
www.allitebooks.com

http://www.allitebooks.org

iOS Development with
Xamarin Cookbook

Over 100 exciting recipes to help you develop iOS
applications with Xamarin

Dimitris Tavlikos

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

iOS Development with Xamarin Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2011

Second edition: May 2014

Production reference: 1160514

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-892-4

www.packtpub.com

Cover image by Kelly Gibson (gibsonkelly36@yahoo.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Dimitris Tavlikos

Reviewers
Ryan Alford

Yaroslav Bigus

William Smith

Acquisition Editors
Joanne Fitzpatrick

Usha Iyer

Content Development Editor
Amit Ghodake

Technical Editors
Neha Mankare

Humera Shaikh

Faisal Siddiqui

Copy Editors
Dipti Kapadia

Sayanee Mukherjee

Deepa Nambiar

Karuna Narayanan

Stuti Srivastava

Laxmi Subramanian

Project Coordinator
Amey Sawant

Proofreaders
Simran Bhogal

Bridget Braund

Lauren Harkins

Indexer
Mariammal Chettiyar

Production Coordinators
Aparna Bhagat

Arvindkumar Gupta

Saiprasad Kadam

Nilesh R. Mohite

Aditi Gajjar Patel

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Dimitris Tavlikos is a freelance software developer living in Greece. With over 10 years of
professional experience as a programmer, he specializes in mobile development with clients
all over the world. Dimitris has a passion for programming, and has recently been awarded the
Xamarin MVP designation for his work. He has written a book on iOS development and various
articles on his blog.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ryan Alford is a .NET software engineer who works from home. Ryan has been a .NET
developer for over 7 years, with the majority of his focus being on C#. In his early years, he
worked almost exclusively on WinForms and Windows Mobile. He then started working with
ASP.Net, AJAX, and Silverlight. In the past few years, as mobile development really started to
take off, he took an interest in Xamarin and MonoTouch.

Ryan was able to help convince the management at his employer to use Xamarin for their
upcoming enterprise application on iOS, as the company was using .Net and C# in other
projects. It was at this point that Ryan was added to the three-person development team to
write the new iOS enterprise application.

Ryan has written and released two Android applications: MotoTorch LED and Phase 10
Score Center. MotoTorch LED has more than 500,000 downloads and was one of the first
applications on Android that used the camera LEDs as a flashlight.

Today, Ryan is currently rewriting Phase 10 Score Center in Xamarin.Android to ease the
development of new features. He is still on his iOS team and continues to add new features to
his company's enterprise application.

Yaroslav Bigus is an expert in building cross-platform web and mobile applications. He
has over 4 years experience in development and has worked for companies in Leeds and
New York. He has been using the .NET Framework stack for developing backend systems,
JavaScript for the frontend side, and Xamarin for mobile devices.

He is now working for an Israeli startup called yRuler. Previously, Yaroslav reviewed Xamarin
Mobile Application Development for iOS, Paul F. Johnson, Packt Publishing.

I am thankful to my family and friends.

www.allitebooks.com

http://www.allitebooks.org

William Smith has been developing with Xamarin Studio for over 3 years and has been
developing software since 2001. He currently works as a Geospatial Developer at Geographic
Information Services, Inc., specializing in mobile-platform development. He is also the founder
of Websmiths, LLC (www.websmithsllc.com), a consulting firm that offers services in
cross-platform mobile application development and web development. William holds two BSc
degrees in Computer Science and Business Administration from the University of Maryland.

www.allitebooks.com

www.websmithsllc.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Development Tools 7

Introduction 7
Installing prerequisites 8
Creating an iOS project with Xamarin Studio 13
Interface Builder 23
Creating the UI 26
Accessing the UI with Outlets 29
Adding Actions to controls 34
Compiling an iOS project 36
Debugging our application 39

Chapter 2: User Interface – Views 43
Introduction 43
Adding and customizing views 44
Receiving user input with buttons 48
Displaying images 53
Displaying and editing text 57
Using the keyboard 60
Displaying progress 64
Displaying content larger than the screen 67
Navigating through the content divided into pages 70
Displaying alerts 74
Creating a custom view 78
Styling views 81

Chapter 3: User Interface – View Controllers 85
Introduction 85
Loading a view with a view controller 86
Navigating through different view controllers 88

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Providing controllers in tabs 91
Modal view controllers 94
Creating a custom view controller 96
Using view controllers efficiently 98
iPad view controllers 100
UI flow design with storyboards 105
Unwinding in storyboards 109

Chapter 4: Data Management 113
Introduction 113
Creating files 113
Using an SQLite database 116
Preparing for iCloud support 121
iCloud key/value storage 122

Chapter 5: Displaying Data 127
Introduction 127
Providing lists 128
Displaying data in a table 132
Customizing rows 136
Editing a table 140
Table indexing 143
Searching through the data 145
Creating a simple web browser 149
Displaying data in a grid 151
Customizing the grid 155

Chapter 6: Web Services 159
Introduction 159
Consuming web services 159
Consuming REST services 163
Communicating with native APIs 165
Using WCF services 168

Chapter 7: Multimedia Resources 173
Introduction 173
Selecting images and videos 174
Capturing media with the camera 177
Playing videos 180
Playing music and sounds 183
Recording with the microphone 185
Managing album items directly 189

iii

Table of Contents

Chapter 8: Integrating iOS Features 193
Introduction 193
Starting phone calls 194
Sending text messages and e-mails 196
Using text messaging in our application 199
Using e-mail messaging in our application 202
Managing the address book 205
Displaying contacts 209
Managing the calendar 212

Chapter 9: Interacting with Device Hardware 217
Introduction 217
Detecting the device orientation 218
Adjusting the UI orientation 220
Proximity sensor 224
Retrieving the battery information 226
Handling motion events 228
Handling touch events 230
Recognizing gestures 233
Custom gestures 236
Using the accelerometer 239
Using the gyroscope 242

Chapter 10: Location Services and Maps 247
Introduction 247
Determining location 248
Determining heading 252
Using region monitoring 255
Using a significant-change location service 258
Location services in the background 260
Displaying maps 263
Geocoding 266
Adding map annotations 270
Adding map overlays 274

Chapter 11: Graphics and Animation 279
Introduction 279
Animating views 280
Transforming views 282
Animating images 284
Animating layers 286
Drawing lines and curves 290
Drawing shapes 293

iv

Table of Contents

Drawing text 295
A simple drawing app 297
Creating an image context 301

Chapter 12: Multitasking 305
Introduction 305
Detecting application states 306
Receiving notifications for app states 308
Running code in the background 310
Playing audio in the background 313
Updating data in the background 315

Chapter 13: Localization 319
Introduction 319
Creating an app for different languages 319
Localizable resources 323
Regional formatting 325

Chapter 14: Deploying 329
Introduction 329
Creating profiles 329
Creating an ad hoc distribution bundle 335
Preparing an app for the App Store 337
Submitting an app to the App Store 340

Chapter 15: Advanced Features 343
Introduction 343
Reproducing the page curl effect 344
Integrating content sharing 348
Implementing custom transitions 353
Using physics in UI elements 358
Implementing the text-to-speech feature 360

Index 363

Preface
This book will provide you with all the necessary skills to develop and deploy rich and powerful
applications for the iPhone and iPad, with the C# programming language. Xamarin.iOS,
formerly known as MonoTouch, is already established as a powerful software development
kit that brings iOS development to .NET programmers. Packed with easy-to-understand and
detailed examples, this book will be your best companion in your iOS development journey.

What this book covers
Chapter 1, Development Tools, teaches you how to install and use the development tools
necessary to create your first iOS app. From there, you will create and debug your first
Xamarin.iOS project.

Chapter 2, User Interface – Views, discusses the essential User Interface components of the
iOS SDK. Covering the most commonly used views and controls and many more in detail, we
will get familiar with the platform through a number of example projects. We will also discuss
the similarities and differences with standard .NET components.

Chapter 3, User Interface – View Controllers, introduces you to the view controllers, the
objects that are responsible for providing the interaction mechanism between your app and
the user. Explained with simple step-by-step processes, you will start creating complete apps
that can run on both the iPhone and iPad devices.

Chapter 4, Data Management, covers data management practices available on the iOS platform
and how to use them efficiently with the convenience of C#. You will learn to manage locale
SQLite database files, but also work on using iCloud to store data across different devices.

Chapter 5, Displaying Data, focuses on another important part of data management. Through
a series of simple and complete projects, you will learn about the available components
to display data on the screen of the iPhone, which are smaller than computer screens.
Displaying various types of data in a user-friendly manner is essential for mobile devices,
and by the time you finish reading this chapter, you will certainly be more skillful in this area.

Preface

2

Chapter 6, Web Services, guides you through .NET SOAP, WCF, and REST services for creating
apps that connect the user to the world. These powerful .NET features would not have been
part of iOS development without Xamarin.iOS.

Chapter 7, Multimedia Resources, will teach you to create applications that capture,
reproduce, and manage multimedia content through the device's hardware. You will not only
learn to use the camera to capture images and video, but also learn how to play back and
record audio.

Chapter 8, Integrating iOS Features, will walk you through the ways to incorporate the
platform's native applications and components. You will learn how to provide e-mail, text
messaging, and address book features in your application and how to use the native calendar
to create events.

Chapter 9, Interacting with Device Hardware, discusses creating applications that are fully
aware of their surrounding environment through the device's sensors. You will learn to adjust
the User Interface according to device orientations and respond to accelerometer and
gyroscope events.

Chapter 10, Location Services and Maps, is a detailed guide for using the built-in location
services to create applications that provide location information to the user. You will not only
learn to use the GPS hardware, but also how to display and layout information on maps.

Chapter 11, Graphics and Animation, introduces 2D graphics and animation. You will learn to
animate components and draw simple graphics on the screen. By the end of this chapter, you
will create a small finger-drawing application.

Chapter 12, Multitasking, will walk you through the details of implementing multitasking in
iOS applications. This dramatically enhances the user experience by executing code behind
the scenes.

Chapter 13, Localization, discusses how to provide localized content in applications. You will
learn how to prepare your application to target users worldwide.

Chapter 14, Deploying, will not only walk you through the required steps to deploy your
finished application to devices, but also to prepare and distribute it to the App Store.

Chapter 15, Advanced Features, introduces some of the key features introduced in newer iOS
versions, such as implementing physics to User Interface components through the power of
iOS 7's UIKit Dynamics, customizing animated transitions between view controllers, and more!

Preface

3

What you need for this book
The minimum requirement for this book is a Mac computer running at least Mac OS X Lion
(10.7.*). Almost all projects you will create with the help of this book work on iOS Simulator.
However, some projects will require a device to work properly. You will find all the appropriate
details in Chapter 1, Development Tools.

Who this book is for
This book is essential for C# and .NET developers with no previous experience in iOS
development, but it is also for Objective-C developers who want to make a transition to the
benefits of Xamarin.iOS and C# language to create complete, compelling iPhone, iPod, and
iPad applications and deploy them to the App Store.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, cookbook names, recipe names, scripts, database table names, folder
names, filenames, file extensions, and pathnames are shown as follows: "The Register
attribute is used to expose classes to the underlying Objective-C runtime."

A block of code is set as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using MonoTouch.Foundation;
using MonoTouch.UIKit;

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

EKEvent newEvent = EKEvent.FromStore(evStore);
newEvent.StartDate = DateTime.Now.AddDays(1);
newEvent.EndDate = DateTime.Now.AddDays(1.1);
newEvent.Title = "Xamarin event!";

Any command-line input or output is written as follows:

cd <code_directory>/CH06_code/WcfService/WcfService

./start_wcfservice.sh

Preface

4

New terms and important words are shown in bold. Words you see on the screen, in menus
or dialog boxes, for example, appear in the text like this: "Go to the Library pane and select
Objects from the drop-down list."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded on our
website, or added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

1
Development Tools

In this chapter, we will cover:

 f Installing prerequisites

 f Creating an iOS project with Xamarin Studio

 f Interface Builder

 f Creating the UI

 f Accessing the UI with Outlets

 f Adding Actions to controls

 f Compiling an iOS project

 f Debugging our application

Introduction
One of the most important things professionals care about is the tools that are required to
complete their work with. Just like carpenters need a chisel to scrape wood, or photographers
need a camera to capture light, we developers need certain tools which we cannot work without.

In this chapter, we will provide information on what IDEs (Integrated Development
Environments) and SDKs (Software Development Kits) are needed to develop applications
for iOS, Apple's operating system, for the company's mobile devices. We will describe what the
role of every tool in the development cycle is, and go through the features that are essential to
develop our first application.

The following are the tools needed to develop applications with Xamarin.iOS:

 f An Apple Mac computer running at least the Lion (10.7.*) operating system:
The essential programs we need cannot be installed on other computer platforms.

www.allitebooks.com

http://www.allitebooks.org

Development Tools

8

Xamarin also offers Visual Studio development integration for their
products. A Mac computer is still required for compiling, testing,
debugging, and distributing the application. More information can
be found on Xamarin's website at http://docs.xamarin.
com/guides/ios/getting_started/introduction_
to_xamarin_ios_for_visual_studio/.

 f Latest iOS SDK: To be able to download iOS SDK, a developer must be registered as
an Apple developer. iOS SDK, among other things, includes two essential components:

 � Xcode: This is Apple's IDE for developing native applications for iOS and Mac
with the Objective-C programming language.

 � iOS Simulator: This is an essential program to debug iOS apps on the
computer, without the need of a device. Note that there are many iOS
features that do not work on the simulator. Hence, a device is needed
if an app uses these features.

Both the registration and SDK download are free of charge from
Apple's developer portal (http://developer.apple.com).
If we want to run and debug our apps on the device or distribute
them on the App Store, we need to enroll to iOS Developer
Program, which requires a subscription fee.

 f Xamarin Installer: Xamarin offers all their necessary tools in one installation
bundle. This bundle includes the Xamarin.iOS SDK and Xamarin Studio, the IDE for
developing iOS applications with C#. A free registration is required for downloading
the Xamarin Installer, and it can be found by clicking on the link http://xamarin.
com/download.

This chapter will also describe how to create our first iPhone project with Xamarin Studio,
construct its UI with Xcode, and access the app's user interface from within our code, with
the concepts of Outlets and Actions.

Last, but not least, we will learn how to compile our app, the available compilation options we
have, and how to debug on the simulator.

Installing prerequisites
This section gives you information on how to download and install the necessary tools to
develop with Xamarin.iOS.

http://docs.xamarin.com/guides/ios/getting_started/introduction_to_xamarin_ios_for_visual_studio/
http://docs.xamarin.com/guides/ios/getting_started/introduction_to_xamarin_ios_for_visual_studio/
http://docs.xamarin.com/guides/ios/getting_started/introduction_to_xamarin_ios_for_visual_studio/
http://developer.apple.com
http://xamarin.com/download
http://xamarin.com/download

Chapter 1

9

Getting ready
We need to download all the necessary components on our computer. The first thing to do
is register as an Apple developer on http://developer.apple.com. The registration is
free and easy, and it provides access to all the necessary development resources. After the
registration is confirmed through e-mail, we can login and download the iOS SDK from the
address https://developer.apple.com/devcenter/ios/index.action#downloads.
At the time of writing, Xcode's latest version is 5.0.1 and iOS SDK's latest version is 7.0.3.

How to do it...
To prepare our computer for iOS development, we need to download and install the necessary
components in the following order:

 f Xcode and iOS SDK: A login to the Mac App Store is required. You can either
search for Xcode in the App Store or click on the Download Xcode button in the
iOS developer portal's download section. After the download is complete, follow the
onscreen instructions to install Xcode. The following screenshot shows Xcode in the
Mac App Store:

http://developer.apple.com
https://developer.apple.com/devcenter/ios/index.action#downloads

Development Tools

10

 f Xamarin Starter Edition: Download and run the Xamarin Starter Edition from
Xamarin's website http://xamarin.com/download. Follow the onscreen
instructions to install Xamarin Studio and Xamarin.iOS.

The Xamarin Starter Edition is free, but there are some
restrictions, such as a limit on the maximum app bundle
size and no Visual Studio support. It does support,
however, deploying to a device and to the App Store.
At the time of writing, all recipes shown in this book
are fully supported by the Starter Edition, except for
the Using WCF services recipe in Chapter 6, Web
Services. A Business or Enterprise Edition is needed for
WCF support.

How it works...
Now that we have everything ready, let's see what each component is needed for.

Xcode
Xcode is Apple's IDE for developing applications for both iOS and Mac platforms. It is targeted
on the Objective-C programming language, which is the main language to program in with the
iOS SDK. Since Xamarin.iOS is an SDK for the C# language, one might ask what we would
need it for. Apart from providing various tools for debugging iOS apps, Xcode provides us with
the Organizer window. Shown in the following screenshot, we can use it to view a device's
console logs, install and manage the necessary provisioning profiles, and even view the
device's crash logs. To open the Organizer window, navigate to Window | Organizer on the
menu bar, or press Cmd + Shift + 2 on the keyboard.

http://xamarin.com/download

Chapter 1

11

Interface Builder
The second component is Interface Builder. This is the user interface designer, which was
formerly a standalone application. Starting with Xcode 4.0, it is integrated into the IDE.
Interface Builder provides all the necessary functionality to construct an application user
interface. It is also quite different from what .NET developers are accustomed to.

iOS Simulator
The third component is iOS Simulator. It is exactly what its name suggests: a device simulator
that we can use to run our apps on, without the need for an actual device. The most important
thing about iOS Simulator is that it has the option of simulating older iOS versions (if they are
installed on the computer), both iPhone and iPad interfaces and device orientations. However,
the simulator lacks some device features that are dependent on hardware such as the
compass or accelerometer. Applications using these features must be tested and debugged
on an actual device.

Development Tools

12

Xamarin.iOS is the SDK that allows .NET developers to develop apps for iOS, using the C#
programming language. All APIs available to Objective-C developers are also available to C#
developers through Xamarin.iOS. It is not a standalone framework with its own APIs for, say,
user interfaces. A Xamarin.iOS programmer can use the same UI elements as an Objective-C
programmer, along with the added benefits of C# such as generics, LINQ, and asynchronous
programming with async/await.

There's more...
Applications developed with Xamarin.iOS have the same chances of making it to the App Store
as all other applications developed with the native Objective-C programming language. This
means that if an app does not conform to Apple's strict policy about app acceptance, it will
fail, whether is written in Objective-C or C#. The Xamarin.iOS team has done a great job in
creating an SDK that leaves the developer to worry only about the design and best practice
of the code, and nothing else.

Useful links
The following are useful links that you can go through:

 f Apple iOS developer portal: http://developer.apple.com/devcenter/ios/
index.action

 f Xamarin.iOS: http://xamarin.com/ios

 f Xamarin installation guide for Mac: http://docs.xamarin.com/guides/ios/
getting_started/installation/mac/

 f Information about Apple developer tools: http://developer.apple.com/
technologies/tools/xcode.html

Updates
Xamarin Studio has a feature for checking available updates. Whenever a program starts, it
checks for updates of Xamarin.iOS. It can be turned off, but this is not suggested since it helps
with staying up to date with the latest versions. It can be found under Xamarin Studio | Check
for Updates.

See also
 f The Compiling an iOS project and Debugging our application recipes

 f The Preparing our app for the App Store recipe in Chapter 14, Deploying

http://developer.apple.com/devcenter/ios/index.action
http://developer.apple.com/devcenter/ios/index.action
http://xamarin.com/ios
http://docs.xamarin.com/guides/ios/getting_started/installation/mac/
http://docs.xamarin.com/guides/ios/getting_started/installation/mac/
http://developer.apple.com/technologies/tools/xcode.html
http://developer.apple.com/technologies/tools/xcode.html

Chapter 1

13

Creating an iOS project with Xamarin Studio
In this recipe, we will discuss how to create our first iOS project with Xamarin Studio.

Getting ready...
Now that we have all the prerequisites installed, we will discuss how to create our first iOS
project with Xamarin Studio.

Start Xamarin Studio. It can be found in the Applications folder. Xamarin Studio's default
project location is /Users/{yourusername}/Projects. If it does not exist on the hard disk,
it will be created when we create out first project. If you want to change the folder, go to Xamarin
Studio | Preferences from the menu bar. Select Load/Save in the pane on the left, enter the
preferred location for the projects in the Default Solution location field, and click on OK.

How to do it...
The first thing that is loaded when starting Xamarin Studio is its start page. Perform the
following steps to create an iOS project with Xamarin Studio:

1. Navigate to File | New | Solution... from the menu bar. A window that provides us
with the available project options will appear.

Development Tools

14

2. In the pane on the left of this window, go to C# | iOS | iPhone. The iPhone project
templates will be presented on the middle pane.

3. Select Single View Application.

4. Finally, enter MyFirstiOSProject for Solution name and click on OK.
The following screenshot displays the New Solution window:

That was it. You just created your first iPhone project. You can build and run it; iOS Simulator
will start, with a blank light-gray screen nevertheless.

The project templates may be different from the ones shown
in the preceding screenshot.

How it works...
Let's see what goes on behind the scenes.

When Xamarin Studio creates a new iOS project, it creates a series of files. The solution files can
be viewed in the Solution pad on the left side of Xamarin Studio window. If the Solution pad is
not visible, it can be activated by checking on View | Pads | Solution from the menu bar.

Chapter 1

15

The files shown in the following screenshot are the essential files that form an iPhone project:

MyFirstiOSProjectViewController.xib
MyFirstiOSProjectViewController.xib is the file that contains the view of the
application. XIB files are basically XML files with a specific structure that Xcode can read.
The files contain information about the user interface, such as the type of controls it contains,
their properties, and Outlets.

If MyFirstiPhoneProjectViewController.xib, or any
other file with the .xib suffix, is double-clicked, Xamarin Studio
automatically opens the file in Xcode's Interface Builder.

When we create a new interface with Interface Builder and save it, it is saved in the XIB format.

MyFirstiOSProjectViewController.cs
MyFirstiOSProjectViewController.cs is the file that implements the view's
functionality. These are the contents of the file when it is created:

using System;
using System.Drawing;
using MonoTouch.Foundation;
using MonoTouch.UIKit;

namespace MyFirstiOSProject
{
 public class MyFirstiOSProjectViewController :
 UIViewController
 {

Development Tools

16

 public MyFirstiOSProjectViewController () :
 base ("MyFirstiOSProjectViewController", null)
 {
 }

 public override void DidReceiveMemoryWarning ()
 {
 // Releases the view if it doesn't have a superview.
 base.DidReceiveMemoryWarning ();

 // Release any cached data, images, etc that aren't in
 use.
 }

 public override void ViewDidLoad ()
 {
 base.ViewDidLoad ();

 // Perform any additional setup after loading
 the view, typically from a nib.
 }
}
}

Xamarin.iOS was formerly known as MonoTouch. For proper
code compatibility, the namespaces have not been renamed.

The code in this file contains the class which corresponds to the view that will be loaded,
along with some default method that overrides. These methods are the ones that we will use
more frequently when we create view controllers. A brief description of each method is listed
as follows:

 f ViewDidLoad: This method is called when the view of the controller is loaded. This is
the method we use to initialize any additional component.

 f DidReceiveMemoryWarning: This method is called when the app receives a memory
warning. This method is responsible for releasing resources that are not needed at
the time.

Chapter 1

17

MyFirstiOSProjectViewController.designer.cs
MyFirstiOSProjectViewController.designer.cs is the file that holds our main
window's class information in C# code. Xamarin Studio creates one .designer.cs file for
every XIB that is added in a project. The file is autogenerated every time we save a change in
our XIB through Interface Builder. This is taken care of by Xamarin Studio so that the changes
we make in our interface are reflected right away in our code. We must not make changes to
this file directly, since when the corresponding XIB is saved with Interface Builder, they will be
lost. Also, if nothing is saved through Interface Builder and if changes are made to it manually,
it will most likely result in a compilation error.

These are the contents of the file when a new project is created:

//
// This file has been generated automatically by MonoDevelop to
 store outlets and
// actions made in the Xcode designer. If it is removed, they will
 be lost.
// Manual changes to this file may not be handled correctly.
//
using MonoTouch.Foundation;

namespace MyFirstiOSProject
{
 [Register ("MyFirstiOSProjectViewController")]
 partial class MyFirstiOSProjectViewController
 {
 void ReleaseDesignerOutlets ()
 {
 }
 }
}

Downloading the example code

You can download the example code files for all Packt
books you have purchased from your account at
http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

This file contains the other partial declaration of our MyFirstiOSProjectViewController
class. It is decorated with the Register attribute.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.allitebooks.org

Development Tools

18

The Register attribute is used to expose classes to the underlying Objective-C runtime.
The string parameter declares by what name our class will be exposed to the runtime. It can
be whatever name we want it to be, but it is a good practice to always set it to our C# class'
name. The attribute is used heavily in the internals of Xamarin.iOS, since it is what binds all
the native NSObject classes with their C# counterparts.

NSObject is a root class or base class. It is the equivalent
of System.Object in the .NET world. The only difference
between the two is that all .NET objects inherit from
System.Object, but most, not all, Objective-C objects
inherit from NSObject in Objective-C. The C# counterparts
of all native objects that inherit from NSObject also inherit
from its Xamarin.iOS NSObject counterpart.

AppDelegate.cs
The AppDelegate.cs file contains the AppDelegate class. The contents of the file are
listed below:

using System;
using System.Collections.Generic;
using System.Linq;
using MonoTouch.Foundation;
using MonoTouch.UIKit;

namespace MyFirstiOSProject
{
 // The UIApplicationDelegate for the application. This class
 is responsible for launching the
 // User Interface of the application, as well as listening
 (and optionally responding) to
 // application events from iOS.
 [Register ("AppDelegate")]
 public partial class AppDelegate : UIApplicationDelegate
 {
 // class-level declarations
 UIWindow window;
 MyFirstiOSProjectViewController viewController;
 //
 // This method is invoked when the application has loaded
 and is ready to run. In this
 // method you should instantiate the window, load the UI
 into it and then make the window
 // visible.
 //
 // You have 17 seconds to return from this method,
 or iOS will terminate your application.

Chapter 1

19

 //
 public override bool FinishedLaunching (UIApplication app,
 NSDictionary options)
 {
 window = new UIWindow (UIScreen.MainScreen.Bounds);

 viewController =
 new MyFirstiOSProjectViewController ();
 window.RootViewController = viewController;
 window.MakeKeyAndVisible ();

 return true;
 }
 }
}

The first part is familiar to .NET developers and consists of the appropriate using directives
that import the required namespaces to use. Consider the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using MonoTouch.Foundation;
using MonoTouch.UIKit;

The first three using directives allow us to use the specific and familiar namespaces from the
.NET world with Xamarin.iOS.

System, System.Collections.Generic, System.Linq:
Although the functionality that the three namespaces provide is
almost identical to their well-known .NET counterparts, they are
included in assemblies specifically created for use with Xamarin.
iOS and shipped with it, of course. An assembly compiled with
.NET cannot be directly used in a Xamarin.iOS project.

The MonoTouch.Foundation namespace is a wrapper around the native Objective-C
Foundation Framework, which contains classes that provide basic functionality. These
objects' names share the same NS prefix that is found in the native Foundation Framework.
Some examples are NSObject, NSString, NSValue, and so on. Apart from the NS-prefixed
objects, the MonoTouch.Foundation namespace contains all of the attributes that are
used for binding to native objects, such as the Outlet and Register attributes we saw
earlier. The MonoTouch.UIKit namespace is a wrapper around the native Objective-C UIKit
Framework. As its name suggests, the namespace contains classes, delegates, and events
that provide us with interface functionality. Almost all the objects' names share the same UI
prefix. It should be clear at this point that these two namespaces are essential for all Xamarin.
iOS apps, and their objects will be used quite frequently.

Development Tools

20

The class inherits from the UIApplicationDelegate class, qualifying it as our app's
delegate object.

The concept of a delegate object in the Objective-C world
is somewhat different from delegate in C#. It will be
explained in detail in Chapter 2, User Interface – Views.

The AppDelegate class contains two fields and one method:

UIWindow window;
MyFirstiOSProjectViewController viewController;
//..
public override bool FinishedLaunching (UIApplication app,
 NSDictionary options) {

The UIWindow object defines the main window of our application, while the
MyFirstiOSProjectViewController object is the variable that will hold the
app's view controller.

An iOS app typically has only one window of type
UIWindow. UIWindow is the first control that is displayed
when an app starts, and every subsequent view is
hierarchically added below it.

The FinishedLaunching method, as its name suggests, is called when the app has
completed its initialization process. This is the method where we must present the user
interface to the user. The implementation of this method must be lightweight; if it does not
return in time from the moment it is called, iOS will terminate the app. This provides faster user
interface loading time to the user by preventing developers from performing complex and long-
running tasks upon initialization, such as connecting to a web service to receive data. The app
parameter is the application's UIApplication object, which is also accessible through the
static property UIApplication.SharedApplication. The options parameter may or
may not contain information about the way the app was launched. We do not need it for now.

The default implementation of the FinishedLaunching method for this type of project
is as follows:

 f The UIWindow object is initialized with the size of the screen as follows:
window = new UIWindow (UIScreen.MainScreen.Bounds);

Chapter 1

21

 f The view controller is initialized and set as the window's root view controller as follows:
viewController = new MyFirstiPhoneProjectViewController();
window.RootViewController = viewController;
window.MakeKeyAndVisible ();
return true;

The window is displayed on the screen with the window.MakeKeyAndVisible() call and
the method returns. This method must be called inside the FinishedLaunching method,
otherwise the app's user interface will not be presented as it should be to the user. Last but
not least, the return true line returns the method by marking its execution completion.

Main.cs
Inside the Main.cs file is where the runtime life cycle of the program starts as shown in the
following code:

namespace MyFirstiOSProject
{
 public class Application
 {
 // This is the main entry point of the application.
 static void Main (string[] args)
 {
 // if you want to use a different Application
 Delegate class from "AppDelegate"
 // you can specify it here.
 UIApplication.Main (args, null, "AppDelegate");
 }
 }
}

It is much like the following call in a .NET System.Windows.Forms application:

Application.Run(new Form1());

The UIApplication.Main method starts the message loop or run loop that is responsible for
dispatching notifications to the app through the AppDelegate class with event handlers that
we can override. Event handlers such as FinishedLaunching, ReceiveMemoryWarning,
or DidEnterBackground are only some of these notifications. Apart from the notification
dispatching mechanism, the UIApplication object holds a list of all UIWindow objects that
exist, typically one. An iOS app must have one UIApplication object, or a class that inherits
from it, and this object must have a corresponding UIApplicationDelegate object. This is
the AppDelegate class implementation we saw earlier.

Development Tools

22

Info.plist
The Info.plist file is basically the app's settings file. It has a simple structure of properties
with values that define various settings for an iOS app, such as the orientations it supports,
its icons, supported iOS versions, what devices it can be installed on, and so on. If we double-
click on this file in Xamarin Studio, it will open in the embedded editor specifically designed for
this file. Our file in a new project looks like the following screenshot:

We can also access Info.plist through the project's options window under iOS Application.

There's more...
Xamarin Studio provides many different project templates for developing iOS apps. Here is a
list that describes what each project template is for:

 f Empty project: This is an empty project without any views.

 f Utility application: This is a special type of iOS app that provides one screen for
functionality and, in many cases, another one for configuration.

 f Master-detail application: This type of project creates a template that supports
navigating through multiple screens. It contains two view controllers.

 f Single view application: This template type is the one we used in this recipe.

Chapter 1

23

 f Tabbed application: This is a template that adds a tab bar controller, which manages
two view controllers in a tab-like interface.

 f OpenGL application: This is a template for creating OpenGL-powered applications
or games.

These templates are available for the iPhone, iPad, and Universal (both iPhone and iPad)
projects. They are also available in Interface Builder's storyboarding app design.

Unless stated, all project templates referring to the iPhone are
suitable for the iPod Touch as well.

List of Xamarin.iOS assemblies
Xamarin.iOS-supported assemblies can be found at http://ios.xamarin.com/
Documentation/Assemblies.

See also
 f The Creating the UI and Accessing the UI with Outlets recipes

 f The Adding and customizing views recipe in Chapter 2, User Interface – Views

Interface Builder
In this recipe, we will take a look at Xcode's Interface Builder. Since we cannot use Xcode
to write our code, Xamarin Studio provides a transparent way of communicating with Xcode
when it comes to user interface files.

How to do it...
Let's take a look at Interface Builder by performing the following steps:

1. If you have installed the iOS SDK, then you already have Xcode with Interface
Builder installed on your computer. Go to Xamarin Studio and open the project
MyFirstiOSProject we created earlier.

2. In the Solution pad on the left, double-click on MyFirstiOSProjectViewController.xib.
Xamarin Studio starts Xcode with the file loaded in Interface Builder.

3. On the top of the Xcode window in the right side of the toolbar, select the appropriate
editor and viewing options, as shown in the following screenshot:

http://ios.xamarin.com/Documentation/Assemblies
http://ios.xamarin.com/Documentation/Assemblies

Development Tools

24

4. The following screenshot demonstrates what Interface Builder looks like with an XIB
file open:

How it works...
Now that we have loaded Interface Builder with the view controller of our app, let's familiarize
ourselves with it.

The user interface designer is directly connected to an Xcode project. When we add an object,
Xcode automatically generates code to reflect the change we made. Xamarin Studio takes
care of this for us, so that when we double-click on an XIB file, it automatically creates a
temporary Xcode project. This allows us to make the changes we want in the user interface.
Therefore, we have nothing more to do than just design the user interface for our app.

Interface Builder is divided into three areas. A brief description of each area is given
as follows:

 f Navigator area: In this area, we can see the files included in the Xcode project.

 f Editor area: This area is where we design the user interface. The editor area is
divided into two sections. The one on the left is the designer, and the one on the right
is the assistant editor. Inside the assistant editor, we see the underlying Objective-C
source code file that corresponds to the selected item in the designer. Although we do
not need to edit the Objective-C source, we will need the assistant editor later.

 f Utility area: This area contains the inspector and library panes. The inspector pane is
where we configure each object, and the library pane is where we find the objects.

Chapter 1

25

There's more...
We saw what an XIB file looks like in Interface Builder, but there is more as far as these files
are concerned. We mentioned earlier that XIB files are XML files with appropriate information
readable by Interface Builder. The thing is that when a compilation is done in a project, the
compiler compiles the XIB file converting it to its binary equivalent, the NIB file. Both XIB and
NIB files contain the same information. The only difference between them is that XIB files
are in a human-readable form while the NIB files are not. For example, when we compile
the project we created, the MyFirstiOSProjectViewController.xib file will become
MyFirstiOSProjectViewController.nib in the output folder. Apart from the binary
conversion, the compiler also performs a compression on NIB files. So, NIB files will be
significantly smaller in size than XIB files.

That's not all about XIB files. The way a developer manages the XIB files in a project is very
important in an app's performance and stability. It is better to have many small-sized XIB
files, instead of one or two large ones. This is because of the way iOS manages its memory.
This can be accomplished by dividing the user interface into many XIB files. It may seem a bit
difficult, but as we'll see later in this book, it is actually very easy.

When an app starts, iOS loads the NIB files as a whole in memory, and all the objects in it are
instantiated. So, it is a waste of memory to keep objects in NIB files that are not always going to
be used. Also, remember that you are developing for a mobile device whose available resources
are not a match against that of desktop computers, no matter what its capabilities are.

As of iOS 5, Apple introduced storyboarding, which simplifies user interface design.

More information
You may have noticed that in the Attributes tab of the Inspector pane, there is a section
called Simulated Metrics. Options under this section help us see directly what our interface
looks like in the designer area with the device's status bar, a toolbar, or a navigation bar.
Although these options are saved in the XIB files, they have nothing to do with the actual app
at runtime. For example, if we set the Status Bar option to None, it does not mean that our
app will start without a status bar.

Status Bar is the bar that is shown on the top portion of the device's
screen, which displays certain information to the user, such as the
current time, battery status, and carrier name on the iPhone.

Development Tools

26

See also
 f The Creating the UI, Accessing the UI with Outlets, and Adding Actions to

controls recipes
 f The Adding and customizing views recipe in Chapter 2, User Interface – Views
 f The Loading a view with a view controller recipe in Chapter 3, User Interface – View

Controllers

Creating the UI
In this recipe, we will learn how to add and manage controls in the user interface.

Getting ready
Let's add a few controls in an interface. Start by creating a new iPhone single view application
project in Xamarin Studio. Name the project ButtonInput. When it opens, double-click on
ButtonInputViewController.xib in the Solution pad to open it with Interface Builder.

How to do it...
Now that we have a new project, and Interface Builder has opened the
ButtonInputViewController.xib file, we'll add some controls to it.

Adding a label
Perform the following steps:

1. Go to the Library pane and select Objects from the drop-down list, if it is not
already selected.

2. Select the Label object. Drag-and-drop Label onto the gray space of the view in the
designer, somewhere in the top half.

3. Select and resize the Label object from both the left and right sides so that it snaps
to the dashed line that will show up when you reach close to the edges of the view.

4. Again, with the Label object selected, go to the Inspector pane, select the Attributes
tab, and in the Layout section, click on the middle alignment button.

Congratulations, you have just added Label in your app's main view!

Chapter 1

27

Adding a button
We will perform similar steps to add a button in our interface, using the following steps:

1. Again, in the Library pane, in the Objects section, select the Button object. It is next
to the Label object. Drag-and-drop it onto the bottom half of the view. Align its center
with the center of Label we added earlier.

2. A dashed line will show up, and the Button object will snap to it when the centers of
the two controls are almost aligned.

3. Resize the Button object to the same width as that of Label. Since Label has a
transparent background, and you cannot see how wide it is exactly, you will know
when the Button object is of the same width when three dashed lines show up while
you are resizing it.

4. Now, let's add some text to Button. Select it and go to Inspector pane.

5. In the Attributes tab of the Title field, enter Tap here please!.

6. After adding the button, save the document by navigating to File | Save in the menu
bar. The main view should now look like the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Development Tools

28

How it works...
As you can see, although some concepts of Interface Builder seem difficult, it is quite easy to
use. It also provides a lot of feedback. When we drag objects, guidelines that basically act as
snap points for positioning the control properly, appear. Also, when we resize a control, we see
its dimensions next to it.

You can also resize and position the controls by modifying the values in the Size tab of the
Inspector pane. Another useful feature in the Size tab is Autosizing. Autosizing provides
layout options for the controls, and it can be very useful when we want our app to support
different device orientations. You can select a control you want, and then click on the lines that
are outside or inside of the square on the left in the Autosizing section. The image next to it
animates to give you an impression of how the control will behave when the layout changes.

There's more...
Now, let's try running the app on iOS Simulator. Back in Xamarin Studio, select the project
configuration Debug if it is not already selected. Depending on the version of iOS SDK you
have installed, the following screenshot shows the available options of debugging targets:

Select your preferred target and click on the Run button. When the compilation finishes, iOS
Simulator will automatically start and run the app we just created. You can even tap on Button
by clicking on it with the mouse, and see it responding. Of course, our app does not have any
other functionality right now.

Setting titles on Buttons
Setting the title of a Button or Label can be done by simply double-clicking on it and typing the
preferable title. Do it, and watch how Interface Builder behaves to show you what action is to
be performed.

Chapter 1

29

See also
 f The Compiling an iOS project and Debugging our application recipes

 f The Receiving user input with buttons recipe in Chapter 2, User Interface – Views

Accessing the UI with Outlets
In this recipe, we will discuss the concept of Outlets and their usage with Xamarin.iOS.

Getting ready
In the previous recipe, we learned how to add controls to form a basic interface for our app.
In this recipe, we will discuss how to access and use these controls in our code. Launch
Xamarin Studio and open the project ButtonInput we created earlier. Open the project's
ButtonInputViewController.xib in Interface Builder by double-clicking on it in the
Solution pad.

How to do it...
Perform the following steps to access the UI with Outlets:

1. In the assistant editor, select the ButtonInputViewController.h file, press
the Ctrl key, and drag it from Label to the Objective-C source file, as displayed in the
following screenshot:

Development Tools

30

2. When you release the cursor, a context window will appear similar to the one in the
following screenshot:

3. In the Name field of the context window, enter labelStatus and click on Connect.

4. Do the same for Button, and name it buttonTap. Save the Interface Builder document
by navigating to File | Save in the menu bar or by pressing Cmd + S on the keyboard.

5. Back in Xamarin Studio, enter the following code in the ViewDidLoad method of the
ButtonInputViewController class:
// Create and hook a handler to our button's
 TouchUpInside event
// through its outlet
this.buttonTap.TouchUpInside += delegate(object sender,
 EventArgs e) {
 this.labelStatus.Text = "Button tapped!";
};

This code snippet adds a handler to the button's TouchUpInside event. This event
is similar to the Clicked event of a Button control in System.Windows.Forms. It
also displays the usage of an anonymous method, which just shows how Xamarin.iOS
provides C# features to .NET developers.

Chapter 1

31

That was it! Our app is now ready with functional controls. Compile and run it on the simulator.
See the label changing its text when you tap on the button.

How it works...
The Outlet mechanism is basically a way of connecting Interface Builder objects with the
code. It is necessary since it is the only way we can access user interface objects that
we create with Interface Builder. This is how Interface Builder works, and it is not just a
Xamarin.iOS workaround. An Outlet of an object provides a variable of this object so that
we will be able to use it in a project. Xamarin.iOS makes a developer's life much easier
because when we create Outlets in Interface Builder and connect them, Xamarin Studio
works in the background by autogenerating code regarding these Outlets. This is what the
ButtonInputViewController.designer.cs file has added to provide us access to the
controls we created:

[Outlet]
MonoTouch.UIKit.UILabel labelStatus { get; set; }

[Outlet]
MonoTouch.UIKit.UIButton buttonTap { get; set; }

These are the properties which provide us access to the controls. They are decorated with
the Outlet attribute. You can see that the names of the properties are exactly the same
names we entered for our Outlets. This is very important since we only have to provide
names once for the Outlets, and we do not have to worry about repeating the same naming
conventions in different parts of our code. Also, notice that the types of variables of the
controls are exactly the same as the types of controls we dragged-and-dropped in our
user interface. This information is stored in the XIB file, and Xamarin Studio reads this
information accordingly.

Development Tools

32

There's more...
To remove Outlets, you first have to disconnect them. For example, to remove the buttonTap
Outlet, press Ctrl and click on the button. In the panel that will appear, click on the x button
next to the Outlet, as shown in the following screenshot. This will disconnect the Outlet.

After this, delete the following code from the Objective-C source file:

@property (retain, nonatomic) IBOutlet UIButton *buttonTap;

When you save the document, the Outlet will be removed from the Xamarin Studio project.

Adding Outlets through code
Another way of adding Outlets is to create a property in your C# class and decorate it with the
Outlet attribute:

[Outlet]
UIButton ButtonTap { get; set; }

Chapter 1

33

When you open the XIB file in Interface Builder, the Outlet will be added to the user interface.
However, you would still have to connect it to the corresponding control. The easiest way to
do this is to press Ctrl, click on the control the Outlet corresponds to, and click-and-drag from
New Referencing Outlet to the File's Owner object on the left of the designer area, as shown
in the following screenshot:

When you release the cursor, select the ButtonTap Outlet from the small context menu that
will appear.

Note that it is Xamarin Studio that monitors for changes made
in Interface Builder, and not the other way around. When
making changes in the Xamarin project, make sure to always
open the XIB file from Xamarin Studio.

See also
 f The Interface Builder, Creating the UI, and Adding Actions to controls recipes

 f The Adding and customizing views recipe in Chapter 2, User Interface – Views

Development Tools

34

Adding Actions to controls
In this recipe, we discuss the concept of Actions and their usage with Xamarin.iOS.

Getting ready
In this recipe, we will discuss how to use Actions with the controls of the user interface.

1. Create a new iPhone single view application project in Xamarin Studio and name it
ButtonInputAction.

2. Open ButtonInputActionViewController.xib in Interface Builder, and add the
same controls, Outlets, and connections as the ones from the project ButtonInput
from the previous recipe. Do not add any code in the project for now.

How to do it...
Adding Actions to interface objects is similar to adding Outlets, as follows:

1. In Interface Builder, press Ctrl and drag from the button to the source code file.

2. In the context window that will be shown, change the Connection field from
Outlet to Action.

3. Enter OnButtonTap in the Name field, and select Touch Up Inside in the Event field,
if it is not already selected.

4. Click on the Connect button and save the document.

5. In the ButtonInputActionViewController class, add the following method:
partial void OnButtonTap(NSObject sender)
{

 this.labelStatus.Text = "Button tapped!";

}

The app is ready! Compile and run it in the simulator. Tap on the button and see the text in the
label change, just like in the previous app we created.

Chapter 1

35

How it works...
Actions in Objective-C are the equivalent of control events in C#. They are responsible for
delivering notification signals of various objects. In this example, instead of hooking up a
handler on the TouchUpInside event of the button, we have added an action for it. As you
may already have noticed, the method we added to act as a handler for the action was declared
as partial; this is because Xamarin Studio already declared a partial method declaration for
us. This is the code that was produced when we saved the document in Interface Builder:

[Action ("OnButtonTap:")]
partial void OnButtonTap (MonoTouch.Foundation.NSObject sender);

The partial declaration of the method is marked with the Action attribute. This is another
attribute from the MonoTouch.Foundation namespace that allows us to expose methods as
Objective-C Actions. You see that the string parameter passed in the attribute is exactly the same
as the action name we entered in Interface Builder, with only an appended colon (:) to it.

Colons in Objective-C indicate the presence of parameters. For
example, doSomething is different from doSomething;. The
difference is that the first does not accept any parameters, and
the second accepts one parameter.

Development Tools

36

The colon at the end of the action name indicates that there is one parameter, in this case,
the parameter MonoTouch.Foundation.NSObject sender. This is what our app looks like
when we have tapped on the button in the simulator:

There's more...
The example in the preceding section was created just to show how to implement actions
in Xamarin.iOS projects. Replacing an event with an action is basically at the discretion of
the developer.

See also
 f The Interface Builder, Creating the UI, and Accessing the UI with Outlets recipes

Compiling an iOS project
In this recipe, we will discuss how to compile a project with Xamarin.iOS.

Getting ready
Xamarin Studio provides many different options for compiling. In this recipe, we will
discuss these options. We will be working with the project ButtonInput we created
earlier in this chapter.

How to do it...
Perform the following steps to compile an iOS project with Xamarin.iOS:

1. With the project loaded in Xamarin Studio, go to Project | ButtonInput Options.

2. In the window that appears, select iOS Build from the Build section on the left pad.
Select Debug as project configuration and iPhoneSimulator as a platform.

3. In the Linker behavior field, select Link all assemblies from the combo box.

4. In the SDK version field, select Default if it is not already selected.

5. Now go to iOS Application on the left pad.

Chapter 1

37

6. In the Summary tab, enter Button Input in the Application Name field and 1.0
in the Version field. Select version 6.0 in the Deployment Target combo box. The
iOS Application options window is shown in the following screenshot:

7. Click on the OK button and compile the project by navigating to Build | Build All in
the menu bar.

How it works...
We have set up some options for our project. Let's see what these options provide for
compilation customization:

www.allitebooks.com

http://www.allitebooks.org

Development Tools

38

iOS build options
The first option we set up relates to the linker. The linker is a tool that was developed by the
Xamarin.iOS team and is provided in the SDK. Every time a Xamarin.iOS project is compiled,
the compiler does not only compile the project, it also needs all the assemblies of the Xamarin.
iOS Framework so that the final app will be able to run on the device (or the simulator). This
actually means that every app comes with its own compiled version of the Xamarin.iOS
Framework. The final application bundle is quite large in size. This is where the linker comes
in. What it does is strips down the assemblies of all the unused code so that the compiler will
only compile what is needed and used by the app. This results in much smaller app bundles, a
precious asset when it comes to mobile apps. The following are the linker options:

 f Don't Link: Use this option when debugging on the simulator. The linker is turned off
and all the assemblies are compiled as they are. It provides faster compilation time.

 f Link SDK assemblies only: The linker only strips down the Xamarin.iOS Framework
assemblies. The project assemblies remain intact. It effectively reduces the final size
of the app.

 f Link all assemblies: The linker is activated on all assemblies. This reduces the size
a bit more. Care needs to be taken when using this option if reflection or serialization
is used in the code. Types and methods that are used through reflection in the code
are transparent to the linker. If a situation like this exists in the code, decorate these
types or methods with the Preserve attribute. This attribute basically informs the
linker to be left out of the stripping-down process.

In the SDK version field, we set the iOS SDK version that will be used to compile the app.
Setting it to Default automatically selects the highest SDK version installed on the system.

When compiling for the simulator, turning the linker on is not
suggested. This is because the compiler is not compiling the
Xamarin.iOS assemblies in the iPhoneSimulator platform, hence,
they are being used directly. Turning the linker on only causes
compilation to take more time to complete. It has no effect in
reducing the final app bundle size.

iOS application options
In the iOS Application window of the Build section in the project options, we set up three options:

 f The first option is Application Name. This is the name of the application bundle that
will be displayed on the simulator, the device, and on the App Store. As we can see
here, we can normally add spaces to the name.

 f The second option, Version, defines the version of the app. It is what will be displayed
as the app's version when it is finally distributed through the App Store.

 f The third option, Deployment Target, is the minimum iOS version the app can be
installed on.

Chapter 1

39

There's more...
There are two more option windows. These are iOS Bundle Signing and iOS IPA Options. They
will be discussed thoroughly in the recipes in Chapter 14, Deploying.

See also
 f The Preparing our app for the App Store recipe in Chapter 14, Deploying

Debugging our application
This recipe provides information on debugging a Xamarin.iOS app on the simulator.

Getting ready
Xamarin.iOS, in combination with Xamarin Studio, provides a debugger for debugging apps
either on the simulator or on the device. In this recipe, we'll see how to use the debugger for
debugging Xamarin.iOS apps. Open Xamarin Studio and load the ButtonInput project. Make
sure to set the project configuration to Debug | iPhone.

How to do it...
Perform the following steps to debug your application:

1. Xamarin Studio supports breakpoints. To activate a breakpoint on a line, click on the
space on the left of the line number to set it. Set a breakpoint on the following line in
the ButtonInputViewController.cs file:
this.labelStatus.Text = "Button tapped!";

The following screenshot shows what a breakpoint in Xamarin Studio looks like:

2. Compile and debug the project by clicking on the Run button or by navigating to Run
| Start Debugging on the menu bar. Xamarin Studio's status will display the message
Waiting for debugger to connect….

Development Tools

40

3. When the simulator is opened and the app is loaded, watch the information that is
provided in the Application Output pad.

4. Tap on the app button. Execution will pause and Xamarin Studio will highlight
the breakpoint in yellow. Move the mouse over the labelStatus variable in the
breakpoint line. A window will be displayed with all the evaluated variable's members,
as shown in the following screenshot:

5. To stop debugging, click on the Stop button in the toolbar.

How it works...
The debugger that is used is called soft debugger. It is called so because it depends on both
the runtime and Xamarin Studio, combined to provide one unified debugging platform. When
the debugging process starts, Xamarin Studio begins listening for debugging information
from the app. The same applies for debugging on both the simulator and the device. When
the app executes, it starts sending information back to Xamarin Studio. It then displays
that information in the Application Output pad, which is automatically activated. A typical
application output when debugging is the information on the assemblies that are loaded, the
threads that begin execution, and the breakpoints, if any, that are available.

There's more...
The Console.WriteLine() method can also be used for debugging purposes. The
debugger takes care of this and redirects the output of the method to Xamarin Studio's
Application Output pad.

Chapter 1

41

App performance when debugging
When compiling for debugging purposes, the compiler produces larger and slower code.
This is because it generates extra code that is needed to provide the appropriate debugging
information. That's why, when debugging an app, the execution of the app is much slower
than on simple running situations. Before producing a release copy of the app, remember to
compile it with the Release | iPhone project configuration to avoid slow runtime execution.

Breakpoints in FinishedLaunching
One more reason for not to have complicated code in the FinishedLaunching
method is that, in most cases, you will not be able to debug it. If you set a breakpoint in
FinishedLaunching, app execution will pause, but iOS will terminate the app when the
time limit is reached.

See also
 f The Creating profiles recipe in Chapter 14, Deploying

2
User Interface – Views

In this chapter, we will cover the following topics:

 f Adding and customizing views

 f Receiving user input with buttons

 f Displaying images

 f Displaying and editing text

 f Using the keyboard

 f Displaying progress

 f Displaying content larger than the screen

 f Navigating through the content divided into pages

 f Displaying alerts

 f Creating a custom view

 f Styling views

Introduction
An application's User Interface (UI) is essential for providing the user with an easy way of
communicating with a device, be it a computer, a mobile phone, or a tablet. On a mobile device,
the user interface is not only essential but the only way to interact with the user. Developers
have to cope with various limitations and restrictions when developing applications for mobile
devices. The processing power of mobile devices does not match that of desktop CPUs, and the
screens are smaller, making the process of choosing what sort of information will be displayed
each time somewhat more difficult.

User Interface – Views

44

In this chapter, we will discuss the key components of an iOS application's UI. We will see how
to use and customize these components to create rich application user interfaces and discuss
the similarities and differences they have with their desktop equivalents. The following is a list
of these components:

 f UIView: This is a customizable container that is the base object of most iOS user
interface controls

 f UIButton: This is the equivalent of a Button in the .NET world

 f UILabel: This is the equivalent of a Label in the .NET world

 f UIImageView: This is a view that allows us to display and create basic animations
with images

 f UITextView: This is a view that allows us to display editable text

 f UITextField: This is similar to .NET's TextBox control

 f UIProgressView: This displays the known length progress

 f UIScrollView: This provides the ability to display scrollable content

 f UIPageControl: This provides navigation functionality to the content that is divided
into different pages or screens

 f UIAlertView: This is the default iOS control for displaying a message box to the user

We will also talk about how to programmatically create instances of these components and
how to style and use them efficiently.

Adding and customizing views
In this recipe, we will discuss how to add and customize UIView with Xcode's Interface Builder.

Getting ready
Adding views with Interface Builder is a simple task. Let's start by creating a new iPhone
Single View Application project in Xamarin Studio. Name the project FirstViewApp
and open the FirstViewAppViewController.xib file with Interface Builder.

How to do it...
Perform the following steps:

1. To add a view to the project, drag-and-drop a UIView object from the Library pad
onto the main view. Make sure that it fits the entire window area. To make UIView
accessible, create an outlet for it and name it subView.

Chapter 2

45

The concept of outlets and how to use them is discussed in detail
in Chapter 1, Development Tools.

2. Select the view that we have just added and go to the Inspector pad. Select the
Attributes tab, and select Dark Gray Color in the Background drop-down list. Now,
select the Size tab and reduce the view's height by 60 points. Save the document.

3. Compile and run the app on the simulator. The result should look like the one shown
in the following screenshot:

The dark gray portion of the simulator's screen is the view that we have just added.

How it works...
We have successfully created an app that contains one view. Of course, this app does not
provide any functionality. It is only meant to show how to add a view and display it.

Views are the essential components of an iOS app interface. Every visual user interface object
inherits from the UIView class. The concept is somewhat different from a form in .NET. A view
manages content drawing, accepts other views as subviews, provides autosizing features,
can accept touch events for itself and its subviews, and many of its properties can even be
animated. Even UIWindow inherits from UIView. It is this class or its inheritors that iOS
developers will use most frequently.

User Interface – Views

46

When a view that is added with Interface Builder is first instantiated at runtime, it sets its
Frame property with values that are set through the Inspector pad's Size tab. The Frame
property is of the RectangleF type, and it defines the location of the view in its superview's
coordinate system (in our case, the main window) and its size in points.

In Objective-C, the frame property of UIView is of the CGRect type. This
type has not been bound in Xamarin.iOS, and the more familiar System.
Drawing.RectangleF was used instead.

A superview is a view's parent view, while subviews are its child views.
Views that have the same superview are described as siblings.

The default coordinate system in iOS originates from the top-left corner and extends towards
the bottom and the right. The coordinate origin is always the same and cannot be changed
programmatically.

The coordinate system of iOS is displayed in the following diagram:

When the Frame property is set, it adjusts the Bounds property. The Bounds property defines
the location of the view in its own coordinate system and its size in points. It is also of the
RectangleF type. The default location for the Bounds property is (0,0), and its size is always
the same as the view's Frame value. Both these properties' sizes are connected to each
other, so when you change the size of Frame, the size of Bounds changes accordingly and
vice versa. You can change the Bounds property to display different parts of the view.

Chapter 2

47

A view's frame can exceed the screen in both location and position. That is, a view's frame
with values (x = -50, y = -50, width = 1500, height = 1500) is perfectly acceptable, although it
will not be completely visible on the screen of an iPhone.

There's more...
Another thing to note is that the UIView class inherits from the UIResponder class. The
UIResponder class is responsible for responding to and handling events. When a view is
added to a superview, it becomes part of its responder chain. The UIView class exposes the
properties and methods of UIResponder, and the ones we are interested in describing for
now are the following two:

 f IsFirstResponder property: This returns a Boolean value indicating whether the view
is the first responder. Basically, it indicates if the view has focus.

 f ResignFirstResponder(): This causes the view to lose focus.

Adding views programmatically
If we would like to add a view on our main view programmatically, we would use the following
UIView.AddSubview(UIView) method:

this.View.AddSubview(this.subView);

The AddSubview method adds its parameter, which is of the UIView type, to the list of the
caller's subviews and sets its Superview parameter to the caller. A view will not be displayed
unless it is added to a parent view with the AddSubview method. Also, if a view already has
a superview and it is added to another view with its AddSubview method, its Superview is
changed to that of the new caller. What this means is that a view can have only one superview
at a time.

When adding a view as a subview with Interface Builder, it is not
required to use the AddSubview method to display the subview.
However, it is required to call the AddSubview method when adding
views programmatically.

For removing a view from its superview programmatically, call its RemoveFromSuperview
method. Calling this method on a view that has no superview does nothing. Care must be
taken when we want to reuse the view we want to remove. We must keep a reference to it,
or it might be released.

www.allitebooks.com

http://www.allitebooks.org

User Interface – Views

48

View content layout
Another important property of UIView is ContentMode. ContentMode accepts values of
the UIViewContentMode enumeration type. This property sets how the UIView will display
its content, usually an image. The default value of this property is UIViewContentMode.
ScaleToFill. This scales the content to fit the exact view's size, stretching it if necessary.
The available values of UIViewContentMode are explained in detail in the Displaying Images
recipe later in this chapter.

See also
 f The Creating a custom view recipe

 f The Creating the UI recipe in Chapter 1, Development Tools

 f The Accessing the UI with Outlets recipe in Chapter 1, Development Tools

Receiving user input with buttons
In this recipe, we will learn how to use buttons to receive and respond to user input.

Getting ready
We used buttons in Chapter 1, Development Tools, to discuss how to use Interface Builder to
add controls to the user interface. In this recipe, we will describe the UIButton class in more
detail. Open the FirstViewApp project, which we created in the previous recipe, in Xamarin
Studio. Increase the height of the view, which we added, to cover the whole device screen in
Interface Builder and save the document.

How to do it...
Perform the following steps:

1. We will programmatically add a button in our interface. This button will change our
view's background color when tapped. Open the FirstViewAppViewController.
cs file and enter the following code in the class:
UIButton buttonChangeColor;
private void CreateButton ()
{
 RectangleF viewFrame =
 this.subView.Frame;
 RectangleF buttonFrame = new
 RectangleF (10f, viewFrame.Bottom - 200f,
 viewFrame.Width - 20f, 50f);
 this.buttonChangeColor = UIButton.FromType
 (UIButtonType.System);

Chapter 2

49

 this.buttonChangeColor.Frame = buttonFrame;
 this.buttonChangeColor.SetTitle ("Tap to change view
 color", UIControlState.Normal);
 this.buttonChangeColor.SetTitle ("Changing color...",
 UIControlState.Highlighted);
 this.buttonChangeColor.TouchUpInside +=
 this.ButtonChangeColor_TouchUpInside;
 this.subView.AddSubview (this.buttonChangeColor);
}
bool isYellow;
private void ButtonChangeColor_TouchUpInside (object
 sender, EventArgs e)
{
 if (this.isYellow) {
 this.subView.BackgroundColor = UIColor.LightGray;
 this.isYellow = false;
 } else {
 this.subView.BackgroundColor = UIColor.Yellow;
 this.isYellow = true;
 }
}

2. In the ViewDidLoad method, add the following line:
this.CreateButton ();

3. Compile and run the app on the simulator. When the button is tapped, the result
should be similar to the following screenshot:

User Interface – Views

50

How it works...
In this recipe, we have added a button to the user interface. This button changes the
background color of its superview. Furthermore, we have accomplished this without
using Interface Builder at all.

Let's see now what the code does. We create the following field that will hold the
button object:

// A button to change the view's background color
UIButton buttonChangeColor;

In the CreateButton method, we create the button and set some properties. The method is
shown in the following code:

// Create the appropriate rectangles for the button's frame
RectangleF viewFrame = this.subView.Frame;
RectangleF buttonFrame = new RectangleF (10f, viewFrame.Bottom -
 200f, viewFrame.Width - 20f, 50f);

First, we assign the view's frame to a new variable named viewFrame. Then, we create a
new RectangleF object named buttonFrame. This object will be assigned to the button's
Frame property. Now that we have a frame for our button, we can initialize it as shown in the
following code snippet:

// Create the button.
this.buttonChangeColor = UIButton.FromType (UIButtonType.System);
this.buttonChangeColor.Frame = buttonFrame;

The button is initialized with the UIButton.FromType(UIButtonType) static method.
This method takes one parameter of the UIButtonType type and returns predefined types
of buttons that are included in iOS SDK. The UIButtonType.System button enumeration
value used here is the default type of button without any borders or background. After the
buttonChangeColor object is initialized, we set its frame to the RectangleF value we
created earlier.

Now that we have provided an initialization code for the button, we will set its titles (that's
right, more than one) as shown in the following code:

// Set the button's titles
this.buttonChangeColor.SetTitle ("Tap to change view color",
 UIControlState.Normal);
this.buttonChangeColor.SetTitle ("Changing color...",
 UIControlState.Highlighted);

Chapter 2

51

We call the UIButton.SetTitle(string, UIControlState) method twice. This
method is responsible for setting the button's title for each given button state. The string
parameter is the actual title that will be shown. The second parameter is an enumeration of
the UIControlState type. This parameter indicates the different control states that apply to
controls. These control states are as follows:

 f Normal: This is the default idle state of an enabled control.

 f Highlighted: This is the state of the control when a touch-up event occurs.

 f Disabled: This is the state when the control is disabled and does not accept
any events.

 f Selected: This is the state when the control is selected. In most cases, this state
does not apply. However, it is useful when a selection state is required, like in a
UISegmentedControl object.

 f Application: This is the additional control state value for an application's use.

 f Reserved: This is for internal framework use.

So, with the UIButton.SetTitle(string, UIControlState) method, we have set
the title that will be displayed when the button is in its default state and the title that will be
displayed while the button is being tapped.

After this, we set the button's handler for the TouchUpInside event and add it as a subview
to subView using the following code:

this.buttonChangeColor.TouchUpInside +=
 this.ButtonChangeColor_TouchUpInside;
// Display the button
this.subView.AddSubview (this.buttonChangeColor);

Inside the buttonChangeColor_TouchUpInside event, we change the background
color of the view according to the Boolean field that we have declared, as shown in the
following code:

if (this.isYellow) {
 this.subView.BackgroundColor = UIColor.DarkGray;
 this.isYellow = false;
} else {
 this.subView.BackgroundColor = UIColor.Yellow;
 this.isYellow = true;
}

This is done by setting the view's BackgroundColor property to the appropriate UIColor
class instance we want, as shown in the preceding highlighted code. The UIColor object is
a class with many different static methods and properties that allow us to create different
colored objects.

User Interface – Views

52

When you compile and run the app on the simulator, notice the view's color change when you
tap the button. Also notice how the button's title changes while the mouse cursor (or a finger
on the device) is "touching" the button.

There's more...
In this recipe, we used the UIButton.FromType(UIButtonType) static method to
initialize the button. A brief description of each of the enumeration flags of UIButtonType
are as follows:

 f System: This is the default type of button.

 f Custom: This is a borderless transparent button. Use this flag when creating custom
buttons with images as backgrounds. The button's title is not transparent.

 f RoundedRect: This is the default type of button with rounded corners. As of iOS 7,
this type of UIButton is deprecated. Use UIButtonType.System instead.

 f DetailDisclosure: This is a round blue button that reveals additional information
related to an item.

 f InfoLight: This is a light-colored button with the letter (i) that represents
information display.

 f InfoDark: This is the same as InfoLight; it is shown with a dark color.

 f ContactAdd: This is a round blue button with a white plus sign (+). Usually, this
button is displayed to present contact information to add to an item.

Changing the appearance of buttons
For creating custom buttons with the UIButtonType.Custom type, use the UIButton class'
SetBackgroundImage and SetImage methods. They both accept one UIImage and one
UIControlState parameter so that different images for different control states can be
set. When setting images for buttons, be sure to set the UIButton.ContentMode property
accordingly, irrespective of whether creating a custom button or not.

The functionality provided by the SetImage and SetBackgroundImage methods can also
be accomplished in the corresponding Image and Background fields in the Attributes tab of
the Inspector pad in Interface Builder. Select the state for which to set the desired image(s)
from the drop-down list box and set the path to the image file, as shown in the following
screenshot:

Chapter 2

53

See also
 f The Adding and customizing views recipe

 f The Displaying images recipe

 f The Creating a custom view recipe

 f The Styling views recipe

 f The Creating the UI recipe in Chapter 1, Development Tools

Displaying images
In this recipe, we will learn how to use the UIImageView class to display images on screen.

Getting ready
In this recipe, we will see how to bundle and display images in a project. An image file will be
needed for display. The image file used here is named Toroni.jpg. Create a new iPhone
Single View Application project in Xamarin Studio and name it ImageViewerApp.

How to do it...
The following are the steps for this recipe:

1. Open the ImageViewerAppViewController.xib file in Interface Builder.

2. Add a UIImageView object on its view. Connect the UIImageView object with an
outlet named imageDisplay.

User Interface – Views

54

3. Save the document.

4. Back in Xamarin Studio, in the ImageViewerAppViewController class, enter the
following code:
public override ViewDidLoad()
{
 base.ViewDidLoad();
 this.imageDisplay.ContentMode =
 UIViewContentMode.ScaleAspectFit;
 this.imageDisplay.Image = UIImage.FromFile("Toroni.jpg");
}

5. Right-click on the project in the Solution pad and navigate to Add | Add Files….
Select the image file you want to display and click on Open.

6. Right-click on the image file you have just added and navigate to Build Action |
BundleResource.

7. Finally, compile and run the app on the simulator. The image you added to the project
should be displayed on the screen, like in the following screenshot:

Chapter 2

55

How it works...
The UIImageView class is basically a view customized for displaying images. When you add
an image in a project, its Build Action must be set to BundleResource in the Solution pad;
otherwise, the image will not be copied into the app bundle. Fortunately, Xamarin Studio is
smart enough to handle this setting automatically for images.

The ContentMode property is very important when displaying images. It sets the way
the UIView (UIImageView in this case) object will display the image. We have set it
to UIViewContentMode.ScaleAspectFit so that it will be resized to fit the area of
UIImageView, keeping the aspect ratio intact at the same time. If the ContentMode
property was left at its default ScaleToFill value, the output would be something like
the one shown in the following screenshot:

To set the image that UIImageView should display, we set its Image property with a
UIImage object, as shown in the following code:

this.imageDisplay.Image = UIImage.FromFile("Toroni.jpg");

User Interface – Views

56

The ContentMode property accepts an enumeration type named UIViewContentMode.
The values provided are as follows:

 f ScaleToFill: This is the default value of the base UIView object. It scales the
content to fit the size of the view, changing the aspect ratio as necessary.

 f ScaleAspectFit: This scales the content to fit the size of the view, maintaining its
aspect ratio. The remaining area of the view's content becomes transparent.

 f ScaleAspectFill: This scales the content to fill the size of the view, maintaining its
aspect ratio. Some part of the content may be left out.

 f Redraw: When a view's bounds are changed, its content is not redrawn. This value
causes the content to be redrawn. Drawing content is an expensive operation in
terms of CPU cycles, so think twice before using this value with large content.

 f Center: This places the content at the center of the view, keeping its aspect ratio.

 f Top, Bottom, Left, Right, TopLeft, TopRight, BottomLeft, and
BottomRight: These align the content in the view with the corresponding value.

There's more...
The UIImage class is the object that represents image information. The file formats it
supports are listed in the following table:

File Format File extension

Portable Network Graphics (PNG) .png

Joint Photographic Experts Group (JPEG) .jpg, .jpeg

Tagged Image File Format (TIFF) .tiff, .tif

Graphic Interchange Format .gif

Windows Bitmap Format .bmp

Windows Icon Format .ico

Windows Cursor .cur

XWindow bitmap .xbm

Animated GIF image files are not supported by the UIImageView
class. When an animated GIF is set to the Image property of
UIImageView, only its first frame will be displayed as a static image.

Chapter 2

57

Using images for different screen sizes
Creating images for backgrounds provides developers with the ability to produce rich and
elegant user interfaces for their apps. The preferred image file format for creating backgrounds
for views is PNG. However, since iPhone 4 was released, the screen resolution was increased.
To support both screen resolutions in an app, the iOS SDK provides an easy solution. Just
save the image in the higher resolution and add a @2x suffix to the file name just before the
extension. For example, the name of a higher resolution version of a file named Default.png
would be Default@2x.png. Also, no extra code is required to use both files. Just use the
UIImage.FromBundle(string) static method, passing the file name without an extension.
The following line of code would load the appropriate file, depending on the screen resolution:

this.imageDisplay = UIImage.FromBundle("Default");

iOS takes care of loading the appropriate file, depending on the device the app is running on.

The preceding case only applies to PNG image files.

See also
 f The Adding and customizing views recipe

 f The Selecting images and videos recipe in Chapter 7, Multimedia Resources

Displaying and editing text
In this recipe, we will learn how to display simple text blocks with editing functionality.

Getting ready
In this recipe, we will discuss the usage of UITextView and how to display editable text
with it. Create a new iPhone Single View Application project in Xamarin Studio and name
it TextViewApp.

How to do it...
Perform the following steps:

1. Open TextViewAppViewController.xib in Interface Builder.

2. Add a UIButton near the top of its view and a UITextView below it. Connect both
objects to their outlets.

3. Save the document.

www.allitebooks.com

http://www.allitebooks.org

User Interface – Views

58

4. Back in Xamarin Studio, enter the following ViewDidLoad method in the
TextViewAppViewController class:
public override void ViewDidLoad ()
{
 base.ViewDidLoad ();
 this.buttonFinished.Enabled = false;
 this.buttonFinished.TouchUpInside += (sender, e) => {

 this.myTextView.ResignFirstResponder();

 } ;
 this.myTextView.Delegate = new MyTextViewDelegate(this);
}

5. Add the following nested class:
private class MyTextViewDelegate : UITextViewDelegate
{

 public MyTextViewDelegate
 (TextView
 AppViewController parentController)
 {
 this.parentController = parentController;
 }
 private
 TextViewAppViewController parentController;

 public override void EditingStarted
 (UITextView textView)
 {
 this.parentController.buttonFinished.Enabled = true;
 }

 public override void EditingEnded
 (UITextView textView)
 {
 this.parentController.buttonFinished.Enabled = false;
 }

 public override void Changed
 (UITextView textView)
 {
 Console.WriteLine ("Text changed!");
 }

}

Chapter 2

59

6. Compile and run the app on the simulator. Tap somewhere in the text view and the
keyboard will appear. Type some text and then tap on the Finished button to hide
the keyboard.

How it works...
The UITextView class provides an object that displays editable blocks of text. To respond
to the events of our text view, we have implemented a class (shown in the following code) that
inherits from UITextViewDelegate, which will act as the text view's delegate:

private class MyTextViewDelegate : UITextViewDelegate
{
 public MyTextViewDelegate
 (TextViewAppViewController parentController)
 {this.parentController = parentController;}
 private
 TextViewAppViewController parentController;

We declared a constructor that accepts a TextViewAppViewController object so that we
can have the instance of our controller available to access our controls.

Then, we override three methods of the UITextViewDelegate class, as shown in the
following code:

public override void EditingStarted (UITextView textView)
{
 this.parentController.buttonFinished.Enabled = true;
}

public override void EditingEnded (UITextView textView)
{
 this.parentController.buttonFinished.Enabled = false;
}

public override void Changed (UITextViewtextViewUITextView
 textView)
{
 Console.WriteLine ("Text changed!");
}

These methods are the handlers that will get called whenever a corresponding event is
triggered. When tapping on the text view, the EditingStarted method gets called. We
enable the Finished button in it. When we type some text in the text view, the Changed
method gets called, and we can see the output of the Console.WriteLine method in
Xamarin Studio's Application Output pad. Finally, when we tap on the Finished button,
the keyboard hides, and the EditingEnded method gets called. This method allows us
to disable the button.

User Interface – Views

60

In the ViewDidLoad method, we assign a handler to the TouchUpInside event of the
button, as shown in the following code:

this.buttonFinished.TouchUpInside += (sender, e) => {
 this.myTextView.ResignFirstResponder ();
};

We call the text view's ResignFirstResponder() method in it so that when the button
is tapped, the text view will lose focus, causing the keyboard to hide. Then, we assign a
new instance of the delegate we created to the text view's Delegate property, passing the
instance of the TextViewAppViewController object, as shown in the following code:

this.myTextView.Delegate = new MyTextViewDelegate (this);

There's more...
Delegates in Objective-C are somewhat different than those in C#. Although in both worlds,
their most common usage is to provide access to some form of event notification mechanism,
in Objective-C, this mechanism is a bit more complex. A C# delegate is much like a function
pointer in C or C++ programming languages. It is an object that holds a reference to a method
of a specific signature. On the other hand, an Objective-C delegate is a certain type of object
that conforms to a specific protocol. It is basically an object that wraps one or more
methods (and/or other members) that act as event handlers.

An Objective-C protocol is similar to an interface in C#.

The concept of delegate objects might seem confusing at first, but it is not difficult to
comprehend. Regarding the event notification mechanism, Xamarin.iOS simplifies things for
.NET developers by providing events for most objects, including UITextView described here.

See also
 f The Using the keyboard recipe

Using the keyboard
In this recipe, we will discuss some important aspects of the device's virtual keyboard usage.

Getting ready
In the previous recipe, we discussed how to edit text. In this recipe, we will discuss some of
the things we can or even must do to use the keyboard effectively. Create a new iPhone Single
View Application project in Xamarin Studio and name it KeyboardApp.

Chapter 2

61

How to do it...
Perform the following steps:

1. Open the KeyboardAppViewController.xib file in Interface Builder.

2. Add a UITextField object in the bottom-half portion of the view and connect it
to an outlet.

3. Save the document.

4. Back in Xamarin Studio, enter the following code in the
KeyboardAppViewController class:
private NSObject kbdWillShow, kbdDidHide;
public override void ViewDidLoad()
{

 base.ViewDidLoad();

 this.emailField.KeyboardType =
 UIKeyboardType.EmailAddress;
 this.emailField.ReturnKeyType = UIReturnKeyType.Done;

 this.kbdWillShow =
 UIKeyboard.Notifications.ObserveWillShow((s, e) => {
 RectangleF kbdBounds = e.FrameEnd;
 RectangleF textFrame =
 this.emailField.Frame;
 textFrame.Y -= kbdBounds.Height;
 this.emailField.Frame = textFrame;
 });
 this.kbdDidHide =
 UIKeyboard.Notifications.ObserveDidHide((s, e) => {
 RectangleF kbdBounds = e.FrameEnd;
 RectangleF textFrame =
 this.emailField.Frame;
 textFrame.Y += kbdBounds.Height;
 this.emailField.Frame = textFrame;
 });

 this.emailField.ShouldReturn = delegate(UITextField
 textField) {
 return textField.ResignFirstResponder ();
 } ;

}

User Interface – Views

62

5. Compile and run the app on the simulator. Tap on the text field and watch it
moving upwards to avoid being hidden from the keyboard. Tap the Done button
on the keyboard and watch the text field returning to its original position when the
keyboard hides.

How it works...
There are various types of keyboards in iOS. Since not all keys can be displayed at once due
to the restricted screen size, it is a good practice to set the appropriate type of keyboard
according to the text input we need the user to provide. In this project, we have set the
keyboard to the Email Address type. We have also customized the type of Return key by
setting it to Done in the following code:

this.emailField.KeyboardType = UIKeyboardType.EmailAddress;
this.emailField.ReturnKeyType = UIReturnKeyType.Done;

When the keyboard is displayed, it is the developer's responsibility to make sure it does not
obstruct the essential UI elements. In this case, since we provide the user with the ability
to enter some text input, we have to make sure that the text field is shown, so the user will
be able to see what is being typed. For this, we add two observers in the default notification
center using the following code:

// Add observers for the keyboard
this.kbdWillShow = UIKeyboard.Notifications.ObserveWillShow((s, e)
 => {

The notification center is iOS' mechanism for providing system-wide notifications. Normally, it
can be accessed through the NSNotificationCenter.DefaultCenter static property.
However, Xamarin.iOS provides some APIs that simplify things for us. In the example project
for this recipe, you will find the usage of both APIs. In this recipe, we are using Xamarin's APIs.

By calling UIKeyboard.Notifications.ObserveWillShow and passing a handler to it,
we subscribe to the notification center so that we get notified whenever the keyboard is about
to be displayed. This handler is of the EventHandler<UIKeyboardEventArgs> type, and
the UIKeyboardEventArgs parameter provides us with, among others, the frame of the
keyboard after it has been shown (as shown in the following code):

// Get the keyboard's bounds
RectangleF kbdBounds = e.FrameEnd;

Then, we store the text field's frame in a variable using the following code:

// Get the text field's frame
RectangleF textFrame =
 this.emailField.Frame;

Chapter 2

63

We reduce the frame's Y position using the following code value so that the text field will
move upwards:

// Change the y position of the text field frame
textFrame.Y -= kbdBounds.Height;

When the new frame is set to emailField (as shown in the following code), it will move
to the new position:

this.emailField.Frame = textFrame;

The second handler is needed for moving the text field back to its original position after the
keyboard is closed. It is almost the same as the first handler, except for two differences. The
UIKeyboard.Notifications.ObserveDidHide method is used. This method will trigger
our handler after the keyboard is hidden. In this handler, we just make sure that we readjust
the text field's position back to where it was.

The last few lines of code in the ViewDidLoad method set the ShouldReturn property of
the UITextField class. This property accepts a delegate of the UITextFieldCondition
type, as shown in the following code:

this.emailField.ShouldReturn = delegate(UITextField textField) {
 return textField.ResignFirstResponder ();
} ;

The handler we have added is called whenever the user taps the return key on the virtual
keyboard. Here, we call the ResignFirstResponder method of UITextField, which will
hide our keyboard.

There's more...
The two fields of the NSObject type in the class, which are assigned to the return values of
the UIKeyboard.Notifications methods we used, hold information about the observers
we added. For removing the two observers we have added here, add the following code:

NSNotificationCenter.DefaultCenter.RemoveObserver
 (this.kbdWillShow);
NSNotificationCenter.DefaultCenter.RemoveObserver
 (this.kbdDidHide);

Care must be taken when developing an app that uses the keyboard
and supports multiple interface orientations. If, for example, the
keyboard appears in portrait orientation and the user changes to
landscape orientation, both the keyboard's bounds and the text field's
frame will be different and must be adjusted accordingly.

User Interface – Views

64

See also
 f The Displaying and editing text recipe

 f The Adjusting the UI orientation recipe in Chapter 9, Interacting with Device Hardware

Displaying progress
In this recipe, we will discuss how to display the progress of known length.

Getting ready
In this recipe, we will talk about the UIProgressView control. This control provides a similar
functionality to the ProgressBar control in .NET. Create a new iPhone Single View Application
project in Xamarin Studio and name it ProgressApp.

How to do it...
The following are the steps for using the UIProgressView class. Note that in this recipe,
we will add all the controls programmatically without the use of Interface Builder.

1. Add the following using directives in the ProgressAppViewController class file:
using System.Drawing;
using System.Threading;
using System.Threading.Tasks;

2. Add the following fields in the class:
UILabel labelStatus;
UIButton buttonStartProgress;
UIProgressView progressView;
float incrementBy = 0f;

3. Enter the following code in the ViewDidLoad override:
// Initialize the label
this.labelStatus = new UILabel (new RectangleF (60f, 60f,
 200f, 50f));
this.labelStatus.AdjustsFontSizeToFitWidth = true;
// Initialize the button
this.buttonStartProgress = UIButton.FromType
 (UIButtonType.System);
this.buttonStartProgress.Frame = new RectangleF (60f, 400f,
 200f, 40f);

Chapter 2

65

this.buttonStartProgress.SetTitle ("Tap to start
 progress!", UIControlState.Normal);
this.buttonStartProgress.TouchUpInside += delegate {
 // Disable the button
 this.buttonStartProgress.Enabled = false;
 this.progressView.Progress = 0f;
 // Start a progress
 Task.Factory.StartNew(this.StartProgress);
} ;

// Initialize the progress view
this.progressView = new UIProgressView (new RectangleF
 (60f, 200f, 200f, 50f));

// Set the progress view's initial value
this.progressView.Progress = 0f;

// Set the progress increment value
// for 10 items
this.incrementBy = 1f / 10f;

this.View.AddSubview(this.labelStatus);
this.View.AddSubview(this.buttonStartProgress);
this.View.AddSubview(this.progressView);

4. Add the following method in the class:
private void StartProgress ()
{
 float currentProgress = 0f;
 while (currentProgress < 1f)
 {
 Thread.Sleep(1000);
 this.InvokeOnMainThread(delegate {
 // Advance the progress
 this.progressView.Progress += this.incrementBy;
 currentProgress = this.progressView.Progress;
 // Set the label text
 this.labelStatus.Text = string.Format("Current value:
 { 0}", Math.Round((double)this.
 progressView.Progress, 2));
 if (currentProgress >= 1f)
 {
 this.labelStatus.Text = "Progress completed!";
 this.buttonStartProgress.Enabled = true;
 }//end if

User Interface – Views

66

 });
 }//end while
}

5. Compile and run the app on the simulator. Tap on the button and watch the
progress bar fill.

How it works...
The current value of UIProgressView is represented by its Progress property. Its
acceptable value range is always from 0 to 1. So, when we initialize it, we set it to 0 to
make sure that the bar is not filled at all. This can be done using the following code:

this.progressView.Progress = 0f;

Since UIProgressView has a specific range, we need to assign the value we want it to be
incremented by, depending on the number of items we need to process (in this case, 10)
using the following code:

this.incrementBy = 1f / 10f;

In the button's TouchUpInside handler, we disable the button and start our progress
through Task from System.Threading.Tasks, as shown in the following code:

this.buttonStartProgress.TouchUpInside += delegate {
 // Disable the button
 this.buttonStartProgress.Enabled = false;
 this.progressView.Progress = 0;
 // Start a progress
 Task.Factory.StartNew(this.StartProgress);
};

In the StartProgress() method, we start a loop that will process the work, which needs
to be done. Since the work executes on a separate thread, when we want to make changes
to the controls, it must be done on the main UI thread by calling the InvokeOnMainThread
method, which accepts a parameter of the NSAction type. An NSAction type parameter
can accept anonymous methods as well, as seen in the following code:

this.InvokeOnMainThread(delegate {
 // Advance the progress
 this.progressView.Progress += this.incrementBy;
 currentProgress = this.progressView.Progress;
 // Set the label text
 this.labelStatus.Text = string.Format("Current value: { 0}",
 Math.Round((double)this.progressView.Progress, 2));
 if (currentProgress >= 1f)
 {

Chapter 2

67

 this.labelStatus.Text = "Progress completed!";
 this.buttonStartProgress.Enabled = true;
 }//end if
});

There's more...
The progress view supports two styles. UIProgressViewStyle.Default (the one that was
used in this recipe) and UIProgressViewStyle.Bar. There is absolutely no functionality
difference between the two styles, except for appearance. To change the style of the progress
view, set its Style property to one of the previously mentioned values.

UIProgressView height
Setting the height of the progress view has no effect, as it is constant for the control. For
creating a variable-height progress bar, the UIProgressView class must be subclassed.

See also
 f The Receiving user input with buttons recipe

Displaying content larger than the screen
In this recipe, we will learn how to display content that extends beyond the screen's bounds.

Getting ready
In this recipe, we will discuss the UIScrollView control. Create a new iPhone Single View
Application project and name it ScrollApp.

How to do it...
The following are the steps to create the project:

1. Open the ScrollAppViewController.xib file in Interface Builder.

2. Add a UIScrollView object on its view and connect it to an outlet. Save
the document.

User Interface – Views

68

3. Back in Xamarin Studio, add the following code in the ScrollAppViewController
class:
// Image view
UIImageView imgView;
public override void ViewDidLoad()
{
 base.ViewDidLoad();

 this.imgView = new UIImageView (UIImage.FromFile
 ("Kastoria.jpg"));
 this.scrollView.ContentSize = this.imgView.Image.Size;
 this.scrollView.ContentOffset = new PointF (200f, 50f);
 this.scrollView.PagingEnabled = true;
 this.scrollView.MinimumZoomScale = 0.25f;
 this.scrollView.MaximumZoomScale = 2f;
 this.scrollView.ViewForZoomingInScrollView =
 delegate(UIScrollView scroll) {
 return this.imgView;
 } ;
 this.scrollView.ZoomScale = 1f;

 this.scrollView.IndicatorStyle =
 UIScrollViewIndicatorStyle.White;
 this.scrollView.AddSubview (this.imgView);

}

4. Finally, add an image to the project and set its Build Action to BundleResource. An
image larger than the screen size of 640 x 1136 pixels of iPhone 5S is preferable.

5. Compile and run the app on the simulator. Tap and drag the image to display
different portions. By pressing Alt + left-mouse click, you can simulate the pinch
zooming function.

How it works...
The UIScrollView is capable of managing content that expands beyond the screen size.
The size of the content that the scroll view will display must be set in its ContentSize
property, as shown in the following code:

this.scrollView.ContentSize = this.imgView.Image.Size;

The ContentOffset property shown in the following code defines the position of the content
inside the scroll view's bounds:

this.scrollView.ContentOffset = new PointF (200f, 50f);

Chapter 2

69

What this means is that the image's (x=200, y=50) point will be displayed at the origin (x=0,
y=0) of UIScrollView. To provide a zooming functionality for the content, we first set the
MinimumZoomScale and MaximumZoomScale properties, as shown in the following code:

this.scrollView.MinimumZoomScale = 0.25f;
this.scrollView.MaximumZoomScale = 2f;

The preceding code set the minimum and maximum zoom scale for the content. A value of 2
means that the content will be displayed double in size, while a value of 0.5 means that the
content will be displayed at half its size.

For the actual zooming operation, we need to set the ViewForZoomingInScrollView
property, as shown in the following code:

this.scrollView.ViewForZoomingInScrollView = delegate(UIScrollView
 scroll) {
 return this.imgView;
};

The ViewForZoomingInScrollView property accepts a delegate variable of the
UIScrollViewGetZoomView type and returns UIView. Here, the image view that we
created is returned, but another image view of a higher resolution can be used instead to
provide better image quality when zooming. After the delegate variable is assigned, the
initial zoom scale is set using the following code:

this.scrollView.ZoomScale = 1f;

Finally, the scroll view's indicator style is set, as shown in the following code:

this.scrollView.IndicatorStyle = UIScrollViewIndicatorStyle.White;

Indicators are the two lines that appear when scrolling or zooming: one vertical line on the
right side and one horizontal line on the bottom side of the scroll view. These lines inform the
user of the position of the content.

There's more...
To provide a more pleasing scrolling and zooming effect to the user, the UIScrollView
exposes the Bounce property. By default, it is set to true, but we have the option to disable
it by setting it to false. Bouncing the content gives immediate feedback to the user that
the bounds of the content have been reached, in either a horizontal or vertical direction.
Furthermore, the AlwaysBounceHorizontal and AlwaysBounceVertical properties
can be set individually. Setting one or both of these properties will make the scroll view
bounce the content in the respective direction always, even if the content is equal to or
smaller than the scroll view's bounds. Hence, no actual scrolling is needed.

User Interface – Views

70

UIScrollView events
The UIScrollView class exposes some of the following very useful events:

 f Scrolled: This occurs while the content is being scrolled

 f DecelerationStarted: This occurs when the user has started scrolling
the content

 f DecelerationEnded: This occurs when the user has finished scrolling, and the
content has stopped moving

If a handler has been assigned to the Scrolled event, it will be
triggered whenever the ContentOffset property is set.

See also
 f The Displaying images recipe

 f The Displaying and editing text recipe

 f The Navigating through the content divided into pages recipe

Navigating through the content divided
into pages

In this recipe, we will learn how to use the UIPageControl class to provide page navigation.

Getting ready
The UIPageControl provides a simple visual representation of multiple pages or screens
in an iOS app, which is indicated by dots. The following screenshot shows an example of the
page control indicating that content is divided into three pages:

The dot that corresponds to the current page is highlighted. It is usually combined with
UIScrollView. Create a new iPhone Single View Application project in Xamarin Studio
and name it PageNavApp. Add three image files in the project and set their Build Action
to BundleResource.

Chapter 2

71

How to do it...
The following are the steps to create this project:

1. Open the PageNavAppViewController.xib file in Interface Builder.

2. Add UIPageControl to the bottom of the view and UIScrollView above it. Resize
the scroll view to take up all the remaining space of the view and save the document.

3. Back in Xamarin Studio, enter the following code in the
PageNavAppViewController class:
UIImageView page1;
UIImageView page2;
UIImageView page3;
public override void ViewDidLoad()
{
 base.ViewDidLoad();
 this.scrollView.DecelerationEnded +=
 this.ScrollView_DecelerationEnded;
 this.pageControl.ValueChanged +=
 this.PageControl_ValueChanged;
 this.scrollView.Scrolled += delegate {
 Console.WriteLine ("Scrolled!");
 } ;

 this.scrollView.PagingEnabled = true;

 RectangleF pageFrame =
 this.scrollView.Frame;
 this.scrollView.ContentSize = new SizeF (pageFrame.Width
 * 3, pageFrame.Height);

 this.page1 = new UIImageView (pageFrame);
 this.page1.ContentMode = UIViewContentMode.ScaleAspectFit;
 this.page1.Image = UIImage.FromFile ("Parga01.jpg");

 pageFrame.X += this.scrollView.Frame.Width;
 this.page2 = new UIImageView (pageFrame);
 this.page2.ContentMode =
 UIViewContentMode.ScaleAspectFit;
 this.page2.Image = UIImage.FromFile ("Parga02.jpg");

 pageFrame.X += this.scrollView.Frame.Width;
 this.page3 = new UIImageView (pageFrame);
 this.page3.ContentMode =
 UIViewContentMode.ScaleAspectFit;
 this.page3.Image = UIImage.FromFile ("Parga03.jpg");

User Interface – Views

72

 this.scrollView.AddSubview (this.page1);
 this.scrollView.AddSubview (this.page2);
 this.scrollView.AddSubview (this.page3);

}

4. Add the following methods in the class:
private void scrollView_DecelerationEnded (object sender,
 EventArgs e)
{
 float x1 = this.page1.Frame.X;
 float x2 = this.page2.Frame.X;

 float x = this.scrollView.ContentOffset.X;

 if (x == x1)
 {
 this.pageControl.CurrentPage = 0;
 } else if (x == x2)
 {
 this.pageControl.CurrentPage = 1;
 } else
 {
 this.pageControl.CurrentPage = 2;

 }

}

private void pageControl_ValueChanged (object sender,
 EventArgs e)
{

 PointF contentOffset =
 this.scrollView.ContentOffset;

 switch (this.pageControl.CurrentPage)
 {

 case 0:
 contentOffset.X = this.page1.Frame.X;
 this.scrollView.SetContentOffset (contentOffset, true);
 break;

 case 1:
 contentOffset.X = this.page2.Frame.X;
 this.scrollView.SetContentOffset (contentOffset, true);
 break;

Chapter 2

73

 case 2:
 contentOffset.X = this.page3.Frame.X;
 this.scrollView.SetContentOffset (contentOffset, true);
 break;

 default:
 // do nothing
 break;
 }

}

5. Compile and run the app on the simulator. Scroll sideways on the scroll view to
change the page. Likewise, tap or scroll on the page control to change the page.

How it works...
The first thing that we need to do is set the UIScrollView.PagingEnabled property to
true, as shown in the following code:

this.scrollView.PagingEnabled = true;

This property instructs the scroll view to stop scrolling at multiples of the scroll view's bounds,
hence providing paging functionality. After this, the image views that will be displayed on
different pages are prepared. Here, we take care of adjusting each image view's frame so
that they will be positioned next to each other, using the following code:

this.page1 = new UIImageView (pageFrame);

// Frame for 2nd page
pageFrame.X += this.scrollView.Frame.Width;

// Frame for 3rd page
pageFrame.X += this.scrollView.Frame.Width;

We have attached handlers for two events. The first one is the UIScrollView.
DecelerationEnded event, which will adjust the page control's current page when the user
scrolls the scroll view. The current page is determined by the scroll view's ContentOffset
property, as shown in the following code:

float x = this.scrollView.ContentOffset.X;
if (x == x1) {
 // First page
 this.pageControl.CurrentPage = 0;
// etc.

User Interface – Views

74

The second event to which we attach a handler is the UIPageControl.ValueChanged
event. In this handler, we make sure that the content is scrolled when the user taps or
drags on the page control. The scrolling action is performed when the ContentOffset
property is set to the desired image view's Frame.X property using the UIScrollView.
SetContentOffset(PointF, bool) method, as shown in the following code:

case 0:
 // Scroll to first page
 contentOffset.X = this.page1.Frame.X;
 this.scrollView.SetContentOffset (contentOffset, true);
 break;
// etc.

The second parameter of the SetContentOffset method instructs the scroll view to
animate while scrolling.

There's more...
In this recipe, different UIImageView objects have been used. Any kind of UIView object
can be used according to the type of content we want to display.

Proper usage of UIPageControl
Users expect that scrolling to other pages will occur when tapping or dragging on the page
control. It is not a good practice to use it for displaying page indexing only.

See also
 f The Displaying images recipe

 f The Displaying content larger than the screen recipe

Displaying alerts
The UIAlertView class provides us with the ability to display alert messages to the user. In
this recipe, we will discuss how to use this class and respond to user input.

Getting ready
For this recipe, create an iPhone Single View Application project in Xamarin Studio and name
it AlertViewApp. Open the AlertViewAppViewController.xib file in Xcode and add a
button on its view. Don't forget to connect it to an outlet.

Chapter 2

75

How to do it…
Perform the following steps to implement the UIAlertView in the app:

1. In Xamarin Studio, open the AlertViewAppViewController.cs file and add the
following method:
private void ShowAlert(string title, string message)
{
 // Create the alert
 UIAlertView alertView = new
 UIAlertView();
 alertView.Title = title;
 alertView.Message = message;
 // Add buttons
 alertView.AddButton("OK");
 alertView.AddButton("Cancel");
 // Add event handler
 alertView.Dismissed += (sender, e) => {
 if (e.ButtonIndex == 0)
 {
 this.btnShowAlert.SetTitle("OK!",
 UIControlState.Normal);
 } else
 {
 this.btnShowAlert.SetTitle("Cancelled!",
 UIControlState.Normal);
 }//end if else
 };
 // Display it
 alertView.Show();
}//end void ShowAlert

2. In the ViewDidLoad method, add the following line of code:
this.btnShowAlert.TouchUpInside += (sender, e) => this.
ShowAlert("Alert Message", "Tap OK or Cancel");

3. Compile and run the app in the simulator.

User Interface – Views

76

4. Tap the button on the view. The alert should be displayed, as shown in the
following screenshot:

5. Tap either OK or Cancel. The Show alert button's title will change according to the
alert button that was tapped.

How it works...
The UIAlertView is a modal control. This means that once it is presented, the user is
required to take an action for it to disappear. After creating the instance, we assign the
title and the message that will be displayed through the Title and Message properties,
respectively, as shown in the following code:

alertView.Title = title;
alertView.Message = message;

Chapter 2

77

We then add the buttons we want to display through the AddButton method, which accepts
a string parameter for the button's title, as shown in the following code:

// Add buttons
alertView.AddButton("OK");
alertView.AddButton("Cancel");

We can practically add as many buttons as we want; however, it would be good to avoid adding
more than three or four buttons. If there is a need for more options, it would be best to show
a new view to the user with these options, instead of using an alert view.

After adding the buttons, we need an event handler (as shown in the following code) that will
inform us of the user's action on the alert view:

// Add event handler
alertView.Dismissed += (sender, e) => {
 if (e.ButtonIndex == 0)
 {
 this.btnShowAlert.SetTitle("OK!", UIControlState.Normal);
 } else
 {
 this.btnShowAlert.SetTitle("Cancelled!",
 UIControlState.Normal);
 }
};

For this functionality, we use the Dismissed event that is triggered whenever the alert
view is hidden. This occurs when any of its buttons are tapped. In the event handler, we
can determine which button was tapped through the passed ButtonIndex property of
UIButtonEventArgs. It is pretty clear which index corresponds to which button. The first
button we added will have an index of 0, the second button will have an
index of 1, and so on.

Finally, to display the alert view, we call its Show method using the following code:

// Display it
alertView.Show();

There's more...
UIAlertView also supports text input. We can implement it by setting its AlertViewStyle
property before displaying it. The AlertViewStyle property accepts the following values:

 f UIAlertViewStyle.Default: This alert view will not contain text input

 f UIAlertViewStyle.SecureTextInput: This alert view will contain a text field for
password input, which obscures the typed text

User Interface – Views

78

 f UIAlertViewStyle.PlainTextInput: In this, only one simple text field will be
included

 f UIAlertViewStyle.LoginAndPasswordInput: Using this property, two text
fields will be displayed, one plain and one secure, for entering the login credentials

To access any of the mentioned text fields, we call the GetTextField method, passing the
appropriate index, as shown in the following code:

// Get the text that was entered in the second text field
string password = alertView.GetTextField(1).Text;

Of course, we can also modify the text fields themselves. For example, if we want to disable
obscuring the characters of the password text field, we can add the following line of code:

alertView.GetTextField(1).SecureTextEntry = false;

See also
 f The Receiving user input with buttons recipe

 f The Displaying and editing text recipe

Creating a custom view
In this recipe, we will learn how to override the UIView class and/or classes that derive from
it to create custom views.

Getting ready
So far, we have discussed many of the available views to create iOS apps. There will be many
cases, however, we will need to implement our own custom views. In this recipe, we will see
how to create a custom view and use it.

Creating custom views is very useful when we want to capture touches
or implement other custom behavior such as drawing.

Create a new iPhone Single View Application project in Xamarin Studio and name it
CustomViewApp.

Chapter 2

79

How to do it...
The following are the steps to complete this recipe:

1. Add a new C# class file in the project and name it MyView.

2. Implement it with the following code:
using System;
using MonoTouch.UIKit;
using MonoTouch.Foundation;
using System.Drawing;

namespace CustomViewApp
{
 [Register("MyView")]
 public class MyView : UIView
 {

 private UILabel labelStatus;

 public MyView (IntPtr handle) : base(handle)
 {
 this.Initialize ();
 }

 public MyView (RectangleF frame) :
 base(frame)
 {
 this.Initialize ();
 }

 private void Initialize ()
 {

 this.BackgroundColor = UIColor.LightGray;

 this.labelStatus = new
 UILabel (new RectangleF (0f, 400f,
 this.Frame.Width, 60f));
 this.labelStatus.TextAlignment =
 UITextAlignment.Center;
 this.labelStatus.BackgroundColor = UIColor.DarkGray;
 this.AddSubview (this.labelStatus);

 }

User Interface – Views

80

 public override void
 TouchesMoved (NSSet touches, UIEventevtUIEvent evt)
 {
 base.TouchesMoved (touches, evt);

 UITouch touch = (UITouch)touches.AnyObject;

 PointF touchLocation =
 touch.LocationInView (this);

 this.labelStatus.Text = String.Format ("X: {0} - Y:
 {1}", touchLocation.X, touchLocation.Y);

 }
 }
}

3. Open the CustomViewAppViewController.xib file in Interface Builder and add
a UIView object on the main view.

4. Set its Class field in the Identity Inspector to MyView.

5. Save the document.

6. Compile and run the app on the simulator. Tap and drag the view and watch the touch
coordinates being displayed in the label at the bottom of the screen.

How it works...
The first thing to note when creating custom views is to derive them from the UIView class
and decorate them with the RegisterAttribute, as shown in the following code:

[Register("MyView")]
public class MyView : UIView

The RegisterAttribute basically exposes our class to the Objective-C world. Note that
the name we pass as its parameter must be the same name we enter in the Class field in
the Identity Inspector. It is important to create the following constructor:

public MyView (IntPtr handle) : base(handle) {}

This constructor overrides the base class' UIView(IntPtr). This constructor is always being
called when a view is initialized through the native code. If we do not override it, an exception
will occur upon the initialization of the object. The other constructor that is used in this example
is just provided as guidance on what might be used if the view was initialized programmatically:

public MyView (RectangleF frame) : base(frame) {}

Both these constructors call the Initialize() method that performs the initialization we
need, such as creating the label that will be used and setting the background colors.

Chapter 2

81

Then, the TouchesMoved method is overridden. This is the method that is executed when the
user drags a finger on the view. Inside the method, we retrieve the UITouch object from the
method's NSSet parameter, using the following code:

UITouch touch = (UITouch)touches.AnyObject;

An NSSet object is a collection of data that are not in particular
order. It is similar to an array. Its AnyObject parameter returns
an object from the collection.

The UITouch object contains information about user touches. We retrieve the touch's current
location from the UITouch object, using the following code:

PointF touchLocation = touch.LocationInView
 (this);

The UITouch object's LocationInView method accepts a parameter of the UIView type,
which declares in which view's coordinate system will the location be calculated. In this case,
we are interested in the coordinates of MyView.

There's more...
If we would like to initialize the custom view we created programmatically, we would enter the
following code:

MyView myView = new MyView(new RectangleF(0f, 0f,
 320f, 480f));

See also
 f The Adding and customizing views recipe

 f The Loading a view with a view controller recipe in Chapter 3, User Interface – View
Controllers

Styling views
iOS provides a set of APIs through the UIAppearance protocol that allows us to adjust the
appearance of the views once, without having to explicitly modify the styling properties on
every instance of each view. This is particularly useful if, say, we want a specific view to have
the same appearance throughout the app.

Apart from setting the styling properties of a view globally, we can also define the
appearance of this view to be different under certain circumstances. Read on to find
out how to accomplish this.

User Interface – Views

82

Getting ready
We will work on the existing CustomViewApp project we created in the preceding recipe.
Open the project in Xamarin Studio.

The downloadable code contains a separate project for this recipe. It
is named CustomViewApp2.

How to do it…
Perform the following steps to complete this recipe:

1. Open the CustomViewAppViewController.xib file in Xcode.

2. Resize the MyView object, which we created earlier, to make some room at the top.

3. Add a UILabel above the MyView object. Make sure that the label is added on the
main view and not on MyView.

4. Connect both objects to their respective outlets.

5. Back in Xamarin Studio, add the following code in the ViewDidLoad method of
CustomViewAppViewController:
UILabel.Appearance.BackgroundColor = UIColor.Blue;
var labelStyle =
 UILabel.AppearanceWhenContainedIn(typeof(MyView));
labelStyle.BackgroundColor = UIColor.Green;

6. Compile and run the app on the simulator. The output should be similar to the one
shown in the following screenshot:

Chapter 2

83

How it works…
The UIAppearance class is basically a proxy to the specific properties of each control. In
Xamarin.iOS, we can access each control's proxy through its static Appearance property.
The changes we make to this object's properties will reflect on the instances of the object
throughout the app. In this case, we set the BackgroundColor attribute of all UILabel
instances to blue using the following code:

UILabel.Appearance.BackgroundColor = UIColor.Blue;

However, we can provide different behavior for specific instances of UILabel. For example,
we want the labels that are contained in MyView objects to have a green background. We
accomplish this by calling the static AppearanceWhenContainedIn method, as shown in
the following code:

var labelStyle =
 UILabel.AppearanceWhenContainedIn(typeof(MyView));

We pass the types of objects for which we want to set the specific style. In this case, passing
typeof(MyView) instructs the appearance proxy to make sure that we are referring to
objects that are only contained in MyView objects. We then set the value we want to the
object that was returned from this method, as shown in the following code:

labelStyle.BackgroundColor = UIColor.Green;

There's more…
Through the AppearanceWhenContainedIn method, we can target a more specific set
of styling. For example, consider the following line of code:

var labelStyle =
 UILabel.AppearanceWhenContainedIn(typeof(AnotherView),
 typeof(MyView));

This would return a styling object that acts as a proxy for all instances of UILabel,
which are part of MyView, only when MyView is included in AnotherView objects.

Limitations of UIAppearance
The UIAppearance protocol has some limitations, which are as follows:

 f Only specific properties can be set. For example, we cannot set the Frame of a view
globally. Each set of properties that can be changed for a control can be accessed
through its appearance proxy. If a control property is not in the appearance proxy,
we cannot modify it for all instances of that particular control.

User Interface – Views

84

 f For modifying the appearance of a custom view (in this case, MyView), using the
following line of code will yield an unwanted result:
MyView.Appearance.BackgroundColor = UIColor.Yellow;

That is, all instances of UIView will have a yellow background. This is because C#
cannot override the static methods in derived classes. To overcome this issue, we use
the GetAppearance<T> static method on the derived class instead, as shown in the
following code:

MyView.GetAppearance<MyView>().BackgroundColor = UIColor.Yellow;
// We can also call GetAppearance on the base class:
//UIView.GetAppearance<MyView>().BackgroundColor = UIColor.Yellow;

See also
 f The Creating a custom view recipe

 f The Creating a custom view controller recipe in Chapter 3, User Interface – View
Controllers

3
User Interface – View

Controllers

In this chapter, we will cover the following recipes:

 f Loading a view with a view controller

 f Navigating through different view controllers

 f Providing controllers in tabs

 f Modal view controllers

 f Creating a custom view controller

 f Using view controllers efficiently

 f iPad view controllers

 f UI flow design with storyboards

 f Unwinding in storyboards

Introduction
So far, we have discussed views and how to use them. In most cases of real world
app scenarios, views alone are not enough. Apple provides another base class, the
UIViewController class, which is responsible for managing views. A view controller can
respond to device notifications, such as when the device rotates, or can provide different ways
to display and dismiss multiple views or even other view controllers. There are a number of view
controllers available for us to use. In this chapter, we will discuss the most important ones.

User Interface – View Controllers

86

These view controllers are as follows:

 f UIViewController: This is the base class of all view controllers.

 f UINavigationController: This is the view controller that provides various ways of
navigating through different view controllers.

 f UITabBarController: This is a view controller that displays multiple view controllers in
a tab-like interface.

 f iPad-specific view controllers: These are the view controllers that only apply to the
iPad device.

Furthermore, we will learn how to create our own custom view controllers, and we will create
an app whose user interface will be created with storyboard files.

Loading a view with a view controller
In this recipe, we will learn how to use the UIViewController class to manage views.

Getting ready
Create a new iPhone Empty Project in Xamarin Studio and name it ViewControllerApp.

How to do it...
Perform the following steps to load a view with a view controller:

1. Add a new file to the project.

2. Right-click on the project in the Solution pad and go to Add | New File….

3. In the dialog that will appear, select iPhone View Controller from the iOS section.
Name it MainViewController and click on the New button. Xamarin Studio will
create a new XIB file and will automatically open the MainViewController.cs
source file. This file contains a class that overrides the UIViewController class,
and we can implement any code related to our view controller in it.

4. Open the MainViewController.xib file in Interface Builder.

5. Add UILabel on the view.

6. Create and connect an outlet for it inside the MainViewController class and
name it myLabel.

7. Enter the text View in controller! in the label.

8. Save the XIB document.

Chapter 3

87

9. In Xamarin Studio, enter the following code in the FinishedLaunching method of
the AppDelegate class, right after the window initialization line:
MainViewController mainController =
 new MainViewController ();
window.RootViewController = mainController;

10. Compile and run the app on the simulator.

How it works...
When we add a new iPhone View Controller file in a project, in this case
MainViewController, Xamarin Studio basically creates and adds the following three files:

 f MainViewController.xib: This is the XIB file that contains the controller.

 f MainViewController.cs: This is the C# source file that implements the class of
our controller.

 f MainViewController.designer.cs: This is the autogenerated source file that
reflects the changes we make to the controller in Interface Builder.

Notice that we do not need to add an outlet for the view as this is taken care of by Xamarin
Studio. We initialize the controller through its class, as follows:

MainViewController mainController = new MainViewController ();

Then, we assign the controller to the window.RootViewController property, as follows:

window.RootViewController = mainController.

Our view controller is now the root view controller of our app's window, and it is the first one
that will be shown when the app starts.

There's more...
The project we have just created only shows how we can add a controller with a view.
Notice that we created the outlet for the label inside the MainViewController class,
which acts as the file's owner object in the XIB file. To provide some functionality for the
MainViewController class, add the following method in the MainViewController class
in the MainViewController.cs file:

public override void ViewDidLoad ()
{
 this.myLabel.Text = "View loaded!";
}

This method overrides the UIViewController.ViewDidLoad() method, which is
executed after the controller has loaded its view.

User Interface – View Controllers

88

UIViewController methods to override
The UIViewController class contains a number of methods that allow us to manage the
view controller's life cycle. These methods are called by the system on the view controller, and
we can override them to add our own implementation. Some of these methods are as follows:

 f ViewWillAppear: This method is called when the controller's view is about
to appear.

 f ViewDidAppear: This method is called when the controller's view has
been displayed.

 f ViewWillDisappear: This method is called when the controller's view is
about to disappear, for example, when another controller will be displayed.

 f ViewDidDisappear: This method is called when the view has disappeared.

See also
 f The Navigating through different view controllers recipe

 f The Creating an iOS project with Xamarin Studio and Accessing the UI with Outlets
recipes from Chapter 1, Development Tools

Navigating through different view
controllers

In this recipe, we will learn how to use the UINavigationController class to navigate
among multiple view controllers.

Getting ready
The UINavigationController class is a controller that provides hierarchical navigation
functionality with multiple view controllers. Create a new iPhone Empty Project in Xamarin
Studio and name it NavigationControllerApp.

How to do it...
Perform the following steps to create navigation among multiple view controllers:

1. Add three new iPhone view controllers in the project and name them
MainController, ViewController1, and ViewController2.

Chapter 3

89

2. Open the AppDelegate.cs file and add the following code in the
FinishedLaunching method:
MainController mainController = new MainController();
mainController.Title = "Main View";
UINavigationController navController =
 new UINavigationController(mainController);
window.RootViewController = navController;

3. Open MainController.xib in Interface Builder and add two buttons with their
corresponding outlets. Set their titles to First View and Second View, respectively.

4. Add the following code in the ViewDidLoad method of the MainController class:
this.buttonFirstView.TouchUpInside += (sender, e) => {

 ViewController1 v1 = new ViewController1();
 v1.Title = "First View";
 this.NavigationController.PushViewController(v1, true);

 } ;
 this.buttonSecondView.TouchUpInside += (sender, e) => {

 ViewController2 v2 = new ViewController2();
 v2.Title = "Second View";
 this.NavigationController.PushViewController(v2, true);

 };

5. Add a button in each of the ViewController1 and ViewController2 controllers
in Interface Builder with the title Pop to root. Then, add the following code in both
of these controllers' ViewDidLoad methods:
this.buttonPop.TouchUpInside += (sender, e) => {
 this.NavigationController.PopToRootViewController(true);
};

6. Run the app on the simulator.

7. Click on the buttons and see how the user interface navigates from one controller
to another.

User Interface – View Controllers

90

How it works...
The UINavigationController class preserves a stack of controllers. The
UIViewController class has a property named NavigationController. In normal
situations, this property returns null. However, if the controller is pushed into a navigation
controller's stack, it returns the instance of the navigation controller. In this case, all of our
controllers' NavigationController property will return the instance of our navigation
controller. So this way, at any point in the hierarchy of controllers, access to the navigation
controller is provided. To push a view controller to the navigation stack, we call the
UINavigationController.PushViewController(UIViewController, bool)
method, using the following line of code:

this.NavigationController.PushViewController (v1, true);

Notice that the MainController class is the topmost or root controller in the navigation
stack. A navigation controller must have at least one view controller that will act as its root
controller. We can provide it upon initialization of the navigation controller, as follows:

UINavigationController navController =
 new UINavigationController(mainController);

To return to the root controller, we call the PopToRootViewController(bool) method
inside the current controller, as follows:

this.NavigationController.PopToRootViewController (true);

The boolean parameters in both methods are used for animating the transition between the
view controllers. Setting it to false will result in the controllers instantly snapping onto the
screen, which in most cases does not provide a very good user experience.

There's more...
In this simple example, we provided backward navigation to the root controller with buttons.
Notice that there is an arrow-shaped button at the top bar, as shown in the following screenshot:

This top bar is called the navigation bar and is of the UINavigationBar type. The arrow-
shaped button is called the back button and is of the UIBarButtonItem type. The back
button, when it exists, always navigates to the previous controller in the navigation stack. If
the previous controller in the stack has its Title property set, the back button will display
that title. If it does not have a title, the back button will be titled Back.

Chapter 3

91

Managing navigation bar buttons
To change, add, and hide the buttons of the navigation bar, we can use the following methods
of our currently displayed view controller's NavigationItem property:

 f SetLeftBarButtonItem: This method adds a custom button on the left-hand side
of the navigation bar, replacing the default back button.

 f SetRightBarButtonItem: This method adds a custom button on the right-hand
side of the navigation bar.

 f SetHidesBackButton: This method sets the visibility of the default back button.

To remove or hide the custom buttons on the left or right-hand side of the navigation bar, call
the appropriate methods passing null instead of a UIBarButtonItem object.

See also
 f The Modal view controllers and Using view controllers efficiently recipes

 f The Animating views recipe in Chapter 11, Graphics and Animation

Providing controllers in tabs
In this recipe, we will learn how to display multiple view controllers in a tabbed interface.

Getting ready
The UITabBarController class provides a way to display different view controllers on the
same hierarchy level divided into a tab-like interface. Create a new iPhone Empty Project in
Xamarin Studio and name it TabControllerApp.

How to do it…
Perform the following steps to provide controllers in tabs:

1. Add two iPhone view controllers to the project. Name them MainController and
SettingsController.

2. Add the following code to the ViewDidLoad method of MainController:
this.View.BackgroundColor = UIColor.Blue;

3. Add the following code to the ViewDidLoad method of SettingsController:
this.View.BackgroundColor = UIColor.Yellow;

User Interface – View Controllers

92

4. Add the following code to the FinishedLaunching method of the
AppDelegate class:
MainController mainController = new MainController();
SettingsController settingsController = new SettingsController();
UITabBarController tabController = new UITabBarController();
tabController.SetViewControllers(new UIViewController[] {
 mainController,
 settingsController
}, true);
tabController.TabBar.Items[0].Title = "Main";
tabController.TabBar.Items[1].Title = "Settings";
window.RootViewController = tabController;

5. Run the app on the simulator. Click on each of the tabs at the bottom. The interface
should be similar to the following screenshot when MainController is selected:

Chapter 3

93

How it works...
The UITabBarController class displays one tab for each of the controllers it manages.
That tab is of the UITabBarItem type that can accept both text and images. We set the
controllers it will display through its SetViewControllers property, as follows:

tabController.SetViewControllers(new UIViewController[] {
 mainController,
 settingsController
}, true);

After we have added the controllers, we can access its tab bar items through the TabBar
property. In this case, we set the tab's Title attribute:

tabController.TabBar.Items[0].Title = "Main";

Each UIViewController contains a TabController property. Similar to the
NavigationController property, when the controller is part of a tab controller, the
property will return the instance of that tab controller.

There's more...
The controller can accept as many controllers as we want but if we add six or more, four will
be displayed with their tabs, while a fifth predefined More tab will represent all the remaining
controllers. This is to keep the interface easily accessible to the user by keeping the tabs to a
specific size suitable for human fingers. When we add more than six controllers in a tab bar
controller interface, by default, the object provides an Edit button on top in the More tab that
allows the user to rearrange the order of controllers. If we want to exclude some controllers from
this functionality, we have to remove it from the CustomizableViewControllers array.

Useful UITabBarController properties
Some more useful properties of the UITabBarController class are as follows:

 f ViewControllers: This is an array containing all the controllers that the tab
controller holds.

 f SelectedIndex: This is the zero-based index of the selected tab. Setting this
property to the desired index programmatically selects the corresponding controller.

 f SelectedViewController: This is the currently selected controller.

Determining tab selection
To determine when the user has selected a tab on a tab controller, we can subscribe to its
ViewControllerSelected event:

tabController.ViewControllerSelected += (sender, e) => {
 // Do something with e.ViewController.
};

User Interface – View Controllers

94

See also
 f The Using view controllers efficiently recipe

Modal view controllers
In this recipe, we will discuss how to display view controllers modally.

Getting ready
A modal view controller is any controller that is presented above other views or controllers.
The concept is similar to displaying a Windows Form as a dialog, which takes control of the
interface and does not allow access to other windows of the application unless it is dismissed.
Create a new iPhone Empty Project in Xamarin Studio and name it ModalControllerApp.

How to do it…
Perform the following steps:

1. Add two view controllers to the project and name them MainController and
ModalController.

2. Open the MainController.xib file in Interface Builder and add a button on its
view with the title Present. Create and connect the appropriate outlet for the button.

3. In the MainController class, add the following code in the ViewDidLoad method:
this.buttonPresent.TouchUpInside += async (s, e) => {
 ModalController modalController = new ModalController();
 await this.PresentViewControllerAsync(modalController, true);
};

4. Open the ModalController.xib file. Add a button on its view with the title
Dismiss and create the appropriate outlet for it.

5. Set its view background color to something other than white. Save the document and
enter the following code in the ViewDidLoad method of ModalController:

 this.buttonDismiss.TouchUpInside += async (s, e) => {
 await this.DismissViewControllerAsync (true);
 };

6. Finally, add code to display the main controller in the FinishedLaunching method:
MainController mainController = new MainController();
window.RootViewController = mainController;

Chapter 3

95

7. Compile and run the app on the simulator. Click on the Present button and watch
the modal controller present itself on top of the main controller. Click on the Dismiss
button to hide it.

How it works...
Each controller object has two methods that handle presenting and dismissing controllers
modally. In our example, we call the PresentViewControllerAsync(UIViewController,
bool) method to present a controller, as follows:

this.buttonPresent.TouchUpInside += async (s, e) => {
 ModalController modal = new ModalController ();
 await this.PresentViewControllerAsync (modal, true);
};

Its first parameter represents the controller we want to display modally, and the second
parameter determines if we want the presentation to be animated. To dismiss the controller,
we call its DismissViewControllerAsync(bool) method, as follows:

await this.DismissViewControllerAsync (true);

It accepts only one parameter that toggles the animation for the dismissal.

In this example, we use async/await and the methods with the Async suffix to present and
dismiss a controller modally. These methods are included in Xamarin.iOS for convenience.
We can also use PresentViewController and DismissViewController; both accept
another parameter of the NSAction type that represents the callback of the completion.
However, no need to get into all that "trouble", right?

There's more...
We can define the transition style for a modal view controller presentation with the controller's
ModalTransitionStyle property. Enter the following line of code before presenting the
modal controller:

modalController.ModalTransitionStyle =
 UIModalTransitionStyle.FlipHorizontal;

The main controller will flip to present the modal controller, giving the impression it is attached
behind it.

Accessing a modal controller
Each controller that presents another controller modally provides access to its "child" controller
through the ModalController property. If you need to access the modal controller through
this property, make sure to do it before the DismissViewControllerAsync method
is called.

User Interface – View Controllers

96

How many modal controllers?
In theory, we can present an unlimited number of modal controllers. Of course, there are two
restrictions on this, which are as follows:

 f Memory is not unlimited: View controllers consume memory, so the more view
controllers we present, the worst performance we get.

 f Bad user experience: Presenting many controllers modally might confuse the user.

In general, it is advised to not present more than one consecutive controller modally.

See also
 f The Navigating through different view controllers and Providing controllers in

tabs recipes

Creating a custom view controller
In this recipe, we will learn how to create a subclass of UIViewController and use it to
derive view controllers that were created in Interface Builder.

Getting ready
In this recipe, we will create a custom view controller that will act as a base controller,
providing common functionality among its inheritors. Create a new iPhone Empty Project in
Xamarin Studio and name it CustomControllerApp.

How to do it...
Perform the following steps:

1. Right-click on the project in the Solution pad and go to Add | New File….

2. In the dialog that appears, navigate to General | Empty Class. Name the file
BaseController and click on the New button.

3. Open the BaseController.cs file that was just created and modify it to match the
following code:
using System;
using MonoTouch.UIKit;
using MonoTouch.Foundation;
using System.Drawing;

namespace CustomControllerApp {
public class BaseController : UIViewController {

Chapter 3

97

 //Constructor
 public BaseController (string nibName,
 NSBundle bundle) : base(nibName, bundle) {}

 public override void TouchesMoved (NSSet touches, UIEventevt)
 {
 base.TouchesMoved (touches, evt);
 // Capture the position of touches
 UITouch touch = touches.AnyObject as UITouch;
 if (null != touch) {
 PointF locationInView = touch.LocationInView (this.View);
 Console.WriteLine ("Touch coordinates: {0}",
 locationInView);
 }
}

4. Now, add an iPhone view controller to the project and name it DerivedController.
Change the class it inherits from UIViewController to BaseController
in its class definition: public partial class DerivedController :
BaseController.

5. Set the derived controller to be the root view controller of the main window (in
AppDelegate.cs):
DerivedController derivedController =
 new DerivedController();
window.RootViewController = derivedController;

6. Compile and run the app on the simulator. Click-and-drag the mouse pointer on the
white surface and watch Xamarin Studio's application output pad displaying the
current position of the pointer on the simulator's screen.

How it works...
What we have done here is that we have created a base controller class that can be used in
multiple Xamarin.iOS projects. The functionality we have added to this controller is to respond
to user touches. Any controller that inherits it will inherit the same functionality. The code we
have added to create the BaseController class is fairly simple. To make this work, we have
added the following constructor to the class:

public BaseController (string nibName,
 NSBundle bundle) : base(nibName, bundle) {}

User Interface – View Controllers

98

This is the base constructor that will get called when we initialize the DerivedController
class with the new keyword, this.derivedController = new DerivedController();,
through our derived object's DerivedController() constructor. So, what this practically
means is that we can normally use inheritance with controllers that are loaded from XIB files.

There's more...
We can also create base controllers from XIB files. However, if the XIB files contain outlets,
we need to make sure to populate these outlets in our derived classes; otherwise, they will
not be available in our derived controllers. For example, if we have an outlet for a button
named btnStart in the base XIB file, we would have to create the following property in our
derived class:

[Outlet("btnStart")]
public UIButton BtnStart {
 get { return base.btnStart; }
 set { base.btnStart = value; }
}

The Outlet attribute tells the runtime that the specific property is an outlet. Not only that, it
also helps Xamarin Studio in creating the Xcode project when we are using the derived class
in a XIB.

See also
 f The Loading a view with a view controller, Using view controllers efficiently, and UI

flow design with storyboards recipes

 f The Adding and customizing views recipe in Chapter 2, User Interface – Views

Using view controllers efficiently
iOS is very strict about memory usage. If an app uses too much memory, iOS will issue
memory warnings. If we do not respond to these memory warnings accordingly by releasing
resources that are not needed, it is very likely that iOS will terminate the app.

Getting ready
Let's see what we can do to avoid this situation. Create a new project in Xamarin Studio and
name it EfficientControllerApp.

Chapter 3

99

How to do it…
Perform the following steps to complete this recipe:

1. Add a view controller to the project and name it MainController.

2. Enter the following code in the DidReceiveMemoryWarning method of the
MainController class:
Console.WriteLine("Main controller
 received memory warning!");

3. Make the controller the root view controller of the app in AppDelegate.cs
as follows:
MainController mainController = new MainController();
window.RootViewController = mainController;

4. Compile and run the app on the simulator.

5. With iOS Simulator window active, navigate to Hardware | Simulate Memory
Warning on the menu bar, as shown in the following screenshot:

6. Check the Application Output pad in Xamarin Studio. You should see an output
similar to the following:
2013-12-04 08:09:47.695 EfficientControllerApp[1383:80b] Received
memory warning.
2013-12-04 08:09:47.709 EfficientControllerApp[1383:80b] Main
controller received memory warning!

User Interface – View Controllers

100

How it works...
This project does not provide any useful functionality. Its main purpose is to show how to get
notified on memory warnings issued by iOS.

When a memory warning is issued, the DidReceiveMemoryWarning method will be called
on all instantiated view controllers that are currently in memory. When this method is called,
we should make sure we release the resources that are not currently required. This way, we
are making more memory available to the system.

iOS Simulator provides the option of simulating memory warnings so that we can test how our
app will behave when memory is low. On a real device, we cannot force the system to issue
memory warnings on demand. Note that although we can practically simulate an unlimited
number of memory warnings on the simulator, the app will never be terminated. On the other
hand, on the device, the app will be terminated after two or three memory warnings (the
actual number varies according to memory usage), so we need to take this into account.

There's more...
View controllers are not the only object that can receive memory warnings. We can capture
memory warning notifications by overriding the UIApplicationDelegate.ReceiveMemor
yWarning(UIApplication) method inside the AppDelegate class, as follows:

public override void ReceiveMemoryWarning(UIApplication application)
{ //... }

See also
 f The Creating a custom view controller recipe

 f The Interface Builder recipe in Chapter 1, Development Tools

iPad view controllers
All the controllers we have worked with so far can be used in both iPhone and iPad
applications. There are, however, two controllers that are only available to the iPad. These are
the UISplitViewController and UIPopoverController classes. In this recipe, we will
create an iPad project that uses the UISplitViewController class.

Getting ready
Create a new iPad Empty Project and name it SplitControllerApp.

Chapter 3

101

How to do it…
Perform the following steps to complete this recipe:

1. Add two iPad view controllers to the project and name them FirstController and
SecondController. Set the background colors of their views to different colors, for
example, blue for FirstController and yellow for SecondController.

2. Open SecondController.xib in Interface Builder and add UIToolbar close to
the top of its view. Connect the toolbar to an outlet named myToolbar.

3. By default, the properties that represent the outlets are created as private by Xamarin
Studio. Add the following property in the SecondController class to expose the
toolbar outlet:
public UIToolbar MyToolbar {
 get { return this.myToolbar; }
}

4. Add the following class to the project:
public class SplitControllerDelegate :
 UISplitViewControllerDelegate
 {
 public SplitControllerDelegate (SecondController controller)
 {
 this.secondController = controller;
 }
 private SecondController secondController;
 public override void WillHideViewController
 (UISplitViewController svc,
 UIViewController aViewController,
 UIBarButtonItem barButtonItem, UIPopoverController pc)
 {
 barButtonItem.Title = "First";
 this.secondController.MyToolbar.SetItems (new
 UIBarButtonItem[] { barButtonItem }, true);
 }
 public override void WillShowViewController
 (UISplitViewController svc,
 UIViewController aViewController,
 UIBarButtonItem button)
 {
 this.secondController.MyToolbar.SetItems (new
 UIBarButtonItem[0], true);
 }
 }

User Interface – View Controllers

102

5. Add the following code in the FinishedLaunching method of the
AppDelegate class:
FirstController firstController = new FirstController();

SecondController secondController = new SecondController();

UISplitViewController splitController =
 new UISplitViewController();

splitController.ViewControllers = new UIViewController[] {

 firstController,

 secondController

 };

 splitController.Delegate =
 new SplitControllerDelegate(secondController);

 window.RootViewController = splitController;

6. Compile and run the app on the simulator.

7. Click on the First button on the toolbar. FirstController should slide in from the
side. The result is similar to the following screenshot:

Chapter 3

103

How it works...
The UISplitViewController class helps to take full advantage of the iPad's larger screen.
It provides a way of displaying two different views simultaneously on the same screen area. It
does this by displaying one controller in fullscreen in the portrait orientation and a secondary
controller whenever is needed, in a smaller size.

To provide access to both controllers in our project to the user, we have implemented a
class that inherits from UISplitViewControllerDelegate and assigned it to our split
controller inside the FinishedLaunching method. The Delegate object we created
overrides two methods. In the first method, we assign a button to the toolbar, as follows:

public override void WillHideViewController
 (UISplitViewController svc, UIViewController aViewController,
 UIBarButtonItem barButtonItem, UIPopoverController pc)
{
 barButtonItem.Title = "First";
 this.secondController.MyToolbar.SetItems (new
 UIBarButtonItem[] { barButtonItem }, true);
}

The WillHideViewController method is executed whenever UISplitViewController
changes orientation from landscape to portrait and its smaller controller is about to be
hidden. So to display it, we provide a button on the fullscreen controller's toolbar. When we
click on that button, the other controller will slide in from the side. When the orientation
changes from portrait to landscape, the smaller controller appears beside the larger
controller automatically. So, we no longer need the button on the toolbar; hence, we override
the WillShowViewController method to remove it. We do this by assigning an empty
UIBarButtonItem[] array, as follows:

public override void WillShowViewController (UISplitViewController
svc, UIViewController aViewController, UIBarButtonItem button)
{
 this.secondController.Toolbar.SetItems (new UIBarButtonItem[0],
 true);
}

User Interface – View Controllers

104

There's more...
To rotate the simulator to (and from) the landscape orientation, press Cmd and the left arrow
key (or the right arrow key) with the app running on iOS Simulator. The following screenshot
shows iOS Simulator rotated in landscape orientation. No other action was taken to make
both controllers appear at the same time, as the split controller handles this for us:

iPad-specific controller usage
Although all other controllers are available to both the iPhone and iPad, an exception will
occur if a UISplitViewController method is used in an app that runs on an iPhone.

See also
 f The Adjusting UI orientation recipe in Chapter 9, Interacting with Device Hardware

Chapter 3

105

UI flow design with storyboards
Back when iOS 5 was released, Apple introduced storyboards. A storyboard is a new type of
user interface file that accepts multiple view controllers, but it also holds information about
how all these controllers relate to each other in the hierarchy of an application. Storyboards
are very helpful when designing the screens of an application, as they are more efficient than
loading different controllers from individual XIB files; they also keep a group of view controllers
together in a single file.

Getting ready
Create a new iPhone Empty Project in Xamarin Studio and name it StoryboardApp.

Xamarin Studio includes a number of project templates for
storyboard applications. We will, however, use an empty
iPhone project because it will help us to better comprehend
how storyboards work.

How to do it...
Here are the steps to complete this recipe:

1. Add two new C# classes (not view controllers) to the project and name them
FirstController and SecondController.

2. Derive both classes from UIViewController and decorate them with the
Register attribute. Make sure that you pass a different name for each controller
in the attribute, as follows:

 � The FirstController class:
[Register("FirstController")]
public class FirstController : UIViewController
{ //..

 � The SecondController class:
[Register("SecondController")]
public class SecondController : UIViewController
{ //..

3. Add the IntPtr constructor of UIViewController in both classes:
public FirstController(IntPtr handle) : base(handle)
{}

User Interface – View Controllers

106

4. Add an Empty iPhone Storyboard file to the project and name it
MainStoryboard.

5. Open the MainStoryboard.storyboard file that was created in Interface Builder.
Just like opening XIBs, double-click on the file in Xamarin Studio.

6. Drag UINavigationController on the empty canvas. By default, Xcode adds a
table view when adding navigation controllers. Select it and delete it by pressing the
Backspace key; we only need the navigation controller.

7. Add two UIViewController objects to the canvas. By selecting each view controller
individually, set their Class field in the Identity Inspector window to the classes we
created in the preceding steps. The following screenshot shows the Class field of the
first controller set to FirstController:

8. We now need to connect the controllers. Just like adding an outlet, press Ctrl and
drag from the navigation controller to FirstController. In the context menu that
will appear when you release the button, select root view.

9. Add UIButton on FirstController. Press Ctrl and drag from the button to
SecondController. Select push in the context menu that will appear. No need to
connect the button to an outlet.

10. Back in Xamarin Studio, add the following code in the FinishedLaunching method:
UIStoryboard storyboard = UIStoryboard.FromName("MainStoryboard",
 NSBundle.MainBundle);
UINavigationController navController =
 (UINavigationController)storyboard.
 InstantiateInitialViewController();
window.RootViewController = navController;

11. Compile and run the app on the simulator. Clicking on the button will push the second
controller into display.

Chapter 3

107

How it works...
As you see, we managed to create the user interface for the application with minimal code.
Inside storyboard files, we need to connect each element with each other, according to how
we want the screen hierarchy to appear. We first set FirstController as a root view
controller to the navigation controller. Then, we assigned a relationship to the button with
the SecondController class. So, when the button is clicked, the SecondController
class will be pushed into the navigation controller's stack, just as if we were calling the
UINavigationController.PushViewController method. This relationship is called
segue. In a storyboard file, we can individually select segues and set their properties. For
example, we can set an identifier string or change its behavior from push to modal.

In the FinishedLaunching method, we first instantiate a UIStoryboard instance through
the static UIStoryboard.FromName method, as follows:

UIStoryboard storyboard = UIStoryboard.FromName("MainStoryboard",
 NSBundle.MainBundle);

We then call the InstantiateInitialViewController method to get the initial controller
of the storyboard, as follows. In this case, the initial controller is UINavigationController:

UINavigationController navController =
 (UINavigationController)storyboard.
 InstantiateInitialViewController();

Note that we need to cast the return value to the correct type of controller, as its return type
is NSObject.

There's more...
We can also initiate segues programmatically. To do this, we first need to select the segue in
Xcode and set an identifier for it through the Attributes inspector tab. Then, we can trigger it
through code by calling the PerformSegue method of the UIViewController instance it
belongs to, as follows:

this.PerformSegue("MyPushSegue", null);

User Interface – View Controllers

108

Passing data
With storyboards, the system is instantiating the view controllers we need. We can have
access to the view controller that will be displayed through a segue by overriding the
PrepareForSegue method on the controller that is the owner, or source of the segue,
as follows:

public override void PrepareForSegue (UIStoryboardSegue segue,
 NSObject sender)

{

 base.PrepareForSegue (segue, sender);

 if (segue.Identifier == "MyPushSegue")

 {

 SecondController secondController =

 (SecondController)segue.DestinationViewController;

 // Create a public method or property in SecondController

 // for passing data to it.

 }//end if

}

As you can see, there is also a UIStoryboardSegue class which provides us with the
necessary information.

The PrepareForSegue method is called after the involving view controllers have been
instantiated and before the segue starts. So, by determining which segue triggered the
preparation method through the Identifier property, we retrieve the controller that the
segue will display through the DestinationViewController property.

The PrepareForSegue method will be called regardless
if the segue was triggered programmatically through the
PerformSegue method or was just set to a button in the
storyboard file.

See also
 f The Interface Builder recipe in Chapter 1, Development Tools

Chapter 3

109

Unwinding in storyboards
Another very useful feature of storyboards is unwinding. Unwinding is a process similar to that
of a segue, but instead of presenting the next view controller, it reverses to a previous view
controller in a storyboard. The great thing about it is that it allows us to go back to any view
controller, not just the one that is right before the current controller we are in. This recipe will
show how to use unwinding.

Getting ready
For this recipe, we will need the project StoryboardApp we created in the previous recipe.
Open it in Xamarin Studio.

How to do it…
Perform the following steps to implement unwinding:

1. Add a new class to the project and name it ModalController.

2. Make the class a custom view controller, similar to FirstController and
SecondController in the project, as follows:
[Register("ModalController")]
public class ModalController : UIViewController
{
 public ModalController (IntPtr handle) : base(handle)
 {
 }
}

3. Add the following method in the FirstController class:
[Action("unwindFromModalController:")]
public void UnwindFromModalController(UIStoryboardSegue segue)
{
}

4. Open the MainStoryboard.storyboard file in Xcode and add another
UIViewController. Set this controller's Class to ModalController.

5. Add UIButton to SecondController and set its title to Show modal.

6. Press Ctrl and drag from the button to ModalController. Set this segue to modal.

7. Add another button, this time on ModalController. Set its title to Unwind
to first.

User Interface – View Controllers

110

8. Press Ctrl and drag from the button to the Exit item on the controller's dock, as
shown in the following screenshot:

9. Select unwindFromModalController in the context menu that will appear.

10. Compile and run the app on the simulator. Flow through the screens until you reach
the modal controller and click on the Unwind to first button. The user interface will
flow back to the first controller.

How it works…
By using unwinding or unwind segues, we can get back to any controller in the hierarchy. The
basic requirement is to add a method decorated with the Action attribute to the controller
you want to unwind to, as follows:

[Action("unwindFromModalController:")]
public void UnwindFromModalController(UIStoryboardSegue segue) {}

Chapter 3

111

The attribute will basically expose the method as an action to Xcode so that when the
storyboard file is opened, we will be able to add the unwind segue. This is how the action
unwindFromModalController appeared when we dragged to the Exit item. It doesn't matter if
the action is inside another class Xcode is smart enough to search all classes in the storyboard.

The Exit item in the dock of every view controller is responsible for
creating unwind segues. It represents the exit of a view controller,
which is determined by how the controller was displayed.

There's more…
We can have access to the controller that initiated the unwind segue through the
UIStoryboardSegue object that is passed to the unwind action, as follows:

//..
ModalControllermodalController =
 (ModalController)segue.SourceViewController;

Where is the unwind segue in the storyboard?
When we create unwind segues, there is no apparent change in Xcode's appearance or an
indication that we created something, like when we create segues. After creating the unwind,
we can find it by expanding the document outline, as shown in the following screenshot:

User Interface – View Controllers

112

See also
 f The Navigating through different view controllers and Modal view controllers recipes

4
Data Management

In this chapter, we will cover the following topics:

 f Creating files

 f Using a SQLite database

 f Preparing for iCloud support

 f iCloud key/value data storage

Introduction
Almost every application needs to have permanent data storage on the filesystem. In this
chapter, we will discuss different ways of storing data. We will see how to create a SQLite
database and manage data with it from within an iPhone application. Also, we will learn
how to use an already existing database in a project.

SQLite (http://www.sqlite.org) is a self-contained transactional
database system. Each database is saved in a standalone file and there is
no database server. In iOS, SQLite support is native.

Following SQLite, we will have a look at iCloud storage and how to incorporate it in our apps.

Creating files
In this recipe, we will learn how to create files on the filesystem of iOS devices.

http://www.sqlite.org

Data Management

114

Getting ready
Create a new iPhone Single View Application in Xamarin Studio and name it
FileCreationApp.

How to do it…
Follow the ensuing steps to complete this recipe:

1. Open the FileCreationAppViewController.xib file in Interface Builder.

2. Add a button and a label on its view.

3. Back in Xamarin Studio, enter the following code in the ViewDidLoad method
of the controller class:
string filePath = Path.Combine (Environment.GetFolderPath
 (Environment.SpecialFolder.Personal),
 "MyFile.txt");
using (StreamWriter sw = new StreamWriter (filePath))
{
 sw.WriteLine ("Some text in file!");
}
this.btnShow.TouchUpInside += (s, e) => {
 using (StreamReader sr = new StreamReader (filePath))
 {
 this.labelStatus.Text = sr.ReadToEnd ();
 }
};

4. Compile and run the app on the simulator. Tap the button to fill the label with the
contents of the file.

How it works...
As one can see from the preceding code, we can use standard classes from the System.IO
namespace, just like in desktop applications. We will set a path for the file we want to save.
We will do this in the following line of code:

string filePath = Path.Combine
(Environment.GetFolderPath(Environment.SpecialFolder.
 Personal), "MyFile.txt");

Chapter 4

115

In iOS, we do not have access to the whole filesystem, not even inside the application bundle.
An exception will occur if we try to write inside a folder we do not have access to. So we use
the static Environment.GetFolderPath(SpecialFolder) method and retrieve the
Personal special folder, that corresponds to our app's Documents folder. Note the use of
Path.Combine(string, string) that combines two strings and returns a path. After
that, we create a new instance of the StreamWriter class as follows:

using (StreamWriter sw = new StreamWriter (filePath))
{
 sw.WriteLine ("Some text in file!");
}

We write some text in the file with its WriteLine(string) method. To retrieve the text
from the file, we create a new instance of the StreamReader class and read the text with
its ReadLine method using the following code:

using (StreamReader sr = new StreamReader (filePath))
{
 this.labelMessage.Text = sr.ReadToEnd ();
}

There's more...
Practically, every available class in the System.IO namespace will work on Xamarin.iOS,
as long as we have access to the target folder.

The Documents folder
An app bundle's Documents folder is relevant to the app alone. If the app is uninstalled from
the device, its contents are also removed. Files created in this folder are automatically backed
up to iCloud, unless we explicitly request that a particular file is excluded. This can be done by
skipping the backup attribute of the file. For example, if we wanted to exclude the MyFile.
txt file that we created, we would have to add the following code:

NSError error = NSFileManager.SetSkipBackupAttribute(filePath,
 true);
if (null == error) {
 // Success
}

If the file does not exist when we call this method, the error object will contain the
appropriate error information.

If we would like to include a file to iCloud backup, we would just have to call the preceding
method, passing false as the second argument.

Data Management

116

It is important that we consider skipping the backup attribute for large
files. Apple will reject apps that contain large files to be backed up
to iCloud.

iCloud backup is the automatic procedure of iOS backup feature. It is
primarily used for restoring a device from iCloud. Other than excluding
or including files from iCloud backups, we have no other access to it. It
is also different from iCloud storage, which we have access to and will
be discussing later in this chapter.

The Caches folder
The Caches folder (Library/Caches/) can be used for storing application-specific data that
can be easily recreated by the application. Files in this folder are not backed up to iCloud and
can be deleted by the system, if there is need for more space.

We can get the full path of the Caches folder in an iOS app, through the Environment.
SpecialFolder.InternetCache value, as shown in the following code:

string cachesFolder =
 Environment.GetFolderPath(Environment.SpecialFolder.
 InternetCache);

See also
 f The iCloud key/value data storage recipe

Using a SQLite database
In this recipe, we will learn how to create a SQLite database file. We will create a table, insert
some data into it, and then query the table to display the data on screen.

Getting ready
Create a new iPhone Single View Application in Xamarin Studio and name it SQLiteApp. Add
three buttons and a label on the view controller. Do not forget to connect them to the outlets.

Chapter 4

117

How to do it...
Perform the following steps:

1. Add references to the assemblies Mono.Data.Sqlite and System.Data.
The following screenshot shows how to add a reference to the project:

2. For creating the database and the table, enter the following method in the
SQLiteAppViewController class:
private void CreateSQLiteDatabase (string databaseFile)
{
 try
 {
 if (!File.Exists (databaseFile))
 {
 SqliteConnection.CreateFile (databaseFile);
 using (SqliteConnection sqlCon = new SqliteConnection
 (String.Format ("Data Source = {0};",
 databaseFile)))
 {
 sqlCon.Open ();
 using (SqliteCommand sqlCom = new SqliteCommand
 (sqlCon))
 {
 sqlCom.CommandText = "CREATE TABLE Customers (ID
 INTEGER PRIMARY KEY, FirstName VARCHAR(20),
 LastName VARCHAR(20))";
 sqlCom.ExecuteNonQuery ();

Data Management

118

 }
 sqlCon.Close ();
 }
 this.lblStatus.Text = "Database created!";
 } else {
 this.lblStatus.Text = "Database already exists!";
 }
 } catch (Exception ex) {
 this.lblStatus.Text = String.Format ("Sqlite error:
 {0}", ex.Message);
 }
}

3. Add the following method for inserting data to the database:
private void InsertData(string databaseFile) {
 try {
 if (File.Exists(databaseFile)) {
 using (SqliteConnection sqlCon = new
 SqliteConnection(String.Format("Data Source = {
 0};", databaseFile))) {
 sqlCon.Open();
 using (SqliteCommand sqlCom = new
 SqliteCommand(sqlCon)) {
 sqlCom.CommandText = "INSERT INTO Customers
 (FirstName, LastName) VALUES ('Dimitris',
 'Tavlikos')";
 sqlCom.ExecuteNonQuery();
 }
 sqlCon.Close();
 }
 this.lblStatus.Text = "Inserted 1 row.";
 } else {
 this.lblStatus.Text = "Database file does not
 exist!";
 }
 } catch (Exception ex) {
 this.lblStatus.Text = String.Format("Sqlite error: {
 0}", ex.Message);
 }
}

4. Add the following method for querying the data from the database:
private void QueryData(string databaseFile) {
 try {
 if (!File.Exists(databaseFile)) {

Chapter 4

119

 using (SqliteConnection sqlCon = new
 SqliteConnection(String.Format("Data Source = {
 0};", databaseFile))) {
 sqlCon.Open();
 using (SqliteCommand sqlCom = new
 SqliteCommand(sqlCon)) {
 sqlCom.CommandText = "SELECT * FROM Customers
 WHERE FirstName='Dimitris'";
 using (SqliteDataReader dbReader =
 sqlCom.ExecuteReader()) {
 while (dbReader.Read()) {
 this.lblStatus.Text = String.Format("First
 name: { 0}\ nLast name: { 1}",
 dbReader["FirstName"],
 dbReader["LastName"]);
 }
 }
 }
 }
 } else {
 this.lblStatus.Text = "Database file does not
 exist!";
 }
 } catch (Exception ex) {
 this.lblStatus.Text = String.Format("Sqlite error: {
 0}", ex.Message);
 }
}

5. Add the following code in the ViewDidLoad method:
string sqlitePath = Path.Combine (Environment.GetFolderPath
 (Environment.SpecialFolder.Personal), "MyDB.db3");
this.btnCreate.TouchUpInside += (s, e) =>
 this.CreateSQLiteDatabase (sqlitePath);
this.btnInsert.TouchUpInside += (s, e) =>
 this.InsertData(sqlitePath);
this.btnQuery.TouchUpInside += (s, e) =>
 this.QueryData(sqlitePath);

6. Compile and run the app on the simulator. Tap each button in sequence, to create,
insert, and query the data from the database.

Data Management

120

How it works...
iOS provides native support for SQLite databases. We can access SQLite databases with
Mono's Mono.Data.Sqlite namespace:

using Mono.Data.Sqlite;

Inside the CreateSQLiteDatabase method, we first check if the file already exists using
the following code so as to avoid destroying any data:

if (!File.Exists (databaseFile))

Then we can continue with the creation of the database. We first create the file with the
SqliteConnection.CreateFile(string) static method using the following code:

SqliteConnection.CreateFile (databaseFile);

We connect to the newly created file by initializing a SqliteConnection object and calling
its Open() method. The connection string for a SQLite database is Data Source = followed
by the filename of the database, as shown in the following code:

using (SqliteConnection sqlCon = new SqliteConnection
 (String.Format ("Data Source = {0};", databaseFile)))
 sqlCon.Open();

To create a table in the database, a SqliteCommand object is initialized. We pass a standard
SQL string to its CommandText property and call the ExecuteNonQuery() method to
execute the SQL as shown in the following code:

sqlCom.CommandText = "CREATE TABLE Customers (ID INTEGER PRIMARY KEY,
FirstName VARCHAR(20), LastName VARCHAR(20))";
sqlCom.ExecuteNonQuery ();

To insert data to the database, we use the following code in the InsertData method:

sqlCom.CommandText = "INSERT INTO Customers (FirstName, LastName)
 VALUES ('Dimitris', 'Tavlikos')";
sqlCom.ExecuteNonQuery();

Finally, we query the data through a SELECT statement and retrieve it with the help of
SqliteDataReader, as shown in the following code:

sqlCom.CommandText = "SELECT * FROM Customers WHERE
 FirstName='Dimitris'";
using (SqliteDataReader dbReader = sqlCom.ExecuteReader()) {
 while (dbReader.Read()) {
 this.lblStatus.Text = String.Format("First name: {0}\nLast
 name: {1}", dbReader["FirstName"], dbReader["LastName"]);
 }
}

Chapter 4

121

There's more...
Note the usage of a try-catch block. It is provided to display a message to the user if
something goes wrong with the creation of the database.

SQL table creation
In this recipe, we have created a simple table for our database with the name Customers.
It contains three fields. The FirstName and LastName parameters are of type
VARCHAR(20) while ID is of type INTEGER and is also the PRIMARY KEY of the table.

Apart from using SQL commands to create tables, we can create a SQLite database with
various commercial or free GUI tools. A simple search on the internet will yield various results.

See also
 f The Creating files recipe

 f The Displaying data in a table recipe in Chapter 5, Displaying Data

Preparing for iCloud support
With the release of iOS 5, Apple introduced iCloud. iCloud is a service that provides cloud
storage to iOS users, in a variety of configurations. For app development, we can use iCloud
storage to save information that can be shared among different instances of our app running
on different devices under the same user account. In this recipe, we will learn how to prepare
an app to provide iCloud storage support.

Getting ready
Create a new iPhone Single View Application in Xamarin Studio and name it KeyValueApp.
For this recipe, an App ID with iCloud enabled needs to exist on the developer account. Refer
to Chapter 14, Deploying, for more information on how to create an App ID.

How to do it...
Perform the following steps:

1. Double-click on the Entitlements.plist file to open it in Xamarin Studio.

2. Check the Enable iCloud checkbox.

3. If it asks you to choose an account, select your Apple developer account from the list.

Data Management

122

4. After enabling iCloud, the Use key-value store checkbox should appear. Enable it.
The Entitlements.plist file settings should now look like the following screenshot:

5. In the project options, under iPhone Bundle Signing, select Entitlements.plist for
the Custom entitlements field. It is important to perform this step, despite the fact
that the field might already be set.

How it works...
Enabling iCloud support is simply a matter of setting the appropriate setting for our project.
By checking the Enable iCloud and Use key-value store checkboxes, Xamarin Studio adds
the necessary keys in the Entitlements.plist file, that will allow the app to use iCloud storage.

There's more...
Although we can run iCloud-enabled apps on the simulator, the iCloud functionality will not work.

See also
 f The Creating profiles recipe in Chapter 14, Deploying

iCloud key/value storage
In this recipe, we will learn how to save and retrieve small amounts of data that are suitable
for storing app settings or anything that would be useful to be shared among different devices.

Apps can only store up to a total of 1 MB of data with key/value store, in up
to 1024 keys. So it cannot be used to back up files or similar functionality.

Chapter 4

123

Getting ready
We will need two devices under the same iCloud account to actually see iCloud storage in
action. On one device we will save some data, and on the second device we will load the data.
If only one device is available, it is not an issue as it will work flawlessly because the data will
just be loaded from local storage, instead of iCloud.

How to do it...
The following are the steps to complete the recipe:

1. Create a new iPhone Single View Application in Xamarin Studio and enable it for
iCloud, as shown in the previous recipe. Name the project KeyValueApp.

2. Add two buttons and one label on the view controller.

3. Add the following code in the view controller's ViewDidLoad method:
this.btnSave.TouchUpInside += (s, e) => {
 NSUbiquitousKeyValueStore kvStore =
 NSUbiquitousKeyValueStore.DefaultStore;
 kvStore.SetString("LastSavedSearch", "How to implement
 iCloud");
 kvStore.Synchronize();
 this.lblStatus.Text = "Saved!";
};
this.btnLoad.TouchUpInside += (s, e) => {
 NSUbiquitousKeyValueStore kvStore =
 NSUbiquitousKeyValueStore.DefaultStore;
 this.lblStatus.Text = string.Format("Last saved search is: {0}",
kvStore.GetString("LastSavedSearch");
};

4. Compile and run the app on the device. Tap the Save button to save the key and
value to iCloud.

5. Tap the Load button to display the data on the label.

6. If there is access to a second device, run the app on it and tap the Load button.
The data will be retrieved from iCloud and displayed on the screen of the
second device.

Data Management

124

How it works...
To save key/value pairs to iCloud, we use the NSUbiquitousKeyValueStore class, which
is responsible for handling the data. We retrieve the default key value store through the
DefaultStore static property and call its Save method, as shown in the following code:

NSUbiquitousKeyValueStore kvStore =
 NSUbiquitousKeyValueStore.DefaultStore;
kvStore.Save("LastSavedSearch", "How to implement iCloud ");

Calling the Save method pushes the data in a queue for being saved locally and then
uploaded to iCloud. The Synchronize method syncs the key/value store and can basically
be used to speed up the process of syncing the data. However, calling the method does not
mean that the data will be synced right away. iOS is responsible for when the data will be
synced and we have no control over it. However, iCloud is designed to provide a seamless
syncing experience, so the delays are usually unnoticeable:

kvStore.Synchronize();

To load the data from iCloud, we simply call the GetString method, passing the key for
which to retrieve the data using the following code:

kvStore.GetString("LastSavesSearch");

There's more...
iCloud key/value store only accepts a specific set of values, which are of the following types:

 f double

 f bool

 f long

 f NSObject[]

 f NSDictionary

 f NSData

 f string

Chapter 4

125

Getting notified on key/value store changes
We can also get notified of when a key/value pair or set of pairs have been changed on another
device. To do this, we need to add a notification observer, as shown in the following code:

NSObject coudObserver =
 NSUbiquitousKeyValueStore.Notifications.
 ObserveDidChangeExternally((s, e) => {
 if (e.ChangeReason == NSUbiquitousKeyValueStoreChangeReason.
 ServerChange) {
 e.ChangeKeys.Foreach(k => Console.WriteLine("Key changed:
 {0}", k));
 }
};

The NSUbiquitousKeyValueStoreChangeReason enumeration contains the
following values:

 f ServerChange: It shows if a value was changed on another device or not.

 f QuotaViolationChange: The quota limit was reached. Some key/value pairs need
to be removed.

 f InitialSyncChange: A key/value pair was discarded as the initial iCloud setup on
the device has not been completed.

 f AccountChange: The user has changed the iCloud account on the device.
The whole key/value store is replaced with the one from the new iCloud account.

See also
 f The Preparing for iCloud support recipe

 f The Creating profiles recipe in Chapter 14, Deploying

5
Displaying Data

In this chapter, we will cover the following topics:

 f Providing lists

 f Displaying data in a table

 f Customizing rows

 f Editing a table

 f Table indexing

 f Searching through the data

 f Creating a simple web browser

 f Displaying data in a grid

 f Customizing the grid

Introduction
In the previous chapter, we discussed some of the available options for data management in
an iOS app. In this chapter, we will discuss the various ways of displaying data to the user.

Specifically, we will focus on how to use the following controls:

 f UIPickerView: This control provides functionality that is similar to a list box.

 f UITableView: This is a very customizable view for displaying data. It is one of the most
used controls in iOS apps.

 f UISearchBar and UISearchDisplayController: This is a combination of controls that
provides an easy-to-use interface for searching through data.

 f UIWebView: This brings web-browser functionality to apps.

 f UICollectionView: This displays data in a customizable grid.

Displaying Data

128

Furthermore, we will learn how to provide indexing in tables to make large volumes of data
easily accessible to the user.

Providing lists
In this recipe, we will learn how to use the UIPickerView class.

Getting ready
The UIPickerView class provides us with a control whose functionality is similar to that of a
list box. It is specifically designed for human fingers that touch the screen. Its main difference
from a common list box is that each column can have its own number of rows. To get started,
create a new iPhone Single View Application project and name it PickerViewApp.

How to do it...
Perform the following steps:

1. Open the PickerViewAppViewController.xib file in Interface Builder. Add
UILabel and UIPickerView on the main view and save the document.

2. Back in Xamarin Studio, create a nested class in the
PickerViewAppViewController class that inherits from UIPickerViewModel
using the following code:
private class PickerModel : UIPickerViewModel

3. Add the following constructor and fields in the nested class:
public PickerModel (PickerViewAppViewController controller) {
 this.parentController = controller;
 this.transportList = new List<string>() { "On foot", "Bi
 cycle", "Motorcycle", "Car", "Bus" };
 this.distanceList = new List<string>() { "0.5", "1",
 "5", "10", "100" };
 this.unitList = new List<string>() { "mi", "km" };
 this.transportSelected = this.transportList[0];
 this.distanceSelected = this.distanceList[0];
 this.unitSelected = this.unitList[0];
}
private PickerViewAppViewController parentController;
private List<string> transportList;
private List<string> distanceList;
private List<string> unitList;
string transportSelected;
string distanceSelected;
string unitSelected;

Chapter 5

129

4. You will now need to override four methods from the UIPickerViewModel class, as
shown in the following code:
public override int GetComponentCount (UIPickerView picker) {
 return 3;
}
public override int GetRowsInComponent(UIPickerView picker,
 int component) {
 switch (component) {
 case 0:
 return this.transportList.Count;
 case 1:
 return this.distanceList.Count;
 default:
 return this.unitList.Count;
 }
}
public override string GetTitle (UIPickerView picker, int
 row, int component) {
 switch (component) {
 case 0:
 return this.transportList[row];
 case 1:
 return this.distanceList[row];
 default:
 return this.unitList[row];
 }
}
public override void Selected (UIPickerView picker, int
 row, int component) {
 switch (component) {
 case 0:
 this.transportSelected = this.transportList[row];
 break;
 case 1:
 this.distanceSelected = this.distanceList[row];
 break;
 default:
 this.unitSelected = this.unitList[row];
 break;
 }
 this.parentController.lblStatus.Text =
 String.Format("Transport: {0}\nDistance: {1}{2}",
 this.transportSelected, this.distanceSelected,
 this.unitSelected);
}

Displaying Data

130

5. Finally, set the model object we created to the picker view's Model property inside
the controller's ViewDidLoad method, as shown in the following code:
this.pickerView.Model = new PickerModel (this);

6. Compile and run the app on the simulator. Drag through the items in the picker view
and watch the label's content change according to your selection. The following
screenshot shows how it should look:

How it works...
The UIPickerViewModel class does not exist in Objective-C. Xamarin.iOS provides this class
as a wrapper around the UIPickerViewDataSource and UIPickerViewDelegate native
protocols, and contains both of these classes' methods for us to override. This is extremely
helpful since we only have to implement and assign one class instead of two for our picker
view. Both of these protocols are available as C# classes in Xamarin.iOS at the same time.

Chapter 5

131

Inside the constructor, we initialize the lists that will hold the data to be displayed in the
picker. The following four methods we need to override are responsible for displaying the data:

 f int GetComponentCount (UIPickerView picker): This returns the number
of columns we want the picker view to display

 f int GetRowsInComponent (UIPickerView picker, int component):
This returns the number of rows each component will display

 f string GetTitle (UIPickerView picker, int row, int component):
This is the text of each row

 f void Selected (UIPickerView picker, int row, int component):
This is the action to be taken when the user selects an item from any component/row
combination in the picker view

We use the lists we have assigned in the constructor to display the data. For example, the
GetTitle method is implemented as shown in the following code:

switch (component)
{
case 0:
 return this.transportList[row];
case 1:
 return this.distanceList[row];
default:
 return this.unitList[row];
}

There's more...
We can programmatically select the initial selection of the picker view by calling the Select
(int, int, bool) method. The first two parameters reflect the row and component index,
respectively, while the bool parameter toggles the selection animation. The only thing to
remember with this method is to call it after we have assigned the picker's Model property.
An exception will occur otherwise.

More UIPickerView customization
Apart from the options presented earlier, we also have the option of setting the width of each
component. To do this, we override the GetComponentWidth (UIPickerView, int)
method, which returns a float that represents the width for each component.

We can also set custom views as items in the picker view, instead of plain text. This can be
done by overriding the GetView(UIPickerView, int, int, UIView) method and
returning the view we want to be displayed on each position in the UIPickerView control.

Displaying Data

132

Date and time selection
There is a control named UIDatePicker that is similar to UIPickerView and is specifically
customized to display and select the date and time values. Note that although its user
interface is the same as the picker view, it does not inherit the UIPickerView class. It
just uses an instance of it as a subview.

See also
 f The Displaying data in a table recipe

Displaying data in a table
In this recipe, we will learn how to use the UITableView class to display data. This class,
along with the UITableViewCell object, provides an interface for displaying data on the
screen in multiple rows, but on a single column.

Getting ready
To get started, create a new project in Xamarin Studio and name it TableViewApp. In this
recipe, we will not use the XIB files. We will create our user interface in code.

How to do it...
Perform the following steps:

1. Add a new class to the project and name it TableController. Derive the class
from UITableViewController using the following code:
public class TableController : UITableViewController

2. Create the following nested class inside the TableController class:
private class TableSource : UITableViewSource
{
 public TableSource ()
 {
 this.cellID = "cellIdentifier";
 this.tableData = new Dictionary<int, string> () {
 {0, "Music"},
 {1, "Videos"},
 {2, "Images"}
 };

Chapter 5

133

 }
 private readonly string cellID;
 private Dictionary<int, string> tableData;
 public override int RowsInSection (UITableView tableview,
 int section)
 {
 return this.tableData.Count;
 }
 public override UITableViewCell GetCell (UITableView
 tableView, NSIndexPath indexPath)
 {
 int rowIndex = indexPath.Row;
 UITableViewCell cell = tableView.DequeueReusableCell
 (this.cellID);
 if (null == cell)
 {
 cell = new UITableViewCell
 (UITableViewCellStyle.Default, this.cellID);
 }
 cell.TextLabel.Text = this.tableData[rowIndex];
 return cell;
 }
}

3. Override the controller's ViewDidLoad method and add the following line of code:
this.TableView.Source = new TableSource ();

4. Add the following code in the FinishedLaunching method to display the
table controller:
TableController tableController = new TableController();
UINavigationController navController = new
 UINavigationController(tableController);
window.RootViewController = navController;

Displaying Data

134

5. Compile and run the application on the simulator. The result should be similar to the
one shown in the following screenshot:

How it works...
The nested class we created acts as the data source of UITableView. The class created in
the following code inherits from the Xamarin.iOS UITableViewSource class:

private class TableSource : UITableViewSource

Like UIPickerView, in the example discussed in the previous recipe, the
UITableViewSource class does not exist in Objective-C. It is merely a
wrapper object offered by Xamarin.iOS around the UITableViewDelegate
and UITableViewSource protocols.

In its constructor, we initialize two variables (as shown in the following code): string, which
will act as the cells' identifier, and a generic Dictionary variable for our data source:

this.cellID = "cellIdentifier";
this.tableData = new Dictionary<int, string> () {
 {0, "Music"},
 {1, "Videos"},
 {2, "Images"}
};

Chapter 5

135

To make the TableSource class work, we need to override two methods. The first method,
named RowsInSection, returns the number of rows that the table shall display. In the
following code, we return the number of items in our data source object:

return this.tableData.Count;

The second method, GetCell, returns the UITableViewCell object that will be displayed
in the table.

The UITableViewCell class represents a single row and manages
its content in UITableView.

To be more efficient, the table view creates its cell objects when they are needed. For this
reason, we need to get UITableViewCell (that was used earlier) from the table through its
DequeueReusableCell method, as shown in the following code:

UITableViewCell cell = tableView.DequeueReusableCell
 (this.cellID);

If no cells exist for the particular cell identifier, the method returns null. Hence, we create
the cell that will be used, using the following code:

cell = new UITableViewCell (UITableViewCellStyle.Default,
 this.cellID);

Then, we assign the text that the particular cell will display and return using the following code:

cell.TextLabel.Text = this.tableData[rowIndex];
return cell;

By default, the UITableViewCell class contains two labels that can be used to display text.
The main label can be accessed through the TextLabel property and the secondary label
through the DetailTextLabel property. Note that when using a cell with the Default style,
the DetailTextLabel property cannot be used and will return null.

There's more...
To provide functionality when the user selects a particular row, we need to override the
RowSelected property in the class that acts as a UITableViewSource. By default, when
the user taps on a row, the cell is highlighted with a light gray color to indicate the selection.
To deselect the row, we use the UITableView.DeselectRow(NSIndexPath, bool)
method, as shown in the following code:

public override void RowSelected (UITableView tableView, NSIndexPath
indexPath)
{
 tableView.DeselectRow (indexPath, true);
}

Displaying Data

136

The UITableView styles
UITableView can be created with two different styles. The default style is Plain. The other
style that can be used is the Grouped style. This style is being used in many iOS native apps
such as the Settings app.

Also, UITableView supports the display of data divided into different sections. We must
explicitly return the number of rows each section will have in the RowsInSection override
if we want to use different sections.

The UITableViewCell styles
A table cell can have four different cell styles, which are represented by the
UITableViewCellStyle enumeration. Its values are listed as follows:

 f Default: This is the default cell style. Only the TextLabel property can be used to
display text.

 f Subtitle: This is a style that provides DetailTextLabel as a subtitle to TextLabel.

 f Value1: This is a style that displays both TextLabel and DetailTextLabel text in
the same size, with a different color, and aligned to the sides of the cell.

 f Value2: This is a style that displays the TextLabel text smaller than the
DetailTextLabel text. This style is used in the native Contacts app, in the contact
details screen.

See also
 f The Providing lists recipe

 f The Customizing rows recipe

 f The Navigating through different view controllers recipe in Chapter 3, User Interface
– View Controllers

Customizing rows
In this recipe, we will create a table view that uses our own custom subclass of
UITableViewCell to display data.

Getting ready
Create a new project in Xamarin Studio in the same manner in which the project in the earlier
recipe was created. Name it CustomRowsApp.

Chapter 5

137

How to do it...
Perform the following steps:

1. Add a new class to the project and name it CustomCell.

2. Implement the class with the following code:
[Register("CustomCell")]
public partial class CustomCell : UITableViewCell {
 public const string CELLID = "CustomCell";
 public CustomCell (IntPtr handle) : base(handle) {}
 [Outlet("lblTitle")]
 public UILabel LabelTitle { get; private set; }
 [Outlet("imgView")]
 public UIImageView ImgView { get; private set; }
}

3. Add a new Empty iPhone Interface Definition to the project and name it
CustomCell. Don't worry about the name conflicting with the class we created
earlier, as this is an XIB file. Open the file in Interface Builder.

4. Add UITableViewCell on the canvas. The following screenshot shows a selected
UITableViewCell in the object browser in Xcode:

5. Set the Class field of the table cell to CustomCell in the Identity inspector.

6. Set the Identifier field of the cell to CustomCell in the Attributes inspector.

7. Add a UIImageView and a UILabel on the cell and connect them to their outlets.
Save the document.

Displaying Data

138

8. Add the TableController.cs file we created in the previous recipe, Displaying
data in a table, to the project. Change its namespace from TableViewApp to
CustomRowsApp.

9. Change the TableSource class' GetCell method to the following code:
public override UITableViewCell GetCell (UITableView
 tableView, NSIndexPath indexPath) {
 int rowIndex = indexPath.Row;
 CustomCell cell =
 (CustomCell)tableView.DequeueReusableCell(
 CustomCell.CELLID);
 cell.LabelTitle.Text = this.tableData[rowIndex];
 return cell;
}

10. Add the following code in the ViewDidLoad method of TableController:
this.TableView.RegisterNibForCellReuse
 (UINib.FromName("CustomCell", NSBundle.MainBundle),
 CustomCell.CellID);

11. Finally, make sure that TableController is presented in the
FinishedLaunching method, as shown in the following code:
TableController tableController = new TableController();
UINavigationController navController = new
 UINavigationController();
window.RootViewController = navController;

How it works...
Just like creating a custom view, we are able to create our own custom cells to present data
with a UITableView. The main difference lies in the fact that the table view reuses the
instances of its cells so that it is more efficient when we want to display multiple rows.

To make our table view "aware" of our custom cell, we call the RegisterNibForCellReuse
method using the following code:

this.TableView.RegisterNibForCellReuse
 (UINib.FromName("CustomCell", NSBundle.MainBundle),
 CustomCell.CellID);

This way, when we call the DequeueReusable cell method in GetCell, the system will
automatically create a cell instance for us or get one that was created earlier. Hence, there is
no need for us to check if the cell is null or not:

CustomCell cell = (CustomCell)tableView.DequeueReusableCell(
 CustomCell.CELLID);

Chapter 5

139

Did you notice something common in the two method calls discussed earlier? They both need
an identifier string for the cell. The CustomCell.CELLID constant has the same value we
entered in the Identifier field of the cell in Xcode: CustomCell. In this case, it is the same
as the class name of our cell, as it keeps things tidy if we were to have different custom cells
to present. However, basically, the identifier for a cell can be whatever we want it to be.

There's more...
We can create as many custom cells as we need. As discussed earlier, we need to make
sure that we set a unique identifier for each of the cell classes we are going to use. Also,
if the custom cells we create have different heights, we need to make sure we override
the GetHeightForRow method in our UITableViewSource implementation using the
following code:

public override float GetHeightForRow (UITableView tableView,
 NSIndexPath indexPath) {
 return 44f; // Or whatever height we want the particular row to
 have.
}

For greater efficiency, it's good to have the heights of the rows calculated beforehand and not
calculate them inside GetHeightForRow.

Useful properties of the UITableViewCell class
Apart from adding text in the default labels, the UITableViewCell contains some other
properties whose values we can set to add more default items in a cell. These properties
are are follows:

 f ImageView: This accepts a UIImageView parameter. We can use it to display an
image in a cell, on its left-hand side.

 f AccessoryView: This accepts any instance of UIView. Its position defaults to the
right of the cell, in the place of the cell's accessory, which is located on the right-hand
side of the cell.

 f Accessory: This accepts values of the UITableViewCellAccessory
type. It provides predefined views for the cell's accessory, such as
DetailDisclosureButton or Checkmark.

UINib class
The UINib class is responsible for loading NIB files at runtime. We instantiate a UINib
instance through its FromName static method, passing the name of the NIB file we want
to load without its extension, as shown in the following code:

UINib nib = UINib.FromName("CustomCell", NSBundle.MainBundle);

Displaying Data

140

Adding content programmatically
We can add views to a table cell programmatically. However, we should not add them to the
cell directly, but to its ContentView, using the following code:

// Inside our custom cell class:
this.ContentView.AddSubview(myView);

See also
 f The Displaying data in a table recipe

 f The Editing a table recipe

 f The Creating a custom view recipe in Chapter 2, User Interface – Views

Editing a table
In this recipe, we will discuss how to insert and delete rows at runtime from a UITableView,
providing the user with the appropriate user interface interaction.

Getting ready
Open the CustomRowsApp project we created in the previous recipe, Customizing rows.

How to do it...
Perform the following steps:

1. Remove the tableData field from the TableSource class and replace it with the
following property:
public List<string> TableData { get; private set; }

2. Initialize the list in the constructor using the following code:
this.TableData = new List<string>() { "Music", "Videos",
 "Images" };

3. In the TableSource class, override the CommitEditingStyle method and
implement it with the following code:
public override void CommitEditingStyle (UITableView
 tableView, UITableViewCellEditingStyle editingStyle,
 NSIndexPath indexPath) {
 if (editingStyle == UITableViewCellEditingStyle.Delete) {
 this.tableData.RemoveAt(indexPath.Row);
 tableView.DeleteRows(new NSIndexPath[] { indexPath },
 UITableViewRowAnimation.Automatic);

Chapter 5

141

 }
}

4. In the TableController class, add a UIBarButtonItem using the following code:
UIBarButtonItem btnAdd;
public override ViewDidLoad() {
 // … existing code here.
 this.btnAdd = new UIBarButtonItem(
 UIBarButtonSystemItem.Add, (s, e) => {
 TableSource tableSource =
 (TableSource)this.TableView.Source;
 int itemCount = tableSource.TableData.Count;
 tableSource.TableData.Add(string.Format("Inserted item:
 {0}", itemCount));
 this.TableView.InsertRows(new NSIndexPath[] {
 NSIndexPath.FromRowSection(itemCount, 0)
 }, UITableViewRowAnimation.Automatic);
 };
 this.NavigationItem.SetRightBarButtonItem(this.btnAdd,
 false);
}

5. Compile and run the app on the simulator. Tap the plus button to add new rows to the
table and swipe on an item from right to left to delete items. The following screenshot
shows the table after having added one item and swiped on another one:

To swipe an item on the simulator, click-and-drag the cursor sideways.

Displaying Data

142

How it works...
The CommitEditingStyleForRow method is called whenever an editing action is about
to take place. In our implementation, we check if the editing action is about deleting an item,
and if it is, we remove the row. To do this, we first remove the corresponding item from our
data source and then call the DeleteRows method of the table view:

this.tableData.RemoveAt(indexPath.Row);
tableView.DeleteRows(new NSIndexPath[] { indexPath },
 UITableViewRowAnimation.Automatic);

Similarly, when we want to add a row to the table, we first add the item we want to our data
source and then call the InsertRows method, as follows:

tableSource.TableData.Add(string.Format("Inserted item: {0}",
 itemCount));
this.TableView.InsertRows(new NSIndexPath[] {
 NSIndexPath.FromRowSection(itemCount, 0)
}, UITableViewRowAnimation.Automatic);

There's more...
The UITableView also supports an editing mode. We can activate/deactivate the
editing mode of a table view by calling the SetEditing method, passing true or false,
respectively, an example of which is shown in the following code:

this.TableView.SetEditing(true, true);

The second parameter determines whether we want the table view to transition to/from the
editing mode with an animation.

When a table view is in the editing mode, each row has a red minus sign on its left-hand side.
If the user taps the sign, the Delete button will appear on the right-hand side of the row, just
as it appears when they swipe the row.

Enabling editing modes for individual rows
We can also enable a specific editing mode or even disable it for individual rows. To do this,
we need to override the EditingStyleForRow method in our UITableViewSource
subclass, as shown in the following code:

public override UITableViewCellEditingStyle
 EditingStyleForRow(UITableView tableView,
 NSIndexPath indexPath) {
 // To disable the editing style of a row:
 // return UITableViewCellEditingStyle.None;
 return UITableViewCellEditingStyle.Delete;
}

Chapter 5

143

See also
 f The Displaying data in a table recipe

Table indexing
In this recipe, we will learn how to provide an index in a table, allowing the user to quickly
browse through the rows of UITableView.

Getting ready
Create a new project in Xamarin Studio and name it TableIndexApp. Add a
UITableViewController, as shown in the previous tasks in this chapter,
and implement the TableSource class.

How to do it...
Perform the following step:

1. In the table source class, override and implement the following methods:
public override int NumberOfSections (UITableView
 tableView)
{
 return this.tableData.Count;
}
public override string TitleForHeader (UITableView
 tableView, int section)
{
 return Convert.ToString (this.tableData[section][0]);
}
public override string[] SectionIndexTitles (UITableView
 tableView)
{
 return this.tableData.Select (s => Convert.ToString
 (s[0])).Distinct ().ToArray ();
}

How it works...
The table source created in this recipe contains many different sections. For simplicity, each
section contains one row. The NumberOfSections method returns the total number of
sections that the table will display.

Displaying Data

144

To set a title for each section, we must override the TitleForHeader method, as shown in
the following code:

public override string TitleForHeader (UITableView tableView, int
section)
{
 return Convert.ToString (this.tableData[section][0]);
}

This implementation returns the first letter of each string in the data source. To provide the
index, we override the SectionIndexTitles method, as shown in the following code:

public override string[] SectionIndexTitles (UITableView
 tableView)
{
 return this.tableData.Select (s => Convert.ToString
 (s[0])).Distinct ().ToArray ();
}

Here, it returns the first letter of each item in the data source. The result of this project will be
similar to one shown in the following screenshot:

When the user touches the screen anywhere on the index, the table view will scroll to that
specific section.

Chapter 5

145

There's more...
Indexing should be applied to tables with a Plain style. Applying an index on tables with a
Grouped style set is not advisable, because the index will not be easily distinguished.

A good example of a native iOS app with an index on a table can be found in the native
Contacts app.

See also
 f The Displaying data in a table recipe

Searching through the data
In this recipe, we will learn how to provide search functionality for the content in a table view.

Getting ready
Create a new project in Xamarin Studio and name it SearchTableApp. Add
UIViewController and name it SearchController.

How to do it...
Perform the following steps:

1. Open the SearchController.xib file in Interface Builder. Add Search Bar and
Search Display Controller in UITableView. The following screenshot shows the
UISearchDisplayController object selected in the object browser:

Displaying Data

146

Note that after this action, some outlets are created and connected
automatically. We need most of them, so we leave them as they are.

2. Add UITableView and connect it to an outlet. Save the document.

3. Back in Xamarin Studio, create a UITableViewSource subclass that will act
as the data source for the table view. Refer to the Displaying data in a table
recipe in this chapter for information on how to do this. This time, make sure
that the List<string> variable, which will hold the data, is a member of the
SearchController class.

4. Add another List<string> variable in the SearchController class using the
following code:
private List<string> filterDataList;

5. Implement a subclass that will act as a delegate object for the search display
controller, as shown in the following code:
private class SearchDelegate : UISearchDisplayDelegate
{
 public SearchDelegate (TableController controller)
 {
 this.parentController = controller;
 }
 private TableController parentController;
 public override bool ShouldReloadForSearchString
 (UISearchDisplayController controller, string
 forSearchString)
 {
 this.parentController.filterDataList =
 this.parentController.tableData
 .Where (s => s.ToLower ().Contains
 (forSearchString.ToLower ()))
 .ToList ();
 this.parentController.filterDataList.Sort
 (delegate(string firstStr, string secondStr) {
 return firstStr.CompareTo (secondStr);
 });
 return true;
 }
}

Chapter 5

147

6. Add the following code in the ViewDidLoad method and assign the source and
delegate objects in it:
this.TableView.Source = new TableSource (this);
this.SearchDisplayController.SearchResultsSource = new
 TableSource(this);
this.SearchDisplayController.Delegate = new
 SearchDelegate(this);

7. Compile and run the app on the simulator. Tap the search bar and start typing into it.
It will automatically search the table and show the results.

You can find the complete code in the SearchTableApp project. The result will be
the common iOS search bar above the table, similar to the following screenshot:

How it works...
The UISearchDisplayController class provides a convenient way of searching through
data. It contains UISearchBar which accepts input from the user, and UITableView
which is used to display the results. After we add a search controller in a view controller, we
can access it through that controller's SearchDisplayController property. To trigger
the results table, we must implement UISearchDisplayDelegate and override its
ShouldReloadForSearchString (which returns a Boolean value) using the following code:

private class SearchDelegate : UISearchDisplayDelegate

Displaying Data

148

Inside the ShouldReloadForSearchString method override, we search our data source,
saving the filtered results in a new data source according to its forSearchString parameter:

this.parentController.filterDataList =
 this.parentController.tableData
 .Where (s => s.ToLower ().Contains (forSearchString.ToLower ()))
 .ToList ();

We then sort the results alphabetically and return true so that the search controller's table
will reload its data, as shown in the following code:

this.parentController.filterDataList.Sort (delegate(string
 firstStr, string secondStr) {
 return firstStr.CompareTo (secondStr);
});
return true;

The search controller's table view also needs a source object. In this example, we set it to the
same object we created for our table, as shown in the following code:

this.TableView.Source = new TableSource (this);
this.SearchDisplayController.SearchResultsSource = new
 TableSource(this);

As we are using instances of the same object, we need to modify some things in it to display
data according to which table calls it. So, for example, the RowsInSection method looks
like the following code:

public override int RowsInSection (UITableView tableview, int
 section)
{
 if (tableview.Equals (this.parentController.TableView))
 {
 return this.parentController.tableData.Count;
 } else
 {
 return this.parentController.filterDataList.Count;
 }
}

In this way, we return the number of rows according to which table calls the method.
Similarly, we need to set each cell's text label inside the GetCell method, as shown
in the following code:

if (tableView.Equals (this.parentController.TableView))
{
 cell.TextLabel.Text =
 this.parentController.tableData[rowIndex];

Chapter 5

149

} else
{
 cell.TextLabel.Text =
 this.parentController.filterDataList[rowIndex];
}

There's more...
When the user taps on the search bar, the keyboard appears, making the search controller
active. To deactivate it, we can hook on the search bar's SearchButtonClicked event.
This event will get triggered when the user taps on the keyboard's Search button:

this.SearchDisplayController.SearchBar.SearchButtonClicked +=
 (s, e) => {
 this.SearchDisplayController.SetActive(false, true);
};

The SetActive method is what we can use to enable or disable the search controller.

See also
 f The Displaying data in a table recipe

 f The Table indexing recipe

Creating a simple web browser
In this recipe, we will discuss displaying online content with the UIWebView class.

Getting ready
Create a new Single View Application project in Xamarin Studio and name it WebBrowserApp.

How to do it...
Perform the following steps:

1. Open the WebBrowserAppViewController.xib file in Interface Builder and add
a UIWebView object on the main view. Create and connect an outlet for it with the
name webView. Save the document.

Displaying Data

150

2. Override the ViewDidAppear method in the WebBrowserAppViewController
class, as shown in the following code:
public override void ViewDidAppear (bool animated)
{
 NSUrl url = new NSUrl ("http://software.tavlikos.com");
 NSUrlRequest urlRequest = new NSUrlRequest (url);
 this.webView.LoadRequest (urlRequest);
}

3. Compile and run the app on the simulator. Watch the website load on the screen!

How it works...
The UIWebView class is iOS SDK's web browser control. To load web content, we just have to
call its LoadRequest method, which accepts a parameter of the NSUrlRequest type. The
NSUrlRequest object contains the URL we want it to load, as shown in the following code:

NSUrl url = new NSUrl ("http://software.tavlikos.com");

There's more...
The UIWebView class contains some very useful events, which are as follows:

 f LoadStarted: This is triggered when the control has started loading content

 f LoadFinished: This is triggered when the content finished loading successfully

 f LoadError: This is triggered when the loading of the content failed

Scaling the content
Another important feature of the UIWebView is the automatic scaling of content. It can be
activated by setting its ScalePageToFit property to true.

UIWebView supported files
Apart from web pages, the UIWebView control can be used to display local content with the
following types of files:

 f Excel (.xls)

 f Keynote (.key.zip)

 f Numbers (.numbers.zip)

 f Pages (.pages.zip)

 f PDF (.pdf)

 f Powerpoint (.ppt)

Chapter 5

151

 f Word (.doc)

 f Rich Text Format (.rtf)

 f Rich Text Format Directory (.rtfd.zip)

 f Keynote (.key)

 f Numbers (.numbers)

 f Pages (.pages)

Displaying data in a grid
In this recipe, we will discuss using the UICollectionView object to display data in a
grid-like layout. The UICollectionView class was introduced in iOS 6, and is a very useful
control that was missed by iOS developers. Prior to UICollectionView, the only way to
display data in a grid was to create a custom control, which was not a very easy task.

Getting ready
Create a new project in Xamarin Studio and name it CollectionViewApp. We will also need
something to display, so add an image to the project.

How to do it...
Perform the following steps:

1. Open the CollectionViewAppViewController.xib file in Interface Builder and
add a UICollectionView on its main view. The following screenshot shows the
object in the object browser:

Displaying Data

152

2. Back in Xamarin Studio, add the following class:
public class ImageCell : UICollectionViewCell {
 public const string CELLID = "ImageCell";
 public ImageCell(IntPtr handle) : base(handle) {
 this.Initialize();
 }
 public UIImageView ImageView { get; private set; }
 private void Initialize() {
 this.ImageView = new
 UIImageView(this.ContentView.Bounds);
 this.ContentView.AddSubview(this.ImageView);
 }
}

3. Add the following nested class in the controller:
private class CollectionSource : UICollectionViewSource {
 public CollectionSource(CollectionViewAppViewController
 parentController) {
 this.parentController = parentController;
 }
 private CollectionViewAppViewController parentController;
 public override int GetItemsCount(UICollectionView
 collectionView, int section) {
 return this.parentController.collectionData.Count;
 }
 public override UICollectionViewCell
 GetCell(UICollectionView collectionView, NSIndexPath
 indexPath) {
 ImageCell cell = (ImageCell)collectionView.
 DeqeueReusableCell((NSString)ImageCell.Cell,
 indexPath);
 cell.ImageView.Image = this.parentController.
 collectionData[indexPath.Row];
 return cell;
 }
}

4. Add the following code in the controller:
private List<UIImage> collectionData;
public override ViewDidLoad() {
 base.ViewDidLoad();
 this.collectionData = new List<UIImage>();
 for (int i = 0; i < 30; i++) {
 this.collectionData.Add(UIImage.FromBundle("shapes"));
 }

Chapter 5

153

 this.collectionView.RegisterClassForCell(
 typeof(ImageCell), (NSString)ImageCell.CELLID);
 this.collectionView.Source = new CollectionSource(this);
}

5. Compile and run the app on the simulator. The result should be similar to the one
shown in the following screenshot:

How it works...
The UICollectionView class is used in a manner that is similar to UITableView. The
main difference is that instead of showing the data in a single column, it does so in a grid
arrangement. The UICollectionViewSource class is overridden to provide the data source
of the collection view, as shown in the following code:

private class CollectionSource : UICollectionViewSource {

Displaying Data

154

Just like table views in UITableViewSource, we need to provide the number of items in the
grid and the object for single items, in this case, UICollectionViewCell, as shown in the
following code:

public override int GetItemsCount(UICollectionView collectionView,
 int section) {
 return this.parentController.collectionData.Count;
}
public override UICollectionViewCell GetCell(UICollectionView
 collectionView, NSIndexPath indexPath) {
 ImageCell cell = (ImageCell)collectionView.
 DeqeueReusableCell((NSString)ImageCell.Cell, indexPath);
 cell.ImageView.Image = this.parentController.
 collectionData[indexPath.Row];
 return cell;
}

Note that unlike UITableViewCell, the UICollectionViewCell class doesn't offer much
for us to use. So, we have to override it to create our own cell for the collection, as shown in
the following code:

public class ImageCell : UICollectionViewCell

As we are using a custom cell, we have to let the collection view know about it through the
RegisterClassForCell method, using the following code:

this.collectionView.RegisterClassForCell(typeof(ImageCell),
 (NSString)ImageCell.CELLID);

There's more...
Apart from showing individual items with the UICollectionViewCell class,
the UICollectionView supports the display of supplementary views of the
UICollectionReusableView type. These views basically represent either the
header or the footer of the sections in the collection view.

To provide supplementary views, we need to create our own subclass using the following code:

public class CollectionHeader : UICollectionReusableView

We then need to override the following method in the collection source (this method will return
the supplementary view that we want):

public override UICollectionReusableView
 GetViewForSupplementaryElement(UICollectionView collectionView,
 NSString elementKind, NSIndexPath indexPath) {

Chapter 5

155

 CollectionHeader header =
 (CollectionHeader)collectionView.
 DequeueReusableSupplementaryView(
 UICollectionElementKindSection.Header, viewIdentifier,
 indexPath);
 return header;
}

The elementKind parameter is the NSString representation of the
UICollectionElementKindSection enumeration, which contains
two values: Footer and Header.

Finally, we need to call the RegisterClassForSupplementaryView method to register
our custom class with the collection view, using the following code:

this.collectionView.RegisterClassForSupplementaryView(typeof(Colle
 ctionHeader), UICollectionElementKindSection.Header,
 viewIdentifier);

More information on UICollectionView
A good tutorial on UICollectionView can be found at Xamarin's website: http://docs.
xamarin.com/guides/ios/user_interface/introduction_to_collection_
views/.

See also
 f The Displaying data in a table recipe

 f The Customizing rows recipe

Customizing the grid
In this recipe, we will learn how to customize the display of the collection view.

Getting ready
In this recipe, we will work on the CollectionViewApp project we created in the Displaying
data in a grid recipe. Open the project in Xamarin Studio.

http://docs.xamarin.com/guides/ios/user_interface/introduction_to_collection_views/
http://docs.xamarin.com/guides/ios/user_interface/introduction_to_collection_views/
http://docs.xamarin.com/guides/ios/user_interface/introduction_to_collection_views/

Displaying Data

156

How to do it...
Perform the following steps:

1. In the ViewDidLoad method of the controller, add the following code:
UICollectionViewFlowLayout flowLayout = new
 UICollectionViewFlowLayout();
flowLayout.MinimumLineSpacing = 20f;
flowLayout.MinimumInteritemSpacing = 4f;
flowLayout.SectionInset = new UIEdgeInset(4f, 4f, 4f, 4f);
flowLayout.ItemSize = new SizeF(20f, 20f);
this.collectionView.CollectionViewLayout = flowLayout;

2. Compile and run the app on the simulator. The result should be similar to the one
shown in the following screenshot:

Chapter 5

157

How it works...
The collection view's layout can be customized through the UICollectionViewLayout
class. UICollectionViewFlowLayout is a subclass of this class and offers a simple layout
that we can use.

By setting specific properties, we define how the cells will be arranged by the collection view.
The following list describes the properties we are setting in this project:

 f MinimumLineSpacing: This is the smallest distance between rows in the grid

 f MinimumInteritemSpacing: This is the smallest distance between individual
items in the grid

 f SectionInset: This is the area around each section in the collection view that
should be left blank

 f ItemSize: This is the size of each item in the collection view

The following image shows what each property corresponds to in the collection view:

Displaying Data

158

There's more...
Setting the ItemSize parameter of the collection layout object will adjust the size of all the
items in the collection view. We can set the size for every cell individually by providing the
following method in the CollectionSource subclass:

[Export("collectionView:layout:sizeForItemAtIndexPath:")]
public SizeF GetSizeForItem(UICollectionView collectionView,
 UICollectionViewLayout layout, NSIndexPath indexPath) {
 if (indexPath.Item > 11 && indexPath.Item < 19) {
 return new SizeF(40f, 40f);
 } else {
 return new SizeF(20f, 20f);
 }
}

Adding the preceding method to our own CollectionSource subclass would give the result
shown in the following screenshot:

See also
 f The Displaying data in a grid recipe

6
Web Services

In this chapter, we will cover the following topics:

 f Consuming web services

 f Consuming REST services

 f Communicating with native APIs

 f Using WCF services

Introduction
Providing online information to the user is a crucial part of mobile development. In this
chapter, we will discuss developing apps that communicate with web services to provide
information. We will see how to consume and invoke web services based on SOAP. We will
also discuss on how to use REST web services and how to parse the popular JSON data
format from a web server. Last but not least, we will take a look at how to use the native iOS
APIs for communication and also how to use WCF services.

All examples in this chapter use XSP, a lightweight web server that is shipped with the Mono
Framework; so, there is no need to have a live web service up and running online or locally to
make use of the provided code.

Consuming web services
In this recipe, we will learn how to use a SOAP web service in a Xamarin.iOS project.

Web Services

160

Getting ready
Create a new Single View Application project in Xamarin Studio and name it WebServiceApp.
This chapter's code contains a web service project named MTWebService. This is the web
service that will be used.

To use the MTWebService web service, we need a web server. Mono Framework provides
us with the XSP lightweight web server for testing purposes. Open a terminal and type the
following command to get to the web service's directory, replacing <code_directory> with
the path the downloaded code is in:

cd <code_directory>/CH06_code/MTWebService/MTWebService

Run the XSP web server by typing xsp4 in the prompt. You will see an output that is similar to
the following:

xsp4

Listening on address: 0.0.0.0

Root directory:
/Users/dtavlikos/projects/CH06_code/MTWebService/MTWebService

Listening on port: 8080 (non-secure)

Hit Return to stop the server.

The web server is now up and running.

How to do it...
Perform the following steps to complete this recipe:

1. We need to add a reference to the web service in our project. Right-click on the
project in the Solution pad and navigate to Add | Add Web Reference. In the dialog
box that will be shown, add http://localhost:8080/MTTestWebService.
asmx?wsdl in the Web Service Url field and click on the Jump to button.

2. Select .NET 2.0 Web Services in the Framework combo box.

3. Set the Reference field to mtWebService.

4. With all the settings properly entered, the dialog box should look similar to the
following screenshot. Click on the OK button to add the web reference:

Chapter 6

161

5. Add a button and label to WebServiceAppViewController.

6. In the ViewDidLoad method of the controller, add the following code:
this.btnFetch.TouchUpInside += (s, e) => {
 using (MTTestWebService webService =
 new MTTestWebService())
 {
 this.lblOutput.Text =
 webService.GetMessage ("Hello Web Service!");
 }
};

7. Add the following using directive to the WebServiceAppViewController.cs file:
using WebServiceApp.mtWebService;

8. Compile and run the app on the simulator. Click on the Fetch button and the output
should be displayed on the screen.

Web Services

162

How it works...
Xamarin.iOS apps can consume web services just like a .NET desktop application. The XSP
lightweight web server is installed when installing the Mono Framework by default, which is a
requirement for the Xamarin installation. When running the xsp4 command in the terminal
without any parameters, it sets its base directory to the current directory by default and starts
listening on the 8080 port. If the web server is started, the web service description can be
viewed by entering http://localhost:8080/MTTestWebService.asmx in a browser.

Xamarin Studio reads the WSDL information from the provided URL and creates the
necessary proxy that will allow us to use the web service in the project.

We then set the Framework value to .NET 2.0 Web Services and provide a Reference name,
which will reflect the namespace of the web reference. To make use of the web service within
our code, we instantiate it and then just call the method we are interested in:

this.lblOutput.Text =
 webService.GetMessage ("Hello Web Service!");

There's more...
Apart from using a local hosted web service, there are also numerous sample web services on
the Internet. A simple search will yield many results.

Invoking web service methods asynchronously
The created proxy also contains methods based on Begin/End and the event to invoke the web
service asynchronously. The following example shows us how to use the event-based methods:

MTTestWebService webService = new MTTestWebService();
webService.GetMessageCompleted += (sender, args) =>
 this.InvokeOnMainThread(() => this.lblOutput.Text =
 args.Result);
webService.GetMessageAsync("Hello Web Service!");

Note the InvokeOnMainThread call inside the event handler; it is being called on a
separate thread. So, if we want to access the main thread in it, we need to wrap our calls with
InvokeOnMainThread.

The XSP shutdown
To shut down the XSP web server, just click on the Return key in the terminal where it was
executed from.

See also
 f The Communicating with native APIs recipe

Chapter 6

163

Consuming REST services
In this recipe, we will discuss how to properly use and consume REST services with Xamarin.iOS.

Getting ready
Create a new Single View Application in Xamarin Studio and name it ForecastApp. In this
recipe, we will use the Open Meteo Foundation REST API. The use of this API is subject to the
terms of use stated in this page: http://openmeteofoundation.org/terms-of-use.

How to do it...
Perform the following steps to complete this recipe:

1. Add a label and a button on ForecastAppViewController. Make sure that the
label's Lines property is set to at least three lines.

2. Add the following code in the controller's ViewDidLoad method:
this.btnForecast.TouchUpInside += async (sender, e) => {

 HttpClient client = new HttpClient();
 string jsonResponse = await
 client.GetStringAsync("http://api.ometfn.net/
 0.1/forecast/eu12/46.5,6.32/now.json");
 JsonValue jsonObj = JsonValue.Parse(jsonResponse);
 JsonArray tempArray = (JsonArray)jsonObj["temp"];
 double temp = (double)tempArray[0];
 JsonArray windSpeedArray =
 (JsonArray)jsonObj["wind_10m_ground_speed"];
 double windSpeed = (double)windSpeedArray[0];
 this.lblOutput.Text =
 string.Format("Temperature: {0}\nWind speed: {1}",
 temp, windSpeed);
};

3. Add the System.Net.Http and System.Json references to the project.
Don't forget to include the corresponding using directives to the
ForecastAppViewcontroller.cs file.

4. Compile and run the app on the simulator. Click on the Get Forecast button to display
the current temperature and wind speed on the screen.

http://openmeteofoundation.org/terms-of-use

Web Services

164

How it works...
In this recipe, we created an app that uses a REST API to get the current forecast for a
location. We are using the async/await pattern that allows us to connect and retrieve
the data asynchronously. This helps us make sure that our app will not freeze while it is
connected to retrieve the data.

As it all happens when we click on the button, its TouchUpInside handler method needs to
be marked async, as follows:

this.btnForecast.TouchUpInside += async (sender, e) => {
//..

We then use the HttpClient class, which is part of the System.Net.Http namespace
that provides us with asynchronous methods to connect to endpoints, as follows:

HttpClient client = new HttpClient();
 string jsonResponse =
 await client.GetStringAsync("http://api.ometfn.net/
 0.1/forecast/eu12/46.5,6.32/now.json");

We pass the endpoint to the GetStringAsync method, and we get back a JSON
response string.

After retrieving the response, we need to parse it to extract the information we need from it.
We do this by using the System.Json namespace. This namespace contains a set of simple
classes that allow us to parse JSON strings, as follows:

JsonValue jsonObj = JsonValue.Parse(jsonResponse);

The temperature is contained in the JSON response under the temp key that contains an
array, albeit with a single item, as follows:

JsonArray tempArray = (JsonArray)jsonObj["temp"];
double temp = (double)tempArray[0];

After we read the information we need from the JSON response, we display it as follows:

this.lblOutput.Text =
 string.Format("Temperature: {0}\nWind speed: {1}", temp,
 windSpeed);

Chapter 6

165

There's more...
The System.Json namespace is very helpful for parsing simple JSON strings. However,
things could get very complicated if we have to parse large and more complex objects. There
are a number of open source libraries we can download and use in our Xamarin.iOS projects.
The most popular are as follows:

 f Xamarin port of NewtonSoft Json.NET from Andrew Young: Even if this is
outdated, it is fully functional for Xamarin projects. You can find the page at
https://github.com/ayoung/Newtonsoft.Json.

 f ServiceStack.Text: You can find the page at
https://github.com/ServiceStack/ServiceStack.Text.

See also
 f The Consuming web services recipe

Communicating with native APIs
In this recipe, we will discuss using native iOS APIs to connect and consume REST services.

Getting ready
For this recipe, we will work on the ForecastApp we created in the previous recipe,
Consuming REST services. Open the project in Xamarin Studio.

How to do it…
Perform the following steps:

1. Comment out the code in the ViewDidLoad method and add the following code:
this.btnForecast.TouchUpInside += (sender, e) => {
 NSUrlRequest request = new NSUrlRequest(new
 NSUrl("http://api.ometfn.net/0.1/forecast/eu12/
 46.5,6.32/now.json"));
 NSUrlConnection connection = new NSUrlConnection(request,
 new ConnectionDelegate((response) => {
 JsonValue jsonObj = JsonValue.Parse(response);
 JsonArray tempArray = (JsonArray)jsonObj["temp"];
 double temp = (double)tempArray[0];
 JsonArray windSpeedArray =
 (JsonArray)jsonObj["wind_10m_ground_speed"];
 double windSpeed = (double)windSpeedArray[0];

https://github.com/ayoung/Newtonsoft.Json
https://github.com/ServiceStack/ServiceStack.Text

Web Services

166

 this.lblOutput.Text =
 string.Format("Temperature: { 0}\ nWind speed: { 1}",
 temp, windSpeed);
 }));
 connection.Start();
};

2. Add the following class to the project:
public class ConnectionDelegate : NSURLConnectionDelegate {
 private Action<string> finishedCallback;
 private StringBuilder responseData;
 public ConnectionDelegate(Action<string> callback) {
 this.finishedCallback = callback;
 this.responseData = new StringBuilder();
 }
 public override void ReceivedData(NSUrlConnection
 connection, NSData data) {
 if (null != data) {
 this.responseData.Append(data.ToString());
 }
 }
 public override FinishedLoading(NSUrlConnection
 connection) {
 if (null != this.finishedCallback) {
 this.finishedCallback(this.responseData.ToString());
 }
 this.responseData.Clear();
 }
}

3. Compile and run the app on the simulator. Click on the Get Forecast button to fetch
and display the forecast data.

How it works…
The NSUrlConnection class is the native iOS class that provides basic connectivity
functionality. We initialize it by passing NSUrlRequest and a delegate object, as follows:

NSUrlRequest request = new NSUrlRequest(new
 NSUrl("http://api.ometfn.net/0.1/forecast/eu12/
 46.5,6.32/now.json"));
 NSUrlConnection connection = new NSUrlConnection(request,
 new ConnectionDelegate((response) => {

Chapter 6

167

The ConnectionDelegate class that we created acts as the delegate object of our
NSUrlConnection. Inside the class, we need to override the ReceivedData method
to fill our internal buffer with the data received from the service, as follows:

public override void ReceivedData(NSUrlConnection connection, NSData
data) {

Similarly to reading data from the Stream object of HttpWebResponse, the ReceivedData
method will be called as soon as new data becomes available. Inside ReceivedData, we
make sure we append the data to our buffer. When all the data has been received and the
response is finished, the FinishedLoading method will be called, as follows:

public override void FinishedLoading(NSUrlConnection connection) {

After initializing the NSUrlConnection instance, we call its Start method to initiate the
connection, as follows:

connection.Start();

There's more…
If something goes wrong with the connection, the FailedWithError method of
NSUrlConnectionDelegate will be called. We can override it to get information
on the error that occurred, as follows:

public override void FailedWithError(NSUrlConnection connection,
NSError error) {
 if (null != error) {
 Console.WriteLine("Connection error: {0}",
 error.LocalizedDescription);
 }
}

Synchronous NSUrlConnection
Using the NSUrlConnection class with a delegate object means that the connection will take
place asynchronously on the thread that it was started from. If we wanted to start a synchronous
connection, we can use the SendSynchronousRequest static method, as follows:

NSUrlResponse response;
NSError error;
NSData data = NSUrlConnection.SendSyncrhonousRequest(request,
 out response, out error);
// do something with data

Web Services

168

Usability
As you might have already noticed, using NSUrlConnection is a bit more complicated
than plain old Mono BCL classes. In general, using BCL classes is the best practice for most
scenarios, as it helps us maintain a multi-platform code base, among other things.

There are some cases, however, where the native APIs are very useful and are the only
available solution. For example, iOS supports certain connectivity features in the background,
which are only possible with the native APIs.

See also
 f The Consuming REST services recipe

 f The Updating data in the background recipe in Chapter 12, Multitasking

Using WCF services
In this recipe, we will learn how to consume WCF services with Xamarin.iOS.

The WCF service support is only available in business and
enterprise licenses of Xamarin.

Getting ready
For this project, we will need a running WCF service. A WCF service can be found in the
code download of this chapter. To start the service, open a terminal and go to the project's
directory. Start the service by running the start_wcfservice.sh shell script, as follows:

cd <code_directory>/CH06_code/WcfService/WcfService

./start_wcfservice.sh

After the service is started, create a new Single View Application in Xamarin Studio and
name it WcfServiceApp. A machine running on Windows will also be needed.

How to do it...
Perform the following steps:

1. Add the references to the System.Runtime.Serialization and
System.ServiceModel namespaces of the project and their corresponding
using directives in the WcfServiceAppViewController.cs file.

Chapter 6

169

2. Xamarin.iOS does not provide full support for WCF services. To generate a proxy for
the client, we will need to use the slsvcutil tool on a Windows machine. Run the
following command in the command prompt under Windows:
"c:\Program Files\Microsoft
SDKs\Silverlight\v3.0\Tools\slsvcutil /noconfig
http://192.168.0.113:8080/WcfService.svc?wsdl"

This command will produce a C# source file named service.cs. Add this file to the
Xamarin.iOS project. Replace the IP address in the following highlighted code with
your own to make it work correctly.

3. Add a label and a button on the view of WcfServiceAppViewController. Add the
following code in the ViewDidLoad method:
this.btnFetchData.TouchUpInside += (sender, e) => {
 WcfTestServiceClient client =
 new WcfTestServiceClient (new BasicHttpBinding (),
 new EndpointAddress
 ("http://192.168.0.113:8080/WcfTestService.svc"));
 client.GetBookInfoCompleted +=
 WcfTestServiceClient_GetBookInfoCompleted;
 client.GetBookInfoAsync ();
 UIApplication.SharedApplication.
 NetworkActivityIndicatorVisible = true;
};

4. Finally, add the following method:
private void WcfTestServiceClient_GetBookInfoCompleted
 (object sender, GetBookInfoCompletedEventArgs e)
{
 this.InvokeOnMainThread (delegate {
 UIApplication.SharedApplication.
 NetworkActivityIndicatorVisible = false;
 this.lblResponse.Text = String.Format ("Book title:
 {0}\nAuthor: {1}", e.Result.Title, e.Result.Name);
 });
}

5. Compile and run the app on the simulator. Click on the button and watch the data
returned from the service get populated in the label.

How it works...
Xamarin.iOS relies on Mono Framework's support for WCF services, which is not complete.
Although, the fact that WCF services can be used in iOS apps makes Xamarin.iOS more
appealing to .NET developers.

Web Services

170

However, there is no tool to create the client proxy on a Mac, and Xamarin Studio can not
create a proper proxy either; so, we will need to have access to a Windows machine to do this
with the Silverlight Service Model Proxy Generation Tool (SLsvcUtil.exe). The source file
that this tool generates allows us to consume the WCF service in our project.

It is important to use Silverlight Version 3.0 slsvcutil to create the client proxy.

Apart from Mono Framework's support, there is another limitation, that is, the dynamic
code generation is not allowed on iOS. This makes any code that relies on the System.
Reflection.Emit namespace unusable. In fact, the System.Reflection.Emit
namespace is not available at all in Xamarin.iOS.

After copying the produced file on Mac, we add it to the project, and we are ready to use the
WCF service. The preceding highlighted code shows us how to instantiate the service object.
Note that the default constructor of the service object cannot be used, as Xamarin.iOS does
not support the System.Configuration namespace.

The actual communication occurs by calling the method's
asynchronous implementation after setting a handler to its
corresponding completion event. Note that in this case, there
is no alternative to using synchronous invocations or the
BeginInvoke and EndInvoke pattern:

client.GetBookInfoCompleted +=
 WcfTestServiceClient_GetBookInfoCompleted;
client.GetBookInfoAsync ();

The result returned from the service can be retrieved through
the specified EventArgs derivative's Result property:

this.labelResult.Text = String.Format ("Book
title:
 {0}\nAuthor: {1}", e.Result.Title,
e.Result.Name);

There's more...
When debugging a project that consumes WCF services, remember to set the address of the
machine the service is running on, instead of localhost or 127.0.0.1. This is because when we
run the app on the device, the app will fail to connect to the service.

More information on Xamarin Studio's WCF support
There is an option of adding a WCF web reference through Xamarin Studio in the Add Web
References window shown in the Consuming web services recipe. However, it is not yet
complete and the proxy it generates will not work.

Chapter 6

171

WCF service creation
The object returned from the WcfService service and the actual service itself was created
completely on a Mac as a Xamarin Studio project. As there is no WCF project template, the
Empty Project template was used.

See also
 f The Consuming web services recipe

7
Multimedia Resources

In this chapter, we will cover the following topics:

 f Selecting images and videos

 f Capturing media with the camera

 f Playing videos

 f Playing music and sounds

 f Recording with the microphone

 f Managing album items directly

Introduction
One of the most important features of today's smartphones and tablets is their ability to
capture and manage multimedia resources. Be it photos, videos, or audio, an app targeted
at these devices that can handle multimedia effectively is very important.

In this chapter, we will see how to manage media stored on the device. We will also learn
how to use the device's multimedia capturing devices (a camera and microphone) to capture
content and create an app that will provide a rich experience to the user.

More specifically, we will discuss the following topics:

 f UIImagePickerController: This is a controller that provides access to the
saved photos and videos on the device through a user interface, but also a camera
interface for capturing photos through the device's camera hardware.

 f MPMoviePlayerController: This is a controller that allows us to play and stream
video files.

 f MPMediaPickerController: This is the default user interface to access the saved
content managed by the native iPod app.

Multimedia Resources

174

 f MPMusicPlayerController: This is the object that is responsible for playing the
iPod content.

 f AVAudioPlayer: This is the class that allows us to play sound files.

 f AVAudioRecorder: This is the class that allows us to use the microphone to
record audio.

 f ALAssetsLibrary: This is the class that provides access to the device's available
assets and their metadata.

Selecting images and videos
In this recipe, we will learn how to provide the user with the ability to import images and
videos from the device album.

Getting ready
Create a new Single View Application in Xamarin Studio and name it ImagePickerApp.
For this recipe, we will need some images to be stored in the simulator's photo albums.

An easy way to add images to the simulator is by navigating to a web page with Safari. Long-
tapping (click + hold) on any image in Safari will show us an action sheet with a Save option.
Tapping the option saves the image to the photo albums.

How to do it...
Perform the following steps:

1. Open the ImagePickerAppViewController.xib file in Interface Builder and
add UIImageView and UIButton to it.

2. Enter the following code in the ViewDidLoad method:
this.imagePicker = new UIImagePickerController();
this.imagePicker.FinishedPickingMedia +=
 this.ImagePicker_FinishedPickingMedia;
this.imagePicker.Canceled += this.ImagePicker_Cancelled;
this.imagePicker.SourceType =
 UIImagePickerControllerSourceType.PhotoLibrary;
this.btnSelect.TouchUpInside += async (s, e) => {
 await this.PresentViewControllerAsync(this.imagePicker,
 true);
};

Chapter 7

175

3. Implement the handler methods for the FinishedPickingMedia and Canceled
events as shown in the following code:
private async void ImagePicker_FinishedPickingMedia (object
 sender, UIImagePickerMediaPickedEventArgs e)
{
 UIImage pickedImage =
 e.Info[UIImagePickerController.OriginalImage] as
 UIImage;
 this.imageView.Image = pickedImage;
 await this.imagePicker.DismissViewControllerAsync(true);
}
private async void ImagePicker_Cancelled (object sender,
 EventArgs e)
{
 await this.imagePicker.DismissViewControllerAsync(true);
}

4. Compile and run the app on the simulator. Tap on the button you added in the initial
steps to present the image picker and select an image by tapping on its thumbnail.
The image will be displayed in the image view. The UIImagePickerController is
shown in the following screenshot:

Just before the first time UIImagePickerController is shown in an
app, iOS will display an alert, asking the user for permission to access the
photo albums. Handling this situation is described in the Managing album
items directly recipe later in this chapter.

Multimedia Resources

176

How it works...
UIImagePickerController is a special view controller that iOS provides to select
images and videos that are saved on the device album or even to capture new media
from the camera.

After initializing the image picker object, we need to subscribe to its
FinishedPickingMedia event, which provides us with the media that the user has
selected. In the handler we assign to it, we get the selected image:

UIImage pickedImage =
 e.Info[UIImagePickerController.OriginalImage] as UIImage;

The Info property returns an NSDictionary object that contains various
kinds of information about the picked media. We retrieve the image, passing the
UIImagePickerController.OriginalImage constant as key. As the values of the
dictionary are of the NSObject type, we cast the return value to UIImage. After we assign
the image to the UIImageView to be displayed, we dismiss the controller by using the
following code:

await this.imagePicker.DismissViewControllerAsync(true);

The Canceled event is triggered when the user taps on the controller's Cancel button. We
must subscribe to it to dismiss the controller, because it will not be dismissed automatically
when the user taps on the Cancel button.

There's more...
We can define the source of the images/videos the image picker will read from through
its SourceType property. In this example, we use UIImagePickerController.
PhotoLibrary because the simulator does not support the camera hardware.

Picking videos
UIImagePickerController displays only images by default. To support videos, its
MediaType property must be set. It accepts a string[] parameter, with the specified
media names as shown in the following code:

this.imagePicker.MediaTypes = new string[] { "public.image",
 "public.movie" };

To determine the media type the user has picked, we check the MediaType key of the
dictionary in the FinishedPickingMedia handler. If it is a video, we get its URL with the
MediaUrl key, as shown in the following code:

if (e.Info[UIImagePickerController.MediaType].ToString() ==
 "public.movie")

Chapter 7

177

{
 NSUrl mediaUrl = e.Info[UIImagePickerController.MediaURL] as
 NSUrl;
 // Do something useful with the media url.
}

See also
 f The Capturing media with the camera recipe

 f The Managing album items directly recipe

Capturing media with the camera
In this recipe, we will learn how to use the device camera to capture the media.

Getting ready
Open the ImagePickerApp project that we created in the previous recipe.

The camera functionality is not available on iOS Simulator. This
example can only run on the device. Refer to Chapter 14, Deploying,
for more information.

How to do it...
Perform the following steps:

1. In the ViewDidLoad method of the controller class, replace this.imagePicker.
SourceType = UIImagePickerControllerSourceType.PhotoLibrary;
with the following code block:
if (UIImagePickerController.
 IsSourceTypeAvailable(UIImagePicker
 ControllerSourceType.Camera))
{
 this.imagePicker.SourceType =
 UIImagePickerControllerSourceType.Camera;
} else
{
 this.imagePicker.SourceType =
 UIImagePickerControllerSourceType.PhotoLibrary;
}

Multimedia Resources

178

2. In the FinishedPickingMedia handler, add the following code before the
dismissal of the image picker:
pickedImage.SaveToPhotosAlbum((s, error) => {
 if (null != error)
 {
 Console.WriteLine("Image not saved! Message: {0}",
 error.LocalizedDescription);
 }
});

3. Compile and run the app on the device. Tap the button to open the camera and take
a picture. The picture will be saved to the device album.

How it works...
Before presenting the camera viewfinder, we have to make sure that the device that the
app is running on actually has the appropriate hardware. We do this by calling the static
IsSourceTypeAvailable method of the UIImagePickerController class as follows:

if (UIImagePickerController.
 IsSourceTypeAvailable(UIImagePicker
 ControllerSourceType.Camera))

If this returns true, we set the source type to Camera by using the following code:

this.imagePicker.SourceType =
 UIImagePickerControllerSourceType.Camera;

This will cause the image picker controller to start the camera device instead of loading the
device albums.

When the user takes a photo (or video) through our application, it is not automatically saved on
the device. To save it, we use the SaveToPhotosAlbum method of the UIImage class. This
method accepts a delegate of the UIImage.SaveStatus type, which will report an error if
something goes wrong:

if (null != error)
{
 Console.WriteLine("Image not saved! Message: {0}",
 error.LocalizedDescription);
}

There's more...
The camera view can also be customized. To disable the default camera controls, set the
ShowsCameraControls property to false. Then, pass a custom view with the controls
you want to the CameraOverlayView property. To trigger the shutter of the camera, call
the TakePicture method.

Chapter 7

179

Image editing
The camera supports a simple editing function after capturing an image. This editing function
allows the user to select a specific part of the image and even zoom to a specific area. To
present the editing controls, set the AllowsEditing property to true. The edited image
can be retrieved from the dictionary in the FinishedPickingMedia handler, passing the
UIImagePickerController.EditedImage key. The editing interface is shown in the
following screenshot:

See also
 f The Selecting images and videos recipe

Multimedia Resources

180

Playing videos
In this recipe, we will learn how to display a video player interface and play video files.

Getting ready
Create a new Single View Application in Xamarin Studio and name it PlayVideoApp.

How to do it...
Perform the following steps:

1. Add a button to the main view of the controller.

2. Add a video file to the project and set its Build Action to Content.

3. Add the following code to the ViewDidLoad method of the controller class:
this.moviePlayer = new
 MPMoviePlayerController(NSUrl.FromFilename("video.mov"));
this.moviePlayer.View.Frame = new RectangleF(0f, 20f,
 this.View.Frame.Width, 320f);
this.View.AddSubview(this.moviePlayer.View);
this.playbackStateChanged =
 MPMoviePlaybackController.Notifications.
 ObservePlaybackStateDidChange(this.MoviePlayer_
 PlaybackStateChanged);
this.finishedPlaying =
 MPMoviePlaybackController.Notifications.
 ObservePlaybackDidFinish(this.MoviePlayer_FinishedPlayback);
this.btnPlayVideo.TouchUpInside += delegate {
 this.moviePlayer.Play();
} ;

4. Enter the following methods in the MainController class:
private void MoviePlayer_PlaybackStateChanged(object
 sender, NSNotificationEventArgs e)
{
 Console.WriteLine("Movie player load state changed: {0}",
 this.moviePlayer.PlaybackState);
}
private void MoviePlayer_FinishedPlayback(object sender,
 NSNotificationEventArgs e)
{
 Console.WriteLine("Movie player finished playing.");
}

Chapter 7

181

5. Compile and run the app on the simulator. Tap on the button and the video will load
and start playing. Watch the messages displayed in the Application Output pad in
Xamarin Studio. The following screenshot shows us the video that is playing on
the simulator:

How it works...
The MPMoviePlayerController controller plays video files stored locally or streamed
from the network. We initialize the controller with the constructor that accepts an NSUrl
parameter, as shown in the following code:

this.moviePlayer = new
 MPMoviePlayerController(NSUrl.FromFilename("video.mov"));

The NSUrl class is the standard iOS class for URLs.

After creating the instance, we define a frame for its view and add it to our view by using the
following code:

this.moviePlayer.View.Frame = new RectangleF(0f, 20f,
 this.View.Frame.Width, 320f);
this.View.AddSubview(this.moviePlayer.View);

Multimedia Resources

182

The highlighted code in the preceding section adds observers to the default notification center
so that we will be notified when the state of the playback changes or finishes. Then, we call its
Play method and the MPMoviePlayerController controller's view is displayed, and the
video starts playing.

Inside the MoviePlayer_PlaybackStateChanged method, we output the
PlaybackState property by using the following code:

Console.WriteLine("Movie player load state changed: {0}",
 this.moviePlayer.PlaybackState);

This property informs us about the status of the playback, for example, Paused, Playing,
SeekingForward, and SeekingBackward.

There's more...
Apart from the ones used in this example, we can add observers for more notifications of an
MPMoviePlayerController controller, some of which are as follows:

 f DidEnterFullscreenNotification: This notifies us that the user has tapped
the fullscreen control and the controller has entered the fullscreen mode

 f DidExitFullscreenNotification: It notifies that the controller has left
fullscreen mode

 f DurationAvailableNotification: This notifies us that the controller has
received information on the duration of the video

 f LoadStateDidChangeNotification: This is useful for network playback; it is
triggered when the controller has finished preloading the media in the buffer

 f NaturalSizeAvailableNotification: This is triggered when the dimensions
of the movie frame are made available. The size can be retrieved through the player's
NaturalSize property

 f NowPlayingMovieDidChangeNotification: This is triggered when the video
content of the player has changed. The current content is available through its
ContentUrl property

Wireless streaming
Starting from iOS Version 4.3, MPMoviePlayerController can be used to stream
video to Apple's AirPlay-enabled devices. To enable wireless streaming, set the
MPMoviePlayerController instance's AllowsAirPlay property to true. When
controller is displayed, it will present an interface that will allow the user to select the
devices it detects.

See also
 f The Playing music and sounds recipe

Chapter 7

183

Playing music and sounds
In this recipe, we will learn how to play both simple audio files and songs stored on the device.

Getting ready
Create a new Single View Application in Xamarin Studio and name it PlayMusicApp.

This example will not work on the simulator. You will also need at least
one song stored on the device's iTunes library.

How to do it...
Perform the following steps:

1. Add three buttons to the view of the controller.

2. Add the following using directive in the PlayMusicAppViewController.cs file:
using MonoTouch.MediaPlayer;

3. Add the following two fields in the class:
private MPMusicPlayerController musicPlayer;
private MPMediaPickerController mediaPicker;

4. Add the following code in the ViewDidLoad method:
this.mediaPicker = new
 MPMediaPickerController(MPMediaType.Music);
this.mediaPicker.ItemsPicked += MediaPicker_ItemsPicked;
this.mediaPicker.DidCancel += MediaPicker_DidCancel;
this.musicPlayer =
 MPMusicPlayerController.ApplicationMusicPlayer;
this.btnSelect.TouchUpInside += async (s, e) => {
 await this.PresentViewControllerAsync(this.mediaPicker,
 true);
} ;
this.btnPlay.TouchUpInside += (s, e) => {
 this.musicPlayer.Play();
} ;
this.btnStop.TouchUpInside += (s, e) => {
 this.musicPlayer.Stop();
} ;

Multimedia Resources

184

5. Add the following methods in the class:
private async void MediaPicker_ItemsPicked (object sender,
 ItemsPickedEventArgs e)
{
 this.musicPlayer.SetQueue(e.MediaItemCollection);
 await this.DismissViewControllerAsync(true);
}
private async void MediaPicker_DidCancel (object sender,
 EventArgs e)
{
 await this.mediaPicker.DismissViewControllerAsync(true);
}

6. Compile and run the app on the device. Tap the Select songs button and select one
or more songs.

How it works...
The MPMediaPickerController controller provides the same user interface as the native
Music app for selecting songs. The MPMusicPlayerController controller is responsible
for playing the songs stored on the device.

We first initialize the media picker, passing the type of media we want it to look for in its
constructor by using the following code:

this.mediaPicker = new
 MPMediaPickerController(MPMediaType.Music);

After this, we subscribe to its ItemsPicked and DidCancel events so that we can capture
the feedback from the user by using the following code:

this.mediaPicker.ItemsPicked += MediaPicker_ItemsPicked;
this.mediaPicker.DidCancel += MediaPicker_DidCancel;

The highlighted code in the preceding section shows us how to initialize the music
player object. The option demonstrated here, MPMusicPlayerController.
ApplicationMusicPlayer, creates an instance that is specific only to the app. The other
option that is available, MPMusicPlayerController.iPodMusicPlayer, creates an
instance that allows the media to be played even if the app is in the background, similar to the
native Music app.

In the MediaPicker_ItemsPicked handler, we set the songs that were picked by the user
to the music player through its SetQueue method, as shown in the following code:

this.musicPlayer.SetQueue(e.MediaItemCollection);

Chapter 7

185

After this, we dismiss the modal media picker controller. Playing and stopping songs is achieved
through the Play() and Stop() methods of MPMusicPlayerController, respectively.

There's more...
MPMusicPlayerController holds information on the item that is being played currently.
This information can be accessed through its NowPlayingItem property. It is of the
MPMediaItem type and holds various types of information of the media that is being played
currently. The following example outputs the title of the song that is being played:

Console.WriteLine(this.musicPlayerController.NowPlayingItem.Va
 lueForProperty(MPMediaItem.TitleProperty));

Playing sound files
The MPMusicPlayerController controller is an object that is specifically designed to
manage and play items and playlists stored on the device's music library.

To play simple sound files, Xamarin.iOS provides another wrapper to the iOS's class,
AVAudioPlayer. The following code is an example of its most simple usage:

using MonoTouch.AVFoundation;
//...
AVAudioPlayer audioPlayer = AVAudioPlayer.FromUrl(new
 NSUrl("path/to/sound file"));
audioPlayer.Play();

See also
 f The Playing videos recipe

Recording with the microphone
In this recipe, we will learn how to use the device's microphone to record sounds.

Getting ready
Create a new project in Xamarin Studio and name it RecordSoundApp.

This example will not work on the simulator.

Multimedia Resources

186

How to do it...
Perform the following steps:

1. Add two buttons and a label to the view of the controller.

2. Enter the following using directives in the RecordSoundAppViewController.cs
file:
using System.IO;
using MonoTouch.AVFoundation;
using MonoTouch.AudioToolbox;

3. Override the ViewDidLoad method and add the following code to it:
NSUrl soundFileUrl = null;
NSError error = null;
AVAudioSession session = AVAudioSession.SharedInstance();
session.SetCategory(AVAudioSession.CategoryPlayAndRecord,
 out error);
session.SetActive(true, out error);
bool grantedPermission = false;
session.RequestRecordPermission((granted) => {
 if (granted) {
 grantedPermission = true;
 string soundFile =
 Path.Combine(Environment.GetFolderPath(Environment.
 SpecialFolder.Personal), "sound.wav");
 soundFileUrl = new NSUrl(soundFile);
 NSDictionary recordingSettings =
 NSDictionary.FromObjectAndKey(AVAudioSettings.
 AVFormatIDKey,
 NSNumber.FromInt32((int)AudioFileType.Wave));
 this.audioRecorder = AVAudioRecorder.ToUrl(
 soundFileUrl, recordingSettings, out error);
 } else {
 this.lblStatus.Text = "Permission to microphone
 refused";
 }
});

this.btnStart.TouchUpInside += (s, e) => {
 if (grantedPermission) {
 this.audioRecorder.Record();
 this.lblStatus.Text = "Recording…";
 }
};

Chapter 7

187

this.btnStop.TouchUpInside += (s, e) => {
 if (grantedPermission) {
 this.audioRecorder.Stop();
 this.lblStatus.Text = "Idle";
 AVAudioPlayer player =
 AVAudioPlayer.FromUrl(soundFileUrl);
 player.Play();
 }
};

4. Compile and run the app on the device. Tap the Start recording button to start
recording the audio, for example, say something in order to record your voice.
Tap the Stop recording button to stop recording and listen to the playback.

How it works...
The AVAudioRecorder class provides the recording functionality. It does this by streaming
the captured audio directly to the filesystem. Prior to starting the actual recording, we need to
prepare the shared audio session by using the following code:

NSError error = null;
AVAudioSession session = AVAudioSession.SharedInstance();
session.SetCategory(AVAudioSession.CategoryPlayAndRecord, out
 error);
session.SetActive(true, out error);

We need to adjust the audio session according to our app's needs so that the system knows
how to handle the audio from other sources. By setting the category to AVAudioSession.
CategoryPlayAndRecord, we state that our app will be able to play back the audio while it
is getting recorded.

The first time we set the shared audio session's category to any value that requires the usage
of the microphone, iOS automatically prompts the user to give permission to the app. By calling
the RequestRecordPermission method, we can determine whether the user has granted
microphone access to our app, as shown in the following code:

session.RequestRecordPermission((granted) => {
 if (granted) {
 grantedPermission = true;
 //..

Now that we have prepared the shared audio session, it's time to initialize an instance of
AVAudioRecorder by using the following code:

this.audioRecorder = AVAudioRecorder.ToUrl(soundFileUrl,
 recordingSettings, out error);

Multimedia Resources

188

If the file that corresponds to the NSUrl variable already exists, it will be overwritten.

The recordingSettings variable is of the NSDictionary type and contains the
settings for the output sound file. We must provide at least some minimal settings to the
AVAudioRecorder upon the initialization. Here, we set the sound format to plain WAV by
using the following code:

NSDictionary recordingSettings =
 NSDictionary.FromObjectAndKey(AVAudioSettings.AVFormatIDKey,
 NSNumber.FromInt32((int)AudioFileType.WAVE));

To instruct the recorder to start recording, we just call its Record() method by using the
following line of code:

this.audioRecorder.Record();

When the user taps on the Stop recording button, the recording stops and the saved sound
starts playing with the AVAudioPlayer:

this.audioRecorder.Stop();
AVAudioPlayer player = AVAudioPlayer.FromUrl(soundFileUrl);
player.Play();

There's more...
The AVAudioRecorder class provides sound metering options as well. To enable the sound
metering, set its MeteringEnabled property to true. We can then output the peak power
in decibels on a specific channel. To do this for the first channel of our recording, add the
following code right after the Record() method call:

ThreadPool.QueueUserWorkItem(delegate {
 while (this.audioRecorder.Recording)
 {
 this.audioRecorder.UpdateMeters();
 Console.WriteLine(this.audioRecorder.PeakPower(0));
 }
});

The PeakPower method accepts the zero-based index of the channel and returns the peak of
the channel in decibels. Call UpdateMeters() right before calling the PeakPower method
to get the most recent reading.

Note that enabling the metering on the recorder requires using the CPU resources. Do not
enable it if you do not intend on using the metering values.

Chapter 7

189

Recording for a predefined amount of time
To record the audio for a predefined amount of time without the need for the user to stop the
recording, call the RecordFor(double) method. Its parameter is the amount of time in
seconds for which we want to record.

See also
 f The Playing music and sounds recipe

Managing album items directly
In this recipe, we will discuss how to programmatically access the device's photo album.

Getting ready
Create a new Single View Application in Xamarin Studio and name it ManageAlbumApp.

This example works on the simulator. At least one image must exist in the
simulator's photo album.

How to do it...
Perform the following steps:

1. Add a button on the main view of the controller.

2. Enter the following using directive in the MainController.cs file:
using MonoTouch.AssetsLibrary;

3. Add the following code in the ViewDidLoad method:
this.btnEnumerate.TouchUpInside += (s, e) => {
 if (ALAssetsLibrary.AuthorizationStatus ==
 ALAuthorizationStatus.Authorized ||
 ALAssetsLibrary.AuthorizationStatus ==
 ALAuthorizationStatus.NotDetermined) {
 this.assetsLibrary = new ALAssetsLibrary();
 this.assetsLibrary.Enumerate(ALAssetsGroupType.All,
 this.GroupsEnumeration,
 this.GroupsEnumerationFailure);
 }
} ;

Multimedia Resources

190

4. Add the following methods in the class:
private void GroupsEnumeration(ALAssetsGroup assetGroup,
 ref bool stop)
{
 if (null != assetGroup)
 {
 stop = false;
 assetGroup.SetAssetsFilter(ALAssetsFilter.AllPhotos);
 assetGroup.Enumerate(this.AssetEnumeration);
 }
}
private void AssetEnumeration(ALAsset asset, int index, ref bool
stop)
{
 if (null != asset)
 {
 stop = false;
 Console.WriteLine("Asset url: {0}",
 asset.DefaultRepresentation.Url.AbsoluteString);
 }
}
private void GroupsEnumerationFailure(NSError error)
{
 if (null != error)
 {
 Console.WriteLine("Error enumerating asset groups!
 Message: {0}", error.LocalizedDescription);
 }
}

5. Compile and run the app. Tap the Enumerate button and watch the URLs of the
saved photos get displayed in the Application Output pad.

How it works...
The ALAssetsLibrary class provides access to the album items of the device. These
items are represented by the ALAsset class and are divided into groups, represented by
the ALAssetGroup class.

The first thing we need to do is enumerate the asset groups. To do this, call the Enumerate
method by using the following code:

this.assetsLibrary.Enumerate(ALAssetsGroupType.All,
 this.GroupsEnumeration, this.GroupsEnumerationFailure);

Chapter 7

191

The first parameter is of the ALAssetGroupTypes type, and it instructs the assets library
on the asset groups to be enumerated. Passing ALAssetGroupTypes.All means
that we want to enumerate all the asset groups. The other two parameters are delegate
types. The GroupsEnumeration method is where we read the group's data, while the
GroupsEnumerationFailure method will be triggered if an error occurs. When the
Enumerate method is called for the first time, the user is asked to grant access to the app to
access the device's assets. If the user denies the access, the failure method will be triggered.
The next time the Enumerate method gets called, the access message appears again.

The signature of the GroupsEnumeration method is as follows:

private void GroupsEnumeration(ALAssetsGroup assetGroup, ref
 bool stop)

The assetGroup parameter contains the group's information.

Note the stop parameter, which is declared as a ref parameter. When the enumeration
occurs, the method is being triggered once to return the first group and does not get called for
the second time, no matter how many more groups exist. To force it to keep getting called to
enumerate all the groups, we have to set the stop variable to false. When all groups have
been enumerated, the method gets called one last time, with the assetGroup variable set to
null. So we need to check this. To put all this in code, take a look at the following example:

if (null != assetGroup)
{
 // Continue enumerating
 stop = false;
 // Determine what assets to enumerate
 assetGroup.SetAssetsFilter(ALAssetsFilter.AllPhotos);
 // Enumerate assets
 assetGroup.Enumerate(this.AssetEnumeration);
}

After calling the SetAssetsFilter method on the instance of the ALAssetGroup class,
we instruct it to filter what types of assets we want it to look for. After this, the process
becomes similar to the group's enumeration. The ALAssetGroup class also contains an
Enumerate method. It accepts a parameter of a delegate type, represented here by the
AssetsEnumeration method. Its implementation is similar to the GroupsEnumeration
method, as shown in the following code:

if (null != asset)
{
 // Continue enumerating assets
 stop = false;
 // Output the asset url
 Console.WriteLine("Asset url: {0}",
 asset.DefaultRepresentation.Url.AbsoluteString);
}

Multimedia Resources

192

The ALAsset class contains various kinds of information and properties. Most of
the information is stored in its DefaultRepresentation property, which is of the
ALAssetRepresentation type.

There's more...
If the asset we are interested in is an image, we can get the actual image through the
DefaultRepresentation property by using the following code:

CGImage image = asset.DefaultRepresentation.GetImage();

Reading EXIF data
We can read a photo's EXchangeable Image File (EXIF) format metadata through the
Metadata property of ALAssetRepresentation, which is of the NSDictionary type,
as shown in the following code:

NSDictionary metaData = asset.DefaultRepresentation.Metadata;
if (null != metaData)
{
 NSDictionary exifData = (NSDictionary)metaData[new
 NSString("{Exif}")];
}

Retrieving individual assets
We can also retrieve an individual asset, if we know the asset's URL, through the
AssetForUrl method of ALAssetLibrary.

Checking for permission
We can check whether the user has granted access to the asset library through the
ALAssetsLibrary.AuthorizationStatus static property. The possible values
of the ALAuthorizationStatus enumeration are the following:

 f Authorized: This means that the user has authorized our app.
 f Denied: This means that the user has denied access to the albums.
 f NotDetermined: This means that our app never requested access to the albums.
 f Restricted: This means that the app is not authorized to access the albums and

the user cannot grant access, possibly due to parental restrictions.

Note that accessing the AuthorizationStatus property does not prompt the user
for permission. When we actually try to access the library in this example, by calling the
Enumerate method, is when iOS prompts the user for permission.

See also
 f The Selecting images and videos recipe

8
Integrating iOS

Features

In this chapter, we will cover the following:

 f Starting phone calls

 f Sending text messages and e-mails

 f Using text messaging in our application

 f Using e-mail messaging in our application

 f Managing the address book

 f Displaying contacts

 f Managing the calendar

Introduction
Mobile devices offer a handful of features to the user. Creating an app that interacts with these
features to provide a complete experience to users can surely be considered as an advantage.

In this chapter, we will discuss some of the most common features of iOS and how to
integrate some or all of their functionality into our apps. We will see how to offer the user the
ability to make telephone calls and send SMS and e-mails, either using the native platform
apps or by integrating the native user interface in our projects. Also, we will discuss the
following components:

 f MFMessageComposeViewController: This controller is suitable for sending text
(SMS) messages

Integrating iOS Features

194

 f MFMailComposeViewController: This controller is used for sending e-mails with or
without attachments

 f ABAddressBook: This class provides us access to the address book database

 f ABPersonViewController: This controller displays and/or edits contact information
from the address book

 f EKEventStore: This class is responsible for managing calendar events

Furthermore, we will learn how to read and save contact information, how to display contact
details, and interact with the device's calendar.

Note that some of the examples in this chapter will require a device. For example, the
simulator does not contain the Messaging app. To deploy a simulator to a device, you will
need to enroll as an iOS Developer through Apple's Developer Portal.

Starting phone calls
In this recipe, we will learn how to invoke the native Phone app to allow the user to place
a phone call.

Getting ready
Create a new Single View Application in Xamarin Studio and name it PhoneCallApp.

The native Phone app is not available on the simulator. It
is only available on an iPhone device.

How to do it...
Perform the following steps to allow the user to place phone calls:

1. Add a button on the view of PhoneCallAppViewController.

2. Add the following code in the ViewDidLoad method:
this.btnCall.TouchUpInside += (s, e) => {
 NSUrlurl = new NSUrl("tel:+123456789012");
 if (UIApplication.SharedApplication.CanOpenUrl(url))
 {
 UIApplication.SharedApplication.OpenUrl(url);
 } else

Chapter 8

195

 {
 Console.WriteLine("Cannot open url: {0}",
 url.AbsoluteString);
 }
} ;

3. Compile and run the app on the device. Tap the Call phone number button to start
the call. The following screenshot shows the Phone app placing a call:

How it works...
Through the UIApplication.SharedApplication static property, we have access to
the app's UIApplication object. We can use its OpenUrl method that accepts an NSUrl
variable to initiate a call using the following line of code:

UIApplication.SharedApplication.OpenUrl(url);

Because not all iOS devices support the native Phone app, it would be useful to check for
availability first. You can do this using the following code:

if (UIApplication.SharedApplication.CanOpenUrl(url))

When the OpenUrl method is called, the native Phone app will be executed and start calling
the number immediately. Note that the tel: prefix is needed to initiate the call.

Integrating iOS Features

196

There's more...
Xamarin.iOS also supports the CoreTelephony Framework through the MonoTouch.
CoreTelephony namespace. This is a simple framework that provides information on call
state, connection, carrier information, and so on. Note that when a call starts, the native
Phone app enters into the foreground, causing the app to be suspended. A simple usage of
the CoreTelephony Framework is as follows:

CTCallCenter callCenter = new CTCallCenter();
callCenter.CallEventHandler = delegate(CTCall call) {
 Console.WriteLine(call.CallState);
} ;

Note that the handler is assigned with an equals sign (=) instead of the common plus-equals
(+=) combination. This is because CallEventHandler is a property and not an event. When
the app enters into the background, events are not distributed to it. The event that occurred
last, however, will be distributed when the app returns to the foreground.

More information on OpenUrl
The OpenUrl method can be used to open various native and non-native applications. For
example, to open a web page in Safari, just create an NSUrl object with the link, as follows:

NSUrl url = new NSUrl("http://www.packtpub.com");

See also
 f The Sending text messages and e-mails recipe

Sending text messages and e-mails
In this recipe, we will learn how to invoke the native Mail and Messaging apps within our
own app.

Getting ready
Create a new Single View Application in Xamarin Studio and name it SendTextApp.

Chapter 8

197

How to do it...
Perform the following steps to invoke the apps:

1. Add two buttons on the view of SendTextAppViewController.

2. Add the following code in the ViewDidLoad method:
this.btnSendText.TouchUpInside += (s, e) => {
 NSUrl textUrl = new NSUrl("sms:+123456789");
 if (UIApplication.SharedApplication.CanOpenUrl(textUrl))
 {
 UIApplication.SharedApplication.OpenUrl(textUrl);
 } else
 {
 Console.WriteLine("Cannot send text message!");
 }
} ;
this.btnSendEmail.TouchUpInside += (s, e) => {
 NSUrl emailUrl = new NSUrl("mailto:mail@example.com");
 if (UIApplication.SharedApplication.CanOpenUrl(emailUrl))
 {
 UIApplication.SharedApplication.OpenUrl(emailUrl);
 } else
 {
 Console.WriteLine("Cannot send email message!");
 }
} ;

3. Compile and run the app on the device. Click on one of the buttons to open the
corresponding app.

How it works...
Once again, using the OpenUrl method, we can send text or e-mail messages. Just using
the sms: prefix from the preceding example code will open the native text messaging app,
as follows:

UIApplication.SharedApplication.OpenUrl(new
 NSUrl("sms:+123456789012"));

Integrating iOS Features

198

Adding a cell phone number after the sms: prefix will open the native Messaging app, as
shown in the following screenshot:

For opening the native e-mail app, the process is similar. Pass the mailto: prefix, as follows:

UIApplication.SharedApplication.OpenUrl(new
 NSUrl("mailto:mail@example.com"));

This opens the edit mail controller, as shown in the following screenshot:

Chapter 8

199

The mailto: URL scheme supports various parameters for customizing an e-mail message.
These parameters allow us to enter the sender address, subject, and message, as follows:

UIApplication.SharedApplication.OpenUrl("mailto:recipient@example.
 com?subject=Email%20with%20Xamarin.iOS!&body=
 This%20is%20the%20message%20body!");

There's more...
Although iOS provides access to opening the native Messaging apps, predefining message
content in the case of e-mails is where the control from inside the app stops. There is no way
of actually sending the message through code. It is the user that will decide whether to send
the message or not.

More information on opening external apps
The OpenUrl method provides an interface for opening external apps. Opening external
apps has one drawback, that is, the app that calls the OpenUrl method transitions to the
background. Up to iOS Version 3.*, this was the only way of messaging through an application.
Since iOS Version 4.0, Apple has provided the messaging controllers to the SDK. The following
recipes discuss their usage.

See also
 f The Starting phone calls and Using text messaging in our application recipes

Using text messaging in our application
In this recipe, we will learn how to display the text messaging controller inside our app.

Getting ready
Create a new Single View Application in Xamarin Studio and name it TextMessageApp.

How to do it...
Perform the following steps to display the text messaging controller in our app:

1. Add a button on the view of the controller.

2. Enter the following using directive in the TextMessageAppViewController file:
using MonoTouch.MessageUI;

Integrating iOS Features

200

3. Implement the ViewDidLoad method with the following code, changing the recipient
number and/or the message body at your discretion:
private MFMessageComposeViewController messageController;
public override void ViewDidLoad ()
{
 base.ViewDidLoad ();
 this.btnSendMessage.TouchUpInside += async (s, e) => {

 if (MFMessageComposeViewController.CanSendText)
 {
 this.messageController =
 new MFMessageComposeViewController();
 this.messageController.Recipients =
 new string[] { "+123456789012" };
 this.messageController.Body =
 "Text from Xamarin.iOS";
 this.messageController.Finished +=
 MessageController_Finished;
 await this.PresentViewControllerAsync(this.
 messageController, true);
 } else
 {
 Console.WriteLine("Cannot send text message!");
 }
 } ;
}

4. Add the following method:
private async void MessageController_Finished(object
 sender, MFMessageComposeResultEventArgs e) {
 switch (e.Result) {
 case MessageComposeResult.Sent:
 Console.WriteLine("Message sent!");
 break;
 case MessageComposeResult.Cancelled:
 Console.WriteLine("Message cancelled!");
 break;
 default:
 Console.WriteLine("Message failed!");
 break;
 }
 e.Controller.Finished -= MessageController_Finished;
 await e.Controller.DismissViewControllerAsync(true);
}

5. Compile and run the app on the device. Tap the Send message button to open the
message controller. Tap the Send button to send the message, or on the Cancel
button to return to the app.

Chapter 8

201

How it works...
The MonoTouch.MessageUI namespace contains the necessary UI elements that
allow us to implement messaging in an iOS app. For text messaging (SMS), we need the
MFMessageComposeViewController class.

We need to check for texting availability, because not all devices can send text messages.
The MFMessageComposeViewController class contains a static method named
CanSendText, which returns a boolean value indicating whether we can use this
functionality. The important thing in this case is that we check if the functionality of sending
text messages is available prior to initializing the controller. This is because when you try to
initialize the controller on a device that does not support text messaging or on the simulator,
you will get an exception.

To determine when the user has taken action in the message UI, we subscribe to the
Finished event, as follows:

this.messageController.Finished += MessageController_Finished;

Inside the Finished method, we can provide functionality according to the
MessageComposeResult parameter. It can have one of the following three values:

 f Sent: This means the message was sent successfully.

 f Cancelled: This means the user has tapped the Cancel button. The message will not
be sent.

 f Failed: This means the message sending failed.

The last thing to do is unsubscribe the event and dismiss the message controller, as follows:

e.Controller.Finished -= MessageController_Finished;
await e.controller.DismissViewControllerAsync(true);

After initializing the controller, we can set the recipients and body message to the appropriate
properties, as follows:

this.messageController.Recipients =
 new string[] { "+123456789012" };
this.messageController.Body = "Text from Xamarin.iOS";

The Recipients property accepts a string array that allows multiple recipient numbers.

Integrating iOS Features

202

There's more...
The fact that SDK allows the user interface to send text messages does not mean that it
is customizable. Just like invoking the native Messaging app, it is the user who will decide
whether to send the message or discard it. In fact, after the controller is presented on the
screen, any attempts to change the actual object or any of its properties will simply fail.
Furthermore, the user can change or delete both the recipients and the message body. The
real benefit, though, is that the messaging user interface is displayed within our app instead
of running separately.

Attachments
Starting with iOS 7, the MFMessageComposeViewController class supports attachments.
We can attach a file to a message through the AddAttachment method, as follows:

this.messageController.AddAttachment(new NSUrl("path/to/file"),
 "A wonderful image");

The second parameter is the string that will appear as a filename on the UI. If null is passed,
the actual filename will appear.

Using e-mail messaging in our application
In this recipe, we will learn how to use the e-mail messaging interface within an application.

Getting ready
Create a new Single View Application in Xamarin Studio and name it EmailMessageApp.

How to do it...
Perform the following steps:

1. Add a button on the view of EmailMessageAppViewController and the
MonoTouch.MessageUI namespace in the EmailMessageAppViewController.
cs file.

2. Enter the following code in the ViewDidLoad method:
this.btnSendEmail.TouchUpInside += async (s, e) => {
 if (MFMailComposeViewController.CanSendMail)
 {
 this.mailController = new MFMailComposeViewController();
 this.mailController.SetToRecipients(new string[]
 { "recipient@example.com" });

Chapter 8

203

 this.mailController.SetSubject("Email from
 Xamarin.iOS!");
 this.mailController.SetMessageBody("This is the message
 body!", false);
 this.mailController.Finished +=
 this.MailController_Finished;
 await this.PresentViewControllerAsync(
 this.mailController, true);
 } else
 {
 Console.WriteLine("Cannot send email!");
 }
} ;

3. Add the following method:
private async void MailController_Finished (object sender,
 MFComposeResultEventArgs e)
{
 switch (e.Result)
 {
 case MFMailComposeResult.Sent:
 Console.WriteLine("Email sent!");
 break;
 case MFMailComposeResult.Saved:
 Console.WriteLine("Email saved!");
 break;
 case MFMailComposeResult.Cancelled:
 Console.WriteLine("Email sending cancelled!");
 break;
 case MFMailComposeResult.Failed:
 Console.WriteLine("Email sending failed!");
 if (null != e.Error)
 {
 Console.WriteLine("Error message: {0}",
 e.Error.LocalizedDescription);
 }
 break;
 }
 e.Controller.Finished -= MailController_Finished;
 await e.Controller.DismissViewControllerAsync(true);
}

4. Compile and run the app either on the simulator or on the device. Click on the Send
email button to display the mail user interface.

Integrating iOS Features

204

Send or cancel the message. The app will work on the simulator and behave just like the native
Mail app on devices, except for the fact that messages will not actually be sent or saved.

How it works...
The MFMailComposeViewController class provides the native mail composing
interface. To determine whether the device is capable of sending e-mails, we first check
its CanSendMail property, as follows:

if (MFMailComposeViewController.CanSendMail)

Just like we did with the MFMessageComposeViewController class, we subscribe to the
Finished event of the MFMailComposeViewController class. We use this event to
respond to user actions, without having to implement a Delegate object. We do this inside
the MailController_Finished method based on the MFComposeResultEventArgs.
Result property, which is of the MFMailComposeResult type. The possible values of the
MFMailComposeResult enumeration will be one of the following:

 f Sent: This means the e-mail message is queued for sending.

 f Saved: This means the user clicked on the Cancel button, and the Save Draft option
of the action sheet automatically appears. The following screenshot shows the action
sheet that appears when the user clicks on the Cancel button:

Chapter 8

205

 f Cancelled: This means the user clicked on the Cancel button on the controller and
selected the Delete Draft option on the action sheet.

 f Failed: This means the e-mail message sending failed.

After initializing the object, we can assign a recipient list, subject, and message body through
the corresponding set of the Set prefixed methods, as follows:

this.mailController.SetToRecipients(new string[] {
 "recipient@example.com" });
this.mailController.SetSubject("Email from MonoTouch!");
this.mailController.SetMessageBody("This is the message body!",
 false);

If the second parameter of the SetMessageBody message is set to true, it informs the
controller that the message should be treated as HTML.

There's more...
Apart from simple or HTML formatted text, we can also send attachments. We can do this with
the AddAttachmentData method using the following line of code:

this.mailController.AddAttachmentData(UIImage.FromFile(
 "image.jpg").AsJPEG(), "image/jpg", "image.jpg");

The first parameter is of the NSData type and is the actual content of the attachment. In
this case, we attach an image through the UIImage.AsJPEG() method, which returns the
image contents inside an NSData object. The second parameter represents the Multipurpose
Internet Mail Extensions (MIME) type of the attachment, and the third parameter represents
its filename that will be shown to the user.

See also
 f The Using text messaging in our application recipe

Managing the address book
In this recipe, we will discuss how to access and manage the user's stored contacts in the
device's address book.

Getting ready
Create a new Single View Application in Xamarin Studio and name it AddressBookApp.

Integrating iOS Features

206

How to do it...
Perform the following steps:

1. Add a button on the view of the controller.

2. Enter the following using directive in the AddressBookAppViewController.cs file:
using MonoTouch.AddressBook;

3. Override the ViewDidLoad method:
public override void ViewDidLoad ()
{
 base.ViewDidLoad ();
 this.btnReadContacts.TouchUpInside += (s, e) => {
 ABAuthorizationStatus abStatus =
 ABAddressBook.GetAuthorizationStatus();
 NSError error;
 ABAddressBook addressBook =
 ABAddressBook.Create(out error);
 if (abStatus == ABAuthorizationStatus.NotDetermined)
 {
 addressBook.RequestAccess((g, err) => {
 if (!g)
 {
 Console.WriteLine("User denied address
 book access!");
 } else
 {
 this.InvokeOnMainThread(() =>
 this.ReadContacts(addressBook));
 }
 });
 } else if (abStatus == ABAuthorizationStatus.Authorized)
 {
 this.ReadContacts(addressBook);
 } else
 {
 Console.WriteLine("App does not have access
 to the address book!");
 }
 };
}

Chapter 8

207

4. Add the following method:
private void ReadContacts(ABAddressBook addressBook)
{
 ABPerson[] contacts = addressBook.GetPeople();
 foreach (ABPerson eachPerson in contacts)
 {
 Console.WriteLine("{0} {1}", eachPerson.LastName,
 eachPerson.FirstName);
 }
}

5. Compile and run the app on the simulator. Click on the Get contacts button and
either accept or deny access to the address book. The following screenshot displays
the alert that appears when we request access to the address book:

The simulator's address book contains some fake
contacts that we can work with.

Integrating iOS Features

208

How it works...
The MonoTouch.AddressBook namespace contains all the classes that allow us to manage
the device's address book. To access the address book, we first need to check if the user
has previously granted address book access to our app and instantiate an ABAddressBook
instance, as follows:

ABAuthorizationStatus abStatus =
 ABAddressBook.GetAuthorizationStatus();
NSError error;
ABAddressBook addressBook = ABAddressBook.Create(out error);

If the status is NotDermined, we call the RequestAccess method, which accepts an
Action<bool, NSError> delegate, as follows:

addressBook.RequestAccess((g, err) => {
 if (!g)
 {
 Console.WriteLine("User denied address book access!");
 } else
 {
 this.InvokeOnMainThread(() =>
 this.ReadContacts(addressBook));
 }
 });

The bool parameter informs us if the user has granted access. If it is true, we
call the ReadContacts method so that we proceed with reading the address book
information we want. Note that we wrap the call of the ReadContacts method with
an InvokeOnMainThread call, although it is not accessing the UI. This is because the
RequestAccess method is called on a separate thread.

We can access the address book from other threads other than the main
one; however, every instance of ABAddressBook needs to be used on the
same thread.

Inside the ReadContacts method, we enumerate the individual contact through the
GetPeople method, as follows:

ABPerson[] contacts = addressBook.GetPeople();
foreach (ABPerson eachPerson in contacts)
{
 Console.WriteLine("{0} {1}", eachPerson.LastName,
 eachPerson.FirstName);
}

The ABPerson class contains the contact information we want.

Chapter 8

209

There's more...
To get a contact's stored phone number(s), call the GetPhones() method, as follows:

ABMultiValue<string> phones = eachPerson.GetPhones();
Console.WriteLine(phones[0].Value);

It returns an object of the ABMultiValue<string> type. ABMultiValue<T> is a generic
collection, especially designed for multiple address book values.

Adding a phone number to a contact
To add a phone number to a contact, we can use the ABPerson class' SetPhones
method. It accepts an ABMultiValue<string> object as its parameter, but we cannot
add new values to the ABMultiValue objects. We can, however, write values to an
ABMutableMultiValue<T> object, as follows:

ABMutableMultiValue<string> newPhones =
 phones.ToMutableMultiValue();

This line of code creates a new instance of the ABMutableMultiValue<string> object,
which we then use to add the phone number(s) we want, as follows:

newPhones.Add("+120987654321", ABPersonPhoneLabel.iPhone);
eachPerson.SetPhones(newPhones);
addressBook.Save();

The second parameter of the Add method is the label that the phone number will have when
it is saved to the contact. It is important to call the ABAddressBook.Save() method, or
else, the changes will not be saved.

Displaying contacts
In this recipe, we will learn how to use the native address book user interface to display
contact information.

Getting ready
Create a new Single View Application in Xamarin Studio and name it DisplayContactApp.

Integrating iOS Features

210

How to do it...
Perform the following steps:

1. Add a button on the controller.

2. In the AppDelegate.cs file, add the DisplayContactAppViewController to a
navigation controller, as follows:
window.RootViewController =
 new UINavigationController(viewController);

3. Add the following namespaces in the DisplayContactAppViewController.cs
file:
using MonoTouch.AddressBook;
using MonoTouch.AddressBookUI;

4. Add the following code in the ViewDidLoad method:
this.btnDisplayContact.TouchUpInside += (sender, e) => {
 ABAuthorizationStatus status =
 ABAddressBook.GetAuthorizationStatus();
 NSError error;
 ABAddressBook addressBook =
 ABAddressBook.Create(out error);
 if (status == ABAuthorizationStatus.NotDetermined)
 {
 addressBook.RequestAccess((g, err) => {
 if (g)
 {
 this.InvokeOnMainThread(() =>
 this.DisplayContactCard(addressBook));
 } else
 {
 Console.WriteLine("User denied access to the
 address book!");
 }
 });
 } else if (status == ABAuthorizationStatus.Authorized)
 {
 this.DisplayContactCard(addressBook);
 } else
 {
 Console.WriteLine("App does not have access to the
 address book!");
 }
};

Chapter 8

211

5. Add the following method:
private void DisplayContactCard(ABAddressBookaddressBook)
{
 ABPerson[] contacts = addressBook.GetPeople();
 ABPersonViewController personController =
 new ABPersonViewController();
 personController.DisplayedPerson = contacts[0];
 this.NavigationController.PushViewController(
 personController, true);
}

6. Compile and run the application on the simulator. Tap the button to show the contact
card screen. The result should be similar to the following screenshot:

How it works...
The MonoTouch.AddressBookUI namespace contains the controllers that the native
Contacts app uses to allow the user to display and manage contacts. Each contact's details
can be viewed with ABPersonViewController. This controller must be pushed to
UINavigationController, or else it will not display correctly.

Integrating iOS Features

212

After initializing it, we set the ABPerson object, which we want to be displayed, to its
DisplayedPerson property, as follows:

ABPersonViewController personController =
 new ABPersonViewController();
personController.DisplayedPerson = contacts[0];

Then, we push it to the navigation controller's stack using the following line of code:

this.NavigationController.PushViewController(personController,
 true);

There's more...
The ABPersonViewController class can also be used for editing. To do this, set the
AllowsEditing property to true, as follows:

personController.AllowsEditing = true;

Note that the changes are saved normally through the ABPersonViewController class.

Other address book controllers
The MonoTouch.AddressBookUI namespace contains all the controllers we need to create
our own custom contacts application, as follows:

 f ABPeoplePickerNavigationController: This is a navigation controller that
displays the saved contacts. The user can select a contact from the list.

 f ABPersonViewController: This is described in the example given in this recipe.

 f ABNewPersonViewController: This is the controller that creates a new contact.

 f ABUnknownPersonViewController: This is the controller that is displayed
with partial data for creating a new contact. This is similar to the controller that
is displayed when we tap on an unknown number in the list of recent calls on
the device.

See also
 f The Managing the address book recipe

Managing the calendar
In this recipe, we will learn how create an event and save it to the device's calendar database.

Chapter 8

213

Getting ready
Create a new Single View Application in Xamarin Studio and name it CalendarEventsApp.

The app we will be creating will output the calendar events of the next 30 days. Make sure you
have some calendar events in that period.

How to do it...
Let's create an event and save it to the device's calendar database by performing the
following steps:

1. Add a button on the main view of the controller.

2. Add the MonoTouch.EventKit namespace in the
CalendarEventAppViewController.cs file.

3. Enter the following code in the ViewDidLoad method:
this.btnDisplayEvents.TouchUpInside += async (sender, e) => {
 EKAuthorizationStatus status = EKEventStore.
 GetAuthorizationStatus(EKEntityType.Event);
 EKEventStore evStore = new EKEventStore();
 if (status == EKAuthorizationStatus.NotDetermined)
 {
 if (await
 evStore.RequestAccessAsync(EKEntityType.Event))
 {
 this.DisplayEvents(evStore);
 } else
 {
 Console.WriteLine("User denied access to the
 calendar!");
 }
 } else if (status == EKAuthorizationStatus.Authorized)
 {
 this.DisplayEvents(evStore);
 } else
 {
 Console.WriteLine("App does not have access to the
 calendar!");
 }
};

Integrating iOS Features

214

4. Add the following method:
private void DisplayEvents (EKEventStoreevStore)
{
 NSPredicate evPredicate =
 evStore.PredicateForEvents(DateTime.Now,
 DateTime.Now.AddDays(30),
 evStore.GetCalendars(EKEntityType.Event));
 evStore.EnumerateEvents(evPredicate,
 delegate(EKEventcalEvent, ref bool stop) {
 if (null != calEvent) {
 stop = false;
 Console.WriteLine("Event title: {0}\nEvent start
 date: {1}", calEvent.Title, calEvent.StartDate);
 }
 });
}

5. Compile and run the app on the device. Click on the Display events button to output
the calendar events of the next 30 days in the Application Output pad.

How it works...
The MonoTouch.EventKit namespace is responsible for managing the calendar events.
To read the stored events, we first check if we have access to the calendar and initialize an
EKEventStore object, as follows:

EKAuthorizationStatus status =
 EKEventStore.GetAuthorizationStatus(EKEntityType.Event);
 EKEventStore evStore = new EKEventStore();

If the authorization status is NotDetermined, we call the RequestAccessAsync method
so that the user is prompted for access, as follows:

if (await evStore.RequestAccessAsync(EKEntityType.Event))

If the result is true, it means that the user has granted calendar access to our app. Now,
we call the DisplayEvents method to read and output the events.

Chapter 8

215

The EKEventStore class provides us access to the stored events. To retrieve the calendar
events, we need a predicate of the NSPredicate type. We can create an instance through the
PredicateForEvents method of the EKEventStore class using the following code snippet:

NSPredicate evPredicate =
 evStore.PredicateForEvents(DateTime.Now,
 DateTime.Now.AddDays(30),
 evStore.GetCalendars(EKEntityType.Event));

The first two parameters are of the NSDate type (which can be implicitly converted to
DateTime) and represent the start and end dates for which to search events. The third
parameter is of the EKCalendar[]type, and is an array of the calendars to search. To
search all the available calendars, we pass the return value of the GetCalendars method.

Finally, we call the EnumerateEvents method using the following line of code:

evStore.EnumerateEvents(evPredicate, delegate(EKEventcalEvent, ref
bool stop) {
//...

We pass the predicate we created earlier to the first parameter. The second parameter is
a delegate of the EKEventSearchCallback type. To read each event's data, we use its
EKEvent object. Note that the process of enumerating calendar events is similar to the one
that is used for enumerating assets from the assets library, discussed in the previous chapter.
This means that if the EKEvent object is not null, we must explicitly set the stop parameter
to false so that the EKEventStore class continues enumerating the calendar events.

There's more...
Except from enumerating events, the EKEventStore class also allows us to create new
events. The following example creates and saves a new calendar event:

EKEvent newEvent = EKEvent.FromStore(evStore);
newEvent.StartDate = DateTime.Now.AddDays(1);
newEvent.EndDate = DateTime.Now.AddDays(1.1);
newEvent.Title = "Xamarin event!";
newEvent.Calendar = evStore.DefaultCalendarForNewEvents;
NSError error = null;
evStore.SaveEvent(newEvent, EKSpan.ThisEvent, out error);

Integrating iOS Features

216

For creating a new EKEvent instance, we use the EKEvent.FromStore static method. We
then set the start and end dates, a title, and the calendar to which the event will be stored.
Here, we use the default calendar that we can get with the DefaultCalendarForNewEvents
property of EKEventStore. When we have everything set up, we call the SaveEvent method
to save it.

Reminders
You may have noticed the usage of the EKEntityType enumeration. This defines the entity
type we want to have access to. Other than Event, which refers to the calendar events, we
can also use the Reminder value so that we can work with the tasks the user has in the
Reminders app.

We need to explicitly ask for the Reminders permission, even if the user has already granted
access to the calendar.

See also
 f The Managing album items directly recipe in Chapter 7, Multimedia Resources

9
Interacting with Device

Hardware

In this chapter, we will cover the following topics:

 f Detecting the device orientation

 f Adjusting the UI orientation

 f The proximity sensor

 f Retrieving the battery information

 f Handling motion events

 f Handling touch events

 f Recognizing gestures

 f Custom gestures

 f Using the accelerometer

 f Using the gyroscope

Introduction
Today's mobile devices are equipped with very advanced hardware, be it accelerometers
to detect motion and orientation, proximity sensors, GPS modules and, among many other
components, sophisticated multitouch screens.

In this chapter, we will focus on how to use this hardware within our apps to provide the user
with an experience that extends into the 3D world. Specifically, we will discuss how to adjust
the user interface orientation according to the position of the device, how to use the proximity
sensor, and how to read the battery information. In a series of four tasks, we will learn how to
capture user touches on the screen and recognize gestures.

Interacting with Device Hardware

218

Last but not least, we will create advanced apps that read the raw data from the accelerometer
and gyroscope sensors to detect the device motion and rotation with detailed and simple guides.

Detecting the device orientation
In this recipe, we will learn how to make an app that is aware of changes in the device
orientation.

Getting ready
Create a new Single View Application in Xamarin Studio and name it DeviceOrientationApp.

How to do it...
Perform the following steps:

1. Add a label to the controller.

2. In the DeviceOrientationAppViewController class, override the
ViewWillAppear method and implement it with the following code:
private NSObject orientationObserver;
public override void ViewWillAppear (bool animated)
{
 base.ViewWillAppear (animated);
 UIDevice.CurrentDevice.
 BeginGeneratingDeviceOrientationNotifications();
 this.orientationObserver =
 UIDevice.Notifications.ObserveOrientationDidChange((s,
 e) => {
 this.lblOrientation.Text =
 UIDevice.CurrentDevice.Orientation.ToString();
 });
}

3. Override the ViewWillDisappear method by using the following code:
public override void ViewWillDisappear (bool animated)
{
 base.ViewWillDisappear (animated);
 NSNotificationCenter.DefaultCenter.RemoveObserver(
 this.orientationObserver);
 UIDevice.CurrentDevice.
 EndGeneratingDeviceOrientationNotifications();
}

Chapter 9

219

4. Compile and run the app on the simulator. Rotate the simulator by holding the
Command key on your Mac and by pressing the left or right arrow keys.

How it works...
Although the simulator lacks the accelerometer hardware, it supports notifications for
orientation changes.

The device orientation notification mechanism can be accessed through the UIDevice.
CurrentDevice static property. To receive notifications, we first need to instruct the runtime
to issue them. We do this with the following method:

UIDevice.CurrentDevice.
BeginGeneratingDeviceOrientationNotifications();

This method turns the accelerometer on and starts generating orientation notifications. We
then need to start observing the notifications in order to respond to changes, as shown in the
following code:

this.orientationObserver =
 UIDevice.Notifications.ObserveOrientationDidChange((s, e) => {
 this.lblOrientation.Text =
 UIDevice.CurrentDevice.Orientation.ToString();
});

Each time the device orientation changes, the observer triggers the anonymous method. In
the anonymous method, we output the orientation, which we get from the Orientation
property, to the label.

The ViewWillDisappear method is the method that is being called when the view
controller is about to hide (for example, when we push another view controller on a navigation
controller). Inside it, we make sure that we remove the orientation observer, and we instruct
the runtime to stop generating orientation notifications by using the following code:

NSNotificationCenter.DefaultCenter.RemoveObserver(this.orientation
 Observer);
UIDevice.CurrentDevice.
 EndGeneratingDeviceOrientationNotifications();

There's more...
The Orientation property of the UIDevice class returns an enumeration of the
UIDeviceOrientation type. Its possible values are the following:

 f Unknown: This means that the device orientation is unknown

 f Portrait: This means that the device is in its normal portrait orientation, with the
home button on the bottom side

Interacting with Device Hardware

220

 f PortraitUpsideDown: This means that the device is in an upside-down portrait
orientation, with the home button on the top side

 f LandscapeLeft: This means that the device is in the landscape orientation,
with the home button on the left side

 f LandscapeRight: This means that the device is in the landscape orientation,
with the home button on the right side

 f FaceUp: This means that the device is parallel to the ground, with the screen facing up
 f FaceDown: This means that the device is parallel to the ground, with the screen

facing down

FaceUp and FaceDown are two values that cannot be reproduced on the simulator.

The device orientation and user interface orientation
The user interface—in this case, the view controller—will also rotate and adjust to the new
screen orientation by default. It is, however, important to note that the device orientation and
the user interface orientation can be different. For example, the device can be in landscape,
with UIDevice.CurrentDevice.Orientation returning LandscapeLeft without any
change to the appearance of the view controller.

See also
 f The Adjusting the UI orientation recipe
 f The Using the accelerometer recipe

Adjusting the UI orientation
In this chapter, we will learn how to rotate the user interface according to the screen orientation.

Getting ready
Create a new Single View Application in Xamarin Studio and name it UIOrientationApp.

How to do it...
Perform the following steps:

1. Add a label to the view the controller.
2. Override the ShouldAutoRotate method:

public override bool ShouldAutorotate ()
{
 return true;
}

Chapter 9

221

3. Override the GetSupportedInterfaceOrientations method:
public override UIInterfaceOrientationMask
 GetSupportedInterfaceOrientations ()
{
 return UIInterfaceOrientationMask.All;
}

4. Override the DidRotate method:
public override void DidRotate (UIInterfaceOrientation
 fromInterfaceOrientation)
{
 base.DidRotate (fromInterfaceOrientation);
 this.lblOrientation.Text =
 this.InterfaceOrientation.ToString();
}

5. Compile and run the app on the simulator. Rotate the simulator by pressing the
Command key and either the left or right arrow keys. The current user interface
orientation will be shown on the simulator's screen.

Try rotating the simulator twice to turn the portrait orientation upside down. You will
notice that the user interface will not rotate to this orientation and will remain on the
landscape, as shown in the following screenshot:

Interacting with Device Hardware

222

How it works...
On every view controller that is loaded, the system calls the ShouldAutoRotate
method to determine whether it should rotate the specific controller. If the method
returns true, then the system calls the GetSupportedInterfaceOrientations
method to determine which orientations the controller is allowed to be rotated to. The
GetSupportedInterfaceOrientations method implementation is shown in the
following code:

public override UIInterfaceOrientationMask
 GetSupportedInterfaceOrientations ()
{
 return UIInterfaceOrientationMask.All;
}

However, there is an app-wide setting in the Info.plist file that takes priority over
orientations for all view controllers. This can be accessed through the project options
under the iOS Application node. The default setting is shown in the following screenshot:

This also explains why our user interface will not rotate when the device is turned upside
down, despite the fact that we return UIInterfaceOrientationMask.All from the
GetSupportedInterfaceOrientations method. To make the view controller support the
PortraitUpsideDown orientation, we have to enable the Upside Down option through the
orientation settings.

Similarly, if we wanted our user interface to only remain in a specific orientation, say, a
portrait, we would just return UIInterfaceOrientationMask.Portrait from the
GetSupportedInterfaceOrientations method, making sure that at least the
Portrait orientation is enabled in the project settings.

Chapter 9

223

There's more...
As long as the app supports an orientation, the view controller will adjust to it at the runtime,
if we want it to. For example, if we would present a second view controller modally and we only
want that view controller to be shown in the landscape orientations, we would implement its
GetSupportedInterfaceOrientations method as shown in the following code:

public override UIInterfaceOrientationMask
 GetSupportedInterfaceOrientations() {
 return UIInterfaceOrientationMask.LandscapeLeft |
 UIInterfaceOrientationMask.LandscapeRight;
}

User interface orientation on child controllers
In the project that we created here, if the UIOrientationAppViewController was
presented as a child view controller (for example, through UINavigationController), its
ShouldAutoRotate and GetSupportedInterfaceOrientations methods would not
have been called but the ones from UINavigationController would have been called
instead, returning the corresponding default values.

In this situation, to make sure the user interface would rotate according to the current
controller, we would have to subclass UINavigationController and override these two
methods, returning the corresponding values from the currently active view controller in the
navigation stack, as shown in the following code:

// Inside our UINavigationController subclass:
public override ShouldAutoRotate() {
 return this.TopViewController.ShouldAutoRotate();
}
public override UIInterfaceOrientationMask
 GetSupportedInterfaceOrientations() {
 return this.TopViewController.
 GetSupportedInterfaceOrientations();
}

This applies to any parent-child controller relationship, for example, if our parent controller
was UITabBarController and so on.

Interacting with Device Hardware

224

See also
 f The Detecting the device orientation recipe

 f The Using the accelerometer recipe

 f The Navigating through different view controllers recipe in Chapter 3, User
Interface – View Controllers

Proximity sensor
In this recipe, we will discuss how to use the proximity sensor to disable the device screen.

Getting ready
Create a new Single View Application in Xamarin Studio and name it
ProximitySensorApp.

The simulator does not support the proximity sensor.

How to do it...
Perform the following steps:

1. For this project, no controls are needed on the view controller. Declare an NSObject
field that will hold the notification observer by using the following command:
private NSObject proximityObserver;

2. Override the ViewWillAppear method of the controller and implement it according
to the following code:
public override void ViewWillAppear (bool animated)
{
 base.ViewWillAppear (animated);
 UIDevice.CurrentDevice.ProximityMonitoringEnabled = true;
 if (UIDevice.CurrentDevice.ProximityMonitoringEnabled)
 {
 this.proximityObserver = UIDevice.Notifications.
 ObserveProximityStateDidChange((s, e) => {
 Console.WriteLine("Proximity state: {0}",
 UIDevice.CurrentDevice.ProximityState);
 });
 }
}

Chapter 9

225

3. Compile and run the app on the device. Put your finger over the proximity sensor (it is
next to the speaker on an iPhone), and watch the Application Output pad in Xamarin
Studio display the sensor state.

How it works...
Although the functionality of the proximity sensor is quite simple, it provides a very important
feature. iOS devices have only one button on the front, which is the home button. Almost every
user-device interaction is based on the touch-sensitive screen. This poses a problem on the
iPhone; apart from its multiple features, it is also a phone. This means that it will most likely
spend some time on the side of the user's face to make calls.

To avoid accidental virtual buttons being tapped, the proximity sensor gets activated when the
phone app is running in order to disable the screen when the device is near the user's ear or
whatever is over the sensor.

To enable the proximity sensor, set the property of the UIDevice.CurrentDevice.
ProximityMonitoringEnabled property to true:

UIDevice.CurrentDevice.ProximityMonitoringEnabled = true;

If the device does not support the proximity sensor, this property will return false even after
it has been set to true. So after setting it to true, we can check it to see whether the device
supports the sensor by using the following code:

if (UIDevice.CurrentDevice.ProximityMonitoringEnabled)

After checking the support for a proximity sensor, we can add an observer to get notified of the
sensor's state by using the following code:

this.proximityObserver =
 UIDevice.Notifications.ObserveProximityStateDidChange((
 s, e) => {
 Console.WriteLine("Proximity state: {0}",
 UIDevice.CurrentDevice.ProximityState);
});

The ProximityState property returns true if the sensor has turned the screen off and
false if it has turned it back on.

There's more...
The proximity sensor usage is not limited to the phone call functionality. For example, if you
are developing an app that could do some work while the device is in the user's pocket or
purse, enabling the proximity sensor would help you make sure that no accidental controls
are tapped. You can even save the battery power by just turning the screen off.

Interacting with Device Hardware

226

See also
 f The Retrieving the battery information recipe

Retrieving the battery information
In this recipe, we will learn how to read the charging states of the device and its battery usage.

Getting ready
Create a new Single View Application in Xamarin Studio and name it BatteryInfoApp.

How to do it...
Perform the following steps:

1. Add a label to the view of the controller.

2. Override the ViewWillAppear method in the controller class as follows:
private NSObject batteryStateChangeObserver;
public override void ViewWillAppear (bool animated)
{
 base.ViewWillAppear (animated);
 UIDevice.CurrentDevice.BatteryMonitoringEnabled = true;
 this.batteryStateChangeObserver =
 UIDevice.Notifications.ObserveBatteryStateDidChange((s,
 e) => {
 this.lblOutput.Text = string.Format("Battery level:
 {0}", UIDevice.CurrentDevice.BatteryLevel);
 Console.WriteLine("Battery state: {0}",
 UIDevice.CurrentDevice.BatteryState);
 });
}

3. Compile and run the app on the device. After the app loads, disconnect and/or
connect the USB cable of the device. The battery level will be displayed on the label
and the current state will be displayed in the Application Output pad.

How it works...
We can retrieve the battery information through the UIDevice class. The first thing we have
to do is to enable the battery monitoring:

UIDevice.CurrentDevice.BatteryMonitoringEnabled = true;

Chapter 9

227

On the simulator, which does not support battery monitoring, this property will return false
even after we have set it to true.

We can then add an observer for the battery state change notifications, through the
UIDevice.BatteryStateDidChangeNotification key, as indicated in the highlighted
code in the preceding section. The battery level can be retrieved through the BatteryLevel
property, which returns the charge percentage of the battery in the range of 0 through 1 (0
meaning fully discharged and 1 meaning 100 percent charged) by using the following code:

this.lblOutput.Text = string.Format("Battery level: {0}",
 UIDevice.CurrentDevice.BatteryLevel);

Similarly, we can retrieve the state of the battery through the BatteryState property by
using the following code:

Console.WriteLine("Battery state: {0}",
 UIDevice.CurrentDevice.BatteryState);

The possible values of the BatteryState property are as follows:

 f Unknown: This means that the battery state cannot be determined or the battery
monitoring is disabled

 f Unplugged: This means that the device is running on the battery power

 f Charging: This means that the device battery is getting charged, and the USB cable
is connected

 f Full: This means that the device battery is full and the USB cable is connected

There's more...
Apart from the battery state, we can get information on its power level. To do this, we need
to add an observer for the UIDevice.BatteryLevelDidChangeNotification key, as
shown in the following code:

private NSObject batteryLevelChangedObserver;
//...
this.batteryLevelChangedObserver =
 UIDevice.Notifications.ObserveBatteryLevelDidChange((s, e) =>
 {..//

Disabling battery monitoring
Always disable battery monitoring when not needed. The actual monitoring mechanism itself
consumes a significant amount of battery power.

Interacting with Device Hardware

228

See also
 f The Proximity sensor recipe

Handling motion events
In this recipe, we will learn how to intercept and respond to shake gestures.

Getting ready
Create a new Single View Application in Xamarin Studio and name it MotionEventsApp.

How to do it...
Perform the following steps:

1. Add a label to the view of the controller.

2. Enter the following code in the MotionEventsAppViewController class:
public override bool CanBecomeFirstResponder
{
 get { return true; }
}
public override void ViewDidAppear (bool animated)
{
 base.ViewDidAppear (animated);
 this.BecomeFirstResponder();
}
public override void MotionBegan (UIEventSubtype motion, UIEvent
evt)
{
 base.MotionBegan (motion, evt);
 this.lblOutput.Text = "Motion started!";
}
public override void MotionEnded (UIEventSubtype motion, UIEvent
evt)
{
 base.MotionEnded (motion, evt);
 this.lblOutput.Text = "Motion ended!";
}
public override void MotionCancelled (UIEventSubtype motion,
UIEvent evt)
{

Chapter 9

229

 base.MotionCancelled (motion, evt);
 this.lblOutput.Text = "Motion cancelled!";
}

3. Compile and run the app on the device. Shake the device and watch the output on
the label.

You can also test this app on the simulator. After it loads, navigate to
Hardware | Shake Gesture on the menu bar.

How it works...
By overriding the motion methods of the UIViewController class, we can intercept and
respond to the motion events sent by the system. Just overriding these methods is not enough,
though. For a controller to receive the motion events, it needs to be the first responder. To make
sure that this happens, we first override the CanBecomeFirstResponder property and return
true from it, as shown in the following code:

public override bool CanBecomeFirstResponder
{
 get { return true; }
}

Then, we make sure that our controller becomes the first responder when its view appears, by
calling the BecomeFirstResponder method in the ViewDidAppear override, as shown in
the following code:

public override void ViewDidAppear (bool animated)
{
 base.ViewDidAppear (animated);
 this.BecomeFirstResponder();
}

The ViewDidAppear method gets called after the view has appeared on the screen.

The system determines whether a motion is a shake gesture and calls the appropriate methods.
The methods with which we can override and capture shake gestures are the following:

 f MotionBegan: This means that the shaking motion has started

 f MotionEnded: This means that the shaking motion has ended

 f MotionCancelled: This means that the shaking motion has been cancelled

Interacting with Device Hardware

230

When the device starts moving, the MotionBegan method is called. If the motion lasts for
about a second or less, the MotionEnded method is called. If it lasts longer, the system
classifies it as not being a shake gesture and calls the MotionCancelled method. It is
advisable to override all the three methods and react accordingly when we want to implement
the shake gestures in an app.

There's more...
Motion events are only sent to objects that inherit the UIResponder class. This includes the
UIView and UIViewController classes.

More information on motion events
The motion event mechanism is fairly simple. It merely detects near-instant device shakes,
without providing any information on their direction or rate. To handle the motion events
based on different characteristics, the accelerometer can be used in combination.

See also
 f The Using the accelerometer recipe

Handling touch events
In this recipe, we will learn how to intercept and respond to user touches.

Getting ready
Create a new Single View Application in Xamarin Studio and name it TouchEventsApp.

How to do it...
Perform the following steps:

1. Add a label to the view the controller.

2. Enter the following code in the TouchEventsAppViewController class:
public override void TouchesMoved (NSSet touches,
 UIEvent evt)
{
 base.TouchesMoved (touches, evt);
 UITouch touch = touches.AnyObject as UITouch;
 UIColor currentColor = this.View.BackgroundColor;
 float red, green, blue, alpha;

Chapter 9

231

 currentColor.GetRGBA(out red, out green, out blue, out
 alpha);
 PointF previousLocation =
 touch.PreviousLocationInView(this.View);
 PointF touchLocation = touch.LocationInView(this.View);
 if (previousLocation.X != touchLocation.X)
 {
 this.lblOutput.Text = "Changing background color...";
 float colorValue = touchLocation.X /
 this.View.Bounds.Width;
 this.View.BackgroundColor = UIColor.FromRGB(colorValue,
 colorValue, colorValue);
 }
}

3. Compile and run the app on the simulator. Click-and-drag the cursor sideways on
the simulator's screen and watch the view's background color gradually change
from white to black. Note that clicking with the cursor on the simulator screen is
the equivalent of touching the device's screen with a finger.

How it works...
To respond to user touches, the object that acts as a touch receiver must have its
UserInteractionEnabled property set to true. Almost all objects are enabled for
user interaction by default, except for those whose primary usage is not intended for
direct user interaction, for example the UILabel and the UIImageView object. We need
to set UserInteractionEnabled to these objects explicitly if we want them to be
sensitive to user touches. Apart from this, the objects that can handle touch events must
inherit from the UIResponder class. Note that although the UIViewController class
inherits from UIResponder and can therefore capture touch events, it does not have a
UserInteractionEnabled property, and it is its main property of UIView, which controls
the delivery of touch events. What this means is that if you override the touch methods of
UIViewController but its view's UserInteractionEnabled property is set to false,
these methods will not respond to user touches.

The methods responsible of handling the touch events are the following:

 f TouchesBegan: It is called when the user has touched the screen

 f TouchesMoved: It is called when the user is dragging his/her finger on the screen

 f TouchesEnded: It is called when the user has lifted his/her finger from the screen

 f TouchesCancelled: It is called when the touch event has been cancelled by a
system event, for example, when a notification alert is displayed

Interacting with Device Hardware

232

The full project can be found in the downloadable source code. The TouchesMoved method
implementation has been explained here.

Every touch method has two parameters. The first parameter is of the NSSet type and
contains the UITouch objects. The NSSet class represents a collection of objects, while the
UITouch class holds the information for each user touch. The second parameter is of the
UIEvent type and holds the information of the actual event.

We can retrieve the UITouch object related to the actual touch through the NSSet.
AnyObject return value by using the following code:

UITouch touch = touches.AnyObject as UITouch;

It returns an object of the NSObject type, which we convert to UITouch. We can get the
previous and current locations of the touch through the following methods:

PointF previousLocation =
 touch.PreviousLocationInView(this.View);
PointF touchLocation = touch.LocationInView(this.View);

Both of the preceding methods return a PointF struct, which contains the location of the
touch in the receiver's coordinate system. After receiving the location of the touch, we adjust
the background color accordingly.

There's more...
This example is based on single user touches. To enable a view to respond to multiple
touches, we have to set its MultipleTouchEnabled property to true. We can then
get all the UITouch objects in an array:

UITouch[] allTouches = touches.ToArray<UITouch>();

Getting the tap count
We can determine the number of consecutive user taps through the UITouch.TapCount
property inside the ToucheEnded method.

See also
 f The Handling motion events recipe

 f The Recognizing gestures recipe

 f The Custom gestures recipe

Chapter 9

233

Recognizing gestures
In this recipe, we will discuss how to recognize touch gestures and respond accordingly.

Getting ready
Create a new Single View Application in Xamarin Studio and name it GestureApp.

How to do it...
Perform the following steps:

1. Add a label to the view of the controller.

2. Add the following method in the GestureAppViewController class:
private void OnPinchGesture(UIPinchGestureRecognizer pinch)
{
 switch (pinch.State)
 {
 case UIGestureRecognizerState.Began:
 this.lblOutput.Text = "Pinch began!";
 break;
 case UIGestureRecognizerState.Changed:
 this.lblOutput.Text = "Pinch changed!";
 break;
 case UIGestureRecognizerState.Ended:
 this.lblOutput.Text = "Pinch ended!";
 break;
 }
}

3. Add the following code in the ViewDidLoad method:
UIPinchGestureRecognizer pinchGesture = new
 UIPinchGestureRecognizer(this.OnPinchGesture);
this.View.AddGestureRecognizer(pinchGesture);

Interacting with Device Hardware

234

4. Compile and run the app on the simulator. Hold down the option key and click-and-drag
the mouse to perform the equivalent of a pinch on the simulator screen.

Holding down the Option key and dragging with the mouse cursor on the simulator
is the equivalent of touching a device's screen with two fingers, as shown in the
following screenshot:

How it works...
As the iOS Version 3.2 was released along with the iPad, Apple introduced the
UIGestureRecognizer class and its derivatives. The gesture recognizers make use of the
multitouch screens on iOS devices. Gestures are basically touch combinations that can be
performed for specific actions.

For example, pinching on a fullscreen image in the native Photos app will zoom out. The action
of pinching is the gesture that the user performs, while the gesture recognizer is responsible
for recognizing and delivering the gesture event to its receiver.

Chapter 9

235

In this example, we create a UIPinchGestureRecognizer instance, which will recognize
the pinches performed on the screen. Its instance is created with the following code:

UIPinchGestureRecognizer pinchGesture = new
 UIPinchGestureRecognizer(this.OnPinchGesture);

The constructor that initializes the instance takes one parameter, which is of the Action<UI
PinchGestureRecognizer> type and represents the method that will be called when the
recognizer receives a gesture.

Inside the method, we read the State property of the gesture recognizer object and respond
accordingly, as shown in the following code:

switch (pinch.State) {
//…

There's more...
The state of each gesture recognizer is represented by an enumeration of the
UIGestureRecognizerState type. Its possible values are shown as follows:

 f Possible: This indicates that the gesture has not been recognized yet. This is the
default value.

 f Began: This indicates that the gesture has started.

 f Changed: This indicates that the gesture has changed.

 f Ended: This indicates that the gesture has ended.

 f Cancelled: This indicates that the gesture has been canceled.

 f Failed: This indicates that the gesture cannot be recognized.

 f Recognized: This indicates that the gesture has been recognized.

The advantage of gesture recognizers
The advantage of gesture recognizers is that they save developers the time to create their own
gesture recognition mechanisms through the touch events. Furthermore, they are based on
the gestures that users are accustomed to using on iOS devices.

See also
 f The Handling touch events recipe

 f The Custom gestures recipe

Interacting with Device Hardware

236

Custom gestures
In this recipe, we will learn how to create a custom gesture recognizer to create our own
gesture response mechanism.

Getting ready
Create a new Single View Application in Xamarin Studio and name it CustomGestureApp.

How to do it...
Perform the following steps:

1. Add a label to the view of the controller.

2. Create the following nested class in the CustomGestureAppViewController
class:
private class DragLowerLeftGesture : UIGestureRecognizer
{
 private PointF startLocation;
 private RectangleF lowerLeftCornerRect;
 public override UIGestureRecognizerState State
 {
 get
 {
 return base.State;
 } set
 {
 base.State = value;
 }
 }
 public override void TouchesBegan (NSSet touches, UIEvent
 evt)
 {
 base.TouchesBegan (touches, evt);
 UITouch touch = touches.AnyObject as UITouch;
 this.startLocation = touch.LocationInView(this.View);
 RectangleF viewBounds = this.View.Bounds;
 this.lowerLeftCornerRect = new RectangleF(0f,
 viewBounds.Height - 50f, 50f, 50f);
 if (this.lowerLeftCornerRect.
 Contains(this.startLocation))
 {

Chapter 9

237

 this.State = UIGestureRecognizerState.Failed;
 } else
 {
 this.State = UIGestureRecognizerState.Began;
 }
 }
 public override void TouchesMoved (NSSet touches,
 UIEvent evt)
 {
 base.TouchesMoved (touches, evt);
 this.State = UIGestureRecognizerState.Changed;
 }
 public override void TouchesEnded (NSSet touches,
 UIEvent evt)
 {
 base.TouchesEnded (touches, evt);
 UITouch touch = touches.AnyObject as UITouch;
 PointF touchLocation = touch.LocationInView(this.View);
 if (this.lowerLeftCornerRect.Contains(touchLocation))
 {
 this.State = UIGestureRecognizerState.Ended;
 } else
 {
 this.State = UIGestureRecognizerState.Failed;
 }
 }
}

3. Add the following method to the class:
private void OnDragLowerLeft(NSObject gesture)
{
 DragLowerLeftGesture drag =
 (DragLowerLeftGesture)gesture;
 switch (drag.State)
 {
 case UIGestureRecognizerState.Began:
 this.lblOutput.Text = "Drag began!";
 break;
 case UIGestureRecognizerState.Changed:
 this.lblOutput.Text = "Drag changed!";
 break;
 case UIGestureRecognizerState.Ended:
 this.lblOutput.Text = "Drag ended!";
 break;

Interacting with Device Hardware

238

 case UIGestureRecognizerState.Failed:
 this.lblOutput.Text = "Drag failed!";
 break;
 }
}

4. Initialize and add the gesture recognizer in the ViewDidLoad method as shown in
the following code:
DragLowerLeftGesture dragGesture = new
 DragLowerLeftGesture();
dragGesture.AddTarget(this.OnDragLowerLeft);
this.View.AddGestureRecognizer(dragGesture);

5. Compile and run the app on the simulator. Click-and-drag on the simulator's screen
towards the lower-left corner.

How it works...
To create a gesture recognizer, we need to declare a class that inherits from the
UIGestureRecognizer class. In this example, we are creating a gesture that will be
recognized by dragging the finger on the screen towards a 50 x 50 point area in the
lower-left corner of the screen. The following line of code shows the class declaration:

private class DragLowerLeftGesture : UIGestureRecognizer

The UIGestureRecognizer class contains the same touch methods that we use to intercept
touches in views. We also have access to the view it was added to through its View property.
Inside the TouchesBegan method, we determine the initial touch location. If it is outside the
lower-left portion of the view, we set the State property to Began. If it is inside the lower-left
portion, we set the State property to Failed so that the callback will not be called.

Inside the TouchesEnded method, we consider the gesture as Ended if the touch's location
was inside the lower-left portion of the view. If it was not, the gesture recognition is considered
as Failed.

The TouchesMoved method is where the Changed state will be set. For this simple gesture
recognizer that we are creating, no other logic is needed.

As the UIGestureRecognizer class does not have a constructor that accepts an
Action<T> object for the gesture handler, we initialize it with the default constructor and use
the AddTarget method for this purpose by using the following code:

dragGesture.AddTarget(this.OnDragLowerLeft);

The only difference in this case is that the parameter is of the Action<NSObject> type,
which we can cast to our own custom type, as shown in the following line of code:

DragLowerLeftGesture drag = (DragLowerLeftGesture)gesture;

Chapter 9

239

There's more...
This is a simple gesture recognizer that depends on a single touch. With the information
provided in the touch methods, we can create more complex gestures that will support
multiple touches.

Another use of custom gesture recognizers
There are some views that inherit from the UIView class, which, according to the Apple
developer documentation, should not be subclassed. The MKMapView class represents one of
these views that is used to display the maps. This poses a problem if we want to intercept the
touch events from these views. Although we could use another view over it and intercept that
view's touch events, it is quite complex (and error prone) to do so. A more simple approach is
to create a simple custom gesture recognizer and add it to the view that we cannot subclass.
This way, we can intercept its touches without having to subclass it.

See also
 f The Recognizing gestures recipe

 f The Handling touch events recipe

Using the accelerometer
In this recipe, we will learn how to receive the accelerometer events to create an app that is
aware of the device movement.

Getting ready
Create a new Single View Application in Xamarin Studio and name it AccelerometerApp.

The simulator does not support the accelerometer hardware. The project
in this example will work correctly on a device.

How to do it...
Perform the following steps:

1. Add two buttons and a label on the view of the controller.

2. In the ViewDidLoad method, add the following code:
this.btnStop.Enabled = false;
UIAccelerometer.SharedAccelerometer.UpdateInterval = 1 /

Interacting with Device Hardware

240

 10;
this.btnStart.TouchUpInside += delegate {
 this.btnStart.Enabled = false;
 UIAccelerometer.SharedAccelerometer.Acceleration +=
 this.Acceleration_Received;
 this.btnStop.Enabled = true;
} ;
this.btnStop.TouchUpInside += delegate {
 this.btnStop.Enabled = false;
 UIAccelerometer.SharedAccelerometer.Acceleration -=
 this.Acceleration_Received;
 this.btnStart.Enabled = true;
} ;

3. Add the following method in the class:
private void Acceleration_Received (object sender,
 UIAccelerometerEventArgs e)
{
 this.lblOutput.Text = string.Format("X: {0}\nY: {1}\nZ:
 {2}", e.Acceleration.X, e.Acceleration.Y,
 e.Acceleration.Z);
}

4. Compile and run the app on the device. Tap the Start accelerometer button and
watch the values get displayed on the label while moving or shaking the device.

How it works...
The UIAccelerometer class provides access to the accelerometer hardware through
its SharedAccelerometer static property. To activate it, all we need to do is to assign
a handler to its Acceleration event by using the following code:

UIAccelerometer.SharedAccelerometer.Acceleration +=
this.Acceleration_Received;

Inside the handler, we receive the accelerometer values through the
UIAccelerometerEventArgs.Acceleration property. The property returns an object
of the UIAcceleration type, which contains the accelerometer amount in three properties:
X, Y, and Z. These properties represent the motion in the x-, y-, and z-axis. Consider the
following screenshot:

Chapter 9

241

Each of these values measure the amount of G-force by which the device moved on each
axis. For example, if X has a value of 1, the device is moving on the x axis to the right with an
acceleration of 1G. If X has a value of -1, the device is moving on the x axis to the left with an
acceleration of 1G. When the device is placed on a table with its back facing the floor and is
not moving, the normal values of the acceleration should be close or equal to the following:

 f X: 0

 f Y: 0

 f Z: -1

Although the device is not moving, Z will be -1 because the device measures the earth's gravity.

We can set the interval by which the accelerometer will issue the acceleration events, by
setting its UpdateInterval property by using the following code:

UIAccelerometer.SharedAccelerometer.UpdateInterval = 1 / 10;

The property accepts a number of type double, which represents the interval by which the
accelerometer will issue its acceleration events in seconds. Care must be taken when setting
the update interval because the more events the accelerometer has to issue for a specific
period of time, the more battery power it consumes.

To stop using the accelerometer, all we need to do is unhook the handler from the
Acceleration event by using the following code:

UIAccelerometer.SharedAccelerometer.Acceleration -=
this.Acceleration_Received;

Interacting with Device Hardware

242

There's more...
The UIAcceleration class contains another useful property, named Time. It is a double
that represents the relative time on which the acceleration event occurred. It is relative to the
CPU time, and it is not suggested that you use this value to calculate the exact timestamp of
the event.

Consideration when using the accelerometer
Although the iPhone's accelerometer is a very accurate and sensitive sensor, it should not be
used for precise measurements. Also, the results it produces may vary among different iOS
devices, even if they're of the same model.

See also
 f The Using the gyroscope recipe

Using the gyroscope
In this recipe, we will learn how to use the device's built-in gyroscope.

Getting ready
Create a new project in Xamarin Studio and name it GyroscopeApp.

The simulator does not support the gyroscope hardware. Also, only
newer devices contain a gyroscope. If this app is executed on a device
without a gyroscope or on the simulator, no error will occur but no data
will be displayed.

How to do it...
Perform the following steps:

1. Add two buttons and a label to the view the controller.

2. Add the MonoTouch.CoreMotion namespace in the
GyroscopeAppViewController.cs file.

3. Enter the following private field in the class:
private CMMotionManager motionManager;

Chapter 9

243

4. Implement the ViewDidLoad method with the following code:
this.motionManager = new CMMotionManager();
this.motionManager.GyroUpdateInterval = 1 / 10;
this.btnStart.TouchUpInside += delegate {
 this.motionManager.StartGyroUpdates(
 NSOperationQueue.MainQueue, this.GyroData_Received);
} ;
this.btnStop.TouchUpInside += delegate {
 this.motionManager.StopGyroUpdates();
} ;

Add the following method:

private void GyroData_Received(CMGyroData gyroData,
 NSError error)
{
 Console.WriteLine("rotation rate x: {0}, y: {1}, z: {2}",
 gyroData.RotationRate.x, gyroData.RotationRate.y,
 gyroData.RotationRate.z);
}

5. Compile and run the app on the device. Tap the Start gyroscope button and rotate
the device in all axes. Watch the values get displayed in the Application Output pad.

How it works...
The gyroscope is a mechanism that measures orientation. Newer iOS devices support the
gyroscope hardware, along with the accelerometer, to give even more accurate measurements
of the device motion.

The MonoTouch.CoreMotion namespace wraps the objects contained in the native
CoreMotion framework. The process of using the gyroscope hardware in code is similar
to the one used for the accelerometer. The first difference is that there is no single object
for the gyroscope in the UIApplication class. So, we need to create an instance of the
CMMotionManager class as shown in the following code:

private CMMotionManager motionManager;
//...
 this.motionManager = new CMMotionManager();

Just like how we use the accelerometer, we can set the interval by which we will receive the
gyroscope events in seconds by using the following code:

this.motionManager.GyroUpdateInterval = 1 / 10;

Interacting with Device Hardware

244

To start receiving the gyroscope events, we call the object's StartGyroUpdates method as
shown in the following code:

this.motionManager.StartGyroUpdates(NSOperationQueue.MainQueue,
 this.GyroData_Received);

This method is overloaded; the first overload is parameterless and when called, the values of
the gyroscopic measurements are set to the GyroData property. Using this overload is quite
simple and easy, but no events are triggered here, and we have to provide a mechanism to
read the measurements from the property.

The second overload, which is used in this example, accepts two parameters. The first
parameter is the NSOperationQueue parameter on which the updates will occur, and the
second parameter is the handler that will be executed when an update occurs.

The NSOperationQueue class represents an iOS mechanism to manage the NSOperation
objects' execution. We access the runtime's main operation queue through the static
NSOperationQueue.MainQueue property. Basically, this way, we instruct the runtime to
manage the delivery of the handler in a more effective manner.

The second parameter is a delegate of the CMGyroHandler type. Its signature, represented
by the method we created, is similar to the following code:

private void GyroData_Received(CMGyroData gyroData, NSError error)

The CMGyroData object contains the actual measurement values received from the gyroscope
through its RotationRate property. The following code outputs the data from the property:

Console.WriteLine("rotation rate x: {0}, y: {1}, z: {2}",
 gyroData.RotationRate.x, gyroData.RotationRate.y,
 gyroData.RotationRate.z);

The rotation rate is reflected on the x, y, and z axis, represented by the corresponding X, Y,
and Z properties. Each value is the amount of the rotation angle per second, which occurred
on that axis, in radians.

Although it might seem a bit complicated at first, it is actually quite simple. For example, a
value of 0.5 in the z axis means that the device rotated with a rate of 0.5 radians/sec to the
left. A value of -0.5 in the z-axis means that the device rotated with a rate of 0.5 radians/sec
to the right. The pattern to determine the rotation direction is based on the right-hand rule.

There's more...
If you want your app to be available only for devices that support the gyroscope, add the
UIRequiredDeviceCapabilities key in your project's Info.plist file with the
gyroscope value. If your app's functionality is based fully on the gyroscope, adding this key
must be considered essential to avoid the app being downloaded by users with older devices,
ending up with an app that does not work.

Chapter 9

245

Determining the availability of the gyroscope hardware
To determine whether the device the app is running on supports the gyroscope hardware,
check the value of the GyroAvailable property of the CMMotionManager instance.

Converting radians to degrees
A radian is an angle measurement unit. To convert an angle measurement from radians to
degrees, consider the following helper method:

public static double RadiansToDegrees (double radians)
{
 return (radians * 180 / Math.PI);
}

See also
 f The Using the accelerometer recipe

10
Location Services

and Maps

In this chapter, we will cover the following:

 f Determining location

 f Determining heading

 f Using region monitoring

 f Using a significant-change location service

 f Location services in the background

 f Displaying maps

 f Geocoding

 f Adding map annotations

 f Adding map overlays

Introduction
Today's smartphones and hand-held devices are equipped with high-accuracy Global
Positioning System (GPS) hardware. The GPS hardware receives location information from a
constellation of satellites. Apart from the satellites, iOS devices take advantage of the cellular
and Wi-Fi networks to provide location information to the user.

Location Services and Maps

248

In this chapter, we will discuss how to use the appropriate frameworks to take advantage
of the location services of the device. Furthermore, we will learn how to display maps and
annotate them. Specifically, we will focus on the following subjects:

 f Location services: Here, the services available on a device for providing location
information will be discussed. These services are as follows:

 � Standard location service: This location service depends fully on the
device's GPS module and provides location data of the highest accuracy

 � Region monitoring service: This location service monitors
boundary crossings

 � Significant-change location service: This service monitors significant
changes in the location of the device

 f CLLocationManager: This class allows us to use the location services

 f Compass: This class shows how to use the built-in compass

 f MKMapView: This view is used to display maps

 f CLGeocoder: This class provides geocoding features

 f MKAnnotation: This class allows us to add annotations on maps

 f MKOverlay: This class allows us to add overlays on maps

Determining location
We will now learn how to receive the location information from the built-in GPS hardware.

Getting ready
Create a new Single View Application in Xamarin Studio and name it LocationApp. Add two
buttons and a label on the view of the controller.

How to do it...
Perform the following steps to receive the location of the device:

1. To retrieve location information from the built-in GPS hardware, we need to use the
Core Location framework. It is exposed through the MonoTouch.CoreLocation
namespace as follows:
using MonoTouch.CoreLocation;

2. Add the following code in the LocationAppViewController class:
private CLLocationManager locationManager;
public override void ViewDidLoad ()

Chapter 10

249

{
 base.ViewDidLoad ();
 this.locationManager = new CLLocationManager();
 this.locationManager.LocationsUpdated +=
 LocationManager_LocationsUpdated;
 this.locationManager.Failed +=
 this.LocationManager_Failed;

 this.btnStart.TouchUpInside += delegate {
 this.lblOutput.Text = "Determining location...";
 this.locationManager.StartUpdatingLocation();
 } ;
 this.btnStop.TouchUpInside += delegate {
 this.locationManager.StopUpdatingLocation();
 this.lblOutput.Text = "Location update stopped.";
 } ;
}
private void LocationManager_LocationsUpdated (object
 sender, CLLocationsUpdatedEventArgs e)
{
 CLLocation location = e.Locations[0];
 double latitude =
 Math.Round(location.Coordinate.Latitude, 4);
 double longitude =
 Math.Round(location.Coordinate.Longitude, 4);
 double accuracy = Math.Round(location.HorizontalAccuracy,
 0);
 this.lblOutput.Text = string.Format("Latitude:
 {0}\nLongitude: {1},\nAccuracy: {2}m", latitude,
 longitude, accuracy);
}
private void LocationManager_Failed (object sender,
 NSErrorEventArgs e)
{
 this.lblOutput.Text = string.Format("Location update
 failed! Error message: {0}",
 e.Error.LocalizedDescription);
}

3. Compile and run the app on the device. Tap the start button to view your location
coordinates on the screen.

Projects using the Core Location framework to determine the current
position of a device can work on the simulator. By navigating to the Debug
| Location menu of the simulator, we can customize the location that the
device will be using.

Location Services and Maps

250

How it works...
The location data that the GPS module provides can be accessed through the
CLLocationManager class. After initializing an instance of the class, we need
to subscribe to its LocationsUpdated event as follows:

this.locationManager = new CLLocationManager();
this.locationManager.LocationsUpdated +=
 LocationManager_LocationsUpdated;

Location data will become available, as they are issued through this event. It is also a good
practice to subscribe to the Failed event as follows:

 this.locationManager.Failed += this.LocationManager_Failed;

When the location manager first requests for location updates, the user is informed through a
system-specific alert, which is similar to the one shown in the following screenshot:

This alert basically asks for user permission to allow the app to retrieve location data. If the
user denies this request, the Failed event will be triggered with the appropriate message.
Future location requests will not trigger the permission alert, and the user will have to
enable location services for the app through the device's settings, so we need to handle
this scenario accordingly.

Chapter 10

251

After subscribing to the appropriate events, we request the delivery of location updates
through the StartUpdatingLocation method as follows:

this.locationManager.StartUpdatingLocation();

To stop receiving location updates, we call the StopUpdatingLocation method as follows:

this.locationManager.StopUpdatingLocation();

There's more...
The LocationsUpdated event accepts the delegates of the EventHandler<CLLocation
sUpdatedEventArgs> type. The CLLocationsUpdatedEventArgs parameter contains
one property that returns an array of CLLocation objects. The last item in the array contains
the most recent location data that were retrieved from location services. The array will always
contain at least one CLLocation item.

The coordinates are returned as values of the double type and represent the coordinates of
the position in degrees as follows:

CLLocation location = e.Locations[0];
double latitude = Math.Round(location.Coordinate.Latitude, 4);
double longitude = Math.Round(location.Coordinate.Longitude, 4);
double accuracy = Math.Round(location.HorizontalAccuracy, 0);

Negative latitude values indicate south coordinates and positive values indicate north
coordinates. Negative longitude values indicate west coordinates, while positive longitude
values indicate east coordinates.

The HorizontalAccuracy property returns the accuracy of the GPS fix in meters. For
example, a value of 17 m indicates that the location is determined within a circle of a
diameter 17 m. Lower values indicate better accuracy.

GPS accuracy
There is always a margin of error in location data, which is independent of GPS hardware, and
there are variable factors that define it, such as the surrounding buildings and various obstacles.
You will notice that the HorizontalAccuracy property will return lower values when the
device is outdoors, while higher values will be returned when we use the GPS indoors or on a
city street with tall buildings.

Location services availability
Not all devices are equipped with location services hardware. Furthermore, even if a device is
equipped with the appropriate hardware, location services could be disabled by the user.

Location Services and Maps

252

To determine if the location services are available or enabled on the device, we read the
return value of the CLLocationManager.LocationServicesEnabled static property
before initializing the location manager object as follows:

if (CLLocationManager.LocationServicesEnabled) {
 // Initialize the location manager
 //...
}

Furthermore, we can check for the authorization status of location services through the
CLLocationManager.Status property as follows:

if (CLLocationManager.Status == CLAuthorizationStatus.Authorized) {
 //..
}

Location services usage indicator
When any type of location service is used, the location services icon appears on the right-
hand side of the status bar next to the battery indicator, as shown in the following screenshot:

See also
 f The Determining heading and Location services in the background recipes

Determining heading
In this recipe, we will learn how to use the built-in compass to determine the heading of
the device.

Getting ready
Create a new Single View Application in Xamarin Studio and name it HeadingApp. Just as
you did in the previous recipe, add two buttons and a label on the view of the controller.

The project in this recipe cannot be tested on the simulator. A device with
compass hardware (magnetometer) is required.

Chapter 10

253

How to do it...
Perform the following steps to determine the heading of the device:

1. Add the following code in the HeadingAppViewController class:
private CLLocationManager locationManager;
public override void ViewDidLoad ()
{
 base.ViewDidLoad ();
 // Perform any additional setup after loading the view,
 typically from a nib.
 this.locationManager = new CLLocationManager();
 this.locationManager.UpdatedHeading +=
 LocationManager_UpdatedHeading;
 this.locationManager.Failed += (sender, e) =>
 Console.WriteLine("Failed! {0}",
 e.Error.LocalizedDescription);

 this.btnStart.TouchUpInside += delegate {
 this.lblOutput.Text = "Starting updating heading...";
 this.locationManager.StartUpdatingHeading();
 } ;
 this.btnStop.TouchUpInside += delegate {
 this.locationManager.StopUpdatingHeading();
 this.lblOutput.Text = "Stopped updating heading.";
 };
}
private void LocationManager_UpdatedHeading (object sender,
 CLHeadingUpdatedEventArgs e)
{
 this.lblOutput.Text = string.Format("Magnetic heading:
 {0}", Math.Round(e.NewHeading.MagneticHeading, 1));
}

2. Compile and run the app on the device. Tap the start button and rotate the device to
view the different heading values.

How it works...
To retrieve the heading information, we first need to subscribe to the location manager's
UpdatedHeading event as follows:

this.locationManager.UpdatedHeading +=
 this.LocationManager_UpdatedHeading;

Location Services and Maps

254

To initiate the delivery of heading information, we call the StartUpdatingHeading method
as follows:

this.locationManager.StartUpdatingHeading();

Inside the UpdatedHeading event handler, we retrieve the heading information through the
MagneticHeading property of the CLHeading object exposed through the event arguments'
NewHeading property as follows:

this.lblOutput.Text = string.Format("Magnetic heading: {0}",
 Math.Round(e.NewHeading.MagneticHeading, 1));

To stop retrieving heading updates, we call the StopUpdatingHeading method with the
help of the following code:

this.locationManager.StopUpdatingHeading();

There's more...
The heading is measured in degrees. The values for the four points of the horizon that can be
viewed on a simple compass are the following:

 f 0 or 360 degrees: The magnetometer will return values of up to 359.99 degrees and
then return 0 when the device is heading North.

 f 90 degrees: The device is heading East

 f 180 degrees: The device is heading South

 f 270 degrees: The device is heading West

Magnetic vs true heading
Magnetic heading is the heading that is based on what a normal compass will show as North.
True heading is the true direction of North based on the actual position of the earth's North
Pole. There is a slight difference between the two, which varies according to the earth's
magnetic-field fluctuations, and it is usually about 2 degrees.

The CLHeading class provides both readings through the MagneticHeading and
TrueHeading properties. This provides a significant help to developers, as calculating the
difference between the two readings requires either expensive equipment or very difficult
calculations based on the time of year and other factors.

Chapter 10

255

Compass availability
The magnetometer, a module that can determine the heading in degrees and provides
compass functionality to devices, is not available on all devices. To check if a device
can provide heading information, retrieve the value from the CLLocationManager.
HeadingAvailable static property as follows:

if (CLLocationManager.HeadingAvailable) {
 // Start updating heading
 //...
}

See also
 f The Determining location and Location services in the background recipes

Using region monitoring
In this recipe, we will learn how to use GPS to respond to region-specific position changes.

Getting ready
Create a new Single View Application in Xamarin Studio and name it RegionApp. Add two
buttons and a label on the view of the controller.

How to do it...
Perform the following steps:

1. Create two fields in the RegionAppViewController class as follows:
private CLLocationManager locationManager;
private CLCircularRegion region;

2. In the ViewDidLoad method, initialize the RegionAppViewController class, and
subscribe to the LocationsUpdated, RegionEntered, and RegionLeft events
as follows:
this.locationManager.RegionEntered +=
 this.LocationManager_RegionEntered;
this.locationManager.RegionLeft +=
 this.LocationManager_RegionLeft;
this.locationManager.UpdatedLocation +=
 this.LocationManager_UpdatedLocation;

Location Services and Maps

256

3. Enter the following event handlers in the class:
private void LocationManager_LocationsUpdated (object
 sender, CLLocationUpdatedEventArgs e)
{
 CLLocation location = e.Locations[0];
 if (location.HorizontalAccuracy < 100)
 {
 this.region = new CLCircularRegion(location.Coordinate,
 100, "Home");
 this.locationManager.StartMonitoring(this.region);
 this.locationManager.StopUpdatingLocation();
 }
}
private void LocationManager_RegionLeft (object sender,
 CLRegionEventArgs e)
{
 this.lblOutput.Text = string.Format("{0} region left.",
 e.Region.Identifier);
}
private void LocationManager_RegionEntered (object sender,
 CLRegionEventArgs e)
{
 this.lblOutput.Text = string.Format("{0} region
 entered.", e.Region.Identifier);
}

4. In the start button's TouchUpInside handler, call the StartUpdatingLocation
method using the following code:
this.locationManager.StartUpdatingLocation();

5. In the stop button's TouchUpInside handler, call the StopMonitoring method
using the following code:
this.locationManager.StopMonitoring(this.region);

6. Compile and run the app on the simulator. Navigate to Debug | Location | Freeway
drive on the simulator's menu and tap the Start region monitoring button.

How it works...
Region monitoring is a feature that monitors boundary crossings. When a boundary of a
specific region is crossed, the CLLocationManager object issues the appropriate events
as follows:

this.locationManager.RegionEntered +=
 this.LocationManager_RegionEntered;

Chapter 10

257

this.locationManager.RegionLeft +=
 this.LocationManager_RegionLeft;

In this example, we define the region based on the current location; hence, we also subscribe
to the LocationsUpdated event.

When the app starts receiving location updates, it first checks for location accuracy using the
following code:

if (location.HorizontalAccuracy < 100)

If the desired accuracy is achieved (<100 m, modify at your discretion), we initialize the
CLCircularRegion object using the following line of code:

this.region = new CLRegion(e.NewLocation.Coordinate, 100, "Home");

The CLCircularRegion class is used to define circular regions and inherits the CLRegion
class. Here, in the first parameter, we create the region to be monitored based on our current
location. The second parameter declares the radius around the coordinate, in meters, defining
the region's boundary. The third parameter is a string identifier we want to assign to the
region.

To start monitoring the region, we call the StartMonitoring method using the following line
of code:

this.locationManager.StartMonitoring(this.region);

When region monitoring has started, the appropriate events will be triggered when the device
enters or leaves the region.

There's more...
Region monitoring is a very useful feature. For example, an app could provide specific
information to users based on their proximity to various areas. Furthermore, it can notify
of boundary crossings while the app is in the background.

Region monitoring availability
To check if a device supports region monitoring, call the CLLocationManager.
IsMonitoringAvailable static method passing the type of the CLRegion object we want
to use as follows:

if (CLLocationManager.IsMonitoringAvailable(typeof(CLCircularRegion))
{
 // Start monitoring a region
 //...
}

Location Services and Maps

258

See also
 f The Using a significant-change location service and Location services in the

background recipes

Using a significant-change location service
In this chapter, we will learn how to use the significant location change monitoring feature.

Getting ready
Create a new Single View Application in Xamarin Studio and name it SLCApp. Add a label
and two buttons on the view of the controller.

How to do it...
Perform the following steps:

1. Add the following ViewDidLoad method in the SLCAppViewController class:
private CLLocationManager locationManager;
public override void ViewDidLoad ()
{
 base.ViewDidLoad ();

 // Perform any additional setup after loading the view,
 typically from a nib.
 this.locationManager = new CLLocationManager();
 this.locationManager.LocationsUpdated +=
 LocationManager_LocationsUpdated;
 this.btnStart.TouchUpInside += (s, e) => {
 this.lblOutput.Text = "Starting monitoring significant
 location changes...";
 this.locationManager.
 StartMonitoringSignificantLocationChanges();
 } ;
 this.btnStop.TouchUpInside += (s, e) => {
 this.locationManager.
 StopMonitoringSignificantLocationChanges();
 this.lblOutput.Text = "Stopped monitoring significant
 location changes.";
 } ;
}

Chapter 10

259

2. Add the following method:
private void LocationManager_LocationsUpdated (object sender,
CLLocationsUpdatedEventArgs e)
{
 CLLocation location = e.Locations[0];
 double latitude =
 Math.Round(location.Coordinate.Latitude, 4);
 double longitude =
 Math.Round(location.Coordinate.Longitude, 4);
 double accuracy = Math.Round(location.HorizontalAccuracy,
 0);
 this.lblOutput.Text = string.Format("Latitude:
 {0}\nLongitude: {1}\nAccuracy: {2}", latitude,
 longitude, accuracy);
}

3. In iOS Simulator, navigate to Debug | Location | Freeway drive on the menu.

4. Compile and run the app on the simulator. Tap the Start monitoring button to start
monitoring for significant location changes.

How it works...
The significant-change location service monitors significant location changes and provides
location information when these changes occur. In terms of power consumption, it is the
less-demanding location service. It uses the device's cellular radio transceiver to determine the
user's location. Only devices equipped with a cellular radio transceiver can use this service.

The code for using the significant-change location service is similar to the code of the standard
location services. The only differences are the methods of starting and stopping the service.
To start the service, we call the StartMonitoringSignificantLocationChanges method
using the following line of code:

this.locationManager.StartMonitoringSignificantLocationChanges();

Location updates are issued through the LocationsUpdated event handler, which is the
same event we use for the standard location service as follows:

this.locationManager.LocationsUpdated +=
 LocationManager_LocationsUpdated;
//...
private void LocationManager_LocationsUpdated (object sender,
 CLLocationUpdatedEventArgs e)
{
//...
}

Location Services and Maps

260

There's more...
The significant-change location service can report location changes while in the background,
waking up the app. It is very useful for apps that need to make use of location services, with
a lower accuracy than that of the standard location services.

Significant-change location service availability
To determine if a device is capable of using the significant-change location service, retrieve
the value of the SignificantLocationChangeMonitoringAvailable static property
as follows:

if (CLLocationManager.SignificantLocationChangeMonitoringAvailable) {
 // Start monitoring for significant location changes.
 //...
}

See also
 f The Using region monitoring and Location services in the background recipes

Location services in the background
In this recipe, we will discuss how to use location services while the app is in the background.

Getting ready
Create a new Single View Application in Xamarin Studio and name it
BackgroundLocationApp. Just like we did in the previous recipes, add
a label and two buttons on the view of the controller.

How to do it...
Perform the following steps to use the location services when the app is in the background:

1. In the Solution pane, double-click on the Info.plist file to open it. Under the
Source tab, add a new key by clicking on the plus (+) sign or by right-clicking and
selecting New Key from the context menu.

2. Select Required background modes from the drop-down list or just type
UIBackgroundModes in the field.

Chapter 10

261

3. Expand the key and right-click on the empty item below it. Click on New Key in the
context menu. In its Value field, select App registers for location updates, or type the
word location. Save the document. When done, you should have something similar
to the following screenshot:

4. In the BackgroundLocationAppViewController class, enter the same code as
the one used in the Determining location recipe of this chapter.

5. At the bottom of the LocationManager_LocationsUpdated method, add the
following line:
Console.WriteLine("{0}:\n\t{1} ", DateTime.Now,
 this.lblOutput.Text);

6. Compile and run the app on the simulator. Tap the Start button to start receiving
location updates.

7. With the simulator window active, press Cmd + Shift + H. This key combination
simulates pressing the home button on a device and will move the app to the
background. Watch Xamarin Studio's Application Output pad continuing the
display of location updates.

How it works...
To receive location updates while the app is in the background, we need to set the location
value to the UIBackgroundModes key in the Info.plist file. This basically makes sure
that the app has the appropriate permission to receive location updates while it is in the
background and that it will not get suspended.

Location Services and Maps

262

If you open the Info.plist file in a text editor, this is what has been added:

<key>UIBackgroundModes</key>
 <array>
 <string>location</string>
 </array>
</key>

To make sure that the app is receiving location updates, check the status bar. The location
services icon should be displayed even if the app is in the background.

There's more...
Setting the UIBackgroundModes key for location services is only needed for the standard
location service. Both the region monitoring and significant-change location services support
delivery of location updates while the app is in the background, by default. While one of these
location services has started updating location data, the app can even be terminated. When
a location update is received, the app is started or woken up from the suspended state and is
given a limited amount of time to execute code.

To determine if an app has been started by one of these two location services, check the
options parameter of the FinishedLaunching method in the AppDelegate class
as follows:

if (null != options)
{
 if (options.ContainsKey
 (UIApplication.LaunchOptionsLocationKey))
 {
 Console.WriteLine ("Woken from location service!");
 CLLocationManager locationManager = new CLLocationManager();
 locationManager.UpdatedLocation +=
 this.LocationUpdatedHandler;
 locationManager.StartMonitoringSignificantLocationChanges();
 }
}

The options parameter is of the NSDictionary type. If this dictionary contains
UIApplication.LaunchOptionsLocationKey, then the app has been started or woken up
from the suspended state due to a location service. When this is the case, we need to call the
StartMonitoringSignificantLocationChanges method on a CLLocationManager
instance again, to retrieve location data.

Chapter 10

263

The same applies to region-monitoring location service. Note that if we use either of these
two location services, but our app does not support the background delivery of a location's
events, we have to make sure that we stop monitoring location updates when they are no longer
needed. If we do not, the location services will continue to run, causing significant battery drain.

Restricting to supported hardware
If our app's features are fully dependent on location services and cannot operate correctly on
devices that do not support them, we have to add the UIRequiredDeviceCapabilities
key in the Info.plist file with the location-services value.

Furthermore, when the app requires the use of the standard location service, which uses the
GPS hardware, we need to add the gps value to the UIRequiredDeviceCapabilities
key. This way, we make sure that the app will not be available through the App Store to the
devices that are not equipped with the appropriate hardware.

UI updates while in the background
In this recipe, we deliberately set a value to the label's Text property while the app is in the
background. However, updating the UI while the app is in the background should be avoided,
because the iOS might terminate our app if there are too many updates. Furthermore, UI
updates that occur in the background are basically being queued for when the app returns
to the foreground and take place instantaneously when this happens. This may result in
unexpected behavior in our app.

See also
 f The Determining location recipe

 f The Creating an iOS project with Xamarin Studio recipe in Chapter 1,
Development Tools

Displaying maps
In this recipe, we will learn how to display maps in our app.

Getting ready
Create a new Single View Application in Xamarin Studio and name it MapDisplayApp.

Location Services and Maps

264

How to do it...
Perform the following steps to display maps in the app:

1. Add MKMapView on the controller. The following screenshot shows the symbol for
MKMapView in Xcode's object library:

2. Add the following using directives in the MapDisplayAppViewController.cs
file:
using MonoTouch.MapKit;
using MonoTouch.CoreLocation;

3. Enter the following code in the MapDisplayAppViewController class:
public override void ViewDidLoad ()
{
 base.ViewDidLoad ();
 this.mapView.ShowsUserLocation = true;
 this.mapView.RegionChanged += this.MapView_RegionChanged;
}
private void MapView_RegionChanged (object sender,
 MKMapViewChangeEventArgs e)
{
 if (this.mapView.UserLocation.Location != null)
 {
 CLLocationCoordinate2D mapCoordinate =
 this.mapView.UserLocation.Location.Coordinate;
 Console.WriteLine("Current coordinates: LAT: {0}, LON:
 {1}", mapCoordinate.Latitude,
 mapCoordinate.Longitude);
 }
}

Chapter 10

265

4. Compile and run the app either on the simulator or on the device.

5. Zoom or pan the map by pinching on the screen (press Option and click-and-drag on
the simulator) to output the current location in the Application Output pad.

How it works...
The MonoTouch.MapKit namespace wraps all the objects contained in the MapKit
framework. The MapKit framework uses Apple maps to display maps.

MKMapView is the default iOS view that displays maps. It is especially designed for this
purpose, and it should not be subclassed.

To display the user's location on the map, we set its ShowsUserLocation property to true
using the following line of code:

this.mapView.ShowsUserLocation = true;

This activates the standard location service to start receiving location updates and handing
them over to the MKMapView object internally.

When MKMapView is first shown in an app, the system will
prompt the user for the permission to use location services,
just as if we were trying to use location services directly.

To determine when the user zooms or pans the map, we subscribe to the RegionChanged
event using the following code:

this.mapView.RegionChanged += this.MapView_RegionChanged;

Inside the event handler, we retrieve the current location through the UserLocation
property as follows:

if (this.mapView.UserLocation.Location != null)
{
 CLLocationCoordinate2D mapCoordinate =
 this.mapView.UserLocation.Location.Coordinate;
 Console.WriteLine("Current coordinates: LAT: {0}, LON: {1}",
 mapCoordinate.Latitude, mapCoordinate.Longitude);
}

If the ShowsUserLocation property is set to false, the location services will not be
activated, and the UserLocation.Location property will return null. It will also return
null when the app runs for the first time, as it will ask the user for permission to use location
services. However, a map will be displayed as long as the device or simulator has an active
Internet connection.

Location Services and Maps

266

There's more...
We can set the center coordinate of the map to be displayed with the
SetCenterCoordinate method as follows:

CLLocationCoordinate2D mapCoordinates =
 new CLLocationCoordinate2D(0, 0);
this.mapView.SetCenterCoordinate(mapCoordinates, true);

The first parameter is the map coordinates where we want the map to be centered at,
represented by an object of the CLLocationCoordinate2D type. The second parameter
declares if we want the centering of the map to be animated or not.

Apart from centering the map, we can also set its zoom level. We do this through the
SetRegion method as follows:

this.mapView.SetRegion(MKCoordinateRegion.FromDistance(
 mapCoordinates, 1000, 1000), true);

The first parameter is of the MKCoordinateRegion type. Here, its FromDistance
static method is used to create an instance. Its first parameter is the coordinate of the
region's center, while the next two parameters represent the horizontal and vertical span
of the map to display, in meters. It basically means that the region represented by this
MKCoordinateRegion instance will have mapCoordinates at the center, and the
horizontal and vertical part of the map will each represent 1000 meters on the map.

Note that MKMapView will set the actual region to an approximation of the values of
MKCoordinateRegion. This is because the dimensions of MKMapView cannot always
match the horizontal and vertical span values provided. For example, here, we set a square
region of 1000 x 1000 meters, but our MKMapView layout is not an absolute square, as it
basically takes over the entire screen. We can retrieve the actual region of the map that the
MKMapView is displaying through its Region property.

See also
 f The Geocoding, Adding map annotations, and Adding map overlays recipes

Geocoding
In this recipe, we will learn how to provide information about an address, city, or country
based on location coordinates.

Chapter 10

267

Getting ready
Create a new Single View Application in Xamarin Studio and name it GeocodingApp.

How to do it...
Perform the following steps:

1. Add an MKMapView on the top half of the view of MainController, a label, and a
button on the bottom half.

2. Add the MonoTouch.MapKit and MonoTouch.CoreLocation namespaces in the
GeocodingAppViewController.cs file.

3. Enter the following ViewDidLoad method in the class:
private CLGeocoder geocoder;
public override void ViewDidLoad () {
 base.ViewDidLoad ();
 this.mapView.ShowsUserLocation = true;
 this.btnGeocode.TouchUpInside += async (sender, e) => {
 this.lblOutput.Text = "Reverse geocoding location...";
 this.btnGeocode.Enabled = false;
 CLLocation currentLocation =
 this.mapView.UserLocation.Location;
 this.mapView.SetRegion(MKCoordinateRegion.FromDistance(
 currentLocation.Coordinate, 1000, 1000), true);
 this.geocoder = new CLGeocoder();
 try {
 CLPlacemark[] placemarks =
 await this.geocoder.
 ReverseGeocodeLocationAsync(currentLocation);
 if (null != placemarks) {
 CLPlacemark placemark = placemarks[0];
 this.lblOutput.Text =
 string.Format("Locality: {0},
 Administrative area: {1}",
 placemark.Locality,
 placemark.AdministrativeArea);
 }
 } catch (Exception ex) {
 Console.WriteLine("Error reverse geocoding location!
 {0}", ex.Message);
 } finally {
 this.btnGeocode.Enabled = true;
 }
 };
}

Location Services and Maps

268

4. Make sure that the simulator's location is set to a stationary position. Navigate to
Debug | Location | Custom (or Apple).

5. Compile and run the app either on the simulator or on the device. The result should
be similar to the following screenshot:

How it works...
Geocoding is the process of matching address information to geographic coordinates. Reverse
geocoding is the opposite, matching geographic coordinates to address information. In this
recipe, we are using reverse geocoding through the CLGeocoder class as follows:

private CLGeocoder geocoder;

After initializing the geocoder object, we call the ReverseGeocodeAsync method as follows:

CLPlacemark[] placemarks =
 await this.geocoder.
 ReverseGeocodeLocationAsync(currentLocation);

Chapter 10

269

The method accepts a CLLocation parameter, which represents the location for which we
want to retrieve geocoding data. The return value is an array of the CLPlacemark objects.
The CLPlacemark class contains the reverse-geocoded information, such as the country, city,
and address of the coordinates as shown in the following code:

CLPlacemark placemark = placemarks[0];
this.lblOutput.Text =
 string.Format("Locality: {0}, Administrative area: {1}",
 placemark.Locality,
 placemark.AdministrativeArea);

When reverse-geocoding a location, the array will always contain one item. If the return value
is null, then an error has occurred.

There's more...
We can also use the CLGeocoder class for forward geocoding. For example, to get the
coordinates of Apple's central offices, we use the GeocodeAddressAsync method
as follows:

CLPlacemark[] forward =
 await this.geocoder.GeocodeAddressAsync("Infinite Loop, 1-5,
 Cupertino, CA, USA");

The method will give more accurate results when we pass as all the information that we
have to it.

Forward geocoding with the GeocodeAddressAsync method might
return more than one item in the resulting CLPlacemark[] object.
This is because the geocoder might not be able to determine the exact
location through the passed information, so a set of possible results will
be returned.

Things to have in mind for CLGeocoder
Apple provides the geocoding feature with a rate limit. Although the exact limit is not
documented, it is recommended that you do not make more than one geocoding request
per minute. If the rate limit is exceeded, the geocoder will fail with an error.

Obsolete API
The CLGeocoder class basically replaces MKReverseGeocoder, which only offered reverse
geocoding until iOS 5.

Location Services and Maps

270

See also
 f The Displaying maps, Adding map annotations, and Adding map overlays recipes

Adding map annotations
In this recipe, we will discuss annotating a map to provide a variety of information to the user.

Getting ready
Create a new Single View Application in Xamarin Studio and name it MapAnnotateApp.
Add MKMapView and a button on the view of the controller.

How to do it...
Perform the following steps to add annotations to a map:

1. Add the MonoTouch.MapKit and MonoTouch.CoreLocation namespaces in the
MapAnnotateAppViewController.cs file.

2. Add the IMKMapViewDelegate interface to the
MapAnnotateAppViewController class declaration using the following code:
public partial class MapAnnotateAppViewController :
 UIViewController, IMKMapViewDelegate

3. Add the following code in the ViewDidLoad method:
this.mapView.ShowsUserLocation = true;
this.mapView.WeakDelegate = this;
this.btnAddPin.TouchUpInside += (sender, e) => {
 CLLocationCoordinate2D mapCoordinate =
 this.mapView.UserLocation.Coordinate;
 this.mapView.SetRegion(MKCoordinateRegion.
 FromDistance(mapCoordinate, 1000, 1000), true);
 MKPointAnnotation myAnnotation = new MKPointAnnotation();
 myAnnotation.Coordinate = mapCoordinate;
 myAnnotation.Title = "My Annotation";
 myAnnotation.Subtitle = "Standard pin with Xamarin";
 this.mapView.AddAnnotation(myAnnotation);
};

4. Add the following method in the MapAnnotateAppViewController class:
[Export ("mapView:viewForAnnotation:")]
public MKAnnotationView GetViewForAnnotation (MKMapView
 mapView, NSObject annotation)
{

Chapter 10

271

 if (annotation is MKUserLocation)
 {
 return null;
 } else
 {
 string reuseID = "myAnnotation";
 MKPinAnnotationView pinView =
 mapView.DequeueReusableAnnotation(reuseID) as
 MKPinAnnotationView;
 if (null == pinView)
 {
 pinView = new MKPinAnnotationView(annotation,
 reuseID);
 pinView.PinColor = MKPinAnnotationColor.Purple;
 pinView.AnimatesDrop = true;
 pinView.CanShowCallout = true;

 }
 return pinView;
 }
}

5. Compile and run the app either on the simulator or on the device. Tap the button to
add a pin on the map. The result should be similar to the following screenshot:

Location Services and Maps

272

Tapping on the pin displays the callout bubble with the annotation title and subtitle.

How it works...
Annotating maps is very useful for providing a variety of information along with the map data.
We can use the MKPointAnnotation class to create a simple annotation as follows:

MKPointAnnotation myAnnotation = new MKPointAnnotation();
myAnnotation.Coordinate = mapCoordinate;
myAnnotation.Title = "MyAnnotation";
myAnnotation.Subtitle = "Standard annotation";
this.mapView.AddAnnotation(myAnnotation);

We assign the annotation that will appear on the map coordinates, and optionally, a title
and subtitle might also appear. We then add the annotation to the map view with the
AddAnnotation method.

Just adding an annotation object to a map view is not enough. The annotation needs a view
that will display its information. To provide a view for the annotation, we need to assign a
delegate object to our map view. In this recipe, we are using our controller class as a delegate
object for the map view as follows:

this.mapView.WeakDelegate = this;

We can assign any object that derives from NSObject to the WeakDelegate property. All we
need to make it work properly is to make sure that we provide the necessary methods. Here is
where the GetViewForAnnotation method comes in as follows:

[Export ("mapView:viewForAnnotation:")]
public MKAnnotationView GetViewForAnnotation (MKMapView mapView,
 NSObject annotation)

This method is found in the MKMapViewDelegate class and is called by the system when it
needs to get a view for an annotation. The main difference in our implementation here is that
instead of subclassing MKMapViewDelegate, we just use our controller as a delegate for our
map view.

Inside the GetViewForAnnotation method, we need to make sure that we create and
return a view for our annotation. As the map displays the user's location, there are two
annotations on the map. We first need to check if the annotation object is MKUserLocation
using the following code:

 if (annotation is MKUserLocation)

In this case, we just return null. If the annotation parameter is of the MKPointAnnotation
type, we first try to retrieve the view for it in a fashion similar to UITableView that creates
the cells it contains, as follows:

Chapter 10

273

MKPinAnnotationView pinView =
 mapView.DequeueReusableAnnotation(reuseIdentifier) as
 MKPinAnnotationView;

If the result of the DequeueReusableAnnotation method is null, we initialize a new
instance for our annotation view using the following code:

pinView = new MKPinAnnotationView(annotation, reuseIdentifier);
pinView.PinColor = MKPinAnnotationColor.Purple;
pinView.AnimatesDrop = true;
pinView.CanShowCallout = true;

The view we create for the annotation here is of the MKPinAnnotationView type. This is
the standard view that is represented by a pin on the map. The properties we set are pretty
straightforward and define its appearance and behavior. The PinColor property defines the
color of the pin, the AnimatesDrop property defines if the pin will be displayed on the map
with an animation, and the CanShowCallout property defines if the annotation view will
display the information of its underlying annotation in a callout bubble.

After we have created the view for the annotation, we just return it from the method using the
following line of code:

return pinView;

There's more...
We can also create custom annotations and annotation views. For annotations, we have
to override the MKAnnotation class, while for annotation views, we can override the
MKAnnotationView class.

An annotation's performance
Theoretically, we can add as many annotations as we want to a map view. Although
MKMapView can manage a large amount of annotations efficiently, it is strongly advised to
take performance degradation into account. A way to overcome this is to display only the
required annotations, instead of all of them. To do this, we can call the ShowAnnotations
method, passing the specific annotation objects as an array using the following code:

this.mapView.ShowAnnotations(myAnnotationsArray, true);

See also
 f The Displaying maps and Adding map overlays recipes

 f The Displaying data in a table recipe in Chapter 5, Displaying Data

Location Services and Maps

274

Adding map overlays
In this recipe, we will learn how to add a red circle overlay over a point on the map.

Getting ready
Create a new Single View Application in Xamarin Studio and name it MapOverlayApp. Add
MKMapView and a button on the controller.

How to do it...
Perform the following steps to add overlays on the map:

1. Add the MonoTouch.MapKit and MonoTouch.CoreLocation namespaces in the
MapOverlayAppViewController.cs file.

2. Add the IMKMapViewDelegate interface to the class declaration using the
following code:
public partial class MapOverlayAppViewController :
 UIViewController, IMKMapViewDelegate

3. Add the following code in the ViewDidLoad method:
this.mapView.ShowsUserLocation = true;
this.mapView.WeakDelegate = this;
this.btnAddOverlay.TouchUpInside += (sender, e) => {
 CLLocationCoordinate2D mapCoordinate =
 this.mapView.UserLocation.Coordinate;
 this.mapView.SetRegion(MKCoordinateRegion.FromDistance(
 mapCoordinate, 1000, 1000), true);
 MKCircle circle =
 MKCircle.Circle(mapCoordinate, 250);
 this.mapView.AddOverlay(circle,
 MKOverlayLevel.AboveRoads);
};

4. Add the following method to the class:
[Export ("mapView:rendererForOverlay:")]
public MKOverlayRenderer OverlayRenderer (MKMapView
 mapView, IMKOverlay overlay)
{
 MKCircle circle = overlay as MKCircle;
 if (null != circle)
 {
 MKCircleRenderer renderer =
 new MKCircleRenderer(circle);

Chapter 10

275

 renderer.FillColor = UIColor.FromRGBA(1.0f, 0.5f, 0.5f,
 0.5f);
 renderer.StrokeColor = UIColor.Red;
 renderer.LineWidth = 2f;
 return renderer;
 } else
 {
 return null;
 }
}

5. Compile and run the app either on the simulator or on the device. When you tap the
button, the result should be similar to the following screenshot:

How it works...
While an MK MKAnnotation represents a point on a map, an MKOverlay object can
represent an area on a map. In this example, we use the MKCircle class, which inherits
from MKOverlay, to display a circle over an area on the map.

Location Services and Maps

276

We initialize an MKCircle instance with its Circle static method using the following code:

MKCircle circle = MKCircle.Circle(mapCoordinate, 250);

The first parameter represents the coordinates of the center of the circle, while the second
parameter represents the radius of the circle, in meters. After initialization, we add the overlay
to the map view with the AddOverlay method as follows:

this.mapView.AddOverlay(circle, MKOverlayLevel.AboveRoads);

The second parameter of the AddOverlay method determines how the overlay should
be rendered in relation to the map's information. There are two possible values, which are
explained with the following accompanying screenshots:

 f MKOverlayLevel.AboveRoads: This overlay will be displayed above the roads of
the map, but below the map labels, as shown in the following screenshot:

 f MKOverlayLevel.AboveLabels: This overlay will be displayed above both roads
and labels on the map, but below annotations and 3D projections of the buildings, as
shown in the following screenshot:

Unlike annotations, overlays require MKOverlayRenderer to display their information.

Prior to iOS 7, overlays were shown with a view of the MKOverlayView
type. This class is now deprecated.

To provide a renderer for our overlay, we use the OverlayRenderer method as follows:

public override MKOverlayRenderer OverlayRenderer (MKMapView
 mapView, IMKOverlay overlay)

Chapter 10

277

Inside this method, we first check if the overlay parameter is of the type we want (in this
case, an MKCircle) using the following code:

MKCircle circleOverlay = overlay as MKCircle;
if (null != circleOverlay)

Then, we create an instance of the MKCircleView class and return it as follows:

MKCircleRenderer renderer = new MKCircleRenderer(circle);
renderer.FillColor = UIColor.FromRGBA(1.0f, 0.5f, 0.5f, 0.5f);
renderer.StrokeColor = UIColor.Red;
renderer.LineWidth = 2f;
return renderer;

We set the appropriate properties that will define the appearance of our overlay. In this case,
we set the FillColor, StrokeColor, and LineWidth properties.

There's more...
Overlays are handled efficiently by the map view. One important thing that the map view takes
care of for us is that when we scale the map, the overlay is automatically scaled to match
each zoom level. This way, we do not need to scale the overlay manually in code.

Creating custom overlays
We can create our own custom overlays. To do this, we need to override the MKOverlay class
for the overlay and the MKOverlayRenderer class for the renderer.

Standard overlay objects
Apart from MKCircle, the other standard overlay objects are MKPolygon for creating
polygon shapes and MKPolyline for creating polylines, like in a track-recording application.

See also
 f The Displaying maps and Adding map annotations recipes

11
Graphics and Animation

In this chapter, we will cover the following topics:

 f Animating views

 f Transforming views

 f Animating images

 f Animating layers

 f Drawing lines and curves

 f Drawing shapes

 f Drawing text

 f A simple drawing app

 f Creating an image context

Introduction
In this chapter, we are going to discuss custom drawing and animations. The iOS SDK
contains two very useful frameworks for these tasks: Core Graphics and Core Animation.

These two frameworks simplify the process of animating UI elements and drawing 2D graphics
on them. The effective usage of these two frameworks will make a difference between a dull
and stunning app. After all, these two frameworks play a very important role in making the iOS
platform unique in its kind.

We will learn how to provide simple or even more complicated animations for controls to
provide a unique user experience. We will also see how to custom draw lines, curves, shapes,
and text on the screen. Finally, with all the examples provided, we will create two drawing apps.

Graphics and Animation

280

Animating views
In this recipe, we will learn how to take advantage of UIKit animations to move a UILabel on
the screen.

Getting ready
Create a new Single View Application in Xamarin Studio and name it ViewAnimationApp.
Add a label and button on the view of the controller.

How to do it...
Perform the following steps:

1. Enter the following code in the ViewDidLoad method:
this.lblOutput.BackgroundColor = UIColor.Green;
this.btnAnimate.TouchUpInside += (sender, e) => {
 RectangleF labelFrame = this.lblOutput.Frame;
 labelFrame.Y = 380f;
 UIView.Animate(1d, 0d,
 UIViewAnimationOptions.CurveEaseInOut,
 () => this.lblOutput.Frame = labelFrame,
 () => {
 this.lblOutput.Text = "Animation ended!";
 this.lblOutput.BackgroundColor = UIColor.Red;
 });
};

2. Compile and run the app on the simulator. Tap on the Animate! button and watch the
label transitioning to the lower part of the view.

How it works...
The UIView class contains a number of various static methods that provide animation
functionality. In this example, we simply change the position of a label with an animation.

To animate the change of the view, we call the static UIView.Animate method as follows:

UIView.Animate(1d, 0d, UIViewAnimationOptions.CurveEaseInOut,
 () => this.lblOutput.Frame = labelFrame,
 () => {
 this.lblOutput.Text = "Animation ended!";
 this.lblOutput.BackgroundColor = UIColor.Red;
 });

Chapter 11

281

The following list explains the parameters of the UIView.Animate method, individually:

 f Duration: This specifies the duration of the animation in seconds.

 f Delay: This indicates the number of seconds before the animation starts. Set it to
zero for the animation to start immediately.

 f Options: This includes the various options for animation. In this example, we pass
UIViewAnimationOptions.CurveEaseInOut, which applies an easing curve to
the animation.

 f Animation: This is an NSAction delegate with the changes that will be animated.
In this example, we set the modified frame to the label as follows:
() => this.lblOutput.Frame = labelFrame,

 f Completion: This is an NSAction delegate, which will be called after the animation
is complete.

We can combine multiple UIViewAnimationOptions values. For example, if we wanted
the animation to repeat indefinitely, we would pass UIViewAnimationOptions.
CurveEaseInOut | UIViewAnimationOptions.Repeat.

There's more...
Xamarin.iOS also offers an asynchronous method for UIView animations. This method is
as follows:

await UIView.AnimateAsync(1, () => this.lblOutput.Frame =
 labelFrame);

However, there are no delay and options parameters with the asynchronous method.

Animatable properties
UIKit animations support a specific set of UIView properties. These properties are called
animatable properties. Following is a list of UIView properties that can be animated:

 f Frame

 f Bounds

 f Center

 f Transform

 f Alpha

 f BackgroundColor

 f ContentStretch

Graphics and Animation

282

Transforming views
In this recipe, we will rotate a UILabel by applying a transformation. Furthermore, the
rotation will be animated.

Getting ready
Create a new Single View Application in Xamarin Studio and name it TransformViewApp.
Add a label and a button on the controller.

How to do it...
Perform the following steps:

1. Add the MonoTouch.CoreGraphics namespace in the
TransformViewAppViewController.cs file as follows:
using MonoTouch.CoreGraphics;

2. Enter the following ViewDidLoad method in the
TransformViewAppViewController class:
private double rotationAngle;
public override void ViewDidLoad ()
{
 base.ViewDidLoad ();
 this.btnRotate.TouchUpInside += async (sender, e) => {
 this.rotationAngle += 90;
 CGAffineTransform rotation =
 CGAffineTransform.MakeRotation((float)this.
 DegreesToRadians(this.rotationAngle));
 await UIView.AnimateAsync(0.5d, () =>
 this.lblOutput.Transform = rotation);
 this.lblOutput.Text = string.Format("Rotated to {0}
 degrees.", this.rotationAngle);
 if (this.rotationAngle >= 360) {
 this.rotationAngle = 0;
 this.lblOutput.Transform =
 CGAffineTransform.MakeIdentity();
 }
 };
}

3. Add the following method:
public double DegreesToRadians(double degrees)
{
 return (degrees * Math.PI / 180);
}

Chapter 11

283

4. Compile and run the app on the simulator. Tap the button and watch the label rotate.
The following screenshot displays that the label rotated 270 degrees:

How it works...
The MonoTouch.CoreGraphics namespace is a wrapper around the CoreGraphics
framework. This framework is the basic graphics framework of iOS.

To rotate a view, we need a transformation object that will be applied to the view through its
Transform property as follows:

CGAffineTransform rotation = CGAffineTransform.MakeRotation
 ((float)this.DegreesToRadians(this.rotationAngle));

The transformation object is an instance of the CGAffineTransform class and is initialized
through the MakeRotation static method. This method accepts a float value of the angle of
rotation we want to be applied, in radians. The DegreesToRadians method can be used to
convert degrees to radians. After creating the transformation object, we assign it to the label's
Transform property inside the animation handler as follows:

await UIView.AnimateAsync(0.5d, () => this.lblOutput.Transform =
 rotation);

Note that we need to increment the rotation angle each time the button is pressed, because
the transformation we apply is not being autoincremented. If we apply another rotational
transformation object with the same angle, there will be no effect since it is basically the
same transformation.

Graphics and Animation

284

When the label has been rotated to a full circle (360 degrees), we reset the rotationAngle
value and the transformation object as follows:

this.rotationAngle = 0;
this.lblOutput.Transform = CGAffineTransform.MakeIdentity();

The MakeIdentity static method creates an identity transformation object, which is the
default transformation of all views, before applying transformation objects to them.

There's more...
The CGAffineTransform class contains various static methods for creating transformation
objects. These are as follows:

 f CGAffineTransformInvert: This inverts a current transformation and returns the
result

 f MakeIdentity: This creates an identity transformation
 f MakeRotation: This creates a rotation transformation
 f MakeScale: This creates a scaling transformation
 f MakeTranslation: This creates a translation transformation
 f Multiply: This multiplies two transformations and returns the result

Transformation and Frame
After applying transformations on a view, its Frame property must not be taken into account,
as its value will be undefined. If there is a need for altering the view's size or position after a
transformation has been applied, use the Bounds and Center properties, respectively.

See also
 f The Animating views and Animating layers recipes

Animating images
In this recipe, we will create a simple slideshow of images using the built-in animation feature
of UIImageView.

Chapter 11

285

Getting ready
Create a new Single View Application in Xamarin Studio and name it ImageAnimationApp.
Add a UIImageView and two buttons on the controller. The sample project for this task
contains three images. Add two or more images to the project and make sure that their Build
Action is set to Content.

How to do it...
Perform the following steps:

1. Enter the following code in the ViewDidLoad method:
this.imgView.ContentMode = UIViewContentMode.ScaleAspectFit;
this.imgView.AnimationImages = new UIImage[] {
 UIImage.FromFile("Kastoria.jpg"),
 UIImage.FromFile("Parga02.jpg"),
 UIImage.FromFile("Toroni.jpg")
};
this.imgView.AnimationDuration = 3;
this.imgView.AnimationRepeatCount = 10;
this.btnStart.TouchUpInside += (sender, e) => {
 if (!this.imgView.IsAnimating) {
 this.imgView.StartAnimating();
 }
};
this.btnStop.TouchUpInside += (sender, e) => {
 if (this.imgView.IsAnimating) {
 this.imgView.StopAnimating();
 }
};

2. Compile and run the app on the simulator. Tap the Start animating button to start
the animation.

How it works...
The UIImageView class can accept an array of UIImage objects and automatically display
them in a sequence.

To load the images that the view will animate, assign an array of the images to its
AnimationImages property as follows:

this.imageView.AnimationImages = new UIImage[] {
 UIImage.FromFile("Kastoria.jpg"),
 UIImage.FromFile("Parga02.jpg"),
 UIImage.FromFile("Toroni.jpg")
};

Graphics and Animation

286

The sequence in which the images will be displayed is defined by their order in the array. After
setting the images that will be animated, we set the duration of the animation in seconds and
the number of times it will occur as follows:

this.imageView.AnimationDuration = 3;
this.imageView.AnimationRepeatCount = 10;

To start or stop the animation, call the StartAnimating or StopAnimating
methods, respectively.

There's more...
There is no relation between the AnimationImages and Image properties of the
UIImageView class. The image set to the Image property of the UIImageView class
will not be displayed while the animation takes place.

Checking for animation
To determine if an animation is taking place, check the IsAnimating property of
UIImageView.

See also
 f The Animating views recipe

 f The Displaying images recipe in Chapter 2, User Interface – Views

Animating layers
In this recipe, we will learn how to use the Core Animation framework to copy a UILabel on
the screen by animating its layer.

Getting ready
Create a new Single View Application in Xamarin Studio and name it LayerAnimation. Add
two labels and a button on the controller. Set the text and background color for the first label
and a different background color for the second label.

Chapter 11

287

How to do it...
Perform the following steps:

1. Add the MonoTouch.CoreAnimation namespace in the
LayerAnimationViewController.cs file as follows:
using MonoTouch.CoreAnimation;

2. Add a field of the CALayer type in the class as follows:
private CALayer copyLayer;

3. Add the following code in the ViewDidLoad method:
this.btnCopy.TouchUpInside += (s, e) => {
 this.lblTarget.Text = string.Empty;
 this.lblTarget.BackgroundColor = UIColor.Blue;
 this.copyLayer = new CALayer();
 this.copyLayer.Frame = this.lblSource.Frame;
 this.copyLayer.Contents = this.lblSource.Layer.Contents;
 this.View.Layer.AddSublayer(this.copyLayer);
 CABasicAnimation positionAnimation =
 CABasicAnimation.FromKeyPath("position");
 positionAnimation.To =
 NSValue.FromPointF(this.lblTarget.Center);
 positionAnimation.Duration = 1;
 positionAnimation.RemovedOnCompletion = true;
 positionAnimation.TimingFunction =
 CAMediaTimingFunction.FromName
 (CAMediaTimingFunction.EaseInEaseOut);
 positionAnimation.AnimationStopped += delegate {
 this.lblTarget.BackgroundColor =
 this.lblSource.BackgroundColor;
 this.lblTarget.Text = this.lblSource.Text;
 this.lblTarget.TextColor = this.lblSource.TextColor;
 this.copyLayer.RemoveFromSuperLayer();
 } ;
 CABasicAnimation sizeAnimation =
 CABasicAnimation.FromKeyPath("bounds");
 sizeAnimation.To = NSValue.FromRectangleF(new
 RectangleF(0f, 0f, this.lblSource.Bounds.Width * 2f,
 this.lblSource.Bounds.Height * 2));
 sizeAnimation.Duration = positionAnimation.Duration / 2;
 sizeAnimation.RemovedOnCompletion = true;
 sizeAnimation.AutoReverses = true;
 this.copyLayer.AddAnimation(positionAnimation,
 "PositionAnimation");
this.copyLayer.AddAnimation(sizeAnimation, "SizeAnimation");
} ;

Graphics and Animation

288

4. Compile and run the app on the simulator. Tap the Copy label button to copy
the contents of the first label to the second label, with animation. The following
screenshot was captured while the process of copying was taking place:

How it works...
The MonoTouch.CoreAnimation namespace is a wrapper around the Core
Animation framework.

Every view has a Layer property, which returns the view's CALayer object. In this task, we
are creating an animation that graphically displays the contents of the label that are being
copied from one label to another.

Instead of creating another label and moving it with a UIView animation, we will create a
layer and move that instead. We create the layer by setting its Frame and Contents property;
the latter is set from the source label's layer. We then add the layer to the main view's layer
with the AddSublayer method. After this point, the main view contains a layer that displays
the same contents and is on top of the source label. We will do all this with the help of the
following code:

 this.copyLayer = new CALayer();
 this.copyLayer.Frame = this.lblSource.Frame;
 this.copyLayer.Contents = this.lblSource.Layer.Contents;
 this.View.Layer.AddSublayer(this.copyLayer);

Chapter 11

289

To animate the transition from the source label to the target label, we will use the
CABasicAnimation class. The highlighted part of the code in step 3 shows how to
initialize and set up the instances of the class. The FromKeyPath static method creates
a new instance, accepting the name of the layer's property as a parameter; this name will
be animated. The To property represents the value to which the property will be animated.
The Duration property represents the duration of the animation in seconds, while the
RemovedOnCompletion property declares that the animation object should be removed
from the layer when the animation finishes. The TimingFunction property sets the behavior
of the animation. The AnimationStopped event is triggered when the animation finishes.
Inside the handler we assign to it, we set the contents of the source label to the target label,
thus completing the copy. The AutoReverses property states that when the value of the To
property has been reached, the animation should be reversed. It is this property that gives the
effect of the label getting bigger and subsequently smaller when it reaches its final position.

The animations start when they are added to the layer as follows:

this.copyLayer.AddAnimation(positionAnimation,
 "PositionAnimation");
this.copyLayer.AddAnimation(sizeAnimation, "SizeAnimation");

There's more...
A list of strings that the FromKeyPath method accepts can be found at https://developer.
apple.com/library/ios/documentation/Cocoa/Conceptual/CoreAnimation_
guide/Key-ValueCodingExtensions/Key-ValueCodingExtensions.html#//
apple_ref/doc/uid/TP40004514-CH12-SW2.

Apart from the To property, the CABasicAnimation class has two more properties for
defining the animation: From and By. They are all of the NSObject type, but the actual
values that should be assigned to them should be of the NSValue type. The NSValue class
contains various static methods for creating instances of it.

Layers
Layers are very powerful and efficient objects that can be used for both drawing and animations.
Using layers to perform animations on views, instead of the actual views themselves, is
strongly suggested.

See also
 f The Animating views recipe

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreAnimation_guide/Key-ValueCodingExtensions/Key-ValueCodingExtensions.html#//apple_ref/doc/uid/TP40004514-CH12-SW2
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreAnimation_guide/Key-ValueCodingExtensions/Key-ValueCodingExtensions.html#//apple_ref/doc/uid/TP40004514-CH12-SW2
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreAnimation_guide/Key-ValueCodingExtensions/Key-ValueCodingExtensions.html#//apple_ref/doc/uid/TP40004514-CH12-SW2
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreAnimation_guide/Key-ValueCodingExtensions/Key-ValueCodingExtensions.html#//apple_ref/doc/uid/TP40004514-CH12-SW2

Graphics and Animation

290

Drawing lines and curves
In this recipe, we will implement custom drawing to draw two lines on a UIView class.

Getting ready
Create a new Single View Application in Xamarin Studio and name it DrawLineApp.

How to do it...
Perform the following steps:

1. Add a new class to the project and name it DrawingView. Derive it from UIView
as follows:
public class DrawingView : UIView

2. Add the following using directives in the DrawingView.cs file:
using MonoTouch.CoreGraphics;
using MonoTouch.UIKit;
using System.Drawing;

3. Add the following constructor to the class:
public DrawingView(RectangleF frame) : base(frame) {}

4. Override the Draw method of UIView and implement it with the following code:
public override void Draw (RectangleF rect)
{
 base.Draw (rect);
 Console.WriteLine("DrawingView draw!");
 CGContext context = UIGraphics.GetCurrentContext();
 context.SetLineWidth(5f);
 context.SetStrokeColorWithColor(UIColor.Green.CGColor);
 context.AddLines(new PointF[] {
 new PointF(0f, this.Bounds.Height),
 new PointF(this.Bounds.Width, 0f)
 });
 context.StrokePath();
 context.SetStrokeColorWithColor(UIColor.Red.CGColor);
 context.MoveTo(0, this.Bounds.Height);
 context.AddCurveToPoint(0f, this.Bounds.Height, 50f,
 this.Bounds.Height / 2f, this.Bounds.Width, 0f);
 context.StrokePath();
}

Chapter 11

291

5. In the ViewDidLoad override of DrawLineAppViewController, initialize and add
the view as follows:
DrawingView drawingView = new DrawingView(new
 RectangleF(0f, 20f, this.View.Bounds.Width,
 this.View.Bounds.Height));
drawingView.BackgroundColor = UIColor.Gray;
this.View.AddSubview(drawingView);

6. Compile and run the app on the simulator. The result should be similar to the one
shown in the following screenshot:

How it works...
The MonoTouch.CoreGraphics namespace is a wrapper around the native Core Graphics
framework. The Core Graphics framework contains the necessary objects for custom drawing
on views.

Graphics and Animation

292

To draw on a view, we have to override its Draw(RectangleF) method as follows:

public override void Draw (RectangleF rect)

Inside the Draw method, we need an instance of the current graphics context as follows:

CGContext context = UIGraphics.GetCurrentContext();

A graphics context is represented by the CGContext class. The UIGraphics.
GetCurrentContext static method returns an instance of the current context.

The CGContext class contains various methods that allow us to draw on the view. We need
to set the line width, the color, and then add the type of drawing as follows:

context.SetLineWidth(5f);
context.SetStrokeColorWithColor(UIColor.Green.CGColor);
context.AddLines(new PointF[] {
 new PointF(0f, this.Bounds.Height),
 new PointF(this.Bounds.Width, 0f)
});

To add a line, we use the AddLines method that accepts an array of PointF structs,
containing the start and end points of each line. Just adding the lines to the context is not
enough. To present the drawing on the view, we call the StrokePath method as follows:

context.StrokePath();

To add another item to the drawing, we repeat the steps accordingly. The MoveTo method
moves the current point so that the additional item will have a starting point for the curve.

There's more...
The Draw method is being called by the runtime when it needs to draw the contents of a
view. We can only get the instance of the current graphics context inside the Draw method.
We should not call it directly, since the UIGraphics.GetCurrentContext method will
return null if we do. If we need to force the runtime to call the Draw method, we need to call
SetNeedsDisplay(). Care should be taken when calling it, since drawing operations are
expensive in terms of CPU usage.

When there is no need for causing the entire view area to be redrawn, we can call the
SetNeedsDisplayInRect method, passing a RectangleF object in the coordinate
system of the view area that we want to update.

Chapter 11

293

Graphics context on a UIImageView class
The current graphics context of a UIImageView object is reserved for drawing the contents of
the image. Calling SetNeedsDisplay on a custom view deriving from UIImageView has the
same effect as calling the Draw method directly. If we need to draw on a custom image view,
we have to either add another view on top of it and draw on that or draw on a custom layer
and add it to the view's main layer.

See also
 f The Drawing text recipe

 f The Creating a custom view recipe in Chapter 2, User Interfaces – Views

Drawing shapes
Following the example from the previous recipe, we will draw a circle and square on the screen.

Getting ready
Create a new Single View Application in Xamarin Studio and name it DrawShapeApp. Add a
custom view to the project, like we did in the previous task, and name it DrawingView.

How to do it...
Perform the following steps:

1. Override the Draw method of the DrawingView class and implement it with the
following code:
CGContext context = UIGraphics.GetCurrentContext();
context.SetFillColorWithColor(UIColor.Blue.CGColor);
context.SetShadow(new SizeF(10f, 10f), 5f);
context.AddEllipseInRect(new RectangleF(100f, 100f, 100f,
 100f));
context.FillPath();
context.SetFillColorWithColor(UIColor.Red.CGColor);
context.AddRect(new RectangleF(150f, 150f, 100f, 100f));
context.FillPath();

2. In the ViewDidLoad method of the DrawShapeAppViewController class,
initialize and display the view with the following code:
DrawingView drawView = new DrawingView(new RectangleF(0f,
 20f, this.View.Bounds.Width, this.View.Bounds.Height));
drawView.BackgroundColor = UIColor.DarkGray;
this.View.AddSubview(drawView);

Graphics and Animation

294

3. Compile and run the app on the simulator. The result on the screen should be similar
to the one shown in the following screenshot:

How it works...
To draw shapes on a view, we need to call the appropriate method. We first set the fill color of
the CGContext instance as follows:

context.SetFillColorWithColor(UIColor.Blue.CGColor);

To draw a circle, we call the AddEllipseInRect method, passing a RectangleF object that
contains the bounding rectangle of the circle as follows:

context.AddEllipseInRect(new RectangleF(100f, 100f, 100f, 100f));

Whether the shape will be an ellipse or an absolute circle is defined through the bounding
rectangle's size. We then call the FillPath method as follows:

context.FillPath();

The shadow effect is defined by the SetShadow method as follows:

context.SetShadow(new SizeF(10f, 10f), 5f);

The first parameter, which is of the SizeF type, defines the offset of the shadow, while the
second parameter defines the amount of blur, in points.

There's more...
When the SetShadow method is called, all objects that are added to the context are
displayed with a shadow. To remove the shadow, call the SetShadowWithColor method,
passing either a fully transparent color or null for the color parameter.

Chapter 11

295

Transparent colors
To fill a shape with a transparent color, create a CGColor instance with the appropriate
values as follows:

context.SetFillColorWithColor(new CGColor(1f, 0f, 0f, 0.5f));

This will create a red color with its alpha value set to 50 percent.

See also
 f The Drawing lines and curves recipe

Drawing text
In this recipe, we will learn how to draw styled text with an outline on a view.

Getting ready
Create a new Single View Application in Xamarin Studio and name it DrawTextApp. Add a
custom view to the project, similar to the one we created in the previous recipe, and name it
DrawingView.

How to do it...
Perform the following steps:

1. Implement the following Draw method override in the DrawingView class:
CGContext context = UIGraphics.GetCurrentContext();
PointF location = new PointF(10f, 100f);
UIFont font = UIFont.FromName("Verdana-Bold", 28f);
NSString drawText = new NSString("This text is drawn!");
context.SetTextDrawingMode(CGTextDrawingMode.Stroke);
context.SetStrokeColorWithColor(UIColor.Black.CGColor);
context.SetLineWidth(4f);
drawText.DrawString(location, font);
context.SetTextDrawingMode(CGTextDrawingMode.Fill);
context.SetFillColorWithColor(UIColor.Yellow.CGColor);
drawText.DrawString(location, font);

2. In the ViewDidLoad method of the controller, initialize and display the
DrawingView method as follows:
DrawingView drawView = new DrawingView(new RectangleF(0f,
 20f, this.View.Bounds.Width, this.View.Bounds.Height));
drawView.BackgroundColor = UIColor.DarkGray;
this.View.AddSubview(drawView);

Graphics and Animation

296

3. Compile and run the app on the simulator. The text will be displayed on the screen.
The result should be similar to the following screenshot:

How it works...
The NSString class contains the very useful DrawString method, which draws the text it
contains to the current context. To provide the outline effect, we call the SetTextDrawingMode
method as follows:

context.SetTextDrawingMode(CGTextDrawingMode.Stroke);

We pass the CGTextDrawingMode.Stroke value. We then set the color and width of the
outline to the graphics context and draw it text on the screen as follows:

context.SetStrokeColorWithColor(UIColor.Black.CGColor);
context.SetLineWidth(4f);
drawText.DrawString(location, font);

The SetStrokeColorWithColor method sets the color of the stroke, and the
SetLineWidth method sets the width of the stroke. Calling the DrawString method
of NSString draws the text in the graphics context in the specified location and with the
specified font.

Similarly, to fill the text, we set the text drawing mode to Fill as follows:

context.SetTextDrawingMode(CGTextDrawingMode.Fill);

For the fill, we are not concerned about the line's width, so we just need to call the
DrawString method once more as follows:

drawText.DrawString(location, font);

The DrawString method is overloaded. The overload we use here accepts a PointF struct,
which represents the location of the string in the view's coordinate system and a UIFont
instance that represents the font by which the text will be rendered on the screen.

Chapter 11

297

There's more...
Drawing text on the screen with the DrawString method is very simple and the quickest
way to do it. For more complex functionality, such as customizing the layout of the text, its
appearance, and many more, we need to use the CoreText framework. This is accessible
in Xamarin.iOS through the MonoTouch.CoreText namespace.

Size of the drawn text
The DrawString method of the NSString class returns the size of the bounding
rectangle of the text. We can, however, get the size of the text before drawing it through
the StringSize method as follows:

Console.WriteLine("Text size: {0}",
 drawText.StringSize(UIFont.FromName("Verdana-Bold", 28f)));

See also
 f The Drawing lines and curves and Drawing shapes recipes

A simple drawing app
In this recipe, we will use the techniques we learned to create a drawing app.

Getting ready
Create a new Single View Application in Xamarin Studio and name it FingerDrawingApp.
Once again, we will need a custom view. Add a class deriving from UIView and name
it CanvasView.

How to do it...
Perform the following steps:

1. Implement the CanvasView class with the following code:
public class CanvasView : UIView
{
 public CanvasView (RectangleF frame) : base(frame)
 {
 this.drawPath = new CGPath();
 }
 private PointF touchLocation;
 private PointF previousTouchLocation;
 private CGPath drawPath;

Graphics and Animation

298

 private bool fingerDraw;
 public override void TouchesBegan (NSSet touches, UIEvent
 evt)
 {
 base.TouchesBegan (touches, evt);
 UITouch touch = touches.AnyObject as UITouch;
 this.fingerDraw = true;
 this.touchLocation = touch.LocationInView(this);
 this.previousTouchLocation =
 touch.PreviousLocationInView(this);
 this.SetNeedsDisplay();
 }
 public override void TouchesMoved (NSSet touches, UIEvent
 evt)
 {
 base.TouchesMoved (touches, evt);
 UITouch touch = touches.AnyObject as UITouch;
 this.touchLocation = touch.LocationInView(this);
 this.previousTouchLocation =
 touch.PreviousLocationInView(this);
 this.SetNeedsDisplay();
 }
 public override void Draw (RectangleF rect)
 {
 base.Draw (rect);
 if (this.fingerDraw)
 {
 using (CGContext context =
 UIGraphics.GetCurrentContext())
 {
 context.SetStrokeColorWithColor
 (UIColor.Blue.CGColor);
 context.SetLineWidth(5f);
 context.SetLineJoin(CGLineJoin.Round);
 context.SetLineCap(CGLineCap.Round);
 this.drawPath.MoveToPoint
 (this.previousTouchLocation);
 this.drawPath.AddLineToPoint(this.touchLocation);
 context.AddPath(this.drawPath);
 context.DrawPath(CGPathDrawingMode.Stroke);
 }
 }
 }
}

Chapter 11

299

2. In the ViewDidLoad method of the FingerDrawingAppViewController class,
initialize and show the canvas as follows:
CanvasView canvasView = new CanvasView(new RectangleF(0f,
 20f, this.View.Bounds.Width, this.View.Bounds.Height));
canvasView.BackgroundColor = UIColor.Gray;
this.View.AddSubview(canvasView);

3. Compile and run the app on the simulator or on the device. Touch-and-drag your
finger (or click-and-drag with the cursor) and start drawing. The following screenshot
displays a sketch drawn in this app:

How it works...
In this task, we are combining touch events and custom drawing to create a simple drawing
app. When the user touches and moves the finger on the screen, we keep the information of
the touch location points and use them in the Draw method to draw lines.

After setting the touch locations to the class fields, we call SetNeedsDisplay to force
the Draw method to be called. The fingerDraw variable is used to determine that the Draw
method was called by a touch on the screen and not by the runtime when the view is
first loaded.

Graphics and Animation

300

Every time we call a method to draw something to a graphics context, the previous drawings in
this context are cleared. To avoid this behavior, we use a CGPath object. We can add various
drawing objects in CGPath and display these object on the screen by adding it to the graphics
context. So, every time the user moves their finger on the screen, the new lines defined by the
touch location points are added to the path, and the path is drawn on the current context.

Note that we need to hold information of both the current touch location and the previous
one. This is because the AddLineToPoint method accepts one point, which defines the end
point of the line, assuming that there already is a point in the path. The starting point of each
line is defined by calling MoveToPoint, passing the previous touch location point.

The path that is drawn on the screen by sliding the finger on it is basically comprised of a
series of consecutive straight lines. The result, however, is a smooth path that follows the
finger movement, because the TouchesMoved method is triggered every time there is a
single movement of the finger on the screen.

After adding the line to the path, we add it to the context and draw it in the graphics context,
hence showing it on the screen as follows:

context.AddPath(this.drawPath);
context.DrawPath(CGPathDrawingMode.Stroke);

There's more...
Two new CGContext methods are introduced in this task: SetLineJoin and SetLineCap.
The SetLineJoin method sets how each line will be joined to the previous one, while the
SetLineCap method sets the appearance of the endpoint of a line.

The values that they accept are explained in the following two tables:

SetLineJoin Description

CGLineJoin.Miter Joins two lines with an angled corner
CGLineJoin.Round Joins two lines with a rounded end
CGLineJoin.Bevel Joins two lines with a squared end

SetLineCap Description
CGLineCap.Butt The line will end with a squared edge on the

endpoint
CGLineCap.Round The line will end with a rounded edge that

expands beyond the endpoint
CGLineCap.Square The line will end with a squared edge that

expands beyond the endpoint

Chapter 11

301

Clear the drawing
To clear the drawing, we simply have to set the fingerDraw variable to false and call
SetNeedsDisplay. This way, the Draw method will be called without our custom drawing
code, clearing the current context.

See also
 f The Drawing lines and curves, Drawing shapes, and Drawing text recipes

Creating an image context
In this recipe, we will extend the finger-drawing app we created earlier by providing a save
functionality for the drawings that the user will create.

Getting ready
Create a new Single View Application in Xamarin Studio and name it ImageContextApp.
Add the CanvasView class we created in the earlier task to the project. Don't forget to
change the namespace in the CanvasView.cs file to correspond to the namespace of the
new project.

How to do it...
Perform the following steps:

1. Add the following methods in the CanvasView class:
public UIImage GetDrawingImage()
{
 UIImage toReturn = null;
 UIGraphics.BeginImageContext(this.Bounds.Size);
 using (CGContext context =
 UIGraphics.GetCurrentContext())
 {
 context.SetStrokeColorWithColor(UIColor.Blue.CGColor);
 context.SetLineWidth(10f);
 context.SetLineJoin(CGLineJoin.Round);
 context.SetLineCap(CGLineCap.Round);
 context.AddPath(this.drawPath);
 context.DrawPath(CGPathDrawingMode.Stroke);
 toReturn =
 UIGraphics.GetImageFromCurrentImageContext();
 }
 UIGraphics.EndImageContext();

Graphics and Animation

302

 return toReturn;
}
public void ClearDrawing()
{
 this.fingerDraw = false;
 this.drawPath.Dispose();
 this.drawPath = new CGPath();
 this.SetNeedsDisplay();
}

2. Add two buttons on the view of the controller. One button will be used for saving the
drawing and the other one for clearing the canvas.

3. Add the following code in the ViewDidLoad method of the
ImageContextAppViewController class:
CanvasView canvasView = new CanvasView(new RectangleF(0f, 0f,
this.btnSave.Frame.Top - 10f, this.View.Bounds.Width));
canvasView.BackgroundColor = UIColor.Gray;
this.View.AddSubview(canvasView);
this.btnSave.TouchUpInside += (sender, e) => {
 UIImage drawingImage = canvasView.GetDrawingImage();
 drawingImage.SaveToPhotosAlbum((img, err) => {
 if (null != err)
 {
 Console.WriteLine("Error saving image! {0}",
 err.LocalizedDescription);
 }
 });
};
this.btnClear.TouchUpInside += (sender, e) => canvasView.
ClearDrawing ();

4. Compile and run the app on the simulator. Draw something on the canvas and tap
the Save drawing button to save your drawing. Tap on the Clear canvas button to
clear the canvas. You can then check the simulator's photo albums for your drawing.

How it works...
Using the UIGraphics class, we can create an image context through which we can retrieve
our drawing in a UIImage object.

To create an image context, we call the BeginImageContext static method inside the
GetDrawingImage method, passing the size that we want the image context to have,
as follows:

UIGraphics.BeginImageContext(this.Bounds.Size);

Chapter 11

303

The current context is now the image context we created with the BeginImageContext call.
We then repeat the code we have in the Draw method; only this time, there is no need to add
new lines to the path. We simply add the path that we already have to the context and draw it.

After adding the path, we get the context image by calling the
GetImageFromCurrentContext method as follows:

toReturn = UIGraphics.GetImageFromCurrentImageContext();

Finally, we have to end the image context block and return the UIImage object as follows:

UIGraphics.EndImageContext();
return toReturn;

To clear the drawing from the screen, we simply have to set the fingerDraw variable to
false and dispose and prepare our CGPath object for reuse inside the ClearDrawing
method as follows:

this.fingerDraw = false;
this.drawPath.Dispose();
this.drawPath = new CGPath();

To reflect the clearing on the screen immediately, we call the SetNeedsDisplay method
as follows:

this.SetNeedsDisplay();

There's more...
We cannot create an image context inside the Draw method. This is because when we call the
BeginImageContext method, a context is actually created, but the view's default context
remains as the current context. Hence, the GetImageFromCurrentImageContext method
would return null.

Drawing on UIImageView
The technique discussed here can be used to draw on custom UIImageView objects. To
display the drawing when the finger slides on the screen, we would simply have to set its
Image property to the image we get from the image context.

Background on saved drawings
You will notice that although we are setting the CanvasView background to gray, the saved
drawings are with a white background. This is because the view's background color is not
included in the drawing. To include it, we would just have to draw a rectangle to the graphics
context. This rectangle should be of the same color as the background color.

Graphics and Animation

304

See also
 f The Drawing lines and curves, Drawing shapes, Drawing text, and A simple drawing

app recipes

12
Multitasking

In this chapter, we will cover the following topics:

 f Detecting application states

 f Receiving notifications for the application states

 f Running code in the background

 f Playing audio in the background

 f Updating data in the background

Introduction
When the iOS platform was introduced in 2007, it brought lots of exciting new features for
users and drastically changed the concept of mobile devices.

Despite its huge success, it lacked some features at the time, which were considered basic.
One of these features was multitasking, that is, support for running multiple processes at the
same time. The platform actually did support multitasking to system processes internally, but
it was not available to developers. Starting with iOS 4, Apple provided support for multitasking,
although it is still quite different from what most developers are accustomed to.

In this chapter, we will discuss how to make use of the platform's multitasking features. We
will see under what circumstances we can use these features and what functionality we can
provide to the users of our apps through multitasking. Specifically, we will learn about an
application's states and its runtime lifecycle. Through a series of detailed example projects,
we will be able to execute code while an app is in the background, support audio playback,
and receive data updates.

Multitasking

306

Detecting application states
In this recipe, we will discuss how to detect the state of the application and respond
accordingly when an application is transited from the active to the inactive state and vice versa.

Getting ready
Create a new Single View Application in Xamarin Studio and name it AppStateApp.

How to do it...
Perform the following steps:

1. Add the following method override to the AppDelegate class:
public override void OnActivated (UIApplication
 application)
{
 Console.WriteLine("Activated, application state: {0}",
 application.ApplicationState);
}
public override void OnResignActivation (UIApplication
 application)
{
 Console.WriteLine("Resign activation, application state:
 {0}", application.ApplicationState);
}
public override void DidEnterBackground (UIApplication
 application)
{
 Console.WriteLine("Entered background, application state:
 {0}", application.ApplicationState);
}
public override void WillEnterForeground (UIApplication
 application)
{
 Console.WriteLine("Will enter foreground, application
 state: {0}", application.ApplicationState);
}

2. Compile and run the app either on the simulator or on the device. Press the home
button (or press Shift + Command + H on the keyboard for the simulator) to suspend
the app and watch the Application Output pad in Xamarin Studio.

Chapter 12

307

How it works...
The UIApplicationDelegate class contains methods that are triggered at specific
notifications issued by the runtime. These methods are as follows:

 f OnActivated: This method is called when the app is made active, for example,
when unlocking the screen.

 f OnResignActivation: This method is called when the app is about to become
inactive, for example, when the screen is locked or when an incoming call
takes place.

 f DidEnterBackground: This method is called when the app has entered the
background, for example, when pressing the home button. At this time, the app
is suspended.

 f WillEnterForeground: This method is called when the app is about to return to
the foreground.

Note that when the app is moved to the background, both the OnResignActivation
and DidEnterBackground methods are called. Similarly, when the app is moved to the
foreground, both the WillEnterForeground and OnActivated methods are called.

All these methods contain one parameter, which contains the UIApplication instance
of the app. The UIApplication class contains the ApplicationState property, which
returns the state of the app as values of the UIApplicationState property. These values
are as follows:

 f Active: This indicates that the app is active

 f Inactive: This indicates that the app is inactive, for example, when a notification alert
is displayed

 f Background: This indicates that the app is in the background

There's more...
There are cases where iOS will kill your app, for example, when a memory warning is issued
and your app does not free up resources. The WillTerminate method will be called in
these cases.

Proper usage
The preceding methods are very useful because they allow us to save the current data that
is presented to the user when the app changes its state. When the app is transited to an
inactive or background state, each method is given a limited amount of time to execute,
so we should make sure that it does not perform long-running operations, or else, iOS will
kill the app.

Multitasking

308

Receiving notifications for app states
In this recipe, we will discuss how to get notified when the application's state changes outside
the scope of the UIApplicationDelegate implementation.

Getting ready
Create a new Single View Application in Xamarin Studio and name it NotifyStatesApp.

How to do it...
Perform the following steps:

1. Enter the following fields in the NotifyStatesAppViewController class:
private NSObject appDidEnterBackgroundObserver,
 appWillEnterForegroundObserver;

2. Create the following methods:
private void AddNotificationObservers()
{
 this.appDidEnterBackgroundObserver =
 UIApplication.Notifications.
 ObserveDidEnterBackground((s, e) =>
 Console.WriteLine("App did enter background! App state:
 {0}", UIApplication.SharedApplication.
 ApplicationState));
 this.appWillEnterForegroundObserver =
 UIApplication.Notifications.
 ObserveWillEnterForeground((s, e) =>
 Console.WriteLine("App will enter foreground! App
 state: {0}", UIApplication.SharedApplication.
 ApplicationState));
}
private void RemoveNotificationObservers()
{
 NSNotificationCenter.DefaultCenter.RemoveObservers(new []
 {
 this.appDidEnterBackgroundObserver,
 this.appWillEnterForegroundObserver
 });
}

3. In the ViewWillAppear override, call the AddNotificationObservers method
as follows:
public override void ViewWillAppear(bool animated) {
 base.ViewWillAppear(animated);

Chapter 12

309

 this.AddNotificationObservers();
}

4. In the ViewWillDisappear override, call the RemoveNotificationObservers
method as follows:
public override void ViewWillDisappear(bool animated) {
 base.ViewWillDisappear(animated);
 this.RemoveNotificationObservers();
}

5. Compile and run the app on the simulator. Press the home button (or press Shift +
Command + H), and watch the output in the Application Output pad.

How it works...
Apart from calling the methods of the UIApplicationDelegate object for app states, iOS
issues notifications that we can receive. This is very useful, because in most cases, we need
to be notified when the app's state changes outside the scope of the AppDelegate class.

To accomplish this, we use the NSNotificationCenter method through the
UIApplication.Notifications class as follows:

this.appDidEnterBackgroundObserver =
 UIApplication.Notifications.ObserveDidEnterBackground((s, e) =>
 Console.WriteLine("App did enter background! App state: {0}",
 UIApplication.SharedApplication.ApplicationState));

This example only adds notification observers for the transition between the background
and foreground. We can add more notification observers through the other available
Observe* methods.

The result is similar to the example used in the previous recipe, but in this case, we get
notified inside the scope of our view controller.

There's more...
To add notification observers when the app is activated or when it resigns activation,
we use the UIApplication.Notifications.ObserveDidBecomeActive and
UIApplication.Notifications.ObserveWillResignActive methods, respectively.

Removing notification observers
In this example, we call RemoveNotificaitonObservers inside the ViewWillAppear
method. However, the method is not being called when the app is transited to the background
but only when we display another view controller.

Multitasking

310

See also
 f The Detecting application states recipe

Running code in the background
In this recipe, we will learn how to execute code in the background, taking full advantage of
iOS's multitasking feature.

Getting ready
Create a new Single View Application in Xamarin Studio and name it BackgroundCodeApp.

How to do it...
Perform the following steps:

1. Enter the following code in the AppDelegate class:
private int taskID;
public override void DidEnterBackground (UIApplication
application)
{
 if (this.taskID == 0)
 {
 this.taskID = application.BeginBackgroundTask(() => {
 application.EndBackgroundTask(this.taskID);
 this.taskID = 0;
 });
 ThreadPool.QueueUserWorkItem(delegate {
 for (int i = 0; i < 60; i++)
 {
 Console.WriteLine("Task {0} - Current time {1}",
 this.taskID, DateTime.Now);
 Thread.Sleep(1000);
 }
 application.EndBackgroundTask(this.taskID);
 this.taskID = 0;
 });
 }
}
public override void WillEnterForeground (UIApplication
 application)
{
 if (this.taskID != 0)

Chapter 12

311

 {
 Console.WriteLine("Background task is running!");
 } else
 {
 Console.WriteLine("Background task completed!");
 }
}

2. Compile and run the app on the simulator. Press the home button (Command + Shift
+ H) to make the app enter the background and watch the Application Output pad.
Before the background task is completed (1 minute), bring the app to the foreground
by either tapping on its icon in the multitasking bar or on its icon on the home screen.

How it works...
In the previous tasks, we learned how to get informed when an app gets transited from the
foreground to the background and vice versa.

Multitasking on iOS is not quite what we are used to on other platforms. The iOS platform helps
us makes sure that the foreground app will have all the available resources at its disposal
(and the user's). To accomplish this, when the app enters the background, it is being suspended
by the operating system. When it is suspended, it does not execute any code whatsoever.

If we want to prevent the app from being suspended when the user presses the home button,
we can ask for background time. The time we ask for is limited to 600 seconds (10 minutes),
which is more than enough for the majority of tasks we are likely to perform in the background
(for example, saving the UI state, completing a file download/upload, closing any open
connections, and so on).

To ask for the background time, we call the BeginBackgroundTask method of our
UIApplication instance as follows:

this.taskID = application.BeginBackgroundTask(() => {
 application.EndBackgroundTask(taskID);
 this.taskID = 0;
});

The method accepts one parameter of the NSAction type and returns an integer, which
corresponds to the task ID. The NSAction parameter represents the block of code that will be
executed just before the background time elapses. Inside that block of code, we have to call the
EndBackgroundTask method, passing the ID of the task that was started, which will inform
the runtime that we no longer need the background time. Each call of BeginBackgroundTask
should be followed by a call to EndBackgroundTask. If we do not call this method and the
background time elapses, the app will be terminated.

Multitasking

312

After calling the BeginBackgroundTask method, we can execute the code we want. To allow
the DidEnterBackground method to complete and to avoid blocking the main thread, we
just enclose our code to either an asynchronous call or in a separate thread. In this example,
we use a thread from ThreadPool. As this specific task will be completed before the time
in which we have the elapses, we call the EndBackgroundTask method to let the system
know that the job is done. The block of code that we passed to the BeginBackgroundTask
method will not be executed as we ended the task.

There are cases however, where the user might bring the app to the foreground while
a background task is still running. To cover this scenario, we need to override the
WillEnterForeground method and handle it in an appropriate manner. We can either stop
the background task (by calling EndBackgroundTask), or provide some sort of feedback to
the user that a task is still running. This scenario also makes the use of an asynchronous call
to our code, which is the best practice. If the code of our background task is synchronous,
then when the user brings the app to the foreground and the task is still running, the app will
be frozen until the task is completed.

There's more...
To know how much time is left to perform the background tasks, we can check the value of
the BackgroundTimeRemaining property as follows:

Console.WriteLine("Remaining time: {0}",
 application.BackgroundTimeRemaining);

Important considerations for the background code
The following are the important points to be considered when you are working with the
background code:

 f Do not update the UI while the app is in the background. Doing so may cause your
app to terminate or crash. Any updates to UI elements that take place while the app
is in the background are queued to be performed when it returns to the foreground.
This will surely make the app unresponsive.

 f Do not inform the user to bring your app to the foreground just to give more time
to the task. Doing so will surely get your app rejected from the app store's approval
process. If a background task is in progress and the user brings the app to the
foreground, moving the app back to the background again basically continues the
remaining background time.

 f Perform lightweight operations in the background to avoid the runtime from killing
your app.

 f Avoid using external resources (for example, resources from the assets library).

Chapter 12

313

See also
 f The Detecting application states recipe

Playing audio in the background
In this recipe, we will learn how to prevent the app from being suspended in order to allow
audio playback.

Getting ready
Create a new Single View Application in Xamarin Studio and name it BackgroundAudioApp.
Add a button on the view of the controller. You will also need an audio file. In this example, an
M4A file with a duration of 21 seconds is used.

How to do it...
Perform the following steps:

1. Double-click on the Info.plist file to open it. Select the Source tab at the bottom
and add the UIBackgroundModes key (Required background modes) with the
string value audio. The following screenshot shows you how the key and value are
shown in the editor after they have been set:

2. Add the MonoTouch.AVFoundation namespace in the
BackgroundAudioAppViewController.cs file.

3. Enter the following ViewDidLoad method in the class:
private AVAudioPlayer audioPlayer;
public override void ViewDidLoad ()
{
 base.ViewDidLoad ();
 NSError error = null;
 AVAudioSession.SharedInstance().SetCategory
 (AVAudioSession.CategoryPlayback, out error);
 if (error != null)
 {
 Console.WriteLine("Error setting audio session
 category: {0}", error.LocalizedDescription);
 }

Multitasking

314

 this.audioPlayer = AVAudioPlayer.FromUrl
 (NSUrl.FromFilename("sound.m4a"));
 this.btnPlay.TouchUpInside += (sender, e) =>
 this.audioPlayer.Play();
}

4. Add a sound file to the project and set its Build Action to Content.

5. Compile and run the app on the device. Tap the Play sound button and press
the home button to make the app enter the background. Notice that the sound
continues playing.

How it works...
To make sure that our app will be able to play the audio while it is in the background, we have
to set the audio item in the UIBackgroundModes key in the Info.plist file.

In this example, we used the AVAudioPlayer class to play a sound file. Just creating an
instance of the class and calling its Play method is not enough, though. We have to set a
specific type for the audio session category. We will do this with the help of the following code:

NSError error = null;
AVAudioSession.SharedInstance ().SetCategory
 (AVAudioSession.CategoryPlayback, out error);

The static AVAudioSession.SharedInstance method returns the current audio session
object. The audio session category is set to AVAudioSession.CategoryPlayback, which
allows the AVAudioPlayer class to play sounds while the app is in the background. This
requirement is specific to objects in the MonoTouch.AVFoundation namespace.

There's more...
The following are the available audio session categories:

 f CategoryAmbient: In this category, sounds are silenced when the device screen
is locked or when the device's silence switch is on. Sounds from external resources
(such as the iPod app) are mixed with this category.

 f CategorySoloAmbient: This is the default category. Sounds from external
resources are silenced with this category. Sounds are silenced when the screen is
locked or when the device's silent switch is on.

 f CategoryPlayback: In this category, sounds are not silenced when the screen
is locked or when the silent switch is on. Sounds from external resources are
silenced but can be mixed if the MonoTouch.AudioToolbox.AudioSession.
OverrideCategoryMixWithOthers property is set to true.

Chapter 12

315

 f CategoryRecord: This category is for recording audio. All the audio playback is
silenced. The recording continues even when the screen is locked.

 f CategoryPlayAndRecord: This category is for apps that need to
record and play audio. Sounds from external resources are silenced but
can be mixed if the MonoTouch.AudioToolbox.AudioSession.
OverrideCategoryMixWithOthers property is set to true. Sounds continue to
play when the screen is locked or when the silent switch is on.

 f CategoryAudioProcessing: This category is specific to processing audio. Sound
playback and recording is disabled in this category.

The background state for audio
Even when the app is configured through the Info.plist file to support the background
audio playback, the app will be suspended when the playback is completed.

See also
 f The Location services in the background recipe in Chapter 10, Location Services

and Maps

Updating data in the background
In this recipe, we will learn how to make use of iOS 7's background fetch feature. This feature
automatically wakes up the app at system-managed intervals, giving it a specific amount of
time to retrieve data and update the UI.

Getting ready
Create a new Single View Application in Xamarin Studio and name it BackgroundFetchApp.
Add a label to the controller.

How to do it...
Perform the following steps:

1. We need access to the label from outside of the scope of the
BackgroundFetchAppViewController class, so create a public
property for it as follows:
public UILabel LabelStatus {
 get { return this.lblStatus; }
}

Multitasking

316

2. Open the Info.plist file and under the Source tab, add the UIBackgroundModes
key (Required background modes) with the string value, fetch. The following
screenshot shows you the editor after it has been set:

3. In the FinishedLaunching method of the AppDelegate class, enter the
following line:
UIApplication.SharedApplication.SetMinimumBackgroundFetchIn
 terval(UIApplication.BackgroundFetchIntervalMinimum);

4. Enter the following code, again, in the AppDelegate class:
private int updateCount;
public override void PerformFetch (UIApplication application,
Action<UIBackgroundFetchResult> completionHandler)
{
 try {
 HttpWebRequest request = WebRequest.Create
 ("http://software.tavlikos.com") as HttpWebRequest;
 using (StreamReader sr = new StreamReader
 (request.GetResponse().GetResponseStream())) {
 Console.WriteLine("Received response: {0}",
 sr.ReadToEnd());
 }
 this.viewController.LabelStatus.Text =
 string.Format("Update count: {0}/n{1}",
 ++updateCount, DateTime.Now);
 completionHandler(UIBackgroundFetchResult.NewData);

 } catch {
 this.viewController.LabelStatus.Text =
 string.Format("Update {0} failed at {1}!",
 ++updateCount, DateTime.Now);
 completionHandler(UIBackgroundFetchResult.Failed);
 }
}

5. Compile and run the app on the simulator or on the device. Press the home button
(or Command + Shift + H) to move the app to the background and wait for an output.
This might take a while, though.

Chapter 12

317

How it works...
The UIBackgroundModes key with the fetch value enables the background fetch
functionality for our app. Without setting it, the app will not wake up in the background.

After setting the key in Info.plist, we override the PerformFetch method in the
AppDelegate class, as follows:

public override void PerformFetch (UIApplication application,
 Action<UIBackgroundFetchResult> completionHandler)

This method is called whenever the system wakes up the app. Inside this method, we can
connect to a server and retrieve the data we need. An important thing to note here is that
we do not have to use iOS-specific APIs to connect to a server. In this example, a simple
HttpWebRequest method is used to fetch the contents of this blog: http://software.
tavlikos.com.

After we have received the data we need, we must call the callback that is passed to the
method, as follows:

completionHandler(UIBackgroundFetchResult.NewData);

We also need to pass the result of the fetch. In this example, we pass
UIBackgroundFetchResult.NewData if the update is successful and
UIBackgroundFetchResult.Failed if an exception occurs.

If we do not call the callback in the specified amount of time, the app will be terminated.
Furthermore, it might get fewer opportunities to fetch the data in the future.

Lastly, to make sure that everything works correctly, we have to set the interval at which the
app will be woken up, as follows:

UIApplication.SharedApplication.SetMinimumBackgroundFetchInterval(
 UIApplication.BackgroundFetchIntervalMinimum);

The default interval is UIApplication.BackgroundFetchIntervalNever, so if we do
not set an interval, the background fetch will never be triggered.

There's more
Except for the functionality we added in this project, the background fetch is completely
managed by the system. The interval we set is merely an indication and the only guarantee we
have is that it will not be triggered sooner than the interval. In general, the system monitors
the usage of all apps and will make sure to trigger the background fetch according to how
often the apps are used.

http://software.tavlikos.com
http://software.tavlikos.com

Multitasking

318

Apart from the predefined values, we can pass whatever value we
want in seconds.

UI updates
We can update the UI in the PerformFetch method. iOS allows this so that the app's
screenshot is updated while the app is in the background. However, note that we need
to keep UI updates to the absolute minimum.

See also
 f The Running code in the background recipe

13
Localization

In this chapter, we will cover the following topics:

 f Creating an app for different languages

 f Localizable resources

 f Regional formatting

Introduction
With the release of the iOS platform and the global software marketplace in the form of the
App Store, Apple has made it easier for developers to distribute applications worldwide.

However, users worldwide will not even bother to download and use an app that is released in
a language they do not understand. To broaden the user base for their apps, developers have
to localize it. Localization is the process of translating text into multiple languages, providing
resources specific to multiple regions, and thus creating an app that will target audiences of
different cultures.

In this chapter, we will discuss the best practices to provide translated text that will be
displayed according to each user's locale preferences. We will also see how to provide
resources (images and videos) based on these preferences. Finally, we will use common
.NET practices to format dates, currencies, and numbers.

Creating an app for different languages
In this recipe, we will create an app that will support two different languages.

Localization

320

Getting ready
Create a new Single View Application in Xamarin Studio and name it MultipleLanguageApp.

How to do it...
Perform the following steps:

1. Add two labels on the view of MultipleLanguageAppViewController.

2. Add two folders to the project. Name them en.lproj and es.lproj, respectively.

3. Add a plain text file in the en.lproj folder and name it Localizable.strings.
Enter the following in the file and save it:
// Localized output on MultipleLanguageAppViewController
"Have a nice day!" = "Have a nice day!";

4. Add another plain text file in the es.lproj folder and name it the same as before:
Localizable.strings. Enter the following in the file and save it:
// Localized output on MultipleLanguageAppViewController
"Have a nice day!" = "¡Qué tenga un buen día!";

5. Enter the following code in the MultipleLanguageAppViewController class:
public override void ViewWillAppear (bool animated)
{
 base.ViewWillAppear (animated);
 this.lblLocale.Text = string.Format("Locale: {0} -
 Language: {1}", NSLocale.CurrentLocale.
 LocaleIdentifier, NSLocale.PreferredLanguages[0]);
 string resourcePath = NSBundle.MainBundle.PathForResource
 (NSLocale.PreferredLanguages[0], "lproj");
 NSBundle localeBundle = NSBundle.FromPath(resourcePath);
 this.lblLocalizedOutput.Text = localeBundle.
 LocalizedString("Have a nice day!", "Localized output
 on MultipleLanguageAppViewController");
}

6. Through the settings app on the simulator, set the language to English (if it is not set
already) and run the app. The message will be displayed in English. Try setting the
language of the simulator to Spanish (Español) and run the app again. The message
will be displayed in Spanish.

Chapter 13

321

How it works...
To make it easy for developers to provide support for multiple languages in apps, iOS reads
text in different languages from the corresponding language folder. In this app, we support
both English and Spanish. Their corresponding folders are en.lproj and es.lproj,
respectively. When we call the LocalizedString method, it looks for and parses the
Localizable.strings file to return the appropriate text.

The contents of the string files are defined by a set of quoted key-value pairs in a C style
syntax, ending each set with a semicolon, as shown in the following code:

// Localized output on MultipleLanguageAppViewController
"Have a nice day!" = "¡Qué tenga un buen día!";

As you can see, we can also provide comments to assist the job of the person who will
translate the text, even if we do it ourselves.

The NSLocale.PreferredLanguages static property returns a string array of the user's
preferred language identifiers. The first item in this array is the currently selected language. If
the selected language is English, it will return en; if it is Spanish, it will return es, and so on.

Both these language codes are based on the ISO 639-1 standard.
The three-letter ISO 639-2 standard is also supported. A list of all the
available language codes can be found at http://www.loc.gov/
standards/iso639-2/php/code_list.php.

The NSBundle.PathForResource method returns the path of the app bundle for the
parameters we pass to it. We use this path to get the appropriate NSBundle instance,
according to the selected language, as follows:

string resourcePath =
 NSBundle.MainBundle.PathForResource
 (NSLocale.PreferredLanguages[0], "lproj");
NSBundle localeBundle = NSBundle.FromPath(resourcePath);

We then call the LocalizedString method to display the appropriate text, as follows:

this.lblLocalizedOutput.Text = localeBundle.LocalizedString("Have
 a nice day!", "Localized output on
 MultipleLanguageAppViewController");

The first parameter's purpose is dual. It is both the key to look for in order to return the
translated text and also the text that will be displayed in case the specified localization path
is not found. The second parameter is the comment or any instruction we want to give to the
translator. It is not displayed and basically not used. We can pass null to this parameter, and
no error will occur. However, it is wise to always include a comment or instruction since it will
help avoid confusion when translating multiple strings.

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.loc.gov/standards/iso639-2/php/code_list.php

Localization

322

There's more...
It is advised to always provide keys that can act as the fallback text to be displayed in English,
in case the language that the user has selected is not included in our app.

However, the LocalizedString method is overloaded. The second overload accepts three
parameters. Consider the following example:

this.lblLocalizedOutput.Text = localeBundle.LocalizedString("Have
 a nice day!", "Have a nice day!", "Localizable");

The first parameter is the key to look for. The second parameter is the fallback value in
case the specified localization path is not found. The third parameter is the name of the file
containing the strings without the .strings extension. This overload is more helpful, and
we can use different keys for our strings, which will help us identify where that particular
string is used in the code. For example, in this case, we could set the key in the strings file to
MultipleLanguageAppViewController.lblLocalizedOutput:

// Localized output on MainController
"MultipleLanguageAppViewController.lblLocalizedOutput" = "Have a
 nice day!";

Then, use it in our code as follows:

this.lblLocalizedOutput.Text = localeBundle.LocalizedString
 ("MultipleLanguageAppViewController.lblLocalizedOutput", "Have a
 nice day!", "Localizable");

This overload also helps us to separate our strings into multiple .strings files, passing the
corresponding filename as the third parameter.

The last overload contains four parameters. The first three are the same as the second
overload. The fourth parameter is simply the comment that we want the particular string
to have.

Localization in real-world app scenarios
In this example, we use the PathForResource method to get an instance of the current
locale bundle. This is because the values returned from the LocalizedString method
are cached. In real-world app scenarios, where the app would be downloaded in a specific
language and the user would most likely never change the language of the device to use it,
just calling NSBundle.MainBundle.LocalizedString would be enough.

The localizable.strings encoding
The encoding of the Localizable.strings file should always be either UTF-8 or UTF-16.

Chapter 13

323

Localizable resources
A localizable resource is content, such as images and sound files, which is specific to
a locale. In this recipe, we will learn how to load and display resources based on the
user's localization preferences.

Getting ready
Create a new Single View Application in Xamarin Studio and name it
LocalizableResourcesApp. Add a label and a UIImageView on the view of
LocalizableResourcesAppViewController. Two different images will also
be needed, one for each locale. The images of USA and Spain are used in this example.

How to do it...
Perform the following steps:

1. Add two folders for the English and Spanish locales to the project (en.lproj
and es.lproj).

2. Add one image in each folder. Make sure that the filename for the images is the same
within both the folders.

3. Enter the following code in the LocalizableResourcesAppViewController class:
public override void ViewWillAppear (bool animated)
{
 base.ViewWillAppear (animated);
 this.lblLocale.Text = NSLocale.PreferredLanguages[0];
 this.imageView.Image = UIImage.FromFile
 (NSBundle.MainBundle.PathForResource("flag", "jpg"));
}

Localization

324

4. Compile and run the app on the simulator with English as the language selected in
the Settings app. The result should be similar to the following screenshot:

5. Now, set the simulator's language to Spanish and run the app again. The Spanish flag
should be displayed instead, as shown in the following screenshot:

Chapter 13

325

How it works...
The PathForResource method automatically searches for the appropriate language
folder and loads the resource specified through its arguments. In this example, we pass the
method's result to the UIImage.FromFile method in order to load the image and assign it
to the image view's Image property.

There's more...
Apart from images, we can use the PathForResource method to load videos, PDF files, and
any other localizable resource we need.

More information on localizable resources
We need to make sure the resource for the specific language folder exists. If it does not, an
exception will occur. A way to avoid this is to add one universal image file in the project and
use a Localizable.strings file inside each language folder, which contains the paths to
the resources, as shown in the following code:

// US flag image
"flag_path"="en.lproj/flag.jpg";

To load the appropriate flag, we load the image with the LocalizedString method,
as follows:

this.Image = UIImage.FromFile(NSBundle.MainBundle.
 LocalizedString("flag_path", "path/to/universal/image.jpg",
 "Localizable");

This way, the image.jpg image will be loaded if the corresponding language folder is
not found.

See also
 f The Creating an app for different languages recipe

Regional formatting
Regional formatting is the manner in which various information, such as currency, date,
and time is displayed according to the different regions of the world. In this recipe, we
will discuss how to display formatted numbers and dates according to the user's regional
formatting settings.

Localization

326

Getting ready
Create a new Single View Application in Xamarin Studio and name it
RegionalFormattingApp.

How to do it...
Perform the following steps:

1. Add five labels on the view of RegionalFormattingAppViewController.

2. Enter the following code in the RegionalFormattingAppViewController class:
public override void ViewDidAppear (bool animated)
{
 base.ViewDidAppear (animated);
 this.lblLocale.Text = string.Format("Locale: {0}",
 NSLocale.CurrentLocale.LocaleIdentifier);
 this.lblDate.Text = string.Format("Date: {0}",
 DateTime.Now.ToLongDateString());
 this.lblTime.Text = string.Format("Time: {0}",
 DateTime.Now.ToLongTimeString());
 this.lblCurrency.Text = string.Format("Currency: {0:c}",
 250);
 this.lblNumber.Text = string.Format("Number: {0:n}",
 1350);
}

3. Compile and run the app on the simulator with regional formatting set to United
States and Spanish | Spain under Settings | General | International | Region
Format. The output for the United States regional format will be similar to what is
shown in the following screenshot:

The output for the Spanish regional format will be similar to what is shown in the
following screenshot:

Chapter 13

327

How it works...
To format dates, currencies, and numbers, we use the standard .NET code. For date and
time, the DateTime.ToLongDateString and DateTime.ToLongTimeString methods,
respectively, return the values according to the locale.

For currency and numbers, we use C# numerical strings, as shown in the following code:

this.lblCurrency.Text = string.Format("Currency: {0:c}", 250);
this.lblNumber.Text = string.Format("Number: {0:n}", 1350);

There's more...
The System.Globalization namespace is supported in Xamarin.iOS. To display the
current locale, consider the following line of code:

Console.WriteLine(CultureInfo.CurrentCulture.Name);

Note that there is one difference between the preceding code and NSLocale.
CurrentLocale.LocaleIdentifier. The former uses a dash (-), while the
latter uses an underscore (_) in the locale name.

14
Deploying

In this chapter, we will cover the following topics:

 f Creating profiles

 f Creating an ad hoc distribution bundle

 f Preparing an app for the App Store

 f Submitting an app to the App Store

Introduction
In this chapter, we will walk through all the required steps for preparing and installing the
appropriate certificates on the development computer. We will also learn how to create the
provisioning profiles that will allow us to deploy the app to a device, whether it is our own or
someone else's, or send it to beta testers for installation on their devices.

Finally, we will see how to prepare the app for App Store submission and the process for its
final release to the App Store.

Creating profiles
In this recipe, we will go through a step-by-step guide to creating and installing the appropriate
certificates and provisioning profiles that are required for deploying an app to the device.

How to do it...
The following steps will guide you through the process of creating your developer certificate
and appropriate provisioning profiles for an app.

Deploying

330

We will start with the developer certificate, as follows:

1. Log in to the iOS Developer website at http://developer.apple.com/ios.

2. Go to the iOS Provisioning Portal.

3. Go to Certificates, Identifiers & Profiles from the menu on the right-hand side and
click on Certificates on the next page.

4. Click on the plus (+) button on the right-hand side to add a new certificate.
The following screenshot shows the settings page for the new certificate:

http://developer.apple.com/ios

Chapter 14

331

5. Select iOS App Development and click on Continue.

6. The next page provides information on creating a Certificate Signing Request (CSR)
on your Mac. Follow the instructions to create a CSR and click on Continue.

7. On the next page, upload the CSR file and click on Generate.

8. After the certificate is generated, you will have the option of downloading it. Download
it and double-click on the .cer file to install it. Keychain Access will open, showing
the installed certificates on the machine.

Now that the certificate is installed, we need to set up Xamarin Studio to be able to use it.
If you haven't already done so, close Keychain Access, as we don't need it. Perform the
following steps:

1. Open Xamarin Studio.

2. Open Preferences (Cmd + ,).

3. Under the Developer Accounts option, click on the plus button to add your Apple
Developer account.

4. Enter your Apple Developer account credentials and click on OK.

The following screenshot displays Xamarin Studio's Preferences window with a developer
account already added:

Deploying

332

Now that we have issued and installed our developer certificate, we need to register the
devices we will be using for debugging by performing the following steps:

1. Back in Certificates, Identifiers & Profiles of the Apple Developer portal, click on
Devices on the left-hand side of the page.

2. Click on the plus button (+) to add a new device.

3. Enter a name for the device. If you are testing on multiple devices that do not belong
to you, you will only be able to tell them apart by this name, so make sure it is
something that will help you identify the device, for example, Mike's iPhone 5s.

4. Enter the device's Unique Device Identifier (UDID). You can find a device's UDID by
connecting the device on your Mac and opening iTunes. Under the device's Summary
tab, clicking on the serial number will display the UDID. Right-click on it and click on
Copy. You can now paste it in the UDID field.

5. Click on Continue. The device is now added to your Apple Developer account and can
be used for debugging and testing with your app.

We have created a development profile, set up Xamarin Studio, and added at least one device
to our Apple Developer account. The next stage is to create an App ID and a provisioning
profile, which will allow our app to be installed on a device.

Follow these steps to create an App ID:

1. In the Certificates, Identifiers & Profiles page, click on App IDs on the left-hand side
of the page.

2. Click on the plus button (+) on the right-hand side to create a new App ID.

3. In the App ID Description section, enter a name for the App ID.

4. Select an App ID Prefix. If there is no available prefix, select Generate New.

5. In the App ID Suffix section, enter a bundle ID. As the instructions suggest, it is
a good practice to use a reverse-domain name style string (for example, com.
mycompany.myapp) for a bundle ID.

6. Click on Continue, and the App ID is created.

We are almost there. Now, it's time for the provisioning profile. Perform the following steps:

1. Click on Provisioning Profiles on the left-hand side of the page.

2. Click the plus (+) button on the right-hand side to create a new provisioning profile.

3. Check the iOS App Development option and click on Continue.

4. In the next page, select the App ID to which the provisioning profile will be bound and
click on Continue.

Chapter 14

333

5. After selecting an App ID, we need to select the developer certificate. After selecting
the developer certificate we created earlier, click on Continue.

6. We now need to select the devices that the app can be installed on. Select one or
more devices and click on Continue. It is important to note that the app will not be
installed to devices that are not included here.

7. The final step is to give a name to the provisioning profile. Enter your preferred name
and click on the Generate button.

8. After the provisioning profile is generated, we have the option of downloading it.
Download and double-click on the .mobileprovision file to install it on your
machine. Xcode will now open, with the Organizer window showing all the installed
provisioning profiles on the machine.

We're done. We have successfully prepared our machine for iOS development and all the
necessary provisioning profiles that will allow us to debug our app on a device!

How it works...
The process described in this recipe will allow you to deploy and debug your app on a device
connected to your Mac. It will not allow you to distribute your app to beta testers or to the
App Store.

The developer certificate is the certificate that allows the compilation of apps that will
be deployed to devices. It is only meant for development, and one developer certificate
corresponds to the enrollment of one iOS Developer Program.

Each provisioning profile holds information on what devices it can be installed on. An Apple
Developer enrolled to the iOS Developer Program can add up to 100 devices and include them
in a provisioning profile.

The App ID is the identifier of your app. Create one App ID for each of your apps.

The provisioning profile is the electronic signature that allows your app to be deployed to
the device. Each provisioning profile corresponds to one app and holds all the appropriate
permissions that will allow the app to execute on the device(s) included in it and the App ID
information. It is also what distinguishes an app for development or distribution. Provisioning
profiles are issued with an expiration time. At the time of writing this book, the duration of a
provisioning profile is 1 year.

Deploying

334

There's more...
To compile and debug an app on the device, select the developer certificate and provisioning
profile in Xamarin Studio under the iPhone Bundle Signing node in project options, as shown
in the following screenshot:

This has to be done for each build configuration (Debug, Release, and so on).

Under the iPhone Application node, set the Display name, Bundle Identifier, and Bundle
version fields for your app. If you leave them blank, Xamarin Studio will set their values
to default. Specifically, the Bundle Identifier field will be set to the one that is included in
the App ID. However, if you set the Bundle Identifier field to something other than what is
declared in the App ID, an error on compilation will occur.

Expiration of provisioning profiles
When a provisioning profile expires, the app does not work on the device any longer. You can
either renew the existing profile or create a new one and install it on the device again.

Chapter 14

335

See also
 f The Creating an ad hoc distribution bundle recipe

 f The Compiling an iOS project recipe in Chapter 1, Development Tools

Creating an ad hoc distribution bundle
In this recipe, we will learn how to create a bundle of our app. We will be able to send this
bundle to beta testers so that they can test it on their devices.

Getting ready
To create an ad hoc distribution bundle, make sure you have created an App ID on the iOS
Provisioning Portal for your app.

How to do it...
The process of creating ad hoc provisioning profiles is similar to the process of creating
development distribution profiles. The following steps will guide you through the process:

1. Create a distribution certificate. For distributing apps to various devices that are
not connected to your Mac, but also for submitting to the App Store, you need
a distribution certificate to be installed. Follow the same steps described in the
previous recipe for creating a developer certificate. This time though, select App
Store and Ad-Hoc under the Production section when adding a new certificate.
All the other required steps are the same.

2. Create a distribution provisioning profile. Follow the same steps described in the
previous recipe to create a provisioning profile. This time though, select the Ad Hoc
option in the Distribution section, instead of iOS App Development.

3. Download the provisioning profile and double-click on it to install it on your machine.

Now that we have all the distribution certificates and provisioning profiles ready, we need to
create our ad hoc build by performing the following steps:

1. Open the project in Xamarin Studio. In this example, the RegionalFormattingApp
project is used.

Deploying

336

2. Select Ad-Hoc in the solution configuration combo box in the top-left corner, as shown
in the following screenshot:

3. Open the project options, and under the iPhone Bundle Signing option, select the
distribution certificate and provisioning profile in the list. Just make sure that you are
selecting the certificate and provisioning profile for the Ad-Hoc configuration. In the
following screenshot, the distribution certificate has been selected:

4. Under iOS IPA Options, make sure that Build ad-hoc/enterprise package (IPA)
is checked.

5. Navigate to Build | Rebuild All on the menu bar to create the build.

The distribution build of our app is ready! It is time to share it with our testers. The following
steps will guide you through the process:

1. On the Mac, open Finder and navigate to the bin folder of your project.

2. Open the iPhone/Ad-Hoc folder.

3. You can now send the *.ipa file, along with the provisioning profile file
(*.mobileprovision) to the tester(s).

4. The tester(s) will be able to install the app by dragging-and-dropping both files in
iTunes and syncing them with the device.

Chapter 14

337

How it works...
For distributing apps, we need a distribution certificate. Just like the developer certificate, the
distribution certificate is created once, but can be transferred to another Mac if needed.

The creation process of the ad hoc distribution provisioning profile is the same as the process
of creating development provisioning profiles. The only difference is that we have the option
of the type of distribution, which is either App Store or Ad Hoc. The *.ipa file is a file that is
recognized by iTunes.

There's more...
There is also a third-party service that makes the distribution process very easy. You can
create teams and upload different builds, notify your testers through e-mail whenever there
is a new build, and most importantly, skip the iTunes syncing. You can find all the information
at http://www.testflightapp.com. Note that TestFlight is for distribution only. The
necessary certificates and provisioning profiles will still have to be created.

Syncing ad hoc app bundles with iTunes
Different users have different settings set up in their iTunes application. In case a user syncs
the device and cannot find the app on the device, make sure the app is selected for syncing
under the Apps tab of the selected device in iTunes.

See also
 f The Creating profiles recipe

Preparing an app for the App Store
In this recipe, we will discuss the important steps we need to take for preparing an app for the
App Store.

Getting ready
Follow the steps in the previous recipes to create an App Store distribution profile for your app.

How to do it...
One very important step in the preparation of the App Store regards the images that should
be included in your app.

http://www.testflightapp.com

Deploying

338

The most important image is the app icon. This is the icon that will represent your app on the
users' devices. Depending on the target device, the dimensions of the icon should be different.
Xamarin Studio makes this process easy by providing specific slots for assigning the icon for
each target device/platform. For example, the icon size for an iPhone 3s is different from the
size for an iPhone 4s, as is the icon for an iPhone 5 or a later device running on iOS 7.

The following steps will guide you through the process:

1. Double-click on the Info.plist file of your project to open the file in the embedded
editor. The following screenshot shows all the available options for app icons in a
universal (iPhone and iPad) app:

2. Click on each corresponding icon to assign the icon. The icons must be in the
PNG format.

3. Now that we have set the app icon, we need to set a launch image.

4. The launch image is the first thing that is displayed when an app starts. Prepare a
launch image in at least two dimensions for the iPhone and iPod Touch apps: 320 x 480
pixels for the lower resolution version, 640 x 960 pixels for the higher resolution version,
and 640 x 1136 pixels for the 4-inch devices (iPhone 5, iPhone 5s, and so on).

5. Click on the corresponding box in the Info.plist editor to set the launch image.

We now have to set the iTunes Artwork image. This is a 512 x 512 and 1024 x 1024 image
that will be displayed on our app's page on iTunes. It can be whatever you want; however, a
good practice is to make it the same as the app icon. Just click on the corresponding button in
the Info.plist file to assign the iTunes Artwork images.

Chapter 14

339

How it works...
The application icons are very important. It is what the user will see on the device's screen
and tap to start your app. Although all app icons appear as buttons with rounded corners
and a lighting effect, you should not include these graphical features in your icons. These
graphical features are automatically rendered upon app submission to the App Store. The
icons should be perfect squares. Also, always provide a background for the icons. Do not use
transparencies, because any transparencies on the icon will be displayed with black color,
potentially destroying your intended icon appearance.

The launch image is displayed first when the app starts. When a screen goes blank at startup,
it means there is no launch image. According to Apple's iOS Human Interface Guidelines
(https://developer.apple.com/library/ios/documentation/UserExperience/
Conceptual/MobileHIG/index.html), this image should be the first screen that is
loaded when the app completes the launch process and is ready to accept input. It should
only contain the static content of the first screen and not the content that is likely to change,
like localized text.

There's more...
It is not mandatory to create your app icon for each available slot in the editor. In fact, even
if you just create only one low-resolution icon, it will be acceptable, and you will be able to
upload your app to the App Store. Its quality though, when installed on a high-resolution
device such as the iPad Air, is not going to be top-notch. This is not good for the reputation of
both the app and its developer, unfortunately.

The 4-inch screen launch image
As you may have already noticed, the Info.plist editor has a launch image already set for
retina (4-inch) screens, which is a plain black background. This is because when the iPhone
5 was first launched, it was a device with a screen height that was different from that of the
previous models.

The way Apple chose to help developers easily support the taller screen required developers
to include a launch image in the dimensions of the new screen. This way, iOS automatically
sizes the view controllers to the new screen size upon startup. By including this blank launch
image by default, Xamarin Studio makes our life easier so that all our projects appear properly
on the 4-inch devices.

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/index.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/index.html

Deploying

340

See also
 f The Creating profiles recipe

Submitting an app to the App Store
In this recipe, we will go through the required steps to submit an app to the App Store.

Getting ready
For this recipe, you will need to have your zipped distribution app bundle ready.

How to do it...
Perform the following steps for submitting your app to the App Store:

1. Prepare up to five screenshots that display various aspects of your app. For
iPhone/iPod Touch apps, the dimensions should be 640 x 1136 px for portrait
and 1136 x 640 px for landscape orientations.

2. Prepare the text that best describes your app. Try to include the most significant
features. Remember, the description is what the users will read before downloading
the app, so the more appealing it is, the better.

Prepare keywords that will help your app climb on top of the search
results. Both app description and keywords are required.

3. iTunes Connect is the developer portal for managing and submitting apps (among
other App Store-related stuff). Log in to iTunes Connect (http://itunesconnect.
apple.com) with your Apple Developer ID. Click on the Manage your Applications
link. Then, click on the Add New App button on the top-left corner. Follow the steps to
complete the app's preparation on the portal. When you finish, make sure the app's
status is Waiting for Upload.

4. After you have created a new app on the portal, you can upload the zipped app
bundle with the Application Loader. It is installed by default with Xcode, and can
be found under /Developer/Application/Utilities, or by searching through
the Spotlight.

http://itunesconnect.apple.com
http://itunesconnect.apple.com

Chapter 14

341

When you start Application Loader, it will ask you to log in with your Apple Developer
ID. After logging in, you will be presented with the following window:

5. Click on the Deliver Your App button, and it will connect to iTunes Connect, find the
apps you have in the Waiting for Upload status, and load them in the list box.

6. You will then be presented with a summary view of your app.

7. Click on the Choose... button, and a dialog box will appear that will allow you to select
the zipped app bundle. After selecting it, proceed with the upload.

You are all set! If all steps have been completed correctly, the app will be uploaded, and it will
be under review for release on the App Store.

How it works...
App screenshots can be in JPG, TIF, or PNG formats, in RGB color, and at a resolution of at
least 72 DPI.

However, the images are important only when users are already viewing your app in the App
Store. The keywords and description are the parameters that will allow your app to come up
higher on search results and make the user decide whether the app is worth the download.
Regarding the keywords, choose them wisely. Do not include as many as you can; fewer
keywords that reflect the key aspects of the app are always better.

Deploying

342

iTunes Connect is the developer portal for managing applications, reviewing financial data,
app downloads, and it includes the contracts and agreements a developer needs to sign.
Make sure you read and accept the contracts, or else you will not be able to proceed with the
app's preparation process. During this process, you are required to provide the necessary
information, for your app it includes, the price range if it is a paid app, the countries in which
it will be available, as well as the release date for it if you do not want it to be released
automatically as soon as it has passed through the App Store review process.

When everything is set up correctly and the app's status is Waiting for Upload, you can then
run the Application Loader to upload it. Periodically and with each release of iOS and iOS SDK
versions, various components or procedures change. Always make sure that your iOS SDK
version is up-to-date.

There's more...
At some point in the app's preparation process, you will be required to enter a Stock Keeping
Unit (SKU) number. This number is a unique identifier for each product or service. It can be
any number you want, but keep a specific pattern to keep track of the identifiers, for example,
when you develop additional apps.

See also
 f The Preparing an app for the App Store recipe

15
Advanced Features

In this chapter, we will cover the following topics:

 f Reproducing the page curl effect

 f Integrating content sharing

 f Implementing custom transitions

 f Using physics in UI elements

 f Implementing the text-to-speech feature

Introduction
In this chapter, we will explore only some of the huge variety of advanced features that the iOS
platform has to offer.

Specifically, we will create a project that displays content separated into pages, which the
user can navigate through like in a normal book, with the help of the newly introduced
UIPageViewController class.

We will then discuss integrating content-sharing features and providing share/post
functionality in our app with the help of UIActivityViewController. For the user
interface, we will explore some basic aspects of UIKit Dynamics that allows rich animations
for a better user experience. We will also learn how to provide custom transitions between
view controllers.

In the last recipe of this chapter, we will work with the new text-to-speech feature and create
an app that speaks, with the help of the AVSpeechSynthesizer class!

Advanced Features

344

Reproducing the page curl effect
In this recipe, we will create an app that displays content like that of a book with the help of
the UIPageViewController class.

Getting ready
Create a new Single View Application in Xamarin Studio and name it BookApp. Add
another controller to the project and name it Page. Configure the appearance of the Page
controller however you like. In the source code for this recipe, the contains a UIImageView
and a UILabel.

How to do it...
Perform the following steps:

1. Enter the following code in the BookAppViewController class:
private UIPageViewController pageViewController;
private int pageCount = 3;
public override void ViewDidLoad ()
{
 base.ViewDidLoad ();
 Page firstPage = new Page(0);
 this.pageViewController = new
 UIPageViewController(
 UIPageViewControllerTransitionStyle.PageCurl,
 UIPageViewControllerNavigationOrientation.Horizontal,
 UIPageViewControllerSpineLocation.Min);
 this.pageViewController.SetViewControllers(new
 UIViewController[] { firstPage },
 UIPageViewControllerNavigationDirection.Forward,
 false, s => { });
 this.pageViewController.GetNextViewController =
 this.GetNextViewController;
 this.pageViewController.GetPreviousViewController =
 this.GetPreviousViewController;
 this.pageViewController.View.Frame = this.View.Bounds;
 this.View.AddSubview(this.pageViewController.View);
}

private UIViewController
 GetNextViewController(UIPageViewController
 pageController, UIViewController referenceViewController)

Chapter 15

345

{

 Page currentPageController = referenceViewController as
 Page;

 if (currentPageController.PageIndex >= (this.pageCount -
 1))
 {

 return null;

 } else
 {
 int nextPageIndex = currentPageController.
 PageIndex + 1;
 return new Page(nextPageIndex);

 }
}

private UIViewController
 GetPreviousViewController(UIPageViewController
 pageController, UIViewController referenceViewController)
{

 Page currentPageController = referenceViewController as
 Page;
 if (currentPageController.PageIndex <= 0)
 {
 return null;
 } else
 {

 int previousPageIndex = currentPageController.
 PageIndex - 1;

 return new Page(previousPageIndex);

 }
}

2. Add a property to the Page class and change its constructor, as shown in the
following code:
public Page (int pageIndex) : base ("Page", null)
{

Advanced Features

346

 this.PageIndex = pageIndex;
}

public int PageIndex
{
 get;
 private set;
}

3. Finally, configure the content that will be displayed in Page, in the
ViewDidLoad method:
this.imgView.Image =
 UIImage.FromFile(string.Format("images/{0}.jpg",
 this.PageIndex + 1));
 this.lblPageNumber.Text = string.Format("Page {0}",
 this.PageIndex + 1);

4. Compile and run the app on the simulator. Click-and-drag the cursor on the
simulator's screen area to change the page. The result should look similar to the
following screenshot:

Chapter 15

347

How it works...
The UIPageViewController class introduced with iOS 5 was a desired component by
many developers. It allows us to navigate through content with the effect of a real book,
like in Apple's iBooks app.

We initialize it with the following line:

this.pageViewController = new
 UIPageViewController(UIPageViewControllerTransitionStyle.
 PageCurl, UIPageViewControllerNavigationOrientation.Horizontal,
 UIPageViewControllerSpineLocation.Min);

The first parameter of the constructor determines the type of the effect. The only available
value right now is PageCurl. The second parameter determines the orientation of the effect.
The Horizontal parameter is the value for the effect similar to a book, while Vertical is
the value for the effect similar to a notebook, where the pages are bound at the top. The third
parameter determines the position of the bind of the book. The Min parameter declares that
the bind is on one edge of the screen (in this case, on the left-hand side).

After initializing the page controller, we need to set its first page by calling its
SetViewControllers method, as shown in the following code:

this.pageViewController.SetViewControllers(new UIViewController[]
 { firstPage }, UIPageViewControllerNavigationDirection.Forward,
 false, s => { });

The method's first parameter is an array of UIViewController objects. We can set either
one or two controllers for this parameter, depending on the device's orientation. For example,
if the app supports landscape orientation, we might want to show two pages at the same
time. The second parameter basically determines the navigation direction of the included
pages. The Forward parameter means the next page will be loaded if we swipe from right
to left on the screen, while Reverse means the previous page will be loaded for the same
swipe. The last parameter is of delegate type UICompletionHandler and represents the
handler to be executed after the controllers have been added. In this example, we do not need
it, so we just pass an empty lambda.

Next, we need to provide the data source for the rest of the pages of our "book." Once
again, Xamarin simplifies things for us by providing two very helpful properties for us to use:
GetNextViewController and GetPreviousViewController. These properties merely
represent the callback methods we would have to override if we were creating a delegate
object for the page controller. Apart from their names, the signatures of these two methods
are identical, as shown in the following code:

UIViewController GetNextViewController(UIPageViewController
 pageController, UIViewController referenceViewController);
UIViewController GetPreviousViewController(UIPageViewController
 pageController, UIViewController referenceViewController);

Advanced Features

348

The first parameter gives us the page controller, while the second parameter gives us the
controller that is currently displayed on screen when the method is called.

In the implementation of these methods, we simply have to return the controller that should
be loaded after or before the current one. If we do not want the effect to be activated, we just
return null.

Last but not least, we set the size of the page controller's view and add it to a superview so it
will be displayed, using the following code:

this.pageViewController.View.Frame = this.View.Bounds;
 this.View.AddSubview(this.pageViewController.View);

There's more...
If we would like our app to support landscape orientation, we would first have to implement
the ShouldAutoRotate and GetSupportedInterfaceOrientations methods in the
BookAppViewController class. Secondly, we would have to provide two view controllers to
the SetViewControllers method of the UIPageViewController class.

Double-sided pages
As you might have noticed in the previous screenshot of this recipe, when we turn a
page, its content is displayed in reverse on the page's back, like when we see through
a page in real books. We have the option of creating double-sided pages by setting the
UIPageViewController.DoubleSided property to true.

Integrating content sharing
In this recipe, we will add the content-sharing functionality in an app. The app will be able to
share content through social networks, e-mail, SMS, or AirDrop.

Getting ready
Create a new Single View Application in Xamarin Studio and name it ContentShareApp. The
app will work on the simulator, but more sharing targets will be available on an actual device.

Chapter 15

349

How to do it...
Perform the following steps:

1. Add a button to the controller.

2. Add the following code in the ContentShareAppViewController class:
private UIActivityViewController shareController;
public override void ViewDidLoad ()
{
 base.ViewDidLoad ();
 this.btnShare.TouchUpInside += async (sender, e) => {
 NSString link = new
 NSString("http://software.tavlikos.com");
 this.shareController = new UIActivityViewController(new
 NSObject[] {
 link
 }, null);
 this.shareController.CompletionHandler =
 this.ActivityCompleted;

 await this.PresentViewControllerAsync(
 this.shareController, true);
 };
}
private void ActivityCompleted(NSString activityType, bool
 completed)
{
 Console.WriteLine("Activity type: {0}", activityType);
 Console.WriteLine("Completion: {0}", completed);
}

Advanced Features

350

3. Compile and run the app on a device. Tap the Share link button, and a screen similar
to the following screenshot will appear:

How it works...
The UIActivityViewController class is responsible for displaying the available sharing
options, depending on the availability of these options on each device.

Chapter 15

351

To initialize an instance of UIActivityViewController, we pass the following
two arguments:

this.shareController = new UIActivityViewController(new NSObject[] {
 link
}, null);

The first parameter is an array of NSObject objects. In this example, we just pass one object
of the NSString type. This object is a URL. The second parameter is an array of UIActivity
objects. In this example, we pass null. The UIActivity class is meant to be subclassed so
we can add our own custom activity "providers" to UIActivityViewController, with our
own icon and functionality.

We then set the callback that will be called when the user completes the action, using the
following code:

this.shareController.CompletionHandler = this.ActivityCompleted;
//..
private void ActivityCompleted(NSString activityType, bool
 completed)
{
 Console.WriteLine("Activity type: {0}", activityType);
 Console.WriteLine("Completion: {0}", completed);
}

Through the callback, we get an NSString representation of the type of activity and a bool
indicating whether the user actually completed (true) or cancelled (false) the activity.
Note that this parameter will be false, whether the user tapped the cancelled button
on UIActivityViewController or actually cancelled the action later through the
corresponding screen (for example, tapping the Cancel button in the mail-composition screen).

After we have set up UIActivityViewController, we present it modally using the
following code:

await this.PresentViewControllerAsync(this.shareController, true);

The controller will be automatically dismissed whether the user has completed the action or
cancelled it.

Advanced Features

352

When we tap one of the available options, the corresponding screen will appear. The following
screenshot shows the Facebook-share screen:

There's more...
We can exclude activities we do not want to display through the ExcludeActivityTypes
property. For example, to remove the mail activity from the options, we set the following array
of NSString objects to the property:

this.shareController.ExcludeActivityTypes = new NSString[] {
 "com.apple.UIKit.activity.Mail" };

Chapter 15

353

Implementing custom transitions
In this recipe, we will create an app that displays a view controller modally but with our own
custom-animated transition.

Getting ready
Create a new Single View Application in Xamarin Studio and name it
CustomTransitionApp. Add another view controller to the project and name it
ModalController. Finally, we will need a button on each of these controllers.

How to do it...
Perform the following steps:

1. Add the following classes to the project:
public class MyTransitionAnimator :
 UIViewControllerAnimatedTransitioning
{
 public bool IsPresenting { get; set; }
 public override double TransitionDuration
 (IUIViewControllerContextTransitioning
 transitionContext) {
 return 1;
 }
 public override void AnimateTransition
 (IUIViewControllerContextTransitioning
 transitionContext) {
 if (this.IsPresenting) {
 UIView containerView =
 transitionContext.ContainerView;
 UIViewController toViewController =
 transitionContext.GetViewControllerForKey(
 UITransitionContext.ToViewControllerKey);
 containerView.AddSubview(toViewController.View);
 RectangleF frame = toViewController.View.Frame;
 toViewController.View.Frame = RectangleF.Empty;
 UIView.Animate(this.TransitionDuration(
 transitionContext),
 () => toViewController.View.Frame = new RectangleF
 (20f, 20f, frame.Width - 40f, frame.Height - 40f),
 () => transitionContext.CompleteTransition (true));
 } else {

Advanced Features

354

 UIViewController fromViewController =
 transitionContext.GetViewControllerForKey(
 UITransitionContext.FromViewControllerKey);
 RectangleF frame = fromViewController.View.Frame;
 frame = RectangleF.Empty;
 UIView.Animate(this.TransitionDuration(
 transitionContext),
 () => fromViewController.View.Frame = frame,
 () => transitionContext.CompleteTransition (true));
 }
 }
}
public class MyTransitionDelegate :
 UIViewControllerTransitioningDelegate
{
 private MyTransitionAnimator animator;
 public override IUIViewControllerAnimatedTransitioning
 PresentingController (UIViewController presented,
 UIViewController presenting, UIViewController source)
 {

 this.animator = new MyTransitionAnimator();
 this.animator.IsPresenting = true;
 return this.animator;
 }
 public override IUIViewControllerAnimatedTransitioning
 GetAnimationControllerForDismissedController
 (UIViewController dismissed) {
 this.animator.IsPresenting = false;
 return this.animator;
 }
}

2. Add the following code in the ViewDidLoad method of
CustomTransitionAppViewController:
this.btnPresent.TouchUpInside += async (sender, e) => {
 ModalController modalController = new ModalController();
 modalController.ModalPresentationStyle =
 UIModalPresentationStyle.Custom;
 modalController.TransitioningDelegate = new
 MyTransitionDelegate();
 await this.PresentViewControllerAsync(modalController,
 true);
};

Chapter 15

355

3. Compile and run the app on the simulator. Tap the button and watch the modal
controller being presented smoothly from the top-left corner. The result should be
similar to the following screenshot:

How it works...
To create our custom transition, we need to create two objects.

The first object is a subclass of UIViewControllerAnimatedTransitioning as shown in
the following line of code:

public class MyTransitionAnimator :
UIViewControllerAnimatedTransitioning

Advanced Features

356

This class contains two methods that we need: TransitionDuration, which specifies the
duration of the animated transition, and AnimateTransition, where the actual animation
takes place.

Inside the AnimateTransition method, we get a
IUIViewControllerContextTransitioning object, which is responsible for the whole
process. The animation will take place on a UIView that the object creates for this purpose.
This UIView object is accessed through the transition context object's ContainerView
property, as shown in the following line of code:

UIView containerView = transitionContext.ContainerView;

Through the transition context object, we can also get the controllers that take part in the
transitioning. To get the target controller, we call the GetViewControllerForKey method,
passing to it UITransitionContext.ToViewControllerKey, using the following code:

UIViewController toViewController =
 transitionContext.GetViewControllerForKey(
 UITransitionContext.ToViewControllerKey);

After we get the objects we need, we add the target controller's view to the transition context's
view and change its frame with the UIView.Animate method. When all animations are
executed, we need to call the CompleteTransition method on the transition context, as
shown in the following code:

containerView.AddSubview(toViewController.View);
//..
UIView.Animate(this.TransitionDuration(transitionContext), () =>
 toViewController.View.Frame = new RectangleF(20f, 20f,
 frame.Width, frame.Height), () =>
 transitionContext.CompleteTransition(true));

The second object is a subclass of UIViewControllerTransitioningDelegate.
The declaration of the class is shown in the following line of code:

public class MyTransitionDelegate :
 UIViewControllerTransitioningDelegate

Inside the MyTransitionDelegate subclass, we override the PresentingController
method and return an instance of MyTransitionAnimator that we created earlier, as
shown in the following code:

this.animator = new MyTransitionAnimator();
this.animator.IsPresenting = true;
return this.animator;

Chapter 15

357

The IsPresenting property of MyTransitionAnimator is used as a flag so the animator
will know if the transition is for presenting a controller or dismissing it. We set it to false
inside the GetAnimationControllerForDismissedController method from which
we return the same MyTransitionAnimator instance, using the following code:

this.animator.IsPresenting = false;
return this.animator;

It is clear that one method will be called when the controller is to be presented and the other
is to be dismissed.

Finally, to enable everything, we set the ModalPresentationStyle
property to UIModalPresentationStyle.Custom, and a new instance of
MyTransitioningDelegate to the TransitioningDelegate property of
the controller that will be presented, using the following code:

modalController.ModalPresentationStyle =
 UIModalPresentationStyle.Custom;
modalController.TransitioningDelegate = new
 MyTransitionDelegate();

There's more...
Custom transitions are not limited to modal controllers. We can use custom transitions for
pushing controllers into the navigation stack of a navigation controller or completely create
our own navigation stack.

Transitioning between child controllers
The UIViewController class contains the Transition method that allows us to transition
from one child controller to another, inside the parent controller.

Child controllers are controllers whose views are part of the hierarchy
of a third controller's view. This controller is the parent controller.

See also
 f The Animating views recipe in Chapter 11, Graphics and Animation

Advanced Features

358

Using physics in UI elements
In this recipe, we will use UIKit Dynamics to add the properties of physics to an image view.
The image view will drop from its initial position to the bottom of the screen, simulating the
effect of an object dropping on the floor.

Getting ready
Create a new Single View Application in Xamarin Studio and name it ViewPhysicsApp. Add
UIImageView and two buttons to the controller. We will also need an image to show in the
image view.

How to do it...
Perform the following steps:

1. Add the following fields in the ViewPhysicsAppViewController class:
private RectangleF imageRect;
private UIDynamicAnimator animator;

2. Add the following code in the ViewDidLoad method:
this.View.InsertSubviewBelow(this.imgView, this.btnReset);
this.imageRect = this.imgView.Frame;
this.imgView.Image = UIImage.FromFile("1.jpg");
this.animator = new UIDynamicAnimator(this.View);

3. Next, in the ViewDidLoad method again, add the following button handlers:
this.btnDrop.TouchUpInside += (sender, e) => {
 UIGravityBehavior gravity = new
 UIGravityBehavior(this.imgView);
 UICollisionBehavior collision = new
 UICollisionBehavior(this.imgView);
 collision.TranslatesReferenceBoundsIntoBoundary = true;
 this.animator.AddBehaviors(gravity, collision);
};
this.btnReset.TouchUpInside += (sender, e) => {
 this.animator.RemoveAllBehaviors();
 this.imgView.Frame = this.imageRect;
};

4. Compile and run the app on the simulator. Tap the Drop! button and watch the image
view drop to the bottom of the screen. Tap the Reset button to reset it back to its
original position. The following screenshot shows the app in its initial state and after
the Drop! button is tapped:

Chapter 15

359

How it works...
UIKit Dynamics offers a variety of objects that allow us to add the properties of physics to
UIKit objects.

The first thing we need to do is to initialize a UIDynamicAnimator object. This class provides
the context in which all the physics animations will take place. We pass the controller's view,
which automatically makes it our 2D "physics world," using the following line of code:

this.animator = new UIDynamicAnimator(this.View);

After we have created the dynamic animator, we need to add some behavior to it. Inside the
btnDrop handler, we first make sure the image view will be affected by gravity by creating a
UIGravityBehavior instance, as shown in the following code:

UIGravityBehavior gravity = new UIGravityBehavior(this.imgView);

Advanced Features

360

If we leave it as it is, the image view will just drop below the bottom boundary of the screen.
So, we also need a collision behavior, which we can add using the following code:

UICollisionBehavior collision = new
 UICollisionBehavior(this.imgView);
collision.TranslatesReferenceBoundsIntoBoundary = true;

Note that the collision also needs a boundary to collide with, or it will have the same effect if
it was not there. In this case, we use the boundary of our animator object, as indicated in the
preceding highlighted code.

Now that we have our behavior set up, we add them to our animator to put everything into
motion, using the following code:

this.animator.AddBehaviors(gravity, collision);

There's more...
We can also modify how the image view will bounce when it hits the ground. Try adding the
following code below the UICollisionBehavior initialization line:

UIDynamicItemBehavior dynBehavior = new
 UIDynamicItemBehavior(this.imgView);
dynBehavior.Density = 1f;
dynBehavior.Elasticity = 0.7f;
dynBehavior.Friction = 1f;

Of course, don't forget to add the new behavior to the animator, as shown in the following
line of code:

this.animator.AddBehaviors(gravity, collision, dynBehavior);

If you run the app and tap the Drop! button, the image will bounce more when it hits the ground!

UIKit Dynamics usage
UIKit Dynamics was designed to provide simple 2D physics to UIView objects or to every
object that implements the Objective-C UIDynamicItem protocol (IUIDynamicItem
interface in C#). It was not designed to develop games with UIView objects. For this purpose,
we have the SpriteKit framework, which is available through the MonoTouch.SpriteKit
namespace. This is outside the scope of this book.

Implementing the text-to-speech feature
In this recipe, we will learn to work with AVSpeechSynthesizer, the class that provides the
Text-To-Speech (TTS) functionality for many different languages.

Chapter 15

361

Getting ready
Create a new Single View Application in Xamarin Studio and name it SpeechApp. Add a
UITextField and a button to the controller.

How to do it…
Perform the following steps:

1. Add the MonoTouch.AVFoundation namespace in the
SpeechAppViewController.cs file, using the following code:
using MonoTouch.AVFoundation;

2. Add the following code in the ViewDidLoad method:
this.txtEntry.ShouldReturn = (textField) =>
 textField.ResignFirstResponder();
this.btnSpeak.TouchUpInside += (sender, e) => {
 AVSpeechSynthesizer synth = new AVSpeechSynthesizer();
 AVSpeechUtterance utterance = new
 AVSpeechUtterance(this.txtEntry.Text);
 utterance.Rate = 0.3f;
 utterance.Voice = AVSpeechSynthesisVoice.
 FromLanguage("en-US");
 synth.SpeakUtterance(utterance);
};

3. Compile and run the app on the simulator. Type some text in English in the text field
and tap the Speak button. Listen while your app speaks!

How it works…
The AVSpeechSynthesizer class was introduced with iOS 7. It provides very simple and
practical TTS functionality.

After initializing an instance of the class, we create an AVSpeechUtterance object, passing
it to the text we want it to process, as shown in the following code:

AVSpeechSynthesizer synth = new AVSpeechSynthesizer();
AVSpeechUtterance utterance = new
 AVSpeechUtterance(this.txtEntry.Text);

We then set the rate of the speech and assign a voice to the utterance, using the
following code:

utterance.Rate = 0.3f;
utterance.Voice = AVSpeechSynthesisVoice.FromLanguage("en-US");

Advanced Features

362

The rate adjusts the speed at which the text will be spoken. You can test various speeds to
suit your needs.

The voice is an instance of AVSpeechSynthesisVoice. To initialize it, we call the
FromLanguage static method, passing the BCP-47 language code. Unfortunately, there is
only one type of voice for each available language, and we have no control over it.

Finally, to start the speech, we call the SpeakUtterance method to the synthesizer, passing
the utterance object to it using the following code:

synth.SpeakUtterance(utterance);

We can call the SpeakUtterance method multiple subsequent times,
passing a different utterance object each time. The speech synthesizer
will queue each utterance and play it in sequence.

There's more...
We can enumerate the available language codes that the speech synthesizer supports by
enumerating the return value of the AVSpeechSynthesisVoice.GetSpeechVoices()
method, as shown in the following code:

foreach (AVSpeechSynthesisVoice eachVoice in
 AVSpeechSynthesisVoice.GetSpeechVoices()) {
 Console.WriteLine(eachVoice.Description);
}

Adjusting the utterance
We can make more adjustments to how the speech will be performed through the following
properties of the AVSpeechUtterance class:

 f PitchMultiplier: This is the pitch of the utterance. It is a float whose values are
in the range of 0.5 and 2.

 f PostUtteranceDelay, PreUtteranceDelay: This is the amount of time to wait
after (post) and/or before (pre) each utterance is spoken, in seconds.

 f Volume: This is the audio volume of the speech. It is in the range of 0.0 (silent) to
1.0 (loudest).

Index
Symbols
4-inch screen launch image 339

A
ABAddressBook class 194
ABPersonViewController 194
accelerometer

using 239-242
using, consideration 242

Actions
about 8
adding, to controls 34, 35

address book
contact information, displaying 209-212
managing 205-208
other controllers 212
phone number, adding 209

ad hoc distribution bundle
creating 335-337
syncing, with iTunes 337

AirDrop 348
ALAssetsLibrary class 174
alerts

displaying 74-78
animatable properties 281
animation

checking 286
app

creating, for different languages 319-322
preparing, for App Store 337, 339
submitting, to App Store 340, 341

Apple developer
URL 9, 330

application states
detecting 306, 307
notification observers, removing 309
notification, receiving 308, 309

App Store
app, preparing for 337-339
app, submitting to 340, 341

audio files
background state 315
playing 183, 184
playing, in background 313, 314

AVAudioPlayer class 174
AVAudioRecorder class 174

B
battery information

retrieving 226, 227
battery monitoring

disabling 227
built-in compass

about 252
availability 255
used, for determining heading 252, 254

buttons
adding, to UI 27
appearance, changing 52
titles, setting 28
user input, receiving with 48-51

C
Caches folder 116
calendar

managing 212-215
reminders, using 216

364

camera
used, for capturing media 177, 178
used, for editing media 179

Certificate Signing Request (CSR) 331
CLGeocoder class 248
CLLocationManager class 248
code

executing, considerations 312
executing, in background 310-312

Compass class 248
contact information

displaying 209-212
content

viewing, with page navigation 70-73
content sharing

integrating, in app 348-352
CoreText framework 297
curves

drawing 290-292
custom gesture recognizer

creating 236-239
using 239

custom transitions
implementing, between child controllers 357
view controller, displaying with 353-357

custom view
creating 78-81

custom view controller
creating 96-98

D
data

displaying, in grid 151-154
displaying, in table 132-135
searching, in table 145-149
updating, in background 315, 317

date
selecting 132

device orientation
detecting 218, 219

DidEnterFullscreenNotification 182
DidExitFullscreenNotification 182
DidReceiveMemoryWarning method 16
Documents folder 115, 116
double-sided pages

creating 348

drawing app
creating 297-300
drawings, clearing 301

DurationAvailableNotification 182

E
Editor area 24
EKEventStore class 194
e-mail messaging

using 202-204
e-mails

sending 196-199
EXchangeable Image File (EXIF) 192

F
files

creating 113-115
FinishedLaunching method 41
Frame property 284

G
geocoding

about 268
availability 269
creating 266-269

Global Positioning System hardware
(GPS hardware)

about 247
accuracy 251
used, for determining location 248-251

grid
customizing 155-158
data, displaying in 151-154

gyroscope
availability, determining 245
radians, converting to degrees 245
using 242-244

H
heading

determining, built-in compass used 252, 254
magnetic heading 254
measurement value 254
true heading 254

365

I
iCloud 121
iCloud key/value storage

about 122-124
notification 125
notification, values 125

iCloud storage 113
iCloud support app

creating 121, 122
IDE 7
image context

background, setting 303
creating 301-303
used, for drawing on UIImageView 303

images
animating 284-286
displaying 53-56
selecting 174-176
using, for different screen sizes 57

index
creating, in table 143-145

Info.plist editor 339
Integrated Development Environment. See

IDE
Interface Builder

about 23, 24
Editor area 24
Navigator area 24
using 11
Utility area 24

iOS project
AppDelegate.cs 18-20
compiling, with Xamarin.iOS 36, 37
creating 13, 14
Info.plist 22
iOS application options, setting 38
iOS build options, setting 38
Main.cs 21
MyFirstiOSProjectViewController.cs 15, 16
MyFirstiOSProjectViewController.designer.cs

17, 18
MyFirstiOSProjectViewController.xib 15

iOS SDK
downloading 8, 9
installing 9

iOS Simulator 8
Xcode 8

iOS Simulator
about 8
using 11

iPad-specific view controllers
about 86
creating 100-103
using 104

iTunes
ad hoc distribution bundle, syncing with 337

iTunes Connect
about 340
URL 340

K
keyboard

using 60-63

L
label

adding, to UI 26
large content

displaying 67-69
layers

about 289
animating 286-289

lines
drawing 290-292

linker
about 38
options 38

lists
creating 128-131

LoadStateDidChangeNotification 182
localizable resource 323-325
localizable.strings

encoding 322
localization

about 319
implementing, in real-world app 322

location
determining, GPS hardware used 248-251

location services
about 248
availability 251, 252

366

region monitoring service 248
restrictions 263
significant-change location service 248
standard location service 248
UI, updating in background 263
usage indicator 252
using, in background 260-262

M
magnetic heading

about 254
versus, true heading 254

magnetometer. See built-in compass
map annotations

adding 270-273
managing 273

map overlays
adding 274-277
custom overlays, creating 277
standard overlay objects 277

maps
displaying 263-266

media
capturing, camera used 177, 178
editing, with camera 179

MFMailComposeViewController 194
MFMessageComposeViewController 193
microphone

used, for recording sounds 185-188
MKAnnotation class 248
MKMapView class 248
MKOverlay class 248
modal view controller

about 94, 95
accessing 95
restrictions 96

MotionBegan method 229
MotionCancelled method 229
MotionEnded method 229
motion events

about 230
handling 228, 229

MPMediaPickerController 173
MPMoviePlayerController

about 173
notifications 182

MPMusicPlayerController 174
multiple view controllers

displaying, in tabs 91, 93
navigation, creating among 88-90

Multipurpose Internet Mail Extensions
(MIME) 205

multitasking 305

N
native iOS APIs

using 165-167
NaturalSizeAvailableNotification 182
navigation

creating, among multiple view
controllers 88-90

navigation bar buttons
managing 91
SetHidesBackButton method 91
SetLeftBarButtonItem method 91
SetRightBarButtonItem method 91

Navigator area 24
NewtonSoft Json

URL 165
NIB file 25
notification

receiving, for application states 308, 309
NowPlayingMovieDidChangeNotification 182
NSUrlConnection class

about 167
using 168

O
Open Meteo Foundation REST API

about 163
URL, for information 163

OpenUrl method
about 196
used, for opening external apps 199

Outlets
about 8
adding, through code 32, 33
UI, accessing with 29-32

367

P
page curl effect

reproducing 344-348
page navigation

content, viewing with 70-73
phone calls

starting 194, 195
photo album

EXIF data, reading 192
individual assets, retrieving 192
managing 189-191
permission, checking 192

physics
adding, UIKit Dynamics used 358-360

prerequisites, Xamarin.iOS app
installing 8
iOS SDK 9
Xamarin Starter Edition 10
Xcode 9

progress
displaying, of known length 64-67
height, setting 67

project template
Empty project 22
Master-detail application 22
OpenGL application 23
Single view application 22
Tabbed application 23
Utility application 22

provisioning profile
creating 329-334
expiration 334

proximity sensor
using 224, 225

R
radian 245
regional formatting 325-327
region monitoring service

about 248
availability 257
using 255, 256

REST services
consuming 163-165

rows
customizing 136-139

S
SDK 7
segue 107
ServiceStack.Text

URL 165
shapes

drawing 293, 294
drawing, with transparent colors 295

significant-change location service
about 248
availability 260
using 258-260

simple web browser
content, scaling 150
creating 149, 150
supported files 150

soft debugger 40
Software Development Kit. See SDK
sounds

playing 185
recording, for specific time 189
recording, with microphone 185-188

SpriteKit framework 360
SQLite

about 113
URL 113

SQLite database
about 113
creating 116-120
table, creating 121

standard location service 248
Stock Keeping Unit (SKU) 342
storyboards

about 105
creating 105-107
data, passing 108
unwinding 109, 110
unwind segue, creating 111

T
table

content, adding 140
data, displaying in 132-135
data, searching 145-149
editing 140-142
editing mode, enabling of rows 142

368

index, creating 143-145
rows, customizing 136-139

tabs
multiple view controllers, displaying in 91, 93

tab selection
determining 93

TestFlight
URL 337

text
displaying 57-59
drawing 295, 296
editing 57-60
size, obtaining 297

text messages
sending 196-199

text messaging
using 199, 201
with attachments 202

Text-To-Speech. See TTS
time

selecting 132
tools

used, for developing Xamarin.iOS app 7, 8
TouchesBegan method 231
TouchesCancelled method 231
TouchesEnded method 231
TouchesMoved method 231
touch events

handling 230-232
tap count, getting 232

touch gestures
recognizing 233-235
recognizing, advantage 235

true heading
about 254
versus, magnetic heading 254

TTS
about 360
implementing 360-362
utterance, adjusting 362

U
UI

about 26, 43
accessing, with Outlets 29-32
buttons, adding 27

creating 26-28
label, adding 26
updating, in background 318

UIAlertView 44
UIAppearance protocol

limitations 83
UIApplicationDelegate class

DidEnterBackground method 307
OnActivated method 307
OnResignActivation method 307
WillEnterForeground method 307

UIButton 44
UICollectionView

about 127
URL, for information 155

UI, components
UIAlertView 44
UIButton 44
UIImageView 44
UILabel 44
UIPageControl 44
UIProgressView 44
UIScrollView 44
UITextField 44
UITextView 44
UIView 44

UIImagePickerController 173
UIImageView

about 44
graphics context 293

UIKit Dynamics
about 343
usage 360
used, for adding physics 358-360

UILabel 44
UINavigationController 86
UINib class 139
UI orientation

about 220
adjusting 220-222
on child view controller 223

UIPageControl
about 44
using 74

UIPickerView
about 127
customization 131

369

UIProgressView 44
UIScrollView

about 44
DecelerationEnded event 70
DecelerationStarted event 70
Scrolled event 70

UISearchBar 127
UISearchDisplayController 127
UITabBarController 86
UITabBarController, properties

SelectedIndex 93
SelectedViewController 93
ViewControllers 93

UITableView 127
UITableViewCell class

Accessory property 139
AccessoryView property 139
ImageView property 139

UITableViewCell styles
creating 136

UITableView styles
creating 136

UITextField 44
UITextView 44
UIView 44
UIViewController class

about 86
ViewDidAppear method 88
ViewDidDisappear method 88
ViewWillAppear method 88
ViewWillDisappear method 88

UIWebView
about 127
LoadError event 150
LoadFinished event 150
LoadStarted event 150

Unique Device Identifier (UDID) 332
unwinding

about 109
implementing 109-111

unwind segue
about 111
creating, in storyboards 111

user input
receiving, with button 48-51

user interface. See UI
Utility area 24

V
videos

picking 176
playing 180, 181
selecting 174-176
wireless streaming 182

view controller
about 85
displaying, with custom transitions 353-357
iPad-specific view controllers 86
iPad-specific view controllers,

creating 100-103
modal view controller 94, 95
UINavigationController 86
UITabBarController 86
UIViewController 86
using 98-100
views, loading with 86, 87

ViewDidLoad method 16
views

adding 44-47
adding, programmatically 47
animating 280, 281
content, layouting 48
loading, with view controller 86, 87
styling 81-83
transforming 282-284

W
WCF services

creating 171
using 168-170

WCF web reference
adding 170

web service
methods, invoking 162
using 159-162

WSDL information 162

X
Xamarin for Visual Studio

URL, for information 8
Xamarin Installer

downloading 8
URL, for downloading 8

370

Xamarin.iOS
iOS project, compiling with 36, 37

Xamarin.iOS app
debugging 39, 40
developing, tools used 7, 8
performance, when debugging 41
prerequisites, installing 8
useful links, for reference 12

Xamarin.iOS assemblies
URL, for documentation 23

Xamarin Starter Edition
downloading 10
installing 10
URL, for downloading 10

Xamarin Studio
Check for Updates feature 12
iOS project, creating 13, 14

Xcode
about 8
downloading 9
installing 9
using 10

XIB file 25
XSP

about 159
terminating 162

Thank you for buying
iOS Development with Xamarin
Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com
author@packtpub.com

Xamarin Mobile Application
Development for iOS
ISBN: 978-1-78355-918-3 Paperback: 222 pages

If you know C# and have an iOS device, learn to use one
language for multiple devices with Xamarin

1. A clear and concise look at how to create your own
apps building on what you already know of C#.

2. Create advanced and elegant apps by yourself.

3. Ensure that the majority of your code can also be
used with Android and Windows Mobile 8 devices.

Xamarin Mobile Application
Development for Android
ISBN: 978-1-78355-916-9 Paperback: 168 pages

Learn to develop full featured Android apps using your
existing C# skills with Xamarin.Android

1. Gain an understanding of both the Android and
Xamarin platforms.

2. Build a working multi-view Android app
incrementally throughout the book.

3. Work with device capabilities such as location
sensors and the camera.

Please check www.PacktPub.com for information on our titles

iOS Development using
MonoTouch Cookbook
ISBN: 978-1-84969-146-8 Paperback: 384 pages

109 simple but incredibly effective recipes for
developing and deploying applications for iOS using
C# and .NET

1. Detailed examples covering every aspect of iOS
development using MonoTouch and C#/.NET.

2. Create fully working MonoTouch projects using
step-by-step instructions.

3. Recipes for creating iOS applications meeting
Apple's guidelines.

iOS 7 Game Development
ISBN: 978-1-78355-157-6 Paperback: 120 pages

Develop powerful, engaging games with ready-to-use
utilities from Sprite Kit

1. Pen your own endless runner game using Apple's
new Sprite Kit framework.

2. Enhance your user experience with easy-to-use
animations and particle effects using Xcode 5.

3. Utilize particle systems and create custom
particle effects.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Development Tools
	Introduction
	Installing prerequisites
	Creating an iOS project with Xamarin Studio
	Interface Builder
	Creating the UI
	Accessing the UI with Outlets
	Adding Actions to controls
	Compiling an iOS project
	Debugging our application

	Chapter 2: User Interface – Views
	Introduction
	Adding and customizing views
	Receiving user input with buttons
	Displaying images
	Displaying and editing text
	Using the keyboard
	Displaying progress
	Displaying content larger than the screen
	Navigating through the content divided
into pages
	Displaying alerts
	Creating a custom view
	Styling views

	Chapter 3: User Interface – View Controllers
	Introduction
	Loading a view with a view controller
	Navigating through different view controllers
	Providing controllers in tabs
	Modal view controllers
	Creating a custom view controller
	Using view controllers efficiently
	iPad view controllers
	UI flow design with storyboards
	Unwinding in storyboards

	Chapter 4: Data Management
	Introduction
	Creating files
	Using an SQLite database
	Preparing for iCloud support
	iCloud key/value storage

	Chapter 5: Displaying Data
	Introduction
	Providing lists
	Displaying data in a table
	Customizing rows
	Editing a table
	Table indexing
	Searching through the data
	Creating a simple web browser
	Displaying data in a grid
	Customizing the grid

	Chapter 6: Web Services
	Introduction
	Consuming web services
	Consuming REST services
	Communicating with native APIs
	Using WCF services

	Chapter 7: Multimedia Resources
	Introduction
	Selecting images and videos
	Capturing media with the camera
	Playing videos
	Playing music and sounds
	Recording with the microphone
	Managing album items directly

	Chapter 8: Integrating iOS Features
	Introduction
	Starting phone calls
	Sending text messages and e-mails
	Using text messaging in our application
	Using e-mail messaging in our application
	Managing the address book
	Displaying contacts
	Managing the calendar

	Chapter 9: Interacting with Device Hardware
	Introduction
	Detecting the device orientation
	Adjusting the UI orientation
	Proximity sensor
	Retrieving the battery information
	Handling motion events
	Handling touch events
	Recognizing gestures
	Custom gestures
	Using the accelerometer
	Using the gyroscope

	Chapter 10: Location Services
and Maps
	Introduction
	Determining location
	Determining heading
	Using region monitoring
	Using a significant-change location service
	Location services in the background
	Displaying maps
	Geocoding
	Adding map annotations
	Adding map overlays

	Chapter 11: Graphics and Animation
	Introduction
	Animating views
	Transforming views
	Animating images
	Animating layers
	Drawing lines and curves
	Drawing shapes
	Drawing text
	A simple drawing app
	Creating an image context

	Chapter 12: Multitasking
	Introduction
	Detecting application states
	Receiving notifications for app states
	Running code in the background
	Playing audio in the background
	Updating data in the background

	Chapter 13: Localization
	Introduction
	Creating an app for different languages
	Localizable resources
	Regional formatting

	Chapter 14: Deploying
	Introduction
	Creating profiles
	Creating an ad hoc distribution bundle
	Preparing an app for the App Store
	Submitting an app to the App Store

	Chapter 15: Advanced Features
	Introduction
	Reproducing the page curl effect
	Integrating content sharing
	Implementing custom transitions
	Using physics in UI elements
	Implementing the text-to-speech feature

	Index

