
Neal Goldstein
Tony Bove
Authors of iPhone Application Development
All-In-One For Dummies

Learn to:
• Download the SDK and start using Apple’s

developer tools

• Incorporate the latest iPad and iOS
features into your app designs

• Take advantage of iPad’s full functionality
to create a good user experience

• Print from your application using
AirPrint

iPad
™

Application Development

2nd Edition
Making Everything Easier!™

 Open the book and find:

• What makes a killer iPad app

• Secrets for creating a super user
experience

• How to market and spread the
word about your app

• Rules you must follow to avoid
App Store rejection

• Tips for working with the SDK

• What design patterns are and how
to use them

• Advice on testing and debugging
your app

• How to maximize the iPad’s
unique features

Neal Goldstein is a master at making cutting-edge technology practical.

He was an early pioneer of object-oriented programming and enjoys

rock-star status among mobile developers. Tony Bove has written more

than two dozen books, including all editions of iPod touch For Dummies

and iPod & iTunes For Dummies.

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-92050-3

Macintosh/Programming

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Turn your incredible ideas into
impressive iPad apps with help
from this informative guide!
Ready to join the iPad developer ranks? Now you can — even
if you’ve never developed an app for a mobile device. If you
know just a bit about object-oriented programming, Neal
and Tony will help you do the rest, walking you through
the iPad app development process in language you can
understand. All you’ll need is an Intel-based Mac, your iPad,
your imagination, and this book to get started today!

• Plan your app — understand what makes a great iPad app
and how to create a terrific user experience

• Handle the administrative stuff — download the SDK, register
as a developer, and follow all the rules for submitting your app
to the App Store

• Explore app anatomy — get acquainted with the frameworks
that structure an app and the app lifecycle

• Build on that framework — put together a sample app using
Interface Builder and get comfortable with the tools

• Get serious — learn to build an app with major functionality
and take full advantage of the iPad’s capabilities

Visit the companion Web site at

www.dummies.com/go/ipadappdevfd2e

to download all source code used in the book

iPad
™

 A
p

p
lication D

evelop
m

ent

Goldstein
Bove

2nd Edition

1.1040

www.allitebooks.com

http://www.allitebooks.org

1.1040

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/ipadapplicationdevelopment Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

www.allitebooks.com

http://www.allitebooks.org

iPad™

Application Development

FOR

DUMmIES
‰

2ND EDITION

01_9780470920503-ffirs.indd i01_9780470920503-ffirs.indd i 12/24/10 12:31 AM12/24/10 12:31 AM

www.allitebooks.com

http://www.allitebooks.org

01_9780470920503-ffirs.indd ii01_9780470920503-ffirs.indd ii 12/24/10 12:31 AM12/24/10 12:31 AM

www.allitebooks.com

http://www.allitebooks.org

by Neal Goldstein and Tony Bove

iPad™

Application Development

FOR

DUMmIES
‰

2ND EDITION

01_9780470920503-ffirs.indd iii01_9780470920503-ffirs.indd iii 12/24/10 12:31 AM12/24/10 12:31 AM

www.allitebooks.com

http://www.allitebooks.org

iPad™ Application Development For Dummies®, 2nd Edition

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affi liates in the United States and other countries, and may not be used without written permission.
iPad is a registered trademark of Apple, Inc. All other trademarks are the property of their respective
owners. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2010943059

ISBN: 978-0-470-92050-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_9780470920503-ffirs.indd iv01_9780470920503-ffirs.indd iv 12/24/10 12:31 AM12/24/10 12:31 AM

www.allitebooks.com

http://www.allitebooks.org

About the Authors
Neal Goldstein is a recognized leader in making state-of-the-art and cutting-edge
technologies practical for commercial and enterprise development. He was one
of the fi rst technologists to work with commercial developers at fi rms such as
Apple Computer, Lucasfi lm, and Microsoft to develop commercial applications
using object-based programming technologies. He was a pioneer in moving that
approach into the corporate world for developers at Liberty Mutual Insurance,
USWest (now Verizon), National Car Rental, EDS, and Continental Airlines,
showing them how object-oriented programming could solve enterprise-
wide problems. His book (with Jeff Alger) on object-oriented development,
Developing Object-Oriented Software for the Macintosh (Addison Wesley, 1992),
introduced the idea of scenarios and patterns to developers. He was an early
advocate of the Microsoft .NET framework, and he successfully introduced it
into many enterprises, including Charles Schwab. He was one of the earliest
developers of Service Oriented Architecture (SOA), and as Senior Vice President
of Advanced Technology and the Chief Architect at Charles Schwab, he built
an integrated SOA solution that spanned the enterprise, from desktop PCs to
servers to complex network mainframes. (He holds three patents as a result.)
As one of IBM’s largest customers, he introduced the folks at IBM to SOA at the
enterprise level and encouraged them to head in that direction.

He is passionate about the real value mobile devices can provide and has eight
applications in the App Store. These include a series of Travel Photo Guides
(http://travelphotoguides.com) developed with his partners at mobile-
fortytwo and a Digital Field Guides series developed in partnership with John
Wiley & Sons (http://lp.wileypub.com/DestinationDFGiPhoneApp).

Along with those apps, he has written several books on iPhone programming,
including all three editions of iPhone Application Development For Dummies
(Wiley) and Objective-C For Dummies (Wiley).

Because you can never tell what he’ll be up to next, check regularly at his
Web site, www.nealgoldstein.com.

Tony Bove is crazy about the iPad, iPod, and iPhone, and he not only provides
free tips on his Web site (www.tonybove.com), but also developed an iPhone
application (Tony’s Tips for iPhone Users) and is working on several iPad apps.
Tony has written more than two dozen books on computing, desktop pub-
lishing, and multimedia, including his own iPod & iTunes For Dummies, iPod
touch For Dummies, and iLife For Dummies, as well as iPhone Application
Development All-in-One For Dummies with Neal; he also wrote Just Say No to
Microsoft (No Starch Press) in 2005; The Art of Desktop Publishing (Bantam)
in 1986; and a series of books about Macromedia Director, Adobe Illustrator,
and PageMaker from 1986–1997. Tony produced a CD-ROM interactive docu-
mentary in 1996, Haight-Ashbury in the Sixties, and developed the Rockument
music site, www.rockument.com, with commentary and podcasts focused on
rock music history. Tony has also worked as a director of marketing for lead-
ing-edge software companies and as a marketing messaging consultant.

01_9780470920503-ffirs.indd v01_9780470920503-ffirs.indd v 12/24/10 12:31 AM12/24/10 12:31 AM

www.allitebooks.com

http://www.allitebooks.org

01_9780470920503-ffirs.indd vi01_9780470920503-ffirs.indd vi 12/24/10 12:31 AM12/24/10 12:31 AM

www.allitebooks.com

http://www.allitebooks.org

Dedication
Neal Goldstein: To my children, Sarah and Evan, and all of my personal and
artist friends who have kept me centered on the (real) world outside of writ-
ing and technology. But most of all to my wife Linda who is everything that
I ever hoped for and more than I deserve. Yes Sam . . . the light at the end of
the tunnel is not a freight train.

Tony Bove: Tony dedicates this book to his mother, his brothers, and his
sons, nieces, nephews, their cousins, and all their children . . . the iPad
generation.

Authors’ Acknowledgments
Neal Goldstein: Thanks to my business partners Jeff Enderwick and Jeff Elias
in mobilefortytwo and for their support and picking up the slack while I was
engaged in fi nishing this book. Maggie Canon for putting Tony and I together.
Carole Jelen, for her continued work and support in putting this project
together.

Acquisitions Editor Kyle Looper for keeping us on track and doing what-
ever he needed to do to allow us to stay focused on the writing. The Project
Editor’s Project Editor Paul Levesque who has been known to do even more
than six impossible things before breakfast. Copy Editor Virginia Sanders did
another great job in helping us make things clearer. Technical reviewer Jesse
Fuller added a great second pair of eyes.

Tony Bove: Tony owes thanks and a happy hour or two to Carole Jelen at
Waterside for agenting, to Maggie Canon for putting the authors together,
and to Kathy Pennington for support.

01_9780470920503-ffirs.indd vii01_9780470920503-ffirs.indd vii 12/24/10 12:31 AM12/24/10 12:31 AM

www.allitebooks.com

http://www.allitebooks.org

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com. For
other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and

Media Development

Senior Project Editor: Paul Levesque

Acquisitions Editor: Kyle Looper

Copy Editor: Virginia Sanders

Technical Editor: Jesse Feiler

Editorial Manager: Leah Cameron

Media Development Project Manager:
Laura Moss-Hollister

Media Development Assistant Project

Manager: Jenny Swisher

Media Development Associate Producers:
Josh Frank, Marilyn Hummel,
Douglas Kuhn, and Shawn Patrick

Editorial Assistant: Amanda Graham

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Patrick Redmond

Layout and Graphics: Carl Byers,
Lavonne Roberts

Proofreaders: Laura Bowman, Lindsay Littrell

Indexer: BIM Indexing & Proofreading Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Debbie Stailey, Director of Composition Services

01_9780470920503-ffirs.indd viii01_9780470920503-ffirs.indd viii 12/24/10 12:31 AM12/24/10 12:31 AM

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance
Introduction .. 1

Part I: Planning the Killer App 7
Chapter 1: What Makes a Killer iPad App ... 9
Chapter 2: Creating a Compelling User Experience .. 29
Chapter 3: The App Store Is Not Enough .. 45

Part II: Becoming a Real Developer 63
Chapter 4: Enlisting in the Developer Corps .. 65
Chapter 5: Getting to Know the SDK ... 81
Chapter 6: Death, Taxes, and iPad Provisioning .. 105

Part III: Understanding How Apps Work 137
Chapter 7: Looking Behind the Screen .. 139
Chapter 8: Understanding How an App Runs ... 157

Part IV: Building DeepThoughts 179
Chapter 9: Building the User Interface .. 181
Chapter 10: Animating the View .. 197
Chapter 11: Adding User Settings and Gestures .. 225
Chapter 12: Getting the Bugs Out .. 263

Part V: Building an Industrial-Strength Application ... 283
Chapter 13: Designing Your Application ... 285
Chapter 14: Working with Split View Controllers and the Master View 307
Chapter 15: Finding Your Way ... 349
Chapter 16: Adding the Stuff .. 405
Chapter 17: Printing from Your iPad App ... 439
Chapter 18: Providing Content in the Master View ... 451
Chapter 19: Enhancing the User Experience .. 473

Part VI: The Part of Tens .. 499
Chapter 20: Ten Tips on iPad App Design .. 501
Chapter 21: Ten Ways to Be a Happy Developer ... 509

Index .. 513

02_9780470920503-ftoc.indd ix02_9780470920503-ftoc.indd ix 12/24/10 12:31 AM12/24/10 12:31 AM

02_9780470920503-ftoc.indd x02_9780470920503-ftoc.indd x 12/24/10 12:31 AM12/24/10 12:31 AM

Table of Contents
Introduction ... 1

About This Book .. 2
Conventions Used in This Book ... 3
Foolish Assumptions ... 4
How This Book Is Organized .. 4

Part I: Planning the Killer App .. 4
Part II: Becoming a Real Developer ... 4
Part III: Understanding How Apps Work ... 5
Part IV: Building DeepThoughts ... 5
Part V: Building an Industrial-Strength Application 5
Part VI: The Part of Tens ... 6

Icons Used in This Book ... 6
Where to Go from Here ... 6

Part I: Planning the Killer App 7

Chapter 1: What Makes a Killer iPad App .9

Figuring Out What Makes a Great iPad Application 10
Providing an immersive experience .. 11
Making content relevant ... 12
Designing for the touch-display experience 13

Exploiting the Platform ... 14
Exploiting advantages of the system ... 14
Accessing the Internet... 16
Knowing the location of the user ... 16
Tracking orientation and motion ... 16
Tracking user’s fi ngers on the screen ... 17
Playing content .. 17
Accessing information from Apple’s apps .. 17
Copying, cutting, and pasting between apps 18
Multitasking, background processing, and notifi cations 18
Living large on the big screen .. 19

Embracing the iPad’s Limitations .. 20
Designing for fi ngers .. 20
Balancing memory and battery life ... 21

Why Develop iPad Applications? ... 21
Developing with Apple’s Expectations in Mind ... 23
An Overview of the Development Cycle ... 24
The Sample Applications .. 25
What’s Next .. 27

02_9780470920503-ftoc.indd xi02_9780470920503-ftoc.indd xi 12/24/10 12:31 AM12/24/10 12:31 AM

iPad Application Development For Dummies, 2nd Edition xii
Chapter 2: Creating a Compelling User Experience 29

Deep Thoughts on the User Experience ... 30
Creating Compelling Content ... 32

Focusing on the task at hand ... 33
Maintaining consistency with the user’s world 33
Modeling apps on real-world metaphors .. 34
Engaging the user... 35
Making it obvious ... 35
Using stunning graphics with aesthetic integrity 37

Designing the User Experience .. 37
Understanding the real-world context .. 38
Doing it better on the iPad.. 39

Playing to the iPad’s Strengths .. 40
Sensing multifi nger gestures .. 40
Tracking orientation and motion ... 41
Displaying stunning graphics and images .. 41
Playing and recording content ... 42
Knowing the location of the device ... 42
Accessing the Internet... 42

Avoiding Practices that Get Apps Rejected ... 43

Chapter 3: The App Store Is Not Enough .45

Why People Buy Apps from the App Store .. 46
Finding out how to reach your potential customers 47
Marketing 101: Pricing your app .. 49
Publishing free and paid versions ... 50

Knowing Your Customers ... 51
Tracking downloads .. 52
Adding analytical code to your app .. 54

Deploying the In App Purchase Feature ... 55
Putting iAds in Your App .. 57
Links Are Not Enough ... 58

Using iTunes affi liate links .. 58
Making use of user reviews .. 59
Going social .. 59
Buying advertising ... 60
Getting publicity .. 62

Part II: Becoming a Real Developer 63

Chapter 4: Enlisting in the Developer Corps .65

Becoming a Registered Developer .. 66
Joining the Developer Program ... 70
Exploring the Dev Center .. 74

Looking forward to using the SDK ... 75
Resources in the Dev Center .. 76

02_9780470920503-ftoc.indd xii02_9780470920503-ftoc.indd xii 12/24/10 12:31 AM12/24/10 12:31 AM

xiii Table of Contents

Downloading the SDK .. 78
Getting Yourself Ready for the SDK .. 78

Chapter 5: Getting to Know the SDK .81

Developing Using the SDK .. 81
Starting an app from scratch .. 82
Starting from an existing iPhone app .. 82

Creating Your Xcode Project ... 83
Exploring Your Project ... 86
Building and Running Your Application ... 91
The Simulator ... 93

Hardware interaction .. 93
Gestures .. 94
Uninstalling apps and resetting your device 95
Limitations .. 96

Customizing Xcode to Your Liking .. 97
Using Interface Builder ... 99
It’s Time to Get Real .. 102

Chapter 6: Death, Taxes, and iPad Provisioning 105

How the Process Works .. 106
The distribution process .. 106
The development process .. 107

Organizing Your Account in the Member Center 109
Obtaining a Development Certifi cate .. 110
Provisioning Your iPad for Development ... 114

Using Xcode to create a provisioning profi le 115
Getting an assist from the Development

Provisioning Assistant ... 116
Provisioning Your Application for the App Store or

Ad Hoc Distribution ... 120
Building Your App for Distribution ... 123
Using iTunes Connect to Manage Apps in the App Store 125

Managing Users .. 127
Adding contract, tax, and banking information 127
Adding the metadata and artwork ... 128
Uploading your app and its data.. 132

Avoiding the App Store Rejection Slip .. 133
Now What? .. 135

Part III: Understanding How Apps Work 137

Chapter 7: Looking Behind the Screen. .139

Using Frameworks ... 139
Using Design Patterns ... 141

The Model-View-Controller (MVC) pattern 142
The MVC in action ... 143

02_9780470920503-ftoc.indd xiii02_9780470920503-ftoc.indd xiii 12/24/10 12:31 AM12/24/10 12:31 AM

iPad Application Development For Dummies, 2nd Edition xiv
Working with Windows and Views .. 144

Looking out the window.. 144
Admiring the view .. 145
The kinds of views you use... 147

Controlling View Controllers ... 149
What about the Model? ... 150
Adding Your Own Application’s Behavior ... 151

The Delegation pattern ... 152
The Block Object pattern .. 153
The Target-Action pattern .. 154

Doing What When? .. 155

Chapter 8: Understanding How an App Runs .157

App Anatomy 101 — The Lifecycle ... 158
It all starts with the main nib fi le ... 161
Initialization .. 166
Event processing .. 169
Responding to interruptions .. 170
Termination .. 173

The Managed Memory Model Design Pattern .. 174
Observing low-memory warnings .. 174
Avoiding the warnings... 176

Whew! .. 177

Part IV: Building DeepThoughts 179

Chapter 9: Building the User Interface. .181

Running the View-Based Application Template 182
Inspecting the View ... 182
Understanding How the View is Initialized .. 184
Adding an Image to the View ... 186
Adding an Info Button ... 190
Adding an Application Icon .. 194

Chapter 10: Animating the View .197

Using the Xcode Text Editor .. 198
Accessing Documentation .. 198

Quick Help .. 199
The header fi le for a symbol ... 200
Documentation window .. 200
Help menu ... 201
Find .. 202

02_9780470920503-ftoc.indd xiv02_9780470920503-ftoc.indd xiv 12/24/10 12:31 AM12/24/10 12:31 AM

xv Table of Contents

Figuring Out Where Your Code Goes .. 204
The delegate object ... 204
The view controller object ... 204
Marking code sections in the view controller 206

Preparing for User Settings .. 208
Editing the view controller header .. 208
Adding a Constants.h fi le .. 210

Controlling the View .. 213
The viewDidLoad method ... 217
Drawing the view ... 219
The animation block .. 221
Freeing up memory .. 221

Testing the View .. 222

Chapter 11: Adding User Settings and Gestures.225

Setting Up User Preference Settings ... 226
Identifying preference settings for NSUserDefaults 228
Reading preferences into the app .. 228

Setting Up a Modal View Controller .. 229
Adding a new view controller... 230
Adding outlets to the view controller ... 232
Using delegation ... 234
Adding methods for the interface objects 235
Initializing and setting the modal view style 240
Saving the preference settings ... 242

Connecting the Interface Objects in Interface Builder 243
Adding the Done button .. 243
Adding the slider and text fi eld .. 246
Connecting the Info button ... 252
Testing the new modal view ... 254

Adding Tap and Swipe Recognizers .. 255
A Lot Accomplished Very Quickly ... 260

Chapter 12: Getting the Bugs Out. .263

Understanding Bugs .. 264
Using the Debugger ... 268
Debugging in the Text Editor ... 269

Setting breakpoints .. 270
Using the Debugger strip .. 271

Using the Debugger Window .. 274
Showing datatips for variables and objects 276
Using the Mini Debugger ... 277

Using the Console Application ... 278
Using the Static Analyzer .. 279

02_9780470920503-ftoc.indd xv02_9780470920503-ftoc.indd xv 12/24/10 12:31 AM12/24/10 12:31 AM

iPad Application Development For Dummies, 2nd Edition xvi
Part V: Building an Industrial-Strength Application 283

Chapter 13: Designing Your Application .285

Defi ning the Problems ... 285
Categorizing the problems and defi ning the solutions 287
The Great Application Cycle of Life ... 289

Designing the User Experience .. 289
Leveraging the iPad’s strengths ... 290
What you have to work with .. 292
Device constraints ... 294
Coming up with a fi nal design .. 296

Creating the Program Architecture ... 299
Views ... 300
View controllers ... 304
Models ... 304
Stored data mode, saving state, and localization 306

Writing the Code .. 306

Chapter 14: Working with Split View Controllers
and the Master View .307

The Split View Controller ... 308
Popovers ... 314
Working with Table Views .. 316

Creating the Table view .. 318
Creating and formatting a grouped Table view 319
Making UITableViewController work for you 321

Creating the Row Model ... 331
Seeing How Table-View Cells Work ... 336
Creating the Cell .. 337
The Destination Model .. 343
Expanding the Architecture to a “Real” App .. 348

Chapter 15: Finding Your Way .349

Putting Content First ... 349
Adding the Map Controller ... 351

Implementing the MapController .. 352
Cleaning up the DetailViewController ... 355
Adding the framework ... 358
Setting up the nib fi le... 359
Creating the MapController .. 362
Managing the views ... 365

Putting MapKit through Its Paces .. 369
MKMapView .. 370
Enhancing the map .. 371

Adding Annotations ... 378
Going to the Current Location ... 387

02_9780470920503-ftoc.indd xvi02_9780470920503-ftoc.indd xvi 12/24/10 12:31 AM12/24/10 12:31 AM

xvii Table of Contents

Displaying Multiple Annotations ... 390
Geocoding ... 394
But What If I Don’t Want to Go to London? .. 400

Chapter 16: Adding the Stuff .405

Responding to a Selection .. 405
Putting the Map in the Selection Mechanism .. 408
How’s the Weather Over There? .. 412

Adding the controller and nib fi le .. 412
Setting up the nib fi le... 414

Loading the Web View .. 417
Cruising the Web ... 420
Responding to a Selection .. 423

Computing the view and toolbar sizes .. 426
Setting up the toolbar.. 427
Managing the popover .. 430

The Currency Implementation Model ... 431
Adding the content .. 432
Loading the Currency view ... 433
Launching the CurrencyController .. 434

Adding the City .. 434
Loading the City view .. 435
Launching the CityController ... 437

A Checkpoint .. 437

Chapter 17: Printing from Your iPad App .439

Printing on the iPad ... 439
Adding the Print button .. 440
The print methods ... 443

The UIPrintInteractionController .. 444
The Printer Simulator ... 449
There’s Much More to Printing .. 450

Chapter 18: Providing Content in the Master View 451

The Airport Controller .. 451
Adding the Airport controller and nib fi le 452
Setting up the view .. 455
Responding to the user selection in the choice bar 460

The Destination Model .. 460
Building the Airport .. 461

Making methods “private” .. 464
Selecting the airport .. 465

Navigating the Navigation Controller ... 469
The navigation bar back button ... 470
The other Back button .. 470

Getting Rid of a Pesky Compiler Warning .. 472

02_9780470920503-ftoc.indd xvii02_9780470920503-ftoc.indd xvii 12/24/10 12:31 AM12/24/10 12:31 AM

iPad Application Development For Dummies, 2nd Edition xviii
Chapter 19: Enhancing the User Experience. .473

Saving and Restoring State ... 473
Saving state information ... 474
Restoring the state... 477

Respecting User Preferences ... 479
Adding a Settings bundle to your project 480
Setting up the property list .. 481

Reading Settings in the Application .. 484
Airport and City in Stored Data Mode .. 491

Managing real time and cached data... 492
There ain’t no Web cruising in stored data mode 494

Adding Stored Data Mode to City .. 497
Finally .. 498

Part VI: The Part of Tens ... 499

Chapter 20: Ten Tips on iPad App Design .501

Making an App Icon for the Masses .. 501
Launching Your App Into View .. 502
Stopping Your App on a Dime .. 503
Saving Grace with Your App’s Data .. 503
Supporting All Display Orientations ... 504
Flattening Information Levels .. 504
Popping Up All Over .. 505
Minimizing Modality to Maximize Simplicity ... 506
Turning the Map into the Territory ... 507
Making Smaller Transitions (Don’t Flip the View) 507

Chapter 21: Ten Ways to Be a Happy Developer 509

It’s Never Too Early to Start Speaking a Foreign Language 509
Remember Memory ... 510
Constantly Use Constants .. 510
Don’t Fall Off the Cutting Edge ... 510
Start by Initializing the Right Way ... 510
Keep the Order Straight .. 511
Avoid Mistakes in Error Handling ... 511
Remember the User ... 512
Keep in Mind that the Software Isn’t Finished

Until the Last User Is Dead ... 512
Keep It Fun .. 512

Index ... 513

02_9780470920503-ftoc.indd xviii02_9780470920503-ftoc.indd xviii 12/24/10 12:31 AM12/24/10 12:31 AM

www.allitebooks.com

http://www.allitebooks.org

Introduction

The world stood on its toes as Steve Jobs announced the iPad in January
2010 as “our most advanced technology in a magical and revolutionary

device at an unbelievable price.”

Do you believe in magic? The iPad has that magical quality of disappearing
into your hands as you explore content with it. You have to hold one and use
it to understand that feeling of the hardware disappearing — you have the
software application itself in your hands, with no extraneous buttons and
controls in the way of your experience with the content. And yes, the iPad is
groovy — it’s based on the iPod and iPhone.

But the iPad is more than groovy: It’s a game changer for the Internet as a
publishing medium, for the software industry with regard to applications,
and for the mobile device industry with regard to the overall digital media
experience. The form factor, portability, swift performance, and software
experience change the game with all devices that access the Internet. And
we’re tickled pink to be writing about developing software for it at this early
stage of its evolution, because we know the iPad will in fact revolutionize por-
table computing and Internet access.

Due to the success of the iPhone and iPod touch, the App Store has grown
to become the repository of over 300,000 applications as of this writing,
which collectively are driving innovation beyond the reach of other mobile
devices — and all these apps already run on the iPad, along with about
30,000 iPad-specific apps. Opportunities are wide open for inventions that
build on all the strengths of iPhone apps but that take advantage of the iPad’s
larger display.

As we continue to explore the iPad as a new platform, we keep finding more
possibilities for applications that never existed before. The iPad is truly a
mobile computer with a decent display. Its hardware and software make
it possible to wander the world, or your own neighborhood, and stay con-
nected to whomever and whatever you want to. It gives rise to a new class
of here-and-now applications that enable you to access content-rich services
and view information about what is going on around you, and to interact with
those services or with others on the Internet.

One of the hallmarks of a great iPad application is that it leverages the iPad’s
unique hardware and operating system (iOS). The Software Development

03_9780470920503-intro.indd 103_9780470920503-intro.indd 1 12/24/10 12:31 AM12/24/10 12:31 AM

2 iPad Application Development For Dummies, 2nd Edition

Kit (SDK), which you use to develop iPad applications, helps you develop
apps for iOS 4.2, which offers many new features, including multitasking and
Apple’s iAds program for displaying ads within apps. The SDK also includes
tools such as MapKit, which makes it much easier to use the location-
based features of the iPad in an application. MapKit makes it possible for
even a beginning developer to take full advantage of knowing the location
of the device, and we’ve included the code for an example app (called
iPadTravel411) to show you how. And the frameworks supplied in the SDK
are especially rich and mature. All you really have to do is add your applica-
tion’s user interface and functionality to the framework, and then “poof” . . .
you have an instant application.

If this seems too good to be true, well, okay, it is, sort of. What’s really hard,
after you’ve learned the language and framework, is creating a structure
for the iPad application’s data and building models for the logic of how the
application should work. Although there are lots of resources, the problem is
exactly that: There are lots of resources — as in thousands of pages of docu-
mentation! You may get through a small fraction of the documentation before
you just can’t take it anymore and plunge right into coding. Naturally enough,
there will be a few false starts and blind alleys until you find your way, but we
predict that after reading this book, it will be (pretty much) smooth sailing.

Editor’s note: Both authors (Tony and Neal) have previously published applica-
tions for the iPhone — you can find several of Neal’s apps, including ReturnMeTo,
in the App Store, along with Tony’s app, Tony’s Tips for iPhone Users.

About This Book
iPad Application Development For Dummies is a beginner’s guide to develop-
ing applications for the iPad, which runs iOS. And not only do you not need
any iPad (or iPhone) development experience to get started, you don’t need
any Macintosh development experience either. We expect you to come as
a blank slate, ready to be filled with useful information and new ways to do
things.

Because of the nature of the iPad, you can create content-rich, truly immer-
sive applications that can be really powerful (as well as amazing to look at).
And because you can also start small and create real applications that do
something important for a user, it’s relatively easy to transform yourself from
“I know nothing” into a developer who, though not (yet) a superstar, can still
crank out quite a respectable application.

The iPad can be home to some pretty fancy software as well — so we’ll take
you on a journey through building not just a simple app but also an industrial-
strength app, so that you know the ropes for developing your own app.

03_9780470920503-intro.indd 203_9780470920503-intro.indd 2 12/24/10 12:31 AM12/24/10 12:31 AM

3 Introduction

This book distills the hundreds (or even thousands) of pages of Apple docu-
mentation, not to mention our own development experiences, into only
what’s necessary to start you developing real applications. But this is no
recipe book that leaves it up to you to put it all together; rather, this book
takes you through the frameworks and iPad architecture in a way that gives
you a solid foundation in how applications really work on the iPad — and
acts as a roadmap to expand your knowledge as needed.

It’s a multiple-course banquet, intended to make you feel satisfied (and really
full) at the end.

Conventions Used in This Book
This book guides you through the process of building iPad applications.
Throughout, you use the provided iOS framework classes for the iPad (and
create new ones, of course) and code them using the Objective-C program-
ming language.

Code examples in this book appear in a monospaced font so they stand out a
bit better. That means the code you’ll see will look like this:

#import <UIKit/ UIKit.h>

Objective-C is based on C, which (we want to remind you) is case-sensitive,
so please enter the code that appears in this book exactly as it appears in the
text. This book also uses the standard Objective-C naming conventions —
for example, class names always start with a capital letter, and the names of
methods and instance variables always start with a lowercase letter.

All URLs in this book appear in a monospaced font as well:

www.nealgoldstein.com
www.tonybove.com

You’ll notice — starting around Chapter 14 — that I’ll be asking you to delete
some of the code you have in place for your project in order to make room
for some new stuff. When that happens, I’ll be referring to code I want you
delete as BUI (bold, underlined, italic) code, because said code will show up
as bold, underlined and italic. Simple enough.

If you’re ever uncertain about anything in the code, you can always look at the
source code on Neal’s Web site at www.nealgoldstein.com. From time to
time, he provides updates for the code there and posts other things you might
find useful. Tony offers tips about everything from developing apps and market-
ing them to using the iPad, iPod, iPhone, and iTunes at www.tonybove.com.

03_9780470920503-intro.indd 303_9780470920503-intro.indd 3 12/24/10 12:31 AM12/24/10 12:31 AM

4 iPad Application Development For Dummies, 2nd Edition

Foolish Assumptions
To begin programming your iPad applications, you need an Intel-based
Macintosh computer with the latest version of the Mac OS on it. (No, you
can’t program iPad applications on the iPad.) You also need to download the
Software Development Kit (SDK) — which is free — but you have to become
a registered iOS developer before you can do that. (Don’t worry; we show
you how in Chapter 4.) And, oh yeah, you need an iPad. You won’t start run-
ning your application on it right away — you’ll use the Simulator that Apple
provides with the SDK during the initial stages of development — but at some
point, you’ll want to test your application on a real, live iPad.

This book assumes that you have some programming knowledge and that
you have at least a passing acquaintance with object-oriented program-
ming, using some variant of the C language (such as C++, C#, or maybe even
Objective-C). If not, we point out some resources that can help you get up to
speed. The examples in this book are focused on the frameworks that come
with the SDK; the code is pretty simple (usually) and straightforward. (We
don’t use this book as a platform to dazzle you with fancy coding techniques.)

This book also assumes that you’re familiar with the iPad itself and that
you’ve at least explored Apple’s included applications to get a good working
sense of the iPad’s look and feel. It would also help if you browse the App
Store to see the kinds of applications available there, and maybe even down-
load a few free ones (as if we could stop you).

How This Book Is Organized
iPad Application Development For Dummies has five main parts.

Part I: Planning the Killer App
Part I introduces you to the iPad world. You find out what makes a great iPad
application and how to exploit the iPad’s best features to create a compelling
user experience. You also discover the marketing secrets for getting the most
out of Apple’s App Store and distributing your app to more customers.

Part II: Becoming a Real Developer
In this part you learn how to become an “official” developer and what you
need to do to in order to be able to distribute your iPad applications through
Apple’s App Store. You go through the process of registering as a developer

03_9780470920503-intro.indd 403_9780470920503-intro.indd 4 12/24/10 12:31 AM12/24/10 12:31 AM

5 Introduction

and downloading the Software Development Kit (SDK) — and then you unpack
all the goodies contained therein, including Xcode (the Apple development
environment) and Interface Builder. Chapter 6 spells out the details of obtain-
ing the proper certificates and submitting your app to the App Store — and
the dire consequences of not following the rules.

Part III: Understanding How Apps Work
Part III is deceptively short but intensely illuminating. The two chapters in
this part explain the frameworks that form the raw material of your iPad app
(which you then refine with your code and user interface objects) and reveal
the design patterns that you should adopt to make use of these frameworks.
This part also describes in detail the lifecycle of an iPad app from launch to
termination. When you finish this part, you should have enough information
to get started coding your application.

Part IV: Building DeepThoughts
With the basics behind you and a good understanding of the application
architecture under your belt, it’s finally time to have some fun doing something
useful. In this part, we show you how to create an application that’s simple
enough to understand and yet demonstrates enough of the building blocks
for creating a sophisticated app. We show you how an app fits into the frame-
works that do all of the heavy lifting for the iPad’s user interface. And because
you design the app the right way from the start, you can plug in user interface
elements with minimal effort using Interface Builder (part of the SDK). No
sweat, no bother. Putting this handy little app together gives you some prac-
tice at creating a useful iPad program that presents a view of content, responds
to simple gestures, and lets users change preference settings. It’s a great appli-
cation to learn about iPad development — it has enough features to be useful
as an example, but it’s simple enough not to make your head explode.

Part V: Building an Industrial-Strength
Application
Part V shows you how to create an application that contains major functionality —
we take an idea that was developed for the iPhone and expand it to take advan-
tage of the iPad’s capabilities. The app (iPadTravel411) makes it easier to travel
by reducing all those hassles of getting to and from a strange airport, getting
around a city, getting the best exchange rate, and knowing how much you
should tip in a restaurant — that sort of thing. We don’t go slogging through
every detail, but we demonstrate almost all the technology you need to master
if you’re going to create a compelling iPad application on your own.

03_9780470920503-intro.indd 503_9780470920503-intro.indd 5 12/24/10 12:31 AM12/24/10 12:31 AM

6 iPad Application Development For Dummies, 2nd Edition

Part VI: The Part of Tens
Part VI consists of some tips to help you avoid having to learn everything the
hard way. It talks about approaching application development in an “adult”
way right from the beginning (without taking the fun out of it, I assure you).

Icons Used in This Book
 This icon indicates a useful pointer that you shouldn’t skip.

 This icon represents a friendly reminder. It describes a vital point that you
should keep in mind while proceeding through a particular section of the
chapter.

 This icon signifies that the accompanying explanation may be informative
(dare we say, interesting?), but it isn’t essential to understanding iPad applica-
tion development. Feel free to skip past these tidbits if you’d like (though skip-
ping while leaning may be tricky).

 This icon alerts you to potential problems that you may encounter along the
way. Read and obey these blurbs to avoid trouble.

Where to Go from Here
It’s time to explore the iPad! If you’re nervous, take heart: The iPad is so new,
and such rich territory for developers to mine, that no company or individual
has a lock on innovating with it. Your idea just might be the killer app every-
one’s waiting for.

So go have some fun!

03_9780470920503-intro.indd 603_9780470920503-intro.indd 6 12/24/10 12:31 AM12/24/10 12:31 AM

Part I

Planning the
Killer App

04_9780470920503-pp01.indd 704_9780470920503-pp01.indd 7 12/24/10 12:31 AM12/24/10 12:31 AM

In this part . . .

Apple CEO Steve Jobs announced the iPad as “our
most advanced technology in a magical and revolu-

tionary device at an unbelievable price.” Do you believe in
iPad magic? I certainly do, if the music is groovy — and
with the iPad, the entire experience is groovy.

You say you want a revolution? Well, here’s the plan: This
part lays out what you need to know to get started on the
Great iPad Development Trek. After reading this part, you
can evaluate your idea for an iPad application, see how it
ranks, and maybe figure out what you have to do to trans-
form it into something that knocks your users’ socks off.

 ✓ Chapter 1 describes the features of the iPad and
the elements that make a great iPad application.
You find out how to exploit the platform’s fea-
tures and embrace its limitations. You also dis-
cover how to design with Apple’s expectations in
mind.

 ✓ Chapter 2 goes into more detail about how to cre-
ate a compelling user experience with your iPad
app. You find out how to design for the iPad and
its entirely new set of user interaction features.

 ✓ Chapter 3 explains what motivates your potential
customers to download apps, how to reach these
customers and learn from them, what marketing
methods you can use to drum up interest, and
how to determine the right price for your app.

04_9780470920503-pp01.indd 804_9780470920503-pp01.indd 8 12/24/10 12:31 AM12/24/10 12:31 AM

Chapter 1

What Makes a Killer iPad App
In This Chapter
▶ Figuring out what makes an insanely great iPad application

▶ Discovering the features of the iPad that can inspire you

▶ Understanding Apple’s expectations for iPad applications

▶ Making a plan for developing iPad software

Douglas Adams, in the bestseller The Hitchhiker’s Guide to the Galaxy
(conceived in 1971 and published in 1979), introduced the idea of a

handy travel guide that looked “rather like a largish electronic calculator,”
with a hundred tiny flat press buttons and a screen “on which any one of a
million ‘pages’ could be summoned at a moment’s notice.” It looked insanely
complicated, and this is one of the reasons why the snug plastic cover it
fitted into had the words DON’T PANIC printed on it in large friendly letters.
According to Adams, this guide was published in this form because “if it were
printed in normal book form, an interstellar hitchhiker would require several
inconveniently large buildings to carry it around in.”

The iPad is a hitchhiker’s dream come true, and its users don’t even have
any reason to panic. The only “insanely complicated” part of the iPad experi-
ence may be trying to develop a killer app that best exemplifies the iPad’s
features, but that’s why I think this book should have DON’T PANIC printed
on its cover — it takes you through the entire process of imagining, creating,
developing, testing, and distributing your iPad app. And in this chapter, I talk
about what would make that app a killer app.

As you already know, the iPad is a tablet — a new category of mobile device
located somewhere between a Mac laptop and an iPod touch or iPhone in
terms of its capabilities — that evolved from the iPhone design and uses iOS,
the iPhone/iPad Operating System.

The iPad already runs the 300,000+ iPhone apps in the Apple App Store with
either pixel-for-pixel accuracy in a black box in the center of the display, or
scaled up to full screen (which is done on the fly by doubling the pixels). The
App Store is loaded with travel and digital media apps, so you know already

05_9780470920503-ch01.indd 905_9780470920503-ch01.indd 9 12/24/10 12:30 AM12/24/10 12:30 AM

10 Part I: Planning the Killer App

that the iPad as a “Hitchhiker’s Guide” is not a fantasy. You may think it a
fantasy that you could develop an iPad app in less than two months, start-
ing from where you are now, with no iPad programming experience. But you
can — the only question is whether you can make a great app, or even a killer
app. To do that, you need to look at what it takes for an iPad app to be truly
great.

Figuring Out What Makes
a Great iPad Application

You use the same software development kit and much of the same code to
develop iPad, iPhone, and iPod touch applications. The iPad runs the same
operating system as the iPhone and iPod touch. However, the iPad is a bigger
device with more horsepower and a larger display, as shown in Figure 1-1.

For many iPhone/iPod touch app developers, the iPad’s larger display
alone changes everything. Apple demonstrated exactly how far things have
changed when the company demonstrated the iWork suite of productivity
tools (Keynote for presentations, Numbers for spreadsheets, and Pages for
word processing and page formatting) on the iPad, which would be unthink-
able for today’s iPhone or iPod touch.

Figure 1-1:
The iPad
runs iOS
(left) and

offers a
larger dis-

play to show
content

such as a
newspaper

(right).

05_9780470920503-ch01.indd 1005_9780470920503-ch01.indd 10 12/24/10 12:30 AM12/24/10 12:30 AM

www.allitebooks.com

http://www.allitebooks.org

11 Chapter 1: What Makes a Killer iPad App

The biggest challenge in making a killer app for the iPad is to design for the
iPad experience, and one reason why the iPad offers such a better experi-
ence than any Windows netbook or tablet computer is its sex appeal (which
for many apps can mean more excellent content and finer style). For example,
according to Douglas Adams, the Encyclopedia Galactica describes alcohol
as “a colorless volatile liquid formed by the fermentation of sugars” and also
notes “its intoxicating effect on certain carbon-based life forms.” On the other
hand, The Hitchhiker’s Guide to the Galaxy not only tells you what alcohol
is, it says “the best drink in existence is the Pan Galactic Gargle Blaster,”
describes its effect as “like having your brains smashed out by a slice of
lemon wrapped round a large gold brick,” tells you which planets have bars
that offer it and at what prices, and then shows you how to mix one yourself.
As Adams points out, “The Hitchhiker’s Guide to the Galaxy sells rather better
than the Encyclopedia Galactica.”

If the explosion of new iPhone apps since its introduction is any indication,
you will want to take advantage of the iPad’s sexiness, and that means lever-
aging its fabulous touch-sensitive interface and other features. Because the
iPad evolved from the iPhone design, the iPad has design advantages that
make netbooks and laptops feel like the dull Encyclopedia Galactica. Most
iPhone apps are designed to take advantage of the iPhone’s Multi-Touch dis-
play; accelerometer (which detects acceleration, rotation, motion gestures,
and tilt); or location services for detecting its physical location — or all
three.

However, you can create iPad apps that are not just a little bit better than
their iPhone counterparts, but a lot better (and an order of magnitude more
powerful), with an interface that’s simpler to use than a Mac.

Providing an immersive experience
An iPad app can offer a more immersive experience compared with an iPhone
app by adding more content — full pages from the Internet or in memory,
maps you can zoom into, full-screen videos and slide shows with music, and
so on. People can enjoy this content while away from their desks — on living
room couches, in coffee shops, on the train, in outer space — and more
easily share it with others than they can by using an iPhone or iPod touch.

Whenever possible, add a realistic, physical dimension to your application.
When I demonstrate the iPad to someone, my favorite game to play is Touch
Hockey, because it fully immerses you in an experience that resembles the
physical game so well. But it’s also a good idea to extend some physical met-
aphors, like the newspaper or book page, to provide a more immersive expe-
rience. The New York Times, for example, designed an iPad app that looks like

05_9780470920503-ch01.indd 1105_9780470920503-ch01.indd 11 12/24/10 12:30 AM12/24/10 12:30 AM

12 Part I: Planning the Killer App

a newspaper and also includes embedded, fully functional videos (not just
videos that appear in a separate window). In the iBooks app, you swipe the
page to go to the next one, just like a real book, but you can also search the
entire text, add bookmarks, and change the font size.

Need for Speed Shift for the iPad from Electronic Arts feels like you’re driving
the display with your hands as you steer the car using the iPad like a steer-
ing wheel. The high-definition screen is just inches from your face — the field
of view and the sensation of speed you get are incredible. The full-screen
display is also fully touch sensitive — you can tap on a car and see inside it,
flick a lifelike gear shifter to shift gears, and tap the rear-view mirror to look
behind you.

Even utility apps can be rethought to be a better experience. On the iPhone,
the Contacts app is a streamlined list, but on the iPad, Contacts is an address
book with a beautifully tangible look and feel. The more true to life your
application looks and behaves, the easier it is for people to understand how
it works and enjoy using it.

Making content relevant
The iPad’s large display may tempt you to consider a design for your app
that would look good on a laptop. But you should not forget the first rule of
iPhone design: Make its content and functions relevant to the moment. The
iPad, like the iPhone, adds mobility to the party. This ability to run apps
wherever you are and whenever you want makes it possible to have the infor-
mation you need (as well as the tools you’d like to use) constantly available.
But it’s not just about the fact that the app you need is ready to run right
there on your iPad; it’s (as importantly) about how the app is designed and
implemented. It needs to require as little as possible from the user in terms
of effort when it comes to delivering results.

An iPad app can present information relevant to where you are, what time
it is, what your next activity might be, and how you’re holding the device
(in portrait or landscape view, tilting and shaking it, and so on), just like an
iPhone or iPod touch app.

For example, the version of Google Maps for the iPad displays a full-screen map
that can show your location and immediately find commercial establishments
nearby. (For example, you can search for “sushi” to find sushi restaurants.)

The iPad platform offers a strong foundation for pinpointing the device’s cur-
rent location on a map, controlling views, managing data, playing multimedia

05_9780470920503-ch01.indd 1205_9780470920503-ch01.indd 12 12/24/10 12:30 AM12/24/10 12:30 AM

13 Chapter 1: What Makes a Killer iPad App

content, switching display orientations, and processing gestures. Because
the iPad platform can do all that, an app can know your current location, the
hotels or campgrounds you’re going to stay at, and the planets you’re plan-
ning to visit. It can even show videos and play the music of the stars all at the
same time. While searching maps and brochures, you can know at a glance
where you are, how to get to your destination, and what the weather’s like so
that you know what to wear.

Designing for the touch-display experience
The important design decision to make, whether you’re starting from scratch
with a new iPad app or evolving one from an iPhone app, is whether to use
the large iPad screen and the new user interface elements to give people
access to more information in one place. Although you don’t want to pack
too much information into one screen, you do want to prevent people from
feeling that they must visit many different screens to find what they want.
An iPad app can offer the primary content on the Main view and provide
additional information or tools in an auxiliary view (such as a popover that
appears above the Main view) to give users access to functions without
requiring them to leave the context of the Main view.

The large iPad screen also gives you a lot more room for multifinger gestures,
including gestures made by more than one person. An iPad app can react
to gestures and offer touch controls and pop-up settings that are relevant
to what you’re actually doing in the app and where you place your fingers.
With a display the size of a netbook, you have a lot more screen real estate
to allow dragging and two-finger gestures with graphics and images, and
depending on what you’re doing, a tap or gesture on a particular part of the
screen can have a particular function. For example, in the Gameloft version of
the first-person shooter called Nova (as adapted to the iPad), the display size
gives you more flexibility than the iPhone version, with more controls and
objects such as mini-maps, and you can slide two fingers across the screen to
throw grenades.

With all this in mind, there are at least two things that you need to consider —
besides functionality, of course — when it comes to creating a great iPad app:

 ✓ Exploiting the platform and ecosystem

 ✓ Creating a compelling user experience

The rest of this chapter and Chapter 2 dig more into this Two-Part Rule of
Great iPad Applications.

05_9780470920503-ch01.indd 1305_9780470920503-ch01.indd 13 12/24/10 12:30 AM12/24/10 12:30 AM

14 Part I: Planning the Killer App

Exploiting the Platform
Okay, enough talk about the iPad’s unique experience. Just what exactly is
the iPad platform, and what are its features?

The iPad runs iOS version 4.2 as its operating system, and iPad apps use
many of the same views and controls you used if you already developed an
iPhone app. But the design similarities end there. The iPad’s hardware is
ground zero for conceiving the design of an iPad app — it’s the place to start
dreaming of what kind of experience to provide:

 ✓ A touch-sensitive display size of 1,024 x 768 pixels that supports mul-
tifinger gestures.

 ✓ The connection features of the iPhone (except phone calls): Wi-Fi and
optional 3G Internet access; a compass; location services (although a
hardware GPS isn’t included in the first version of the iPad, so it isn’t as
accurate); and the ability to play audio and video with ease.

 ✓ Flexible orientation — users can tilt it, rotate it, and turn it upside down.

 ✓ The capability to plug in an external keyboard (or pair a Bluetooth wire-
less keyboard with the iPad) and use it in place of the onscreen key-
board for extended typing.

 ✓ The ability for users to dock the iPad and share files with a computer or
other iPad users.

Exploiting advantages of the system
One of the keys to creating a great app is taking advantage of what the device
offers. In the case of a new platform with new possibilities, such as the iPad,
exploiting advantages is especially important. The combination of hardware
and system software opens up design advantages that depart from the typi-
cal design approach for desktop and laptop applications.

For example:

 ✓ Multifinger gestures: Applications respond to multifinger gestures, not
mouse clicks. If you design an app that simply uses a single finger tap as
if it were a mouse click, you may be missing an opportunity to design a
better user experience.

 ✓ Movement and orientation: The iPad includes an accelerometer just like
the one in an iPhone and iPod touch, so you can also design apps that
detect accelerated movement, as well as change the display for different
orientations.

05_9780470920503-ch01.indd 1405_9780470920503-ch01.indd 14 12/24/10 12:30 AM12/24/10 12:30 AM

15 Chapter 1: What Makes a Killer iPad App

 ✓ Split views and unique keyboards: You can use a Split view to display
more than one view onscreen at a time. You can also bring up a special
keyboard unique to the task, such as the numbers-and-formulas key-
board that appears in the Numbers app for the iPad.

 ✓ Internet access: As with an iPhone or iPod touch, users can send and
receive e-mail and browse the Web; sync contacts, calendars, and notes
over the Internet; and download content from Apple stores. With quick
and easy access, your app doesn’t need to store lots of data on the iPad —
all it really needs to do is jump on the Internet and grab what it needs
from there.

 ✓ Computer sync over USB connection or local area network: Users can
sync their photos, contacts, calendars, music, video, and other content
from their computers (again, just like an iPhone or iPod touch), and with
some apps (such as Bento from FileMaker), users can sync data over a
local area network.

 ✓ Television or projection system connection: Users can connect the
iPad to an HDTV or projection system in order to show content to larger
audiences.

 ✓ Consistent system environment: The Home button quits your app, and
the volume controls take care of audio, just like you’d expect them to.
User preference settings can be made available in the Settings applica-
tion to avoid cluttering your app’s user interface. And your iPad and
iPhone/iPod touch apps can coexist on an iPad with Web services and
apps created in HTML5.

 ✓ Breathtaking imagery: Photos and video already look fantastic on this
display, but the artwork you create yourself for your app should be set
to 24 bits (8 bits each for red, green, and blue), plus an 8-bit alpha chan-
nel to specify how a pixel’s color should be merged with another pixel
when the two are overlaid one on top of the other. In general, the PNG
format is recommended for graphics and artwork.

In the following sections, you get to dive into some of the major features,
grouped into the following major areas:

 ✓ Accessing the Internet

 ✓ Tracking location

 ✓ Tracking motion

 ✓ Supporting multifinger gestures and touches

 ✓ Playing content

 ✓ Accessing the content of Apple’s supplied apps (such as Contacts and
Photos)

 ✓ Taking advantage of the iPad display

05_9780470920503-ch01.indd 1505_9780470920503-ch01.indd 15 12/24/10 12:30 AM12/24/10 12:30 AM

16 Part I: Planning the Killer App

Accessing the Internet
An iPad can access Web sites and servers on the Internet through Wi-Fi or
optional 3G services. This Internet access gives you the ability to create apps
that can provide real-time information. An app can tell a user, for example,
that the next tour at the Tate Modern in London is at 3 p.m.

This kind of access also allows you, as the developer, to go beyond the lim-
ited memory and processing power of the device and access large amounts
of data stored on servers, or even offload the processing. You don’t need all
the information for every city in the world stored on the iPad, nor do you
have to strain the iPad processor to compute the best way to get someplace
on the Tube. You can send the request to a server for all that information,
especially information that changes often.

 This technique is called client-server computing — a well-established software
architecture where the client provides a way to make requests to a server
on a network that’s just waiting for the opportunity to do something. A Web
browser is an example of a client accessing information from other Web sites
that act as servers.

Knowing the location of the user
You can create an app that can determine the device’s current location
or even be notified when that location changes, using the iPad’s location
services. As people move, it may make sense for your app to tailor itself to
where the user is, moment by moment.

Many iPad and iPhone apps use location information to tell you where the
nearest coffee house is or even where your friends are. The iPadTravel411
sample application described in Part V uses this information to tell you
where you are and give you directions to your hotel.

When you know the user’s location, you can even put it on a map, along with
other places he or she may be interested in. You find out how easy it is to
add a map to your app in Chapter 15.

Tracking orientation and motion
The iPad contains three accelerometers — devices that detect changes in move-
ment. Each device measures change along one of the primary axes in three-
dimensional space. An app can, for example, know when the user has turned

05_9780470920503-ch01.indd 1605_9780470920503-ch01.indd 16 12/24/10 12:30 AM12/24/10 12:30 AM

17 Chapter 1: What Makes a Killer iPad App

the device from vertical to horizontal orientation, and it can change the view
from portrait to landscape if doing so makes for a better user experience.

You can also determine other types of motion such as a sudden start or stop
in movement (think of a car accident or fall) or the user shaking the device
back and forth. It makes some way-cool features easy to implement — for
example, the Etch A Sketch metaphor of shaking the iPad to undo an operation.
You can even control a game by moving the iPad like a controller — such as
the aforementioned Need for Speed Shift game for the iPad (Electronic Arts),
in which you drive the car by using the iPad like a steering wheel.

Tracking user’s fingers on the screen
People use their fingers to select and manipulate objects on the iPad screen.
The moves that do the work, called gestures, give the user a heightened sense
of control and intimacy with the device. Several standard gestures — tap,
double-tap, pinch-close, pinch-open, flick, and drag — are used in the applica-
tions supplied with the iPad.

 You may want to stick with the standard gestures in your app, just because
folks are already aware of (and comfortable with) the current pool, but the
iPad’s multifinger gesture support lets you go beyond standard gestures when
appropriate. Because you can monitor the movement of each finger to detect
gestures, you can create your own.

Playing content
Your iPad app can easily play audio and video. You can play sound effects
or take advantage of the multichannel audio and mixing capabilities avail-
able. You can even create your own music player that has access to all the
audio synced to the iPad from the user’s iTunes Library. You can also play
back many standard movie file formats, configure the aspect ratio, and
specify whether controls are displayed. You can put up pages that look like
Web pages or book pages if you want, and you can easily mix content for an
immersive experience.

Accessing information from Apple’s apps
Your app can access the user’s information in the Contacts app on the iPad
and display that information in a different way or use it as information in
your application. For example, a user could enter the name and address of a

05_9780470920503-ch01.indd 1705_9780470920503-ch01.indd 17 12/24/10 12:30 AM12/24/10 12:30 AM

18 Part I: Planning the Killer App

hotel, and the application would file it in the user’s Contacts database. Then,
when the user arrives at Paddington Station, the application can retrieve the
address from the Contacts app and display directions. What’s more, your app
can also present standard interfaces for picking and creating contacts.

What you can do with Contacts, you can do in a similar fashion with the
Calendar app. Your app can remind a user when to leave for the airport or
create calendar events based on what’s happening this week in London.
These events show up in the Calendar app and in other apps that support
that framework.

Your app can also access the Photo library in the iPad Photos app, not
only to display them, but also to use or even modify them. For example, the
Photos app lets you add a photo to a contact, and several applications enable
you to edit your photos on the iPad itself.

Copying, cutting, and
pasting between apps
iOS (the iPad and iPhone operating system) provides support for Copy, Cut,
and Paste operations within and between applications. It also provides a
context-sensitive Edit menu that can display the Copy, Cut, Paste, Select,
Select All, and Delete system commands. That means that while each iPad
application is generally expected to play only in its own sandbox, you actu-
ally do have ways to send small amounts of data between applications.

Multitasking, background processing,
and notifications
Although iOS doesn’t have true multitasking (in fact, devices need multiple
cores or CPUs to offer true multitasking), it has instant-on task switching that
reduces application startup and makes it easier to continue right where you
left off. For certain kinds of applications, you can also process events in the
background. Such applications include the following:

 ✓ Audio: The application plays audio in the background.

 ✓ Location: The application processes location events (information the iOS
sends to your app about changes in location) in the background.

 ✓ VoIP: The application provides the ability for the user to make Voice
over Internet Protocol calls — turning a standard Internet connection
into a way to place phone calls.

05_9780470920503-ch01.indd 1805_9780470920503-ch01.indd 18 12/24/10 12:30 AM12/24/10 12:30 AM

19 Chapter 1: What Makes a Killer iPad App

iOS also offers push notifications for receiving alerts from your remote serv-
ers even when your app isn’t running, and local notifications which you can
use in your app to alert users of scheduled events and alarms in the back-
ground (no servers required). You can use local notifications to get a user’s
attention; for example, a driver navigation application running in the back-
ground can use local notifications to alert the user when it’s time to make a
turn. Applications can also schedule the delivery of local notifications for a
future date and time and have those notifications delivered even if the appli-
cation isn’t running.

Living large on the big screen
The iPad display offers enough space to show a laptop application (which is
one reason why Web pages look so great). You can organize your app with a
master list and detailed list of menu choices, or in a layout for landscape ori-
entation with a source column on the left and a view on the right — similar to
the Mac OS X versions of iTunes and iPhoto and exemplified by the Contacts
app on the iPad.

If you’re familiar with iPhone apps and Mac OS X applications, think some-
where in-between. With the iPad touch-sensitive display, you no longer have
to create different screens of menus (as you might for an iPhone app) or
deploy drop-down menus and toolbars (as you might for an Mac OS X app) to
offer many functions.

For example, to crop and mask out parts of an image in Apple’s Keynote app
for the iPad (the app that lets you create slide shows), you don’t have to
select a photo and then hunt for the cropping tool or select a menu item —
just double-tap the image, and a mask slider appears. In Apple’s Numbers
app for the iPad, if you double-tap a numeric formula, the app displays a spe-
cial numeric and function keyboard rather than a full text keyboard — and
the app can recognize what you’re doing and finish the function (such as a
Sum function) for you.

These are examples of redesigning a known type of application to get rid of
(or at least minimize) that modal experience of using a smartphone app —
that sinking feeling of having only one path of communication to perform a
task or supply a response. iPad applications should allow people to interact
with them in nonlinear ways. Modality prevents this freedom by interrupting
a user’s workflow and forcing the user to choose a particular path.

 Lists are a common way to efficiently display large amounts of information in
iPhone apps. Lists are very useful in iPad apps, too, but you should take this
opportunity to investigate whether you can present the same information in a
richer way on the larger display.

05_9780470920503-ch01.indd 1905_9780470920503-ch01.indd 19 12/24/10 12:30 AM12/24/10 12:30 AM

20 Part I: Planning the Killer App

Embracing the iPad’s Limitations
Along with all those features, however, the iPad has some limitations. The
key to successful app development — and to not making yourself too crazy —
is to understand those limitations, live and program within them, and even
learn to love them. (It can be done. Honest.) These constraints help you
understand the kinds of applications that are right for this device.

 Often, it’s likely that if you can’t do something (easily, anyway) because of the
iPad’s limitations, then maybe you shouldn’t.

The iPad evolved from the iPhone and iPod touch, and there are related limi-
tations you need to consider, as well as a few things left out. So learn to live
with and embrace some facts of iPad life:

 ✓ Users have fat fingers. You may think that the iPad’s larger display
makes that relatively easy to deal with, but keep in mind that you may
want to design a multiuser app for the iPad that takes into account mul-
tiple fingers. (Anyone for a nice game of Touch Hockey?)

 ✓ Memory and battery power are limited, just like on an iPhone or iPod
touch. This limitation may or may not be a decisive factor, depending on
what kind of app you want to create, but smaller apps generally perform
better.

 ✓ Although users can switch from one app to another instantly, and apps
can continue where a user left off, only one application actually runs
at a given time — again, just like an iPhone or iPod touch — with some
apps capable of running in the background to serve notifications or play
music.

 ✓ A camera isn’t included in the first version of the iPad, but your iPad app
can access the synced Photo library as well as synced contacts.

The next sections help get you closer to a state of iPad enlightenment.

Designing for fingers
Although the Multi-Touch interface is a feature of both the iPad and the
iPhone/iPod touch, it brings with it some limitations — although not as many
as with the smaller iPhone/iPod touch displays.

First of all, fingers aren’t as precise as a mouse pointer, which makes some
operations even more difficult on an iPhone or iPod touch than on an iPad
(text selection, for example). Still, due to fat fingers, user-interface elements

05_9780470920503-ch01.indd 2005_9780470920503-ch01.indd 20 12/24/10 12:30 AM12/24/10 12:30 AM

www.allitebooks.com

http://www.allitebooks.org

21 Chapter 1: What Makes a Killer iPad App

need to be large enough and spaced far enough apart so that users’ fingers
can find their way around the interface comfortably. Apple recommends that
anything a user has to select or manipulate with a finger be a minimum of
44 x 44 pixels in size.

Because it’s so much easier to make a mistake using fingers, you also need to
ensure that you implement a robust — yet unobtrusive — Undo mechanism.
You don’t want to have your users confirm every action (it makes using the
app tedious), but on the other hand, you don’t want your app to let anybody
mistakenly delete a page without asking, “Are you sure this is what you really
want to do?” Lost work is worse than tedious. Fortunately, the iPad supports
the same shake-to-undo feature as the iPhone.

Balancing memory and battery life
As an app designer for the iPad, you have several balancing acts to keep in mind:

 ✓ Although significant by the original Macintosh’s standards, the com-
puter power and amount of memory on the iPad are limited.

 ✓ Although access to the Internet can mitigate the power and memory
limitations by storing data and (sometimes) offloading processing to a
server, those Internet operations eat up the battery faster.

 ✓ Although the iPad power-management system conserves power by shut-
ting down any hardware features that are not currently being used, a
developer must manage the trade-off between all those busy features
and shorter battery life. Any app that takes advantage of Internet access,
core location, and the accelerometer is going to eat up the batteries.

 The iPad is particularly unforgiving when it comes to memory usage. If you
run out of memory, in order to prevent corruption of other apps and memory,
the system will simply shut down your app (unfortunately not to the tune of
“Shut Down” by the Beach Boys).

It just goes to show that not all limitations can be exploited as “features.”

Why Develop iPad Applications?
Because you can. Because it’s fun. And because the time has come (today!).
iPad apps are busting out all over, and developers have been very successful.
Even high-profile magazines such as Wired and The New Yorker now offer app
versions.

05_9780470920503-ch01.indd 2105_9780470920503-ch01.indd 21 12/24/10 12:30 AM12/24/10 12:30 AM

22 Part I: Planning the Killer App

Developing iPad apps can be the most fun you’ve had in years, with very little
investment of time and money (compared with developing for platforms like
Windows). Here’s why:

 ✓ iPad apps are usually bite-sized, which means they’re small enough
to get your head around. A single developer — or one with a partner
and maybe some graphics support — can do them. You don’t need a
20-person project with endless procedures and processes and meetings
to create something valuable.

 ✓ The applications tend to be crisp and clean, focusing on what the user
wants to do at a particular time and/or place. They’re simple but not
simplistic. This makes application design (and subsequent implementa-
tion) much easier and faster.

 ✓ The apps use the most innovative platform available for mobile
computing. The iPad is a game-changer. It’s completely changing the
Internet as a publishing medium, the software industry with regard to
applications, and the mobile device industry with regard to the overall
digital media experience.

 ✓ The free iOS Software Development Kit (SDK) makes development as
easy as possible. This book reveals the SDK in all its splendor and glory.
If you can’t stand waiting, you could go on to Chapter 4, register as an
iOS developer, and download the SDK . . . but (fair warning) jumping the
gun leads to extra hassle. It’s worth getting a handle on the ins and outs
of iPad app development beforehand.

The iPad has three other advantages that are important to you as a developer:

 ✓ You can distribute your app through the App Store. Apple will list your
app in the App Store in the category you specify, and the store takes
care of credit-card processing (if you charge for your app), hosting,
downloading, notifying users of updates, and all those things that most
developers hate doing. Developers name their own prices for their cre-
ations or distribute them free; Apple gets 30 percent of the sales price
of commercial apps, with the developer getting the rest. However, keep
in mind that Apple must approve your app before it appears in the App
Store — see Chapter 6 for details on submitting your app and jumping
through the hoops to get it approved.

 ✓ Apple has a robust yet inexpensive developer program. To place your
app in the store and manage it, you have to pay $99 per year to join the
Individual or Company version of the iOS Developer Program (which
includes iPad development support). (Apple also offers an Enterprise
version for $299 per year to develop proprietary, in-house iOS applica-
tions that you can distribute to employees or members of your organiza-
tion, and a free University version for education institutions to include

05_9780470920503-ch01.indd 2205_9780470920503-ch01.indd 22 12/24/10 12:30 AM12/24/10 12:30 AM

23 Chapter 1: What Makes a Killer iPad App

iOS development as part of a curriculum.) But that’s it. There are none
of the infamous hidden charges that you often encounter, especially
when dealing with credit-card companies. Go to the Apple iOS Developer
site (http://developer.apple.com/programs/ios) and click the
Enroll Now button. Chapter 4 describes how to register as a developer
and join the iOS Developer Program.

 ✓ It’s a business and productivity tool. The iPad has become an accept-
able business and individual productivity tool, in part because it has
tight security as well as support for Microsoft Exchange and Office,
but even more for its design as a hand-held mobile computer. Using an
iPad with a customer to interact with information is a lot more engag-
ing and cool, and it helps salespeople close faster. Automobile finance
companies can begin the credit-application process while customers are
standing near a vehicle. Doctors and nurses at hospitals are beginning to
use iPads to view X-rays and CT scans and read medical records while
standing next to the patient. This happy state of affairs expands the pos-
sible audience for your application.

Developing with Apple’s
Expectations in Mind

Just as the iPad can extend the reach of the user, the device possibilities
and the development environment can extend your reach as a developer.
To make sure you’re reaching in the right direction, it helps to understand
Apple’s perspective on what iPad apps should be — the company clearly has
done some serious thinking about it, far longer than anybody else out there,
having taken years to bring the iPad to market under a veil of secrecy.

So what does Apple think? Spokespeople often talk about three different
application styles:

 ✓ Productivity applications use and manipulate information. The
iPadTravel411 sample app that I show in this book is an example, and
so are Bento and FileMaker Go (FileMaker), and Apple’s iWork apps —
Keynote, Pages, and Numbers. Common to all these apps is the use
and manipulation of multiple types of information. (I’m not talking
about the Productivity category in the App Store — that’s a marketing
designation.)

 ✓ Utility applications perform simple, highly defined tasks. The prein-
stalled YouTube app is an example — it deals only with the YouTube
videos. The Brushes app for painting (Steve Sprang) is considered a

05_9780470920503-ch01.indd 2305_9780470920503-ch01.indd 23 12/24/10 12:30 AM12/24/10 12:30 AM

24 Part I: Planning the Killer App

utility, as it performs a simple, highly defined task. (Again, I’m not talk-
ing about the Utilities category in the App Store, although many of those
apps are considered utility apps because they perform simple, highly
defined tasks.)

 ✓ Immersive applications are focused on delivering — and having the
user interact with — content in a visually rich environment. A game is
a typical example of an immersive application.

Although these categories help you understand how Apple thinks about iPad
apps (at least publicly), don’t let them get in the way of your creativity. You’ve
probably heard ad nauseam about stepping outside the box. But hold on to
your lunch; the iPad “box” isn’t even a box yet. So here’s a more extreme meta-
phor: Try diving into the abyss and coming up with something really new.

An Overview of the Development Cycle
To keep from drowning in that abyss, you need a plan to guide you through
it. Socrates anticipated software development when he said that there’s noth-
ing stable in human affairs. Tacitus, with more data in hand 450 years later,
saw that in all things there is a law of cycles. By the late 1960s, the Jefferson
Airplane singers were singing, “roll with the natural flow, like water off a spin-
ning ball.”

In plain words, your software development plan is a cycle; perhaps a vicious
cycle, but it can be a cycle through the park. You may repeat procedures
within the cycle iteratively until you get it right, but the key to understanding
the cycle is the recognition that once you spin off version 1 of your app, you
start all over again to develop an update.

In general terms, the software development cycle is the process of creating
or altering a software product or service. Theorists have created models and
methodologies for defining this cycle. Although there are at least half a dozen
models (Neal’s a recovering software development methodologist), the one I go
through here is pretty simple and is well suited for the iPad to boot. Here goes:

 1. Defining the problems

 2. Designing the user experience

 a. Understanding the real-world context

 b. Understanding the device context

 c. Categorizing the problems and defining the solutions

 3. Creating the program architecture

 a. A Main view

 b. Content views

05_9780470920503-ch01.indd 2405_9780470920503-ch01.indd 24 12/24/10 12:30 AM12/24/10 12:30 AM

25 Chapter 1: What Makes a Killer iPad App

 c. View controllers (which, as you learn in Chapter 7, display things
on the screen and respond to user actions)

 d. Models (which, as you learn in Chapter 7, contain the app’s data
and logic)

 4. Writing the code

 5. Doing it until you get it right

Of course, the actual analysis, design, and programming (not to mention test-
ing) process has a bit more to it than this — and the specification and design
definitely involve more than what you see in this book. But from a process
perspective, it’s pretty close to the real thing. It does give you an idea of the
questions you need to ask — and have answered — in order to develop an
effective iPad application.

A word of caution, though. Even though iPad apps are much easier to get
your head around than, say, a full-blown enterprise service-oriented architec-
ture, they come equipped with a unique set of challenges. Between the iPad
platform limitations and the high expectation of all the new iPad users, you’ll
have your hands full.

The Sample Applications
It’s hard enough to understand how to develop an app, and even harder if the
first example you turn to is too complex to get your head around. The first
sample app, DeepThoughts (shown in Figure 1-2), which you find out how
to build in Part IV, is simple enough to understand, and yet it demonstrates
enough of the building blocks for creating a sophisticated iPad app that you
should have no trouble following along and building it. With a little more
(although not much more) work, you can use the development environment
to actually create something of value.

DeepThoughts displays whatever text you enter in a flowing animation that
fills the display, supposedly suggesting a meditative state (as in “peace love
groovy music”). You can speed up or slow down the animation by swiping
left or right, so you find out how to deal with that simple gesture, as well as
with tapping an Info button or the display to change settings (such as the
speed). You also learn how to accept user input — sliding a slider for speed,
and entering text for the words.

After you know a bit more about the application design cycle and what makes
a good user interface, and even more (actually quite a bit more) about the
iPad technologies that work behind the screen — such as frameworks, win-
dows, views, and view controllers — and then just a few more details about
getting your app ready for the App Store and the public, you’re ready to do
some real coding — the DeepThoughts app.

05_9780470920503-ch01.indd 2505_9780470920503-ch01.indd 25 12/24/10 12:30 AM12/24/10 12:30 AM

26 Part I: Planning the Killer App

After that, you find out about the design of the iPadTravel411 app (shown
in Figure 1-3), starting in Chapter 13. You find out how to use a Split view,
present a map, work with Table views, add content, access data on the Web,
include data with your app, and allow users to set preferences.

Figure 1-2:
This book

will provoke
Deep-

Thoughts.

Figure 1-3:
This sample

app may
provoke
a trip to
London.

05_9780470920503-ch01.indd 2605_9780470920503-ch01.indd 26 12/24/10 12:30 AM12/24/10 12:30 AM

27 Chapter 1: What Makes a Killer iPad App

What’s Next
You must be raring to go now and just can’t wait to download the Software
Development Kit (SDK). That’s exactly what many new developers do — and
later are sorry that they didn’t spend more time upfront understanding the
iPad user experience, how applications work in the iPad environment, and
the guidelines that Apple enforces for apps to be approved for the App Store.

So be patient. The Hitchhiker’s Guide to the Galaxy, that wonderful fantasy
of an iPad from 1979, suggests that space is “big, really big . . . you just won’t
believe how vastly hugely mind-bogglingly big it is” and suggests that you
bring a towel. The guide says a towel “is about the most massively useful
thing an interstellar hitchhiker can have.” (Again with Douglas Adams? But I
promise not to get into the meaning of life, the universe, and everything, or
the ultimate question — for which the answer is 42.) This book is your towel
for the journey. The following chapters cover all the aspects of development
you need to know before you spend time coding. Then, I promise, it’s off to
the stars.

05_9780470920503-ch01.indd 2705_9780470920503-ch01.indd 27 12/24/10 12:30 AM12/24/10 12:30 AM

28 Part I: Planning the Killer App

05_9780470920503-ch01.indd 2805_9780470920503-ch01.indd 28 12/24/10 12:30 AM12/24/10 12:30 AM

Chapter 2

Creating a Compelling
User Experience

In This Chapter
▶ Understanding what makes an iPad app different

▶ Making an app that’s worth the cost

▶ Designing for the best user experience

▶ Avoiding the pitfalls that get apps rejected

When you have a handle on the possibilities and limitations of the iPad,
your imagination is free to soar to create a compelling user experi-

ence. But what is a “compelling user experience,” really?

For openers, a compelling user experience has to result from the interaction
of several factors:

 ✓ Interesting, useful, and plentiful content that fills the display in an
immersive experience

 ✓ Content relevant to what you’re doing, where you are, what your next
activity might be, and how you’re holding the device

 ✓ An intuitive, well-designed user interface designed for the full Multi-
Touch display that supports multifinger gestures

The iPad allows both immediacy and intimacy as it blends mobility and the
power of the desktop to create a new kind of freedom. I like to use the term
user experience because it implies more than a pretty user interface and nice
graphics. A compelling user experience enables users to do what they need to
do with a minimum of fuss and bother. It includes meeting the user’s expec-
tations based on the context — all the stuff going on around that user — in
which the app is used. A guidebook app may have a great user interface, for
example, but it may not give me the most up-to-date information or let me
know that a tour of the Houses of Parliament is leaving in five minutes from
the main entrance. Without those added touches, I don’t consider an app
compelling.

06_9780470920503-ch02.indd 2906_9780470920503-ch02.indd 29 12/24/10 12:30 AM12/24/10 12:30 AM

30 Part I: Planning the Killer App

If you’ve developed applications for a desktop or laptop, or even for an
iPhone or iPod touch, you have to rethink your design for any new app you
create for the iPad, because the iPad is a singular game-changer that intro-
duces an entirely new set of user interaction features. Albert Einstein once
said that technological change is like an axe in the hands of a pathological
criminal. If you’ve developed user interfaces before, you may want to adopt
this attitude — grab an axe to chop through your previous design ideas and
take a hard look at the newest apps that are just now arriving on the iPad
(especially the ones from Apple), and remember Pablo Picasso’s immortal
words: “Bad artists copy. Good artists steal.”

Apple goes out of its way to provide sample code for many of the neater
tricks and features out there, all in hopes of demystifying how they work.
Apple’s supplied apps, including Contacts, Photos, and Calendar, are already
on your iPad and ready to be examined for user interface ideas. In addition,
Apple’s iWork apps for the iPad — Keynote for slide presentations, Numbers
for spreadsheets, and Pages for word processing and page formatting — are
excellent examples to crib from, especially for productivity apps.

This chapter gently urges you to reinvent the user experience for your app to
match an iPad user’s expectations, from the perspective of the content you
provide and the app’s functionality. But first, you need to envision the total-
ity of what your app’s user experience should be.

Deep Thoughts on the User Experience
Pun intended. Creating DeepThoughts, the star of Part IV, is a fast way to get
familiar with iPad software development. DeepThoughts was designed to do
only one thing, so that it would be easy to understand and quick to create as
you follow along with the examples. But DeepThoughts is also the skeleton
of an immersive app. It’s similar to any app that lets the user interact with
content in a visually rich environment, except that it provides only a single
view and a single piece of content. With the DeepThoughts application under
your belt, you’ll have a much easier time understanding and using all the
resources Apple provides to help you develop iPad apps.

iPadTravel411, the star of Part V, starts in many ways where DeepThoughts
leaves off — by providing a more immersive experience in a productivity app —
a kind of app that uses and manipulates different types of information.
iPadTravel411 manipulates foreign currency rates, airport transportation
routes, maps, your location, weather, events, and a traveler’s tasks.

Because of its ease of use and convenience, its awareness of your location,
and its ability to connect seamlessly to the Internet from most places, the
iPad lets you develop a totally new kind of application — one that integrates
seamlessly with what the user is doing when he or she is living in the real
world (what a concept). It frees the user to take advantage of technology

06_9780470920503-ch02.indd 3006_9780470920503-ch02.indd 30 12/24/10 12:30 AM12/24/10 12:30 AM

www.allitebooks.com

http://www.allitebooks.org

31 Chapter 2: Creating a Compelling User Experience

away from the tether of the desk or coffee shop, and skips the hunt for a
place to spread out the hardware. I refer to such applications as here-and-now
apps that take advantage of technology to help you do a specific task with
up-to-date information, wherever you are and whenever you’d like.

Although iPhone apps share some of these characteristics, iPad apps can
offer page-like experiences due to the larger display, including the ability
to provide well-organized content in a Split view, which displays more than
one view onscreen at a time. With Split view in portrait orientation, you can
present content to choose from in a master list on top, and more detailed
choices in a separate view on the bottom, as demonstrated by the App
Store app on the iPad. You can also use a layout for landscape orientation
that offers menu choices in a source column on the left, with different views
based on those choices on the right, as I do in iPadTravel411 (see Figure 2-1,
right side — “Welcome to London” is the source column). The Split view is a
common organizational element in iPad applications because it helps flatten
the information hierarchy, and you find out how to take advantage of it in
iPadTravel411 as described in Chapter 15.

Whenever possible, add a realistic, physical, true-to-life dimension to the way
your app looks and behaves so that it’s easy to understand and fun to use —
such as the Need for Speed Shift app. Remember that a great user interface
follows design principles that are based on the way people think and work.
A user interface that’s unattractive, convoluted, or illogical can make even a
great app seem like a chore to use. But a beautiful, intuitive, compelling expe-
rience inspires a positive emotional attachment in users, and that’s a good
thing for an app to do.

All the features inherent in iPad apps enable you to add a depth to the user’s
experience that you usually don’t find in laptop- or desktop-based applica-
tions — in effect, a third dimension. Not only can the use of an iPad app be
part of what you’re doing and where you are, but what you’re doing and where
you are can be part of the app. iPad developers can achieve a goal that’s been
elusive for years: the seamless integration of technology into everyday life.

The why-bother-since-I-have-my-laptop crowd still has to wrestle with this
level of technology, especially those folks who haven’t grown up with it. They
look at an iPad as a poor substitute for a laptop or desktop — well, okay, for
certain tasks, that’s true. But an iPad app trumps the laptop or desktop big-
time in two ways:

 ✓ Portability: The iPad’s compact portability lets you do stuff not easily
done on a laptop or desktop — on site and right now — as with the
iPadTravel411 app you find out how to build in Part V.

 ✓ Activity integration: The iPad is integrated into the activity itself, cre-
ating a transparency that makes it as unobtrusive as possible. This
advantage — even more important than portability — is the result of
context-driven design.

06_9780470920503-ch02.indd 3106_9780470920503-ch02.indd 31 12/24/10 12:30 AM12/24/10 12:30 AM

32 Part I: Planning the Killer App

The key to designing a killer iPad application is to understand that the iPad
is not a bigger iPod touch, nor is it a more portable version of a laptop com-
puter. It’s another animal altogether, as I describe in Chapter 1, and is there-
fore used entirely differently. With maps that you can zoom into, full-screen
videos, and slide shows with music you can play, and so on, you can provide
content in your app that people can enjoy anywhere and more easily share
with others, far more easily than they can with a laptop or an iPod touch. So
get ready to take a closer look at how to create compelling content.

Creating Compelling Content
It’s a powerful experience to hold full pages of content (from the Internet
or in memory) in your hands in a device that weighs little more than a thick
magazine. But keep in mind that the iPad has no default orientation — people
don’t pay much attention to the minimal device frame, and they’re uncon-
cerned with the location of the Home button. They can rotate from portrait
to landscape orientation with ease, and your app should encourage people to
interact with iPad from any side by providing a great experience in all orien-
tations. You can see how the iPadTravel411 looks in Figure 2-1, which shows
a full-screen map in portrait orientation and a split-screen map in landscape
orientation.

Figure 2-1:
iPadTravel411

in portrait
orientation

(left) and
landscape

orientation,
showing a
split view

and popover
(right).

The large iPad display offers many ways to give people access to information
all in one place, without having to switch screens (as in an iPhone) or open
separate windows and modal dialogs (as in desktop applications). If your
app currently provides information in a hierarchy (such as a sequence of
iPhone screens), I strongly consider that you flatten the hierarchy to present
more information in one place. Your app’s content can appear in the Main

06_9780470920503-ch02.indd 3206_9780470920503-ch02.indd 32 12/24/10 12:30 AM12/24/10 12:30 AM

33 Chapter 2: Creating a Compelling User Experience

view, and if you need to provide additional information or tools in an auxil-
iary view, you can employ a popover (a view that appears on top of the main
view) so that users don’t have to leave the context of the main task.

Focusing on the task at hand
What most of the really good iPad apps have in common is focus: They
address a well-defined task. The best iPad apps give people innovative ways
to interact with content while they perform a clearly defined, finite task.
You should resist the temptation to fill the display with features that aren’t
directly related to the main task. Concentrate instead on ways to amplify the
user experience, without diluting the main task with extraneous features.

For example, a book-reader app that also allows people to keep track of read-
ing lists shouldn’t make people leave the book page to view another screen
to manage their reading lists. Rather, the app should put the list in a translu-
cent popover that appears above the page and should allow people to copy
favorite passages into it. In a football game app, users should be able to see
information about characters without leaving the Field view.

The content itself then, especially for here-and-now apps, must be stream-
lined and focused on the fundamental pieces of the task. Although you can
provide a near-infinity of detail just to get a single task done, here’s a word
to the wise: Don’t. You need to extract the essence of each task; focus on the
details that really make a difference.

When you’re using a good app, every piece of the app is not merely impor-
tant to the task, but also important to where you are in the task. For example,
if you’re trying to decide how to get to central London from Heathrow, the
app shouldn’t offer detailed information about the Tube until you need it.

Maintaining consistency
with the user’s world
Great apps are based on the way people — users — think and work. When
you make your app a natural extension of the user’s world, it makes the app
much easier and more pleasant to use and to learn.

Your users already have a mental model that describes the task your soft-
ware is enabling. The users also have their own mental models of how the
device works. At the levels of both content and user interface, your app must
be consistent with these models if you want to create a superb user experi-
ence (which in turn creates loyalty to your app).

06_9780470920503-ch02.indd 3306_9780470920503-ch02.indd 33 12/24/10 12:30 AM12/24/10 12:30 AM

34 Part I: Planning the Killer App

The user interface in iPadTravel411 was based on how people divide the
tasks they need to do when traveling, especially when arriving at an airport
such as London’s Heathrow. Here are typical categories:

 ✓ See a map of the territory. You’d want to see a map right away that
shows your current location and lets you pin other locations on it (such
as your hotel) so you can find them quickly.

 ✓ Deal with foreign currency. You need to know how much it really costs
to convert money and buy things abroad.

 ✓ Check the current weather and forecast. You don’t want to walk out-
side the airport terminal into a driving rainstorm without your coat on,
and you want to know what to expect over the next few days.

 ✓ Look up events. You may want to check any special events happening
while you’re in the city so that you can avoid traffic around them or find
out the schedule for an event you’re attending.

 ✓ Find transportation. You want to know how to get to and from the air-
port with maximum efficiency and minimum hassle, as well as how to
get around the city.

This is only a partial list, of course. Chapter 13 gets into the iPadTravel411
application design in more detail.

You can divide the tasks in other ways, but anything much different would be
ignoring the user’s mental model, which would mean the app wouldn’t meet
some of the user’s expectations. It would be less pleasant to use because it
would impose an unfamiliar way of looking at things instead of building on
the knowledge and experiences those users already have. Basing your app on
how the user interacts and thinks about the world makes designing a great
user interface easier.

Modeling apps on real-world metaphors
When possible, model your application’s objects and actions on objects
and actions in the real world. For example, the Settings app displays on-off
switches you can slide to turn things on or off. Many e-book readers let you
flick the screen as if it were a paper page.

All these interface details are based on physical counterparts in the real
world. You need to help people focus on the content, and one way is to
design your app as a subtle frame around the information they’re interested
in, like the App Store app. In the App Store, the content (in this case, apps
for download) appears in a carousel that reminds one of a diner jukebox at
your table — and everyone who uses iTunes already knows how to navigate
through the album cover art choices.

06_9780470920503-ch02.indd 3406_9780470920503-ch02.indd 34 12/24/10 12:30 AM12/24/10 12:30 AM

35 Chapter 2: Creating a Compelling User Experience

Consider creating custom controls that subtly integrate with your app’s
graphical style. In this way, controls are discoverable, but not too conspicu-
ous. The car-driving metaphor in the Need for Speed Shift app (refer to
Figure 2-1, right side) is so right for a touch-sensitive display that it’s sexy:
You can shift gears with your finger and tap other controls that appear like
they belong on the dashboard while you cruise.

Engaging the user
While I’m on the subject of shifting gears, here are two more important
aspects of a compelling application: direct manipulation and immediate feed-
back. Here’s what’s so great about them:

 ✓ Direct manipulation makes people feel more in control. On the desk-
top, it means a keyboard and mouse; on the iPad, the Multi-Touch inter-
face serves the same purpose. In fact, using fingers gives a user a more
immediate sense of control; there’s no intermediary (such as a mouse)
between the user and the object onscreen. To make this effect happen
in your app, one way is to keep your onscreen objects visible while the
user manipulates them.

 ✓ Immediate feedback keeps the users engaged. Great apps respond to
every user action with some visible feedback — such as highlighting list
items briefly when users tap them.

Also, consider fading controls after people have stopped interacting with
them for a little while, and redisplaying them when people tap the screen.
This gives even more of the screen space to the content people want to see.

Because of the limitations imposed by using fingers, apps need to be very
forgiving. For example, you don’t want your app to pester the user to confirm
every action, but you also don’t want the app to let the user perform poten-
tially destructive, nonrecoverable actions (such as deleting all contacts or
restarting a game) without asking, “Are you sure?” It should also be obvious
to users how to stop a task that’s taking too long to complete.

Making it obvious
Although simplicity is a definite design principle, great apps are also easily
understandable to the target user. If you’re designing a travel app, it has to
be simple enough for even an inexperienced traveler to use. But if you’re
designing an app for foreign exchange trading, you don’t have to make it
simple enough for someone with no trading experience to understand.

06_9780470920503-ch02.indd 3506_9780470920503-ch02.indd 35 12/24/10 12:30 AM12/24/10 12:30 AM

36 Part I: Planning the Killer App

 Keep these points in mind as you plan and create your app:

 ✓ The main function of a good application is immediately apparent and
accessible to the users it’s intended for.

 ✓ The standard interface components also give cues to the users. Users
know, for example, to touch buttons and select items from popovers.

 ✓ You can’t assume that users are so excited about your app that they’re
willing to invest lots of time in figuring it out.

Early Macintosh developers were aware of these principles. They knew that
users expected that they could rip off the shrink-wrap, put a floppy disk in
the machine (these were really early Macintosh developers), and do at least
something productive immediately. The technology has changed since then;
user attitudes, by and large, haven’t.

 Your application’s text should be based on what the target user expects to
see. For example, if your user isn’t steeped in technical jargon, avoid it in the
user interface.

Avoiding jargon doesn’t mean that you have to dumb down the app. Here are
some guidelines:

 ✓ If you’re targeting your app toward people who already use (and expect)
a certain kind of specialized language, then sure, use the jargon in your
app. Just do your homework first and make sure you use those terms
correctly.

 For example, if your app is targeted at high-powered foreign-exchange
traders, it might use pip (price interest point — the smallest amount
that a price can move, as when a stock price advances by one cent). In
fact, a foreign-exchange trader expects to see price movement in pips,
and not only can you use that term in your user interface, you should.

 ✓ If your app requires that the user have a certain amount of specialized
knowledge about a task in order to use your application, identify what
that knowledge is upfront.

 ✓ If the user is an ordinary person with generalized knowledge, use ordi-
nary language.

 ✓ Gear your app to your user’s knowledge base. In effect, meet your users
where they are; don’t expect them to come to you.

Don’t underestimate the effect of the user interface on the people who are
trying to use it. A bad user interface can make even a great app painful to use.
If users can’t quickly figure out how to use your app or if the user interface is
cluttered or obscure, they’re likely to move on and probably complain loudly
about the app to anyone who will listen — or worse, give your app a lousy
review and a bad rating in the App Store.

06_9780470920503-ch02.indd 3606_9780470920503-ch02.indd 36 12/24/10 12:30 AM12/24/10 12:30 AM

37 Chapter 2: Creating a Compelling User Experience

Using stunning graphics
with aesthetic integrity
Appearance has a strong impact on how people perceive your app’s value.
As mentioned previously, an app that appears cluttered or illogical is hard
to understand and use. The high-resolution display supports rich, beautiful,
engaging graphics that can draw people into an application and make the
simplest task rewarding.

It’s a pretty safe bet that part of the appeal of the iPad to many people —
especially to nontechnical users — is aesthetic: The device is sleek, compact,
and fun to use. But the aesthetics of an iPad app aren’t just about how beau-
tiful your app is onscreen. Aesthetic integrity is about how well your app’s
appearance integrates with its function, as in the appearance of the car dash-
board and the windshield view in the Need for Speed Shift app.

An immersive app like Need for Speed Shift offers what users expect — a
beautiful appearance that promises a thrilling experience — but more impor-
tantly, its appearance is integrated with the task of driving a car, and the user
interface elements are designed carefully so that they provide an internally
consistent experience.

On the other hand, for productivity apps, you may want to keep decorative
elements subtle while giving prominence to the main task. One of the early
appeals of the prehistoric Macintosh and the recent iPhone was how simi-
larly all the applications worked. Use the iPad standard behavior, gestures,
and metaphors in standard ways. For example, users tap a button to make a
selection and flick or drag to scroll a list. iPad users understand these ges-
tures because the Apple-supplied apps use them consistently.

Fortunately, staying consistent is easy to do on the iPad; the frameworks at
your disposal have that behavior built in. This is not to say that you should
never extend the interface, especially if you’re blazing new trails or creating
a new game. For example, if you’re creating a roulette wheel for the iPad, why
not use a two-finger circular gesture to spin the wheel, even if it isn’t a stan-
dard gesture?

Designing the User Experience
It’s rare (except with sample apps) for an app’s user experience to be simply
a combination of some of the iPad’s basic experiences. But DeepThoughts,
which you build in Part IV, is simplicity itself. It displays whatever text the
user enters, and the mechanism for changing the text is just like most other
iPhone or iPod touch apps — touch the i (information) button or tap the

06_9780470920503-ch02.indd 3706_9780470920503-ch02.indd 37 12/24/10 12:30 AM12/24/10 12:30 AM

38 Part I: Planning the Killer App

display itself, and tap the text field to use the onscreen keyboard. As you
build DeepThoughts, you discover how to use the basic building blocks of
the iPad user experience.

The iPadTravel411 app in Part V presents a more complex set of problems.
A traveler doesn’t need a lot of information at any one time. In fact, the user
wants as little info as possible (just the facts ma’am) but as current as pos-
sible. It doesn’t help to have last year’s train schedule.

To get the design ball of your application rolling, start thinking about what
your user will want from the application — not necessarily the features, but
what the experience of using the application should be like.

Understanding the real-world context
You can reach the goal of seamlessness and transparency by following some
very simple principles when you design the user experience — especially
with respect to the user interface.

Become the champion of relevance
There are two aspects to this directive:

 ✓ Search and destroy anything that isn’t relevant to what the user is doing
while he or she is using a particular part of your application.

 ✓ Include — and make easily accessible — everything a user needs when
doing something supported by a particular part of your application.

You want to avoid distracting the user from what he or she is doing. The
application should be integrated into the task, a natural part of the flow, and
not something that causes a detour. Your goal is to supply the user with only
the information that’s applicable to the task at hand. If your user just wants
to get from an airport into a city, he or she couldn’t care less that the city has
a world-renowned underground or subway system if it doesn’t come out to
the airport.

Seconds count
At first, the “seconds count” admonition may appear to fall into the “blinding
flash of the obvious” category — of course a user wants to accomplish a task
as quickly as possible. If the user has to scroll through lots of menus or figure
out how the app works, the app’s value drops exponentially with the amount
of time it takes to get to where the user needs to be.

06_9780470920503-ch02.indd 3806_9780470920503-ch02.indd 38 12/24/10 12:30 AM12/24/10 12:30 AM

39 Chapter 2: Creating a Compelling User Experience

But there are also some subtleties to this issue. If the user can do things as
quickly as possible, he or she is a lot less distracted from the task at hand —
and both results are desirable. If your app’s user switches to another app and
then back to your app, your app should be in the same state it was in before
the user quit — showing the same views and information (such as the map in
iPadTravel411, which shows the same location you just viewed).

Combine these ideas and you get the principle of simply connect: You want
to be able to connect easily whether that connection is to a network, to the
information you need, or to the task you want to do. For example, a friend
of mine was telling me he uses his iPad when watching TV so he can look up
things in an online dictionary or Wikipedia. (He must watch a lot of public TV.)

Doing it better on the iPad
What you get by using the application has to have more value than alterna-
tive ways of doing the same thing.

The quality of information has to be better than the alternative
You can find airport transportation in a guidebook, but it’s not up to date.
You can get foreign exchange information from a bureau de change, but
unless you know the bank rate, you don’t know whether you’re being ripped
off. You can get restaurant information from a newspaper, but you don’t
know whether the restaurant has subsequently changed hours or is closed
for vacation. If the app can consistently provide better, more up-to-date infor-
mation, it’s the kind of app that’s tailor-made for a context-driven design.

The app has to be worth the real cost
By real cost, I don’t mean just the amount the user actually pays out — you
need to include the time and effort of using the app. The real cost includes
both the cost of the application and any costs you might incur by using the
application. This can be a real issue for an app that requires the Internet,
because international roaming charges can be exorbitant for using data ser-
vices to access the Internet. That’s why the app must have the designed-in
capability to download the information it provides and then to update the
info when you find a wireless connection.

Keep things localized
With the world growing even flatter (from a communications perspective,
anyway) and the iPad available in countries on every continent, the potential
market for an app is considerably larger than just the folks who happen to

06_9780470920503-ch02.indd 3906_9780470920503-ch02.indd 39 12/24/10 12:30 AM12/24/10 12:30 AM

40 Part I: Planning the Killer App

speak English. But having to use an app in a language you may not be com-
fortable with doesn’t make for transparency. This means that applications
have to be localized — that is, all the information, the content, and even the
text in dialogs need to be in the user’s language of choice.

Playing to the iPad’s Strengths
The following features of the iPad and its operating system are key to cre-
ating applications that go beyond the desktop and that take advantage of
context-based design:

 ✓ Sensing multiple fingers and multifinger gestures

 ✓ Tracking orientation and motion

 ✓ Displaying stunning graphics and images (which you can even show on a
connected TV or projection system)

 ✓ Knowing the location of the device and displaying a compass

 ✓ Playing digital content and recording sound (and, of course, syncing
with a computer for the content)

 ✓ Accessing the Internet via Wi-Fi or optional 3G service

There are others, of course, but you can expect to find many of these fea-
tures in an iPad app.

Sensing multifinger gestures
The iPad Multi-Touch display gives you lots of room for multifinger ges-
tures, including gestures made by more than one person. You can offer the
standard swipe, pinch, and rotation gestures, among others, and use other
gestures to trigger additional behavior, such as triple-tap and touch-and-
hold (also called long press). If your app offers an important task that users
perform frequently and want to complete quickly, you should probably use
only standard gestures, but if you’re designing an app that can measure up
to some of the iPad games, with realistic controls, multiplayer support, or an
environment for exploring, you should think about using custom or multifin-
ger gestures.

However, to maintain consistency with other iPad apps, use standard ges-
tures for standard behaviors. For instance, a pinching gesture should scale a
view, zooming it in and out; it should not be interpreted as, say, a selection

06_9780470920503-ch02.indd 4006_9780470920503-ch02.indd 40 12/24/10 12:30 AM12/24/10 12:30 AM

www.allitebooks.com

http://www.allitebooks.org

41 Chapter 2: Creating a Compelling User Experience

request, for which a tap is more appropriate. Stick with real-world models,
and in this case stick with the metaphors that have already appeared on the
iPhone: tapping iPod playback controls, sliding on-off switches, and flicking
through the data shown on picker wheels.

There are some limitations you need to be aware of. Fingers aren’t as precise
as a mouse pointer, and user interface elements need to be large enough and
spaced far enough apart so that the user’s fingers can find their way around
the interface comfortably. If you design interface elements to be integrated
with your graphics and images, be sure to make them large enough.

Tracking orientation and motion
When you rotate the iPad from a vertical view (portrait) to a horizontal
view (landscape), the accelerometer detects the movement and changes the
display accordingly. The iPad can also sense other motion using its built-in
accelerometer. Even in its simplest form, motion is useful: When entering text
or using the copy and paste functions, you can just shake the iPad to undo
the action.

Motion detection happens so quickly that you can control a game with these
movements. Although the accelerometer is used extensively in games, it also
has other uses, such as enabling a user to erase a picture or make a random
song selection by shaking the device.

Displaying stunning graphics and images
To rise above the inevitable swarm of new iPad apps, you’ll want to offer
graphics and images that truly take advantage of the display. The iPad dis-
plays 1,024 x 768 pixels, with up to 24 bits per pixel (8 bits each for red,
green, and blue), plus an 8-bit alpha channel, which specifies how the pixel’s
colors should be merged with another pixel when the two are overlaid one on
top of the other.

In most cases, you wouldn’t set the alpha channel on a pixel-by-pixel basis
in a drawing or painting program, but rather on an object-by-object basis, so
that different parts of the object would have different levels of transparency
depending on how much you wanted the background to show through. With
an alpha channel, you can create rectangular objects that appear as if they
are irregular in shape — you define the rectangular edges as transparent so
that the background shows through.

06_9780470920503-ch02.indd 4106_9780470920503-ch02.indd 41 12/24/10 12:30 AM12/24/10 12:30 AM

42 Part I: Planning the Killer App

 Always create your artwork in a larger multiple of the pixel dimensions you
need, so that you can add depth and details before scaling it down accurately
to the iPad display size. That way your graphics and images crackle and snap
with clarity and color.

Playing and recording content
The iPad evolved from the iPod, in which content is king. Not only can your
app play music and videos, it can also record voice-quality (actually tele-
phone-quality) sound with its built-in microphone, or higher quality through
external microphones. A number of audio-mixing apps have already made
their debut in the App Store. The iPad can sync images from your computer’s
Photo library, send and receive images and video clips by e-mail, and share
multimedia content through the MobileMe service.

Knowing the location of the device
Because the device knows its own location (and hence, the user’s location),
you can further refine the context by including the actual physical location
and adding that to the relevance filter. If you’re in Rome, the application can
ask the user whether he or she wants to use Rome as a filter for relevant
information (so that when in Rome . . .).

Because the iPad knows where it is, apps can make use of this information to
present content that is closer to the user. The feature isn’t just for travel —
apps that have nothing to do with travel, such as an app that shows you
the movies playing in your area, may still use location to improve the user
experience.

Accessing the Internet
Accessing the Internet allows you to provide real-time, up-to-date information.
In addition, it enables you to transcend the CPU and memory limitations of the
iPad by offloading processing and data storage out to a server in the clouds.

Of course, there’s always a possibility that the user may be out of range, or
on a plane, or has decided not to pay exorbitant roaming fees for 3G and isn’t
close enough to a Wi-Fi hotspot. You need to account for that possibility in
your application and preserve as much functionality as possible. This usually
means allowing the user to download and use the current real-time informa-
tion, where applicable.

06_9780470920503-ch02.indd 4206_9780470920503-ch02.indd 42 12/24/10 12:30 AM12/24/10 12:30 AM

43 Chapter 2: Creating a Compelling User Experience

Avoiding Practices that
Get Apps Rejected

Apple exerts control over the app-development and App Store ecosystem,
and if you want to play ball in Apple’s ballpark, you have to, well, play ball.
No matter how many developers complain about Apple’s rejection policies,
there will always be more developers willing to follow the guidelines. All
you need to do is read the documentation, steer away from the Apple trade-
marks and images, and stay away from content that’s questionable in any
legal sense. By keeping those things in mind, you can make design decisions
about your app now, before developing the app, which can save you time and
money later.

Some people believe Apple has not only a right, but also an obligation, to
police the App Store and reject questionable apps, if only to build trust with
consumers. Anacharsis, one of Greek mythology’s Seven Wise Men, warned
people that the market is “the place set apart where men may deceive each
other.” Given the way the iPad can be integrated into your everyday life and
communications, a malicious app could do considerably more damage than a
similar one on a desktop computer.

But Apple also wants the user experience to be a rewarding one, as well as
one that’s consistent with the way Apple designed its own apps and OS. And
that makes perfect sense for a company that wants to expand its ecosystem
and user database so that it can continue to invest in research and keep inno-
vation on the front burner.

So what kinds of things will get your app bounced before it ever has a chance
to shine in the App Store? Here are just a few:

 ✓ Linking to private frameworks: Apple rejects apps that call external
frameworks or libraries that contain non-Apple code, unless Apple has
previously approved their use. In addition, you can’t download inter-
preted code to use in an app except for code that is interpreted and run
by Apple’s published APIs and built-in interpreters. Private frameworks
and interpreted code may hide functions that Apple would want to know
about. (Some private frameworks have been found to mine personal
information from iPhone users without their knowledge.)

 ✓ Straying too far from Apple’s guidelines: When I submitted my iPhone
app (Tony’s Tips for iPhone Users), it was initially rejected because the
app used highlighting in a menu in a way that did not conform to Apple’s
guidelines. Be sure to follow the guidelines that are published in the iOS
Dev Center (which you find out how to access in Chapter 4).

06_9780470920503-ch02.indd 4306_9780470920503-ch02.indd 43 12/24/10 12:30 AM12/24/10 12:30 AM

44 Part I: Planning the Killer App

 ✓ Copying Apple’s existing functionality: Although you should use the
functionality provided for developers, you shouldn’t simply copy some-
thing that Apple already does. Mini Web browsers — apps that essen-
tially show Web pages and do little else — are particularly vulnerable.
For example, a simple iPhone app that duplicated the functionality of
Safari’s bookmark button was rejected.

 ✓ Using an inappropriate keyboard type: If your app needs a phone
number or other numeral-only input, and it presents a keyboard that
also includes the possibility of entering standard alphanumeric input, it
will most likely be rejected.

 ✓ Being oblivious about whether your user lost a connection: The iPad is
all about using the Internet. If your app uses a network connection, it is
your app’s responsibility to tell the user if and when his or her iPad loses
its network connection while using your app.

Now that you have some idea about what Apple expects of you — in terms
of designing and developing your app — it’s time for you to find out what to
expect of Apple in terms of supporting your development efforts. Next, you
should find out the marketing challenges for apps in the App Store and even
more practices that could either enhance or inhibit your ability to effectively
distribute your apps. So, onward to the next chapter, where you find out all
about the App Store and your chances of success with it.

06_9780470920503-ch02.indd 4406_9780470920503-ch02.indd 44 12/24/10 12:30 AM12/24/10 12:30 AM

Chapter 3

The App Store Is Not Enough
In This Chapter
▶ Reaching potential iPad customers

▶ Measuring the success of marketing campaigns

▶ Analyzing customer activity

▶ Enabling in-app purchases

▶ Integrating iAds (interactive advertisements) in your apps

▶ Making a business out of iPad software development

Peter Drucker, known as the father of modern management, is also
known for pointing out that business has only two functions: innova-

tion and marketing. Because most of this book is about innovation, I need to
spend at least one chapter explaining why so many developers don’t make
enough money from iPad, iPod touch, and iPhone apps, and what you can do
to mitigate the complex issues surrounding the marketing of these apps.

Apple will list your application along with at least 20,000 iPad apps and
225,000+ iPhone apps already listed in the App Store — remember that an
iPad can also run all iPhone and iPod touch apps. Yes, it’s wonderful that
Apple takes only 30 percent of the sales price and takes care of hosting,
downloading, credit-card processing, and notifying users of updates. And
if you remember the early days of developing for game machines, you may
appreciate the fact that Apple lets you name your own price for your app.
You can even distribute an app for free. What you can’t do, and perhaps this
is a good thing, is pay for preferential treatment. And as of this writing, Apple
doesn’t accept advertising within the store, but it does offer a version of the
iAds program for developers to advertise in other apps.

The App Store lists the top paid and free apps in each category, and it lists
the newest apps by release date, but unless your app is already successful
and in the top paid or top free lists, your app’s fleeting appearance in the list
sorted by release date may provide only a short spike in sales — unless you
prepare yourself to take advantage of it by applying some of the methods in
this chapter.

07_9780470920503-ch03.indd 4507_9780470920503-ch03.indd 45 12/24/10 12:30 AM12/24/10 12:30 AM

46 Part I: Planning the Killer App

The trouble with using any kind of technology to reach customers is the
same, old or new: measuring the results. “Half the money I spend on advertis-
ing is wasted,” according to a famous remark by John Wanamaker, founder of
the first department store in Philadelphia (one of the first department stores
in the United States) in 1861. “The trouble is, I don’t know which half.”

Why People Buy Apps
from the App Store

Why are people adopting consumer apps in ever-larger numbers? Based on a
Juniper Research study from July 2010, app downloads are expected to rise
to more than 25 billion in 2015. Resolve Market Research conducted a survey
to find that the number one reason to own an iPad is “It’s an entertaining
and cool device.” One of the most popular paid apps is Friendly – Facebook
Browser — people prefer to pay for the app rather than use the iPad’s free
Safari browser to go to Facebook’s site.

Choosing to download apps is a lifestyle decision. People like to adopt a new
lifestyle that changes the way they live and work. While many of the older
generations saw the wonder of the Internet and still think in terms of con-
necting to the Web and using a browser — and still pull out credit cards to
type the numbers when we order products — newer generations born with
the Internet assume they are already connected. They use apps more than
the browser, and they find credit cards inconvenient — they are used to
simply clicking to pay for things. Apps make them far more powerful in their
daily lives, and they are hungry for apps that can positively affect their lives
and their work. Apps that are not cool, or don’t really have much of an effect
on their lives, are mostly ignored.

The decision to download iPad apps for work and play is not so much a matter
of convenience. It is the positive effect apps have on people’s lives — the
immediacy of sharing with others, the exhilaration of being fashionable with
the coolest apps, and the real-time control they feel when they use these apps.

The App Store is, of course, the only place to download iPad apps. (I’m not
getting involved in the whole issue of sites that sell apps for “jailbroken” or
otherwise hacked iPads, which is another topic.) Apple has created an eco-
system around the iOS platform for the iPad, iPhone, and iPod touch that
opens it up equally to all developers for true innovation.

A major factor in the developer community’s acceptance of Apple’s “one-stop
shop” is the App Store’s equal treatment of all customers. This equal treatment
is a fact of life today in all but the most posh stores, but it was an innovation
in John Wanamaker’s store in 1861. Wanamaker created the price tag because

07_9780470920503-ch03.indd 4607_9780470920503-ch03.indd 46 12/24/10 12:30 AM12/24/10 12:30 AM

47 Chapter 3: The App Store Is Not Enough

he believed that if everyone was equal before God, then everyone should be
equal before price. (He also invented the cash refund and guaranteed the
quality of his merchandise in print.) Apple has also established trust with its
customers by screening apps before listing them and enforcing guidelines
among app developers for a “quality experience” for consumers. And, of
course, the price tag is right up front.

Speaking of a quality experience, people are attracted to new technologies
just for the experience. Wanamaker embraced innovation as early as possible
to attract customers with a new experience — his was the first department
store with electrical illumination (1878), the first with a telephone (1879), and
the first to install pneumatic tubes to transport cash and documents (1880).
Today, people are attracted to the App Store’s use of technology, its ease of
use, and this highly innovative form of shopping-on-demand right from your
mobile device.

There is no substitute for combination of trust, equal treatment, and a high-
quality experience. The App Store is the place to list your iPad, iPhone, and
iPod touch apps. Marketing them, however, is entirely up to you.

Finding out how to reach
your potential customers
The App Store is right at your iPad customers’ fingertips. Tap the Featured
button on the bottom row of buttons, and the Featured screen appears, show-
ing highlighted apps at the top, as shown in Figure 3-1. More apps appear
under the New and Noteworthy heading. Featured, Top Charts, Categories, and
Updates buttons appear along the bottom, ready to entice potential customers.

The Featured screen also includes the What’s Hot button at the top, showing
the most popular apps based on downloads. The Featured screen’s New and
Noteworthy list and the What’s Hot list are where early adopter customers
go to buy on impulse. Your app may make a brief appearance in the New and
Noteworthy list when you release it, only to be crowded out almost immedi-
ately by more new apps. There are, by my rough estimates as of this writing,
about nine iPhone and iPod touch apps born in the App Store every hour of
every day, and the developers are just getting started with iPad apps, which
double or triple this rate.

But if you’ve properly categorized your app, it should appear in the list of
apps on the screen devoted to that category. Attaching your app to the
appropriate category, as I describe in Chapter 6, is extremely important.
Customers looking for a social networking app tap the Social Networking cat-
egory to find the apps they’re looking for.

07_9780470920503-ch03.indd 4707_9780470920503-ch03.indd 47 12/24/10 12:30 AM12/24/10 12:30 AM

48 Part I: Planning the Killer App

Figure 3-1:
The App

Store app’s
Featured

screen.

The Top Charts screen is for those customers who need to catch up to the
early adopters and only have time to look at the most popular apps of all
time. Your app will not reach these lists unless you’ve engaged in a success-
ful marketing strategy.

Of course, everything you do to show off your app — describing its functional-
ity and showing screen shots of the app in action — will impact a customer’s
initial perception of your app. You should write your description with a focus
on what makes the functionality or design of your app unique, and leave out
the price information (which will differ from country to country anyway). Use
engaging screen shots that demonstrate the special capabilities of your app.
Don’t use words like “sale,” “lite,” or “free” in your app icon. And make sure
you have a functioning Web site with content about and support for your app,
because you supply a link to it on your app’s page in the App Store.

Some customers will take the time to tap the Search entry field in the upper-
right corner (refer to Figure 3-1) to bring up the onscreen keyboard and
search the store. As they type a keyword you assigned to your new app, or
something close to its name, your app should pop up right away as a sugges-
tion. It’s therefore extremely important to use an appropriate name for your
app (with terms that people might search for) and to assign appropriate key-
words, as shown in Chapter 6.

07_9780470920503-ch03.indd 4807_9780470920503-ch03.indd 48 12/24/10 12:30 AM12/24/10 12:30 AM

49 Chapter 3: The App Store Is Not Enough

 Many developers choose to develop a free version of an app in order to draw
attention to the paid version. Free apps are more likely to be downloaded
because, well, they’re free. And according to AdMob, upgrading from the free
version was the top reason given when iPhone and iPod touch users were
asked what drives them to purchase a paid app. However, a free version of a
paid app must be a fully functional app — see “Publishing free and paid ver-
sions” in this section for details.

The In App Purchase feature offers users the opportunity to buy other apps,
merchandise, game levels, premium features, e-books, and so on from right
within the app. (See the “Deploying the In App Purchase Feature” section,
later in this chapter, for more.) You may also want to consider offering your
customers an incentive, such as free deals through the In App Purchase fea-
ture, if they tell their friends about your app. Anyone browsing the App Store
can choose Tell a Friend from the Buy App pop-up on the app’s information
screen in the store to send the app information in an e-mail.

Besides getting your app listed in the App Store’s lists, there’s no way
through Apple to reach potential customers. You need to consider all meth-
ods of reaching customers, and you need to price your app according to
what your target customer expects, which is a primary topic of the section
“Marketing 101: Pricing your app.”

Marketing 101: Pricing your app
The literature about marketing could probably fill all the Trump Towers in
the world, but if you want to learn about marketing quickly, there are at least
two iPhone apps for that. Marketing Master and MarketingProfs, both free in
the App Store, walk you through the basic concepts, and even though you
certainly could do better by enrolling at Wharton (where the first Marketing
101 course was taught in 1909), it’s a place to start.

Marketing is setting up a strong bait attraction system that generates leads,
sorts those leads into qualified prospects, and then turns those prospects
into customers. Besides fishing for the right prospects, you have to convince
them to buy your app — in other words, “ABC, always be closing” (as the Alec
Baldwin character so succinctly put it in the movie Glengarry Glen Ross).

One of the biggest lessons of Marketing 101 is to determine your target audi-
ence for your product. Assemble as much information about your target
customer as possible — demographics, education, income level, and so on —
because this information will influence all your marketing decisions, from the
text you write in your descriptions and ads to the channels you use to dis-
tribute your message.

07_9780470920503-ch03.indd 4907_9780470920503-ch03.indd 49 12/24/10 12:30 AM12/24/10 12:30 AM

50 Part I: Planning the Killer App

Another big lesson is to determine the cost of acquiring new customers.
The simple math here is to divide all the dollars you spend in marketing per
month by all the new dollars you receive each month in sales. When you
know this, then you need to figure out how much you should be spending.
To figure that out, you need to know how much your customers are worth to
you — the lifetime value of your customer. The secret to increasing the life-
time value of your customer is to increase the quality of the customer experi-
ence, thereby encouraging repeat business. You’re not in the app game to do
just one app for the iPad; you need to develop more apps for the iPad (and
possibly apps for the iPhone and iPod touch) and build a customer base that
will be happy to buy them.

Although it’s too early to predict iPad customer behavior, keep in mind that
iPhone users download approximately ten new apps a month, according to
AdMob, and those who regularly download paid apps spend approximately
$9 on an average of five paid downloads per month. You need to attract
the right people, not just anyone — potential customers are those who will
understand the value of your app (also known as the value proposition, other-
wise known as “what’s in it for me?”).

But at what price? Much has been written about iPhone and iPod touch app
pricing strategies, and these theories haven’t changed much with the iPad.
At the beginning of the iPhone gold rush, pricing an app at $0.99 helped to
get the app into the Top 100. But now, with hundreds of thousands of iPhone
apps that already run on the iPad, and iPhone developers scrambling to
design iPad versions, that’s no longer true. All good marketers know that
price is never a good selling point; anyone can come along and be cheaper.
A better approach is to determine the true value of the app. People will pay
for quality — and as more business apps become available, their prices will
likely reflect their value.

The best approach is to check out similar apps, especially competing ones
(if any). Remember how costly it is to acquire customers. Starting at a higher
price gives you some room to offer discounted prices at different times, such
as the Black Friday and Cyber Monday that follow Thanksgiving, or the start
of the annual Apple Developer Conference.

Publishing free and paid versions
It’s tempting to publish a free, slightly crippled version of your app that
upsells the customer to the paid version. But in so many cases in the world
of desktop computing, crippled free apps have been annoying and even mis-
leading. It’s not that Apple doesn’t want you to promote your apps through
your other apps — Apple just wants you to do it a certain way.

07_9780470920503-ch03.indd 5007_9780470920503-ch03.indd 50 12/24/10 12:30 AM12/24/10 12:30 AM

www.allitebooks.com

http://www.allitebooks.org

51 Chapter 3: The App Store Is Not Enough

The free version of your paid app must be a fully functional app. A free ver-
sion can’t appear to be crippled, with visually disabled buttons or sections.
You also can’t display the price of the paid version inside the free app. A free
app can have fewer features than the paid version, but the free version must
be a complete app in its own right, and you can’t badger the free app’s users
with reminders to upgrade to the paid version. Tricks like these will get your
free app rejected. Also, you must use a different icon for the free and paid
versions of your app, so that consumers can easily distinguish them.

These limitations should not prevent you from deploying a free app that
gently enables users to discover the paid version. Also, consider deploying
a basic free app that offers paid levels or feature sets through the In App
Purchase feature. (See the section “Deploying the In App Purchase Feature,”
later in this chapter.) And you can always take advantage of Apple’s iAds for
Developers program and buy ads to promote your apps. (See the “Putting
iAds in Your App” section, later in this chapter.)

Knowing Your Customers
One of the biggest problems facing the iPad, iPod touch, and iPhone app
marketer is that the App Store doesn’t tell you who your customers are. Sure,
you know how many customers you have, and you also know from which
countries, and how many of them have updated your app (if you provided an
update). You even know how much they spent. What you don’t know, how-
ever, can hurt you. How can you possibly build relationships with customers
you don’t know?

The vast majority of iPhone and iPod touch apps downloaded from the App
Store are in use by less than 5 percent of users a month after download-
ing, according to Pinch Media (now merged with Flurry Analytics at www.
flurry.com). Just 20 percent of users return to run a free application one
day after downloading. As time goes by, that decline in usage continues,
eventually settling below 5 percent after one month and nearing 0 percent
after three months.

 Category matters, too — games are used for longer periods than any other
genre. Pinch Media found the long-term audience for the average app is just 1
percent of the total number of downloads.

So customer loyalty is hard to build. It’s difficult to determine whether a
user’s positive experience with your app will translate into sales of your next
app or your more expensive desktop app. There are no guarantees. You need
to get as much data about your customers as you can find.

07_9780470920503-ch03.indd 5107_9780470920503-ch03.indd 51 12/24/10 12:30 AM12/24/10 12:30 AM

52 Part I: Planning the Killer App

You may want to add a link to a Web page that offers an optional customer
registration process. You could then ask questions during this process to
get more information about your customer. You probably need to offer some
kind of incentive to get your customers to register, such as credit toward an
in-app purchase, or an exclusive service — for example, in my app Tony’s
Tips for iPhone Users, I offer registered customers access to a support forum
in which they can ask me specific questions about using the iPhone.

Tracking downloads
You use iTunes Connect, described in Chapter 6, to submit apps to the App
Store and manage apps in the store. Apple releases daily sales data about your
app in iTunes Connect, which you can view online (or download as reports),
with details on how many were sold and in which country, and your profit.

To find the information, first follow the instructions in Chapter 4 to register
as an Apple developer and join the iOS Developer Program. After you’ve built
and submitted your app and it is approved and selling in the store, log in to
iTunes Connect (as explained in Chapter 6) and click the Sales and Trends
link, as shown in Figure 3-2.

Figure 3-2:
Visit iTunes

Connect and
click Sales

and Trends.

07_9780470920503-ch03.indd 5207_9780470920503-ch03.indd 52 12/24/10 12:30 AM12/24/10 12:30 AM

53 Chapter 3: The App Store Is Not Enough

The Sales and Trends page appears, which should look a lot like what you
see in Figure 3-3 (only with better sales figures, I hope) — if not, click the
Dashboard button. You can then click Daily to see a bar chart of today’s
sales. Click Weekly and then choose a week in the Week pop-up menu to see
sales for that week. If you offer free apps or use In App Purchase, click those
options on the right side to see the sales trend for those (or Updates to see
app updates). The Sales Trend page also lists your top paid apps and the top
markets where each of your apps sells.

To download reports, click the Sales button (next to the Dashboard button).
You can then choose Daily or Weekly (and choose a week in the Week pop-up
menu) and click the Download button, as shown in Figure 3-4. You can import
these reports into any spreadsheet program, like Excel or iWorks Numbers.

Want to check your iTunes Connect sales on the go? Download the iTunes
Connect app for your iPhone or iPod touch. (You don’t need an app for the
iPad because the iPad can already display the full iTunes Connect screen in
Safari.) Tap Summary in the row of buttons along the bottom of the screen to
see a summary of all paid and free apps, In App Purchases, and updates. Tap
Markets, and then tap Sales to see sales charts, or tap Updates to see prog-
ress with your app updates, segmented into different markets.

Figure 3-3:
Click

Dashboard
to see bar
charts of

your sales
for the day

or week.

07_9780470920503-ch03.indd 5307_9780470920503-ch03.indd 53 12/24/10 12:30 AM12/24/10 12:30 AM

54 Part I: Planning the Killer App

Figure 3-4:
Choose
Daily or
Weekly

reports to
download.

 Some savvy developers out there have come up with a number of desktop
applications that have been designed to download and graph the iTunes
Connect sales data for you. For example, AppViz (www.ideaswarm.com/
products/appviz) is a Mac application that can import the reports from the
Web or from a downloaded file, and it displays charts of your daily, weekly,
and monthly sales. appFigures (www.appfigures.com) is a Web-based solu-
tion for tracking app sales, and it can download and graph your reports from
iTunes Connect.

Adding analytical code to your app
There are several analytics options for iPad, iPod touch, and iPhone apps if
you’re willing to compile the necessary code into your app.

For example, Flurry Analytics (www.flurry.com), formerly Pinch Analytics, is
used in thousands of popular apps because it can track any action anywhere in
your app. Armed with this information, you can fine-tune the user experience
in your updates and offer new features to try to catch usage drop-off as early as
possible and retain more customers. You can also measure all types of revenue,
from paid downloads and subscriptions to advertising and in-app purchases.

AdMob, now part of Google, offers AdMob Analytics (http://analytics.
admob.com), a service that works with your Web site to track customers
that access pages on the site through your app. All you have to do is install a

07_9780470920503-ch03.indd 5407_9780470920503-ch03.indd 54 12/24/10 12:30 AM12/24/10 12:30 AM

55 Chapter 3: The App Store Is Not Enough

code snippet onto each page you want to analyze, and AdMob does the rest.
When your app requests a page from your site, your server passes analytics-
related data to AdMob, which processes your data and makes it available on
its site. AdMob can track the number of unique visitors and pages consumed
on your site, and it can monitor user engagement metrics such as the length
and depth of each visit.

Deploying the In App Purchase Feature
Apple offers the In App Purchase feature, which developers can deploy in
their apps to give their users the ability to purchase virtual items directly
from inside the app. If you’re developing a game app with multiple levels or
environments, or virtual property, consider adding In App Purchase to your
app to sell more levels, environments, or property — the Eliminate app from
ngmoco:) (yes, that’s the developer’s username) is a good example of an
iPhone app that does this.

If you’re developing a specialized e-book reader, use In App Purchase to sell
your specialized e-books. Even if you’re developing a productivity or travel
app, you can deploy In App Purchase to sell additional premium features —
Magellan RoadMate for the iPhone, for example, offers spoken street names
and directions, and SkyVoyager Expansion Pack (Carina Software) is avail-
able for sale within SkyVoyager as an In App Purchase.

It’s important to note that In App Purchase collects only payment. It doesn’t
download the e-book, add the game level, or hand over the virtual property.
You need to provide the additional functionality, including unlocking built-in
features or downloading content from your servers.

You put the In App Purchase store directly in your app using the Store Kit
framework. (For more about frameworks, see Chapter 7.) The Store Kit frame-
work connects to the App Store on your app’s behalf to securely process the
user’s payments.

You use iTunes Connect to set up your products the same way you set up
new apps. In App Purchase supports four types of products:

 ✓ Content: You can offer game levels, virtual property, and characters;
digital books and magazines; photos and artwork; in short, any content
that can be delivered within your app.

 ✓ Functionality: You can unlock or expand features you’ve already deliv-
ered in your app, such as a game that offers multiple smaller games for
purchase. This is one alternative to publishing a free app in order to pro-
mote a paid app — publish a free app with paid extra features.

07_9780470920503-ch03.indd 5507_9780470920503-ch03.indd 55 12/24/10 12:30 AM12/24/10 12:30 AM

56 Part I: Planning the Killer App

 ✓ Services: You can charge users for a one-time service, such as voice
transcription — each time the service is used, In App Purchase pro-
cesses it as a separate purchase.

 ✓ Subscriptions: You can provide access to content or services on a sub-
scription basis, such as a finance magazine or an online game portal.
You’re responsible for tracking subscription expirations and renewal
billing — the App Store doesn’t send out renewal notices for you.

Although the In App Purchase feature provides a general mechanism for cre-
ating products, everything else is up to you. You can’t sell real-world goods
and services; you can sell only digital content, functionality, services, or sub-
scriptions that work within your app. No intermediary currency is allowed
(such as a virtual world’s currency), and you can’t include real gambling
(although simulated gambling is okay). And it goes without saying that por-
nography, hate speech, and defamation are not allowed.

In App Purchase divides the responsibilities of selling products between your
app and the App Store, handling only the payment portion. Here’s how it
works: Your app retrieves the list of product identifiers (set up with iTunes
Connect) from its bundle. (You find out more about adding a bundle to your
app in Chapter 16.) The app sends a request to the App Store for localized
information about the products. Your app then displays this information in
a store format, so that users can purchase items. When a user elects to pur-
chase an item, your app calls Store Kit to collect payment. Store Kit prompts
the user to authorize the payment and then notifies your app to provide the
items the user purchased.

You can provide the content within your app binary (the file you submit to
the App Store that contains your app, as I show in Chapter 6), and enable it
when the user makes a purchase. Or, you can download the content from
your servers for use by your app when the user makes a purchase.

Be sure the purchased items are available in all instances of your app running
on all the devices the user owns (iPads, iPhones, and iPod touch models),
even after your app is deleted from a device, reinstalled, or downloaded
to a new device. To restore purchased items on a new device or after your
app is reinstalled using the Store Kit framework, your app calls the payment
queue’s method for restoring completed transactions. A transaction will be
created and delivered for each already purchased item — your app can pro-
cess them as if they were new payment requests. The only exceptions are
consumable items that are used up or disappear after use (and can never be
reused). Examples of consumable items include virtual poker chips, in-game
ammunition, or virtual supplies such as construction materials. If you offer
such items, you need to mark them as consumable when you submit them via
iTunes Connect. It is “vitally important” (in Apple’s words) that you describe
the transient nature of these items in your item’s description. The Store Kit
does not restore consumable items.

07_9780470920503-ch03.indd 5607_9780470920503-ch03.indd 56 12/24/10 12:30 AM12/24/10 12:30 AM

57 Chapter 3: The App Store Is Not Enough

The details of the In App Purchase process is spelled out (in more detail than
I can go into here) in the In App Purchase Programming Guide, which you can
find in the iOS Dev Center — see Chapter 4 for instructions on registering as
a developer and exploring the iOS Dev Center.

Putting iAds in Your App
Free apps can still generate revenue. To put your free app to work, you need
to monetize the app with advertisements. The iAd Network offers you a
source of revenue — Apple sells and serves the ads that appear in your app,
and you receive 60 percent of the advertising revenue generated. You can
also exclude ads from competitors or other unwanted advertisers based on
specific keywords, URLs, and application Apple IDs.

The iAd Network provides an automated ad exchange for you to easily incor-
porate iAd rich media ads from advertisers into your app, monitor their
performance, and track revenue. The iAd Network is not the only one; you
can also place ads from AdMob (www.admob.com, now part of Google) or
Mobclix (www.mobclix.com) in your apps.

Ad exchanges act as online marketplaces for buying and selling advertising
impressions. Developers can earn income by “renting” space in their apps
(known as inventory) in an auction for advertisers, ad networks, and agen-
cies. The latter can maximize their click-through rates by bidding on pre-
cisely targeted audience segments. Thus, the more you know about your own
customers, the more ads you can get for your app that are precisely targeted
for more clicks (and therefore, more income).

To deploy iAds in your app, you first have to join the iAd Network by log-
ging into iTunes Connect (as described in Chapter 6). Click through the
Developer Advertising Services Agreement in the Contracts, Tax, and Banking
Information section. If you don’t already publish a paid app in the App Store,
you will be asked to set up your banking and tax information. (See Chapter 6
for details on that as well.)

You can then enable your app for iAd rich media ads in the Manage Your
Applications section within iTunes Connect, and set up your preferences in
the iAd Network section to exclude competitors or advertisers based on key-
words, URLs, and application Apple IDs.

iAd rich media ads are launched when a user taps on a dedicated section
within your app. The iAd Programming Guide, available from the iOS Dev
Center, describes how to dedicate a portion of your screen to display an
ad and how to change the banner size and orientation, and it explains how
your app should respond when a banner ad is touched. The iAd Framework

07_9780470920503-ch03.indd 5707_9780470920503-ch03.indd 57 12/24/10 12:30 AM12/24/10 12:30 AM

58 Part I: Planning the Killer App

Reference provides a list of tasks, methods, and protocols to use when devel-
oping your app to deliver iAd rich media ads.

You can also find more technical information about configuring your app to
offer iAd rich media ads in the iOS Application Programming Guide and the
View Controller Programming Guide for iOS.

Links Are Not Enough
It goes without saying that you have a Web page (or an entire site) devoted
to your app, and you’ve outfitted your site with keywords for search engine
optimization so that searches in Google result in your Web page appearing
on or near the first search page. You also use Google Analytics to measure
traffic. Reams have been written on this topic. (See Pedro Sostre and Jennifer
LeClaire’s Web Analytics For Dummies for one particularly good use of such
paper reams.)

When promoting an app, use well-written copy, good screen shots, quotes
from user reviews, and third-party recommendations. If you have the skills
or the budget, develop a quick video, upload it to YouTube, and put that on
your page.

 Don’t forget to display prominently on your Web page the Apple-legal App
Store badge that links visitors to the App Store on iTunes. You can find the
App Store Badging and Artwork page by clicking the Marketing Resources link
in the iOS Dev Center under App Store Resource Center in the right column —
see Chapter 4 for instructions on registering as a developer and exploring the
iOS Dev Center.

But Web page links are not enough. This ecosystem (of iTunes, the App Store,
the iPad, the iPhone, and the iPod touch) offers more than a few methods of
reaching potential customers, as discussed in the following sections.

Using iTunes affiliate links
Your App Store links should make you some spare change as well as tell you
a few things about your customers. The iTunes affiliate program gives you
links to put on your Web pages. When a visitor clicks this link and then buys
something in the iTunes Store (including the App Store), you get 5 percent.
Although that’s not much, it doesn’t hurt. You can add affiliate links to any
apps (or songs or videos) in the store, not just your apps.

You can put an affiliate link on your blog, on your friends’ Web pages, and
even in the signature of your e-mails. Anywhere that you would normally link
to your app in the App Store, replace it with your affiliate link.

07_9780470920503-ch03.indd 5807_9780470920503-ch03.indd 58 12/24/10 12:30 AM12/24/10 12:30 AM

59 Chapter 3: The App Store Is Not Enough

Another good reason to do this is to obtain more data. You can find out how
often visitors see your link, what percentage actually clicks on your link, and
where they come from. Apple uses LinkShare (www.linkshare.com), a fairly
popular affiliate manager. LinkShare also manages affiliate programs for AT&T,
LEGO, Macys.com, TigerDirect.com, and hundreds of other companies.

Making use of user reviews
Users are your friends, even when they’re bashing you in public.

The App Store customer review is one of the most valuable tools you have
to convince potential customers to buy your app. Only people who have
purchased your app can write a review. If you offer your users an optional
registration on a Web site or by e-mail (using incentives such as insider news,
discounts, or free stuff), you can use that opportunity to remind them to
write a review of the app in the App Store.

Even harsh reviews can be helpful, pointing out bugs that you may have not
previously uncovered or offering ideas for additional features and functions
you didn’t think of. You should use this information to prioritize your devel-
opment activities for future updates, and you can add information about
fixed bugs in the app’s description when you submit the update.

Going social
Social networking spreads the buzz about your app. One of the most popu-
lar techniques is to publicize your app on dozens of forums, including the
iPhone Blog Forum (http://forum.tipb.com), MacRumors Forums
(http://forums.macrumors.com), or iPhone Owners (www.iphone
owners.com), most of which cover iPad apps as well as iPhone and iPod
touch apps. New forums are springing up every week.

Spreading buzz is a time-consuming job. Developers often turn to profes-
sional PR agencies that can put out press releases and work the blogs and
forums for you. A good PR blast can drive thousands of sales within a few
days. But beware: Sales can fall off a cliff as new stories replace the old ones.

You should submit a press release about your app to the blogs and publica-
tions that directly serve your customers. You may not get attention for a
paid app without also including a promotional code so that the reviewer can
download the app for free. As of this writing, Apple gives you 50 promotional
codes for each version of an app; use them wisely because there are far more
than 50 general review blogs for iPad apps, and there may be thousands of
other blogs that serve your potential customers, such as travel blogs for cus-
tomers of a travel app.

07_9780470920503-ch03.indd 5907_9780470920503-ch03.indd 59 12/24/10 12:30 AM12/24/10 12:30 AM

60 Part I: Planning the Killer App

 Remember that each promotional code you request expires four weeks
after you requested it, so request only the number of codes you need at the
moment. After you’ve submitted your app’s information and promotional code
to a few blogs, go back and request more. These codes can be used only in the
U.S. iTunes Store.

To get your promotional codes, visit iTunes Connect and click the Request
Promotional Codes link. (Refer to Figure 3-2.) Then type the number of
codes you need, as shown in Figure 3-5, and click Continue. iTunes Connect
then provides the promotional codes to send in your e-mail or blog request.
Reviewers already know how to enter promotional codes into the iTunes
Store before buying an app.

Figure 3-5:
Request

promotional
codes to
give your

app away to
reviewers.

Buying advertising
Generating buzz through advertising is a time-honored tradition in market-
ing, dating back to ancient times when Egyptians used papyrus to make sales
messages and wall posters and when Roman emperors advertised military
victories and public works on coins.

The coins are a good example: They were mobile, the image appeared often
(at every transaction) to establish the “brand” of the emperor, and they
cross-promoted other victories and public works.

Branding is a topic covered in grandiose detail in enough books to fill at least
one Trump Tower. (Yup, there’s even Branding For Dummies.) Companies
with very recognizable brands tend to make free apps to promote the brand.

07_9780470920503-ch03.indd 6007_9780470920503-ch03.indd 60 12/24/10 12:30 AM12/24/10 12:30 AM

61 Chapter 3: The App Store Is Not Enough

You may want to consider creating a version of your app that you could
license or sell to a client company that then puts its recognizable brand on it.
Such an arrangement is called a white label deal because the client company
supplies the brand on the label.

If you’re publishing more than one paid app, the first place to advertise your
newest app is in your older apps — add links to cross-promote your other
paid app. It costs nothing and helps to build customer loyalty, just because
the customer can see that you’ve developed other apps. You would typically
use an “About” section in your app for these links, so that they are not obtru-
sive. Don’t display inactive or crippled functions in a free app that promotes
a paid version of the app — the free app won’t make it through the App Store
approval process.

Consider buying ads through Apple’s iAd for Developers Program, which was
set up for developers to advertise their apps in other apps using rich media
iAds. With iAd for Developers, users can download advertised apps from the
App Store without leaving the app they’re in. As the advertiser, you don’t
have many choices for customizing the targeting of your apps (as of this
writing) — but iAd for Developers will optimize your campaign to ensure the
right audience is viewing and interacting with your ads.

The iAds are rich media experiences within the app that act like mini Web
applications. You can use any standard Web technology to create an ad that
works in Safari on iOS, but you should use Apple’s iAd JS and the Native
Bindings libraries that are specifically designed for iOS. iAd JS is a JavaScript
library based on WebKit that provides the foundation to create ads that use
audio, the Multi-Touch interface, WebKit animations, and HTML5 video. iAd
JS provides a declarative interface (the interface can be described using an
XML document, rather than built using code), as well as other mechanisms to
load your iAds quickly on iOS. The Native Bindings library gives you access
to some Apple application functions that enable your iAd to integrate with
apps. For more details, consult the iAd JS Ad Creation Guide in the iAd JS
Reference Library. (Click the iAd JS Reference Library link in the iOS Dev
Center to get there.)

You can also buy ads on other mobile networks that offer ads in apps.
AdMob and Mobclix offer different ways to precisely target your ads. AdMob,
for example, offers a video ad unit that runs a dedicated video player inside
the app. The app’s users can engage with interactive campaigns without
leaving the video player. As the advertiser, you can also set up action but-
tons that let the app’s users share video content with friends and connect to
social networking sites — again, without ever leaving the video player. As an
advertiser, you have a choice of auto-play or click-to-play: The former plays
your video ads as soon as the app loads, whereas the latter requires the
app’s users to tap your banner in order to engage with the campaign.

07_9780470920503-ch03.indd 6107_9780470920503-ch03.indd 61 12/24/10 12:30 AM12/24/10 12:30 AM

62 Part I: Planning the Killer App

Another popular choice is Google AdWords. You can reach anyone that
searches on Google or on partner networks using any browser. There are
close to a google of books available on this topic. (Well, almost 100; try
Google AdWords For Dummies by Howie Jacobson.)

Getting publicity
Publicity offers the biggest payoff in the short term, and the best way to get
it is to pay an excellent PR firm. Good publicity can create a spike in sales
that could be misleading, but if you’ve implemented other marketing cam-
paigns to take advantage of it, sales could level out at a much higher rate
than before the publicity hit. The best of the PR firms can help you with your
entire marketing strategy.

But if you can’t afford that . . . publicity stunts work well if received well by
the public. Some of world’s most beloved annual events began their existence
as cheap publicity stunts. In 1903, publisher Henri Desgrange started a bicy-
cle road race as a publicity stunt to promote his newspaper, never imagining
that the Tour de France would be going strong more than 100 years later.
The Rose Bowl grew out of an 1890 stunt designed to promote Pasadena,
California; the Miss America pageant began in 1921 as a publicity stunt to lure
tourists to Atlantic City after Labor Day; and the Academy Awards began in
1929 as a cheap publicity stunt for the movie industry. As Lenny Bruce put it,
“Publicity is stronger than sanity: Given the right PR, armpit hair on female
singers could become a national fetish.” (It did, about 15 years later.)

If you can generate publicity, be sure to have a demo on hand — something
to titillate people whether they have their iPads in hand or not. Create a
video on YouTube and link it to your press release. Offer your app at a lower
price for a limited time period at the start of a publicity campaign. Leave no
stone unturned when looking for promotional opportunities as part of the
campaign. And make sure your demo works — a sacrifice to the demo gods
can’t hurt. Or just keep repeating the mantra from the patron prophet of
demos, Demosthenes: “Small opportunities are often the beginning of great
enterprises.”

07_9780470920503-ch03.indd 6207_9780470920503-ch03.indd 62 12/24/10 12:30 AM12/24/10 12:30 AM

Part II

Becoming a Real
Developer

08_9780470920503-pp02.indd 6308_9780470920503-pp02.indd 63 12/24/10 12:39 AM12/24/10 12:39 AM

In this part . . .
You can work at home alone, but it takes a village to

develop an iPad app — the Apple developer village.

You have to register as an Apple developer if you want to
get the Software Development Kit (SDK) and all the other
goodies that Apple provides for developers — and of
course, that means agreeing a confidentiality agreement.
And if you actually want to run your application on a real
iPad, you have to join the iOS developer program. This
part gets you through these processes and introduces you
to the SDK.

 ✓ Chapter 4 gets you into the Apple developer vil-
lage. You find out how to register as a developer,
join the program, explore the developer center on
the Web, and download the SDK.

 ✓ Chapter 5 goes into more detail about the SDK
itself. You learn all about Xcode and Interface
Builder, how to start a project from a template,
how to build and run an iPad app in the
Simulator, and how to customize Xcode to your
liking.

 ✓ Chapter 6 takes you by the hand through the
excruciating process of provisioning your iPad to
run your app during development, and the even
more inscrutable process of setting up your iPad
app for development and for submission to the
App Store. I put all this murky stuff into one chap-
ter so that you don’t have to hunt all over the
developer center and portal looking for it.

08_9780470920503-pp02.indd 6408_9780470920503-pp02.indd 64 12/24/10 12:39 AM12/24/10 12:39 AM

Chapter 4

Enlisting in the Developer Corps
In This Chapter
▶ Registering as a developer

▶ Exploring the iPhone Dev Center

▶ Installing the Software Development Kit (SDK)

▶ Looking at the whys and hows of joining the Developer Program

Benjamin Franklin’s famous Join, or Die political cartoon of the 1760s
could well be applied to Apple’s role in today’s mobile software indus-

try. You can’t gain independence on your own; you need the powerful move-
ment of a large group. Apple needs developers, and developers need Apple.

For sure, you can develop your applications independently, and you can even
develop for other platforms (which is the topic of other books), but many of
those platforms offer immature Software Development Kits and little or no
support. What’s more, you could develop for a number of platforms and then
watch your product die in a diffused marketplace.

Apple is clearly on a mission with the iPad, iPhone, and App Store ecosys-
tem to change the user experience, and you have to join (or die). No, you
won’t automatically turn into an Apple fanboy (but it doesn’t hurt to be one,
either). You will be supported with a robust Software Development Kit, com-
prehensive information, and reliable support.

Most importantly, you must join if you want to develop apps for the iPad,
iPod touch, or iPhone (or any combination of these). You have to follow
Apple’s policies and procedures. Although the developer kit you use to
develop apps for the iPad, iPod touch, and iPhone — the iOS Software
Development Kit (SDK) — is free, you have to register as an iPhone developer
first. And don’t forget — to run the SDK, you need an Intel-based Mac running
Mac OS X Snow Leopard version 10.6.4 or a newer version.

09_9780470920503-ch04.indd 6509_9780470920503-ch04.indd 65 12/24/10 12:39 AM12/24/10 12:39 AM

66 Part II: Becoming a Real Developer

Registering also gives you access to all the documentation and other resources
in the iOS Dev Center. This whole ritual transforms you into a Registered iOS
Developer capable of developing for the iPad, iPod touch, and iPhone.

 By the time you read this, Apple may have changed the titles of the Web pages
and centers. Go to http://developer.apple.com for a complete overview
of Apple’s developer centers.

Becoming a registered developer is free, but there’s a catch: If you actu-
ally want to run your application on a real iPad as opposed to only on the
Simulator that comes with the SDK, you have to join the iOS Developer
Program. Fortunately, an individual membership costs only $99 as of this writ-
ing. (I should mention as well that an individual membership is required of
anyone who wants to distribute his or her app using the App Store.)

 Although you can register as a developer and join the iOS Developer Program
all in one step (as I show in “Joining the Developer Program” in this chapter),
you may want to register as an Apple developer first (after all, it’s free). Then,
after you get your feet wet with the SDK, you can pay the fee and join the iOS
Developer Program. That’s why I provide separate sections in this chapter for
“Becoming a Registered Developer” and “Joining the Developer Program.”

 What you see when you go through this process yourself may be slightly dif-
ferent from what you see here. Don’t panic. It’s because Apple changes the
site from time to time.

Becoming a Registered Developer
Although just having to register is annoying to some people, it doesn’t help
that the process itself can be a bit confusing. Fear not! Follow the steps, and
you can safely reach the end of the road.

Your first stop is to become an Apple Registered Developer — if you’re not
already registered — and obtain your Apple ID. If you don’t want to join the
iOS Developer Program right away, you can register first for free, and then
join later when you’re ready to pay for the Program.

If you’ve already registered, you can skip to the next section to join the iOS
Developer Program with your registered developer Apple ID and password,
or you can skip ahead to “Downloading the SDK” and join the iOS Developer
Program later. (You can develop software using the SDK without joining, but
as you find out later, you can’t run this software on your iPad until you join.)

09_9780470920503-ch04.indd 6609_9780470920503-ch04.indd 66 12/24/10 12:39 AM12/24/10 12:39 AM

67 Chapter 4: Enlisting in the Developer Corps

So, without further ado, here’s how to quickly become a Registered
Developer:

 1. Go to the iPad section of Apple’s Web site (www.apple.com/ipad)
and click the Learn More link in the SDK section in the lower-left
corner, or just point your browser to http://developer.apple.
com/ipad/sdk.

 Doing so brings you to a page similar to the one shown in Figure 4-1,
with the SDK logo. Apple does change this site occasionally, so when
you get there, it may be a little different.

Figure 4-1:
Start devel-
oping iPad
apps here.

 2. Click the Download the iOS SDK from the iOS Dev Center link. (See
Figure 4-1.)

 The iOS Dev Center main page appears, as shown in Figure 4-2. You may
be tempted by some of the links, but they get you only so far until you
log in as a registered developer.

 If you’re registered already, click Log In and supply your Apple ID
and password; you can then skip to the next section to join the iOS
Developer Program, or skip ahead to “Downloading the SDK” and join
the iOS Developer Program later.

09_9780470920503-ch04.indd 6709_9780470920503-ch04.indd 67 12/24/10 12:39 AM12/24/10 12:39 AM

68 Part II: Becoming a Real Developer

 3. Click the Register link in the top-right corner of the screen. (See
Figure 4-2.)

 You see a page explaining why you should become a registered devel-
oper and what Apple has to offer registered developers, as shown in
Figure 4-3.

 4. Click Get Started. (See Figure 4-3.)

 A new page appears, asking whether you want to create a new Apple ID
or use an existing one.

 You can use your current Apple ID (the same one you use for iTunes,
MobileMe, or the Apple Store) or create a new Apple ID and then log in.

 • If you don’t have an Apple ID, select Create an Apple ID and click
Continue. You find yourself at the Complete Your Personal Profile
page, where you can enter your desired Apple ID and password,
and proceed to Step 5.

 • If you already have an Apple ID, select the Use an Existing Apple ID
option and then click Continue. You’re taken to a screen where you
can log in with your Apple ID and password. That takes you to the
Complete Your Personal Profile page with some of your informa-
tion already filled out.

 5. Continue filling out the personal profile form and then click Continue.

 If you have an Apple ID, most of the form is already filled out.

 You must fill in the country code in the phone number field. If you’re
living in the United States, the country code is 1.

Figure 4-2:
The iOS Dev

Center for
developing
iPad apps.

09_9780470920503-ch04.indd 6809_9780470920503-ch04.indd 68 12/24/10 12:39 AM12/24/10 12:39 AM

69 Chapter 4: Enlisting in the Developer Corps

Figure 4-3:
Register as

an Apple
Developer.

 6. Complete the next part of the form to finish your professional profile.

 You’re asked some basic business questions. After you’ve filled every-
thing in and clicked the Continue button, you’re taken to yet another
new page, which asks you to agree to the Registered iOS Developer
Agreement.

 7. Click I Agree.

 Don’t forget to select the confirmation check box that you have read and
agree to be bound by the agreement and that you’re of legal age.

 If you just created your Apple ID, you’re asked for the verification code
sent to the e-mail address you supplied when you created your Apple ID.
If you used your existing Apple ID, you’re taken to Step 9.

 8. Open the e-mail from Apple, enter the verification code, and click
Continue.

 Clicking Continue takes you to a thank-you page.

 9. On the thank-you page, click the Visit iOS Dev Center button, and
you’re automatically logged in to the iOS Dev Center, which I describe
in the “Exploring the Dev Center” section in this chapter.

So, you’re now an officially registered iPad, iPod touch, and iPhone devel-
oper, which enables you to explore the iOS Dev Center and download the
SDK (as I show in “Exploring the Dev Center” in this chapter — you can jump
to that section if you’re not ready to join the iOS Developer Program).

09_9780470920503-ch04.indd 6909_9780470920503-ch04.indd 69 12/24/10 12:39 AM12/24/10 12:39 AM

70 Part II: Becoming a Real Developer

However, simply registering as a developer doesn’t give you the status you
need to actually run your app on your own (or anyone else’s) iPad, iPod touch,
or iPhone, or to distribute your app through the App Store. The next section
shows you how to get with the program — the iOS Developer Program.

Joining the Developer Program
The Simulator application for the Mac that comes standard with the iOS SDK
is a great tool for learning to program the iPad, but it does have some limita-
tions. It doesn’t support some hardware-dependent features, and when it
comes to testing, it can’t really emulate such everyday iPad realities as CPU
speed, memory throughput, or your actual location.

“Minor annoyances,” you might say, and you might be right. But the real
issue is that just registering as a developer doesn’t get you two very important
things: the ability to actually run your app on your own iPad and the right to
distribute your app through the App Store. (Remember that the App Store is
the only way for commercial developers to distribute their apps — even free
apps — to more than a few people.)

To run your app on a real iPad or get a chance to profile your app in the App
Store, you have to enroll in either the Individual or Company version of the
iOS Developer Program for $99 per year. The only difference between these
two versions is that the Individual program is for — you guessed it — indi-
vidual developers, while the Company program is for development teams and
enables team members to share development code (even if they’re not in the
same location). (The Enterprise version is $299 per year and gives your orga-
nization access to resources to help develop proprietary, in-house iOS appli-
cations that your organization can distribute to employees or members.)

To find out more about these programs and to compare the development
programs for iOS, Mac, and Safari, point your browser to http://developer.
apple.com/programs to see the Programs page shown in Figure 4-4. To
compare developer programs, click the Compare Developer Programs link at
the bottom of the page to see the comparison summaries shown in Figure 4-5.

 To enroll in the Enterprise version, click the Develop In-house iOS
Applications for Your Enterprise link in the bottom-left corner of the page
(shown in Figure 4-4).

 It used to be that the membership approval process could take a while, and
although the process does seem quicker these days, it’s still true that you
can’t run your apps on your iPad until you’re approved for the program. (Of
course you can’t submit apps to the App Store until each app is approved, but
I talk about that in Chapter 6.) You should enroll as early as possible.

09_9780470920503-ch04.indd 7009_9780470920503-ch04.indd 70 12/24/10 12:39 AM12/24/10 12:39 AM

71 Chapter 4: Enlisting in the Developer Corps

Figure 4-4:
Choosing
an Apple

developer
programs.

Figure 4-5:
Comparing

Apple
developer
programs.

To join the iOS Developer Program (Individual or Company), follow these steps:

 1. Click the Learn More link from the comparison page shown earlier
in Figure 4-5 for the Individual or Company program, or click the
iOS Developer Program link on the Programs page shown earlier in
Figure 4-4.

09_9780470920503-ch04.indd 7109_9780470920503-ch04.indd 71 12/24/10 12:39 AM12/24/10 12:39 AM

72 Part II: Becoming a Real Developer

 Either link takes you to the iOS Developer Program page. (If you prefer,
simply point your browser to http://developer.apple.com/
programs/ios.)

 2. On the left side of the screen, click the Enroll Now button.

 A new page appears with an overview of the process of joining the pro-
gram, along with the technical requirement (an Intel-based Mac running
Snow Leopard or newer version of OS X).

 3. Click Continue to enroll.

 After clicking Continue, a screen appears with the option to either create
a new Apple account or use an existing one.

 4. Choose an option to either create a new Apple account or use an exist-
ing one, and then click Continue.

 Here’s how to pick your option:

 • If you already registered (as I describe in the previous section),
select the “I’m registered as a developer with Apple . . .” option
from the Existing Apple Developer options on the right. Select the
“I’m currently an ADC Select, Premier, or Student Member . . .”
option if you are a student, ADC Select, or Premier member. (For
more information about these programs, see http://developer.
apple.com/programs/adcbenefits.) If you already joined
the Mac or Safari Developer Programs, select the “I’m currently
enrolled . . .” option to add the iOS Developer Program to your
account.

 • If you haven’t registered yet, choose one of the New Apple
Developer options: If you have an Apple ID already (from iTunes
Store or Apple Store purchases), select the “I currently have an
Apple ID . . .” option. If not, select the “I need to create a new
account . . .” option.

 After clicking Continue, a screen appears asking if you’re enrolling as an
Individual or a Company, and providing information about the Individual
and Company enrollment options.

 5. Click Individual to enroll as an Individual, or click Company to enroll
as a Company.

 As of this writing, the Individual and Company programs cost $99 per
year each for developing for iOS devices — you can choose one or the
other. To be sure you’re selecting the option that meets your needs, give
the program details a once-over.

 After clicking Individual or Company, the Apple Developer Program
Enrollment Personal Profile page appears if you need to continue
adding personal information for an Apple account and to register as a
developer — follow the steps in the previous section to register and
agree to the developer agreement, and you’re taken to the page for

09_9780470920503-ch04.indd 7209_9780470920503-ch04.indd 72 12/24/10 12:39 AM12/24/10 12:39 AM

73 Chapter 4: Enlisting in the Developer Corps

entering payment information. If you’re already registered and have
already agreed to the developer agreement, you go directly to the pay-
ment page.

 6. Enter your payment information and click Continue.

 Depending on the option you selected, you’re either given the oppor-
tunity to pay (if you selected Individual) or you’re asked for some
more company information and then given the ability to pay. (But pay
you will.)

 Although joining as an Individual is easier than joining as a Company,
there are clearly some advantages to enrolling as a Company. For exam-
ple, you can add team members (which I discuss in connection with the
Provisioning Portal in Chapter 6), and your company name appears in
your listing in the App Store.

 When you join as an Individual, your real name shows up when the user
buys (or downloads for free) your app in the App Store. If you’re con-
cerned about privacy, or if you want to seem “bigger,” the extra work
involved in signing up as a Company may be worthwhile for you.

 7. Continue through the process, and eventually you will be accepted in
the Developer Program of your choice.

After acceptance, you can log in to the iOS Dev Center as an Official iOS
Developer and see the page shown in Figure 4-6.

Figure 4-6:
The iOS Dev
Center with

resources
and down-

loads.

09_9780470920503-ch04.indd 7309_9780470920503-ch04.indd 73 12/24/10 12:39 AM12/24/10 12:39 AM

74 Part II: Becoming a Real Developer

If you click the iOS Provisioning Portal link in the right column (refer to
Figure 4-6), you see all sorts of things you can do as a developer in the portal,
which is shown in Figure 4-7.

 You shouldn’t linger too long in the iOS Provisioning Portal, simply because
it can be really confusing unless you understand the process. Click the Go To
iOS Dev Center link in the upper-right corner of the page (refer to Figure 4-7)
to go back to the iOS Dev Center. In Chapter 6, I explain the iOS Provisioning
Portal, which lets you provision your device, run your application on it, and
prepare your creation for distribution to the App Store.

Figure 4-7:
The iOS

Provisioning
Portal.

Exploring the Dev Center
You can find out more about the resources available to you in the iOS Dev
Center later in the section entitled “Resources in the Dev Center.” However,
for the moment, I want you to get prepared for what you’re really after: the
iOS SDK, which enables you to develop apps for the iPad.

The SDK offers tools for developing iPad, iPod touch, and iPhone apps. Here’s
a handy list of what’s inside:

 ✓ Xcode: This refers to Apple’s complete integrated development environ-
ment (IDE), which integrates all the SDK’s features: the code editor, the
build system, the graphical debugger, and project management. (I intro-
duce you to the code editor’s features in more detail in Chapter 5.)

09_9780470920503-ch04.indd 7409_9780470920503-ch04.indd 74 12/24/10 12:39 AM12/24/10 12:39 AM

75 Chapter 4: Enlisting in the Developer Corps

 ✓ Frameworks: The SDK’s multiple frameworks (code libraries that act a
lot like prefab building blocks for building your app) help make it easy to
develop apps for the Mac as well as for the iPad, iPhone, and iPod touch.
Every iPad, iPhone, and iPod touch application is built using the UIKit
framework and therefore has essentially the same core architecture;
our sample app DeepThoughts in Part IV also uses the Foundation
and CoreGraphics frameworks. Creating an app can be thought of as
simply adding your application-specific behavior to the frameworks. The
frameworks do all the rest. The frameworks provide fundamental code
for building your iPad app: the required application behavior, classes
for windows, views (including those that display text and Web content),
controls, and view controllers. (I cover all these things in Chapter 7.)
The UIKit framework even provides standard interfaces to core loca-
tion data, the user’s contacts and Photo library, and accelerometer data.

 ✓ Interface Builder: You find out about Interface Builder in Chapter 5 and
use it to build the user interface for the DeepThoughts application in
Part IV. But Interface Builder is more than your run-of-the-mill program
for building graphical user interfaces. In Chapter 11, you see how Xcode
and Interface Builder work together to give you ways to build (and
automatically create at runtime) the user interface, as well as helping to
create the infrastructure for your application.

 ✓ iPad/iPhone Simulator: The Simulator enables you to debug your
app and do some other testing on your Mac by simulating the iPad or
iPhone. The Simulator runs most iPad and iPhone apps, but it doesn’t
support some hardware-dependent features. I give you a rundown on
the Simulator in Chapter 5.

 ✓ Instruments: The Instruments application lets you measure how your
app performs while it’s running on an iPad. It gives you a number of per-
formance metrics, including those for testing memory and network use.
It also works (in a limited way) on the Simulator, and you can test some
aspects of your design there.

 The Simulator doesn’t emulate such real-life iPad characteristics as CPU
speed or memory throughput. If you want to understand how your app
performs on the iPad from a user’s perspective, you have to use the
actual iPad and the Instruments application.

Looking forward to using the SDK
The tools in the SDK support a development process that most people find
comfortable. They allow you to rapidly get a user interface up and running
to see what it actually looks like. You can add code a little at a time and then
run it after each new addition to see how it works. I take you through this
incremental process as you develop the DeepThoughts app; for now, here’s a
bird’s-eye view of iPad app development, one step at a time:

09_9780470920503-ch04.indd 7509_9780470920503-ch04.indd 75 12/24/10 12:39 AM12/24/10 12:39 AM

76 Part II: Becoming a Real Developer

 1. Start with Xcode.

 Xcode provides several project templates that you can use to get off to
a fast start. (In Chapter 5, you do just that, and then you add code and
more interface objects in Part IV.)

 2. Design and create the user interface.

 Interface Builder has graphic-design tools you can use to create your
app’s user interface. These tools save you a great deal of time and effort.
They also reduce the amount of code you have to write by creating
resource files that your app can then upload automatically.

 If you don’t want to use Interface Builder, you can always build your
user interface from scratch, creating each individual piece and link-
ing them all together within your app. Sometimes Interface Builder is
the best way to create onscreen elements; sometimes the hands-on
approach works better.

 3. Write the code.

 The Xcode editor provides several features that help you write code.
You can find out more about these features in Chapter 10.

 4. Build and run your app.

 You build your app on your Mac and run it in the iPad/iPhone Simulator
application or (provided you’ve joined the iOS Development Program)
on your iPad.

 5. Test your app.

 You’ll want to test the functionality of your app as well as response time.

 6. Measure and tune your app’s performance.

 After you have a running app, make sure that it makes optimal use of
resources such as memory and CPU cycles.

 7. Do it all again until you’re done.

Resources in the Dev Center
You’re not left on your own when it comes to the Seven-Step Plan for Creating
Great iPad Apps in the preceding section. After all, you have this book to help
you on the way — as well as a heap of information squirreled away in various
corners of the iOS Dev Center. (Refer to Figure 4-6 for the links.) The follow-
ing resources are especially helpful:

 ✓ Getting Started Videos: These videos are relatively light on content.

 ✓ The iOS Reference Library: This library includes all the documentation
you could ever want for developing for the iPad, iPod touch, and iPhone

09_9780470920503-ch04.indd 7609_9780470920503-ch04.indd 76 12/24/10 12:39 AM12/24/10 12:39 AM

77 Chapter 4: Enlisting in the Developer Corps

(except, of course, the answer to that one question you really need
answered at 3 a.m., but that’s the way it goes). To be honest, most of
this stuff turns out to be really useful only after you have a good handle
on what you’re doing. As you go through this book, however, you’ll
discover that an easier way to access some of this documentation will
be through the Xcode Documentation window, described in Chapter 10.
The iOS Reference Library includes the following documents:

 • Getting Started Documents (in the Library, and also a link on the
iOS Dev Center page): Think of them as an introduction to the
materials in the iOS Reference Library, which is the essential
library for learning about developing for the iPad, iPod touch, and
iPhone. These give you an overview of development and best prac-
tices. Included is “Getting Started with iOS,” which includes the
“Learning Objective-C: A Primer,” an overview of Objective-C, the
programming language you’ll use to code your apps. In the Guides
section, you can find “iPad Human Interface Guidelines” and many
other useful documents.

 If you’ve never programmed in the Objective-C language, you
should check out the “The Objective-C Programming Language”
reference document in the Guides section of the iOS Reference
Library. If you want to get a handle on Objective-C as quickly (and
painlessly) as possible, go get yourself a copy of Objective-C For
Dummies by co-author Neal. (Neal does a great job explaining
everything you need to know in order to program in Objective-C,
and he assumes you have little or no knowledge of programming.)

 • Coding How-To’s (in the Library, and also a link on the iOS Dev
Center page): These tend to be a lot more valuable when you
already have something of a knowledge base.

 • Sample Code (in the Library, and also a link on the iOS Dev Center
page): On the one hand, sample code of any kind is always valu-
able. Most good developers look over sample apps before they
get started building their own. They take something that closely
approximates what they want to do and then modify it until it does
exactly what they want it to do. When I started iPad development,
there were no books like this one; so much of what I learned came
from looking at the samples and then making some changes to see
how things worked. On the other hand, perusing the sample apps
can give you hours of (misguided) pleasure and can be quite the
time waster.

 ✓ Apple Developer Forums: I’m not the first to say that developer forums
can be very helpful, and I’m also not the first to admit that they’re a
great way to procrastinate. As you scroll through the questions people
have, be careful about some of the answers you see. No one is validating
the information people are giving out. But take heart: Pretty soon you’ll
be able to answer some of those questions better yourself.

09_9780470920503-ch04.indd 7709_9780470920503-ch04.indd 77 12/24/10 12:39 AM12/24/10 12:39 AM

78 Part II: Becoming a Real Developer

Downloading the SDK
Enough prep work. Time to do some downloading.

As of this writing, Apple offers version 4.2 of the SDK for both iPad and
iPhone development. You use SDK version 4.2 to develop apps that are com-
patible with iOS 4.2 (the iPad’s operating system).

To install the SDK, click the Downloads link near the top of the iOS Dev
Center page under “Resources for iOS 4.2” (refer to Figure 4-6) to automati-
cally scroll the page down to the Downloads section at the bottom (or scroll
down the page until you find the Downloads section).

Version 4.2 requires an Intel-based Mac running Mac OS X Snow Leopard ver-
sion 10.6.4 or a newer version.

 By the time you read this book, it may no longer be version 4.2. You should
download the latest SDK. That way, you get the most recent version to
start with.

 In the Downloads section is a link to a Read Me file (Xcode 3.2.5 Read Me).
Click this link to read the file, which describes what Xcode can do (most of
which I explain in Chapter 5).

After perusing the Read Me file, download the SDK by clicking the Xcode
3.2.5 and iOS SDK 4.2 link. You can watch the download in Safari’s download
window (which is only a little better than watching paint dry).

When it’s done downloading, the iOS SDK window appears onscreen, com-
plete with an installer and various packages tied to the install process. All
you then have to do is double-click the iOS SDK installer and follow the
(really simple) installation instructions. After you do all that, you have your
very own iOS Software Development Kit on your hard drive, ready to create
iPad apps.

Getting Yourself Ready for the SDK
Don’t despair. The preceding process was tedious, but as the song goes,
“It’s all over now.” Going through the process of registering and joining the
program is probably the second most annoying part of your journey toward
developing software for the iPad. The most annoying part is figuring out what
Apple calls provisioning your iPad — the hoops you have to jump through to

09_9780470920503-ch04.indd 7809_9780470920503-ch04.indd 78 12/24/10 12:39 AM12/24/10 12:39 AM

79 Chapter 4: Enlisting in the Developer Corps

actually run your app on a real, tangible, existing iPad. You go through the
provisioning process in Chapter 6, and frankly, getting that process explained
is worth the price of this book.

In the next chapter, you get started using the SDK you just downloaded, and
you’ll become intimately acquainted with the SDK during the course of your
project. I assume that you have some programming knowledge and that you
also have some acquaintance with object-oriented programming and with
some variant of C, such as C++, C#, and maybe even Objective-C. If those
assumptions miss the mark, help me out, okay? Take another look at the
“Resources in the Dev Center” section, earlier in this chapter, for an overview
of some of the resources that can help you get up to speed on some program-
ming basics. Or, better yet, get yourself a copy of Objective-C For Dummies.

I also assume that you’re familiar with the iPad itself and that you’ve
explored at least Apple’s preinstalled apps to become familiar with the iPad’s
look and feel.

09_9780470920503-ch04.indd 7909_9780470920503-ch04.indd 79 12/24/10 12:39 AM12/24/10 12:39 AM

80 Part II: Becoming a Real Developer

09_9780470920503-ch04.indd 8009_9780470920503-ch04.indd 80 12/24/10 12:39 AM12/24/10 12:39 AM

Chapter 5

Getting to Know the SDK
In This Chapter
▶ Getting a handle on the Xcode project

▶ Compiling an iPad app

▶ Peeking inside the Simulator

▶ Checking out the Interface Builder

▶ Demystifying nib files

Arthur C. Clarke’s Third Law is that any sufficiently advanced technology
is indistinguishable from magic, and Steve Jobs echoed these words

when he announced the iPad as “our most advanced technology in a magical
and revolutionary device.” To deploy this magic and practice the alchemy
of application development, you need to learn how to use the development
tools.

The collection of tools known as the iOS Software Development Kit (SDK) is
the crucible for grinding out an iPad app. You pick a template for the type
of app; stir in the content, behavior, and user interface; and cast your spells
with magical code. The SDK builds your final product. Sounds easy, and to be
truthful, it’s relatively easy.

In this chapter, I introduce you to the SDK. It’s going to be a low-key, get-
acquainted kind of affair. You get into the real nuts-and-bolts stuff in Parts IV
and V, when you actually develop the two sample applications.

Developing Using the SDK
The iOS Software Development Kit (SDK) gives you the opportunity to
develop your apps without tying your brain up in knots. It includes Xcode,
Apple’s development environment that runs on the Mac OS X operating
system. To develop an iPad app, you have to work within the context of an
Xcode project. The SDK also includes Interface Builder, which launches from
Xcode when you double-click a .xib file. You use it to quickly build your

10_9780470920503-ch05.indd 8110_9780470920503-ch05.indd 81 12/24/10 12:39 AM12/24/10 12:39 AM

82 Part II: Becoming a Real Developer

app’s user interface. The idea here is to add your code incrementally — step
by step — so that you can always step back and see how what you just did
affects the Big Picture.

Starting an app from scratch
This chapter assumes that you’re creating a new iPad app (in particular,
the DeepThoughts sample app) from scratch, using the Xcode templates to
get started — which is certainly the fastest way to get started. The Seven
Development Steps to iPad App Heaven should look something like this:

 1. Start with an Xcode template.

 2. Design the user interface.

 3. Write the code.

 4. Build and run your app.

 5. Test your app.

 6. Measure and tune your app’s performance.

 7. Do it all again (or at least Steps 3–6) until you’re done.

 If you have an idea for a new iPad app, the decision to start from scratch
should be obvious. But if you’ve already developed an iPhone/iPod touch app,
you have choices in how you use Xcode to develop your iPad app.

Starting from an existing iPhone app
Besides the fact that iPhone apps already run on the iPad in “compatibil-
ity mode” (in a black box in the center of the display, or scaled up to full
screen), you can also port the iPhone app — modify its code just a bit — to
use iPad device resources. Xcode makes the porting process easier by auto-
mating much of the setup process for your project. The most noticeable dif-
ference between the iPad and iPhone, besides the absence of telephony, is
the size of views you create to present your user interface.

Xcode simplifies the process of updating your existing iPhone project to
include the necessary files to support the iPad. Essentially, you would be
using a single Xcode project to create two separate apps: one for the iPhone
(and iPod touch) and one for the iPad. After selecting the target in the
Targets section of the Groups & Files list of the Xcode Project window (which
I show in the next section of this chapter), you can choose Project➪Upgrade
Current Target for iPad and then choose to either upgrade your iPhone target
to one Universal application that supports both iPhone and iPad or create

10_9780470920503-ch05.indd 8210_9780470920503-ch05.indd 82 12/24/10 12:39 AM12/24/10 12:39 AM

83 Chapter 5: Getting to Know the SDK

two device-specific applications (one for the iPad and one for the iPhone/iPod
touch). Here are the differences to help you make that decision:

 ✓ A Universal application is optimized for all device types. Although I
don’t cover creating a Universal application in this chapter, creating a
Universal application allows you to sell one app that supports all device
types. This choice makes the download experience simpler for users.
(You can set one price, and users can use the same copy of the app on
both their iPhone and iPad.)

 ✓ Device-specific applications are designed specifically for the device —
iPhone (and iPod touch) or iPad. Although I don’t cover this method in
this chapter, it gives you the advantage of reusing code from your exist-
ing iPhone app while also taking less development and testing time than
developing a Universal app.

You also have the choice of using separate Xcode projects to create separate
apps for the iPad and iPhone. Essentially, this means starting from scratch.
(See the later section “Starting an app from scratch.”) If you have to rewrite
large portions of your code anyway, creating a separate Xcode project for
the iPad is usually simpler. Creating a separate project gives you the freedom
to tailor your code for the iPad without having to worry about whether that
code runs on other devices. If your app’s data objects are tightly integrated
with the views that draw them, or if you just need the freedom to add more
features to the iPad version, this is the way to go.

Whether you create device-specific application targets in one project or
create separate projects, you still end up with two separate apps to manage.
The only way to have only one app to manage for both iPhone and iPad is to
create a Universal app.

In this chapter, you start at the very beginning, from scratch, with the very
first step, which is Xcode. (Starting with Step 1? What a concept!) And the
first step of the first step is to create your first project.

Creating Your Xcode Project
To develop an app, you work in what’s called an Xcode project. So, it’s time to
fire one up. Here’s how it’s done:

 1. Launch Xcode.

 After you’ve downloaded the SDK (painstakingly described in Chapter 4),
it’s a snap to launch Xcode. By default, it’s downloaded to /Developer/
Applications, where you can track it down to launch it.

10_9780470920503-ch05.indd 8310_9780470920503-ch05.indd 83 12/24/10 12:39 AM12/24/10 12:39 AM

84 Part II: Becoming a Real Developer

 Here are a couple of hints to make Xcode handier and more efficient:

 • Drag the icon for the Xcode application all the way down to the
Finder’s Dock so you can launch it from there. You’ll be using it a
lot, so it wouldn’t hurt to be able to launch it from the Dock.

 • When you first launch Xcode, you see the Welcome screen shown
in Figure 5-1. (After using Xcode to create projects, your Welcome
screen will list all of your most recent projects in the right
column.) It’s chock-full of links to the Apple Developer Connection
and Xcode documentation. (If you don’t want to be bothered with
the Welcome screen in the future, deselect the Show This Window
When Xcode Launches check box. You can also just click Cancel to
close the Welcome screen.)

Figure 5-1:
The Xcode
Welcome

screen.

 2. Choose Create a New Xcode Project from the Welcome screen (or
choose File➪New Project) to create a new project.

 You can also just press Ô+Shift+N.

 No matter what you do to start a new project, you’re greeted by the New
Project window.

 The New Project window is where you get to choose the template you
want for your new project. Note that the leftmost pane has two sections:
one for iOS and the other for Mac OS X.

 3. In the upper-left corner of the New Project window, click Application
under the iOS heading (if it isn’t already selected).

 With Application selected, the main pane of the New Project window shows
several choices. (Look ahead to Figure 5-2.) Each of these choices is actu-
ally a template that, when chosen, generates some code to get you started.

10_9780470920503-ch05.indd 8410_9780470920503-ch05.indd 84 12/24/10 12:39 AM12/24/10 12:39 AM

85 Chapter 5: Getting to Know the SDK

 4. Select View-based Application from the template choices displayed.

 You’ll use the View-based Application option to start the DeepThoughts
app, the first sample app, which you develop in Part IV.

 Note that when you select a template, a brief description of the template
is displayed underneath the main pane. (Again, refer to Figure 5-2.) In
fact, click some of the other template choices just to see how they’re
described as well. Just be sure to click the View-based Application tem-
plate again when you’re done snooping around so you can follow along
with developing the DeepThoughts app.

 5. Select iPad from the Product pop-up menu, as shown in Figure 5-2,
and then click Choose.

 You must choose iPad (not iPhone) from the Product pop-up menu to
start a new iPad project from scratch — this choice puts the standard
iPad resources into your project. After clicking Choose, the Save As
dialog appears.

 6. Enter a name for your new project in the Save As field, choose a
Save location (the Desktop or any folder works just fine), and then
click Save.

Figure 5-2:
Select

iPad in the
Product

pop-up of
the New
Product
window.

 I named the first sample app project DeepThoughts. (You should do the
same if you’re following along with developing DeepThoughts.)

 After you click Save, Xcode creates the project and opens the Project
window, which should look like what you see in Figure 5-3.

10_9780470920503-ch05.indd 8510_9780470920503-ch05.indd 85 12/24/10 12:39 AM12/24/10 12:39 AM

86 Part II: Becoming a Real Developer

Figure 5-3:
The Deep
Thoughts

Project
window.

Exploring Your Project
It turns out that you do most of your work on projects using a Project
window. If you have a nice, large monitor, expand the Project window so you
can see everything in it as big as life. This is, in effect, Command Central for
developing your iPad app; it displays and organizes your source files and the
other resources needed to build your app.

You have control over Command Central — you can organize your source
files and resources as you see fit. The Groups & Files list on the left is an out-
line view of all of your project’s files — source code, frameworks, and graph-
ics, as well as some settings files. You can move files and folders around and
add new folders.

 You may notice that some of the items in the Groups & Files list are folders,
whereas others are just icons. Most items have a little triangle (the disclosure
triangle) next to them. Clicking the little triangle to the left of a folder/icon
expands the folder/icon to show what’s in it. Click the triangle again to hide
what it contains.

To see more of the code that’s already provided with the View-based
Application template, select Classes in the Groups & Files list on the
left side of the Project window, as shown in Figure 5-4. The first file
should already be selected in the Detail view of the Project window:
DeepThoughtsAppDelegate.h. (Actually, you can select any file in the
Detail view to see code.) The code appears in the Editor view.

10_9780470920503-ch05.indd 8610_9780470920503-ch05.indd 86 12/24/10 12:39 AM12/24/10 12:39 AM

87 Chapter 5: Getting to Know the SDK

Here’s a summary of what you see in Figure 5-4:

 ✓ The Groups & Files list: As described earlier, the Groups & Files list pro-
vides an outline view of everything in your project. If you select an item
in the Groups & Files list, the contents of the item are displayed in the
topmost-pane to the right — otherwise known as the Detail view.

 ✓ The Detail view: Here you get detailed information about the item you
selected in the Groups & Files list.

 ✓ The Toolbar: Here you can find quick access to the most common
Xcode commands. You can customize the toolbar to your heart’s
content by right-clicking it and choosing Customize Toolbar from the
contextual menu that appears. You can also choose View➪Customize
Toolbar. (Because you can customize the toolbar, it may differ some-
what from Figure 5-4.)

 • The Overview menu lets you specify the active SDK and active
configuration, which I describe in “Building and Running Your
Application” in this chapter.

 • The Action menu lets you perform common operations on the cur-
rently selected item in the Project window. The actions change
depending on what you’ve selected. (The same actions are avail-
able in the context-sensitive shortcut menu that appears when you
Control-click a selected item.)

 • Pressing the Build and Run button compiles, links, and launches
your app in the Simulator.

 • The Breakpoints button turns breakpoints on and off and toggles
the Build and Run button to Build and Debug. (I explain break-
points in Chapter 12.)

 • The Tasks button allows you to stop the execution of the app that
you’ve built.

 • The Info button opens a window that displays information and set-
tings for your project.

 • The Search field lets you search the items currently displayed in
the Detail view. I show you how to search for items in Chapter 10.

 • The Show/Hide Toolbar button shows or hides the entire Toolbar.

 ✓ The status bar: Look here for messages about your project. (There are
none yet in Figure 5-4; for a peek at a status message, see Figure 5-6.) For
example, when you’re building your project, Xcode updates the status
bar to show where you are in the process — and whether or not the pro-
cess completed successfully.

10_9780470920503-ch05.indd 8710_9780470920503-ch05.indd 87 12/24/10 12:39 AM12/24/10 12:39 AM

88 Part II: Becoming a Real Developer

Figure 5-4:
Code

appears in
the Editor

view of the
Project

window.

Groups & Files list

Overview menu

Action menu

Build and Run button

Breakpoints button

Tasks button

Info button

Search

Detail view

Show/Hide
toolbar

Status bar

Toolbar

Editor view

Text Editor navigation bar

 ✓ The favorites bar: The favorites bar appears under the Toolbar and
works like other favorites bars — you can bookmark places in your proj-
ect. This bar isn’t displayed by default (nor is it shown in Figure 5-4);
to put it onscreen, choose View➪Layout➪Show Favorites Bar from the
main menu.

 ✓ The Text Editor navigation bar: As shown in Figure 5-5, this navigation
bar contains a number of shortcuts (I explain more about them as you
use them):

 • Bookmarks menu: You create a bookmark by choosing Edit➪Add to
Bookmarks.

 • Breakpoints menu: Lists the breakpoints in the current file — I
cover breakpoints in Chapter 12.

 • Class Hierarchy menu: The superclass of this class, the superclass
of that superclass (if any), and so on. In Objective-C, you can base
a new class definition on a class already defined, so that the new
class inherits the methods of the base class it is based on. The
base class is called a superclass; the new class is its subclass, and

10_9780470920503-ch05.indd 8810_9780470920503-ch05.indd 88 12/24/10 12:39 AM12/24/10 12:39 AM

89 Chapter 5: Getting to Know the SDK

the hierarchy defines the relationship between a superclass, its
subclass, and subclasses of the subclass (and so on). For a back-
ground in Objective-C, see Neal’s Objective-C For Dummies.

 • Included Files menu: Lists both the files included by the current file,
as well as the files that include the current file.

 • Counterpart button: Due to the natural split in the definition of
an Objective-C class into interface and implementation, a class’s
code is often split into two files. The Counterpart button allows
you to switch between the header (or interface) file, such as
DeepThoughtsAppDelegate.h, and the implementation file,
such as DeepThoughtsAppDelegate.m. The header files define
the class’s interface by specifying the class declaration (and
what it inherits from), instance variables (a variable defined in a
class — at runtime all objects have their own copy), and methods.
The implementation file, on the other hand, contains the code for
each method.

 • Lock button: Indicates whether the selected file is unlocked for edit-
ing or locked (preventing changes). If it’s locked, you can click the
button to unlock the file (if you have permission).

Figure 5-5:
The Text

Editor navi-
gation bar.

Bookmarks menu

Class Hierarchy menu

Counterpart button

Breakpoints menu

Included Files menu

Lock button

 ✓ The Editor view: Displays a file you’ve selected, in either the Groups
& Files list or Detail view. You can also edit your files here — after all,
that’s what you’d expect from the Editor view — although some folks
prefer to double-click a file in the Groups & Files list or Detail view to
open the file in a separate window.

 To see how the Editor view works, refer to Figure 5-4, where
I’ve clicked the Classes folder in the Groups & Files list, and the
DeepThoughtsAppDelegate.h class in the Detail view. You can see
the code for the class in the Editor view.

 Right under the Lock button (refer to Figure 5-4) is a tiny window shade
icon that lets you split the Editor view. Click it to look at the interface
and implementation files at the same time, or even the code for two dif-
ferent methods in the same or different classes.

 If you have any questions about what something does, just position the
mouse pointer above the icon, and a tooltip explains it.

10_9780470920503-ch05.indd 8910_9780470920503-ch05.indd 89 12/24/10 12:39 AM12/24/10 12:39 AM

90 Part II: Becoming a Real Developer

The first item in the Groups & Files list — selected and thus highly visible
back in Figure 5-3 — is labeled DeepThoughts. This is the container that con-
tains all the source elements for the project, including source code, resource
files, graphics, and a number of other pieces that will remain unmentioned
for now (but I get into those in due course). You can see that this project
container has five distinct groups — Classes, Other Sources, Resources,
Frameworks, and Products. Here’s what gets tossed into each group:

 ✓ Classes is the group in which Xcode places all the template code for
DeepThoughts, and you should also place new classes you create in the
Classes group, although you aren’t obliged to. The Classes group has
four distinct source-code files (which you can see in the Detail view in
Figure 5-4):

 • DeepThoughtsAppDelegate.h

 • DeepThoughtsAppDelegate.m

 • DeepThoughtsViewController.h

 • DeepThoughtsViewController.m

 ✓ Other Sources is the group in which you typically would find the frame-
works you’re using — stuff like DeepThoughts_Prefix.pch as well as
main.m, your application’s main function, both of which are described
in Chapter 8.

 ✓ The Resources group contains, well, resources specifically for the target (in
this case, an iPad), such as .xib files (which you find out about in “Using
Interface Builder” in this chapter), property lists (which you encounter in
Chapter 16), images, other media files, and even some data files.

 Whenever you choose the View-based Application template (refer to
Figure 5-2) and name it DeepThoughts, Xcode creates the following files
for you:

 • DeepThoughts-Info.plist

 • DeepThoughtsViewController.xib

 • MainWindow.xib

 I explain .xib files in excruciating detail in this chapter, and you get
to play with them in Chapter 9 and the rest of Part IV. Soon you’ll love
.xib files as much as I do.

 ✓ Frameworks are code libraries that act a lot like prefab building blocks
for your code edifice. (I talk a lot about frameworks in Chapter 7.) By
choosing the View-based Application template, you let Xcode know
that it should add UIKit framework, Foundation.framework, and
CoreGraphics.framework to your project, because it expects that
you’ll need them in an app based on the View-based Application template.

10_9780470920503-ch05.indd 9010_9780470920503-ch05.indd 90 12/24/10 12:39 AM12/24/10 12:39 AM

91 Chapter 5: Getting to Know the SDK

 The DeepThoughts app is limited to just these three frameworks, but I
show you how to add another framework to the iPadTravel411 sample
app in Chapter 13.

 ✓ The Products group is a bit different from the previous three items in
this list: It’s not a source for your app, but rather the compiled app itself.
In it, you find DeepThoughts.app. At the moment, this file is listed in
red because the file can’t be found (which makes sense because you
haven’t built the app yet).

 A file’s name appearing in red lets you know that Xcode can’t find the
underlying physical file.

 If you happen to open the DeepThoughts folder on your Mac, you won’t see
the “folders” that appear in the Xcode window. That’s because those folders
are simply groupings that help organize and find what you’re looking for; this
list of files can grow to be pretty large, even in a moderate-size project.

When you have a lot of files, you’ll have better luck finding things if you
create subgroups within the Classes and/or Resources groups, or even whole
new groups. You create subgroups (or even new groups) in the Groups &
Files list by choosing New Project➪New Group. You then can select a file and
drag it to a new group or subgroup.

Building and Running Your Application
It’s really a blast to see what you get when you build and run a project that
you created — even if all you did was choose a template from the Project
window. Building and running a project is relatively simple:

 1. If it isn’t already chosen, choose Simulator - 4.2 | Debug from the
Overview drop-down menu in the top-left corner of the Project
window to set the active SDK and Active Build Configuration.

 This combination (Simulator - 4.2 | Debug) may be chosen already, as
you can see back in Figure 5-4. Here’s what that means:

 • When you download an SDK, you may actually download multiple
SDKs — a Simulator SDK and a device SDK for each of the current
iOS releases.

 • The one to use for iPad development is the iPad Simulator 4.2 SDK
for iOS 4.2. Later, you can switch to the actual device SDK and
download your app to a real-world iPad, as described in Chapter 6.
But before you do that, there’s just one catch. . . .

10_9780470920503-ch05.indd 9110_9780470920503-ch05.indd 91 12/24/10 12:39 AM12/24/10 12:39 AM

92 Part II: Becoming a Real Developer

 • You have to be in the iOS Developer Program to run your app on a
device, even on your very own iPad. Go to Chapter 4 and enroll in
the program if you haven’t done so already.

 A build configuration tells Xcode the purpose of the built product. You
can choose between Debug, which has features to help with debugging
(there’s a no-brainer for you); and Release, which results in smaller
and faster binaries. You use Debug most of the time as you develop an
app, and I use Debug for most of this book — so go with Debug for now.
(Choose Simulator - 4.2 | Debug from the Overview drop-down menu.)

 2. Choose Build➪Build and Run from the main menu to build and run
the application.

 You can also press Ô+Return or click the Build and Run button in the
Project Window toolbar. The status bar in the Project window tells
you all about build progress, build errors such as compiler errors, or
warnings — and (oh, yeah) whether the build was successful. Figure 5-6
shows that this was a successful build — you can tell by the Succeeded
message in the bottom-right corner of the window.

 You can also display the Build Results window by clicking the
Succeeded message in the Status bar. (You find out more about debug-
ging and the Build Results window in Chapter 12.)

After it’s launched in the Simulator, your first app looks a lot like what you
see in Figure 5-7. You should see the gray status bar and a white window, and
the simulated Home button on the bottom to quit your app, but that’s it. You
can also choose actions in the Hardware menu (shown in Figure 5-7), which I
explain next.

Figure 5-6:
A success-

ful build.

10_9780470920503-ch05.indd 9210_9780470920503-ch05.indd 92 12/24/10 12:39 AM12/24/10 12:39 AM

93 Chapter 5: Getting to Know the SDK

Figure 5-7:
The Deep
Thoughts
app in the
Simulator.

The Simulator
When you run your app, Xcode installs it on the iOS Simulator (or on a real
iPad if you specified the device as the active SDK, as shown in Chapter 6) and
launches it.

Using the Hardware menu and your keyboard and mouse, the Simulator
mimics most of what a user can do on a real iPad, albeit with some limita-
tions that I point out shortly.

Hardware interaction
You use the Simulator’s Hardware menu (refer to Figure 5-7) when you want
the Simulator to simulate the following:

10_9780470920503-ch05.indd 9310_9780470920503-ch05.indd 93 12/24/10 12:39 AM12/24/10 12:39 AM

94 Part II: Becoming a Real Developer

 ✓ Rotate left: Choosing Hardware➪Rotate Left rotates the Simulator to the
left. If the Simulator is in portrait view, it changes to landscape view; if
the Simulator is already in landscape view, it changes to portrait view.

 ✓ Rotate right: Choosing Hardware➪Rotate Right rotates the Simulator to
the right, with the same effect as choosing Hardware➪Rotate Left.

 ✓ Use a shake gesture: Choosing Hardware➪Shake Gesture simulates
shaking the iPad.

 ✓ Go to the Home screen: Choosing Hardware➪Home does the expected —
you go to the Home screen.

 ✓ Lock the Simulator (device): Choosing Hardware➪Lock locks the
Simulator.

 ✓ Send the running app low-memory warnings: Choosing Hardware➪
Simulate Memory Warning fakes out your app by sending it a (fake)
low-memory warning. I don’t cover this in this book, but it’s a great fea-
ture for seeing how your app may function out there in the real world.

 ✓ Toggle the status bar between its Normal state and its In Call state:
Choose Hardware➪Toggle In-Call Status Bar to check out how your app
functions when the device is not answering a call (Normal state) and
when it supposedly is answering a call (In Call state) — these choices
apply only to the iPhone as of this writing.

 ✓ Simulate the hardware keyboard: Choose Hardware➪Simulate
Hardware Keyboard to check out how your app functions when the iPad
is connected to the optional physical keyboard dock.

 ✓ TV Out: To bring up another window that acts like an external display
attached to the device, choose Hardware➪TV Out, and then choose
640x480, 1024x768, or 1280x720 for the window’s display resolution.
Choose Hardware➪TV Out➪Disabled to close the external display window.

Gestures
On the real device, a gesture is something you do with your fingers to make
something happen in the device, like a tap, a drag, and so on. Table 5-1 shows
you how to simulate gestures using your mouse and keyboard.

Table 5-1 Gestures in the Simulator

Gesture iPad Action

Tap Click the mouse.

Touch and hold Hold down the mouse button.

Double tap Double-click the mouse.

10_9780470920503-ch05.indd 9410_9780470920503-ch05.indd 94 12/24/10 12:39 AM12/24/10 12:39 AM

95 Chapter 5: Getting to Know the SDK

Gesture iPad Action

Two-finger tap 1. Move the mouse pointer over the place where you want to
start.

2. Hold down the Option key, which makes two circles appear
that stand in for your fingers.

3. Press the mouse button.

Swipe 1. Click where you want to start and hold the mouse button
down.

2. Move the mouse slowly in the direction of the swipe and
then release the mouse button.

Flick 1. Click where you want to start and hold the mouse button
down.

2. Move the mouse quickly in the direction of the flick and
then release the mouse button.

Drag 1. Click where you want to start and hold the mouse button
down.

2. Move the mouse slowly in the drag direction.

Pinch 1. Move the mouse pointer over the place where you want to
start.

2. Hold down the Option key, which makes two circles appear
that stand in for your fingers.

3. Hold down the mouse button and move the circles in (to
pinch) or out (to un-pinch).

Uninstalling apps and
resetting your device
You uninstall applications on the Simulator the same way you’d do it on the
iPad, except you use your mouse instead of your finger.

 1. On the Home screen, place the pointer over the icon of the app you
want to uninstall and hold down the mouse button until all the app
icons start to wiggle.

 2. Click the app icon’s Close button — the little x that appears in the
upper-left corner of the icon — to make the app disappear.

 3. Click the Home button — the one with a little square in it, centered
below the screen — to stop the other app icon’s wiggling and finish
the uninstallation.

10_9780470920503-ch05.indd 9510_9780470920503-ch05.indd 95 12/24/10 12:39 AM12/24/10 12:39 AM

96 Part II: Becoming a Real Developer

You can also move an app’s icon around by clicking and dragging with the
mouse.

You can remove an application from the background the same way you’d do
it on the iPad, except you use your mouse instead of your finger.

 1. Double-click the Home button to display the applications running in
the background.

 2. Place the pointer over the icon of the application you want to remove
and hold down the mouse button until the icon starts to wiggle.

 3. Click the icon’s Remove button — the red circle with the − that
appears in the upper-left corner of the application’s icon.

 4. Click the Home button to stop the icon’s wiggling and then once again
to return to the Home screen.

To reset the Simulator to the original factory settings — which also removes all
the apps you’ve installed — choose iOS Simulator➪Reset Content and Settings.

Limitations
Keep in mind that running apps in the Simulator isn’t the same thing as run-
ning them in the iPad. Here’s why:

 ✓ Different frameworks: The Simulator uses Mac OS X versions of the low-
level system frameworks, instead of the actual frameworks that run on
the device.

 ✓ Different hardware and memory: The Simulator uses the Mac hardware
and memory. To really determine how your app is going to perform on
an honest-to-goodness iPad, you’re going to have to run it on a real iPad.
(Lucky for you, I show you how to do that in Chapter 6.)

 ✓ Different installation procedure: Xcode installs your app in the
Simulator automatically when you build the app using the Simulator
SDK. All fine and dandy, but there’s no way to get Xcode to install other
apps from the App Store in the Simulator.

 ✓ Lack of GPS: You can’t fake the Simulator into thinking it’s laying on the
beach at Waikiki. The location reported by the CoreLocation frame-
work in the Simulator is fixed at

 • Latitude: 37.3317 North

 • Longitude: 122.0307 West

 Which just so happens to be 1 Infinite Loop, Cupertino, CA 95014, and
guess who “lives” there?

10_9780470920503-ch05.indd 9610_9780470920503-ch05.indd 96 12/24/10 12:39 AM12/24/10 12:39 AM

97 Chapter 5: Getting to Know the SDK

 ✓ Two-finger limit: You can simulate a maximum of two fingers. If your
application’s user interface can respond to touch events involving more
than two fingers, you’ll need to test that on an actual iPad. The motion
of the two fingers is limited in the Simulator — you can’t do two-figure
swipes or drags.

 ✓ Accelerometer differences: You can access your computer’s accelerom-
eter (if it has one) through the UIKit framework. Its reading, however,
will differ from the accelerometer readings on an iPad (for some techni-
cal reasons I won’t get into).

 ✓ Differences in rendering: OpenGL ES (OpenGL for Embedded Systems),
one of the 3D graphics libraries that works with the iOS SDK, uses
renderers on devices that are slightly different from those it uses in
Simulator. As a result, a scene on the Simulator and the same scene on a
device may not be identical at the pixel level.

Customizing Xcode to Your Liking
Xcode gives you options galore; I’m guessing you won’t change any of them
until you have a bit more programming experience under your belt, but a few
options are actually worth thinking about now.

 1. With Xcode open, choose Xcode➪Preferences from the main menu.

 2. Click the Debugging tab to display the Debugging pane, as shown in
Figure 5-8.

 The Xcode Preferences window refreshes to show the Debugging pane.

Figure 5-8:
Show the

console on
startup.

10_9780470920503-ch05.indd 9710_9780470920503-ch05.indd 97 12/24/10 12:39 AM12/24/10 12:39 AM

98 Part II: Becoming a Real Developer

 3. Open the On Start pop-up menu and choose Show Console (as shown
in Figure 5-8). Then click Apply.

 This step automatically opens the Console after you build your app, so
you won’t have to take the extra step of opening the Console to see your
app’s output. (I explain the Console in Chapter 12.)

 4. Click the Building tab to show the Building pane, as shown in Figure 5-9.

 5. In the Build Results Window section of the Building pane, choose
either the On Errors option or the Always option from the Open
During Builds pop-up menu, as shown in Figure 5-9. Then click Apply.

 The On Errors choice opens the Build Results window whenever an
error occurs. The Always choice opens the window and keeps it open.
(Some people find that having the Build Results window onscreen all the
time makes it easier to find and fix errors.)

 6. Click the Documentation tab.

 You may have to scroll the tabs horizontally to see the Documentation tab.

 7. Select the Check for and Install Updates Automatically check box and
then click the Check and Install Now button.

 This step ensures that the documentation remains up-to-date and also
allows you to load and access other documentation.

 8. Click OK to close the Xcode Preferences window.

Figure 5-9:
Set the
option

to show
the Build

Results
window.

10_9780470920503-ch05.indd 9810_9780470920503-ch05.indd 98 12/24/10 12:39 AM12/24/10 12:39 AM

99 Chapter 5: Getting to Know the SDK

 Set the tab width and other formatting options in the Indentation pane of the
Preferences window.

You can also have the Text Editor show line numbers. If you click Text
Editing in the Xcode Preferences toolbar to show the Text Editing pane, you
can select the Show Line Numbers check box under Display Options.

Using Interface Builder
Interface Builder is a great tool for graphically laying out your user interface.
You can use it to design your app’s user interface and then save what you’ve
done as a resource file, which is then loaded into your app at runtime. This
resource file is then used to automatically create the single window, as well
as all your views and controls, and some of your app’s other objects — view
controllers, for example. (For more on view controllers and other application
objects, check out Chapter 7.)

 If you don’t want to use Interface Builder, you can also create your objects
programmatically — creating views and view controllers and even things
like buttons and labels using your very own application code. Often Interface
Builder makes things easier, but sometimes just coding it is the best way.

Here’s how Interface Builder works:

 1. In your Project window’s Groups & Files list, select the Resources
group.

 The Detail view shows the files in the Resources group, as shown in
Figure 5-10.

 2. Double-click the DeepThoughtsViewController.xib file in the
Detail view. (Refer to Figure 5-10.)

 Note that DeepThoughtsViewController.h is still in the Editor
window; that’s okay because you’re set to open its associated
DeepThoughtsViewController.xib file in Interface Builder, not in
the Editor window. That’s because double-clicking always opens a file in
a new window — this time, the Interface Builder window.

 What you see after double-clicking are the windows as they were the
last time you left them (for this project). If this is the first time you’ve
opened Interface Builder, you see windows that look something like
those in Figure 5-11.

10_9780470920503-ch05.indd 9910_9780470920503-ch05.indd 99 12/24/10 12:39 AM12/24/10 12:39 AM

100 Part II: Becoming a Real Developer

Figure 5-10:
Double-click

the .xib file
to launch
Interface

Builder

Figure 5-11:
The .xib file
in Interface

Builder.

10_9780470920503-ch05.indd 10010_9780470920503-ch05.indd 100 12/24/10 12:39 AM12/24/10 12:39 AM

101 Chapter 5: Getting to Know the SDK

 Interface Builder supports two file types: an older format that uses the exten-
sion .nib and a newer format that utilizes the extension .xib. The iPad proj-
ect templates all use .xib files. Although the file extension is .xib, everyone
still calls them nib files. The term nib and the corresponding file extension
.xib are acronyms for NeXT Interface Builder. The Interface Builder applica-
tion was originally developed at NeXT Computer, whose OPENSTEP operating
system was used as the basis for creating Mac OS X.

The window labeled DeepThoughtsViewController.xib (the top center
window in Figure 5-11) is the nib’s main window. It acts as a table of con-
tents for the nib file. With the exception of the first two icons (File’s Owner
and First Responder), every icon in this window (in this case, there’s only
one, View, but you’ll find more as you get into nib files) represents a single
instance of an Objective-C class that will be created automatically for you
when this nib file is loaded, as I describe in Chapter 8.

 Interface Builder doesn’t generate any code that you have to modify or even
look at. Instead, it creates the ingredients for “instant” Objective-C objects
that the nib loading code combines and turns into real objects at runtime.

If you were to take a closer look at the three objects in the
DeepThoughtsViewController.xib file window (refer to Figure 5-11) —
and if you had a pal who knew the iPad backwards and forwards — you’d find
out the following about each object:

 ✓ The File’s Owner proxy object: This is the controller object that’s
responsible for the contents of the nib file. In this case, the File’s Owner
object is actually the DeepThoughtsViewController that was cre-
ated by Xcode. The File’s Owner object is not created from the nib file.
It’s created in one of two ways: either from another (previous) nib file or
by a programmer who codes it manually.

 ✓ First Responder proxy object: This object is the first entry in an app’s
dynamically constructed responder chain (a term I explain in Chapter 8)
and is the object with which the user is currently interacting. If, for
example, the user taps a text field to enter some data, the First
Responder would then become the Text Field object.

 Although you might use the First Responder mechanism quite a bit in
your apps, there’s actually nothing you have to do to manage it. It’s
automatically set and maintained by the UIKit framework.

 ✓ View object: The View icon represents an instance of the UIView class
of objects. A UIView class of object is an area (in this case, the view)
that a user can see and interact with.

10_9780470920503-ch05.indd 10110_9780470920503-ch05.indd 101 12/24/10 12:39 AM12/24/10 12:39 AM

102 Part II: Becoming a Real Developer

If you take another look at Figure 5-11, you notice three other windows open
besides the main window. Look at the View window (the one with “View” in
the window’s title, which appears behind and partially hidden by the other
windows). In the far-right corner of the top of the View window, you would
see the battery icon for the iPad in the black simulated status bar. That
window is the graphical representation of the View icon in your app — how
your new app appears on the iPad display.

 If you close the View window and then double-click the View icon in the
DeepThoughtsViewController.xib window, this View window opens
again.

Not surprisingly (because you haven’t added any data or unique code to
your app yet), the View window shows the same view — a white screen with
the black status bar and battery icon — as the Simulator shows when it runs
your bare-bones template-based app. (Refer to Figure 5-7.) This window is
your canvas for creating your user interface: It’s where you drag user-inter-
face elements such as buttons and text fields.

These buttons, text fields, and other objects come from the Library window
(the leftmost window in Figure 5-11). If the Library window isn’t open, select
Tools➪Library to open it. The Library window contains all the stock Cocoa
Touch objects that Interface Builder supports. (Cocoa Touch is an applica-
tion programming interface for building apps to run on the iPad, iPhone, or
iPod touch.) Dragging an item from the Library to the View window adds an
object of that type to the View. You start adding objects to the DeepThoughts
view in Chapter 9.

 If you happen to close the Library window, whether by accident or by design,
you can get it to reappear by choosing Tools➪Library.

The Inspector window is also open in Figure 5-11 — four icons across the
top from left to right correspond to the Attributes, Connections, Size, and
Identity Inspectors, respectively, in the Tools menu. You learn more about
these in Chapter 9.

It’s Time to Get Real
Well, you still have quite a bit more to explore. But before you look behind
the curtain of the iPad screen to see how iPad apps really run (and there’s no
fake Wizard of Oz back there, as I explain in Part III), and certainly before you
start adding code to your first sample app in Part IV, it helps to know more

10_9780470920503-ch05.indd 10210_9780470920503-ch05.indd 102 12/24/10 12:39 AM12/24/10 12:39 AM

103 Chapter 5: Getting to Know the SDK

about the app publishing process, how to provision your app for develop-
ment, and the App Store do’s and don’ts (discussed in Chapter 6).

When you’ve had a stroll through those adventures, you’ll know everything
you need to know about provisioning your app for the App Store and design-
ing an app that customers might actually want. (How’s that for a plan?)

10_9780470920503-ch05.indd 10310_9780470920503-ch05.indd 103 12/24/10 12:39 AM12/24/10 12:39 AM

104 Part II: Becoming a Real Developer

10_9780470920503-ch05.indd 10410_9780470920503-ch05.indd 104 12/24/10 12:39 AM12/24/10 12:39 AM

Chapter 6

Death, Taxes, and
iPad Provisioning

In This Chapter
▶ Running your application on the iPad

▶ Getting the app ready for distribution

▶ Taking the app to market — that is, the App Store

Benjamin Franklin once said, “In this world nothing can be said to be cer-
tain, except death and taxes.” Here’s another certainty in this earthly

vale of tears: Everybody has the same hoops to jump through to get an app
onto an iPad and then into the App Store — and nobody much likes jumping
through hoops, but there they are.

So you’re working on your app, running it in the Simulator, as happy as a vir-
tual clam, and all of a sudden you get this urge to see what your creation will
look like on the iPad itself. Assuming that you’ve joined the requisite devel-
oper program (see Chapter 4), what do you have to do to get it to run on the
iPad?

For most developers, getting their apps to run on the iPad during development
can be one of the most frustrating things about developing software for the
iPad. The sticking point has to do with a technical concept called code sign-
ing, a rather complicated process designed to ensure the integrity of the code
and positively identify the code’s originator. Apple requires all iPad (and
iPhone and iPod touch) apps to be digitally signed with a signing certificate —
one issued by Apple to a registered developer — before the apps can be run
on a development system and before they’re submitted to the App Store for
distribution. This signature authenticates the identity of the developer of
the app and ensures that there have been no changes to the app after it was
signed.

As to why this is a big deal, here’s the short and sweet (and, to my ears, con-
vincing) answer: Code signing is your way of guaranteeing that no bad guys
have done anything to your code that can harm the innocent user.

11_9780470920503-ch06.indd 10511_9780470920503-ch06.indd 105 12/24/10 12:38 AM12/24/10 12:38 AM

106 Part II: Becoming a Real Developer

Okay, so nobody really likes the process, but it’s doable, and it’s certainly
worth the trouble. In this chapter, I give you an overview of how it all works
by jumping right to that point where you’re getting your app ready to be
uploaded to the App Store and then distributed. I’m starting at the end of the
process, which for all practical purposes begins with getting your app to run
on an iPad during development. I’m doing the overview in this order because
the hoops you have to jump through are a direct consequence of code sign-
ing and of how Apple manages it through the App Store and on the device.

After the overview, which will give you some context for the whole process,
I revert back to the natural order of things and start with getting your app to
run on your iPad during development.

How the Process Works
It’s very important to keep clear that you have to go through two processes:
One for development, and one for distribution. Both produce different (but
similarly named) certificates and profiles, and you’ll need to pay attention to
keep them straight. This section starts with the distribution process — how
you get your app to run on other people’s iPads. Next up is the development
process — how to get your app running on your iPad during development.

The distribution process
Before you can build a version of your app that will actually run on your
users’ iPads, Apple insists that you have the following:

 ✓ A Distribution Certificate: An electronic document that associates a digital
identity (which it creates) with other information that you have provided
that identifies you, including a name, e-mail address, or business. The
Distribution Certificate is placed on your keychain — that place on your
Mac that securely stores passwords, keys, certificates, and notes for users.

 ✓ A Distribution Provisioning Profile: These profiles are code elements
that Xcode builds into your application, creating a kind of “code finger-
print” that acts as a unique digital signature.

After you’ve built your app for distribution, you then send it to Apple for
approval and distribution. Apple verifies the signature to be sure that the
code came from a registered developer (you) and has not been corrupted.
Apple then adds its own digital signature to your signed app. iOS (the oper-
ating system for the iPad) runs only apps that have a digital signature from
Apple. Doing it this way ensures iPad owners that the apps they download
from the App Store have been written by registered developers and have not
been altered since they were created.

11_9780470920503-ch06.indd 10611_9780470920503-ch06.indd 106 12/24/10 12:38 AM12/24/10 12:38 AM

107 Chapter 6: Death, Taxes, and iPad Provisioning

 To install your distribution-ready app on a device, you can also create an Ad
Hoc Provisioning Profile, which enables you to distribute your app on up to 100
devices.

Although the system for getting apps on other people’s iPads works pretty
well — leaving aside the fact that Apple essentially has veto rights on every
app that comes its way — there are some significant consequences for devel-
opers. In this system, there really is no mechanism for testing your app on
the device it’s going to run on:

 ✓ You can’t run your app on an actual device until it’s been code-signed by
Apple, but Apple is hardly going to code-sign something that may not be
working correctly.

 ✓ Even if Apple did sign an app that hadn’t yet run on an iPad, that would
mean an additional hassle: Every time you recompiled, you’d have to
upload the app to the App Store again — and have it code-signed again
because you had changed it, and then download it to your device.

A bit of Catch-22 here. (Milo Minderbinder would be proud.)

The development process
To deal with this problem, Apple has developed a process for creating a
Development Certificate (as opposed to the Distribution Certificate discussed
in the preceding section) and a Development Provisioning Profile (as opposed
to the Distribution Provisioning Profile). It’s easy to get these confused — the
key words are Distribution and Development. With these items in hand, you
can run your application on a specific device.

 This process is required only because of the code-signing requirements of the
distribution process.

To help you through this process, Apple provides the Development
Provisioning Assistant to create your Development Provisioning Profile.
This Profile includes your App ID, the Apple device UDID (a Unique Device
Identifier for each iPad), and the Development Certificate (belonging to a spe-
cific developer).

An App ID is a unique identifier that iOS uses to allow your app to connect to
the Apple Push Notification service, share keychain data between apps, and
communicate with external hardware accessories that you want to pair your
app with. But even if you don’t want to do those things, you need to create
an App ID anyway in order to create a complete Development Provisioning
Profile to install your app on an iOS–based device such as an iPad.

11_9780470920503-ch06.indd 10711_9780470920503-ch06.indd 107 12/24/10 12:38 AM12/24/10 12:38 AM

108 Part II: Becoming a Real Developer

This Profile must be installed on each device on which you want to run your
application code. (You see how that’s done in the section “‘Provisioning Your
iPad for Development,’” later in this chapter.) Devices specified within the
Development Provisioning Profile can be used for testing only by developers
whose Development Certificates are included in the Provisioning Profile. A
single device can contain multiple provisioning profiles.

It’s important to realize that a Development Provisioning Profile (as opposed
to a distribution one) is tied to a device and a developer.

Even with your Provisioning Profile(s) in place, when you compile your pro-
gram, Xcode will build and sign (create the required signature for) your app
only if it finds one of those Development Certificates in your keychain. Then,
when you install a signed app on your provisioned iPad, iOS verifies the sig-
nature to make sure that (a) the app was signed and (b) the app has not been
altered since it was signed. If the signature is not valid or if you didn’t sign
the code, iOS won’t let the app run.

This means that each Development Provisioning Profile is also tied to a par-
ticular Development Certificate.

 And to make sure the message has really gotten across:

A Development Provisioning Profile is tied to a specific device and a spe-
cific Development Certificate.

Your app, during development, must be tied to a specific Development
Provisioning Profile (which is easily changeable).

 The process you’re about to go through is akin to filling out taxes: You have to
follow the rules, or there can be some dire consequences. But if you do follow
the rules, everything works out, and you don’t have to worry about it again.
(Until it’s time to develop the next app, of course.) Although this process is
definitely not my favorite part of iPad software development, I’ve made peace
with it, and so should you.

After developing your app, it’s time for the next step: getting it ready for
distribution. (This process is somewhat easier.) Finally, you definitely want
to find out how to get your application into the App Store. After that, all you
have to do is sit back and wait for fame and fortune to come your way — or
read Chapter 3 again to discover why it hasn’t yet.

 What I describe on these pages is the way things looked when I wrote this
book. What you see when you go through this process yourself may be
slightly different from what you see here. Don’t panic. It’s because Apple
changes things from time to time.

11_9780470920503-ch06.indd 10811_9780470920503-ch06.indd 108 12/24/10 12:38 AM12/24/10 12:38 AM

109 Chapter 6: Death, Taxes, and iPad Provisioning

Organizing Your Account
in the Member Center

You can visit the Member Center to access account, team, and program infor-
mation, to edit team members, or to request support.

 You should bookmark the Member Center, shown in Figure 6-1, so that you
can return to it quickly. It’s really a hub for everything you need as a regis-
tered developer and iOS program member.

 You’ve already identified yourself to Apple as one of two types of developers:

 ✓ If you’re enrolled in the Developer Program as an individual, you’re
considered a Team Agent with all the rights and responsibilities.

 ✓ If you’re part of a company, you’ve set up a team already. If not, visit
the Member Center and click Your Account.

When you’ve settled the matter of which kind of developer you are (for
Apple’s purposes), you’re ready to obtain your Development Certificates for
team members’ computers.

Figure 6-1:
The

Member
Center is
a hub for

managing
develop-

ment.

As I mention earlier in this chapter, to run the app on the iPad you must
have a Provisioning Profile installed on the iPad, as well as a Development
Certificate on your Mac.

11_9780470920503-ch06.indd 10911_9780470920503-ch06.indd 109 12/24/10 12:38 AM12/24/10 12:38 AM

110 Part II: Becoming a Real Developer

 Development and Distribution stay off each other’s turf. The Development
Provisioning Assistant creates a Development Provisioning Profile, not a
Distribution Provisioning Profile. You have to use the Provisioning section of
the Program Portal, described later in this chapter, to create the Distribution
Provisioning Profile required to distribute the app to customers through the
App Store.

Obtaining a Development Certificate
Now I can go back to the natural order of things and start by explaining the
process of getting your device ready for development. The most confusing part,
in my opinion, is getting this Development Certificate. While Apple provides
an Assistant that can do this (see “Getting an assist from the Development
Provisioning Assistant”), and Xcode can also do it for you (see “Using Xcode to
create a provisioning profile”), I found that neither worked for me after I had a
hard drive failure and had to restore my Mac system. The tried-and-true manual
method provided here does the job, if the other solutions don’t work for you.
Fortunately you have to do this only once, not for each project.

Although Apple documents the steps very well, do keep in mind that you
really have to carry them out in exactly the way Apple tells you. There are no
shortcuts! But if you do it the way it prescribes, you’ll be up and running on a
real device very quickly.

It’s the rule: All iOS applications must be signed by a valid certificate before
they can be run on an Apple device. In order to sign applications for testing
purposes, team members each need an iOS Development Certificate. Each
member of a team can have only one active certificate.

Here’s the drill for getting your certificate:

 1. Go to the iOS Dev Center Web site (which offers all of Apple’s
resources for iPad development) at

http://developer.apple.com/devcenter/ios

 If necessary, log in with your developer ID. The iOS Dev Center appears,
as shown in Figure 6-2. You can see the iOS Provisioning Portal link,
along with the iTunes Connect and the Developer Support Center links, in
the iOS Developer Program section on the right side of the Web page. (You
can see those links if you’re a registered developer. You did take care of
that, right? If not, look back at Chapter 4 for more on how to register.)

 2. Click the iOS Provisioning Portal link.

 The iOS Provisioning Portal screen appears, as shown in Figure 6-3.

11_9780470920503-ch06.indd 11011_9780470920503-ch06.indd 110 12/24/10 12:39 AM12/24/10 12:39 AM

111 Chapter 6: Death, Taxes, and iPad Provisioning

Figure 6-2:
The Dev

Center gate-
way to the

Provisioning
Portal.

 3. Watch the how-to video, “Obtaining Your Certificate,” under Portal
Resources in the right column of the Provisioning Portal.

 This video does a stellar job of explaining how to obtain certificates. It
actually explains all of the following steps, so you can read them while
watching.

 4. Launch the Keychain Access application in Mac OS X.

 You use Keychain Access to generate a Certificate Signing Request
(CSR).

 5. In the Keychain Access Preferences menu, set the Online Certificate
Status Protocol (OSCP) and Certificate Revocation List (CRL) pop-up
menus to Off.

 6. Choose Keychain Access➪Certificate Assistant➪Request a Certificate
from a Certificate Authority.

 Make sure that you are selecting Request a Certificate from a Certificate
Authority and not selecting Request a Certificate from a Certificate
Authority with Private Key. If you previously selected a noncompliant
private key in the Keychain before starting this process, the resulting
Certificate Request won’t be accepted by the Provisioning Portal.

11_9780470920503-ch06.indd 11111_9780470920503-ch06.indd 111 12/24/10 12:39 AM12/24/10 12:39 AM

112 Part II: Becoming a Real Developer

Figure 6-3:
Behold
the iOS

Provisioning
Portal.

 7. Enter your e-mail address in the User Email Address field, and enter
your name in the Common Name field.

 Make sure they match the information you submitted when you regis-
tered as an iOS Developer.

 8. Select both the Saved to Disk and the Let Me Specify Key Pair
Information options and then click Continue.

 9. Specify a filename and click Save, and in the following screen, select
2048 bits for the Key Size and RSA for the Algorithm. Then click
Continue.

 The Certificate Assistant creates a Certificate Signing Request (CSR) file
on your Desktop.

 10. In the iOS Provisioning Portal (refer to Figure 6-3), first click
Certificates in the left-most column, click the Development tab in the
new page that appears, and then finally click Add Certificate.

 11. In the dialog that appears, click the Choose file button, browse to your
Desktop and select the CSR file you just created, and then click Submit.

 After submitting the CSR file, you (or the Team Administrators for your
team) are notified by e-mail of the certificate request. After submitting a
CSR for approval, Team Administrators are directed to the Development
tab of the Certificates section where CSRs can be approved or rejected
by clicking the corresponding action next to each request. If you’re
part of a team, after your CSR is approved or rejected by a Team
Administrator, you will be notified via e-mail of the change in your cer-
tificate status.

11_9780470920503-ch06.indd 11211_9780470920503-ch06.indd 112 12/24/10 12:39 AM12/24/10 12:39 AM

113 Chapter 6: Death, Taxes, and iPad Provisioning

 12. After being notified that the CSR has been approved, go back to the
Development tab of the Certificates section of the portal (shown in
Figure 6-4), click the Click Here to Download Now link next to the
WWDR Intermediate Certificate message, and then click Download to
start downloading the certificate.

 13. On your Mac Desktop, double-click the WWDR Intermediate certificate
to launch Keychain Access and install the certificate.

 14. If you are part of a development team (Company), upon CSR approval,
other Team Members and Team Administrators can also click
Download next to the certificate name in the Certificates section of the
Provisioning Portal (refer to Figure 6-4) to download their certificates.

 15. If you are part of a development team (Company), after the downloads
are completed, other team members can double-click the downloaded
.cer file on their Mac Desktops to launch Keychain Access and install
their certificates.

 After installing the certificate, be sure to export a backup copy to another
hard drive or storage medium in order to save it in case your hard drive fails —
or to use with another development computer. Here’s how:

 1. Choose Window➪Organizer from Xcode’s main menu.

 The Organizer window appears onscreen.

 2. In the Development group under Projects & Sources, select Developer
Profile.

Figure 6-4:
Download

your
Development

Certificate.

11_9780470920503-ch06.indd 11311_9780470920503-ch06.indd 113 12/24/10 12:39 AM12/24/10 12:39 AM

114 Part II: Becoming a Real Developer

 3. Click Export Developer Profile to export the profile archive file.

 4. You’re asked to create a password to use for importing to another
computer. Do so.

 5. Import this archive file into another computer you are using for
development by launching Xcode, choosing Window➪Organizer,
selecting Developer Profile in the Development group, clicking Import
Developer Profile, and entering the password you chose in Step 4.

Provisioning Your iPad for Development
After you’ve installed your Development Certificate, you have three choices
for provisioning your iPad for development:

 ✓ Let Xcode create a provisioning profile for you and download it to
your iPad. Xcode can even request a Development Certificate for you.
I recommend this choice and show you how in the next section of this
chapter.

 ✓ Use the Development Provisioning Assistant to create your provi-
sioning profile. Do this if you need to start the process before you’ve
connected your iPad. The Assistant can also request a Development
Certificate for you. I show you how to use the Assistant in the section
“Getting an assist from the Development Provisioning Assistant” in this
chapter.

 ✓ Do it all on your own. This last option is a bit detailed, and I don’t
cover it in this book (except the Development Certificate part — see
“Obtaining a Development Certificate” in this chapter), but Apple pro-
vides plenty of information in the Provisioning Portal — watch the
“Assigning Devices,” “Creating your App IDs,” and “Creating Provisioning
Profiles” videos under Portal Resources in the right column. (Refer to
Figure 6-3.)

 The App ID created by Xcode or the Assistant can’t be used with the Apple
Push Notification service. (This service lets your app keep its users up to
date, offering the capability of sending a message that lets the user launch
your app, triggering audible alerts with your own custom sounds, or adding
a numbered badge to your app icon — for details, see the App IDs section of
the iOS Developer Program Portal at http:// developer.apple.com/
ios/manage/bundles.) The App ID created by the Assistant also can’t be
used for In App Purchase. (See Chapter 3 for details on In App Purchase.) If
you’ve previously created an App ID already that can be used with the Apple
Push Notification service or for In App Purchase, you can’t use the Assistant
or Xcode to create a Development Provisioning Profile — you have to do it on
your own.

11_9780470920503-ch06.indd 11411_9780470920503-ch06.indd 114 12/24/10 12:39 AM12/24/10 12:39 AM

115 Chapter 6: Death, Taxes, and iPad Provisioning

Using Xcode to create
a provisioning profile
You can use Xcode (version 3.2.3 and newer) to auto-provision your iPad for
you. It will create an App ID for you, create a provisioning profile for your
Team Provisioning Profile, and download the profile to your iPad. All you
need to do is connect your iPad to your computer. Follow these steps:

 1. Choose Window➪Organizer from Xcode’s main menu to open the
Organizer window. Then plug in your iPad.

 You can see the result of this action in Figure 6-5.

 2. Click the Use for Development button.

 After clicking Use for Development, Xcode asks you for your iOS
Provisioning Portal logon (the same Apple ID you use to log in to the iOS
Dev Center).

Figure 6-5:
Use this
iPad for

develop-
ment.

 3. Supply the requested username and password and then click Log In.

 Xcode then looks for your Development Certificate; if you don’t have one
installed, you can click the Submit Request button to request one. (See

11_9780470920503-ch06.indd 11511_9780470920503-ch06.indd 115 12/24/10 12:39 AM12/24/10 12:39 AM

116 Part II: Becoming a Real Developer

“Obtaining a Development Certificate” in this chapter.) If it finds the cer-
tificate, Xcode automatically provisions the iPad you connected. Xcode
adds a provisioning profile called Team Provisioning Profile: *
to your device that is shared among the members of your team who pro-
vision their devices automatically.

 4. Open your Xcode project (if it’s not already open) and, in the Project
window, choose Device as the active SDK in the Overview menu in the
upper-left corner, as shown in Figure 6-6.

You can then build your application and have it installed on the provisioned
device (your iPad). When you build and run your app, you get the seemingly
Catch-22 dialog that you can’t run the app on your device because the device
doesn’t have the provisioning profile yet. To get beyond this roadblock, just
click Install and Run in the dialog to install the profile and run the app.

Figure 6-6:
Choose

Device as
the active

SDK.

Getting an assist from the Development
Provisioning Assistant
The whole point of the Development Provisioning Assistant is to guide you
through the steps to create and install your Development Provisioning Profile
and Development Certificate.

11_9780470920503-ch06.indd 11611_9780470920503-ch06.indd 116 12/24/10 12:39 AM12/24/10 12:39 AM

117 Chapter 6: Death, Taxes, and iPad Provisioning

To use the Assistant, scroll the iOS Provisioning Portal page (refer to Figure
6-3) to the Provisioning Assistant section, and click the Launch Assistant
button. The Assistant launches with a diagram showing the three steps for
provisioning: configuring your profile, downloading and installing the certifi-
cate, and building your app, as shown in Figure 6-7. Click Continue to start.

Here’s what the Development Provisioning Assistant has you do:

 1. Create a new or use an existing App ID.

 If you already have an App ID for your app, you can click the Use an
Existing App ID pop-up menu to select it; otherwise, select Create a New
App ID.

Figure 6-7:
Using the

Development
Provisioning

Assistant.

 2. Enter a common name or description of your App ID to identify it.

 This name or description appears in the iOS Provisioning Portal to iden-
tify your App ID.

 3. Choose an existing Apple device or assign a new device and then con-
nect your iPad.

 Development provisioning is also about the device, so you have to spec-
ify which particular device you’re going to use and connect it. You can
choose a device you have provisioned before by clicking Use an Existing

11_9780470920503-ch06.indd 11711_9780470920503-ch06.indd 117 12/24/10 12:39 AM12/24/10 12:39 AM

118 Part II: Becoming a Real Developer

Apple Device and selecting it from the pop-up menu, or you can assign a
new device by selecting Assign a New Apple Device. If you are assigning
a new device, the Assistant asks for the device’s Unique Device Identifier
(UDID), which the Assistant shows you how to locate using Xcode.
Connect your iPad with a USB cable to your computer, launch Xcode,
and choose Window➪Organizer. The 40-character string in the Identifier
field is the device’s UDID; you can click it to select it and use Copy and
Paste to copy it to the Assistant.

 4. Provide your Development Certificate.

 All apps must be signed with a valid certificate before they can run on
an Apple device. If your existing Development Certificate appears in
the Assistant, all you need to do is click Continue. If you don’t have a
certificate yet, you need to create one — see “Obtaining a Development
Certificate” in this chapter.

 5. Name your Provisioning Profile.

 You then give your Provisioning Profile a name and click Generate. I
suggest that you use a name that includes the app’s name, the device
(iPad), and the developer name. The Provisioning Profile pulls together
your App ID (Step 1), Apple device UDID (Step 2), and Development
Certificate (Step 3). When finished, the Assistant shows a check mark
indicating success.

 6. Click Continue and then click the name of the Development
Provisioning Profile to download and install it.

 Your browser downloads the profile to your Desktop or to the
Downloads folder (or to wherever your browser puts downloads).

 7. Drag the provisioning profile over the Xcode icon in the Mac OS X
Dock or drag it directly to the iPad’s name in the Devices section of
the Projects and Sources pane of the Organizer window, as shown in
Figure 6-8.

 Choose Window➪Organizer in Xcode first to open the Organizer
window.

 8. Verify that the Provisioning Profile is installed.

 In Xcode, choose Window➪Organizer and click the device’s name in
the Devices section of the Projects and Sources pane of the Organizer
window, as shown in Figure 6-9 (TB’s Mighty iPad). The profile should
appear in the Provisioning section of the Summary pane for the device.

At this point, you can switch from the Organizer window to the Xcode Project
window, and choose Device as the active SDK (refer to Figure 6-6). You can
then rebuild your app so that it is reinstalled on the provisioned iPad —
follow the Build and Run instructions in Chapter 5.

11_9780470920503-ch06.indd 11811_9780470920503-ch06.indd 118 12/24/10 12:39 AM12/24/10 12:39 AM

119 Chapter 6: Death, Taxes, and iPad Provisioning

Figure 6-8:
Drag the

provisioning
profile to the

Organize
window of

Xcode.

Figure 6-9:
The profile

is listed
in the

Provisioning
section as
installed in
the device.

11_9780470920503-ch06.indd 11911_9780470920503-ch06.indd 119 12/24/10 12:39 AM12/24/10 12:39 AM

120 Part II: Becoming a Real Developer

Provisioning Your Application for the
App Store or Ad Hoc Distribution

Before going any further, you need to visit the App Store Resource Center
to get as much information as possible before submitting your app. To get
there, click the App Store Resource Center link in the iOS Dev Center. (Refer
to Figure 6-2.) Here you find information about how to submit your app, what
to expect in the approval process, how to manage your apps in the store, and
how to raise awareness and market your apps. You should read these sec-
tions carefully because Apple changes procedures and resources from time
to time.

 At some point, you should visit the Marketing Resources section of the App
Store Resource Center to become an Authorized Licensee for marketing
images. You can then use the App Store artwork and iPad images in your
advertising, Web sites, and other marketing materials.

Although there’s no dedicated assistant to help you provision your applica-
tion for the App Store, that process is actually a little easier — which may be
why there’s no assistant for it.

You start at the Provisioning Portal (refer to Figure 6-3), but this time you
click the Distribution link in the menu on the left side of the page. Doing so
takes you to the Prepare App tab of the Distribution page, shown in Figure
6-10, where you can find an overview of the process, as well as links that take
you where you need to go when you click them.

 You actually jump through some of the very same hoops you did when you
provisioned your device for development — except that this time, you’re
going after a Distribution Certificate.

Here’s the step-by-step account:

 1. Obtain your Distribution Certificate.

 To distribute your iPad app, you (as an Individual developer, or function-
ing as the Team Agent for your development team) create a Distribution
Certificate. This works much like the Development Certificate, except that
only the Team Agent (or whoever is enrolled as an Individual developer)
can get one. Clicking the Obtaining Your iOS Distribution Certificate link
on the Prepare App page (shown near the bottom of Figure 6-10) leads
you through the process — which is the same process I describe in
“Obtaining a Development Certificate” earlier in this chapter.

11_9780470920503-ch06.indd 12011_9780470920503-ch06.indd 120 12/24/10 12:39 AM12/24/10 12:39 AM

121 Chapter 6: Death, Taxes, and iPad Provisioning

Figure 6-10:
Getting your

app ready
for distribu-

tion: You
are here.

 2. Click Provisioning in the left column of the Provisioning Portal and
click the Distribution tab, as shown in Figure 6-11, to create your
Distribution Provisioning Profile for App Store Distribution.

 To build your app successfully with Xcode for distribution via the App
Store, first you have to create and download an App Store Distribution
Provisioning Profile, which is (lest you forget) different from the
Development Provisioning Profiles described in the previous section.

 Apple will accept an app only after it’s built with an App Store
Distribution Provisioning Profile.

 3. Click App Store (refer to Figure 6-11) and enter the name for your
Distribution Provisioning Profile.

 You should also see your iOS Distribution Certificate already identified
under the Profile Name field. (Refer to Figure 6-11.) If it’s not there, go
back to Step 1.

 4. Choose the App ID for the distribution in the Select App ID pop-up
menu, or choose All to build all of your apps with your single
Distribution Provisioning Profile.

11_9780470920503-ch06.indd 12111_9780470920503-ch06.indd 121 12/24/10 12:39 AM12/24/10 12:39 AM

122 Part II: Becoming a Real Developer

Figure 6-11:
Choose

App Store
as your

distribution
method.

 5. Click Submit, and then click on the name of the Distribution
Provisioning Profile to download and install it.

 Your browser downloads the profile to your Desktop or to the
Downloads folder (or to wherever your browser puts downloads).

 6. Drag the provisioning profile over the Xcode icon in the Mac OS X
Dock, or drag it directly to the iPad’s name in the Devices section of
the Projects and Sources pane of the Organizer window.

 This loads your Distribution Provisioning Profile into Xcode, and you’re
ready to build an app you can distribute for use on actual iPads.

 7. (Optional) You can also create and download a Distribution
Provisioning Profile for Ad Hoc Distribution.

 Going the Ad Hoc Distribution route enables you to distribute
your application to up to 100 users without going through the App
Store. Scroll the Prepare App page (refer to Figure 6-10) to click the
Creating and Downloading a Distribution Provisioning Profile for Ad
Hoc Distribution link, which leads you through the process. (Ad Hoc
Distribution is beyond the scope of this book — the iOS Provisioning
Portal has more info about this option.)

11_9780470920503-ch06.indd 12211_9780470920503-ch06.indd 122 12/24/10 12:39 AM12/24/10 12:39 AM

123 Chapter 6: Death, Taxes, and iPad Provisioning

Building Your App for Distribution
After you download the distribution profile, you can build your app for
distribution — rather than just building it for testing purposes, which is what
you’ve been doing so far. It’s a well-documented process that you start by
scrolling the Prepare App tab of the Distribution page (refer to Figure 6-10)
and clicking the Building Your Application with Xcode for Distribution link. It
goes like this:

 1. Open the Xcode project, select the project name at the top of the
Groups & Files list, choose File➪Get Info to show the Info window,
and click the Configurations tab.

 The Configurations pane of the Info window appears as shown in Figure
6-12 (left side).

 2. Select the Release configuration (refer to Figure 6-12), click the
Duplicate button, and rename this new configuration Distribution.

 3. Select the project name in the Targets section of the Groups & Files
list, choose File➪Get Info to show the Target Info window, and click
the Build tab.

 The Build pane of the Target Info window appears as shown in Figure
6-12 (right side).

Figure 6-12:
The Con-

figurations
Info panel

(left) and the
Target Info

panel (right).

11_9780470920503-ch06.indd 12311_9780470920503-ch06.indd 123 12/24/10 12:39 AM12/24/10 12:39 AM

124 Part II: Becoming a Real Developer

 4. Choose Distribution from the Configuration pop-up menu in the Build
pane. (See Figure 6-12, right side.)

 5. Choose the iOS Distribution Certificate/Provisioning Profile pair from
the Any iOS Device pop-up menu below the Code Signing Identity field.

 Choose the profile pair you want to use for signing and installing
your app. Your iOS Distribution Certificate will be in bold with the
Provisioning Profile associated with it in gray above it.

 6. Click the Properties tab of the Target Info window and enter the
Bundle Identifier portion of your App ID.

 If you have used an explicit App ID (as I did), you must enter the Bundle
Identifier portion of the App ID in the Identifier field. For example, enter
com.domainname.applicationname if your App ID is A1B2C3D4E5.
com.domainname.applicationname.

 7. Back in the Xcode Project window, select Distribution as your Active
Configuration in the Overview pop-up menu, as shown in Figure 6-13.

 8. Choose Build➪Build.

 You must have already added an icon to your project before taking this
step— see Chapter 9 for details on adding the icon, which appears on
the iPad Home screen.

Figure 6-13:
Select

Distribution
as your

Active Con-
figuration.

11_9780470920503-ch06.indd 12411_9780470920503-ch06.indd 124 12/24/10 12:39 AM12/24/10 12:39 AM

125 Chapter 6: Death, Taxes, and iPad Provisioning

 9. In your Xcode project, verify that it worked.

 Scroll the Prepare App tab of the Distribution page (refer to Figure 6-10)
and click the Verifying a Successful Distribution Build link to get the
verification process started. In this case, there are some things missing
in the heretofore well-explained step-by-step documentation — it tells
you to open the Build Log detail view and confirm the presence of the
embedded.mobileprovision file. (In Chapter 5, I show you how to
keep the Build Results window open in Xcode, but if you haven’t been
doing that, choose Build➪Build Results.)

 Depending on the way the Build Results window is configured, you
may see a window showing only the end result of your build. To get the
actual log of the process and confirm the presence of the embedded.
mobileprovision file, you have to change Errors & Warnings Only in
the drop-down menu in the scope bar to All Messages.

 Make sure that the embedded.mobileprovision file is located in
the proper Distribution build directory and is not located in a Debug
or Release build directory. Also, confirm that the destination path (at
the very end of the build message) is the app you are building. Finally,
search for the term CodeSign in the Build Log’s Detail view — this will
take you to the line in the build log that confirms your app was signed
by your iOS Certificate.

 10. If the build didn’t work properly . . .

 If your build log lacks the embedded.mobileprovision file or puts it
in the wrong directory, make sure Distribution is set for the Build config-
uration (Step 4). Then choose Build➪Clean All Targets, relaunch Xcode,
and reopen your project. Finally, redo Steps 5–9.

When you’ve done this elaborate (but necessary) song and dance, you’re
ready to rock ’n’ roll. You can go to iTunes Connect, which is your entryway
to the App store. This is where the real fun starts.

Using iTunes Connect to Manage
Apps in the App Store

iTunes Connect is a group of Web-based tools that enables developers to
submit apps to the App Store as well as to manage those apps of theirs that
have found a home there. It’s actually the very same set of tools that the
other content providers — the music and video types — use to get their con-
tent into iTunes.

11_9780470920503-ch06.indd 12511_9780470920503-ch06.indd 125 12/24/10 12:39 AM12/24/10 12:39 AM

126 Part II: Becoming a Real Developer

In iTunes Connect, you can check on your contracts, manage users, and
submit your app with all its supporting documentation — the metadata, as
Apple calls it — to the App Store. iTunes Connect is also where you get finan-
cial reports and daily/weekly sales trend data, as I describe in Chapter 3.

To go to iTunes Connect to add or manage apps in the store, click the iTunes
Connect link under the iOS Developer Program heading in the right column
of iOS Dev Center (refer to Figure 6-2) to go to the login page. You need to
use your Apple ID and password to log in. Before you can do anything, you’re
asked to review and accept the iTunes Distribution Terms & Conditions. After
taking care of that chore, you land on the iTunes Connect page, a portion of
which is shown in Figure 6-14.

When you want to add an application to the App Store or manage what you
already have there, the iTunes Connect main page is your control panel for
getting that done.

You’ll primarily be using three sections of the iTunes Connect page: the
Manage Users section; the Contract, Tax & Banking Information section; and
the Manage Your Applications section.

Figure 6-14:
The iTunes

Connect
main page.

11_9780470920503-ch06.indd 12611_9780470920503-ch06.indd 126 12/24/10 12:39 AM12/24/10 12:39 AM

127 Chapter 6: Death, Taxes, and iPad Provisioning

Managing Users
Users in this context means you and your fellow team members, not any
future potential users of your app. Click the Manage Users link to find out
what tools are available for managing how you and your team communi-
cate about what’s what with your app. When creating and editing an iTunes
Connect user account, you can define user roles and notifications — the type
of e-mails your fellow team members will receive regarding the main iTunes
Connect account. When setting up accounts, keep in mind that you have four
distinct user roles to choose from: Admin, Legal, Finance, and Technical.

Adding contract, tax, and
banking information
After you’ve set up your various user accounts, proceed to the Contracts,
Tax & Banking section to complete the paid application agreements and pro-
vide financial information relating to payment and tax withholdings from the
sale of your apps.

If you plan on selling your application, you need to have your paid commer-
cial agreement in place and signed before your application can be posted to
the App Store.

 If your application is free, you’ve already entered into the freeware distribu-
tion agreement by being accepted into the iOS Developer Program; however,
there is still a contract setup process that free application contracts will need
to go through before your application will go live in the App Store. Contract
approval can take a while, so you should probably fill out the contract infor-
mation just to get it out of the way.

Start by clicking the Contracts, Tax & Banking Information link on the iTunes
Connect main page. The Manage Your Contracts page appears. You use this
page to create a contract for your paid app. You can also see that you already
have, by default, a contract in effect for free apps. To create a new contract,
select the box under Request Contract in the Request New Contracts section,
and you’re taken through a series of pages that ask you to provide the infor-
mation Apple needs, including all the bank information.

If you’re going to charge for your application, you have to provide even more
information. Most of it is pretty straightforward, except for some of the bank-
ing information, which you do need to have available.

11_9780470920503-ch06.indd 12711_9780470920503-ch06.indd 127 12/24/10 12:39 AM12/24/10 12:39 AM

128 Part II: Becoming a Real Developer

 To change some of the information after you’ve entered it, you have to e-mail
iTunes technical support. It behooves you to get it right the first time.

Here’s what I’m talking about:

 ✓ Bank name

 ✓ Bank address

 ✓ Account number

 ✓ Branch/Branch ID

 ✓ ABA/Routing Transit Number or SWIFT Code: What this number is will
depend upon where your bank is located. For United States banks, this
number is the first nine digits of that long number at the bottom of your
checks that also contains the account number. If you aren’t sure what
the routing number is, contact your bank. For non-U.S. banks, you may
have to enter the SWIFT Code instead. You have to get that from your
bank. The process also provides a look-up function to help you out.

 Take it from me: It’s far easier if you have all the bits and pieces together
before you start the actual upload process, rather than having to scramble at
3 a.m. to find some obscure piece of information you need.

Adding the metadata and artwork
Here’s an overview of the kind of information you need as you submit your
app with iTunes Connect. (For more information, click the Prepare for App
Submission link in the App Store Resource Center section of the iOS Dev
Center page shown earlier in Figure 6-2.)

Metadata is the ever-present data about data. Here’s what Apple wants
from you:

 ✓ Application Name: The name must conform to guidelines for using
Apple and all other trademarks and copyrights. Apple takes this very
seriously, as evidenced by the company sending a cease-and-desist
order to Neal’s ISP when Neal tried (innocently) to use the word iPhone
in his domain name. (A word to the wise: Don’t mess with Apple.)

 ✓ Application Description: When you go through the process of uploading
your data, the field you have to paste this into will say you’re limited to
4,000 characters. Apple suggests no more than 580 characters, so that
customers can view your entire iTunes Connect Application Description
without clicking the More button in the App Store.

11_9780470920503-ch06.indd 12811_9780470920503-ch06.indd 128 12/24/10 12:39 AM12/24/10 12:39 AM

129 Chapter 6: Death, Taxes, and iPad Provisioning

 This description is what users will see when they click your app in the
App Store or follow a link from another Web page to a browser page for
the App Store, so it’s important that this description is well written and
points out all your app’s key features.

 Don’t include HTML tags; they will be stripped out when the data is
uploaded. Only line breaks are respected.

 ✓ Device: Choose iPad (as of this writing).

 ✓ Primary Category: A drop-down menu offers the primary category
choices for your app — choose one (the most important category). The
App Store offers about 20 categories ranging from Reference to Games
to Social Networking to Travel to Utility.

 ✓ Secondary Category: (Optional) These categories are the same that you
see for the Primary Category — choose one.

 ✓ Rating Information: You’re asked to provide additional information
describing the content. This allows you to set your rating for your app
for the purpose of parental controls on the App Store. You may see con-
tent types such as Cartoon or Fantasy Violence, Simulated Gambling,
Mature/Suggestive Themes, and so on. For each type of content, you
need to describe the level of frequency for that content — None,
Infrequent/Mild, Frequent/Intense. Apple has strict rules stating that an
app must not contain any obscene, pornographic, or offensive content.
Oh and by the way, it’s entirely up to Apple what is to be considered
offensive or inappropriate.

 ✓ Copyright: Use a line such as

 © Copyright your name 2010. All rights reserved.

 You can type the copyright symbol by pressing Option-G. If you have
any questions about copyright registration, talk to your lawyer or check
out www.copyright.gov.

 ✓ Version Number: People usually start with 1.0. Then, as you update the
app to respond to suggestions and constructive criticism, you can move
on to 1.1 and eventually version 2.0.

 ✓ SKU Number: The Stock Keeping Unit (SKU) number is any alphanu-
meric sequence of letters and numbers that uniquely identifies your app
in the system. (Be warned — this is not editable after you submit it.)

 ✓ Keywords: Keywords help people find your app in App Store searches.
They can be single words or phrases — the text field is limited to 100
characters.

 Spend some time on this one — you can’t change them until you submit
a new version of your app or if the app status is Rejected. Keywords
must be related to your application content — you can’t use other app

11_9780470920503-ch06.indd 12911_9780470920503-ch06.indd 129 12/24/10 12:39 AM12/24/10 12:39 AM

130 Part II: Becoming a Real Developer

names, company names, or trademarked terms as keywords, or any kind
of offensive language. Your App Name and Company are already search-
able, so you don’t need to include them in your keywords list.

 ✓ Support URL and Company URL: You need a support URL, which
appears on the app product page at the App store — this is the link
users will click if they need technical support from you or have a ques-
tion about your app. You also need a company URL, which also appears
on the app product page and enables potential customers to find out
more about you. After you’ve assigned these URLs, you want to keep
them unchanged for as long as possible, because people bookmark
them. (You can use a redirect in your Web page to direct them to
another page, if necessary.)

 If you don’t have a Web site yet and don’t know how to build one, try
using iWeb with MobileMe (if you already have the service) or with your
friendly ISP. MobileMe offers automatic Web publishing to a reasonably
unique domain name that can serve well enough for your URLs — to find
out more, see my book iLife For Dummies. You can also find out more
about building a professional-looking site from David Crowder’s book
Building a Web Site For Dummies, 3rd Edition.

 ✓ Support E-mail Address: (For use by Apple only, not visible to end users
of your app.) This address will likely be the one you used when you reg-
istered for the developer program.

 ✓ Demo Account — Full Access: This is a test account that the App Store
reviewers can use to test your app. Include usernames, passwords,
access codes, demo data, and so on. You should include any messages
to the Apple app reviewers, in case they might incorrectly reject
something — for example, by wrongly assuming you don’t have permis-
sion to use a piece of music in the app when in fact the piece is in the
public domain. Make sure the demo account works correctly. You’d hate
to have your app rejected because you didn’t pay attention to setting up
a demo account correctly.

 ✓ End User License Agreement: (Optional) If you don’t know what this is,
don’t worry. It’s the legal document that spells out to your app’s users
what they’re agreeing to do in order to use your app. Fortunately, the
iTunes Store has a standard agreement, which has been time-tested —
but you should read it anyway before you use it.

 ✓ Availability Date: This is the date your app will be available for down-
load (for free apps) or for purchase-and-download.

 ✓ Application Price: Free is easier, but if you want to get paid, you have
to select a price tier. The last time I tried it, you couldn’t see the pric-
ing matrix unless you had first selected one. To help you along, Tier 1 is
US$0.99, Tier 2 is US$1.99, and so on.

11_9780470920503-ch06.indd 13011_9780470920503-ch06.indd 130 12/24/10 12:39 AM12/24/10 12:39 AM

131 Chapter 6: Death, Taxes, and iPad Provisioning

 ✓ Localization: Specify additional languages (besides English) for your
metadata. You can have your text and images in Italian in all Italian-
speaking stores, for example.

 ✓ App Store Availability: The territories in which you would like to make
your app available. (The default is all countries iTunes supports.)

When it comes to your artwork, a picture is worth a thousand words, so the
App store gives you the opportunity to dazzle your app’s potential users with
some nice imagery:

 ✓ iPad Home Screen Icon: Your built app must include an icon sized at
72 x 72 pixels. You can add the icon directly to the app following the
procedure I describe in Chapter 9. This icon will be displayed on the
iPad home screen. You also need to supply a smaller version of this
icon, at 48 x 48 pixels, for display in Spotlight search results and in the
Settings application (if you provide settings).

 ✓ Large Application Icon: This icon will be used to display your app on
your App Store page and other App Store pages. It needs to meet the
following requirements, although the version you see in the App Store is
resized by Apple:

 • 512 x 512 pixels (a square image)

 • 72 dots-per-inch (dpi)

 • JPEG or TIFF format (saved without separate layers)

 ✓ Primary Screenshot: This shot will be used on your application product
page in the App Store.

 Apple doesn’t want you to include the iPad status bar in your screenshot.

 Up to four additional optional screenshots can appear on the application
product page. These may be resized by Apple to fit the space provided.
Follow the same requirements from the preceding list.

 To take a screenshot on an iPad, quickly press and release the Sleep/
Wake and Home buttons at the same time. The screen flashes (and if
your volume is up, you can hear a shutter click). This flash indicates
that the screen was saved in the Saved Images album — choose the
album in the Photos app to see the image. You can take as many screen-
shots as you like. The next time you sync your iPad, your photo applica-
tion (such as iPhoto) launches to receive these new images.

 You can also capture a screenshot using the Xcode Organizer window.
Open Xcode and choose Window➪Organizer. Plug in your iPad, and in a
few seconds, it should appear in the list of devices on the left. Click the
Screenshot tab at the top of the Organizer window (which appears only
when the iPad is connected). Use the iPad to show the screen you want

11_9780470920503-ch06.indd 13111_9780470920503-ch06.indd 131 12/24/10 12:39 AM12/24/10 12:39 AM

132 Part II: Becoming a Real Developer

to capture and then click the Capture button. To make that screenshot
your application’s default image, click Save As Default Image. To get a
PNG file of the screenshot, drag it to the Desktop.

 ✓ Additional Artwork: (Optional) If you’re really lucky — I mean really
lucky (or that good) — you may be included on featured pages in the
App Store. Apple will want “high-quality layered artwork with a title
treatment for your application,” which will then be used in small ban-
ners to feature your app in the App Store.

Uploading your app and its data
After you’ve set the wheels of commerce in motion, you can then go back
to Xcode to create an archive to submit to the App Store. (An archive is a
compressed package of all the app’s files that is simpler to upload.) Choose
Build➪Build and Archive. Your new application archive appears in the
Archived Applications list in the Organizer. (Choose Window➪Organizer to
see it.) Each archive is identified with the date and time it was created. Select
the application archive you want to submit and click Submit Application to
iTunes Connect. In the dialog that appears, enter your developer name and
password and click Submit.

You can then jump to the iTunes Connect main page and manage your app
and data. Click the Manage Your Applications link (refer to Figure 6-14) to call
up the Manage Your Applications page. On that page, click the new applica-
tion’s icon and go to town. Fill in all the blanks, using all that info I ask you
to collect in the “Adding the metadata and artwork” section earlier in this
chapter.

 Click the Download the Developer Guide link at the bottom of the iTunes
Connect main page (refer to Figure 6-14) to obtain comprehensive information
about submitting apps to the App Store. You also get a ton of great informa-
tion in the App Store Resource Center (http://developer.apple.com/
appstore).

 Apple also offers Application Loader, a Mac application that analyzes your
app’s archive file and verifies all the certificates and icons before uploading
your app. To download it, scroll down the Manage Your Applications page to
the bottom and then click the Download Application Loader link. To use it,
go ahead with the process of adding a new app to the App Store, but when
iTunes Connect asks you to upload your app, select the Check Here to Upload
Your Binary Later check box. Complete the rest of the information required
for uploading an app. Then, to begin uploading, start Application Loader and
choose File➪New. You’re asked to log in, and if all is well, you see a dialog

11_9780470920503-ch06.indd 13211_9780470920503-ch06.indd 132 12/24/10 12:39 AM12/24/10 12:39 AM

133 Chapter 6: Death, Taxes, and iPad Provisioning

with a drop-down menu of all the apps that iTunes Connect recognizes that
were selected above to upload the binary later. Follow the instructions to
upload.

 The Manage Your Applications page is your one-stop center for keeping tabs
on all your app creations. To edit your app’s information, manage in-app pur-
chasing, remove the app from the store, or update the app, click the app’s
icon to see your choices. Click View Details to see your app’s information and
metadata and then click Edit to edit the information. Click the Crash Reports,
App Details, or View in App Store link to see more information about your app.
You can also click App Summary to return to the app management page and
then click Add Version to submit an update to your app.

Avoiding the App Store Rejection Slip
Apple is very strict about the App Store. For example, the first time co-author
Neal submitted his ReturnMeTo iPhone app from his other book, iPhone
Application Development For Dummies, he received a polite, but firm, e-mail
rejecting the application because the app’s icon used an iPhone image. You
may not think this is such a big deal, but it certainly is with Apple. The art-
work you use for the app icon is just one of many pieces of information that
must be submitted in advance and is subject to Apple’s approval.

During the opening Worldwide Developer Conference (WWDC) keynote
address in June of 2010, Apple CEO Steve Jobs mentioned that there were
over 225,000 applications available. (There are close to 300,000 as of this
writing.) He also said that 15,000 applications are submitted per week, and
that 95 percent of all apps submitted are approved within one week.

That’s a pretty high approval rate. But just to be sure, it wouldn’t hurt to
know what was up with the 5 percent that did get rejected. It turns out the
majority of those rejected were rejected for one of the following reasons:

 ✓ The app doesn’t function as advertised by the developer.

 ✓ The app uses private frameworks or APIs (application programming
interfaces).

 ✓ The app crashes.

Sounds reasonable, but in addition to the Big Three, there are a few other
reasons why apps are rejected. Besides the typical rejections (mostly for
bugs or for improper use of artwork or trademarks in the app), some apps
have been rejected for pornographic images, and some were rejected for

11_9780470920503-ch06.indd 13311_9780470920503-ch06.indd 133 12/24/10 12:39 AM12/24/10 12:39 AM

134 Part II: Becoming a Real Developer

being too similar to Apple’s own apps, while others fell into some gray area
that Apple hadn’t anticipated — for instance, apps that help people cheat at
gambling in casinos.

For guidelines on how to avoid rejection due to coding or user interface
issues, see Chapter 2. For the complete guide to avoiding rejection, see
Apple’s posted Guidelines for the App Store (you must be logged in as a
developer):

https://developer.apple.com/appstore/guidelines.html

Before you upload your app and its data, make sure you haven’t run afoul
of any of Apple’s rules about trademarks, copyrights, and artwork. Be sure
to peruse Apple’s posted Guidelines for Using Apple’s Trademarks and
Copyrights, which you can find here:

www.apple.com/legal/trademark/guidelinesfor3rdparties.html

Here are some tips:

 ✓ Use the same icon for the app (the bundle icon) and the App Store
page icon. Make sure the 72 x 72 pixel icon for your iPad app, and the
48 x 48 pixel version for Spotlight search and Settings, is the same image
as the 512 x 512 pixel version for your App Store page.

 ✓ Icons must be different for lite and pro versions (such as free and paid
versions). Use a different icon image for the app and page for a lite ver-
sion than the one you use for the pro version. Using the same icon image
for both sends your app straight to the rejection bin.

 ✓ Don’t use any part of an Apple image and certainly none of the com-
pany’s trademark images or names. Your app can’t include any photos
or illustrations of the iPad, including icons that resemble the iPad, or
any other Apple products (including the Apple logo itself). I’ve heard of
projects being rejected for using the Bonjour logo, as well as Apple’s net-
work icon (the little picture of the globe with all the glowing lines). Your
app can’t include the word iPad in its title (although the iPhone app title
Tony’s Tips for iPhone Users is okay because the app’s content is about
the iPhone), and its use in the title or description of any components or
features is very strict and probably not worth the trouble.

 ✓ If you use any of Apple’s user interface graphics, you must use them in
the way they were intended. For example, the blue + button should be
used only to add an item to a list.

 ✓ Don’t infringe on other trademarks, either. Your app’s title, descrip-
tion, and content must not potentially infringe upon other non-Apple

11_9780470920503-ch06.indd 13411_9780470920503-ch06.indd 134 12/24/10 12:39 AM12/24/10 12:39 AM

135 Chapter 6: Death, Taxes, and iPad Provisioning

trademarks or product likenesses. I’ve heard of an app rejected for using
an icon resembling Polaroid photos.

 ✓ Keywords can get you in trouble. Keyword terms must be related to
your app’s content. It should be obvious, but some developers do it:
You can’t use offensive terms. And it’s a big no-no to refer to other apps,
competitive or not.

 ✓ Don’t include pricing information in your app’s description and
release notes. Your app’s marketing text — the application description
and release notes — should not include pricing information, mostly
because it would cause confusion in other countries due to pricing
differences.

 ✓ Don’t mention Steve. Apple will reject any app that mentions Steve
Jobs in any context, even as a clue in a puzzle — it does not matter how
trivial the reference; just the name is enough.

 ✓ Don’t try to fool the ratings. Apps are rated accordingly for the highest
(meaning most adult) level of content that the user is able to access. If
you hide it, they will find it, and if Apple’s review indicates that the app’s
content is in any way inconsistent with the information you provided,
out you go!

Now What?
You wait for your app’s approval or rejection. The timeframe is, on average,
about two weeks, though some developers have claimed both shorter and
much longer timeframes, and I can attest to it taking only a week for my app.

So it varies, but if you follow my advice about submitting your app, in the
section “Avoiding the App Store Rejection Slip” in this chapter, and if you
take my advice in Chapter 2 about development and user interface practices
to avoid, it shouldn’t take longer than a few weeks. Use the time wisely to set
up your marketing campaigns, as I describe in Chapter 3.

Finally, at what may seem at long last (although it’s really been only a few
chapters), you’re ready to look behind the screen and see exactly how an
iPad app works. So take a break if you need to, but come back ready to
explore Part III.

11_9780470920503-ch06.indd 13511_9780470920503-ch06.indd 135 12/24/10 12:39 AM12/24/10 12:39 AM

136 Part II: Becoming a Real Developer

11_9780470920503-ch06.indd 13611_9780470920503-ch06.indd 136 12/24/10 12:39 AM12/24/10 12:39 AM

Part III

Understanding
How Apps Work

12_9780470920503-pp03.indd 13712_9780470920503-pp03.indd 137 12/24/10 12:38 AM12/24/10 12:38 AM

In this part . . .

This part, although short, offers a peek behind the cur-
tain of the great and powerful iOS (the operating sys-

tem for the iPad, that is — and Toto, we’re not in Kansas
anymore). Your app, in a sense, becomes the Wizard of
iOS, conjuring up blazing content and performing amazing
tricks on the iPad.

Beware! The secrets described herein are not for the
uninitiated; one must embark on a soul-searching journey
through Part I of this book to discover the True Meaning
of the Killer iPad App, and then one must register with an
oath of confidentiality, join the cadre of iOS developers,
and train with the SDK tools that perform the alchemy of
app development, as described in Part II. At some point in
this quest, you may experience the rapture of what your
killer app might be, in which case you are ready to read
the following:

 ✓ Chapter 7 explains the SDK frameworks for iOS
that form the raw material of your iPad app
(which you then refine with your code and user
interface objects), and it explains the design pat-
terns that you should adopt to make use of these
frameworks. It also shows how windows, views,
and view controllers work on the iPad.

 ✓ Chapter 8 describes in detail the (possibly) short
and happy life of an iPad app, from launch to ter-
mination. You see how an application object is
created and connected to the window object. You
get to know all about the event loop and how it all
starts with the main nib file, which you can select
in Xcode and look at in Interface Builder. When
you finish, you should have enough information
to get started coding your app.

12_9780470920503-pp03.indd 13812_9780470920503-pp03.indd 138 12/24/10 12:38 AM12/24/10 12:38 AM

Chapter 7

Looking Behind the Screen
In This Chapter
▶ Seeing how applications actually work

▶ Understanding how to use the fundamental design patterns

▶ Doing Windows (even if you say you don’t)

▶ Exploring an app with a view

▶ Manipulating view controllers

▶ Listing the frameworks you can use

One thing that makes iPad software development so appealing is the
richness of the tools and frameworks provided in the iOS Software

Development Kit (SDK). The frameworks are especially important; each one
is a distinct body of code that actually implements your application’s generic
functionality — frameworks give the application its basic way of working,
in other words. This is especially true of one framework in particular: the
UIKit framework, which is the heart of the user interface.

In this chapter, you find out about most of the iPad’s user interface architec-
ture, which is a mostly static view that explains what the various pieces are,
what each does, and how they interact with each other. This chapter lays the
groundwork for developing the DeepThoughts app’s user interface, which
you get a chance to tackle in Chapter 9.

Using Frameworks
A framework offers common code providing generic functionality. iOS, the
operating system for the iPad, provides a set of frameworks for incorporating
technologies, services, and features into your apps. For example, the UIKit
framework gives you event-handling support, drawing support, windows,
views, and controls you can use in your app.

13_9780470920503-ch07.indd 13913_9780470920503-ch07.indd 139 12/24/10 12:38 AM12/24/10 12:38 AM

140 Part III: Understanding How Apps Work

A framework is designed to easily integrate your code that runs your game or
delivers the information that your user wants. Frameworks are similar to soft-
ware libraries, but with an added twist: They also implement a program’s flow
of control (unlike a software library whose components are arranged by the
programmer into a flow of control). This means that, instead of the program-
mer deciding the order that things should happen — such as which messages
are sent to which objects and in what order when an application launches,
or when a user touches a button on the screen — the order is a part of the
framework and doesn’t need to be specified by the programmer.

When you use a framework, you provide your app with a ready-made set of
basic functions; you’ve told it, “Here’s how to act.” With the framework in
place, all you need to do is add the specific functionality that you want in the
app — the content as well as the controls and views that enable the user to
access and use that content — to the frameworks.

The frameworks and iOS provide some pretty complex functionality, such as

 ✓ Launching the app and displaying a view

 ✓ Displaying controls and responding to a user action — such as tapping a
toggle switch or flicking to scroll a list

 ✓ Accessing sites on the Internet, not just through a browser, but from
within your own app

 ✓ Managing user preferences

 ✓ Playing sounds and movies

 ✓ The list goes on — you get the picture

 Some developers talk in terms of “using a framework” — but your code
doesn’t use frameworks so much as the frameworks use your code. Your code
provides the functions that the framework accesses; the framework needs
your code in order to become an app that does something other than start up,
display a blank view, and then end. This perspective makes figuring out how
to work with a framework much easier. (For one thing, it lets the programmer
know where he or she is essential.)

If this seems too good to be true, well, okay, it is — all that complexity (and
convenience) comes at a cost. It can be really difficult to get your head
around the whole thing and know exactly where (and how) to add your app’s
functionality to that supplied by the framework. That’s where design patterns
come in. Understanding the design patterns behind the frameworks gives
you a way of thinking about a framework — especially UIKit — that doesn’t
make your head explode.

13_9780470920503-ch07.indd 14013_9780470920503-ch07.indd 140 12/24/10 12:38 AM12/24/10 12:38 AM

141 Chapter 7: Looking Behind the Screen

Using Design Patterns
A major theme of this chapter is the fact that, when it comes to iPad app
development, the UIKit framework does a lot of the heavy lifting for you.
That’s all well and good, but it’s a little more complicated than that: The
framework is designed around certain programming paradigms, also known
as design patterns. The design pattern is a model that your own code must be
consistent with. In programming terms, a design pattern is a commonly used
template that gives you a consistent way to get a particular task done.

To understand how to take best advantage of the power of the framework —
or (better put) how the framework objects want to use your code best —
you need to understand design patterns. If you don’t understand them or if
you try to work around them because you’re sure you have a “better” way
of doing things, your job will actually be much more difficult. (Developing
software can be hard enough, so making your job more difficult is definitely
something you want to avoid.) Getting a handle on the basic design patterns
used (and expected) by the framework helps you develop an app that makes
the best use of the framework. This means the least amount of work in the
shortest amount of time.

 The design patterns can help you to understand not only how to structure
your code, but also how the framework itself is structured. They describe rela-
tionships and interactions between classes or objects, as well as how respon-
sibilities should be distributed amongst classes so the iPad does what you
want it to do.

You need to be comfortable with these basic design patterns:

 ✓ Model-View-Controller (MVC)

 ✓ Delegation

 ✓ Block Objects

 ✓ Target-Action

 ✓ Managed Memory Model

Of these, the Model-View-Controller design pattern is the key to understand-
ing how an iPad app works. I defer the discussion of the others until after you
get the MVC under your belt.

 There’s actually another basic design pattern out there: Threads and
Concurrency. This pattern enables you to execute tasks concurrently (includ-
ing the use of Grand Central Dispatch, that aiding and abetting feature intro-
duced in OS X Snow Leopard for ramping up processing speed) and is way
beyond the scope of this book.

13_9780470920503-ch07.indd 14113_9780470920503-ch07.indd 141 12/24/10 12:38 AM12/24/10 12:38 AM

142 Part III: Understanding How Apps Work

The Model-View-Controller (MVC) pattern
The iOS frameworks for iPad development are object-oriented. The easiest
way to understand what that really means is to think about a team. The work
that needs to get done is divided up and assigned to individual team mem-
bers (objects). Every member of a team has a job and works with other team
members to get things done. What’s more, a good team doesn’t butt in on
what other members are doing — just like how an object in object-oriented
programming spends its time taking care of business and not caring what the
object in the virtual cubicle next door is doing.

 Object-oriented programming was originally developed to make code more
maintainable, reusable, extensible, and understandable (what a concept!) by
tucking all the functionality behind well-defined interfaces. The actual details
of how something works (as well as its data) are hidden, which makes modify-
ing and extending an application much easier.

Great — so far — but a pesky question still plagues programmers:

Exactly how do you decide on the objects and what each one does?

Sometimes the answer to that question is pretty easy — just use the real
world as a model. (Eureka!) In the iPadTravel411 app that serves as an
example in Part V, some of the classes of model objects are Airport and
Currency. But when it comes to a generic program structure, how do you
decide what the objects should be? That may not be so obvious.

The MVC pattern is a well-established way to group application functions
into objects. Variations of it have been around at least since the early days of
Smalltalk, one of the very first object-oriented languages. The MVC is a high-
level pattern — it addresses the architecture of an application and classifies
objects according to the general roles they play in an application.

The MVC pattern creates, in effect, a miniature universe for the application,
populated with three kinds of objects. It also specifies roles and responsibili-
ties for all three objects and specifies the way they’re supposed to interact with
each other. To make things more concrete (that is, to keep your head from
exploding), imagine a big, beautiful, 60-inch, flat screen TV. Here’s the gist:

 ✓ Model objects: These objects together comprise the content “engine”
of your app. They contain the app’s data and logic — making your app
more than just a pretty face. In the iPadTravel411 application, for exam-
ple, the model “knows” the various ways to get from Heathrow Airport
to London as well as some logic to decide the best alternative based on
time of day, price, and some other considerations. (You find out about
adding data models in Chapter 16.)

13_9780470920503-ch07.indd 14213_9780470920503-ch07.indd 142 12/24/10 12:38 AM12/24/10 12:38 AM

143 Chapter 7: Looking Behind the Screen

 You can think of the model (which may be one object or several that
interact) as a particular television program, one that, quite frankly, does
not give a hoot about what TV set it is being shown on.

 In fact, the model shouldn’t give a hoot. Even though it owns its data,
it should have no connection at all to the user interface and should be
blissfully ignorant about what is being done with its data.

 ✓ View objects: These objects display things on the screen and respond to
user actions. Pretty much anything you can see is a kind of view object —
the window and all the controls, for example. Your views know how to
display information that they get from the model object and how to get
any input from the user the model may need. But the view objects them-
selves should know nothing about the model. A view object may handle
a request to tell the user the fastest way to London, but it doesn’t bother
itself with what that request means. It may display the different ways to
get to London, although it doesn’t care about the content options it dis-
plays for you.

 You can think of the view as a television screen that doesn’t care about
what program it’s showing or what channel you just selected.

 The UIKit framework provides many different kinds of views, as you’ll
find out later on in “Working with Windows and Views” in this chapter.

 If the view knows nothing about the model, and the model knows noth-
ing about the view, how do you get data and other notifications to pass
from one to the other? To get that conversation started (Model: “I’ve just
updated my data.” View: “Hey, give me something to display,” for exam-
ple), you need the third element in the MVC triumvirate, the controller.

 ✓ Controller objects: These objects connect the application’s view objects
to its model objects. They supply the view objects with what they need
to display (getting it from the model) and also provide the model with
user input from the view.

 You can think of the controller as the circuitry that pulls the show off of
the cable and then sends it to the screen or requests a particular pay-
per-view show.

The MVC in action
Imagine that an iPad user is at Heathrow Airport, and he or she starts the
handy iPadTravel411 app mentioned so often in these pages. The view will
display his or her location as “Heathrow Airport.” The user may tap a button
(a view) that requests the weather. The controller interprets that request
and tells the model what it needs to do by sending a message to the appropri-
ate method in the model object with the necessary parameters. The model
accesses the appropriate Web site (or fails to access it, due to the lack of an
Internet connection), and the controller then delivers that information to the

13_9780470920503-ch07.indd 14313_9780470920503-ch07.indd 143 12/24/10 12:38 AM12/24/10 12:38 AM

144 Part III: Understanding How Apps Work

view, which promptly displays the information — either the appropriate page
from the Web site or the Weather is not available offline message.

All this is illustrated in Figure 7-1.

Figure 7-1:
Models,

controllers,
and views.

 View

WeatherController

User Action

Update

Request

Inform

Controller

Model Object
(Data Access)

 When you think about your application in terms of Model, View, and
Controller objects, the UIKit framework starts to make sense. It also begins
to lift the fog from where at least part of your application-specific behavior
needs to go. Before I get more into that, however, you need to know a little
more about the classes provided to you by the UIKit that implement the
MVC design pattern — windows, views, and view controllers.

Working with Windows and Views
iPad apps have only a single window. When your application is running —
even though other apps may be hibernating or running in the background —
your app’s interface takes over the entire screen.

Looking out the window
The single window you see displayed on the iPad is an instance of the
UIWindow class. This window is created at launch time, either programmati-
cally by you or automatically by UIKit loading it from a nib file — a special
file that contains instant objects that are reconstituted at runtime. (You can
find out more about nib files in Chapter 5.) You then add views and controls
to the window. In general, after you create the Window object (that is, if you
create it instead of having it done for you), you never really have to think
about it again.

13_9780470920503-ch07.indd 14413_9780470920503-ch07.indd 144 12/24/10 12:38 AM12/24/10 12:38 AM

145 Chapter 7: Looking Behind the Screen

 A user can’t directly close or manipulate an iPad window. It’s your app that
manages the window.

Although your app never creates more than one window at a time, iOS can
support additional windows on top of your window. The system status bar is
one example. You can also display alerts on top of your window by using the
supplied Alert views.

Figure 7-2 shows the window layout on the iPad for the iPadTravel411 app.

Figure 7-2:
The iPad

Travel411
app window

layout.

Navigation Bar

Status Bar

Content View

Window

Admiring the view
In an iPad app world, view objects are responsible for the view functionality
in the Model-View-Controller architecture.

A view is a rectangular area on the screen (on top of a window). The Content
view is that portion of data and controls that appears between the upper and
lower bars shown in Figure 7-2.

 In the UIKit framework, windows are really a special kind of view, but for
purposes of this discussion, I’m talking about views that sit on top of the
window.

13_9780470920503-ch07.indd 14513_9780470920503-ch07.indd 145 12/24/10 12:38 AM12/24/10 12:38 AM

146 Part III: Understanding How Apps Work

What views do
Views are the main way for your app to interact with a user. This interaction
happens in two ways:

 ✓ Views display content. For example, they make drawing and animation
happen onscreen.

 In essence, the view object displays the data from the model object.

 ✓ Views handle touch events. They respond when the user touches a
button, for example.

 Handling touch events is part of a responder chain (a special logical
sequence detailed in Chapter 8).

The view hierarchy
Views and subviews create a view hierarchy. There are two ways of looking
at it (no pun intended this time): visually (how the user perceives it) and
hierarchically (how you structure it). You must be clear about the differ-
ences, or you will find yourself in a state of confusion that resembles Times
Square on New Year’s Eve.

Looking at it visually, the window is at the base of this hierarchy with a
Content view on top of it (a transparent view that fills the window’s Content
rectangle). The Content view displays information and also allows the user to
interact with the application, using (preferably standard) user-interface items
such as text fields, buttons, toolbars, and tables, all of which are specialized
kinds of views.

In your program, that relationship is different. The Content view is added to
the window view as a subview.

 ✓ Views added to the Content view become subviews of it.

 ✓ Views added to the Content view become the superviews of any views
added to them.

 ✓ A view can have one (and only one) superview and zero or more sub-
views.

 It seems counterintuitive, but a subview is displayed on top of its parent view
(that is, on top of its superview). Think about this relationship as contain-
ment: A superview contains its subviews. Figure 7-3 shows an example of a
view hierarchy — “A Content View,” with A, B, and C subviews.

Controls — such as buttons, text fields, and the like — are really view sub-
classes that become subviews, as are any other display areas you may specify.
The view must manage its subviews, as well as resize itself with respect to its
superviews. Fortunately, much of what the view must do is already coded for
you. The UIKit framework supplies the code that defines view behavior.

13_9780470920503-ch07.indd 14613_9780470920503-ch07.indd 146 12/24/10 12:38 AM12/24/10 12:38 AM

147 Chapter 7: Looking Behind the Screen

Figure 7-3:
The view
hierarchy

is both
visual and
structural.

A Content View

C

A

The visual hierarchy
... translates to a structural one:

B

A Content View

Subview

Superview

A

C

B

The view hierarchy plays a key role in both drawing and event handling.
When a window is sent a message to display itself, the window asks its sub-
view to render itself first. If that view has a subview, it asks its subview to
render itself first, going down the structural hierarchy (or up the visual struc-
ture) until the last subview is reached. It then renders itself and returns to its
caller, which renders itself, and so on.

You create or modify a view hierarchy whenever you add a view to another
view with Interface Builder (or if you add a view programmatically). The
UIKit framework automatically handles all the relationships associated with
the view hierarchy.

 Developers typically gloss over this visual versus hierarchical view when
starting out — and without understanding this, it’s really difficult to get a
handle on what’s going on.

The kinds of views you use
The UIView class defines the basic properties of a view, and you may be able
to use it as is — like you do in the DeepThoughts app — by simply adding
some controls.

The framework also provides you with a number of other views that are sub-
classed from UIView. These views implement the kinds of things that you as
a developer need to do on a regular basis.

13_9780470920503-ch07.indd 14713_9780470920503-ch07.indd 147 12/24/10 12:38 AM12/24/10 12:38 AM

148 Part III: Understanding How Apps Work

 It’s important to use the view objects that are part of the UIKit framework.
When you use an object such as a UISlider or UIButton, your slider or
button behaves just like a slider or button in any other iPad app. This enables
the consistency in appearance and behavior across apps that users expect.
(For more on how this kind of consistency in a user interface is one of the
characteristics of a great app, see Chapter 2.)

Container views
Container views are a technical (Apple) term for Content views that do more
than just lie there on the screen and display your controls and other content.

The UIScrollView class, for example, adds scrolling without you having to
do any work.

UITableView inherits this scrolling capability from UIScrollView and
adds the ability to display lists and respond to the selections of an item in
that list. Think of the Contacts application (and a host of others).

Another container view, the UIToolbar class, contains button-like con-
trols — and you find those everywhere on the iPad. In Mail, for example,
you tap an icon button in the toolbar to respond to an e-mail. Toolbars can
be positioned at the top and bottom of a view. If you’re familiar with iPhone
apps, keep in mind that the iPad’s increased screen size makes it possible to
include more items on a toolbar.

Controls
Controls are the fingertip-friendly graphics you see extensively used in a
typical application’s user interface. Controls are actually subclasses of the
UIControl superclass, a subclass of the UIView class. They include touch-
able items like buttons, sliders, and switches, as well as text fields in which
you enter data.

Controls make heavy use of the Target-Action design pattern, which you get
to see with the Done button in the DeepThoughts app in Chapter 11.

Display views
Think of Display views as controls that look good, but don’t really do any-
thing except, well, look good. These include UIImageView, UILabel,
UIProgressView, and UIActivityIndicatorView. (You use UILabel in
the DeepThoughts app in Chapter 10 to display the area in which the falling
words appear.)

Text and Web views
Text and Web views provide a way to display formatted text in your applica-
tion. The UITextView class supports the display and editing of multiple
lines of text in a scrollable area. The UIWebView class provides a way to

13_9780470920503-ch07.indd 14813_9780470920503-ch07.indd 148 12/24/10 12:38 AM12/24/10 12:38 AM

149 Chapter 7: Looking Behind the Screen

display HTML content. These views can be used as the Content view, or
they can be used in the same way as a Display view (that is, as a subview
of a Content view). You encounter UIWebView in the iPadTravel411 app in
Chapter 16, which you use to display the Weather view. UIWebView also is
the primary way to include graphics and formatted text in Text Display views.

Alert views and action sheets
Alert views and action sheets present a message to the user, along with but-
tons that allow the user to respond to the message. Alert views and action
sheets are similar in function but look and behave differently. For example,
the UIAlertView class displays a blue alert box that pops up on the screen,
and the UIActionSheet class displays a box that slides in from the bottom
of the screen.

Navigation views
Tab bars and navigation bars work in conjunction with view controllers to
provide tools for navigating in your app. Normally, you don’t need to create a
UITabBar or UINavigationBar directly — it’s easier to use Interface Builder
or configure these views through a tab bar or navigation bar controller.

The window
A window provides a surface for drawing content and is the root container for
all other views.

Controlling View Controllers
View controllers implement the controller component of the Model-View-
Controller design pattern. These Controller objects contain the code that
connects the app’s view objects to its model objects. They provide the data
to the view. Whenever the view needs to display something, the view control-
ler goes out and gets what the view needs from the model. Similarly, view
controllers respond to controls in your Content view and may do things like
tell the model to update its data (when the user adds or changes text in a text
field, for example); or compute something (the current value of, say, your
U.S. dollars in British pounds); or change the view being displayed (as with
choosing Weather in the iPadTravel411 app).

As shown in “The Target-Action pattern” section later in this chapter, a view
controller is often the (target) object that responds to the onscreen controls.
The Target-Action mechanism is what enables the view controller to be aware
of any changes in the view, which can then be transmitted to the model. For
example, when the user taps the Weather entry in the iPadTravel411 app to
request the current weather conditions, the following occurs:

13_9780470920503-ch07.indd 14913_9780470920503-ch07.indd 149 12/24/10 12:38 AM12/24/10 12:38 AM

150 Part III: Understanding How Apps Work

 1. A message is sent to that view’s view controller to handle the request.

 2. The view controller’s method interacts with the Weather model object.

 3. The model object processes the request from the user for the current
weather.

 4. The model object sends the data back to the view controller.

 5. The view controller creates a new view to present the information.

View controllers have other vital iPad responsibilities as well, such as the
following:

 ✓ Managing a set of views — including creating them or flushing them
from memory during low-memory situations

 ✓ Responding to a change in the device’s orientation — say, landscape to
portrait — by resizing the managed views to match the new orientation

 ✓ Creating a Modal view, which is a child window that displays a dialog
requiring the user to do something (tap the Yes button, for example)
before returning to the application

 You would use a Modal view to ensure the user has paid attention to the
implications of an action (for example, “Are you sure you want to delete
all your contacts?”).

 Apple recommends that apps should support all iPad landscape and portrait
orientations when appropriate — Apple’s own Keynote app, for example, runs
only in landscape orientations. You’ll want to use a view controller just to
manage a single view and auto-rotate it when the device’s orientation changes.
The app’s window and view controllers provide the basic infrastructure
needed to support rotations — you can use the existing infrastructure as is or
customize the behavior to suit the particulars of your app, as you do with the
iPadTravel411 app in Chapter 15.

What about the Model?
As this chapter shows (and as you will continue to discover), a lot of the
functionality you need is already in the frameworks.

But when it comes to the model objects, for the most part, you’re pretty
much on your own. You need to design and create model objects to hold
the data and carry out the logic. In the iPadTravel411 app in Chapter 14, for
example, you create an Airport object that knows the different ways to get
into the city that it supports.

13_9780470920503-ch07.indd 15013_9780470920503-ch07.indd 150 12/24/10 12:38 AM12/24/10 12:38 AM

151 Chapter 7: Looking Behind the Screen

 You may find classes in the framework that help you get the nuts and bolts of
the model working. But the actual content and specific functionality is up to
you. As for actually implementing model objects, you find out how to do that
in Chapter 17.

Adding Your Own Application’s Behavior
Earlier in this chapter (by now it probably seems like a million years ago), I
mention other design patterns used in addition to the Model-View-Controller
(MVC) pattern. Three of these patterns — the Delegation pattern, the Target-
Action pattern, and the Block Object pattern, along with the MVC pattern and
subclassing, provide the mechanisms for you to add your app-specific behav-
ior to the UIKit (and any other) framework.

The first way to add behavior is through model objects in the MVC pattern.
Model objects contain the data and logic that make, well, your application.

The second way, the way people traditionally think about adding behavior
to an object-oriented program, is through subclassing, where you first create
a new (sub) class that inherits behavior and instance variables from another
(super) class and then add additional behavior, instance variables, and proper-
ties to the mix until you come up with just what you want. (I explain properties
in Chapter 11.) The idea here is to start with something basic and then add to
it — kind of like taking a deuce coupe (1932 Ford) and turning it into a hot rod.
You’d subclass a view controller class, for example, to respond to controls.

Using naming conventions
When creating your own classes, it’s a good
idea to follow a couple of standard framework-
naming conventions:

 ✓ Class names (such as View) should start
with a capital letter.

 ✓ The names of methods (such as view-
DidLoad) should start with a lowercase
letter.

 ✓ The names of instance variables (such
as frame) should start with a lowercase
letter.

When you do it this way, it makes it easier to
understand what something actually is just from
the name.

13_9780470920503-ch07.indd 15113_9780470920503-ch07.indd 151 12/24/10 12:38 AM12/24/10 12:38 AM

152 Part III: Understanding How Apps Work

The third way to add behavior involves using the Delegation pattern, which
allows you to customize an object’s behavior without subclassing by basi-
cally forcing another object to do the first object’s work for it. For example,
the Delegation design pattern is used at application startup to invoke a
method applicationDidFinishLaunching: that gives you a place to do
your own application-specific initialization. All you do is add your code to the
method.

The fourth way to add behavior is by using Block objects. The Block Object
design pattern is similar to Delegation, but it’s more “event driven” in that it
allows you to create methods or functions that you can pass to other meth-
ods or functions that are executed as needed. For example, you might want
to have some code that scrolls the view as necessary when the keyboard
appears. You would pass that to a method that’s invoked when the keyboard
appears.

The fifth way to add behavior involves the Target-Action design pattern,
which allows your application to respond to an event. When a user taps a
button, for example, you specify what method should be invoked to respond
to the button tap. What is interesting about this pattern is that it also
requires subclassing — usually a view controller — in order to add the code
to handle the event.

The next few sections go into a little more detail about Delegation patterns
and Target-Action patterns.

The Delegation pattern
Delegation is a pattern used extensively in the iOS frameworks for iPad and
iPhone apps, so much so that it’s very important to clearly understand it. In
fact, once you understand it, your life will be much easier.

Delegation, as I mention in the previous section, is a way of customizing
the behavior of an object without subclassing it. Instead, one object (a
Framework object) delegates the task of implementing one of its responsi-
bilities to another object. You’re using a behavior-rich object supplied by
the framework as is, and putting the code for program-specific behavior in a
separate (delegate) object. When a request is made of the Framework object,
the method of the delegate that implements the program-specific behavior is
automatically called.

For example, the UIApplication object handles most of the actual work
needed to run the application. But, as you will see in Chapter 8, it sends your
application delegate the application:didFinishLaunchingWithOpti
ons: message to give you an opportunity to restore the application’s window
and view to where it was when the user previously left off. You can also use
this method to create objects that are unique to your app.

13_9780470920503-ch07.indd 15213_9780470920503-ch07.indd 152 12/24/10 12:38 AM12/24/10 12:38 AM

153 Chapter 7: Looking Behind the Screen

When a Framework object has been designed to use delegates to implement
certain behaviors, the behaviors it requires (or gives you the option to imple-
ment) are defined in a protocol.

Protocols define an interface that the delegate object implements. Protocols
can be formal or informal, although I concentrate solely on the former
because it includes support for things like type checking and runtime check-
ing to see whether an object conforms to the protocol.

In a formal protocol, you usually don’t have to implement all the methods;
many are declared optional, meaning you only have to implement the ones
relevant to your app. Before it attempts to send a message to its delegate, the
host object determines whether the delegate implements the method (via a
respondsToSelector: message) to avoid the embarrassment of branching
into nowhere if the method is not implemented.

You can find out much more about delegation and the Delegation pattern
when you develop the DeepThoughts app in Part IV and especially the
iPadTravel411 app in Part V.

The Block Object pattern
Although delegation is extremely useful, it is not the only way to customize
the behavior of a method or function.

Blocks are like traditional C functions in that they are small, self-contained
units of code. They can be passed in as arguments of methods and functions
and then used when they’re needed to do some work. Like many program-
ming topics, understanding block objects is easier when you use them, as
you do in Chapter 10.

With iOS 4, a number of methods and functions of the system frameworks are
starting to take blocks as parameters, including the following:

 ✓ Completion handlers

 ✓ Notification handlers

 ✓ Error handlers

 ✓ Enumeration

 ✓ View animation and transitions

 ✓ Sorting

13_9780470920503-ch07.indd 15313_9780470920503-ch07.indd 153 12/24/10 12:38 AM12/24/10 12:38 AM

154 Part III: Understanding How Apps Work

In Chapter 10, you use the block-based animation method
animateWithDuration:animations: to implement the animation in
DeepThoughts. Block objects also have a number of other uses, especially in
Grand Central Dispatch and the NSOperationQueue class, the two recom-
mended technologies for concurrent processing. But because concurrent
processing is out of scope for this book (way out of scope in fact), I leave you
to explore that use on your own.

The Target-Action pattern
You use the Target-Action pattern to let your app know that it should do
something. A user may have tapped a button or entered some text, for exam-
ple, and the app must do something. The control — a button, say — sends
a message (the Action message) that you specify to the target you have
selected to handle that particular action. The receiving object, or the Target,
is usually a view controller object.

If you wanted to develop an app that could start a car from an iPad (not a
bad idea for those who live in a place like Minneapolis in winter), you could
display two buttons, Start and Heater. You could use Interface Builder to
specify, when the user taps Start, that the target is the CarController
object and that the method to invoke is ignition.

 The Target-Action mechanism enables you to create a control object and tell
it not only what object you want handling the event, but also the message to
send. For example, if the user touches a Ring Bell button onscreen, you want
to send a Ring Bell message to the view controller. But if the Wave Flag button
on the same screen is touched, you want to be able to send the Wave Flag
message to the same view controller. If you couldn’t specify the message, all
buttons would have to send the same message. It would then make the coding
more difficult and more complex because you would have to identify which
button had sent the message and what to do in response. It would also make
changing the user interface more work and more error prone.

When creating your app, you can set a control’s action and target through
the Interface Builder. This setting allows you to specify what method in
which object should respond to a control without having to write any code.

For more on the Interface Builder, check out Chapter 9.

13_9780470920503-ch07.indd 15413_9780470920503-ch07.indd 154 12/24/10 12:38 AM12/24/10 12:38 AM

155 Chapter 7: Looking Behind the Screen

Doing What When?
The UIKit framework provides a great deal of ready-made functionality, but
the beauty of UIKit lies in the fact that — as this chapter explains — you
can customize its behavior using four distinct mechanisms:

 ✓ Subclassing

 ✓ Delegation

 ✓ Target-Action

 ✓ Block Objects

One of the challenges facing a new developer is to determine which of these
mechanisms to use when. (That was certainly the case for me.) To ensure
that you have an overall conceptual picture of the iPad application archi-
tecture, check out the Cheat Sheet for iPhone Application Development For
Dummies, which offers a summary of which mechanisms are used when. You
can find the Cheat Sheet at www.dummies.com/cheatsheet/iphone
applicationdevelopment.

You still have quite a bit more background information to explore before you
get started building the DeepThoughts app in Chapter 9. It helps a great deal
to know more about how an app runs in iOS — the runtime scenario. Although
that sounds like the title of a prison escape movie, it’s really about what
goes on inside the iPad when the user launches your app, and you find out
all about that in the next chapter, along with how Interface Builder nib files
work. What fun!

13_9780470920503-ch07.indd 15513_9780470920503-ch07.indd 155 12/24/10 12:38 AM12/24/10 12:38 AM

156 Part III: Understanding How Apps Work

13_9780470920503-ch07.indd 15613_9780470920503-ch07.indd 156 12/24/10 12:38 AM12/24/10 12:38 AM

Chapter 8

Understanding How an App Runs
In This Chapter
▶ Watching how the template-based app works at runtime

▶ Following what goes on when the user launches your app

▶ Getting a handle on how nib files work

▶ Remembering memory management

▶ Knowing what else you should be aware of at runtime

When you create an Xcode project and select a template, as I show in
Chapter 5, you get a considerable head start on the process of coding

your very own iPad app. In that chapter, I choose the View-based Application
template for the DeepThoughts app, and as a result, I have a working app
that offers a view.

As the wise sage (and wisecracking baseball player) Yogi Berra once said,
“You can observe a lot just by watching.” Before you add anything more to
this skeleton of an app, it helps to look at how it does what it already does.
By uncovering the mysteries of what this template does at runtime, you can
learn a bit more about where to put your code.

As you find out in Chapter 7, a framework offers common code providing
generic functionality. iOS provides a set of frameworks for incorporat-
ing technologies, services, and features into your apps. The framework is
designed to easily integrate your code; with the framework in place, all you
need to do is add the specific functionality that you want in the app — the
content as well as the controls and views that enable the user to access and
use that content — to the frameworks.

14_9780470920503-ch08.indd 15714_9780470920503-ch08.indd 157 12/24/10 12:37 AM12/24/10 12:37 AM

158 Part III: Understanding How Apps Work

App Anatomy 101 — The Lifecycle
The short-but-happy life of an iPad app begins when a user launches it by
tapping its icon on the iPad Home screen. The system launches your app by
calling its main function, which you can see in the Xcode Editor window in
Figure 8-1.

Figure 8-1:
The main

function is
where it all

begins.

The main function does only three things:

 ✓ Sets up an autorelease pool:

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc]
init];

 ✓ Calls the UIApplicationMain function to create the application object
and delegate and set up the event loop. The template uses the first nil
as the principle class name so that UIApplication is the assumed
name, and it specifies the second nil to load the delegate object from
the application’s main nib file:

int retVal = UIApplicationMain(argc, argv, nil, nil);

 ✓ At termination, releases the autorelease pool:

[pool release];
return retVal;

(As Objective-C programmers already know, the lines beginning with // in
the code shown in Figure 8-1 are comments that don’t do anything.)

14_9780470920503-ch08.indd 15814_9780470920503-ch08.indd 158 12/24/10 12:37 AM12/24/10 12:37 AM

159 Chapter 8: Understanding How an App Runs

To be honest, this whole main function thing isn’t something you
even need to think about. What’s important is what happens when the
UIApplicationMain function is called. Here’s the play-by-play:

 1. The main nib file is loaded.

 A nib file is a resource file that contains the specifications for one or
more objects. The main nib file usually contains a window object of
some kind, the application delegate object, and any other key objects.
When the file is loaded, the objects are reconstituted (think “instant
application”) in memory.

 In the DeepThoughts app you just started (with a little help from
the aforementioned View-based Application template), this is the
moment of truth when the DeepThoughtsAppDelegate and
DeepThoughtsViewController objects are created along with the
main window.

 For more on the application delegate and view controller objects and
the roles they play in apps, see Chapter 7.

 2. The application delegate (DeepThoughtsAppDelegate) receives the
application:didFinishLaunchingWithOptions: message.

 You can see the DeepThoughtsAppDelegate.m implementation file in
Figure 8-2, as provided by the template — see how much code is already
written for you!

Figure 8-2:
The

application
delegate

implemen-
tation as
provided

by the
template.

14_9780470920503-ch08.indd 15914_9780470920503-ch08.indd 159 12/24/10 12:37 AM12/24/10 12:37 AM

160 Part III: Understanding How Apps Work

 The application:didFinishLaunchingWithOptions: message
tells the delegate when the application has launched. In this step, you
initialize and set up your application. You have a choice here: You
may want to display your main application window as if the user were
starting from scratch, or you may want the window to look the way it
did when the user last exited the application. The application delegate
object is a custom object that you code. It’s responsible for some of the
application-level behavior of your application. (Delegation is an exten-
sively used design pattern that I introduce in Chapter 7.)

 3. The UIKit framework sets up the event loop.

 The event loop is the code responsible for polling input sources — the
screen, for example. Events, such as touches on the screen, are sent to
the object — say, a controller — that you have specified to handle that
kind of event, as shown in Figure 8-3. These handling objects contain the
code that implements what you want your app to do in response to that
particular event. A touch on a control may result in a change in what the
user sees in a view, a switch to a new view, or even the playing of the
song “Don’t Touch Me.”

 4. The normal processing of your application is interrupted.

 In iOS 4.2, your application must be able to handle situations where its
normal processing is interrupted. The interruption may be temporary —
for example, an incoming FaceTime call, calendar alerts, or the user
pressing the Sleep/Wake button — or it may be a permanent one, such
as when the user switches out of your app and your app begins the tran-
sition to its background state, where it’s suspended to conserve power
but remains in memory. iOS sends you a number of messages to let you
know exactly what’s happening and also give you the opportunity to do
things such as save user data and state information — saving where the
user was in the application. (I cover all this in “Responding to interrup-
tions” in this chapter.)

 Saving is important, because whether the application is interrupted,
sent to its background state, or terminated, when the time comes for it
to launch again (refer to Step 2) and the UIApplicationMain sends
the application delegate the applicationDidFinishLaunching
WithOptions message, you can restore the application to where the
user left off.

 5. When the user performs an action that would cause your app to quit,
UIKit notifies your app and begins the termination process.

 With iOS 4.2, the Terminator doesn’t seek and destroy your app — it’s
simply moved to the inactive state and then the background state. (See
“Responding to interruptions” in this chapter.) But under some circum-
stances, your application can in fact be terminated. (I take the time to
explain what those circumstances are in “Termination” in this chapter.)

14_9780470920503-ch08.indd 16014_9780470920503-ch08.indd 160 12/24/10 12:37 AM12/24/10 12:37 AM

161 Chapter 8: Understanding How an App Runs

Figure 8-3:
A simplified

lifecycle
view of
an iPad

application.

User taps application icon

main()

UIApplicationMain()

System asks application to quit foreground

Application moves to background applicationDidEnterBackground:

applicationWillResignActive:

Handle event

application:
didFinishLaunchingWithOptions:

Your codeUIKit

It all starts with the main nib file
When you create a new project using a template — quite the normal state of
affairs, as I show in Chapter 5 — the basic application environment is already
included. That means when you launch your app, an application object is cre-
ated and connected to the window object, the run loop is established, and so
on — despite the fact that you haven’t done a lick of coding.

Most of this work is done by the UIApplicationMain function, as illustrated
back in Figure 8-3. To take advantage of this once-in-a-lifetime opportunity to
see how all this works, go back to your project window in Xcode, which you
started by choosing the View-based Application template in Chapter 5, and
select the Resources folder in the Groups & Files list on the left.

Here’s a blow-by-blow description of what the UIApplicationMain func-
tion actually does:

 1. An instance of UIApplication is created.

 2. UIApplication looks in the info.plist file, trying to find the main
nib file.

 To see the info.plist file, select DeepThoughts-Info.plist in the
Detail view of the Xcode window, as shown in Figure 8-4. The contents of
the file appear in the Editor view below the Detail view.

14_9780470920503-ch08.indd 16114_9780470920503-ch08.indd 161 12/24/10 12:37 AM12/24/10 12:37 AM

162 Part III: Understanding How Apps Work

 UIApplication makes its way down the Key column of the info.
plist file until it finds the Main Nib File Base Name entry. Eureka! It
peeks over at the Value column and sees that the value for the Main Nib
File Base Name entry is MainWindow. (See Figure 8-4.)

Figure 8-4:
The info.
plist file

holds the
key to the
Main Nib
File entry.

 3. UIApplication loads MainWindow.xib.

Figure 8-5 illustrates this process of loading the main window’s nib file.

The nib file MainWindow.xib is what causes your application’s delegate,
window, and view controller instances to get created at runtime. Remember,
this file is provided as part of the project template. You don’t need to change or
do anything here. This is just a chance to see what’s going on behind the scenes.

To see the nib file (MainWindow.xib) in Interface Builder, select the
Resources group — if it is not already selected — and double-click
MainWindow.xib in the Xcode project window’s Detail view. (You can see
the file in Figure 8-4.)

When Interface Builder opens, take a look at the nib file’s main window — the
one labeled MainWindow.xib (as shown in Figure 8-6). Select File’s Owner in
the window, click the i Inspector button at the top of the window, and then click
the i Identity tab of the Inspector window if it’s not already selected (or choose
Tools➪Identity Inspector to show the Identity tab of the Inspector window).

The MainWindow.xib window shows five icons, but you can view them in
a list by clicking the center View Mode button in the upper-left corner of the
window, as shown in Figure 8-7. The interface objects are as follows:

14_9780470920503-ch08.indd 16214_9780470920503-ch08.indd 162 12/24/10 12:37 AM12/24/10 12:37 AM

163 Chapter 8: Understanding How an App Runs

Figure 8-5:
The

application
is launched.

Looks at
UIApplication

<UIApplicationMain>

Main nib files base name =
MainWindow

Figure 8-6:
The Main
Window.
xib file in
Interface

Builder.

14_9780470920503-ch08.indd 16314_9780470920503-ch08.indd 163 12/24/10 12:37 AM12/24/10 12:37 AM

164 Part III: Understanding How Apps Work

 ✓ File’s Owner (proxy object): The File’s Owner — the object that’s going
to use (or own) this file — is of the class UIApplication. This object
isn’t created when the file is loaded, as are the window and views — it’s
already created by the UIApplicationMain object before the nib file is
loaded.

 UIApplication objects have a delegate object that implements the
UIApplicationDelegate protocol. Specifying the delegate object
can be done from Interface Builder by setting the delegate outlet of
a UIApplication object. To see that this has already been done for
you in the template, click File’s Owner and then click the Connections
tab of the Inspector window (or choose Tools➪Connections Inspector).
The delegate outlet is set to “DeepThoughts App Delegate,” as shown
in Figure 8-7 — click the outlet connection in the Inspector window and
DeepThoughts App Delegate is highlighted in the MainWindow.xib
window.

 ✓ First Responder (proxy object): This object is the first entry in an appli-
cation’s responder chain, which is constantly updated while the applica-
tion is running — usually to point to the object that the user is currently
interacting with. If, for example, the user were to tap a text field to enter
some data, the first responder would become the text field object.

Figure 8-7:
The Main

Window.xib
in Interface
Builder with
File’s Owner

selected
and

Connections
displayed.

14_9780470920503-ch08.indd 16414_9780470920503-ch08.indd 164 12/24/10 12:37 AM12/24/10 12:37 AM

165 Chapter 8: Understanding How an App Runs

 ✓ Window: The window has its background set to white and its status
bar set to gray, as shown in Figure 8-8, and it is not set to be vis-
ible at launch. To see the window’s attributes, click Window in the
MainWindow.xib window and click the Attributes tab in the Inspector
window.

 ✓ An instance of DeepThoughtsAppDelegate set to be the appli-
cation’s delegate: You can see the header and implementation of
DeepThoughtsAppDelegate in Listings 1-1 and 1-2 in the next section.
This is where you can put code that restores the app after launch to its
previous state (see “Responding to interruptions” in this chapter for the
meaning of this) or performs any other custom application initialization.

 ✓ An instance of DeepThoughtsViewController set to be the applica-
tion’s view controller: The view controller is where you put your code
to control the views of your app, as you find out in Chapter 10.

The following section spells out what happens to these objects when
UIApplication loads MainWindow.xib.

Figure 8-8:
The Main

Window.xib
in Interface
Builder with

Window
selected

and
Attributes
displayed.

14_9780470920503-ch08.indd 16514_9780470920503-ch08.indd 165 12/24/10 12:37 AM12/24/10 12:37 AM

166 Part III: Understanding How Apps Work

Initialization
UIApplication loads the parts of the MainWindow.xib file as follows:

 1. Creates DeepThoughtsAppDelegate.

 2. Creates Window.

 3. Sends the DeepThoughtsAppDelegate the application:didFinish
LaunchingWithOptions: message.

 4. DeepThoughtsAppDelegate initializes the window.

I show the header and implementation of DeepThoughtsAppDelegate in
Listings 1-1 and 1-2. All this is done for you as part of the Xcode template.

Listing 1-1: DeepThoughtsAppDelegate.h

#import <UIKit/UIKit.h>
@class DeepThoughtsViewController;

@interface DeepThoughtsAppDelegate : NSObject
<UIApplicationDelegate> {

 UIWindow *window;
 DeepThoughtsViewController *viewController;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet

DeepThoughtsViewController *viewController;
@end

Listing 1-2: DeepThoughtsAppDelegate.m

#import “DeepThoughtsAppDelegate.h”
#import “DeepThoughtsViewController.h”
@implementation DeepThoughtsAppDelegate

@synthesize window;
@synthesize viewController;

#pragma mark -
#pragma mark Application lifecycle

- (BOOL)application:(UIApplication *)application didF
inishLaunchingWithOptions:(NSDictionary *)
launchOptions {

 // Override point for customization after app launch

14_9780470920503-ch08.indd 16614_9780470920503-ch08.indd 166 12/24/10 12:37 AM12/24/10 12:37 AM

167 Chapter 8: Understanding How an App Runs

 // Add the view controller’s view to window and
display

 [window addSubview:viewController.view];
 [window makeKeyAndVisible];

 return YES;
}
- (void)applicationWillResignActive:(UIApplication *)

application {
 /*
 Sent when the application is about to move from

active to inactive state. This can occur for
certain types of temporary interruptions (such
as an incoming call) or when the user quits the
application and it begins the transition to the
background state.

 Use this method to pause ongoing tasks, disable
timers, and throttle down OpenGL ES frame
rates. Games should use this method to pause
the game.

 */
}
- (void)applicationDidEnterBackground:(UIApplication *)

application {
 /*
 Use this method to release shared resources, save

user data, invalidate timers, and store enough
application state information to restore your
application to its current state in case it is
terminated later.

 If your application supports background execution,
called instead of applicationWillTerminate:
when the user quits.

 */
}
- (void)applicationWillEnterForeground:(UIApplication *)

application {
 /*
 Called as part of transition from the background to

the inactive state: here you can undo many of
the changes made on entering the background.

 */
}
- (void)applicationDidBecomeActive:(UIApplication *)

application {
 /*
 Restart any tasks that were paused (or not yet

started) while the application was inactive. If
the application was previously in the

(continued)

14_9780470920503-ch08.indd 16714_9780470920503-ch08.indd 167 12/24/10 12:37 AM12/24/10 12:37 AM

168 Part III: Understanding How Apps Work

Listing 1-2 (continued)

background, optionally refresh the user interface.

 */
}
- (void)applicationWillTerminate:(UIApplication *)

application {
 /*
 Called when the application is about to terminate.
 See also applicationDidEnterBackground:.
 */
}

#pragma mark -
#pragma mark Memory management

- (void)applicationDidReceiveMemoryWarning:(UIApplication
*)application {

 /*
 Free up as much memory as possible by purging cached

data objects that can be recreated (or reloaded
from disk) later.

 */
}
- (void)dealloc {
 [viewController release];
 [window release];
 [super dealloc];
}
@end

In Listing 1-2, the view controller is initialized with the applicationDid
FinishLaunchingWithOptions method, which you can use to do any
other application initialization as well, such as returning everything to what it
was like when the user last used the application.

 Your goal during startup should be to present your application’s user inter-
face as quickly as possible — quick initialization = happy users. Don’t load
large data structures that your application won’t use right away. If your appli-
cation requires time to load data from the network (or perform other tasks
that take noticeable time), get your interface up and running first and then
launch the slow task on a background thread. Then you can display a progress
indicator or other feedback to the user to indicate that your application is
loading the necessary data or doing something important.

When the application:didFinishLaunchingWithOptions: method
is invoked, your application is in the inactive state. Unless your application
does some kind of background processing, when your application becomes
active, it will receive the applicationDidBecomeActive: message when it
enters the foreground (becomes the application the user sees on the screen),
which I explain in “Responding to interruptions” in this chapter.

14_9780470920503-ch08.indd 16814_9780470920503-ch08.indd 168 12/24/10 12:37 AM12/24/10 12:37 AM

169 Chapter 8: Understanding How an App Runs

 With iOS 4.2, an application can also be launched into the background, but
because the DeepThoughts application at the heart of this section doesn’t do
any background processing, this is the sequence I work with. And because the
application does no background processing, there’s also nothing it has to do
in response to the applicationDidBecomeActive: message.

The application delegate object (refer to Listing 1-1) is usually derived from
NSObject, the root class (the very base class from which all iPad applica-
tion objects are derived), although it can be an instance of any class you
like, as long as it adopts the UIApplicationDelegate protocol. The
methods of this protocol correspond to behaviors that are needed during
the application lifecycle and are your way of implementing this custom
behavior. Although you aren’t required to implement all the methods of the
UIApplicationDelegate protocol, every application should implement
the following critical application tasks:

 ✓ Initialization, which I’ve just covered

 ✓ Handling events, which I cover in the next section

 ✓ Responding to interruptions, which I cover in the section following the
next section

 ✓ Responding to termination, which I cover in “Termination” in this chapter

 ✓ Responding to low memory warnings, which I cover in “Observing low-
memory warnings” in this chapter

Event processing
What actually happens when the user taps something to cause an event? The
event is processed. The functionality provided in the UIKit framework man-
ages most of the application’s infrastructure. Part of the initialization process
mentioned in the previous section involves setting up the main run loop
and event handling code, which is the responsibility of the UIApplication
object. Here’s a rundown of how such events drive a process inside the app:

 1. You have an event — the user taps a button, for example.

 The touch of a finger (or lifting it from the screen) adds a touch event to
the application’s event queue, where it’s encapsulated in — placed into,
in other words — a UIEvent object. There’s a UITouch object for each
finger touching the screen, so you can track individual touches. As the
user manipulates the screen with his or her fingers, the system reports
the changes for each finger in the corresponding UITouch object.

 My advice to you: Don’t let your eyes glaze over here. This UIEvent and
UITouch stuff is important, as you discover when I show you how to
handle touch events in Chapter 11.

14_9780470920503-ch08.indd 16914_9780470920503-ch08.indd 169 12/24/10 12:37 AM12/24/10 12:37 AM

170 Part III: Understanding How Apps Work

 2. The run loop monitor dispatches the event.

 When there’s something to process, the event-handling code of the
UIApplication processes touch events by dispatching them to the
appropriate responder object — the object that has signed up to take
responsibility for doing something when an event happens (when the
user touches the screen, for example). Responder objects can include
instances of UIApplication, UIWindow, UIView, and its subclasses
(all which inherit from UIResponder).

 3. A responder object decides how to handle the event.

 For example, a touch event occurring with a button in a view is delivered
to the button object. The button object handles the event by sending an
action message to another object — in this case, the UIViewController
object. Setting it up this way enables you to use standard button objects
without having to muck about in their innards — just tell the button what
method you want invoked in your view controller, and you’re basically set.

 Processing the message may result in changes to a view, or a new view
altogether, or some other kind of change in the user interface. When this
happens, the view and graphics infrastructure takes over and processes
the required drawing events.

 4. You’re sent back to the event loop.

 After an event is handled or discarded, control passes back to the run
loop. The run loop then processes the next event or puts the thread to
sleep if there’s nothing more for it to do.

Responding to interruptions
On an iPad, various events besides termination can interrupt your app to
allow the user to respond — for example, calendar alerts or the user pressing
the Sleep/Wake button. Such interruptions may only be temporary. If the user
chooses to ignore an interruption, your app continues running as before. If
the user decides to tap the alert to deal with it, your app first moves into the
inactive state.

When the user quits an app, its process is not terminated (as was the case
with iOS 3.2 and earlier versions) — the app is moved to the background,
where it is suspended to conserve power. (If an app needs to continue run-
ning, it can request execution time from the system.) Because the app is
in the background (running or suspended) and still in memory, relaunch-
ing is nearly instantaneous. An app’s objects (including its windows and
views) remain in memory, so they don’t need to be re-created when the app
relaunches. If memory becomes constrained, iOS may purge background
apps to make more room for the foreground app.

14_9780470920503-ch08.indd 17014_9780470920503-ch08.indd 170 12/24/10 12:37 AM12/24/10 12:37 AM

171 Chapter 8: Understanding How an App Runs

 Because these interruptions cause a temporary loss of control by your app —
meaning that touch events, as I describe in Chapter 11, are no longer sent to
your app — it’s up to you to prevent what’s known in the trade as a “negative
user experience.” For example, if your app is a game, you should pause the
game. In general, your app should store information about its current state
when it moves to the inactive state and be able to restore itself to the current
state upon a subsequent relaunch.

In all cases, the sequence of events starts the same way — with the
applicationWillResignActive: message sent to your application dele-
gate. Using this method, you should pause ongoing tasks, disable timers, and
generally put things on hold.

What happens after this depends on the nature of the interruption and/or
how the user responds to the interruption. Your application may be

 ✓ Reactivated

 ✓ Moved to the background

The next two sections take a look at each scenario.

Your application is reactivated
If the user ignores the FaceTime call or calendar notification (or similar inter-
ruption), the system sends your application delegate the applicationDid
BecomeActive: message and resumes the delivery of touch events to your
application.

If the user pressed the Sleep/Wake button, the system then puts the device
to sleep. When the user wakes the device later, the system sends your appli-
cation delegate the applicationDidBecomeActive: message and your
application receives events again. While the device is asleep, foreground and
background applications do continue to run, but should do as little work as
possible in order to preserve battery life.

In both cases, you can use the applicationDidBecomeActive: method to
restore the application to the state it was in before the interruption. What you
do depends on your application. In some applications, it makes sense to resume
normal processing. In others — if you’ve paused a game, for example — you
could leave the game paused until the user decides to resume play.

Your application moves to the background
When the user accepts the notification or interruption, or presses the Home
button — or the system launches another application — your application
then moves into the background state, where it is suspended to conserve

14_9780470920503-ch08.indd 17114_9780470920503-ch08.indd 171 12/24/10 12:37 AM12/24/10 12:37 AM

172 Part III: Understanding How Apps Work

power. (If an app needs to continue running, it can request execution time
from the system.)

When your app enters the background state, it will be sent the
applicationDidEnterBackground: message. In this method, you should
save any unsaved data or state (where the user is in the app — the current
view, options selected, and stuff like that) to a temporary cache file or to the
preferences database “on disk.” (Okay, I know, Apple calls the iPad storage
system a disk even though it is a solid-state drive, but if Apple calls it that,
I probably should, too, just so I don’t confuse too many people.) Although I
don’t do this in DeepThoughts, your app’s delegate can implement the del-
egate method applicationWillTerminate: to save the current state and
unsaved data.

The next time the user launches your app, your code can use that informa-
tion to restore your app to its previous state. You need to do everything
necessary to restore your application in case it’s subsequently purged from
memory. You also have to do additional cleanup operations, such as deleting
temporary files. Even though your application enters the background state,
there’s no guarantee that it will remain there indefinitely. If memory becomes
constrained, iOS will purge background apps to make more room for the fore-
ground app.

 If your application is suspended when your application is purged, it receives
no notice that it is removed from memory. You need to save any data before-
hand! The state information you save should be as minimal as possible but
still let you accurately restore your app to an appropriate point. You don’t
have to display the exact same screen used previously — for example, if a
user edits a contact and then leaves the Contacts app, upon returning, the
Contacts app displays the top-level list of contacts, rather than the editing
screen for the contact.

If your application requests more execution time or it has declared that
it does background execution, it’s allowed to continue running after the
applicationDidEnterBackground: method returns. If not, your (now)
background application is moved to the suspended state shortly after return-
ing from the applicationDidEnterBackground: method.

When your delegate is sent the applicationDidEnterBackground: method,
your app has approximately five seconds to finish things up. If the method
doesn’t return before time runs out (or if your app doesn’t request more
execution time from iOS), your app is terminated and purged from memory.

Your application resumes processing
At some point, it’s likely that the user will once again want to use your app,
which has been patiently sitting in the background waiting for this oppor-
tunity to respond to the user’s tap. When the user returns to your app by
tapping it on a Home screen or in the switching pane below the dock, your

14_9780470920503-ch08.indd 17214_9780470920503-ch08.indd 172 12/24/10 12:37 AM12/24/10 12:37 AM

173 Chapter 8: Understanding How an App Runs

application delegate is sent the applicationWillEnterForeground: and
applicationDidBecomeActive: messages.

I’ve already explained in the previous section what you’ll need to do in the
applicationDidBecomeActive: method — restart anything it stopped
doing and get ready to handle events again.

While an application is suspended, the world still moves on, and iOS tracks
all of the things the user is doing that may impact your application. For exam-
ple, the user may change the device orientation from landscape to portrait,
and then to landscape, and then finally back to portrait. While iOS will keep
track of all these events, it will send you only a single event that reflects the
final change you’ll need to process — in this case, the change to portrait.

Termination
Apps are generally moved to the background when interrupted or when the
user quits. But if the app was compiled with an earlier version of the SDK or
is running on an earlier version of the operating system that doesn’t support
multitasking — or you decide you don’t want your app to run in the back-
ground and you set the UIApplicationExitsOnSuspend key in its Info.
plist file — the Terminator stomps on your app.

What happens is this: Your app delegate is sent the applicationWill
Terminate: message, and you have the opportunity to add code to do
whatever you want to do before termination, including saving the state the
user was in. Saving is important, because then, when the app is launched
again (refer to Step 2 in “App Anatomy 101 — The Lifecycle,” earlier in
this chapter) and the UIApplicationMain sends the app delegate the
applicationDidFinishLaunching message, you can restore the app
to the state the user left it (such as a certain view). This is the same thing
you would have done in the application method applicationDidEnter
Background: — I cover this in “Responding to interruptions” in this
chapter.

 It’s worth noting that before the application is terminated and the
applicationWillTerminate: message is sent, the applicationDid
EnterBackground: message is also sent. This means that for applications
you compile and run only under iOS 4.2 and beyond, you only have to do all
that cleanup and file saving in applicationDidEnterBackground:.

Your applicationWillTerminate: method implementation has about five
seconds to do what it needs to do and return. Any longer than that and your
application is terminated and purged from memory. (The Terminator doesn’t
kid around.)

14_9780470920503-ch08.indd 17314_9780470920503-ch08.indd 173 12/24/10 12:37 AM12/24/10 12:37 AM

174 Part III: Understanding How Apps Work

 Even if you develop your application using the iOS 4.2 SDK and newer versions —
as you will be doing, if you stay as up-to-date as me — you must still be prepared
for your application to be terminated. If memory becomes an issue (and it
inevitably will if there are enough apps in the background), the system might
remove your application from memory in order to make more room. If it does
remove your suspended application, it does not give you any warning, much
less notice! However, if your application is currently running in the back-
ground, the system does call the applicationWillTerminate: method of
the application delegate.

The Managed Memory
Model Design Pattern

Launch, initialize, process, respond, terminate, launch, initialize, process,
respond, terminate . . . it has a nice rhythm to it, doesn’t it? Those are the
five major stages of the application’s lifecycle. But life isn’t simple — and
neither is runtime. To mix things up a bit, your application will also have to
come to terms with memory management.

You may remember that I mention in Chapter 7 that there’s one other design
pattern: the Managed Memory Model. One of the main responsibilities of
all good little applications is to deal with low memory. So, the first line of
defense is (obviously) to understand how you as a programmer can help
them avoid getting into that state.

In iOS, each program uses the virtual-memory mechanism found in all
modern operating systems. But virtual memory is limited to the amount of
physical memory available. This is because iOS doesn’t store changeable
memory (such as object data) on the “disk” to free up space and then read
it in later when it’s needed. Instead, iOS tries to give the running application
the memory it needs, freeing memory pages that contain read-only contents
(such as code), where all it has to do is load the “originals” back into memory
when they’re needed. Of course, this may be only a temporary fix if those
resources are needed again a short time later.

If memory continues to be limited, the system may also send notifications to
the running application, asking it to free up additional memory. This is one of
the critical events that all applications must respond to.

Observing low-memory warnings
When the system dispatches a low-memory notification to your application,
it’s something you must pay attention to. If you don’t, it’s a reliable recipe for
disaster. (Think of your low-fuel light going on as you approach a sign that

14_9780470920503-ch08.indd 17414_9780470920503-ch08.indd 174 12/24/10 12:37 AM12/24/10 12:37 AM

175 Chapter 8: Understanding How an App Runs

says, “Next services 100 miles.”) UIKit provides several ways of setting up
your application so that you receive timely low-memory notifications:

 ✓ Implement the applicationDidReceiveMemoryWarning: method of
your application delegate. Your application delegate could then release
any data structure or objects it owns — or notify the objects to release
memory they own. Apple recommends this approach.

 ✓ Override the didReceiveMemoryWarning: method in your custom
UIViewController subclass. The view controller could then release
views — or even other view controllers — that are off-screen. For exam-
ple, in your new project (DeepThoughts) created with the View-based
Application template, the template already supplies the following in
DeepThoughtsViewController.m, ready for you to customize:

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn’t have a

superview.
 [super didReceiveMemoryWarning];
// Release any cached data, images, etc that aren’t in

use.
}
- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

 ✓ Register to receive the UIApplicationDidReceiveMemoryWarning
Notification: notification. Such notifications are sent to the notifica-
tion center, where all notifications are centralized. An object that wants
to get informed about this notification registers itself to the notifica-
tion center by telling which notification it wants to get informed about
and which method should be invoked when the notification is raised.
A model object could then release data structures or objects it owns
that it doesn’t need immediately and can re-create later. However, this
approach is beyond the scope of this book.

Each of these strategies gives a different part of your application a chance to
free up the memory it no longer needs (or doesn’t need right now). As for how
you actually get these strategies working for you, that’s dependent on your
application’s architecture. That means you need to explore it on your own.

Not freeing up enough memory will result in iOS sending your iPad applica-
tion the applicationWillTerminate: message and shutting your app
down. For many apps, though, the best defense is a good offense, and you
need to manage your memory effectively and eliminate any memory leaks in
your code. A memory leak is how programmers describe a situation in which
an object is unable to release the memory it has acquired — it can diminish
performance by reducing the amount of available memory.

14_9780470920503-ch08.indd 17514_9780470920503-ch08.indd 175 12/24/10 12:37 AM12/24/10 12:37 AM

176 Part III: Understanding How Apps Work

Avoiding the warnings
When you create an object — a window or button for example — memory is
allocated to hold that object’s data. The more objects you create, the more
memory you use and the less there is available for additional objects you
might need. Obviously, it’s important to make available (that is, de-allocate)
the memory that an object was using when the object is no longer needed.
This task is called memory management.

Objective-C uses reference counting to figure out when to release the
memory allocated to an object. It’s your responsibility as a programmer to
keep the memory-management system informed when an object is no longer
needed.

 Reference counting is a pretty simple concept. When you create the object, it’s
given a reference count of 1. As other objects use this object, they use meth-
ods to increase the reference count and to decrease it when they’re done.
When the reference count reaches 0, the object is no longer needed, and the
memory is de-allocated.

Some basic memory-management rules you shouldn’t forget
Here are the fundamental rules when it comes to memory management:

 ✓ Any object you create using alloc or new, any method that contains
copy, and any object you send a retain message to is yours — you own
it. That means you’re responsible for telling the memory-management
system when you no longer need the object and that its memory can
now be used elsewhere.

 ✓ Within a given block of code, the number of times you use new, copy,
alloc, and retain should equal the number of times you use release
and autorelease. You should think of memory management as con-
sisting of pairs of messages. If you balance every alloc and every
retain with a release, your object will eventually be freed up when
you’re done with it.

 ✓ When you assign an instance variable using an accessor with a prop-
erty attribute of retain, retain is automatically invoked — that is,
you now own the object. Implement a dealloc method to release the
instance variables you own.

 ✓ Objects created any other way (through convenience constructors or
other accessor methods) are not your problem.

If you have a solid background in Objective-C memory management (all three
of you out there), following those rules should be straightforward or even
obvious. If you don’t have that background, no sweat: See Objective-C For
Dummies for some background.

14_9780470920503-ch08.indd 17614_9780470920503-ch08.indd 176 12/24/10 12:37 AM12/24/10 12:37 AM

177 Chapter 8: Understanding How an App Runs

 A direct correlation exists between the amount of free memory available and
your application’s performance. If the memory available to your application
dwindles far enough, the system will be forced to terminate your application.
To avoid such a fate, keep a few words of wisdom in mind:

 ✓ Minimize the amount of memory you use — make that a high priority of
your implementation design.

 ✓ Be sure to use the memory-management functions.

 ✓ In other words, be sure to clean up after yourself, or the system will do
it for you, and it won’t be a pretty picture.

Whew!
Congratulations — in the previous chapter and this chapter, you’ve just gone
through the “Classic Comics” version of another several hundred pages of
Apple documentation, reference manuals, and how-to guides.

Although there’s a lot left unsaid (though less than you might suspect), the
details in the previous chapter and this chapter are enough not only to get
you started but also to keep you going as you develop your own iPad apps.
These chapters provide a frame of reference on which you can hang the con-
cepts I throw around with abandon in upcoming chapters — as well as the
groundwork for a deep enough understanding of the application lifecycle to
give you a handle on the detailed documentation.

Time to move on to the really fun stuff: building DeepThoughts into an app
that actually does something.

14_9780470920503-ch08.indd 17714_9780470920503-ch08.indd 177 12/24/10 12:37 AM12/24/10 12:37 AM

178 Part III: Understanding How Apps Work

14_9780470920503-ch08.indd 17814_9780470920503-ch08.indd 178 12/24/10 12:37 AM12/24/10 12:37 AM

Part IV

Building
DeepThoughts

15_9780470920503-pp04.indd 17915_9780470920503-pp04.indd 179 12/24/10 12:37 AM12/24/10 12:37 AM

In this part . . .

To wrap your head around the entire process of build-
ing an app, I present to you DeepThoughts, a sample

app, which you build in this part. It’s simple enough to
understand, and yet, it demonstrates enough of the build-
ing blocks for creating a sophisticated iPad app that you
should pay attention to these chapters:

 ✓ Chapter 9 takes you on a tour of the View-based
Application template, on which DeepThoughts is
based. You also add an image to your first iPad
view-based app, and you add an interface element
(an Info button). You also do one of the more
important graphical tasks you need to do when
you build an app: supply an icon for the app for
the iPad display.

 ✓ Chapter 10 dives right into custom-coding your
app. You find out how to use Xcode’s documenta-
tion and help windows while adding code, and
you learn the answer to that monumental ques-
tion: Where does my code go? The code you add
controls and animates the view and sets up the
methods and variables for applying user prefer-
ence settings.

 ✓ Chapter 11 gets you right into the thick of iPad
development, creating a modal view for uses to
change their preference settings, connecting
interface objects such as sliders and text entry
fields, and adding recognition for tap and swipe
gestures.

 ✓ Chapter 12 shows you how to swat the bugs in
your apps using the Debugger, the mini-debugger,
the Console, and even the Static Analyzer. You
learn all about setting breakpoints that stop your
app cold in the Simulator. At the end of this chap-
ter, DeepThoughts is actually finished, and you
know how to debug apps with Xcode.

15_9780470920503-pp04.indd 18015_9780470920503-pp04.indd 180 12/24/10 12:37 AM12/24/10 12:37 AM

Chapter 9

Building the User Interface
In This Chapter
▶ Inspecting an app with a view

▶ Using Interface Builder to add graphics and buttons

▶ Adding an application icon

Steve Jobs said it best: “Design is not just what it looks like and feels like.
Design is how it works.” That’s why you should know how an iPad app

works before trying to design a user interface for one.

For one thing, you need to consider the memory limitations and display ori-
entation of the iPad. That’s why the Xcode templates are so useful — they
take care of the display and memory management so that you can focus on
what your app can do. After seeing how easy it is to add graphics and inter-
face elements to the template-based project, you may think the user interface
for your app will be a piece of cake — and to some extent, it probably will be,
thanks to Interface Builder.

The template you select for your Xcode project (as I show in Chapter 5)
provides the skeleton of a user interface. For example, the View-based
Application template for the DeepThoughts app offers a view and a view con-
troller that you can customize. Other templates offer rudimentary interface
objects — for example, the Navigation-based Application template offers a
Navigation controller, and the Utility-based Application template offers a
Flipside view that a user opens by tapping an Info button and closes by tap-
ping a Done button. The Split View-based Application template offers a Split
view controller as well as the two view controllers you’d use to manage a
master-detail-style display.

Make sure you choose the appropriate template so that you don’t have to
reinvent the wheel. And before you start coding, examine how the template’s
interface works and how to add your custom interface objects and graphics.
That’s what this chapter is all about.

16_9780470920503-ch09.indd 18116_9780470920503-ch09.indd 181 12/24/10 12:37 AM12/24/10 12:37 AM

182 Part IV: Building DeepThoughts

Running the View-Based
Application Template

When you start a project with the View-based Application template, you get
the Main window, a view (using a white background) scaled to fill the entire
Main window, and a black status bar at the top. The view and status bar auto-
matically change orientation for you when the user rotates the iPad.

You can see this in action in the Simulator, even before writing any code —
after choosing the template to create your project (as I describe in Chapter 5),
build and run the project by choosing Build➪Build and Run from the Xcode
main menu. (I also show you how to build, run, and use the Simulator in
Chapter 5.)

After a user launches your app, the functionality provided in the UIKit
framework manages most of the application’s infrastructure. Part of the
initialization process mentioned in Chapter 8 involves setting up the
main run loop and event-handling code, which is the responsibility of the
UIApplication object. When the application is onscreen, it’s driven by
external events, such as stubby fingers touching sleek buttons.

As you discover in Chapter 8, the nib file MainWindow.xib causes the
application’s delegate, window, and view controller instances to get created
at runtime, and both MainWindow.xib and the view controller’s nib file,
DeepThoughtsViewController.xib, are provided as part of the View-
based Application template. An instance of DeepThoughtsViewController
is set to be the application’s view controller, and that’s where you put your
code to control the view.

Before doing that, however, you can build this view to have a background
image and some interface elements. To see what you have in the view now,
you can inspect the view in Interface Builder.

Inspecting the View
To see how the view is created and connected to the template code, start
up Interface Builder from Xcode by first clicking the Resources folder in
the Groups & Files list (refer to Chapter 5) and then double-clicking the
DeepThoughtsViewController.xib file to launch Interface Builder.

To inspect the view, click the Identity tab of the Inspector window (or
choose Tools➪Identity Inspector) and then click the View icon in the
DeepThoughtsViewController.xib window to see the identity of the
view, as shown in Figure 9-1.

16_9780470920503-ch09.indd 18216_9780470920503-ch09.indd 182 12/24/10 12:37 AM12/24/10 12:37 AM

183 Chapter 9: Building the User Interface

 The four icons across the top of the Inspector window from left to right corre-
spond to the Attributes, Connections, Size, and Identity Inspectors, respec-
tively, in the Tools menu.

Figure 9-1:
The view’s
identity in
Interface

Builder.

You can see that the view belongs to the UIView class, and that user inter-
action has been enabled. UIView is an abstract superclass that provides
concrete subclasses with a structure for drawing and handling events. The
UIView class provides common methods you can use to create all types of
views as well as access their properties.

You can also click the Attributes tab of the Inspector window (or choose
Tools➪Attributes Inspector) to see the view’s attributes — and you find that
it includes a black status bar and the default (white) background.

To get info about the class that uses, or owns, this view, click File’s Owner in the
DeepThoughtsViewController.xib window and then click the Identity tab
of the Inspector window (or choose Tools➪Identity Inspector). In the Class pop-
up menu, you can see that the File’s Owner — the object that’s going to use (or
own) this file — is set to the class DeepThoughtsViewController (as shown
in Figure 9-2). Click the circled arrow next to DeepThoughtsViewController
in the Class pop-up menu to display the class in the Library window along with
its description. (Refer to Figure 9-2.)

16_9780470920503-ch09.indd 18316_9780470920503-ch09.indd 183 12/24/10 12:37 AM12/24/10 12:37 AM

184 Part IV: Building DeepThoughts

Figure 9-2:
The File’s
Owner is
the view

controller.

How does this work? The template sets this all up for you, without you
having to lift a finger.

Understanding How the
View is Initialized

If you look back to Chapter 8, you can see that the template supplies the fol-
lowing code in DeepThoughtsAppDelegate.h:

@class DeepThoughtsViewController;
@interface DeepThoughtsAppDelegate : NSObject

<UIApplicationDelegate> {
 UIWindow *window;
 DeepThoughtsViewController *viewController;
}

This sets up the UIApplicationDelegate protocol with window. The
template also declares an accessor method for window and tags it with an
IBOutlet (so that Interface Builder can discover it) while also declaring an
accessor method for viewController:

16_9780470920503-ch09.indd 18416_9780470920503-ch09.indd 184 12/24/10 12:37 AM12/24/10 12:37 AM

185 Chapter 9: Building the User Interface

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) DeepThoughtsViewController

*viewController;

In the file DeepThoughtsAppDelegate.m, the @synthesize statements tell
the compiler to create accessor methods for you — one for each @property
declaration (window and viewController). After the delegate receives
notification that the application has launched in the application:did
FinishLaunchingWithOptions: method, the code uses the addSubview
and makeKeyAndVisible methods to display the view:

@implementation DeepThoughtsAppDelegate
@synthesize window;
@synthesize viewController;

- (BOOL)application:(UIApplication *)application didF
inishLaunchingWithOptions:(NSDictionary *)
launchOptions {

 // Override point for customization after app launch
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];

 return YES;
}

The view controller is initialized, and addSubView adds viewController.
view to window in order to display the view. Calling makeKeyAndVisible
on window makes the window visible as well as making it the main window
and the first responder for events (touches).

In DeepThoughtsViewController.h, you find this:

@interface DeepThoughtsViewController : UIViewController {
}

This tells you that DeepThoughtsViewController is a subclass of
UIViewController. The UIViewController class provides the funda-
mental view-management model for iPad apps. You use each instance of
UIViewController to manage a full-screen view.

In DeepThoughtsViewController.m near the top, you find commented-
out code you can use to set up custom view initialization (though I don’t
need it for DeepThoughts):

/*
// The designated initializer. Override to perform setup

that is required before the view is loaded.
- (id)initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil {

16_9780470920503-ch09.indd 18516_9780470920503-ch09.indd 185 12/24/10 12:37 AM12/24/10 12:37 AM

186 Part IV: Building DeepThoughts

 if ((self = [super initWithNibName:nibNameOrNil
bundle:nibBundleOrNil])) {

 // Custom initialization
 }
 return self;
}
*/

The DeepThoughtsViewController object is created by a nib file directly
passed on to UIViewController to handle the initialization. (You can add
custom initialization at the point where the // Custom initialization
comment appears.)

Adding an Image to the View
So far, the DeepThoughts app displays a white view with a black status bar —
for the entire 1,024 x 768 pixels (at up to 24 bits per pixel). You need to put
those pixels to work! A compelling iPad app needs to immerse the user in
an experience, even if that experience is the appearance of a leather-bound
address book rather than a simple contact entry form. The basis of any kind
of immersive experience is the image you display in the view.

To place an image in your app, first you need the image. Although you have
plenty of pixels to work with, you should create artwork for the final image in
a larger multiple of the pixel dimensions you need so that you can add depth
and details before scaling it down accurately to the iPad display size.

 The preferred format for the image is .png. Although most common image
formats, such as .jpg (JPEG) will display correctly, Xcode automatically opti-
mizes .png images at build time to make them the fastest and most efficient
image type for use in iPad applications.

After you have your image (in my case, I’m using a JPEG image), do the
following:

 1. In Xcode, drag the image file into the Resources folder in the Groups
& Files list, as shown in Figure 9-3.

 Although you can drag it to any location in the Groups & Files list, I like
to keep my projects uncluttered, and I use the Resources folder to hold
all interface-related files.

 An alternative is to click the Resources folder in Xcode, choose
Project➪Add to Project, and then navigate to the file you want to add.

 After you drag or add the file, Xcode displays a dialog for making a copy
of the file and specifying its reference type, text encoding, and other
options, as shown in Figure 9-4.

16_9780470920503-ch09.indd 18616_9780470920503-ch09.indd 186 12/24/10 12:37 AM12/24/10 12:37 AM

187 Chapter 9: Building the User Interface

Figure 9-3:
Drag an

image file
into the

Resources
folder.

 2. Select the Copy Items into Destination Group’s Folder check box to
copy the file, and then click Add to finish copying the image file into
your project.

Figure 9-4:
Tell Xcode

to make
a copy of

the file and
add it to the

project.

 If you don’t make a copy of the file, Xcode simply creates a pointer to
the file. The advantage of using a pointer is that if you modify the image
later, Xcode will use that modified version. The disadvantage is that
Xcode won’t be able to find the image file if you move it.

16_9780470920503-ch09.indd 18716_9780470920503-ch09.indd 187 12/24/10 12:37 AM12/24/10 12:37 AM

188 Part IV: Building DeepThoughts

 I’m all for copying. If you change the image, use the same name for the
changed file and drag it back into Resources to replace the older file.
Then build the project again.

 You don’t need to change the default settings for Reference Type, Text
Encoding, or Recursively Create Groups for Any Added Folders.

 3. Double-click DeepThoughtsViewController.xib in the Resources
folder to open Interface Builder.

 The Interface Builder windows should appear. (Refer to Figure 9-1.) If
the Library window doesn’t appear with the other windows, choose
Tools➪Library to show it.

 4. Click the Objects tab at the top of the Library window and select Data
Views from the drop-down menu below the Objects tab.

 Selecting Objects and then Data Views narrows your search through the
Library window so that you can find the object you need quickly.

 It turns out that, to place the image in the view, you need the Image View
object, as shown in Figure 9-5.

 5. Drag the Image View object from the Library onto the View window.

 If the View window is obscured by other windows, just drag
the Image View object directly on top of the View icon in the
DeepThoughtsViewController.xib window as I do in Figure 9-5, so
that it appears underneath and part of the view.

Figure 9-5:
Adding the

Image View
object to
the view.

16_9780470920503-ch09.indd 18816_9780470920503-ch09.indd 188 12/24/10 12:37 AM12/24/10 12:37 AM

189 Chapter 9: Building the User Interface

 6. Select Image View in the DeepThoughtsViewController.xib
window and click the Attributes tab of the Inspector window (or
choose Tools➪Attributes Inspector).

 The Attributes Inspector shows the Image View attributes.

 7. In the Attributes Inspector, choose the image file from the Image drop-
down menu, as shown in Figure 9-6.

 That Inspector window’s a handy little critter, isn’t it? Just select the
image file you dragged into your project in Step 1. Your Image View
object does what it’s told and loads your view so that it ends up looking
something like Figure 9-7.

 If you don’t see the image file in the Image drop-down menu, choose
File➪Reload All Class Files. It should appear the next time you use the
Image drop-down menu.

 8. Choose File➪Save from the main menu to save your changes to the
DeepThoughtsViewController.xib file.

Figure 9-6:
Select the
image file

for the
Image View

object.

This example uses a full-screen image. If you place images that are smaller, as
I show in the next section when I place an Info button, Interface Builder gives
you help placing the image in the view.

16_9780470920503-ch09.indd 18916_9780470920503-ch09.indd 189 12/24/10 12:37 AM12/24/10 12:37 AM

190 Part IV: Building DeepThoughts

Figure 9-7:
The image

file now
appears in

the view.

Adding an Info Button
The DeepThoughts app is supposed to display an animation of text flowing
down the view, and the user (after the app is finished) will be able to change
the text and the speed of the animation either by tapping an Info button
(which is similar to the iPhone version of this app) or by tapping the view
itself. I show you how to connect the Info button to your code in Chapter 11
so it can show a modal dialog for changing the text and setting the speed, but
you need to first add the Info button to the user interface, as I show here.

To add a user interface button and set it to be an Info button, follow these
steps:

 1. Make your way over to the Groups & Files list and double-click
DeepThoughtsViewController.xib in the Resources folder to open
the file in Interface Builder (if it isn’t already open).

 Interface Builder should appear with the DeepThoughtsView
Controller.xib window, the Library window, the Inspector window,
and the View window. (Refer to Figure 9-7.) If you followed the steps of the
previous section, the Library window should already be open; if it isn’t
already open, choose Tools➪Library to show it.

16_9780470920503-ch09.indd 19016_9780470920503-ch09.indd 190 12/24/10 12:37 AM12/24/10 12:37 AM

191 Chapter 9: Building the User Interface

 2. Click the Classes tab at the top of the Library window and then select
UIResponder from the drop-down menu below the Classes tab.

 Selecting Classes and then UIResponder narrows your search through
the Library window so that you can find the class you need quickly.
To place the Info button in the view, you need the UIButton class, as
shown in Figure 9-8.

 3. Drag the UIButton class object from the Library onto the View
window.

 Again, if the View window is obscured by other windows, just drag
the UIButton class object directly on top of the View icon in the
DeepThoughtsViewController.xib window as I do in Figure 9-8, so
that it appears underneath the image you added in the previous section
(which is also part of view).

 After all this dragging, the UIButton class object appears under View in
the DeepThoughtsViewController.xib window as a Rounded Rect
Button, as shown in Figure 9-9, which is its default setting.

Figure 9-8:
Add the

UIButton
class object
to the view.

16_9780470920503-ch09.indd 19116_9780470920503-ch09.indd 191 12/24/10 12:37 AM12/24/10 12:37 AM

192 Part IV: Building DeepThoughts

Figure 9-9:
Change the

UIButton
class object

to an Info
Light button.

 4. Select the Rounded Rect Button item in the DeepThoughtsView
Controller.xib window and then click the Attributes tab of the
Inspector window (or choose Tools➪Attributes Inspector) if it isn’t
already selected.

 The Attributes Inspector shows Button Attributes. (Refer to Figure 9-9.)

 5. In the Attributes Inspector, choose Info Light from the Type drop-
down menu. (Refer to Figure 9-9.)

 The Rounded Rect Button item transforms itself into the Light Info
Button item in the DeepThoughtsViewController.xib window.

 6. Drag the Light Info Button to its position in the View window, as
shown in Figure 9-10.

 Notice the lines displayed by Interface Builder. They’re there to make it
easy to place the interface element. Interface Builder also displays lines
at the borders to help you stay within Apple’s User Interface Guidelines.
(The lines are actually blue, but that’s kind of hard to see in a black-and-
white illustration.)

 7. Choose File➪Save to save your changes to the DeepThoughtsView
Controller.xib file.

 You can also close Interface Builder and save changes to the file by
choosing Interface Builder➪Quit Interface Builder and then clicking Save
while closing it.

16_9780470920503-ch09.indd 19216_9780470920503-ch09.indd 192 12/24/10 12:37 AM12/24/10 12:37 AM

193 Chapter 9: Building the User Interface

Figure 9-10:
Drag the

button into
position in

the View
window.

I placed the Info button in the upper-left corner of the app’s view so that
when the iPad is rotated (either left or right), and the display orientation
switches from portrait to landscape (or vice-versa), the Info button would
still be in the upper-left corner.

 It’s extremely important with iPad apps to design your app’s view to take into
consideration both portrait and landscape orientations — that’s one of the
features of the iPad that truly improves the user experience with the content.

You can see what the Light Info button looks like in its Default State
Configuration. (Refer to Figure 9-10.) Click the pop-up menu under the
Type pop-up menu in the Attributes Inspector window to choose other
configurations, such as Highlighted State Configuration or Selected State
Configuration, to see what the button looks like when highlighted or selected.
You can also change the text color, shadow, background, and other attri-
butes in the Attributes Inspector.

While you’re in a graphical mindset — especially if you’re in the middle of
processing graphic images for your app or designing interface elements —
take the time to create your app icon and add it to your app, as spelled out in
the next section.

16_9780470920503-ch09.indd 19316_9780470920503-ch09.indd 193 12/24/10 12:37 AM12/24/10 12:37 AM

194 Part IV: Building DeepThoughts

Adding an Application Icon
You shouldn’t procrastinate about adding an application icon. A well-
designed icon adds a professional touch, and it takes time to get it right. You
may start out with a “placeholder” icon until you’ve had a chance to explore
the App Store and look at other icons, but whether or not you have a finished
icon, it helps you identify the app in the Simulator (in case you’ve installed
other projects), and psychologically, it boosts your confidence that the app
is real.

An application icon is simply a 57-x-57-pixel .png graphics file. Add the file in
the same way you added the image in the “Adding an Image to the View” sec-
tion, earlier in this chapter. Follow these steps:

 1. In Xcode, drag the graphics file into the Resources folder in the
Project window’s Groups & Files list. (Refer to Figure 9-3.)

 An alternative is to click the Resources folder in Xcode, choose
Project➪Add to Project, and then navigate to the file you want to add.

 After dragging or adding the file, Xcode displays a dialog for making a
copy of the file. (Refer to Figure 9-4.)

 2. Select the Copy Items into Destination Group’s Folder check box to
copy the file, and then click Add to finish copying the graphics file
into your project.

 You don’t need to change the default settings for Reference Type, Text
Encoding, or Recursively Create Groups for Any Added Folders.

After you add the icon’s graphics file, you also need to specify that this
file is what you want used as the application’s icon. You do that by using
one of those other mysterious files you see in the Resources folder:
DeepThoughts-Info.plist. The “plist” part is your clue: The file is a
property list. Property lists are used extensively by applications as a uniform
and convenient means of organizing, storing, and accessing data such as the
filename for the app’s icon. Xcode lets you edit property lists directly so that
you can create and change them as you need to. Here’s how:

 1. In the Resources folder, click the DeepThoughts-Info.plist file, as
shown in Figure 9-11.

 The contents of the info.plist file are displayed in the Editor pane.
You’re treated to some information about the application, including an
item in the Key column labeled Icon file.

16_9780470920503-ch09.indd 19416_9780470920503-ch09.indd 194 12/24/10 12:37 AM12/24/10 12:37 AM

195 Chapter 9: Building the User Interface

Figure 9-11:
Enter the
name of

the icon file
in the info.

plist.

 2. Double-click in the empty space in the Value column next to the
Icon file.

 3. Type the name of your .png graphics file and then build the project
as you normally would.

 You know — click the Build and Run button in the Project Window tool-
bar, choose Build➪Build and Go (Run) from the main menu, or press
Ô+Return. Building the project gives you the opportunity to save it.
(You could also quit Xcode, which also gives you the opportunity to
save the project.)

After building and running the project, you see your new app icon for the app
rather than a blank icon in the Simulator. Now your project looks serious!
Which means it’s now time to add some serious code that does something
interesting with the view, as I show in the next chapter.

16_9780470920503-ch09.indd 19516_9780470920503-ch09.indd 195 12/24/10 12:37 AM12/24/10 12:37 AM

196 Part IV: Building DeepThoughts

16_9780470920503-ch09.indd 19616_9780470920503-ch09.indd 196 12/24/10 12:37 AM12/24/10 12:37 AM

Chapter 10

Animating the View
In This Chapter
▶ Using your friendly Xcode Text editor

▶ Accessing documentation for quick help with coding

▶ Searching through your code and establishing markers

▶ Adding a Constants.h file

▶ Adding code to the view controller

▶ Creating animation in the view

I wanted to keep the DeepThoughts sample app as simple as possible so
that you can focus on how to build any iPad app with Xcode. As Albert

Einstein said, “Everything should be as simple as it is, but not simpler.” As
you can see by the detail of the previous chapters, building any type of iPad
app is not simple by any means.

But most iPad apps start off with a view, and the View-based Application
template creates a skeleton for a fully functioning iPad app, as you find out
in this chapter. You also get to flesh out the template with some code that
transforms it from an app that just sits there and looks pretty to an app that
actually does something.

 DeepThoughts is supposed to display falling words — text flowing down the
view in different sizes, starting with the words “Peace Love Groovy Music” —
at a speed the user can change. DeepThoughts should also allow the user to
enter text to substitute different words for “Peace Love Groovy Music” as well
as set the speed in advance.

As you add the code to DeepThoughts, I also explain some of the features of
the Xcode Text editor.

17_9780470920503-ch10.indd 19717_9780470920503-ch10.indd 197 12/24/10 12:37 AM12/24/10 12:37 AM

198 Part IV: Building DeepThoughts

Using the Xcode Text Editor
The main tool you use to write code for an iPad application is the Xcode Text
editor. Apple has gone out of its way to make the Text editor as user-friendly
as possible, as evidenced by the following list of (quite convenient) features:

 ✓ Code Sense: Code Sense is a feature of the editor that shows argu-
ments, placeholders, and suggested code as you type statements. Code
Sense can be really useful, especially if you’re like me and forget exactly
what the arguments are for a function. When Code Sense is active (it
is by default), Xcode uses the text you typed, as well as the context
within which you typed it, to provide suggestions for completing what
it thinks you’re going to type. You can accept suggestions by pressing
Tab or Return. You may also display a list of completions by press-
ing the Escape key. You can set options for code sensing by choosing
Xcode➪Preferences and clicking the Code Sense tab.

 ✓ Code Folding in the Focus ribbon: With Code Folding, you can collapse
code that you’re not working on and display only the code that requires
your attention. You do this by clicking in the Focus Ribbon column
to the left of the code you want to hide to show a disclosure triangle.
Clicking the disclosure triangle hides or shows blocks of code. (Not sure
where the Focus Ribbon column is? Look right there between the gutter,
which displays line numbers and breakpoints, and the editor.)

 ✓ Switching between header and implementation windows: On the
toolbar above the Text editor, click the last icon before the lock to
switch from the .h (header) file to the .m (implementation) file, and
vice versa. While the header declares the class’s instance variables
and methods, the implementation holds the logic of your code. If
you look inside the Classes section of the Groups & Files list of
the Project window, you can see the separate .h and .m files for the
DeepThoughtsAppDelegate and DeepThoughtsViewController
view classes.

 ✓ Opening a file in a separate window: Double-click the filename to open
the file in a new window. If you have a big monitor, or multiple monitors,
this new window enables you to look at more than one file at a time.
You can, for example, look at the method of one class and the method it
invokes in the same class or even a different class.

Accessing Documentation
Like many developers, you may find yourself wanting to dig deeper when
it comes to a particular bit of code. That’s when you’ll really appreciate
Xcode’s Quick Help, header file access, Documentation window, Help menu,

17_9780470920503-ch10.indd 19817_9780470920503-ch10.indd 198 12/24/10 12:37 AM12/24/10 12:37 AM

199 Chapter 10: Animating the View

and Find tools. With these tools, you can quickly access the documentation
for a particular class, method, or property.

To see how this works, say you have the Project window open with the
code displayed in Figure 10-1. What if you want to find out more about
UIApplicationDelegate? What, practically speaking, could you do?

Quick Help
Quick Help is an unobtrusive window that provides the documentation
for a single symbol — a programming language keyword. It pops up inline,
although you can use Quick Help as a symbol inspector (which stays open)
by moving the window after it opens. You can also customize the display in
Documentation preferences in Xcode preferences.

To get Quick Help for a symbol, double-click to select the symbol in the Text
editor (in this case, UIApplicationDelegate; see Figure 10-1) and then
choose Help➪Quick Help. Alternatively, Ô-click (right-click) and choose
Quick Help from the contextual menu that appears.

Figure 10-1:
Get Quick

Help.

17_9780470920503-ch10.indd 19917_9780470920503-ch10.indd 199 12/24/10 12:37 AM12/24/10 12:37 AM

200 Part IV: Building DeepThoughts

The header file for a symbol
Headers are a big deal in code because they’re the place where you find the
class declaration, which includes all of its instance variables and method
declarations. To display the header file for a symbol, press Ô while double-
clicking the symbol in the Text editor. For example, to get to the header file in
Figure 10-2, I pressed Ô and then double-clicked UIApplicationDelegate
(in Figure 10-1). This trick works for the classes you create as well.

To return to the previous view in the Text editor, click the Go Back button
(refer to Figure 10-2).

Figure 10-2:
The header

file for
UIApp-

lication-
Delegate.

Documentation window
The Documentation window lets you browse and search items that are part
of the Apple Developer Connection Reference Library (a collection of devel-
oper documentation and technical notes) as well as any third-party documen-
tation you have installed.

You access the documentation by pressing Ô+Option while double-clicking
a symbol. Among other pieces of valuable information, you get access to the
Application Programming Interface (API) reference that provides informa-
tion about the symbol. This access enables you to get the documentation

17_9780470920503-ch10.indd 20017_9780470920503-ch10.indd 200 12/24/10 12:37 AM12/24/10 12:37 AM

201 Chapter 10: Animating the View

about a method to find out more about it or the methods and properties in
a framework class. In Figure 10-3, I pressed Ô+Option while double-clicking
UIApplicationDelegate.

Using the Documentation window, you can browse and search the developer
documentation — the API references, guides, and article collections about
particular tools or technologies — installed on your computer. It’s the go-to
place for getting documentation about a method or more info about the
methods and properties in a framework class.

Figure 10-3:
The

Documen-
tation

window.

Help menu
The Help menu’s search field also lets you search Xcode documentation as
well as open the Documentation window and Quick Help.

You can also Ô-click (right-click) a symbol to display a contextual pop-up
menu that gives you similar options to what you see in the Help menu, includ-
ing Quick Help (and other related functions).

17_9780470920503-ch10.indd 20117_9780470920503-ch10.indd 201 12/24/10 12:37 AM12/24/10 12:37 AM

202 Part IV: Building DeepThoughts

Find
Xcode can also help you find things in your own project. You’ll find that, as
your classes get bigger, sometimes you’ll want to find a single symbol or all
occurrences of a symbol in a file or class. You can easily do that by choosing
Edit➪Find➪Find or pressing Ô+F, which opens a Find toolbar to help you
search the file in the editor window.

For example, in Figure 10-4, I first press Ô+F and then type viewController
in the Find toolbar between the Text editor and Detail view. Xcode finds all
the instances of viewController in that file and highlights them in the Text
editor.

Figure 10-4:
Find “view-
Controller”

in the file
open in the
Text editor.

You can also use Find to go through your whole project by choosing
Edit➪Find➪Find in Project, or by pressing Ô+Shift+F, which opens the
Project Find window shown in Figure 10-5. You can type something like view-
Controller in the Find field, and then choose In Project — or, as I chose in
Figure 10-5, In All Open Files — in the drop-down menu on the right side of
the field. (Project Find is a great feature for tracking down something in your
code — you’re sure to use it often.)

17_9780470920503-ch10.indd 20217_9780470920503-ch10.indd 202 12/24/10 12:37 AM12/24/10 12:37 AM

203 Chapter 10: Animating the View

Figure 10-5:
The Project

Find
window.

If you select a line in the top pane of the Project Find window, as you can see
in Figure 10-5, the file in which that instance occurs is opened in the bottom
pane and the reference highlighted.

Your searches are saved in your project. Click the triangle next to Find
Results in the Groups & Files list to reveal your searches in the Detail view, as
shown in Figure 10-6 (my search for “viewController”). Select a search to see
the search results.

Figure 10-6:
Revisit your

searches,
which are

saved in
your project.

17_9780470920503-ch10.indd 20317_9780470920503-ch10.indd 203 12/24/10 12:37 AM12/24/10 12:37 AM

204 Part IV: Building DeepThoughts

Now that you have some idea of how to use the Xcode Text editor, it’s time to
write some code.

Figuring Out Where Your Code Goes
One of the biggest challenges facing a developer working with an unfamil-
iar framework and template is figuring out where in the control flow — the
sequence in which messages are sent during execution — to put the code to
get something done.

The delegate object
Okay, here’s how the template set up the DeepThoughts app:

 1. UIApplication loads the parts of the MainWindow.xib to create
DeepThoughtsAppDelegate and the window.

 2. UIApplication sends DeepThoughtsAppDelegate the application:
didFinishLaunchingWithOptions: message.

 3. The application:didFinishLaunchingWithOptions: method in
DeepThoughtsAppDelegate initializes the view (viewController).

Note that the application:didFinishLaunchingWithOptions: message
is sent at the very beginning, before the user can even see anything on the
screen. Here’s where you’d insert your code to initialize your application —
where you’d load data, for example, or restore the state of the application to
where it was the last time the user exited. (For DeepThoughts, you don’t need
to change anything here — it’s all supplied by the template.)

The view controller object
DeepThoughtsViewController is the controller responsible for manag-
ing the view. Select DeepThoughtsViewController.m to see its code in
the Text editor. Then click the Methods list pop-up menu in the Xcode Text
Editor’s Navigation bar (to the left of the Bookmarks menu), as shown in
Figure 10-7, to see the controller object’s methods.

What you see in the pop-up menu is a list of active methods in the controller
object.

17_9780470920503-ch10.indd 20417_9780470920503-ch10.indd 204 12/24/10 12:37 AM12/24/10 12:37 AM

205 Chapter 10: Animating the View

You can also see that the code in the Text editor starts off with sections of
comments that include code you can implement if you want to, simply by
removing the comments. (As Objective-C programmers already know, the
lines beginning with // are single-line comments that don’t do anything. A
line beginning with /* followed by a line ending with */ marks an entire com-
ment section that doesn’t do anything.)

The first of these (commented out) sections starts off with The designated
initializer, the second with Implement loadView, and the third with
Implement viewDidLoad.

Figure 10-7:
Click the

Methods list
pop-up to

see all the
methods in

the control-
ler object.

After those comment sections, you encounter the first active method:

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation {

 return YES;
}

This method (which appears as shouldAutorotateToInterface
Orientation: in the Methods list pop-up, as shown in Figure 10-7) starts
your app with the default portrait orientation, unless you override it. The
comment above this code says “Override to allow orientations other than the
default portrait orientation.”

17_9780470920503-ch10.indd 20517_9780470920503-ch10.indd 205 12/24/10 12:37 AM12/24/10 12:37 AM

206 Part IV: Building DeepThoughts

 For DeepThoughts, you don’t have to do anything with this code because you
want the app to start off in portrait orientation, but for other apps you may
create, you can override the code by simply adding comment markers to com-
ment it out (make the code inactive). To add comment markers, insert /*
before the beginning of the statement (right before - (BOOL)), and insert */
on a line after the last bracket (}).

Marking code sections in
the view controller
Before adding your code to DeepThoughtsViewController.m, it helps to
know what each section of the template-provided code does and to mark off
each section so that you can navigate quickly to the sections you’re inter-
ested in. You can do so by marking each of the code territories.

The # pragma mark statement marks each territory, and the marks them-
selves appear in the Methods list pop-up menu. You use the # pragma mark
statement with a label (such as View life cycle or Orientation) to add
the label in bold to the Methods list so that you can logically identify and
keep separate the methods in the list.

For example, in Figure 10-8, I add two # pragma mark statements above the
commented sections containing the initialization and load-view code:

#pragma mark -
#pragma mark View life cycle

The first # pragma mark (with a space and a dash) places a one-pixel hori-
zontal line with space around it in the Methods list, to separate list items —
you don’t have to include these, but they make the list easier to navigate. The
second # pragma mark places View life cycle in the Methods lists.

In Figure 10-9, I add two # pragma mark statements above the should
AutorotateToInterfaceOrientation: method to mark the section as
Orientation, and then I put two more # pragma mark statements above
the didReceiveMemoryWarning method to mark that section as Memory
Management.

You can now click the Methods list pop-up menu, as shown in Figure 10-10, to
see these markers and to navigate to each section quickly. This trick is useful
for finding code sections, organizing your code, and adding new code in the
proper sections.

17_9780470920503-ch10.indd 20617_9780470920503-ch10.indd 206 12/24/10 12:37 AM12/24/10 12:37 AM

207 Chapter 10: Animating the View

Figure 10-8:
Add mark-
ers for the
first major

section
of code.

Figure 10-9:
Add mark-
ers for the

Orientation
and Memory

Manage-
ment

sections.

17_9780470920503-ch10.indd 20717_9780470920503-ch10.indd 207 12/24/10 12:37 AM12/24/10 12:37 AM

208 Part IV: Building DeepThoughts

Figure 10-10:
The markers

appear in
the Methods

list.

Preparing for User Settings
Before diving into the code that animates the view in DeepThoughts, keep in
mind one of the important tenets of object-oriented programming. Yes, I’m
talking about encapsulation, the idea that you should keep the details of how
an object works hidden from the other objects that use it.

In the case of DeepThoughts, the actual text that is shown in animation as
well as the actual speed of the animation are details that should not be hard-
coded into your view controller. In Chapter 11, I show you how to enable
the user to change the text and the speed setting, so you want to keep these
details generic in the code you add to the view controller.

You also need to add a method to the view controller that connects to the
Light Info button added to the user interface in Chapter 9. This button will
enable the user to change the text and speed settings. For now, this method
will be a placeholder until you fill it out with code in Chapter 11.

Editing the view controller header
With DeepThoughts, the idea is to enable the user to enter his or her own
words for the falling words animation, as well as change the speed of the ani-
mation. The Light Info button, added in Chapter 9, is supposed to react to a
Touch Up Inside event — which occurs when the button is touched and then
released, symbolizing a click. When that happens, it invokes a method in the

17_9780470920503-ch10.indd 20817_9780470920503-ch10.indd 208 12/24/10 12:37 AM12/24/10 12:37 AM

209 Chapter 10: Animating the View

view controller to display a modal view, which is a view presented modally
like a dialog for the user to enter new words and change the speed setting, as
I show in Chapter 11.

For now, you need to declare an action method by using the IBAction quali-
fier found in DeepThoughtsViewController.h and add a placeholder
method corresponding to it in DeepThoughtsViewController.m. You
need to use the IBAction type qualifier, which is used by Interface Builder
to synchronize actions added programmatically with its internal list of action
methods defined for a project. You also need to add the code needed to dis-
play the falling words at a certain speed.

First open DeepThoughtsViewController.h (the header file) and insert
the code in bold in Listing 10-1.

Listing 10-1: DeepThoughtsViewController.h

@interface DeepThoughtsViewController : UIViewController
{

 UIImage *fallingImage;
 NSString *fallingWords;
 UIImageView *imageView;
 double speed;
}
- (IBAction)settings;

@property (readwrite) double speed;
@property (nonatomic, retain) UIImageView *imageView;
@property (nonatomic, retain) NSString *fallingWords;
@end

This code establishes the falling image itself (fallingImage), which will
contain the text string in fallingWords and will flow down the display
according to the speed.

Following that code is the action method declaration using the IBAction
qualifier. In Chapter 11, you use Interface Builder to specify the fact that,
when the user taps the Light Info button, the target is the DeepThoughts
ViewController object and the method to invoke is settings. This is an
example of the Target-Action pattern described in Chapter 7.

The @property declarations declare that there are accessor methods for the
compiler to create, and the corresponding @synthesize statements you add
in the next section tell the compiler to actually create them for you. I explain
accessor methods in Chapter 11.

17_9780470920503-ch10.indd 20917_9780470920503-ch10.indd 209 12/24/10 12:37 AM12/24/10 12:37 AM

210 Part IV: Building DeepThoughts

You’re done with the DeepThoughtsViewController.h file for this chap-
ter, but before you edit the code in DeepThoughtsViewController.m, you
need to add the keys for your settings in a Constants.h file.

Adding a Constants.h file
To save and read settings in your app, you can use a built-in, easy-to-use
class that lets you read and set user preference settings from your app —
NSUserDefaults. The class is also used by the Settings app that comes with
your iPad (which Apple has graciously consented to let us peons use).

You use NSUserDefaults to read and store preference data to a default
database, using a key value — just as you would access keyed data from
an NSDictionary. I explain how this works in Chapter 11, but for now,
the particular keys you will use are kWordsOfWisdom for the falling words
replacement text, kSpeed for the animation speed, and kMaxSpeed for the
maximum speed possible.

To use keys like kWordsOfWisdom, kSpeed, or kMaxSpeed, you need to first
define them in a Constants.h file. To implement the Constants.h file in
your project, do the following:

 1. Select the project name (DeepThoughts) in the Groups & Files list and
then choose File➪New File from the Xcode main menu.

 2. In the New File dialog that appears, choose Other from the listing on
the left (under the Mac OS X heading) and then choose Empty File in
the main pane, as shown in Figure 10-11.

Figure 10-11:
Create an
empty file.

17_9780470920503-ch10.indd 21017_9780470920503-ch10.indd 210 12/24/10 12:37 AM12/24/10 12:37 AM

211 Chapter 10: Animating the View

 3. In the new dialog that appears, name the file Constants.h (as shown
in Figure 10-12) and then click Finish.

 Don’t make any other changes — just the name. The Add to Project
pop-up menu should already be set to the name of the project —
DeepThoughts (if not, choose the name of the project from the menu).

 The new empty Constants.h file is saved in your project at the bottom
of the DeepThoughts group (under Products), but you can drag it up to
the top of the group, above Classes, as shown in Figure 10-13. I typically
do this so that the Constants.h file is easy to find and change.

With a new home for your constants all set up and waiting, all you have to do
is add the constants you need, as shown in Figure 10-14:

#define kWordsOfWisdom @”wordsOfWisdomPreference”
#define kSpeed @”speedPreference”
#define kMaxSpeed 20.0

Having a Constants.h file in hand is great, but you have to let
DeepThoughtsViewController.m know that you plan to use it, as I show
in the next section.

 It may seem like you are starting at the end and working backwards, but it
makes sense to show the code in DeepThoughts that uses these settings first
and then show in Chapter 11 how you can enable the user to change and save
these settings.

Figure 10-12:
Name the

new file.

17_9780470920503-ch10.indd 21117_9780470920503-ch10.indd 211 12/24/10 12:37 AM12/24/10 12:37 AM

212 Part IV: Building DeepThoughts

Figure 10-13:
The empty

Constants.h
file.

Figure 10-14:
Define the
keys in the

Constants.h
file.

To put the settings to use in the app’s view, you have to link it up with the
view’s controller — in this case, DeepThoughtsViewController. The best
place to do that is viewDidLoad, which is invoked right after the view
has been loaded from the nib file. viewDidLoad is found in the DeepThoughts
ViewController.m file, so that’s where you’d go to insert your code to use
the settings to control the animated view. The next section shows you how
that’s done.

17_9780470920503-ch10.indd 21217_9780470920503-ch10.indd 212 12/24/10 12:37 AM12/24/10 12:37 AM

213 Chapter 10: Animating the View

Controlling the View
Select the DeepThoughtsViewController.m file so that it appears in the
Text editor, and insert the code in bold in Listing 10-2. (The code that’s not
in bold is supplied by the View-based Application template, except the non-
bolded #pragma mark markers, which you added earlier in this chapter, in
“Marking code sections in the view controller.”)

Listing 10-2: DeepThoughtsViewController.m

#import “DeepThoughtsViewController.h”
#import “Constants.h”

@implementation DeepThoughtsViewController
@synthesize speed, imageView;
@synthesize fallingWords;
#pragma mark -
#pragma mark View life cycle
/*
// The designated initializer. Override to perform setup

that is required before the view is loaded.
- (id)initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil {
 if (self = [super initWithNibName:nibNameOrNil

bundle:nibBundleOrNil]) {
 // Custom initialization
 }
 return self;
}
*/
/*
// Implement loadView to create a view hierarchy

programmatically, without using a nib.
- (void)loadView {
}
*/
/*
// Implement viewDidLoad to do additional setup after

loading the view, typically from a nib.
- (void)viewDidLoad {
 [super viewDidLoad];
}
*/
- (void)viewDidLoad {

 [super viewDidLoad];
 [NSTimer scheduledTimerWithTimeInterval:.5 target:self

selector:@selector(onTimer) userInfo:nil
repeats:YES];

(continued)

17_9780470920503-ch10.indd 21317_9780470920503-ch10.indd 213 12/24/10 12:37 AM12/24/10 12:37 AM

214 Part IV: Building DeepThoughts

Listing 10-2 (continued)

 if (![[NSUserDefaults standardUserDefaults]
objectForKey:kWordsOfWisdom]) {

 [[NSUserDefaults standardUserDefaults]
setObject:@”Peace Love Groovy Music”
forKey:kWordsOfWisdom];

 fallingWords = @”Peace Love Groovy Music”;
 }
 else {
 fallingWords = [[NSUserDefaults standardUserDefaults]

stringForKey:kWordsOfWisdom];
 }
 if (![[NSUserDefaults standardUserDefaults]

objectForKey:kSpeed]){
 [[NSUserDefaults standardUserDefaults]setDouble:10.0

forKey:kSpeed];
 speed = kMaxSpeed-10.0;}
 else {
 speed = kMaxSpeed-[[NSUserDefaults

standardUserDefaults] doubleForKey:kSpeed] ;
 }
}

#pragma mark -
#pragma mark Animation

- (void)onTimer{

 UILabel *fallingImageView = [[UILabel alloc]

initWithFrame:CGRectMake(0, 0, 100, 30)];
 fallingImageView.text = fallingWords;
 fallingImageView.textColor = [UIColor purpleColor];
 fallingImageView.font = [UIFont systemFontOfSize:30];
 fallingImageView.backgroundColor = [UIColor

clearColor];

 fallingImageView.adjustsFontSizeToFitWidth = YES;

 int startX = round(random() % 400);
 int endX = round(random() % 400);
 //speed of falling
 double randomSpeed = (1/round(random() % 100) +1)

*speed;
 // image size;
 double scaleH = (1/round(random() % 100) +1) *60;
 double scaleW = (1/round(random() % 100) +1) *200;

 CGRect startImageFrame = fallingImageView.frame;
 CGRect endImageFrame = fallingImageView.frame;
 startImageFrame.origin = CGPointMake(startX, -100);

17_9780470920503-ch10.indd 21417_9780470920503-ch10.indd 214 12/24/10 12:37 AM12/24/10 12:37 AM

215 Chapter 10: Animating the View

 endImageFrame = CGRectMake(endX, self.view.frame.size.
height,scaleW, scaleH);

 fallingImageView.frame = startImageFrame;
 fallingImageView.alpha = .75;
 [self.view addSubview:fallingImageView];

[UIView animateWithDuration:randomSpeed
 animations:^ {
 [UIView setAnimationDelegate:self];
 fallingImageView.frame =

CGRectMake(endX, self.view.frame.size.height,
scaleW, scaleH);

 }
 completion:^(BOOL finished){
 [fallingImageView

removeFromSuperview];
 [fallingImageView release];
 }];

}

#pragma mark -
#pragma mark Controls

- (IBAction)settings {

}

#pragma mark -
#pragma mark Orientation

// Override to allow orientations other than the default
portrait orientation.

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfac
eOrientation)interfaceOrientation {

 return YES;
}

#pragma mark -
#pragma mark Memory Management

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn’t have a

superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that
aren’t in use.

}

(continued)

17_9780470920503-ch10.indd 21517_9780470920503-ch10.indd 215 12/24/10 12:37 AM12/24/10 12:37 AM

216 Part IV: Building DeepThoughts

Listing 10-2 (continued)

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.imageView = nil;
 self.fallingWords = nil;

}

- (void)dealloc {
 self.imageView = nil;
 self.fallingWords = nil;
 [super dealloc];
}

@end

That’s a lot to swallow at once, but I explain how all this works in the rest of
this chapter and in Chapter 11.

The first statement you add imports the Constants.h file:

#import “Constants.h”

You can now use the keys you set up in “Adding a Constants.h file” in this
chapter with NSUserDefaults in the subsequent code to retrieve the user
settings.

Although the @property declarations way back in Listing 10-1 tell the com-
piler that there are accessor methods (which I describe in more detail in
Chapter 11), these methods still have to be created. Fortunately, Objective-C
will create these accessor methods for you whenever you include an
@synthesize statement — the next bolded item in Listing 10-2:

@synthesize speed, imageView;
@synthesize fallingWords;

The @synthesize statements tell the compiler to create accessor methods
for you — one for each @property declaration (speed, imageView, and
fallingWords).

At the end of the bolded code you add in Listing 10-2 is a new #pragma mark
section titled Controls that includes the placeholder settings method for
connecting the Light Info button to the view controller:

17_9780470920503-ch10.indd 21617_9780470920503-ch10.indd 216 12/24/10 12:37 AM12/24/10 12:37 AM

217 Chapter 10: Animating the View

#pragma mark -
#pragma mark Controls

- (IBAction)settings {

}

This is the action method using the IBAction qualifier. In Chapter 11, you
use Interface Builder to specify that when the user taps the Light Info button,
the target is the DeepThoughtsViewController object, and the method
to invoke is settings. This is an example of the Target-Action pattern
described in Chapter 7.

The viewDidLoad method
Now look at the bolded code section you add in Listing 10-2 marked as View
life cycle, which occurs right after the following commented-out code:

/*
 // Implement viewDidLoad to do additional setup after

loading the view, typically from a nib.
 - (void)viewDidLoad {
 [super viewDidLoad];
 }
 */

The viewDidLoad message is sent right after the view has been loaded from
the nib file, which is the .xib file that you can modify in Interface Builder.
(Check out Chapter 8 for a complete explanation of that loading process.)
This is the place where you insert your code for view initialization, which in
this case means displaying the DeepThoughts’ falling words.

 This would also be the place to insert your code to do anything needed before
the view becomes visible. Although I don’t use it in this example, you could
take advantage of the commented-out loadView statement to create a view
hierarchy programmatically, without using a nib file. However, that info is
beyond the scope of this book. You could also include a viewWillAppear
message, which is sent right before the view will appear. Both viewDidLoad
and viewWillAppear are methods declared in the UIViewController
class and are invoked at the appropriate times by the framework.

 Although I left the commented-out code in place to show where you would
insert your version of the viewDidLoad method (right below it), you can
delete the commented-out code.

17_9780470920503-ch10.indd 21717_9780470920503-ch10.indd 217 12/24/10 12:37 AM12/24/10 12:37 AM

218 Part IV: Building DeepThoughts

The viewDidLoad method you inserted (in bold in Listing 10-2) starts out by
setting up a timer for the interval between each display of falling words:

- (void)viewDidLoad {

 [super viewDidLoad];
 [NSTimer scheduledTimerWithTimeInterval:.5 target:self

selector:@selector(onTimer) userInfo:nil
repeats:YES];

You use the NSTimer class to create timers. A timer waits until a certain time
interval has elapsed and then fires, sending a specified message to a target
object. I use the scheduledTimerWithTimeInterval:target:selector:
userInfo:repeats: class method to create the timer and schedule it on
the current run loop in the default mode. The interval here is 0.5 seconds, the
target is self, and the selector is the message to send to the target when the
timer fires — in this case, onTimer. The userInfo is the user info for the timer
(set to nil), and repeats is set to YES — that is, the timer will repeatedly
reschedule itself until invalidated.

Next, the code checks to see whether the kWordsOfWisdom setting has been
moved into NSUserDefaults:

if (![[NSUserDefaults standardUserDefaults]
objectForKey:kWordsOfWisdom]) {

 [[NSUserDefaults standardUserDefaults]
setObject:@”Peace Love Groovy Music”
forKey:kWordsOfWisdom];

 fallingWords = @”Peace Love Groovy Music”;
 }
 else {
 fallingWords = [[NSUserDefaults standardUserDefaults]

stringForKey:kWordsOfWisdom];
 }
 if (![[NSUserDefaults standardUserDefaults]

objectForKey:kSpeed]){
 [[NSUserDefaults standardUserDefaults]setDouble:10.0

forKey:kSpeed];
 speed = kMaxSpeed-10.0;}
 else {
 speed = kMaxSpeed-[[NSUserDefaults

standardUserDefaults] doubleForKey:kSpeed] ;
 }

The code moves the user’s preferences into NSUserDefaults only after
the application runs for the first time. However, if you decide to make user
preference settings available in the Settings app (as shown in Chapter 19),

17_9780470920503-ch10.indd 21817_9780470920503-ch10.indd 218 12/24/10 12:37 AM12/24/10 12:37 AM

219 Chapter 10: Animating the View

Settings will update preferences in NSUserDefaults if the user makes any
changes.

If the settings have not been moved into NSUserDefaults yet, the code
uses the initial preference value (“Peace Love Groovy Music”) for
fallingWords.

[[NSUserDefaults standardUserDefaults]setObject:@”Peace
Love Groovy Music” forKey:kWordsOfWisdom];

 fallingWords = @”Peace Love Groovy Music”;

If the settings have been moved into NSUserDefaults, the code reads them
in and then sets fallingWords to whatever the user’s preference is.

else {
 fallingWords = [[NSUserDefaults standardUserDefaults]

stringForKey:kWordsOfWisdom];

The code then repeats this check with the speed setting.

You use standardUserDefaults (a NSUserDefaults class method) to
gain access to the standard user default settings. You can store data there, as
you discover in Chapter 11.

Drawing the view
Connecting the timer to the actual drawing of the display is the onTimer
method. Take a good look at the code for this method (from the bold code in
Listing 10-2), which starts with a new #pragma marker titled Animation:

#pragma mark -
#pragma mark Animation

- (void)onTimer{

 UILabel *fallingImageView = [[UILabel alloc]

initWithFrame:CGRectMake(0, 0, 100, 30)];
 fallingImageView.text = fallingWords;
 fallingImageView.textColor = [UIColor purpleColor];
 fallingImageView.font = [UIFont systemFontOfSize:30];
 fallingImageView.backgroundColor = [UIColor clearColor];

 fallingImageView.adjustsFontSizeToFitWidth = YES;

 int startX = round(random() % 400);
 int endX = round(random() % 400);

17_9780470920503-ch10.indd 21917_9780470920503-ch10.indd 219 12/24/10 12:37 AM12/24/10 12:37 AM

220 Part IV: Building DeepThoughts

 //speed of falling
 double randomSpeed = (1/round(random() % 100) +1) *speed;
 // image size;
 double scaleH = (1/round(random() % 100) +1) *60;
 double scaleW = (1/round(random() % 100) +1) *200;

 CGRect startImageFrame = fallingImageView.frame;
 CGRect endImageFrame = fallingImageView.frame;
 startImageFrame.origin = CGPointMake(startX, -100);
 endImageFrame = CGRectMake(endX, self.view.frame.size.

height,scaleW, scaleH);
 fallingImageView.frame = startImageFrame;
 fallingImageView.alpha = .75;
 [self.view addSubview:fallingImageView];

 [UIView animateWithDuration:randomSpeed
 animations:^ {
 [UIView setAnimationDelegate:self];
 fallingImageView.frame = CGRectMake(endX, self.

view.frame.size.height, scaleW, scaleH);
 }
 completion:^(BOOL finished){
 [fallingImageView

removeFromSuperview];
 [fallingImageView release];
 }];

}

The UILabel class implements a read-only text view. You can use this class
to draw one or multiple lines of static text. In this case, the block of code
uses the initWithFrame method with CGRectMake to create a rectangle,
with the x-coordinate and y-coordinate of the rectangle’s origin point at (0, 0)
and a specified width and height (100, 30).

The code converts the fallingWords string to fallingImageView for dis-
play; sets up the text color, font, and background color; and adjusts the font
size for the width. The font and textColor properties apply to the entire
text string.

The next block of code uses the random function for the starting and ending
points (startX and endX), for speed, and for width (scaleW) and height
(scaleH) for fallingImageView. The random function uses a nonlinear
additive-feedback random number generator, with a default table of size 31
long integers, and returns successive pseudo-random numbers in the range
from 0 to 2,147,483,647. The code uses a CGRect structure for the location

17_9780470920503-ch10.indd 22017_9780470920503-ch10.indd 220 12/24/10 12:37 AM12/24/10 12:37 AM

221 Chapter 10: Animating the View

and dimensions of the rectangle, using CGPointMake to get the rectangle’s
origin point and using CGRectMake to build the rectangle. Then, addSub
view adds a view so that it’s displayed above its siblings.

The animation block
The UIView class provides common methods you use to create all types
of views. In this particular code, it’s used for a block of animation. The
block-based animation method animateWithDuration:animations:
(available only with iOS version 4.0 and newer) greatly simplifies creating
an animation. With one method call, you can specify the animation and its
options. (If your application runs on earlier versions of iOS, you must use the
beginAnimations:context: and commitAnimations class methods to
mark the beginning and ending of your animations.)

Inside the block, the code sets property values to make visual changes
that comprise the animation. In this case, the code changes the rectangle’s
starting coordinates from startX to endX, and from -100 to self.view.
frame.size.height:

fallingImageView.frame = CGRectMake(endX, self.view.frame.
size.height, scaleW, scaleH);

The animateWithDuration:animations:completion method sets the
animation duration and code to use upon completion. The completion code
uses removeFromSuperview (an instance method of the UIView class)
to remove fallingImageView from its superview, from its window, and
from the responder chain; it then uses release (an instance method of the
NSAutoreleasePool class) to release fallingImageView. Remember,
you own any object you create with alloc, which means you’re responsible
for releasing it when you’re done.

Freeing up memory
That’s not all you’re responsible for. You have to always assume that low-
memory conditions prevail, and that the view controller will need to release
its view and any objects associated with the view to free up memory.

The viewDidUnload method is the counterpart to viewDidLoad — you use
it to relinquish ownership in the view and its objects. Back in Listing 10-2 (in
case you missed it at the end), you add the following to it (in bold):

17_9780470920503-ch10.indd 22117_9780470920503-ch10.indd 221 12/24/10 12:37 AM12/24/10 12:37 AM

222 Part IV: Building DeepThoughts

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.imageView = nil;
 self.fallingWords = nil;
}

You’re using the preferred method of relinquishing ownership: using the cor-
responding accessor method to set the value of the object to nil.

Because the view controller also stores references to views and other
objects, it’s also responsible for relinquishing ownership of those objects
safely in its dealloc method, which is why you add them in Listing 10-2:

- (void)dealloc {
 self.imageView = nil;
 self.fallingWords = nil;
 [super dealloc];
}

An object’s dealloc method is invoked indirectly through the release
instance method of NSObject. Subclasses must implement their own ver-
sions of dealloc to allow the release of any additional memory consumed
by the object — such as dynamically allocated storage for data or object
instance variables owned by the deallocated object. After performing the
class-specific deallocation, the subclass method should incorporate super-
class versions of dealloc through a message to super.

If you’re building your application for compatibility with the older version of
iOS (2.x), your dealloc method should release each object but should also
set the reference to that object to nil before calling super.

Testing the View
Save your Xcode project by choosing File➪Save. Then, to see the magic
you’ve just wrought, click the Build and Run button. You should see the
Simulator launch, run the app, and display the falling words, as shown in
Figure 10-15.

17_9780470920503-ch10.indd 22217_9780470920503-ch10.indd 222 12/24/10 12:37 AM12/24/10 12:37 AM

223 Chapter 10: Animating the View

Figure 10-15:
The view

in the
Simulator.

The animation is quite impressive, but now is not the time to sit on your lau-
rels. There’s more work to be done — setting up the modal controller, so that
users can change the text and speed for the animation, and then saving these
new preferences, for example. All that and more are covered in Chapter 11.

17_9780470920503-ch10.indd 22317_9780470920503-ch10.indd 223 12/24/10 12:37 AM12/24/10 12:37 AM

224 Part IV: Building DeepThoughts

17_9780470920503-ch10.indd 22417_9780470920503-ch10.indd 224 12/24/10 12:37 AM12/24/10 12:37 AM

Chapter 11

Adding User Settings and Gestures
In This Chapter
▶ Loading and saving user preferences

▶ Adding outlets to the view controller

▶ Adding a modal view

▶ Connecting interface objects to your code in Interface Builder

One reason why it’s easy to extend and enhance your iPad app is the fact
that the template sets you up to take advantage of delegation — you’re

using a behavior-rich object supplied by the framework as is, and you’re put-
ting the code for program-specific behavior in a separate (delegate) object.
You’re basically using delegation to get the framework objects to do the work
for you, as I describe in Chapter 7.

Government and military leaders know all about delegation. Ronald Reagan
could have been talking about extending the functionality of an app’s object-
oriented programming when he said “Surround yourself with the best people
you can find, delegate authority, and don’t interfere.” And General George S.
Patton seemed to know all about combining delegation with encapsulation to
enhance applications when he said, “Never tell people how to do things. Tell
them what to do and they will surprise you with their ingenuity.”

Encapsulation, you’ll recall, is about keeping the details of how an object
works hidden from the other objects that use it — you practice encapsula-
tion in the code you add to animate the view in Chapter 10. That code doesn’t
know (or care) where the user’s preference settings for text or animation
speed come from; it simply does its job well.

In object-oriented programming, you can essentially copy all the character-
istics of an existing class to make a new class — the new class inherits the
methods and data structure of the existing class. When you combine delega-
tion, encapsulation, and inheritance, changing or enhancing objects or their
functionality becomes much easier because it reduces the impact of those
changes on the rest of your application.

18_9780470920503-ch11.indd 22518_9780470920503-ch11.indd 225 12/24/10 12:34 AM12/24/10 12:34 AM

226 Part IV: Building DeepThoughts

Inheritance allows you to do a number of things that make your programs
more extensible: In a subclass, you can add new methods and instance vari-
ables to what is inherited from a superclass, refine or extend the behavior of
an inherited method, and change the behavior of an inherited method. With
encapsulation, you’re hiding how things are being done from what is being
done. Combining inheritance and encapsulation gives you polymorphism —
using objects that do the same thing in different ways. (See Objective-C For
Dummies for background info on these programming patterns.)

With DeepThoughts, the idea is to enable the user to enter his or her own
words for the falling words animation, as well as change the speed of the
animation. In this chapter, you enhance the DeepThoughts app to enable
the user to change these preference settings using a modal view — a child
window, such as a dialog in Mac OS X, that appears on top of the parent
window (the main view) and requires the user to interact with it before
returning to the parent window.

For these functions to work, you need to enable the app to save data entered
by a user for the next time he or she fires up the app. In Chapter 10, you
added code that uses these preference settings in your app to animate the
view, but now you find out how to save data entered by the user using a
modal controller that displays a view — a modal dialog — on top of the ani-
mated view. You create another view controller and use the inherited meth-
ods of the UIViewController superclass to implement the modal dialog
that the user can use to enter text and change the animation speed. Because
you’ve encapsulated the details of how to set the falling words and speed, it’s
a piece of cake to add code for setting and saving user preference settings.

Setting Up User Preference Settings
Most people these days have spent enough time around computers that they
know what I mean when I throw the term preferences around. On your desk-
top, for example, you can set preferences at the system level for things like
security, screen savers, printing, and file sharing — just to name a few. You
can also set preferences for applications. For example, you can set all sorts of
preferences in Xcode — not to mention all those preferences in your browser
and word-processing programs.

The latter are application-specific settings used to configure the behavior or
appearance of an application. You can create and save preference settings in
your app, but you can also use the supplied Settings app to display and set
your app-specific preferences. (The Settings app icon looks like a bunch of
gears.) Whatever separate settings feature you come up with has to function
within the framework of the Settings app; in effect, the Settings app makes
you color within the lines.

18_9780470920503-ch11.indd 22618_9780470920503-ch11.indd 226 12/24/10 12:34 AM12/24/10 12:34 AM

227 Chapter 11: Adding User Settings and Gestures

What guidelines does the iPad impose for preference settings? Here’s a short
summary:

 ✓ If you have preference settings that are typically configured once
and then rarely changed: Leave the task of setting preferences to the
Settings app. On an iPad, this would apply to things like enabling/dis-
abling Wi-Fi access, setting wallpaper displays, setting up Mail accounts,
and any other preference settings you would set and then leave in place
for a while.

 ✓ If you have preference settings that the user might want to change
regularly: In this situation, you should consider having users set the
options themselves in your app.

 The iBooks app is a good example. Preferences that are configured once
and rarely changed — in iBooks, the options to Sync Bookmarks and
turn on Full Justification — are in the Settings app, while options you
might change on the fly — such as brightness and font size in iBooks —
are in the app itself.

With DeepThoughts, the idea is to change settings on the fly, whenever you
feel like it, so it makes more sense to set up preferences from inside the app
(because they are changed frequently). To find out how to set up your app to
save preferences in a Settings bundle for the Settings app, see Chapter 19.

To save and read preference settings, you use a built-in, easy-to-use class that
lets you read and set user preferences from your app — NSUserDefaults.
In Chapter 10, you use NSUserDefaults to read and store preference data
to a default database, using a key value — just as you would access keyed
data from an NSDictionary. The difference here is that NSUserDefaults
data is stored in the file system rather than in an object in memory —
objects, after all, go away when the application terminates.

 By the way, don’t ask why the language experts put Defaults in the name
rather than something to do with preference settings — fewer letters, maybe —
but that’s the way it is. Just don’t let their naming idiosyncrasies confuse you.

Storing the data in the file system rather than in memory gives you an
easy way to store application-specific information. With the help of
NSUserDefaults, you can easily store the state the user was in when he
or she quit the application — or store something simple like a text string —
which just so happens to be precisely what you did in the code you added in
Chapter 10 for DeepThoughts.

18_9780470920503-ch11.indd 22718_9780470920503-ch11.indd 227 12/24/10 12:34 AM12/24/10 12:34 AM

228 Part IV: Building DeepThoughts

Identifying preference settings
for NSUserDefaults
It’s really easy to both access and update a preference — as long as you
have NSUserDefaults by your side. The trick in this case is that you use
the NSUserDefaults class to read and update the replacement text and
speed. NSUserDefaults is implemented as a singleton, meaning there’s
only one instance of NSUserDefaults running in your application. To get
access to that one instance, you invoke the class method standard
UserDefaults:

 [NSUserDefaults standardUserDefaults]

standardUserDefaults returns the NSUserDefaults object. As soon as
you have access to the standard user defaults, you can store data there and
then get it back when you need it. To store data, you simply give it a key and
tell it to save the data using that key.

The way you tell it to save something is by using the setObject:forKey:
method. In case your knowledge of Objective-C is a little rusty (or not there
at all), that’s the way any message that has two arguments is referred to.

The first argument, setObject:, is the object you want NSUserDefaults
to save. This object must be NSData, NSString, NSNumber, NSDate,
NSArray, or NSDictionary. In this case, savedData is an NSString, so
you’re in good shape.

The second argument is forKey:. In order to get the data back, and in order
for NSUserDefaults to know where to save it, you have to be able to iden-
tify it to NSUserDefaults. You can, after all, have a number of preferences
stored in the NSUserDefaults database, and the key tells NSUserDefaults
which one you’re interested in.

The keys you use are kWordsOfWisdom for the falling words replacement
text, kSpeed for the animation speed, and kMaxSpeed for the maximum
speed possible. You added them to the Constants.h file in Chapter 10.

Reading preferences into the app
To use the preference settings for the app’s view, you link it up with the view
controller — in this case, DeepThoughtsViewController. As Chapter 10
explains, the best place to do that is viewDidLoad, which is invoked right
after the view has been loaded from the nib file.

18_9780470920503-ch11.indd 22818_9780470920503-ch11.indd 228 12/24/10 12:34 AM12/24/10 12:34 AM

229 Chapter 11: Adding User Settings and Gestures

After using the NSTimer class to create timers, the code checks to see
whether the kWordsOfWisdom and speed settings have been moved
into NSUserDefaults. The code moves the user’s preferences into
NSUserDefaults only after the application runs for the first time. If the set-
tings haven’t been moved into NSUserDefaults yet, the code uses the ini-
tial preference value (“Peace Love Groovy Music”) for fallingWords.
If the settings have been moved into NSUserDefaults, the code reads them
in and then sets fallingWords and speed to whatever the user’s prefer-
ence is. The rest of the code that animates the view can now use the prefer-
ence settings.

Now that you’ve added the code to use the preference settings (in Chapter
10), you need to now decide how to enable the user to change these settings.
One easy way for your app to offer the preference settings is in a modal dialog,
which the user can use to enter the replacement text for fallingWords and
change the speed.

Setting Up a Modal View Controller
You’ve encountered modal views before — whenever you had to click OK in
a dialog to allow a system or application workflow to continue. A modal view
provides self-contained functionality in the context of the current task or
workflow. Think of it as a child window that requires the user to interact with
it before returning to the parent.

A modal view interrupts the workflow, but if the context shift is clear and tem-
porary (so that the user doesn’t lose sight of the main task), a modal view can
be the most agreeable way to offer the ability to change settings. As a design
goal, keep tasks in a modal view fairly short and narrowly focused. You don’t
want your users to experience a modal view as a mini application within your
application. Avoid creating a modal task that involves a hierarchy of modal
views, because people can get lost and forget how to retrace their steps. And
always provide an obvious and safe way to exit a modal view — such as a Done
button.

The goal with DeepThoughts is to display a modal view over the animated
view when the user taps the Light Info button (which you added to the user
interface in Chapter 9). In that modal view, the user can enter text to replace
the existing text for fallingWords and drag a speed slider for speed.
The user can then tap a Done button to gracefully exit the modal view. You
add these interface elements to the modal view using — you guessed it —
Interface Builder.

18_9780470920503-ch11.indd 22918_9780470920503-ch11.indd 229 12/24/10 12:34 AM12/24/10 12:34 AM

230 Part IV: Building DeepThoughts

First, though, you need to add a new view controller for the modal view, to be
called SettingsViewController. That’s the topic of the next section.

Adding a new view controller
The modal view, just like the animated main view, is accessed by a subclass
of UIViewController.

To add the subclass, do the following:

 1. Select the Classes group (if it’s not already selected) in the Xcode proj-
ect window’s Groups & Files list and then choose File➪New File.

 2. In the New File dialog that appears (as shown in Figure 11-1),
select Cocoa Touch Class in the left column under iOS and select
UIViewController Subclass in the row of icons on the right.

 3. Select the Targeted for iPad check box (so that you get the appropri-
ate subclass).

 4. Select the With XIB for User Interface check box and click the Next
button.

 You select this option so that the .xib file is created along
with the new view controller files. For this example, ignore the
UITableViewController subclass option.

 5. In the next New File screen, enter the filename for the implementation
file (SettingsViewController.m), as shown in Figure 11-2.

 6. Select the Also Create “SettingsViewController.h” check box and click
Finish.

Xcode creates SettingsViewController.h and SettingsView
Controller.m in the Classes group. Xcode also creates SettingsView.
xib in the Classes group. You may want to drag SettingsView.xib from
that group into the Resources group, as I do in Figure 11-3, just to be consis-
tent. (That’s where the other nib files are located.)

You now have a bare-bones view controller for the modal view, called
SettingsViewController.

Next, you need to add the code to the SettingsViewController.h
(header) and SettingsViewController.m (implementation) files that con-
nect to the interface elements (speed slider and text entry field) to offer the
ability to change the speed and enter replacement text.

18_9780470920503-ch11.indd 23018_9780470920503-ch11.indd 230 12/24/10 12:34 AM12/24/10 12:34 AM

231 Chapter 11: Adding User Settings and Gestures

Figure 11-1:
Create
a new

subclass
of UIView-
Controller.

Figure 11-2:
Here you
name the
subclass.

18_9780470920503-ch11.indd 23118_9780470920503-ch11.indd 231 12/24/10 12:34 AM12/24/10 12:34 AM

232 Part IV: Building DeepThoughts

Figure 11-3:
Move the
nib (.xib)

file to the
Resources

group.

Adding outlets to the view controller
Before using Interface Builder to create the elements for the modal view,
you should first put outlets in the code that will connect your methods to the
Interface Builder interface objects.

 The fact that a connection between an object and its outlets exists is actually
stored in a nib file. When the nib file is loaded, each connection is reconsti-
tuted and reestablished, thus enabling you to send messages to the object.
IBOutlet is the keyword that tags an instance-variable declaration so the
Interface Builder application knows that a particular instance variable is an
outlet — and can then enable the connection to it with Xcode.

In your code, it turns out that you need to create two outlets: one to point
to the text entry field and one to point to the speed slider. To get this outlet
business started, you need to declare each outlet, which you do with the help
of the aforementioned IBOutlet keyword.

Add the bold lines of code in Listing 11-1 to the SettingsViewController.h
file.

18_9780470920503-ch11.indd 23218_9780470920503-ch11.indd 232 12/24/10 12:34 AM12/24/10 12:34 AM

233 Chapter 11: Adding User Settings and Gestures

Listing 11-1: SettingsViewController.h

#import <UIKit/UIKit.h>
@protocol SettingsViewControllerDelegate;

@interface SettingsViewController : UIViewController
<UITextFieldDelegate> {

<SettingsViewControllerDelegate> delegate;
 float sliderValue;
 IBOutlet UITextField *theTextField;
 IBOutlet UISlider *slider;
 IBOutlet UILabel *sliderDisplay;
}

- (IBAction) done;
- (IBAction) speedChanged: (id) sender;
@property (nonatomic, assign) id

<SettingsViewControllerDelegate> delegate;
@property (nonatomic, assign) UISlider* slider;

@end

@protocol SettingsViewControllerDelegate
- (void) settingsViewController:(SettingsViewController *)

controller didFinishWithChange: (BOOL) changed;
- (void) changeSpeed: (double) newSpeed;
@property (nonatomic, retain) NSString *fallingWords;

@end

Two action methods (done and speedChanged) for Interface Builder ele-
ments are declared (with IBAction), along with the IBOutlet statements,
which declare the outlets that will be automatically initialized with a pointer
to the UITextField (theTextField) and the UISlider (slider) when
the application is launched. But while this will happen automatically, it won’t
automatically happen automatically. You have to help it out a bit.

In procedural programming — you know, all that Linux Kernel stuff —
variables are generally fair game for all. But in object-oriented programming,
a class’s instance variables are tucked away inside an object and shouldn’t
be accessed directly. The only way for them to be initialized is for you to
create what are called accessor methods, which allow the specific instance
variable of an object to be read and (if you want) updated. Creating accessor
methods is a two-step process that begins with an @property declaration,
which tells the compiler that there are accessor methods. And that’s what
you did in Listing 11-1; you coded a corresponding @property declaration
for the IBOutlet declaration for UISlider.

18_9780470920503-ch11.indd 23318_9780470920503-ch11.indd 233 12/24/10 12:34 AM12/24/10 12:34 AM

234 Part IV: Building DeepThoughts

The methods that provide access to the instance variables of an object are
called accessor methods, and they effectively get (using a getter method) and
set (using a setter method) the values for an instance variable. Although you
can code those methods yourself, it can be rather tedious. This is where
properties come in. The Objective-C Declared Properties feature provides
a simple way to declare and implement an object’s accessor methods. The
compiler can synthesize accessor methods according to the way you told it
to in the property declaration. Objective-C creates the getter and setter meth-
ods for you by using an @property declaration in the interface file, com-
bined with the @synthesize declaration in the implementation file.

All that being said, at the end of the day, you need to do three things in your
code to have the compiler create accessors for you:

 1. Declare an instance variable in the interface file.

 2. Add an @property declaration of that instance variable in the same
interface file (usually with the nonatomic attribute).

 The declaration specifies the name and type of the property as well as
some attributes that provide the compiler with information about how
exactly you want the accessor methods to be implemented.

 For example, the declaration

@property (nonatomic, assign) UISlider* slider;

 declares a property named slider, which is a pointer to a UISlider
object. As for the two attributes — nonatomic and assign — non-
atomic tells the compiler to create an accessor to return the value
directly, which is another way of saying that the accessors can be inter-
rupted while in use. (This works fine for applications like this one.)

 The second value, assign, tells the compiler to create an accessor
method that sends an assign message to any object that’s assigned to
this property.

 3. Use @synthesize in the implementation file so that Objective-C gen-
erates the accessors for you.

 The @property declaration only declares that there should be acces-
sors. It’s the @synthesize statement that tells the compiler to create
them for you. You add this statement in the next section, along with
more code, to the SettingsViewController.m implementation file.

Using delegation
Delegation is a design pattern used extensively in the UIKit and AppKit
frameworks to customize the behavior of an object without subclassing.

18_9780470920503-ch11.indd 23418_9780470920503-ch11.indd 234 12/24/10 12:34 AM12/24/10 12:34 AM

235 Chapter 11: Adding User Settings and Gestures

Instead of having to bother with subclassing, one object delegates the task
of implementing one of its methods to another object. You can use Interface
Builder to connect objects to their delegates; or you can set the connection
programmatically through the delegating object’s setDelegate: method or
delegate property.

To implement a delegated method, you put the code for your application-
specific behavior in a separate (delegate) object. When a request is made of
the delegator, the delegate’s method that implements the application-specific
behavior is invoked by the delegator.

The methods that a class delegates are defined in a protocol. You declared
protocols in Listing 11-1 with the @protocol directive:

@protocol SettingsViewControllerDelegate
- (void) settingsViewController:(SettingsViewController *)

controller didFinishWithChange: (BOOL) changed;
- (void) changeSpeed: (double) newSpeed;
@property (nonatomic, retain) NSString *fallingWords;

@end

Protocols declare methods that can be implemented by any class. They’re
useful for declaring methods that other delegate objects are expected to
implement.

Adding methods for the interface objects
Next, you need to add the methods to the SettingsViewController.m
(implementation) file for managing the modal view and performing actions
connected to the slider, the text field, and the Done button (all of which get
added in the “Connecting the Interface Objects in Interface Builder” section,
later in this chapter).

Before adding your code to this view controller object, it helps to know what
each section of the template-provided code does, and it’s especially helpful
if you use # pragma mark statements to mark off each section so you can
quickly jump to the relevant section when needed. (For more on how to use #
pragma mark statements, check out Chapter 10.) I added these statements
along with the new code (in bold) in Listing 11-2.

 The # pragma mark statement is simply a way to organize your methods
in the Method list pop-up in the Xcode Text Editor’s Navigation bar (to the
left of the Bookmarks menu). You use it with a label (such as View life
cycle) to add the label in bold to the Method list so that you can identify
and keep separate the methods logically in the list.

18_9780470920503-ch11.indd 23518_9780470920503-ch11.indd 235 12/24/10 12:34 AM12/24/10 12:34 AM

236 Part IV: Building DeepThoughts

Add the bold statements in Listing 11-2 to the skeletal view controller code in
the new SettingsViewController.m file (you can delete the “designated
initializer” and “Implement viewDidLoad” commented text blocks in the View
life cycle section).

Listing 11-2: SettingsViewController.m

#import “SettingsViewController.h”
#import “DeepThoughtsViewController.h”
#import “Constants.h”

@implementation SettingsViewController

@synthesize delegate, slider ;

#pragma mark -
#pragma mark View life cycle

- (void)viewDidLoad {
 [super viewDidLoad];
 theTextField.backgroundColor = [UIColor whiteColor];
 theTextField.textColor = [UIColor blueColor];
 slider.value = + kMaxSpeed -

((DeepThoughtsViewController*) (self.
parentViewController)).speed;

 sliderDisplay.text = [NSString stringWithFormat:
@”%.2f”,slider.value];

}

#pragma mark -
#pragma mark textField

-(BOOL)textFieldShouldBeginEditing:(UITextField *)
textField {

 [textField setReturnKeyType:UIReturnKeyNext];
 return YES;
}

-(BOOL)textFieldShouldReturn:(UITextField *)textField {
 [textField resignFirstResponder];
 return YES;
}

#pragma mark -
#pragma mark Controls

- (IBAction) speedChanged: (id) sender {
 [delegate changeSpeed: [(UISlider *)sender value]];

18_9780470920503-ch11.indd 23618_9780470920503-ch11.indd 236 12/24/10 12:34 AM12/24/10 12:34 AM

237 Chapter 11: Adding User Settings and Gestures

 sliderDisplay.text = [NSString stringWithFormat:
@”%.2f”,[(UISlider *)sender value]];

}

- (IBAction)done {
 if(! [theTextField.text isEqualToString: @””]) {
delegate.fallingWords= theTextField.text;
 [self.delegate settingsViewController:self

didFinishWithChange:YES];
 }
 else
 [self.delegate settingsViewController:self

didFinishWithChange:NO];
}

#pragma mark -
#pragma mark Orientation

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation {

 // Overriden to allow any orientation.
 return YES;
}

#pragma mark -
#pragma mark Memory management

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn’t have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren’t in

use.
}

- (void)viewDidUnload {
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.slider = nil;
}

- (void)dealloc {
 self.slider = nil;
 [super dealloc];
}

@end

18_9780470920503-ch11.indd 23718_9780470920503-ch11.indd 237 12/24/10 12:34 AM12/24/10 12:34 AM

238 Part IV: Building DeepThoughts

Okay, let me walk you through this one. Although the @property declara-
tion in the header file in Listing 11-1 tells the compiler that there are accessor
methods, they still have to be created. Fortunately, Objective-C will create
these accessor methods for you whenever you include an @synthesize
statement for a property, which is what you did near the top of Listing 11-2:

@synthesize delegate , slider;

The @synthesize statement tells the compiler to create accessor methods
for you — one for each @property declaration.

Next, you add the viewDidLoad method to set the background color and
text color for the text field, to set the speed for the slider, and to set the value
of the slider to display as text:

- (void)viewDidLoad {
 [super viewDidLoad];
 theTextField.backgroundColor = [UIColor whiteColor];
 theTextField.textColor = [UIColor blueColor]
 slider.value = + kMaxSpeed -

((DeepThoughtsViewController*) (self.
parentViewController)).speed;

 sliderDisplay.text = [NSString stringWithFormat:
@”%.2f”,slider.value];

}

Following that code (in Listing 11-2), you add the methods to obtain the text
for textField:

#pragma mark -
#pragma mark textField

-(BOOL)textFieldShouldBeginEditing:(UITextField *)
textField {

 [textField setReturnKeyType:UIReturnKeyNext];
 return YES;
}
- (BOOL)textFieldShouldReturn:(UITextField *)textField {
 [textField resignFirstResponder];
 return YES;
}

The UITextFieldDelegate protocol defines the messages sent to a text
field delegate as part of the sequence of editing its text. When the user per-
forms an action that would normally start an editing session, the text field
calls the textFieldShouldBeginEditing: method first to see whether
editing should actually proceed. In most circumstances, you would simply
return YES from this method to allow editing to proceed.

18_9780470920503-ch11.indd 23818_9780470920503-ch11.indd 238 12/24/10 12:34 AM12/24/10 12:34 AM

239 Chapter 11: Adding User Settings and Gestures

The text field calls the textFieldShouldReturn: method whenever the
user taps the Return button on the keyboard to find out whether it should
process the Return. You can use this method to implement any custom
behavior when the Return button is tapped, but for your purposes, you
simply return YES (which is the default), although you could return NO to
ignore the Return button.

Next, you provide a speedChanged method (of type IBAction) to handle a
change in speed, which uses the delegate’s changeSpeed method to immedi-
ately change the speed of the animation in the view as the user changes it in
the modal view:

#pragma mark -
#pragma mark Controls

- (IBAction) speedChanged: (id) sender {
 [delegate changeSpeed: [(UISlider *)sender value]];
 sliderDisplay.text = [NSString stringWithFormat:

@”%.2f”,[(UISlider *)sender value]];
}

- (IBAction)done {
 if(! [theTextField.text isEqualToString: @””]) {

delegate.fallingWords= theTextField.text;
 [self.delegate settingsViewController:self

didFinishWithChange:YES];
}

You also supply a done method that handles the possibility of a blank text
field. The code assigns the text field’s text to delegate.fallingWords only
if the field is not theTextField.text isEqualToString: @””.

Finally, to make your app act like a good citizen and relinquish slider to
free memory, you added the following bold code in Listing 11-2 to the view-
DidUnload and dealloc methods:

- (void)viewDidUnload {
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.slider = nil;
}

- (void)dealloc {
 self.slider = nil;
 [super dealloc];
}

18_9780470920503-ch11.indd 23918_9780470920503-ch11.indd 239 12/24/10 12:34 AM12/24/10 12:34 AM

240 Part IV: Building DeepThoughts

Initializing and setting
the modal view style
Fine so far, but there are still a few problems: Where is this modal view ini-
tialized and set up? And how would DeepThoughtsViewController even
know about the new speed setting and change it accordingly?

Here’s the deal: You need to modify the code in the DeepThoughtsView
Controller.h (header) and DeepThoughtsViewController.m (imple-
mentation) files to add the method for initializing and setting up the modal
view when the user taps the Light Info button. You also need to add the
code to change the speed. Add the bold lines of code in Listing 11-3 to the
DeepThoughtsViewController.h file.

Listing 11-3: DeepThoughtsViewController.h

#import <UIKit/UIKit.h>
#import “SettingsViewController.h”

@interface DeepThoughtsViewController : UIViewController
<SettingsViewControllerDelegate > {

 UIImage *fallingImage;
 NSString *fallingWords;
 UIImageView *imageView;
 double speed;
}
- (IBAction)settings;
- (void) changeSpeed: (double) newSpeed;
- (void) settingsViewController: (SettingsViewController

*)controller didFinishWithChange: (BOOL)
changed;

@property (readwrite) double speed;
@property (nonatomic, retain) UIImageView *imageView;
@property (nonatomic, retain) NSString *fallingWords;

@end

You modify the declarations to include the SettingsViewController.h
declarations, and you add the SettingsViewControllerDelegate pro-
tocol so that you can use the delegate’s methods. You then declare the
changeSpeed and settingsViewController:didFinishWithChange:
methods.

Next, you add the bold lines of code in Listing 11-4 to the
DeepThoughtsViewController.m file in the Controls section (marked
by #pragma mark Controls in Chapter 10).

18_9780470920503-ch11.indd 24018_9780470920503-ch11.indd 240 12/24/10 12:34 AM12/24/10 12:34 AM

241 Chapter 11: Adding User Settings and Gestures

Listing 11-4: DeepThoughtsViewController.m (Controls Section)

#pragma mark -
#pragma mark Controls

- (IBAction)settings {
 SettingsViewController *controller =

[[SettingsViewController alloc] initWithNibName
:@”SettingsViewController” bundle:nil];

controller.modalTransitionStyle =
UIModalTransitionStyleFlipHorizontal;

controller.modalPresentationStyle =
UIModalPresentationFormSheet;

controller.delegate = self;

 [self presentModalViewController:controller

animated:YES];

 [controller release];
}

- (void) changeSpeed: (double) newSpeed {
 speed = kMaxSpeed-newSpeed;
 [[NSUserDefaults standardUserDefaults]setDouble:

newSpeed forKey:kSpeed];
}

- (void) settingsViewController:(SettingsViewControl
ler *)controller didFinishWithChange: (BOOL)
changed{

 if (changed) {
 [[NSUserDefaults standardUserDefaults]

setObject:fallingWords forKey:kWordsOfWisdom];

 }
 [self dismissModalViewControllerAnimated:YES];
}

The settings method (of type IBAction) initializes the modal view. The
UIViewController class offers the modalTransitionStyle prop-
erty to set the transition to use when the modal view appears. (I chose
UIModalTransitionStyleFlipHorizontal to do a horizontal 3D flip
from right to left, a fairly standard transition.)

 You could choose other transitions, such as a partial-curl
(UIModalTransitionStylePartialCurl), in which one corner of the cur-
rent view curls up to reveal the modal view underneath. When the user leaves
the modal view, the current view uncurls to its original position. (Of course,
a modal view revealed by a partial-curl can’t itself reveal another modal view
with a partial-curl — that would be a wipe-out, in surfer terms.)

18_9780470920503-ch11.indd 24118_9780470920503-ch11.indd 241 12/24/10 12:34 AM12/24/10 12:34 AM

242 Part IV: Building DeepThoughts

The UIViewController class also offers the modalPresentationStyle
property that specifies the appearance of the modal view on the iPad. Options
for this property let you present the modal view so that it fills the entire iPad
display, or only part of the display:

 ✓ UIModalPresentationFullScreen: This option uses the entire dis-
play, which is good for something that is complex — such as choosing a
Genius mix from your music playlists in the iPod app.

 ✓ UIModalPresentationPageSheet: This option offers a fixed width
of 768 points; the sheet height is the current height of the display. In
portrait, the Page Sheet view covers the entire display; in landscape ori-
entation, the area of the display that is visible on both sides of the Page
Sheet view is dimmed to prevent user interaction. Some apps use this
style for composing a text message or note.

 ✓ UIModalPresentationFormSheet: I use this option (in Listing 11-4)
for DeepThoughts. The form sheet is a fixed-dimension view of 540 x 620
points centered in the display. The area of the display that is visible out-
side the Form Sheet view is dimmed to prevent user interaction. When
the keyboard is visible in landscape orientation, the Form Sheet view
moves up to just below the status bar so that you can still see it.

 ✓ UIModalPresentationCurrentContext: This option uses the same
size as its parent view. This style is good for displaying a modal view
within a Split View pane, popover, or other view that doesn’t fill the
display.

After setting the transition and presentation style for the modal view, the code
uses the presentModalViewController:animated: instance method to
present the animated modal view (and attach it to the view hierarchy). At the
end of the code (in Listing 11-4), you use the dismissModalViewController
Animated: method to animate the view as it’s dismissed.

Saving the preference settings
The code in Listing 11-4 then implements the changeSpeed method to
change the animation speed if the slider in the modal view changes. After
this, you add the settingsViewController:didFinishWithChange:
method to save the user preference settings. Although the user can change
the speed and see the results on the fly, the speed setting is saved (for later
use when the app runs again) only after the user taps Done in the modal
view. (You connect the Done button in the “Adding the Done button” section,
later in this chapter.)

As you may recall from earlier in this chapter in “Identifying prefer-
ence settings for NSUserDefaults,” you use standardUserDefaults
(a NSUserDefaults class method) to gain access to the standard user

18_9780470920503-ch11.indd 24218_9780470920503-ch11.indd 242 12/24/10 12:34 AM12/24/10 12:34 AM

243 Chapter 11: Adding User Settings and Gestures

defaults; you can store data there and then get it back when you need it. To
store data, you use the setObject:forKey: method. The first argument,
setObject:, is the object you want NSUserDefaults to save (falling
Words); the second argument is forKey: (kWordsOfWisdom), which is how
NSUserDefaults identifies it. For the slider value, you use setDouble:
newSpeed forKey:kSpeed.

The next step is to create the interface elements for the Done button, speed
slider, and text field elements of the modal view and then connect these inter-
face elements — along with the Light Info button in the animated view — to
the methods in your view controllers.

 Don’t forget to save your changes in Xcode; otherwise, Interface Builder won’t
be able to find the new code. Choose File➪Save.

Connecting the Interface Objects
in Interface Builder

You’ve created the outlets and their accessor methods in your code. The
next sections are about wiring the two nib (.xib) files to your code using
Interface Builder — so that when the nib files are loaded, the nib loading
code will create these connections automatically.

To start, open the modal view controller in Interface Builder: click
Resources in the Groups & Files list and then double-click the
SettingsViewController.xib file to launch Interface Builder.

You can then click the View icon in the SettingsViewController.xib
window of Interface Builder so that you can add the user interface objects to
it. If the Library window isn’t already open, choose Tools➪Library.

Adding the Done button
To add the Done button, click the Classes tab at the top of the Library
window, and select UIResponder from the drop-down menu below the
Classes tab (you can see the selection in Figure 11-4). (This narrows your
search through the Library window so that you can find the class you need
quickly.) You need the UIButton class, the same class you used for the Info
button in Chapter 9.

Drag the UIButton class object from the Library onto the View window in
the top-left corner (refer to Figure 11-4). Guides appear to help you place the
object where you want it.

18_9780470920503-ch11.indd 24318_9780470920503-ch11.indd 243 12/24/10 12:34 AM12/24/10 12:34 AM

244 Part IV: Building DeepThoughts

After dragging it, the UIButton class object appears under View in the
SettingsViewController.xib window in List view as a Rounded Rect
Button, which is its default setting.

Figure 11-4:
Drag the
UIButton

class object
to the View

window.

Select Rounded Rect Button in the SettingsViewController.xib
window, and click the Attributes tab of the Inspector window (or choose
Tools➪Attributes Inspector) if it isn’t already selected. The Attributes
Inspector shows Button Attributes, as shown in Figure 11-5. Choose Custom
in the Type drop-down menu in Button Attributes and then click the Text
Color tile to change it to white, and click the Clear Color button next to
Shadow to remove the shadow. Don’t forget to type Done for the button’s
title. (See Figure 11-5.)

To connect the Done button to your code, select Custom Button (Done) in
the SettingsViewController.xib window, and click the Connections tab
in the Inspector window (or choose Tools➪Connections Inspector) and scroll
down to the bottom of the Events section (above Referencing Outlets). Drag
from the connection point for a Touch Up Inside event to File’s Owner, as
shown in Figure 11-6. Then choose done from the pop-up menu that appears
to connect the object to your code’s outlet (done), as shown in Figure 11-7.

That’s it; the Done button is done.

18_9780470920503-ch11.indd 24418_9780470920503-ch11.indd 244 12/24/10 12:34 AM12/24/10 12:34 AM

245 Chapter 11: Adding User Settings and Gestures

Figure 11-5:
Change the
button attri-

butes.

Figure 11-6:
Make a con-
nection from

the custom
button to
the File’s

Owner.

18_9780470920503-ch11.indd 24518_9780470920503-ch11.indd 245 12/24/10 12:34 AM12/24/10 12:34 AM

246 Part IV: Building DeepThoughts

Figure 11-7:
Connect

the custom
button to
the done
method.

Adding the slider and text field
Next, click the Objects tab at the top of the Library window, and then select
Inputs & Values from the Interface Builder Library pop-up menu to see
the input objects you can use. Information about each object appears in
the lower portion of the Library window. The slider, for example, is of the
UISlider class; it displays a horizontal bar representing a range of values.

Drag the slider from the Library window over to the View window, just like
you did with the UIButton class object. (Refer to Figure 11-4.)

You can select the horizontal slider in the View window and then drag its
edges to make it longer. To set the slider’s values, click the Attributes tab
in the Inspector window (or choose Tools➪Attributes Inspector) and then
change the Minimum, Maximum, and Initial values, as shown in Figure 11-8.

To connect the horizontal slider to your code, first click the triangle next to
the View icon in the SettingsViewController.xib window, if you haven’t
done this already, to reveal its contents (which now includes Horizontal
Slider) and then select Horizontal Slider. Then click the Connections tab in
the Inspector window (or choose Tools➪Connections Inspector) and scroll

18_9780470920503-ch11.indd 24618_9780470920503-ch11.indd 246 12/24/10 12:34 AM12/24/10 12:34 AM

247 Chapter 11: Adding User Settings and Gestures

down to the Referencing Outlets section. Drag from the connection point
for a new referencing outlet to File’s Owner, as shown in Figure 11-9. Then
choose slider from the pop-up menu that appears to connect the object to
your code’s outlet (slider), as shown in Figure 11-10.

Figure 11-8:
Set the
slider’s

Minimum,
Maximum,
and Initial

values.

Figure 11-9:
Make a

connection
from the

Horizontal
Slider to
the File’s

Owner.

18_9780470920503-ch11.indd 24718_9780470920503-ch11.indd 247 12/24/10 12:34 AM12/24/10 12:34 AM

248 Part IV: Building DeepThoughts

Figure 11-10:
Connect the

Horizontal
Slider to
slider in

your code.

Because you want to capture the speed setting when the user slides the
slider and then immediately use that new setting with the view controller,
scroll down to the bottom of the Events section (above Referencing Outlets)
in the Connections Inspector, and drag from the connection point for a
Value Changed event to File’s Owner, as shown in Figure 11-11. Then choose
speedChanged from the pop-up menu that appears to connect the object to
your code’s outlet (speedChanged), as shown in Figure 11-12.

Figure 11-11:
Connect
a Value

Changed
event in

the slider
to the File’s

Owner.

18_9780470920503-ch11.indd 24818_9780470920503-ch11.indd 248 12/24/10 12:34 AM12/24/10 12:34 AM

249 Chapter 11: Adding User Settings and Gestures

Figure 11-12:
Connect

the Value
Changed
event to

the speed-
Changed
method.

Now, perform a similar procedure with the Text Field object in the Interface
Builder Library window. (If the Library window isn’t already open, choose
Tools➪Library.) Drag the Text Field for text entry from the Library window to
the View window, where it becomes the Round Style Text Field.

You can then select your new text field in the View window and then
drag its edges to make it longer. To change its attributes, first select
Round Style Text Field (which is now below Horizontal Slider) in the
SettingsViewController.xib window. Then click the Attributes tab in
the Inspector window (or choose Tools➪Attributes Inspector), as shown in
Figure 11-13.

To connect the text field’s Delegate connector to SettingsViewController,
click the Connections tab in the Inspector window (or choose Tools➪
Connections Inspector) and drag from the connection point for delegate (at
the top of the Text Field Connections window) to File’s Owner, as shown in
Figure 11-14.

18_9780470920503-ch11.indd 24918_9780470920503-ch11.indd 249 12/24/10 12:34 AM12/24/10 12:34 AM

250 Part IV: Building DeepThoughts

Figure 11-13:
After drag-

ging the
Text Field

you can
change its
attributes.

Figure 11-14:
Connect the

Text Field
to the

modal view
controller.

18_9780470920503-ch11.indd 25018_9780470920503-ch11.indd 250 12/24/10 12:34 AM12/24/10 12:34 AM

251 Chapter 11: Adding User Settings and Gestures

Finally, with Round Style Text Field still selected, scroll down the Text Field
Connections window to the Referencing Outlets section. Drag from the con-
nection point for a new referencing outlet to File’s Owner, as shown in Figure
11-15. Then choose theTextField from the pop-up menu that appears
to connect the object to your code’s outlet (theTextField), as shown in
Figure 11-16.

To display the slider’s value, use a Label object. Perform the same proce-
dure by dragging the Label object in the Interface Builder Library window
to the View window. You can then select your new label in the View window
and change its attributes by clicking the Attributes tab in the Inspector
window (or choose Tools➪Attributes Inspector). To connect the label to
your code, click the Connections tab in the Inspector window (or choose
Tools➪Connections Inspector). Drag from the connection point for a new
referencing outlet (in the Referencing Outlets section) to File’s Owner. Then
choose sliderDisplay from the pop-up menu that appears to connect the
object to your code’s outlet.

Figure 11-15:
Connect the
Text Field’s

referenc-
ing outlet

to the File’s
Owner.

To complete the modal dialog, change the view’s background color. Select
View in the SettingsViewController.xib window, and change the
Background Color option to View Flipside Background Color (see Figure
11-17), which returns the system color used for the back side of a view while
it is being flipped. Now it’s ready for use.

18_9780470920503-ch11.indd 25118_9780470920503-ch11.indd 251 12/24/10 12:34 AM12/24/10 12:34 AM

252 Part IV: Building DeepThoughts

 Don’t forget to save your changes in Interface Builder — you can choose
File➪Save if you are continuing to edit the same file, or you can click Save in
the warning dialog if you close the file or quit Interface Builder.

For the next step, you need to close the SettingsViewController.xib
file and double-click the DeepThoughtsViewController.xib file to open
Interface Builder again.

Connecting the Info button
You have one more chore: to connect the Light Info button, which
you added to the user interface in Chapter 9, to the method in
DeepThoughtsViewController that initializes the modal view.

To connect the Light Info button to this method, double-click the
DeepThoughtsViewController.xib file to launch Interface Builder (if
you haven’t done this already). Next, click the triangle next to View in the
DeepThoughtsViewController.xib window (in List view) to open it, and
select Light Info Button underneath View. To make the connection, click the
Connections tab in the Inspector window (or choose Tools➪Connections
Inspector), and drag the outlet for a Touch Up Inside event to the File’s
Owner, as shown in Figure 11-18. The settings method pops up so that you
can select it for the Info button.

Figure 11-16:
Connect the

Text Field
outlet to

theTextField
in your

code.

18_9780470920503-ch11.indd 25218_9780470920503-ch11.indd 252 12/24/10 12:34 AM12/24/10 12:34 AM

253 Chapter 11: Adding User Settings and Gestures

Figure 11-17:
Change

the view’s
background

color
attribute.

Figure 11-18:
Connect the

Touch Up
Inside event
for the Light
Info button.

18_9780470920503-ch11.indd 25318_9780470920503-ch11.indd 253 12/24/10 12:34 AM12/24/10 12:34 AM

254 Part IV: Building DeepThoughts

Testing the new modal view
So it looks like you now have all the pieces in place for the DeepThoughts
application. Save your Xcode project by choosing File➪Save. Then, to test
the modal view, click the Build and Run button. You should see the Simulator
launch, run the app, and display the falling words over the image.

Now click the Info button in the upper-left corner. The modal view should
appear, as shown in Figure 11-19. Click inside the text box to make the key-
board appear, and type new words for the falling words. Drag the slider to
change the animation speed, and the falling words should move slower or
faster in the view behind the modal view. Cool!

In the Simulator, choose Hardware➪Rotate Right to see what DeepThoughts
looks like in landscape orientation. After clicking inside the text box to edit
the falling words, you should notice that in landscape orientation, the key-
board is much larger, and the modal view automatically slides up to accom-
modate it — thanks to the Form Sheet modal view style you chose in the
“Initializing and setting the modal view style” section, earlier in this chapter.

Figure 11-19:
Run Deep-

Thoughts
and click

the Info but-
ton to see
the modal

view.

18_9780470920503-ch11.indd 25418_9780470920503-ch11.indd 254 12/24/10 12:34 AM12/24/10 12:34 AM

255 Chapter 11: Adding User Settings and Gestures

 As you experiment with code and build and run your project, you need to
delete the application and its data from the Simulator if you change anything
of significance — before building and running again. The consequences of not
doing so will become obvious when things don’t work like you would expect
them to. See Chapter 5 for details on deleting specific apps from the Simulator.
For a fast reset of all apps and all data in the simulator, choose iPhone
Simulator➪Reset Contents and Settings, and then click Reset. Note that this
removes all apps and data that you have installed in the simulator.

You can now enter a new phrase and speed up or slow down the animation.
Your preferences are saved when you leave the app so that they’re used
when you launch the app again later.

Ah, but there’s a bit more you can do with this little app, as you see in the
next section.

Adding Tap and Swipe Recognizers
To put a finer point on touch events, you need to examine gestures. No
sample iPad application would be complete without some gesture con-
trol, because with an iPad you have a large display that begs to be tapped,
pinched, and even swiped.

To offer a finer grain of control over what happens when fingers touch the
display, you can use a delegate of the UIGestureRecognizer class that
recognizes gestures and customizes their actions. This class defines a set
of common behaviors that can be configured for all gesture recognizers,
and it can also communicate with its delegate (an object that adopts the
UIGestureRecognizerDelegate protocol) for even finer control. With a
Gesture-Recognizer object, you can separate the logic for recognizing a ges-
ture from the action that should occur. When one of these objects recognizes
a common gesture or, in some cases, a change in the gesture, it sends an
action message to each designated target object.

To improve DeepThoughts, you can add a Tap recognizer to the view that
brings up the modal view for changing settings (and thereby dispense
with the Info button if you want). You can also create Swipe Gesture rec-
ognizers to recognize right and left swipes. You add this code to the view
controller for the animated view, which means the files to be modified are
DeepThoughtsViewController.h and DeepThoughtsViewController.m.

18_9780470920503-ch11.indd 25518_9780470920503-ch11.indd 255 12/24/10 12:34 AM12/24/10 12:34 AM

256 Part IV: Building DeepThoughts

Add the bold lines of code in Listing 11-5 to the
DeepThoughtsViewController.h file. First, add UIGestureRecognizer
within the angle brackets of the @interface statement (be sure to include
the comma before it) to declare the UIGestureRecognizer delegate. Then
add a declaration for a new addGestures method, which you’ll set up later
in DeepThoughtsController.m (in Listing 11-7) to recognize gestures.

Listing 11-5: DeepThoughtsViewController.h

#import <UIKit/UIKit.h>
#import “SettingsViewController.h”

@interface DeepThoughtsViewController : UIViewController
<SettingsViewControllerDelegate ,
UIGestureRecognizerDelegate> {

 UIImage *fallingImage;
 NSString *fallingWords;
 UIImageView *imageView;
 double speed;
}
- (IBAction)settings;
- (void) changeSpeed: (double) newSpeed;
- (void) settingsViewController: (SettingsViewController

*)controller didFinishWithChange: (BOOL)
changed;

- (void) addGestures;

@property (readwrite) double speed;
@property (nonatomic, retain) UIImageView *imageView;
@property (nonatomic, retain) NSString *fallingWords;

@end

Next, add the bold line of code in Listing 11-6 to the
DeepThoughtsViewController.m file at the end of the viewDidLoad
method, which is at the end of the View life cycle section (the section
you marked using #pragma mark View life cycle in Chapter 10).

Listing 11-6: DeepThoughtsViewController.m (View life cycle Section)
(The View life cycle section marked by #pragma mark View life
cycle appears here. See Chapter 10 for the complete code.)

- (void)viewDidLoad {

 [super viewDidLoad];

18_9780470920503-ch11.indd 25618_9780470920503-ch11.indd 256 12/24/10 12:34 AM12/24/10 12:34 AM

257 Chapter 11: Adding User Settings and Gestures

 [NSTimer scheduledTimerWithTimeInterval:.5 target:self
selector:@selector(onTimer) userInfo:nil
repeats:YES];

 if (![[NSUserDefaults standardUserDefaults]
objectForKey:kWordsOfWisdom]) {

 [[NSUserDefaults standardUserDefaults]
setObject:@”Peace Love Groovy Music”
forKey:kWordsOfWisdom];

 fallingWords = @”Peace Love Groovy Music”;
 }
 else {
 fallingWords = [[NSUserDefaults standardUserDefaults]

stringForKey:kWordsOfWisdom];
 }
 if (![[NSUserDefaults standardUserDefaults]

objectForKey:kSpeed]){
 [[NSUserDefaults standardUserDefaults]setDouble:10.0

forKey:kSpeed];
 speed = kMaxSpeed-10.0;}
 else {
 speed = kMaxSpeed-[[NSUserDefaults

standardUserDefaults] doubleForKey:kSpeed] ;
 }

 [self addGestures];
}

(The rest of the code would appear here. See Chapter 10 for the complete code.)

You have now added the addGestures method to the view, so it’s time to
specify what that method actually does.

Add the bold lines of code in Listing 11-7 to the
DeepThoughtsViewController.m file — between the end of the
Controls section (marked by #pragma mark Controls in Chapter 10)
and the beginning of the Orientation section (marked by #pragma mark
Orientation in Chapter 10).

Listing 11-7: DeepThoughtsViewController.m (View life cycle Section)
(The Controls section marked by #pragma mark Controls appears here.
See Listing 11-4 for the Controls section, and see Chapter 10 for the complete
code.)

 [self dismissModalViewControllerAnimated:YES];
}

(continued)

18_9780470920503-ch11.indd 25718_9780470920503-ch11.indd 257 12/24/10 12:34 AM12/24/10 12:34 AM

258 Part IV: Building DeepThoughts

Listing 11-7 (continued)

#pragma mark -
#pragma mark Responding to gestures

- (void) addGestures {

 /*
 Create and configure the gesture recognizers. Add each

to the view as a gesture recognizer.
 */
 UIGestureRecognizer *recognizer;
 /*
 Create a tap recognizer and add it to the view.
 Keep a reference to the recognizer to test in gestureRe

cognizer:shouldReceiveTouch:.
 */
 recognizer = [[UITapGestureRecognizer

alloc] initWithTarget:self action:@
selector(handleTapFrom:)];

 [self.view addGestureRecognizer:recognizer];
 recognizer.delegate = self;
 [recognizer release];

 /*
 Create a swipe gesture recognizer to recognize right

swipes (the default).
 */
 recognizer = [[UISwipeGestureRecognizer

alloc] initWithTarget:self action:@
selector(handleSwipeFrom:)];

 [self.view addGestureRecognizer:recognizer];
 [recognizer release];
 /*
 Create a swipe gesture recognizer to recognize left

swipes.
 */
 recognizer = [[UISwipeGestureRecognizer

alloc] initWithTarget:self action:@
selector(handleSwipeFrom:)];

 ((UISwipeGestureRecognizer *)recognizer).direction =
UISwipeGestureRecognizerDirectionLeft;

 [self.view addGestureRecognizer:recognizer];
 [recognizer release];
}

18_9780470920503-ch11.indd 25818_9780470920503-ch11.indd 258 12/24/10 12:34 AM12/24/10 12:34 AM

259 Chapter 11: Adding User Settings and Gestures

- (BOOL)gestureRecognizer:(UIGestureRecognizer *)
gestureRecognizer shouldReceiveTouch:(UITouch
*)touch {

 return YES;
}

/*
 In response to a tap gesture, show settings modal view.
 */
- (void)handleTapFrom:(UITapGestureRecognizer *)recognizer

{
 [self settings];
}

/*
 In response to a swipe gesture, change the speed.
 */
- (void)handleSwipeFrom:(UISwipeGestureRecognizer *)

recognizer {

 if (recognizer.direction ==
UISwipeGestureRecognizerDirectionLeft) {

 if (speed <= kMaxSpeed) speed = speed+2;
 }
 else {
 if (speed > 0) speed = speed-2;
 }
}

#pragma mark -
#pragma mark Orientation

(The Orientation section appears here. See Chapter 10 for the complete
code.)

The code initializes a Tap recognizer and adds it to the view using
the addGestureRecognizer: instance method that’s part of
UIGestureRecognizer. (UITapGestureRecognizer is a subclass of
UIGestureRecognizer that looks for single or multiple taps.)

The code then initializes two Swipe recognizers to handle left and right
swipes and adds them to the view. (UISwipeGestureRecognizer is a con-
crete subclass of UIGestureRecognizer that looks for swiping gestures in
one or more directions.) The default direction is a right swipe, so you don’t
have to specify the direction. For a left swipe, you specify a direction prop-
erty with UISwipeGestureRecognizerDirectionLeft.

18_9780470920503-ch11.indd 25918_9780470920503-ch11.indd 259 12/24/10 12:34 AM12/24/10 12:34 AM

260 Part IV: Building DeepThoughts

Through this code, you also keep a reference to the recognizer so that you
can test it using gestureRecognizer:shouldReceiveTouch:, which asks
the delegate if a Gesture recognizer should receive an object representing a
touch. YES (the default) lets the Gesture recognizer examine the Touch object.

Finally, you specify what the handleTapFrom method does: In response to a
Tap gesture (from UITapGestureRecognizer), the method uses settings
to display the modal view. You also specify what the handleSwipeFrom
method does: If the direction is to the left (recognizer.direction ==
UISwipeGestureRecognizerDirectionLeft), the method reduces the
animation speed; if not (which means the direction must be to the right, which
is the default), the method increases the speed.

Save your Xcode project by choosing File➪Save. Then, to test the gestures,
click the Build and Run button. You should see the Simulator launch, run the
app, and display the falling words over the image.

Now mimic a tap by clicking anywhere in the animated view. The modal view
should appear, and you can click inside the text box and type new words for
the falling words, and you can drag the slider to change the animation speed.
Click the Done button to return to the animated view. Now drag across the
view to the right, and the animation should speed up — dragging is the equiv-
alent of a swipe. Drag across to the left, and the animation should slow down.
Very cool!

A Lot Accomplished Very Quickly
It looks like you have all the pieces in place for the DeepThoughts applica-
tion. The user can now tap anywhere to bring up a modal view and enter a
new phrase for the flowing words (so you can either keep or get rid of the
Light Info button, which does the same thing) and control the animation
speed. The user can also control the speed by swiping the animated view left
or right.

Appearances can be deceiving, though.

Reality check: Some how-to books on software development should really
be housed in the Fiction section of your local bookstore because all their
examples work flawlessly. In the real world, everything doesn’t always go as
planned; occasionally your software program blows up on you. That’s why

18_9780470920503-ch11.indd 26018_9780470920503-ch11.indd 260 12/24/10 12:34 AM12/24/10 12:34 AM

261 Chapter 11: Adding User Settings and Gestures

an essential part of software development is the debugging phase — teasing
as many flaws out of your app as possible so you can squash ’em. The next
chapter shows you how to work through the debugging phase of your project
and introduces you to the SDK’s very own debugging tool, something that’s
sure to make your software-development life a lot easier.

18_9780470920503-ch11.indd 26118_9780470920503-ch11.indd 261 12/24/10 12:34 AM12/24/10 12:34 AM

262 Part IV: Building DeepThoughts

18_9780470920503-ch11.indd 26218_9780470920503-ch11.indd 262 12/24/10 12:34 AM12/24/10 12:34 AM

Chapter 12

Getting the Bugs Out
In This Chapter
▶ Understanding the kinds of errors that may come up

▶ Using Xcode’s Debugger and Build windows

▶ Setting breakpoints and examining objects and variables

▶ Using the Static Analyzer to analyze your code for memory leaks

When you’re developing an application, sometimes things don’t work
out quite the way you planned — especially when you knock over a

can of Jolt Cola on the keyboard and fry it out of existence.

Murphy was an optimist about computer programming with his law that
there’s always one more bug. It took Weinberg’s Second Law to put debugging
into perspective: If builders built buildings the way that programmers program
programs, the first woodpecker to come along would destroy civilization.

As I learned the hard way (indeed, I wrote Murphy’s Computer Laws in 1980 for
Celestial Arts, only to violate most of them in subsequent projects), debug-
ging is not something to put off until later, after the warnings and error mes-
sages pile up. Keep in mind Bove’s Theorem: The remaining work required to
finish a project increases as the deadline approaches. It’s best to tackle any
errors and warnings you get immediately.

So, what does it take to tackle the inevitable errors that will find their way
into your code? In a word, debugging: the process of analyzing your code line
by line to view your program’s state at a particular stage of execution. To
debug a program, you run it under the control of a debugger, which lets you
pause the program and examine its state. In this chapter, I show you how to
use the Xcode Debugger to understand, locate, and fix bugs.

19_9780470920503-ch12.indd 26319_9780470920503-ch12.indd 263 12/24/10 12:34 AM12/24/10 12:34 AM

264 Part IV: Building DeepThoughts

Understanding Bugs
“Stuff happens,” in the immortal words of a famous ex-U.S. Secretary of
Defense. When it comes to developing your own programs, that “stuff” comes
in three categories:

 ✓ Syntax errors: Compilers — the Objective-C compiler in Xcode is a case
in point — expect you to use a certain set of instructions in your code;
those instructions make up the language it understands. When you type
If instead of if, or the subtler [view release} (with a curly closing
bracket) instead of [view release] (with a straight closing bracket),
the compiler suddenly has no idea what you’re talking about and gen-
erates a syntax error. Objective-C is case sensitive, which means that
Speedchanged and speedChanged are treated differently. Class, cate-
gory, and protocol names generally begin with an uppercase letter (such
as NSUserDefaults); the names of methods and instance variables
typically begin with a lowercase letter (such as speedChanged).

 Syntax errors are the most obvious, simply because your program won’t
compile (and therefore won’t run) until all of them are fixed. Generally,
syntax errors spring from typographical errors. (And yes, the errors can
be pretty penny-ante stuff — an I for an i, for goodness sake — it doesn’t
take much to stump a compiler.)

 In Figure 12-1, you can see an example of a syntax error — simply forget-
ting to put a semicolon at the end of the fallingWords statement. This
one is kindly pointed out by Xcode’s friendly Debugger feature. After
choosing Build➪Build and Run to build and run the application (and
saving all changes in the process), the build fails — a tiny hammer icon
and Failed appears in the notification section (in the bottom-right corner
of the Xcode window), and the compiler highlights the statement after
the syntax error with three (count ’em, three) red exclamation marks:
one in the gutter to the left of the statement after the syntax error, one
in the strip of debugging information that appears around the statement
after the syntax error, and one next to Failed in the notifications section
of the Xcode window.

 A syntax error in a different place in the code might not be explained
so easily by Xcode and might therefore wreak havoc with subse-
quent code, thus causing the build to fail. For example, in Figure
12-2, I forget to include an asterisk in front of recognizer in the
UIGestureRecognizer recognizer statement (which should
be UIGestureRecognizer *recognizer). As a result, the com-
piler found a problem with subsequent code. Click the exclamation
mark, and Xcode brings up the Build Results window, as shown in
the upper part of Figure 12-3, with a long list of errors starting with
Statically allocated instance of Objective-C class
‘UIGestureRecognizer’. The Build Results window can show a
more detailed view of the consequences of an error.

19_9780470920503-ch12.indd 26419_9780470920503-ch12.indd 264 12/24/10 12:34 AM12/24/10 12:34 AM

265 Chapter 12: Getting the Bugs Out

Figure 12-1:
A syntax

error. Oops.

 It’s generally better to ignore the subsequent errors after a syntax error
because they may be the result of that first error.

 ✓ Runtime errors: Runtime errors cause your program to stop executing —
it crashes, in other words, as in “crash and burn to much wailing and
gnashing of teeth.” Something might have come up in the data that you
hadn’t expected (a division-by-zero error, for example), or the result of
a method dealt a nasty surprise to your logic, or you sent a message to
an object that doesn’t have that message implemented. Sometimes you
even get some build warnings for these errors; often the application
simply stops working or hangs (stops and does nothing), or shuts down.

 ✓ Logic errors: Your literal-minded application does exactly what you tell it
to do, but sometimes you unintentionally tell it to do the wrong thing, and
it coughs up a logic error. For example, in Figure 12-4, I deliberately cre-
ated a logic error by dividing by zero. Xcode warns you about the divide-
by-zero error but goes ahead anyway and builds and runs the app.

19_9780470920503-ch12.indd 26519_9780470920503-ch12.indd 265 12/24/10 12:34 AM12/24/10 12:34 AM

266 Part IV: Building DeepThoughts

Figure 12-2:
A subtle

but more
damaging

syntax error.

Figure 12-3:
The Build

Results
window lists
the damage

from this
one error.

I typed the divide-by-zero error (speed = kMaxSpeed/0-10.0) to make the
point that you may be able to build and run your app, but it may not work as
intended.

19_9780470920503-ch12.indd 26619_9780470920503-ch12.indd 266 12/24/10 12:34 AM12/24/10 12:34 AM

267 Chapter 12: Getting the Bugs Out

Figure 12-4:
Oh, great —

it builds
but doesn’t

work.

You can see in Figure 12-4 the yellow exclamation point, which is a warning
(rather than a red one, which is an error), and the message Division by
zero. Clicking the exclamation point brings up the Build Results window, as
shown in Figure 12-5, with the Division by zero warning and the steps of
compiling and building the app.

Figure 12-5:
The Build

Results
window

shows what
happened.

19_9780470920503-ch12.indd 26719_9780470920503-ch12.indd 267 12/24/10 12:34 AM12/24/10 12:34 AM

268 Part IV: Building DeepThoughts

 With a complex app, you might be pelted with compiler warnings that you
don’t have time to take care of because they have no impact on the execution
of the program. One reason to set your preferences so that Xcode always
opens the Build Results window is that you’ll be continually reminded about
these warnings if you haven’t fixed them. To set this preference, choose
Xcode➪Preferences➪Building and choose Always from the Open During
Builds pop-up menu.

Syntax errors, runtime errors, and logic errors can all be pains in the behind,
but there’s no need to think of them as insurmountable roadblocks. You’re
still on your way to a cool iPad app.

Using the Debugger
The Debugger can be really useful when your program isn’t doing what you
expect. For the blatant errors, the Debugger can show you exactly what was
going on when the error occurred. It provides you with a trail of how you got
to where you are, highlights the problem instruction, and shows you your
application’s variables and their values at that point.

 If you’ve been following the examples in Chapters 9 through 11 for developing
the DeepThoughts app, you’re ready to debug the app, and your configura-
tion should still be set to Simulator-4.2 | Debug in the pop-up menu
in the upper-left corner of the Xcode Project window. (Refer to Figure 12-4.)
If you’ve been developing a project with a different configuration, you must
change it to the Debug build configuration. (Before you can take advantage of
the Debugger, the compiler must collect information for the Debugger, and the
Debug build configuration generates the debugging symbols for that purpose.)

You can tap the Debugger from the Xcode Text Editor, as I show in the next
section, and set breakpoints that stop execution at any point and trace the
messages sent up to that point (as I describe in “Setting breakpoints” in the
next section), so that you can step through the program’s execution and view
the contents of variables. The Debugger window offers even more control
over the process and provides detailed information. You can also use the
Mini Debugger — a floating window — that offers many of the functions of
the Debugger window, as I show later in this chapter.

You can even use the Mac OS X Console utility application to view messages
and interact with the GNU Source-Level Debugger with typed commands, as I
explain in “Using the Console Application” in this chapter.

19_9780470920503-ch12.indd 26819_9780470920503-ch12.indd 268 12/24/10 12:34 AM12/24/10 12:34 AM

269 Chapter 12: Getting the Bugs Out

Debugging in the Text Editor
As shown earlier, a syntax error can stop a build in its tracks, and you can
see both the compiler and the Debugger at work behind the scenes in the
Text Editor. A red exclamation point in the Text Editor, as shown in Figure
12-6, points to the instruction that caused the program to stop building —
that’s the Debugger pointing out the problem.

There’s even some information about the error. The Debugger offers a strip
of information called a datatip, which you can see in Figure 12-6 right next to
the offending line. The datatip says Statically allocated instance
of Objective-C class ‘UIGestureRecognizer’ and ends with a 2,
which means another error or warning is there. In Figure 12-7, I click the 2,
and it reveals a second warning, which happens to be the same error again.
Other datatips show errors about incompatible types and that ‘struct
UIGestureRecognizer’ has no member named ‘delegate’.

Figure 12-6:
Xcode

highlights
an error and

displays a
datatip.

 Gutter with line numbers and error notifications

Debugger datatip

Notifications

19_9780470920503-ch12.indd 26919_9780470920503-ch12.indd 269 12/24/10 12:34 AM12/24/10 12:34 AM

270 Part IV: Building DeepThoughts

What this all means is that the compiler “thinks” I’m trying to allocate
the object (recognizer) statically, rather than as a pointer — and that’s
because I forgot to include an asterisk in front of recognizer.

Figure 12-7:
The datatip

shows a
second

warning.

If your app manages to build and run (which can happen even with a warn-
ing, as you can see back in Figure 12-4), that means it has passed through the
compiler without syntax errors. But you aren’t out of the woods yet — even
if you don’t see evidence of runtime errors that crash the app, you certainly
haven’t tried all the app’s functions yet. You also don’t know whether there
are logic errors. But don’t despair; you have options.

Setting breakpoints
Breaking down may be a bad situation in real life, but in the life of your app,
getting a break is a good thing. A breakpoint is an instruction to the Debugger
to stop execution at that instruction and wait for further instructions (no pun
intended). By setting breakpoints at various methods in your program, you
can step through its execution — at the instruction level — to see exactly
what it’s doing. You can also examine the variables the program is setting
and using. If you’re stymied by a logic error, setting breakpoints is a great
way to break that logjam.

19_9780470920503-ch12.indd 27019_9780470920503-ch12.indd 270 12/24/10 12:34 AM12/24/10 12:34 AM

271 Chapter 12: Getting the Bugs Out

To set a breakpoint in the Xcode Text Editor, click inside the gutter — the far-
left column of the Editor pane, as shown in Figure 12-8. I set a breakpoint to
stop execution right before executing the int startX = round(random()
% 400) statement.

Figure 12-8:
Setting a

breakpoint
in the Text

Editor.

 To get rid of a breakpoint, simply drag it off to the side. You can also right-
click (or Control-click) the breakpoint and choose Remove Breakpoint from
the pop-up menu that appears.

You can set the Xcode Text Editor to recognize breakpoints by clicking
the Breakpoints button in the Project window toolbar — the Build and Run
button changes to Build and Debug. Click Build and Debug to build and run
the program.

Using the Debugger strip
When you build and run the program with breakpoints, the Debugger strip
appears in the Text Editor as the program runs in the Simulator. The pro-
gram stops executing at the first breakpoint. The process counter (PC) red
arrow points to the line of code in the Text Editor immediately following the
breakpoint. The Debugger strip appears just above the Text Editor, as shown
in Figure 12-9, while the app is running in the Simulator but stopped at the
breakpoint.

19_9780470920503-ch12.indd 27119_9780470920503-ch12.indd 271 12/24/10 12:34 AM12/24/10 12:34 AM

272 Part IV: Building DeepThoughts

Figure 12-9:
Xcode dis-

plays the
Debugger

strip as
the app

runs in the
Simulator.

Gutter

Debugger strip

Thread list

Breakpoints

Pause/Cont.

Step Over

Step Into

Step Out

Show Debugger

Show Console

Stack call list

 When you move your pointer over a variable in a datatip (refer to Figure 12-9),
its contents are revealed. You can even modify the contents of mutable vari-
ables. This is a powerful way to find out the value of variables at any given
point during execution. (And yes, a slip of the datatip can sink a shipping app.)

The Debugger strip offers several buttons for your pushing pleasure:

 ✓ Thread list: Displays a list of the threads in your program. I explain this
in “Using the Debugger Window,” later in this chapter.

 ✓ Breakpoints: Activates or deactivates breakpoints, which I describe in
the preceding section, “Setting breakpoints.”

 ✓ Continue: Continues execution of a paused process in your program.

19_9780470920503-ch12.indd 27219_9780470920503-ch12.indd 272 12/24/10 12:34 AM12/24/10 12:34 AM

273 Chapter 12: Getting the Bugs Out

 ✓ Step Over: Steps over the current line of code. The process counter (PC),
which is identified by the red arrow in the gutter (refer to Figure 12-9),
moves to the next line of code to be executed in the current file.

 ✓ Step Into: Steps into a function or method in the current line of code. If
possible, the Text Editor shows the source file with the called routine.
The PC (red arrow) points to the line of code to be executed next.

 ✓ Step Out: Steps out of the current function or method. The Text Editor
shows the source file with the function’s caller.

 ✓ Show Debugger: Opens the Debugger proper.

 ✓ Show Console: Opens the Mac OS X Console, which I describe in “Using
the Console Application,” later in this chapter.

 ✓ Call list: Displays a list of the called functions or methods in the stack,
which I explain next.

Click the up and down arrows next to DeepThoughtsViewController
onTimer in the Debugger strip (refer to Figure 12-9), or whatever else is dis-
played in that section of the Debugger strip, so that you can see the stack —
a trace of the objects and methods that got you to where you are now, as
shown in Figure 12-10.

Although the stack is about as useful as a stack of pancakes in this particular
context, the stack can be very useful in a more complex application — it can
help you understand the path that you took to get where you are. Seeing how
one object sent a message to another object — which sent a message to a
third object — can be really helpful, especially if you didn’t expect the pro-
gram flow to work that way.

Getting a look at the stack can also be useful if you’re trying to understand
how the framework does its job, and in what order messages are sent. You
can stop the execution of your program at a breakpoint and trace the mes-
sages sent up to that point.

You can play with your app in the Simulator and then switch back to the Text
Editor to launch the Debugger window — click the Show Debugger button in
the Debugger strip (refer to Figure 12-9), or choose Run➪Debugger, to bring
up the Debugger window.

19_9780470920503-ch12.indd 27319_9780470920503-ch12.indd 273 12/24/10 12:34 AM12/24/10 12:34 AM

274 Part IV: Building DeepThoughts

Figure 12-10:
The stack

in the
Debugger

strip in the
Text Editor.

Using the Debugger Window
After clicking the Show Debugger button in the Debugger strip, or choos-
ing Run➪Debugger (or pressing Ô+Shift+Y), the Debugger window appears.
(Even though the Debugger is officially running, you have to open the
Debugger window explicitly.) You can then click the Pause button along the
top of the Debugger window to stop execution, unless execution is already
stopped at a breakpoint. (The Restart button replaces the Pause button after
clicking Pause or stopping at a breakpoint, as shown in Figure 12-11.)

The Debugger window has everything the Text Editor has, but you can also
see your stack and the variables in scope at a glance.

Here’s what you see in the Debugger window:

 ✓ Toolbar: Offers buttons for controlling the program’s execution, includ-
ing Pause/Restart, Continue, Step Over, Step Into, and Step Out. (Restart
starts execution from the beginning, whereas Continue continues execu-
tion from a breakpoint.)

19_9780470920503-ch12.indd 27419_9780470920503-ch12.indd 274 12/24/10 12:34 AM12/24/10 12:34 AM

275 Chapter 12: Getting the Bugs Out

Figure 12-11:
The

Debugger
window.

Thread list Toolbar

PC

Status bar

Text Editor pane

Variable list

 ✓ Thread list: Shows the call stack of the current thread. For each function
or method call that your program makes, the Debugger stores informa-
tion about it in a stack frame. These stack frames are stored in the call
stack. When you pause execution at a breakpoint or when you click the
Pause button on the toolbar, Xcode displays the call stack for the cur-
rently running process in the Thread list and puts the most recent call
at the top. The pop-up menu above this view lets you select different
threads to view when debugging a multi-threaded application.

 ✓ Variable list: Shows information — such as name, type, and value —
about the variables for the selected stack frame. To see the contents of a
structured variable (including arrays and vectors) or an object, click the
triangle next to the variable.

 ✓ Text Editor pane: Displays the source code you’re debugging. When
you pause execution by clicking the Pause button in the Toolbar, the
Debugger highlights the line of source code where execution paused and
displays the PC red arrow indicator.

 ✓ Status bar: Displays the current status of the debugging session. For
example, in Figure 12-11, Xcode indicates that GDB (the GNU Source-
Level Debugger) is stopped at breakpoint 1.

19_9780470920503-ch12.indd 27519_9780470920503-ch12.indd 275 12/24/10 12:34 AM12/24/10 12:34 AM

276 Part IV: Building DeepThoughts

Your window may not look exactly like Figure 12-11 — that’s because Xcode
gives you lots of different ways to customize the look of the Debugger
window. You can, for example, choose Run➪Debugger Display from the main
menu and then choose Horizontal Layout or Vertical Layout to change the
window’s layout.

 You might want to choose Run➪Debugger Display➪Source and Disassembly
if you have a hankering for checking both the source code and the assembly
language (if you really care about assembly language); in that case, the Text
Editor pane divides down the center into two panes, with the source code on
the left and the assembly code on the right. The option I chose for Figure 12-11
is Source Only — so that only the source code appears in the Text Editor pane.

You can click the Step Into button in the Debugger window to go through
your code line by line. The Debugger window also gives you other options for
making your way through your program:

 ✓ Step Over gives you the opportunity to skip over a line of code.

 ✓ Step Into takes you step by step into a function or method in the current
line of code.

 ✓ Step Out takes you out of the current method.

 ✓ Continue tells the program to keep on with its execution.

 ✓ Restart restarts the program. (You were hoping maybe if you tried it
again it would work?)

Showing datatips for variables and objects
In the Debugger window, as shown in Figure 12-12, you can move your
pointer over an object or variable in the Text Editor pane to show its con-
tents in a datatip, and you can move your pointer over other disclosure tri-
angles to see even more information in the datatip. In Figure 12-12, I move the
pointer over fallingWords to show that it’s an NSObject, and then I move
the pointer over the triangle to reveal its class (NSObject) information.

 Expanding the view of objects not only helps you check variables, but also
checks messages sent to object reference instance variables. Objective-C,
unlike some other languages, allows you to send a message to a nil object
without generating a runtime error. If you do that, you should expect to subse-
quently see some sort of logic error because a message to a nil object simply
does nothing. But it’s possible that an object reference hasn’t been set, and
you’re sending the message into the ether. If you look at an object reference
instance variable and its value is 0x0, any messages to that object are simply

19_9780470920503-ch12.indd 27619_9780470920503-ch12.indd 276 12/24/10 12:34 AM12/24/10 12:34 AM

277 Chapter 12: Getting the Bugs Out

ignored. So when you get a logic error, the first thing you may want to check
is whether any of the object references you’re using have 0x0 as their values,
informing you that the reference was never initialized.

Figure 12-12:
Show the

contents of
an object or

variable.

As you can see, the Debugger can be really useful when your program isn’t
doing what you expect. For the blatant errors, the Debugger can show you
exactly what was going on when the error occurred. It provides you with a
trail of how you got to where you are, highlights the problem instruction, and
shows you your application’s variables and their values at that point.

What’s just as valuable is how the Debugger can help you with logic errors.
You may have mistakenly attached the slider interface object in Interface
Builder to theTextField rather than slider. Sending a message to nil is
not uncommon, especially when you’re making changes to the user interface
and forget to set up an outlet, for example. In such situations, the ability to
look at the object references can really help.

Using the Mini Debugger
The Mini Debugger is a floating window that provides debugging controls
similar to those of the Xcode Text Editor. It can make debugging a bit easier,
because you don’t have to switch back and forth between your running appli-
cation and your Xcode Project window and Debugging window.

19_9780470920503-ch12.indd 27719_9780470920503-ch12.indd 277 12/24/10 12:34 AM12/24/10 12:34 AM

278 Part IV: Building DeepThoughts

To show the Mini Debugger while running your program, choose Run➪Mini
Debugger. The Mini Debugger appears as shown in Figure 12-13, with buttons
to stop or pause the program, open the Xcode project, or activate or deacti-
vate breakpoints.

Figure 12-13:
Use the Mini

Debugger
to pause
program

execution
and check

out the
code.

After pausing or stopping the program (or reaching a breakpoint), the Mini
Debugger displays the same information you would see when debugging in
the Text Editor. As you can see in Figure 12-13, you can click the rightmost
pop-up menu along the top of the window to see the call stack.

Using the Console Application
The Console utility application, supplied with Mac OS X, lets you watch error
and status messages as they appear. If your computer appears to be stalled
or is acting in an unusual manner, Console might be producing information
that can help debug the problem. While the Xcode Debugger provides a
graphical interface for GDB (the GNU Source-Level Debugger), Console lets
you interact directly with GDB using a command line. You can type com-
mands using Console to perform simple debugging tasks, and you can include
code in your app to use NSLog statements to log messages to Console before
and after variables are set.

To open the Console window, choose Run➪Console. After building and run-
ning the Xcode project, the messages appear in the Console window, as you
can see in Figure 12-14.

19_9780470920503-ch12.indd 27819_9780470920503-ch12.indd 278 12/24/10 12:34 AM12/24/10 12:34 AM

279 Chapter 12: Getting the Bugs Out

Figure 12-14:
Use the
Console
window

to monitor
error and

status
messages.

You can use the Console window to see the commands that Xcode sends
to GDB or the Java command-line debugger, to actually send commands
directly to GDB or the Java command-line debugger, and to look at the debug-
ger output for those commands. To enter commands, click in the Console
window and type at the gdb or JavaBug prompt. To get help with GDB and
Java debugging commands, type help. (To get the gdb or JavaBug prompt,
the program you’re debugging must be paused.)

Using the Static Analyzer
Xcode offers the Build and Analyze feature (the Static Analyzer) that analyzes
your code for memory leaks. (Memory leaks are situations in which parts of
memory become unusable or hidden, or the app is unable to release memory
it has acquired. Memory leaks can cause apps to fail.) The results show up
like warnings and errors, with explanations of where and what the issue is.
You can also see the flow of control of the (potential) problem.

To show how this works, I deliberately created a memory leak in
DeepThoughtsAppDelegate. I copied the following line of code in
DeepThoughtsAppDelegate.h:

DeepThoughtsViewController *viewController;

I then added the following statement below the statement you see above,
changing viewController to viewController2:

DeepThoughtsViewController *viewController2;

And a few lines down, I did the same thing — I copied the @property state-
ment for viewController to make one for viewController 2:

19_9780470920503-ch12.indd 27919_9780470920503-ch12.indd 279 12/24/10 12:34 AM12/24/10 12:34 AM

280 Part IV: Building DeepThoughts

@property (nonatomic, retain) IBOutlet
DeepThoughtsViewController *viewController2;

Then, in DeepThoughtsAppDelegate.m, I added the following line of code
after setting up the view with the view controller:

DeepThoughtsViewController *viewController2 =
[DeepThoughtsViewController alloc];

Allocating a new object without doing anything with it is sure to cause a
memory leak warning.

To run the Static Analyzer, choose Build➪Build and Analyze. Sure enough,
the changes I made to the code cause the warning shown in Figure 12-15. I
get a warning (ignore the unused variable warning) with a little blue icon that
says

Potential leak of an object allocated on line 23 and
stored into ‘viewController2’

Figure 12-15:
The Static

Analyzer
warns about

a memory
leak.

19_9780470920503-ch12.indd 28019_9780470920503-ch12.indd 280 12/24/10 12:34 AM12/24/10 12:34 AM

281 Chapter 12: Getting the Bugs Out

If you click the little blue icon for the warning (refer to Figure 12-15), you get
a “trace” of what happened, as I show in Figure 12-16.

Figure 12-16:
The

expanded
Static

Analyzer
warning
showing

a trace
of what

happened.

First you get the following warning, which you can see by moving your
pointer over the blue arrow icon in the trace (as shown in Figure 12-16):

Method returns an Objective-C object with a +1 retain
count (owning reference)

Then, in the next line, if you move your pointer over the blue arrow icon as
shown in Figure 12-17, you can see this:

Object allocated on line 26 and stored into
‘viewController2’ is no longer referenced after
this point and has a retain count of +1 (object leaked)

 Notice that the results refer to line numbers. That’s why I made a point of
explaining how to turn on line numbers in Xcode back in Chapter 5.

19_9780470920503-ch12.indd 28119_9780470920503-ch12.indd 281 12/24/10 12:34 AM12/24/10 12:34 AM

282 Part IV: Building DeepThoughts

Figure 12-17:
The Static

Analyzer
uses line
numbers

in its
warnings.

As you know by now, memory management is a big deal on the iPad.

Before you attempt to get your app into the App Store or even run it on
anyone’s iPad, you need to make sure it’s behaving properly. By that I mean
not only delivering the promised functionality, but also avoiding the uninten-
tional misuse of iPad resources. Keep in mind that the iPad, as cool as it may
very well be, is nevertheless somewhat resource-constrained when it comes
to memory usage and battery life. Such restraints can have a direct effect on
what you can (and can’t) do in your application.

Now that you’ve meditated on DeepThoughts long enough to know the
secrets of iPad app development, you’re ready to tackle a truly industrial-
strength application, which is displayed in all its glittering detail in Part V.

19_9780470920503-ch12.indd 28219_9780470920503-ch12.indd 282 12/24/10 12:34 AM12/24/10 12:34 AM

Part V

Building an
Industrial-Strength

Application

20_9780470920503-pp05.indd 28320_9780470920503-pp05.indd 283 12/24/10 12:33 AM12/24/10 12:33 AM

In this part . . .

In this part, I explain the design of an application that
has big muscles: a context-driven user interface, lots of

functionality, Web access, an annotated custom map, and
an application architecture that you can use to build your
own version of The Next Great Thing.

 ✓ Chapter 13 takes you on a tour of how to start the
whole process of designing and then building
your app. You put yourself in the user’s shoes
and then take that understanding and transform it
into a program architecture — one you can actu-
ally implement.

 ✓ Chapter 14 introduces you to Split view control-
lers, popovers, and table views — the primary
ways that the user will discover all those neat
things your app can do for them.

 ✓ Chapter 15 helps you find your way with maps.
You find out about creating maps with
MKMapView, centering them, displaying a region,
and even pinpointing where you are.

 ✓ Chapter 16 shows you how to get to all that con-
tent that makes the iPad a superb user experi-
ence. You use data you’ve stored locally in your
application bundle as well as data you have on a
server someplace in the cloud (and want to save
for later use when the user is no longer online),
and you even display a Web page and allow a user
to navigate out into the Internet and then back
without ever leaving your app.

 ✓ Chapter 17 delves in to the Brave New world of
iPad app printing — courtesy of the new iOS 4.2.

 ✓ Chapter 18 takes a further look at split views,
showing how you can organize your content to
display in Master and Detail views.

 ✓ Chapter 19 pays more attention to the user expe-
rience. You find out how to save the state of the
application when the user quits and then restore
it when he (or she) returns.

20_9780470920503-pp05.indd 28420_9780470920503-pp05.indd 284 12/24/10 12:33 AM12/24/10 12:33 AM

Chapter 13

Designing Your Application
In This Chapter
▶ Deciding the real value your application delivers

▶ Making functionality usable

▶ Creating the program architecture

▶ Identifying the technology you will use

Although the iPad can do almost anything that the iPhone can do (except
the making calls stuff, and yeah, some models can use only Wi-Fi),

you’ll want to do certain things only on the iPad. (There are also some things
you’ll really prefer to do on the iPhone, but I’ll leave that for you to explore
on your own.)

In this chapter, I take you through an overview of the design cycle of a more
complex application (iPadTravel411), and I show you how to take an idea
that was developed for the iPhone and expand it to take advantage of the
iPad’s capabilities. Although I can’t develop the entire application within the
confines of this book, I show you how to take a subset of it and how to use
the iPad’s capabilities to implement it.

 I start this chapter by explaining the app itself. As I start presenting the
details, you may find things easier to follow if you first download the complete
app from my Web site at www.nealgoldstein.com, compile it, and then
play along with it during the discussion.

Defining the Problems
Innovation is usually born of frustration, and the iPadTravel411 project was
no exception. It just turns out that my frustration was linked to a trip to beau-
tiful Venice rather than, say, the vacuum cleaner doing a terrible job of pick-
ing up cat hair.

21_9780470920503-ch13.indd 28521_9780470920503-ch13.indd 285 12/24/10 12:33 AM12/24/10 12:33 AM

286 Part V: Building an Industrial-Strength Application

My wife and I were going to arrive late at night, and rather than trying to get
into Venice at that hour, we decided we’d stay at a hotel near the airport and
then go into Venice the next day. We were going to meet some friends who
were leaving the day after that, and we wanted to get a relatively early start
so we could spend the day with them.

I was a little concerned about the logistics. I thought we would have to go
back to the airport terminal from the hotel and then get on a water bus or
water taxi. Both the water taxi stand and the water bus stop are a distance
from the terminal, and that meant more time and more trudging about. The
water taxi was the fastest way, but very pricey (around $140 USD at the time).
The water bus was much cheaper but more confusing — and only ran once
an hour. It seemed like a major excursion.

My friends said, “Why not take a taxi or a bus?”

I said, “A bus to Venice — it’s an island the last time I checked.”

Okay, it is an island, but there’s a causeway running from the mainland to
Piazzale Roma, where you can then get a water bus or water taxi — or meet
your friends.

Although it’s more romantic to arrive by sea, it’s a lot easier by land. Having
been to Venice a couple times before, and considering our time constraints,
we opted for the land route.

Now, I’m sure that information was in a guidebook someplace, but it would
have taken a lot of work to dig it out; most guidebooks focus on attractions.
Also, guidebooks go out of date quickly; the one I had for Venice was already
two years old. Of course, I could have used the Internet before I left home
to find the information, but that can also be a real chore. And, as I like to
remember, “The great thing about the Internet is that you can find informa-
tion about anything — and some of it is even true.”

What I wanted was something that made it easier to travel by reducing all the
hassles — getting to and from a strange airport, getting around the city, get-
ting the best exchange rate, knowing how much I should tip in a restaurant —
that sort of thing. (Not too much to ask, right?)

Don’t get me wrong — I actually do a lot of research before I go someplace,
and often I have that information handy already. But I end up with lots of
paper because I usually don’t take a laptop with me on vacation; even when
I do, it’s terribly inconvenient to have to take it out on a bus or in an airline
terminal to find some information. And then there’s the challenge of finding a
Wi-Fi connection when you really need it.

I kept that idea in the back of my mind because at the time there was no real
solution.

21_9780470920503-ch13.indd 28621_9780470920503-ch13.indd 286 12/24/10 12:33 AM12/24/10 12:33 AM

287 Chapter 13: Designing Your Application

But then . . . enter the iPhone. After taking a look at the SDK, I realized I could
write an app (without too much real difficulty) to do everything I thought
would make traveling no more painful that a root canal. (Hey, my dentist
does wonderful things with Novocain and nitrous oxide these days.)

Although I initially developed this application for the iPhone, when the iPad
made its debut I realized that — for at least some parts of the application —
the iPad was an even better solution. So I started by simply trying to port
the application to the iPad. What I learned is valuable for anyone from the
I-never-developed-anything-before developer to someone who already has an
iPhone application in the App Store — so valuable, in fact, that I’m going to
highlight it here:

 The iPad is not simply a bigger iPhone, which means a simple Port may end up
being an unmitigated disaster.

So, even though the goal of the iPadTravel411 app will remain the same, I
take you through the process of designing the same solution to a user’s prob-
lem for the iPad. (If you’re curious about how I set up the original iPhone
app, get yourself a copy of iPhone Application Development For Dummies and
take a look at the MobileTravel411 and iPhoneTravel411 apps.) Much of the
stuff is similar, but the user experience is far different, given both the size of
the display as well as the available functionality in the SDK.

Categorizing the problems
and defining the solutions
On desktop or laptop machines, features are often categorized by function,
but given the way the iPad is designed to be used (as I describe in Chapter
1 and explain further in this chapter), categorizing by context makes more
sense. So after I settled on the information and functionality I needed when I
was traveling, I grouped things into the following contexts:

 ✓ Getting and using money: What is the country’s currency (including
denominations and coins), and what’s the best way to exchange my cur-
rency for it? I want to understand the costs of using credit cards versus
an ATM card, or exchanging at a bureau de change. I also want to be able
to understand how the dreaded VAT (value-added tax) really works.

 ✓ Getting to and from the airport: What choices do I really have when
it comes to things terminal? What are the costs, advantages, and
disadvantages — and logistics — of each? Do I have to buy a ticket in
advance? How do I find said ticket? What’s the schedule?

 ✓ Getting around the city: Same kind of pickle as getting to and from the
airport — what’s available and best for a traveler’s purposes? I once spent
several days in Barcelona before I realized there was a subway system.

21_9780470920503-ch13.indd 28721_9780470920503-ch13.indd 287 12/24/10 12:33 AM12/24/10 12:33 AM

288 Part V: Building an Industrial-Strength Application

 ✓ Seeing what’s happening right now in the city: Guidebooks are fine
for visiting the sights, and I might want to (some day) re-create one on
the iPad. But what I would like to know now is whether there’s anything
special happening when I’m in some particular place at some particular
time. Bastille Day in Paris can be fun if you know about the Bastille Day
parade, and less of a hassle if you know you can’t cross the Champs-
Élysées for a few hours.

 ✓ Knowing the practical day-to-day stuff: How do you make calls into,
out of, and within a given city? How much and when should I tip? What
is acceptable and unacceptable behavior? For example, that it’s consid-
ered impolite to eat or drink something while walking down the street in
Japan might not occur to someone from New York City.

 ✓ Staying safe: Being immediately informed of breaking news that could
make things unsafe — large demonstrations or terrorist attacks, for
example — would be high on my wish list. But even the more mundane
things like the “dangerous” neighborhoods are important. What should
you do in an emergency? A friend of mine had her passport stolen in
Prague — at times like that, it would be nice to have the locations and
phone numbers of embassies or consulates. This is stuff you hardly ever
need, but when you need it, you need it right away.

 ✓ What to do before I go: In the past, I’ve forgotten to call my cell phone
company before I leave home to get a roaming package and to notify my
credit card company that I’ll be out of the country or far from home, so
please, please don’t decline my hotel charge in Vladivostok. I also want
to be able to download all the information before I leave so I can look at
it on the plane, or as part of my strategy for avoiding roaming charges or
handling an unexpected lack of connections.

 ✓ Knowing where I am: In all of these situations, I also want to be able to
get my bearings by seeing where I am — and where I might need to get
to — on a map.

I also wanted to make the app easy to use for someone who isn’t intimately
involved with the design — and perhaps doesn’t immediately share my take
on the best way to organize the information. So, for each choice in the main
window, I wanted to be able to add a few words of explanation about what
each category contained.

All great ideas, but as I said, the important thing is to know how to make an
app actually fulfill the promise of all these great ideas. For that, you need some-
one to walk you through the design cycle of the application — and I’m nominat-
ing myself. Although you could use at least half a dozen models for the process
(I’m a recovering software development methodologist myself), the one I go
through here is pretty simple and is well suited for the iPad to boot.

21_9780470920503-ch13.indd 28821_9780470920503-ch13.indd 288 12/24/10 12:33 AM12/24/10 12:33 AM

289 Chapter 13: Designing Your Application

The Great Application Cycle of Life
Here goes:

 1. Defining the problems

 2. Categorizing the problems and defining the solutions

 3. Designing the user experience

 a. Leveraging the iPad’s strengths

 b. Seeing what you have to work with when it comes to the device

 c. Recognizing the constraints of the device

 4. Creating the program architecture

 a. Content views

 b. View controllers

 c. Models

 5. Writing the code (and testing it along the way)

 6. Doing it until you get it right

Of course, the actual analysis, design, and programming (not to mention test-
ing) process has a bit more to it than this — and coming up with the specifica-
tions and design definitely involve more than what you see in these few pages.
But from a process perspective, it’s pretty close to the real thing. It does give
you an idea of the questions you need to ask — and have answered — in order
to develop an iPad application.

A word of caution, though. Even though iPad apps are smaller and much
easier to get your head around than, say, a full-blown enterprise service-
oriented architecture, they come equipped with a unique set of challenges.
Between the iPad capabilities (which ironically become a kind of requirement
for creating a good app) and the high expectation of iPad users, you have
your hands full.

Designing the User Experience
Because you’ve already been through Steps 1 and 2 of my handy-dandy iPad
application development design cycle — see the previous section — what I
do next is talk about the user experience. After I’ve gone through all of that, I
show you how to develop a subset of the application (I call the resulting app
the iPadTravel411) in Chapters 14 through 17.

21_9780470920503-ch13.indd 28921_9780470920503-ch13.indd 289 12/24/10 12:33 AM12/24/10 12:33 AM

290 Part V: Building an Industrial-Strength Application

To be honest, I actually started the process of defining the user experience
process earlier in the chapter when I defined the kinds of contexts I was
interested in and the information and capabilities I wanted in each of them.
(That’s yet more proof that it’s hard to compartmentalize experience into
discrete steps.) But to get the actual design ball of my application rolling, I
started out by thinking a bit more about what else (besides the features, of
course) I wanted from the application — in other words, I started thinking
about what the experience of using the application should be like.

 To further the process, you would actually want to model the user work-
flow, so to speak — how the user would want to use the information and
capabilities you could provide in each of those contexts I identified in the
“Categorizing the problems and defining the solutions” section, earlier in this
chapter.

Although sketching out such a workflow completely is beyond the scope of
this book, I do want to explain how knowing what you have to work with (the
iPad’s strengths and features) as well knowing what the device won’t let you
do (or, at least, not do without a fight) can help you define what your (and
the user’s) options are. To start that process of knowledge acquisition, I want
to review some of the things that the iPad is really good at.

Leveraging the iPad’s strengths
Although I’ve had a lot of experience designing, developing, and writing
about iPhone applications, soon after the iPad was announced I began to real-
ize that — contrary to what many of the pundits have said — the device isn’t
simply a larger iPhone or iPod touch. In fact, even though iPhone/iPod touch
applications could be ported to the iPad without too much trouble, in order
to offer real value on that device, many would have to be redesigned. (In fact,
some iPhone/iPod touch applications weren’t even relevant for the iPad.)

Although the iPad shares some features with the iPhone — portability, ease
of use and convenience, its awareness of your location, and its ability to con-
nect seamlessly to the Internet from most places — it is also significantly dif-
ferent. Two differences jumped out at me:

 ✓ The iPad is not as compact as an iPhone, for example, so the user is less
likely to have the device with them all of the time, as they would with a
cellphone or smartphone.

 ✓ The screen size is great for displaying lots and lots of content — not one
of the iPhone’s strengths, if I’m being totally honest.

21_9780470920503-ch13.indd 29021_9780470920503-ch13.indd 290 12/24/10 12:33 AM12/24/10 12:33 AM

291 Chapter 13: Designing Your Application

What I realized is that these two differences, when put together, provide for
the ability to allow the user to explore whatever interests them in a more inti-
mate or personal way. So rather than a device that was ideal for short, ad hoc
tasks, what you have is a device well-suited for longer-term, more intensive
exploration of a subject.

Not that you can’t do that on an iPhone; it’s just that the iPhone is better for
really short-term tasks that require no more than a limited amount of specific
information that can be delivered on the small screen. In that sense, iPhones
and other small-screen devices are all about execution as opposed to plan-
ning and/or immersion in a subject. Which is, on the other hand, the strong
suit for the large-screen iPad.

So what do you get when you combine the iPad’s form factor, touch interface,
ease of use, and portability with its ability to beautifully display rich content,
its awareness of your location, and its ability to connect seamlessly to the
Internet from most places? You get a more intimate device with a better way
to access information — one that allows the user to explore topics in the way
they want to and one on which you can create a more natural interface that’s
consistent with the way the user wants to work.

Just think about it: The iPad is meant to be able to be used in any orientation,
and the ability to flip the device over to share it with someone is a natural
extension of that.

It starts with the last thing I mentioned in a previous paragraph: creating
a user experience that’s based on the way people naturally want to work.
Among other things, you become the champion of relevance, searching out
and destroying anything that isn’t relevant to what the user is doing while he
or she is using a particular part of your application.

Knowing the location of the user enables you to further refine the context
by including the actual physical location and adding that to the crucial “rel-
evance” filter. If you’re in London, the iPad is well aware of that fact, meaning
your application can “ask” the user whether he or she wants to use London
as a filter for relevant information.

The idea is to focus on delivering rich content, understanding that the qual-
ity of information has to be better than the alternative — what you get by
using the application has to have more value than alternative ways of doing
the same thing. I can find airport transportation in a guidebook, but it’s not
up to date. I can get foreign exchange information from a bureau de change,
but unless I know the bank rate, I don’t know whether I’m being ripped off. I
can get restaurant information from a newspaper, but I don’t know whether
the restaurant has subsequently changed hours or is closed for vacation.
If the application can consistently provide me with better, more up-to-date

21_9780470920503-ch13.indd 29121_9780470920503-ch13.indd 291 12/24/10 12:33 AM12/24/10 12:33 AM

292 Part V: Building an Industrial-Strength Application

information, it’s the kind of application that’s tailor-made for a context-driven
design. This sort of design is possible on a mobile device because the device
can access the Internet, which allows you to provide real-time, up-to-date
information. In addition, it enables you to transcend the CPU and memory
limitations of the iPad by offloading processing and data storage out to a
server in the cloud.

What you have to work with
Okay, it’s time to check the windows situation. On the Mac (or any other
PC) you have lots of windows, and lots of different kinds of windows. On
the iPhone, on the other hand, you have a single window with an occasional
action sheet or alert.

The iPad falls somewhere in between the superabundant and the almost non-
existent. You have the following in your bag of tricks:

 ✓ Full-screen views

 ✓ Split views

 ✓ Popover views

 ✓ Controls, less than full-screen modal dialogs, action sheets, and alerts

Full-screen views
On the iPad, you have the luxury of a large 9.7-inch (diagonal), LED-backlit,
glossy, widescreen, Multi-Touch display with 1,024 x 768-pixel resolution at
132 pixels per inch.

Figure 13-1 shows one of the things you could fill it with.

Although one of the constraints on your application design for the iPhone
and other mobile devices is the small screen, ironically the large screen on
the iPad can also be thought of as a constraint. If you don’t fill it (correctly) it
can look really bad.

Split views
The split view, as you can see in Figure 13-2, was introduced in version 3.2 of
what is now called the iOS SDK and is an iPad-only feature. You’ll definitely
be taking advantage of split views as you build the subset of iPadTravel411.

The split view enables you to display two views side by side. In this example,
the user has an opportunity to navigate to a particular part of the application
while looking at a map of London. In Figure 13-2, the view on one side of the
split is a Navigation view, whereas the view on the other side is a Content
view (I get to that next), but you can display anything you’d like.

21_9780470920503-ch13.indd 29221_9780470920503-ch13.indd 292 12/24/10 12:33 AM12/24/10 12:33 AM

293 Chapter 13: Designing Your Application

Figure 13-1:
Nice view.

Popovers
Although split views work well for landscape mode, in portrait mode the left
side disappears. Instead of a split view, you can create a Popover view that
displays the same information that you had in the split view (in Figure 13-2 for
example), or actually anything else you would like. You can see an example
of that in Figure 13-3, where you have a nice little Map view of Paddington
Station in London in the background and instructions on how to get there from
Heathrow airport on the Heathrow Express making up the Popover view.

21_9780470920503-ch13.indd 29321_9780470920503-ch13.indd 293 12/24/10 12:33 AM12/24/10 12:33 AM

294 Part V: Building an Industrial-Strength Application

Figure 13-2:
Split view.

Controls, less than full-screen modal dialogs, action sheets, and alerts
Controls, small modal dialogs, action sheets, alerts — all of these items let
the user navigate the application. Controls allow the user to control the
application — determining what they want to see, for example, or even let-
ting them enter data. (You worked with controls when you developed the
DeepThoughts app back in Part IV of this book.) In Chapter 19, I introduce
you to the control you see in Figure 13-3. This fellow is known as a segmented
control, and it enables the user to choose the transportation information he
or she wants to see in the Popover view — Train, Taxi, or Other.

Device constraints
Although there are a host of possibilities on the iPad, you also need to live
within some constraints. This means that you not only have to take into
account the user context when designing an application, but you also need to
take into account the device context.

21_9780470920503-ch13.indd 29421_9780470920503-ch13.indd 294 12/24/10 12:33 AM12/24/10 12:33 AM

295 Chapter 13: Designing Your Application

Figure 13-3:
A Popover

view.

After all, the device is also a context for the user. He or she, based on individ-
ual experience, expects applications to behave in a certain way. As I explain
in Chapter 1, this expectation provides another perspective on why staying
consistent with the user interface guidelines is so important.

If you want to maximize the user experience, you have to take the following
into account (I know I went through these in Chapter 1, but remembering
them is critical):

21_9780470920503-ch13.indd 29521_9780470920503-ch13.indd 295 12/24/10 12:33 AM12/24/10 12:33 AM

296 Part V: Building an Industrial-Strength Application

 ✓ Filling screen real estate: On the iPhone, you may have had the problem
of too much content. Although scrolling is built in to an iPhone and is
relatively easy to do, folks don’t particularly like to scroll on an iPhone,
meaning you should require as little scrolling as possible, especially
on navigation pages and on the main page. On the iPad, the opposite
situation — not enough content — may end up being a real challenge.
You need to fill that big, beautiful screen with rich, useful content. This
means that many of the techniques you used on the iPhone to minimize
screen displays work against you on the iPad. If you flip ahead to Figure
13-7 for example, you can see what happened when I tried to do a simple
port of my app. There’s no reason to devote all of the screen space to
this view. I should fill it up with useful information for the user — other
than what he or she can do next.

 ✓ Limitations of a touch-based interface: Although the Multi-Touch inter-
face is an iPad feature, it brings with it limitations as well. Fingers aren’t
as precise as a mouse pointer, and user interface elements need to be
large enough and spaced far enough apart so that the user’s fingers can
find their way around the interface comfortably. You also can do only so
much with fingers. There are definitely fewer possibilities using fingers
than when using the combination of multi-button mouse and keyboard.
Even though the iPad does offer a “real” keyboard option, for most appli-
cations you’ll want to take advantage of the touch-based interface.

 ✓ Limited computer power, memory, and battery life: As an application
designer for the iPad, you have to keep practical issues like power and
memory limitations in mind. Although the iPad definitely has more going
for it in these matters than the iPhone, you still need to be realistic
about what it has under the hood.

 ✓ Connection limitations: There’s always a possibility that the user may
be out of range, or on a plane, or has decided not to pay exorbitant
roaming fees, or is using an iPad model that doesn’t have Internet access
except via Wi-Fi. You need to account for that possibility in your applica-
tion and preserve as much functionality as possible. This usually means
allowing the user to download and use the current real-time information,
where applicable.

Coming up with a final design
After carefully thinking about all of the things I wanted the app to be able to
do as well as meditating on the possibilities available to me on the iPad, and
the limitations of the device (and a few glasses of wine with my partners in
crime), the final user interface I came up with looks like Figure 13-4.

21_9780470920503-ch13.indd 29621_9780470920503-ch13.indd 296 12/24/10 12:33 AM12/24/10 12:33 AM

297 Chapter 13: Designing Your Application

Figure 13-4:
The full

application.

In Figure 13-5, you can see the subset of features that I show you how to
implement in Chapters 14 through 19. I chose this subset because it gives me
the opportunity to show you the most how-to-do-that information without it
being overwhelming.

 Part of making the app easy to use involves giving users a way to set their
preferences for how the app should work. In Figure 13-6, you can see the
iPadTravel411 Settings view. This setting allows the user to specify that he
or she wants to work in a stored data mode — using previously stored data,
rather than the current real-time version that would require Internet access.
The idea is to download the information the user needs before he or she
leaves the safe world of Wi-Fi. This is a requirement for iPad models without
3G, and a necessity for 3G models when the user is abroad and he or she
wants to avoid data roaming charges and thus be able to afford food other
than ramen noodles on the trip.

21_9780470920503-ch13.indd 29721_9780470920503-ch13.indd 297 12/24/10 12:33 AM12/24/10 12:33 AM

298 Part V: Building an Industrial-Strength Application

Figure 13-5:
Your user-

friendly
subset.

Figure 13-6:
Use Stored

Data
preference.

21_9780470920503-ch13.indd 29821_9780470920503-ch13.indd 298 12/24/10 12:33 AM12/24/10 12:33 AM

299 Chapter 13: Designing Your Application

Creating the Program Architecture
After you’ve come up with a user interface capable of delivering the kind of
the user experience you’ve defined, you need to map that onto a program
architecture.

Keeping things at a basic level, you can think of the iPadTravel411 applica-
tion architecture as being made up of the following:

 ✓ Models: Model objects encapsulate the logic and (data) content of the
application. (You may remember that there was no model object in the
app DeepThoughts from Part IV, per se.) For iPadTravel411, I show you
how to design, implement, and use model objects.

 ✓ Views: Views present the user experience; you have to decide what
information to display and how to display it. In the DeepThoughts appli-
cation, there was a Content view and a Modal view with controls as sub-
views. Now, with the iPadTravel411 app, you’re going to be working with
a Navigation view and several Content views. You’ll also want to add a
toolbar (control) in one set of views to allow the user to specify which
type of airport transportation he or she would like information about:
train, taxi, or other.

 ✓ Controllers: (They’re known as view controllers in the iOS SDK.)
Controllers manage the user experience. They connect the views that
present the user experience with the models that provide the necessary
content. In addition (as you’ll see), controllers also manage the way the
user navigates the application.

No big surprises here — especially because the MVC model (Model-View-
Controller) is pretty much the basis for all iPad application development
projects. The trick here is coming up with just the right views, controllers,
and model objects to get your project off the ground. Within the require-
ments I spell out in the “Designing the User Experience” section earlier in the
chapter, I came up with the elements highlighted in the next few sections.

I’m going to start with the views because they determine the functionality
and information available in a given context — being at an airport and need-
ing to get into the city, for example.

21_9780470920503-ch13.indd 29921_9780470920503-ch13.indd 299 12/24/10 12:33 AM12/24/10 12:33 AM

300 Part V: Building an Industrial-Strength Application

Views
Views offer the application’s face to the world. They enable a user to

 ✓ See content.

 ✓ Navigate the application.

 ✓ Provide input into the application (both instructions and data) through
controls.

Views can be categorized even further, as the next sections make clear.

Content views
Content views display the information the user wants — show me where I am
on a map, or tell me the best way to get from Heathrow Airport to London.

As shown earlier in the chapter, the view in Figure 13-1, the view on the
right side of Figure 13-2, and both views in Figure 13-3 are Content views, for
example.

As I explain in Chapter 7, there are several kinds of views you can use on the
iPad to display the various kinds of information you want to provide your
users. In Chapters 14 through 19, I show you how to use the following view
classes that come with the SDK:

 ✓ UIWebView

 ✓ MKMapView

 ✓ UIImageView

For now, I just want to highlight some of the main features of each view class.

UIWebView
UIWebView is especially good for displaying two specific kinds of content:
text-based formatted data and Web content.

Highlighting text-based formatted data in this context may have come as a
bit of a surprise, but Web views make it easy to access data from a central
repository on the Internet. (Client-server is alive and well!) Because some of
what I want to do needs to be updated regularly — if I want the current price
and schedule of the Heathrow Express, for example, data from last year (or
even last week) may not help me — being able to grab the most up-to-date
information from the Web is a definite plus. I also want the most current
information about what’s happening in the city I plan to visit.

21_9780470920503-ch13.indd 30021_9780470920503-ch13.indd 300 12/24/10 12:33 AM12/24/10 12:33 AM

301 Chapter 13: Designing Your Application

As for other benefits of Web views, keep in mind that real-time access isn’t
always necessary — sometimes it’s perfectly fine to store some data on the
iPad (and you will). It turns out that Web views can easily display formatted
data that’s locally stored — very handy. For example, the basics of foreign
exchange are what they are — they’re not going to change from today to
tomorrow. That means the user doesn’t need up-to-the-minute information on
that particular topic.

The fact that UIWebView is great at displaying Web content should come
as no surprise. If users want more information on the Heathrow Express,
they can get to the Heathrow Express Web site by simply tapping a link.
Web views allow you to manage the navigation out from your app, on to the
Internet, back and forward in the history of Web pages, and then back to the
originating view, without ever leaving the app.

MKMapView
MKMapView enables you to easily display maps similar to the one provided
by the iPad’s own Maps application. You use this class to display map infor-
mation and to manipulate whatever gets displayed on the map from your
application. You can center the map on a given coordinate, specify the size of
the area you want to display, and annotate the map with custom information.

UIImageView
UIImageView allows you to display either a single image or animate a series
of images. For animating the images, the UIImageView class provides con-
trols to set the duration and frequency of the animation. You can also start
and stop the animation freely.

In Chapter 9 you’ve already used UIImageView in the DeepThoughts appli-
cation. In iPadTravel411, you can use Image views in a number of ways —
displaying pictures of what you’re talking about comes to mind. In the case
of the subset of the application that you develop in Chapters 14 through
19, you’ll display a graphic image that allows the user to navigate the maze
known as Heathrow Airport, as you can see in Figure 13-3.

It turns out that there’s one more view that you can use to display content:
UITableView. But because you’ll primarily be using it for navigation, I cover
it in the following section.

Navigation views
Because of the screen real estate on the iPhone, most applications were
designed around a Main view (which was primarily navigation based) and
additional views (which could be content or navigational or even both) that
were swapped in and out.

21_9780470920503-ch13.indd 30121_9780470920503-ch13.indd 301 12/24/10 12:33 AM12/24/10 12:33 AM

302 Part V: Building an Industrial-Strength Application

In the iPad, the need for a main Navigation view disappears; in fact, having
one would probably result in a pretty bad application interface. After all, who
wants to see something like Figure 13-7 with all that dull and empty space
when it would be so much nicer to fill some of that valuable space with some
actual content?

On the other hand, offering some kind of navigation help, as shown earlier in
Figure 13-2, can be useful to a user trying to make her way through your app.
The help you see in Figure 13-2 is provided by UITableView.

Figure 13-7:
Don’t do

this!

21_9780470920503-ch13.indd 30221_9780470920503-ch13.indd 302 12/24/10 12:33 AM12/24/10 12:33 AM

303 Chapter 13: Designing Your Application

An instance of UITableView (or simply, a Table view) is a means for display-
ing and editing hierarchical lists of information. As such, they’re used a lot in
iPad applications to do two specific things:

 ✓ Display hierarchal data: Think of the iPod application, which gives you
a list of albums, and if you select one, a list of songs.

 ✓ Act as a table of contents (or for my purposes, contexts): Now think of
the Settings application, which gives you a list of applications that you
can set preferences for. When you select one of those applications from
the list, it takes you to a view that lists what preferences you’re able to
set as well as a way to set them.

You find out all about Table views — and using them as well — in Chapter 14.

Controls, less than full-screen modal dialogs, action sheets, and alerts
Controls are things the user can manipulate in order to “tell” the application
what he or she wants it to do. Controls are derived from UIControl. They
can operate on the data or even provide navigations. You’re already quite
familiar with controls from the DeepThoughts app. The controls you see on
the iPad — and the ones you used in the DeepThoughts application — are
views as well, and, as I explain in Chapter 7, are a subclass of UIControl.

In the design of the iPadTravel411 app, for example, you would use a control
to allow a user to enter a dollar value and then display the amount in British
pounds.

Although I won’t be showing you that particular trick, I will be showing you
how to use a UISegmentedControl to allow the user to choose the trans-
portation information he or she wants to see in the Popover view — Train,
Taxi, or Other. (You can see that segmented control in the Popover view
back in Figure 13-3.) This particular control resides in a toolbar, which can
also hold buttons, but the segmented control can actually be placed any-
where in a view.

Modal dialogs (those windows that display a dialog requiring the user to do
something before he can get on with whatever he’s doing in the app) are also
views, but what makes them special are their view controllers. Action sheets
and alerts are also views, and the same is true of them. I show you how to
use an alert in Chapter 19, and action sheets are very similar.

21_9780470920503-ch13.indd 30321_9780470920503-ch13.indd 303 12/24/10 12:33 AM12/24/10 12:33 AM

304 Part V: Building an Industrial-Strength Application

View controllers
View controllers are responsible not only for providing the data for a view to
display, but also for responding to user input and navigation requests.

They connect the model, which owns the data, with the view that displays
the data and receives user input. The view controllers you’ll use are all going
to be derived from (a subclass of) UIViewController. You’ll create custom
view controllers to manage the data displayed in your Map view and Web
views by subclassing UIViewController. These view controller subclasses
will also implement delegate protocols as needed.

In addition, you’ll be subclassing UITableViewController to manage
the data displayed — take a look at the left side view in Figure 13-4 —
as well as any user selection in a Table view, and create instances of
UISplitViewController and UIPopoverController to manage the split
view you see in Figure 13-2 and the Popover view in Figure 13-3, respectively.

Models
Although I could write a book on model design (in fact, I’ve written a couple,
not to mention an Apple video — but that’s another story), I want to concen-
trate on a couple things now to keep you focused.

The models own the data and the application logic. In the iPadTravel411
application, for example, a model object would convert U.S. dollars to
pounds (or any other currency) and vice versa. This kind of model is closely
tied to the functionality of the view it supports. The How Many Zimbabwean
Dollars Can I Get For $2.75 (US) view requires a model that can compute
exchange rates, and here’s where the real-world objects associated with
object-oriented programming come into play. In the full-blown iPadTravel411
app, I have a Currency (model) object that knows how to compute exchange
rates, and I have a VAT (value-added tax) object that does something similar.
So for each view like those two, I create a model object.

You have a couple of options when it comes to creating the model
objects needed by the view controllers. One way is to have the view
controllers themselves create the ones they’ll use. For example, the
AirportController would create the Airport object, and so on.

Although this does work, and I’ve actually done that in past versions, I’d
like you to consider a different approach that results in a more extensible
program. This approach is based upon creating a single model class that pro-
vides an interface to the view controllers, hiding from them any knowledge of
how the model is constructed as well as which specific objects make up the
model. (I explain this whole process in detail in Objective-C For Dummies, so if
you’re curious, you might want to pick up a copy of that book.)

21_9780470920503-ch13.indd 30421_9780470920503-ch13.indd 304 12/24/10 12:33 AM12/24/10 12:33 AM

305 Chapter 13: Designing Your Application

One of the advantages of the MVC design pattern I explain in Chapter 2 is that
it allows you to separate these three groups — the model, the view, the con-
troller — in your application and work on them separately. If each group has
a well-defined interface, it encapsulates many of the kinds of changes that are
often made so that they don’t affect the other groups. This is especially true
of the model and view controller relationship.

If the view controllers have minimal knowledge about the model, you can
change the model objects with minor impact on the view controllers.

As I said, what makes this possible is a well-defined interface. In Chapters 14
through 19, you create such a well-defined interface between the model and
the controllers by using a technique called composition, which is a useful way
to create interfaces.

Composition uses individual objects to carry out the roles and responsibili-
ties declared in the model interface, so you don’t need to have all the func-
tionality in one bloated object. But it makes things easy to change by hiding
those objects from the other objects that really end up using them. I’m a big
fan of composition because it’s another way to hide what’s really going on
behind the curtain. It keeps the objects that use the composite object igno-
rant of the objects the composite object uses and actually makes the compo-
nents ignorant of each other, allowing you to switch components in and out
at will.

The Destination class is going to be the basis for such an architecture, and
even though I don’t fully implement it here, Chapters 14 through 19 should
give you enough background so you can understand the structure and have
no trouble extending it on your own.

When it comes to the various Content views you need for the iPadTravel411,
some of them clearly have more complex data requirements than others.
For example, when transportation data is needed, if the user is in a real-time
mode (that is, not using stored data), the data is downloaded from a server
and then stored in file on the device. When the user has specified the stored
data mode in his preferences, the data that was previously saved in the file
is used. In a complex case like this, Destination creates and uses a model
object (in this case, Airport), encapsulating the knowledge of what objects
make up the model from the object that uses it. In less complex situations,
the Destination object manages the data itself.

All the model objects are of a subclass NSObject, because NSObject pro-
vides the basic interface to the runtime system. It already has methods for
allocation, initialization, memory management, introspection (what class
am I?), encoding and decoding (which makes it quite easy to save objects as
“objects”), message dispatch, and a host of other equally obscure methods
that I don’t get into but that are required for objects to be able to behave like
they’re expected to behave in an iOS/Objective-C world.

21_9780470920503-ch13.indd 30521_9780470920503-ch13.indd 305 12/24/10 12:33 AM12/24/10 12:33 AM

306 Part V: Building an Industrial-Strength Application

What I’m going to do in the iPadTravel411 application is actually have you
create a model interface object and several model objects and view control-
lers to illustrate what you need to know about the model, view, and (view)
controller relationship, how to access and display data stored locally or on
a server, as well as how to simply display a Web site. That will be enough to
keep you busy for a while.

Stored data mode, saving
state, and localization
By using the application design I’ve described, adding all the features I men-
tion in this section’s little heading is easy; I explain them as I work through
the implementation in Chapters 14 and 19. Although I don’t dig too deeply
into localization in this book, I show you how to build your application so
that you can easily include that handy feature in your app.

Writing the Code
For me, writing the code is the fun part. I’ve been known to start working at
5 a.m. and quit at 2 a.m. the next morning because I was having so much fun.
I help you have that kind of fun in Chapters 14 through19.

The iterative nature of the process
If there’s one thing I can guarantee about
development, it’s that nobody gets it right the
first time. Although object-oriented design and
development are in themselves fun intellectual
exercises (at least for some folks), they’re also
very valuable. An object-oriented program is
relatively easier to modify and extend, not just
during initial development, but also over time
from version to version. (Actually, “initial devel-
opment” and “version updating” are the same
thing; they differ only by a period of rest and
vacation between them.)

The design of my iPadTravel411 application
evolved over time, as I learned the capabilities
and intricacies of the platform and the impact
of my design decisions. What I’ve tried to do in
this chapter, and the ones following, is to help
you avoid (at least most of) the blind alleys I
stumbled down while developing my first appli-
cation. So get ready for a stumble-free experi-
ence. On to Chapters 14 through 19.

21_9780470920503-ch13.indd 30621_9780470920503-ch13.indd 306 12/24/10 12:33 AM12/24/10 12:33 AM

Chapter 14

Working with Split View
Controllers and the Master View

In This Chapter
▶ Working with Split view controllers

▶ Checking out the versatile Table view

▶ Making the table look good

▶ Ensuring that your application is usable worldwide

▶ Peeking behind the Table view screen

▶ Using model objects

Views are the user’s window into your application; they are the gateway
to the user’s experience of your app. Their associated view controllers

manage the user experience by providing the data displayed in the view, as
well as by enabling user interaction.

My running example here is the iPadTravel411 application described in
Chapter 13. Space prohibits dotting every i and crossing every t in imple-
menting the application, but I can show you how to use the technology you
need so you can do the detailed work on your own. (In order to examine
memory management for example, you’ll have to look in the code listings
themselves.) You’ll come across places where I’ll suggest better (or alterna-
tive) ways to do things or ways to extend the application that space does not
permit me to explain — things I’ll leave up to you to implement. And even
though I don’t have the complete listings in this book, copies are available on
my Web site at www.nealgoldstein.com.

Now, back in Chapter 13 I show you a screen shot of the iPadTravel411 appli-
cation with a Table view — acting as a Navigation view on the left side (called
the Master view) — and a Map view on the right side (called the Detail view).
These two views make up the views in a Split view controller.

22_9780470920503-ch14.indd 30722_9780470920503-ch14.indd 307 12/24/10 12:33 AM12/24/10 12:33 AM

308 Part V: Building an Industrial-Strength Application

In this chapter, you get a closer look at both Split view controllers and the
iPadTravel411 Master view — the view that allows the user to navigate the
application — as well as the view controller that enables it. I show you how
use a Table view as the Master view in a Split view controller.

In the chapters that follow, I show you how to implement the Detail views
that you set up to deliver the content of your application — stuff like maps,
what you need to know about currency, or views that let you check on the
weather in London, Heathrow, or Greenwich — a few other things as well.

My advice to you: Pay careful attention to the Split view controller and the
Table view. They are both very powerful classes that you’ll use extensively in
your apps. The Split view controller allows you to first display the Table view in
landscape mode and then, when the user has turned the iPad to portrait mode,
take the same Table view and display it in a popover window. (Neat.) The Table
view is one of the basic views used in iPad and iPhone applications — the Mail
and iPod applications come quickly to mind.

The Split View Controller
The UISplitViewController class is a view controller that simply man-
ages the presentation of two side-by-side view controllers — it is, in this
respect, a container controller. Using this class, you create a view controller
on the left (the Master view, as I call it), which presents a list of items, and
another view controller on the right, which presents the details, or content,
of the selected item (the Detail view, as I call it).

 The UISplitViewController class is what makes it possible for the
iPadTravel411 app to look the way it looks in the upcoming Figure 14-7.

After you create and initialize a UISplitViewController object, you
assign two view controllers to it by using the viewController property.
The Split view controller has no interface — its job is to coordinate the pre-
sentation of its two view controllers and to manage the transitions between
different orientations.

What’s more, the Split view controller doesn’t manage the communication
between the two view controllers you assign to it. It’s your responsibility to
determine the best way to do that. I show you one way in this chapter.

To manage transitions between orientations, the Split view controller not
only takes care of the mechanics of the transition, but also changes the dis-
play to effectively accommodate the orientation. In a landscape orientation,
you can see both view controllers’ views side by side. When the Split view
controller rotates between portrait and landscape orientations, however, it

22_9780470920503-ch14.indd 30822_9780470920503-ch14.indd 308 12/24/10 12:33 AM12/24/10 12:33 AM

309 Chapter 14: Working with Split View Controllers and the Master View

can either hide or show the first view controller (the Master view control-
ler by definition) in its array of view controllers. When the view controller is
hidden, you can add a button to the toolbar of the remaining view controller
that will display the hidden view controller in a popover.

The adding of a button is implemented in a delegate protocol. The popover
sends its delegates messages to coordinate the display of a popover with the
hidden view controller — the methods of this protocol are designed to be
invoked at the right time so that you can add and remove the button.

To make all of this happen, fire up Xcode and officially launch the
iPadTravel411 project. (If you need a refresher on how to set up a project
in Xcode, take another look at Chapter 4.) As you can see in Figure 14-1, you
need to go with a Split View-based Application template. Also be sure that the
Use Core Data for Storage check box is not selected.

When you select Choose, you see a standard Save sheet. I saved the project
as iPadTravel411 in a folder on my desktop.

Figure 14-1:
The Split

View-based
Application

template for
an Xcode

project.

You see your new project’s Groups & Files list on the left side of the Xcode
Project window.

If you were to compile and run this project as-is, what you would see is in
Figure 14-2.

22_9780470920503-ch14.indd 30922_9780470920503-ch14.indd 309 12/24/10 12:33 AM12/24/10 12:33 AM

310 Part V: Building an Industrial-Strength Application

 Your new project will compile and then run on the device by default. You may
want to change that default to Simulator in the Overview menu. If you do want
to run the app on your iPad at this point, you might want to review Chapter 12
to refresh your memory about iPad provisioning.

Figure 14-2:
The app in
landscape

mode.

While still having a ways to go, this template does provide exactly what we’re
looking for in our application. On one side is a Navigation view (the Master
view), and on the other side a Content view (the Detail view). If you were to
rotate the iPad, as you can see in Figure 14-3, the Navigation view goes away,
but there’s a nice button there to get it back. (See Figure 14-4.)

As you can see, this is exactly the “infrastructure” needed for this app — all
that with the press of a button.

Although the template provides almost everything you need, in this version
of the SDK, for some reason, it does not include a stub for application
DidEnterBackground. I explain in Chapter 19 that you’re going to need to
use the applicationDidEnterBackground method to put things on hold
when your application goes into the background and I’ll have you add that
method there.

22_9780470920503-ch14.indd 31022_9780470920503-ch14.indd 310 12/24/10 12:33 AM12/24/10 12:33 AM

311 Chapter 14: Working with Split View Controllers and the Master View

Figure 14-3:
In portrait

mode with
a button

to display
the hidden
Navigation

view.

Click here to see the Navigation view.

Now, of course, comes the hard part: actually adding all the content. Go
ahead and start out with the Navigation view — a Table view, in this case —
on the left side of the Split view controller, but before you do, I want to
explain how all this works.

As you can see, this is exactly the “infrastructure” needed for this app.

As I mention earlier, after you create and initialize a
UISplitViewController object, you assign two view controllers to it.
Fortunately, that’s done for you in the MainWindow.xib file created by
the template. To see what is in the file, open the disclosure triangle next to
Resources in the Groups & Files. Note: For your Interface Builder to look
like what I’m showing you in Figure 14-5, you’ll have to choose List view (the
horizontal parallel lines) in the View Mode control in the MainWindow.xib
window and open the disclosure triangles.

22_9780470920503-ch14.indd 31122_9780470920503-ch14.indd 311 12/24/10 12:33 AM12/24/10 12:33 AM

312 Part V: Building an Industrial-Strength Application

Figure 14-4:
Tap the

button and
voilà — the

popover
appears.

As you can see in Figure 14-5, there are two view controllers. The
RootViewController (which is the Master view and the view the user will
use to navigate the application) and the DetailViewController that will
be responsible for displaying much (although not all) of the content. (You’ll
also see a Navigation Controller and a Navigation Bar; I explain both of those
in Chapter 18.)

In the MainWindow.xib (see Figure 14-5), double-click the Split View
Controller icon.

The window you see in Figure 14-6 makes an appearance.

22_9780470920503-ch14.indd 31222_9780470920503-ch14.indd 312 12/24/10 12:33 AM12/24/10 12:33 AM

313 Chapter 14: Working with Split View Controllers and the Master View

Notice how RootViewController has found a new home in the Master view
and that the view in the Detail view is “Loaded From DetailView”. I’d like
you to put the Detail view away for now, but I promise you’ll get back to it soon.

Before you get into Table views — all in good time, my friend — I want to
finish this discussion by explaining how the Split view controller implements
that nice popover you see earlier in Figure 14-4.

Figure 14-5:
The Main-

Window.xib
for the iPad-

Travel411
app.

Figure 14-6:
The Split

view con-
troller in all

its glory.

22_9780470920503-ch14.indd 31322_9780470920503-ch14.indd 313 12/24/10 12:33 AM12/24/10 12:33 AM

314 Part V: Building an Industrial-Strength Application

Popovers
One of the user interface elements you’ll want to add to your application is
the popover. Although popovers have a number of uses, in this chapter I
show you how to display that Master view you see in landscape mode in a
Popover view when you switch to portrait mode.

It turns out that the Split view controller you just implemented displays both
view controllers — Master and Detail — in landscape orientations, but only
the Detail view controller gets displayed in portrait orientations. When the
Master view controller is hidden, it is standard practice to add a button
to the toolbar of the Detail view controller that the user can then use to
display the Master view controller in a popover. All this is accomplished
by making the Detail view controller a delegate of the Split view control-
ler, which sends its delegate messages at the appropriate times to add
and remove the button (and a few other times as well, which I’m not
going to get into). If you look at the DetailViewController interface
(DetailViewController.h) in your project, you can see that this whole
delegation business has already been done for you:

@interface DetailViewController : UIViewController
 <UIPopoverControllerDelegate,
 UISplitViewControllerDelegate> {

You can also see that the DetailViewController is a
UIPopoverControllerDelegate — something you won’t be using here,
but, hey, it’s still nice to know.

The UIPopoverController class manages the presentation of content in
a popover. The content is provided in the same way you provide content in
any other view — using a view controller that you provide to the popover.
Popovers present information temporarily, but they don’t take over the
entire screen like a modal view does. This information is layered on top of
your existing content in a special type of window. It remains visible until the
user taps outside the popover window or you explicitly dismiss it.

 You also can specify the size of the popover window by assigning a value to
the contentSizeForViewInPopover property. You should be aware that
the size you specify is just the preferred size for your view. The actual size
may be reduced to make the popover fit on the screen and not collide with the
keyboard.

When displayed, taps outside of the popover window cause the popover to be
dismissed automatically. You can, however, allow the user to interact with the
specified views and not dismiss the popover, using the passthroughViews
property (although you won’t be doing that here). Taps inside the popover
window do not dismiss the popover, and, as you’ll see, your Master view
controller will include code to dismiss the popover explicitly.

22_9780470920503-ch14.indd 31422_9780470920503-ch14.indd 314 12/24/10 12:33 AM12/24/10 12:33 AM

315 Chapter 14: Working with Split View Controllers and the Master View

As you can see, in DetailViewController.m, the code in this template
already does what you need to do to display the kind of popover I just
explained. It does it by implementing two UISplitViewController del-
egate methods:

splitViewController:willHideViewController:
 withBarButtonItem:forPopoverController:

and

splitViewController:willShowViewController:
 invalidatingBarButtonItem:

The first of these methods is invoked when the Split view controller rotates
from a landscape to portrait orientation and hides the Master view control-
ler. When that happens, the Split view controller sends a message to add a
button to the toolbar (or navigation bar) of the detail controller. If you look
at the implementation in DetailViewController.m, you can find this:

- (void)splitViewController:(UISplitViewController *)svc
 willHideViewController:(UIViewController *)
 aViewController
 withBarButtonItem:(UIBarButtonItem *)barButtonItem
 forPopoverController:(UIPopoverController *)pc {

 barButtonItem.title = @”Root List”;
 NSMutableArray *items = [[toolbar items] mutableCopy];
 [items insertObject:barButtonItem atIndex:0];
 [toolbar setItems:items animated:YES];
 [items release];
 self.popoverController = pc;
}

When this message is sent, the button that should be placed in the toolbar
has been created for you and passed in as an argument. All you have to do is
set the title

barButtonItem.title = @”Root List”;

and then add it to the toolbar thusly

NSMutableArray *items = [[toolbar items] mutableCopy];
 [items insertObject:barButtonItem atIndex:0];
 [toolbar setItems:items animated:YES];
 [items release];

You’ll notice that you first make a copy of the toolbar items, insert the
button, and then assign the items property. You do it this way because (as
you’ll soon see) there may be other buttons on the toolbar that you’ll want to
maintain.

22_9780470920503-ch14.indd 31522_9780470920503-ch14.indd 315 12/24/10 12:33 AM12/24/10 12:33 AM

316 Part V: Building an Industrial-Strength Application

 Note that in your last line of code you save a reference to the Popover controller:

self.popoverController = pc;

You end up using this reference in Chapter 16 in the section on responding to
a selection.

You may have noticed the catchy title, @”Root List”, for the button label.
Although this is probably not the most user-friendly title, I’ll stick with it —
you should feel free to change it to whatever you’d like.

 A word to the wise: In Chapter 16 I use @”Root List” for the button title. If
you are going to change it here, be sure to change it in the code I outline in
Chapter 16.

The second of the delegate methods is invoked when the view controller
rotates from portrait to landscape orientation; it shows its hidden view
controller once more. If you added the specified button to your toolbar to
facilitate the display of the hidden view controller in a popover, you must
implement this method and use it to remove that button. This is how it is
implemented in DetailViewController.m:

- (void)splitViewController:(UISplitViewController *)svc
 willShowViewController:(UIViewController *)
 aViewController invalidatingBarButtonItem:
 (UIBarButtonItem *)barButtonItem {

 NSMutableArray *items = [[toolbar items] mutableCopy];
 [items removeObjectAtIndex:0];
 [toolbar setItems:items animated:YES];
 [items release];
 self.popoverController = nil;
}

As you can see, you have simply reversed what you did earlier — you’ve
removed the button from the toolbar and set the self.popoverController
property to nil.

So there’s where you’ll start with your popovers — now I need to take some
time to talk about the Table view, also known as the Master view.

Working with Table Views
Table views are front and center in several applications that come with
the iPad (and iPhone) out of the box; they play a major role in many of the
more complex applications you can download from the App Store. (Obvious

22_9780470920503-ch14.indd 31622_9780470920503-ch14.indd 316 12/24/10 12:33 AM12/24/10 12:33 AM

317 Chapter 14: Working with Split View Controllers and the Master View

examples: Almost all the views in the Mail, iPod, and Settings applications are
Table views.) Table views not only display data, but also serve as a way to
navigate a hierarchy.

If you take a look at an application such as Mail or iPod, you’ll find that Table
views present a scrollable list of items (or rows or entries — I use all three
terms interchangeably) that may be divided into sections. A row can dis-
play text or images. So, when you select a row, you may be presented with
another Table view or with some other view that may display a Web page or
even some controls such as buttons and text fields. You can see an illustra-
tion of one of the things you can do in Figure 14-7. Selecting Map on the left
leads to a Content view displaying a map of London and its environs — very
handy after a long flight.

Figure 14-7:
A Table

view and a
Map view.

But while a Table view is an instance of the class UITableView, each visible
row of the table uses an UITableViewCell to draw its contents. Think of a
Table view as the object that creates and manages the table structure, and
think of the Table-view cell as being responsible for displaying the content of
a single row of the table.

22_9780470920503-ch14.indd 31722_9780470920503-ch14.indd 317 12/24/10 12:33 AM12/24/10 12:33 AM

318 Part V: Building an Industrial-Strength Application

Creating the Table view
Although powerful, Table views are surprisingly easy to work with. To create a
table, you need only do four — count ’em, four — things, in the following order:

 1. Create and format the view itself.

 This includes specifying the table style and a few other parameters —
most of which is done in Interface Builder.

 2. Specify the table-view configuration.

 Not too complicated, actually. You let UITableView know how many
sections you want, how many rows you want in each section, and what
you want to call your section headers. You do that with the help of the
numberOfSectionsInTableView: method, the tableView:number
OfRowsInSection: method, and the tableView:titleForHeaderI
nSection: method, respectively.

 3. Supply the text (or graphic) for each row.

 You return that from the implementation of the tableView:cellFor
RowAtIndexPath: method. This message is sent for each visible row
in the Table view, and you return a Table-view cell to display the text or
graphic.

 4. Respond to a user selection of the row.

 You use the tableView:didSelectRowAtIndexPath: method to
take care of this task. In this method, you create a view controller and
a new view. For example, when the user selects Map in Figure 14-7, this
method is called, and then a Map controller and a Map view are created
and displayed.

 A UITableView object must have a data source and a delegate. The data
source supplies the content for the Table view, and the delegate manages
the appearance and behavior of the Table view. The data source adopts
the UITableViewDataSource protocol, and the delegate adopts the
UITableViewDelegate protocol — no surprises there. Of the preceding
methods, only the tableView:didSelectRowAtIndexPath: is included in
the UITableViewDelegate protocol. All the others I list earlier are included
in the UITableViewDataSource protocol.

The data source and the delegate are often (but not necessarily)
implemented in the same object — which is often a subclass of UITable
ViewController. I plan to use the RootViewController for my iPhone-
411Travel app.

22_9780470920503-ch14.indd 31822_9780470920503-ch14.indd 318 12/24/10 12:33 AM12/24/10 12:33 AM

319 Chapter 14: Working with Split View Controllers and the Master View

Implementing these five (count ’em, five) methods — and taking Interface
Builder for a spin or two, along with the same kind of initialization meth-
ods and the standard memory-management methods you used in the
DeepThoughts application — creates a Table view that can respond to a
selection made in the table.

Not bad.

Creating and formatting
a grouped Table view
Now let’s start drilling down in your project in the Groups & Files list
until you end up selecting RootViewController.h (as shown in Figure
14-8). The main pane of the Xcode Project window reveals the fact that
RootViewController is derived from a UITableViewController.

Inquisitive type that you are, you look up UITableViewController in the
Documentation reference by right-clicking its entry and then choosing Find
Selected Text in Documentation from the pop-up menu that appears. The
Class reference tells you that UITableViewController conforms to the
UITableViewDelegate and UITableViewDataSource protocols (and a
few others) — the two protocols I said were necessary to implement Table
views. What luck. (Kidding. It’s all intentional.)

Figure 14-8:
RootView-

Controller is
derived from

UITable-
View-

Controller.

22_9780470920503-ch14.indd 31922_9780470920503-ch14.indd 319 12/24/10 12:33 AM12/24/10 12:33 AM

320 Part V: Building an Industrial-Strength Application

Table views come in two basic styles. The default style is called plain and
looks really unadorned — plain vanilla. It’s a list: just one darn thing after
another. You can index it, though, just as the Table view in the Contacts
application is indexed, so it can be a pretty powerful tool.

The other style is the grouped Table view; unsurprisingly, it allows you to
clump entries into various categories. In Figure 14-2, you can see the plain
Table view in the Master view; Figure 14-7 shows the grouped Table view
you’ll be using.

 Grouped tables cannot have an index.

When you configure a grouped Table view, you can also have header, footer,
and section titles. (A plain view can also have section headers and footers.) I
show you how to do section titles shortly.

Now go back into the nib file you were examining in the section “The Split
View Controller.” If you put the file away, open your project’s Resources
group, then click the MainWindow.xib file to launch Interface Builder, and
in the MainWindow.xib (refer to Figure 14-5), double-click the Split View
Controller icon.

Notice that you don’t see the actual Table view yet. (For reasons beyond
the scope of this book, it isn’t always necessary to have it in the nib file.) If
you want to change from a plain to a grouped Table view, you need to drag a
Table view in from the library. After you have done that you should see what
you see in Figure 14-9.

To get the final duck in a row, choose Grouped from the Style drop-down
menu in the Attributes Inspector, shown in Figure 14-9, to make the switch
from plain to grouped. Be sure to save the file after you do this, either by
choosing File➪Save from the main menu or by using the handy Ô+S keyboard
shortcut.

At this point, you can build and run this project; go for it. What you see in
the Simulator is a Table view — and if you try to scroll it, you get a “bounce
scroll,” where the view just bounces back up when you scroll it, but not
much else. In fact, you won’t even see it as a grouped view. What you do have
is the basic framework, however, and now you can format it the way you like.

22_9780470920503-ch14.indd 32022_9780470920503-ch14.indd 320 12/24/10 12:33 AM12/24/10 12:33 AM

321 Chapter 14: Working with Split View Controllers and the Master View

Figure 14-9:
Choosing
Grouped

in the
Attributes
Inspector.

Making UITableViewController
work for you
The data source and the delegate for Table views are often (but not
necessarily) the same object — and that object is frequently a custom
subclass of UITableViewController. For the iPadTravel411 project,
the RootViewController created by the Split View-based Application
template is a subclass of UITableViewController — and the
UITableViewController has adopted the UITableViewDelegate
and UITableViewDataSource protocols. So you’re free to implement
those methods I mention in the “Creating the Table view” section, ear-
lier in the chapter. (Just remember that you need to implement them in
RootViewController to make your table usable.) Start with the methods
that format the table the way you like.

Adding sections
In a grouped Table view, each group is referred to as a section.

22_9780470920503-ch14.indd 32122_9780470920503-ch14.indd 321 12/24/10 12:33 AM12/24/10 12:33 AM

322 Part V: Building an Industrial-Strength Application

 In an indexed table, each indexed grouping of data is also called a section. For
example, in the iPod application on the iPhone, all the albums beginning with
A would be one section, those beginning with B another section, and so on.
While having the same name, this is not the same thing as sections in a
grouped table (which doesn’t have an index).

The two methods you need to start things off are as follows:

numberOfSectionsInTableView:(UITableView *)tableView

and

tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section

Each of these methods returns an integer that tells the Table view something —
the number of sections and the number of rows in a given section, respectively.

In Listing 14-1, you can see the code that results in two sections with four
rows in the first section and three rows in the second. These methods are
already implemented for you by the Split View-based Application template in
the RootViewController.m file. You just need to remove the existing code
and replace it with what you see in Listing 14-1.

Listing 14-1: Modifying numberOfSectionsInTableView: and tableView:
numberOfRowsInSection:

- (NSInteger)numberOfSectionsInTableView:
 (UITableView *)tableView {

 return 2;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {

 NSInteger rows;
 switch (section) {
 case 0:
 rows = 4;
 break;
 case 1:
 rows = 3;
 break;
 default:
 break;
 }
 return rows;
}

22_9780470920503-ch14.indd 32222_9780470920503-ch14.indd 322 12/24/10 12:33 AM12/24/10 12:33 AM

323 Chapter 14: Working with Split View Controllers and the Master View

You implement tableView:numberOfRowsInSection: by using a simple
switch statement:

switch (section) {

 Keep in mind that the first section is zero, as is the first row.

As I mention earlier, the Table view will send the messages to its delegate. That
delegate relationship was already set for you in the nib file by the template.

Although that’s as easy as it gets, it’s not really the best way to do it. Read on.

In the interest of showing you how to implement a robust application, I’m
going to use constants to represent the number of sections and the number
of rows in each section. I put those constants in a file, Constants.h, which
will eventually contain other constants. I do this for purely defensive rea-
sons: Both of these values will be used often in this application (I know that
because hindsight is 20-20), and declaring them as constants makes changing
the number of rows and sections easy, and it also helps avoid hard-to-detect
typing mistakes.

 I show you some techniques here that make life much, much easier later. It
means paying attention to some of the less-glamorous application nuts-and-
bolts functionalities that may be annoying to implement along the way but are
really difficult to retrofit later. (Can you say, “memory management”?) I want
to head you away from the boulder-strewn paths that so many developers
have gone down (me included), much to their later sorrow.

To implement the Constants.h file, do the following:

 1. Choose File➪New File from the Xcode main menu.

 I recommend having the Classes group selected in the Groups & Files list.

 2. In the New File dialog that appears, choose Other from the listing on
the left (under the Mac OS X heading) and then choose Empty File in
the main pane, as shown in Figure 14-10.

 3. In the new dialog that appears, name the file Constants.h and then
click Finish.

 The new empty file is saved in the Classes group, as shown in Figure 14-11.

With a new home for your constants all set up and waiting, all you have to do
is add the constants you need so far. (Listing 14-2 shows you the constants
you need to add to the Constants.h file.)

22_9780470920503-ch14.indd 32322_9780470920503-ch14.indd 323 12/24/10 12:33 AM12/24/10 12:33 AM

324 Part V: Building an Industrial-Strength Application

Listing 14-2: Adding to the Constants.h File

#define kSections 2
#define kSection1Rows 4
#define kSection2Rows 3

Figure 14-10:
Creating an

empty file.

Figure 14-11:
The

Constants.h
file.

22_9780470920503-ch14.indd 32422_9780470920503-ch14.indd 324 12/24/10 12:33 AM12/24/10 12:33 AM

325 Chapter 14: Working with Split View Controllers and the Master View

Having a Constants.h file in hand is great, but you have to let
RootViewController.m know that you plan to use it. To include
Constants.h in RootViewController.m, open RootViewController.m
in Xcode and add the following statement at the top of the file with the other
import statements:

#import “Constants.h”

You can then use these constants in all the various methods used to create
your Table view, as shown in Listing 14-3.

Listing 14-3: Sections and Rows Done Better

- (NSInteger)numberOfSectionsInTableView:(UITableView *)
 tableView {

 return kSections;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {

 NSInteger rows;
 switch (section) {
 case 0:
 rows = kSection1Rows;
 break;
 case 1:
 rows = kSection2Rows;
 break;
 default:
 break;
 }
 return rows;
}

When you build and run this (provisional) app, you get what you see in
Figure 14-12: two sections, the first with four rows and the second with three.

Although using constants and a switch statement does make your program
more extensible, it does require you to change the switch statement if you
want to add or change the layout. An even better solution is to create the
array in viewDidLoad that you see in Listing 14-4. Add the code in bold to
the viewDidLoad method in the RootViewController.m file and delete
the bold, underlined, and italic code.

 I’ll be asking you to do this delete business several times, so I’ll be referring to
code I want you delete as BUI (bold, underlined, italic).

22_9780470920503-ch14.indd 32522_9780470920503-ch14.indd 325 12/24/10 12:33 AM12/24/10 12:33 AM

326 Part V: Building an Industrial-Strength Application

Figure 14-12:

 Now
you have
the right

number of
sections

and rows.

Listing 14-4: viewDidLoad

- (void)viewDidLoad {

 [super viewDidLoad];
 self.clearsSelectionOnViewWillAppear = NO;
 self.contentSizeForViewInPopover =
 CGSizeMake(320.0 kPopoverWidth,
 600.0 kPopoverHeight);
 sectionsArray = [[NSArray alloc] initWithObjects:
 [[NSNumber alloc]initWithInt:kSection1Rows],
 [[NSNumber alloc]initWithInt:kSection2Rows], nil];
}

clearsSelectionOnViewWillAppear indicates whether the controller should
clear the selection when the table appears. (It receives a viewWillAppear:
message.) The default value of this property is YES. (If you were to set this
property to NO, it would preserve the selection.) Because a selection in our
app will always result in the presentation of a new controller, it isn’t neces-
sary to bother with this line of code, so you can delete this.

22_9780470920503-ch14.indd 32622_9780470920503-ch14.indd 326 12/24/10 12:33 AM12/24/10 12:33 AM

327 Chapter 14: Working with Split View Controllers and the Master View

You’ll also notice that, with Listing 4-4, you have changed the contentSize-
ForViewInPopover in two ways. First, you deleted the hard coded values
of 320 and 600 and replaced them with constants. You now have to add the
constants to the Constants.h file.

#define kPopoverWidth 320
#define kPopoverHeight 700

As I explain in the “Popovers” section earlier in this chapter, you also can spec-
ify the size of the popover window by assigning a value to the contentSize-
ForViewInPopover property. You should be aware that the size you specify
is just the preferred size for your view. The actual size may be reduced to make
the popover fit on the screen and not collide with the keyboard.

 The size you’re setting your popover to is about the size of the view in land-
scape mode. While you could make it smaller — since the view is not going to be
filled all the way — I’m going to have you make it this size because, as you’ll see
in Chapter 18, you’re going to need the extra room for the Airport view.

Of course, you could have just left things as they were, with the 320 and 700
pixels all nice and hard-coded. But instead, in the interest of showing you
how to implement a robust application, I’m going to use constants for the
popover width and height, just like I used constants to represent the number
of sections and the number of rows in each section for the Table view. While
the width is fixed, as you develop your application you’ll find yourself revisit-
ing what you’ll want in the popover, and subsequently the height you’ll need,
and it’s easier to keep that in a single place.

With all the popover sizing out of the way, go ahead and take a look at the
rest of what Listing 14-4 has done for you.

Going down the line, you see that the code creates an array with two entries —
one for each section. That means you can determine the number of sections by
getting the number of items in the array. Then, for each array item/section, you
make the value of the NSNumber equal to the number of rows. (You have to
use the NSNumber object here instead of a plain int because the array entry
must be an object.)

From there, you can use the array count [sectionsArray count] to
return the number of sections and then use the index path section as an
index into the array for the number of rows in a section [sectionsArray
objectAtIndex:section].

And in fact, that’s what I’m going to do. Replace the numberOfSectionsIn
TableView: and tableView:numberOfRowsInSection: methods in
RootViewController.m with the code in Listing 14-5 yet again (and for
the last time).

22_9780470920503-ch14.indd 32722_9780470920503-ch14.indd 327 12/24/10 12:33 AM12/24/10 12:33 AM

328 Part V: Building an Industrial-Strength Application

To keep things on the up and up, you also need to add a new instance vari-
able to RootViewController.h:

NSArray *sectionsArray;

Listing 14-5: Final Versions of numberOfSectionsInTableView: and
tableView:numberOfRowsInSection:

- (NSInteger)numberOfSectionsInTableView:
 (UITableView *) tableView {

 return [sectionsArray count];
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {

 return [[sectionsArray objectAtIndex:section] intValue];
}

Adding titles for the sections
With sections in place, you now need to title them so users know what the
sections are for. Luckily for you, the UITableViewdataSource protocol has
a handy method — titled, appropriately enough, the tableView:titleFor
HeaderInSection: method — that enables you to add a title for each sec-
tion. Listing 14-6 shows how to implement the method.

Listing 14-6: Adding Section Titles

- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {

 NSString *title = nil;
 switch (section) {
 case 0:
 title = @”Welcome to London”;
 break;
 case 1:
 title = @”Getting there”;
 break;
 default:
 break;
 }
 return title;
}

22_9780470920503-ch14.indd 32822_9780470920503-ch14.indd 328 12/24/10 12:33 AM12/24/10 12:33 AM

329 Chapter 14: Working with Split View Controllers and the Master View

This (again) is a simple switch statement. For case 0, or the first section,
you want the title to be “Welcome to London”, and for case 1, or the
second section, you want the title to be “Getting there”.

 Okay, this, too, was really easy, so you probably won’t be surprised to find
that it’s not the best way to tackle the whole titling business. It’s another
path not to take — in fact, a really important one not to take. Really Serious
Application Developers insist on catering to the needs of an increasingly
global audience, which means — paradoxically — that they have to localize
their applications. In other words, an app must be created in such a way that
it presents a different view to different, local audiences. The next section
explains how you do that.

Localization
Localizing an application isn’t difficult, just tedious. To localize your applica-
tion, you create a folder in your application bundle (I’ll get to that) for each
language you want to support. Each folder has the application’s translated
resources.

The way it works is that the user will have set the language — Spanish or
Italian, for example — and the region format in the Settings application.

For example, if the user’s language is Spanish, available regions range from
Spain to Argentina to the United States and lots of places in between. When
a localized application needs to load a resource (such as an image, property
list, or nib), the application checks the user’s language and region and looks
for a localization folder that corresponds to the selected language and region.
If it finds one, it loads the localized version of the resource rather than the
base version — the one you’re working in.

Showing you all the ins and outs of localizing your application is a bit too
Byzantine for this book. But I do show you what you must do to make your
app localizable when you’re ready to tackle the chore on your own.

 What you have to get right — right from the start — are the strings you use
in your application that get presented to the user. (If the user has chosen
Spanish as his or her language of choice, what’s expected in the main view
is now Moneda, not Currency.) You ensure that the users see what they’re
expecting by storing the strings you use in your application in a strings text
file; this file contains a list of string pairs, each identified by a comment. You
would create one of these files for each language you support.

Here’s an example of what an entry in a strings file might look like for this
application:

22_9780470920503-ch14.indd 32922_9780470920503-ch14.indd 329 12/24/10 12:33 AM12/24/10 12:33 AM

330 Part V: Building an Industrial-Strength Application

/*Airport choices */
“Getting there” = “Getting there”;

The values between the /* and the */ characters are just comments for the
(human) translator you task with creating the right translation for the phrase —
assuming, of course, that you’re not fluent in the ten-or-so languages you’ll
probably want to include in your app, and therefore will need some translating
help. You write such comments to provide some context — how that string is
being used in the application.

Okay, this example has two strings — the one to the left of the equal sign is
used as a key; the one to the right of the equal sign is the one displayed. In
the example, both strings are the same — but in the strings file used for a
Spanish speaker, here’s what you’d see:

/*Airport choices */
“Getting there” = “Cómo llegar”;

Looking up such values in the table is handled by the NSLocalizedString
macro in your code.

To show you how to use the macro, I take one of the section headings as an
example. Rather than

title = @”Getting there”;

I code it as follows:

title = NSLocalizedString(@”Getting there”,
 @”Airport choices”);

As you can see, the macro has two inputs. The first is the string in your
language, and the second is the general comment for the translator. At run-
time, NSLocalizedString looks for a strings file named localizable.
strings in the language that has been set: Spanish, for example. (A user
would have done that by going to Settings and choosing General➪Internati
onal➪Language➪Español.) If NSLocalizedString finds the strings file,
it searches the file for a line that matches the first parameter. In this case, it
would return “Cómo llegar,” and that is what would be displayed as the sec-
tion header. If the macro doesn’t find the file or a specified string, it returns
its first parameter, and the string will appear in the base language.

To create the localizable.strings file, you run a command-line program
named genstrings, which searches your code files for the macro and places
them all in a localizable.strings file (which it creates), ready for the
(human) translator. genstrings is beyond the scope of this book, but it’s well
documented. When you’re ready, I leave you to explore it on your own.

22_9780470920503-ch14.indd 33022_9780470920503-ch14.indd 330 12/24/10 12:33 AM12/24/10 12:33 AM

331 Chapter 14: Working with Split View Controllers and the Master View

Okay, sure, it’s really annoying to have to do this sort of thing as you write
your code (yes, I know, really, really annoying). But that’s not nearly as
annoying as having to go back and find and replace all the strings you want to
localize after the application is almost done. Take my word for it!

Listing 14-7 shows how to use the NSLocalizedString macros
to create localizable section titles. Add the code in Listing 14-7 to
RootViewController.h.

Listing 14-7: Adding Localizable Section Titles

- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {

 NSString *title = nil;
 switch (section) {
 case 0:
 title = NSLocalizedString(@”Welcome to London”,
 @”City name”);
 break;
 case 1:
 title = NSLocalizedString(@”Getting there”,
 @”Airport choices”);
 break;
 default:
 break;
 }
 return title;
}

Creating the Row Model
As all good iPhone and iPad app developers know, the Model-View-Controller
(MVC) design pattern is the basis for the design of the framework you use to
develop your applications. In this design pattern, each element (model, view,
or controller) concentrates on the task at hand; it doesn’t much care what
the other elements are doing. For Table views, that means the method that
draws the content doesn’t know what the content is, and the method that
decides what to do when a selection is made in a particular row is equally
ignorant of what the selection is. The important thing is to have a model
object — one for each row — to hold and provide that information.

In this kind of situation, you usually want to deal with the model-object busi-
ness by creating an array of models, one for each row. In this case, the model
object will be a dictionary that holds the following three items:

22_9780470920503-ch14.indd 33122_9780470920503-ch14.indd 331 12/24/10 12:33 AM12/24/10 12:33 AM

332 Part V: Building an Industrial-Strength Application

 ✓ The selection text: Map, for example

 ✓ The description text: Where you are, for example

 ✓ The view controller to be created when the user selects that row:
MapController, for example

You can see all three items illustrated in Figure 14-13.

 In more complex applications, you could provide a dictionary within the dic-
tionary and use it to provide the same kind of information for the next level in
the hierarchy. The iPod application is an example: It presents you with a list
of albums, and then when you select an album, it shows you a list of songs on
that album.

The following code shows you how to create a single dictionary for a row.
Later on, I show you how to create all the dictionaries and tell you where all
this code needs to go.

menuList = [[NSMutableArray alloc] init];

[menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”Map”, @”Map Section”),kSelectKey,
 NSLocalizedString(@”Where you are”, @”Map Explain”),
 kDescriptKey,
 [NSNull null], kControllerKey, nil]];

Figure 14-13:
The model
for a row.

Key Value

kSelectKey

kDescriptKey

kControllerKey

Map

Where are you

“MapContoller”

Dictionary

Here’s the blow-by-blow account:

 1. Create an array to hold the model for each row.

 An NSMutableArray is a good choice here because it allows you to
easily insert and delete objects.

22_9780470920503-ch14.indd 33222_9780470920503-ch14.indd 332 12/24/10 12:33 AM12/24/10 12:33 AM

333 Chapter 14: Working with Split View Controllers and the Master View

 In such an array, the position of the dictionary corresponds to the row it
implements, that is, relative to row zero in the table and not taking into
account the section.

 2. Create an NSMutableDictionary with three entries and the following
keys:

 • kSelectKey: The entry that corresponds to the main entry in the
Table view (“Map”, for example).

 • kDescriptKey: The entry that corresponds to the description in
the Table view (“Where you are”, for example).

 • kControllerKey: This entry contains a pointer to a view control-
ler that will display the map. You’re going to create an entry for
the controller, but not just yet; you just use an NSNull object as
a placeholder for now. (“Objects” in an array have to be objects.)
The first time the user selects a row, you create the view controller
and save that value in here. That way, if the user selects that row
again, the controller will simply be reused.

 3. Add the keys to the Constants.h file.

#define kSelectKey @”selection”
#define kDescriptKey @”description”
#define kControllerKey @”viewController”

 The @ before each of the preceding strings tells the compiler that this is
an NSString.

 With all this information, you’re now in a position to get rid of these control-
lers if you were to ever get a low-memory warning. You’d simply go through
each dictionary in the array and release every controller except the one
that’s currently active.

You’ll want to create this array and all the dictionaries in an initialization
method viewDidLoad, which you added to the RootViewController.m
file in the “Making UITableViewController work for you” section. (Refer to
Listing 14-4.) Add the code in bold in Listing 14-8 to viewDidLoad. The
viewDidLoad message is sent to the RootViewController after all the
objects in the nib file have been loaded and the RootViewController’s
outlet instance variables have been set.

 You could argue that you really should create a model class that creates this
data-model array and get its data from a file or property list. For simplicity’s
sake, you add it in the viewDidLoad method for the iPadTravel411 app.

22_9780470920503-ch14.indd 33322_9780470920503-ch14.indd 333 12/24/10 12:33 AM12/24/10 12:33 AM

334 Part V: Building an Industrial-Strength Application

Listing 14-8: viewDidLoad

- (void)viewDidLoad {

 [super viewDidLoad];
 self.contentSizeForViewInPopover =
 CGSizeMake(kPopoverWidth, kPopoverHeight);
 sectionsArray = [[NSArray alloc] initWithObjects:
 [[NSNumber alloc]initWithInt: kSection1Rows],
 [[NSNumber alloc]initWithInt: kSection2Rows], nil];

 self.title = [[[NSBundle mainBundle] infoDictionary]
 objectForKey:@”CFBundleName”];
 menuList = [[NSMutableArray alloc] init];
 [menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”London”, @”City Section”),
 kSelectKey,
 NSLocalizedString(@”What’s happening”,
 @”City Explain”), kDescriptKey,
 [NSNull null], kControllerKey, nil]];
 [menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”Map”, @”Map Section”),
 kSelectKey,
 NSLocalizedString(@”Where you are”,
 @”Map Explain”), kDescriptKey,
 [NSNull null], kControllerKey, nil]];
 [menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”Currency”, @”Currency Section”),
 kSelectKey,
 NSLocalizedString(@”About foreign exchange”,
 @”Currency Explain”), kDescriptKey,
 [NSNull null], kControllerKey, nil]];
 [menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”Weather”, @”Weather Section”),
 kSelectKey,
 NSLocalizedString(@”Current conditions”,
 @”Weather Explain”), kDescriptKey,
 [NSNull null], kControllerKey, nil]];
 [menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”Heathrow”, @”Heathrow Section”),
 kSelectKey,
 NSLocalizedString(@”International airport”,
 @”Heathrow Explain”), kDescriptKey,
 [NSNull null], kControllerKey, nil]];
 [menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:

22_9780470920503-ch14.indd 33422_9780470920503-ch14.indd 334 12/24/10 12:33 AM12/24/10 12:33 AM

335 Chapter 14: Working with Split View Controllers and the Master View

 NSLocalizedString(@”Gatwick”, @”Gatwick Section”),
 kSelectKey,
 NSLocalizedString(@”European flights”,
 @”Gatwick Explain”), kDescriptKey,
 [NSNull null], kControllerKey, nil]];
 [menuList addObject:[NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 NSLocalizedString(@”Stansted”,
 @”Stansted Section”), kSelectKey,
 NSLocalizedString(@”UK flights”,
 @”Stansted Explain”), kDescriptKey,
 [NSNull null], kControllerKey, nil]];
}

You also have to add the following to RootViewController.h:

NSMutableArray *menuList;

Going through the code in Listing 14-8, you can see that the first thing you
do is get the application name from the bundle so you can use it as the Main
view title.

self.title = [[[NSBundle mainBundle] infoDictionary]
 objectForKey:@”CFBundleName”];

“What bundle?” you ask. Well, when you build your iPad application, Xcode
packages it as a bundle containing the following:

 ✓ The application’s executable code

 ✓ Any resources that the app has to use (for instance, the application
icon, other images, and localized content)

 ✓ The info.plist, also known as the information property list, which
defines key values for the application, such as bundle ID, version
number, and display name

infoDictionary returns a dictionary that’s constructed from the bundle’s
info.plist. CFBundleName is the key to the entry that contains the (local-
izable) application name on the home page. The title is what will be displayed
in the Navigation bar at the top of the screen.

As I mention earlier, I also create sectionsArray, which I can use to com-
pute the offset in the menu. I save a reference to that array in the instance
variable.

22_9780470920503-ch14.indd 33522_9780470920503-ch14.indd 335 12/24/10 12:33 AM12/24/10 12:33 AM

336 Part V: Building an Industrial-Strength Application

Going through the rest of the code, you can see that for each entry in the
Main view, you have to create a dictionary and put it in the menuList array.
You put the dictionary in the menuList array so you can use it later when
you need to provide the row’s content or create a view controller when the
user selects the row. Because there’s no controller yet, you create an NSNull
object that simply acts as a placeholder. The NSNull class defines a single-
ton object, with a single class method null, that you can use to represent
null values in collection objects.

Seeing How Table-View Cells Work
I’ve been going steadily from macro to micro, so it makes sense that after set-
ting up a model for each row, I get to talk about cells, the individual constitu-
ents of each row.

Cell objects are what draw the contents of a row in a Table view. The method
tableView:cellForRowAtIndexPath: is called for each visible row in
the Table view. It’s expected that the method will configure and return a
UITableViewCell object for each row. The UITableView object uses this
cell to draw the row.

When providing cells for the Table view, you have three general approaches
you can take:

 ✓ Use vanilla (not subclassed) UITableViewCell cell objects.

 ✓ Add subviews to a UITableViewCell cell object’s Content view.

 ✓ Use cell objects created from a custom subclass of UITableViewCell.

The next few sections take a look at these options, one by one.

Using vanilla cell objects
Using the UITableViewCell class directly, you can create cell objects with
text and an optional image. (If a cell has no image, the text starts near the left
edge of the cell.) You also have an area on the right of the cell for accessory
views, such as disclosure indicators (the one shaped like a regular chevron),
detail disclosure controls (the one that looks like a white chevron in a blue
button), and even control objects such as sliders, switches, or custom views.
(The layout of a cell is shown in Figure 14-14.) If you like, you can format the
font, alignment, and color of the text, as well as have a different format when
the row is selected.

22_9780470920503-ch14.indd 33622_9780470920503-ch14.indd 336 12/24/10 12:33 AM12/24/10 12:33 AM

337 Chapter 14: Working with Split View Controllers and the Master View

Figure 14-14:
The cell

architec-
ture.

Display mode

Cell content Accessory view
Image

(Optional)

Reordering controlEditing control

Text

Editing mode

Adding subviews to a cell’s Content view
Although you can specify the font, color, size, alignment, and other charac-
teristics of the text in a cell by using the UITableViewCell class directly,
the formatting is applied to all the text in the cell. To get the variation that I
suspect you want between the selection and description text (and, it turns
out, the alignment as well), you have to create subviews within the cell.

A cell that a Table view uses for displaying a row is, in reality, a view in its
own right. UITableViewCell inherits from UIView, and it has a Content
view. With Content views, you can add one subview (containing, say, the
selection text “Weather”) formatted the way you want, and you can add a
second subview (holding, say, the description text, “Current conditions”)
formatted an entirely different way. You may remember that you already
experienced adding subviews (the slider, text field, and labels) in creating a
“preferences” view in the DeepThoughts application, although you may not
have known you were doing that at the time. Well, now it can be told.

Creating a custom subclass UITableViewCell
Finally, you can create your very own custom cell subclass when your con-
tent requires it — usually when you need to change the default behavior of
the cell or if you want to use a nib file to lay out a more complex view.

Creating the Cell
As I mention in the previous section, you’re going to use the
UITableViewCell class to create the cells for your Table views and
then add the subviews you need in order to get the formatting you want.

22_9780470920503-ch14.indd 33722_9780470920503-ch14.indd 337 12/24/10 12:33 AM12/24/10 12:33 AM

338 Part V: Building an Industrial-Strength Application

The place to create the cell is tableView:cellForRowAtIndexPath:.
This method is called for each visible row in the Table view, as shown in
Listing 14-9. (Replace the method the template supplies with Listing 14-9 in
RootViewController.m.)

Listing 14-9: Drawing the Text

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 UILabel *selectLabel;
 UILabel *descriptLabel;

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:kCellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:kCellIdentifier] autorelease];

 cell.accessoryType =
 UITableViewCellAccessoryDisclosureIndicator;

 CGRect subViewFrame = cell.contentView.frame;
 subViewFrame.origin.x += kInset;
 subViewFrame.size.width = kInset+kSelectLabelWidth;

 selectLabel = [[UILabel alloc]
 initWithFrame:subViewFrame];
 selectLabel.tag = kSelectLabelTag;
 selectLabel.textColor = [UIColor blackColor];
 selectLabel.highlightedTextColor =
 [UIColor whiteColor];
 selectLabel.font = [UIFont boldSystemFontOfSize:18];
 selectLabel.backgroundColor = [UIColor clearColor];
 [cell.contentView addSubview:selectLabel];

 subViewFrame.origin.x += kInset+kSelectLabelWidth;
 subViewFrame.size.width = kDescriptLabelWidth;

 descriptLabel = [[UILabel alloc]
 initWithFrame:subViewFrame];
 descriptLabel.tag = kDescriptLabelTag;
 descriptLabel.textColor = [UIColor grayColor];
 descriptLabel.highlightedTextColor =
 [UIColor whiteColor];
 descriptLabel.font = [UIFont systemFontOfSize:14];
 descriptLabel.backgroundColor = [UIColor clearColor];
 [cell.contentView addSubview:descriptLabel];

22_9780470920503-ch14.indd 33822_9780470920503-ch14.indd 338 12/24/10 12:33 AM12/24/10 12:33 AM

339 Chapter 14: Working with Split View Controllers and the Master View

}
 else {
 selectLabel = (UILabel *)[cell.contentView
 viewWithTag:kSelectLabelTag];
 descriptLabel = (UILabel *)[cell.contentView
 viewWithTag:kDescriptLabelTag];
 }
 int menuOffset =
 [self menuOffsetForRowAtIndexPath:indexPath];
 NSDictionary *cellText =
 [menuList objectAtIndex:menuOffset];
 selectLabel.text = [cellText objectForKey:kSelectKey];
 descriptLabel.text =
 [cellText objectForKey:kDescriptKey];
 [selectLabel release];
 [descriptLabel release];
 return cell;
}

Here’s the logic behind all that code:

 1. Determine whether there are any cells lying around that you can use.

 Although a Table view can display only a limited number of rows at a
time on the iPad’s screen, the table itself can conceivably hold a lot
more. A large table would chew up a lot of memory if you were to create
cells for every row. Fortunately, Table views are designed to reuse cells.
As a Table view’s cells scroll off the screen, they’re placed in a queue of
cells available to be reused.

 You can ask the Table view for a specific reusable cell object by sending
it a dequeueReusableCellWithIdentifier: message:

UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:kCellIdentifier];

 This asks whether any cells of the type you want are available.

 2. Create a cell identifier that indicates what cell type you’re using. Add
this to the Constants.h file:

#define kCellIdentifier @”MasterViewCell”

 Table views support multiple cell types, which makes the identifier nec-
essary. In this case, you need only one cell type, but sometimes you may
want more than one.

 If the system runs low on memory, the Table view gets rid of the cells in
the queue, but as long as it has some available memory for them, it will
hold on to them in case you want to use them again.

22_9780470920503-ch14.indd 33922_9780470920503-ch14.indd 339 12/24/10 12:33 AM12/24/10 12:33 AM

340 Part V: Building an Industrial-Strength Application

 3. If there aren’t any cells lying around, you have to create a cell by
using the cell identifier you just created.

 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:kCellIdentifier] autorelease];

 You now have a Table view cell that you can return to the Table view.

 UITableViewCellStyleDefault gives you a simple cell with a text
label (black and left-aligned) and an optional image view. There are also
several other styles:

 • UITableViewCellStyleValue1 gives you a cell with a left-
aligned black text label on the left side of the cell and a smaller
blue text and right-aligned label on the right side. (The Settings
application uses this style of cell.)

 • UITableViewCellStyleValue2 gives you a cell with a right-
aligned blue text label on the left side of the cell and a left-aligned
black label on the right side of the cell.

 • UITableViewCellStyleSubtitle gives you a cell with a left-
aligned label across the top and a left-aligned label below it in
smaller gray text. (The iPod application uses cells in this style.)

 4. Define the accessory type for the cell.

 cell.accessoryType =
 UITableViewCellAccessoryDisclosureIndicator;

 As I mention earlier in the brief tour of a cell, its layout includes a place
for an accessory — usually something like a disclosure indicator.

 In this case, use UITableViewCellAccessoryDisclosureIndicator
(the one shaped like a regular chevron). It lets the user know that tap-
ping this entry will result in something (hopefully wonderful) happening,
such as the display of the current weather conditions.

 If you’re using a Table view, and you want to display more detailed infor-
mation about the entry itself, you might use a Detail Disclosure button.
This allows you to then use a tap on the row for something else. In the
Favorites view in the iPhone application, for example, selecting the
Detail Disclosure button gives you a view of the contact information; if
you just tap the row, it places the call for you.

 You’re not limited to these kinds of indicators; you also have the option
of creating your own view — you can put in any kind of control. (That’s
what you see in the Settings application, for example.)

22_9780470920503-ch14.indd 34022_9780470920503-ch14.indd 340 12/24/10 12:33 AM12/24/10 12:33 AM

341 Chapter 14: Working with Split View Controllers and the Master View

 5. Create the subviews.

 Here I show you just one example. (The other is the same except for the
font size and text color.) You get the contentView frame and base the
subview on it. The inset from the left (kInset) and the width of the sub-
view (kLabelWidth) are defined in the Constants.h file — you’ll need
to add them. They look like this:

#define kInset 10
#define kSelectLabelWidth 100
#define kDescriptLabelWidth 160

 To hold the text, the subview you’re creating is a UILabelView, which
meets your needs exactly:

CGRect subViewFrame = cell.contentView.frame;
subViewFrame.origin.x += kInset;
subViewFrame.size.width = kInset+kSelectLabelWidth;
selectLabel =
 [[UILabel alloc] initWithFrame:subViewFrame];

 Next you assign a tag to the selectLabel.

selectLabel.tag = kSelectLabelTag;

 A tag is an identifier of a view; it allows you to locate a view in its view
hierarchy by calling the viewWithTag: method. You need to do that
because if you get the designated cell from the Table view’s queue, as
you’ll soon see, you’ll use the tags to obtain references to the two sub-
views so that you can assign them the right text. You also need to add
the two tags you’ll need to Constants.h:

#define kSelectLabelTag 1
#define kDescriptLabelTag 2

 You then set the label properties that you’re interested in; you do it by
manually writing code rather than using Interface Builder. Just set the
font color and size, the highlighted font color when an item is selected,
and the background color of the label (as indicated in the code that fol-
lows). Setting the background color to transparent allows me to see the
bottom line of the last cell in the group.

selectLabel.textColor = [UIColor blackColor];
selectLabel.highlightedTextColor = [UIColor
 whiteColor];
selectLabel.font = [UIFont boldSystemFontOfSize:18];
selectLabel.backgroundColor = [UIColor clearColor];
[cell.contentView addSubview:selectLabel];

 I could have inset the view one pixel up from the bottom, made the label
opaque, and given it a white (not clear) background, which would be
more efficient to draw. But with such a small number of rows, making
that effort really has no appreciable performance impact, and the way

22_9780470920503-ch14.indd 34122_9780470920503-ch14.indd 341 12/24/10 12:33 AM12/24/10 12:33 AM

342 Part V: Building an Industrial-Strength Application

I’ve set it up here requires less code for you to go through. Feel free to
do it the “right way” on your own.

 6. If you do have a cell you can reuse, get the selectLabel and
descriptLabel views using the tags you used when you created
them.

selectLabel = (UILabel *)
 [cell.contentView viewWithTag:kSelectLabelTag];
descriptLabel = (UILabel *)
 [cell.contentView viewWithTag:kDescriptLabelTag];

 7. Based on the row and section, you offset into the array of dictionaries
you created earlier to find the right dictionary and then use the dic-
tionary to assign the text to the labels.

int menuOffset =
 [self menuOffsetForRowAtIndexPath:indexPath];
NSDictionary *cellText =
 [menuList objectAtIndex:menuOffset];
selectLabel.text = [cellText objectForKey:kSelectKey];
descriptLabel.text =
 [cellText objectForKey:kDescriptKey];

 The trouble is that you won’t get the absolute row passed to you. You
get only the row within a particular section — and you need the absolute
row to get the right dictionary from the array. Fortunately, one of the
arguments used when this method is called is the indexPath, which
contains the section and row information in a single object. To get the row
or the section out of an NSIndexPath, you just have to invoke its section
method (indexPath.section) or its row method (indexPath.row),
both of which return an int. This neat trick enables you to compute the
offset for the row in the array you created in viewDidLoad.

 You added the method — menuOffsetForRowAtIndexPath: — so
that you can use it again later to get the menu offset, as you’ll see.

The method and its algorithm are shown in Listing 14-10. Add the method to
RootViewController.m and its declaration to RootViewController.h.

Listing 14-10: Computing the Menu Offset

- (int) menuOffsetForRowAtIndexPath:
 (NSIndexPath *)indexPath {

 int menuOffset = indexPath.row;
 for (int sectionRow=0; sectionRow <
 indexPath.section; ++sectionRow) {
 menuOffset += [[sectionsArray
 objectAtIndex:sectionRow] intValue];
 }
 return menuOffset;
}

22_9780470920503-ch14.indd 34222_9780470920503-ch14.indd 342 12/24/10 12:33 AM12/24/10 12:33 AM

343 Chapter 14: Working with Split View Controllers and the Master View

You start by passing the row to menuOffset. You then increment the offset
by the number of rows in each of the previous sections, which is stored in
the array as an NSNumber. (Because NSNumber is an object, you have to use
the intValue method to get the number as an integer.)

You also have to add the declaration of menuOffsetForRowAtIndexPath:
to RootViewController.h.

Finally, because you no longer need the labels you created, you release them

[selectLabel release];
[descriptLabel release];

and return the formatted cell with the text it needs to display in that row.

return cell;

It’s time for some final housekeeping. At this point you’ve implemented the
table of contents, but of course nothing else. If this were an iPhone app, that
would be good enough, because this view would entirely fill the screen. But
on the iPad you have all that space.

So one of the things you’ll want to decide is what the user should see at
launch. Now, under multitasking, when the user leaves your app and then
returns, most likely the user will see where she left off. But in two instances
you’ll need to make a decision of what the user will see. You’ll need to decide
what the user will see when the application is first launched and you’ll
also need to decide what the user will see if the application is purged from
memory.

While the choice is up to you in your apps, personally I like maps, so that’s
what you’ll explore next. But because you’re now getting into content, it’s
time to explain how you’ll implement the Model piece of the Model-View-
Controller design pattern.

The Destination Model
As I explain in Chapters 7 and 13, the basic architecture for iPadTravel411
(and any other iPad program) is the Model-View-Controller. In this chapter,
you have created a View-Controller structure within a Split view controller
using a Table view as the Master view.

As you recall from Chapters 7 and 13, the model “owns” the data — and you’ll
start by creating a main model class called Destination. I refer to it as the
main model class because, as you’ll see, Destination will have plenty of
help from other objects, but for the time being I want you to focus on it alone.

22_9780470920503-ch14.indd 34322_9780470920503-ch14.indd 343 12/24/10 12:33 AM12/24/10 12:33 AM

344 Part V: Building an Industrial-Strength Application

 1. Choose File➪New File from the main menu (or press Ô+N) to recall
the New File dialog.

 It’s a good idea to add a new group in the Groups & Files list to hold all
your new model classes. To do so, select the iPadTravel411 Project icon
and then choose Project➪New Group. You’ll get a brand-spanking-new
group, named New Group, already selected and waiting for you to type
in the name you want. (I named mine Model classes.) To change what
group a file is in, select and then drag the file to the group you want it
to occupy. The same goes for groups as well. (After all, they can go into
other groups.)

 2. In the leftmost column of the dialog, select Cocoa Touch Classes under
the iPhone OS heading just like you did before, but this time select the
Objective-C class template in the topmost pane, making sure that the
Subclass drop-down menu has NSObject selected. Then click Next.

 You see a new dialog asking for some more information.

 3. Enter Destination in the File Name field and then click Finish.

You need to add some functionality to the Destination class to get
you started. I’ll start with an initialization method that simply saves a
Destination name in an instance variable. Add the code in Listing 14-11 to
Destination.m.

Listing 14-11: Initializing Destination

- (id) initWithName:(NSString *) theDestination {

 if ((self = [super init])) {
 destinationName = theDestination;
 }
 return self;
}

The first thing this method does is send the init message to its super-
class — the message to super precedes the initialization code added in the
method. This sequencing ensures that initialization proceeds in the order of
inheritance. Calling the superclass’s init method initializes the controller,
loads and initializes the objects in the nib file (views and controls, for exam-
ple), and then sets all its outlet instance variables and Target-Action connec-
tions for good measure.

 The init…: methods all return a pointer to the object created. Although not
the case here, the reason you assign whatever comes back from an init…:
method to self is that some classes actually return a different class than
what you created. The assignment to self becomes important if your class

22_9780470920503-ch14.indd 34422_9780470920503-ch14.indd 344 12/24/10 12:33 AM12/24/10 12:33 AM

345 Chapter 14: Working with Split View Controllers and the Master View

is derived from one of those kinds of classes. Keep in mind as well that an
init…: method can also return nil if there’s a problem initializing an object.
If you’re creating an object where that is a possibility, you have to take that
into account. (Both of those situations are beyond the scope of this book.)

After the superclass initialization is completed, the Destination is ready to
do its own initialization, including saving the theDestination argument to
the destinationName instance variable.

Add the code in bold in Listing 14-12 to the Destination.h interface file to
support your additions.

Listing 14-12: The Destination interface

@interface Destination : NSObject {

 NSString *destinationName;
}
- (id) initWithName:(NSString *) theDestination;

@end

Of course, the next thing you’ll need to do is create the Destination object
and make it accessible to the view controllers. I’m going to have you do
that in a method you’ll add to iPadTravel411AppDelegate.m called
awakeFromNib.

The awakeFromNib message is sent by the nib-loading infrastructure to
each object created from the nib file. It is sent after all the objects have been
loaded and initialized — which means that all outlet and action connections
for an object have been set. By the way, you do have to be sure to send the
awakeFromNib message to your superclass to give it an opportunity to do
its initialization.

This is a handy method to know about because this is the place you may
need to do some initialization type tasks before the action starts. I’m having
you do it here because, as you’ll soon find out, the RootViewController is
going to need to know about the Destination object to do its work.

Add the code in Listing 14-13 to iPadTravel411AppDelegate.m.

22_9780470920503-ch14.indd 34522_9780470920503-ch14.indd 345 12/24/10 12:33 AM12/24/10 12:33 AM

346 Part V: Building an Industrial-Strength Application

Listing 14-13: awakeFromNib

- (void)awakeFromNib {

 [super awakeFromNib];
 destination =
 [[Destination alloc] initWithName: @”London”];
}

Of course, you’ll have to do some housekeeping here as well.

Add the code in bold to iPadTravel411AppDelegate.h to declare the
instance variable and make it a property.

#import <UIKit/UIKit.h>

@class RootViewController;
@class DetailViewController;
@class Destination;
@interface iPadTravel411AppDelegate : NSObject

<UIApplicationDelegate> {

 UIWindow *window;

 UISplitViewController *splitViewController;

 RootViewController *rootViewController;
 DetailViewController *detailViewController;
 Destination *destination;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@property (nonatomic, retain) IBOutlet
UISplitViewController *splitViewController;

@property (nonatomic, retain)
 IBOutlet RootViewController *rootViewController;
@property (nonatomic, retain) IBOutlet

DetailViewController *detailViewController;
@property (nonatomic, retain) Destination *destination;

@end

Add the import and synthesize statements to
iPadTravel411AppDelegate.m.

#import “iPadTravel411AppDelegate.h”
#import “RootViewController.h”
#import “DetailViewController.h”

22_9780470920503-ch14.indd 34622_9780470920503-ch14.indd 346 12/24/10 12:33 AM12/24/10 12:33 AM

347 Chapter 14: Working with Split View Controllers and the Master View

#import “Destination.h”

@implementation iPadTravel411AppDelegate

@synthesize window, splitViewController,
rootViewController, detailViewController;

@synthesize destination;

Now is also a good time to make it accessible to RootViewController. How
should you do that? Because it’s a property, all the RootViewController
has to do is access it from iPadTravel411AppDelegate. But how does it
find the iPadTravel411AppDelegate?

It turns out that this is done so often that there’s a really easy way to do it.
All you do is send a message to the UIApplication and ask for the del-
egate:

[[UIApplication sharedApplication] delegate]

UIApplication is a singleton object (there is only one) and the class
method delegate returns the delegate object. But frankly, I find myself
doing this so often in my program that, in order to save typing, I simply add a
constant to Constants.h (and you should to):

#define kAppDelegate ((iPadTravel411AppDelegate *)
 [[UIApplication sharedApplication] delegate])

I also cast the delegate object that’s returned to an iPadTravel411Ap-
pDelegate. You have to do that if you want to access instance variables and
methods you have added to your app delegate.

Now is also a good time to add the import statements that you’ll need to
access the iPadTravel411AppDelegate and the Destination class to
the top of RootViewController.m. Check out the following bolded lines:

#import “RootViewController.h”
#import “DetailViewController.h”
#import “Constants.h”
#import “iPadTravel411AppDelegate.h”
#import “Destination.h”

So while you haven’t used these statements yet, you’re all set for the next
chapter.

22_9780470920503-ch14.indd 34722_9780470920503-ch14.indd 347 12/24/10 12:33 AM12/24/10 12:33 AM

348 Part V: Building an Industrial-Strength Application

Expanding the Architecture
to a “Real” App

The way I’ve had you construct the model, the user gets to go to only one
place. No matter how interesting and exciting London is, there are probably
some other places in the world you’d also like to travel to (Katmandu comes
to mind).

What I could have done was add a Trip class as well. That way, the user
would see a list of destinations in some sort of Table view first (London,
Paris, Katmandu) and then be able to choose one — which would then dis-
play the Table view you created at the beginning of this chapter.

This does, however, make this app much more complicated, so I haven’t
done that — simplicity of presentation being my main goal here. But it’s defi-
nitely an exercise for you to pursue on your own.

22_9780470920503-ch14.indd 34822_9780470920503-ch14.indd 348 12/24/10 12:33 AM12/24/10 12:33 AM

Chapter 15

Finding Your Way
In This Chapter
▶ Using the Map framework

▶ Specifying the location and zoom level of a map

▶ Identifying the iPad’s current location

▶ Annotating significant locations on the map

One of the things that makes iPad applications compelling is the abil-
ity you have as a developer to incorporate the user’s location into the

application functionality. And one of the more compelling ways to do that is
through the use of maps.

 Being able to build maps into your application is an important new feature in
the iOS 3.0 SDK and beyond, and it doesn’t hurt that working with maps is one
of the funnest things you can do on the iPad because Apple makes it so easy.

You’ve heard me say it before, and I’ll say it again: The iPad is about con-
tent. For an app bearing the name iPadTravel411, there’s no better place
to start dealing with content than with a map. In this chapter, I introduce
you to MKMapView and have you create a UIViewController subclass
(MapController) to manage the map display.

Putting Content First
The iPad is about delivering content, and that’s what you’ll want your user to
experience when he launches your app — real content, rather than some sort
of screen that enables you to navigate the app that you’d normally get in a
mobile device with a smaller screen.

23_9780470920503-ch15.indd 34923_9780470920503-ch15.indd 349 12/24/10 12:32 AM12/24/10 12:32 AM

350 Part V: Building an Industrial-Strength Application

Although this book doesn’t go on and on about what kind of content you
should be providing in your app, you should know that the SDK does make
it really easy to deliver certain types of content — in this case, maps. In
this chapter, I take you on a tour of MKMapKit and show you how to create
really useful annotated maps that contain the information the user needs.
(Annotated in this context means those cute pins in the map that display a
callout to describe that location when you touch them.)

Because the goal of iPadTravel411 is to reduce the hassles involved with trav-
eling, it should come as no surprise that one thing you can do right off the
bat is present the users with a handy map that should be able to help them in
whatever situation they’re in. In Figure 15-1, you can see the iPad displaying a
map that includes the airport (in this case, Heathrow) and the user’s destina-
tion (London).

Including the ability to display a map in iPadTravel411 became important as
people begin to realize the kinds of solutions that can be delivered on the
iPad. To many travelers, nothing brands you more as a tourist than unfold-
ing a large map (except of course looking through a thick guidebook). In this
chapter, I show you how to take advantage of the iPad’s built-in capability
to display a map of virtually anywhere in the world, as well as determine
your location and then indicate it in the map. As I mention earlier, the iPad’s
awareness of your location is one of the things that enables you to develop a
totally new kind of application that really sets an iPad application apart from
a desktop one.

Oh, and by the way, it turns out that working with maps is one of the most
fun things you can do on the iPad because Apple makes it so easy. In fact,
you can display a map that supports those great panning and zooming ges-
tures you find on all the Big Boy apps by simply creating a view controller
and a nib file. (You do that soon.)

In this chapter, I show you how to center your map on an area you want to
display (London and Heathrow airport), add annotations that display a call-
out to describe that location when you touch them, drag an annotation to
someplace else on the map, and even show the user’s current location. And
because your users (and Apple) will insist that they be able to use the iPad in
any orientation, I show you how to make sure Heathrow Airport and London
are both visible on the map no matter what orientation the user chooses.

23_9780470920503-ch15.indd 35023_9780470920503-ch15.indd 350 12/24/10 12:32 AM12/24/10 12:32 AM

351 Chapter 15: Finding Your Way

Figure 15-1:
Where’s
Waldo?

Adding the Map Controller
To use maps, you have to add a few more files to your project: a
MapController.h and .m and a MapController nib file.

23_9780470920503-ch15.indd 35123_9780470920503-ch15.indd 351 12/24/10 12:32 AM12/24/10 12:32 AM

352 Part V: Building an Industrial-Strength Application

 1. Add a new group in the Groups & Files list to hold all your new View
controllers classes. To do so, select the iPadTravel411 Project icon
and then choose Project➪New Group. You’ll get a brand-spanking-new
group, named New Group, already selected and waiting for you to type
in the name you want; type View controllers. (To change what group a
file is in, select and then drag the file to the group you want it to occupy.
The same goes for groups as well.)

 2. In the IPadTravel411Project window, select the View controllers
group and then choose File➪New File from the main menu (or press
Ô+N) to call up the New File dialog.

 3. In the leftmost pane of the dialog, first select Cocoa Touch Classes
under the iOS heading, then select the UIViewController Subclass tem-
plate in the topmost pane, and then make sure that the following are
selected:

 • With XIB for User Interface

 • Targeted for iPad

 You see a new dialog asking for some more information.

 4. Enter MapController.m in the File Name field and then click Finish.

Implementing the MapController
To enable the MapController to do what you need it to do, there’s no time
like the present to add some functionality to it.

To start with, add the code in bold in Listing 15-1 to MapController.h, then
delete the code in bold, underline, and italic (BUI).

Listing 15-1: Starting the MapController Interface

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>
#import “DetailViewController.h”
@class Destination;

@interface MapController : UIViewController
 DetailViewController <MKMapViewDelegate> {

 Destination *destination;
 IBOutlet MKMapView *mapView;

}
- (id) initWithDestination:(Destination *) theDestination;

@end

23_9780470920503-ch15.indd 35223_9780470920503-ch15.indd 352 12/24/10 12:32 AM12/24/10 12:32 AM

353 Chapter 15: Finding Your Way

Here’s what you’re doing here.

 1. Make the MapController a subclass of the DetailViewController
and a MKMapViewDelegate by deleting the code with a strikethrough
(UIViewController, in other words) and adding the code in bold
shown in this step to the MapView.h file.

@interface MapController : UIViewController
 DetailViewController <MKMapViewDelegate>

{

 The reason you’re making the MapController a subclass of the
DetailViewController is because the DetailViewController
already has all the code you’ll need to manage the toolbar when you
move from landscape to portrait (add the button to display the popover
controller) and from portrait to landscape (remove the button).

 You make the MapController a MKMapViewDelegate because there
are some methods in the delegate that you will need to implement later.
(I explain that when you get there.)

 2. Add the import statements to enable the compiler to know who’s who.

 The one I want to draw your attention to is #import “DetailView
Controller.h”. For the compiler to be able to derive the Map
Controller from the DetailViewController, it has to know the
details of the DetailViewController.

 #import <MapKit/MapKit.h> gives you access to all the lovely func-
tionality that came your way when you added the MapKit.framework
in the preceding section.

 3. Add the instance variables destination and mapView because the
MapController will need to use them — mapView to set some map
properties and destination to access the annotations. (I explain that
in the “Adding Annotations” section, later in this chapter.)

 Although you get a default map for free (look ahead to Figure 15-6),
which is all well and good, there’s a lot more that you can do with it. For
that to happen, though, you’re going to need to be able to access the
Map view. To do that, make mapView an outlet by using the keyword
IBOutlet in the mapView declaration.

 4. Add an initialization method initWithDestination: to assign the
destination argument to the instance variable.

 You could have had the MapController access the app delegate’s
instance variable, but you do it this way to allow for more flexibility
later. (I might want to have maps showing not only the current
destination in the iPadAppDelegate instance variable, but others
as well.)

23_9780470920503-ch15.indd 35323_9780470920503-ch15.indd 353 12/24/10 12:32 AM12/24/10 12:32 AM

354 Part V: Building an Industrial-Strength Application

 5. Save the file by choosing File➪Save.

 Only after it’s saved can Interface Builder find the new outlet.

Now you need to add the code in bold in Listing 15-2 to mapController.m.

Listing 15-2: Initializing the MapController

#import “MapController.h”
#import “Destination.h”

@implementation MapController

- (id) initWithDestination:
 (Destination *) theDestination {

 if (self =
 [super initWithNibName:@”MapController”bundle:nil]) {
 destination = theDestination;
 }
 return self;
}

@end

The first thing this method does is invoke its superclass’s initialization
method. You pass it the nib filename (the one you just created in the preced-
ing section) and nil as the bundle, telling it to look in the main bundle.

[super initWithNibName:@”MapController” bundle:nil]) {

Note that the message to super precedes the initialization code added in the
method. This sequencing ensures that initialization proceeds in the order of
inheritance. Calling the superclass’s initWithNibName:bundle: method
initializes the controller, loads and initializes the objects in the nib file (views
and controls, for example), and then sets all its outlet instance variables and
Target-Action connections for good measure.

 The init…: methods all return a pointer to the object created. While not
the case here, the reason you assign whatever comes back from an init…:
method to self is that some classes actually return a different class than
what you created. The assignment to self becomes important if your class
is derived from one of those kinds of classes. Keep in mind as well that an

23_9780470920503-ch15.indd 35423_9780470920503-ch15.indd 354 12/24/10 12:32 AM12/24/10 12:32 AM

355 Chapter 15: Finding Your Way

init…: method can also return nil if there’s a problem initializing an object.
If you’re creating an object where that’s a possibility, you have to take that
into account. (Both of those situations are beyond the scope of this book.)

After the superclass initialization is completed, the MapController is ready
to do its own initialization, including saving the theDestination argument
to the destination instance variable.

Be sure to save the file to be able to access the new outlet in Interface
Builder.

Cleaning up the DetailViewController
You can delete a number of methods from DetailViewController
because you won’t need them.

Make the modifications you see in Listing 15-3 to DetailViewController.h,
and make the modifications in Listing 15-4 to DetailViewController.m. The
additions are in bold, and deletions are in BUI.

Listing 15-3: Cleaning Up the DetailViewController Interface

@interface DetailViewController : UIViewController
<UIPopoverControllerDelegate,

 UISplitViewControllerDelegate>
{

 UIPopoverController *popoverController;
 UIToolbar *toolbar;

id detailItem;
UILabel *detailDescriptionLabel;
}

@property (nonatomic, retain) IBOutlet UIToolbar *toolbar;
@property (nonatomic, retain) UIPopoverController
 *popoverController;
@property (nonatomic, retain) id detailItem;
@property (nonatomic, retain) IBOutlet UILabel
 *detailDescriptionLabel;
@end

23_9780470920503-ch15.indd 35523_9780470920503-ch15.indd 355 12/24/10 12:32 AM12/24/10 12:32 AM

356 Part V: Building an Industrial-Strength Application

Listing 15-4: Cleaning Up the DetailViewController Implementation

#import “DetailViewController.h”
#import “RootViewController.h”

@interface DetailViewController ()
@property (nonatomic, retain)
 IPopoverController *popoverController;
- (void)configureView;
@end

@synthesize toolbar, popoverController; , detailItem,
 detailDescriptionLabel;

#pragma mark -
#pragma mark Managing the detail item

/*
 When setting the detail item, update the view and dismiss

the popover controller if it’s showing.
*/
- (void)setDetailItem:(id)newDetailItem {

 if (detailItem != newDetailItem) {
 [detailItem release];
 detailItem = [newDetailItem retain];

 // Update the view.
 [self configureView];
 }

 if (popoverController != nil) {
 [popoverController dismissPopoverAnimated:YES];
 }
}

- (void)configureView {
// Update the user interface for the detail item.
 detailDescriptionLabel.text = [detailItem description];
}

...

(void)dealloc {
 [popoverController release];
 [toolbar release];

23_9780470920503-ch15.indd 35623_9780470920503-ch15.indd 356 12/24/10 12:32 AM12/24/10 12:32 AM

357 Chapter 15: Finding Your Way

 [detailItem release];
 [detailDescriptionLabel release];
 [super dealloc];
}

One thing I want to call your attention to is the following deletion:

@interface DetailViewController ()
@property (nonatomic, retain)
 IPopoverController *popoverController;
- (void)configureView;
@end

Because it’s currently implemented as a class extension, popover
Controller is not visible to subclasses. So you had to move the popover
Controller property from where it is in the DetailViewController
implementation into the interface to be able to access it in your derived
classes later. (I explain class extensions in Chapter 18.) configureView is
deleted because you deleted the method.

Finally, you also have to delete the reference in the RootViewController
to the detailItem. In RootviewController.m, delete the line in table
View:didSelectRowAtIndexPath:, as I have in Listing 15-5.

Listing 15-5: Doing the Last of the Cleanup

- (void)tableView:(UITableView *)aTableView didSelectRowAt
IndexPath:(NSIndexPath *)indexPath {

 /*
 When a row is selected, set the detail view

controller’s detail item to the item associated
with the selected row.

 */
 detailViewController.detailItem =
 [NSString stringWithFormat:@”Row %d”, indexPath.row];
}

You’ll implement this method for your app shortly.

Finally, finally — and I mean it this time — you should delete DetailView.
xib from your project — you won’t need it any longer because you no
longer instantiate the DetailViewController (and its nib). Instead
you’ll instantiate View controllers and their nibs whose classes are derived
from the DetailViewController. (You’ll do that in the “Creating the
MapController” section, later in this chapter.)

23_9780470920503-ch15.indd 35723_9780470920503-ch15.indd 357 12/24/10 12:32 AM12/24/10 12:32 AM

358 Part V: Building an Industrial-Strength Application

To delete DetailView.xib, simply select the file in your project’s Groups &
Files list and press Delete. When the dialog appears, Select Also Move to Trash.

 There is no undo for this Delete action in Xcode, so be careful.

Adding the framework
Okay, that takes care of most of what you will have to do in your
MapController.m and .h files. The next thing to do: You have to add a new
framework.

Up until now, all you’ve needed is the framework that more or less came
supplied when you created a project. But now, you need to add a new frame-
work to enable the Map view. (Officially it is a MKMapView, but I refer to it as
simply a Map view.)

 1. Make sure the disclosure triangle next to Frameworks in the Groups &
Files list is pointing down (opened) and then right-click Frameworks.

 Be sure to do this using the Frameworks group.

 2. From the submenu that appears, select Add and then select Existing
Frameworks, as I’ve done in Figure 15-2.

Figure 15-2:
Adding
a new

framework.

23_9780470920503-ch15.indd 35823_9780470920503-ch15.indd 358 12/24/10 12:32 AM12/24/10 12:32 AM

359 Chapter 15: Finding Your Way

 3. In the new window that appears (see Figure 15-3), select MapKit.frame-
work and then click Add.

 Your new framework is placed into the Frameworks group.

Figure 15-3:
Adding the

MapKit.
framework.

Setting up the nib file
To display a map, I show you how to use an MKMapView to display the map
information. To set up the MKMapView, you use Interface Builder.

 1. Use the Groups & Files list on the left in the Project window to drill
down to the MapController.xib file; then double-click the file to
launch it in Interface Builder.

 If the Attributes Inspector window is not open, choose Tools➪Inspector
or press Ô+Shift+1. If the View window isn’t visible, double-click the
View icon in the MapController.xib window.

 If for some reason you can’t find the MapController.xib window (you
may have minimized it, whether by accident, on purpose, or whatever),
you can get it back by choosing Window➪MapController.xib or which-
ever nib file you’re working on.

23_9780470920503-ch15.indd 35923_9780470920503-ch15.indd 359 12/24/10 12:32 AM12/24/10 12:32 AM

360 Part V: Building an Industrial-Strength Application

 2. Select File’s Owner in the MapController.xib window.

 Its type should already be set to MapController. If not, retrace your
steps to see where you may have made a mistake.

 You need to be sure that the File’s Owner is MapController. You
can set File’s Owner from the Class drop-down menu in the Identity
Inspector.

 3. Drag in a toolbar from the Library to the top of the View window.
Make sure it is a toolbar and not a navigation bar. (It looks like it
belongs on the bottom of the view, but on the iPad it can be at the
top.) Select and delete the button that says “item” in the toolbar —
you won’t need it.

 4. In the View Attributes inspector window for the view, be sure to dese-
lect Autoresize Subviews, as shown in Figure 15-4.

 5. Drag in a Map View from the Library below the toolbar and resize it to
the size of the remaining view — the View window minus the toolbar.
When you’re done, it should look like Figure 15-4.

 Note that in Figure 15-4. I have the view selected and the View Attributes
Inspector window is showing.

 6. Back in the MapController.xib window, right-click File’s Owner to
call up a connections panel with a list of connections.

 You can get the same list using the Connections tab in the Attributes
Inspector.

 7. Drag from the little circle next to the mapView outlet in the list onto
the Map view.

 Doing so connects the mapView outlet for the MapController to the
Map view.

 8. Drag from the little circle next to the toolbar outlet in the list onto
the toolbar.

 Doing so connects the toolbar outlet for the MapController to the
toolbar.

 9. Go back to that list of connections in the File’s Owner connections
panel menu and click the disclosure triangle (if necessary) next to
Referencing Outlets. This time drag from the little circle next to the
New Referencing Outlet list onto the Map view.

 10. With the cursor still in the Map view, let go of the mouse button.

 A pop-up menu appears.

 11. Choose Delegate from the pop-up menu.

 When you’re done, the contextual menu should look like Figure 15-5.

 12. Save the file.

23_9780470920503-ch15.indd 36023_9780470920503-ch15.indd 360 12/24/10 12:32 AM12/24/10 12:32 AM

361 Chapter 15: Finding Your Way

Figure 15-4:
The

Interface
Builder

 windows.

Figure 15-5:
The connec-
tions are all

made.

 The MapController now has its outlet to the Map view and tool-
bar connected, and it also will receive the delegate messages as a
MKMapViewDelegate. I show you what methods you need to implement
next.

23_9780470920503-ch15.indd 36123_9780470920503-ch15.indd 361 12/24/10 12:32 AM12/24/10 12:32 AM

362 Part V: Building an Industrial-Strength Application

 Only after the file’s saved will the changes you made be reflected in your
application.

Creating the MapController
As it stands now, if you were to compile and run the app, you’d get the same
old thing as you did in the last chapter — except for the label text you just
removed. To see a Map view, you’re going to have to replace the old Detail
view controller with your brand-new Map view controller.

It all starts in RootViewController.m. At the end of the RootView
Controller.m file’s viewDidLoad method, add the code in bold in
Listing 15-6. You’re going to replace the DetailViewController with the
MapController.

Listing 15-6: Adding to viewDidLoad

- (void)viewDidLoad {
 [super viewDidLoad];
…

 DetailViewController *mapController =
 [[MapController alloc]
 initWithDestination:kAppDelegate.destination];
 [[kAppDelegate splitViewController] setViewControllers:
 [NSArray arrayWithObjects:self.navigationController,
 mapController, nil]];
 kAppDelegate.splitViewController.delegate =
 (<UISplitViewControllerDelegate>)mapController;
}

As I explain in Chapter 14, the UISplitViewController class is a view
controller that simply manages the presentation of two side-by-side view
controllers — it is, in this respect, a container controller. Using this class,
you create a view controller on the left (the Master view), which presents a
list of items, and one on the right, which presents the details, or content, of
the selected item (the Detail view).

After you create and initialize a UISplitViewController object, you
assign two view controllers to it by using the viewController property (an
array of two controllers). The Split view controller, as I explain in Chapter 14,
has no interface — its job is to coordinate the presentation of its two view
controllers and to manage the transitions between different orientations.

And this is exactly what you do here. You create a new view controller —
mapController — and then create the array consisting of the existing
master controller — (self.navigationController) and the newly cre-
ated Detail (view) controller — mapController. You assign your new array

23_9780470920503-ch15.indd 36223_9780470920503-ch15.indd 362 12/24/10 12:32 AM12/24/10 12:32 AM

363 Chapter 15: Finding Your Way

to the controllers property using the setViewControllers: access
method.

 [[kAppDelegate splitViewController] setViewControllers:
 [NSArray arrayWithObjects:self.navigationController,
 mapController, nil]];

You may be curious why you’re using self.navigationController and
not something that resembles the RootViewController here (like self).
Answering that question involves understanding navigation using view con-
trollers, and this is not the right place to do that. So be patient for now; you
learn all about navigation controllers in Chapter 18.

You also assign the mapController as the delegate to the Split view
controller — that will ensure it gets those handy messages when the view
rotates (a process I explain in Chapter 14).

kAppDelegate.splitViewController.delegate = mapController;

In case you didn’t notice, you declared the mapController as a
DetailViewController. Doing it this way allows you to access all the
functionality out there supporting popovers that is already part of the
DetailViewController. This isn’t necessary here, but as you’ll see, you’re
going to need that functionality later when you have a whole slew of these
controllers, all derived from DetailViewController.

Finally, as you probably guessed already, you’re also going to have to add the
following import statement to RootViewController.m:

#import “MapController.h”

One further note: shouldAutorotateToInterfaceOrientation: is a
method that returns a YES or NO depending on whether your app supports
a device orientation; it’s implemented in the DetailViewController.
Because one of the requirements for an iPad app is that it (usually) should
support any orientation, this method by default returns YES. It’s also imple-
mented in all the UIViewController files you’ll create, meaning you need
to delete it because you’re going to be adding some behavior to the method
in DetailViewController in the next section.

So, do the dirty deed and delete the shouldAutorotateToInterface
Orientation: method in MapController.m:

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {
 // Overriden to allow any orientation.
 return YES;
}

23_9780470920503-ch15.indd 36323_9780470920503-ch15.indd 363 12/24/10 12:32 AM12/24/10 12:32 AM

364 Part V: Building an Industrial-Strength Application

If you were to build and run your program at this point, you’d get the default
Map view you see in Figure 15-6.

You’ll have all the right toolbars and a nice little button that says Root List
that displays the Table view you created in Chapter 14. You’re able to rotate
the device just as you could when using the base Detail view controller and
to have the button disappear in landscape mode.

But you — and your users — want and deserve more than that. Figure 15-7
shows what you might like to see rather than the standard Map view you get
right out of the box. But before I get to that, we need to have a heart-to-heart
discussion about managing the view sizes in this environment.

Figure 15-6:
The default
Map view.

23_9780470920503-ch15.indd 36423_9780470920503-ch15.indd 364 12/24/10 12:32 AM12/24/10 12:32 AM

365 Chapter 15: Finding Your Way

Figure 15-7:
Heathrow

and London
on the map.

Managing the views
Although it’s perfectly all right to replace view controllers in a Split control-
ler view, it does come at a price. For reasons beyond the scope of this book,
you’re going to have to resize your views depending on the device orienta-
tion. Now don’t get your knickers in a twist; it’s not hard, and by the time I’m
done explaining it to you, you’ll have extended your understanding of view
geometry considerably — all in all, a good thing. You’ll have an appreciation
of how views and nibs work, and you’ll be able to modify your code to meet
your needs in any application that isn’t a boring-off-the-shelf-created-from-a-
template one.

The problem arises from the fact that in your nib file you (implicitly) specify
a size for the view and toolbar when you drag in the views and toolbar. You
created your view in portrait orientation (as opposed to landscape) and the
default here is to have the view controller resize the views when you move
into landscape orientation.

Although this works fine in the template, when you start substituting your
own view controllers, the view controller’s default behavior for resizing and
placing views when you move the device from portrait to landscape orienta-
tion doesn’t work the way you need it to. This is especially true with the Map

23_9780470920503-ch15.indd 36523_9780470920503-ch15.indd 365 12/24/10 12:32 AM12/24/10 12:32 AM

366 Part V: Building an Industrial-Strength Application

view and (generally speaking) whenever you add content to the Master view.
(Chapter 18 looks at this issue in a bit more detail.)

Now it can be revealed: This is why I had you deselect the Autoresize
Subviews option when you were working with the MapController.xib file
in the “Setting up the nib file” section, earlier in this chapter.

The thing is that if you’re not going to have the view controller resize the
views for you, someone has to — and that someone is you.

Listing 15-7 shows you how to compute the right size for the view and
toolbars. You should add the code in Listing 15-7 to the DetailView
Controller.m file. That way the method will be inherited by all the
DetailViewController subclasses you’ll be creating.

Listing 15-7: Computing the View and Toolbar Sizes

- (void) computeFrames:(UIView *) aView forOrientation:
(UIInterfaceOrientation)interfaceOrientation {

 CGRect screenBounds = [[UIScreen mainScreen] bounds];
 CGRect viewFrame = aView.frame;
 CGRect toolbarFrame = toolbar.frame;
 if
 (UIDeviceOrientationIsPortrait(interfaceOrientation)) {
 viewFrame.size.height = screenBounds.size.height -
 toolbarFrame.size.height - kStatusBarHeight;
 viewFrame.size.width = screenBounds.size.width;
 toolbarFrame.size.width = screenBounds.size.width;
 }
 else {
 viewFrame.size.height = screenBounds.size.width -
 toolbarFrame.size.height - kStatusBarHeight;
 viewFrame.size.width =
 screenBounds.size.height - kMasterViewWidth;
 toolbarFrame.size.width =
 screenBounds.size.height - kMasterViewWidth;
 }
 toolbar.frame = toolbarFrame;
 aView.frame = viewFrame;
}

To start with, you get the bounds of the screen. From this you can get the
height and width, which currently on the iPad is 1,024 x 768 — but it’s better
not to count on it. Then you get the frames for the view (in this case, the Map
view) and the toolbar, respectively.

CGRect screenBounds = [[UIScreen mainScreen] bounds];
CGRect viewFrame = aView.frame;
CGRect toolbarFrame = toolbar.frame;

23_9780470920503-ch15.indd 36623_9780470920503-ch15.indd 366 12/24/10 12:32 AM12/24/10 12:32 AM

367 Chapter 15: Finding Your Way

To refresh your memory, the screenBounds, viewFrame, and toolbar
Frame are all CGRects which describe the view’s location and size in its
superview’s coordinate system. It is made up of two data structures: origin
and size.

struct CGRect {
 CGPoint origin;
 CGSize size;
};

Which are defined as

struct CGSize {
 CGFloat width;
 CGFloat height;
};
struct CGPoint {
 CGFloat x;
 CGFloat y;
};

Next in line in Listing 15-7, you check to see whether the device is in portrait
mode.

if (UIDeviceOrientationIsPortrait(interfaceOrientation) {

UIDeviceOrientationIsPortrait is a handy UIKit function that returns
a Boolean value indicating whether the device is in a portrait orientation.
You’re using the interfaceOrientation argument that was passed in with
the method — you’ll see where that comes from next.

If the app is in portrait mode, you compute the view height to be the screen
height minus the status bar height minus the toolbar height. You assign the
view and toolbar width as the screen width.

viewFrame.size.height = screenBounds.size.height -
 toolbarFrame.size.height - kStatusBarHeight;
viewFrame.size.width = screenBounds.size.width;
toolbarFrame.size.width = screenBounds.size.width;

You’ll also have to add the following constants to Constants.h — both of
these sizes are specified by the SDK:

#define kMasterViewWidth 320
#define kStatusBarHeight 20

You also have to add #import “Constants.h” to
DetailViewController.m.

23_9780470920503-ch15.indd 36723_9780470920503-ch15.indd 367 12/24/10 12:32 AM12/24/10 12:32 AM

368 Part V: Building an Industrial-Strength Application

If the app is in landscape mode, you do something similar, but because the
screen bounds are based on portrait orientation no matter what the actual
device orientation, you’re going to base the height computation, the screen
width, and the width computation on the screen height.

viewFrame.size.height = screenBounds.size.width-
 toolbarFrame.size.height - kStatusBarHeight;
viewFrame.size.width =
 screenBounds.size.height - kMasterViewWidth;
toolbarFrame.size.width =
 screenBounds.size.height - kMasterViewWidth;

See? That wasn’t so hard, and now you know something a few developers
with apps in the store don’t even know.

Now that you have implemented the computeFrames: method, it’s time to
look at how and when the computeFrames: message gets sent.

 You’ll want to send this message whenever the device orientation changes.
One place you definitely want to do that is in shouldAutorotateTo
InterfaceOrientation:, the message that is sent to the view controller
whenever the user moves the device from one orientation to another (portrait
to landscape for example).

Add the code in bold in Listing 15-8 to shouldAutorotateToInterface
Orientation: in DetailViewController.m and add its declaration to
DetailViewController.h.

Listing 15-8: Adding to shouldAutorotateToInterfaceOrientation:

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {

 [self computeFramesForOrientation:interfaceOrientation];
 return YES;
}

You probably see a bit of a disconnect here. The message you need to
send to compute the right view and toolbar sizes is computeFrames:for
Orientation:. The message you’re sending is computeFramesFor
Orientation:. (The former takes two arguments, and the latter just one.)
What gives?

The problem is that you need to provide computeFrames:forOrientation:
with the view it needs to adjust, and that is only known in the subclasses.

To do that, you need to add a variation on Listing 15-9 to each of your
subclasses, replacing mapView with the right view. (Don’t worry; I explain

23_9780470920503-ch15.indd 36823_9780470920503-ch15.indd 368 12/24/10 12:32 AM12/24/10 12:32 AM

369 Chapter 15: Finding Your Way

exactly what to do in each instance.) Add the method in Listing 15-9 to
MapController.m.

Listing 15-9: Passing in the Right View

- (void) computeFramesForOrientation:
 (UIInterfaceOrientation)interfaceOrientation {

 [self computeFrames:mapView
 forOrientation:interfaceOrientation];
}

You also have to add the same method as an empty method in
DetailViewController.m for it to be able to send that message to itself.
One of the rules of subclassing is that the superclass has no knowledge of
any methods of its subclass — makes sense. So you’ll need to extend the
DetailViewController class to include this message, which will then be
inherited and overridden in each subclass. Add the code in Listing 15-10 to
DetailViewController.m.

Listing 15-10: The Empty Method

- (void) computeFramesForOrientation:
(UIInterfaceOrientation)interfaceOrientation {

 // Must be implemented in any sub class
}

Finally, you also have to add the new method declarations. Add the following
to DetailViewController.h:

- (void) computeFrames:(UIView *) aView forOrientation:
 (UIInterfaceOrientation)interfaceOrientation;
- (void) computeFramesForOrientation:
 (UIInterfaceOrientation)interfaceOrientation;

Well, I don’t know about you, but I’m glad to be done with the plumbing.
Time to get on to something more interesting (to the user at least).

Putting MapKit through Its Paces
You’ve prepared the ground for some great map functionality, but now
it’s time to put the code in place so that you can get some real work done.
Undergirding all this effort is the MapKit.framework. One of the great fea-
tures of iOS 3.0 SDK and beyond is the MapKit.framework, which enables
you to display a map and also do things with your map without having to do
much work at all.

23_9780470920503-ch15.indd 36923_9780470920503-ch15.indd 369 12/24/10 12:32 AM12/24/10 12:32 AM

370 Part V: Building an Industrial-Strength Application

The map looks like the maps in the built-in applications and creates a seam-
less mapping experience across multiple applications.

MKMapView
The essence of mapping on the iOS devices is the MKMapView. It’s a UIView
subclass, and as you saw in the previous section, you can use it out of the
box to create a world map. You use this class as-is to display map informa-
tion and to manipulate the map contents from your application. It enables
you to center the map on a given coordinate, specify the size of the area you
want to display, and annotate the map with custom information.

 You added the MapKit.framework earlier in this chapter.

When you initialize a Map view, you can specify the initial region for that map
to display. You do this by setting the region property of the map. A region is
defined by a center point and horizontal and vertical distances, referred to as
the span. The span defines how much of the map will be visible; it also deter-
mines the zoom level. The smaller the span, the greater the zoom.

The Map view supports the standard map gestures:

 ✓ Scroll

 ✓ Pinch zoom

 ✓ Double-tap zoom in

 ✓ Two-finger–tap zoom out (You may not even have known about that
one.)

You can also specify the map type — regular, satellite, or hybrid — by chang-
ing a single property.

Because MapKit.framework was written from scratch, it was developed
with the limitations of the iPhone (and subsequently iPad) in mind. As a
result, it optimizes performance on the iPad by caching data as well as man-
aging memory and seamlessly handling connectivity changes (like moving
from 3G to Wi-Fi, for example).

The map data itself is Google-hosted map data, and network connectivity is
required. And because MapKit.framework uses Google services to provide
map data, using it binds you to the Google Maps/Google Earth API terms of
service.

23_9780470920503-ch15.indd 37023_9780470920503-ch15.indd 370 12/24/10 12:32 AM12/24/10 12:32 AM

371 Chapter 15: Finding Your Way

 Although you shouldn’t subclass the MKMapView class itself, you can tailor a
Map view’s behavior by providing a delegate object. The delegate object can
be any object in your application, as long as it conforms to the
MKMapViewDelegate protocol. (You made the MapController the
MKMapView delegate in the “Setting up the nib file” section, earlier in this
chapter.)

Enhancing the map
What about showing your location on the map? That’s just as easy!

In the MapController.m file, uncomment out viewDidLoad and add the
code in bold:

- (void)viewDidLoad {

 [super viewDidLoad];
 mapView.showsUserLocation = YES;
}

showsUserLocation is a MKMapView property that tells the Map view
whether to show the user location. If YES, you get that same blue pulsing dot
you see displayed in the built-in Map application.

If you were to compile and run the application as it stands, you’d get what
you see in Figure 15-8: a world map with a blue dot that represents the
phone’s current location. You’ll probably have to pan the map over to see it.
(There may be a lag until the iPad is able to determine that location, but you
should see it eventually.)

 If you don’t see the current location, you might want to check and make sure
you’ve connected the mapView outlet to the Map view in the nib file — see the
“Setting up the nib file” section, earlier in the chapter.

 You get your current location if you’re running your app on the iPad. If you’re
running it on the Simulator, that location is Apple — in beautiful, Cupertino,
California, to be precise. Touching the blue dot also displays what’s called an
annotation, and I tell you how to customize the text to display whatever you
cleverly come up with — including, as you discover in the upcoming “Adding
Annotations” section, the address of the current location.

23_9780470920503-ch15.indd 37123_9780470920503-ch15.indd 371 12/24/10 12:32 AM12/24/10 12:32 AM

372 Part V: Building an Industrial-Strength Application

Figure 15-8:
Displaying a

map with a
user

location.

Although I won’t have you do it here, you can also specify what kind of map
type to use. The screen shots in this book (with the exception of Chapter 13)
all use MKMapTypeStandard (the “standard” map view) — which displays a
street map with roads and some road names. What I showed you in Chapter
13 was a map type of MKMapTypeHybrid — which displays a satellite image
of the area with road and road name information layered on top (my favor-
ite). Your third choice is MKMapTypeSatellite, which displays just the
satellite imagery of the area.

If you wanted to change the map to MKMapTypeHybrid, all you would need
to do is add the following statement to viewDidLoad in MapController.m
(or anywhere you wanted to make a map type selection):

mapView.mapType = MKMapTypeHybrid;

It’s about the region
Okay, now you have a blue dot on a map.

Having this global map is kind of interesting but not very useful if you’re plan-
ning to go to London. The following sections show you what you would have
to do to make the map more useful.

23_9780470920503-ch15.indd 37223_9780470920503-ch15.indd 372 12/24/10 12:32 AM12/24/10 12:32 AM

373 Chapter 15: Finding Your Way

As I mention at the beginning of this chapter, ideally, when you get to
Heathrow (or wherever), you should see a map that centers on Heathrow as
opposed to the world map. To get there from here, however, is also pretty
easy.

First you need to look at how you center the map.

Back in your Project window, add the following code to MapController.m:

- (void)updateRegionLatitude:(float) latitude
 longitude:(float) longitude
 latitudeDelta:(float) latitudeDelta
 longitudeDelta:(float) longitudeDelta {

 MKCoordinateRegion region;
 region.center.latitude = latitude;
 region.center.longitude = longitude;
 region.span.latitudeDelta = latitudeDelta;
 region.span.longitudeDelta = longitudeDelta;
 [mapView setRegion:region animated:NO];
}

Also add the declaration to the MapController.h file.

Setting the region is how you center the map and set the zoom level. You
accomplish all this with the following statement:

[mapView setRegion:region animated:NO];

A region is a Map view property that specifies four things (as illustrated in
Figure 15-9):

 1. region.center.latitude specifies the latitude of the center of
the map.

 2. region.center.longitude specifies the longitude of the center of
the map.

 For example, if you were to set those values as

region.center.latitude = 51.471184;
region.center.longitude = -0.452542;

 the center of the map would be Heathrow airport.

 3. region.span.latitudeDelta specifies the north-to-south distance
(in latitudinal degrees) to display on the map. One degree of latitude is
approximately 111 kilometers (69 miles). A region.span.latitude
Delta of 0.0036 would specify a north-to-south distance on the map of
about a quarter of a mile. Latitudes north of the equator have positive
values, whereas latitudes south of the equator have negative values.

23_9780470920503-ch15.indd 37323_9780470920503-ch15.indd 373 12/24/10 12:32 AM12/24/10 12:32 AM

374 Part V: Building an Industrial-Strength Application

 4. region.span.longitudeDelta specifies the east-to-west distance
(in longitudinal degrees) to display on the map. Unfortunately, the
number of miles in one degree of longitude varies based on the latitude.
For example, one degree of longitude is approximately 69 miles at the
equator but shrinks to 0 miles at the poles. Longitudes east of the zero
meridian (by international convention, the zero or Prime Meridian
passes through the Royal Observatory, Greenwich, in east London) have
positive values, and longitudes west of the zero meridian have negative
values.

Although the span values provide an implicit zoom value for the map, the
actual region you see displayed may not equal the span you specify because
the map will go to the zoom level that best fits the region that is set. This
also means that even if you just change the center coordinate in the map, the
zoom level may change because distances represented by a particular span
may change at different latitudes and longitudes. To account for that, those
smart developers at Apple included a property you can set that will change
the center coordinate without changing the zoom level.

@property (nonatomic) CLLocationCoordinate2D
centerCoordinate

When you change the value of this property with a new CLLocation
Coordinate2D, the map is centered on the new coordinate, and it updates
span values to maintain the current zoom level.

That CLLocationCoordinate2D type is something you’ll be using a lot, so
I’d like to explain that before I take you any further.

The CLLocationCoordinate2D type is a structure that contains a geo-
graphical coordinate using the WGS 84 reference frame — the reference coor-
dinate system used by the Global Positioning System.

typedef struct {
CLLocationDegrees latitude;
CLLocationDegrees longitude;
} CLLocationCoordinate2D;

Here’s a little explanation:

 ✓ latitude is the latitude in degrees. This is the value you set in the code
you just entered (region.center.latitude = latitude;).

 ✓ longitude is the longitude in degrees. This is the value you set in the
code you just entered (region.center.longitude = longitude;).

23_9780470920503-ch15.indd 37423_9780470920503-ch15.indd 374 12/24/10 12:33 AM12/24/10 12:33 AM

375 Chapter 15: Finding Your Way

Figure 15-9:
How regions

work.

MKCoordinateRegion region;
region.center.latitude=51.471184;
region.center.longitude=-0.452542;
region.span.latitiudeDelta=.1;
region.span.longitudeDelta=.1;

[mapView setRegion:region animated: YES];

la
tit

ud
eD

el
ta

longitudeDelta

To center the map display on Heathrow, you send the updateRegion
Latitude:longitude: latitudeDelta:longitudeDelta message
(the code you just entered) when the view is loaded, that is, in the view
DidLoad: method in MapController.m. You already added some code
there to display the current location, so add the following code in bold:

- (void)viewDidLoad {

 [super viewDidLoad];
 mapView.showsUserLocation = YES;
 CLLocationCoordinate2D initialCoordinate =
 [destination initialCoordinate];
 [self updateRegionLatitude: initialCoordinate.latitude
 longitude: initialCoordinate.longitude
 latitudeDelta:.1 longitudeDelta:.1];
 self.title = [destination mapTitle];
}

Take a look at what this code does:

23_9780470920503-ch15.indd 37523_9780470920503-ch15.indd 375 12/24/10 12:33 AM12/24/10 12:33 AM

376 Part V: Building an Industrial-Strength Application

 1. The initialCoordinate message is sent to the Destination object
to get the initial coordinates you want displayed. You’re adding some
additional functionality to the model, whose responsibility now includes
specifying that location. The user may have requested that location
when he or she set up the trip (I don’t cover that topic in this book, leav-
ing it as an exercise for you to do), or it may have been a default loca-
tion that you decided on when you wrote the code (an airport specified
in the destination, for example).

 2. The Map title is set by sending the mapTitle message to the
Destination object — adding another model responsibility.

For all of this to work, of course, you have to add some code to the
Destination class.

Add the initialCoordinate and title methods to Destination.m.

- (CLLocationCoordinate2D)initialCoordinate {

 CLLocationCoordinate2D startCoordinate;
 startCoordinate.latitude = 51.471184;
 startCoordinate.longitude = -0.452542;
 return startCoordinate;
}
- (NSString *) mapTitle {

 return @” map”;
}

You have to include the MapKit in Destination, so add the following to
Destination.h:

#import <MapKit/MapKit.h>

And you’ll also need to add the new method declarations. When you’re done,
the Destination.h file should look like Listing 15-11.

Listing 15-11: Destination.h

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>

@interface Destination : NSObject {

 NSString *destinationName;
}
- (id) initWithName: (NSString *) theDestination;
- (CLLocationCoordinate2D) initialCoordinate;
- (NSString *) mapTitle;
@end

23_9780470920503-ch15.indd 37623_9780470920503-ch15.indd 376 12/24/10 12:33 AM12/24/10 12:33 AM

377 Chapter 15: Finding Your Way

If you compile and build your project, you should see what’s shown in
Figure 15-10.

Although this is better, I’d rather be able to see both the airport (Heathrow)
and my destination (London) at the same time. Although I could pinch to
reduce the map, I show you in the “Displaying multiple annotations” section,
later in this chapter, how to ensure that two (or more) locations are visible at
the initial launch.

At this point, when the user touches Map in the Main view, iPadTravel411 dis-
plays a map centered on Heathrow, and if you pan over (a tedious task you’ll
fix soon) to Cupertino (or wherever you are), you can see the blue dot.

 If you tap the blue dot (refer to Figure 15-8), you see a callout known as an
annotation displaying the message Current Location. You can also add
annotations on your own, which is what you do in the upcoming “Adding
Annotations” section.

Dealing with failure
But what if the Internet isn’t available? The Apple Human Interface Guidelines
(and common sense) say that you should keep the user informed of what’s
going on. By virtue of the fact that you’ve made the MapController a
MKMapView delegate, your app is in the position to send a message in the
event of a load failure. Adding the following code to the MapController.m
file makes it final:

- (void)mapViewDidFailLoadingMap:(MKMapView *)mapView
 withError:(NSError *)error {

 NSLog(@”Unresolved error %@, %@”, error,
 [error userInfo]);

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Unable to load the map”
 message:@”Check to see if you have internet access”
 delegate:self cancelButtonTitle: @”Thanks”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

 Testing this alert business on the Simulator doesn’t always work because it
does some caching. You’re better off testing it on the device by turning on
Airplane mode.

23_9780470920503-ch15.indd 37723_9780470920503-ch15.indd 377 12/24/10 12:33 AM12/24/10 12:33 AM

378 Part V: Building an Industrial-Strength Application

Figure 15-10:
Regions

determine
what you

see on
the map.

Adding Annotations
The MKMapView class supports the ability to annotate the map with custom
information. There are two parts to the annotation: the annotation itself,
which contains the data for the annotation, and the Annotation view that dis-
plays the data.

 An annotation plays a similar role to the dictionary you created in Chapter 14,
where the dictionary was meant to hold the text to be displayed in the cell of
a Table view. Both dictionaries and annotations act as models for their corre-
sponding view, with a view controller connecting the two.

23_9780470920503-ch15.indd 37823_9780470920503-ch15.indd 378 12/24/10 12:33 AM12/24/10 12:33 AM

379 Chapter 15: Finding Your Way

Tracking location changes
You can also track changes in user location by using key-value observing, which enables you to
move the map as the user changes location. I don’t go into detail on key-value observing here,
other than to show you the code.

If you want to track location changes by using key-value observing, add the code in bold to view-
DidLoad: in MapController.m to add an observer that’s to be called when a certain value
is changed — in this case, userLocation.

- (void)viewDidLoad {
 [super viewDidLoad];
 mapView.showsUserLocation = YES;
 CLLocationCoordinate2D initialCoordinate =
 [map

initialCoordinate];
 [self updateRegionLatitude:initialCoordinate.latitude
 longitude:initialCoordinate.longitude
 latitudeDelta:.06

longitudeDelta:.06];
 self.title = [trip mapTitle];
 [mapView.userLocation addObserver:self

forKeyPath:@”location”
 options:0

context:NULL];
}

Adding that code causes the observeValueForKeyPath:: message to be sent to the
observer (self or the Destination). To implement the method in Destination.m, enter
this method:

- (void)observeValueForKeyPath:(NSString *) keyPath
 ofObject:(id)object change:(NSDictionary *)

change
 context:(void *)

context {

 NSLog (@”Location changed”);
}

In this method, the keyPath field returns mapView.userLocation.location, which
you can use to get the current location. In this example, I’m simply displaying a message on the
Debugger Console, but as I said, after the user moves a certain amount, you may want to re-center
the map.

Note: This isn’t exactly the same location you’d get from CLLocationManager — it’s optimized
for the map, whereas CLLocationManager provides the raw user location.

Of course, you have to run this on the iPad for the location to change.

23_9780470920503-ch15.indd 37923_9780470920503-ch15.indd 379 12/24/10 12:33 AM12/24/10 12:33 AM

380 Part V: Building an Industrial-Strength Application

An Annotation object is any object that conforms to the MKAnnotation
protocol; typically, they’re existing classes in your application’s model.
The job of an Annotation object is to know its location (coordinate) on the
map along with the text to be displayed in the callout. The MKAnnotation
protocol requires a class that adopts that protocol to implement the
coordinate property. If you think about what user experience you’re trying
to achieve with this app, you’ll see there are really two places you would
want to display. The first is the airport, and the second is the city I’m going
to — London.

Although there will be much more in the City and Airport classes you’ll
create, it makes sense that they also know the coordinate and callout data.
I’ll have you start by creating a base class for both, one that implements the
MKAnnotation protocol, and then derive the City and Airport classes
from Annotation.

 1. I’ll put my new classes into the Model classes group, so select that
group in the Groups & Files pane.

 2. Choose File➪New File yet again from the main menu (or press Ô+N) to
open the New File dialog.

 3. In the leftmost column of the dialog, select Cocoa Touch Classes
under the iOS heading just like you did before, but this time select the
Objective-C class template in the topmost pane, making sure that the
Subclass drop-down menu has NSObject selected. Then click Next.

 You see a new dialog asking for some more information.

 4. Enter Annotation in the File Name field and then click Finish.

Do the same for City and Airport.

To code the Annotation class interface, add the code in bold in Listing 15-12.

Listing 15-12: The Annotation Class Interface

#import <MapKit/MapKit.h>

@interface Annotation : NSObject <MKAnnotation> {
 CLLocationCoordinate2D coordinate;
 NSString * title;
 NSString * subtitle;
}
@property (nonatomic, retain) NSString *title;
@property (nonatomic, retain) NSString *subtitle;
@property (nonatomic) CLLocationCoordinate2D coordinate;

@end

23_9780470920503-ch15.indd 38023_9780470920503-ch15.indd 380 12/24/10 12:33 AM12/24/10 12:33 AM

381 Chapter 15: Finding Your Way

The first thing you do with this code is have Annotation adopt the
MKAnnotation protocol — you also need to import MapKit here. The rest of
the interface is simply what is required to adopt the MKAnnotation protocol.

 The MKAnnotation protocol requires a coordinate property — the title
and subtitle methods are optional. It turns out of course that by making
title and subtitle properties and synthesizing the accessors, you have
those very methods.

Add the code in bold in Listing 15-13; that is all you need for the implementation.

Listing 15-13: The Annotation Class Implementation

#import “Annotation.h”

@implementation Annotation

@synthesize coordinate;
@synthesize title;
@synthesize subtitle;

@end

All you need to do, then, is synthesize the accessors.

You now have a base class that has everything a class needs to be an annota-
tion, except for one important thing — the data.

You’ll add that in the City and Airport objects.

Start by adding the code in bold to City.h and deleting the BUI in Listing 15-14.

Listing 15-14: The City Interface

#import “Annotation.h”

@interface City : NSObject Annotation {

}

@end

As you can see, you’re deriving City not from the normal NSObject, but from
the Annotation class that is already set up to do all the things an annotation
must do. You have to add the init method in Listing 15-15 to City.m.

23_9780470920503-ch15.indd 38123_9780470920503-ch15.indd 381 12/24/10 12:33 AM12/24/10 12:33 AM

382 Part V: Building an Industrial-Strength Application

Listing 15-15: The City init

- (id) init {

 if ((self = [super init])) {
 coordinate.latitude = 51.500153;
 coordinate.longitude= -0.126236;
 self.title = @”London”;
 self.subtitle = @”A great city”;
 }
 return self;
}

Do the same thing for Airport.h and .m as shown in Listings 15-16 and 15-17.

Listing 15-16: The Airport Interface

#import “Annotation.h”

@interface Airport : NSObject Annotation {

}

@end

Listing 15-17: The Airport init

- (id) init {

 if ((self = [super init])) {
 coordinate.latitude = 51.471184;
 coordinate.longitude= -0.452542;
 self.title = @”Heathrow”;
 self.subtitle = @”International airport”;
 }
 return self;
}

You’ll notice that even though the RootViewController shows three
airports, I’m hard-coding Heathrow here. Normally, you would create an
Airport object and have it initialize itself based on some argument (an ID,
for example) you pass in when you create it.

Of course, you’ll also need to create the objects; here’s where Destination
starts to show its value. You create City and Airport in Destination’s
initialization method. Add the code in bold in Listing 15-18 to the initWith
Name: method in Destination.m and add the import statements.

23_9780470920503-ch15.indd 38223_9780470920503-ch15.indd 382 12/24/10 12:33 AM12/24/10 12:33 AM

383 Chapter 15: Finding Your Way

Listing 15-18: Update initWithName:

#import “Destination.h”
#import <MapKit/MapKit.h>
#import “City.h”
#import “Airport.h”

@implementation Destination

- (id) initWithName:(NSString *) theDestination {

 if ((self = [super init])) {
 destinationName = theDestination;
 city = [[City alloc] init];
 airport = [[Airport alloc] init];
 }
 return self;
}

So, as soon as you create the Destination object in the iPadTravel411
AppDelegate method awakeFromNib (you did that in Chapter 14), it turns
around and creates the objects it will need: City and Airport.

You also need to add the code in Listing 15-19 to Destination.m to create
the annotations. I show you later how that is used.

Listing 15-19: createAnnotations

- (NSArray*) createAnnotations {

 NSMutableArray* annotations =
 [[NSMutableArray alloc] initWithCapacity:2];
 [annotations addObject:city];
 [annotations addObject:airport];

 return annotations;
}

Normally, you wouldn’t hardcode the initWithCapacity number — you
would get that from a count of some array of model objects. I can do it that
way here because I know exactly how many annotations I am adding.

You need to update the Destination interface by adding the code in bold in
Listing 15-20.

Even though annotations is a mutable array, I return it as a simple array
because that is all that is needed.

23_9780470920503-ch15.indd 38323_9780470920503-ch15.indd 383 12/24/10 12:33 AM12/24/10 12:33 AM

384 Part V: Building an Industrial-Strength Application

Listing 15-20: Update the Destination Interface

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>
@class City;
@class Airport;

@interface Destination : NSObject {

 NSString *destinationName;
 City *city;
 Airport *airport;
}
- (id) init:(NSString *) theDestination;
- (CLLocationCoordinate2D)initialCoordinate;
- (NSString *) mapTitle;
- (NSArray *) createAnnotations;

@end

So far so good. Annotation has adopted the MKAnnotation protocol,
declared a coordinate property, and implemented title and subtitle
methods using @synthesize, and you’ve added data by creating City
and Airport. The Destination object then creates an array of these
annotations. The only thing left to do is to get the annotations from the
Destination and then send the array to the Map view to get the annota-
tions displayed.

To do that, add the code in bold in Listing 15-21 to the viewDidLoad:
method in MapController.m so that a message gets sent to Destination
to create the annotations and send the annotations to the Map view to dis-
play them.

Listing 15-21: Adding to viewDidLoad

- (void)viewDidLoad {

 - (void)viewDidLoad {

 [super viewDidLoad];
 mapView.showsUserLocation = YES;
 CLLocationCoordinate2D initialCoordinate =
 [destination initialCoordinate];
 [self updateRegionLatitude:initialCoordinate.latitude
 longitude:initialCoordinate.longitude
 latitudeDelta:.1 longitudeDelta:.1];
 self.title = [destination mapTitle];
 NSArray* destinationAnnotations =
 [destination createAnnotations];
 annotations = [[NSMutableArray alloc]
 initWithCapacity:[destinationAnnotations count]];
 [annotations

23_9780470920503-ch15.indd 38423_9780470920503-ch15.indd 384 12/24/10 12:33 AM12/24/10 12:33 AM

385 Chapter 15: Finding Your Way

 addObjectsFromArray:destinationAnnotations];
 [mapView addAnnotations:destinationAnnotations];
}

The MapController sends the addAnnotations: message to the Map view,
passing it an array (the argument specified by the method) of objects that
conform to the MKAnnotation protocol; that is, each one has a coordinate
property and an optional title (and subtitle) method if you want to actu-
ally display something in the annotation callout.

The Map view places annotations on the screen by sending its delegate the
mapView:viewForAnnotation: message. This message is sent for each
annotation object in the array. Here you can create a custom view or return
nil to use the default view. (If you don’t implement this delegate method —
which you won’t, in this case — the default view is used; these are the red
pins you see on the map.)

Creating your own Annotation views is beyond the scope of this book —
although I show you how to use a MapKit-supplied Annotation view
MKPinView to create draggable annotations later in this chapter.

For the time being, the default annotation view is fine for your purposes.
It displays a pin in the location specified in the coordinate property of the
annotation delegate and when the user touches the pin, the optional title
and subtitle text will display if the title and subtitle methods are imple-
mented in the annotation delegate.

You’ll also have to add the new instance variable to MapController.h.

NSMutableArray *annotations;

 You can also add callouts to the Annotation callout, such as a Detail
Disclosure button (the one that looks like a white chevron in a blue button in
a Table view cell) or an Info button (like the one you see in many of the utility
apps), without creating your own Annotation view. Again, another exercise for
you, if you’re feeling frisky.

If you compile and build your project, you can check out one of the annota-
tions you just added in Figure 15-11.

You may be asking yourself at this point, “Why is Destination creating
the annotation instead of MapController and why not have the data in
Destination rather than City and Airport?’

To start with, you don’t want any data at all in MapController. That’s the
purview of the model classes.

23_9780470920503-ch15.indd 38523_9780470920503-ch15.indd 385 12/24/10 12:33 AM12/24/10 12:33 AM

386 Part V: Building an Industrial-Strength Application

Figure 15-11:
An

annotation.

Given that, you have a couple of options when it comes to creating the model
objects needed by the view controllers. One way is to have the view controllers
create the model objects they’ll use. For example, the AirportController
would create the Airport object, and so on. That eliminates the indirec-
tion you saw in the previous section; you know, having to go through the
Destination object to the Airport object that has the data.

Although this does work, and I’ve actually done that in past versions, I’d like
you to consider a different approach that results in a more extensible pro-
gram. (I explain this in detail in Objective-C For Dummies, so if you’re curious,
you may want to pick up a copy of that book.)

One of the advantages of the MVC design pattern I explain in Chapter 7 is
that it allows you to separate these three groups in your application (model
objects, view objects, and controller objects) and work on them separately. If
each group has a well-defined interface, it encapsulates many of the kinds of
changes that are often made so that they don’t affect the other groups. This
is especially true of the model and view controller relationship.

If the view controllers have minimal knowledge about the model, you can
change the model objects with minor impact on the view controllers.

23_9780470920503-ch15.indd 38623_9780470920503-ch15.indd 386 12/24/10 12:33 AM12/24/10 12:33 AM

387 Chapter 15: Finding Your Way

As I said, what makes this possible is a well-defined interface, which I show
you how to develop in this section. You’ll create an interface between the
model and the controllers by using a technique called composition, which is a
useful way to create interfaces.

I’m a big fan of composition, because it’s another way to hide what’s really
going on behind the curtain. It keeps the objects that use the composite
object ignorant of the objects the composite object uses, and it actually
makes the components blissfully unaware of each other, allowing you to
switch components in and out at will.

The Destination class provides the basis for such an architecture, and
while I won’t fully implement it here, you’ll understand the structure and
have no trouble extending it on your own.

But just to be reasonable, as you will see, for the rather simple model data
such as Currency and Weather, I will keep the data in the Destination
class. Just don’t forget that, in a more robust program where there was more
to currency and weather than supplying a URL (as you will see), you should
create classes for them as well. I would.

Going to the Current Location
Although you can pan to the user location on the map, in this case it’s kind of
annoying, unless you’re actually coding this at or around London. To remove
at least that annoyance from your life, I want to show you how easy it is to
add a button to the toolbar bar to zoom you in to the current location and
then back to the map region and span you’re currently displaying.

 1. Add the following code to add the button in the MapController
method viewdidLoad.

 You have quite a bit of code there already, so this is just what to add:

locateButton =
 [[UIBarButtonItem alloc] initWithTitle:@”Location”
 style:UIBarButtonItemStyleBordered target:self
 action:@

selector(goToLocation:)];
NSMutableArray *items = [[toolbar items] mutableCopy];
[items addObject:locateButton];
[self.toolbar setItems:items animated:YES];
[items release];

23_9780470920503-ch15.indd 38723_9780470920503-ch15.indd 387 12/24/10 12:33 AM12/24/10 12:33 AM

388 Part V: Building an Industrial-Strength Application

 When the user taps the Locate button you create here, you’ve speci-
fied that the goToLocation: message is to be sent (action:@
selector(goToLocation:) to the MapController (target:self).

 viewDidLoad is called only the first time the view is loaded, and
this is the place we want to insert the Locate button. (You’ll notice it
plays well with the Root View button when you are in portrait mode.)
Because we’re creating this view controller/view only once, this button
will stay around for the duration of the application. As I explain in
Chapter 18, because you will have to manage the toolbar as you move
from view controller to view controller, you want to save a reference
to it as an instance variable. So, go ahead and add the following to
MapController.h:

UIBarButtonItem *locateButton;

 2. Add the goToLocation: method to MapController.m.

- (IBAction)goToLocation:(id)sender {

 MKUserLocation *annotation = mapView.userLocation;
 CLLocation *location = annotation.location;
 if (nil == location)
 return;
 CLLocationDistance distance =
 MAX(4*location.

horizontalAccuracy,500);
 MKCoordinateRegion region =
 MKCoordinateRegionMakeWithDistance
 (location.coordinate, distance, distance);
 [mapView setRegion:region animated:NO];
 locateButton.action = @selector(goToDestination:);
 locateButton.title = @”Destination”;
}

 When the user presses the Locate button, you first check to see if the
location is available. (It may take a few seconds after you start the appli-
cation for the location to become available.) If not, you simply return.
(You could, of course, show an alert informing the user what’s going on
and try again in 10 seconds or so — I leave that up to you.)

 If it’s available, you compute the span for the region you’ll be moving to.
In this case, the code

CLLocationDistance distance =
 MAX(4*location.horizontalAccuracy,1000);

23_9780470920503-ch15.indd 38823_9780470920503-ch15.indd 388 12/24/10 12:33 AM12/24/10 12:33 AM

389 Chapter 15: Finding Your Way

 computes the span to be four times the horizontalAccuracy of the
device (but no less than 1,000 meters). horizontalAccuracy is a
radius of uncertainty given the accuracy of the device; that is, the user is
somewhere within that circle.

 You then call the MKCoordinateRegionMakeWithDistance function
that creates a new MKCoordinateRegion from the specified coor-
dinate and distance values. distance and distance correspond to
latitudinalMeters and longitudinalMeters, respectively. (I’m
using the same value for both arguments here.)

 If you didn’t want to change the span, you could have simply set the
Map view’s centerCoordinate property to userLocation, and — as
I mention earlier in the “It’s about the region” section — that would have
centered the region at the userLocation coordinate without changing
the span.

 3. When the user taps the button, change the title on the button to the
Map title and change the @selector to (goToDestination:).

 The result is that the next time the user touches the button, the goTo
Destination: message will be sent.

 4. Add the goToDestination: message.

- (IBAction) goToDestination:(id)sender {

 CLLocationCoordinate2D initialCoordinate =
 [destination initialCoordinate];
 [self updateRegionLatitude:
 initialCoordinate.latitude longitude:
 initialCoordinate.longitude
 latitudeDelta:.1 longitudeDelta:.1];
 locateButton.title = @”Location”;
 locateButton.action = @selector(goToLocation:);
}

 This step sets the region and toggles the button title back to Location
and the selector back to goToLocation:.

 5. Add both method declarations to the MapController.h file.

- (IBAction) goToLocation:(id)sender;
- (IBAction) goToDestination:(id)sender;

You can see the result of touching the Locate button in Figure 15-12.

23_9780470920503-ch15.indd 38923_9780470920503-ch15.indd 389 12/24/10 12:33 AM12/24/10 12:33 AM

390 Part V: Building an Industrial-Strength Application

Figure 15-12:
Go to the

current
location.

Displaying Multiple Annotations
Although what you see in the Map view is pretty darn good, under some
circumstances (like when you just arrived at the airport, for example) it
would really be better if the user could automatically see both Heathrow and
London (and their respective annotations) on the map without hard-coding
the region as you have been doing so far. This isn’t that difficult to do. Add
the following code in Listing 15-22 to MapController.m.

Listing 15-22: Computing the Region Based on the Annotations

- (MKCoordinateRegion)
 regionForAnnotationGroup:(NSArray*) group {

 double maxLonWest= 0;
 double minLonEast = 180;
 double maxLatNorth = 0;
 double minLatSouth = 180;

 for (Annotation *location in group) {
 if (fabs(location.coordinate.longitude) >
 fabs(maxLonWest))
 maxLonWest = location.coordinate.longitude;

23_9780470920503-ch15.indd 39023_9780470920503-ch15.indd 390 12/24/10 12:33 AM12/24/10 12:33 AM

391 Chapter 15: Finding Your Way

 if (fabs(location.coordinate.longitude) <
 fabs(minLonEast))
 minLonEast = location.coordinate.longitude;
 if (fabs(location.coordinate.latitude) >
 fabs(maxLatNorth))
 maxLatNorth = location.coordinate.latitude;
 if (fabs(location.coordinate.latitude) <
 fabs(minLatSouth))
 minLatSouth = location.coordinate.latitude;
 }

 double centerLatitide =
 maxLatNorth - (((maxLatNorth) - (minLatSouth))/2);
 double centerLongitude =
 maxLonWest - (((maxLonWest) - (minLonEast))/2);

 MKCoordinateRegion region;
 region.center.latitude = centerLatitide;
 region.center.longitude = centerLongitude;
 region.span.latitudeDelta =
 fabs(maxLatNorth - minLatSouth);
 if (fabs(maxLatNorth - minLatSouth) <= .005)
 region.span.latitudeDelta = .01;
 region.span.longitudeDelta =
 fabs(maxLonWest - minLonEast);
 if (fabs(maxLonWest - minLonEast) <= .005)
 region.span.longitudeDelta = .01;

 return region;
}

To make this work, you have to add to mapController.m, #import
“Annotation.h”, and the declaration to MapController.h, as follows:

- (MKCoordinateRegion)
 regionForAnnotationGroup:(NSArray*) group;

If you don’t, you get an error message:

incompatible type for argument 1 of ‘setRegion:animated:’

 I warn you about this because it isn’t that easy to figure out what’s really hap-
pening the first time you do this. It’s because the message you’re sending
hasn’t been declared in the interface. Keep this one in mind.

This code computes the region that includes both annotations. Frankly, this
is really beyond the scope of this book, but it’s handy to be able to know how
to do this, so I include it here. I just summarize how it works and leave it for
you to go through it step by step.

23_9780470920503-ch15.indd 39123_9780470920503-ch15.indd 391 12/24/10 12:33 AM12/24/10 12:33 AM

392 Part V: Building an Industrial-Strength Application

In general terms, here’s how the code works: You want both annotations to
fit on one screen, so the code goes through each annotation and determines
the maximum north and south latitudes and the maximum east and west
longitudes. The only trick here is that, because latitude and longitude can
be negative, it uses a function fabs to get the absolute value of a floating
point number. After that, it’s simply a matter of finding the center latitude
and longitude and setting the region center and then taking the maximum
west and maximum east longitude and the maximum north and maximum
south latitude and using that as the span. (You also decrease the span by
.005 in both directions to make sure that no pins are right on the edge of the
screen.) I decided that I didn’t want the span to ever be less than .005, so if
it is, I arbitrarily make it .01.

All that is left is to change the MapController viewDidLoad method to
use this method rather than the Destination initialCoordinate and
updateRegionLatitude::::.

To do that, add the stuff in bold and then delete the BUI code in view
DidLoad as shown in Listing 15-23.

Listing 15-23: viewDidLoad Now Results in Both Annotations Being Visible

- (void)viewDidLoad {

 [super viewDidLoad];
 mapView.showsUserLocation = YES;
 CLLocationCoordinate2D initialCoordinate =
 [destination

initialCoordinate];
 [self updateRegionLatitude:initialCoordinate.latitude
 longitude: initialCoordinate.longitude
 latitudeDelta:.1 longitudeDelta:.1];
 self.title = [destination mapTitle];
 NSArray* destinationAnnotations =
 [destination

createAnnotations];
 annotations = [[NSMutableArray alloc]
 initWithCapacity:[destinationAnnotations

count]];
 [annotations addObjectsFromArray:

destinationAnnotations];
 [mapView addAnnotations:destinationAnnotations];
 [mapView setRegion:[self regionForAnnotationGroup:
 destinationAnnotations] animated:NO];
 locateButton =
 [[UIBarButtonItem alloc] initWithTitle:@”Location”
 style:UIBarButtonItemStyleBordered target:self
 action:@selector(goToLocation:)];
 NSMutableArray *items = [[toolbar items] mutableCopy];
 [items addObject:locateButton];
 [self.toolbar setItems:items animated:YES];

23_9780470920503-ch15.indd 39223_9780470920503-ch15.indd 392 12/24/10 12:33 AM12/24/10 12:33 AM

393 Chapter 15: Finding Your Way

 [items release];
}

You need to also make the changes in bold to goToDestination: in order
to compute the region rather than just get by using the hard-coded one.

- (IBAction) goToDestination:(id)sender {

 CLLocationCoordinate2D initialCoordinate =
 [destination initialCoordinate];
 [self updateRegionLatitude:initialCoordinate.latitude
 longitude:initialCoordinate.longitude
 latitudeDelta:.1 longitudeDelta:.1];
 [mapView setRegion:
 [self regionForAnnotationGroup:annotations]
 animated:NO];
 locateButton.title = @”Location”;
 locateButton.action = @selector(goToLocation:);
}

At this point, you can also delete the initialCoordinate declaration
and method in Destination.h and .m, respectively, and the update
RegionLatitude:::: declaration and method in MapController.h
and .m, respectively.

Figure 15-13 shows the results of your work.

Figure 15-13:
A better

way to
compute a

region.

23_9780470920503-ch15.indd 39323_9780470920503-ch15.indd 393 12/24/10 12:33 AM12/24/10 12:33 AM

394 Part V: Building an Industrial-Strength Application

After you make regions something you compute rather than something you
hard-code, all of a sudden you’re confronted with another issue — you want
the map to be able to be displayed in both landscape and portrait modes.
The problem is that if the application opens in landscape mode and com-
putes the correct region, when you switch to portrait mode, the annotations
may no longer visible.

So this is a good time to introduce you to didRotateFromInterface
Orientation. This message is sent to the MapController when the user
interface orientation changes. Fortunately, all you have to do to get this to
work for you is add the code in Listing 15-24 to MapController.m.

There is another nuance here, though. You don’t want to set the region if
you’re showing the user location and then let the view controller implement
the default behavior for the device rotation. Although you could have used
an instance variable to let you know when you were displaying the user loca-
tion, I take the easy way out, as you can see in Listing 15-24, and check to see
what the button says instead.

Listing 15-24: Accounting for User Rotation Changes

- (void)didRotateFromInterfaceOrientation:
 (UIInterfaceOrientation)fromInterfaceOrientation {

 if ([locateButton.title isEqualToString:@”Location”])
 [mapView setRegion:
 [self regionForAnnotationGroup:annotations]
 animated:NO];
}

Geocoding
Seeing where I am on the map is all fine and dandy, but stickler that I am, I’d
also like to know the exact street address. (If I have the address, I could also
write some code to turn the iPad’s current address into an Address Book
contact, but I’ll allow you the pleasure of figuring that out on your own.)

Being able to go from a coordinate on a map to a street address is called
reverse geocoding, and thankfully the ability to do that is supplied by the
MapKit. Forward geocoding (also called just geocoding), which converts an
address to a coordinate, doesn’t come with the MapKit, although many free
and commercial services that can do that are available.

23_9780470920503-ch15.indd 39423_9780470920503-ch15.indd 394 12/24/10 12:33 AM12/24/10 12:33 AM

395 Chapter 15: Finding Your Way

 Keep in mind that the location may not be completely accurate — remember
that horizontalAccuracy business in the “Going to the Current Location”
section, earlier in this chapter? For example, because my office is very close to
my property line, my location sometimes shows up with my next-door neigh-
bor’s address.

Adding reverse geocoding to iPhoneTravel411 will enable you to display the
address of the current location. Just follow these steps:

 1. Import the reverse geocoder framework into MapController.h
(it is actually part of the MapKit framework, so you don’t have
to add a new framework) and have MapController adopt the
MKReverseGeocoderDelegate protocol.

#import <MapKit/MKReverseGeocoder.h>

@interface MapController : DetailViewController
 <MKMapViewDelegate, MKReverseGeocoderDelegate> {

 2. Add an instance variable to hold a reference to the geocoder object,
and another one to hold the annotation you’re reverse geocoding for.

 MKReverseGeocoder *reverseGeocoder;
Annotation *selectedAnnotation;

 You’ll use this reverseGeocoder to release the MKReverseGeocoder
after you get the current address.

 selectedAnnotation will be assigned by gotoLocation:. It will
also be used later in the “But What If I Don’t Want to Go to London?”
section, when you need to reverse geocode an annotation you’re drag-
ging. You also need to add an @class Annotation; statement to
MapController.h.

 3. Add the method reverseGeocoder:didFindPlacemark: to
MapController.m.

- (void)reverseGeocoder:(MKReverseGeocoder *) geocoder
 didFindPlacemark:(MKPlacemark *) placemark {

 NSDictionary* addressDictionary =
 placemark.addressDictionary;

 NSMutableString* addressString;
 if ([addressDictionary objectForKey:@”Street”]) {
 addressString =
 [[NSMutableString alloc] initWithString:
 [addressDictionary objectForKey:@”Street”]];
 selectedAnnotation.subtitle =
 [addressDictionary objectForKey:@”City”];

23_9780470920503-ch15.indd 39523_9780470920503-ch15.indd 395 12/24/10 12:33 AM12/24/10 12:33 AM

396 Part V: Building an Industrial-Strength Application

 }
 else {
 addressString =
 [[NSMutableString alloc] initWithString:
 [addressDictionary objectForKey:@”City”]];
 selectedAnnotation.subtitle =
 [addressDictionary objectForKey:@”State”];
 }
 selectedAnnotation.title = addressString;
 [addressString release];
 [reverseGeocoder release];
 reverseGeocoder = nil;
}

 The reverseGeocoder:didFindPlacemark: message to the delegate
is sent when the MKReverseGeocoder object successfully obtains
placemark information for its coordinate. An MKPlacemark object
stores placemark data for a given latitude and longitude. Placemark data
includes the properties that hold the country, state, city, and street
address (and other information) associated with the specified coordi-
nate, for example. (Several other pieces of data are available that you
might also want to examine.)

 • country: Name of country

 • administrativeArea: State

 • locality: City

 • thoroughfare: Street address

 • subThoroughfare: Additional street-level information, such as
the street number

 • postalCode: Postal code

 There’s also another property that is available: addressDictionary
that you use here. A number of keys are available, such as the following:

 • CountryCode

 • Street: The street number and name

 • SubAdministrativeArea

 • SubThoroughfare

 • City

 • ZIP

 • State

 • Thoroughfare

 • Country

 • FormattedAddressLines

23_9780470920503-ch15.indd 39623_9780470920503-ch15.indd 396 12/24/10 12:33 AM12/24/10 12:33 AM

397 Chapter 15: Finding Your Way

 These are similar to the corresponding properties, but the addition of
Street and FormattedAddressLines makes it a little easier.

 In this implementation, you’re setting the user location annotation
(userLocation) title (supplied by MapKit) to the value of the Street
key (street address) in the addressDictionary. You assign the sub-
title the value of the City key.

 You notice that you do engage in some error checking here. If there’s a
street address, you set the title to the street address and the subtitle to
the city.

if ([addressDictionary objectForKey:@”Street”]) {
 addressString =
 [[NSMutableString alloc] initWithString:
 [addressDictionary objectForKey: @”Street”]];
 selectedAnnotation.subtitle =
 [addressDictionary objectForKey:@”City”];
}

 If there’s no street address, you set the title to the city and subtitle to
the state.

addressString =
 [[NSMutableString alloc] initWithString:
 [addressDictionary objectForKey: @”City”]];
selectedAnnotation.subtitle =
 [addressDictionary objectForKey:@”State”];

 You might also want to do an additional level of checking here if there’s
no city, and so on.

 You may be wondering about why I’m spending so much time on
geocoding because, as of now, the only geocoding you do is for the
user location. But as you soon see, you will also geocode the new loca-
tion if the user moves the pin on the map.

 Finally you release the geocoder and set the instance variable to nil.

 A placemark is also an annotation and conforms to the MKAnnotation
protocol, whose properties and methods include the placemark coordi-
nate and other information. Because they’re annotations, you can add
them directly to the Map view.

 The reverseGeocoder:didFailWithError: message is sent to
the delegate if the MKReverseGeocoder couldn’t get the placemark
information for the coordinate you supplied to it. (This is a required
MKReverseGeocoderDelegate method.)

 4. Add the method reverseGeocoder:didFailWithError: to
MapController.m.

23_9780470920503-ch15.indd 39723_9780470920503-ch15.indd 397 12/24/10 12:33 AM12/24/10 12:33 AM

398 Part V: Building an Industrial-Strength Application

- (void)reverseGeocoder:(MKReverseGeocoder *)
 geocoder didFailWithError:(NSError *) error{

 NSLog(@”Reverse Geocoder Failure! due to error in

domain: %@ with error code: %u, description:
%@, and reason: %@”,

 error.domain, error.code,
 [error localizedDescription],
 [error localizedFailureReason]);
 [reverseGeocoder release];
 reverseGeocoder = nil;
}

 This message is sent to its delegate when the geocoder fails. This can
happen for a variety of reasons — the service is down or it can’t find
an address for the coordinate. You get back an error object which can
have some useful information. I’ll leave you to explore the detail of the
error information on your own.

 While I simply log a message here, you may want to expand the user
interface to inform the user of what’s happening. Although that isn’t
important in this case — you can always just leave the annotation as
“Current location” — when you start dragging annotations, as you will in
the next section, you might want to develop a plan for what to display in
the annotation if the geocoder fails.

 Finally you release the geocoder and set the instance variable to nil.

 Of course, in order to get the reverse geocoder information, you need
to create an MKReverseGeocoder object. Make the MapController a
delegate, send it a start message, and then release it when you’re done
with it.

 Allocate and start the reverse geocoder and add the MapController
as its delegate in the MapController’s goToLocation: method by
adding the code in bold to goToLocation in mapController.m.

- (IBAction)goToLocation:(id)sender {

 MKUserLocation *annotation = mapView.userLocation;
 CLLocation *location = annotation.location;
 if (nil == location)
 return;
 CLLocationDistance distance =
 MAX(4*location.

horizontalAccuracy,500);
 MKCoordinateRegion region =
 MKCoordinateRegionMakeWithDistance
 (location.coordinate, distance,

distance);
 [mapView setRegion:region animated:NO];

23_9780470920503-ch15.indd 39823_9780470920503-ch15.indd 398 12/24/10 12:33 AM12/24/10 12:33 AM

399 Chapter 15: Finding Your Way

 locateButton.action = @selector(goToDestination:);
 locateButton.title = @”Destination”;
 selectedAnnotation =
 (Annotation *)mapView.userLocation;
 reverseGeocoder = [[MKReverseGeocoder alloc]
 initWithCoordinate:location.coordinate];
 reverseGeocoder.delegate = self;
 [reverseGeocoder start];
}

 Notice how you initialize the MKReverseGeocoder with the coordinate
of the current location. You also have to cast mapView.userLocation
to an Annotation. While MKUserLocation (the class of mapView.
userLocation) is not a sub class of Annotation, they both adopt the
same protocol, and because it is the only thing you will be using in the
protocol methods and properties, this is a safe cast.

 5. Release the MKReverseGeocoder by adding the code in bold to goTo-
Destination:.

- (IBAction) goToDestination:(id)sender {

 if (reverseGeocoder) {
 reverseGeocoder.delegate = nil;
 [reverseGeocoder release];
 reverseGeocoder = nil;
 }
 [mapView setRegion:[self regionForAnnotationGroup:
 annotations] animated:NO];
 locateButton.title = @”Location”;
 locateButton.action = @selector(goToLocation:);
}

 You release the MKReverseGeocoder in this method because although
you start the MKReverseGeocoder in the goToLocation: method,
it actually doesn’t return the information in that method. It operates
asynchronously; when it either constructs the placemark or gives up, it
sends the message reverseGeocoder:didFindPlacemark: or rever
seGeocoder:didFailWithError:, respectively. If you’re returning to
the original Map view, however, you no longer care whether it succeeds
or fails because you no longer need the placemark, and you release the
MKReverseGeocoder, set the instance variable to nil, and set the del-
egate to nil.

Figure 15-14 shows the result of your adventures in reverse geocoding.

23_9780470920503-ch15.indd 39923_9780470920503-ch15.indd 399 12/24/10 12:33 AM12/24/10 12:33 AM

400 Part V: Building an Industrial-Strength Application

Figure 15-14:
Reverse

geocoding.

But What If I Don’t Want
to Go to London?

As you’re aware, all the destination coordinates and locations are hard-coded
in iPadTravel411. But in your own apps, you probably would want to give the
user control over what’s displayed.

In this app, one could argue that it’s not really a problem; it’s a travel guide
to London, after all. But in reality, London is a big place, and the user might
want to be able to adjust the destination more precisely.

Although you could create a modal dialog to allow the user to add or
change a map location, that’s beyond the scope of this book. But one thing
I show you is how to create a draggable annotation — in this case, the City
annotation — so that the user can move his or her destination to exactly
where he or she wants to go.

23_9780470920503-ch15.indd 40023_9780470920503-ch15.indd 400 12/24/10 12:33 AM12/24/10 12:33 AM

401 Chapter 15: Finding Your Way

The way to do that is pretty simple. All you do is set an Annotation
view property. Of course, to do that you’re going to need access to
the Annotation view. So, instead of using the default view, as you have
been doing, I show you how to use an SDK-supplied Annotation view —
MKPinAnnotationView. In addition, you’ll also be able to set the pin color
as well as animate the pin to drop on to the map.

All you have to do is add the code in Listing 15-25 to MapController.m.
mapView:viewForAnnotation: is a MKMapView delegate method that is
automatically invoked before the Map view displays the annotation and gives
you a chance to customize the view accordingly.

Listing 15-25: mapView:viewForAnnotation:

- (MKAnnotationView *)mapView:(MKMapView *)aMapView
 viewForAnnotation:(id <MKAnnotation>)annotation {

 if ([annotation isKindOfClass:[MKUserLocation class]])
 return nil;
 MKPinAnnotationView* pinView = (MKPinAnnotationView*)
 [mapView dequeueReusableAnnotationViewWithIdentifier:
 @”CustomPinAnnotationView”];
 if (!pinView) {
 pinView = [[[MKPinAnnotationView alloc]

initWithAnnotation:annotation
 reuseIdentifier:@”CustomPinAnnotation”]
 autorelease];
 if ([annotation isKindOfClass:[City class]]) {
 pinView.pinColor = MKPinAnnotationColorRed;
 pinView.draggable =YES;
 }
 else
 pinView.pinColor = MKPinAnnotationColorGreen;
 pinView.animatesDrop = YES;
 pinView.canShowCallout = YES;
 }
 else
 pinView.annotation = annotation;
 return pinView;
}

You start by checking to see whether the annotation is a MKUserLocation.
If it is, you just use the built-in view.

if ([annotation isKindOfClass:[MKUserLocation class]])
 return nil;

23_9780470920503-ch15.indd 40123_9780470920503-ch15.indd 401 12/24/10 12:33 AM12/24/10 12:33 AM

402 Part V: Building an Industrial-Strength Application

The next thing you do is check to see whether there’s a view lying around
that you can use. This is the same kind of mechanism you use to reuse Table
cells in Chapter 14 (except this time, just to show you, you code the reuse
identifier in the message instead of using a constant). If there isn’t a view
available, you create one, initializing it with the annotation.

if (!pinView) {
 pinView = [[[MKPinAnnotationView alloc]
 initWithAnnotation:annotation
 reuseIdentifier:@”CustomPinAnnotation”] autorelease];

If the annotation is a City object, you set the pin color to red — that’s the
“customary” color for a destination. You also make the pin draggable. Setting
the draggable property to YES (the default value of this property is NO)
does what you’d expect it to do: makes an annotation draggable by the user.
However, if you do that, the annotation object must also implement the set
Coordinate: method. Of course, you’ve already done that when you made
annotations an updateable property earlier in this chapter.

If it’s not a City object — it’s an Airport, for example — you set the pin
color to green, the customary color for an origin. You don’t want that pin to
be draggable, so you won’t bother there with the draggable property.

if ([annotation isKindOfClass:[City class]]) {
 pinView.pinColor = MKPinAnnotationColorRed;
 pinView.draggable =YES;
 }
 else
 pinView.pinColor = MKPinAnnotationColorGreen;

Finally, you make the pin drop animated and allow it to show a callout, which
will be handled by the Pin view.

pinView.animatesDrop = YES;
pinView.canShowCallout = YES;

If there were a reusable Pin view, you assign the annotation and, in either
case, return the Pin view.

else
 pinView.annotation = annotation;
 return pinView;

You also have to add #import “City.h” to MapController.m.

Of course, if the user does move the destination, it would be nice to change
the title and subtitle to the new location. Fortunately, there’s another del-
egate method that gives me a chance to do just that: mapView:annotation
View:didChangeDragState:fromOldState:.

23_9780470920503-ch15.indd 40223_9780470920503-ch15.indd 402 12/24/10 12:33 AM12/24/10 12:33 AM

403 Chapter 15: Finding Your Way

Listing 15-26 shows the code you need to add to mapController.m in order
to get this title/subtitle change stuff to work for you.

Listing 15-26: mapView:annotationView:didChangeDragState:fromOldState:

- (void)mapView:(MKMapView *)mapView annotationView:
 (MKAnnotationView *)annotationView
 didChangeDragState:(MKAnnotationViewDragState)newState
 fromOldState:(MKAnnotationViewDragState)oldState {

 if (newState == MKAnnotationViewDragStateEnding) {
 reverseGeocoder = [[MKReverseGeocoder alloc]

initWithCoordinate:
 annotationView.annotation.coordinate];
 selectedAnnotation = annotationView.annotation;
 reverseGeocoder.delegate = self;
 [reverseGeocoder start];
 }
}

The mapView:annotationView:didChangeDragState:fromOldState:
message is constantly sent to the delegate as the user drags the annotation
hither and yon. Although you’re constantly being updated, you really don’t
care where the user has dragged it until the dragging is over.

if (newState == MKAnnotationViewDragStateEnding) {

When the dragging is over, though, you save the annotation in selected
Annotation and then create a geocoder to go with the new location.

selectedAnnotation = annotationView.annotation;
reverseGeocoder.delegate = self;
[reverseGeocoder start];

The geocoder does its thing and updates the title and subtitle
appropriately.

 It’s my responsibility to warn you about something one more time. If the geo-
coder does fail (which it sometimes will), what you will see in the annotation
is the last location you used to update the annotation title and subtitle.
I’ll leave it up to you to add some code to reverseGeocoder:didFailWith
Error: to deal with that problem.

You can see the result in Figure 15-15.

23_9780470920503-ch15.indd 40323_9780470920503-ch15.indd 403 12/24/10 12:33 AM12/24/10 12:33 AM

404 Part V: Building an Industrial-Strength Application

Figure 15-15:
Staying at a

friend’s.

23_9780470920503-ch15.indd 40423_9780470920503-ch15.indd 404 12/24/10 12:33 AM12/24/10 12:33 AM

Chapter 16

Adding the Stuff
In This Chapter
▶ Taking a look at more model content

▶ Accessing data on the Internet

▶ Saving and reading files

Now that you’ve done a stellar job of creating the structure necessary to
display the content of your app and you’re also able to display a nice

Map view when the application is launched, you probably want to be able to
see something a bit more substantial actually happen when you press one of
those buttons, so it’s time to add more content.

In this chapter, I show you how to add three more view controllers to dis-
play content — and even how to get that content. I show you how to display
content stored as a resource (part of your application) or stored on a Web
server, and I even show you how to display a Web page.

This being London, the first thing you really want to do is check the weather.
But before you can do that, you need to find out how the selection mecha-
nism in a Table view works.

Responding to a Selection
At some point, you have to make sure that something actually happens
when a user makes a selection. To do that, all you really need to do is imple-
ment the tableview:didSelectRowAtIndexPath: method to set up a
response to a user tap in the Main view. This method, too, is already in the
MasterViewController.m file, courtesy of the template.

When the user taps a Table view entry, what happens next depends on what
you want your Table view to do for you.

You could display some new content in the Detail view, as you can see in
Figure 16-1.

24_9780470920503-ch16.indd 40524_9780470920503-ch16.indd 405 12/24/10 12:32 AM12/24/10 12:32 AM

406 Part V: Building an Industrial-Strength Application

Figure 16-1:
Displaying

new content
in the Detail

view.

Alternatively, you could display content in the Master view, as you can see in
Figure 16-2. I explain how to do that in Chapter 18.

You can actually do a lot of other things — play a movie, play a song, or do
anything else the device is capable of — but I don’t go into that here.

To move from one view to another view, first you need to create a new view
controller for that view; then you launch it so it creates and installs the view
on the screen.

This is all done in the final Table view method you’ll need to work with: table
View:didSelectRowAtIndexPath:. The code in Listing 16-1 gives you an
overview of what you’ll need to do.

Listing 16-1: Selecting a Row

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 [tableView deselectRowAtIndexPath:indexPath
 animated:YES];
 int menuOffset =
 [self menuOffsetForRowAtIndexPath:indexPath];
 DetailViewController *targetController = nil;

24_9780470920503-ch16.indd 40624_9780470920503-ch16.indd 406 12/24/10 12:32 AM12/24/10 12:32 AM

407 Chapter 16: Adding the Stuff

 switch (menuOffset) {
 case 0:
 //do something
 break;
 case 1:
 //do something
 break;
 case 2:
 //do something
 break;
 case 3:
 //do something
 break;
 case 4:
 //do something
 break;
 case 5:
 //do something
 break;
 case 6:
 //do something
 break;
 }
}

Figure 16-2:
Displaying
content in

the Master
view.

24_9780470920503-ch16.indd 40724_9780470920503-ch16.indd 407 12/24/10 12:32 AM12/24/10 12:32 AM

408 Part V: Building an Industrial-Strength Application

Here’s what happens when a user makes a selection in the Main view:

 1. You deselect the row the user selected.

[tableView deselectRowAtIndexPath:indexPath
 animated:YES];

 It stands to reason that if you want your app to move on to a new view,
you have to deselect the row where you currently are.

 2. You compute the offset (based on section and row) into the menu
array.

int menuOffset =
 [self menuOffsetForRowAtIndexPath:indexPath];

 You need to figure out where you want your app to land, right?

 3. You do something based on the row selected.

switch (menuOffset) {

And that’s what you do next.

Putting the Map in the
Selection Mechanism

To refresh you memory, right now the Map controller is created in the view-
DidLoad method in RootViewController.m. I had you add the code to do
that back in Chapter 15.

Now it’s time for it to take its rightful place in the tableView:didSelect
RowAtIndexPath: method.

To start with, you need to fill in the blanks in the current tableView:did
SelectRowAtIndexPath: method I highlight in Listing 16-1 by replacing
that code with the code in Listing 16-2.

Listing 16-2: Selecting the Map

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 [tableView deselectRowAtIndexPath:indexPath
 animated:YES];
 DetailViewController *targetController = nil;
 int menuOffset =

24_9780470920503-ch16.indd 40824_9780470920503-ch16.indd 408 12/24/10 12:32 AM12/24/10 12:32 AM

409 Chapter 16: Adding the Stuff

 [self menuOffsetForRowAtIndexPath:indexPath];
 switch (menuOffset) {
 case 0:
 //do something
 break;
 case 1:
 targetController =
 [[menuList objectAtIndex:menuOffset]
 objectForKey:kControllerKey];
 if ([targetController isKindOfClass:
 [NSNull class]]) {
 targetController = [[MapController alloc]
 initWithDestination:kAppDelegate.destination];
 [[menuList objectAtIndex:menuOffset]
 setObject:targetController
 forKey:kControllerKey];
 [targetController release];
 }
 break;
 case 2:
 //do something
 break;
 case 3:
 //do something
 break;
 case 4:
 //do something
 break;
 case 5:
 //do something
 break;
 case 6:
 //do something
 break;
 }
 [[kAppDelegate splitViewController] setViewControllers:
 [NSArray arrayWithObjects:self.navigationController,
 targetController, nil]];
 kAppDelegate.splitViewController.delegate =
 targetController;
}

Here’s what happens when a user makes a selection in the Main view:

 1. You deselect the row the user selected.

[tableView deselectRowAtIndexPath:indexPath
 animated:YES];

 It stands to reason that if you want your app to move on to a new view,
you have to deselect the row where that’s currently selected.

24_9780470920503-ch16.indd 40924_9780470920503-ch16.indd 409 12/24/10 12:32 AM12/24/10 12:32 AM

410 Part V: Building an Industrial-Strength Application

 2. You compute the offset (based on section and row) into the menu
array.

int menuOffset =
 [self menuOffsetForRowAtIndexPath:indexPath];

 The tableview:didSelectRowAtIndexPath: method is called when
the user taps a row in a section. The indexPath argument has the sec-
tion and row information of which entry was tapped. You recall from
Chapter 14 that menuOffsetForRowAtIndexPath: will compute that
for you.

 3. You’re going to use a switch statement to get to the right controller:

switch (menuOffset) {

 4. You check to see whether the controller for that particular view has
already been created.

targetController =
 [[menuList objectAtIndex:menuOffset]
 objectForKey:kControllerKey];
if ([targetController isKindOfClass:[NSNull class]]) {

 If you recall, when you set up the menuList in Chapter 14, you initial-
ized the controller objects with NSNull, a singleton object, with a single
class method null, that you can use to represent null values in collec-
tion objects. You use the NSObject isKindOfClass: method to check
to see if it’s a class of that type.

 5. If no controller exists, you create and initialize a new controller.

targetController = [[MapController alloc]
 initWithDestination:kAppDelegate.destination];

 6. If you created a new view controller, you save a reference to the
newly created controller in the dictionary for that row and then
release the controller because it’s retained by the menuList.

[[menuList objectAtIndex:menuOffset]
 setObject:targetController
 forKey:kControllerKey];
 [targetController release];

 7. You then replace the detail controller in the Split view controller with
your new view controller and then make this new view controller a
delegate of the Split view controller.

 I explain in Chapter 14 that the UISplitViewController class deals
with view controllers that simply manage the presentation of two side-
by-side view controllers — it is, in this respect, a container controller.
Using this class, you create a view controller on the left (the Master view,
as it’s called), which presents a list of items, and one on the right, which
presents the details, or content, of the selected item (the Detail view, as
it’s called).

24_9780470920503-ch16.indd 41024_9780470920503-ch16.indd 410 12/24/10 12:32 AM12/24/10 12:32 AM

411 Chapter 16: Adding the Stuff

[[kAppDelegate splitViewController]
 setViewControllers:[NSArray arrayWithObjects:
 self.navigationController, targetController, nil]];
kAppDelegate.splitViewController.delegate =
 targetController;

 8. You need to modify viewDidLoad — go into viewDidLoad and delete
the previous code you used to create the mapController (the bold,
underlined, and italic code, affectionately known as BUI) and then
add the line of code in bold:

- (void)viewDidLoad {

 [super viewDidLoad];

...

DetailViewController *mapController =
[[MapController alloc]
 initWithDestination:destination];

[[kAppDelegate splitViewController setViewControllers:
 [NSArray arrayWithObjects:self, mapController, nil]];
kAppDelegate.splitViewController.delegate =
 mapController;
NSIndexPath *indexPath =
 [NSIndexPath indexPathForRow:1 inSection:0];
[self tableView:((UITableView *) self.tableView)
 didSelectRowAtIndexPath:indexPath];

You take advantage of the same mechanisms that are used when the user
taps an entry in the Table view. You invoke the didSelectRowAtIndex-
Path: method, which already knows how to display a particular view repre-
sented by the indexPath — that is, section and row. You create the index
path you need by sending the indexPathForRow:inSection: message to
the NSIndexPath class.

If you wanted to refine this a bit, you could also use constants for the sec-
tion and row that represent the initial view. This makes it easier later if you
want to change which view the user sees at app launch. Of course, after that,
unless the app is purged from the background, the app will resume where it
was. I show you how to have the app resume where it was (even if the app
has been purged) in Chapter 19.

24_9780470920503-ch16.indd 41124_9780470920503-ch16.indd 411 12/24/10 12:32 AM12/24/10 12:32 AM

412 Part V: Building an Industrial-Strength Application

How’s the Weather Over There?
If the user selects Weather from the Main view, what the user sees does
depend on whether the device is online or in stored data mode. (I explain
that in Chapter 19.) If the device is online, the user sees a Web page from a
Web site with the weather information, as illustrated in Figure 16-3. When
in stored data mode, the user gets a message stating that weather data is
unavailable when offline.

Figure 16-3:
Gee, rain

expected.

To begin this process, you need to create a view controller that will display
a Web site in its view. To make that happen, you need to code your view con-
troller interface, your implementation files, and your nib files.

Adding the controller and nib file
So many files, so little time. Actually, after you get a rhythm going, cranking
out the various view controller, nib, and model files necessary to fill your
application architecture with content isn’t that much work. And even though
I want to start with what happens when the user taps Weather (because it
allows me to also explain a bit about navigating between Detail views in your

24_9780470920503-ch16.indd 41224_9780470920503-ch16.indd 412 12/24/10 12:32 AM12/24/10 12:32 AM

413 Chapter 16: Adding the Stuff

program), now is as good a time as any to create the additional controllers I’ll
have you implement in this chapter.

Okay, check out how easy it is to come up with the view controller and nib files:

 1. In the IPadTravel411Project window, select the View controllers
group and then choose File➪New File from the main menu (or press
Ô+N) to get the New File dialog.

 2. In the leftmost pane of the dialog, first select Cocoa Touch Classes
under the iOS heading, then select the UIViewController subclass
template in the topmost pane, and then make sure that the following
are selected:

 • With XIB for User Interface

 • Targeted for iPad

 3. Click Next.

 You see a new dialog asking for some more information.

 4. Enter WeatherController in the File Name field and then click Finish.

 Of course, if you look at the choices in the Master view controller, you
see there’s more to life than complaining about the weather. So, to get it
out of the way, you should add the remaining controllers you’ll be using.

 5. Repeat Steps 1 through 4 for CityController and Currency
Controller.

 When you’re done, in the View controllers group in your Groups &
Files list, you should see CityController.h, CityController.m,
CurrencyController.h, CurrencyController.m,
WeatherController.h, and WeatherController.m in addition to
what you already have there.

The next thing you need to do is take care of some plumbing in each of the
Controller.h files, and after that, you need to set up the nib files.

You need to import Destination (you’ll be using it to get the data
needed to be displayed in the view) and DetailViewController
because you’re also going to make each of the classes a subclass of
DetailViewController, just as you did the MapController, and you
need to tell the compiler about the Destination class.

You also need to make the class a WebViewDelegate (I explain why shortly)
and add three instance variables: destination, the webView IBOutlet
(just as you added destination and mapView to the MapController),
and backButton, which I explain in the “Cruising the Web” section, later
in this chapter. You also declare an initialization method, initWith
Destination:, again, just like you do with the MapController.

24_9780470920503-ch16.indd 41324_9780470920503-ch16.indd 413 12/24/10 12:32 AM12/24/10 12:32 AM

414 Part V: Building an Industrial-Strength Application

When you’re done, WeatherController.h should look like Listing 16-3.
(The stuff you add is all shown in bold, and you should delete the BUI code.)
Do the same for the City and Currency controllers as well.

Listing 16-3: WeatherController interface

#import “DetailViewController.h”;
@class Destination;

@interface WeatherController : UIViewController
DetailViewController <UIWebViewDelegate> {

 Destination *destination;
 IBOutlet UIWebView *webView;
 UIButton *backButton;
}
- (id) initWithDestination:(Destination *) theDestination;
- (void) computeFramesForOrientation:
 (UIInterfaceOrientation)interfaceOrientation;

@end

Be sure to save the file.

 After it’s saved — and only then — Interface Builder can find the new outlet.

Setting up the nib file
For the iPadTravel411 application, you want to use a UIWebView to
display the Web site or any other data you’re after. (For the reasoning
behind that choice, check out Chapter 13.) You’ll set up the UIWebView
by using Interface Builder, but you’ll also need a reference to it from the
WeatherController so it can load the Web site you want. To do that, you
need to create an outlet (a special kind of instance that can refer to objects
in the nib) in the view controller, just as you did back in Chapter 14 when
you were working on the MapController. (You took care of that outlet
creation business when you made the modifications to the interface files for
WeatherController, CityController, and CurrencyController.)

Now it’s time to make the necessary connections in Interface Builder so the
outlet reference will be filled in automatically when your application is initialized.

Here’s how you to connect the outlets — it’s the same thing you did in
Chapter 14 to set up the MapController, so if you’re a little hazy, you might
want to go back and review what you did there:

24_9780470920503-ch16.indd 41424_9780470920503-ch16.indd 414 12/24/10 12:32 AM12/24/10 12:32 AM

415 Chapter 16: Adding the Stuff

 1. Use the Groups & Files list on the left in the Project window to drill
down to the WeatherController.xib file; then double-click the file
to launch it in Interface Builder.

 If the Attributes Inspector window is not open, choose Tools➪Inspector
or press Ô+Shift+1. If the View window isn’t visible, double-click the
View icon in the WeatherController.xib window.

 If for some reason you can’t find the WeatherController.xib window
(you may have minimized it, whether by accident, on purpose, or what-
ever), you can get it back by choosing Window➪WeatherController.xib
or whichever nib file you’re working on.

 2. Select File’s Owner in the WeatherController.xib window.

 Its type should already be set to WeatherController. If not, retrace
your steps to see where you may have made a mistake.

 You need to be sure that the File’s Owner is WeatherController. You
can set the File’s Owner from the Class drop-down menu in the Identity
Inspector.

 3. Drag in a toolbar from the Library to the top of the View window.
Make sure it is a toolbar and not a navigation bar. It looks like it
belongs on the bottom of the view, but on the iPad it can be at the top.
Select and delete the item button in the toolbar; you won’t need it.

 Be sure to do all this work in portrait mode, as it is in Figure 16-4.

 4. In the View Attributes Inspector window, be sure to deselect
Autoresize Subviews.

 5. Drag in a Web View below the toolbar and resize it to the size of the
view remaining after you added the toolbar.

 When you’re done, your screen should look like Figure 16-4. (In Figure
16-4, I have the View selected and that’s what’s showing in the View
Attributes Inspector window.)

 6. Back in the WeatherController.xib window, right-click File’s
Owner to call up a connections panel with a list of connections.

 You can get the same list using the Connections tab in the Attributes
Inspector.

 7. Drag from the little circle next to the webView outlet in the list onto
the Web view.

 Doing so connects the webView outlet of the WeatherController to
the Web view.

 8. Drag from the little circle next to the toolbar outlet in the list onto
the toolbar you dragged in from the Library.

 Doing so connects the toolbar outlet of the WeatherController to
the toolbar.

24_9780470920503-ch16.indd 41524_9780470920503-ch16.indd 415 12/24/10 12:32 AM12/24/10 12:32 AM

416 Part V: Building an Industrial-Strength Application

 9. Save the file.

 The WeatherController now has its outlet to the Web view and tool-
bar connected, but you won’t yet be able to receive the delegate mes-
sages as a WebViewDelegate — I show you an alternative way to do
that in the next section where I also show you what methods you need
to implement.

Figure 16-4:
The

Interface
Builder

windows.

 Only after the file’s saved will the changes you made be reflected in your
application.

 When you’re done, the connections panel should look like Figure 16-5.

 10. And, as you may have guessed, repeat Steps 1 to 9 for
CityController.xib and CurrencyController.xib.

24_9780470920503-ch16.indd 41624_9780470920503-ch16.indd 416 12/24/10 12:32 AM12/24/10 12:32 AM

417 Chapter 16: Adding the Stuff

Figure 16-5:
Weather-
Controller

connections
all in place.

Of course, even though it’s nice that you have all these controllers, you still
need to have them add some actual content. At this point, I have you focus
on doing that in WeatherController.

Loading the Web View
First start with an initialization method. Add the code in Listing 16-4 to
WeatherController.m. You also need to add #import “Destination.h”
to the file to be able to use it.

Listing 16-4: Initialize WeatherController

- (id) initWithDestination:(Destination *)
 theDestination {

 if (self = [super initWithNibName:
 @”WeatherController” bundle:nil]) {
 destination = theDestination;
 }
 return self;
}

What do these few lines of code do for you?

 1. First it invokes the superclass’s initWithNibName:bundle: method:

[super initWithNibName:@”WeatherController”
 bundle:nil]

 The first thing this method does is invoke its superclass’s initialization
method. I pass it the nib filename (the one I just created in a previous
section) and nil as the bundle, telling it to look in the main bundle.

 Note that the message to super precedes the initialization code
added in the method. This sequencing ensures that initializa-
tion proceeds in the order of inheritance. Calling the superclass’s
initWithNibName:bundle: method initializes the controller, loads
and initializes the objects in the nib file (views and controls, for exam-
ple), and then sets all its outlet instance variables and Target-Action
connections for good measure.

24_9780470920503-ch16.indd 41724_9780470920503-ch16.indd 417 12/24/10 12:32 AM12/24/10 12:32 AM

418 Part V: Building an Industrial-Strength Application

 2. The init…: methods all return a pointer to the object created.

 While not the case here, the reason you assign whatever comes back
from an init…: method to self is that some classes actually return a
different class than what you created. The assignment to self becomes
important if your class is derived from one of those kinds of classes.
Keep in mind as well that an init…: method can also return nil if
there’s a problem initializing an object. If you’re creating an object
where that is a possibility, you have to take that into account. (Both of
those situations are beyond the scope of this book.)

 3. After the superclass initialization is completed, the Weather
Controller is ready to do its own initialization, including saving the
aDestination argument to the destination instance variable.

To load the Web view, the place to start is in the method viewDid-
Load. This method was included for you in WeatherController.m by
the UIViewController subclass template (albeit, commented out).
Simply uncomment this method and add the code in Listing 16-5 to
WeatherController.m.

Listing 16-5: viewDidLoad

- (void)viewDidLoad {

 [super viewDidLoad];
 webView.delegate = self;
 webView.scalesPageToFit = YES;
 [webView loadRequest:[NSURLRequest
 requestWithURL:[destination weather]]];
}

The first thing you do in Listing 16-5 is make WeatherController the Web
view’s delegate. In Chapter 15, I have you do this in Interface Builder, but it’s
easy to forget to do, and doing it in code documents the fact that you did do it.

Next, I assign a Web view property scalesPageToFit to YES, which tells
the Web view to scale the page to fit the view (so you don’t have to scroll all
over the place).

Then, as you can see, you send a message to the Destination object
(which you passed in when you initialized the WeatherController in
the previous section) to find out where the data that the Web view needs
is located. This location is returned in the form of an NSURL, an object that
includes the utilities necessary for downloading files or other resources from
Web and FTP servers.

This method then creates an NSURLRequest that the Web view needs in
order to be able to load the data from the NSURL. The NSURLRequest is

24_9780470920503-ch16.indd 41824_9780470920503-ch16.indd 418 12/24/10 12:32 AM12/24/10 12:32 AM

419 Chapter 16: Adding the Stuff

what the WeatherController needs to send to the Web view in the load-
Request: message, which tells it to load the data associated with that par-
ticular NSURL.

The NSURLRequest class encapsulates a URL as well as any protocol-specific
properties, all the time keeping things nicely protocol-independent. It also
provides a number of other things that are out of this book’s scope — includ-
ing the set of classes and protocols that provide the underlying capability for
an application to access the data specified by a URL. Seeing that this is the
preferred way to access files both locally and on the Internet, at some point
you should explore the URL-loading system on your own.

This small task is all it takes to access the Web site — with the exception of
the code in Destination that returns the NSURL. To do that bit of business,
add the method in Listing 16-6 to Destination.m. (Add the declaration to
Destination.h as well.)

Listing 16-6: The weather method

- (NSURL *) weather {

 NSURL *url = [NSURL URLWithString:
 @”http://www.wunderground.com/global/stations/
 03772.html”];
 return url;
}

This is the same mechanism you used in the MapController where the
Destination object returns the data (or the address of the data) that the
view controller needs.

 Be sure to type the URL string on one line.

 That URL you see is one I use for weather for London from www.wunder
ground.com. Of course, these things change from time to time, and it may
or may not work when you try it. If not, check my Web site (www.neal
goldstein.com) to find out what I’m currently using. Again be sure to
type the URL string all on one line in Xcode.

Finally, just as you did with the MapController, you’re going to have to
manage the toolbar and view sizes in WeatherController. Add the code in
Listing 16-7 to WeatherController.m and delete the bold, underlined and
italic code shown in Listing 16-8 from WeatherController.m.

24_9780470920503-ch16.indd 41924_9780470920503-ch16.indd 419 12/24/10 12:32 AM12/24/10 12:32 AM

420 Part V: Building an Industrial-Strength Application

Listing 16-7: Adding computeFramesForOrientation:

- (void) computeFramesForOrientation:
(UIInterfaceOrientation)interfaceOrientation {

 [self computeFrames:webView forOrientation:interface

Orientation];
}

Listing 16-8: Deleting shouldAutorotateToInterfaceOrientation:

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {
 // Overriden to allow any orientation.
 return YES;
}

If you do forget to do this, the super view (DetailViewController) will
never get the shouldAutorotateToInterfaceOrientation: message
and then send the computeFramesForOrientation: message. As a result,
it will not resize correctly.

Cruising the Web
Although the Web page I’ve chosen for my Weather view (refer to Figure 16-3)
does have a lot of weather-y information, there’s also quite a bit more infor-
mation available using the links on the page. So, in my design, I wanted to be
able to tap a link on the page to get that additional information. It’s actually
easy to do in a Web view (in fact, the Web view does it for you), but you need
to add a Back button after the user goes someplace in order to get back to
this main page. So I have you create another button and label it Weather so
the user knows he or she can use it to get back to the previous view.

Of course, you don’t want to display a Back button if there’s nothing to go
back to — you want to display the button only after the user has clicked a
link, and then remove it when the user is back to the original Web page you
first displayed.

All this is accomplished in the WebView:shouldStartLoadWith
Request:navigationType: method. This message is sent to the Web
view’s delegate at exactly the right time — before the view starts to load
but after the user has selected the link. Add the code in Listing 16-9 to
WeatherController.m.

24_9780470920503-ch16.indd 42024_9780470920503-ch16.indd 420 12/24/10 12:32 AM12/24/10 12:32 AM

421 Chapter 16: Adding the Stuff

Listing 16-9: When the User Touches a Link

- (BOOL)webView:(UIWebView *)webView
 shouldStartLoadWithRequest:(NSURLRequest *)request
 navigationType:(UIWebViewNavigationType)navigationType {

 if (navigationType ==

UIWebViewNavigationTypeLinkClicked) {
 if (!backButton) {
 backButton =
 [[UIBarButtonItem alloc] initWithTitle:@”Weather”
 style:UIBarButtonItemStyleBordered target:self
 action:@selector(goBack:)];
 NSMutableArray *items =
 [[toolbar items] mutableCopy];
 [items addObject:backButton];
 [toolbar setItems:items animated:YES];
 [backButton release];
 }
 }
 return YES;
}

Point for point, here’s what you’re doing with this code:

 1. First, check to see whether the user has touched an embedded link.

if (navigationType ==
 UIWebViewNavigationTypeLinkClicked) {

 2. If he or she has, create and add the Back button (if there isn’t one
already there).

if (!backButton) {
 backButton =
 [[UIBarButtonItem alloc] initWithTitle:@”Weather”
 style:UIBarButtonItemStyleBordered target:self
 action:@selector(goBack:)];

 In this method, you allocate the button and then assign it to an instance
variable backButton. The action:@selector(goBack:) argument
is the standard way to specify Target-Action. It says when the button is
tapped, send the goBack: message to the target: self, which is the
WeatherController. I show you how to implement this shortly.

 3. Add the Back button to the toolbar.

NSMutableArray *items = [[toolbar items] mutableCopy];
 [items addObject:backButton];
 [toolbar setItems:items animated:YES];

24_9780470920503-ch16.indd 42124_9780470920503-ch16.indd 421 12/24/10 12:32 AM12/24/10 12:32 AM

422 Part V: Building an Industrial-Strength Application

 4. Return YES to tell the Web view to load from the Internet.

Next, add the delegate method goBack: to WeatherController.m. (You
specified goBack: as the selector when you created the Back button.) Listing
16-10 has the details.

Listing 16-10: goBack to Where You Once Belonged

- (IBAction) goBack:(id)sender{

 [webView goBack];
}

The UIWebView actually implements much of the behavior you need here. It
sends the Web view a message to load the previous page.

Finally, you want to get rid of the Back button when you’re displaying the
original page. The code to do that is in Listing 16-11.

Listing 16-11: You Don’t Need the Back Button Any Longer

- (void)webViewDidFinishLoad:(UIWebView *) aWebView {

 if (([aWebView canGoBack] == NO) && (backButton)) {
 NSMutableArray *items = [[toolbar items] mutableCopy];
 [items removeObject:backButton];
 backButton = nil;
 [toolbar setItems:items animated:YES];
 }
}

This message is sent after the view has loaded. At this point, you check to
see whether there’s anything to go back to — the Web view keeps track of
those sorts of things. If not, you remove the button from the toolbar.

 If you were to look in the UIWebViewDelegate Protocol Reference, you
would find this method:

- (void)webViewDidFinishLoad:(UIWebView *)webView

If you add it that way, when you compile your app, you get a compiler warn-
ing that says

Local declaration of ‘webView’ hides instance variable

This warning is referring to your instance variable and the argument name in
webViewDidFinishLoad:. Although this makes no difference because both
webView variables refer to the same object, you should get rid of the warn-
ing. You can do one of two things. You can change your instance variable
name, or you can simply change the name in the method:

24_9780470920503-ch16.indd 42224_9780470920503-ch16.indd 422 12/24/10 12:32 AM12/24/10 12:32 AM

423 Chapter 16: Adding the Stuff

- (void)webViewDidFinishLoad:(UIWebView *) aWebView

This is what I did in Listing 16-11.

 That being said, the Apple Human Interface Guidelines say, “In addition to
displaying Web content, a Web view provides elements that support naviga-
tion through open Web pages. Although you can choose to provide Web page
navigation functionality, it’s best to avoid creating an application that looks
and behaves like a mini Web browser.” As far as I’m concerned, making it
possible to select links in a Web view and return back to the originating page
doesn’t do that, but if you really didn’t want to enable the user to follow links,
Listing 16-12 shows you how to disable links. (As you’ll see, there will be other
times you’ll want to disable links, like when you’re in stored data mode, and I
explain that in Chapter 19.)

If you’ve decided to follow Apple’s suggestion and aren’t making your app act
as a mini browser, you have to disable the links that are available in the con-
tent. You can do that in the shouldStartLoadWithRequest: method in
the WeatherController.m file by coding it as shown in Listing 16-12.

Listing 16-12: Disabling Links

- (BOOL)webView:(UIWebView *) webView
 shouldStartLoadWithRequest:(NSURLRequest *) request
 navigationType:
 (UIWebViewNavigationType)navigationType {

 if (navigationType ==
 UIWebViewNavigationTypeLinkClicked)
 return NO;

 else return YES;
}

Responding to a Selection
At this point, you probably can’t wait to see the results of your handiwork —
the weather in London. You have to go back to tableView:didSelectRow
AtIndexPath: in RootViewController.m to make that happen.

Before you do though, add the following import statements so that you can
initialize and create the controllers you just created:

#import “WeatherController.h”
#import “CityController.h”
#import “CurrencyController.h”

24_9780470920503-ch16.indd 42324_9780470920503-ch16.indd 423 12/24/10 12:32 AM12/24/10 12:32 AM

424 Part V: Building an Industrial-Strength Application

Now that you have the WeatherController set up, you can allow the user
to select it in the RootViewController.

All you need to do is replace case : 3 in tableView:didSelectRowAt
IndexPath: which now looks like this:

case 3:
 //do something
 break;

with this:

case 3:
 targetController = [[menuList objectAtIndex:menuOffset]
 objectForKey:kControllerKey];
 if ([targetController isKindOfClass:[NSNull class]]) {
 targetController = [[WeatherController alloc]
 initWithDestination:kAppDelegate.destination];
 [[menuList objectAtIndex:menuOffset]
 setObject:targetController forKey:kControllerKey];
 [targetController release];
 }
 break;

This is exactly what you did to create the MapController when you did it at
the end of the viewDidLoad method.

If you were to compile and run your app in landscape mode only, it would
work exactly as you expect. You can select Map or Weather, you can go to a
map location, click a link on the Weather Web page, go back to Map, go back
to the same page in Weather, and then return to the main Weather view. The
only thing you would notice is that the Web view really isn’t scaled to fit the
view.

The reason for that is you never did send a message to adjust the view sizes
that I explain in Chapter 15. When the application is launched, the should-
AutorotateToInterfaceOrientation: message is sent, which then
sends the computeFramesForOrientation: message, and so on. But when
you make a selection in the Master view, no such message is sent. You’re
going to have to do that on your own. (To refresh your memory on this topic,
review the section on managing the views in Chapter 15.)

That’s not so hard.

But if you were to try to do almost anything in portrait view, you would have
a real mess on you hands.

The Split view controller displays both the Master view and the Detail view in
landscape orientations, but only the Detail view controller is displayed in por-
trait orientations. When the Master view controller is hidden, in the split

24_9780470920503-ch16.indd 42424_9780470920503-ch16.indd 424 12/24/10 12:32 AM12/24/10 12:32 AM

425 Chapter 16: Adding the Stuff

ViewController:willHideViewController: withBarButtonItem:
forPopoverController: method, you add a button that is supplied to you
by the Split view controller.

I explain this in Chapter 14. The user can then use that button to display the
Master view controller in a popover. All this is accomplished by making the
Detail view controller a delegate of the Split view controller, which sends its
delegate messages at the appropriate times to add and remove the button.

This works just fine for the first Detail view controller you see in the portrait
view. However, because it’s inevitable that selecting a new view means you
also select a new view controller (as well as its toolbar), you have to move
the Root List button from where it was to the new toolbar.

Although this is some (not a lot of) additional work, by the time you’re done,
you’ll have an appreciation of how this Split view controller works and be
able to modify any application that isn’t a boring-off-the-shelf-created-from-a-
template app to meet your needs.

To make all this work, all you need to do is add the code in bold in
Listing 16-13 to the end of tableView:didSelectRowAtIndexPath: in
RootViewController.h. More specifically, add it right after the new view
controller code you just added to the Detail view of the Split view controller.

Of course there are a few other methods to write as well, but you’ll get to that).

Listing 16-13: Adding to tableView:didSelectRowAtIndexPath:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

…
[kAppDelegate splitViewController] setViewControllers:
 [NSArray arrayWithObjects:self.navigationController,
 targetController, nil]];
kAppDelegate.splitViewController.delegate =
 targetController;
[targetController computeFramesForOrientation:
 [self appOrientation]];
 if (currentController)
 [self setupToolbar:targetController];
 if (currentController.popoverController) {
 targetController.popoverController =
 currentController.popoverController;
 [currentController.popoverController
 dismissPopoverAnimated:YES];
 }
 currentController = targetController;
}

24_9780470920503-ch16.indd 42524_9780470920503-ch16.indd 425 12/24/10 12:32 AM12/24/10 12:32 AM

426 Part V: Building an Industrial-Strength Application

Now I lead you through this slowly. After you’re done with this, you’ll really
understand how this whole Split view controller popover business works.

Computing the view and toolbar sizes
The first thing you do is send the computeFramesForOrientation: mes-
sage to the controller you just created. (I explain this in Chapter 15, so if
you’re a bit hazy on what’s going to happen, you might want to review that
chapter.) The only difference here is that the message is not being sent in
response to a device rotation, so you’ll have to pass in the current state of
the device.

You get that by sending the appOrientation message that you’ll find in
Listing 16-14. (You have to add it to RootViewController.m and add its
declaration to RootViewController.h.)

Listing 16-14: appOrientation

- (UIInterfaceOrientation) appOrientation {

 UIInterfaceOrientation orientation;
 if ([[currentController.toolbar items]count]) {
 UIBarButtonItem * existingButton =
 [[currentController.toolbar items]objectAtIndex:0];
 if ([existingButton.title
 isEqualToString:@”Root List”])
 orientation = UIDeviceOrientationPortrait;
 else orientation = UIDeviceOrientationLandscapeRight;
 }
 else orientation = UIDeviceOrientationLandscapeRight;
 return orientation;
}

You have a couple of ways to get the device orientation. For example, you
have a nice little property in the UIViewController class by the name of
interfaceOrientation. Unfortunately, that property, at least in this ver-
sion of the SDK, doesn’t get set until after the first device rotation. That’s
good, but not good enough.

There’s also an orientation property of the UIDevice class. The only
problem is that you have to enable orientation notifications on the device
and then end them, and that get’s a bit complicated.

Fortunately, for your purposes, there’s an easier way: Have the code
look to see whether there are bar button items and whether the first bar
button item has the title “Root List.” (Root List is the title you give it in the
DetailViewController implementation of the splitViewController:

24_9780470920503-ch16.indd 42624_9780470920503-ch16.indd 426 12/24/10 12:32 AM12/24/10 12:32 AM

427 Chapter 16: Adding the Stuff

willHideViewController:withBarButtonItem: forPopover
Controller: method.)

 You are using the button title that you set back in the splitViewController:
willHideViewController:withBarButtonItem: forPopover
Controller: method. If you changed it there, you’ll have to change it
in here as well.

if ([[currentController.toolbar items]count]) {
 UIBarButtonItem *existingButton =
 [[currentController.toolbar items]objectAtIndex:0];
 if ([existingButton.title
 isEqualToString:@”Root List”])

If you know there are bar button items and that the first bar button item has
the title Root List, you know the app is in portrait mode, and you set the ori-
entation variable to that.

orientation = UIDeviceOrientationPortrait;

Portrait mode is the one you care about, so for all other orientations you just
set the mode to UIDeviceOrientationLandscapeRight and return that,
as follows:

 else orientation = UIDeviceOrientationLandscapeRight;
 }
 else orientation = UIDeviceOrientationLandscapeRight;
 return orientation;
}

You then go through the same code as you did previously to set up the view
and toolbar sizes.

Setting up the toolbar
With your sizing issues out of the way, you next look at the buttons in the
toolbar.

If your selection is taking place from the popover, you now have a button in
the toolbar that got inserted in the current view with the title Root List. This
was the button passed into the DetailViewController’s implementation
of the splitViewController:willHideViewController:withBar
ButtonItem:forPopoverController: delegate method. This button is
all set up to display the popover, and you need to move that button from the
current view controller’s toolbar to the new view controller toolbar you’re
displaying.

24_9780470920503-ch16.indd 42724_9780470920503-ch16.indd 427 12/24/10 12:32 AM12/24/10 12:32 AM

428 Part V: Building an Industrial-Strength Application

 You may have plans for other buttons on the new view controller’s toolbar;
the logic in this method would take care of those as well.

If the selection isn’t taking place from the popover, you need to look at the
toolbar as well. If the app was in portrait mode the last time the view was dis-
played, then there will be an old Root List button. You need to remove that
before you display the view.

To deal with this particular scenario, start by seeing whether there’s a cur-
rent controller (refer back to Listing 16-13). (This is not an initial application
launch.) If there is one, you need to set up the toolbar.

if (currentController)
 [self setupToolbar:targetController];

To do that, add the code in Listing 16-15 to RootViewController.m. You
also have to add the declaration to RootViewController.h.

Listing 16-15: Setting Up the Toolbar

- (void) setupToolbar:(DetailViewController *)
 targetController {

 NSMutableArray *items =
 [[targetController.toolbar items] mutableCopy];
 if (!items) items =
 [NSMutableArray arrayWithCapacity:2];
 if ([self appOrientation] ==
 UIDeviceOrientationPortrait) {
 if ([[targetController.toolbar items] count]) {
 UIBarButtonItem *buttonItem =
 [[targetController.toolbar items]objectAtIndex:0];
 if ([buttonItem.title isEqualToString:@”Root List”])
 [items removeObjectAtIndex:0];
 }
 [items insertObject:[[currentController.toolbar items]
 objectAtIndex:0] atIndex:0];
 [targetController.toolbar
 setItems:items animated:YES];
 }
 else {
 if ([[targetController.toolbar items] count]) {
 UIBarButtonItem *buttonItem =
 [[targetController.toolbar items]objectAtIndex:0];
 if ([buttonItem.title
 isEqualToString:@”Root List”]){
 [items removeObjectAtIndex:0];
 [targetController.toolbar

24_9780470920503-ch16.indd 42824_9780470920503-ch16.indd 428 12/24/10 12:32 AM12/24/10 12:32 AM

429 Chapter 16: Adding the Stuff

 setItems:items animated:YES];
 }
 }
 }
}

The first thing you do in Listing 16-15 is see whether any toolbar items are
available. (There could very well be one lying around if you’ve previously
created this view controller.) If there is one, you copy the array; if not, you
create a new one.

NSMutableArray *items =
 [[targetController.toolbar items] mutableCopy];
 if (!items) items =
 [NSMutableArray arrayWithCapacity:2];

The next thing you do is check to see whether the app is in portrait
orientation.

if ([self appOrientation] ==
 UIDeviceOrientationPortrait) {

If the app is in portrait mode, check to see whether any buttons are on the
toolbar. (There won’t be if you have just created the controller and/or if the
controller was created in landscape.) Actually, this is the general case as well
as being the case in this chapter. (In the next chapter, you’ll be adding a Print
button to the toolbar when it’s created, so there will always be a button in
there.)

if ([[targetController.toolbar items] count]) {

If there are buttons, you want to remove the previous Root List button if
there is one — it’s no longer valid.

UIBarButtonItem *buttonItem =
 [[targetController.toolbar items]objectAtIndex:0];
 if ([buttonItem.title isEqualToString:@”Root List”])
 [items removeObjectAtIndex:0];

Next, you add the current button from the current controller. As I said, this
button is all set up to display the popover; you need to move that from the
current view controller’s toolbar to the new view controller toolbar you want
to display.

[items insertObject:[[currentController.toolbar items]
 objectAtIndex:0] atIndex:0];
 [targetController.toolbar
 setItems:items animated:YES];

24_9780470920503-ch16.indd 42924_9780470920503-ch16.indd 429 12/24/10 12:32 AM12/24/10 12:32 AM

430 Part V: Building an Industrial-Strength Application

If the app isn’t in portrait mode, you want to see whether the new toolbar has
the Root List button. (It’ll be there if the app was in portrait mode the last
time you displayed it.) If the Root List button is there, go ahead and remove
it. (There is no need for a Root List button in landscape mode.)

if ([[targetController.toolbar items] count]) {
 UIBarButtonItem *buttonItem =
 [[targetController.toolbar items]objectAtIndex:0];
 if ([buttonItem.title
 isEqualToString:@”Root List”]){
 [items removeObjectAtIndex:0];
 [targetController.toolbar
 setItems:items animated:YES];

Managing the popover
The final thing you do is check to see whether there’s a popover associated
with the current controller (the one you’re replacing). The Split view control-
ler has associated this popover with a Detail view controller, and because
you’re replacing that Detail view controller, you need to now update the new
one with the popover reference. (Again, refer to Listing 16-13.)

if (currentController.popoverController) {

The popoverController is a DetailViewController property that’s set
when the UIPopoverControllerDelegate messages are sent. (For more
on these popover messages, see Chapter 14.)

If a popover is associated with the current controller, you want to update the
new controller with it.

if (currentController.popoverController) {
 targetController.popoverController =
 currentController.popoverController;

Assuming again that the popover is present, after this bit of updating you
want to go ahead and dismiss it. Updating the popoverController instance
variable and then dismissing the Popover controller may seem odd, but you
need to do this to keep everything in sync.

You then save the current controller in the last statement so you can find the
popover later to dismiss it.

You also need to add a new instance variable to RootViewController.h.

DetailViewController *currentController;

24_9780470920503-ch16.indd 43024_9780470920503-ch16.indd 430 12/24/10 12:32 AM12/24/10 12:32 AM

431 Chapter 16: Adding the Stuff

The Currency Implementation Model
If the user selects Currency from the Main view in the iPadTravel411 applica-
tion, he or she will see some very basic information about exchange rates, as
illustrated in Figure 16-6. Because this information changes rarely (if ever),
I’m going to include this information in the application. The way to do this is
to include it as a resource.

Figure 16-6:
Reading

about how
currencies

work.

The CurrencyController and view follows the same pattern laid
down by the WeatherController implementation. Do the following to
CurrencyController.m:

 1. Add #import “Destination.h” to CurrencyController.m.

 2. Add the code in Listing 16-4: Initialize WeatherController to
CurrencyController.m, replacing WeatherController with
CurrencyController.

 3. Add the code in Listing 16-7: Adding computeFramesFor
Orientation: to CurrencyController.m.

 4. Delete the code in Listing 16-8: Deleting shouldAutorotateTo
InterfaceOrientation: in CurrencyController.m.

24_9780470920503-ch16.indd 43124_9780470920503-ch16.indd 431 12/24/10 12:32 AM12/24/10 12:32 AM

432 Part V: Building an Industrial-Strength Application

 5. Add the Web navigation code in Listings 16-9 to 16-11 to
CurrencyController.m.

 a. Listing 16-9: When the User Touches a Link

 b. Listing 16-10: goBack to Where You Once Belonged

 c. Listing 16-11: You Don’t Need the Back Button Any Longer

You might be wondering why I don’t just create a superclass and have
WeatherController, CurrencyController, and CityController
inherit all that code from it. The answer is you should, but I didn’t because it
makes things a little more complex, and things in this chapter are complex
enough. I leave this as an exercise for you to do after you’ve wrapped you
head around all this info.

Now you’re ready to add the content.

Adding the content
The content for the Currency view is in a file I created called Currencies.
html. To make it available to the application, you need to include it in the
application bundle itself,

Now, you can add it to your bundle in one of two ways (you did this earlier
when you added the picture file in Chapter 9):

 ✓ Open the Project window and drag an .html file into the Groups & Files
list.

 It’s a good idea to create a new group within your project as a snug little
home for the file. (I named my new group Static data.)

 Or

 ✓ Select Project➪Add to Project and then use the dialog that appears to
navigate to (and select) the file you want.

This file is available, along with all the other code and files from this book, on
my Web site at www.nealgoldstein.com on the Downloads page available
from the Support page.

The only thing interesting here is that you’re going to use some data that
you’ve included with your application as a resource (which you can think of
as an included file, although it doesn’t live in the iPad file system but rather
is embedded in the application itself).

24_9780470920503-ch16.indd 43224_9780470920503-ch16.indd 432 12/24/10 12:32 AM12/24/10 12:32 AM

433 Chapter 16: Adding the Stuff

Loading the Currency view
To load the Currency Web view, the place to start is in the method view-
DidLoad. This method was included for you in CurrencyController.m
by the UIViewController subclass template (albeit, commented out).
Simply uncomment this method and add the code in Listing 16-16 to
CurrencyController.m. This is similar to the viewDidLoad method you
added to WeatherController.

Listing 16-16: viewDidLoad

- (void)viewDidLoad {

 [super viewDidLoad];
 webView.scalesPageToFit = NO;
 [webView loadRequest:[NSURLRequest requestWithURL:
 [destination currencyBasics]]];

}

All this code does is send a message to the Destination object (which you
passed in when you initialized the CurrencyController in the previous
section) to find out where the data that the Currency view needs is located.
You also notice that, in this case, you set the scalesPageToFit property to
NO. I do that because the program I used to create the view content already
took into account the page size.

loadRequest is a UIWebView method that connects to a given URL and
downloads whatever is there. In the case of WeatherController, that was
a Web site; in this case, it’s a resource in your bundle. In the case of the
CityController, as you’ll soon see, it will be an .html file on a server.

Of course, you have to give loadRequest the file URL. You do this in
Destination.m in the currencyBasics method. Add the code in Listing
16-17 to Destination.m and the declaration to Destination.h.

Listing 16-17: The currencyBasics Method

- (NSURL *)currencyBasics {

 NSString *filePath = [[NSBundle mainBundle]

pathForResource:@”Currencies” ofType:@”html”];
 NSURL * currencyData= [NSURL fileURLWithPath:filePath];
 return currencyData;
}

24_9780470920503-ch16.indd 43324_9780470920503-ch16.indd 433 12/24/10 12:32 AM12/24/10 12:32 AM

434 Part V: Building an Industrial-Strength Application

To get the URL for the resource you just added, you use pathForResource,
which is an NSBundle method. (You used an NSBundle method when you
got the application name in the RootViewController to set the title on the
main window back in Chapter 15.) Just give pathForResource the name
and the file type.

 Be sure you provide the right file type; otherwise, this technique won’t work.

Launching the CurrencyController
To launch the CurrencyController when the user selects Currency in
the Master view, all you have to do is replace the code in case 2 in table
View:didSelectRowAtIndexPath: in RootViewController.m.

The idea is to replace this:

case 2:
 //do something
 break;

with the bolded stuff here:

case 2:
 targetController = [[menuList objectAtIndex:menuOffset]
 objectForKey:kControllerKey];
 if ([targetController isKindOfClass:[NSNull class]]) {

 targetController = [[CurrencyController alloc] init

WithDestination:kAppDelegate.destination];
 [[menuList objectAtIndex:menuOffset]
 setObject:targetController forKey:kControllerKey];
 [targetController release];
 }
 break;

If this looks familiar, that’s because it is. This is exactly what you did to
launch the MapController.

Adding the City
If the user selects City from the Main view in the iPadTravel411 application,
he or she should see information about what’s going on in London (although
in the file I provide, there’s not much to speak of going on).

24_9780470920503-ch16.indd 43424_9780470920503-ch16.indd 434 12/24/10 12:32 AM12/24/10 12:32 AM

435 Chapter 16: Adding the Stuff

How selecting City works is pretty much the same as how selecting Currency
works, except this time you’re going to use a model object — City, which
you’re already using as an annotation — that contains the location of the
URL. You’ll see how this all nicely fits together in a moment.

Because CityController follows the same pattern laid down by
the Weather implementations, start off by doing the following to
CityController.m:

 1. Add #import “Destination.h” to CityController.m.

 2. Add the code in Listing 16-7: Adding computeFramesForOrientation:
to CityController.m.

 3. Delete the code in Listing 16-7: Deleting shouldAutorotateToInterface
Orientation: in CityController.m.

 4. Add the Web navigation code in listings 16-9 to 16-11 to
CityController.m.

 a. Listing 16-9: When the User Touches a Link

 b. Listing 16-10: goBack to Where You Once Belonged

 c. Listing 16-11: You Don’t Need the Back Button Any Longer

Now you’re ready to add the content.

Loading the City view
To load the Web view, the place to start is in the method viewDidLoad.
This method was included for you in CityController.m by the UIView
Controller subclass template (albeit, commented out). Simply uncomment
this method and add the code in Listing 16-18 to CityController.m. This is
similar to the viewDidLoad method you added to CurrencyController.

Listing 16-18: The viewDidLoad Method

- (void)viewDidLoad {

 [super viewDidLoad];
 webView.scalesPageToFit = NO;
 [webView loadRequest:[NSURLRequest requestWithURL:
 [destination cityHappenings]]];
}

24_9780470920503-ch16.indd 43524_9780470920503-ch16.indd 435 12/24/10 12:32 AM12/24/10 12:32 AM

436 Part V: Building an Industrial-Strength Application

Just as with the CurrencyController, all this code does is send a mes-
sage to the Destination object to find out where the data that the City
view needs is located. You’ll also notice that in this case, you again set the
scalesPageToFit property to NO. I do that because the program I used to
create the view content already took into account the page size.

As I mention earlier when discussing the Currency view, loadRequest is a
UIWebView method that connects to a given URL and downloads whatever is
there. It should come as no surprise that you have to give loadRequest the
file URL, which is again done in Destination.m — this time in the city-
Happenings method.

This bit of coding isn’t all that different from the implementation of view-
DidLoad in WeatherController and CurrencyController. Add
the code in Listing 16-19 to Destination.m, and add its declaration to
Destination.h.

Listing 16-19: The cityHappenings Method

- (NSURL *) cityHappenings {

 return [city cityHappenings];
}

Well now, this is at least a little different. Now you’re getting the information
from the City model object instead of from Destination.

return [city cityHappenings];

Back in Chapter 15, I explain why it’s a good idea to have model objects that
are used by the main model object — Destination. I didn’t do this with
Currency and Weather because it was so trivial, but in the case of the City
view, the City model object also does something besides return the URL —
it also has the information necessary for the annotation. So here it makes
sense to have it own and return the URL information as well.

Add the code in Listing 16-20 to City.m, and add its declaration to City.h.

Listing 16-20: The City Model Object Returns the NSURL

- (NSURL *) cityHappenings {

 return [NSURL URLWithString:
 @”http://nealgoldstein.com/City.html”];
}

24_9780470920503-ch16.indd 43624_9780470920503-ch16.indd 436 12/24/10 12:32 AM12/24/10 12:32 AM

437 Chapter 16: Adding the Stuff

This is no different than what you did with the Weather NSURL back in the
“Loading the Web View” section, earlier in this chapter — whether it’s weather
info or city info, all you’re doing is grabbing some data from the Web.

Launching the CityController
To launch the CityController when the user selects City in the Master
view, all you have to do is replace the code in case 0 in tableView:did
SelectRowAtIndexPath: in RootViewController.m.

In other words, what now looks like this:

case 0:
 //do something
 break;

should be changed so it looks like this:

case 0:
 targetController = [[menuList objectAtIndex:menuOffset]
 objectForKey:kControllerKey];
 if ([targetController isKindOfClass:[NSNull class]]) {

 targetController = [[CityController alloc]
 initWithDestination:kAppDelegate.destination];
 [[menuList objectAtIndex:menuOffset]
 setObject:targetController forKey:kControllerKey];
 [targetController release];
 }
 break;

Third time’s the charm — this is exactly what you did to launch the
MapController and WeatherController.

A Checkpoint
Build and run your application and you’ll now find that all of the selections
you can make in the first section of the Master view, both in landscape mode
and in portrait mode, work as expected.

Of course, there are a few more things left to do, like printing, implementing
preferences, and saving state, and oh yeah, all that stuff in the second section.

On to printing!

24_9780470920503-ch16.indd 43724_9780470920503-ch16.indd 437 12/24/10 12:32 AM12/24/10 12:32 AM

438 Part V: Building an Industrial-Strength Application

24_9780470920503-ch16.indd 43824_9780470920503-ch16.indd 438 12/24/10 12:32 AM12/24/10 12:32 AM

Chapter 17

Printing from Your iPad App
In This Chapter
▶ How printing works

▶ Providing printing options

▶ Printing various views

▶ Using the Printer Simulator

Over the course of the last few chapters, you’ve learned quite a lot about
creating apps that go beyond the ho-hum. In this chapter, you add to

your knowledge by adding a great new iPad feature: printing. Not only is it
one of the great additions to iOS 4.2, but it also turns out to be pretty simple
to use (a definite break from Chapter 16).

While printing opens up a world of opportunity for apps in general, there are
some very definite uses for it in an app like IiPhoneTravel411. The user might
want to print out a map or a page on what’s happening in London. This is
especially helpful for many users without 3G and even those who do have 3G
who would prefer not to pay roaming rates. It also moves the iPad one step
closer to being able to replace a laptop for many users.

In iPadTravel411, you’ll implement printing for most of the views. You’ll also
find out how to set some parameters so you can print maps in landscape
mode, for example, and everything else in portrait mode.

Printing on the iPad
Okay, I’ll be the first to admit that, at this point, only a few printers support
iPad printing. How few? This few:

 ✓ HP Photosmart Premium Fax e-All-in-One Printer series — C410

 ✓ HP Photosmart Premium e-All-in-One Printer series — C310

 ✓ HP Photosmart Plus e-All-in-One Printer series — B210

25_9780470920503-ch17.indd 43925_9780470920503-ch17.indd 439 12/24/10 12:32 AM12/24/10 12:32 AM

440 Part V: Building an Industrial-Strength Application

 That doesn’t sound too promising, but in beta releases of iOS 4.2, printing to a
shared printer on a Mac running Mac OS X 10.6.5 was also supported. This
support was removed in the Golden Master release. Why it was removed is the
subject of a host of unsubstantiated rumors — but don’t be surprised if you
see printing to a shared printer pop up again at some point in the future.

And, of course, as with anything starting with an i from Apple, you can count
on more and more printers supporting iPad printing.

 One more caveat: Printing is supported only on those iOS devices that support
multitasking.

 For testing purposes, you can save a lot of trees by using the Printer Simulator
with your app. I explain how to do that in the section “The Printer Simulator,”
later in this chapter.

The beauty of iPad printing is that it’s pretty simple for the user. All the user
needs to do is tap a button — usually found in a navigation bar or toolbar
of the view or item the user wants to print. (See Figure 17-1.) The applica-
tion then presents a Printer Options popover, as shown later on in Figure
17-2. That allows a user to select a printer (and some other options such as
page range and copies) and then get something printed by tapping the Print
button.

Your application then needs to provide printing output from its content or
provide printable data or file URLs. The requested print job is spooled and
then control returns to your application. If the destination printer is cur-
rently not busy, printing begins immediately. If the printer is already printing
or if there are jobs before it in the queue, the print job remains in the print
queue until it moves to the top of queue and is printed.

Gee — just like it does on a real computer.

Adding the Print button
The first thing printing-related that a user sees is a Print button. The Print
button is often a bar-button item on a navigation bar or a toolbar. The Print
button should logically apply to the content the application is presenting;
if the user taps the button, the application should print that content. Although
the Print button can be any custom button, it’s recommended that you use the
system item-action button shown in Figure 17-1. The system item-action button
is the one on the far-right side of the toolbar.

25_9780470920503-ch17.indd 44025_9780470920503-ch17.indd 440 12/24/10 12:32 AM12/24/10 12:32 AM

441 Chapter 17: Printing from Your iPad App

It looks nice enough, but how do you actually get it there? More specifically,
where in your code do you make the changes necessary to get that nice Print
button to appear?

Because you want all of your views in the various view controllers derived
from DetailViewController to be able to print, you’ll add the code to the
viewDidLoad method of the DetailViewController. So uncomment out
the viewDidLoad method to DetailViewController.m and add the code
in bold in Listing 17-1.

Figure 17-1:
The system
item-action
button used
for printing.

25_9780470920503-ch17.indd 44125_9780470920503-ch17.indd 441 12/24/10 12:32 AM12/24/10 12:32 AM

442 Part V: Building an Industrial-Strength Application

Listing 17-1: Adding a Print Button

- (void)viewDidLoad {

 [super viewDidLoad];
 UIBarButtonItem *flexibleSpace =
 [[[UIBarButtonItem alloc] initWithBarButtonSystemItem:
 UIBarButtonSystemItemFlexibleSpace
 target:nil action:nil] autorelease];

 printButton= [[[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAction
 target:self action:@selector(print:)]autorelease];
 NSMutableArray *items = [[toolbar items] mutableCopy];
 [items addObject:flexibleSpace];
 [items addObject:printButton];
 [self.toolbar setItems:items animated:YES];
 [items release];
 [super viewDidLoad];
}

The first thing you do is allocate a flexible space “button,” UIBarButton
SystemItemFlexibleSpace. This simply adds a blank space which forces
the Print button to the right (whether or not there are other buttons in the
toolbar).

You then create a standard Print button:

printButton= [[[UIBarButtonItem alloc] initWithBar
ButtonSystemItem:UIBarButtonSystemItem
Action target:self action:@selector(print:)]
autorelease];

and add it to the toolbar:

NSMutableArray *items = [[toolbar items] mutableCopy];
[items addObject:flexibleSpace];
[items addObject:printButton];
[self.toolbar setItems:items animated:YES];
[items release];
[super viewDidLoad];

To round things off, you have to add the instance variable to
DetailViewController.h as well:

UIBarButtonItem *printButton;

One side effect of the way I have you do this is that now the Location button
for the Map view and the Back button for the Web views (when it is needed)
appear after the Print button. You can change that if you’d like, but I kind of
like it this way.

25_9780470920503-ch17.indd 44225_9780470920503-ch17.indd 442 12/24/10 12:32 AM12/24/10 12:32 AM

443 Chapter 17: Printing from Your iPad App

One thing I also want to direct your attention to is the fact that — because of
all of the work you did in the last chapter — adding this button works seam-
lessly in all views and in all orientations. Good job!

The print methods
When a user taps the Print button, your controller (a DetailView
Controller subclass) receives the action (print:) message. So the
next thing you need to do is add the method print:.

This code is identical for all the controllers that have a Web view. (I
know, another argument for the kind of superclass I mention in Chapter
16, in the section on the currency implementation model.) Add the code
in Listing 17-2 to WeatherController.m, CityController.m, and
CurrencyController.m.

Listing 17-2: The print Method for Web Views

- (void)print:(id)sender {

 [self print:webView orientation:
 UIPrintInfoOrientationPortrait];
}

All this method does is turn around and send itself the print;orientation:
message, which you implement next in the DetailViewController. The
reason the method exits at all is to send two arguments to the superclass
method. The first is the view you want printed, and the second the print
orientation. For all the Web views, both the view and orientation are the
same — you want the orientation to be portrait — but for the Map view,
you want to pass a Map view to be printed and print it in landscape. Add
the code in Listing 17-3 to MapController.m to accomplish that.

Listing 17-3: The print Method for the Map View

- (void)print:(id)sender {

 [self print:mapView orientation:
 UIPrintInfoOrientationLandscape];
}

 I could have accomplished customizing the print orientation on a class-by-
class basis in a lot of ways — including subclassing or by using instance
variables in the DetailViewController class that was initialized by each
derived class. I chose to do it this way to give you an idea of how you could
have a bit more control on a class-by-class basis.

25_9780470920503-ch17.indd 44325_9780470920503-ch17.indd 443 12/24/10 12:32 AM12/24/10 12:32 AM

444 Part V: Building an Industrial-Strength Application

The UIPrintInteractionController
The print:orientation: method in the DetailViewController is
where the action is.

To let the print: orientation: method do its thing, add the code in
Listing 17-4 to DetailViewController.m and add the method declaration
to DetailViewController.h.

Listing: 17-4: The Main Printing Code

- (void) print:(UIView *) theView
 orientation:(UIPrintInfoOrientation) orientation {

 UIPrintInteractionController *controller =
 [UIPrintInteractionController sharedPrintController];
 if(!controller){
 NSLog(@”Couldn’t open Print Interaction Controller!”);
 return;
 }
 UIPrintInfo *printInfo = [UIPrintInfo printInfo];
 printInfo.jobName = @”iPadTravel411”;
 printInfo.outputType = UIPrintInfoOutputGeneral;
 printInfo.orientation = orientation;
 if (orientation == UIPrintInfoOrientationPortrait)
 printInfo.duplex = UIPrintInfoDuplexLongEdge;
 else
 printInfo.duplex = UIPrintInfoDuplexShortEdge;
 controller.printInfo = printInfo;
 controller.showsPageRange = YES;
 controller.printFormatter =
 [theView viewPrintFormatter];
 void (^completionHandler)
 (UIPrintInteractionController *, BOOL, NSError *) =
 ^(UIPrintInteractionController *printController,
 BOOL completed, NSError *error) {
 if(!completed && error) {
 NSLog(@”FAILED! Error code: %u in domain: %@”,
 error.code, error.domain);
 }
 };

 if (UI_USER_INTERFACE_IDIOM() ==
 UIUserInterfaceIdiomPad)
 [controller presentFromBarButtonItem:printButton
 animated:YES completionHandler:completionHandler];
 else
 [controller presentAnimated:YES
 completionHandler:completionHandler];
}

25_9780470920503-ch17.indd 44425_9780470920503-ch17.indd 444 12/24/10 12:32 AM12/24/10 12:32 AM

445 Chapter 17: Printing from Your iPad App

So this is how it works:

When a user taps the Print button, you get the shared instance of
UIPrintInteractionController, which handles the heavy lifting for you.
It is responsible for the Print Options popover, for example, which allows the
user to select a printer, specify the number of copies (and possibly a range of
pages), and choose single-sided or double-sided printing (if the printer sup-
ports duplex printing). When users make their selections and tap Print, the
print job commences.

UIPrintInteractionController *controller =
 [UIPrintInteractionController sharedPrintController];
 if(!controller){
 NSLog
 (@”Couldn’t open Print Interaction Controller!”);
 return;
 }

If for some reason you can’t open a Print Interaction Controller, you log the
fact to the debugger console.

The next thing you do is create a UIPrintInfo object so you can set some
print job parameters.

UIPrintInfo *printInfo = [UIPrintInfo printInfo];

A UIPrintInfo object contains information about a print job, including
which printer to use, output type (normal, photo, grayscale), orientation
(portrait or landscape), and any selected duplex mode.

First, you assign the job name:

printInfo.jobName = @”iPadTravel411”;

Then you assign UIPrintInfoOutputGeneral to the outputType.
UIPrintInfoOutputGeneral is a mix of text, graphics, and images in
color. (Other choices are UIPrintInfoOutputPhoto and UIPrint
InfoOutputGrayscale.)

printInfo.outputType = UIPrintInfoOutputGeneral;

You assign the orientation to whatever was passed in as the orientation
argument.

printInfo.orientation = orientation;

25_9780470920503-ch17.indd 44525_9780470920503-ch17.indd 445 12/24/10 12:32 AM12/24/10 12:32 AM

446 Part V: Building an Industrial-Strength Application

You then set duplex printing (which is two-sided printing) so that it’s avail-
able if the printer supports it. If you’re doing portrait printing, you want to
duplex along the long edge; if not, you want to use the short edge.

if (orientation == UIPrintInfoOrientationPortrait)
 printInfo.duplex = UIPrintInfoDuplexLongEdge;
 else
 printInfo.duplex = UIPrintInfoDuplexShortEdge;

You then assign the printInfo object to the printInfo property of the
UIPrintInteractionController instance.

controller.printInfo = printInfo;

If you don’t assign a printInfo object, UIKit assumes default attributes for
the print job. (For example, the job name is the application name.)

You then tell the controller you want it to show the page range controls.

controller.showsPageRange = YES;

After that, you need to tell the controller what to print. You do that by assign-
ing an object to one of the following UIPrintInteractionController
properties:

 ✓ printingItem: You assign a single print-ready object — an NSData,
NSURL, UIImage, or ALAsset object containing or referencing PDF data
or image data.

 ✓ printingItems: You assign an array of print-ready objects. (See
printingItem.)

 ✓ printFormatter: You assign a print formatter — an object that knows
how to lay out content of a certain type.

 ✓ printPageRenderer: You assign a page renderer — a custom object
that draws the content for printing.

You should only set one of these properties for any print job.

In Listing 17-4, you’ll use a print formatter. Although you could also create
a custom print formatter for complex content that allows you to specify the
margins of printed content and the starting page for printing, for now you’ll
just use a pretty standard UIViewPrintFormatter that’s a concrete sub-
class of UIPrintFormatter.

Certain classes in the SDK know how to draw their contents for printing,
including UIWebView, UITextView, and MKMapView. These come supplied
with a UIViewPrintFormatter instance that you’re free to use, thank you

25_9780470920503-ch17.indd 44625_9780470920503-ch17.indd 446 12/24/10 12:32 AM12/24/10 12:32 AM

447 Chapter 17: Printing from Your iPad App

very much. You get that instance by sending the viewPrintFormatter
message to the view and then use that print formatter to print the view.

controller.printFormatter = [theView viewPrintFormatter];

The next thing you do is create a completion handler. The completion han-
dler is a block of type UIPrintInteractionCompletionHandler that’s
invoked when a print job either completes successfully or is terminated
because of an error. This completion handler can clean up the state (you
don’t do that here) and/or log error messages (you do that here).

void (^completionHandler)
 (UIPrintInteractionController *, BOOL, NSError *) =
 ^(UIPrintInteractionController *printController,
 BOOL completed, NSError *error) {
 if(!completed && error){
 NSLog(@”FAILED! Error code: %u in domain: %@”,
 error.code, error.domain);
 }
 };

You then present the user interface.

Because this is an iPad book, you’re going to present an iPad user interface,
but I wanted to show you how you would handle it if your app could also run
on an iPhone or iPod touch.

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)
 [controller presentFromBarButtonItem:printButton

animated:YES completionHandler:completion
Handler];

 else
 [controller presentAnimated:YES completionHandler:

completionHandler];

UI_USER_INTERFACE_IDIOM() is a UIKit function that returns either
UIUserInterfaceIdiomPhone (if the device is an iPhone or iPod touch) or
UIUserInterfaceIdiomPad (if the device is an iPad). On an iPad, the UIKit
framework displays a Popover view containing the Printer options, as shown
in Figure 17-2. An application can animate this view to appear from the Print
button (you do that here with the help of presentFromBarButtonItem:
printButton) or from an arbitrary area of the application’s user interface.

Just for your information, on iPhone and iPod touch devices, UIKit displays
a sheet of printing options that an application can animate to slide up from
the bottom of the screen.

25_9780470920503-ch17.indd 44725_9780470920503-ch17.indd 447 12/24/10 12:32 AM12/24/10 12:32 AM

448 Part V: Building an Industrial-Strength Application

After a print job has been submitted and is either printing or waiting in
the print queue, users can check on its status by double-tapping the Home
button to access the Print Center in the multitasking UI. Users can tap a print
job in the Print Center to get detailed information about the job (see Figure
17-3) and cancel jobs that are printing or waiting in the queue. The Print
Center is a background system application that shows the order of jobs in
the print queue, including those that are currently printing. It’s available only
while a print job is in progress.

Figure 17-2:
Printer

Options
popover

view (iPad).

25_9780470920503-ch17.indd 44825_9780470920503-ch17.indd 448 12/24/10 12:32 AM12/24/10 12:32 AM

449 Chapter 17: Printing from Your iPad App

Figure 17-3:
The Print

Center.

The Printer Simulator
The SDK for iOS 4.2 (and later) provides a Printer Simulator application that
you can use to test your application’s printing capabilities. The application
simulates various printer types — inkjet, black-and-white laser, color laser,
and so on — and uses the Preview application to display the output. The
Printer Simulator also logs information from the printing system about each
print job.

25_9780470920503-ch17.indd 44925_9780470920503-ch17.indd 449 12/24/10 12:32 AM12/24/10 12:32 AM

450 Part V: Building an Industrial-Strength Application

It’s probably a good idea to use the Print Simulator to test printing, unless
you really need a lot of Heathrow London maps, London weather reports, or
information about currency to hand out to your friends and family.

If you want to have the Printer Simulator show up as an option in the Printing
Options window, you need to start it first.

The way to start the Printer Simulator is by choosing File➪Open Printer
Simulator in the Simulator itself. After you do that, the Printer Simulator
window opens. (You can see some of the output it logs in the window in
Figure 17-4.) I won’t be going into what all of that means in this book.

Figure 17-4:
The Printer

Simulator
window.

There’s Much More to Printing
As you might expect, there’s a lot more to printing. As I say earlier in this
chapter, you can always create a custom print formatter for complex content
that allows you to specify the margins of printed content and the starting
page for printing.

The next step beyond that is to create a UIPageRenderer instead of a
UIViewPrintFormatter. This gives you greater control over the content
drawn for printing. It includes properties for the page count and for heights of
headers and footers of pages. It also has several methods that you can over-
ride to draw specific portions of a page (such as the header, the footer, or the
content itself) or even to integrate page renderer and print formatter drawing.

In a different direction, you can also create single print-ready NSData,
NSURL, UIImage, or ALAsset objects that reference PDF data or image data.

Obviously that’s an exercise for you to do on your own.

25_9780470920503-ch17.indd 45025_9780470920503-ch17.indd 450 12/24/10 12:32 AM12/24/10 12:32 AM

Chapter 18

Providing Content in
the Master View

In This Chapter
▶ Adding Content views to the Master view

▶ Taking another look at model objects

▶ Creating views without using Interface Builder

▶ Accessing data on the Internet

▶ Saving files

So far you’ve seen how to use the Master view controller to change some-
thing in the Detail view. But you can also push new controllers in the

Master view to display more of a hierarchy or even more data. (More on that
in the “Navigating the Navigation Controller” section, later in this chapter.)
Figure 18-1 shows you how you can be getting information about transporta-
tion into London while looking at currency information about what it takes
to turn dollars into pounds so you can pay for your Heathrow Express ticket.
(The more data, the merrier, I say.)

In this chapter, you’re going to create an AirportController that manages
the airports and their views in the Master view.

The Airport Controller
At this point, adding a new controller should be second nature to you. I know
it may be getting a bit tedious, but this is what you have to go through for
almost all the views you’ll have in your application.

26_9780470920503-ch18.indd 45126_9780470920503-ch18.indd 451 12/24/10 12:32 AM12/24/10 12:32 AM

452 Part V: Building an Industrial-Strength Application

Figure 18-1:
What is

all this
exchange
rate stuff

about
anyway?

Adding the Airport controller and nib file
Here’s the drill:

 1. Select the View controllers group and then choose File➪New File from
the main menu (or press Ô+N) to call up the New File dialog.

 2. In the leftmost pane of the dialog, first select Cocoa Touch Classes
under the iOS heading, select the UIViewController subclass template
in the topmost pane, and then make sure that the following are all
selected:

 • With XIB for User Interface

 • Targeted for iPad

 3. Click Next.

 You see a new dialog asking for some more information.

 4. Enter AirportController in the File Name field and then click Finish.

The idea behind AirportController is that you want to display the trans-
portation options open to the user. The first step down that road involves
adding methods and instance variables to that controller.

26_9780470920503-ch18.indd 45226_9780470920503-ch18.indd 452 12/24/10 12:32 AM12/24/10 12:32 AM

453 Chapter 18: Providing Content in the Master View

Start by looking at the changes you need to make in AirportController.h
to get an overview of sorts of where you’re headed. Make the changes in bold
you see in Listing 18-1.

Listing 18-1: AirportController.h

#import <UIKit/UIKit.h>
#import “DetailViewController.h”
@class Destination;

@interface AirportController : UIViewController
DetailViewController <UIWebViewDelegate> {

 UIWebView *webView;
 Destination *destination;
 UIToolbar *theToolbar;
 UISegmentedControl *segmentedControl;
 UIBarButtonItem *backButton;
}
- (id)initWithDestination:(Destination *)aDestination
 airportID:(int) theAirport;

@end

If you look at the Master view in Figure 18-1, you can see that you’re going
to be adding a toolbar with a segmented control — the Train-Taxi-Other
business — as well as an image and a “back button,” just as you have done
in other controllers (WeatherController for example) that let you cruise
the Web. In Listing 18-1, you create some instance variables (I explain why
they’re not IBOutlets next) to take care of this.

Be sure to save the file before you continue.

Right off the bat, you’re going to have to add the initialization method in
Listing 18-2 to AirportController.m.

Listing 18-2: initWithDestination:airportID:

- (id)initWithDestination:(Destination *)aDestination
 airportID:(int) theAirport {

 if (self = [super initWithNibName:@”AirportController”
 bundle:nil]) {
 destination = aDestination;
 self.title = [destination
 returnAirportName:theAirport];
 }
 return self;
}

26_9780470920503-ch18.indd 45326_9780470920503-ch18.indd 453 12/24/10 12:32 AM12/24/10 12:32 AM

454 Part V: Building an Industrial-Strength Application

London is serviced by three separate airports (Heathrow, Gatwick, and
Stansted), and I’m planning to provide information for all three. Because the
kind of information I want to provide is basically the same, it would be nice
to have to create only one view controller class that could then provide the
information for any airport — that’s the reason for the airportID and the
returnAirportName message it sends to destination. Although I won’t
be showing you how to implement that in this book, it does provide the
beginnings of the framework you need to do it on your own.

You also have to add a new method to Destination.m and its declaration
to Destination.h, as shown in Listing 18-3. returnAirportName: is a
step down the path I suggested earlier. Here you’re having a “generic” airport
object that doesn’t know anything about its airport — the gatekeeper here
being the Destination object. I’m fudging a bit because I’m going to imple-
ment only one airport, but you get the picture.

Listing 18-3: Returning the Name for an Airport

- (NSString *)returnAirportName:(int) theAirportID {

 return airport.title;
}

 You’ll notice here that I’m taking advantage of the fact that an Airport,
which you have been using so far simply as an annotation, already has a name
(title) associated with it. In the section “The Destination Model,” later in
this chapter, I show you how to nudge Airport into being even more of a
model object of the kind I explain in Chapter 13.

With your preliminaries out of the way, you can start adding content by first
taking care of the image. To do that, you add the image as a resource in your
program bundle. The one I’m showing is a map of Heathrow Airport, and you
can download that from my Web site or use any other image you want.

To make it available to the application, I need to include the image in the appli-
cation bundle itself, although I could have downloaded it the first time the
application ran. (But there’s method in my madness. Including it in the bundle
does give me the opportunity to show you how to handle this kind of data.)

You can add it to your bundle one of two ways:

 ✓ Open the Project window and drag the Heathrow.png file into the
Groups & Files list, like you did with the icon in Chapter 9 or even the
Currencies.html file in Chapter 16.

26_9780470920503-ch18.indd 45426_9780470920503-ch18.indd 454 12/24/10 12:32 AM12/24/10 12:32 AM

455 Chapter 18: Providing Content in the Master View

 It’s a good idea to put this is the same place as Currencies.html.

 Or

 ✓ Choose Project➪Add to Project and then use the dialog that appears to
find and select the file you want.

 You also want to select Copy when the dialog appears.

The only thing interesting here is that you’re going to use some data (the
Airport image) that you have included with your application as a resource
(just as you did with the currencies.html file).

Up to now, you’ve been using Interface Builder to build your View controller
views. Now, instead of using Interface Builder, I show you how to program-
matically create the elements you need. It’s a good idea for you to be able to
do this programmatically to round out your understanding.

This is why, as you can see in Listing 18-1, instance variables toolbar and
webView are not declared as IBOutlets. Since Interface Builder plays no
role here, there is no reason to do so.

Setting up the view
Your AirportController is going to be getting the content for its views
from the Destination object — content which it then passes on to the
view itself. (No surprise here; you’ve been doing it this way all along.) You
use the viewDidLoad method to get your view prepped for its big day. This
particular method was included for you in AirportController.m by the
UIViewController subclass template (albeit commented out). Just to make
things interesting, this time delete the current incarnation of this method and
replace it with the code in Listing 18-4.

Listing 18-4: Setting Things Up in viewDidLoad

- (void)viewDidLoad {

 [super viewDidLoad];

 CGRect webViewFrame = CGRectMake(0, kToolbarHeight,
 kPopoverWidth, kAirportViewHeight);
 webView = [[UIWebView alloc]
 initWithFrame:webViewFrame];
 [self.view addSubview:webView];
 webView.delegate = self;

(continued)

26_9780470920503-ch18.indd 45526_9780470920503-ch18.indd 455 12/24/10 12:32 AM12/24/10 12:32 AM

456 Part V: Building an Industrial-Strength Application

Listing 18-4 (continued)

 theToolbar = [UIToolbar new];
 CGRect viewBounds = self.view.frame;
 viewBounds.size.width = kPopoverWidth;
 viewBounds.size.height = kToolbarHeight;
 [theToolbar setFrame:viewBounds];
 [self.view addSubview:theToolbar];

 segmentedControl = [[UISegmentedControl alloc]

initWithItems:[NSArray arrayWithObjects:
 @”Train”, @”Taxi”, @”Other”, nil]];
 [segmentedControl addTarget:self action:@

selector(selectTransportation:) forControl
Events:UIControlEventValueChanged];

 segmentedControl.segmentedControlStyle =
 UISegmentedControlStyleBar;
 segmentedControl.tintColor = [UIColor darkGrayColor];
 CGRect segmentedControlFrame = ((UIViewController *)

kAppDelegate.rootViewController).view.frame;
 segmentedControlFrame.size.width =
 theToolbar.frame.size.width - kLeftMargin;
 segmentedControlFrame.size.height = kSegControlHeight;
 segmentedControl.frame = segmentedControlFrame;
 segmentedControl.selectedSegmentIndex = 0;

 UIBarButtonItem *choiceItem = [[UIBarButtonItem alloc]
 initWithCustomView:segmentedControl];
 theToolbar.items = [NSArray arrayWithObject:choiceItem];
 [segmentedControl release];
 [choiceItem release];

 CGRect imageViewFrame = CGRectMake(kImageIndent, kTool
barHeight+kAirportViewHeight,

 kPopoverWidth - (2*kImageIndent), kImageSize);
 UIImageView *imageView = [[UIImageView alloc]
 initWithFrame:imageViewFrame];
 UIImage *webImage =
 [UIImage imageNamed:@”Heathrow.png”];
 imageView.image = webImage;
 [self.view addSubview:imageView];

 self.contentSizeForViewInPopover =
 CGSizeMake(kPopoverWidth, kPopoverHeight);

}

Here’s what Listing 18-4 has in mind:

 1. Create a frame for the Web view.

 You specify its origin in its superview as (0, kToolbarHeight), which
puts it at the left edge and just below the toolbar. You specify its width

26_9780470920503-ch18.indd 45626_9780470920503-ch18.indd 456 12/24/10 12:32 AM12/24/10 12:32 AM

457 Chapter 18: Providing Content in the Master View

and height as the width of a popover and a new constant you add to
Constants.h — kAirportViewHeight. You then allocate the Web
view, initialize it with the frame you created, and then add it to the view
that comes with the controller. This is the general approach you take
when you create your view elements programmatically and add them to
a view.

CGRect webViewFrame = CGRectMake(0, kToolbarHeight,
 kPopoverWidth, kAirportViewHeight);
webView = [[UIWebView alloc]
 initWithFrame:webViewFrame];
[self.view addSubview:webView];

 You also need to add the following constant to Constants.h.

#define kAirportViewHeight 420

 2. Make the AirportController the Web view’s delegate.

webView.delegate = self;

 3. Create the toolbar.

 This shows another approach to creating view elements. Here I create
the toolbar but don’t initialize it. (In fact, there is no initialization
method.) I then create a frame based on its superview, adjust the height
and width accordingly, assign it to the toolbar, and then add the toolbar
to the view.

theToolbar = [UIToolbar new];
CGRect viewBounds = self.view.frame;
viewBounds.size.width = kPopoverWidth;
viewBounds.size.height = kToolbarHeight;
[theToolbar setFrame:viewBounds];
[self.view addSubview:theToolbar];

 You also need to add the following constant to Constants.h.

#define kToolbarHeight 44

 4. Create the segmented control that will go inside the toolbar.

segmentedControl = [[UISegmentedControl alloc]
initWithItems: [NSArray arrayWithObjects:

 @”Train”, @”Taxi”, @”Other”, nil]];
segmentedControl addTarget:self action:@selector

(selectTransportation:)
 forControlEvents:UIControlEventValueChanged];
segmentedControl.segmentedControlStyle =
 UISegmentedControlStyleBar;
segmentedControl.tintColor = [UIColor darkGrayColor];
CGRect segmentedControlFrame = ((UIViewController *)
 kAppDelegate.rootViewController).view.frame;
segmentedControlFrame.size.width =
 theToolbar.frame.size.width - kLeftMargin;
segmentedControlFrame.size.height =

26_9780470920503-ch18.indd 45726_9780470920503-ch18.indd 457 12/24/10 12:32 AM12/24/10 12:32 AM

458 Part V: Building an Industrial-Strength Application

 kSegControlHeight;
segmentedControl.frame = segmentedControlFrame;
segmentedControl.selectedSegmentIndex = 0;

 In the first line of code, you’re creating a segmented control and an array
that specifies the text for each segment. You then set the Target-Action
parameters by saying that if a segment is tapped by the user (UIControl
EventValueChanged), then the selectTransportation: message is
sent to self — in this case, self is the AirportController. You then
compute the size of the segmented control as you would for any other sub-
view. The last line specifies the initial segment (0) selected when the view
is created; before the view is displayed, the selectTransportation:
message is sent to display the content associated with segment 0. (You
can see the code for selectTransportation: in all its glory in
Listing 18-5.)

 You also need to add the following constants to Constants.h.

#define kLeftMargin 16
#define kSegControlHeight 30

 5. Add the segmented control to the toolbar.

UIBarButtonItem *choiceItem = [[UIBarButtonItem alloc]
 initWithCustomView:segmentedControl];
theToolbar.items =
 [NSArray arrayWithObject:choiceItem];
[segmentedControl release];
[choiceItem release];

 You get the choiceBar (UIToolbar) to display controls by creating
an array of instances of UIBarButtonItem and assigning the array to
the items property of the UIToolbar object (your choiceBar). In
this case, you create a UIBarButtonItem and initialize it with the seg-
mented control you just created. You then create the array and assign it
to items. This is similar to the way you have been handling buttons in
the toolbar in the Detail view.

 You then can release choiceItem because the NSArray has a reference
to it.

 6. Add the Image view with its image.

 This should be old hat by now. You do a little adjusting to get the image
nicely indented. The only new (and interesting) piece is the image-
Named: method. It looks in the system caches for an image object with
the name and returns that object if it exists. If it isn’t already in the cache,
this method loads the image data from the bundle, caches it, and then
returns the object. (This is the Heathrow map image you just added.)

26_9780470920503-ch18.indd 45826_9780470920503-ch18.indd 458 12/24/10 12:32 AM12/24/10 12:32 AM

459 Chapter 18: Providing Content in the Master View

CGRect imageViewFrame = CGRectMake(kImageIndent,
kToolbarHeight+kAirportViewHeight,

 kPopoverWidth - (2*kImageIndent), kImageSize);
UIImageView *imageView = [[UIImageView alloc]
 initWithFrame:imageViewFrame];
UIImage *webImage =
 [UIImage imageNamed:@”Heathrow.png”];
imageView.image = webImage;
[self.view addSubview:imageView];

 You also need to add to Constants.h:

#define kImageSize 190
 #define kImageIndent 6

 There’s another Image view method that you could use which creates an
Image view initialized with the specified image, and that’s the initWith
Image: method. But this method adjusts the frame of the receiver to
match the size of the specified image — not what I’m after here.

 7. Finally, you’ll have to set the size of the popover.

self.contentSizeForViewInPopover =
 CGSizeMake(kPopoverWidth, kPopoverHeight);

 As I mention in Chapter 14, you can set the size of the popover. And,
later in that chapter, I have you change the popover size in the view-
DidLoad method in RootViewController.m.

 Because popovers normally get their size based on the size of the
view in the view controller, you’re going to have to specify the
size in the AirportController just as you did in the case of the
RootViewController.

That’s the run-through through Listing 18-4, but don’t forget that you have to
add the following #import statements to AirportController.m.

#import “Destination.h”
#import “Constants.h”
#import “iPadTravel411AppDelegate.h”

At this point, you have the view set up and waiting for data, as well as
the segmented control across the top that will allow the user to select
@”Train”, @”Taxi”, @”Other”.

26_9780470920503-ch18.indd 45926_9780470920503-ch18.indd 459 12/24/10 12:32 AM12/24/10 12:32 AM

460 Part V: Building an Industrial-Strength Application

Responding to the user selection
in the choice bar
You’ve set things up so that when the view is first created — or when
the user taps a control — the selectTransportation: method in
AirportController is called, allowing the AirportController to hook
up what the view needs in order to display what the model has to offer.
Listing 18-5 shows the necessary code for the selectTransportation:
method in all its elegance. Add this to AirportController.m and its decla-
ration to AirportController.h.

Listing 18-5: selectTransportation:

- (void)selectTransportation:(id) sender {

 [webView loadRequest:[NSURLRequest requestWithURL:
 [destination returnTransportation:
 (((UISegmentedControl *)
 sender).selectedSegmentIndex)]]];
}

This code is executed when the user selects one of the segmented controls
(Train, Taxi, Other) that you added to the view. (((UISegmented
Control *) sender).selectedSegmentIndex) gives you the segment
number. If you’ll notice, the controller has no idea — nor should it care —
what was selected. It just passes what was selected on to the Destination
object.

All this does is send a message to the Destination object to find out
where the data the Web view needs is located, [destination return
Transportation: (((UISegmentedControl *) sender).selected
SegmentIndex)], and then send a message to the Web view to load it. This
is more or less what you did in Chapter 16 with Weather, Currency, and
City, but I explain more about the mechanics of this shortly.

Finally, as you did with all the other classes you derived for DetailView
Controller, delete the method shouldAutorotateToInterface
Orientation: in AirportController.m.

The Destination Model
You’re starting to get all your pieces lined up. Now it’s time to take a look at
what happens when the controller sends messages to the model.

26_9780470920503-ch18.indd 46026_9780470920503-ch18.indd 460 12/24/10 12:32 AM12/24/10 12:32 AM

461 Chapter 18: Providing Content in the Master View

Take a look at how returnTransportation: works. Start by adding
the code in Listing 18-6 to Destination.m and the declaration to
Destination.h.

Listing 18-6: Returning the Transportation Link

- (NSURL *) returnTransportation:(int) aType {

 return [airport returnTransportation:aType];
}

As you can see, Destination simply turns around and gets the NSURL from
the Airport object. This is the implementation of composition architecture I
speak of in Chapter 13.

Now that you’ve seen all the things the Airport object is responsible for,
you’re going to have to build it.

Building the Airport
To continue work on the Airport object, take a look at the methods you’ll
need to implement. Add the code in bold in Listing 18-7 to Airport.h.

Listing 18-7: Airport.h

@interface Airport : Annotation {

}
- (NSURL *) returnTransportation:(int) transportationType;

@end

In Listing 18-8, you see the returnTransportation: method. Add this
code to Airport.m.

Listing 18-8: Airport Model Method Used by Destination

- (NSURL *) returnTransportation:
 (int) transportationType {

 NSURL *url = [[NSURL alloc] autorelease];
 switch (transportationType) {
 case 0: {
 url = [NSURL URLWithString:
 @”http://nealgoldstein.com/ToFromiPad100.html”];
 [self saveAirportData:

(continued)

26_9780470920503-ch18.indd 46126_9780470920503-ch18.indd 461 12/24/10 12:32 AM12/24/10 12:32 AM

462 Part V: Building an Industrial-Strength Application

Listing 18-8 (continued)

 @”ToFromiPad100.html” withDataURL:url];
 break;
 }
 case 1: {
 url = [NSURL URLWithString:
 @”http://nealgoldstein.com/ToFromiPad101.html”];
 [self saveAirportData:
 @”ToFromiPad101.html” withDataURL:url];
 break;
 }
 case 2: {
 url = [NSURL URLWithString:
 @”http://nealgoldstein.com/ToFromiPad102.html”];
 [self saveAirportData:
 @”ToFromiPad102,html” withDataURL:url];
 break;
 }
 }
 return url;
}

Okay, here’s the blow-by-blow for Listing 18-8.

 1. When a message is sent to the model to return the data the view needs
to display, it’s passed the number of the segmented control that was
tapped (Train, Taxi, Other).

 It’s the model’s responsibility to decide what data is required here.

 2. The data for each of the choices in the segmented control is on a Web
site — www.nealgoldstein.com, to be precise. The method con-
structs the NSURL object that the Web view uses to load the data.

 The NSURL object is nothing fancy. To refresh your memory, it’s simply
an object that includes the utilities necessary for downloading files or
other resources from Web and FTP servers or accessing local files.

NSURL *url = [NSURL URLWithString:
 @”http://nealgoldstein.com/ToFromiPad100.html”];

 3. Then the saveAirportData: message is sent:

[self saveAirportData:
 @”ToFromiPad100” withDataURL: url];

 The saveAirportData method in Listing 18-9 downloads and saves
the file containing the latest data for whatever transportation method
(Taxi, for example) the user selected. It’s what will be displayed in
the current view, and it’ll be used later in Chapter 19 when I show you
how to use cached data when the user doesn’t want to access the data
online. (Add the saveAirportData method to Airport.m.)

26_9780470920503-ch18.indd 46226_9780470920503-ch18.indd 462 12/24/10 12:32 AM12/24/10 12:32 AM

463 Chapter 18: Providing Content in the Master View

Listing 18-9: Saving Airport Data

- (void) saveAirportData:(NSString *) fileName
 withDataURL:(NSURL *) url {

 NSData *dataLoaded = [NSData
 dataWithContentsOfURL:url];
 if (dataLoaded == NULL)
 NSLog(@”Data not found %@”, url);
 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:fileName];
 [dataLoaded writeToFile:filePath atomically:YES];
}

As you can see, the first thing I do here is go back out to the URL to get the
data again. The method dataWithContentsOfURL: does what it sounds
like. If you’re not familiar with the NSData class, it and its mutable subclass
(NSMutableData) are simply object-oriented wrappers — objects that hold
any kind of data. Although this approach isn’t particularly efficient, since I
am getting the data twice, it allows me to show you how to load data from a
Web site as an NSData object that you can later do something with. I’ve also
added an NSLog message if the data can’t be found. This is a placeholder for
error-handling that I’ve left as an exercise for you to do on your own.

Writing to the file system on the iPad is pretty simple: You tell the system
which directory to put the file in, specify the file’s name, and then pass that
information to the writeToFile method.

 1. You get the path to the Documents directory.

NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
NSString *documentsDirectory =[paths objectAtIndex:0];

 On the iPad, you really don’t have much choice about where the file
goes. Although there’s a /tmp directory, I’m going to place this file in
the Documents directory — because (as I explain in Chapter 2), this
is part of my application’s sandbox, so it’s the natural home for all the
app’s files.

 NSSearchPathForDirectoriesInDomains: returns an array of
directories; because I’m only interested in the Documents directory, I
use the constant NSDocumentDirectory, and because I’m restricted
to my home directory, /sandbox, the constant NSUserDomainMask
limits the search to that domain. There will be only one directory in the
domain, so the one I want will be the first one returned.

26_9780470920503-ch18.indd 46326_9780470920503-ch18.indd 463 12/24/10 12:32 AM12/24/10 12:32 AM

464 Part V: Building an Industrial-Strength Application

 2. You create the complete path by appending the path filename to the
directory.

NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:fileName];

 stringByAppendingPathComponent; precedes the filename with a
path separator (/) if necessary.

 Unfortunately, this doesn’t work if you’re trying to create a string repre-
sentation of a URL.

 3. You write the data to the file.

[dataLoaded writeToFile:filePath atomically:YES];

 writeToFile: is an NSData method and does what it implies. I’m actu-
ally telling the array here to write itself to a file, which is why I decided
to save the location in this way in the first place. A number of other
classes implement this method, including NSData, NSDate, NSNumber,
NSString, and NSDictionary. You can also add this behavior to your
own objects, and they could save themselves — but I don’t get into that
here. The atomically parameter first writes the data to an auxiliary
file, and when that’s successful, it’s renamed to the path you’ve speci-
fied. This guarantees that the file won’t be corrupted even if the system
crashed during the write operation.

You may have noticed that I did not tell you to add the saveAirportData:
withDataURL: declaration. The next section tells you why.

Making methods “private”
If you’re coming from C++, you probably want this method to be private —
there is no reason for any “external” object to send this message to
the Airport object. The problem is that there’s no private construct in
Objective-C. But there is a workaround. To hide it, move its declaration to
the implementation file and create an Objective-C class extension. Although
categories are a way to add methods to an existing class (even to one to
which you do not have the source, which isn’t relevant here but is good to
know), class extensions are like “anonymous” categories, and the methods
they declare must be implemented in the main @implementation block for
that class. This makes these methods (almost) “invisible” to other classes.
Any more about categories is beyond the scope of this book, but I do explain
them in detail in Objective-C For Dummies.

So don’t declare saveAirportData: withDataURL:. Instead, add the fol-
lowing code to Airport.m, right before the @implementation statement.

26_9780470920503-ch18.indd 46426_9780470920503-ch18.indd 464 12/24/10 12:32 AM12/24/10 12:32 AM

465 Chapter 18: Providing Content in the Master View

@interface Airport ()
- (void) saveAirportData:(NSString *) fileName
 withDataURL:(NSURL *) url;
@end

As I said, you will use this saved data in Chapter 19.

When all is said and done (and with a bit more code), you will get what you
see in Figure 18-2 when the user selects Heathrow in the Master view and
keeps a map visible in the Detail view.

Figure 18-2:
Airport
trans-

portation
information
and a map.

Selecting the airport
In Chapter 16, you add the ability for the user to make a selection in the
Master view by adding the necessary code to tableView:didSelectRow
AtIndexPath. You do the same thing here. Currently, you should see three
case statements you have yet to implement:

case 4:
 //do something
 break;
case 5:

26_9780470920503-ch18.indd 46526_9780470920503-ch18.indd 465 12/24/10 12:32 AM12/24/10 12:32 AM

466 Part V: Building an Industrial-Strength Application

 //do something
 break;
case 6:
 //do something
 break;

Replace the //do something in each with the following:

targetController = [[menuList objectAtIndex:menuOffset]
 objectForKey:kControllerKey];
if ([targetController isKindOfClass:[NSNull class]]) {
 targetController = [[AirportController alloc]
 initWithDestination:kAppDelegate.destination
 airportID:1];
 [[menuList objectAtIndex:menuOffset]
 setObject:targetController forKey:kControllerKey];
 [targetController release];
}

You’ll also need to import AirportController.h. (You should change the
airportID for each.)

This is exactly what you did to add the view controllers in Chapter 16. But
now, I also want you to add the code in bold in Listing 18-10 to tableView:
didSelectRowAtIndexPath. Note: You need to add it to the very last part
of the method (after the switch block) where you are placing what was the
last section of code into the else clause of the if statement you are adding.

Listing 18-10: tableView:didSelectRowAtIndexPath

 if ([targetController isKindOfClass:
 [AirportController class]])
 [[self navigationController] pushViewController:target

Controller
 animated:YES];
 else {
 [[kAppDelegate splitViewController]
 setViewControllers:
 [NSArray arrayWithObjects:self.navigationController,
 targetController, nil]];
 kAppDelegate.splitViewController.delegate =
 targetController;
 [targetController computeFramesForOrientation:
 [self appOrientation]];
 if (currentController)
 [self setupToolbar:targetController];
 if (currentController.popoverController) {
 targetController.popoverController =
 currentController.popoverController;
 [currentController.popoverController
 dismissPopoverAnimated:YES];
 }

26_9780470920503-ch18.indd 46626_9780470920503-ch18.indd 466 12/24/10 12:32 AM12/24/10 12:32 AM

467 Chapter 18: Providing Content in the Master View

 currentController = targetController;
 }
}

Because the Airport controller will display its view in the Master view, you’re
not going to do what you did with the other views back in Chapter 16, where
you replaced the Detail view in the Split view controller. Instead, you’re going
to determine whether the Target controller you created is an Airport
controller.

if ([targetController isKindOfClass:
 [AirportController class]])

isKindOfClass is an NSObject protocol method that NSObject imple-
ments. It returns a Boolean value that indicates whether the object is an
instance of a given class (in this case, the AirportController class) or an
instance of any class that inherits from that class.

If it is, you push it on the Master view controller’s navigation controller stack.

[[self navigationController]
 pushViewController:targetController animated:YES];

Pushing the view on the stack will replace the current view controller with
the new one. You might think this is the same thing as replacing the Detail
view controller in the Split view controllers — except this time you’re mess-
ing with the Master view.

Well, that’s not really true.

Let me point you back to Chapter 15, where I was explaining the following bit
of code:

 [[kAppDelegate splitViewController] setViewControllers:
 [NSArray arrayWithObjects:self.navigationController,
 mapController, nil]];

Back then I said, “You may be curious why you’re using self.navigation-
Controller and not something that resembles the RootViewController
here (like self). Answering that question involves understanding navigation
using view controllers, and this is not the right place to do that. So be patient
for now; you learn all about navigation controllers in Chapter 18.”

Well, guess what? You’re now in Chapter 18. The secret can be revealed.

In your app, the Master view controller is not the RootViewController —
it’s a UINavigationController. The UINavigationController
class implements a specialized view controller that manages the naviga-
tion of hierarchical content (which is what you need in order to go back

26_9780470920503-ch18.indd 46726_9780470920503-ch18.indd 467 12/24/10 12:32 AM12/24/10 12:32 AM

468 Part V: Building an Industrial-Strength Application

and forth in the Master view from the Table view to another controller like
AirportController. This specialized view controller is responsible for the
navigation bar and a Back button — the kind you see so often in the iPad and
especially iPhone applications — and the handling of the Back request.

You’ll notice, by the way, that the UIViewController even has a
navigationController property so it can find its navigation controller.

@property(nonatomic, readonly, retain)
UINavigationController *navigationController

So all you need to do to implement the hierarchal navigation you
need in the Master view is to tell the navigation controller to push the
AirportController onto its stack. (I explain that in a second.) It does
what it’s told, displays the new view, and adds the Back button to the naviga-
tion bar (refer to Figures 18-1 and 18-2) so the user can return to the previous
view control (in this case, the Table view) in the Master view.

This navigation controller is created for you by the template. When it creates
the Split view controller, it initializes the Master view with a navigation con-
troller, which in turn manages the RootViewController. You can see that
for yourself in the nib file in Figure 18-3 or by double clicking MainWindow.
xib in the Resources group of your project.

Figure 18-3:
It’s all

about the
navigation
controller.

26_9780470920503-ch18.indd 46826_9780470920503-ch18.indd 468 12/24/10 12:32 AM12/24/10 12:32 AM

469 Chapter 18: Providing Content in the Master View

There as you can see, in the Master view side of the Split view, it says Root
View Controller.

Now you can get back to what this pushViewController animated: does
when you ask the navigation controller to do it to the AirportController.

Navigating the Navigation Controller
Table views are paired with navigation bars in order to give users the option
of returning to a view higher up in the hierarchy (in this case, the Master
view). In fact, that bar bearing the name iPadTravel411 in Figures 18-1 and
18-2 is the navigation bar that enables a user to navigate the hierarchy.

Here’s what you need to know in order to make navigation bars work for you:

 ✓ The view below the navigation bar presents the current level of data.

 ✓ A navigation bar includes a title for the current view.

 ✓ If the current view is lower in the hierarchy than the top level, a Back
button appears on the left side of the bar; the user can tap it to return
to the previous level. The text in the Back button tells the user what the
previous level was. In this case, it’s the application’s main view, so you’ll
see the previous view controller’s title — iPadTravel411.

 ✓ A navigation bar may also have an Edit or Add button (on the right side) —
used to enter editing mode for the current view or adding an entry respec-
tively — or even custom buttons such as a button to launch a popover.

When the user taps a row of the Table view to get the Heathrow Express
information, say, the root view controller pushes the next view controller
onto the stack. The new controller’s view (the Heathrow Express informa-
tion) slides into place, and the navigation bar items are updated appropri-
ately. When the user taps the Back button on the navigation bar, the current
view controller pops off the stack, the Heathrow Express Information view
slides off the screen, and the user lands (so to speak) back in the main
(Table) view.

The navigation controller maintains a stack of view controllers, one for each
of the views displayed, starting with the Master view controller. The only
thing that makes the RootViewController (Master view controller) special
is that it is the very first view controller that the Navigation controller pushes
onto its stack when a user launches the application; it remains active until
the user selects the next view to look at.

A stack is a commonly used data structure that works on the principle of last
in, first out. Imagine an “ideal” boarding scenario for an airplane: You would
start with the last seat in the last row and board the plane in back-to-front

26_9780470920503-ch18.indd 46926_9780470920503-ch18.indd 469 12/24/10 12:32 AM12/24/10 12:32 AM

470 Part V: Building an Industrial-Strength Application

order until you got to the first seat in the first row — that would be the seat
for the last person to board. When you got to your destination you’d deplane
(is that really a word?) in the reverse order. That last person on — the
person in row one, seat one — would be the first person off.

A computer stack is pretty much the same. Adding an object is called a push —
in this case, when you select Heathrow, the view controller for the Heathrow
view is pushed onto the stack. Removing an object is called a pop — touching
the Back button pops the view controller for the Heathrow view. When you
pop an object off the stack, it’s always the last one you pushed onto it. The
controller that was there before the push is still there and now becomes the
active one — in this case, it’s the RootViewController.

The navigation bar back button
This navigation bar Back button is of course different from the Back button
you created in the Web view. You created that one to get back from a Web
page to a previous Web page. This one takes you back from one view control-
ler to a previous view controller.

The other Back button
In my design, I wanted the user to be able to tap a link in the Airport views
to access a Web site such as the Heathrow Express one to get more informa-
tion. (You can see such a link on the left in Figure 18-4.) When I do that, the
iPadTravel411 application replaces the content of the view, instead of creating
a new view controller. Tapping the link doesn’t change the controller in any
way, so the left button doesn’t change; you can’t use it to get back to a previ-
ous view — you only go back to the main view, as the control text tells you.
To solve this, just as you did with the other view controllers that enable you
to go out to the Web, you created another button and labeled it “Airport” so
the user knows he or she can use it to get back to the previous view.

In the Weather controller and the other Web views, I showed you how to
create this Back button to return from a selected link. You’ll need to do the
same thing in the AirportController, but instead of putting a button on
a toolbar, you add a button to the navigation bar instead. Otherwise, this
code works exactly the same way as it did in Chapter 16, so I won’t spend too
much time on it here.

Add the code in Listing 18-11 to AirportController.m.

26_9780470920503-ch18.indd 47026_9780470920503-ch18.indd 470 12/24/10 12:32 AM12/24/10 12:32 AM

471 Chapter 18: Providing Content in the Master View

Figure 18-4:

 Going
back to the

Airport.

Listing 18-11: Still Cruising the Web

- (BOOL)webView:(UIWebView *)webView
 shouldStartLoadWithRequest:(NSURLRequest *)request
 navigationType:(UIWebViewNavigationType)navigationType {

 if (navigationType ==
 UIWebViewNavigationTypeLinkClicked) {
 if (!backButton) {
 backButton =
 [[UIBarButtonItem alloc] initWithTitle:@”Airport”
 style:UIBarButtonItemStyleBordered target:self
 action:@selector(goBack:)];
 self.navigationItem.rightBarButtonItem = backButton;
 [backButton release];
 }
 }
 return YES;
}

- (IBAction) goBack:(id)sender{

(continued)

26_9780470920503-ch18.indd 47126_9780470920503-ch18.indd 471 12/24/10 12:32 AM12/24/10 12:32 AM

472 Part V: Building an Industrial-Strength Application

Listing 18-11 (continued)

 [webView goBack];
}

- (void)webViewDidFinishLoad:(UIWebView *) aWebView {

 if (([aWebView canGoBack] == NO) && (backButton)) {
 self.navigationItem.rightBarButtonItem = nil;
 theToolbar.hidden = NO;
 backButton = nil;
 }
}

As I said, this is the same thing you do in the WeatherController,
CityController, and CurrencyController examples — except instead
of putting the button on the toolbar, you add it as the right bar button on the
navigation bar, as follows:

self.navigationItem.rightBarButtonItem = backButton;

Getting Rid of a Pesky Compiler Warning
One last thing. You may notice the following error in your Build Results
window:

The ‘view’ outlet of ‘File’s Owner’ is connected to ‘View’
 but ‘view’ is no longer defined on AirportController.

This happened when you made AirportController a subclass of
DetailViewController.

To fix this error, double-click AirportController.xib and then right-click
the File’s Owner icon in the AirportController.xib window to bring up
the (by now rather familiar) connections panel.

Even though the little circle is already filled in, drag from the little circle next
to View in Outlets to the view in the View window or even the View icon in
the AirportController.xib window.

Save the file, and the error goes away.

26_9780470920503-ch18.indd 47226_9780470920503-ch18.indd 472 12/24/10 12:32 AM12/24/10 12:32 AM

Chapter 19

Enhancing the User Experience
In This Chapter
▶ Getting back to where you once belonged

▶ Avoiding bankruptcy because of exorbitant roaming charges

One of the things about multitasking is that most of the time you don’t
really need to know how it works, but there are some things you need

to be aware of so you can keep out of trouble. In this chapter, I have you add
two more pieces of functionality — saving the place the user is in your app
when he or she leaves it (referred to by computer types as saving state) and
adding user preferences. Both of these exercises will give you some useful
insight into how multitasking works, what you need to be aware of when an
app may be running in background, and what really goes on when an app is
moved to the background or even terminated.

Saving and Restoring State
In computer science terms, a state is a unique configuration of information in
a program or machine. For your purposes, if the user leaves the application
because he or she decided to play a game, you want the user, when he or she
resumes the application, to be able to start exactly where he or she left off.

You may be wondering, “Why do I have to save state? Didn’t you say way
back in Chapter 8 that under iOS 4, when the user taps the Home button on a
device, the application is suspended and when the user ‘launches’ it again, it
starts right back up where it left off?”

Yes, I did say that, but there are two situations where that won’t happen:

 ✓ The user is running a device that doesn’t support multitasking.

 ✓ The device does support multitasking, but your app has been purged
from memory.

27_9780470920503-ch19.indd 47327_9780470920503-ch19.indd 473 12/24/10 12:32 AM12/24/10 12:32 AM

474 Part V: Building an Industrial-Strength Application

If either of these situations crops up, you have to make sure you’ve saved
any unsaved data — as well as the current state of your application — if you
want to restore the application to its previous state the next time the user
launches it. Now, in situations like this one, you have to use common sense
to decide what state really means. Generally, you wouldn’t need to restore
the application to where the user last stopped in a scrollable list, for exam-
ple. For purposes of explanation, I chose to save the last category view that
the user selected in the Master view, which corresponds to a row in a section
in the Table view.

I don’t save the view that the user was in if he or she selected Airport in the
Master view. I’ll leave that addition as an exercise for you to do on your own.

So where do you save the state?

In those devices that don’t support multitasking, when the user taps the
Home button, iOS terminates your application and returns to the Home
screen. The applicationWillTerminate: message is sent, and your appli-
cation is terminated — no ifs, ands, or buts. That’s where you’d do any nec-
essary saving of state for devices that don’t support multitasking.

In devices that do support multitasking, the applicationWillTerminate:
message is not sent. Instead, when your app is moved into the background, the
applicationDidEnterBackground: message is sent and you have to save
any changes of state in this method in case your application is later purged.

Saving state information
Here’s the sequence of events that go into saving the state:

 1. Add a new instance variable lastView and declare the @property in
the iPhoneTravel411AppDelegate.h file. Also add the saveState
declaration. (You’ll implement that shortly.)

 See the code in bold in Listing 19-1.

 I explain properties in Chapter 8.

 As you can see, lastView is a mutable array. You’ll save the section
as the first element in the array and the row as the second element.
Because the array is mutable, it’ll be easier to update when the user
selects a new row in a section.

 2. Add the @synthesize statement to the iPadTravel411App
Delegate.m file to tell the compiler to create the accessors for you.

 This addition is shown in Listing 19-2. (You guessed it — new stuff is bold.)

27_9780470920503-ch19.indd 47427_9780470920503-ch19.indd 474 12/24/10 12:32 AM12/24/10 12:32 AM

475 Chapter 19: Enhancing the User Experience

 3. Define the filename you’ll use when saving the state information in
the Constants.h file.

#define kState @”LastState.state”

 You also have to add the #import “Constants.h” statement to the
iPadTravel411AppDelegate.h file.

 4. Save the section and row that the user last tapped in the
iPadTravel411AppDelegate’s lastView instance variable by
adding the following code to the beginning of the tableview:did
SelectRowAtIndexPath: method in the RootViewController.
m file, as shown in Listing 19-3.

 The tableview:didSelectRowAtIndexPath: method is called
when the user taps a row in a section. The section and row informa-
tion are in the indexPath argument of the tableview:didSelect
RowAtIndexPath: method. All you have to do to save that informa-
tion is to save the indexPath.section as the first array entry and
save the indexPath.row as the second. (The reason I do it this way
will become obvious when I show you how to write this to a file.)

 You’re not going to save the state if the user is in an Airport view.
As you can see, you determine that in Listing 19-3 by checking to see
whether the selection was in the first section:

if (indexPath.section == 0) {

 5. Save the section and row in the saveState method by adding the
code in Listing 19-4 to iPadTravelAppDelegate.m.

 In saveState, I’m saving the lastView instance variable (which con-
tains the last section and row the user tapped) to the file kState, which
is the constant I defined in Step 3 to represent the filename LastState.
state.

 As you can see, reading or writing to the file system on the iPad is pretty
simple: You tell the system which directory to put the file in, specify
the file’s name, and then pass that information to the writeToFile
method. You’ve already done something similar in Chapter 18, and the
blow-by-blow can be found there.

 6. Send the saveState message in both the applicationDidEnter-
Background: and applicationWillTerminate: methods.

 For some reason, in this version of the SDK, the template doesn’t include
the applicationDidEnterBackground: method for this template,
although it does for the iPhone templates. Go figure. (Who knows? By
the time you read this, things may have changed.) In Listing 19-5 add
applicationDidEnterBackground: to iPhoneTravell411App
Delegate.m, and in Listing 19-6 update applicationWill
Terminate: in iPhoneTravell411AppDelegate.m.

27_9780470920503-ch19.indd 47527_9780470920503-ch19.indd 475 12/24/10 12:32 AM12/24/10 12:32 AM

476 Part V: Building an Industrial-Strength Application

Listing 19-1: Adding the Instance Variable to iPadTravel411AppDelegate.h

#import <UIKit/UIKit.h>

@class RootViewController;
@class DetailViewController;
@class Destination;

@interface iPadTravel411AppDelegate :
 NSObject <UIApplicationDelegate> {

 UIWindow *window;
 UISplitViewController *splitViewController;
 RootViewController *rootViewController;
 DetailViewController *detailViewController;
 Destination *destination;
 NSMutableArray *lastView;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet

UISplitViewController *splitViewController;
@property (nonatomic, retain) IBOutlet RootViewController
 *rootViewController;
@property (nonatomic, retain) IBOutlet
 DetailViewController *detailViewController;
@property (nonatomic, retain) Destination *destination;
@property (nonatomic, retain) NSMutableArray *lastView;
- (void) saveState;
@end

Listing 19-2: Adding the @synthesize to the iPadAppTravelDelegate.m

@implementation iPadTravel411AppDelegate

@synthesize window, splitViewController,
 rootViewController, detailViewController;
@synthesize destination;
@synthesize lastView;

Listing 19-3: Saving indexPath

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 if (indexPath.section == 0) {
 [kAppDelegate.lastView
 replaceObjectAtIndex:0 withObject:

27_9780470920503-ch19.indd 47627_9780470920503-ch19.indd 476 12/24/10 12:32 AM12/24/10 12:32 AM

477 Chapter 19: Enhancing the User Experience

 [NSNumber numberWithInteger:indexPath.section]];
 [kAppDelegate.lastView
 replaceObjectAtIndex:1 withObject:
 [NSNumber numberWithInteger:indexPath.row]];
}

Listing 19-4: Adding saveState

- (void) saveState {

 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:kState];
 [lastView writeToFile:filePath atomically:YES];
}

Listing 19-5: Add applicationDidEnterBackground:

- (void)applicationDidEnterBackground:(UIApplication *)
 application {

 [self saveState];
}

Listing 19-6: Update updateapplicationWillTerminate:

- (void)applicationWillTerminate:(UIApplication *)
 application {

 [self saveState];
}

You also have to add #import “Constants.h” to iPadTravel411App
Delegate.m.

Restoring the state
Now that I’ve saved the state, I need to restore it when the application is
launched. I do this in RootViewController’s viewDidLoad method:

NSIndexPath *indexPath = [NSIndexPath indexPathForRow:1
 inSection:0];
[self tableView:((UITableView *) self.tableView)
 didSelectRowAtIndexPath:indexPath];

27_9780470920503-ch19.indd 47727_9780470920503-ch19.indd 477 12/24/10 12:32 AM12/24/10 12:32 AM

478 Part V: Building an Industrial-Strength Application

All I’m going to do is remove the hard-coded values and use lastView,
which is the index path of the last view you stored in the previous section.
Update viewDidLoad in RootViewController.m to match what you see in
Listing 19-7. This code should be at the very end of the method. (Bold under-
line italic (BUI) shows deletions, the bolded code shows additions.)

Listing 19-7: Updating viewDidLoad

- (void)viewDidLoad {
…
 NSIndexPath * indexPath =
 [NSIndexPath indexPathForRow:1 inSection:0];

 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:kState];
 kAppDelegate.lastView =[[NSMutableArray alloc] initWith

ContentsOfFile:filePath];

 NSIndexPath *indexPath;
 if (kAppDelegate.lastView != nil) {
 indexPath = [NSIndexPath indexPathForRow:
 [[kAppDelegate.lastView objectAtIndex:1]intValue]
 inSection:[[kAppDelegate.lastView
 objectAtIndex:0] intValue]];
 }
 else {
 kAppDelegate.lastView = [[NSMutableArray
 arrayWithObjects:[NSNumber numberWithInteger:0],
 [NSNumber numberWithInteger:1],nil] retain];
 indexPath =
 [NSIndexPath indexPathForRow:1 inSection:0];
 }
 [self tableView:((UITableView *) self.tableView)
 didSelectRowAtIndexPath:indexPath];
}

You need to read in the file (LastState.state) that contains the last-
View information. Reading is the mirror image of writing. You create the
complete path, including the filename, just as you did when you saved the
file. This time you send the initWithContentsOfFile: message instead
of writeToFile:, which allocates the lastView array and initializes it with
the file. If the result is nil, there’s no file, meaning that this is the first time
the application is being used. In that case, you create the array with the value
of section and row set to –0 and –1.

27_9780470920503-ch19.indd 47827_9780470920503-ch19.indd 478 12/24/10 12:32 AM12/24/10 12:32 AM

479 Chapter 19: Enhancing the User Experience

 initWithContentsOfFile: is an NSData method similar to writeTo-
File:. The classes that implement writeToFile: and those that implement
initWithContentsOfFile: are the same.

Respecting User Preferences
Figure 19-1 shows you the Settings screen for my iPadTravel411 application.
There you can see that I’ve added the one preference for iPadTravel411, and
in this chapter, I show you how to implement it. Any other preferences you
might come up with I leave up to you.

The Use Stored Data preference tells the application to use the last version of
the data that it accessed, rather than going out on the Internet for the latest
information. Even though this does violate my I Want The Most Up To Date
Information principle, it can save the user from excessive roaming charges,
depending on his or her data plan. (This is, of course, only applicable for
iPads with 3G and a data plan.)

Of course, there are other reasons the user might have to use stored data —
an Internet connection may not be available, for example. I’ll leave that as an
exercise for the reader.

When the user has selected Use Stored Data, I refer to the device as being in
stored data mode, or offline.

 No doubt it’s way cool to put user preferences in Settings. Some programmers
abuse this trick, though; they make you go into Settings, when it’s just as easy
to give the user a preference-setting capability within the program itself (as
you did with the DeepThoughts app in the first part of this book). You should
put something in Settings only if the user changes it infrequently. In this case,
stored data doesn’t change often so the Use Stored Data preference definitely
belongs in Settings.

The Settings application uses a property list, called Root.plist, found in
the Settings bundle inside your application. The Settings application takes
what you put in the property list and builds a Settings section for your appli-
cation in its list of application settings as well as the views that display and
enable the user to change those settings. The next sections spell out how to
put that Settings section to work for you.

27_9780470920503-ch19.indd 47927_9780470920503-ch19.indd 479 12/24/10 12:32 AM12/24/10 12:32 AM

480 Part V: Building an Industrial-Strength Application

Figure 19-1:
The

required
prefer-
ences.

Adding a Settings bundle to your project
For openers, you have to add a Settings bundle to your application. Here are
the moves:

 1. In the Groups & Files list (on the left in the Xcode Project window),
select the iPadTravel411 icon and then choose File➪New File from the
main menu or press Ô+N.

 The New File dialog appears.

 2. Choose Resource under the iOS heading in the left pane and then
select the Settings Bundle icon, as shown in Figure 19-2.

 3. Click the Next button.

 4. Choose the default name of Settings.bundle and then press Return
(Enter) or click Finish.

 You should now see a new item called Settings.bundle in the Groups
& Files list.

 5. Click the triangle to expand the Settings.bundle.

 You see the Root.plist file as well as an en.lproj folder — the latter
is used for dealing with localization issues, which I discuss in Chapter 14.

27_9780470920503-ch19.indd 48027_9780470920503-ch19.indd 480 12/24/10 12:32 AM12/24/10 12:32 AM

481 Chapter 19: Enhancing the User Experience

Figure 19-2:
Creating the
application

bundle.

Setting up the property list
Property lists are widely used in iPad applications because they provide
an easy way to create structured data using named values for a number of
object types.

 In my own applications, I use property lists extensively as a way to parameter-
ize view controllers and models — I have the initialization data in a plist and
initialize objects with that data.

Property lists all have a single root node — a Dictionary, which means it
stores items using a key-value pair, just as an NSDictionary does. All dic-
tionary entries must have both a key and a value. In this dictionary, there are
two keys:

 ✓ StringsTable

 ✓ PreferenceSpecifiers

The value for the first entry is a string — the name of a strings table used
for localization, which I don’t get into here. The second entry is an array of
dictionaries — one dictionary for each preference. (You probably need some
time to wrap your head around that one; it’ll become clearer as I take you
through it.)

PreferenceSpecifiers is where you put a toggle switch so the user can
choose to use (or not use, because it’s a toggle) only stored data — I refer to
that choice later as stored data mode. Here’s how it’s done:

27_9780470920503-ch19.indd 48127_9780470920503-ch19.indd 481 12/24/10 12:32 AM12/24/10 12:32 AM

482 Part V: Building an Industrial-Strength Application

 1. In the Groups & Files list of the Project window, select the disclosure
triangle next to the Settings.bundle file to reveal the Root.plist
file and then double-click the Root.plist file to open it in a separate
window.

 Okay, you don’t really have to do this, but I find it easier to work with
this file when it’s sitting in its own window.

 2. In the Root.plist window you just opened, expand the disclosure
triangles next to all the nodes by clicking all those triangles, as shown
in Figure 19-3.

 You can also expand everything by holding down the Option key
when clicking a closed disclosure triangle, like the one next to
PreferenceSpecifiers.

 3. Under the PreferenceSpecifiers heading in the Root.plist
window, move to Item 0.

 PreferenceSpecifiers is an array designed to hold a set of diction-
ary nodes, each of which represents a single preference. For each item
listed in the array, the first row under it has a key of Type; every prop-
erty list node in the PreferenceSpecifiers array must have an entry
with this key, which identifies what kind of entry this is. The Type value
for the current Item 0 — PSGroupSpecifier — is used to indicate
that a new group should be started. The value for this key actually acts
like a section heading for a Table view (like you created in Chapter 14).
Double-click the value next to Title and delete the default Group, as I
have in Figure 19-4 (or you can put in IPadTravel411 Preferences,
or be creative if you like).

 4. Seeing that Item 2 is already defined as a toggle switch, you can just
modify it by changing the Title value from Enabled to Use stored
data and the key from enabled_preference to useStoredData-
Preference.

 This is the key you’ll use in your application to access the preference.

 5. Continue your modifications to Item 2 by deselecting the Boolean
check box next to DefaultValue.

 I want the Use Stored Data preference initially set to Off because I expect
most people will still want to go out on the Internet for the latest infor-
mation, despite the high roaming charges involved.

 When you’re done, the Root.plist window should look like Figure 19-4.

27_9780470920503-ch19.indd 48227_9780470920503-ch19.indd 482 12/24/10 12:32 AM12/24/10 12:32 AM

483 Chapter 19: Enhancing the User Experience

Figure 19-3:
The default

Root.plist
file prefer-

ences.

Figure 19-4:
Preferences
for IPhone-
Travel411.

27_9780470920503-ch19.indd 48327_9780470920503-ch19.indd 483 12/24/10 12:32 AM12/24/10 12:32 AM

484 Part V: Building an Industrial-Strength Application

 6. Collapse the disclosure triangles next to items 1 and 3 (as shown in
Figure 19-5) and then select those items one by one and delete them.

 The item numbers do change as you delete them, so be careful. That’s
why you need to leave the preference item you care about open, so you
can see that you shouldn’t delete it. Fortunately, Undo is supported
here; if you make a mistake, press Ô+Z to undo the delete.

Figure 19-5:
Delete these

items.

Reading Settings in the Application
After you set it up so your users can let their preferences be known in
Settings, you need to read those preferences back into the application. You
do that in the iPadTravel411AppDelegate’s application:didFinish
LaunchingWithOptions: method. But first, a little housekeeping.

You need to add useStoredData as an instance variable and then declare it
as a property in the iPadTravel411AppDelegate.h file.

BOOL useStoredData;
...
@property (nonatomic, readwrite) BOOL useStoredData;

Notice that the @property declaration is a little different than what you’ve
been using so far. Up to now, all your properties have been declared (non-
atomic, retain). What’s this readwrite stuff? Because useStoredData
is not an object (it’s a Boolean value), retain is not applicable.

Add the @synthesize statements to the iPadTravel411AppDelegate.m
file in order to tell the compiler to create the accessors for you.

@synthesize useStoredData;

27_9780470920503-ch19.indd 48427_9780470920503-ch19.indd 484 12/24/10 12:32 AM12/24/10 12:32 AM

485 Chapter 19: Enhancing the User Experience

Just standard stuff here.

With your housekeeping done, it’s time to add the necessary code. But first, I
want to explain something about defaults in a world of multitasking.

As I explain in Chapter 8, when the user is (temporarily) done with your
application, the application does not terminate. Instead, it goes into the
background and becomes inactive. But while your application is sitting there
in the background, life goes on, and the user may have done something that
impacts your application, like change the settings.

Fortunately, iOS 4 provides a way for you to be informed of what has hap-
pened while your application dreams of electric sheep. While your app is sus-
pended, the user could be doing all sorts of things — like getting on a plane
to London and changing his or her preference to Use Stored Data rather than
the Internet. Although I’m going to concentrate on changes in user prefer-
ences, here’s a list of some of the other things that could potentially impact
your app:

 ✓ An accessory is connected or disconnected.

 ✓ The device orientation changes.

 ✓ There is a significant time change.

 ✓ The battery level or battery state changes.

 ✓ The proximity state changes.

 ✓ The status of protected files changes.

 ✓ An external display is connected or disconnected.

 ✓ The screen mode of a display changes.

 ✓ Preferences that your application exposes through the Settings applica-
tion are changed.

 ✓ The current language or locale settings change.

That’s a lot to keep track of, but iOS 4 is very helpful in keeping things
straight for you. Instead of saving all those events and pummeling your appli-
cation senseless with everything the user has done for the last six weeks, it
coalesces events and delivers a single event (of each relevant type) that nets
out all the changes since your app was suspended.

The way you find out whether anything has changed is through the
Notification system. Notification is a system that allows objects within an
application to learn about changes that occur elsewhere in that application.
Usually, objects get information by messages that come to them. But that
means the object that sends the message must know what objects it needs to
update whenever it does something that those objects care about. And face
it, the object has no clue about your app.

27_9780470920503-ch19.indd 48527_9780470920503-ch19.indd 485 12/24/10 12:32 AM12/24/10 12:32 AM

486 Part V: Building an Industrial-Strength Application

That’s where notification comes in. Notification is a broadcast model where
you can register your objects to be notified of a particular event. (You
can even post a notification, although I’m not going to get into that here.)
Notifications are managed by a single object, NSNotificationCenter,
which is accessed by using the class method defaultCenter.

These net changes are sent to you in the NSUserDefaultsDidChange
Notification notification. For example, in iPadTravel411, the user may
have turned on the Use Stored Data option. If you didn’t respond to that
when your application became active again, you could potentially rack up
a rather large roaming bill for the user.

If you do receive the NSUserDefaultsDidChangeNotification notifica-
tion, the appropriate response would be to reload the settings data and have
your app behave appropriately.

To get that notification, though, you need to register for the NSUserDefaults
DidChangeNotification in the application:didFinishLaunching
WithOptions: method. Right after that is where you want to read in the
current user preferences and set your new instance variables accordingly.
Listing 19-8 shows you how it’s done. Add it to RootViewController.m
in viewDidLoad right after the code you added earlier to save the state.

Listing 19-8: viewDidLoad before tableView:didSelectRowAtIndexPath:

- (void)viewDidLoad {
…
[[NSNotificationCenter defaultCenter]
 addObserver:self selector:@selector(setDefaults:)
 name:NSUserDefaultsDidChangeNotification object:nil];

if (![[NSUserDefaults standardUserDefaults]
 objectForKey:kUseStoredDataPreference])
 kAppDelegate.useStoredData = NO;
else
 kAppDelegate.useStoredData =
 [[NSUserDefaults standardUserDefaults]
 boolForKey:kUseStoredDataPreference];
[self tableView:((UITableView *) self.tableView) didSelect

RowAtIndexPath:indexPath];

Here’s what you want all that code to do for you:

27_9780470920503-ch19.indd 48627_9780470920503-ch19.indd 486 12/24/10 12:32 AM12/24/10 12:32 AM

487 Chapter 19: Enhancing the User Experience

 1. Register for the NSUserDefaultsDidChangeNotification and
inform the Notification Center to send you the setDefaults: mes-
sage in the event the user changes a preference.

 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(setDefaults:)

 name:NSUserDefaultsDidChangeNotification object:nil];

 2. Check to see whether the settings have been moved into
NSUserDefaults.

if (![[NSUserDefaults standardUserDefaults]
 objectForKey:kUseStoredDataPreference]){

 The Settings application moves the user’s preferences from Settings into
NSUserDefaults only after the user visits the setting for the first time.
(I want to point out that if the user visits the setting and doesn’t change
anything, you won’t get a change notification either.)

 3. If the settings haven’t been moved into NSUserDefaults yet, use the
defaults of NO and YES (which corresponds to the default you used for
the initial preference value).

useStoredData = NO;

 4. If the settings have been moved, you assign the correct value.

 5. In either case, you then simply send the message to display the view
as you did before.

[self tableView:((UITableView *) self.tableView)
 didSelectRowAtIndexPath:indexPath];

You also have to add the following to Constants.h:

#define kUseStoredDataPreference
 @”useStoredDataPreference”

When you registered for the NSUserDefaultsDidChangeNotification,
you passed an argument — selector:@selector(setDefaults:) —
which informed the Notification Center what message to send (and what
object to send it to) when there was a change to the defaults. That being the
case, it’s time to implement setDefaults:. Add the setDefaults: method
in Listing 19-9 to RootViewControlller.m.

27_9780470920503-ch19.indd 48727_9780470920503-ch19.indd 487 12/24/10 12:32 AM12/24/10 12:32 AM

488 Part V: Building an Industrial-Strength Application

Listing 19-9: setDefaults:

- (void)setDefaults:(NSNotification *)notification {

 BOOL newDefault = [[NSUserDefaults standardUserDefaults]
 boolForKey:kUseStoredDataPreference];
 if (newDefault != kAppDelegate.useStoredData) {
 kAppDelegate.useStoredData = newDefault;
 if ((kAppDelegate.useStoredData) &&
 (([[kAppDelegate.lastView objectAtIndex:1]
 intValue] == 1) ||
 ([[kAppDelegate.lastView objectAtIndex:1]
 intValue] == 3))) {
 NSIndexPath *indexPath =
 [NSIndexPath indexPathForRow:2 inSection:0];
 [self displayOfflineAlert:
 [[menuList objectAtIndex:
 [[kAppDelegate.lastView objectAtIndex:1]
 intValue]]
 objectForKey:kSelectKey]];
 [self tableView:((UITableView *) self.tableView)
 didSelectRowAtIndexPath:indexPath];

 }
 else {
 NSIndexPath *indexPath = [NSIndexPath indexPathForRow:
 [[kAppDelegate.lastView objectAtIndex:1]intValue]
 inSection:[[kAppDelegate.lastView objectAtIndex:0]
 intValue]];
 [self tableView:((UITableView *) self.tableView)
 didSelectRowAtIndexPath:indexPath];
 }
 }
}

First you need to check to see whether the user defaults have really changed —
so you read in the defaults from the file. Even though you were notified, it may
have been for other reasons besides the user changing defaults in the Settings
application. (The other reasons you may get the notification are beyond the
scope of this book and are usually changes made by the OS in the defaults
domain.)

BOOL newDefault = [[NSUserDefaults standardUserDefaults]
 boolForKey:kUseStoredDataPreference];
 if (newDefault != kAppDelegate.useStoredData) {

If it’s a change to your app’s settings and it’s to stored data mode, you need
to see what the last view was. If it’s a Map or Weather view, you need to
inform the user that those views are no longer available because you’re now
offline. You also need to replace either of those views with one that does not
require Internet access.

27_9780470920503-ch19.indd 48827_9780470920503-ch19.indd 488 12/24/10 12:32 AM12/24/10 12:32 AM

489 Chapter 19: Enhancing the User Experience

This is especially important in the Map view since the user panning the map
may initiate an attempt at Internet access. It’s also important in the Weather
view, or any other Web view, because you don’t want the user to update the
page or touch a link (although there are other ways to keep that from hap-
pening in a Web view that you implement in the “Airport and City in Stored
Data Mode” section, later in this chapter).

if ((kAppDelegate.useStoredData) &&
 (([[kAppDelegate.lastView objectAtIndex:1]
 intValue] == 1) ||
 ([[kAppDelegate.lastView objectAtIndex:1]
 intValue] == 3))) {

If the current view is the Map (1) or Weather (3) (1 and 3 are their positions
in the menuList array — you might want to use some constants here so as
not to confuse yourself), you send an alert (see Listing 19-10) and replace the
last Master view selection (the current one in the Detail view) with one of
your choice — any one, at least, that does not require Internet access. Here
I’m having you use Currency, although you should really create a separate
view controller that displays information about the fact that the user is now
offline and that the application’s functionality is now limited to whatever can
be done offline.

NSIndexPath *indexPath =
 [NSIndexPath indexPathForRow:2 inSection:0];
 [self displayOfflineAlert:[[menuList objectAtIndex:
 [[kAppDelegate.lastView objectAtIndex:1 intValue]]
 objectForKey:kSelectKey]];
 [self tableView:((UITableView *) self.tableView)
 didSelectRowAtIndexPath:indexPath];

If the preference has changed to the Online line (the Use Stored Data option
has been switched off), you just continue processing normally with the cur-
rent selection.

NSIndexPath *indexPath = [NSIndexPath indexPathForRow:
 [[kAppDelegate.lastView objectAtIndex:1]intValue]
 inSection: [[kAppDelegate.lastView objectAtIndex:0]
 intValue]];
 [self tableView:((UITableView *) self.tableView)
 didSelectRowAtIndexPath:indexPath];

The next place you need to use the stored data preference is when the user
makes a selection in the Master view. Some selections simply don’t work
when you are not online — maps and weather.

If the device isn’t online, you can’t deliver the quality of the information a
user needs. (Saved current weather conditions is an oxymoron.) For other
selections — Map, for example — a network connection is required. (Right
now, no caching is available.) In either case, you send an alert to the user

27_9780470920503-ch19.indd 48927_9780470920503-ch19.indd 489 12/24/10 12:32 AM12/24/10 12:32 AM

490 Part V: Building an Industrial-Strength Application

(see Listing 19-10) informing him or her that the selection is unavailable.
(You also need to add the declaration to RootViewController.h.)

In tableview:didSelectRowAtIndexPath:, you need to check to see
whether the app is in stored data mode. If the user has selected Weather
or Map, you present an alert (the same one as the one you use in set
Defaults:). You also change the selection to Currency, which is the
only one you know needs no online access. (See the discussion above
about creating a special view controller for those situations.)

As you will see in the next section, the other selections can use cached
data, but only after the first time the views are displayed so the data can be
cached. You should actually keep track of what has been cached, and its
date, and inform the user if there is no cached data or how old the data is.
Another thing for you to put on your plate.

Adding the code in bold in Listing 19-10 to RootViewController.m will
send an alert when the user tries to select either Map or Weather when in
stored data mode.

Listing 19-10: tableview:didSelectRowAtIndexPath:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 [tableView deselectRowAtIndexPath:indexPath
 animated:YES];
 if (indexPath.section < 1) {
 [kAppDelegate.lastView replaceObjectAtIndex:0

withObject:[NSNumber
numberWithInteger:indexPath.section]];

 [kAppDelegate.lastView replaceObjectAtIndex:1
withObject:[NSNumber
numberWithInteger:indexPath.row]];

 }

 DetailViewController *targetController = nil;
 int menuOffset =
 [self menuOffsetForRowAtIndexPath:indexPath];
if ((kAppDelegate.useStoredData) &&
 (menuOffset == 1 || menuOffset == 3)) {
 [self displayOfflineAlert:[[menuList

objectAtIndex:menuOffset]
objectForKey:kSelectKey]];

 menuOffset = 2;
}
 switch (menuOffset) {
…

27_9780470920503-ch19.indd 49027_9780470920503-ch19.indd 490 12/24/10 12:32 AM12/24/10 12:32 AM

491 Chapter 19: Enhancing the User Experience

Here’s what happens when a user tries to select Map or Weather: First, you
see whether you are in stored data mode.

if ((kAppDelegate.useStoredData) &&
 (menuOffset == 1 || menuOffset == 3)) {

If not, you continue processing normally. If the app is in stored data mode and
the selection was Map or Weather, you display an alert and replace the selec-
tion with Currency by changing the menuOffset and then continue process-
ing. I’ve chosen not to replace the last selection in case the user then changes
his or her mind and goes back and turns off stored data mode. If that happens,
the last view that was selected in the Master view will again be displayed.

To create and display the alert, add the code in Listing 19-11 to RootView
Controller.m and add the declaration to RootViewController.h.

Listing 19-11: Displaying an Alert

- (void) displayOfflineAlert:(NSString *) selection {

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:selection
 message:@”is not available offline”
 delegate:self cancelButtonTitle:@”Thanks”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

This displays a standard System Alert view. You customize the alert with the
name of the selection by passing in the cell text — the same text you display
in tableView:cellForRowAtIndexPath — which you get from the menu
list by using the menu offset into the menu list and using kSelectKey:

[self displayOfflineAlert:[[menuList
 objectAtIndex:menuOffset] objectForKey:kSelectKey]];

Airport and City in Stored Data Mode
Of course, even though the ability to switch to stored data mode may be silly
in some situations (Weather), for others it might just make perfect sense to
use previously stored (or cached) data. Now, you already implemented stor-
ing the data in the Airport model object when you implemented it with the
saveAirportData:withDataURL: method back in Chapter 18. In the fol-
lowing sections, you get to finish the implementation so you can actually use
that data when in stored data mode. (You’ll add similar functionality to the
City model object as well.)

27_9780470920503-ch19.indd 49127_9780470920503-ch19.indd 491 12/24/10 12:32 AM12/24/10 12:32 AM

492 Part V: Building an Industrial-Strength Application

Managing real time and cached data
For Airport, the place to both make the decision about using stored data
and to access the data itself is in the returnTransportation: method of
Airport that you implemented back in Chapter 18. Make the changes in bold
in Listing 19-12 in Airport.m.

Listing 19-12: Airport Model Method Used by Destination

- (NSURL *)returnTransportation:(int)
 transportationType {

 NSURL *url ;
 BOOL realtime = !kAppDelegate.useStoredData;
 if (realtime) {
 switch (transportationType) {
 case 0: {
 url = [NSURL URLWithString:
 @”http://nealgoldstein.com/ToFromiPad100.html”];
 [self saveAirportData:
 @”ToFromiPad100.html” withDataURL:url];
 break;
 }
 case 1: {
 url = [NSURL URLWithString:
 @”http://nealgoldstein.com/ToFromiPad101.html”];
 [self saveAirportData:
 @”ToFromiPad101.html” withDataURL:url];
 break;
 }
 case 2: {
 url = [NSURL URLWithString:
 @”http://nealgoldstein.com/ToFromiPad102.html”];
 [self saveAirportData:
 @”ToFromiPad102,html” withDataURL:url];
 break;
 }
 }
 }
 else {
 switch (transportationType) {
 case 0: {
 url = [self getAirportData:@”ToFromiPad100.html”];
 break;
 }
 case 1: {
 url =
 [self getAirportData:@”ToFromiPad101.html”];
 break;
 }
 case 2: {
 url = [self getAirportData:@”ToFromiPad102.html”];

27_9780470920503-ch19.indd 49227_9780470920503-ch19.indd 492 12/24/10 12:32 AM12/24/10 12:32 AM

493 Chapter 19: Enhancing the User Experience

 break;
 }
 }
 }
 return url;
}

Here you access the storedData instance variable to determine whether to
go out onto the Internet and use the data there (and subsequently cache it)
or use the data you have cached.

BOOL realtime = !kAppDelegate.useStoredData;
 if (realtime) {

 You already added saveAirportData:withDataURL: back in Chapter18,
but to refresh your memory, this method constructs the NSURL object that the
Web view uses to load the data. (The NSURL object is simply an object that
includes the utilities necessary for downloading files or other resources from
Web and FTP servers or accessing local files.)

The saveAirportData:withDataURL: method (see the following code)
downloads and saves the file containing the latest data for whatever trans-
portation (Taxi, for example) the user selected. It’s what will be displayed in
the current view, and it’ll be used later if the user specifies stored data mode.

- (void)saveAirportData:(NSString *) fileName withDataURL:
 (NSURL *) url {

 NSData *dataLoaded = [NSData
 dataWithContentsOfURL:url];
 if (dataLoaded == NULL)
 NSLog(@”Data not found %@”, url);
 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:fileName];
 [dataLoaded writeToFile:filePath atomically:YES];
}

If the app is currently in stored data mode, the method returns the stored
data as opposed to loading the data for its URL from the Internet. It gets the
data by calling the getAirportData: method, which reads the data that
was stored in saveAirportData:withDataURL:.

url = [self getAirportData:@”ToFromiPad100.html”];

As you might expect, you also need to add the now-all-too-familiar import
statements to Airport.m.

27_9780470920503-ch19.indd 49327_9780470920503-ch19.indd 493 12/24/10 12:32 AM12/24/10 12:32 AM

494 Part V: Building an Industrial-Strength Application

#import “Constants.h”
#import “iPadTravel411AppDelegate.h”

To get this Access to Cached Data business taken care of, get the get
AirportData: method working for you by adding the code in Listing 19-13
to Airport.m.

Listing 19-13: Accessing Cached Data

- (NSURL *)getAirportData:(NSString *) fileName{

 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:fileName];
 NSURL *theNSURL= [NSURL fileURLWithPath:filePath];
 if (theNSURL == NULL) NSLog (@”Data not there”);
 return theNSURL;
}

getAirportData: — just like the saveAirportData:withDataURL:
method — constructs a NSURL object that the Web view then uses to load
the data. No surprises here — you find the path using the same procedure
you’ve already used several times before and then construct the NSURL
object by using that path.

 In Chapter 18, instead of declaring the saveAirportData:withDataURL:
method in the interface, I had you place the declaration in a class extension to
make it more private. You now have to add getAirportData: to the exten-
sion as well. In Airport.m, add the line in bold to the class extension you
added to the beginning of the file:

@interface Airport ()
- (NSURL *)getAirportData:(NSString *) fileName;
- (void)saveAirportData:(NSString *) fileName
 withDataURL:(NSURL *) url;
@end

There ain’t no Web cruising
in stored data mode
Of course, if the app is in stored data mode, you don’t want to allow the user
to click on links — that’ll only lead to user frustration. You control the ability
to access a link in a Web view in the webView:shouldStartLoadWithReq
uest:navigationType: method. Add the code in bold in Listing 19-14 to
that method in AirportController.m.

27_9780470920503-ch19.indd 49427_9780470920503-ch19.indd 494 12/24/10 12:32 AM12/24/10 12:32 AM

495 Chapter 19: Enhancing the User Experience

Listing 19-14: Inhibiting Link Selection in Stored Data Mode

- (BOOL) webView:(UIWebView *)webView
 shouldStartLoadWithRequest:(NSURLRequest *)request
 navigationType:(UIWebViewNavigationType)navigationType {

 if ((navigationType ==

UIWebViewNavigationTypeLinkClicked) &&
 ([[NSUserDefaults standardUserDefaults]
 boolForKey:kUseStoredDataPreference])) {

 if ((navigationType ==

UIWebViewNavigationTypeLinkClicked) &&
 ([[NSUserDefaults standardUserDefaults]
 boolForKey:kUseStoredDataPreference])) {
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@””
 message:NSLocalizedString
 (@”Link not available offline”,
 @”stored data mode”)
 delegate:self
 cancelButtonTitle:NSLocalizedString(
 @”Thanks”, @”Thanks”)
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 return NO;
 }
 }
 else
 if (navigationType ==

UIWebViewNavigationTypeLinkClicked) {
 if (!backButton) {
 backButton =
 [[UIBarButtonItem alloc] initWithTitle:@”Airport”

style:UIBarButtonItemStyleBordered target:self
 action:@selector(goBack:)];
 self.navigationItem.rightBarButtonItem = backButton;
 [backButton release];
 theToolbar.hidden = YES;
 }
 }
 return YES;
}

Here are the marching orders for the stuff you’re adding in Listing 19-14:

 1. Check to see whether the user has touched an embedded link while
the app was in stored data mode.

if ((navigationType ==
UIWebViewNavigationTypeLinkClicked) &&

 ([[NSUserDefaults standardUserDefaults]
 boolForKey:kUseStoredDataPreference])) {

27_9780470920503-ch19.indd 49527_9780470920503-ch19.indd 495 12/24/10 12:32 AM12/24/10 12:32 AM

496 Part V: Building an Industrial-Strength Application

 2. If the app is in stored data mode, alert the user to the fact that the link
is unavailable and return NO from the method.

 This informs the Web view not to load the link.

UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@””
 message:NSLocalizedString(@”Link not available
 offline”, @”stored data mode”)
 delegate:self
 cancelButtonTitle:NSLocalizedString
 (@”Thanks”, @”Thanks”) otherButtonTitles:nil];
[alert show];
[alert release];
return NO;

 You create an alert here with a message telling the user that the link
is not available in stored data mode. The Cancel button’s text will be
@”Thanks”.

There are also a number of other places you have implemented this method
(I know, yet another argument for a Web view superclass), which means you
should also add the code in Listing 19-14 to

 ✓ CityController.m

 ✓ CurrencyController.m

 ✓ WeatherController.m

You also have to add the following #import statements to each controller:

#import “Constants.h”
#import “iPadTravel411AppDelegate.h”

You actually don’t need to disable links in CurrencyController, because
it doesn’t have any links, but it is a good general way to manage links in Web
views, and you’ll use it when you display your own view with external Web
links.

Come to think of it, you don’t really need to disable links in Weather
Controller either, because you won’t launch the WeatherController
if you are in stored data mode. This is the alternative approach to the one
I showed you in the “Reading Settings in the Application” section, earlier in
this chapter. Instead of showing an alert when the user changed the prefer-
ence to Use Stored Data and displaying Currency as you did, you could leave
the view displayed and disable links instead.

27_9780470920503-ch19.indd 49627_9780470920503-ch19.indd 496 12/24/10 12:32 AM12/24/10 12:32 AM

497 Chapter 19: Enhancing the User Experience

Adding Stored Data Mode to City
When you initially created the City object’s cityHappenings method back
in Chapter 16, I didn’t have you cache the data. To do that, and to use the
cached data, add the code in bold in Listing 19-15 to City.m and delete the
code in BUI.

Listing 19-15: Update cityHappenings

- (NSURL *) cityHappenings {

return [NSURL
 URLWithString:@”http://nealgoldstein.com/City.html”];

 NSURL *url = nil;
 BOOL realtime = !kAppDelegate.useStoredData;
 if (realtime) {
 url = [NSURL URLWithString:
 @”http://nealgoldstein.com/City.html”];
 [self saveCityData:@”City.html” withDataURL:url];
 }
 else {
 url = [self getCityData:@”City.html”];
 }
 return url;
}

You also have to add the saveCityData:withDataURL: and getCity-
Data: methods in Listing 19-16 to City.m.

Listing 19-16: The City Data Methods

- (void) saveCityData:(NSString *) fileName
 withDataURL:(NSURL *) url {

 NSData *dataLoaded =
 [NSData dataWithContentsOfURL:url];
 if (dataLoaded == NULL)
 NSLog(@”Data not found %@”, url);
 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:fileName];
 [dataLoaded writeToFile:filePath atomically:YES];
}

(continued)

27_9780470920503-ch19.indd 49727_9780470920503-ch19.indd 497 12/24/10 12:32 AM12/24/10 12:32 AM

498 Part V: Building an Industrial-Strength Application

Listing 19-16 (continued)

-(NSURL *) getCityData:(NSString *) filename {

 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *filePath = [documentsDirectory
 stringByAppendingPathComponent:fileName];
 NSURL *theNSURL=
 [[NSURL fileURLWithPath:filePath] retain];
 if (theNSURL == NULL) NSLog (@”Data not there”);
 return theNSURL;
}

Not much that needs explaining here — there’s nothing here you haven’t
already done before.

You also need to add the class extension to City.m before the
@implementation statement and import the necessary interface files:

#import “City.h”
#import “Constants.h”
#import “iPadTravel411AppDelegate.h”

@interface City ()
- (NSURL *) getCityData:(NSString *) filename;
- (void) saveCityData:(NSString *) fileName withDataURL:
 (NSURL *) url;
@end

@implementation City

Finally
I know I’ve used finally in this book before, but this is the final finally.

You’ve developed a strong understanding of how to create really good iPad
apps — now go out and do it!

And don’t forget to keep in touch through my Web site www.neal
goldstein.com and show me what you have done.

27_9780470920503-ch19.indd 49827_9780470920503-ch19.indd 498 12/24/10 12:32 AM12/24/10 12:32 AM

Part VI

The Part of Tens

28_9780470920503-pp06.indd 49928_9780470920503-pp06.indd 499 12/24/10 12:31 AM12/24/10 12:31 AM

In this part . . .
You’ve reached the last part, the part you’ve come to

expect in every For Dummies book that neatly encap-
sulates just about all the interesting aspects of this book’s
topic. Like the compilers of other important lists — David
Letterman’s Top Ten, the FBI’s Ten Most Wanted, the
Seven Steps to Heaven, the 12 Gates to the City, the 12
Steps to Recovery, The 13 Question Method, and the
Billboard Hot 100 — we take seriously this ritual of put-
ting together the For Dummies Part of Tens.

 ✓ In Chapter 20, we offer ten important iPad app
design tips that can help you create a more suc-
cessful app. Included are tips on when your app
should save data, how your app should handle
starting and stopping, how to support all display
orientations, and even how to submit a potent
app icon.

 ✓ Chapter 21 presents ten techniques for attaining
iPad developer enlightenment (or just ways to be
happy). Included are tips on following memory
management rules, planning ahead to extend your
code, and creating code that’s easy to
understand.

28_9780470920503-pp06.indd 50028_9780470920503-pp06.indd 500 12/24/10 12:31 AM12/24/10 12:31 AM

Chapter 20

Ten Tips on iPad App Design
In This Chapter
▶ Figuring out what makes a great iPad application icon

▶ Discovering the features of the iPad that can inspire you

▶ Understanding Apple’s expectations for iPad applications

▶ Making a plan for developing iPad software

When John Reed wrote Ten Days that Shook the World in 1919, he
was writing about a different kind of revolution than the one Steve

Jobs referred to in his announcement of the iPad. For this revolution, I put
together ten tips that will shake up your thoughts about application design,
especially if you’re familiar with iPhone app design. There are important
differences to know about, and these tips will help you make your iPad app
more successful.

You can find more details about each and every one of these tips in the iPad
Human Interface Guidelines inside the iOS Reference Library. Chapter 4 shows
you how to register as a developer and gain access to this library and other
resources in the Apple iPhone Dev Center.

Making an App Icon for the Masses
With over 300,000 apps in the App Store, it’s a challenge to come up with
an icon for your app that would make it stand out in the App Store and look
unique and inviting to touch on an iPad display.

Don’t even think about using an Apple image, such as an iPad (or iPhone
or iPod) in your icon, or you’ll most likely receive a polite, but firm, e-mail
rejecting the application.

29_9780470920503-ch20.indd 50129_9780470920503-ch20.indd 501 12/24/10 12:31 AM12/24/10 12:31 AM

502 Part VI: The Part of Tens

Chapter 9 shows you how to add your icon to your app, and Chapter 6 spells
out the details of what form your icon should take — including the fact that
you need to use the same (or very similar) graphic image for the small app
icon on the iPad display (at 72 x 72 pixels) you’ll use for the larger App Store
icon (at 512 x 512 pixels). You also need to supply an approximately 48-x-48-
pixel version of this icon for display in Spotlight search results and in the
Settings application (if you provide settings).

As with iPhone application icons, iOS on the iPad automatically adds
rounded corners, a reflective shine, and a drop shadow, so you shouldn’t add
those effects to your icon. Create an icon with 90-degree corners and without
any shine or gloss (or alpha transparency) and save it in the .png format to
submit to Apple.

Make sure you fill the entire 72-x-72-pixel area — if your image boundaries are
smaller, or you use transparency to create see-through areas within it, your
icon will appear to float on a black background with rounded corners. Although
this may seem fine at first, remember that users can display custom pictures on
their Home screens, and an icon with a visible black background looks bad.

Launching Your App Into View
I go into considerable detail in Chapter 8 about how an app starts up and
displays a view. Although the chapter is long and takes a while to read, iOS
on the iPad performs these functions instantaneously — so fast that the view
appears instantly.

You should take advantage of the speed of the app launch to display an
image that represents the heart of your app’s functionality — such as one
that resembles the most common view of the app’s user interface — in the
iPad’s current orientation. (See “Supporting All Display Orientations,” later
in this chapter.) You may think you want to use an About window (with your
brand image) or a splash screen, but that slows app startup, and your users
will see it every time they start your app. Better to use a simple, stripped-
down screen shot of your app’s initial user interface or a similar image with
only the constant, unvarying elements of the user interface. Avoid all text
because you don’t want to go through the nightmare of providing different
images for different countries.

Your goal during startup should be to present your app’s user interface as
quickly as possible. Don’t load large data structures that your app won’t use
right away. If your app requires time to load data from the network (or per-
form other tasks that take a noticeable amount of time), get your interface
up and running first and then launch the slow task on a background thread.
Then you can display a progress indicator or other feedback to the user
to indicate that your app is loading the necessary data or otherwise doing
something important.

29_9780470920503-ch20.indd 50229_9780470920503-ch20.indd 502 12/24/10 12:31 AM12/24/10 12:31 AM

503 Chapter 20: Ten Tips on iPad App Design

Stopping Your App on a Dime
When the user presses the Home button to quit, or presses it twice quickly
to switch to another app, your app comes to an immediate stop; but it
shouldn’t crumble as if it hit a brick wall. You need to provide a good stop-
ping experience — or more to the point, a good restarting experience for the
user who quits and then returns to your app.

If you save data in your app frequently, your app will stop more gracefully if
you don’t require the user to tap a Save button. (See “Saving Grace with Your
App’s Data,” later in this chapter.) Your app needs to save user data while
it’s running, and as often as reasonable, because a stop or terminate notifica-
tion — like Immigration or the Spanish Inquisition — can arrive at any time.
And be sure to save the current state when stopping, at the finest level of
detail possible, because users expect to return to their earlier context when
they switch back to or restart your app. For example, if you use a Split view
in your app, store the current selection in the master pane and be sure to dis-
play that selection again when the user returns to your app.

For example, in Chapters 10 and 11 you add code to the DeepThoughts
app that saves the user’s preference settings as they’re set (the text for the
flowing words and the speed for the animation). When the user restarts
DeepThoughts, the app uses the user’s settings for the falling words and speed.

Saving Grace with Your App’s Data
Don’t force your users to tap a Save button. iPad apps should take responsi-
bility for saving the user’s input not only periodically, but also when a user
opens a different document or quits the app.

This design goal addresses the very essence of the iPad experience: that
users should feel comfortable consuming information and have complete
confidence that their work is always preserved (unless they explicitly delete
the work or cancel). If your app lets users create and edit documents, design
it so that users don’t have to explicitly perform saves. If your app doesn’t
create content but lets users switch between viewing information and edit-
ing it (such as Contacts), your app can offer an Edit button that turns into a
Save button when users tap it, and the app can include a Cancel button when
that happens. By doing both, your app reminds the users that they’re in edit
mode and that they can either save the edits or cancel.

If your app uses popovers, you should always save information that users
enter in a popover (unless they explicitly cancel) because users may dismiss
the popover inadvertently.

29_9780470920503-ch20.indd 50329_9780470920503-ch20.indd 503 12/24/10 12:31 AM12/24/10 12:31 AM

504 Part VI: The Part of Tens

Supporting All Display Orientations
As you probably know (or read in Chapter 2), when you rotate the iPad from
a vertical view (portrait) to a horizontal view (landscape), the accelerometer
detects the movement and changes the display accordingly. Motion detec-
tion happens so quickly that you can control a game with these movements.

This is important: iPad users expect apps to run well in the device orienta-
tion they’re currently using. As much as possible, your app should enable
users to interact with it from any side by providing a great experience in all
orientations.

For example, the iPad app’s launch image should be ready to launch in any
of the four orientations — so you need to provide four unique launch images.
Each launch image should be in the .png format and should match the size
of the iPad display in either portrait orientation (1,024 x 768 pixels) or land-
scape orientation (768 x 1,024 pixels).

Flattening Information Levels
If you’ve developed for the iPhone, you want to rethink your app design goals
for the iPad. One technique in particular is the one-level-per-screen structure
of iPhone apps, which forces your information into a hierarchy of screens
resembling an upside-down tree (with the first screen acting as the root). As
you tap an option on a screen, you go deeper into the upside-down tree into
more detailed or more specific screens.

Although this structure makes sense for the iPhone’s smaller display that
can hold only one screen at a time, for your iPad app you need to flatten this
structure — spread the information out horizontally rather than in a verti-
cally oriented tree structure — so that it doesn’t force iPad users to visit
many different screens of information to find what they want. They have one
large display, so use it. Focus the app’s Main view on the primary content
and provide additional information or tools in an auxiliary view, such as a
popover. (See “Popping Up All Over,” later in this chapter.)

Your app needs to provide easy access to the functionality users need with-
out requiring them to leave the context of the main task. For example, in
Chapter 14 you take a Table view for the iPadTravel411 sample app, which
is appropriate for an iPhone app, and implement it as one of the views of a
Split view (two views on the display at once), which is more appropriate for
an iPad app. Use a Split view to persistently display the top level of a hier-
archy in the left pane and content that changes in the right pane, as shown
in Figure 20-1. This flattens your information hierarchy by at least one level,
because two levels are always onscreen at the same time.

29_9780470920503-ch20.indd 50429_9780470920503-ch20.indd 504 12/24/10 12:31 AM12/24/10 12:31 AM

505 Chapter 20: Ten Tips on iPad App Design

Figure 20-1:
The split

screen
design

for iPad-
Travel411 in

landscape
orientation.

Popping Up All Over
A popover appears (that is, it pops up on top of the Main view) when a user
taps a control or an area of the display. You can use a popover to enable
actions or provide tools that affect objects in the Main view. A popover can
display these actions and tools temporarily on top of the current view, which
means people don’t have to move on to another view to perform the actions
or use the tools.

You can put almost anything in a popover, from tables, images, maps, text,
or Web views to navigation bars, toolbars, and controls. A popover can be
useful for displaying the contents of the landscape orientation’s left pane
when a Split view–based application is in portrait orientation. For example,
in Chapter 14 you find out how to display the Master view that you see in
landscape orientation in a Popover view in portrait orientation, as shown in
Figure 20-2.

29_9780470920503-ch20.indd 50529_9780470920503-ch20.indd 505 12/24/10 12:31 AM12/24/10 12:31 AM

506 Part VI: The Part of Tens

Figure 20-2:
A popover
shows the

Master view
for iPad-

Travel411
in portrait

orientation.

Minimizing Modality to
Maximize Simplicity

Yo! Keep it simple! Keep those Modal views to a minimum. A Modal view is
a child window, like a dialog in Mac OS X, that appears on top of the parent
window (the main view) and requires the user to interact with it before
returning to the parent window. I know, I showed you how to add a Modal
view in DeepThoughts in Chapter 11, but that one is for one purpose only —
to change the preference settings — and users can choose whether to tap the
display (or the Info button) to bring it up.

29_9780470920503-ch20.indd 50629_9780470920503-ch20.indd 506 12/24/10 12:31 AM12/24/10 12:31 AM

507 Chapter 20: Ten Tips on iPad App Design

You don’t want to annoy users with modal dialogs that force them to perform a
task or supply a response. iPad apps should react to taps in flexible, nonlinear
ways. Remember that modality prevents freedom of movement through your
app by interrupting the user’s workflow and forcing the user to choose a par-
ticular path. In general, you should use modality only when it’s critical to get
the user’s attention, or a task must be completed (or explicitly abandoned) to
avoid leaving the user’s data in an ambiguous state, such as unsaved. Got that?

And if you must use a Modal view, keep the modal tasks fairly short and nar-
rowly focused. You don’t want your users to experience a Modal view as a
mini application within your application.

Turning the Map into the Territory
As you discover in Chapter 15, working with maps is one of the most enjoy-
able things you can do on the iPad because Apple makes it so easy — you
can display a map that supports the standard panning and zooming gestures
by simply creating a view controller and a nib file. You can also center the
map on a given coordinate, specify the size of the area you want to display,
and annotate the map with custom information.

You can also specify the map type — regular, satellite, or hybrid — by chang-
ing a single property. For many apps, one type may work better than another,
but consider using hybrid so that your app displays streets and highways
superimposed over the satellite image. What you should do is provide a con-
trol for the user to make the choice between all three types.

Making Smaller Transitions
(Don’t Flip the View)

The iPad’s display is inherently immersive; many things can be going on inside
a single view. It’s far better to change or update only the areas of the view that
need it, rather than swapping in a whole new full-page view when some embed-
ded information changes (as you would probably do in an iPhone app).

Don’t flip the entire view if something needs to change. Do transitions with
smaller views and objects. Associate any visual transitions with the content
that’s changing. Use a Split view so that only one part of the view changes
(see “Flattening Information Levels,” earlier in this chapter), or use a popover
for information that changes, to lessen the need for a full-screen transition
(as described in “Popping Up All Over,” earlier in this chapter). As a result,
your app will appear to be more visually stable, and users will feel confident
that they know where they are in a given task.

29_9780470920503-ch20.indd 50729_9780470920503-ch20.indd 507 12/24/10 12:31 AM12/24/10 12:31 AM

508 Part VI: The Part of Tens

29_9780470920503-ch20.indd 50829_9780470920503-ch20.indd 508 12/24/10 12:31 AM12/24/10 12:31 AM

Chapter 21

Ten Ways to Be a
Happy Developer

In This Chapter
▶ Finding out how not to paint yourself into a corner

▶ Avoiding “There’s no way to get there from here.”

There are a lot of things you know you’re supposed to do, but you don’t
do them because you think they’ll never catch up with you. (After all,

not flossing won’t cause you problems until your teeth fall out years from
now, right?)

But in iPad (and iPhone) application development, those things catch up with
you early and often, so I want to tell you about the things I’ve learned to pay
attention to from the very start in app development, as well as a few tips and
tricks that lead to happy and healthy users.

It’s Never Too Early to Start Speaking
a Foreign Language

With the world growing even flatter, and with the iPad available in many coun-
tries, the potential market for your app is considerably larger than just the
people who happen to speak English. Localizing an application — getting your
app to speak the lingo of its user, whether that be Portuguese or Polish —
isn’t difficult, just tedious. Some of it you can get away with doing late in the
project, but when it comes to the strings you use in your application, you’d
better build them right — and build them in from the start. The painless way:
Use the NSLocalizedString macro (refer to Chapter 14) from the very start,
and you’ll still be a happy camper at the end.

30_9780470920503-ch21.indd 50930_9780470920503-ch21.indd 509 12/24/10 12:31 AM12/24/10 12:31 AM

510 Part VI: The Part of Tens

Remember Memory
The iPad operating system (iOS) doesn’t store changeable memory (such
as object data) on the disk as a way to free up space and then read it back
in later when needed. It also doesn’t have garbage collection, which means
there is a real potential for damage from memory leaks unless you tidy up
after your app. Review and follow the memory rules in Chapter 8 — in par-
ticular, these:

 ✓ Memory management is really creating pairs of messages. Balance every
alloc, new, and retain with a release.

 ✓ When you assign an instance variable using an accessor with a property
attribute of retain, you now own the object. When you’re done with it,
release it in a dealloc method.

Constantly Use Constants
In the iPadTravel411 application, I put all my constants in one file. When I
develop my own applications, I do the same. The why of it is simple: As I
change things during the development process, having one place to find my
constants makes life much easier.

Don’t Fall Off the Cutting Edge
The iPad is cutting edge enough that there are still plenty of opportunities
to expand its capabilities — and many of them are (relatively) easy to imple-
ment. You’re also working with a very mature framework. So if you think
something you want your app to do is going to be really difficult, check the
framework; somewhere in there you may find an easy way to do what you
have in mind. If there isn’t a ready-made fix, consider the iPad’s limited
resources — and at least question whether that nifty task you had in mind is
something your app should be doing at all. Then again, if you really need to
track orbital debris with an iPad app, go for it — someone needs to lead the
way. Why shouldn’t it be you?

Start by Initializing the Right Way
A lot of my really messy code that I found myself re-doing ended up that
way because I didn’t think through initialization. (For example, adding on
initialization-like methods after objects are already initialized is a little late
in the game, and so on.)

30_9780470920503-ch21.indd 51030_9780470920503-ch21.indd 510 12/24/10 12:31 AM12/24/10 12:31 AM

511 Chapter 21: Ten Ways to Be a Happy Developer

Keep the Order Straight
One of the things that can really foul up your day as a developer is the order
in which methods in objects are called. If you expect an object to be there
(and it isn’t) or to have been initialized (and it wasn’t), you may be in the
wrong method. Type up a copy of Table 21-1 in a file and/or make a photo-
copy of it and tack it up where you can easily find it. It shows you in crisp,
tabular form the order in which objects are called — from soup (view con-
troller) to nuts (delegate).

Table 21-1 The Natural Order of Things

Object Method

View Controller awakeFromNib

Application Delegate application:didFinish
LaunchingWithOptions::

View Controller viewDidLoad

View Controller viewWillAppear:

View Controller viewWillDisappear:

Delegate applicationWillTerminate:

 What trips up many developers is that the awakeFromNib message for the
initial view controller (the one you see when the application starts) is sent
before the applicationDidFinishLaunchingWithOptions:: message. If
you have a problem with that, do what you need to do in ViewDidLoad.

Avoid Mistakes in Error Handling
A lot of opportunities for errors are out there; use common sense in figuring
out which ones you should spend work time on.

There are, however, some potential pitfalls you do have to pay attention to,
such as these two big ones:

 ✓ Your app goes out to load something off the Internet, and (for a variety
of reasons) the item isn’t there or the app can’t get to it.

 ✓ An object can’t initialize itself (for a similar range of perverse reasons).

 When (not if) those things happen, your code and your user interface must be
able to deal with the error.

30_9780470920503-ch21.indd 51130_9780470920503-ch21.indd 511 12/24/10 12:31 AM12/24/10 12:31 AM

512 Part VI: The Part of Tens

Remember the User
I’ve been singing this song since Chapter 2: Keep your app simple and easy
to use. Don’t build long pages that take a lot of scrolling to get through, and
don’t create really deep hierarchies. Focus on what the user wants to accom-
plish and be mindful of the device limitations, especially battery life. And
don’t forget international roaming charges.

In other words, try to follow the Apple’s iPad Human Interface Guidelines,
found with all the other documentation in the iOS Dev Center at http://
developer.apple.com/ios under the iOS Reference Library section —
Required Reading. Don’t even think about bending those rules until you
really, really understand them.

Keep in Mind that the Software Isn’t
Finished Until the Last User Is Dead

If there’s one thing I can guarantee about app development, it’s that Nobody
Gets It Right the First Time. The design for all of my apps evolved over time,
as I learned the capabilities and intricacies of the platform and the impact of
my design changes. Object-orientation makes extending your application (not
to mention fixing bugs) easier, so pay attention to the principles.

Keep It Fun
When I started programming the iPhone and then the iPad, it was the most
fun I’d had in years. Keep things in perspective: Except for a few tedious
tasks (such as provisioning and getting your application into the Apple
Store), lo, I prophesy: Developing iPad apps will be fun for you, too. So don’t
take it too seriously.

 Especially remember the fun part at 4 a.m., when you’ve spent the last five
hours looking for a bug. Here’s a handy way to do that: Check out what
Douglas Adams says about the Hitchhiker’s Guide to the Galaxy entry for sur-
viving in space. The guide “says that if you hold a lungful of air you can sur-
vive in a total vacuum of space for about thirty seconds. However, it does go
on to say that what with space being the mind-boggling size it is the chances
of getting picked up by another ship within those thirty seconds are two to
the power of two hundred and seventy-six thousand, seven hundred and nine
to one against.” Now, get back to work!

30_9780470920503-ch21.indd 51230_9780470920503-ch21.indd 512 12/24/10 12:31 AM12/24/10 12:31 AM

Index

• Special Characters •
pragma mark statement, 206, 235
//, lines beginning with, 158

• A •
ABA/Routing Transit Number, 128
About window, 502
accelerometer

defi ned, 11, 16
Simulator versus iPad, 97
tracking orientation and motion, 41

accessing
documentation, 198–204
information from Apple’s apps, 17–18
Internet, 16, 42

accessor methods, 233–234
Action menu, Toolbar, 87
action sheets

defi ned, 149
user experience, 294

activity integration, 31
Ad Hoc Distribution, 120–122
Ad Hoc Provisioning Profi le, 107
Add button, navigation bar, 469
addAnnotations: message, 385
AdMob Analytics, 50, 54–55, 57, 61
advertising

auto-play video, 61
buying, 60–61
click-to-play video, 61
pricing app, 49–50
publicity stunts, 62

aesthetic integrity, graphics, 37
Airport object

adding annotations, 381–384
methods

adding, 461–464
making private, 464–465

selecting airport, 465–469
AirportController

adding, 452–455
responding to user selection in choice bar,

460
setting up view, 455–459

Alert views, 149
alerts, 294
alpha channel, 41
Anacharsis, 43
analytical code, adding to app, 54–55
animating views

accessing documentation
Documentation window, 200–201
Find toolbar, 202–204
header fi le for symbol, 200
Help menu, 201
Quick Help, 199

controlling
animation block, 221
drawing view, 219–221
freeing up memory, 221–222
viewDidLoad method, 217–219

determining where code goes
delegate object, 204
marking code sections in view controller,

206–208
view controller object, 204–206

testing, 222–223
user settings

adding Constants.h fi le, 210–212
editing view controller header, 208–210

Xcode Text Editor, 198
animation block, 221
annotation

adding, 378–387
defi ned, 350, 371
displaying multiple, 390–394

API (Application Programming Interface)
reference, 200–201

App ID, 107
App Store

avoiding rejection slips, 133–135
iAds, 57–58
In App Purchase feature, 55–57
knowing customers

adding analytical code to app, 54–55
tracking downloads, 52–54

links
buying advertising, 60–62
iTunes affi liate links, 58–59
publicity, 62

31_9780470920503-bindex.indd 51331_9780470920503-bindex.indd 513 12/24/10 12:31 AM12/24/10 12:31 AM

514 iPad Application Development For Dummies, 2nd Edition

App Store, links (continued)

social networking, 59–60
user reviews, 59

overview, 45–47
pricing apps, 49–50
provisioning applications, 120–122
publishing free and paid versions, 50–51
reaching potential customers, 47–49
using iTunes Connect to manage apps in

adding artwork, 131–132
adding metadata, 128–131
Contracts, Tax & Banking section, 127–128
managing users, 127
overview, 125–126
uploading app and data, 132–133

App Store Badging and Artwork page, 58
appFigures app, 54
Apple Developer Connection Reference

Library, 200
Apple developer forums, 77
application icon

adding to user interface, 194–195
making for masses, 501–502

Application Programming Interface (API)
reference, 200–201

applicationDidBecomeActive: message,
168, 171, 173

applicationDidEnterBackground:
message, 172

application:didFinishLaunching
With Options: message, 160, 168, 204,
484

applicationDidReceiveMemory
Warning: method, 175

applicationWillEnter
Foreground: message, 173

applicationWillResignActive:
message, 171

applicationWillTerminate:
message, 172–173, 474

appOrientation message, 426
apps. See also DeepThoughts sample app;

iPad Travel411 app
adding analytical code to, 54–55
adding artwork to, 131–132
AppViz, 54
Audio, 18
audio-mixing, 42
building

adding, 432
from existing iPhone app, 82–83

overview, 91–93
from scratch, 82

designing
defi ning problems, 285–289
program architecture, 300–306
user experience, 38–40, 290–298

publishing, 50–51
real cost of, 39
relaunching suspended, 170
running, 91–93
uninstalling, 95–96
uploading, 132–133
VoIP, 18

AppViz app, 54
artwork

adding to app, 131–132
PNG format, 15

Attributes Inspector, 192–193
Attributes tab, Inspector window, 183, 249
Audio app, 18
audio-mixing apps, 42
auto-play video ads, 61
availability date, submitting app with iTunes

Connect, 130
awakeFromNib message, 345, 511

• B •
Back button

navigation bar, 469–470
Web view, 470–472

background processing, 18–19
background state, 160
battery

balancing with memory, 21
factor in application design, 20

beginAnimations:context: class, 221
behavior

adding app-specifi c
Block Object pattern, 153–154
Delegation pattern, 152–153
overview, 151–152
Target-Action pattern, 154

customizing, 155
Block Object design pattern, 152–154
bold, underlined, italic (BUI) code, 325, 352
Bookmarks menu, Text Editor navigation bar,

88–89
Bove’s Theorem, 263
branding, 60–61
breakpoints, 270–271

31_9780470920503-bindex.indd 51431_9780470920503-bindex.indd 514 12/24/10 12:31 AM12/24/10 12:31 AM

515515 Index

Breakpoints button
Debugger strip, 272
Toolbar, 87

Breakpoints menu, Text Editor navigation
bar, 88–89

BUI (bold, underlined, italic) code, 325, 352
Build and Analyze feature (Static Analyzer),

Xcode, 279
Build and Debug button, Project window, 87,

271
Build and Run button, Project window, 87,

271
build confi guration, 92
Build Results window

customizing Xcode, 98
error consequences, 264, 266–267

building apps
adding, 432
from existing iPhone app, 82–83
overview, 91–93
from scratch, 82

bundle, app
adding, 454
In App Purchase feature, 56

• C •
cached data, 492–494
Call list button, Debugger strip, 273
callout, 350, 377, 380, 385
case sensitivity, Objective-C, 3, 264
cell objects, 336–337
cells

identifi er, 339
Table view

adding subviews to content view, 337
creating, 337–343
custom subclass UITableViewCell, 337
vanilla cell objects, 336–337

Certifi cate Signing Request (CSR), 111–112
changeSpeed method, 239
City object, 381–384
City view, iPad Travel411 app

launching CityController, 437
loading, 435–437
overview, 434–435

Class Hierarchy menu, Text Editor navigation
bar, 88–89

classes, naming convention for, 151
Classes group, Groups & Files list, 90
click-to-play video ads, 61

client-server computing, 16
code

analytical, adding to app, 54–55
bold, underlined, italic, 325, 352
determining where to place in control fl ow

delegate object, 204
marking code sections in view controller,

206–208
view controller object, 204–206

interpreted, 43
Xcode

customizing, 97–99
documentation, 199–204
provisioning iPad for development, 114
SDK, 74, 81
Text Editor, 198, 269–274
View-based Application option, 85

Code Folding, Xcode Text editor, 198
Code Sense, Xcode Text editor, 198
code signing, 105
Coding How-To’s document, iOS Reference

Library, 77
comment markers, 206
commitAnimations class, 221
company URL, 130
Company version, iOS Developer Program,

22, 70
Compare Developer Programs link, iOS

Developer Program, 70–71
compatibility mode, 82
compelling content

consistency, 33–34
engaging user, 35
focus, 33
graphics with aesthetic integrity, 37
modeling apps on real-world, 34–35
simplicity, 35–36

compiler warning, 472
completion handler, 447
composition, 305, 387
computeFramesForOrientation:

message, 368, 426
computeFrames:forOrientation:

message, 368
connection limitations, 296
Connections tab, Inspector window, 249
consistency, app, 33–34
Console utility application, Mac OS X, 268,

278
constants, 323, 325
Constants.h fi le, 210–212, 323–325

31_9780470920503-bindex.indd 51531_9780470920503-bindex.indd 515 12/24/10 12:31 AM12/24/10 12:31 AM

516 iPad Application Development For Dummies, 2nd Edition

consumable items, 56
Contacts app

accessing information, 17–18
iPhone versus iPad, 12

Container views, 147–148
content

adding to iPad Travel411 app, 432
compelling

consistency, 33–34
engaging user, 35
focus, 33
graphics with aesthetic integrity, 37
modeling apps on real-world, 34–35
simplicity, 35–36

In App Purchase feature, 55
making relevant, 12–13
playing, 17
views displaying, 146

Content view
defi ned, 145
MKMapView class, 301
UIImageView class, 301
UISplitViewController class, 310
UIWebView class, 300–301

contentSizeForViewInPopover property,
314, 327

context-based design, 31, 40
Continue button

Debugger strip, 272
Debugger window, 276

Contracts, Tax & Banking section, iTunes
Connect, 127–128

control fl ow
determining code placement in

delegate object, 204
marking code sections in view controller,

206–208
view controller object, 204–206

Controller objects, MVC pattern, 143
controllers. See also view controllers

defi ned, 299
view controller

controlling, 149–150
editing header, 208–210
marking code sections in, 206–208
MVC design pattern, 142–144, 151, 331
overview, 204–206
program architecture, 304

controls
user experience, 294
view hierarchy, 146
views, 148

conventions used in book, 3
coordinate property, MKAnnotation

protocol, 381
copying

between apps, 18
existing functionality, 44

copyright, 129
Counterpart button, Text Editor navigation

bar, 89
cross promoting, 59–62
CSR (Certifi cate Signing Request), 111–112
Currency implementation model, iPad

Travel411 app
adding content, 432
Currency view, 432–434
launching CurrencyController, 434
overview, 431–432

customers
knowing

adding analytical code to app, 54–55
overview, 51–52
tracking downloads, 52–54

lifetime value, 50
reaching potential, 47–49

customizing
behavior, 155
maps, 507
Xcode, 97–99

cutting between apps, 18

• D •
data

cached, 492–494
metadata, 126, 128–131
saving when application enters background

state, 172
uploading, 132–133

data source, Table view, 318
datatip, Debugger, 269
dataWithContentsOfURL: method, 463
dealloc method, 222, 510
Debug build confi guration, 92
Debugger strip

Breakpoints button, 272
Call list button, 273

31_9780470920503-bindex.indd 51631_9780470920503-bindex.indd 516 12/24/10 12:31 AM12/24/10 12:31 AM

517517 Index

Continue button, 272
overview, 271–272
Show Console button, 273
Show Debugger button, 273–274
stack, 274
Step Into button, 273
Step Out button, 273
Step Over button, 273
Thread list button, 272

Debugger window
general discussion, 274–276
Mini Debugger, 277–278
showing datatips for variables and objects,

276–277
debugging

Console application, 278–279
Debugger window

general discussion, 274–276
Mini Debugger, 277–278
showing datatips for variables and

objects, 276–277
Static Analyzer, 279–282
in Text Editor

overview, 269–270
setting breakpoints, 270–271
using Debugger strip, 271–274

types of errors, 264–268
declarative interface, 61
DeepThoughts sample app. See also

debugging; user interface; user settings
animating view

controlling, 217–222
testing, 222–223
user settings, 208–212
Xcode Text Editor, 198

Build Results window, 264
building, 5
Debugger window, 274–278
delegation, 225
documentation, 198–204
encapsulation, 225
Identity tab, Inspector window, 182
inheritance, 225–226
Interface Builder, 243–255
overview, 25
polymorphism, 226
@property declarations, 216
property list, 194–195
Swipe Gesture recognizer, 255–260

@synthesize statements, 216
Tap Gesture recognizer, 255–260
templates, Xcode, 181
UIView class, 183
view controllers

editing header, 208–210
marking code sections in, 206–208
overview, 204–206

view initialization, 217
View-based Application template, 182
viewDidLoad: method, 217

delegate object, 204, 318
delegation, 234–235
Delegation pattern, 152–153
demo account, iTunes Connect, 130
description, app, 128–129
design patterns

Block Object, 152–154
Managed Memory Model

avoiding warnings, 176–177
observing low-memory warnings, 174–175

Model-View-Controller, 142–144, 151, 331
overview, 141
Target-Action, 152, 154
Threads and Concurrency, 141

designing apps
defi ning problems, 285–289
program architecture

Content views, 300–303
models, 304–306
view controllers, 304

user experience
action sheets, 294
alerts, 294
coming up with fi nal design, 296–298
controls, 294
device constraints, 294–296
full-screen views, 292
leveraging iPad’s strengths, 290–292
localizing app, 39–40
modal dialogs, 294
popovers, 293–294
quality of information, 39
real cost of app, 39
relevant information, 38
speed, 38–39
split views, 292–293

Destination class, 387
Destination model, 343–347, 460–461
Detail Disclosure button, 340, 385

31_9780470920503-bindex.indd 51731_9780470920503-bindex.indd 517 12/24/10 12:31 AM12/24/10 12:31 AM

518 iPad Application Development For Dummies, 2nd Edition

Detail view
defi ned, 308, 410
displaying new content, 408
Project window, 87–88
search results, 203

DetailViewController, 312, 355–358
Dev Center

overview, 74–75
resources, 76–77
SDK, 75–76

Develop In-house iOS Applications for Your
Enterprise link, iOS Developer Program,
70–71

developer forums, Apple, 77
Developer Program

general discussion, 70–74
joining, 66
versions, 22–23

developers
constants, 510
Dev Center

overview, 74–75
resources, 76–77
SDK, 75–76

error handling, 511
initialization, 510
joining developer program, 70–74
keep it fun, 512
keeping method order straight, 511
keeping user in mind, 512
localizing apps, 509
memory management, 510
registered, 66–70
SDK, 78–79

Development Certifi cate, 107, 110–114
development process, 107–108
Development Provisioning Assistant, 114,

116–119
Development Provisioning Profi le, 107–108
device constraints, 294–296
device-specifi c applications, 83
didSelectRowAtIndexPath: method, 411
digital identity, 106
digital signature, 106
direct manipulation, 35
display. See also Multi-Touch interface

fi lling, 296
graphics and artwork, 15
iPhone versus iPad, 1, 10
making content relevant, 12
overview, 19

pixels, 9
resolution, 37, 41
touch, 13

Display views, 148
distribution

building app for, 123–125
process, 106–107

Distribution Certifi cate, 106, 120–121
Distribution Provisioning Profi le, 106
documentation, Xcode

Documentation window, 200–201
Find toolbar, 202–204
header fi le for symbol, 200
Help menu, 201
Quick Help, 199

Done button, Interface Builder, 243–246
double tap gesture, 94
downloading

from App Store, 46
SDK, 27, 78
tracking downloads, 52–54

drag gesture, 95
drawing views, 219–221
Drucker, Peter, 45
duplex printing, 446

• E •
Edit button, navigation bar, 469
editing, view controller header, 208–210
Editor view, Project window, 88–90
Einstein, Albert, 30
Electronic Arts Need for Speed Shift game

aesthetic integrity, 37
immersive experience, 12
modeling app on real-life metaphors, 35
motion tracking, 17
realistic user interface, 31

encapsulation, 208, 225
End User License Agreement, 130
enhancing maps, 371–378
Enterprise version, iOS Developer Program,

22, 70
entries, Table view, 317
equal treatment of customers, 46–47
errors

handling, 511
logic, 265–268
runtime, 265
syntax, 264–265

event loop, 160

31_9780470920503-bindex.indd 51831_9780470920503-bindex.indd 518 12/24/10 12:31 AM12/24/10 12:31 AM

519519 Index

event processing, 169–170
events

location, 18
touch, 146
Touch Up Inside, 208–209

existing functionality, copying, 44
exiting iPad apps, 503

• F •
fabs function, 392
fading controls, 35
favorites bar, Project window, 88
Featured button, App Store, 47
Featured screen, App Store, 48
feedback, immediate, 35
File’s Owner proxy object, 101, 164
Find toolbar, Xcode, 202–204
fi nger gestures

adding Tap and Swipe recognizers, 255–260
defi ned, 17
Map view, 370
multifi nger, 13–14
Multi-Touch interface

dealing with fat fi ngers, 20
designing for fi ngers, 20–21
limitations, 296
multifi nger gestures, 13–14
multi-person use, 40
screen size, 13
sense of control, 35
Tap and Swipe gestures, 255–260
tracking fi ngers onscreen, 17

Simulator, 94–95
two-fi nger, 13

First Responder proxy object, 101, 164
fl ick gesture, 95
Flurry Analytics (Pinch Analytics), 51, 54
focus, app, 33
Focus Ribbon, Xcode Text editor, 198
forKey: argument, NSUserDefaults class,

228
forward geocoding, 394
frameworks
MapKit

enhancing map, 371–378
MKMapView class, 370–371
overview, 369–370

private, linking to, 43
SDK, 75

Simulator versus iPad, 96
user interface, 139–140

Frameworks group, Groups & Files list, 90–91
free version, publishing, 50–51
full-screen views, 292
functionality

copying existing, 55
In App Purchase feature, 55

• G •
GDB (GNU Source-Level Debugger), 275
geocoding, 394–400
Gesture-Recognizer object, 255
gestureRecognizer:shouldReceive

Touch: method, 260
gestures

adding Tap and Swipe recognizers, 255–260
defi ned, 17
Map view, 370
multifi nger, 13–14
Multi-Touch interface

dealing with fat fi ngers, 20
designing for fi ngers, 20–21
limitations, 296
multifi nger gestures, 13–14
multi-person use, 40
screen size, 13
sense of control, 35
Tap and Swipe gestures, 255–260
tracking fi ngers onscreen, 17

Simulator, 94–95
two-fi nger, 13

getAirportData: method, 493–494
getter method, 234
Getting Started Documents, iOS Reference

Library, 77
Getting Started Videos, Dev Center, 76
GNU Source-Level Debugger (GDB), 275
Google AdMob, 50, 54–55, 57, 61
Google AdWords, 62
Google Analytics, 58
Google Maps, 12
GPS (Global Positioning System)

Simulator versus iPad, 96
WGS 84 reference frame, 374

Grand Central Dispatch feature, 141
graphics

with aesthetic integrity, 37
PNG format, 15

grouped Table view, 320–321

31_9780470920503-bindex.indd 51931_9780470920503-bindex.indd 519 12/24/10 12:31 AM12/24/10 12:31 AM

520 iPad Application Development For Dummies, 2nd Edition

Groups & Files list
groups, 90–91
Project window, 87–88

Guidelines for Using Apple’s Trademarks and
Copyrights, 134

gutter, Xcode Text Editor, 271

• H •
hammer icon, Xcode Debugger, 264
handleTapFrom method, 260
hanging application, 265
hardware, 14, 96
Hardware menu, Simulator, 93–94
header fi le, 89, 200
header window, 198
Help menu, Xcode, 201
here-and-now apps, 31
hierarchy

class, 88
view, 146

Hitchhiker’s Guide to the Galaxy, The, 9, 11,
27, 512

Home screen option, Simulator, 94
hybrid map view, 372

• I •
iAd Framework Reference, 57–58
iAd JS library, 61
iAd Network, 57
iAds, 2, 57–58
IApplicationDidReceiveMemory

Warning Notification: notifi cation,
175

IBAction type qualifi er, 209
iBooks app, 227
IBOutlet keyword, 184, 232–233, 353
icons used in book, 6
Identity tab, Inspector window

inspecting views, 182
main nib fi le, 162

images
adding to view, 186–190
displaying, 41–42

immediate feedback, 35
immersive apps

aesthetic integrity, 37
defi ned, 24

immersive experience, providing, 11–12
implementation window, 198

In App Purchase feature, App Store, 49, 55–57
In App Purchase Programming Guide, 57
inactive state, 170
incentives

for customer registration, 52, 59
for telling friends about apps, 49

Included Files menu, Project window, 89
Indentation pane, Preferences window, 99
indexPathForRow:inSection: message,

411
Individual version, iOS Developer Program,

22, 70
Info button

adding to user interface, 190–193
connecting to Interface Builder, 252–253
Toolbar, Project window, 87

information property list (info.plist), 162,
194–195, 335

inheritance, 225–226
init method, 344–345
initialization

of modal view controller, 240–242
overview, 166–169, 510
of views, 184–186

initWithContentsOfFile:
method, 278–279, 478, 479

initWithDestination: method, 353, 413
initWithDestination:airportID:

method, 453
initWithImage: method, 459
initWithNibName:bundle:

method, 354, 417
inspecting views, 182–184
Inspector window, Interface Builder

Attributes tab, 183, 249
Connections tab, 249
Identity tab, 182

installation procedure, 96
instance variables, naming convention for,

151
Instruments application, 75
interface

declarative, 61
Multi-Touch

dealing with fat fi ngers, 20
designing for fi ngers, 20–21
limitations, 296
multifi nger gestures, 13–14
multi-person use, 40
screen size, 13
sense of control, 35

31_9780470920503-bindex.indd 52031_9780470920503-bindex.indd 520 12/24/10 12:31 AM12/24/10 12:31 AM

521521 Index

Tap and Swipe gestures, 255–260
tracking fi ngers onscreen, 17

user
adding application icon, 194–195
adding app-specifi c behavior, 152–154
adding Info button, 190–193
customizing behavior, 155
frameworks, 139–140
iPadTravel411 app, 34
model objects, 150–151
view controllers, 149–150
View-based Application template, 182
views, 145–149, 184–190

Interface Builder
connecting interface objects in

adding Done button, 243–246
adding slider and text fi eld, 246–252
connecting Info button, 252–253
testing new modal view, 254–255

defi ned, 81–82
general discussion, 99–102
setting up MKMapView, 359

intermediary currency, 56
Internet, accessing, 16, 42
interpreted code, 43
interruption response, 170–173
inventory, 57
iOS 4.2, 2, 14, 78
iOS Dev Center

overview, 74–75
resources, 76–77
SDK, 75–76

iOS Developer Program
general discussion, 70–74
joining, 66
versions, 22–23

iOS Provisioning Portal, 74, 110–113
iOS Provisioning Portal logon, 115
iOS Reference Library, Dev Center, 76–77
iPad

limitations
battery life, 21
memory, 21
Multi-Touch interface, 20–21

platform
accessing information from Apple’s apps,

17–18
accessing Internet, 16
advantages of, 14–15
background processing, 18–19
copying between apps, 18

cutting between apps, 18
location information, 16
multitasking, 18–19
notifi cations, 18–19
pasting between apps, 18
playing content, 17
screen size, 19
tracking orientation and motion, 16–17
tracking user’s fi ngers on screen, 17

iPad apps
customizing maps, 507
DeepThoughts sample app

animating view, 198, 208–222
Build Results window, 264
building, 5
controlling, 217–222
Debugger window, 274–278
delegation, 225
documentation, 198–204
encapsulation, 225
Identity tab, Inspector window, 182
inheritance, 225–226
Interface Builder, 243–255
overview, 25
polymorphism, 226
@property declarations, 216
property list, 194–195
Swipe Gesture recognizer, 255–260
@synthesize statements, 216
Tap Gesture recognizer, 255–260
templates, Xcode, 181
testing, 222–223
UIView class, 183
view controllers, 204–210
view initialization, 217
View-based Application template, 182
viewDidLoad: method, 217

developing with Apple’s expectations in
mind, 23–24

development cycle, 24–25
exiting, 503
fl attening information levels, 504–505
launching, 502
making app icon for masses, 501–502
making content relevant, 12–13
minimizing modality to maximize simplicity,

506–507
popovers, 505–506
providing immersive experience, 11–12
sample, 25–26
saving, 503

31_9780470920503-bindex.indd 52131_9780470920503-bindex.indd 521 12/24/10 12:31 AM12/24/10 12:31 AM

522 iPad Application Development For Dummies, 2nd Edition

 iPad apps (continued)

supporting display orientations, 504
touch-display experience, 13
transitions, 507
why develop, 21–23

iPad Home Screen Icon, 131
iPad operating system (iOS) 4.2, 2, 14, 78
iPad Travel411 app. See also designing apps

annotations
adding, 378–387
displaying multiple, 390–394

changing destination, 400–404
City view

launching CityController, 437
loading, 435–437
overview, 434–435

cruising Web, 420–423
Currency implementation model, 431–434

adding content, 432
launching CurrencyController, 434
loading Currency view, 432–434

geocoding, 394–400
going to current location, 387–390
MapController

adding framework, 358–359
creating, 362–365
implementing, 352–355
managing views, 365–369
modifying DetailViewController,

355–358
setting up nib fi le, 359–362

MapKit framework
enhancing map, 371–378
MKMapView class, 370–371

overview, 26
putting map in selection mechanism,

408–411
quality content, 349–351
responding to selection

computing view and toolbar sizes, 426–427
managing popover, 430
overview, 423–430
setting up toolbar, 427–430
tableview:didSelectRowAtIndex
Path: method, 405–408

user interface, 34
Weather view

adding controller and nib fi le, 412–414
setting up nib fi le, 414–417

Web view, 417–420

iPhone apps
building iPad app from, 82–83
Contacts app, 12
Delegation pattern, 152
Detail Disclosure button, 340
Eliminate, 55
versus iPad apps, 11
lists, 19
location information, 16
Marketing Master, 49
MarketingProfs, 49
porting, 82
reasons for rejection, 43–44, 133–135
ReturnMeTo, 2
SDK tools for developing, 74–75
Tony’s Tips for iPhone Users, 2

iPhone Blog Forum, 59
iPhone Owners forum, 59
isKindOfClass method, 467
iTunes affi liate program, 58–59
iTunes Connect

main page, 126
managing apps in App Store

adding artwork, 131–132
adding metadata, 128–131
Contracts, Tax & Banking section, 127–128
managing users, 127
uploading app and data, 132–133

submitting apps, 52
iWork suite, 10

• J •
jargon, app, 36
Jobs, Steve

designing user interface, 181
iPad announcement, 1
magic of technology, 81
Worldwide Developer Conference (WWDC)

keynote address, 133
JPEG (jpg) format, 186

• K •
keyboard

as factor in app rejection, 44
specialized, 15

Keychain Access application, 111
key-value observing, 379

31_9780470920503-bindex.indd 52231_9780470920503-bindex.indd 522 12/24/10 12:31 AM12/24/10 12:31 AM

523523 Index

keywords
inappropriate use of, 135
for search engine optimization, 58
submitting app with iTunes Connect,

129–130

• L •
landscape orientation

managing views, 368
Split view, 31
Split view controller, 424
split-screen map, 32
view controllers, 314

language, 39–40, 131, 329–331, 509
Large Application Icon, 131
launching apps
CityController, iPad Travel411 app, 437
CurrencyController, iPad Travel411

app, 434
iPad apps, 502

Library window, Interface Builder
adding Done button, 243
adding Info button to user interface,

190–191
adding slider and text fi eld, 246
Class pop-up menu, 183
Cocoa Touch objects, 102

lifecycle, app
event processing, 169–170
initialization, 166–169
main nib fi le, 161–165
responding to interruptions, 170–173
termination, 173–174

lifetime value, customer, 50
Light Info Button

connecting, 208, 216, 252
DeepThoughts app, 229
default confi guration, 192–193
initializing and setting up modal view, 240

limitations
iPad

balancing memory and battery life, 21
Multi-Touch interface, 20–21, 296

Simulator, 96–97
links

buying advertising, 60–62
iTunes affi liate, 58–59
publicity, 62
social networking, 59–60
user reviews, 59

LinkShare, 59
lists

Debugger window, 275
Groups & Files

groups, 90–91
Project window, 87–88

property
defi ned, 194
information, 162, 194–195, 335
setting up, 481–484

local notifi cations, 19
localizable.strings fi le, 330
localizing apps, 39–40, 131, 329–331, 509
Location app, 18
location events, 18
location information, 16
Lock button, Text Editor navigation bar, 89
Lock option, Hardware menu, Simulator, 94
logic errors, 265–268
long press gesture

defi ned, 40
simulating, 94

low-memory warnings, 174–175

• M •
Mac OS X Console utility application, 268, 278
MacRumors Forums, 59
Magellan RoadMate app, 55
main function, 158
main nib fi le, 161–165
Main view, 13
MainWindow.xib fi le, 162–163, 313
Manage Users section, iTunes Connect page,

127
Manage Your Applications section, iTunes

Connect, 57
Manage Your Contracts page, iTunesConnect,

127
Managed Memory Model design pattern

avoiding warnings, 176–177
observing low-memory warnings, 174–175

MapController
adding framework, 358–359
creating, 362–365
implementing, 352–355
managing views, 365–369
modifying DetailViewController,

355–358
setting up nib fi le, 359–362

31_9780470920503-bindex.indd 52331_9780470920503-bindex.indd 523 12/24/10 12:31 AM12/24/10 12:31 AM

524 iPad Application Development For Dummies, 2nd Edition

MapKit framework
enhancing map, 371–378
MKMapView class, 370–371
overview, 369–370

maps. See also iPad Travel411 app
annotations

adding, 378–387
displaying multiple, 390–394

changing destination, 400–404
customizing, 507
geocoding, 394–400
going to current location, 387–390
MapController

adding framework, 358–359
creating, 362–365
implementing, 352–355
managing views, 365–369
modifying DetailViewController,

355–358
setting up nib fi le, 359–362

MapKit framework
enhancing map, 371–378
MKMapView class, 370–371

quality content, 349–351
mapView:annotationView:didChange

Drag State:fromOldState: method,
402–403

mapView:viewForAnnotation: message,
385

marketing
advertising

auto-play video, 61
buying, 60–61
click-to-play video, 61
publicity stunts, 62

pricing app, 49–50
Marketing Master app, 49
Marketing Resources section, App Store

Resource Center, 120
MarketingProfs app, 49
Master view
Airport object

making methods private, 464–465
overview, 461–464
selecting airport, 465–469

AirportController
adding, 452–455
overview, 451–452
responding to user selection in choice bar,

460
setting up view, 455–459

cells
adding subviews to content view, 337
creating, 337–343
custom subclass UITableViewCell, 337
vanilla cell objects, 336–337

compiler warning, 472
creating, 318–319
defi ned, 308
Destination model, 343–347, 460–461
grouped, 319–321
navigation controller, 469–472
overview, 316–317
popovers, 314–316
row model, 331–336
UITableViewController

adding sections, 321–328
adding titles for sections, 328–329
localization, 329–331

Member Center, 109–110
memory

balancing with battery life, 21
effect of multiple applications in

background on, 174
factor in application design, 20
freeing up, 221–222
Simulator versus iPad, 96

memory leak, 175, 279
memory management, 176, 510
messages
addAnnotations:, 385
applicationDidBecomeActive:, 168,

171, 173
applicationDidEnterBackground:, 172
application:didFinishLaunching

With Options:, 160, 168, 204, 484
applicationWillEnterForeground:,

173
applicationWillResignActive:, 171
applicationWillTerminate:, 172–173,

474
appOrientation, 426
awakeFromNib, 345, 511
computeFramesForOrientation:, 368,

426
indexPathForRow:inSection:, 411
mapView:viewForAnnotation:, 385
reverseGeocoder:didFailWithError:,

397
metadata, 126, 128–131

31_9780470920503-bindex.indd 52431_9780470920503-bindex.indd 524 12/24/10 12:31 AM12/24/10 12:31 AM

525525 Index

methods
applicationDidReceiveMemory

Warning:, 175
changeSpeed, 239
dataWithContentsOfURL:, 463
dealloc, 222, 510
didSelectRowAtIndex- Path:, 411
gestureRecognizer:shouldReceive

Touch:, 260
getAirportData:, 493–494
getter, 234
handleTapFrom, 260
init, 344–345
initWithContentsOfFile:, 278–279,

478, 479
initWithDestination:, 353, 413
initWithDestination:

airportID:, 453
initWithImage:, 459
initWithNibName:bundle:, 354, 417
isKindOfClass, 467
mapView:annotationView:didChange

DragState:fromOldState:, 402–403
naming convention for, 151
NSBundle, 434
NSSearchPathForDirectories

InDomains:, 13
print:orientation:, 443–444
saveAirportData:withDataURL:, 491
selectTransportation:, 458, 460
setter, 234
shouldAutorotateToInterface

Orientation:, 363, 368
speedChanged, 239
tableView:cellForRowAtIndex

Path:, 336, 338
tableview:didSelectRowAt

IndexPath:, 405–408
tableView:titleForHeader

InSection:, 328
textFieldShouldReturn:, 239
viewDidLoad:

adding to, 384–385
loading City view, 435
loading Currency Web view, 433
overview, 217–219

viewDidUnload, 221
viewWithTag:, 341
WebView:shouldStartLoadWith

Request:navigationType:, 420, 494
Methods list pop-up menu, Xcode Text

Editor’s Navigation bar, 204–205

Mini Debugger, 277–278
MKAnnotation protocol, 380
Mobclix, 57, 61
modal dialogs, 294
Modal view, 150, 209
modal view controller

adding methods for interface objects,
235–239

adding new view controller, 230–232
adding outlets, 232–234
initializing and setting style, 240–242
saving preference settings, 242–243
using delegation, 234–235

modality
defi ned, 19
minimizing to maximize simplicity, 506–507

modalPresentationStyle property,
UIViewController class, 242

modalTransitionStyle property,
UIViewController class, 241

model objects, 142–143, 150–151, 299,
304–306

modeling apps on real-world, 34–35
Model-View-Controller (MVC) design pattern

adding application behavior, 151
creating program architecture, 299
creating row model, 331
general discussion, 142–144
separating objects, 305, 386

monetizing app, 57
motion, tracking, 16–17
movement, 14
multitasking, 18–19, 474
Multi-Touch interface

dealing with fat fi ngers, 20
designing for fi ngers, 20–21
limitations, 296
multifi nger gestures, 13–14
multi-person use, 40
screen size, 13
sense of control, 35
Tap and Swipe gestures, 255–260
tracking fi ngers onscreen, 17

MVC (Model-View-Controller) design pattern
adding application behavior, 151
creating program architecture, 299
creating row model, 331
general discussion, 142–144
separating objects, 305, 386

31_9780470920503-bindex.indd 52531_9780470920503-bindex.indd 525 12/24/10 12:31 AM12/24/10 12:31 AM

526 iPad Application Development For Dummies, 2nd Edition

• N •
name, app, 128
naming conventions, framework, 151
Native Bindings library, 61
navigation controller, Master View

Back buttons, 470–472
overview, 469–470

Navigation views, 149, 301–303, 310
Need for Speed Shift game

aesthetic integrity, 37
immersive experience, 12
modeling app on real-life metaphors, 35
motion tracking, 17
realistic user interface, 31

New and Noteworthy list, App Store, 47
New Project window, Xcode, 84–85
nib (NeXT Interface Builder) fi les

defi ned, 100–101, 159
iPad Travel411 app

adding, 412–414
setting up, 414–417

main, 161–165
Notifi cation system, 485–486
notifi cations

low-memory, 174–175
managing users, 127
orientation, 426
overview, 18–19
responding to interruptions, 171
syntax errors, 264

Nova game, 13
NSBundle method, 434
NSNull class, 336
NSObject class, 305
NSSearchPathForDirectories

InDomains: method, 13
NSURL object, 462, 493
NSURLRequest class, 418–419
NSUserDefaults class

adding Constants.h fi le, 210
identifying preferences settings for, 228
storing data in database, 227
user preferences, 218–219

NSUserDefaultsDidChange
Notification notifi cation, 486

numbers-and-formulas keyboard, 15

• O •
Objective-C

accessor methods, 238
case sensitivity, 3, 264
class hierarchy, 88
comments, 205
creating getter and setter methods, 234
memory management, 176
naming conventions, 3
send a message to nil object, 276
setObject:forKey: method, 228
workaround private construct, 464

Objective-C Declared Properties feature, 234
object-oriented programming, 142, 151–152
objects

cell, 336
responder, 170
separating, 386

Organizer window
capturing screenshot, 131
Projects and Sources pane, 119

orientations
managing transitions between, 308
supporting, 504
tracking, 16–17
view controllers, 314, 424

Other Sources group, Groups & Files list, 90
outlet

adding to modal view controller, 232–234
defi ned, 414

Overview menu, Project window, 87

• P •
page renderer, 446
paid version, publishing, 50–51
parameterizing, 481
partial-curl transition, 241
passthrough- Views property, 314
pasting between apps, 18
PC (process counter), 273
Photos app, 18
Picasso, Pablo, 30
Pinch Analytics (Flurry Analytics), 51, 54
pinch gesture, 40, 95
Pinch Media, 51

31_9780470920503-bindex.indd 52631_9780470920503-bindex.indd 526 12/24/10 12:31 AM12/24/10 12:31 AM

527527 Index

pixels
App Store icon, 502
full-screen views, 292
graphics and images, 41
iPad Home Screen Icon, 131
landscape orientation, 504
Large Application Icon, 131
multifi nger supported display, 14
portrait orientation, 504
scaling up to full-screen, 9
small app icon, 502
use of for immersive experience, 186

placemarks, 396
plain Table view, 320
platform, iPad

accessing information from Apple’s apps,
17–18

accessing Internet, 16
advantages of, 14–15
background processing, 18–19
copying between apps, 18
cutting between apps, 18
location information, 16
multitasking, 18–19
notifi cations, 18–19
pasting between apps, 18
playing content, 17
screen size, 19
tracking

orientation and motion, 16–17
user’s fi ngers on screen, 17

PNG format
adding image to view, 186
application icon, 194, 502
graphics and artwork, 15
launch image, 504
screenshot, 132

polymorphism, 226
pop, defi ned, 470
popover

defi ned, 33
Master View, 314–316
user experience, 293–294

popoverController property, 430
portability, 31
porting iPhone apps, 82
portrait orientation

Detail view controller, 424
full-screen map, 32
managing views, 367
Split view, 31
view controllers, 314

portrait printing, 446
Preferences window, Interface Builder, 97
PreferenceSpecifiers key, 481–482
Prepare App tab, Distribution page, 121, 123
pricing apps, 49–50, 130
Print button, 440–443
print formatter, 446
Printer Simulator application, 449–450
printing

adding Print button to app, 440–443
overview, 439–440
print methods, 443
Printer Simulator application, 449–450
UIPrintInteractionController,

444–449
print:orientation: method, 443–444
private frameworks, linking to, 43
process counter (PC), 273
Product pop-up menu, New Project

window, 85
productivity apps

aesthetic integrity, 37
defi ned, 23
iPadTravel411, 30

Products group, Groups & Files list, 91
program architecture

models, 304–306
view controllers, 304
views, 300–303

Project window
Build and Debug button, 87, 271
Build and Run button, 87, 271
Detail view, 87–88
Editor view, 88–90
favorites bar, 88
Groups & Files list, 87–88
Included Files menu, 89
Info button, 87
Overview menu, 87
Search fi eld, 87
Show/Hide Toolbar button, 87
Status bar, 87–88
Tasks button, 87
Text Editor navigation bar, 88–89

projection system connection, 15
promoting app

auto-play video ads, 61
buying ads, 60–61
click-to-play video ads, 61
pricing app, 49–50
publicity stunts, 62

31_9780470920503-bindex.indd 52731_9780470920503-bindex.indd 527 12/24/10 12:31 AM12/24/10 12:31 AM

528 iPad Application Development For Dummies, 2nd Edition

promotional code, 59–60
@property declarations, 209, 216, 234
property list

defi ned, 194
information, 162, 194–195, 335
setting up, 481–484

protocol, 153, 235
provisioning

application for App Store or Ad Hoc
Distribution, 120–122

avoiding App Store rejection slip, 133–135
building app for distribution, 123–125
development certifi cate, 110–114
development process, 107–108
distribution process, 106–107
iPad for development, 114–119
Member Center, 109–110
using iTunes Connect to manage apps in

App Store
adding metadata and artwork, 128–132
Contracts, Tax & Banking section, 127–128
managing users, 127
uploading app and data, 132–133

Provisioning Assistant section, iOS
Provisioning Portal page, 117

publicity, 62
publishing apps, 50–51
push

defi ned, 470
notifi cations, 19

• Q •
Quick Help, Xcode, 199
quitting iPad apps, 503

• R •
rating information, 129
real cost of apps, 39
real time, managing, 492–494
reference counting, 176
region, computing, 393–394
region property, maps, 370, 373–374
registered developer, 66–70
registering, iOS Developer Program, 66
rejection slip, App Store, 133–135
relaunching suspended apps, 170

Release build confi guration, 92
relevance fi lter, 291
relevant information, 38
Remember icon, 6
rendering, 97
Request Promotional Codes link, iTunes

Connect, 60
resetting device, 95–96
Resources folder, Xcode, 186
Resources group, Groups & Files list, 90
responder chain, 146
responder object, 170
Restart button, Debugger window, 276
reverse geocoding, 394
reverseGeocoder:didFailWithError:

message, 397
RootViewController, 312
Rotate left option, Hardware menu, 94
Rotate right option, Hardware menu, 94
Rounded Rect Button, 192, 244
row model, Master View, 331–336
rows, Table view, 317
running apps, 91–93
runtime errors, 265
runtime scenario, 155

• S •
Sales and Trends link, iTunes Connect, 52–53
Sample Code document, iOS Reference

Library, 77
satellite map view, 372
saveAirportData:withDataURL: method,

491
saving

data when application enters background
state, 172

iPad app, 503
preference settings, modal view controller,

242–243
screen. See also Multi-Touch interface

fi lling, 296
graphics and artwork, 15
iPhone versus iPad, 1, 10
making content relevant, 12
overview, 19
pixels, 9
resolution, 37, 41
touch, 13

31_9780470920503-bindex.indd 52831_9780470920503-bindex.indd 528 12/24/10 12:31 AM12/24/10 12:31 AM

529529 Index

screenshots, 131–132
SDK (Software Development Kit). See also

Interface Builder
building and running app, 91–93
building app from existing iPhone app,

82–83
building app from scratch, 82
customizing Xcode, 97–99
Dev Center, 75–76
downloading, 78
Interface Builder, 99–102
overview, 81–82
Project window, 86–91
Simulator

gestures, 94–95
Hardware menu, 93–94
limitations, 70, 96–97
uninstalling apps and resetting device,

95–96
tools, 74–75
Xcode project, 83–86

Search fi eld, Project window, 87
sections

Table view, 317
UITableViewController, 321–329

segmented control, 294
selectTransportation: method, 458, 460
setObject: argument, NSUserDefaults

class, 228
setter method, 234
Settings bundle, adding to project, 480–481
SettingsViewController controller, 230
sex appeal, iPad, 11
Shake Gesture option, Hardware menu, 94
shake-to-undo feature, 21, 41
shouldAutorotateToInterface

Orientation: method, 363, 368
Show Console button, Debugger strip, 273
Show Debugger button, Debugger strip,

273–274
Show/Hide Toolbar button, Project

window, 87
showsUserLocation property, MKMapView,

371
simplicity

app, 35–36
minimizing modality to maximize, 506–507

simply connect principle, 39
Simulate Hardware Keyboard option,

Hardware menu, 94
Simulate Memory Warning option, Hardware

menu, 94

simulating gestures, 94–95
Simulator

gestures, 94–95
Hardware menu, 93–94
limitations, 70, 96–97
uninstalling apps and resetting device,

95–96
singleton, 228
SKU (Stock Keeping Unit) number, 129
SkyVoyager Expansion Pack app, 55
slider, adding to Interface Builder, 246–252
social networking, 59–60
Social Networking category, App Store, 47
Software Development Kit (SDK). See also

Interface Builder
building and running app, 91–93
building app from existing iPhone app,

82–83
building app from scratch, 82
customizing Xcode, 97–99
Dev Center, 75–76
downloading, 78
Interface Builder, 99–102
overview, 81–82
Project window, 86–91
Simulator

gestures, 94–95
Hardware menu, 93–94
limitations, 70, 96–97
uninstalling apps and resetting device,

95–96
tools, 74–75
Xcode project, 83–86

span, maps, 370
speed, user experience, 38–39
speedChanged method, 239
splash screen, 502
Split view

defi ned, 15, 31
fl attening information levels, 504
user experience, 292–293

Split View Controllers, 308–313. See also
Master View

stack, 273, 469
standard map view, 372
state

overview, 473–474
restoring, 477–479
saving, 160, 474–477

Static Analyzer (Build and Analyze feature),
Xcode, 279

31_9780470920503-bindex.indd 52931_9780470920503-bindex.indd 529 12/24/10 12:31 AM12/24/10 12:31 AM

530 iPad Application Development For Dummies, 2nd Edition

Status bar
Debugger window, 275
Project window, 87–88

Step Into button
Debugger strip, 273
Debugger window, 276

Step Out button
Debugger strip, 273
Debugger window, 276

Step Over button
Debugger strip, 273
Debugger window, 276

Stock Keeping Unit (SKU) number, 129
stopping iPad apps, 503
Store Kit framework, 55, 56
Stored Data Mode, 297, 481–484, 491–498
strings text fi le, 329–330
subclassing, 151
subscriptions, In App Purchase feature, 56
subview, 146, 337
superview, 146
support URL, 130
SWIFT Code, 128
Swipe Gesture recognizer, 255–260
swipe gesture, simulating, 95
switch statement, 325
symbol inspector, 199
syncing, 15
syntax errors, 264–265
@synthesize statements, 209, 216, 234

• T •
Table view

cells
adding subviews to content view, 337
creating, 337–343
custom subclass UITableViewCell, 337
vanilla cell objects, 336–337

data source, 318
grouped, 320–321
sections, 317

tablet, defi ned, 9
tableView:cellForRowAtIndexPath:

method, 336, 338
tableview:didSelectRowAtIndexPath:

method, 405–408
tableView:titleFor HeaderIn

Section: method, 328
Tap Gesture recognizer, 255–260

tap gesture, simulating, 94
target audience, determining, 49
Target-Action design pattern, 152, 154
Tasks button, Project window, 87
Technical Stuff icon, 6
television connection, 15
templates, Xcode, 181
termination, app lifecycle, 173–174
terminology, app, 36
testing

new modal view, 254–255
view, 222–223

Text Editor navigation bar, Project window,
88–89

Text Editor pane, Debugger window, 275
Text Editor, Xcode

debugging in
overview, 269–270
setting breakpoints, 270–271
using Debugger strip, 271–274

overview, 198
text fi eld, adding to Interface Builder, 246–252
Text views, 148–149
textFieldShouldReturn: method, 239
Thread list button, Debugger strip, 272
Thread list, Debugger window, 275
Threads and Concurrency design pattern, 141
Tip icon, 6
Toggle In-Call Status Bar option, Hardware

menu, 94
Toolbar

Debugger window, 274
Project window, 87–88

Top Charts screen, App Store, 48
touch events, 146
Touch Up Inside event, 208–209
touch-and-hold gesture

defi ned, 40
simulating, 94

touch-display experience, 13
tracking

App Store downloads, 52–54
location changes, 379
orientation and motion, 16–17
user’s fi ngers on screen, 17

transitions, between orientations, 308
TV Out option, Hardware menu, 94
two-fi nger gesture, 13
two-fi nger tap gesture, simulating, 95

31_9780470920503-bindex.indd 53031_9780470920503-bindex.indd 530 12/24/10 12:31 AM12/24/10 12:31 AM

531531 Index

• U •
UDID (Unique Device Identifi er), 118
UIActionSheet class, 149
UIAlertView class, 149
UIApplication object, 152
UIApplicationMain function, 158–159, 161
UIControl superclass, 148
UIEvent object, 169
UIKit framework, 139
UILabel class, 220
UIModalPresentationCurrentContext:

option, modalPresentationStyle
property, 242

UIModalPresentationFormSheet:
option, modalPresentationStyle
property, 242

UIModalPresentationFullScreen:
option, modalPresentationStyle
property, 242

UIModalPresentationPageSheet:
option, modalPresentationStyle
property, 242

UIPopoverController class, 314
UIPrintInteractionController,

444–449
UIScrollView class, 148
UISplitViewController class, 308
UITableView class, 148
UITableViewCell custom subclass, 337
UITableViewCellStyleSubtitle class,

340
UITableViewCellStyleValue1 class, 340
UITableViewCellStyleValue2 class, 340
UITableViewController class

adding sections, 321–328
adding titles for sections, 328–329
localization, 329–331

UITextFieldDelegate protocol, 238
UITextView class, 148
UIToolbar class, 148
UITouch object, 169
UIView class, 147, 183, 221
UIViewController class, 185–186, 241
UIWebView class, 148–149
UIWindow class, 144
Undo mechanism, 21
uninstalling apps, 95–96
Unique Device Identifi er (UDID), 118
universal application, 83

University version, iOS Developer Program,
22–23

uploading app and data, 132–133
user experience

accessing Internet, 42
action sheets, 294
alerts, 294
avoiding practices that get apps rejected,

43–44
compelling content

consistency, 33–34
engaging user, 35
focus, 33
graphics with aesthetic integrity, 37
modeling apps on real-world, 34–35
simplicity, 35–36

controls, 294
designing

localizing app, 39–40
quality of information, 39
real cost of app, 39
relevant information, 38
speed, 38–39

device constraints, 294–296
displaying graphics and images, 41–42
fi nal design, 296–298
full-screen views, 292
leveraging iPad’s strengths, 290–292
location information, 42
modal dialogs, 294
overview, 30–32
playing and recording content, 42
popovers, 293–294
reading settings in application, 484–491
respecting preferences, 479–484
sensing multifi nger gestures, 40–41
split views, 292–293
state

restoring, 477–479
saving, 474–477

Stored Data Mode, 491–498
tracking orientation and motion, 41

user interface. See also design patterns
adding application icon, 194–195
adding app-specifi c behavior

Block Object pattern, 153–154
Delegation pattern, 152–153
Target-Action pattern, 154

adding Info button, 190–193
customizing behavior, 155
frameworks, 139–140

31_9780470920503-bindex.indd 53131_9780470920503-bindex.indd 531 12/24/10 12:31 AM12/24/10 12:31 AM

532 iPad Application Development For Dummies, 2nd Edition

 user interface (continued)

iPadTravel411 app, 34
model objects, 150–151
view controllers, 149–150
View-based Application template, 182
views

action sheets, 149
adding image, 186–190
Alert, 149
Container, 147–148
Controls, 148
Display, 148
hierarchy, 146–147
initializing, 184–186
inspecting, 182–184
Navigation, 149
overview, 145–147
purpose of, 146
Text, 148–149
Web, 148–149
window, 149

windows, 144–145
user reviews, 59
user settings

adding Constants.h fi le, 210–212
connecting interface objects in Interface

Builder
adding Done button, 243–246
adding slider and text fi eld, 246–252
connecting Info button, 252–253
testing new modal view, 254–255

editing view controller header, 208–210
modal view controller

adding methods for interface objects,
235–239

adding new view controller, 230–232
adding outlets, 232–234
initializing and setting style, 240–242
saving preference settings, 242–243
using delegation, 234–235

setting up preferences, 226–229
utility applications, 23–24

• V •
value proposition, 50
Variable list, Debugger window, 275
variables, showing datatips for, 276–277
version number, 129

view controllers
controlling, 149–150
editing header, 208–210
marking code sections in, 206–208
modal

adding methods for interface objects,
235–239

adding new view controller, 230–232
adding outlets, 232–234
initializing and setting style, 240–242
saving preference settings, 242–243
using delegation, 234–235

MVC design pattern, 142–144, 151, 331
overview, 204–206
program architecture, 304

View Flipside Background Color option, 251
view initialization, 217
View object

Interface Builder, 101–102
MVC pattern, 143

View-based Application option, Xcode, 85
View-based Application template, 182
viewDidLoad: method

adding to, 384–385
loading City view, 435
loading Currency Web view, 433
overview, 217–219

viewDidUnload method, 221
views

action sheets, 149, 303
adding image, 186–190
alerts, 149, 303
animating

accessing documentation, 198–204
controlling view, 213–222
determining where code goes, 204–208
preparing for user settings, 208–212
testing view, 222–223
Xcode Text Editor, 198

Container, 147–148
Content

defi ned, 145
MKMapView class, 301
UIImageView class, 301
UISplitViewController class, 310
UIWebView class, 300–301

controls, 148, 303
defi ned, 299
Detail

defi ned, 308, 410
displaying new content, 408

31_9780470920503-bindex.indd 53231_9780470920503-bindex.indd 532 12/24/10 12:31 AM12/24/10 12:31 AM

533533 Index

Project window, 87–88
search results, 203

Display, 148
full-screen, 292
hierarchy, 146–147
initializing, 184–186
inspecting, 182–184
Master
Airport object, 461–469
AirportController, 451–460
cells, 336–343
compiler warning, 472
creating, 318–319
defi ned, 308
Destination model, 343–347, 460–461
grouped, 319–321
navigation controller, 469–472
overview, 316–317
popovers, 314–316
row model, 331–336
UITableViewController, 321–331

Modal, 150, 209
modal dialogs, 303
Navigation, 149, 301–303, 310
overview, 145–147
Split

defi ned, 15, 31
fl attening information levels, 504
user experience, 292–293

subview, 146, 337
superview, 146
Table

cells, 336–343
data source, 318
grouped, 320–321
sections, 317

Text, 148–149
Web, 148–149
window, 149

viewWithTag: method, 341
VoIP app, 18

• W •
Wanamaker, John, 46–47
Warning icon, 6
Weather view, iPad Travel411 app,

412–417

Web view
iPad Travel411 app, 417–420
overview, 148–149

WebView:shouldStartLoadWith
Request:navigationType:
method, 420, 494

Welcome screen, Xcode, 84
WGS 84 reference frame, GPS, 374
What’s Hot list, App Store, 47
white label deal, 61
windows

Debugger window
general discussion, 274–276
Mini Debugger, 277–278
showing datatips for variables and

objects, 276–277
defi ned, 149
Inspector window, Interface Builder

Attributes tab, 183, 249
Connections tab, 249
Identity tab, 162, 182

Library window, Interface Builder
adding Done button, 243
adding Info button to user interface,

190–191
adding slider and text fi eld, 246
Class pop-up menu, 183
Cocoa Touch objects, 102

New Project window, Xcode, 84–85
Organizer window

capturing screenshot, 131
Projects and Sources pane, 119

overview, 144–145
workfl ow, user, 290
Worldwide Developer Conference

(WWDC), 133

• X •
Xcode

customizing, 97–99
documentation

Documentation window, 200–201
Find toolbar, 202–204
header fi le for symbol, 200
Help menu, 201
Quick Help, 199

31_9780470920503-bindex.indd 53331_9780470920503-bindex.indd 533 12/24/10 12:31 AM12/24/10 12:31 AM

534 iPad Application Development For Dummies, 2nd Edition

 Xcode (continued)

provisioning iPad for development, 114
SDK, 74, 81
Text Editor

debugging in, 269–274
overview, 198

upgrading iPhone app for iPad, 82–83
using to create provisioning profi le, 115–116
View-based Application option, 85

Xcode project, 83–86
.xib (nib) fi les

defi ned, 100–101, 159
iPad Travel411 app

adding, 412–414
setting up, 414–417

main, 161–165

31_9780470920503-bindex.indd 53431_9780470920503-bindex.indd 534 12/24/10 12:31 AM12/24/10 12:31 AM

1.1040

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/ipadapplicationdevelopment Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

Neal Goldstein
Tony Bove
Authors of iPhone Application Development
All-In-One For Dummies

Learn to:
• Download the SDK and start using Apple’s

developer tools

• Incorporate the latest iPad and iOS
features into your app designs

• Take advantage of iPad’s full functionality
to create a good user experience

• Print from your application using
AirPrint

iPad
™

Application Development

2nd Edition
Making Everything Easier!™

 Open the book and find:

• What makes a killer iPad app

• Secrets for creating a super user
experience

• How to market and spread the
word about your app

• Rules you must follow to avoid
App Store rejection

• Tips for working with the SDK

• What design patterns are and how
to use them

• Advice on testing and debugging
your app

• How to maximize the iPad’s
unique features

Neal Goldstein is a master at making cutting-edge technology practical.

He was an early pioneer of object-oriented programming and enjoys

rock-star status among mobile developers. Tony Bove has written more

than two dozen books, including all editions of iPod touch For Dummies

and iPod & iTunes For Dummies.

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-92050-3

Macintosh/Programming

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Turn your incredible ideas into
impressive iPad apps with help
from this informative guide!
Ready to join the iPad developer ranks? Now you can — even
if you’ve never developed an app for a mobile device. If you
know just a bit about object-oriented programming, Neal
and Tony will help you do the rest, walking you through
the iPad app development process in language you can
understand. All you’ll need is an Intel-based Mac, your iPad,
your imagination, and this book to get started today!

• Plan your app — understand what makes a great iPad app
and how to create a terrific user experience

• Handle the administrative stuff — download the SDK, register
as a developer, and follow all the rules for submitting your app
to the App Store

• Explore app anatomy — get acquainted with the frameworks
that structure an app and the app lifecycle

• Build on that framework — put together a sample app using
Interface Builder and get comfortable with the tools

• Get serious — learn to build an app with major functionality
and take full advantage of the iPad’s capabilities

Visit the companion Web site at

www.dummies.com/go/ipadappdevfd2e

to download all source code used in the book

iPad
™

 A
p

p
lication D

evelop
m

ent

Goldstein
Bove

2nd Edition

1.1040

	iPad™ Application Development For Dummies®, 2nd Edition
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Planning the Killer App
	Chapter 1: What Makes a Killer iPad App
	Figuring Out What Makes a Great iPad Application
	Exploiting the Platform
	Embracing the iPad’s Limitations
	Why Develop iPad Applications?
	Developing with Apple’s Expectations in Mind
	An Overview of the Development Cycle
	The Sample Applications
	What’s Next

	Chapter 2: Creating a Compelling User Experience
	Deep Thoughts on the User Experience
	Creating Compelling Content
	Designing the User Experience
	Playing to the iPad’s Strengths
	Avoiding Practices that Get Apps Rejected

	Chapter 3: The App Store Is Not Enough
	Why People Buy Apps from the App Store
	Knowing Your Customers
	Deploying the In App Purchase Feature
	Putting iAds in Your App
	Links Are Not Enough

	Part II: Becoming a Real Developer
	Chapter 4: Enlisting in the Developer Corps
	Becoming a Registered Developer
	Joining the Developer Program
	Exploring the Dev Center
	Downloading the SDK
	Getting Yourself Ready for the SDK

	Chapter 5: Getting to Know the SDK
	Developing Using the SDK
	Creating Your Xcode Project
	Exploring Your Project
	Building and Running Your Application
	The Simulator
	Customizing Xcode to Your Liking
	Using Interface Builder
	It’s Time to Get Real

	Chapter 6: Death, Taxes, and iPad Provisioning
	How the Process Works
	Organizing Your Account in the Member Center
	Obtaining a Development Certificate
	Provisioning Your iPad for Development
	Provisioning Your Application for the App Store or Ad Hoc Distribution
	Building Your App for Distribution
	Using iTunes Connect to Manage Apps in the App Store
	Avoiding the App Store Rejection Slip
	Now What?

	Part III: Understanding How Apps Work
	Chapter 7: Looking Behind the Screen
	Using Frameworks
	Using Design Patterns
	Working with Windows and Views
	Controlling View Controllers
	What about the Model?
	Adding Your Own Application’s Behavior
	Doing What When?

	Chapter 8: Understanding How an App Runs
	App Anatomy 101 — The Lifecycle
	The Managed Memory Model Design Pattern
	Whew!

	Part IV: Building DeepThoughts
	Chapter 9: Building the User Interface
	Running the View-Based Application Template
	Inspecting the View
	Understanding How the View is Initialized
	Adding an Image to the View
	Adding an Info Button
	Adding an Application Icon

	Chapter 10: Animating the View
	Using the Xcode Text Editor
	Accessing Documentation
	Figuring Out Where Your Code Goes
	Preparing for User Settings
	Controlling the View
	Testing the View

	Chapter 11: Adding User Settings and Gestures
	Setting Up User Preference Settings
	Setting Up a Modal View Controller
	Connecting the Interface Objects in Interface Builder
	Adding Tap and Swipe Recognizers
	A Lot Accomplished Very Quickly

	Chapter 12: Getting the Bugs Out
	Understanding Bugs
	Using the Debugger
	Debugging in the Text Editor
	Using the Debugger Window
	Using the Console Application
	Using the Static Analyzer

	Part V: Building an Industrial-Strength Application
	Chapter 13: Designing Your Application
	Defining the Problems
	Designing the User Experience
	Creating the Program Architecture
	Writing the Code

	Chapter 14: Working with Split View Controllers and the Master View
	The Split View Controller
	Popovers
	Working with Table Views
	Creating the Row Model
	Seeing How Table-View Cells Work
	Creating the Cell
	The Destination Model
	Expanding the Architecture to a “Real” App

	Chapter 15: Finding Your Way
	Putting Content First
	Adding the Map Controller
	Putting MapKit through Its Paces
	Adding Annotations
	Going to the Current Location
	Displaying Multiple Annotations
	Geocoding
	But What If I Don’t Want to Go to London?

	Chapter 16: Adding the Stuff
	Responding to a Selection
	Putting the Map in the Selection Mechanism
	How’s the Weather Over There?
	Loading the Web View
	Cruising the Web
	Responding to a Selection
	The Currency Implementation Model
	Adding the City
	A Checkpoint

	Chapter 17: Printing from Your iPad App
	Printing on the iPad
	The UIPrintInteractionController
	The Printer Simulator
	There’s Much More to Printing

	Chapter 18: Providing Content in the Master View
	The Airport Controller
	The Destination Model
	Building the Airport
	Navigating the Navigation Controller
	Getting Rid of a Pesky Compiler Warning

	Chapter 19: Enhancing the User Experience
	Saving and Restoring State
	Respecting User Preferences
	Reading Settings in the Application
	Airport and City in Stored Data Mode
	Adding Stored Data Mode to City
	Finally

	Part VI: The Part of Tens
	Chapter 20: Ten Tips on iPad App Design
	Making an App Icon for the Masses
	Launching Your App Into View
	Stopping Your App on a Dime
	Saving Grace with Your App’s Data
	Supporting All Display Orientations
	Flattening Information Levels
	Popping Up All Over
	Minimizing Modality to Maximize Simplicity
	Turning the Map into the Territory
	Making Smaller Transitions (Don’t Flip the View)

	Chapter 21: Ten Ways to Be a Happy Developer
	It’s Never Too Early to Start Speaking a Foreign Language
	Remember Memory
	Constantly Use Constants
	Don’t Fall Off the Cutting Edge
	Start by Initializing the Right Way
	Keep the Order Straight
	Avoid Mistakes in Error Handling
	Remember the User
	Keep in Mind that the Software Isn’t Finished Until the Last User Is Dead
	Keep It Fun

	Index

