRate.x);

 NSLog(@"Gyro Rotation y = %.04f", gyroData.rotationRate.y);

 NSLog(@"Gyro Rotation z = %.04f", gyroData.rotationRate.z);

 }];

 } else {

916 | Chapter 21: Core Motion

 NSLog(@"Gyro is already active.");

 }

 } else {

 NSLog(@"Gyro isn't available.");

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Discussion
With CMMotionManager, application programmers can attempt to retrieve gyroscope
updates from iOS. You must first make sure the gyroscope hardware is available on the
iOS device on which your application is running (please refer to Recipe 21.2). After
doing so, you can call the setGyroUpdateInterval: instance method of CMMotionMan
ager to set the number of updates you would like to receive per second on updates from
the gyroscope hardware. For instance, if you want to be updated N times per second,
set this value to 1.0/N.

After you set the update interval, you can call the startGyroUpdatesTo

Queue:withHandler: instance method of CMMotionManager to set up a handler block
for the updates. For more information about blocks, please refer to Chapter 7. Your
block object must be of type CMGyroHandler, which accepts two parameters:

gyroData

The data that comes from the gyroscope hardware, encompassed in an object of
type CMGyroData. You can use the rotationRate property of CMGyroData (a struc‐
ture) to get access to the x, y, and z values of the data, which represent all three Euler
angles known as roll, pitch, and yaw, respectively. You can learn more about these
by reading about flight dynamics.

error

An error of type NSError that might occur when the gyroscope is sending us
updates.

If you do not wish to use block objects, you must call the startGyroUpdates instance
method of CMMotionManager instead of the startGyroUpdatesToQueue:withHan
dler: instance method and set up your own thread to read the gyroscope hardware
updates posted to the gyroData property of the instance of CMMotionManager you are
using.

21.5. Retrieving Gyroscope Data | 917

See Also
Recipe 21.2

918 | Chapter 21: Core Motion

CHAPTER 22

iCloud

22.0. Introduction
iCloud is Apple’s cloud infrastructure. A cloud is a name given to a service that stores
information on a centralized location, where the user cannot physically access the disk/
memory that stores the information. For instance, an iCloud storage space could be
allocated by Apple in California, and all iPhone devices in New York could have all their
iCloud traffic go to the California iCloud data center.

The purpose of using iCloud, from a programmer’s perspective, is to give his users the
ability to seamlessly have their apps’ data transferred from one machine to another. Let’s
have a look at a real-life example of when iCloud would come in very handy: imagine
that you have developed an app called Game XYZ. Sarah is a hypothetical user of your
game, and she has purchased it through the App Store. Your game is a universal app
and hence can be run on both the iPhone and the iPad. It just so happens that Sarah has
an iPad and an iPhone and has installed your game on both her devices. She is playing
your game at the office and is at level 12. She goes back home and picks up her iPad to
play some more, only to discover that the game starts from level 1 on her iPad because
she was playing on her iPhone all along. This is definitely not a pretty situation. What
is better is for your game to be intelligent enough to save its state and resume that state
when your users restart the game, regardless of which device they have been running it
on. To handle this situation, you could use iCloud to store Sarah’s game state on her
iPhone and let iCloud synchronize this data to the data centers that are maintained by
Apple. When she picks her iPad up, you could use your app to contact iCloud and find
out if there is a recent game state saved for Sarah. If yes, then you can load that state for
her to give her the feeling that she really didn’t even leave your game. She just switched
devices. This is a bit more work for you, but in the end you will get really happy
customers.

919

Before being able to use iCloud services, you first need to enable your app for iCloud.
This requires creating the correct provisioning profiles in iOS Provisioning Portal and
then enabling the correct entitlements in your project. You can read more about this in
Recipe 22.1.

I use the terms “folder” and “directory” interchangeably throughout
this chapter.

22.1. Setting Up Your App for iCloud

Problem
You want to start using iCloud in your apps, and you would like to know how you should
set up your Xcode project.

Solution
At a high level, these are the steps you need to follow to enable iCloud storage in your
app:

1. Create a new App ID that has iCloud enabled in it.

2. Create a new development provision profile that is linked to that App ID and
download and install that profile onto your computer.

3. Create a new app in Xcode and set the provision profile for that app to the profile
that you just created.

4. In the Capabilities tab in Xcode, flick the iCloud switch on.

Your app is now set up for iCloud. In the Discussion section, we will talk more about
the details of these steps and the things that could go wrong during the setting up
process.

Discussion
In the Solution section, we had a brief look at the high-level steps required to set your
app up for iCloud. Here we are going to look at the details with illustrations. So let’s get
started.

920 | Chapter 22: iCloud

1. Create an app in Xcode and set its bundle identifier using a reverse-domain style:
for instance, com.pixolity.ios.cookbook.icloudapp. Remember that this is the
reverse domain style bundle identifier that I have chosen for my app. Usually you
would take the domain name of your website and just reverse that and append the
identifier of your app to the results.

2. Using the iOS Provisioning Portal, create a new App ID for your app. Enable iCloud
for that App ID by selecting it in the portal, enabling the checkbox for iCloud, and
saving your changes (see Figure 22-1).

Figure 22-1. Enabling iCloud access for your App ID

3. After your App ID is created (as shown in Figure 22-2), navigate to the Provisioning
Profiles section of the portal, and create a new development provision profile that
is linked to the App ID that you created earlier.

4. Once you are done creating the profile (see Figure 22-3), download the profile and
drag and drop it into iTunes for iTunes to install the profile on your Mac.

22.1. Setting Up Your App for iCloud | 921

Figure 22-2. Your App ID successfully set up for iCloud

Figure 22-3. Download and install your new iCloud-enabled profile

922 | Chapter 22: iCloud

5. In Xcode, create a new app and change your bundle ID to that which you specified
for your App ID before. If you forget this step, your app won’t be able to use the
new profile.

6. In Xcode, press Command+0 if the navigator on the lefthand side is not showing.
After you see the navigator, choose your project from the list by clicking on it and
then choose your target. In the build settings of your target, set the correct provision
profile (the one that you just created and downloaded) for your app.

7. Navigate away from the Build Settings tab and move to the Capabilities tab and flick
the iCloud switch on, as shown in Figure 22-4.

Figure 22-4. Enabling iCloud capabilities for your app

Now attempt to compile your app. If you get an error from the com‐
piler telling you that your app entitlements file could not be found,
check the Code Signing Entitlements path that Xcode has set for your
app in the Build Settings tab of your target. Usually you can fix this
issue by changing the default path that Xcode has given you and pre‐
pend $(SRCROOT)/$(TARGET_NAME)/ to the entitlements filename. For
instance, the default entitlements file that Xcode assigned to my project
was set up in Build Settings as Setting Up Your App For iCloud.en
titlements, and with that I was getting a compilation error. But af‐
ter I changed that value to $(SRCROOT)/$(TARGET_NAME)/Setting Up
Your App For iCloud.entitlements, Xcode was happy and so was I.
This in fact seems like an issue in Xcode that I’m hoping Apple will fix
at some point.

22.1. Setting Up Your App for iCloud | 923

Now compile your app. If you are able to compile it successfully, that means your app
is set up for iCloud. If you are getting errors, have a look at the errors console to find
out more about the issues. Typically, the issues are related to an invalid profile or missing
entitlements, so read the steps discussed earlier in this recipe and ensure that you follow
them one by one.

22.2. Storing and Synchronizing Dictionaries in iCloud

Problem
You want to store key-value data in dictionary form in iCloud and seamlessly read and
write to this centralized and synchronized dictionary from various devices and from
various iCloud accounts.

Solution
Use the NSUbiquitousKeyValueStore class.

The data that you store in iCloud using the NSUbiquitousKeyValueStore is uniquely
created in iCloud using the provision profile with which you sign the app and the end
user’s iCloud account. In other word, you simply store values in iCloud using the
NSUbiquitousKeyValueStore class, not worrying if one user’s data is going to clash with
another user’s data. iCloud does that separation for you.

In Recipe 22.1, we used the Capabilities tab of our target settings to enable iCloud for
our app. However, to use the NSUbiquitousKeyValueStore class, we need to enable the
key-value store for iCloud as well. This can be done from the same Capabilities tab of
your target settings. Once you are in the Capabilities tab, expand the iCloud section if
it’s not already expanded, and then ensure that the Use key-value store option is ticked,
as shown in Figure 22-5.

Discussion
The NSUbiquitousKeyValueStore class works very similar to the NSUserDefaults class.
It can store string, Boolean, integer, float and other values. Each one of the values has
to have a key associated with it. You will then be able to read the values by passing the
keys to this class. The difference between the NSUbiquitousKeyValueStore and the
NSUserDefaults class is that the former synchronizes its dictionary data with iCloud,
whereas the latter only stores the dictionary locally to a .plist file—this data will be

deleted once the app gets deleted from the user’s device.

924 | Chapter 22: iCloud

Figure 22-5. Enabling the iCloud key-value store for our app

Before you can use the NSUbiquitousKeyValueStore class to store key-
value data in iCloud, you must set up the appropriate entitlements for
your project. Please refer to Recipe 22.1 to learn how to do this.

An instance of your application uses a unique identifier to store data in iCloud. This
unique identifier is made up of three key pieces:

Team ID
This is the unique identifier for your iOS Developer Program. When you sign up
for iOS Developer Program, Apple will automatically generate a unique identifier
for your account. To retrieve this identifier, simply log into Developer Center and
then select Your Account from the top menu items. Then choose Account Summary
from the menus on the left. On the screen to the right, your Team ID is displayed
under the Developer Account Summary section. No two iOS Developer accounts
can have the same Team ID.

Reverse domain-style of company identifier
This string is usually in the form of com.COMPANYNAME, where COMPANYNAME is the
name of your company and APPNAME is the name of your app. For instance, my
company name is Pixolity, so my reverse domain style of company identifier will
be com.pixolity.

App identifier and optional suffix
This is the string that gets attached as the suffix to the Reverse domain-style of
company identifier.

22.2. Storing and Synchronizing Dictionaries in iCloud | 925

http://bit.ly/Qdj3FC

The Team ID is always bound to the provision profile with which you
will sign your app. You do not have to enter this value into your project
settings. For instance, if my company name is Pixolity and I set the
reverse domain style name for my app to com.pixolity and my App
ID to icloudapp, the name that iCloud will use in the entitlements will
be $(TeamIdentifierPrefix)$(CFBundleIdentifier).

The $(TeamIdentifierPrefix) value is the Team ID, which will be
resolved to my actual Team ID when Xcode compiles my application
and signs it with a provision profile. The $(CFBundleIdentifier)
value will be resolved, at compile time, to the bundle identifier of my
target.

Now that we are sure we have set up the project properly and entitlements are set up as
well, then we can move on to using the NSUbiquitousKeyValueStore class to store keys
and values in iCloud. There are various methods that NSUbiquitousKeyValueStore
class exposes to us in order for us to save the values in iCloud. Some of these methods
are listed and explained here:

setString:forKey:

Sets a string value for the given key. The string must be of type NSString. Obviously,
classes that subclass NSString, such as NSMutableString can also be stored in
iCloud using this method.

setArray:forKey:

Sets an array value for the given key. The array can be either a mutable or an im‐
mutable array.

setDictionary:forKey:

Sets a mutable or an immutable dictionary for the given key.

setBool:forKey:

Sets method, NSUbiquitousKeyValueStore a Boolean value of type BOOL for the
given key.

setData:forKey:

Sets a mutable or an immutable data for the given key.

None of these methods will actually do the saving for you. If you are done setting the
values, then you must call the synchronize method of NSUbiquitousKeyValueStore
for your settings to be flushed first to iOS and then synchronized with iCloud.

926 | Chapter 22: iCloud

All the work that we do with the NSUbiquitousKeyValueStore is done
through the defaultStore class method of this class. This class meth‐
od will return an instance of the NSUbiquitousKeyValueStore class,
which is ready for us to use.

Obviously, after setting the values for keys, we are going to want to retrieve those values
at some point during the runtime of the app. We can do this using some of the methods
that the NSUbiquitousKeyValueStore provides us with. Some of these methods are
listed here:

stringForKey:

Returns the string associated with the given key, or nil if that key cannot be found.
This will be an immutable string even if you used this key to store a mutable string
in iCloud.

arrayForKey:

Returns the array associated with the given key, or nil if that key cannot be found.
This will be an immutable array even if the original array you stored in iCloud for
this key was mutable.

dictionaryForKey:

Returns the dictionary associated with the given key, or nil if that key cannot be
found. The dictionary returned by this method will be immutable even if the orig‐
inal dictionary you stored into iCloud for this key was mutable.

boolForKey:

Returns the Boolean value of type BOOL associated with the given key, or nil if that
key cannot be found.

dataForKey:

Returns the data of type NSData associated with the given key, or nil if that key
cannot be found. The data returned by this method will be immutable even if the
original data stored in iCloud for this key was mutable.

So let’s have a look at how we can perhaps use this class in the apps. As you already know,
iCloud’s power really proves handy when you are sharing data between two or more
devices for the same user. For instance, if the user starts reading a book on his iPhone,
and then picks up his iPad, the app that presents the book sees the last page the user was
at and opens the book right there. In effect, we have two devices pretending to be one,
for the sake of usability for the end user. For this example, we will store a string and a
Boolean value into iCloud using the NSUbiquitousKeyValueStore class. We will place
a check to see if those values had already been stored in iCloud; if yes, we will read their
value. I can then build this app, run it on my iPhone and then on my iPad, and see what
happens:

22.2. Storing and Synchronizing Dictionaries in iCloud | 927

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSUbiquitousKeyValueStore *kvoStore =

 [NSUbiquitousKeyValueStore defaultStore];

 NSString *stringValue = @"My String";

 NSString *stringValueKey = @"MyStringKey";

 BOOL boolValue = YES;

 NSString *boolValueKey = @"MyBoolKey";

 BOOL mustSynchronize = NO;

 if ([[kvoStore stringForKey:stringValueKey] length] == 0){

 NSLog(@"Could not find the string value in iCloud. Setting...");

 [kvoStore setString:stringValue

 forKey:stringValueKey];

 mustSynchronize = YES;

 } else {

 NSLog(@"Found the string in iCloud, getting...");

 stringValue = [kvoStore stringForKey:stringValueKey];

 }

 if ([kvoStore boolForKey:boolValueKey] == NO){

 NSLog(@"Could not find the boolean value in iCloud. Setting...");

 [kvoStore setBool:boolValue

 forKey:boolValueKey];

 mustSynchronize = YES;

 } else {

 NSLog(@"Found the boolean in iCloud, getting...");

 boolValue = [kvoStore boolForKey:boolValueKey];

 }

 if (mustSynchronize){

 if ([kvoStore synchronize]){

 NSLog(@"Successfully synchronized with iCloud.");

 } else {

 NSLog(@"Failed to synchronize with iCloud.");

 }

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

After setting up the correct provision profiles, enabling entitlements for this project,
and running this app on an iOS device that has already been set up with an iCloud
account, we can observe these results printed to the console screen:

928 | Chapter 22: iCloud

Could not find the string value in iCloud. Setting...

Could not find the boolean value in iCloud. Setting...

Successfully synchronized with iCloud.

Now I will leave my device sitting here for a minute or two just to make sure that iCloud
has enough time to synchronize my data with the cloud. I will then run the same code
on another device that has been linked to the same iCloud account as the first device to
see what happens:

Found the string in iCloud, getting...

Found the boolean in iCloud, getting...

Fantastic. This demonstrates that iCloud is indeed synchronizing the data for multiple
iOS devices that are hooked to the same iCloud account.

22.3. Creating and Managing Folders for Apps in iCloud

Problem
You want to store specific files into specific folders within the user’s iCloud storage for
your app.

Solution
Follow these steps:

1. Make sure your app is set up to use iCloud (see Recipe 22.1)

2. Select your project file in Xcode and select the Summary tab.

3. Select the entitlements file that Xcode created for you by clicking on it, as we saw
in Recipe 22.1, and look at the first value under the
com.apple.developer.ubiquity-container-identifiers section. This value is
simply equal to $(TeamIdentifierPrefix) plus your bundle ID, so make a note of
that. For my app for this recipe, the value of this key is equal to $(TeamIdentifier
Prefix)com.pixolity.ios.cookbook.icloudapp. We are going to use this full
value in the next steps.

4. In your app delegate, place the string that you copied from the iCloud Containers
list, into a string. Prefix this string with your Team ID (see Recipe 22.2 on how to
find your Team ID).

5. Now instantiate an object of type NSFileManager and pass the path that you created
in the previous two steps to the URLForUbiquityContainerIdentifier: method
of this class. The value of this method will be the local address for iCloud storage
on the device that is running your app. Let’s call this path Root iCloud Path.

6. Append the folder name that you want to create to the Root iCloud Path (see pre‐
vious step). Keep the resulting path in a string or an instance of NSURL.

22.3. Creating and Managing Folders for Apps in iCloud | 929

7. Invoke the fileExistsAtPath:isDirectory: method of your file manager. If this
method returns NO, then go on to create the folder using the createDirectoryAt
Path:withIntermediateDirectories:attributes:error:method of the file
manager. If the return value of the fileExistsAtPath:isDirectory: method is
YES, check whether the Boolean value that comes out of the isDirectory parameter
is NO. If it is NO, then you must create your folder again as instructed, because the
path that was found by the fileExistsAtPath:isDirectory: method was not a
directory, but rather a file.

Discussion
One of the things that can make iCloud sound complicated to developers is that they
assume, since it is a cloud storage, that they have to deal with URLs outside their apps
or URLs on the Internet. Well, this is not true. With iCloud, the URLs that you deal with
are actually iOS-related. By that, I mean that the URLs are local to the device connected
to iCloud. iCloud will then synchronize these local URLs and their data with the iCloud
storage hosted by Apple in the cloud. The developer doesn’t really have to worry about
this part, unless there are conflicts that need to be resolved because two devices running
your app and using the same iCloud account simultaneously modified a resource that
cannot automatically be merged. We will talk about this later; let’s just focus on creating
folders in iCloud for now.

So let’s now implement what we learned in the Solution section of this chapter:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 NSString *teamID = <# Put your team ID here #>;

 NSString *bundleId = [[NSBundle mainBundle] bundleIdentifier];

 NSString *rootFolderIdentifier = [NSString stringWithFormat:

 @"%@.%@",

 teamID, bundleId];

 NSURL *containerURL =

 [fileManager URLForUbiquityContainerIdentifier:rootFolderIdentifier];

 NSString *documentsDirectory =

 [[containerURL path]

 stringByAppendingPathComponent:@"Documents"];

 BOOL isDirectory = NO;

 BOOL mustCreateDocumentsDirectory = NO;

930 | Chapter 22: iCloud

 if ([fileManager fileExistsAtPath:documentsDirectory

 isDirectory:&isDirectory]){

 if (isDirectory == NO){

 mustCreateDocumentsDirectory = YES;

 }

 } else {

 mustCreateDocumentsDirectory = YES;

 }

 if (mustCreateDocumentsDirectory){

 NSLog(@"Must create the directory.");

 NSError *directoryCreationError = nil;

 if ([fileManager createDirectoryAtPath:documentsDirectory

 withIntermediateDirectories:YES

 attributes:nil

 error:&directoryCreationError]){

 NSLog(@"Successfully created the folder.");

 } else {

 NSLog(@"Failed to create the folder with error = %@",

 directoryCreationError);

 }

 } else {

 NSLog(@"This folder already exists.");

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

The Container Identifier that Xcode sets up by default for your appli‐
cation is made out of a Team ID and a Bundle Identifier. If you want,
you can simply change this. One of the great features of iCloud for
developers is that the container identifiers that you specify for your
app’s iCloud storage don’t have to necessarily be linked in any way to
your app or your app’s bundle identifier. If you believe the default
identifier is confusing, just change it to something that makes more
sense to you and your team.

What we can do now is to wrap the code into a method for reuse:

- (BOOL) createIcloudDirectory:(NSString *)paramDirectory

 recursiveCreation:(BOOL)paramRecursiveCreation

22.3. Creating and Managing Folders for Apps in iCloud | 931

 teamID:(NSString *)paramTeamID

 iCloudContainer:(NSString *)paramContainer

 finalPath:(NSString **)paramFinalPath{

 BOOL result = NO;

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 NSString *rootFolderIdentifier = [NSString stringWithFormat:

 @"%@.%@", paramTeamID, paramContainer];

 NSURL *containerURL =

 [fileManager URLForUbiquityContainerIdentifier:rootFolderIdentifier];

 NSString *documentsDirectory =

 [[containerURL path]

 stringByAppendingPathComponent:@"Documents"];

 if (paramFinalPath != nil){

 *paramFinalPath = documentsDirectory;

 }

 BOOL isDirectory = NO;

 BOOL mustCreateDocumentsDirectory = NO;

 if ([fileManager fileExistsAtPath:documentsDirectory

 isDirectory:&isDirectory]){

 if (isDirectory == NO){

 mustCreateDocumentsDirectory = YES;

 }

 } else {

 mustCreateDocumentsDirectory = YES;

 }

 if (mustCreateDocumentsDirectory){

 NSLog(@"Must create the directory.");

 NSError *directoryCreationError = nil;

 if ([fileManager createDirectoryAtPath:documentsDirectory

 withIntermediateDirectories:paramRecursiveCreation

 attributes:nil

 error:&directoryCreationError]){

 result = YES;

 NSLog(@"Successfully created the folder.");

 } else {

 NSLog(@"Failed to create the folder with error = %@",

 directoryCreationError);

 }

 } else {

 NSLog(@"This folder already exists.");

932 | Chapter 22: iCloud

 result = YES;

 }

 return result;

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *teamID = <# Put your team ID here #>;

 NSString *containerID = [[NSBundle mainBundle] bundleIdentifier];

 NSString *documentsDirectory = nil;

 if ([self createIcloudDirectory:@"Documents"

 recursiveCreation:YES

 teamID:teamID

 iCloudContainer:containerID

 finalPath:&documentsDirectory]){

 NSLog(@"Successfully created the directory in %@", documentsDirectory);

 } else {

 NSLog(@"Failed to create the directory.");

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

The finalPath parameter in the new method is an out parameter,
meaning that it can store the final path of the directory that you cre‐
ated into an output string, should you need it for any other method
(or anywhere in your app).

OK, now that we have this method, we can go ahead and save a resource into the Docu‐
ments folder for the current user’s iCloud storage for the app:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *teamID = <# Put your team ID here #>;

 NSString *containerID = [[NSBundle mainBundle] bundleIdentifier];

 NSString *documentsDirectory = nil;

22.3. Creating and Managing Folders for Apps in iCloud | 933

 if ([self createIcloudDirectory:@"Documents"

 recursiveCreation:YES

 teamID:teamID

 iCloudContainer:containerID

 finalPath:&documentsDirectory]){

 NSLog(@"Successfully created the directory in %@",

 documentsDirectory);

 NSString *stringToSave = @"My String";

 NSString *pathToSave =

 [documentsDirectory

 stringByAppendingPathComponent:@"MyString.txt"];

 NSError *savingError = nil;

 if ([stringToSave writeToFile:pathToSave

 atomically:YES

 encoding:NSUTF8StringEncoding

 error:&savingError]){

 NSLog(@"Successfully saved the string in iCloud.");

 } else {

 NSLog(@"Failed to save the string with error = %@", savingError);

 }

 } else {

 NSLog(@"Failed to create the directory.");

 }

 self.window = [[UIWindow alloc] initWithFrame:

 [[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

Saving a file in a cloud URL does not explicitly tell iOS that the file has
to be placed in cloud storage. We will learn about saving files in cloud
storage in Recipe 22.5.

If you run this app on an iPhone that has been set up to back up data and files to an
iCloud account, you can go to the Settings app and select the iCloud option in the list.
In the iCloud screen, select Storage & Backup. Once in the Storage & Backup screen,
under the DOCUMENTS & DATA section, find and select the name of your app, as
shown in Figure 22-6.

934 | Chapter 22: iCloud

Figure 22-6. Selecting your app in the list of apps that store data to iCloud

Now you should be able to see the file that we created earlier in the list, as shown in
Figure 22-7.

22.3. Creating and Managing Folders for Apps in iCloud | 935

Figure 22-7. Our file is indeed saved in iCloud

See Also
Recipe 22.1; Recipe 22.2; Recipe 22.5

22.4. Searching for Files and Folders in iCloud

Problem
You want to search for files and/or folders inside the current iCloud user’s cloud space
allocated for your app.

936 | Chapter 22: iCloud

Solution
Use the NSMetadataQuery class.

Discussion
OS X developers are probably familiar with the NSMetadataQuery class. This class allows
developers to query Spotlight items, whether they are files or folders. In iOS, we will
use this class to search for files and folders in the iCloud space assigned to the app for
the current user, if she has set up iCloud for the iOS device on which the app is running.

To set up a metadata query, there are three very important things that we need to do:

1. We need to set the predicate of the metadata query. The predicate is the search
criteria of the query. This predicate will tell the query what items we are searching
for.

2. We also need to set the query’s search scope. In order to search in the user’s iCloud
Documents folder, we set this scope to NSMetadataQueryUbiquitousDocuments
Scope. Otherwise, you can use the NSMetadataQueryUbiquitousDataScope, which
represents the Data folder in iCloud, a folder your app can use to store data related
to the user-created documents. Remember that the files you store in the user’s
iCloud should not be your app’s temporary files or any other files that your app can
retrieve in some other way if those files weren’t present in the user’s iCloud storage.
Things that you store in the user’s iCloud storage should be the user’s creations.

3. After we start the query, we shall start listening for the NSMetadataQueryDidFi
nishGatheringNotification notification. This notification gets called when the
query has finished its search. In the method that handles this notification, we can
then look through the results the query gathered for us and determine if any of
those files/folders are the ones we’re looking for.

The setPredicate: instance method of NSMetadataQuery class allows us to set the
predicate of the query. The predicate must be of type NSPredicate. We will use the
predicateWithFormat: class method of NSPredicate class to initialize the predicate.
Remember, the predicate will tell the query what to search for. The predicate
WithFormat: accepts a format string in the following format:

QUERY_ITEM COMPARISON_CRITERIA PATTERN

The QUERY_ITEM part of the format of the predicate can be any of the NSMetadataItem
constant values. For instance, we can use the NSMetadataItemFSNameKey constant value
to tell the predicate that the search pattern targets the filesystem name of the items in
the cloud. Since the format provided to the predicateWithFormat: method can be a
variable number of arguments, with the first argument dictating the format of the rest
of the arguments, you can pass %K as the QUERY_ITEM. For instance, the following two

22.4. Searching for Files and Folders in iCloud | 937

predicates are basically the same in terms of how they will supply an input to the
metadata query:

NSPredicate *predicate = [NSPredicate predicateWithFormat:@"%K like %@",

 NSMetadataItemFSNameKey,

 @"*"];

NSPredicate *samePredicate = [NSPredicate predicateWithFormat:

 @"NSMetadataItemFSNameKey like %@",

 @"*"];

The COMPARISON_CRITERIA part of the format of the predicate can be any of the following
values:

>
To indicate that you are searching for query items that are, in value, bigger than
your criteria patterns. For instance, you can search in the Documents folder in the
iCloud container of an app for all files whose size is bigger than X kilobytes, where
X is defined by you.

<
This comparison criteria is similar to the previous criteria. This criteria looks for
items in the iCloud container of an app whose size (as an example) is smaller than
the file size that you have specified in the pattern.

like
This comparison criteria is used for searching for filenames and display names of
files. You can even use wildcards with this criteria; for instance, looking for all files
whose names start with a specific character.

We can go on and on about this, but I suggest we dive into the development piece to get
a better understanding of how metadata queries work. For this example, here is what
we will do:

1. When the app loads (in the app delegate), we will simply search for all files in the
app’s iCloud container.

2. We will then log the names of all the files that we found to the console, using NSLog.

3. At the end of every search, we will create a new file whose name is generated ran‐
domly using a random integer. We will then make sure that file doesn’t already exist
in the iCloud container for the app. If it doesn’t, we will save it to the iCloud con‐
tainer. Simple, isn’t it? This way, whenever the app opens up, we are creating a new
file to the user’s iCloud storage.

938 | Chapter 22: iCloud

Storing unnecessary files in users’ iCloud storage is a really bad prac‐
tice. Make sure, as stated before, that you use iCloud only to store files
that have been directly created by your user, such as documents or
creative images. For this example, since we need to find files/folders in
the user’s iCloud container to prove that the solution works, we need
to at least have something stored in the iCloud container for the app.

Although we are going to learn about storing files in iCloud in Recipe 22.5, for the sake
of this recipe, we will use another, easier method to store files into iCloud. We will
accomplish this using the setUbiquitous:itemAtURL:destinationURL:error: in‐
stance method of NSFileManager. Here are the parameters that we will pass to this
method:

setUbiquitous

This is a Boolean value that you set to YES if you want to move a file to iCloud.

itemAtURL

The parameter passed to this method is the NSURL pointing to the file in your app’s
bundle that needs to be moved to iCloud.

destinationURL

This is the URL of where the source file has to be copied in the user’s iCloud storage.
This URL must be an iCloud URL.

error

A pointer to an NSError object that will get set to an error, if one occurs during the
process.

So let’s go ahead and create an empty application and then define our metadata query
property that we will use for searching in the app’s iCloud container:

#import "AppDelegate.h"

@interface AppDelegate ()

@property (nonatomic, strong) NSMetadataQuery *metadataQuery;

@end

@implementation AppDelegate

<# Rest of your code goes here #>

When the app delegate is started, we shall start the query and search for all files in the
Documents directory of the app’s iCloud container:

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 /* Listen for a notification that gets fired when the metadata query

 has finished finding the items we were looking for */

22.4. Searching for Files and Folders in iCloud | 939

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(handleMetadataQueryFinished:)

 name:NSMetadataQueryDidFinishGatheringNotification

 object:nil];

 /* Create our query now */

 self.metadataQuery = [[NSMetadataQuery alloc] init];

 NSArray *searchScopes = [[NSArray alloc] initWithObjects:

 NSMetadataQueryUbiquitousDocumentsScope, nil];

 [self.metadataQuery setSearchScopes:searchScopes];

 NSPredicate *predicate = [NSPredicate predicateWithFormat:

 @"%K like %@",

 NSMetadataItemFSNameKey,

 @"*"];

 [self.metadataQuery setPredicate:predicate];

 if ([self.metadataQuery startQuery]){

 NSLog(@"Successfully started the query.");

 } else {

 NSLog(@"Failed to start the query.");

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

 return YES;

}

In this code, we have elected the handleMetadataQueryFinished: instance method of
the app delegate (yet to be implemented) as the method that the query will call whenever
it has finished searching inside the Documents folder of the app’s iCloud container. Let’s
go and implement this method. What we want to do in this method is to look for all the
files that the metadata query found (if any), and then list them by printing them out to
the console. After this, we will create a new random file and place it in the app’s iCloud
container. Here are the steps that we have to take in order to achieve this:

1. Generate a URL for a new random file in the app’s iCloud container. For this, we
first need to find the app’s iCloud container URL.

2. If the URL for this new random file already exists in the results returned by the
metadata query, we will ignore the whole operation.

3. If a file with the exact same name as the new random file has not been created in
the Documents directory of the app’s iCloud container, we will save a file with the
same name to the app’s Documents directory in the app’s sandbox on the device.

4. After the file has been created in the app’s sandbox, we will set it to ubiquitous,
where the file will be moved to iCloud and will automatically be deleted from the
app’s sandbox.

940 | Chapter 22: iCloud

As described before, we are going to have to store a file into the app’s Documents folder,
on the app’s sandbox, and in iCloud. Therefore, we need to have some methods that
give us these URLs. First we will start with a method that will return the URL for the
app’s Documents folder in iCloud:

- (NSURL *) urlForDocumentsFolderIniCloud{

 NSURL *result = nil;

 NSString *teamID = <# Put your team ID here #>;

 NSString *containerID = [[NSBundle mainBundle] bundleIdentifier];

 NSString *teamIDAndContainerID = [[NSString alloc] initWithFormat:@"%@.%@",

 teamID, containerID];

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 NSURL *appiCloudContainerURL =

 [fileManager URLForUbiquityContainerIdentifier:teamIDAndContainerID];

 result = [appiCloudContainerURL URLByAppendingPathComponent:@"Documents"

 isDirectory:YES];

 if ([fileManager fileExistsAtPath:[result path]] == NO){

 /* The Documents directory does NOT exist in our app's iCloud

 container; attempt to create it now */

 NSError *creationError = nil;

 BOOL created = [fileManager createDirectoryAtURL:result

 withIntermediateDirectories:YES

 attributes:nil

 error:&creationError];

 if (created){

 NSLog(@"Successfully created the Documents folder in iCloud.");

 } else {

 NSLog(@"Failed to create the Documents folder in \

 iCloud. Error = %@", creationError);

 result = nil;

 }

 } else {

 /* the Documents directory already exists in our app's

 iCloud container; we don't have to do anything */

 }

 return result;

}

22.4. Searching for Files and Folders in iCloud | 941

Now we will use this method to determine the URL of the random file in the Documents
folder in the iCloud container for the app:

- (NSURL *) urlForRandomFileInDocumentsFolderInIcloud{

 NSURL *result = nil;

 NSUInteger randomNumber = arc4random() % NSUIntegerMax;

 NSString *randomFileName = [[NSString alloc] initWithFormat:@"%lu.txt",

 (unsigned long)randomNumber];

 /* Check in the metadata query if this file already exists */

 __block BOOL fileExistsAlready = NO;

 [self.metadataQuery.results enumerateObjectsUsingBlock:

 ^(NSMetadataItem *item, NSUInteger idx, BOOL *stop) {

 NSString *itemFileName =

 [item valueForAttribute:NSMetadataItemFSNameKey];

 if ([itemFileName isEqualToString:randomFileName]){

 NSLog(@"This file already exists. Aborting...");

 fileExistsAlready = YES;

 *stop = YES;

 }

 }];

 if (fileExistsAlready){

 return nil;

 }

 result = [[self urlForDocumentsFolderIniCloud]

 URLByAppendingPathComponent:randomFileName];

 return result;

}

Now that we have the URL for the random file (yet to be created) in iCloud, we also
need to write a method that we can use to get the URL for the same file in the app bundle.
Since we created this random filename in the urlForRandomFileInDocumentsFolderI
niCloud method, the new method won’t know about this name, and thus we need to
pass the filename to the method as a parameter:

- (NSURL *) urlForRandomFileInDocumentsFolderForFileWithName

 :(NSString *)paramFileName{

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 NSURL *documentsUrl = [fileManager URLForDirectory:NSDocumentDirectory

 inDomain:NSUserDomainMask

 appropriateForURL:Nil

 create:YES

 error:nil];

942 | Chapter 22: iCloud

 return [documentsUrl URLByAppendingPathComponent:paramFileName];

}

Next, we have to implement a method that we will soon use to enumerate through the
metadata items returned by the metadata query:

- (void) enumerateMetadataResults:(NSArray *)paramResults{

 [paramResults enumerateObjectsUsingBlock:

 ^(NSMetadataItem *item, NSUInteger index, BOOL *stop) {

 NSString *itemName = [item valueForAttribute:NSMetadataItemFSNameKey];

 NSURL *itemURL = [item valueForAttribute:NSMetadataItemURLKey];

 NSNumber *itemSize = [item valueForAttribute:NSMetadataItemFSSizeKey];

 NSLog(@"Item name = %@", itemName);

 NSLog(@"Item URL = %@", itemURL);

 NSLog(@"Item Size = %llu",

 (unsigned long long)[itemSize unsignedLongLongValue]);

 }];

}

Last but not least, we will implement the handleMetadataQueryFinished: method,
which will get called by the notification center when the metadata query finishes search‐
ing for the query:

- (void) handleMetadataQueryFinished:(id)paramSender{

 NSLog(@"Search finished");

 if ([[paramSender object] isEqual:self.metadataQuery] == NO){

 NSLog(@"An unknown object called this method. Not safe to proceed.");

 return;

 }

 /* Stop listening for notifications as we are not expecting

 anything more */

 [[NSNotificationCenter defaultCenter] removeObserver:self];

 /* We are done with the query, let's stop the process now */

 [self.metadataQuery disableUpdates];

 [self.metadataQuery stopQuery];

 [self enumerateMetadataResults:self.metadataQuery.results];

 if ([self.metadataQuery.results count] == 0){

 NSLog(@"No files were found.");

 }

 NSURL *urlForFileIniCloud =

22.4. Searching for Files and Folders in iCloud | 943

 [self urlForRandomFileInDocumentsFolderInIcloud];

 if (urlForFileIniCloud == nil){

 NSLog(@"Cannot create a file with this URL. URL is empty.");

 return;

 }

 NSString *fileName = [[[urlForFileIniCloud path]

 componentsSeparatedByString:@"/"] lastObject];

 NSURL *urlForFileInAppSandbox =

 [self urlForRandomFileInDocumentsFolderForFileWithName:fileName];

 NSString *fileContent =

 [[NSString alloc] initWithFormat:@"Content of %@",

 [[self urlForRandomFileInDocumentsFolderInIcloud] path]];

 /* Save the file temporarily in the app bundle and then move

 it to the cloud */

 NSError *writingError = nil;

 BOOL couldWriteToAppSandbox =

 [fileContent writeToFile:[urlForFileInAppSandbox path]

 atomically:YES

 encoding:NSUTF8StringEncoding

 error:&writingError];

 /* If cannot save the file, just return from method because it

 won't make any sense to continue as we, ideally, should have

 stored the file in iCloud from the app sandbox but here, if an

 error has occurred, we cannot continue */

 if (couldWriteToAppSandbox == NO){

 NSLog(@"Failed to save the file to app sandbox. Error = %@",

 writingError);

 return;

 }

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 /* Now move the file to the cloud */

 NSError *ubiquitousError = nil;

 BOOL setUbiquitousSucceeded =

 [fileManager setUbiquitous:YES

 itemAtURL:urlForFileInAppSandbox

 destinationURL:urlForFileIniCloud

 error:&ubiquitousError];

 if (setUbiquitousSucceeded){

 NSLog(@"Successfully moved the file to iCloud.");

 /* The file has been moved from App Sandbox to iCloud */

 } else {

 NSLog(@"Failed to move the file to iCloud with error = %@",

 ubiquitousError);

944 | Chapter 22: iCloud

 }

}

You can now go ahead and run the app and see for yourself. Once you open and close
the app a few times, you will be able to see something similar to Figure 22-8 in the
Settings app on your iOS device.

Our app creates a new file only when the metadata query finishes. The metadata query
gets fired when our app delegate is started by iOS. Therefore, if you simply open the
app and press the Home button on your iOS device, and then open the app again, the
app might not create a new file since the app was simply sent to the background instead
of being terminated and reopened. To make sure the app creates a new file every time
you open it, before opening the app, close it manually from the apps bar in iOS by
double-pressing the Home button and closing the app from the list of running apps.

Figure 22-8. The list of random files that the app has created in iCloud

See Also
Recipe 22.5

22.4. Searching for Files and Folders in iCloud | 945

22.5. Storing User Documents in iCloud

Problem
You want to allow your users to create documents in your app, and you want to have
those documents present on all devices that the user owns.

Solution
Use UIDocument.

Discussion
Although a user can have many files of different types stored on her device by different
apps, each app has to be considerate of the amount of data that it puts in the user’s iCloud
storage. Therefore, only the data that the user generates while using your app should be
saved to the user’s iCloud storage space. For instance, if you are creating a web-browser
app, the data that your browser app caches on disk on the device should not be stored
in the cloud. Why? Because that data was not generated by the user. Your app simply
was trying to give a better user experience by caching the data so that the next time it
accessed the same series of web pages, the pages would load faster. If you look at it from
the user’s perspective, she didn’t really ask you to cache the data. What’s even worse is
that your app is now using the user’s iCloud storage (for which she probably paid) to
store cached data. That is simply wrong. You must tell the user what data your app is
storing in the cloud, and if she doesn’t allow you to use her cloud storage space, you
should avoid using that space and just store the data locally in your app’s sandbox.

One of the most confusing aspects of iCloud is how you, as the programmer, will need
to manage the data stored in the cloud. Before iCloud, as programmers, we were only
concerned about the data we stored in the app’s sandbox. Now we need to learn about
a secondary storage space called iCloud storage. A lot of programmers tend to get con‐
fused when it comes to iCloud storage, and I personally think that Apple might have
made it a bit complicated in its documentation. Perhaps this is something that will be
solved at a later stage of iOS development, but for now, here are a few key points you
will need to learn in order to integrate iCloud storage into your apps and allow the
loading and saving of users’ documents from and to iCloud:

1. A file that is present on the user’s cloud storage is ubiquitous. Ubiquitous files are
files that are stored outside an app’s sandbox. We will talk about these more, but for
now, remember that a ubiquitous file is a file that is no longer present in the app’s
sandbox, but rather in the cloud.

2. We have to subclass the UIDocument class in order to manage users’ documents.
Each document will be given a ubiquitous URL to load its contents from. In the

946 | Chapter 22: iCloud

subclass, all we really have to do is implement two very important methods that will
allow iOS to pass data to us (when iOS reads the data from iCloud) and for us to
be able to pass data to iOS to store on iCloud.

3. Your ubiquitous files do not necessarily have to be in your app sandbox. If you want
to store a file in iCloud, you will simply retrieve a direct URL to the iCloud folder
(more on this later) and place your files there.

4. Before you go and create files in the user’s iCloud storage, you must first query the
iCloud storage to see if that file already exists or not.

5. Each app has an identifier; iCloud uses that identifier to separate the iCloud files
for that app from files from other apps present on users’ iOS devices. If you use the
same app identifier across multiple apps, all those apps will be able to share one
another’s iCloud storage space. This can be good if you are developing a “lite” ver‐
sion of your app and you want the full version to be able to access the iCloud storage
of the “lite” version of your app and vice versa.

6. You can search for files in your app’s iCloud storage for the current user, using the
NSMetadataQuery class (refer to Recipe 22.4 for more information).

In this recipe, we would like to write an app that simply creates a document for the user
(text file) and allows him to edit that document. In the background, we will save that
document to iCloud so that if he has another iOS device set up with the same iCloud
credentials (username and password), he can see the most up-to-date version of the file,
regardless of which iOS device he is editing it on. Here is the checklist for this app:

1. We need to set up the appropriate provision profiles for the app, as well as entitle‐
ments (see Recipe 22.1 for more information).

2. Now we have to give the document a name (for now, let’s call the document file
UserDocument.txt).

3. When the app opens (whether it is for the first time or not), we will fire up a metadata
query and try to find the file in the user’s iCloud storage. If that file already exists,
we will retrieve its URL. If that file doesn’t exist, we will create an empty/dummy
file in that URL.

4. Now that we have the URL for the document file in the user’s iCloud storage, we
will open that document into the instance of the subclass of UIDocument. We will
learn about this in a minute.

Something that can confuse any programmer is using the UIDocument class—but to be
perfectly honest, if you want to start with the basics, there are only four things you need
to learn about this class:

1. You must always subclass this class. This class itself doesn’t know how to load its
contents or how to pass its contents as data to iOS to store in the cloud.

22.5. Storing User Documents in iCloud | 947

2. You must initialize this class with the URL of a file. In this recipe, we will pass the
URL of a file in the user’s cloud storage to the designated initializer of this class.

3. In your subclass, you must override the contentsForType:error: instance method
of UIDocument. The return value of this method can be an NSData snapshot of the
document you are managing. For instance, if it is a text file whose URL you passed
to the initializer of your document class, then you must simply convert that text
(presumably in the form of NSString) to NSData and return that data as the return
value of this method. iOS calls this method in your document whenever it needs to
store that data to the cloud or needs to read that content to present it to the user.

4. You must override the loadFromContents:ofType:error: instance method of
your UIDocument subclass. In this method, iOS passes you the data (that perhaps
was read from the cloud storage), and you must read that data into text (if text is
what your document manages).

So, assuming that we have already set up the app with iCloud (see Recipe 22.1), we will
go ahead and start subclassing UIDocument. In this recipe, we want to create a Docu‐
ments folder in the user’s iCloud storage for the app (if this folder doesn’t exist yet). We
will then read from/store a file named UserDocument.txt in this folder. Follow these

steps to subclass the UIDocument class:

1. In Xcode, select File → New → New File... from the menus.

2. In the New File dialog, make sure the Cocoa Touch subcategory of the iOS category
is selected on the lefthand side. Then select the Objective-C class item on the right‐
hand side of the dialog and press the Next button (see Figure 22-9).

3. On the next screen, name your new class CloudDocument and make sure you are
subclassing UIDocument, as shown in Figure 22-10. Once you are done, press the
Next button.

4. In the next dialog, select where you wish to save the new class and press the Create
button.

Now that we have the UIDocument subclass, we need to see how we can initialize it.
The designated initializer of UIDocument class is the initWithFileURL: method. How‐
ever, we need to change this a bit, as we are going to need a delegate object as well. Why
do we need a delegate object? you might be asking. We want to let the delegate object
know whenever iOS downloads a newer version of the document from iCloud. Imagine
this scenario: the user has two iOS devices running your app, and she has already set
up those devices with her iCloud credentials. Now she opens your app on her iPhone
and starts writing some text into the text view. She leaves the app and goes to run some
errands. She comes back and picks up her iPad (as opposed to her iPhone, which she
originally used to write content in the app), and sees that the app picked up the latest
version of the document and shows that content. Remember that the app is still present

948 | Chapter 22: iCloud

Figure 22-9. Beginning to create a new document class

Figure 22-10. Subclassing UIDocument

22.5. Storing User Documents in iCloud | 949

in the background on her iPhone. She adds some text to the document on the iPad and
goes back to the iPhone. At this point, iCloud has probably already picked up the version
that her iPad synced to the cloud and has downloaded that document into her iPhone.
At this point, the document object has to be intelligent enough to present the new
content to a delegate object. In this case, we can nominate the view controller (the owner
of the text view) as the delegate object of the document. The whole point is that we need
to create a delegate object that will be notified whenever iCloud gives a new version of
data, which we need to initialize the document. Let’s define this protocol in the header
file of the document and define a new designated initializer for the class:

#import <UIKit/UIKit.h>

@class CloudDocument;

@protocol CloudDocumentProtocol<NSObject>

- (void) cloudDocumentChanged:(CloudDocument *)paramSender;

@end

@interface CloudDocument : UIDocument

@property (nonatomic, strong) NSString *documentText;

@property (nonatomic, weak) id<CloudDocumentProtocol> delegate;

/* Designated Initializer */

- (id) initWithFileURL:(NSURL *)paramURL

 delegate:(id<CloudDocumentProtocol>)paramDelegate;

@end

Here is a brief description of what is going on in this header file:

The CloudDocumentProtocol protocol
This is the protocol that this document’s delegate object has to adapt in order to
stay up to date about the changes to the current document that are brought into the
user’s current device via iCloud.

The documentText string
This is a simple string that we will use to house the content of the document. The
user will pass the URL of the file that we need to initialize the document to the class’s
designated initializer. The UIDocument class will then read the contents of that URL
for us (we don’t have to do it manually) and will pass the data of that file to the class.
All we have to do is convert that data to the format we are managing in the document
(in this case, NSString).

The initWithFileURL:delegate: designated initializer
This is the class’s designated initializer, and very similar to the designated initializer
of the superclass. The difference is that we are asking for a second parameter that
will be the delegate of an instance of the class. We will keep the delegate object

950 | Chapter 22: iCloud

updated whenever new content is downloaded by iOS from iCloud for the docu‐
ment we are managing.

We will follow that with the implementation of the class’s designated initializer:

#import "CloudDocument.h"

@implementation CloudDocument

- (id) initWithFileURL:(NSURL *)paramURL

 delegate:(id<CloudDocumentProtocol>)paramDelegate{

 self = [super initWithFileURL:paramURL];

 if (self != nil){

 if (paramDelegate == nil){

 NSLog(@"Warning: no delegate is given.");

 }

 _delegate = paramDelegate;

 }

 return self;

}

- (id) initWithFileURL:(NSURL *)paramURL{

 return [self initWithFileURL:paramURL

 delegate:nil];

}

As described before, we shall now implement the contentsForType:error: instance
method of the class. This method gets called whenever iOS decides to read the contents
of the document that the instance of the class is managing. For instance, iOS might ask
the instance to say what contents it is managing so that iOS can store that content on
iCloud. In this method, we will simply convert the string to an instance of NSData and
return it:

- (id) contentsForType:(NSString *)typeName

 error:(NSError *__autoreleasing *)outError{

 if ([self.documentText length] == 0){

 self.documentText = @"New Document";

 }

 return [self.documentText dataUsingEncoding:NSUTF8StringEncoding];

}

22.5. Storing User Documents in iCloud | 951

We are setting a default text for the document if the text that we are
managing at the moment is empty, so that when the user first creates
a new document (our app creates the document for the user), the text
won’t be empty and the user at least sees something on the screen.

Moving on to the implementation of the loadFromContents:ofType:error: instance
method of the document class now, we shall simply read the content that is passed to
us as the first parameter of this method and turn it into the text that the document
instance is managing. This method gets called when iOS reads the contents of the URL
with which the instance of the class gets initialized. So we will take the data and turn it
into a string in this example. In addition to that, we also let the delegate object know (if
one is set) that the text the instance is managing has changed:

- (BOOL) loadFromContents:(id)contents

 ofType:(NSString *)typeName

 error:(NSError *__autoreleasing *)outError{

 NSData *data = (NSData *)contents;

 if ([data length] == 0){

 self.documentText = @"New Document";

 } else {

 self.documentText = [[NSString alloc]

 initWithData:data

 encoding:NSUTF8StringEncoding];

 }

 if ([_delegate respondsToSelector:@selector(cloudDocumentChanged:)]){

 [_delegate cloudDocumentChanged:self];

 }

 return YES;

}

In this method, we will notify the delegate object that the contents of
the document have changed, to give the delegate object a chance to
update things, such as the UI.

That was really all we had to implement in the document class. The rest of the heavy
lifting has to happen in the view controller. The first thing that we need to do in the
view controller is to find the iCloud path of the UserDocument.txt file we are creating

for the user. For this, as we learned in Recipe 22.3, we will use the URLForUbiqui
tyContainerIdentifier: instance method of NSFileManager. Also, as we learned in
Recipe 22.3, we will create a Documents directory in the app’s root iCloud directory if

952 | Chapter 22: iCloud

one doesn’t exist. Let’s begin with a method that returns the URL for the Documents
directory in iCloud for the app and creates the directory if it doesn’t exist already:

- (NSURL *) urlForDocumentsDirectoryInIcloud{

 NSURL *result = nil;

 NSString *teamID = @"F3FU372W5M";

 NSString *containerID = [[NSBundle mainBundle] bundleIdentifier];

 NSString *teamIdAndContainerId = [NSString stringWithFormat:@"%@.%@",

 teamID,

 containerID];

 NSFileManager *fileManager = [[NSFileManager alloc] init];

 NSURL *iCloudURL = [fileManager

 URLForUbiquityContainerIdentifier:teamIdAndContainerId];

 NSURL *documentsFolderURLIniCloud =

 [iCloudURL URLByAppendingPathComponent:@"Documents"

 isDirectory:YES];

 /* If it doesn't exist, create it */

 if ([fileManager

 fileExistsAtPath:[documentsFolderURLIniCloud path]] == NO){

 NSLog(@"The documents folder does NOT exist in iCloud. Creating...");

 NSError *folderCreationError = nil;

 BOOL created = [fileManager

 createDirectoryAtURL:documentsFolderURLIniCloud

 withIntermediateDirectories:YES

 attributes:nil

 error:&folderCreationError];

 if (created){

 NSLog(@"Successfully created the Documents folder in iCloud.");

 result = documentsFolderURLIniCloud;

 } else {

 NSLog(@"Failed to create the Documents folder in iCloud. \

 Error = %@", folderCreationError);

 }

 } else {

 NSLog(@"The Documents folder already exists in iCloud.");

 result = documentsFolderURLIniCloud;

 }

 return result;

}

22.5. Storing User Documents in iCloud | 953

We will use the URL returned by the urlForDocumentsDirectoryInIcloud method to
create the URL for the UserDocument.txt that the app wants to create/edit/manage:

- (NSURL *) urlForFileInDocumentsDirectoryIniCloud{

 return [[self urlForDocumentsDirectoryInIcloud]

 URLByAppendingPathComponent:@"UserDocument.txt"];

}

Now let’s go to the declaration of our view controller and define the appropriate instance
variables. We need:

1. An instance of the CloudDocument class that will manage the document in the cloud.

2. An instance of the UITextView class that we will use to allow the user to enter his
text, which we will sync to iCloud as he types.

3. An instance of the NSMetadataQuery class that we will use to find the existing
document in the cloud, if one exists.

#import "ViewController.h"

#import "CloudDocument.h"

@interface ViewController () <CloudDocumentProtocol, UITextViewDelegate>

@property (nonatomic, strong) CloudDocument *cloudDocument;

@property (nonatomic, strong) UITextView *textViewCloudDocumentText;

@property (nonatomic, strong) NSMetadataQuery *metadataQuery;

@end

@implementation ViewController

<# Rest of your view controller's code goes here #>

Now that we have the text view declared, let’s instantiate it:

- (void) setupTextView{

 /* Create the text view */

 CGRect textViewRect = CGRectMake(20.0f,

 20.0f,

 self.view.bounds.size.width - 40.0f,

 self.view.bounds.size.height - 40.0f);

 self.textViewCloudDocumentText = [[UITextView alloc] initWithFrame:

 textViewRect];

 self.textViewCloudDocumentText.delegate = self;

 self.textViewCloudDocumentText.font = [UIFont systemFontOfSize:20.0f];

 [self.view addSubview:self.textViewCloudDocumentText];

}

954 | Chapter 22: iCloud

We will be using this method in the viewDidLoad method of the view controller, which
will be discussed soon. Now let’s start implementing a method that will allow the view
controller to react to keyboard notifications. As was discussed in Recipe 17.3, when the
user starts to change the text in the text view, the keyboard will pop up (if a Bluetooth
keyboard isn’t set up) and the keyboard will cover almost half of the iPhone screen. So
in this case, we need to change the content inset of the text view. We start by listening
to keyboard notifications:

- (void) listenForKeyboardNotifications{

 /* As we have a text view, when the keyboard shows on screen, we want to

 make sure our textview's content is fully visible so start

 listening for keyboard notifications */

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(handleKeyboardWillShow:)

 name:UIKeyboardWillShowNotification

 object:nil];

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(handleKeyboardWillHide:)

 name:UIKeyboardWillHideNotification

 object:nil];

}

The next thing to take care of is to search for existing user documents when the view
controller’s view is loaded (in the viewDidLoad method). If a document exists in the
cloud, then we will load that; if not, we will create a new document:

- (void) startSearchingForDocumentIniCloud{

 /* Start searching for existing text documents */

 self.metadataQuery = [[NSMetadataQuery alloc] init];

 NSPredicate *predicate = [NSPredicate predicateWithFormat:@"%K like %@",

 NSMetadataItemFSNameKey,

 @"*"];

 [self.metadataQuery setPredicate:predicate];

 NSArray *searchScopes = [[NSArray alloc] initWithObjects:

 NSMetadataQueryUbiquitousDocumentsScope,

 nil];

 [self.metadataQuery setSearchScopes:searchScopes];

 NSString *metadataNotification =

 NSMetadataQueryDidFinishGatheringNotification;

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(handleMetadataQueryFinished:)

 name:metadataNotification

22.5. Storing User Documents in iCloud | 955

 object:nil];

 [self.metadataQuery startQuery];

}

Let’s utilize all these methods in the view controller:

- (void)viewDidLoad{

 [super viewDidLoad];

 [self listenForKeyboardNotifications];

 self.view.backgroundColor = [UIColor brownColor];

 [self setupTextView];

 [self startSearchingForDocumentIniCloud];

}

In the startSearchingForDocumentIniCloud method, we started listening for NSMeta
dataQueryDidFinishGatheringNotification notifications on the handleMetadata
QueryFinished: method. We need to have a look at the implementation of this method.
The way we have to implement this method is to first find out if the metadata query
could find any existing iCloud documents. If yes, then we will look for the specific
document that the app creates for the user, which is called UserDocument.txt. If this file

is found in the user’s cloud space, then we will open that document. If not, we will create
it:

- (void) handleMetadataQueryFinished:(NSNotification *)paramNotification{

 /* Make sure this is the metadata query that we were expecting... */

 NSMetadataQuery *senderQuery = (NSMetadataQuery *)[paramNotification object];

 if ([senderQuery isEqual:self.metadataQuery] == NO){

 NSLog(@"Unknown metadata query sent us a message.");

 return;

 }

 [self.metadataQuery disableUpdates];

 /* Now we stop listening for these notifications because we don't really

 have to, any more */

 NSString *metadataNotification =

 NSMetadataQueryDidFinishGatheringNotification;

 [[NSNotificationCenter defaultCenter] removeObserver:self

 name:metadataNotification

 object:nil];

 [self.metadataQuery stopQuery];

 NSLog(@"Metadata query finished.");

 /* Let's find out if we had previously created this document in the user's

 cloud space because if yes, then we have to avoid overwriting that

 document and just use the existing one */

956 | Chapter 22: iCloud

 __block BOOL documentExistsIniCloud = NO;

 NSString *FileNameToLookFor = @"UserDocument.txt";

 NSArray *results = self.metadataQuery.results;

 [results

 enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {

 NSMetadataItem *item = (NSMetadataItem *)obj;

 NSURL *itemURL = [item valueForAttribute:NSMetadataItemURLKey];

 NSString *lastComponent = [[itemURL pathComponents] lastObject];

 if ([lastComponent isEqualToString:FileNameToLookFor]){

 if ([itemURL

 isEqual:[self urlForFileInDocumentsDirectoryIniCloud]]){

 documentExistsIniCloud = YES;

 *stop = YES;

 }

 }

 }];

 NSURL *urlOfDocument = [self urlForFileInDocumentsDirectoryIniCloud];

 self.cloudDocument = [[CloudDocument alloc] initWithFileURL:urlOfDocument

 delegate:self];

 __weak ViewController *weakSelf = self;

 /* If the document exists, open it */

 if (documentExistsIniCloud){

 NSLog(@"Document already exists in iCloud. Loading it from there...");

 [self.cloudDocument openWithCompletionHandler:^(BOOL success) {

 if (success){

 ViewController *strongSelf = weakSelf;

 NSLog(@"Successfully loaded the document from iCloud.");

 strongSelf.textViewCloudDocumentText.text =

 strongSelf.cloudDocument.documentText;

 } else {

 NSLog(@"Failed to load the document from iCloud.");

 }

 }];

 } else {

 NSLog(@"Document does not exist in iCloud. Creating it...");

 /* If the document doesn't exist, ask the CloudDocument class to

 save a new file on that address for us */

 [self.cloudDocument

 saveToURL:[self urlForFileInDocumentsDirectoryIniCloud]

 forSaveOperation:UIDocumentSaveForCreating

 completionHandler:^(BOOL success) {

 if (success){

 NSLog(@"Successfully created the new file in iCloud.");

 ViewController *strongSelf = weakSelf;

22.5. Storing User Documents in iCloud | 957

 strongSelf.textViewCloudDocumentText.text =

 strongSelf.cloudDocument.documentText;

 } else {

 NSLog(@"Failed to create the file.");

 }

 }];

 }

}

What is left now is to listen for changes in the text view—once the changes have been
applied by the user, we will try to save them into the document. We do this by imple‐
menting the textViewDidChange: delegate method of the UITextViewDelegate pro‐
tocol:

- (void) textViewDidChange:(UITextView *)textView{

 self.cloudDocument.documentText = textView.text;

 [self.cloudDocument updateChangeCount:UIDocumentChangeDone];

}

With this method, we let the document know that the user has updated the contents of
the text in the text view. We call the updateChangeCount: instance method of UIDocu
ment to get the document to reflect those changes to the cloud. We also have to imple‐
ment the cloudDocumentChanged: delegate method of the CloudDocumentProtocol
protocol, and change the text inside the text view when the text in the document changes.
This method will get called, for instance, when the user opens the app in two devices
with the same iCloud credentials changes the document in one device, and leaves the
document open in the other device. The second device’s iCloud daemon will then re‐
trieve the latest version of the document from the cloud, and the document class will
call the cloudDocumentChanged: delegate message to give us a chance to update the UI:

- (void) cloudDocumentChanged:(CloudDocument *)paramSender{

 self.textViewCloudDocumentText.text = paramSender.documentText;

}

Before we forget, we also have to implement the keyboard notification handlers:

- (void) handleKeyboardWillShow:(NSNotification *)paramNotification{

 NSDictionary *userInfo = [paramNotification userInfo];

 NSValue *animationDurationObject =

 [userInfo valueForKey:UIKeyboardAnimationDurationUserInfoKey];

 NSValue *keyboardEndRectObject =

 [userInfo valueForKey:UIKeyboardFrameEndUserInfoKey];

 double animationDuration = 0.0;

 CGRect keyboardEndRect = CGRectMake(0.0f, 0.0f, 0.0f, 0.0f);

958 | Chapter 22: iCloud

 [animationDurationObject getValue:&animationDuration];

 [keyboardEndRectObject getValue:&keyboardEndRect];

 UIWindow *window = [[[UIApplication sharedApplication] delegate] window];

 /* Convert the frame from window's coordinate system to

 our view's coordinate system */

 keyboardEndRect = [self.view convertRect:keyboardEndRect

 fromView:window];

 [UIView animateWithDuration:animationDuration animations:^{

 CGRect intersectionOfKeyboardRectAndWindowRect =

 CGRectIntersection(self.view.frame, keyboardEndRect);

 CGFloat bottomInset =

 intersectionOfKeyboardRectAndWindowRect.size.height;

 self.textViewCloudDocumentText.contentInset =

 UIEdgeInsetsMake(0.0f,

 0.0f,

 bottomInset,

 0.0f);

 }];

}

- (void) handleKeyboardWillHide:(NSNotification *)paramNotification{

 if (UIEdgeInsetsEqualToEdgeInsets

 (self.textViewCloudDocumentText.contentInset,

 UIEdgeInsetsZero)){

 /* Our text view's content inset is intact so no need to

 reset it */

 return;

 }

 NSDictionary *userInfo = [paramNotification userInfo];

 NSValue *animationDurationObject =

 [userInfo valueForKey:UIKeyboardAnimationDurationUserInfoKey];

 double animationDuration = 0.0;

 [animationDurationObject getValue:&animationDuration];

 [UIView animateWithDuration:animationDuration animations:^{

 self.textViewCloudDocumentText.contentInset = UIEdgeInsetsZero;

 }];

}

22.5. Storing User Documents in iCloud | 959

Go ahead and run this app on a device. It is actually better if you can run the same app
on two iOS devices with the same iCloud credentials, and then update the document
on one device and wait for the second device to automatically update its contents from
the cloud.

After you execute any iCloud-related command to iOS, the operating system will do the
work for you immediately and return the results either synchronously or asynchro‐
nously. But that doesn’t mean that the updates have really happened then and there. In
fact, iOS may batch all those updates that you request of it and perform them at a later
time, perhaps even when your app is not running in the foreground. If iCloud operations
for your app are pending in this manner when the user attempts to delete your app from
her device, she will get an alert from iOS letting her know that if she deletes your app,
all pending changes will be discarded (see Figure 22-11).

Figure 22-11. User deleting an app with pending iCloud operations

In edge cases like this, your user may end up deleting the app and consequently losing
the pending changes. But apart from this unusual situation, you can be sure that the

960 | Chapter 22: iCloud

commands that you issue to iCloud will be carried out in due time and all these oper‐
ations will be transparent to you and the user.

See Also
Recipe 17.3; Recipe 22.1; Recipe 22.3

22.6. Managing the State of Documents in iCloud

Problem
You want to be able to detect conflicts and other issues that could occur as a result of
syncing documents to iCloud.

Solution
Start listening to the UIDocumentStateChangedNotification notification.

I highly recommend reading Recipe 22.5 before proceeding with this
recipe, as the material described here highly relies on what was taught
in that section.

Discussion
The UIDocumentStateChangedNotification notification gets sent when the state of an
iCloud document (of type UIDocument) is changed. The object carried by this notifica‐
tion is the instance of the UIDocument whose state was changed. You can listen to this
notification and then analyze the documentState property of your iCloud document;
this property is of type UIDocumentState and can be a mixture of these values:

UIDocumentStateNormal

Things are normal, and no conflicts have occurred in the document.

UIDocumentStateClosed

This means that the document has not yet been opened, or was open and has just
been closed. You might want to disallow the user from editing the document while
the document is in this state. Apple recommends that you do not display alert views
to your users, but instead, perhaps, display graphical components on the screen to
indicate to the user that editing has been disabled.

UIDocumentStateInConflict

This state indicates that a conflict has happened in the document. For instance, the
same document could had been edited by two or more people at the same time,
causing a conflict. In such cases, you will have two options. Either fix the conflict

22.6. Managing the State of Documents in iCloud | 961

programmatically for the user or prompt the user to choose which version of that
document she wants to keep.

UIDocumentStateSavingError

This document state indicates that an error has occurred in saving the document
to iCloud. You might want to allow the user to continue editing the document while
the document is in this state but there is no guarantee as to whether the user changes
will be saved to iCloud or not. Obviously, you might want to implement some smart
mechanisms in your apps that will temporarily store the contents of the document
in the app bundle while the document is in this state, and reflect those changes to
iCloud at a later time. The solution is up to you. Alternatively, you might want to
let your users know that an error has happened to the document and that there is
a possibility of data loss.

UIDocumentStateEditingDisabled

This state indicates that editing has been disabled on the document because of an
error. It is best in this case to disallow the user from editing the document.

As explained before, the documentState property of UIDocument can
be a mixture of the aforementioned values.

To demonstrate how we can take advantage of the UIDocumentStateChangedNotifica
tion notification, let’s build on top of the example code in Recipe 22.5 and change the
viewDidLoad method of the view controller to subscribe to this notification:

- (void) listenForDocumentStateChangesNotification{

 /* Start listening for the Document State Changes notification */

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(handleDocumentStateChanged:)

 name:UIDocumentStateChangedNotification

 object:nil];

}

- (void)viewDidLoad{

 [super viewDidLoad];

 [self listenForDocumentStateChangesNotification];

 [self listenForKeyboardNotifications];

 self.view.backgroundColor = [UIColor brownColor];

 [self setupTextView];

 [self startSearchingForDocumentIniCloud];

}

962 | Chapter 22: iCloud

We have elected the handleDocumentStateChanged: method of the view controller to
listen for the UIDocumentStateChangedNotification notification. Now let’s go ahead
and implement this method:

- (void) handleDocumentStateChanged:(NSNotification *)paramNotification{

 NSLog(@"Document state has changed");

 NSLog(@"Notification Object = %@", [paramNotification object]);

 NSLog(@"Notification Object Class = %@",

 NSStringFromClass([[paramNotification object] class]));

 CloudDocument *senderDocument = (CloudDocument *)paramNotification.object;

 NSLog(@"Document State = %d", senderDocument.documentState);

 /* Since we don't yet know how to solve conflicts, we will disallow

 the user from editing the document if an error of any sort has happened.

 Later when we will learn about handling conflicts, we will handle

 these issues more gracefully */

 if (senderDocument.documentState & UIDocumentStateInConflict){

 NSLog(@"Conflict found in the document.");

 self.textViewCloudDocumentText.editable = NO;

 }

 if (senderDocument.documentState & UIDocumentStateClosed){

 NSLog(@"Document is closed.");

 self.textViewCloudDocumentText.editable = NO;

 }

 if (senderDocument.documentState & UIDocumentStateEditingDisabled){

 NSLog(@"Editing is disabled on this document.");

 self.textViewCloudDocumentText.editable = NO;

 }

 if (senderDocument.documentState & UIDocumentStateNormal){

 NSLog(@"Things are normal. We are good to go.");

 self.textViewCloudDocumentText.editable = YES;

 }

 if (senderDocument.documentState & UIDocumentStateSavingError){

 NSLog(@"A saving error has happened.");

 self.textViewCloudDocumentText.editable = NO;

 }

}

As you can see, we are using if statements instead of else-if statements in this example,
simply because the state of a cloud document can be more than one of the aforemen‐
tioned values at the same time. Therefore, we have to be able to handle them in
conjunction.

22.6. Managing the State of Documents in iCloud | 963

See Also
Recipe 22.5

964 | Chapter 22: iCloud

CHAPTER 23

Pass Kit

23.0. Introduction
We’re all familiar with coupons and tickets. For instance, you may go to a coffee shop
that gives you a loyalty card that offers you a free cup of coffee after you have accumu‐
lated some number of stamps for previous coffee purchases. We also use coupons when
we shop. You can buy X amount of food and the shop may give you a coupon to spend
when you next shop there.

Figure 23-1 depicts what a simple railway ticket (presented as a pass) looks like in Pass‐
book on a real iOS device.

iOS apps can use the Passbook framework to interact with passes as well. Going back
to the coffee shop example, the app for this coffee shop may allow him to top up his
loyalty card with cash to allow him to take advantage of other cool things that the shop
has to offer, such as WiFi access across the country. So, when the user opens the app, it
will detect a pass in his Passbook database related to the coffee shop, allow the user to
top the pass up right there on his phone, and then contact a barista to say that the pass
installed on the device has been topped up with cash.

Pass Kit is how Apple represents this type of transaction digitally. So let’s get our ter‐
minology right before we dig any deeper:

Pass Kit
The framework Apple provides to developers to allow digitally signed passes to be
delivered to compatible iOS devices running iOS 6 or later.

Passbook
The client application on iOS 7 devices able to store, handle, and manage passes
created by developers.

Figure 23-1. A railway ticket presented as a pass in Passbook on an iOS device

Therefore, we as developers will be using Pass Kit to create digitally signed passes and
deliver them to our users. Our users will use Passbook on their devices to interact with
the passes we create for them. Of course, this allows us developers to deliver coupons,
rail passes, public transportation tickets, loyalty cards, and so on to our users in the
form of digitally signed passes instead of the traditional, paper-based approach where
people have to carry multiple cards in their wallets. Passbook on iOS devices is the place
where all this content can be stored in a single place, without users having to carry all
these passes.

Before attempting to use new technology, you should get a grasp of the big picture: the
high-level design of the technology and how it enables us to achieve our goals. For Pass
Kit, I have broken this big picture down into small steps so that you can learn how you
can use it to deliver digitally signed passes to your users:

1. The developer creates a certificate and its corresponding private key using Apple’s
Provisioning Portal.

2. The developer then creates a series of files that will represent the pass that the user
will be given later.

966 | Chapter 23: Pass Kit

966

3. The developer signs the created pass with the certificate that she created at the first
step.

4. The developer delivers the pass to the user through various means of delivery.

5. The user will see the pass and will have the opportunity to add that pass to her
device.

6. Once the pass is added to the user’s device, Passbook will retain it for future use
until the user decides to delete the pass.

I know that it can be difficult to understand the big picture simply by reading a few
paragraphs of text. Figure 23-2 shows the sequence in more detail.

Figure 23-2. Creating and distributing digitally signed passes to users, iOS 6 and above

23.0. Introduction | 967

The recipes in this chapter will thoroughly explain the details of this process. A few bits
and pieces related to Pass Kit as a technology—keeping your pass up to date and learning
how to push updates from a server—require you to know a bit about server-side de‐
velopment. For the sake of simplicity, we won’t be covering those parts in this chapter
and instead will be focusing on creating passes. Once you know how to create a pass,
you can distribute it in a variety of ways, two of which are explained in this chapter.
However, parts that are not relevant to iOS, such as those that require server-side de‐
velopment knowledge, are skipped in this chapter for this reason.

23.1. Creating Pass Kit Certificates

Problem
You have decided to distribute digitally signed passes to your users and would like to
begin with the first step, creating certificates to sign your passes with.

Solution
Create your certificates in the iOS Provisioning Portal.

Discussion
As explained in this chapter’s Introduction, in order to distribute passes to your users,
you need to digitally sign them, and before doing that, you need to request a certificate
from Apple that will uniquely bind all your passes to your developer account. That way,
Apple knows which passes are legitimate and which ones are not.

Follow these steps to create your certificate:

1. Navigate your browser to the iOS Dev Center. I have avoided putting the URL to
the iOS Dev Center here, as this URL is subject to change and I don’t want to give
you the wrong URL. If you don’t know where this is, simply type it in a search engine
and I bet you will find it in a matter of seconds.

2. If you are not logged in already, log in now.

3. Once logged in, go to the Certificates, Identifiers & Profiles page.

4. Navigate to the Identifiers page and then the Pass Type IDs page on the lefthand
side of the screen.

5. When you first land there, the page might look empty. Find and press the plus (+)
button on the screen.

6. Now, in the Description box, enter text that will describe your Pass Type ID.

7. In the Identifier box, enter a reverse-domain-style identifier of your pass. For in‐
stance, if your App ID is com.pixolity.testingpasskit, then for passes that integrate

968 | Chapter 23: Pass Kit

with that app you can use pass.pixolity.ios.cookbook.testingpasses. The pass identi‐
fier is really something that should make sense to you and your application. How‐
ever, the practice is that the whole identifier name should start with pass. and then
you use whatever you wish for the rest of the identifier. Figure 23-3 demonstrates
how you can fill in the details in this page.

Figure 23-3. Filling in the details of a simple Pass Type ID

Once you are done populating the details in this page, press the Continue button. You
will then be presented with the overview of your pass. If you are happy with the infor‐
mation that you entered in the previous page, simply press the Register button (see
Figure 23-4). Now you have a Pass Type ID. However, this Pass Type ID is not linked to
any certificate. So now you have to associate your Pass Type ID to a certificate. That’s
also easy. Follow these steps to create the certificate and associate it with your Pass Type
ID.

23.1. Creating Pass Kit Certificates | 969

Figure 23-4. Confirm your Pass Type ID if you are happy with all the settings

1. In the Pass Type IDs section of the iOS Provisioning Portal, find the Pass Type ID
that you created and press the Settings button (see Figure 23-5). Under the Pass
Certificates column of the list, you can see that for your Pass Type ID, it will say
None. Under the Action column, select the Configure link.

Figure 23-5. Setting up our Pass Type ID

970 | Chapter 23: Pass Kit

2. After you select your Pass Type ID in the portal, you will be able to create a certificate
for it (see Figure 23-6). Simply press the Create Certificate button.

Figure 23-6. Ready to create a certificate for our Pass Type ID

3. You will now be instructed to create a certificate signing request using Keychain
Access on your Mac (Figure 23-7). Follow the instructions on the screen, and once
you have created your certificate signing request, press the Continue button on the
screen.

It is possible to create the certificate signing request on a non-Mac
machine. In order to do so, you need to make sure that Open SSL is
installed on that machine. The instructions on how to generate these
certificates on non-Mac machines are outside the scope of this book,
but if you are interested, a simple web search will help you under‐
stand the process on those machines.

23.1. Creating Pass Kit Certificates | 971

Figure 23-7. Follow the on-screen instructions to create a certificate signing request

The certificate requests that you create on your computer using Key‐
chain Access will also create a private key that is associated with that
certificate. Apple recommends that you back up your keychain data‐
base every now and then so that you won’t lose your private keys, as
Apple will not be saving your private keys on the iOS Provisioning
Portal. If you are moving to a new computer, you need to move your
private keys with you manually. That’s why they are called private keys.
Exporting private keys is simple: right-click your private key and press
the Export menu item.

972 | Chapter 23: Pass Kit

4. Now you will be asked on your browser to upload the certificate signing request to
Apple in order to retrieve your certificate. The private key was created on your
computer the moment you created the certificate signing request. The certificate
that Apple will issue you at the end of this process will match your private key. So
now select the Choose File button in this screen in order to select the certificate
signing request that the keychain created for you (see Figure 23-8) and once done,
press the Generate button.

Figure 23-8. Uploading the certificate signing request to Apple to get a certificate back

5. After the certificate has been generated, you will be presented with a screen similar
to Figure 23-9. Press the Download button on this screen to download the generated
certificate.

23.1. Creating Pass Kit Certificates | 973

Figure 23-9. Apple letting you know that your certificate was created successfully

6. Now you should have the downloaded certificate on your disk. Locate that file and
double-click on it in order to import it into your Keychain. To make sure everything
worked successfully, open Keychain Access on your computer and navigate to the
Login section and then the My Certificate subsection. Now on the righthand side
of the screen, confirm that your certificate is present and that it is associated with
a private key, as shown in Figure 23-10.

974 | Chapter 23: Pass Kit

Figure 23-10. The Apple-generated certificate is correctly associated with a private key

You are now done creating your certificate and ready to sign your passes, ready to be
sent to iOS devices.

See Also
Recipe 23.0, “Introduction”

23.2. Creating Pass Files

Problem
You want to create a pass file that represents the data that you want your users to hold
in their iOS devices.

Solution
Create a pass.json file and populate it with appropriate keys and values.

Discussion
Apple has chosen JSON files to represent passes for Pass Kit. JSON stands for JavaScript
Object Notation and is extensively used in web applications and services. However, as
an iOS developer, you don’t necessarily have to know about JSON files.

23.2. Creating Pass Files | 975

JSON files are simple key-value files, just like a dictionary. A key can have a value and
the value can range from a simple string to a dictionary that contains keys and values
itself. Here is a simple JSON that will pretty much demonstrate all there is to know about
JSON files:

{

 "key 2 - dictionary" = {

 "key 2.1" = "value 2.1";

 "key 2.2" = "value 2.2";

 };

 "key 3 - array" = (

 {

 "array item 1, key1" = value;

 "array item 1, key2" = value;

 },

 {

 "array item 2, key1" = value;

 "array item 2, key2" = value;

 }

);

 key1 = value1;

}

You can see that dictionaries are represented with square brackets and arrays with curly
brackets. Other values are just simple key value pairs. If we were to represent this same
JSON object with a normal NSDictionary, this is what the resulting code would be:

NSDictionary *json = @{

 @"key1" : @"value1",

 @"key 2 - dictionary" : @{

 @"key 2.1" : @"value 2.1",

 @"key 2.2" : @"value 2.2",

 },

 @"key 3 - array" : @[

 @{

 @"array item 1, key1" : @"value",

 @"array item 1, key2" : @"value"

 },

 @{

 @"array item 2, key1" : @"value",

 @"array item 2, key2" : @"value"

 }

]

 };

For more information about JSON, you can refer to JSON.org. Let’s move on to creating
our pass files. A pass file, as mentioned before, is a simple JSON file. Don’t confuse pass
files with passes. A pass is a collection of files, including the pass.json file, that will, as a

whole, represent the digitally signed pass that users can install on their devices. A pass
file is a file that explains how the pass should appear on the device.

976 | Chapter 23: Pass Kit

http://www.json.org

The pass.json file can be constructed using high- and low-level keys. High-level keys are

the keys that will be immediately visible in the top hierarchy of the pass.json file. The

low-level keys will appear as children of the high-level keys. Don’t worry if this sounds
confusing for now. I know I was confused when I first heard about this, but if you read
on, I promise it will all click eventually.

Let’s start by creating a pass.json in Xcode. I should warn you that Xcode is unfortunately

not the best editor for JSON files; however, it is our primary IDE, so we will stick with
it. Follow these steps to create a pass.json file:

1. Create an empty iOS project in Xcode by choosing File → New → Project...

2. On the lefthand side of the New Project dialog, make sure you are under the iOS
category. Then choose Other and on the righthand side, choose Empty, as shown
in Figure 23-11. Once done, press the Next button.

Figure 23-11. Creating an empty iOS project

3. Now, give your project a name under the Product Name box and once done, press
the Next button. Now you get the chance to save your file on disk. Once you have
successfully chosen the path to save the project, you are ready to create the pass.json

file.

4. In your new empty project, in Xcode, choose File → New → File...

23.2. Creating Pass Files | 977

5. In the New File dialog, make sure you are under the iOS category, and then choose
Other. On the righthand side, choose Empty, as shown in Figure 23-12. Once you
are done, press the Next button.

Figure 23-12. Adding an empty file to our project

6. After pressing the Next button, you are now asked to save this file on disk. Make
sure that you save this file as pass.json. Once you are done, press the Create button,

and your file is now added on disk and added to your project.

OK, fantastic: now we have our pass.json created on disk. We need to populate it with

some keys and values. Before we go into the details of the keys and the values, let me
show you a simple pass file populated with keys and values so that you can get a better
idea of what a pass file actually contains:

{

 "formatVersion" : 1,

 "passTypeIdentifier" : "<# Put your Pass Type ID here #>",

 "serialNumber" : "p69f2J",

 "teamIdentifier" : "<# Put your team ID here #>",

 "description" : "Train Ticket Example",

 "locations" : [

 {

 "longitude" : -0.170867,

978 | Chapter 23: Pass Kit

 "latitude" : 50.834948

 }

],

 "barcode" : {

 "message" : "1234567890",

 "format" : "PKBarcodeFormatPDF417",

 "messageEncoding" : "iso-8859-1"

 },

 "organizationName" : "O'Reilly Railways",

 "logoText" : "O'Reilly Railways",

 "foregroundColor" : "rgb(255, 255, 255)",

 "backgroundColor" : "rgb(100, 100, 100)",

 "boardingPass" : {

 "transitType" : "PKTransitTypeTrain",

 "primaryFields" : [

 {

 "key" : "departure",

 "label" : "Departs From",

 "value" : "Hove, 07:37",

 },

 {

 "key" : "departurePlatform",

 "label" : "Departs from Platform",

 "value" : "2",

 }

],

 "auxiliaryFields" : [

 {

 "key" : "arrival",

 "label" : "Arrives At",

 "value" : "London Bridge, 08:41"

 },

 {

 "key" : "arrivalPlatform",

 "label" : "Arrives at Platform",

 "value" : "13"

 }

],

 "backFields" : [

 {

 "key" : "oreillyRailways",

 "label" : "O'Reilly Railways",

 "value" : "For more information, visit www.oreilly.com"

 },

 {

 "key" : "termsAndConditions",

 "label" : "Terms and Conditions",

 "value" : "To be filled later"

 }

]

 }

}

23.2. Creating Pass Files | 979

I have intentionally left the teamIdentifier and passTypeIdentifi
er keys’ values empty. You need to make sure that you populate the
values of these keys to something that you have set up in your provi‐
sioning portal as a Pass Type ID. It is imperative that you fill the val‐
ues of these keys with accurate information.

Fantastic. Now we have our pass.json ready to be included in our digitally signed pass.

Remember, a pass is more than just the pass.json file. We need to include a handful of

images and a manifest file that will list all the files included in our pass.

Here are some of the most important keys that you can place in the pass.json file:

formatVersion

This key specifies the version of the pass format. Please set this value to the constant
value of 1.

passTypeIdentifier

This is the identifier of the pass that you created in the iOS Provisioning Portal
before, minus your team ID. For instance, if my full Pass Type ID is TEAMID.pass.pix‐
olity.testingpasskit, I will set the value of the pass identifier to pass.pixolity.testing‐
passkit.

teamIdentifier

This is your team identifier. To find this value, simply navigate to the main page of
iOS Dev Center, and then navigate to Member Center. Choose Your Account and
then Organization Profile. You should now be able to see a field that reads Company/
Organization ID. That is your Team ID. Simply copy and paste that value in this
key in your pass.json file.

description

A short description of what this pass is for. Accessibility in iOS will use this
description.

organizationName

This is the name of your company.

serialNumber

A unique serial number for your pass. You can make this up as you go. It should
make sense to you and your organization. Note that if two or more passes are using
the same pass type identifier, their serial numbers cannot be the same.

980 | Chapter 23: Pass Kit

barcode

A barcode for your pass. It is highly recommended that you include barcode in‐
formation with your digital passes. The keys that you can enter in this dictionary
are explained here:

message

The message to be encoded within your barcode.

format

The format of your barcode. The value of this key must be PKBarcodeFormat
Text, PKBarcodeFormatQR, PKBarcodeFormatPDF417, or PKBarcodeFormatAz
tec. A discussion of barcode formats is outside the scope of this book, so we
won’t go into details about barcodes and what each format means.

messageEncoding

The encoding that you want to use for your barcode. Leave the value of this key
at iso-8859-1.

logoText

This text will appear next to the logo of your pass in the Passbook app on the device.

foregroundColor

The foreground color of your pass. This value is specified in red, green, and blue
values, each ranging from 0 to 255 inclusive. Wrap the value inside an rgb() func‐
tion. For instance, for pure red color, specify rgb(255, 0, 0), or for white, specify
rgb(255, 255, 255).

backgroundColor

This is the background color of your pass, specified in the same format as the
foregroundColor.

Once you are done setting the values for these keys, you can now specify what type of
pass you are creating. You can do this by putting one of the following keys in your pass’s
top-level keys, just like all the previously mentioned keys:

The following keys in your pass.json will contain a dictionary of val‐

ues (keys and values) that will specifically dictate what the pass is for
and what values it contains.

eventTicket

This tells Passbook that your pass is for an event, such as a concert.

coupon

This tells Passbook that your pass is a coupon. For instance, the user can use a pass
like this to get some items more cheaply in the store that issued the pass.

23.2. Creating Pass Files | 981

storeCard

This tells Passbook that your pass is a store card (e.g., a loyalty card that you can
use in a store to collect points).

boardingPass

This tells Passbook that your pass is a boarding pass (e.g., for plane, train, or bus
travel).

generic

A pass that doesn’t fit into any of the aforementioned categories.

Once you have included one of these pass types as a key into your pass.json, it is now

time to specify the keys and values for the pass type dictionary (which we just talked
about). Each pass type dictionary can contain the following keys:

transitType

This key is required only inside the boardingPass dictionary; otherwise, you can
just ignore this key. The possible values for this key are PKTransitTypeAir, PKTran
sitTypeBus, PKTransitTypeTrain, PKTransitTypeBoat, and PKTransitTypeGene
ric. All of these are self-explanatory.

headerFields

The visible part of the top of the pass in Passbook on the device. Make sure you
don’t put too much information here, as these values are always visible to the user
even when all passes are stacked on top of each other in the Passbook app on the
device.

primaryFields

The most important information about your pass, which will be displayed on the
front side of the pass. For instance, for a boarding pass at an airport, the gate, seat
number, and airline name may be the most important pieces of information to
display. For another type of pass, these values may be different.

secondaryFields

Less important information about the pass, also displayed on the front side of the
pass. Again, for a boarding pass at an airport, the secondary fields might be the
boarding time, boarding date, and aircraft type.

auxiliaryFields

The least important information to be displayed on the front side of the pass. Again,
going back to our example of a boarding pass at an airport, this might be the ex‐
pected arrival time.

backFields

The values to display on the back of the pass.

All the aforementioned keys have dictionaries as their values, and those dictionaries can
contain any of the following keys:

982 | Chapter 23: Pass Kit

label

The value of the field that has to be displayed on the pass (back or front of the pass,
depending on the key that it has been added to).

key

The key that your app can use to read the value of this field.

value

The value of this field.

textAlignment

An optional key that can describe the alignment of the label visually on the pass.
You can specify any of the following values for this field (these values are really self-
explanatory):

• PKTextAlignmentRight

• PKTextAlignmentCenter

• PKTextAlignmentLeft

• PKTextAlignmentNatural

• PKTextAlignmentJustified

Phew! Those are a lot of keys and values to remember. Don’t worry, though, you’ll get
used to them after some time! So let’s create a simple pass.json now. I believe if we put

our requirements down first and then tackle the creation of the pass file itself, it will be
much easier to map what we’ve learned so far to how we create the pass.json file. So here

is what we’ll do for an example:

• The type of pass is a train boarding pass.

• The train departs from a city called Hove in the United Kingdom at 07:37. The
platform from which the train departs at Hove is Platform 2.

• The train will arrive into London Bridge station in London at 08:41 on Platform
13.

• The ticket is valid for all trains operated by a made-up company named O’Reilly
Railways.

Before we move on, though, we need to go through the locations array in our pass.json

file. This key is an array in which every element has two keys I will describe in a moment.
But the cool thing about this key is that it can describe the geolocations where the pass
that you are creating belongs. When the pass is imported in the Passbook app on the
user’s device, iOS will display a message on the user’s screen with the details of your
pass, telling the user that your pass is relevant at the current location where the user is.
Think of it this way: in our example, the user has to display the train ticket at the ticket

23.2. Creating Pass Files | 983

barriers every time she reaches the train station at Hove (the departure city). So you can
put the location of the departure train station in the pass (under the locations key) so
that iOS will automatically display the pass on the screen when the user reaches the train
station. You can do the same thing for the destination train station because when the
user is coming back home to the Hove train station via London Bridge, London Bridge
will be the departing station. It’s just the other way around. If you go from point A to B,
A is the source and B is the destination. Once you come back, B is the source and A is
the destination. So you can put the location of both point A and B, or even some other
points where your pass is relevant, inside the locations array. Here are the keys that
every location can contain:

longitude

The longitude of the location. This value is of type double. Do not put quotation
marks around this value.

latitude

The latitude of the location. This value is of type double. Do not put quotation
marks around this value.

See Also
Recipe 23.2; Recipe 23.0, “Introduction”

23.3. Providing Icons and Images for Passes

Problem
You want to make sure that your pass will be branded according to your company’s style,
or give your pass a distinct flavor or image.

Solution
Create backgrounds, icons, and logos and embed them inside your digitally signed pass.

Discussion
A pass can contain different images:

Background (background.png, background@2x.png, and background-568@2x.png)
The background image of the pass. Not all passes can have background images.

Logo (logo.png and logo@2x.png)
The logo that will appear on the upper-left corner of the pass, depending on which
type of pass it is.

984 | Chapter 23: Pass Kit

Icon (icon.png and icon@2x.png)
The icon for the pass. Not all passes can have icons. We will have a look at creating
icons for passes in this chapter.

Thumbnail (thumbnail.png and thumbnail@2x.png)
The thumbnail image that will be visible when the passes are stacked on top of each
other.

All images, as you can see from the filenames, have to come in the non-Retina and the
Retina flavors. Apple doesn’t strictly say that this is a must, but don’t we all as developers
value our customers? Retina displays are so popular now that they are becoming in‐
dustry standard, so please do provide the Retina images for your passes.

Now that we know the image filenames, let’s move on to the image dimensions. In the
following, I list only the Retina images, so to get the dimensions of the non-Retina
images, please divide the image width and height in half:

background@2x.png
640 pixels wide and 960 pixels tall

background-568@2x.png
640 pixels wide and 1136 pixels tall, for iPhone 5

logo@2x.png
60 pixels wide and 60 pixels tall

icon@2x.png
58 pixels wide and 29 pixels tall

thumbnail@2x.png
200 pixels wide and 200 pixels tall

For the purposes of this recipe, I have created all these images in a very simple way.
Figure 23-13 shows them together on one canvas.

The figure is for demonstration purposes and just to show you how
many images you have to prepare for one pass. You do not have to
create such an image where all your images appear on one canvas.

23.3. Providing Icons and Images for Passes | 985

Figure 23-13. All pass images on one canvas

Now that your images are ready, place them in the same folder where you have placed
your pass.json file. We will move on to the next stage now, which is preparing our

manifest file.

See Also
Recipe 23.2

986 | Chapter 23: Pass Kit

23.4. Preparing Your Passes for Digital Signature

Problem
You want to prepare your passes for digital signature. This is the step that you have to
take before you are able to digitally sign your passes.

Solution
Create a file named manifest.json in the same folder where you placed your pass.json

and your pass images. The manifest file will be a JSON file. Its root object is a dictionary.
The keys to the dictionary are the names of the files (all your images, plus the pass.json

file). The value of each key is the SHA1 hash of the file.

Discussion
Simply create the manifest.json file with the keys for all your images and leave the values

empty for now. Your manifest.json file’s contents should look similar to what’s shown

here:

{

 "background.png" : "",

 "background@2x.png" : "",

 "background-568@2x.png" : "",

 "icon.png" : "",

 "icon@2x.png" : "",

 "logo.png" : "",

 "logo@2x.png" : "",

 "pass.json" : "",

 "thumbnail.png" : "",

 "thumbnail@2x.png" : ""

}

Now off to do the interesting part. We have to calculate the SHA1 hashes of all these
files. Remember that every time you change the files from now on (for instance, if you
find an issue with the pass.json file), you will have to recalculate the SHA1 hash and

place the new SHA1 value in the manifest.json file. In order to calculate the SHA1 hash

of any file in OS X, simply follow these steps:

1. Open up Terminal and navigate to the folder where the target file sits, using the cd
command.

2. Issue an openssl command in Terminal. Pass sha1 as the first argument and the
filename as the second argument to this command.

For instance, in my project folder, I have a folder called pass and I have placed my

pass.json and my almost-empty manifest.json files in there along with the im‐

23.4. Preparing Your Passes for Digital Signature | 987

ages (background, logo, etc.). Now in Terminal, I shall calculate the SHA1 hashes of all
these files and place them in the manifest file. So the following listing shows my openssl
command on the first line, and the output with all the hashes on the rest of the lines.

openssl sha1 *.png *.json

SHA1(background-568h@2x.png)= e2aaf36f4037b2a4008240dc2d13652aad6a15bb

SHA1(background.png)= b21a92dedb89f8b731adabc299b054907de2347d

SHA1(background@2x.png)= 6abab0f77fd89f1a213940fd5c36792b4cc6b264

SHA1(icon.png)= ed698ab24c5bd7f0e7496b2897ec054bbd426747

SHA1(icon@2x.png)= 90381c84cfea22136c951ddb3b368ade71f49eef

SHA1(logo.png)= c3bd8c5533b6c9f500bbadbdd957b9eac8a6bfe9

SHA1(logo@2x.png)= 1a56a5564dec5e8742ad65dc47aa9bd64c39222f

SHA1(thumbnail.png)= 58883d22196eb73f33ea556a4b7ea735f90a6213

SHA1(thumbnail@2x.png)= 0903df90165ef1a8909a15b4f652132c27368560

SHA1(manifest.json)= 894f795b991681de8b12101afb8c2984bf8d0f65

SHA1(pass.json)= c5acddbab742f488867c34882c55ca14efff0de9

We calculated the SHA1 of all files, including the SHA1 of the mani

fest.json. However, we are not going to need the SHA1 of mani

fest.json because it holds the hashes for all the other files and doesn’t

have to hold its own. So just ignore the SHA1 of this file.

What we have to do now is to populate the manifest.json with the SHA1 values of the

rest of the files that we just calculated:

{

 "background.png" : "b21a92dedb89f8b731adabc299b054907de2347d",

 "background@2x.png" : "6abab0f77fd89f1a213940fd5c36792b4cc6b264",

 "background-568@2x.png" : "e2aaf36f4037b2a4008240dc2d13652aad6a15bb",

 "icon.png" : "ed698ab24c5bd7f0e7496b2897ec054bbd426747",

 "icon@2x.png" : "90381c84cfea22136c951ddb3b368ade71f49eef",

 "logo.png" : "c3bd8c5533b6c9f500bbadbdd957b9eac8a6bfe9",

 "logo@2x.png" : "1a56a5564dec5e8742ad65dc47aa9bd64c39222f",

 "pass.json" : "c5acddbab742f488867c34882c55ca14efff0de9",

 "thumbnail.png" : "58883d22196eb73f33ea556a4b7ea735f90a6213",

 "thumbnail@2x.png" : "0903df90165ef1a8909a15b4f652132c27368560"

}

All is good now. We can move on to the next step, which is the signature of our pass.

See Also
Recipe 23.1

988 | Chapter 23: Pass Kit

23.5. Signing Passes Digitally

Problem
You have prepared your pass folder with the manifest and the pass.json and all the

images, and now you want to be able to digitally sign the pass folder and its content to
create your pass file, ready to be distributed.

Solution
Use OpenSSL to sign your passes.

Discussion
Every pass has to be signed using the certificate that we created in Recipe 23.1. We will
use openssl again in Terminal in order to sign our passes. Before you continue reading,
make sure that you have created a folder named pass and place your pass.json, mani

fest.json and all your images in this folder. The folder name doesn’t necessarily have to

be called pass. However, to make sure you can follow through the steps in this recipe

and the rest of this chapter, it’s best to do what I’ve done and put the files in a folder
named pass so you can follow along more easily.

Some of you may be a bit confused as to what keys are which and what
certificates do what. I hope I can make it a bit more clear here. When
you request a new certificate in the iOS Provisioning Portal, the key‐
chain creates a private key on your computer along with a certificate
signing request (CSR) file. The certificate will be generated by Apple.
When you download the certificate, its file extension will be .cer. This

is just the certificate! When you import this certificate into your key‐
chain, The keychain will automatically associate the certificate with the
private key that it created before. Now if you export the certificate from
the keychain, the resulting file will be of type .p12, which contains both

the certificate and the private key for the certificate.

Before we can dive into the signing process, we will need to export our certificate from
Keychain Access. Keep in mind that the certificate that you downloaded from iOS Pro‐
visioning Profile is not the same certificate that you will now export from Keychain
Access, so make sure that you follow these steps to export your Pass Type ID certificate
from your keychain:

1. Open up Keychain Access on your Mac.

23.5. Signing Passes Digitally | 989

2. On the upper-left side of the window under Keychains, make sure that you have
selected the Login keychain.

3. Under the Category section on the left side, choose My Certificates.

4. Locate your Pass Type ID certificate on the righthand side of the screen and then
right-click it.

5. Now choose the Export option, as shown in Figure 23-14, and proceed to export
your certificate to disk as a .p12 file. Do not save the certificate in the pass folder.

Keep the certificate outside that folder.

Figure 23-14. Exporting our Pass Type ID certificate from Keychain Access

6. After you attempt to export your certificate, you will be asked for two pieces of
information: a password that you need to set on your certificate and the password
of your OS X user, who owns the Keychain Access. The first password is on the
certificate, which will make sure the certificate cannot be imported into any random
machine if the user doesn’t have the password. The second password makes sure
the person who is exporting your certificate from your keychain really has permis‐
sion to do so. For instance, if you leave your computer on and unlocked and your
friend attempts to export a certificate from your keychain, he or she will have to
enter your user account’s password in order to do so. It’s always good practice to
make sure different accounts on the system have different passwords. For instance,
if you and your brother both use the same Mac, you need to make sure that your

990 | Chapter 23: Pass Kit

account’s password is something unique to your account. If you and your brother
have the same password on both your accounts on the same Mac, that defies the
whole purpose of security on your Mac.

Make sure that you do not save the certificate inside the pass folder.

You should not ship your certificate inside your pass.

Now that you have exported your certificate, you have ended up with a file that is prob‐
ably named Certificates.p12. Now it is time to split this file into the certificate part and

the private key. As you may know, when you export a certificate from Keychain Access,
the resulting .p12 file contains both the certificate and the private key. However, when

you use OpenSSL to sign your pass, you will need to pass the private key and the cer‐
tificate separately. So to retrieve the private key and the certificate from your Certifi

cates.p12 file that we just exported from Keychain Access, follow these steps:

1. Open up Terminal if it’s not open already.

2. Navigate to the folder where you saved the exported certificate .p12 file.

3. In order to get the certificate out, issue the following command:

openssl pkcs12 -in "NAME OF YOUR .P12 CERTIFICATE FILE" -clcerts \

-nokeys -out "NAME OF THE OUTPUT CERTIFICATE"

For instance, the certificate and private key file exported from my keychain is named
Certificates.p12 and I want to export the certificate out of it, under the name exported-

certificate. To do this, I have to issue the following command in Terminal:

openssl pkcs12 -in "Certificates.p12" -clcerts -nokeys \

 -out "exported-certificate"

Once you issue this command, you will be asked to assign your ex‐
ported certificate a password. For this example, I am setting the pass‐
word as 123, but please give yours a better password.

4. In order to export the private key out of the keychain-exported certificate, you will
need to issue the following command in Terminal:

openssl pkcs12 -in "NAME OF YOUR .P12 CERTIFICATE FILE" \

-nocerts -out "NAME OF THE OUTPUT KEY"

23.5. Signing Passes Digitally | 991

I will name the exported private key exported-key, but feel free to choose another name

if you want to:

openssl pkcs12 -in "Certificates.p12" -nocerts -out "exported-key"

Again, you will be asked to enter passwords for your key. I have set mine up with the
password of 1234 so that I can easily remember it, and it’s the same password I have set
up for my certificate. In an organization where you need to make sure things are done
in a secure way, of course, you wouldn’t want to choose this type of password. Choose
something that makes sense for you, and make sure the passwords that you choose for
different certificates/keys that you export are distinct for maximum protection.

Fantastic. Now we have our exported certificate and private key files. We can now move
on to signing our pass with these files. Follow these steps in order to do so:

1. If you haven’t already, place all the files related to the pass (pass.json, mani

fest.json, and all the relevant images) inside a folder called pass. You can name this

folder anything you want, but for the purpose of clarity in this recipe, it’s best that
the folder name that you create be the same folder that I have here. That way, it will
be easier for all of us to know which folder we are in and what we are doing in
Terminal.

2. Use the cd command to change the current working directory to the pass directory

where all your pass files exist.

3. Execute the rm -f .DS_Store command to make sure no unnecessary OS X hidden
system files are present in your pass folder. You need to make sure all the files in

this folder are listed in the manifest.json along with their SHA1 hashes. If any other

files, hidden or not, creep into this folder without being listed in the manifest file,
the resulting pass will be invalid and not readable by Passbook on iOS devices or
the simulator.

4. Issue the following command in Terminal in order to generate a signature file inside

your pass folder:

openssl smime -binary -sign -signer "PATH TO YOUR EXPORTED CERTIFICATE" \

-inkey "PATH TO YOUR EXPORTED PRIVATE KEY" -in manifest.json \

-out signature -outform DER

This command has to be issued inside the pass folder where all your

pass assets exist. The exported certificate and private key are the cer‐
tificate and the private key that you extracted from the keychain-
exported certificate. Avoid providing the actual keychain-exported
certificate to this command. Before this, we learned how to extract the
real certificate and the private key out of the keychain-exported .p12

992 | Chapter 23: Pass Kit

file, so you may want to have a look at that again to make sure things
are going as planned.

As part of the last step, you will be asked to provide the password for your private key.
Do you remember it? That is the password you set when you were extracting the private
key from the keychain-exported certificate. This command has now created a file named
signature in the pass folder. We are almost done; all we have to do now is to compress

the pass directory into a ZIP file with the extension of .pkpass. In order to do that, follow

these steps:

1. Open up Terminal and using the cd command, navigate to your pass folder.

2. Issue the following command in order to zip your pass folder into a file called

pass.pkpass in the current folder:

zip -r pass.pkpass . -x '.DS_Store'

This will zip up all the pass files into the pass.pkpass and, again, makes sure that a file

named .DS_Store will not be included in the output archive.

See Also
Recipe 23.4; Recipe 23.1

23.6. Distributing Passes Using Email

Problem
You want to be able to send your digitally signed passes to people using their email
addresses.

Solution
Simply send the passes as attachments in your email.

Discussion
The pass that you signed and packaged up in Recipe 23.5 is now ready to be distributed.
One of the easiest ways of distributing passes is through email. Follow these steps to
distribute your pass through email using the Mail.app on your installation of OS X:

1. Open up Mail.app on your installation of OS X.

2. From the File menu, choose New Message.

3. Enter the email address of the person to whom you want to send the pass.

23.6. Distributing Passes Using Email | 993

4. Enter a title for your email.

5. Enter the message for your email and simply drag and drop the pass.pkpass file,

which you prepared in Recipe 23.5, into the message of your email at the end, as
shown in Figure 23-15.

Figure 23-15. Distributing digitally signed passes using Mail.app on OS X

6. Now send the email.

OS X Mavericks has added the ability for users to be able to see pass‐
es right in the Mail app. Since Passbook is integrated with iCloud, you
can now tap on the pass in your email on OS X Mavericks and send it
right to your iOS device(s) that have Passbook for iCloud enabled in
the iCloud settings of their devices (see Figure 23-16).

994 | Chapter 23: Pass Kit

Figure 23-16. OS X Mavericks displays passes right in the Mail app

Now the user has the ability to tap on the pass attached to the email. This will cause
Passbook to pop up and display the pass in its interface, allowing the user to add the
pass to Passbook, right on the device.

See Also
Recipe 23.7

23.7. Distributing Passes Using Web Services

Problem
You want users to be able to download your digitally signed passes right from your
website.

Solution
In your web pages, create hyperlinks to your .pkpass passes. When users view the web

pages on their devices, they can simply tap on those links. Once they tap on the link,
Safari will detect that the link leads to a .pkpass file and will hand the link to Passbook,

which will display the pass on the website and allow the users to add your passes to their
Passbooks.

Discussion
Safari on iOS does not handle direct downloading of .pkpass pass files. In order to let

your users download the .pkpass passes, you need to create web pages with hyperlinks

in them that point to the .pkpass files. A simple HTML code file that serves a pass.pkpass

to the user is displayed here:

23.7. Distributing Passes Using Web Services | 995

<html>

 <header>

 <title>Passbook Site</title>

 </header>

 <body>

 Download your pass here

 </body>

</html>

I have put the link as localhost because I’m running an instance of
Apache web server on my installation of OS X. You need to make sure
the link in this HTML file makes sense in your web development
environment.

Now when the user opens this link in Safari on her device, she will see something similar
to Figure 23-17.

Figure 23-17. Viewing our website in Safari on iOS Simulator

When the user taps on the link, Passbook will pop up and display its familiar UI to the
user, allowing her to add your pass to her device’s Passbook.

996 | Chapter 23: Pass Kit

See Also
Recipe 23.6

23.8. Enabling Your iOS Apps to Access Passes on iOS
Devices

Problem
You want to deploy your Passbook-enabled app to iOS devices and you want to make
sure that your app can read the digitally signed passes that you have pushed into those
devices.

Solution
Create an appropriate provision profile for your app, linked to an App ID that has Passes
access enabled for it.

Discussion
You need to sign your apps with an appropriate provisioning profile that has been cre‐
ated in the same portal that your Pass Type IDs were created in, in order to be able to
read our own passes from the Passbook app on users’ devices. The whole process is
depicted in Figure 23-18.

Figure 23-18. The process of enabling an iOS app to access passes on an iOS device

23.8. Enabling Your iOS Apps to Access Passes on iOS Devices | 997

So let’s begin! Here I assume that you already have a dev/dist certificate. We’ll create an
App ID for the Pass Type ID that we created in Recipe 23.1 and then move on to create
the appropriate provisioning profile for that App ID. Here we go:

1. Navigate to iOS Dev Center in your browser, and log in if you are not logged in
already.

2. Navigate to the Certificates, Identifiers & Profiles section

3. Navigate to the Identifiers section and then the App IDs section and press the plus
(+) button.

4. In the Description box, describe your App ID; something that is meaningful to you
and your team or organization.

5. Leave the Bundle Seed ID as Use Team ID.

6. In the Bundle Identifier (App ID Suffix), enter the reverse domain style name of
your bundle ID. For me, for the pass with an ID of pass.pixolity.testingpasskit, I have
set the bundle identifier of my App ID to com.pixolity.testingpasskit.

7. Ensure that the Explicit App ID box is checked and enter the full reverse-domain-
style bundle identifier of the app that you want to create. I have set this value to
com.pixolity.ios.cookbook.testingpasses, and my Pass Type ID from before
was set to pass.pixolity.ios.cookbook.testingpasses. You don’t have to match
your Pass Type ID with your bundle identifier, but it really does help you find which
App ID matches which Pass Type ID in the future.

8. In the App Services section of the page, make sure you have ticked the Passbook
box to enable access to Passbook in your app.

9. Once you are done, press the Continue button. On the next screen, you will be
presented (see Figure 23-19) with the overview of all the values that you entered in
the previous page. Have a final look through the values, and once you are happy,
press the Submit button.

998 | Chapter 23: Pass Kit

Figure 23-19. Overview of a new App ID to integrate with Passbook

10. Now that we have enabled Passes for our App ID, it is time to create our provisioning
profile. Head to the Provisioning Profiles section of the iOS Provisioning Profile
now.

11. We are going to create a developer provisioning profile as opposed to an Ad Hoc
build, so in the Provisioning section, under the Development section, press the plus
(+) button.

12. In the screen that appears, select the iOS App Development item and press the Con‐
tinue button.

23.8. Enabling Your iOS Apps to Access Passes on iOS Devices | 999

13. You will now be asked to pick an App ID for your profile. Choose the App ID that
you created in previous steps, and once you are happy, press the Continue button
(see Figure 23-20).

Figure 23-20. Selecting the correct App ID for the new development provision profile

14. Now, from the list of available development certificates that you have in your portal,
choose one or a few certificates to associate your profile with. Usually you would
associate a profile with one certificate, but in a portal where there are multiple
developers, each with its own development certificate, it may make sense to create
a provision profile that is associated with more than one certificate. Once you have
made your choice, press the Continue button.

15. Now, from the list of registered devices, select the ones that will be included in your
profile. Once you are satisfied with your selection, press the Continue button.

16. On the next screen, you are asked to give a name to your profile. Give a name that
makes sense to you, and press the Generate button.

17. Once your profile is generated, press the Download button to download it onto
your device (see Figure 23-21). After the download is complete, drag and drop that
profile onto iTunes for it to install the profile on your device.

1000 | Chapter 23: Pass Kit

Figure 23-21. Your Passbook profile is ready for download

There are various ways of installing a provisioning profile on your
OS X installation. The best and fastest way is to drag and drop the
profile into iTunes. You can also use Xcode to install the profile. What‐
ever method you choose, make sure that you avoid double-clicking on
the profile in order to install it. Double-clicking will install your pro‐
file with a really cryptic name on your disk, and later it will be very
difficult to distinguish which profile is which. To keep your disk clean,
use iTunes or Xcode to install your provisioning profiles. You can view
all installed provisioning profiles on your disk in the file ~/Library/

MobileDevice/Provisioning Profiles/.

18. Now open your project in Xcode. In the Build Settings tab of your target app, choose
the provisioning profile that you just created for Debug-only builds. You can do the
same thing for Ad Hoc builds, but under the Release scheme in Build Settings.

23.8. Enabling Your iOS Apps to Access Passes on iOS Devices | 1001

19. In Xcode, right next to the Build Settings tab, choose Capabilities and flip the switch
to “on” mode for the Passbook item (see Figure 23-22).

Figure 23-22. Enabling Passbook in Xcode

20. As soon as you flip the Passbook switch to “on” mode, Xcode will contact the Dev
Center and will fetch all your available Pass Type IDs. In the list (see Figure 23-23),
choose the Pass Type ID that you created earlier.

Figure 23-23. Choosing the correct Pass Type ID in Xcode

And with this task, we are all done setting up Pass Kit! All we need is to write an app
that can access passes on the device. The app will be described in Recipe 23.9.

1002 | Chapter 23: Pass Kit

See Also
Recipe 23.6; Recipe 23.7

23.9. Interacting with Passbook Programmatically

Problem
You want to be able to interact with the installed passes on a user’s device programmat‐
ically.

Solution
Include the PassKit.framework into your project and use the PKPassLibrary to find the
passes that you are interested in. Passes will be of type PKPass, so using this class you
can retrieve information about your passes.

Discussion

As a prerequisite to this recipe, please make sure that you have read
Recipe 23.8 and now have an Xcode iOS project that has the appro‐
priate provisioning profile to access your passes in the user’s Pass‐
book library.

Apple has provided the PassKit.framework for iOS developers. Using this framework,
you can interact with passes that the user has installed on her devices. To be able to use
this framework using the latest LLVM compiler, all you have to do is import the relevant
umbrella header into your project like so:

#import "AppDelegate.h"

#import <PassKit/PassKit.h>

<# Rest of your code goes here #>

The next thing that we are going to do is declare a private property of type PKPassLi
brary in the implementation file of our app delegate. The aforementioned class in Pas‐
sKit.framework will allow you to interact with the passes that have been added to the
device. While you are at it, you will also need to know the keys in the pass.json file that

you created in Recipe 23.2 in order to be able to read values such as the departure
platform and departure city. So declare these keys as well, all in the implementation file
of your app delegate:

#import "AppDelegate.h"

#import <PassKit/PassKit.h>

23.9. Interacting with Passbook Programmatically | 1003

@interface AppDelegate ()

@property (nonatomic, strong) PKPassLibrary *passLibrary;

@end

NSString *PassIdentifier = @"pass.pixolity.testingpasskit";

NSString *PassSerialNumber = @"p69f2J";

NSString *DepartureKey = @"departure";

NSString *DeparturePlatformKey = @"departurePlatform";

NSString *Arrival = @"arrival";

NSString *ArrivalPlatform = @"arrivalPlatform";

@implementation AppDelegate

<# Rest of your code goes here #>

Fantastic! After you are done with that, you need to start accessing the Passbook library
on the device. But wait a minute: what if the device doesn’t have Passbook installed on
it? You have to first check whether Passbook is available on the device. Do that using
the isPassLibraryAvailable class method of the PKPassLibrary class.

The next thing you need to do is instantiate your passLibrary property of type
PKPassLibrary and then use the passWithPassTypeIdentifier:serialNumber: in‐
stance method of the pass library to find the pass that you are looking for. So now you
know why we have also defined our pass identifier and its serial number among the keys
to different fields within the pass. The aforementioned method will return an object of
type PKPass that will represent your pass object. Once you have this pass object, you
can read the values from its different keys.

Default keys, such as organization name and serial number, are mapped to properties
for you by Apple in the PKPass class itself. However, if you want to access the values
within primaryFields or other similar places, you will need to use the localizedVa
lueForFieldKey: instance method of the PKPass class and pass your keys to this method
to get the values associated with those keys. So here is a little code snippet that can read
the departure and arrival city and platforms from the pass that we created in Recipe 23.2:

This is inside the implementation file of our app delegate.

#import "AppDelegate.h"

#import <PassKit/PassKit.h>

@interface AppDelegate ()

@property (nonatomic, strong) PKPassLibrary *passLibrary;

@end

1004 | Chapter 23: Pass Kit

NSString *PassIdentifier = @"pass.pixolity.testingpasskit";

NSString *PassSerialNumber = @"p69f2J";

NSString *DepartureKey = @"departure";

NSString *DeparturePlatformKey = @"departurePlatform";

NSString *Arrival = @"arrival";

NSString *ArrivalPlatform = @"arrivalPlatform";

@implementation AppDelegate

- (void) displayPassInformation:(PKPass *)paramPass{

 if (paramPass == nil){

 NSLog(@"The given pass is nil.");

 return;

 }

 NSLog(@"Departs From = %@",

 [paramPass localizedValueForFieldKey:DepartureKey]);

 NSLog(@"Departure Platform = %@",

 [paramPass localizedValueForFieldKey:DeparturePlatformKey]);

 NSLog(@"Arrives at = %@",

 [paramPass localizedValueForFieldKey:Arrival]);

 NSLog(@"Arrival Platform = %@",

 [paramPass localizedValueForFieldKey:ArrivalPlatform]);

}

- (BOOL) application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 if ([PKPassLibrary isPassLibraryAvailable]){

 self.passLibrary = [[PKPassLibrary alloc] init];

 PKPass *pass =

 [self.passLibrary passWithPassTypeIdentifier:PassIdentifier

 serialNumber:PassSerialNumber];

 [self displayPassInformation:pass];

 } else {

 /* Take another action here perhaps */

 NSLog(@"The pass library is not available.");

 }

 self.window = [[UIWindow alloc]

 initWithFrame:[[UIScreen mainScreen] bounds]];

 // Override point for customization after application launch.

 self.window.backgroundColor = [UIColor whiteColor];

 [self.window makeKeyAndVisible];

23.9. Interacting with Passbook Programmatically | 1005

 return YES;

}

The pass identifier and serial number provided are for the pass that I
created using my certificate. Your serial number may be the same, but
the pass identifier will certainly be different, and will be something that
makes more sense for you and your provisioning portal/organization.

See Also
Recipe 23.2

1006 | Chapter 23: Pass Kit

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
* (asterisk), denoting pointers, 5
^ (caret), preceding block object name and pa‐

rameters, 342
{ } (curly brackets), enclosing keys, 19
- (minus sign), denoting instance methods, 9
+ (plus sign), denoting class methods, 9
[] (square brackets), enclosing indexes, 19

A
ABAddressBookAddRecord function, 577–581
ABAddressBookCopyArrayOfAllGroups func‐

tion, 588–592
ABAddressBookCopyArrayOfAllPeople func‐

tion, 571–572, 588–592
ABAddressBookCopyLocalizedLabel function,

577
ABAddressBookCopyPeopleWithName func‐

tion, 588, 591
ABAddressBookCreateWithOptions function,

568–571
ABAddressBookGetAuthorizationStatus func‐

tion, 564–567
ABAddressBookRef type, 568
ABAddressBookRequestAccessWithCompletion

function, 564–567
ABAddressBookSave function, 578, 582
ABGroupAddMember function, 584–587

ABGroupCreate function, 581–584
ABMultiValueCopyLabelAtIndex function, 574,

577
ABMultiValueCopyValueAtIndex function, 574
ABMultiValueGetCount function, 574
ABPersonCopyImageData function, 592
ABPersonCreate function, 577
ABPersonHasImageData function, 592
ABPersonSetImageData function, 592, 593
ABRecordCopyValue function, 573–577
ABRecordRef type, 573
ABRecordSetValue function, 577, 581
accelerometer, 907–908

availability of, detecting, 908–910
data from, retrieving, 911–914

accessoryType property, UITableViewCell, 229–
232

accessoryView property, UITableViewCell, 232–
234

activity view controllers, 67–78
custom sharing options for, 73–78
instantiating, 69
presentation requirements for, 68, 72
Share button in, 69–71
text field in, 69–71

addAlarm: method, EKEvent, 811–813
addAnnotation: method, MKMapView, 456
addBoundaryWithIdentifier:fromPoint:toPoint:

method, UICollisionBehavior, 173, 175

1007

addConstraint: method, UIView, 199
addConstraints: method, UIView, 200
addDependency: method, NSOperation, 393
addGestureRecognizer: method, UIView, 482
addObserver:selector:name:object: method,

NSNotificationCenter, 696–699
addOperation: method, NSOperationQueue,

389
address book, 563–564

assigning contact to a group, 584–587
changes to

checking for, 568
discarding, 568
saving, 568

image for contact, retrieving and setting,
592–599

inserting contact into, 577
inserting group into, 581–584
reference to

obtaining, 568–571
releasing, 568

requesting access to, 564–567
retrieving all contacts from, 571–572
retrieving properties of a contact in, 573–577
searching, 587–592

AddressBook framework, 563
addresses

finding from longitude and latitude, 470–
471

finding longitude and latitude from, 468–
469

addTarget:action:forControlEvents: method
UIButton, 126
UIDatePicker, 48
UISegmentedControl, 61
UISlider, 53
UISwitch, 35

addTarget:action:forControlEvents: method,
UIRefreshControl, 275

affine transformations
rotations, 889, 901–903
scaling, 886–887, 900–901
translations, 882–886

alarms for calendar events, 811–813
alarmWithRelativeOffset: method, EKAlarm,

811–813
ALAsset class, 649
ALAssetsGroup class, 649
ALAssetsLibrary class, 649

ALAssetsLibrary type, 646
alert views, 23–32

as alternative to popovers, 163
buttons as user input to, 26, 27–29
delegate messages from, 27–29
displaying, 25
initializing, 24
login information as user input to, 31
secure text as user input to, 30–32
styles of, 26
text as user input to, 29–30

alertView:clickedButtonAtIndex: method, 27, 28
alertViewStyle property, UIAlertView, 26
allowsCalendarPreview property, EKEvent‐

ViewController, 820
allowsContentModifications property, EKCalen‐

dar, 788, 795
allowsEditing property, EKEventView‐

Controller, 820
allowsPickingMultipleItems property,

MPMediaPickerController, 561
allowsReverseTransformation method, 773
allowsRotation property, UIDynamicItemBe‐

havior, 193
animations, 827–833

of collection view cells, 301–303
content scale factor, 828
frameworks for, 827
moving views with, 890–899
origin point, 828
pixels, 828
points, 828
rotating views with, 901–903
scaling views with, 900–901

animators, 169–170
for attachment behavior, 187
for collision behavior, 173
for gravity behavior, 171
for push behavior, 180
reference view for, 170, 173
setting item characteristics in, 193
for snap behavior, 190

annotation views, 459
annotations (pins) for maps, 453, 455–458

custom images for, 465–467
specifying color for, 459–464

APNS (Apple Push Notification Services)
servers, 693
SSL certificate for, 724

1008 | Index

.app folder extension, 601
App ID

creating for passes, 998–1002
creating for provision profile, 418–420
enabling for iCloud, 921

Apple Push Notification Services servers (see
APNS servers)

Application Support/ folder, 603
application:didFailToRegisterForRemoteNotifi‐

cationsWithError: method, 724
application:didFinishLaunchingWithOptions:

method, 685, 692, 711–713, 733
application:didReceiveLocalNotification: meth‐

od, 711–713
application:didReceiveRemoteNotification:

method, 733–734
application:didRegisterForRemoteNotifications‐

WithDeviceToken: method, 723
application:performFetchWithCompletionHan‐

dler: method, 670, 677
applicationDidBecomeActive: method, 685, 692
applicationDidEnterBackground: method, 663,

685, 692
applicationWillEnterForeground: method, 663,

685
applicationWillResignActive: method, 685
applicationWillTerminate: method, 692
apps

bundle identifier for, 435, 436
completing long tasks in background, 665–

668
creating, 2–3
entitlements for, 416, 435–439, 923
sent to background (see multitasking)
sharing keychain data, 434–440

arrayForKey: method, NSUbiquitousKeyValue‐
Store, 927

arrays, 14–15
of constraints, 200, 207–209
data types for, 4
deserializing JSON objects into, 518–521
serializing into a JSON object, 516–518
subscripting, 19

Assets Library framework, 626–627
retrieving assets from Assets Library, 649–

656
storing videos in Assets Library, 645–646

assign qualifier, 7
asterisk (*), denoting pointers, 5

asynchronous connections, 502
creating, 501–504
timeouts on, 504–506

asynchronous execution
in main queue, 354
non-UI related tasks, 361–368
with operations, 340, 387–392

attachment behavior, 184–188
anchor for, 185, 187, 188
panning gesture with, 185–188

attendees property, EKEvent, 808–811
attributed strings, 144–146
attributes, in data model

creating, 738
sorting data based on, 752–754

audio
frameworks required for, 531
playing audio files, 531–534

in background, 678–682
interruptions during, handling, 534–535
over other active audio, 543–547

recording, 535–542
interruptions during, handling, 542–543
stopping, 540

user selections from Music library, 554–561
audioPlayerBeginInterruption: method, 534–

535
audioPlayerDidFinishPlaying:successfully:

method, 533
audioPlayerEndInterruption:withOptions:

method, 534–535
audioRecorderBeginInterruption: method, 542–

543
audioRecorderDidFinishRecording:successfully:

method, 540
audioRecorderendInterruption:withOptions:

method, 542–543
authorizationStatusForEntityType:completion:

method, EKEventStore, 784–787
Auto Layout, 197–200

configuring in Interface Builder, 217–219
constraints for

aligning items in relation to each other,
210–217

array of, 200, 207–209
centering items on screen, 201–203
cross view constraints, 210–217
horizontally and vertically aligning items,

203–209

Index | 1009

specifying, 198–200
Visual Format Language for, 200, 215

autorelease pool, for threads, 404
auxiliaryFields key, pass file, 982
AV Foundation framework, 531
availableMediaTypesForSourceType: method,

UIImagePickerController, 628
AVAudioPlayer class, 531–534, 679
AVAudioPlayerDelegate protocol, 534
AVAudioRecorder class, 535–542
AVAudioSession class, 538, 543–547

B
backFields key, pass file, 982
background execution (see multitasking)
background methods, 406–407
backgroundColor key, pass file, 981
backgroundTimeRemaining property, UIAppli‐

cation, 665
barcode key, pass file, 981
beginAnimations:context: method, UIView, 890,

894
beginBackgroundTaskWithExpirationHandler:

method, UIApplication, 665–668
behavior classes, 169–170

attachment behavior, 184–188
collision behavior, 172–179
density for specific items, 194
elasticity for specific items, 191, 194
friction for specific items, 193
gravity behavior, 171–172
list of, 170
push behavior, 180–184
resistance for specific items, 193
rotation, allowing for specific items, 193
snap behavior, 189–192

block objects, 337–340
constructing, 342–346
inline block objects, 339, 345–346, 347, 349
invoking, 343–344, 352–353
resources about, xvii
self, referencing in, 346, 348–349
variables in, accessing, 346–352

boardingPass key, pass file, 982
boldSystemFontOfSize: method, UIFont, 834
boolForKey: method, NSUbiquitousKeyValue‐

Store, 927
__bridge keyword, 629
__bridge_transfer keyword, 572

bundle identifiers, 435, 436, 923
“Bundle Programming Guide”, xvii
buttons, 123–127

actions associated with, 124, 126
creating, 124
images for, 126
on navigation bar, 88–94
system buttons, 90–92
titles for, 125
type for, 126

buttonTitleAtIndex: method, UIAlertView, 29

C
Caches/ folder, 602
calculateDirectionsWithCompletionHandler:

method, MKDirections, 475
Calendar database, 779–784

events in
adding, 792–796
alarms for, 811–813
attendees of, retrieving, 808–811
deleting, 799–803
edit view controller for, 822–824
notification of changes to, 814–816
recurring, adding, 803–807
retrieving, 796–799
view controller for, 816–821

frameworks required for, 779, 783
properties of, 788–789
requesting permission to access, 784–787
retrieving for specific device, 790–791

calendars property, EKEvent, 795
calendarsForEntityType: method, EKSource,

791
camera, 625–627

checking for existence of, 627–631
flash capability, checking for, 630
frameworks requried for, 626
shooting photos using, 632–635
shooting videos with, 636–638
storing photos in photo library, 639–643
storing videos to photo library, 644–646
testing apps using, 625

cancel method, NSThread, 407–409
cancelAllLocalNotifications method, UIApplica‐

tion, 708
canEditVideoAtPath: method, UIVideoEditor‐

Controller, 661
Capabilities tab, Xcode, 417

1010 | Index

caret (^), preceding block object name and pa‐
rameters, 342

CDSA (Common Data Security Architecture),
411

cells in table views (see rows in table views)
.cer file extension, 727, 989
certificate

for APNS, 724
for development, 719
for distribution, 719
for Pass Kit, 968–975, 989–992

CFAbsolutetimeGetCurrent function, 812
CFArrayGetCount function, 572
CFArrayGetValueAtIndex function, 572
CFArrayRef type, 572
CFRelease method, 568, 577
CFStringRef type, 629
CGAffineTransformMakeRotation function,

486, 489, 889
CGAffineTransformMakeScale function, 303,

498, 886–887
CGAffineTransformMakeTranslation function,

882–886
CGColor class, 840
CGColor method, UIColor, 840
CGColor property, EKCalendar, 788
CGColorGetComponents function, 840
CGColorGetNumberOfComponents function,

840
CGContextAddLineToPoint function, 850–857
CGContextAddPath function, 859
CGContextDrawLinearGradient function, 877–

882
CGContextDrawPath function, 859
CGContextMoveToPoint function, 850–857
CGContextRestoreGState function, 871
CGContextRotateCTM function, 889
CGContextSaveGState function, 871
CGContextScaleCTM function, 886
CGContextSetLineJoin function, 854
CGContextSetLineWidth function, 852
CGContextSetShadow function, 866–871
CGContextSetShadowWithColor function, 867
CGContextStrokePath function, 852
CGContextTranslateCTM function, 885
CGFloat data type, 4
CGGradientCreateWithColor function, 873–

882

CGGradientCreateWithColorComponents
function, 874–882

CGPathAddLineToPoint function, 859
CGPathAddRect function, 859, 862–864, 883
CGPathAddRects function, 864–866
CGPathCreateMutable function, 859
CGPathMoveToPoint function, 859
CGPathRelease function, 859
CGPointMake function, 843
CGRect structure, 34
CGRectIntersection function, 706
CGRectMake function, 838, 843
CGSize structure, 132
class methods, 9, 11
classes, 5–8

behavior classes, 169–170
creating, 6
generating from data model entities, 741–

744
headers for, 6
implementation for, 6
instantiating objects from, 7
interface for, 6
methods for, 8–11
naming conventions for, 6
properties for, 6–7
root classes, 6
saving objects to a file, 621–624
subscripting, 18–23
super classes, 6

CLGeocoder class, 468–471
CLLocationCoordinate2D type, 456
CLLocationManager class, 453–455
CLLocationManagerDelegate protocol, 454
closures (see block objects)
CloudDocument class, 954
cloudDocumentChanged: method, 958
CloudDocumentProtocol protocol, 950
CMAcceleration structure, 912
CMAccelerometerData type, 914
CMMotionManager class, 908, 910, 912, 916
Cocoa Touch, 827
Cocoa’s naming convention for methods, 6
code examples

permission to use, xviii
template used for, 2

collection views, 279–280
animating cells, 301–303
background color of, 292

Index | 1011

cell content for, 284, 288–298
contextual menus for cells in, 311–312
creating, 281–284
data source for, 284–285
delegate messages from, 299–303
flow layout for, 279, 285–287
footers for, 303–308
gesture recognizers for, 308–310
headers for, 303–308
highlighted cells in, 300–303
layout object for, 279
number of cells in each section, 284, 291
number of sections in, 290
reusable cells for, 289, 292
selected cells in, 300–303
.xib files for custom cells, 294–298

collections, 14–18
arrays (see arrays)
dictionaries (see dictionaries)
sets, 16–18
subscripting, 18–23

collectionView:canPerformAction:forItemAtIn‐
dexPath:withSender: method, 311, 312

collectionView:cellForItemAtIndexPath: meth‐
od, 284, 291, 292

collectionView:didDeselectItemAtIndexPath:
method, 301

collectionView:didHighlightItemAtIndexPath:
method, 301, 302

collectionView:didSelectItemAtIndexPath:
method, 301

collectionView:didUnhighlightItemAtIndex‐
Path: method, 301, 302

collectionView:numberOfItemsInSection:
method, 284

collectionView:performAction:forItemAtIndex‐
Path:withSender: method, 311, 312

collectionView:shouldShowMenuForItemAtIn‐
dexPath: method, 311, 311

collectionView:viewForSupplementaryElemen‐
tOfKind:atIndexPath: method, 307

collision behavior, 170, 172–179
custom boundaries for, 175
detecting collisions between items, 176
push behavior with, 182
reference view as boundaries for, 173
types of collisions to detect, 179

collisionMode property, UIGravityBehavior, 179
colors, using, 836–841

colorWithRed:green:blue:alpha: method, UI‐
Color, 837

columns, database (see attributes, in data mod‐
el)

commitAnimations method, UIView, 890
Common Data Security Architecture (see

CDSA)
company identifier, for project, 3
composeViewControllerForServiceType: meth‐

od, SLComposeViewController class, 522
concurrency, 335–341

(see also multitasking)
block objects, 337–340

constructing, 342–346
inline block objects, 339, 345–346, 347,

349
invoking, 343–344, 352–353
self, referencing in, 346, 348–349
variables in, accessing, 346–352

deadlocks, 340
dispatch queues, 335–338

concurrent queues, 358–361
creating, 377–379
main queue, 354–358
serial queues, 377–379
types of, 337

GCD for, 335–340
grouping tasks, 373
operation queues, 340–341, 381, 387–392
operations, 340–341

dependencies between, 393–395
running tasks asynchronously, 387–392
running tasks synchronously, 380–386
types of, 340

performing tasks after a delay, 368–371
performing tasks only once, 371–373
run loops, 341, 396
threads, 341

autorelease pool for, 404
background methods creating, 406–407
creating, 400–405
exiting, 407–409
main thread, 341, 383, 401
nonatomic properties not thread-safe, 7
paused when app in background, 665

timers, 341
creating, 395–400
date pickers as, 49
exiting, 407–408

1012 | Index

concurrent queues, 337
submitting tasks asynchronously, 361–368
submitting tasks synchronously, 358–361

constraints
aligning items in relation to each other, 210–

217
array of, 200, 207
centering items on screen, 201–203
configuring in Interface Builder, 217–219
cross view constraints, 210–217
horizontally and vertically aligning items,

203–209
specifying, 198–200
Visual Format Language for, 200, 203–209,

215
constraintsWithVisualFormat:options:met‐

rics:views: method, NSLayoutConstraint,
200

constraintWithItem:attribute:relatedBy:toI‐
tem:attribute:multiplier:constant: method,
NSLayoutConstraint, 198

contact information for this book, xix
contacts in address book

assigning to a group, 584–587
image for, 592–599
inserting, 577
retrieving all contacts, 571–572
retrieving properties of, 573–577
searching for, 587–592

Container Identifier, iCloud, 929, 931
content scale factor, 828
contentsForType:error: method, UIDocument,

948, 951
contentsOfDirectoryAtPath:error: method,

NSFileManager, 612–617
contentsOfDirectoryAtURL:includingProper‐

tiesForKeys:options:error: method, NSFile‐
Manager, 613

contentView property, UICollectionViewCell,
288

context menus
for collection view cells, 311–312
for table view cells, 246–250

control events
from date pickers, 48
from segmented controls, 61
from sliders, 53
from switches, 35

controller:didChangeObject:atIndexPath:for‐
ChangeType:newIndexPath: method,
NSFetchedResultsControllerDelegate, 757

controllerDidChangeContent: method,
NSFetchedResultsControllerDelegate, 758

controllers
image picker controllers, 632–635, 637–638,

648
media picker controllers, 554, 558
model controllers, 155, 157
movie player controllers, 547
music player controllers, 556
navigation controllers, 79–85
popover controllers, 161–164
tab bar controllers, 94–99, 325–327
video editor controllers, 657–661
view controllers (see view controllers)

controllerWillChangeContent: method,
NSFetchedResultsControllerDelegate, 757

conventions used in this book, xvii
copy qualifier, 7
Core Animation framework, 828

moving views with animation, 890–899
rotating views with animation, 901–903
scaling views with animation, 900–901

Core Data framework, 735–737
adding to project, 736
data model

class files generated from, 741–744
creating, 737–740

importing header file for, 735
managed objects (entities), 736

creating, 738
deleting data from, 750–752
fetching data in background, 768–772
fetching table view results from, 754–761
instantiating, 745–747
reading data from, 747–749
relationships between, 761–768
sorting data from, 752–754
transformable properties for, 772–776

MOC, 736
MOM, 736
persistent store, 735
persistent store coordinator, 736

Core Graphics framework, 828
(see also graphics)
pinch gestures, handling, 498
rotation gestures, handling, 486, 489

Index | 1013

Core Location framework, 449
detecting device location, 453–455
enabling, 449
geocoding, 468–469
handling location changes in background,

682–684
reverse geocoding, 470–471

Core Motion framework, 907–908
accelerometer

availability of, detecting, 908–910
data from, retrieving, 911–914

gyroscope
availability of, detecting, 910–911
data from, retrieving, 916–917

countdown timers, 49
counted sets, 18
coupon key, pass file, 981
createDirectoryAtPath:withIntermediateDirec‐

tories:attributes:error: method, NSFile‐
Manager, 610–612, 930

cross view constraints, 210–217
CTM (current transformation matrix), 885
curly brackets ({ }), enclosing keys, 19
current transformation matrix (see CTM)

D
data model

class files generated from, 741–744
creating, 737–740
managed objects (entities), 736

creating, 738
deleting data from, 750–752
fetching data in background, 768–772
fetching table view results from, 754–761
instantiating, 745–747
reading data from, 747–749
relationships between, 761–768
sorting data from, 752–754
transformable properties for, 772–776

MOM for, 736
Data Protection, enabling, 419
data types, 3–5

for methods, 9
mutable and immutable, 4, 5
pointers to, 5
transformable, 772–776
for untyped objects, 4

data view controllers, 155
database (see MOC (Managed Object Context))

dataForKey: method, NSUbiquitousKeyValue‐
Store, 927

dataWithJSONObject:options:error: method,
NSJSONSerialization, 516–518

date pickers, 45–50
control events, 48
countdown timer with, 49
creating, 46–47
determining current selection, 48
minimum and maximum values of, 48
modes of, 47

datePickerMode property, UIDatePicker, 47
dates (see Calendar database)
deadlocks, 340
Debug scheme, provision profile for, 418
defaultStore method, NSUbiquitousKeyValue‐

Store, 927
delegate messages

from alert views, 27–29
from collection views, 299–303
from map views, 452–453
from page view controllers, 155–157
from popovers, 164
from scroll views, 133–134
from table views, 221, 222–224
from text fields, 111–114
from web views, 140

DELETE requests, HTTP, 513–514
deleteObject: method, NSManagedObjectCon‐

text, 750–752
deleteRowsAtIndexPaths:withRowAnimation:

method, UITableView, 237, 258–267
deleteSections:withRowAnimation: method,

UITableView, 257–267
density property, UIDynamicItemBehavior, 194
dependencies between operations, 393–395
dequeueReusableCellWithIdentifier:forIndex‐

Path: method, UITableView, 226
dequeueReusableCellWithReuseIdentifier:forIn‐

dexPath: method, UIViewCollection, 292
description key, pass file, 980
detachNewThreadSelector method, NSThread,

404
detail disclosure button accessory, for table cells,

231
detail view controllers, 150–152
development provision profile (see provision

profile)

1014 | Index

devices
battery state change notification, 714
calendars on, retrieving, 790–791
camera, determining existence of, 627–631
detecting location of, 453–455
fonts on, using, 833–836
motion of, detecting (see accelerometer; gy‐

roscope; orientation; shake gestures)
multitasking support, determining, 664–665
orientation of

change notifications for, 714
enabling options for, 202
specifying support for, 216

passes on
accessing from app, 1003–1006
enabling access from app, 997–1002

proximity state change notification, 714
social sharing services on, determining, 522
universal setting for, 2
Universal setting for, 3
unplugging before building projects, 3

dictionaries, 15–16
data types for, 4
deserializing JSON objects into, 518–521
serializing into a JSON object, 516–518
storing and synchronizing in iCloud, 924–

929
subscripting, 19
user-info dictionary sent with notifications,

694, 696, 702, 709
dictionaryForKey: method, NSUbiquitousKey‐

ValueStore, 927
digital signature for passes, 987–993
directions, displaying on map, 475–480
disclosure indicator accessory, for table cells,

231
dismissModalViewControllerAnimated: meth‐

od, UIViewController, 657
dispatch queues, 335–338

concurrent queues
submitting tasks asynchronously, 361–

368
submitting tasks synchronously, 358–361

creating, 377–379
main queue, 354–358
serial queues, 377–379
types of, 337

dispatch_after function, 368–371
dispatch_after_f function, 368–371

dispatch_async function, 354, 361–368
dispatch_async_f function, 354, 356, 361–368
dispatch_function_t type, 338
dispatch_get_global_queue function, 361
dispatch_get_main_queue function, 354–358
dispatch_group_async function, 374
dispatch_group_async_f function, 375
dispatch_group_create function, 373, 374
dispatch_group_notify function, 374
dispatch_once function, 371–373
dispatch_queue_create function, 377–379
dispatch_sync function, 358–360
dispatch_sync_f function, 360
dispatch_time function, 370
distributed notifications, 694
Documents/ folder, 601
drag behavior (see push behavior)
dragging gestures, 489–491
drawAtPoint: method, UIImage, 843–845
drawAtPoint:withAttributes: method, NSString,

835
drawAtPoint:withFont: method, NSString, 835
drawInRect: method, UIImage, 841–845
drawRect: method, UIView, 833, 835
drawViewHierarchyInRect: method, UIView,

903, 904
drawWithRect:options:attributes:context: meth‐

od, NSString, 838
Dynamics (see UIKit Dynamics)

E
edge insets, 847
editViewDelegate property, EKEventEditView‐

Controller, 822–824
EKAlarm class, 811–813
EKCalendar class, 787–789

(see also Calendar database)
EKEvent class, 792–796
EKEventEditViewController class, 822–824
EKEventStore class, 784–787

(see also event store)
EKEventStoreChangeNotification class, 814–

816
EKEventViewController class, 816–821
EKParticipant class, 808–811
EKRecurrenceEnd class, 804–807
EKRecurrenceRule class, 804–807
EKSource class, 790–791
elasticity of snap behavior, 191

Index | 1015

elasticity property, UIDynamicItemBehavior,
194, 195

email
distributing passes using, 993–995
sharing content with (see sharing content)

Enable Modules feature, 417
endBackgroundTask: method, UIApplication,

665–668
entities, in data model (see managed objects)
entitlements, 416, 435–439, 923

(see also provision profile)
enumerateAssetsUsingBlock: method,

ALAssetsGroup, 649
enumerateGroupsWithTypes:usingBlock:fail‐

ureBlock: method, ALAssetsLibrary, 649,
651

event edit view controllers, 822–824
Event Kit framework, 779, 783
Event Kit UI framework, 779, 783
event property, EKEventViewController, 820
event store

requesting permission to access, 784–787
retrieving calendars in, 790–791

event view controllers, 816–821
eventEditViewController:didCompleteWithAc‐

tion: method, 822–824
events in calendar

adding, 792–796
alarms for, 811–813
attendees of, retrieving, 808–811
deleting, 799–803
edit view controller for, 822–824
notification of changes to, 814–816
recurring, adding, 803–807
retrieving, 796–799
view controller for, 816–821

events in controls (see control events)
eventsMatchingPredicate: method, EKEvent‐

Store, 797–799
eventTicket key, pass file, 981
eventWithEventStore: method, EKEvent, 792–

796
executeFetchRequest:error: method, NSMana‐

gedObjectContext, 749
extractEventEntityCalendarsOutOfStore: meth‐

od, EKEventStore, 787

F
Facebook, sharing content with (see sharing

content)
familyNames method, UIFont, 833
fetched results controllers, 754–761
fetchRequest property, NSFetchedResultsCon‐

troller, 756
fileExistsAtPath:isDirectory: method, NSFile‐

Manager, 930
files

app sandbox of, 601–603
deleting, 618–621
downloading from Internet, 501–504, 506–

508
in iCloud

managing state of, 961–963
searching for, 936–945
storing, 939, 946–961

listing for a folder, 612
protection for

enabling, 418–422
writing files using, 443–446

reading from, 605
saving objects to, 621–624
writing to, 605

first-class objects, 339
flick behavior (see push behavior)
floating point data types, 4
folders

app sandbox of, 601–603
creating, 610–612
deleting, 618–621
in iCloud

managing, 929–935
searching for, 936–945

listing for a folder, 612–617
paths to, determining, 603–605

fontNamesForFamilyName: method, UIFont,
834

fonts on device, 833–836
fonts used in this book, xvii
fontWithName:size: method, UIFont, 834
footers

for collection views, 303–308
for table views, 223, 237–246

foregroundColor key, pass file, 981
formatVersion key, pass file, 980
friction property, UIDynamicItemBehavior, 193

1016 | Index

G
GCD (Grand Central Dispatch), 335–340

block objects, 337–340
constructing, 342–346
inline block objects, 339, 345–346, 347,

349
invoking, 343–344, 352–353
self, referencing in, 346, 348–349
variables in, accessing, 346–352

dispatch queues, 335–338
concurrent queues, 358–368
creating, 377–379
main queue, 354–358
serial queues, 377–379
types of, 337

grouping tasks, 373
performing tasks after a delay, 368–371
performing tasks only once, 371–373

generic key, pass file, 982
geocodeAddressString:completionHandler:

method, CLGeocoder, 468–469
geocoding

converting address to spatial location, 468–
469

reverse, converting spatial location to ad‐
dress, 470–471

gesture recognizers, 481–483
for collection views, 308–310
continuous, 482, 483
discrete, 482, 483
list of, 481
long press gestures, 491–494
panning (dragging) gestures, 489–491
pinch gestures, 497
rotation gestures, 485–489
shake gestures, 915
states of, 482–483
swipe gestures, 483–485
tap gestures, 495–496

GET requests, HTTP, 509–511
getResourceValue:forKey:error: method,

NSURL, 617
GPS services (see Core Location framework;

maps)
gradients, drawing, 873–882
Grand Central Dispatch (see GCD)
graphics, 827–833

(see also images)
colors, using, 836–841

content scale factor, 828
context of, 833

retrieving handle for, 851
saving and restoring, 870

fonts on device, using, 833–836
frameworks for, 827
gradients, drawing, 873–882
images

drawing, 841–845
nine-part images, edge insets for, 847
resizable, creating, 845–850

lines, drawing, 850–857
origin point, 828
paths, drawing, 858–862
pixels, 828
points, 828
shadows, adding to shapes, 866–871
shapes

drawing, 858–866
moving, 882–886
rotating, 889
scaling, 886–887

text, drawing, 835–836, 838
gravity behavior, 170, 171–172

(see also collision behavior)
Group ID, 434
groups in address book

assigning contacts to, 584–587
inserting, 581–584
searching for, 587–592

groups in table views (see sections in table
views)

gyroscope, 907–908
availability of, detecting, 910–911
data from, retrieving, 916–917

H
.h file extension, 6
H: orientation specifier, 204–205
handleDocumentStateChanged: method,

UIViewController, 963
handlePinches: method, UIViewController, 310
hash tables (see dictionaries)
headerFields key, pass file, 982
headers, 6

for collection views, 303–308
for table views, 222, 237–246

highlighted property, UICollectionViewCell,
300–303

Index | 1017

HTTP DELETE requests, 513–514
HTTP GET requests, 509–511
HTTP POST requests, 511–513
HTTP PUT requests, 514–516

I
iCloud, 919–920

Container Identifier for, 929, 931
enabing key-value store for, 924
enabling for an app, 920–924
files or documents in

managing state of, 961–963
searching for, 936–945
storing, 939, 946–961

folders in
managing, 929–935
searching for, 936–945

keychain data in, 440–443
Root iCloud Path for, 929
storing and synchronizing dictionaries in,

924–929
unique identifier for, 925

iCloud account, 779
id data type, 4
image picker controllers, 632–635, 637–638, 648
imageNamed: method, UIImage, 841
imagePickerController:didFinishPickingMedia‐

WithInfo: method, 634, 638
imagePickerControllerDidCancel: method, 634
images, 127–131

(see also graphics)
for buttons, 126
capturing from a video, 551–554
in collection view cells, 296–298
for contacts, retrieving and setting, 592–599
displaying, 127–131
drawing, 841–845
JPEG representation of, 593
for map annotations, 465–467
on navigation bar, 86–87
nine-part images, edge insets for, 847
for passes, 984–986
PNG representation of, 593
resizable, creating, 845–850
retrieving from Assets library, 649–656
retrieving from photo library, 646–648
for segmented controls, 62
shooting with camera, 632–635
size of, adjusting to screen, 129–131

for sliders, 53, 56–59
storing in photo library, 639–643
on storyboards, 332–332
for switches, 36, 38
on tab bar, 98
capturing from a view, 903–905

imageWithData: method, UIImage, 841
immutable data types, 4, 5
initRecurrenceWithFrequence:interval:end:

method, EKRecurrenceRule, 804–807
initWithActivityItems:applicationActivities:

method, UIActivityViewController, 73
initWithBarButtonSystemItem:target:action:

method, UIBarButtonItem, 90–92
initWithCollectionViewLayout: method, UICol‐

lectionViewController, 285
initWithContentsOfFile: method, NSArray, 608
initWithContentsOfFile: method, UIImage, 842
initWithContentsOfFile:encoding:error: meth‐

od, NSString, 607
initWithData: method, UIImage, 842
initWithData:error: method, AVAudioPlayer,

533
initWithFileURL: method, UIDocument, 948
initWithFrame:collectionViewLayout: method,

UICollectionView, 283
initWithFrame:style: method, UITableView, 222
initWithItem:point:attachedToAnchor: method,

UIAttachmentBehavior, 185, 188
initWithItem:snapToPoint: method, UISnapBe‐

havior, 190
initWithItems:mode: method, UIPushBehavior,

180
initWithNibName:bundle: method, UIView‐

Controller, 67
initWithString: method, NSMutableAttributed‐

String, 145
initWithURL:settings:error: method, AVAudio‐

Recorder, 535
inline block objects, 339, 345–346, 347, 349
insertNewObjectForEntityForName:inManage‐

dObjectContext: method, NSEntityDescrip‐
tion, 745–747

instance methods, 9, 10
integer data types, 4
Interface Builder

adding custom segues to storyboard, 329–
331

1018 | Index

adding navigation controller to storyboard,
316–316

adding tab bar controller to storyboard,
325–327

adding UI components to storyboard, 332–
332

configuring Auto Layout constraints, 217–
219

creating segues in storyboards, 319–321
interfaces, 6
Internet, 501

(see also sharing content)
connections to

asynchronous, 501–504, 502
handling in background, 688–690
synchronous, 502, 506–508

DELETE requests, sending, 513–514
downloading URL contents, 501–504, 506–

508
fetching content in background, 669–677
GET requests, sending, 509–511
modifying URL requests, 508–509
POST requests, sending, 511–513
PUT requests, sending, 514–516
timeouts for URL requests, 504–506

invalidate method, NSTimer, 407
inverse many-to-many relationship, 762, 766–

768
inverse one-to-many relationship, 762–766
iOS 7 UI Transition Guide, xvii
iOS App Programming Guide, xvii
iOS apps (see apps)
iOS Dev Center website, 418
iOS Developer Portal

App ID, creating, 418–420
provision profile, creating, 420–421

iOS Human Interface Guidelines, xvi
iOS Provisioning Portal

certificates for Pass Kit, creating, 968–975
iCloud for app, enabling, 921
provision profile, creating, 921

isAccelerometerActive method, CMMotion‐
Manager, 908–910

isAccelerometerAvailable method, CMMotion‐
Manager, 908–910

isAvailableForServiceType: method, SLCompo‐
seViewController, 522

isCameraDeviceAvailable: method, UIImage‐
PickerController, 629

isCancelled method, NSOperation, 341, 389
isConcurrent method, NSOperation, 389
isExecuting method, NSOperation, 383, 390
isFinished method, NSOperation, 383, 390
isFlashAvailableForCameraDevice: method,

UIImagePickerController, 630
isGyroActive method, CMMotionManager,

910–911
isGyroAvailable method, CMMotionManager,

910–911
isMultitaskingSupported method, UIDevice,

664–665
isPassLibraryAvailable method, PKPassLibrary,

1004
isSourceTypeAvailable: method, UIImage‐

PickerController, 627–628
itemSize property, UICollectionViewFlowLay‐

out, 286

J
jailbreaking, 411
JavaScript Object Notation (see JSON)
JPEG images, 593
JSON (JavaScript Object Notation), 975
JSON objects

deserializing into arrays or dictionaries, 518–
521

serializing arrays or dictionaries into, 516–
518

JSONObjectWithData:options:error: method,
NSJSONSerialization, 518–521

K
key-value store, enabling for iCloud, 924
keyboard notifications, 120–122, 700–707
Keychain Access, 411

app’s access to, 416
comparison with OS X features of, 412–417
deleting values in keychain, 432–434
finding values in keychain, 424–428
iCloud, keychain data in, 440–443
multiple apps sharing keychain data, 434–

440
passwords

properties of, 415
securing when entering, 447–448

provision profile enabling, 418–422
storing values in keychain, 422–424

Index | 1019

updating values in keychain, 429–432

L
labels, 101–107

alignment for, 106
creating, 102
font for, 106
font size automatically adjusted for, 104, 107
instantiating, 103
line breaks in, 106
number of lines in, 104, 106
shadow color for, 106
shadow offset for, 106
text color for, 106

latitude
finding address from, 470–471
finding from address, 468–469

latitude key, pass file, 984
Library/ folder, 601
Library/Application Support/ folder, 603
Library/Caches/ folder, 602
Library/Preferences/ folder, 603
lines, drawing, 850–857
loadData:MIMEType:textEncodingName:base‐

URL: method, UIWebView, 138
loadFromContents:ofType:error: method, UI‐

Document, 948, 952
loadHTMLString:baseURL: method, UIWeb‐

View, 138
loadRequest: method, UIWebView, 138
local notifications, 693–694

cancelling, 708
handling, 711–713
scheduling, 707–710

localizedValueForFieldKey: method, PKPass,
1004

location services (see Core Location framework;
maps)

locationInView: method, UITapGesture‐
Recognizer, 496

locationManager:didFailWithError: method,
455

locationManager:didUpdateToLocation:from‐
Location: method, 455, 684

locations key, pass file, 983
logoText key, pass file, 981
long press gestures, 491–494
longitude

finding address from, 470–471

finding from address, 468–469
longitude key, pass file, 984

M
.m file extension, 6
main queue, 337, 354–358
main thread, 341, 383, 401
mainBundle method, NSBundle, 533
MAMP, 727
Managed Object Context (see MOC)
Managed Object Model (see MOM)
managed objects (entities), 736

creating, 738
deleting data from, 750–752
fetching data in background, 768–772
fetching table view results from, 754–761
generating classes from, 741–744
instantiating, 745–747
reading data from, 747–749
relationships between, 761–768
sorting data from, 752–754
transformable properties for, 772–776

manifest.json file, 987–988
many-to-many relationship, 762, 766–768
Map Kit framework, 449
map views, 450–452
maps, 449

annotations (pins) on, 453, 455–458
custom images for, 465–467
specifying color for, 459–464

delegate messages from, 452–453
detecting device location, 453
directions on, 475–480
displaying, 450–452
enabling, 449
region changes for, 453
searching, 472–475
types of, 451

mapView:didFailToLocateUserWithError:
method, 473

mapView:didUpdateUserLocation: method, 473
mapView:regionDidChangeAnimated: method,

453
mapView:viewForAnnotation: method, 453
mapViewWillStartLoadingMap: method, 453
mapViewWillStartLocatingUser: method, 453
master view controllers, 150–152
Master-Detail Application template, 149
master-detail views (see split view controllers)

1020 | Index

media picker controllers, 554, 558
Media Player framework, 531
“Memory Management Programming Guide for

Core Foundation”, 581
methods, 8–11

calling, 10, 11
class methods, 9, 11
data type for, 9
exposing in class interface, 10, 11
instance methods, 9, 10
parameters for, 8, 9
selector for, 9

minimumInteritemSpacing property, UICollec‐
tionViewFlowLayout class, 286

minimumLineSpacing property, UICollection‐
ViewFlowLayout, 286

minus sign (-), denoting instance methods, 9
MKAnnotation protocol, 456
MKAnnotationView class, 459, 465
MKDirections class, 475, 477
MKDirectionsRequest class, 475–477
MKDirectionsResponse class, 478
MKLocalSearch class, 472
MKLocalSearchRequest class, 472
MKMapItem class, 475, 477
MKMapItem type, 475
MKMapView class, 450–453
MKMapViewDelegate protocol, 452–453
MKPinAnnotationView class, 459–464
MKPlacemark class, 477
Mobile Core Services framework, 625–626
MOC (managed object context), 736
MOC (Managed Object Context), 768–772
model, 2

(see also data model)
model controllers, 155, 157
Model-View-Controller architecture (see MVC

architecture)
MOM (managed object model), 736

(see also data model)
motion of device, detecting (see accelerometer;

gyroscope; orientation; shake gestures)
motionEnded:withEvent: method, UIRespond‐

er, 915
.mov file extension, 548
moveRowAtIndexPath:toIndexPath: method,

UITableView, 251–256
moveSection:toSection: method, UITableView,

251–256

movie player controllers, 547
movies (see video)
MPMediaPickerController class, 554–561
MPMediaPickerControllerDelegate class, 554
MPMoviePlayerController class, 547–550
multitasking, 663

(see also concurrency)
availability of, determining, 664–665
completing long tasks in background, 665–

668
disabling, 691–692
fetching content in background, 669–677
fetching managed objects in background,

768–772
handling location changes in background,

682–684
handling network connections in back‐

ground, 688–690
notifications for, 663

(see also local notifications)
playing audio in background, 678–682
saving app state during, 684–688

music (see audio)
Music library, 554–561
music player controllers, 556
mutable data types, 4, 5
MVC (Model-View-Controller) architecture, 1–

2

N
Name.app folder, 601
naming conventions

classes, 6
properties, 7

navigation bar, 82, 84
animated button placement for, 93
buttons on, 88–94
image on, 86–87
segmented controls on, 92–93
switches on, 92
system buttons on, 90–92

navigation controllers, 79–85
(see also tab bar controllers)
creating, 81
initializing, 81
manipulating array of view controllers, 85–

85
for storyboards, 316–316
switching between view controllers, 82–84

Index | 1021

in tab bar, 94–98
navigationItem property, UIViewController, 89
networking (see Internet)
nine-part images, 847
nonatomic qualifier, 7
notification center, 694–695
notifications, 693–694

(see also control events; delegate messages)
distributed notifications, 694
documenting, 699
of event changes, 814–816
handling, 696–699
from keyboard, handling, 120–122, 700–707
local notifications, 693–694

cancelling, 708
handling, 711–713
scheduling, 707–710

push notifications, 693, 718
configuring app for, 718–724
delivering to app, 724–731
handling, 732–734

sending, 694–696
stopping receipt of, 696
system notifications, 699, 714–718
types of, 693
user-info dictionary sent with, 694, 696, 702,

709
NSArray class, 4, 14, 572, 608–609
NSAttributedString class, 144–146
NSCoding protocol, 621–624
NSCountedSet class, 18
NSCurrentLocaleDidChangeNotification class,

714
NSData class, 5, 503, 506, 606, 610
NSDictionary class, 4, 15, 609–610
NSEntityDescription class, 745–747
NSError class, 503
NSFetchedResultsController class, 754–761
NSFetchedResultsControllerDelegate protocol,

757
NSFetchRequest class, 747–749, 752–754
NSFileManager class, 444, 604, 611–614, 618,

929, 939, 952
NSInteger data type, 4
NSInternalInconsistencyException class, 746
NSInvocationOperation class, 381, 388
NSJSONSerialization class, 516–521
NSKeyedArchiver class, 621–624
NSKeyedUnarchiver class, 621–624

NSLayoutConstraint class, 198–200
(see also constraints)

NSManagedObjectContext class, 736, 768–772
NSManagedObjectModel class, 736
NSMetadataQuery class, 937–945, 954
NSMetadataQueryDidFinishGatheringNotifica‐

tion class, 937, 956
NSMutableArray class, 4, 14
NSMutableAttributedString class, 144–146
NSMutableData class, 5
NSMutableDictionary class, 4, 15
NSMutableOrderedSet class, 4, 17
NSMutableSet class, 4
NSMutableURLRequest class, 502, 508–509
NSNotification class, 693–696

(see also notifications)
NSNotificationCenter class, 694, 696
NSNumber class, 4
NSOperation class, 340, 383, 387, 389
NSOperationQueue class, 340, 388
NSOrderedSet class, 4, 17
NSPersistentStoreCoordinator class, 736
NSPredicate class, 799, 937
NSPrivateQueueConcurrencyType class, 768
NSSet class, 4
NSSortDescriptor class, 752–754
NSString class, 4, 606–608, 835, 838
NSStringFromCGPoint function, 496
NSTimer class, 396
NSUbiquitousKeyValueStore class, 924–929
NSUInteger data type, 4
NSURL class, 608
NSURLConnection class, 501–504, 506–508,

688–690
NSURLRequest class, 502, 504–506
NSURLResponse class, 502
NSUserDefaults class, 924
NSUserDefaultsDidChangeNotification class,

714–716
NSXMLParser class, 525–530
NSXMLParserDelegate protocol, 525, 526
numberOfComponentsInPickerView: method,

UIPickerView, 42
numberOfSectionsInCollectionView: method,

UICollectionViewDataSource, 290
numberOfSectionsInTableView: method,

UITableViewDataSource, 227

1022 | Index

O
objectAtIndexPath: method, NSFetchedResults‐

Controller, 755
objectForKeyedSubscript: method, 20
Objective-C language, 1
one-to-many relationship, 762–766
one-to-one relationship, 762
openssl command, 987, 989–993
operation queues, 340–341, 381, 387–392
operations, 340–341

dependencies between, 393–395
running tasks asynchronously, 387–392
running tasks synchronously, 380–386
types of, 340

@optional keyword, 13
ordered sets, 17
organization name, for project, 2
organizationName key, pass file, 980
orientation of device

enabling options for, 202
specifying support for, 216

orientation specifiers, 204
origin point, 828

P
.p12 file extension, 727, 991
page view controllers, 153–157

creating, 153–155
data source for, 157
data view controller in, 155
delegate messages from, 155–157
model controller in, 155, 157
root view controller in, 155
spine location for, 155

Page-Based Application template, 153
panning gestures

with attachment behavior, 185–188
detecting, 489–491

parameters, 8, 9
for DELETE requests, 513–514
for GET requests, 509–511
for POST requests, 511–513
for PUT requests, 514–516

Pass Kit framework, 965–968
certificate for, 968–975, 989–992
importing in app, 1003
private key file for, 991

pass type ID, 968–975, 980

pass.json file, 975–984
pass.pkpass file, 993
Passbook application, 965–968
passes, 965–968

accessing from app, 1003–1006
digital signature for, 987–993
distributing using email, 993–995
distributing using web services, 995–996
enabling access from app, 997–1002
icons and images for, 984–986
pass file for, creating, 975–984

passTypeIdentifier key, pass file, 980
passWithPassTypeIdentifier:serialNumber:

method, PKPassLibrary, 1004
passwords

properties of, 415
securing when entering, 447–448

pathForResource:ofType: method, NSBundle,
533

paths (file locations)
for app folders, 603–605
for resources, 533

paths (series of points), 850, 858–862
PEM file, 728
perform method, UIStoryboardSegue, 329
“Performance Tuning”, 383
performBlock: method, NSManagedObjectCon‐

text, 768–772
performSelector:withObject:afterDelay: meth‐

od, NSObject, 368
performSelectorInBackground:withObject:

method, NSObject, 406–407
persistent store, 735
persistent store coordinator, 736
photo library

retrieving photos or videos from, 646–648
storing images in, 639–643
storing videos to, 644–646

photos (see images)
physics behaviors (see UIKit Dynamics)
picker views, 39–45

(see also date pickers; sliders)
creating, 40–41
data source for, 41–43
determining current selection, 45
row text for, 43

pickerView:numberOfRowsInComponent:
method, 43

Index | 1023

pickerView:titleForRow:forComponent: meth‐
od, 43

pinch gestures, 497
pins (annotations) for maps, 453, 455–458

custom images for, 465–467
specifying color for, 459–464

pixels, 828
PKPass class, 1003
.pkpass file extension, 993
PKPassLibrary class, 1003
plus sign (+), denoting class methods, 9
PNG images, 593
pointers, 5
points, 828
popover controllers, 161–164
popovers, 158–166

alert views as alternative to, 163
content view controller for, 161, 166
creating, 160–164
delegate messages from, 164
device orientation affecting, 160
device restrictions for, 159, 163

popViewControllerAnimated: method,
UINavigationController, 83

POST requests, HTTP, 511–513
postNotification: method, NSNotification, 694–

696
predicateForEventsWithStartDate:endDate:cal‐

endars: method, EKEventStore, 797–799
predicateWithFormat: method, NSPredicate

class, 937
Preferences/ folder, 603
prepareForSegue:sender: method, UIView‐

Controller, 319, 323
presentModalViewController:animated: meth‐

od, UIViewController, 657
presentMoviePlayerViewControllerAnimated:

method, UIViewController, 547
primaryFields key, pass file, 982
private key file for Pass Kit, 991
product name, for project, 2
progress views, 141–143

creating, 142
initializing, 142
range for, 142–143

projects, creating, 2–3
properties

for classes, 6–7
naming conventions for, 7

for protocols, 13
qualifiers for, 7

@property keyword, 7
@protocol keyword, 12
protocols, 12–14
provision profile

App ID required for, 418–420
creating, 418–422, 921
creating for passes, 998–1002
criteria for apps sharing keychain data, 434
Data Protection, enabling, 419
downloading, 421, 921
enabling push notifications in, 718
entitlements in, 416, 435–439, 923
Group ID in, 434
installing, 421, 921
Team ID in, 434

push behavior, 170, 180–184
angle for, 180, 183
animator for, 180
collision behavior with, 182
continuous, 180
magnitude for, 180, 183
tap gesture starting, 181–183

push notifications, 693, 718
configuring app for, 718–724
delivering to app, 724–731
handling, 732–734

PUT requests, HTTP, 514–516

Q
qualifiers, for properties, 7
Quartz 2D framework, 828
queues (see dispatch queues; operation queues)

R
range pickers (see sliders)
record method, AVAudioRecorder, 542–543
rectangles, drawing, 862–866
recurrenceEndWithEndDate: method,

EKRecurrenceEnd, 804–807
recurringRule property, EKEvent, 804
reference view, for animators, 170, 173
refreshControl property, UITableView‐

Controller, 274–277
registerClass:forCellReuseIdentifier: method,

UITableView, 226

1024 | Index

registerClass:forCellWithReuseIdentifier: meth‐
od, UICollectionView class, 290

registerForRemoteNotificationTypes: method,
UIApplication, 722

registerNib:forCellWithReuseIdentifier: meth‐
od, UICollectionView, 290

Release scheme, provision profile for, 418
removeAlarm: method, EKEvent, 813
removeDependency: method, NSOperation, 395
removeEvent:span:commit:error: method,

EKEventStore, 799–803
removeItemAtPath:error: method, NSFile‐

Manager, 618–621
removeItemAtURL:error: method, NSFile‐

Manager, 618–621
removeObserver: method, NSNotification‐

Center, 696
requestThumbnailImagesAtTimes:timeOption:

method, MPMoviePlayerController, 551–
554

requestWithURL:cachePolicy:timeoutInterval:
method, NSURLRequest, 505

@required keyword, 13
requireGestureRecognizerToFail: method,

UIGestureRecognizer, 309
resistance property, UIDynamicItemBehavior,

193
resizableImageWithCapInsets: method, UI‐

Image, 845–850
resources

“Bundle Programming Guide”, xvii
iOS 7 UI Transition Guide, xvii
iOS App Programming Guide, xvii
iOS Dev Center website, 418
iOS Human Interface Guidelines, xvi
“Memory Management Programming Guide

for Core Foundation”, 581
“Performance Tuning”, 383
“A Short Practical Guide to Blocks”, xvii
String Programming Guide, 343

resume method, AVAudioRecorder, 543
reverse geocoding, 470–471
reverseGeocodeLocation:completionHandler:

method, CLGeocoder, 470–471
reverseTransformedValue: method, 773
root classes, 6
root folder, 602
Root iCloud Path, 929
root view controllers, 155

rotating
dynamic items during animations, 193
shapes, 889
views, 901–903

rotation gestures, 485–489
rows (cells) in table views, 221

about to be displayed, 223
accessories for, 229–234
context menus for, 246–250
deleting with animations, 257–267
identifiers for, 225
location of, 225
moving, 251–256
returning instances of, 227–228
scrolled off the screen, 223
users deleting, 235–237

rows, database (see managed objects (entities))
run loops, 341, 396

S
sandbox environment, 601–603
satellite maps, 452
saveEvent:span:error: method, EKEventStore,

792–796, 804
scaling

pinch gestures, 497
shapes, 886–887
views with animation, 900–901

scenes, 315
(see also storyboards)

scheduledTimerWithTimeInterval:invoca‐
tion:repeats: method, NSTimer, 397

scheduledTimerWithTimeInterval:target:selec‐
tor:userInfo:repeats: method, NSTimer, 396

scheduleLocalNotification: method, UIApplica‐
tion, 707–710

screenshots of views, 903–905
scroll views, 132–137

(see also text views)
adding views to, 132
creating, 132
delegate messages from, 133–134
indicator lines in, 134–135
pagination with, 135–137

scrollDirection property, UICollectionView‐
FlowLayout, 286

SecBase.h file, 423
SecItemAdd function, 422–424, 434, 440
SecItemCopyMatching function, 424–428

Index | 1025

SecItemDelete function, 432–434
SecItemUpdate function, 429–432
secondaryFields key, pass file, 982
sectionInset property, UICollectionViewFlowL‐

ayout, 286
sections (groups) in table views, 222

deleting with animations, 257–267
moving, 251–256
number of, 227
number of rows in, 227

sections property, NSFetchedResultsController,
755

security, 411–418
file protection

enabling, 418–422
writing files using, 443–446

jailbreaking, 411
Keychain Access, 411

comparison with OS X features of, 412–
417

deleting values in keychain, 432–434
finding values in keychain, 424–428
iCloud, keychain data in, 440–443
multiple apps sharing keychain data,

434–440
password properties, 415
storing values in keychain, 422–424
updating values in keychain, 429–432

provision profile
App ID required for, 418–420
creating, 418–422
creating for passes, 998–1002
criteria for apps sharing keychain data,

434
Data Protection, enabling, 419
downloading, 421
enabling push notifications in, 718
entitlements in, 416, 435–439, 923
Group ID in, 434
installing, 921, 921
Team ID in, 434

UI security, guidelines for, 446–448
security cms command, 416
security default-keychain command, 412
security dump-keychain command, 412
security find-generic-password command, 415
Security framework, enabling, 417
security list-keychains command, 412

segmented controls, 59–63
control events from, 61
creating, 60–61
determining current selection, 62
images for, 62
on navigation bar, 92–93

segmentedControlStyle property, UISegmented‐
Control, 63

segues, 315, 318–324, 328–331
selected property, UICollectionViewCell, 300–

303
selectedBackgroundView property, UICollec‐

tionViewCell, 300
selectedRowInComponent: method, UIPicker‐

View, 45
selectors, for methods, 9
self, referencing in block objects, 346, 348–349
sendAsynchronousRequest:queue:completion‐

Handler: method, NSURLConnection, 502
sendSynchronousRequest:returningRes‐

ponse:error: method, NSURLConnection,
506

serial queues, 337, 377–379
serialNumber key, pass file, 980
setAnimationDelay: method, UIView, 895
setAnimationDelegate: method, UIView, 894
setAnimationDidStopSelector: method, UIView,

895, 898
setAnimationDuration: method, UIView, 894
setAnimationRepeatCount: method, UIView,

895
setAnimationWillStartSelector: method, UI‐

View, 895
setArray:forKey: method, NSUbiquitousKey‐

ValueStore, 926
setAttributes:range: method, NSMutableAttri‐

butedString, 145
setBool:forKey: method, NSUbiquitousKey‐

ValueStore, 926
setCategory:error: method, AVAudioSession,

544
setData:forKey: method, NSUbiquitousKey‐

ValueStore, 926
setDictionary:forKey: method, NSUbiquitous‐

KeyValueStore, 926
setGyroUpdateInterval: method, CMMotion‐

Manager, 916–917
setHTTPMethod: method, NSMutableURLRe‐

quest, 510

1026 | Index

setMinimumBackgroundFetchInterval: method,
UIApplication, 670

setNetworkActivityIndicatorVisible: method,
UIApplication, 140

setObject:forKeyedSubscript: method, 20
setPredicate: method, NSMetadataQuery, 937
sets, 16–18

counted sets, 18
data types for, 4
ordered sets, 17

setSortDescriptors: method, NSFetchRequest,
752–754

setString:forKey: method, NSUbiquitousKey‐
ValueStore, 926

setUbiquitous:itemAtURL:destinationURL:er‐
ror: method, NSFileManager, 939

setViewControllers:animated: method,
UINavigationController, 85

shadows, adding to shapes, 866–871
shake gestures, 915
shapes

drawing, 858–866
moving, 882–886
rotating, 889
scaling, 886–887

sharedApplication method, UIApplication, 707
sharedInstance method, AVAudioSession class,

543
sharing content, 67–78

custom options for, 73–78
determining device options for, 522
with SLComposeViewController class, 521–

524
“A Short Practical Guide to Blocks”, xvii
shouldPerformSegueWithIdentifier:sender:

method, UIViewController, 321
showsUserLocation property, MKMapView, 473
Single View Application template, 2
singletons, 371–373
SLComposeViewController class, 521–524
sliders, 50–59

creating, 51–52
images for, 53, 56–59
minimum and maximum values for, 52
notifications of user interaction with, 53
tint colors for, 55–56, 59

snap behavior, 170, 189–192
animator for, 190
elasticity of, 191

initializing, 190
tap gesture starting, 189, 191

Social framework, 521–524
social networking services (see sharing content)
sources property, EKEventStore, 790–791
spatial location

finding address from, 470–471
finding from address, 468–469

split view controllers, 148–152
creating, 149–150
detail view controller for, 150–152
device restrictions for, 148, 150
master view controller for, 150–152

square brackets([]), enclosing indexes, 19
SSL certificate

handshaking with APNS, 724
startAccelerometerUpdates method,

CMMotionManager, 914
startAccelerometerUpdatesToQueue:withHan‐

dler: method, CMMotionManager, 912–914
startGyroUpdates method, CMMotionManager,

917
startGyroUpdatesToQueue:withHandler: meth‐

od, CMMotionManager, 916–917
startUpdateLocation method, CLLocation‐

Manager, 455
stop method, AVAudioRecorder, 540
storeCard key, pass file, 982
animation:for storyboard segues, 328–331
storyboards, 315

navigation controller for, 316
scenes in, 315
segues for, 315, 318–324, 328–331
tab bar controller for, 325–327
UI Components on, 332–332

String Programming Guide, 343
stringForKey: method, NSUbiquitousKeyValue‐

Store, 927
strings

attributed strings, 144–146
data types for, 4

stringWithContentsOfFile:encoding:error:
method, NSString, 607

strong qualifier, 7
subscripting, 18–23

by index, 19, 22–23
by key, 19–21

super classes, 6
swipe gestures, 483–485

Index | 1027

switches, 32–39
control events from, 35
creating, 33
determining current selection, 35
images for, 36, 38
initializing, 34
on navigation bar, 92
setting, 35
tint colors for, 36–38

synchronize method, NSUbiquitousKeyValue‐
Store, 926

synchronous connections, 502, 506–508
synchronous execution

non-UI related tasks, 358–368
with operations, 380–386

system buttons, 90–92
system notifications, 699, 714–718
system-wide notifications (see distributed noti‐

fications)
systemFontOfsize: method, UIFont, 834

T
tab bar controllers, 94–99

(see also navigation controllers)
images on, 98
for storyboards, 325–327

tabItem property, UIViewController, 98
table view controllers, 268–274
table views, 221–225

creating, 221–222, 225–226, 268–274
data from managed objects for, 754–761
data source for, 221, 225–228
delegate messages from, 221, 222–224
footers for, 223, 237–246
headers for, 222, 237–246
positioning of, 222
refresh control for, 274–277
rows (cells) in, 221

about to be displayed, 223
accessories for, 229–234
context menus for, 246–250
deleting with animations, 257–267
identifiers for, 225
location of, 225
moving, 251–256
returning instances of, 227–228
scrolled off the screen, 223
users deleting, 235–237

sections (groups) in, 222
deleting with animations, 257–267
moving, 251–256
number of, 227
number of rows in, 227

style of, 222
tables, database (see managed objects (entities))
tableView:canPerformAction:forRowAtIndex‐

Path:withSender: method, 247–250
tableView:cellForRowAtIndexPath: method,

UITableViewDataSource, 227
tableView:commitEditingStyle:forRowAtIndex‐

Path: method, 235–237
tableView:didEndDisplayingCell:forRowAtIn‐

dexPath: method, 223
tableView:editingStyleForRowAtIndexPath:

method, 235–237
tableView:heightForFooterInSection: method,

241
tableView:heightForHeaderInSection: method,

241
tableView:numberOfRowsInSection: method,

UITableViewDataSource, 227
tableView:performAction:forRowAtIndex‐

Path:withSender: method, 247–250
tableView:shouldShowMenuForRowAtIndex‐

Path: method, 247–250
tableView:titleForFooterInSection: method, 245
tableView:titleForHeaderInSection: method,

245
tableView:viewForFooterInSection: method,

223, 240, 243
tableView:viewForHeaderInSection: method,

222, 240, 243
tableView:willDisplayCell:forRowAtIndexPath:

method, 223
tap and hold gestures, 491–494
tap gestures, 495–496

push behavior started by, 181–183
starting snap behavior, 189, 191

Team ID, 434, 925, 980
teamIdentifier key, pass file, 980
templates

Master-Detail Application template, 149
Page-Based Application template, 153
Single View Application template, 2

text
drawing, 835–836, 838
labels, 101–107

1028 | Index

rich text, 143–146
text fields, 108–117

alignment of, 111
border style for, 111
contents of, reading and writing, 111
creating, 110–111, 113
delegate messages from, 111–114
height of, 109
left and right views of, 116
number of lines in, 109
placeholder for, 114

text messaging, sharing content with (see shar‐
ing content)

text views, 118–122
(see also scroll views)
creating, 119
keyboard notifications for, 120–122

textViewDidChange: method, UITextView‐
Delegate, 958

threads, 341
autorelease pool for, 404
background methods creating, 406–407
creating, 400–405
exiting, 407–409
main thread, 341, 383, 401
nonatomic properties not thread-safe, 7
paused when app in background, 665

time selections (see date pickers)
timeouts for URL requests, 504–506
timers, 341

creating, 395–400
date pickers as, 49
exiting, 407–408

timerWithTimeInterval:invocation:repeats:
method, NSTimer, 399

timerWithTimeInterval:target:selector:userIn‐
fo:repeats: method, NSTimer, 398

title property, EKCalendar, 788
title property, navigation item of UIView‐

Controller, 87
title property, UIViewController, 98
titleView property, navigation item of UIView‐

Controller, 86–87
tmp/ folder, 603
Toll-Free Bridging

CFArrayRef to NSArray, 572
touch events (see gesture recognizers)
transformable properties, 772–776

transformations
rotations, 889, 901–903
scaling, 886–887, 900–901
translations, 882–886

transformedValue: method, 773
transformedValueClass method, 773
transitionFromView:toView:duration:op‐

tions:completion: method, UIView, 331
transitType key, pass file, 982
translatesReferenceBoundsIntoBoundary prop‐

erty, UICollisionBehavior, 172, 173
translating shapes, 882–886
Twitter, sharing content with (see sharing con‐

tent)
type property, EKCalendar, 788

U
UI components

Auto Layout for (see Auto Layout)
buttons, 123–127
images, 127–131
labels, 101–107
popovers, 158–166
security guidelines for, 446–448
segmented controls, 59–63
text fields, 108–117
text views, 118–122

UIActivity class, 73–78
UIActivityViewController class, 67–78

(see also activity view controllers)
UIAlertView class, 23–32

(see also alert views)
UIAlertViewDelegate protocol, 27, 74
UIApplicationDelegate protocol, 684
UIApplicationExitsOnSuspend key, 691–692
UIAttachmentBehavior class, 184–188

(see also attachment behavior)
UIBarButtonItem class, 88–94
UIButton class, 123–127

(see also buttons)
UICollectinViewDelegate protocol, 283
UICollectionReusableView class, 284
UICollectionView class, 281, 283

(see also collection views)
UICollectionViewCell class, 284, 288–292, 294
UICollectionViewController class, 281–284
UICollectionViewDataSource protocol, 284–

285
UICollectionViewDelegate protocol, 300–303

Index | 1029

UICollectionViewFlowLayout class, 279, 285–
287

UICollisionBehavior class, 170, 172–179
(see also collision behavior)

UIColor class, 836–841
UIDatePicker class, 45–50

(see also date pickers)
UIDeviceBatteryStateDidChangeNotification

class, 714
UIDeviceOrientationDidChangeNotification

class, 714
UIDeviceProximityStateDidChangeNotification

class, 714
UIDocument class, 946–961
UIDocumentStateChangeNotification class,

961–963
UIDynamicAnimator class, 170

(see also animators)
UIDynamicItem protocol, 171
UIDynamicItemBehavior class, 192–195
UIEdgeInsets structure, 847
UIEventSubtype type, 915
UIFont class, 833–836
UIGestureRecognizer class, 482
UIGraphicsGetCurrentContext function, 851
UIGraphicsGetImageFromCurrentImageCon‐

text function, 903, 904
UIGravityBehavior class, 170, 171–172

(see also gravity behavior)
UIImage class, 606, 841–845
UIImageJPEGRepresentation function, 593, 905
UIImagePickerController class, 625, 632, 636,

647, 648
UIImagePickerControllerDelegate protocol,

632, 633
UIImagePNGRepresentation function, 593, 904,

905
UIImageView class, 127–131
UIImageWriteToSavedPhotosAlbum function,

639–643
UIKeyboardDidHideNotification class, 702
UIKeyboardDidShowNotification class, 702
UIKeyboardWillHideNotification class, 702
UIKeyboardWillShowNotification class, 702
UIKit Dynamics, 169–170

attachment behavior, 184–188
collision behavior, 172–179
density for specific items, 194
elasticity for specific items, 191, 194

friction for specific items, 193
gravity behavior, 171–172
push behavior, 180–184
resistance for specific items, 193
rotation, allowing for specific items, 193
snap behavior, 189–192

UIKit framework, 828
colors, using, 836–841
drawing images, 841–845
drawing text, 835–836
fonts, using, 833–836

UILabel class, 101–107
UILocalNotification class, 693, 707–710

(see also local notifications)
UILongPressGestureRecognizer class, 491–494
UINavigationBar class, 89

(see also navigation bar)
UINavigationController class, 79–85

(see also navigation controllers)
UINavigationControllerDelegate protocol, 632,

661
UIPageViewController class, 153–157

(see also page view controllers)
UIPageViewControllerDataSource protocol, 157
UIPageViewControllerDelegate protocol, 155
UIPanGestureRecognizer class, 489–491
UIPickerView class, 39–45

(see also picker views)
UIPickerViewDataSource protocol, 41, 42
UIPickerViewDelegate protocol, 43
UIPinchGestureRecognizer class, 497
UIPopoverController class, 158–166
UIProgressView class, 141–143

(see also progress views)
UIPushBehavior class, 170, 180–184

(see also push behavior)
UIRefreshControl class, 275
UIResponder class, 915
UIRotationGestureRecognizer class, 486–489
UIScrollView class, 132–137

(see also scroll views)
UIScrollViewDelegate protocol, 133
UISegmentedControl class, 59–63

(see also segmented controls)
UISlider class, 50–59

(see also sliders)
UISnapBehavior class, 170, 189–192

(see also snap behavior)

1030 | Index

UISplitViewController class, 148–152
(see also split view controllers)

UIStoryboardSegue class, 318–324
(see also segues)

UISwipeGestureRecognizer class, 484–485
UISwitch class, 32–39

(see also switches)
UITabBar class, 94

(see also tab bar)
UITabBarController class, 94–99

(see also tab bar controllers)
UITableView class, 221

(see also table views)
UITableViewCell class, 221, 229–234
UITableViewController class, 221, 268–274
UITableViewDataSource protocol, 221, 225–228
UITableViewDelegate protocol, 221, 222–224
UITapGestureRecognizer class, 495–496
UITextField class, 108–117, 447

(see also text fields)
UITextFieldDelegate protocol, 111
UITextView class, 118–122, 954

(see also text views)
UIVideoEditorController class, 657–661
UIVideoEditorControllerDelegate protocol, 661
UIView class, 828

(see also views)
UIViewContentMode enumeration, 130
UIViewController class, 63–67

(see also view controllers)
UIWebView class, 137–140

(see also web views)
UIWebViewDelegate protocol, 140
UIWindow class, 827

(see also windows)
ULO (upper left origin), 828
universal devices setting, 2
Universal devices setting, 3
unsafe_unretained qualifier, 7
unsigned data types, 4
untyped objects, 4
__unused macro, 14
updateChangeCount: method, UIDocument,

958
Upper Left Origin (see ULO)
URL requests

asynchronous, 501–504
DELETE requests, 513–514
GET requests, 509–511

modifying, 508–509
POST requests, 511–513
PUT requests, 514–516
synchronous, 506–508
timeouts for, 504–506

URLForUbiquityContainerIdentifier: method,
NSFileManager, 929

URLForUbiquitycontainerIdentifier: method,
NSFileManager, 952

URLsForDirectory:inDomains: method,
NSFileManager, 604–605

userTrackingMode property, MKMapView, 473

V
V: orientation specifier, 204–205
valueForProperty: method, MPMediaItem, 556
variables, 3–5

in block objects, 346–352
data types for, 3–5
properties of, 3

video editor controllers, 657–661
videoEditorController:didSaveEditedVideoTo‐

Path: method, 661
videos

Assets Library framework for, 626–627
capturing screenshots from, 551–554
editing, 656–661
frameworks required for, 531
maximum duration, setting, 638
playing video files, 547–550
quality of, setting, 638
retrieving from Assets library, 649–656
retrieving from photo library, 646–648
shooting with camera, 636–638
storing in photo library, 644–646

view controllers, 2, 63–67
activity view controllers, 67–78
creating, 64–67
data view controllers, 155
detail view controllers, 150–152
event edit view controllers, 822–824
event view controllers, 816–821
loading, 67
master view controllers, 150–152
navigating between (see navigation control‐

lers)
page view controllers, 153–157
root view controllers, 155
security of information in, 448

Index | 1031

split view controllers, 148–152
in tab bar, 94–98
table view controllers, 268–274

viewControllers property, UINavigation‐
Controller class, 85

views, 2, 827, 828
alert views, 23–32
annotation views, 459
capturing screenshot of, 903–905
collection views (see collection views)
creating, 829–832
map views, 450–452
moving with animation, 890–899
picker views, 39–45
progress views, 141–143
rotating with animation, 901–903
scaling with animation, 900–901
scroll views, 132–137
table views (see table views)
web views, 137–140

visual data editor, 737–740
Visual Format Language, 200, 203–209, 215

W
weak qualifier, 7
web services, distributing passes using, 995–996
web views, 137–140

activity indicator in, 139, 140
creating, 138
delegate messages from, 140–140
loading content into, 138–140

windows, 827

writeToFile:atomically: method, NSArray, 608–
609

writeToFile:atomically:encoding:error: method,
NSString, 606

writeToURL:atomically:encoding:error: meth‐
od, NSURL, 608

writeVideoAtPathToSavedPhotosAlbum:com‐
pletionBlock: method, ALAssetsLibrary,
644–646

X
.xcdatamodel file extension, 737, 741
Xcode, 2

adding images to project, 842
Capabilities tab, 417
creating collection views, 281
creating custom collection view cells, 295
creating Master-Detail Applications, 149
creating Page-Based Applications, 153
creating projects in, 2–3
creating table views, 268–274
creating view controllers, 64–67
creating views in project, 829–832
enabling background fetch, 669
enabling device orientations, 202
enabling location in background mode, 682
JSON pass file, creating, 977
visual data editor in, 737–740

.xib file extension, 64, 67
for collection view cells, 294–298
for collection view headers and footers, 304

XML, parsing, 525–530

1032 | Index

About the Author
Vandad Nahavandipoor has developed software using Cocoa, Cocoa Touch, Assembly
and C for many years. He has worked with some of the world’s biggest brands, such as
Visa, U.S. Bank and HSBC to deliver mobile applications to millions of customers
around the world. He has always had a passion for teaching and used to make a living
by teaching programming when he was only 17 years old. In programming, his main
focus is optimization and delivering high performance applications to users. His hobbies
are playing the guitar, practicing the piano, and road cycling.

Colophon
The cover image for iOS 7 Programming Cookbook is the Cowan’s shrew tenrec (Mi‐
crogale cowani). One of 20 known species of Microgale native to Madagascar, Cowan’s
shrew tenrec is 4 to 6 inches in length and weighs less than an ounce, with a tail smaller
than its body. Because it has poor eyesight, the shrew tenrec instead uses its stiff, sensitive
whiskers and a keen sense of smell to navigate the dense tropical rainforests of eastern
Madagascar. The tenrecs are one of the few mammals that retain a cloaca, a single
urogenital opening that was characteristic of the earliest known mammals and the
modern day platypus and marsupials.

An insectivore like many tenrecs, Cowan’s shrew tenrec is also known to eat small
mammals and earthworms. Its natural predators include larger tenrecs and Madagascan
red owls, although it can evade most predators by hiding in the leafy underbrush of the
forest floor, where it also forages for insects.

Some speculate that the tenrecs migrated to Madagascar from Africa through oceanic
dispersal, or rafting over, after the island had broken off from the continent 165 million
years ago. The earliest known tenrecs appeared on the island some 60 million years ago
and have evolved into widely diversified species, having arrived at a time when there
were no other mammals. Thus, with little to no competition, they came to dominate
their ecological niche. Most African tenrecs have disappeared and are known only
through fossils. The larger tenrecs of Madagascar evolved into quill-bearing mammals
similar to hedgehogs, while the smaller tenrecs look like shrews or moles; however,
tenrecs are not related to any of those other animals.

The cover image is from a loose page, origin unknown. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Audience
	Organization of This Book
	Additional Resources
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Implementing Controllers and Views
	1.0. Introduction
	Creating and Running Our First iOS App
	Defining and Understanding Variables
	Creating and Taking Advantage of Classes
	Adding Functionality to Classes with Methods
	Conforming to Requirements of Other Classes with
 Protocols
	Storing Items in and Retrieving Them from Collections
	Adding Object Subscripting Support to Your Classes

	1.1. Displaying Alerts with UIAlertView
	Problem
	Solution
	Discussion
	See Also

	1.2. Creating and Using Switches with UISwitch
	Problem
	Solution
	Discussion

	1.3. Customizing the UISwitch
	Problem
	Solution
	Discussion
	See Also

	1.4. Picking Values with the UIPickerView
	Problem
	Solution
	Discussion
	See Also

	1.5. Picking the Date and Time with UIDatePicker
	Problem
	Solution
	Discussion

	1.6. Implementing Range Pickers with UISlider
	Problem
	Solution
	Discussion

	1.7. Customizing the UISlider
	Problem
	Solution
	Discussion
	See Also

	1.8. Grouping Compact Options with UISegmentedControl
	Problem
	Solution
	Discussion

	1.9. Presenting and Managing Views with UIViewController
	Problem
	Solution
	Discussion
	See Also

	1.10. Presenting Sharing Options with UIActivityViewController
	Problem
	Solution
	Discussion
	See Also

	1.11. Presenting Custom Sharing Options with
 UIActivityViewController
	Problem
	Solution
	Discussion
	See Also

	1.12. Implementing Navigation with UINavigationController
	Problem
	Solution
	Discussion
	See Also

	1.13. Manipulating a Navigation Controller’s Array of View
 Controllers
	Problem
	Solution
	Discussion

	1.14. Displaying an Image on a Navigation Bar
	Problem
	Solution
	Discussion

	1.15. Adding Buttons to Navigation Bars Using UIBarButtonItem
	Problem
	Solution
	Discussion
	See Also

	1.16. Presenting Multiple View Controllers with
 UITabBarController
	Problem
	Solution
	Discussion

	1.17. Displaying Static Text with UILabel
	Problem
	Solution
	Discussion

	1.18. Customizing the UILabel
	Problem
	Solution
	Discussion
	See Also

	1.19. Accepting User Text Input with UITextField
	Problem
	Solution
	Discussion
	See Also

	1.20. Displaying Long Lines of Text with UITextView
	Problem
	Solution
	Discussion

	1.21. Adding Buttons to the User Interface with UIButton
	Problem
	Solution
	Discussion

	1.22. Displaying Images with UIImageView
	Problem
	Solution
	Discussion

	1.23. Creating Scrollable Content with UIScrollView
	Problem
	Solution
	Discussion

	1.24. Loading Web Pages with UIWebView
	Problem
	Solution
	Discussion

	1.25. Displaying Progress with UIProgressView
	Problem
	Solution
	Discussion

	1.26. Constructing and Displaying Styled Texts
	Problem
	Solution
	Discussion
	See Also

	1.27. Presenting Master-Detail Views with
 UISplitViewController
	Problem
	Solution
	Discussion

	1.28. Enabling Paging with UIPageViewController
	Problem
	Solution
	Discussion

	1.29. Displaying Popovers with UIPopoverController
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Creating Dynamic and Interactive User Interfaces
	2.0. Introduction
	2.1. Adding Gravity to Your UI Components
	Problem
	Solution
	Discussion
	See Also

	2.2. Detecting and Reacting to Collisions Between UI Components
	Problem
	Solution
	Discussion
	See Also

	2.3. Animating Your UI Components with a Push
	Problem
	Solution
	Discussion
	See Also

	2.4. Attaching Multiple Dynamic Items to Each Other
	Problem
	Solution
	Discussion
	See Also

	2.5. Adding a Dynamic Snap Effect to Your UI Components
	Problem
	Solution
	Discussion
	See Also

	2.6. Assigning Characteristics to Your Dynamic Effects
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Auto Layout and the Visual Format Language
	3.0. Introduction
	3.1. Placing UI Components in the Center of the Screen
	Problem
	Solution
	Discussion
	See Also

	3.2. Defining Horizontal and Vertical Constraints with the Visual Format
 Language
	Problem
	Solution
	Discussion
	See Also

	3.3. Utilizing Cross View Constraints
	Problem
	Solution
	Discussion
	See Also

	3.4. Configuring Auto Layout Constraints in Interface Builder
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Constructing and Using Table Views
	4.0. Introduction
	4.1. Populating a Table View with Data
	Problem
	Solution
	Discussion

	4.2. Using Different Types of Accessories in a Table View Cell
	Problem
	Solution
	Discussion

	4.3. Creating Custom Table View Cell Accessories
	Problem
	Solution
	Discussion

	4.4. Enabling Swipe Deletion of Table View Cells
	Problem
	Solution
	Discussion

	4.5. Constructing Headers and Footers in Table Views
	Problem
	Solution
	Discussion

	4.6. Displaying Context Menus on Table View Cells
	Problem
	Solution
	Discussion

	4.7. Moving Cells and Sections in Table Views
	Problem
	Solution
	Discussion

	4.8. Deleting Cells and Sections from Table Views
	Problem
	Solution
	Discussion
	See Also

	4.9. Utilizing the UITableViewController for Easy Creation of Table
 Views
	Problem
	Solution
	Discussion
	See Also

	4.10. Displaying a Refresh Control for Table Views
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Building Complex Layouts with Collection Views
	5.0. Introduction
	5.1. Constructing Collection Views
	Problem
	Solution
	Discussion
	See Also

	5.2. Assigning a Data Source to a Collection View
	Problem
	Solution
	Discussion
	See Also

	5.3. Providing a Flow Layout to a Collection View
	Problem
	Solution
	Discussion
	See Also

	5.4. Providing Basic Content to a Collection View
	Problem
	Solution
	Discussion
	See Also

	5.5. Feeding Custom Cells to Collection Views Using .xib Files
	Problem
	Solution
	Discussion
	See Also

	5.6. Handling Events in Collection Views
	Problem
	Solution
	Discussion
	See Also

	5.7. Providing a Header and a Footer in a Flow Layout
	Problem
	Solution
	Discussion
	See Also

	5.8. Adding Custom Interactions to Collection Views
	Problem
	Solution
	Discussion
	See Also

	5.9. Providing Contextual Menus on Collection View Cells
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Storyboards
	6.0. Introduction
	6.1. Adding a Navigation Controller to a Storyboard
	Problem
	Solution
	Discussion
	See Also

	6.2. Passing Data from One Screen to Another
	Problem
	Solution
	Discussion
	See Also

	6.3. Adding a Tab Bar Controller to a Storyboard
	Problem
	Solution
	Discussion
	See Also

	6.4. Introducing Custom Segue Transitions to Your Storyboard
	Problem
	Solution
	Discussion
	See Also

	6.5. Placing Images and Other UI Components on Storyboards
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Concurrency
	7.0. Introduction
	7.1. Constructing Block Objects
	Problem
	Solution
	Discussion

	7.2. Accessing Variables in Block Objects
	Problem
	Solution
	Discussion

	7.3. Invoking Block Objects
	Problem
	Solution
	Discussion
	See Also

	7.4. Performing UI-Related Tasks with GCD
	Problem
	Solution
	Discussion

	7.5. Executing Non-UI Related Tasks Synchronously with GCD
	Problem
	Solution
	Discussion
	See Also

	7.6. Executing Non-UI Related Tasks Asynchronously with
 GCD
	Problem
	Solution
	Discussion
	See Also

	7.7. Performing Tasks after a Delay with GCD
	Problem
	Solution
	Discussion
	See Also

	7.8. Performing a Task Only Once with GCD
	Problem
	Solution
	Discussion

	7.9. Grouping Tasks Together with GCD
	Problem
	Solution
	Discussion
	See Also

	7.10. Constructing Your Own Dispatch Queues with GCD
	Problem
	Solution
	Discussion

	7.11. Running Tasks Synchronously with Operations
	Problem
	Solution
	Discussion
	See Also

	7.12. Running Tasks Asynchronously with Operations
	Problem
	Solution
	Discussion
	See Also

	7.13. Creating Dependency Between Operations
	Problem
	Solution
	Discussion
	See Also

	7.14. Creating Timers
	Problem
	Solution
	Discussion

	7.15. Creating Concurrency with Threads
	Problem
	Solution
	Discussion

	7.16. Invoking Background Methods
	Problem
	Solution
	Discussion

	7.17. Exiting Threads and Timers
	Problem
	Solution
	Discussion

	Chapter 8. Security
	8.0. Introduction
	8.1. Enabling Security and Protection for Your Apps
	Problem
	Solution
	Discussion
	See Also

	8.2. Storing Values in the Keychain
	Problem
	Solution
	Discussion
	See Also

	8.3. Finding Values in the Keychain
	Problem
	Solution
	Discussion
	See Also

	8.4. Updating Existing Values in the Keychain
	Problem
	Solution
	Discussion
	See Also

	8.5. Deleting Exiting Values in the Keychain
	Problem
	Solution
	Discussion
	See Also

	8.6. Sharing Keychain Data Between Multiple Apps
	Problem
	Solution
	Discussion
	See Also

	8.7. Writing to and Reading Keychain Data from iCloud
	Problem
	Solution
	Discussion
	See Also

	8.8. Storing Files Securely in the App Sandbox
	Problem
	Solution
	Discussion
	See Also

	8.9. Securing Your User Interface
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. Core Location and Maps
	9.0. Introduction
	9.1. Creating a Map View
	Problem
	Solution
	Discussion

	9.2. Handling the Events of a Map View
	Problem
	Solution
	Discussion
	See Also

	9.3. Pinpointing the Location of a Device
	Problem
	Solution
	Discussion

	9.4. Displaying Pins on a Map View
	Problem
	Solution
	Discussion

	9.5. Displaying Pins with Different Colors on a Map View
	Problem
	Solution
	Discussion

	9.6. Displaying Custom Pins on a Map View
	Problem
	Solution
	Discussion
	See Also

	9.7. Converting Meaningful Addresses to Longitude and Latitude
	Problem
	Solution
	Discussion
	See Also

	9.8. Converting Longitude and Latitude to a Meaningful Address
	Problem
	Solution
	Discussion
	See Also

	9.9. Searching on a Map View
	Problem
	Solution
	Discussion
	See Also

	9.10. Displaying Directions on the Map
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Implementing Gesture Recognizers
	10.0. Introduction
	10.1. Detecting Swipe Gestures
	Problem
	Solution
	Discussion

	10.2. Detecting Rotation Gestures
	Problem
	Solution
	Discussion
	See Also

	10.3. Detecting Panning and Dragging Gestures
	Problem
	Solution
	Discussion

	10.4. Detecting Long-Press Gestures
	Problem
	Solution
	Discussion

	10.5. Detecting Tap Gestures
	Problem
	Solution
	Discussion

	10.6. Detecting Pinch Gestures
	Problem
	Solution
	Discussion

	Chapter 11. Networking, JSON, XML, and Sharing
	11.0. Introduction
	11.1. Downloading Asynchronously with NSURLConnection
	Problem
	Solution
	Discussion

	11.2. Handling Timeouts in Asynchronous Connections
	Problem
	Solution
	Discussion

	11.3. Downloading Synchronously with NSURLConnection
	Problem
	Solution
	Discussion

	11.4. Modifying a URL Request with NSMutableURLRequest
	Problem
	Solution
	Discussion

	11.5. Sending HTTP GET Requests with NSURLConnection
	Problem
	Solution
	Discussion

	11.6. Sending HTTP POST Requests with NSURLConnection
	Problem
	Solution
	Discussion

	11.7. Sending HTTP DELETE Requests with NSURLConnection
	Problem
	Solution
	Discussion

	11.8. Sending HTTP PUT Requests with NSURLConnection
	Problem
	Solution
	Discussion

	11.9. Serializing Arrays and Dictionaries into JSON
	Problem
	Solution
	Discussion

	11.10. Deserializing JSON into Arrays and Dictionaries
	Problem
	Solution
	Discussion
	See Also

	11.11. Integrating Social Sharing into Your Apps
	Problem
	Solution
	Discussion
	See Also

	11.12. Parsing XML with NSXMLParser
	Problem
	Solution
	Discussion

	Chapter 12. Audio and Video
	12.0. Introduction
	12.1. Playing Audio Files
	Problem
	Solution
	Discussion
	See Also

	12.2. Handling Interruptions While Playing Audio
	Problem
	Solution
	Discussion

	12.3. Recording Audio
	Problem
	Solution
	Discussion
	See Also

	12.4. Handling Interruptions While Recording Audio
	Problem
	Solution
	Discussion

	12.5. Playing Audio over Other Active Sounds
	Problem
	Solution
	Discussion

	12.6. Playing Video Files
	Problem
	Solution
	Discussion
	See Also

	12.7. Capturing Thumbnails from Video Files
	Problem
	Solution
	Discussion

	12.8. Accessing the Music Library
	Problem
	Solution
	Discussion

	Chapter 13. Address Book
	13.0. Introduction
	13.1. Requesting Access to the Address Book
	Problem
	Solution
	Discussion

	13.2. Retrieving a Reference to an Address Book
	Problem
	Solution
	Discussion

	13.3. Retrieving All the People in the Address Book
	Problem
	Solution
	Discussion
	See Also

	13.4. Retrieving Properties of Address Book Entries
	Problem
	Solution
	Discussion
	See Also

	13.5. Inserting a Person Entry into the Address Book
	Problem
	Solution
	Discussion

	13.6. Inserting a Group Entry into the Address Book
	Problem
	Solution
	Discussion

	13.7. Adding Persons to Groups
	Problem
	Solution
	Discussion
	See Also

	13.8. Searching the Address Book
	Problem
	Solution
	Discussion

	13.9. Retrieving and Setting a Person’s Address Book Image
	Problem
	Solution
	Discussion

	Chapter 14. Files and Folder Management
	14.0. Introduction
	14.1. Finding the Paths of the Most Useful Folders on Disk
	Problem
	Solution
	Discussion
	See Also

	14.2. Writing to and Reading from Files
	Problem
	Solution
	Discussion
	See Also

	14.3. Creating Folders on Disk
	Problem
	Solution
	Discussion
	See Also

	14.4. Enumerating Files and Folders
	Problem
	Solution
	Discussion
	See Also

	14.5. Deleting Files and Folders
	Problem
	Solution
	Discussion
	See Also

	14.6. Saving Objects to Files
	Problem
	Solution
	Discussion
	See Also

	Chapter 15. Camera and the Photo Library
	15.0. Introduction
	15.1. Detecting and Probing the Camera
	Problem
	Solution
	Discussion

	15.2. Taking Photos with the Camera
	Problem
	Solution
	Discussion
	See Also

	15.3. Taking Videos with the Camera
	Problem
	Solution
	Discussion
	See Also

	15.4. Storing Photos in the Photo Library
	Problem
	Solution
	Discussion

	15.5. Storing Videos in the Photo Library
	Problem
	Solution
	Discussion

	15.6. Retrieving Photos and Videos from the Photo Library
	Problem
	Solution
	Discussion
	See Also

	15.7. Retrieving Assets from the Assets Library
	Problem
	Solution
	Discussion

	15.8. Editing Videos on an iOS Device
	Problem
	Solution
	Discussion
	See Also

	Chapter 16. Multitasking
	16.0. Introduction
	16.1. Detecting the Availability of Multitasking
	Problem
	Solution
	Discussion

	16.2. Completing a Long-Running Task in the Background
	Problem
	Solution
	Discussion
	See Also

	16.3. Adding Background Fetch Capabilities to Your Apps
	Problem
	Solution
	Discussion
	See Also

	16.4. Playing Audio in the Background
	Problem
	Solution
	Discussion

	16.5. Handling Location Changes in the Background
	Problem
	Solution
	Discussion

	16.6. Saving and Loading the State of Multitasking Apps
	Problem
	Solution
	Discussion
	See Also

	16.7. Handling Network Connections in the Background
	Problem
	Solution
	Discussion
	See Also

	16.8. Opting Out of Multitasking
	Problem
	Solution
	Discussion

	Chapter 17. Notifications
	17.0. Introduction
	17.1. Sending Notifications
	Problem
	Solution
	Discussion
	See Also

	17.2. Listening for and Reacting to Notifications
	Problem
	Solution
	Discussion

	17.3. Listening and Reacting to Keyboard Notifications
	Problem
	Solution
	Discussion
	See Also

	17.4. Scheduling Local Notifications
	Problem
	Solution
	Discussion
	See Also

	17.5. Listening for and Reacting to Local Notifications
	Problem
	Solution
	Discussion
	See Also

	17.6. Handling Local System Notifications
	Problem
	Solution
	Discussion

	17.7. Setting Up Your App for Push Notifications
	Problem
	Solution
	Discussion
	See Also

	17.8. Delivering Push Notifications to Your App
	Problem
	Solution
	Discussion
	See Also

	17.9. Reacting to Push Notifications
	Problem
	Solution
	Discussion
	See Also

	Chapter 18. Core Data
	18.0. Introduction
	18.1. Creating a Core Data Model with Xcode
	Problem
	Solution
	Discussion

	18.2. Generating Class Files for Core Data Entities
	Problem
	Solution
	Discussion

	18.3. Creating and Saving Data Using Core Data
	Problem
	Solution
	Discussion

	18.4. Reading Data from Core Data
	Problem
	Solution
	Discussion
	See Also

	18.5. Deleting Data from Core Data
	Problem
	Solution
	Discussion

	18.6. Sorting Data in Core Data
	Problem
	Solution
	Discussion
	See Also

	18.7. Boosting Data Access in Table Views
	Problem
	Solution
	Discussion

	18.8. Implementing Relationships in Core Data
	Problem
	Solution
	Discussion

	18.9. Fetching Data in the Background
	Problem
	Solution
	Discussion
	See Also

	18.10. Using Custom Data Types in Your Core Data Model
	Problem
	Solution
	Discussion
	See Also

	Chapter 19. Dates, Calendars, and Events
	19.0. Introduction
	19.1. Requesting Permission to Access Calendars
	Problem
	Solution
	Discussion
	See Also

	19.2. Retrieving Calendar Groups on an iOS Device
	Problem
	Solution
	Discussion
	See Also

	19.3. Adding Events to Calendars
	Problem
	Solution
	Discussion
	See Also

	19.4. Accessing the Contents of Calendars
	Problem
	Solution
	Discussion
	See Also

	19.5. Removing Events from Calendars
	Problem
	Solution
	Discussion
	See Also

	19.6. Adding Recurring Events to Calendars
	Problem
	Solution
	Discussion
	See Also

	19.7. Retrieving the Attendees of an Event
	Problem
	Solution
	Discussion
	See Also

	19.8. Adding Alarms to Calendars
	Problem
	Solution
	Discussion
	See Also

	19.9. Handling Event Changed Notifications
	Problem
	Solution
	Discussion

	19.10. Presenting Event View Controllers
	Problem
	Solution
	Discussion
	See Also

	19.11. Presenting Event Edit View Controllers
	Problem
	Solution
	Discussion
	See Also

	Chapter 20. Graphics and Animations
	20.0. Introduction
	20.1. Enumerating and Loading Fonts
	Problem
	Solution
	Discussion
	See Also

	20.2. Drawing Text
	Problem
	Solution
	Discussion

	20.3. Constructing, Setting, and Using Colors
	Problem
	Solution
	Discussion
	See Also

	20.4. Drawing Images
	Problem
	Solution
	Discussion
	See Also

	20.5. Constructing Resizable Images
	Problem
	Solution
	Discussion
	See Also

	20.6. Drawing Lines
	Problem
	Solution
	Discussion
	See Also

	20.7. Constructing Paths
	Problem
	Solution
	Discussion
	See Also

	20.8. Drawing Rectangles
	Problem
	Solution
	Discussion
	See Also

	20.9. Adding Shadows to Shapes
	Problem
	Solution
	Discussion

	20.10. Drawing Gradients
	Problem
	Solution
	Discussion
	See Also

	20.11. Moving Shapes Drawn on Graphic Contexts
	Problem
	Solution
	Discussion
	See Also

	20.12. Scaling Shapes Drawn on Graphic Contexts
	Problem
	Solution
	Discussion
	See Also

	20.13. Rotating Shapes Drawn on Graphic Contexts
	Problem
	Solution
	Discussion
	See Also

	20.14. Animating and Moving Views
	Problem
	Solution
	Discussion

	20.15. Animating and Scaling Views
	Problem
	Solution
	Discussion
	See Also

	20.16. Animating and Rotating Views
	Problem
	Solution
	Discussion
	See Also

	20.17. Capturing a Screenshot of Your View into an Image
	Problem
	Solution
	Discussion
	See Also

	Chapter 21. Core Motion
	21.0. Introduction
	21.1. Detecting the Availability of an Accelerometer
	Problem
	Solution
	Discussion
	See Also

	21.2. Detecting the Availability of a Gyroscope
	Problem
	Solution
	Discussion
	See Also

	21.3. Retrieving Accelerometer Data
	Problem
	Solution
	Discussion
	See Also

	21.4. Detecting Shakes on an iOS Device
	Problem
	Solution
	Discussion

	21.5. Retrieving Gyroscope Data
	Problem
	Solution
	Discussion
	See Also

	Chapter 22. iCloud
	22.0. Introduction
	22.1. Setting Up Your App for iCloud
	Problem
	Solution
	Discussion

	22.2. Storing and Synchronizing Dictionaries in iCloud
	Problem
	Solution
	Discussion

	22.3. Creating and Managing Folders for Apps in iCloud
	Problem
	Solution
	Discussion
	See Also

	22.4. Searching for Files and Folders in iCloud
	Problem
	Solution
	Discussion
	See Also

	22.5. Storing User Documents in iCloud
	Problem
	Solution
	Discussion
	See Also

	22.6. Managing the State of Documents in iCloud
	Problem
	Solution
	Discussion
	See Also

	Chapter 23. Pass Kit
	23.0. Introduction
	23.1. Creating Pass Kit Certificates
	Problem
	Solution
	Discussion
	See Also

	23.2. Creating Pass Files
	Problem
	Solution
	Discussion
	See Also

	23.3. Providing Icons and Images for Passes
	Problem
	Solution
	Discussion
	See Also

	23.4. Preparing Your Passes for Digital Signature
	Problem
	Solution
	Discussion
	See Also

	23.5. Signing Passes Digitally
	Problem
	Solution
	Discussion
	See Also

	23.6. Distributing Passes Using Email
	Problem
	Solution
	Discussion
	See Also

	23.7. Distributing Passes Using Web Services
	Problem
	Solution
	Discussion
	See Also

	23.8. Enabling Your iOS Apps to Access Passes on iOS Devices
	Problem
	Solution
	Discussion
	See Also

	23.9. Interacting with Passbook Programmatically
	Problem
	Solution
	Discussion
	See Also

	Index
	About the Author

