
www.allitebooks.com

http:///
http://www.allitebooks.org

iPad Enterprise Application

Development BluePrints

Design and build your own enterprise applications

for the iPad

Steven F Daniel

BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http:///
http://www.allitebooks.org

iPad Enterprise Application Development BluePrints

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2012

Production Reference: 1150912

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-294-7

www.packtpub.com

Cover Image by Dean Morel (deangmorel@gmail.com)

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http:///
http://www.allitebooks.org

Credits

Author

Steven F Daniel

Reviewers

Cory Bohon

Gareth Curtis

Clifford Sharp

Luciano Tolfo

Acquisition Editor

Rukshana Khambatta

Lead Technical Editor

Arun Nadar

Technical Editor

Lubna Shaikh

Project Coordinator

Yashodhan Dere

Proofreader

Mario Cecere

Maria Gould

Aaron Nash

Indexer

Hemangini Bari

Graphics

Aditi Gajjar

Production Coordinator

Melwyn Dsa

Cover Work

Melwyn Dsa

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http:///
http://www.allitebooks.org

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http:///
http://www.allitebooks.org

Foreword

With the world changing and technology evolving year on year, businesses are
constantly growing more dependent on technology at an ever-expanding rate.
With the iPad, the clear cut winner in the tablet market, businesses are making
use of the new devices from Apple in their own worklows. The iPad dramatically
changes how companies can interact with their data—whether accessing or
collecting data in the ield or in the ofice.

This growing market is lending itself to more useful enterprise applications that can
be used to drive businesses into the future. Unfortunately, many companies don't
know where to begin when developing their own custom applications for their own
use. That's where this book comes in.

This book holds your hand and guides you through the building of practical example
applications in each chapter. In each chapter, you will learn various frameworks and
technologies in iOS, to create stunning applications that take advantage of the iPad
features. The features and techniques that you learn in this book can directly
be taken and used in your own iPad enterprise application development.

-Cory Bohon

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Author

Steven F Daniel is originally from London, England, but lives in Australia.

He is the owner and founder of GENIESOFT STUDIOS (http://www.
geniesoftstudios.com/), a software development company based in Melbourne,
Victoria that currently develops games and business applications for the iOS,
Android, and Windows platforms.

Steven is an experienced software developer with more than 13 years of experience in
developing desktop and web-based applications for a number of companies, including
insurance, banking and inance, oil and gas, and local and state government.

Steven is always interested in emerging technologies, and is a member of the SQL
Server Special Interest Group (SQLSIG) and Java Community. He was the
co-founder and Chief Technology Oficer (CTO) of SoftMpire Pty Ltd., a company
that focuses primarily on developing business applications for the iOS and
Android platforms.

He is the author of Xcode 4 iOS Development Beginner's Guide and iOS 5 Essentials.

You can check out his blog at http://geniesoftstudios.com/blog/, or follow
him on Twitter at http://twitter.com/GenieSoftStudio.

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http://www.geniesoftstudios.com/
http://www.geniesoftstudios.com/
http://geniesoftstudios.com/blog/
http://twitter.com/GenieSoftStudio
http:///
http://www.allitebooks.org

Acknowledgement

No book is the product of just the author—he just happens to be the one with his
name on the cover. A number of people contributed to the success of this book, and it
would take more space than I have to thank each one individually.

A special shout-out goes to Amey Kanse, my Acquisition Editor, who is the reason
that this book exists. Thank you Amey for believing in me and for being a wonderful
guide throughout this process. I would like to thank Yashodhan Dere for ensuring
that I stayed on track and got my chapters in on time, and to Rukhsana Khambatta
for taking over as the Acquisition Editor for this book so quickly and brilliantly,
during Amey's departure.

I would also like to thank my Lead Technical editor, Arun Nadar, for his brilliant
suggestions on how to improve the chapters, and a special thanks to Lubna Shaikh
for the fantastic job she has done on this book, ensuring that we met our timeframes
and delivery for this book. It has been a great privilege to work with her again on
this book.

Lastly, to my reviewers, thank you so much for your valued suggestions and
improvements, making this book what it is. I am grateful to each and every one of you.

Thank you also to the entire Packt Publishing team for working so diligently to help
bring out a high quality product. Finally, a big thank you to the engineers at Apple
for creating the iPad, and providing developers with the tools to create fun and
sophisticated applications. You guys rock.

Finally, I'd like to thank all of my friends for their support, understanding, and
encouragement during the writing process. It is a privilege to know each and every
one of you.

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Reviewers

Cory Bohon is a professional writer and contributor to MacLife Magazine, and
a Mac and iPhone developer, experienced in Java, C/C++, Objective-C, and PHP.
He is currently working on a Masters degree in Software Engineering, where his
current research interests includes accessible user interface design and mobile
application development.

Gareth Curtis was learning to program for the BBC Master computer when he was
10 years old. A career in I.T. was always on the cards and this began in a corporate
inance environment. It wasn't until late 2008 when the irst iPhone SDK was
released by Apple that he really took an interest in development. A few months later,
he achieved one of his ambitions in the forming of his own company, Appidelity
Ltd. Appidelity has since successfully been developing apps for the iPhone, and
later the iPad, for a wide variety of clients including apps for sports, inance, fashion,
and entertainment. More recently, Gareth has also entered into the realms of
iBook publication.

Clifford Sharp has been in the computer industry for over 30 years. In the irst
15 years, he performed network and systems administration using VAX/VMS and
DECnet then Linux and TCP/IP. In the next 10 years, he designed and created Linux
system programs as well as database front-end software using C and Pro*C with
Oracle. The last 5 years have been all about iOS Architecture and Development,
where he has created iOS apps for AT&T, Network Solutions, DirecTV, Experian,
among others.

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http:///
http://www.allitebooks.org

Luciano Tolfo is a creative and proactive software engineer with more than
ive years of experience, currently specialized in iOS applications and game
development, who loves what he does and enjoys facing new challenges. His
background is in the game industry, and he is now working as a full-time freelance
mobile developer.

I would like to thank my family and girlfriend for their unconditional support
and their patience while I work long hours and for the time I spent reviewing
this book. This was the irst time I made a technical review for a book and I really
enjoyed the process, and I would like to contribute with my feedback on further iOS
development books.

You can see my Linked-In proile at http://www.linkedin.com/in/lucianotolfo.

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http://www.linkedin.com/in/lucianotolfo
http:///
http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt

•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notiied! Find out when new books are published by following @PacktEnterprise
on Twitter, or the Packt Enterprise Facebook page.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

This book is dedicated:

To my favorite uncle, Benjamin Jacob Daniel, for always making me smile and for
inspiring me to work hard and achieve my dreams. I miss you a lot.

To Choi Chun Chiet, for the encouragement and support during the writing of
this book.

To Chan Ban Guan, for the continued patience, encouragement, and support,
and most of all for believing in me during the writing of this book.

To my family, for always believing in me and for their continued love and support.

To my niece, Ava Madison Daniel, thank you for continually bringing joy to our family.

To the late Steve Jobs—you will always be an inspiration and a guide towards
perfection. Thank you for all the amazing things you've brought to our lives. May you

rest in peace.

This book would not have been possible without the love and understanding of
everyone I've mentioned. I would like to thank you all from the bottom of my heart.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Table of Contents

Preface 1

Chapter 1: Getting and Installing the iOS SDK 7

Getting and installing the iOS SDK 8

The iOS Simulator 12
Layers of the iOS architecture 13

The Core OS layer 14

The Core Services layer 15

The Media layer 16

The Cocoa-Touch layer 18

Building the HelloWorld application 19
Placing objects within the View 22

Removing the Xcode Developer Tools 24

Summary 25
Chapter 2: Task Priorities – Building a TaskPriorities iOS App 27

Building the TaskPriorities app 28
Adding the required frameworks 30

Creating the main application screen 31

Handling multiple screen orientations when the device is rotated 32

Adding the table control to hold item data 33

Adding the Add button 40

Adding the Refresh button 41

Navigating between screens using Storyboards 51

Implementing the Save record method 61

Implementing the Add a record to the table method 61

Implementing the Cancel method 62

Implementing the Refresh button method 62

Implementing the Delete row method 63

Finishing up 64

Summary 65

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Table of Contents

[ii]

Chapter 3: VoiceRecorder App – Audio Recording and Playback 67
Overview of the technologies 68

Building the VoiceRecorder app 68

Adding the AVFoundation and MessageUI frameworks 70
Creating the main application screen 72

Adding the Start Recording button 73

Adding the Play button 74

Adding the Stop button 75

Adding the E-mail button 76

Implementing the View Controller class 80

Implementing the voiceRecord method 83

Implementing the voicePlayback method 85

Implementing the voicePlaybackStop method 86

Implementing the e-mailRecording method 86

Implementing the VoiceVisualizer class 89

Finishing up 92
Summary 94

Chapter 4: Enhanced AddressBook App – Core Data 95
Overview of the Core Data technologies 96
Building the AddressBook application 98

Adding the GameKit framework 100

Building the Core Data model 102
Creating our Core Data model iles 104
Adding the Storyboard screen 108

Creating the main application screen 112

Adding a table control to hold the item data 112

Adding the Add button 116

Adding the Action button 117

Navigating between screens using Storyboards 125

Implementing the save record method 132

Implementing the cancel method 133

Implementing the delete row method 133

Implementing the didSelectRowAtIndexPath method 134

Transferring contact details using Bluetooth 135
Implementing the connect method 137

Implementing the Action button method 140

Finishing up 143

Implementing the search functionality 144

Summary 150
Chapter 5: BatteryMonitor Application 151

Overview of the technologies 152
Building the BatteryMonitor application 153

Adding the MessageUI framework to the project 154
Creating the main application screen 155

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Table of Contents

[iii]

Adding the Enable Monitoring UISwitch control 156

Adding the Send E-mail Alert UISwitch control 157

Adding the Fill Gauge Levels UISwitch control 158

Adding the Increment Bars UIStepper control 158

Adding the System Information (UITextView) control 160

Building the Battery Monitor functionality 164
Implementing the View Controller class 165

Implementing the determineBatteryStatus: method 167

Implementing the enableMonitoring: method 170

Implementing the sendEmailAlert: method 172

Implementing the illGauge: method 174
Implementing the totalNoBars: method 175

Implementing the Battery Gauge class 176

Finishing up 184

Summary 185
Chapter 6: RouteTracker Application 187

Overview of the technologies 188

Building the RouteTracker application 189

Adding the Core Location and MapKit frameworks 190
Creating the main application screen 193

Adding the Start Tracking button 193

Adding the Refresh Map button 194

Adding the Change Map Type button 195

Building the RouteTracker functionality 200
Implementing the View Controller class 201

Implementing the startTracking: method 204

Implementing the refreshMap: method 205

Implementing the changeMapType: method 206

Implementing the locationManager: method 207

Implementing the locationManager:didFailWithError: method 208

Implementing the shouldAutorotateToInterfaceOrientation: method 210

Implementing the TrackMapView class 210

Finishing up 215
Summary 217

Chapter 7: VeterinaryClinic Application 219
Overview of the technologies 220
Building the VeterinaryClinic application 220

Building the Core Data model 222
Creating our Core Data model iles 226
Adding the Storyboard screen 230

Creating the main application screen 231

Adding the table control to hold pet information 232

Adding the Add button 234

Adding the Edit button 234

Navigating between screens using Storyboards 244

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Table of Contents

[iv]

Functionality 255
Implementing the btnSavePet: method 258

Implementing the btnCancel: method 260

Implementing the btnAddPhoto: method 260

Implementing the btnCameraPhoto: method 261

Implementing the Delete row method 262

Finishing up 264
Summary 267

Chapter 8: Social Networking Application 269
Overview of the technologies 270
Downloading the Facebook iOS SDK 271

Registering your iOS app with Facebook 272

Building the Social Networking application 276
Adding the Facebook iOS SDK to our project 277

Creating the main application screen 280
Adding the Sign-in button 280

Adding the Sign-out button 281

Adding the Action button 282

Building the Facebook app functionality 286
Implementing SSO within your app 286

Implementing the Application Delegate class 287

Implementing the View Controller class 292

Adding the LogOut functionality to your app 295

Requesting additional permissions 296

Using the Graph API 298

Integrating with social channels 302

How to handle errors 304

Implementing the postMessageButton: method 305

Implementing the loginButton: method 306

Finishing up 307
Summary 309

Chapter 9: External Displays using Airplay and Core Image 311
Overview of the technologies 312
Building the ExternalDisplays application 312

Adding the Media Player framework to our project 314

Creating the main application screen 315
Adding the Browse button 316

Adding the Camera button 316

Adding the Play Video button 317

Adding the Transitions button 317

Adding the VGA Out button 317

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Table of Contents

[v]

Functionality 320
Implementing the View Controller class 320

Implementing the btnBrowse: method 323

Implementing the btnCamera: method 324

Implementing the btnPlayVideo: method 327

Using AirPlay to present application content to Apple TV 329
Implementing the btnTransitions: method 332

Understanding the Core Image framework 333

Applying image ilter effects using the CIImage class 335
Applying transitions to images 340

Presenting content out to an external monitor device 342
Implementing the shouldAutorotateToInterfaceOrientation: method 344

Finishing up 345
Summary 346

Chapter 10: Storing Documents within the Cloud 347
Overview of the technologies 348

Methods to store and use documents

within iCloud 348
The ile coordinator 349
The ile presenter 349

Using the iCloud storage APIs 350

Handling iCloud ile-version conlicts 352
Building the ScratchPad application 352

Creating the main application screen 354

Adding the table control to hold iCloud document data 354

Adding the Add button 356

Adding the Edit button 356

Navigating between screens using Storyboards 369

Functionality 376
Implementing the btnSave: method 378

Implementing the btnCancel: method 380

Implementing the AddDocumentDetails: method 380

Implementing the EditDocumentDetails: method 381

Finishing up 381

Requesting entitlements for iCloud storage 383
Coniguring your iOS device to use iCloud 388
iCloud storage space 391

Summary 393
Index 395

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http:///
http://www.allitebooks.org

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Preface
The iPad is transforming the way businesses work with the power of mobile
solutions; these include the manufacturing, retail services, and medical industries.
Using the iPad makes it easy to deliver stunning presentations, collaborate with
colleagues remotely, and access important business information from wherever
your work takes you.

Some businesses have been using the iPad as a mobile sales tool to help manage
all of your customer relationships. With its wireless connectivity, iPad gives you
an on-the-spot access to your CRM database for customer information, sales data,
and task lists.

iPad Enterprise Application Development BluePrints will help you learn how to
build simple, yet powerful iOS 5 applications for the iPad, incorporating: storing
documents within the Cloud, Facebook integration, Core Image, Route Tracking,
Audio Recording and Playback, as well as monitoring the iOS device battery levels.

In this book, I have tried my best to keep the code simple and easy to understand.
I have provided step-by-step instructions with loads of screenshots at each step to
make it easier to follow. You will soon be mastering the different aspects of iOS 5
programming, as well as mastering the technology and skills needed to create some
stunning applications. Feel free to contact me at geniesoftstudios@gmail.com for
any queries, or just want to say "Hello". Any suggestions for improving this book
will be highly regarded.

What this book covers
Chapter 1, Getting and Installing the iOS SDK, introduces the developer to the Xcode
developer set of tools, as well as the capabilities of the iOS Simulator, and each of the
layers contained within the iOS architecture, before inally looking at how to create a
simple Hello World iOS application.

This material is copyright and is licensed for the sole use by on 7th October 2012

mailto:geniesoftstudios@gmail.com
http:///

Preface

[2]

Chapter 2, Task Priorities – Building a TaskPriorities iOS App, introduces you to the
Storyboards feature, and shows how we can use these to create and conigure scenes,
to build an application that is capable of storing task-related information. We will
also look at how we can apply transitions between each scene, to present these
programmatically.

Chapter 3, VoiceRecorder App – Audio Recording and Playback, focuses on learning
how we can use the built-in microphone of the iOS device, to record and save audio
content for playback later. We will learn how to use the Core Graphics framework
to draw a visual representation of the voice input, and then learn how to use the
MessageUI framework to attach and e-mail the audio content.

Chapter 4, Enhanced AddressBook App – Core Data, focuses on showing you how to
use the Core Data framework to create a simple AddressBook application, to directly
interface with a SQLite database, to create and store client information. We will
also look at how to incorporate the Bluetooth functionality, so that you can send
address book information to another iOS device, and have this information received
wirelessly and stored within the database at the other end.

Chapter 5, BatteryMonitor Application, shows how we can use the Core Graphics
framework to create and draw a gauge that will be used to represent the total
amount of battery life remaining on the iOS device. We will also learn how to use
the MessageUI framework to send an e-mail when the battery level falls below
a set threshold.

Chapter 6, RouteTracker Application, focuses on how to use the Core Location and
MapKit frameworks to monitor the current user's location and heading. We will learn
how to use overlays, and overlay this onto the map whenever the route taken by the
user changes. The route taken by the user is then visually drawn to the overlay and
then applied to the map.

Chapter 7, VeterinaryClinic Application, focuses on how to use the Core Data
framework to create a simple VeterinaryClinic application to create and edit
pet information, through the use of Storyboards. We will look at how to create the
application's database schema, as well as learn how to store images to the database
using the iOS device's camera, or manually chosen using the UIImagePicker control.

Chapter 8, Social Networking Application, shows you how to download the Facebook
SDK and register your application with Facebook. It also shows you how to use
the Facebook APIs to integrate the Facebook functionality into your app, using the
Single Sign-On (SSO) feature. This provides users the ability to sign into your
application using their Facebook identity, so that they can submit notiication

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Preface

[3]

requests, or submit content to their timeline. We will learn how to use the Open
Graph API and Facebook Query Language (FQL) to pass SQL query-like syntax
to retrieve information about the current user, and learn how to cleanly handle
Facebook errors within our iOS applications.

Chapter 9, External Displays using Airplay and Core Image, focuses on learning about the
Airplay and Core Image frameworks, and how to go about using and implementing
these into our applications. This chapter also explains the different image ilter
effects, how to implement transition animations to produce a water ripple effect.
It also covers how to incorporate Airplay and VGA-Out functionality into your
application, so that you can have your application displayed out to an external
device, such as Apple TV or a VGA monitor.

Chapter 10, Storing Documents within the Cloud, introduces you to the beneits of using
iCloud, and how to incorporate the iCloud functionality into your applications to store
and retrieve iles, and its data through the use of the Storage APIs. This chapter will
also give you some insight into how to go about handling ile-version conlicts when
multiple copies of the same ile are being updated on more than one iOS device.

Bonus chapter, Packaging and Distributing Your Applications (online: http://www.
packtpub.com/sites/default/files/downloads/Packaging and Distributing

Your Applications.pdf), introduces you to the Apple Human Interface Guidelines,
as well as focusses on how to effectively use Instruments within our applications
to eliminate bottlenecks that could potentially cause our application to crash on
the user's iOS device. We will also take a look at the necessary steps required to
successfully submit your applications to the App Store, and explain how to register
devices for testing, and how to create and obtain provisioning proiles for both
development and distribution.

What you need for this book
This book assumes that you have an Intel-based Macintosh running Snow Leopard
(Mac OS X 10.6.2, or later). I would highly recommend upgrading to Lion or Mountain
Lion, as there are many new features in Xcode that are available only to these two
operating systems.

We will be using Xcode 4.4.1, which is the integrated development environment used
for creating applications for iOS development. You can download the latest version
of Xcode at the following URL: http://developer.apple.com/xcode/.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Preface

[4]

Who this book is for
If you are an iPad application developer looking forward to building enterprise
applications that interact with Facebook, iCloud, Core Location, and the Core Image
frameworks into your applications, then this book is for you. You should have a good
knowledge of and programming experience with Objective-C and have used Xcode 4.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Enter in HelloWorld as the name for
your project."

A block of code is set as follows:

#import <UIKit/UIKit.h>

@interface TasksViewController : UITableViewController

@property (nonatomic, strong) NSMutableArray *tasks;

@end

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

#import "Task.h"

@implementation Task

@synthesize taskName;

@synthesize description;

@synthesize priority;

@synthesize dueDate;

@end

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Preface

[5]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
" Click on the Next button to proceed to the next step in the wizard.".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased from
your account at http://www.PacktPub.com. If you purchased this book elsewhere, you
can visit http://www.PacktPub.com/support and register to have the iles e-mailed
directly to you.

This material is copyright and is licensed for the sole use by on 7th October 2012

http://www.PacktPub.com
http://www.PacktPub.com/support
http:///

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by on 7th October 2012

mailto:copyright@packtpub.com
http:///

Getting and Installing

the iOS SDK
Welcome to the exciting world of iOS programming for the iPad using iOS 5. This
latest release of the mobile operating system is packed with some great new features
and improvements to the way things used to be done. When Apple hosted its yearly
World Wide Developer Conference in June 2011, it introduced more than 200 new
features, and an updated SDK that features over 1,500 new development APIs.

The iPad is transforming the way businesses work with the power of mobile
solutions. These include the manufacturing, retail services, and medical industries.
Using the iPad makes it easy to deliver stunning presentations, collaborate with
colleagues remotely, and access important business information from wherever
your work takes you.

Some businesses have been using the iPad as a mobile sales tool to help manage
all of your customer relationships. With its wireless connectivity, iPad gives you
on-the-spot access to your CRM database for customer information, sales data,
and task lists.

My goal of this chapter is to introduce you to each of the layers of the iOS architecture,
as well as the capabilities of the iOS simulator. We will take a look at the steps involved
in getting and installing the Xcode Developer Tools that come as a part of the Software
Development Kit (SDK), before inally looking at how to create a simple HelloWorld
iOS application.

In this chapter we will:

• Download and install the Xcode development tools

• Learn about the iOS Simulator and the iOS architecture

• Learn about the different frameworks of the iOS SDK

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Getting and Installing the iOS SDK

[8]

• Create a simple HelloWorld application for the iPad

• Learn how to uninstall the Xcode development tools

We have a fantastic journey ahead of us, so let's get started.

Getting and installing the iOS SDK
Before you can start building iOS applications, you must irst sign up as a registered
user of the iOS Developer Program. The registration process is free, and provides
you with access to the iOS SDK and other developer resources that are really useful
for getting you started.

To sign up, you will need to go to https://developer.apple.com/programs/ios/,
then click on the Log In button to proceed, as shown in the following screenshot:

When you become a member, you will have access to numerous resources to help
you get started. The following is a short list of some of the things that you will be
able to access upon becoming a member of the iOS Developer Program:

This material is copyright and is licensed for the sole use by on 7th October 2012

http://developer.apple.com/programs/ios/
http:///

Chapter 1

[9]

• Helpful getting started guides to help you get up and running quickly

• Helpful tips that show you how to submit your apps to the App Store

• Ability to download current releases of the iOS software

• Ability to trial Beta releases of the iOS software and the iOS SDK

• Access to the Apple Developer Forums

Once you have signed up, you will be able to download the iOS SDK, as shown in
the next screenshot. It is worthwhile making sure that your machine satisies the
following system requirements prior to downloading the iOS SDK:

• Only Intel Macs are supported, so if you have another processor type
(such as the older G4 or G5 Macs), you're out of luck

• You have updated your system with the latest Mac OS X software updates
for either Mac OS X Lion or Snow Leopard

Developing applications for the iPad uses the same Operating System
(OS) as the iPhone. So you can still use the iPhone SDK. This SDK
allows you to create universal applications that will work with both the
iPhone and iPad running on iOS 4 and above.

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http:///
http://www.allitebooks.org

Getting and Installing the iOS SDK

[10]

Xcode can also be obtained from the Mac App Store at http://itunes.apple.com/
us/app/xcode/id497799835?mt=12, depending on whether you have chosen the
version for Mac OS X Lion. The installation procedure in the following section shows
how to go about installing the iOS development tools for Snow Leopard.

Once you have downloaded the SDK for Snow Leopard, you can proceed with
installing it. You will be required to accept a few licensing agreements. You will
then be presented with a screen to specify the destination folder in which SDK
 is to be installed:

If you select the default settings during the installation phase, the various
tools (which are explained in detail next) will be installed in the /Developer/
Applications folder. The installation process takes you through the custom
installation option screens. You probably would have seen similar screens to this if
you have installed any other Mac software. The following screenshot shows what
you will see:

This material is copyright and is licensed for the sole use by on 7th October 2012

http://itunes.apple.com/us/app/xcode/id497799835?mt=12
http://itunes.apple.com/us/app/xcode/id497799835?mt=12
http:///

Chapter 1

[11]

The options in the preceding screenshot give you a little more control over the
installation process. For example, you are able to specify the folder location to install
Xcode, as well as settings for a variety of other options.

The iOS SDK comes as part of the Xcode developer tools download, which you'll ind
at https://developer.apple.com/devcenter/ios/index.action.

The SDK consists of the following components:

• Xcode: This is the main Integrated Development Environment (IDE) that
enables you to manage, edit, and debug your projects

• DashCode: This enables you to develop web-based iOS applications and
dashboard widgets

• iOS Simulator: This is a Cocoa-based application that provides a software
simulator to simulate an iOS device on your Mac OS X

• Instruments: These are the analysis tools that help you optimize your
applications and monitor for memory leaks in real-time

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Getting and Installing the iOS SDK

[12]

The following screenshot displays a list of the various tools that are installed as part
of the default settings, during the installation phase. These are installed in the /
Developer/Applications folder:

The iOS Simulator
The iOS Simulator is a very useful tool that enables you to test your applications
without using your actual device, whether this is your iPad or any other iOS device.
You don't need to launch this application manually, as this is done when you build
and run your application within the Xcode IDE. Xcode automatically installs your
application on the iOS Simulator for you.

The iOS Simulator also has the capability of simulating different iOS versions,
and this can become extremely useful if your application needs to be installed on
different iOS platforms, as well as testing and debugging errors reported in your
application when run under different versions of the iOS.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 1

[13]

The following screenshot shows the default settings that come as part of the
iOS Simulator:

While the iOS Simulator acts as a good test bed for your applications,
it is recommended to test your application on the actual device, rather
than relying on the iOS Simulator for testing.

This is because the speed of the iOS Simulator relies on the performance
of your Mac, instead of the actual device. The iOS Simulator application
can be found at the following location: /Developer/Platforms/
iPhoneSimulator.Platform/Developer/Applications.

Layers of the iOS architecture
Apple delivers most of its system interfaces in special packages called frameworks.
Using frameworks allows you to link these system interfaces into your application
project just as you would in any other shared library. Linking them to your project
gives you access to the features of the framework, and also lets the development
tools know where to ind the header iles and other framework resources.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Getting and Installing the iOS SDK

[14]

Apple describes the set of frameworks and technologies that are currently
implemented within the iOS operating system as a series of layers. Each of
these layers is made up of a variety of different frameworks that can be used
and incorporated into your applications.

We will now go into detail and explain each of the different layers of the iOS
architecture. This will give you a better understanding of what is covered within
each of the Core layers.

The Core OS layer
The Core OS layer is the bottom layer of the hierarchy, and is responsible for the
foundation of the operating system that the other layers sit on top of.

This important layer is in charge of managing the memory—allocating and releasing
memory once the application has inished with using it, taking care of ile system
tasks, handling networking, and other operating system tasks, as well as interacting
directly with the hardware.

The Core OS layer consists of the following components:

Component name Description

OS X Kernel It is based on Mach 3.0, and is responsible for every
aspect of the operating system.

Mach 3.0 It is a subset of the OS X Kernel, and is responsible for
running applications within a separate process.

Berkeley Standard
Distribution (BSD)

It is based on the Kernel environment within the Mac
OS X, and is responsible for managing the the drivers
and low-level UNIX interfaces of the operating system.

Sockets It is a part of the CFNetwork framework, and is
responsible for providing access to the BSD sockets,
HTTP, and FTP protocol requests.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 1

[15]

Component name Description

Security The Security framework provides functions for
performing cryptographic functions (encrypting/
decrypting the data). This includes interacting with the
iPhone keychain to add, delete, and modify items.

Power management It conserves power by shutting down any hardware
features that are not being used currently.

Keychain It is a part of the Security framework, and is responsible
for handling and securing data.

Certificates It is a part of the Security framework, and is responsible
for handling and securing data.

File system The system framework gives developers an access
to a subset of the typical tools they would find in an
unrestricted UNIX development environment.

Bonjour It is a part of the CFNetwork framework, and is
responsible for providing access to the BSD sockets,
HTTP, and FTP protocol requests, and Bonjour
discovery over a local-area-network.

For more information on the iOS Core OS layer, please refer to the
Apple Developer Connection website at the following link: http://
developer.apple.com/library/ios/#documentation/
Miscellaneous/Conceptual/iPhoneOSTechOverview/
CoreOSLayer/CoreOSLayer.html#//apple_ref/doc/uid/
TP40007898-CH11-SW1.

The Core Services layer
The Core Services layer provides an abstraction over the services provided in the
Core OS layer. It provides fundamental access to the iOS services. The Core Services
layer consists of the following components:

Component name Description

Collections It is the part of the Core Foundation framework that
provides basic data management and service features for iOS
applications.

Address book It provides access to the user's Address Book contacts on the
iOS device.

Networking This is part of the System Configuration framework, which
determines network availability and state on an iOS device.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Getting and Installing the iOS SDK

[16]

Component name Description

File access It provides access to lower-level operating system services.

SQLite This lets you embed a lightweight SQL database into your
application without running a separate remote database
server process.

Core data This framework is provided to ease the creation of data
modeling and storage in applications based on Model-
View-Controller (MVC). Use of the Core Data framework
significantly reduces the amount of code that needs to be
written to perform common tasks when working with
structured data in an application.

Core location It is used for determining the location and orientation of an
iOS device.

Net services It is part of the System Configuration that determines
whether a Wi-Fi or cellular connection is in use and whether
a particular host server can be accessed.

Threading It is part of the Core Foundation framework that provides
basic data management and service features for iOS
applications.

Preferences It is part of the Foundation framework that provides the
foundation classes for Objective-C, such as NSObject, basic
data types, operating system services, and so on.

URL utilities Part of the Foundation Framework that provides the
foundation classes for Objective-C, such as NSObject, basic
data types, operating system services, and so on.

For more information on the iOS Core Services layer, please refer to
the Apple Developer Connection website at the following location:
http://developer.apple.com/library/ios/documentation/
Miscellaneous/Conceptual/iPhoneOSTechOverview/
CoreServicesLayer/CoreServicesLayer.html#//apple_ref/
doc/uid/TP40007898-CH10-SW5.

The Media layer
The Media layer provides multimedia services that you can integrate and use within
each of your iOS devices. The Media layer is made up of the following components:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 1

[17]

Component name Description

Core audio It handles the playback and recording of
audio files and streams, and also provides
access to the device's built-in audio
processing units.

OpenGL It is used for creating 2D and 3D animations.

Audio mixing It is a part of the Core Audio framework,
and provides the possibility to mix system
announcements with background audio.

Audio recording It provides the ability to record sound on the
iPhone using the AVAudioRecorder class.

Video playback It provides the ability to playback a video
using the MPMoviePlayerController class.

Image formats: JPG, PNG, and TIFF It provides interfaces for reading and writing
most of the image formats—part of the Image
I/O framework.

PDF It provides a sophisticated text layout and
rendering engine.

Quartz This framework is used for image and video
processing, and animation using the Core
Animation technology.

Core animations It provides advanced support for animating
views and other content. This is part of the
Quartz framework.

OpenGL ES This is a subset of the OpenGL framework for
creating 2D and 3D animations.

For more information on the iOS Media layer, refer to the Apple
Developer Connection website at the following link: http://
developer.apple.com/library/ios/#documentation/
Miscellaneous/Conceptual/iPhoneOSTechOverview/
MediaLayer/MediaLayer.html#//apple_ref/doc/uid/
TP40007898-CH9-SW4.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Getting and Installing the iOS SDK

[18]

The Cocoa-Touch layer
The Cocoa-Touch layer provides an abstraction layer to expose the various libraries
for programming each of the different iOS devices. You can probably understand
why Cocoa-Touch is located at the top of the hierarchy due to its support
for Multi-Touch capabilities. The Cocoa-Touch layer is made up of the
following components:

Component name Description

Multi-touch events These are the events, which are used to determine
when a tap, swipe, pinch, double-tap has
happened; that is, TouchesMoved, TouchesBegan,
and TouchedEnded.

Multi-touch controls It is based on the Multi-Touch model, and
determines when a user has placed one or more
fingers touching the screen before responding to
the action accordingly.

View hierarchy It deals with the MVC and the objects within the
view.

Alerts Using the UIAlertView class, these are used to
communicate with the user when an error arises,
or to request further input.

People picker It is based on the Address Book framework, and
displays the person's contact details.

Controllers It is based on the MVC for presenting standard
system interfaces and to provide much of the logic
needed to manage basic application behaviors. For
example, managing the reorientation of views in
response to device orientation changes.

Accelerometer/gyroscope It responds to motion and measures the degree
of acceleration, and rate of rotation around a
particular axis.

Localization/geographical It adds maps and satellite images to location-based
apps, similar to the one provided by the Maps
application.

Web views It provides a view to embed the web content and
display rich HTML.

Image picker It provides a potentially multidimensional
user-interface element, consisting of rows and
components.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 1

[19]

For more information on the iOS Cocoa-Touch Layer, refer to the
Apple Developer Connection website at the following link: http://
developer.apple.com/library/ios/documentation/
Miscellaneous/Conceptual/iPhoneOSTechOverview/
iPhoneOSTechnologies/iPhoneOSTechnologies.html#//
apple_ref/doc/uid/TP40007898-CH3-SW1.

Building the HelloWorld application
Before we can proceed with creating our Hello World application, we must irst
launch the Xcode 4.2 development environment. Double-click on the Xcode icon
located in the /Developer/Applications folder.

Alternatively, you can use Spotlight to search for this: simply type xcode into
the Search box and Xcode should be displayed in the list at the top. When Xcode
is launched, you should see the Welcome to Xcode screen, as shown in the
following screenshot.

Since we will be creating a variety of different Xcode applications, it may be worth
docking the Xcode icon to your Mac OS X launch bar for each access, as we will be
using it a lot throughout this book.

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http:///
http://www.allitebooks.org

Getting and Installing the iOS SDK

[20]

It is very simple to create our application in Xcode. Just follow the steps listed here:

1. Launch Xcode from the /Developer/Applications folder.

2. Choose Create a new Xcode project, or File | New Project.

3. Select the Single View Application template from the Project template
dialog box:

4. Select iPad from under the Device Family drop-down.

5. Ensure that the Use Storyboards checkbox has not been checked.

6. Ensure that the Use Automatic Reference Counting checkbox has not
been checked.

7. Ensure that the Include Unit Tests checkbox has not been checked.

8. Click on the Next button to proceed to the next step in the wizard:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 1

[21]

9. Enter in HelloWorld as the name for your project, and click on the Next
button to proceed to the next step of the wizard.

The company identifier for your app needs to be unique. Apple
recommends that you use the reverse-domain style (for example,
com.DomainName.AppName).

10. Specify a location where you would like to save your project:

11. Then, click on the Create button to save your project at the location speciied.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Getting and Installing the iOS SDK

[22]

Once your project has been created, you will be presented with the Xcode
development interface, along with the project iles that the template has created
for you, within the Project Navigator window.

Placing objects within the View
We will now start to build the user interface for our HelloWorld application,
using the controls from the Xcode Object Library and changing some of the
components properties:

1. From the Project Navigator window, select the ViewController.xib ile.
This will display a blank canvas, which will be used for our
control placement.

2. Next, simply drag the (UILabel) Label item from the Object Library onto
our view, and resize accordingly, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 1

[23]

3. Once the label has been added, select this control (using the mouse) and click
on the Object Attributes button.

4. You will notice that the Object Attributes properties pane is displayed and
contains various other properties associated with this particular control. You
will be able to change the Text Color and Font size properties of the label, as
well as the alignment of the control to position it where you would like it to
be situated within the view.

5. Next, change the Label text to Hello, welcome to the World of iPad
Programming.

6. Then, change the Lines property to read 2.

7. Next, set the Alignment property to be centered.

8. Finally, change the Font properties size to read 44.0, by clicking on the icon
to the right, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Getting and Installing the iOS SDK

[24]

If you have followed the steps correctly, your view should look something
similar to the one shown in the following screenshot. Feel free to adjust yours
accordingly if it doesn't.

9. Finally, run your application by choosing Product | Run from the Product
menu, or, alternatively pressing Command+R to see your changes applied
with the HelloWorld application running within the iOS Simulator.

In this section, we learned how to add a UILabel label control to our ViewController
from the Xcode Object library, and manipulate the control properties required for our
HelloWorld application.

Removing the Xcode Developer Tools
Should you ever wish to uninstall Xcode (in the event that something went
disastrously wrong), it is a very straightforward process. Open an instance
of the Terminal window and run the uninstall-devtools script, as follows:

sudo <Xcode>/Library/uninstall-devtools --mode=all

<Xcode> is the directory where the tools are installed. For typical installations,
the full path is /Developer/Library/uninstall-devtools.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 1

[25]

This process applies to installations of the Xcode developer tools, running
under Mac OS X Snow Leopard. Before proceeding, please make sure this
is what you really intend to do, as once it's gone, it's permanently deleted.
In any event, you can always choose to reinstall the Xcode developer
tools. It is worth checking that the /Developer/Library/Xcode/
folder has also been removed. If not, just move it to the Trash.

Summary
In this chapter, we learned about the layers and components of the iOS architecture,
as well as the capabilities of the iOS simulator. We also downloaded and installed
the iOS 5 SDK and familiarized ourselves with some of the Xcode development tools,
before taking a look at how to create a simple HelloWorld application.

In the next chapter, we will get stuck right in to some more complex applications,
and look at how to create a task priorities application using the Storyboard feature,
as well as incorporating the use of TableViews.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building

a TaskPriorities iOS App
TaskPriorities is a small application that provides us with the ability to record a list
of everyday tasks that need to be attended to. It will record the name of the task and
its priority, a brief description of the task, and when it is due to be completed by.

In this chapter, we will be taking a closer look at how we can use the exciting new
Storyboard Editor that comes as part of iOS 5, and integrate it into the Xcode 4 IDE,
which will enable us to develop our applications quickly, using the least amount
of code.

We will start by designing our user interfaces, then create and set up the
relationships so that we can navigate between each of the different view controllers
within the Storyboard, through the use of segues (pronounced segway). We will also
create our own UITableViewController delegates, so that we can pass back and
forward information pertaining to our tasks, for them to be added to each of
our table views.

In this chapter we will:

• Build the TaskPriorities application using Storyboards
• Learn how to navigate between each View controller using Storyboards

• Learn how to handle screen orientations when the device is rotated

• Implement the functionality to add an item to UITableView

• Implement methods to save and delete items

• Implement methods to refresh the table view items

We have an exciting project ahead of us, so let's get started.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[28]

Building the TaskPriorities app
Creating tasks and prioritizing them is one of the most common things that we do in
our everyday lives. Project managers do these as part of their job when allocating and
prioritizing the urgency of the tasks that are assigned to each member of the team.

In this section, we will take a look at how to create an application that we can use to
run on an iOS device, enabling us to create tasks, set their order of priority, provide
them with a brief description, and then assign them with a date when they are due.

We will also write this information into a UITableView control, and provide the
functionality to delete items that have been previously added to the list.

Before we can proceed, we irst need to create our TaskPriorities project. To refresh
your memory on how to go about creating a new project, you can refer to the section
that we covered in Chapter 1, Getting and Installing the iOS SDK, under the section
named Building the HelloWorld application.

It is very simple to create this in Xcode; just follow the steps listed here:

1. Launch Xcode from the /Xcode4/Applications folder.

2. Choose Create a new Xcode project or File | New Project.

3. Select the Single View Application template from the list of
available templates.

4. Select iPad from under the Device Family drop-down.

5. Select the Use Storyboard checkbox.

6. Select the Use Automatic Reference Counting checkbox.

7. Ensure that the Include Unit Tests checkbox has not been selected.

8. Click on the Next button to proceed to the next step in the wizard:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[29]

9. Enter in TaskPriorities as the name for your project, and click on the Next
button to proceed to the next step of the wizard.

10. Specify the location where you would like to save your project.

11. Then, click on the Save button to continue and display the Xcode
workspace environment.

Now that we have created our TaskPriorities project, we need to add the Core
Graphics framework to our project. This will enable us to perform the various
transition effects between our various view controllers when using Storyboards.

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http:///
http://www.allitebooks.org

Task Priorities – Building a TaskPriorities iOS App

[30]

Adding the required frameworks
As we mentioned previously, we need to add the Core Graphics framework to our
project that will enable us to perform these special effects. To add the Core Graphics
framework, select Project Navigator Group, and follow these simple steps as
outlined here:

1. Click and select your project from Project Navigator.

2. Then, select your project target from under the TARGETS group.

3. Select the Build Phases tab.

4. Expand the Link Binary With Libraries disclosure triangle.

5. Finally, use the + button to add the library you want.

6. Select the CoreGraphics.framework from the list of available frameworks.

If you can't find the framework you are looking for, there is an
added ability to search for this directly, right from within the
list of available frameworks.

If you are still confused how to go about adding the framework,
follow this screenshot, which highlights the areas that you need
to select (surrounded by a rectangle):

Now that we have added CoreGraphics.framework into our project, we need to start
building our user interface, which will be responsible for allowing us to create and
add new tasks directly into our list.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[31]

Creating the main application screen
Now that we have created our TaskPriorities project, we can start building our
user interface using Storyboards, which will be responsible for allowing us to create
new tasks and having them stored within a table view.

The screens will consist of a Tab Bar controller, Navigational controller, and View
controllers. The Navigational controller enables us to create relationships between
the other screens within the Storyboard and set up the required connections, known
as segues. A segue represents a transition from one screen to another.

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. Select the View Controller control that was originally added by the template,
and then delete it.

3. From Object Library, select-and-drag a (UITabBarController) Tab Bar
Controller control, and add this to our view.

If you have followed the steps correctly, your Storyboard should look similar to the
following screenshot; if it doesn't look quite the same as mine, feel free to adjust yours:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[32]

The Tab Bar controller comes pre-conigured with two other view controllers, one
for each tab that is represented by each image button at the bottom of the Tab Bar
Controller control. The container relationship between each screen is represented
within the Storyboard editor between the Tab Bar controller and the View controllers
that it contains.

Handling multiple screen orientations when the
device is rotated
There may be times when you may want to have your application content displayed
in various views when the iOS device rotates, providing a fast and natural feel.

When designing your iOS applications, think about how the user will be interacting
with the TaskPriorities application. For example, will the application provide
support for both portrait and landscape views, or will it just support portrait mode?
Apple states, in their Human Interface Guidelines, that the content must be viewable in
both portrait and landscape orientations.

Fortunately, this process of having your application support these different views
of rotation is quite painless. To allow your application's user interface to rotate and
resize into another view, you will need to add just a single method.

When the iOS device wants to check to see whether it should rotate your interface,
it sends the shouldAutorotateToInterfaceOrientation: message to your view
controller, along with the parameter that indicates which orientation it needs to check.

Your implementation of shouldAutorotateToInterfaceOrientation: should
compare the incoming parameter against the different orientation constants
contained within the iOS, by either returning TRUE (or YES) if you want to support
that orientation.

The four basic screen orientations are described in the following table:

Orientation method iOS orientation constant

Portrait UIInterfaceOrientationPortrait

Portrait upside-down UIInterfaceOrientationPortraitUpsideDown
(iPad only)

Landscape left UIInterfaceOrientationLandscapeLeft

Landscape right UIInterfaceOrientationLandscapeRight

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[33]

For example, to allow your iOS interface to rotate to either the portrait or landscape left
orientations, we would implement shouldAutorotateToInterfaceOrientation: in
your viewController.m view controller, as follows:

-(BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)interfaceOrientation

{

 // Return TRUE based on the support orientations listed.

 Return (interfaceOrientation == UIInterfaceOrientationPortrait||

 interfaceOrientation == UIInterfaceOrientationLandscapeLeft);

}

So far we have added a Tab Bar controller, consisting of two view controllers that
don't provide any functionality as yet. In this section, we will start building our
user interface and add the required controls that will be used to process and hold
our task items.

Adding the table control to hold item data
Our next step is to add a UITableViewController control that will be used to hold
and list our task entries. We will need to include a Navigation controller that will
allow us to call the UITableViewController view within the Storyboard whenever
a new item is to be added. Implementing UINavigationController is very simple,
and we will take a look at how this is done in a few moments. So, what happens
when a view gets displayed? Well, the navigation controller does what is known
as a "push its view controller onto the stack."

What this means is that a new instance of the controller is instantiated and added
to the stack, then the previous controller gets pushed further down the stack. An
example of this would be to think of a set of plates being placed on top of each other.

When the user decides it's time to return to the previous screen, the navigation
controller pops the current view off the stack, which results in this being unloaded
from memory.

The previous view controller then moves to the top of the stack and then becomes
active again, hence allowing the user to navigate onto another item. The Navigation
Controller control enables us to create relationships between the other views within
the Storyboard, and set up the required connections, known as segues, which
represent a transition from one screen to another.

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UITableViewController)
Table View Controller control, and add this to our view.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[34]

3. Next, we need to create a Navigation controller between the Tab Bar
Controller control and UITableViewController that we just added.
There are two ways in which this can be achieved—you can either drag
UINavigationController directly onto the view, or you can let Xcode do
this for you automatically.

4. Select UITableViewController that we just added, and then choose
Editor | Embed In | Navigation Controller from the Editor menu.

If you have followed the steps correctly, your Storyboard should look similar to the
following screenshot; if it doesn't look quite the same as mine, feel free to adjust yours:

You will notice that by embedding the Table View Controller control, this
automatically gets included within the navigation bar. The Storyboard Editor
automatically added it in there for us, because the scene will now be displayed
inside the Navigation controller's frame.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[35]

The UINavigationBar screen is not a real UINavigationBar
object; the Storyboard Editor has simulated this for us. This can be
seen from within the attributes inspector as shown in the following
screenshot.

In the Simulated Metrics section, you will notice that Inferred has been set up as
the default setting for each of the options; this is the default setting for storyboards.
Inferred means that the scene will show a navigation bar when the Table View
Controller control is inside a Navigation Controller control.

You have the ability to override any of these settings if you want to, but keep in
mind that these are here only to help you when designing your screens. These aren't
used during runtime, and are only available to show you how your screen will end
up looking like when it is run on the iOS device.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[36]

Our next step is to connect these scenes to our Tab Bar Controller control, so that the
Table View Controller control will be the irst screen to be displayed when it is run:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[37]

1. Select the Tab Bar Controller control, then hold down the Ctrl key, drag
from Tab Bar Controller to Navigation Controller, and release the mouse.

2. Choose Relationship – viewControllers from the Storyboard segues pop up.

You will notice that when we made this connection between the two
view controllers, a new tab was added to the Tab Bar Controller control,
named Item.

3. Next, we want to show the bottom toolbar within our Navigation Controller
control. Select Navigation Controller, and from the Attributes Inspector
dialog box, tick the Shows Toolbar option:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[38]

So far, we have linked up our Tab Bar Controller and Navigation Controller
controls, and have conigured the properties required for Navigation Controller;
our next step is to set up the properties on our Table View Controller control.
Follow these simple steps:

1. Select the Table View Controller that we just added previously.

2. Next, click on the toolbar located at the top of the View Controller control.

3. Then, from Attributes Inspector, change the value of Title to read Task
Priorities, as shown in the following screenshot:

If you prefer, you can also double-click the navigation bar and change its
title. You may have noticed that since we added our Table View Controller
control, Xcode gave us a warning. This is shown in the following screenshot:

This warning message comes up whenever you add a Table View Controller
control to a Storyboard, and this is because it wants to use prototype cells as
the default, but we haven't correctly conigured this control yet. Let's take a
look at the following screenshot:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[39]

4. Click on the Prototype cell from the Prototype Cells section.

5. From the Attributes Inspector section, change the value of Style to Subtitle.
This will change the cell's appearance to contain two labels.

6. Select the Identiier item and enter in TaskCell as its unique identiier.
This is used to look up and reuse existing cells without the need of having
to release and reallocate memory for new cells each time. You will notice
that once this has been entered in, Xcode will stop complaining about the
warning message we received earlier.

7. Set the Accessory attribute to show None.

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http:///
http://www.allitebooks.org

Task Priorities – Building a TaskPriorities iOS App

[40]

Adding the Add button
Our next step is to add a button to our UITableViewController; this will be
responsible for displaying an additional screen where we can create additional tasks.
This can be achieved by following these simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control to the top-left corner of the navigation bar (UITableViewController)
Table View Controller screen of the Task Priorities window that we
added previously:

3. From the Attributes Inspector section, change the Identiier to Add.

4. Then, change the value of Style to Bordered:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[41]

Now that we have added our Add button to our Task Priorities View Controller,
our next step is to add the Refresh button, which will be responsible for refreshing
our table view when the button is clicked. So let's proceed with the next section.

Adding the Refresh button
Now that we have added our button to add a new record, our next step is to
add another button to our UITableViewController; this will be responsible for
refreshing the table view. This can be achieved by following these simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UIBarButtonItem) Bar
Button Item control to the top-right corner of the navigation bar
(UITableViewController) Table View Controller screen of the Task
Priorities window that we added previously.

3. From the Attributes Inspector section, change the value of Identiier
to Refresh.

4. Then, change the value of Style to Bordered:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[42]

Now that we have added our Add and Refresh buttons, as well as properly
conigured our Table View Controller, our next step is to create our very own
custom UITableViewController subclass that will act as the data source for our
table, so that it will know how many rows to display:

1. Select the TaskPriorities folder; choose File | New | New File… or
Command+ N.

2. Select the Objective-C class template from the list of templates:

3. Click on the Next button to proceed to the next step within the wizard.

4. Enter in TasksViewController as the name of the ile to create.
5. Ensure that you have selected UITableViewController as the type of

subclass to create from the Subclass of dropdown.

6. Ensure that you have selected the Targeted for iPad option:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[43]

7. Click on the Next button to proceed with the next step of the wizard.

8. Click on the Create button to save the ile to the folder location speciied.

Now that we have added our View Controller class to our TaskPriorities
application, our next task is to update the class of UITableViewController
to use this class, instead of the default UITableViewController class:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. Click and select our Task Priorities (UITableViewController) controller.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[44]

3. Click on the Identity Inspector section, and change the value of the Custom
Class property to read TasksViewController:

Our next step is to create an NSMutableArray array property within our
TasksViewController interface ile:

1. Open the TasksViewController.h interface ile located within the
TaskPriorities folder, and enter in the following code snippet:

// TasksViewController.h

// TaskPriorities

// Created by Steven F Daniel on 30/12/11.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import <UIKit/UIKit.h>

@interface TasksViewController : UITableViewController

@property (nonatomic, strong) NSMutableArray *tasks;

@end

As you can see, all we have done is created an NSMutableArray object that
will be used to hold each of our tasks objects that we will create, and this will
also be used to act as a data source to our Task Priorities table view.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[45]

For more information about the NSMutableArray object, you can refer
to the Apple Developer documentation at the following URL: https://
developer.apple.com/library/mac/#documentation/Cocoa/
Reference/Foundation/Classes/NSMutableArray_Class/
Reference/Reference.html.

Our next step is to create the Tasks object class, which will act as a data object,
containing the necessary properties for the task name, the priority, when it is due,
and a description of the task:

1. From the TaskPriorities folder, choose File | New | New File…,
or Command + N.

2. Select the Objective-C class template from the list of templates.

3. Click on the Next button to proceed with the next step within the wizard.

4. Enter in the value of Task as the name of the ile to create.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[46]

5. Ensure that you have selected NSObject as the type of subclass to create from
the Subclass of drop-down:

The NSObject class provides us with a framework for creating, initializing,
de-allocating, copying, comparing, and archiving objects.

6. Click on the Next button to proceed with the next step of the wizard.

7. Click on the Create button to save the ile to the folder location speciied.
8. Next, open the Task.h interface ile located within the TaskPriorities

folder, and enter in the following code snippet:

// Task.h

// TaskPriorities

// Created by Steven F Daniel on 30/12/11.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

@interface Task : NSObject

@property (nonatomic, copy) NSString *taskName;

@property (nonatomic, copy) NSString *description;

@property (nonatomic, copy) NSString *priority;

@property (nonatomic, copy) NSString *dueDate;

@end

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[47]

What we have created in our Task.h interface ile is an object class that will
be used to store each task and the information associated with it. This will
make it easier when we want to pass this information back and forward,
between the various screens in our Storyboard.

9. Next, open the Task.m implementation ile located within the
TaskPriorities folder. Enter in the following highlighted code snippet:

// Task.m

// TaskPriorities

// Created by Steven F Daniel on 30/12/11.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import "Task.h"

@implementation Task

@synthesize taskName;

@synthesize description;

@synthesize priority;

@synthesize dueDate;

@end

We have added the preceding code snippet to make the outlet properties
visible, so that we can start using them when we store these into our array
from within our TasksViewController implementation ile.

10. Next, we need to modify the viewDidLoad method located within the
TasksViewController.m implementation ile. Enter in the following
highlighted code snippet:

#pragma mark - View lifecycle

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Initialize and reload our Tasks Information

 [self initTasksDetails];

}

In this code snippet, we need to call the initTasksDetails method that will
be responsible for populating our table view with default task information.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[48]

11. Next, open the TasksViewController.m implementation ile, and enter in
the following code snippet for the initTasksDetails method, as follows:

#pragma mark Populate our UITableView Controller with default Task
Details.

-(void)initTasksDetails

{

 tasks = [NSMutableArray arrayWithCapacity:99];

 Task *task = [[Task alloc] init];

 task.taskName = @"Build the GUI Screen";

 task.description = @"Create Main Application GUI Screen.";

 task.priority = @"Medium";

 task.dueDate = @"22/12/11";

 [tasks addObject:task];

 task = [[Task alloc] init];

 task.taskName = @"Add the Save Record button";

 task.description = @"Implement the functionality to save the
record to the grid.";

 task.priority = @"High";

 task.dueDate = @"3/01/12";

 [tasks addObject:task];

 task = [[Task alloc] init];

 task.taskName = @"Add the Delete Record button";

 task.description = @"Implement the functionality to Delete
the record from the grid.";

 task.priority = @"Low";

 task.dueDate = @"22/03/12";

 [tasks addObject:task];

}

In this code snippet, we simply declared and initialized our NSMutableArray
tasks array, which is an extension of the NSArray object that allows us to
store, remove, and modify array items. Next, we created some default tasks
and add them to our tasks array.

12. Next, we need to change the didFinishLaunchingWithOptions: method
located within the AppDelegate.m implementation ile:

- (BOOL)application:(UIApplication *)application didFinishLaunchin
gWithOptions:(NSDictionary *)launchOptions

{

 // Override point for customization after the application

 // launches.

 return YES;

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[49]

When using Storyboards we don't need to create a new UIWindow instance, as this
will create another white window and place this on top of the Storyboard. So, we just
need to clear out everything except the return YES statement.

Now that we have successfully populated our array with Task objects, our next step
is to continue building our data source for TasksViewController. First, we need to
import a reference to our Tasks.h interface ile; otherwise, our class will not know
anything about our Task object, or remember to synthesize the tasks property.

1. Open the TasksViewController.m implementation ile, and enter in the
following highlighted code snippets:

//

// TasksViewController.m

// TaskPriorities

//

// Created by Steven F Daniel on 30/12/11.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

//

#import "TasksViewController.h"

#import "Task.h"

@implementation TasksViewController

@synthesize tasks;

2. Next, we need to change the table view data source methods that are located
within the TasksViewController.m implementation ile, and enter in the
following highlighted code snippets:

#pragma mark - Table view data source

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

{

 // Return the number of sections.

 return 1;

}

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSect
ion:(NSInteger)section

{

 // Return the number of rows in the section.

 return [self.tasks count];

}

This material is copyright and is licensed for the sole use by on 7th October 2012

www.allitebooks.com

http:///
http://www.allitebooks.org

Task Priorities – Building a TaskPriorities iOS App

[50]

As you can see, we initialize the number of table sections that our table will
contain, and then use the numberOfRowsInSection method to work out how
many rows need to be displayed within each section. This is achieved by
using the count property of our tasks array object.

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRow
AtIndexPath:(NSIndexPath *)indexPath

{

 UITableViewCell *cell = [tableView

 dequeueReusableCellWithIdentifier:@"TaskCell"];

 Task *task = [self.tasks

 objectAtIndex:indexPath.row];

 cell.textLabel.text = [[NSString alloc]

 initWithFormat:@"Task: %@\tPriority: %@",

 task.taskName, task.priority];

 cell.detailTextLabel.text = [[NSString alloc]

 initWithFormat:@"%@\tDue on: %@", task.description,

 task.dueDate];

 // Configure the cell...

 return cell;

}

Finally, as you can see in the preceding code snippet, we supply the reuse
identiier of the cell of TableViewController that we set up previously,
then assign each of the properties from our task array, and write it to the
cell labels.

When you reference the reuse identifier as a parameter to the following
method called dequeueReusableCellWithIdentifier, this will
automatically make a new copy of the prototype, and return the object
back to you.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[51]

3. Now that we have set up the data source correctly for our
TableViewController, we can now run our application by choosing
Product | Run from the Product menu, or alternatively bypressing
Command + R to see the TaskPriorities application running within
the iOS Simulator, as shown in the following screenshot:

Now that we have successfully conigured our data source for our list of Tasks, we
will see how we can navigate between screens within the Storyboard. We will learn
about segues, and the different types of views they can take on. We will look into
static table view cells, as well as how to go about providing the ability for additional
tasks to be added to the tasks list.

Navigating between screens using Storyboards
In this section, we will be adding more view controllers to our Storyboard to allow
the lexibility of adding new tasks to our existing table view.

In order for us to transition between screens within our Storyboard, we need to
create a connection, known as a segue. Segues are deined as having the ability to
only go one way; they cannot go back to the previous screen, unless a delegate class
has been set up.

For our new screen, we will be creating a "modal" segue. A modal segue is a screen
that becomes the active screen and prevents the user from interacting with the
underlying screen until they close the modal screen irst.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[52]

To begin creating the Add new tasks screen, follow these simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a new (UITableViewController)
Table View Controller control, and add this to our Storyboard to the right
of the Task Priorities screen.

3. Next, select UITableViewController that we just added, and then choose
Editor | Embed In | Navigation Controller from the Editor menu.

4. Next, select the + button that we added previously, hold down the Control
key while dragging it to the new Navigation Controller control, and release
the mouse button.

5. Finally, select Modal from the pop-up list of choices:

When you select Modal from the list of Storyboard Segues, a new arrow gets placed
between the Tasks screen and the Navigational Controller control. So, when you
press the + button, a new Table View will slide up from the bottom of the screen.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[53]

Next, we need to specify an identiier for our Storyboard Segue. This will be
responsible for handling the canceling and saving methods when the Add New
Task form is closed.

1. Select the segue relationship that is located between the Task Priorities
screen and the Navigation Controller control for the Add New Task screen.

2. Click on the Attributes Inspector button.

3. Change the Identiier property to AddNewTask.

4. Change the Style property to Modal.

5. Change the value of Presentation to Form Sheet.

6. Change the value of Transition to Cover Vertical:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[54]

Unfortunately, you won't be able to go back to the previous screen until we create
a UITableViewController subclass, in the same way as what we did for our
TaskViewController.

1. From the TaskPriorities folder, choose File | New | New File… or press
the Command + N keys.

2. Select the UIViewController subclass template from the list of templates.

3. Click on the Next button to proceed with the next step within the wizard.

4. Enter in TaskDetailsViewController as the name of the ile to create.
5. Ensure that you have selected UITableViewController as the type of

subclass to create from the Subclass of drop-down.

6. Ensure that you have selected the Targeted for iPad option.

7. Click on the Next button to proceed with the next step of the wizard.

8. Then, click on the Create button to save the ile to the folder
location speciied.

Once you have done this, we need to update the class method of our previously
added Table View Controller to use our new Table View subclass. Follow these
simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. Click-and-select our newly added (UITableViewController) to the right
of the Task Priorities table.

3. Click on the Identity Inspector section, and change the value of the Custom
Class property to read TaskDetailsViewController.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[55]

4. Next, from the Attributes Inspector section, change the Title property
to read Add New Task.

5. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control to the top-left corner of the navigation bar on the Add New Task
(UITableViewController) window of the Table View Controller screen
that we added previously.

6. From the Attributes Inspector section, change the value of Identiier
to Cancel.

7. Then, change the value of Style to Bordered.

8. Next, from Object Library, select-and-drag a (UIBarButtonItem) Bar Button
Item control to the top-right corner of the navigation bar on the Add New
Task (UITableViewController) window of the Table View Controller
screen that we added previously.

9. From the Attributes Inspector section, change the value of Identiier to Save.

10. Change the value of Style to Bordered.

Our next step is to start building the screen that will allow us to record the task
information, so that it can be saved to the TaskPriorities list:

1. Select the Add New Task table view controller from within our Storyboard.

2. Change the Content ield property to read Static Cells.

3. Change the Style ield property to read Grouped.

4. Modify the Sections property to display as 4:

5. Select the irst section, and then select Attributes Inspector.

6. Change the Rows section to 1.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[56]

7. Change the value of Header to read Task Name:

8. Repeat steps 5 to 7 to apply the same for each section to add the values for
Description, Priority, and Due Date.

9. Next, drag a (UITextField) Text Field control into the Task Name cell.

10. Select the value of Attributes Inspector for the Text ield.
11. Set the Placeholder ield property to read Enter task name.

12. Set the Alignment ield property to left justify.
13. Set the value of Border Style to none.

14. Set the value of Font to System 17.0.

15. Ensure that the Adjust to Fit checkbox is unchecked:

16. Repeat steps 9 to 15 to apply the same for each section and add the
Description (UITextView), Priority (UISegmentedControl), and
Due Date (UIDatePicker) values.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[57]

If you have followed the steps correctly, the completed Add New Task screen
should look similar to the following screenshot. Feel free to adjust yours accordingly
if it doesn't.

The next step is to create the outlets for the Task Name, Description, Priority,
and Due Date properties:

1. Open Assistant Editor by choosing Navigate | Open In Assistant Editor
or press the Option + Command + , keys.

2. Ensure that the TaskDetailsViewController.h interface ile gets displayed.
3. Select the Task Name (UITextField), hold down the Control key, and drag it

into the TaskDetailsViewController.h interface ile.
4. Enter in taskName for the Name of the property to be created.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[58]

5. Choose Strong from the Storage drop-down:

6. Repeat steps 3 to 5 and create the properties for the Description, Priority and
Due Date ields.

Since we have set up our table view to use Static Cells, we no longer need the
data source and delegate sections within our TaskDetailsViewController.m
implementation ile, so we will need to remove these. If we leave these in, it will just
overwrite our controls and display a table with a series of rows, which is not what
we want to happen.

1. Open the TaskDetailsViewController.m implementation ile, located
within the TaskPriorities folder.

2. Comment out or delete anything that is between the Table view data source
and Table view delegate #pragma marks:

#pragma mark - Table view data source

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

{

 ..

 ..

}

...

...

#pragma mark - Table view delegate

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath
:(NSIndexPath *)indexPath

{

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[59]

 ..

 ..

}

@end

Now that we have properly set up our screen that will be responsible for adding
new tasks to our TaskPriorities table view, we need to start modifying our
TaskDetailsViewController.h interface ile:

1. Open the TaskDetailsViewController.h interface ile, located within
the TaskPriorities folder, and enter in the following highlighted
code snippets:

// TaskDetailsViewController.h

// TaskPriorities

//

// Created by Steven F Daniel on 30/12/11.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import <UIKit/UIKit.h>

@class TaskDetailsViewController;

@class Task;

@protocol TaskDetailsViewControllerDelegate <NSObject>

- (void)taskDetailsViewController:(TaskDetailsViewController *)
controller AddTaskDetails:(Task *)task;

@end

@interface TaskDetailsViewController : UITableViewController

@property (nonatomic, weak) id <TaskDetailsViewControllerDelegate>
delegate;

@property (strong, nonatomic) IBOutlet UITextField *taskName;

@property (strong, nonatomic) IBOutlet UITextView *description;

@property (strong, nonatomic) IBOutlet UISegmentedControl
*priority;

@property (strong, nonatomic) IBOutlet UIDatePicker *dueDate;

-(IBAction)cancel:(id)sender;

-(IBAction)save:(id)sender;

@end

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[60]

In the preceding code snippet, we declare a new delegate object that will
allow other view controllers within the Storyboard to communicate with each
other using this delegate object, and communicate back to our Task Priorities
screen when the user either cancels or saves the Add New Task screen.

2. Next, we need to connect the Cancel and Save buttons to their respective
action methods.

3. Click on the Cancel button while holding down the Control key and dragging
your mouse to the view controller.

4. From the pop-up menu, choose the cancel method.

5. Repeat steps 5 to 6, hook up the Save button, then choose the save method
from the pop-up menu:

In the next section, we will take a look at building the functionality for our
TaskPriorities application, as well as implementing the methods that will be used
for our Cancel and Save buttons. These will be responsible for adding new tasks to
our TaskPriorities list and returning us back to the Task Priorities screen.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[61]

Implementing the Save record method
We are now ready to start implementing the method that will be responsible for
saving the record when the user presses the Save button.

Open the TaskDetailsViewController.m implementation ile located within the
TaskPriorities folder, and enter in the following code snippet:

-(IBAction) save:(id) sender

{

 NSDateFormatter *dateFormat;

 dateFormat = [[NSDateFormatter alloc] init];

 [dateFormat setDateFormat:@"MMMM d, yyyy"];

 Task *task = [[Task alloc] init];

 task.taskName = self.taskName.text;

 task.description = self.description.text;

 task.priority = [[NSString

 alloc]initWithFormat:@"%@",[priority

 titleForSegmentAtIndex:self.priority.selectedSegmentIndex]];

 task.dueDate = [[NSString

 alloc]initWithFormat:@"%@",[dateFormat

 stringFromDate:[self.dueDate date]]];

 [self.delegate taskDetailsViewController:self

 AddTaskDetails:task];

}

In the preceding code snippet, we created an NSDateFormatter object, and used
the setDateFormat method to set up and initialize the correct date format that we
would like our Due Date ield to be in. We then created a new Task object, and
then assigned the object properties with the values from our Add New Task screen.
Finally, we notiied the delegate object that we have added a new task item, so that it
can update the TaskPriorities table view.

Implementing the Add a record to the table method
In the previous section, we added some code to our save method that created a new
Task instance and sent this information to the delegate object, located within our
taskDetailsViewController. Next, we need to create the AddTaskDetails method.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[62]

Open the CIT implementation ile, located within the TaskPriorities (CIT) folder
and enter in the following code snippet:

- (void)taskDetailsViewController:(TaskDetailsViewController *)
controller AddTaskDetails:(Task *)task

{

 [self.tasks addObject:task];

 [self.tableView reloadData];

 [self dismissViewControllerAnimated:YES completion:nil];

}

In the preceding code snippet, we add the new task object to our existing list of
tasks priorities. We then refresh the table view, using the reloadData method to
show that the new item was added, and then close the Add New Task screen.

Implementing the Cancel method
Next, we need to implement the Cancel button. This will be responsible for closing
the screen, and returning you back to the TaskPriorities table view when pressed.

Open the TaskDetailsViewController.m implementation ile located within the
TaskPriorities folder, and enter in the following code snippet:

-(IBAction) cancel:(id) sender

{

 [self dismissViewControllerAnimated:YES completion:nil];

}

In the preceding code snippet, we use the dismissViewControllerAnimated:compl
etion: method, which is only made available in iOS 5 and later. This method is used
to close the current modal screen that was sent by our TaskPriorities table
view screen.

Implementing the Refresh button method
Next, we need to implement the Refresh button. This will be responsible for
refreshing our TaskPriorities table view when pressed.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[63]

Open the TasksViewController.m implementation ile, located within the
TaskPriorities folder, and enter in the following code snippet:

-(IBAction) refresh:(id) sender

{

 [self.tableView reloadData];

}

In the preceding code snippet, we use the reloadData method of the table view that
will be used to refresh the data source property of the TaskPriorities table view to
reload the contents from our tasks array.

Implementing the Delete row method
Next, we need to implement the Delete method. This will be responsible for
removing an item from the TaskPriorities table view.

Open the CIT implementation ile, located within the TaskPriorities folder, and
enter in the following highlighted code:

// Override to support editing the table view.

- (void) tableView:(UITableView *)tableView commitEditingStyle:(UITab
leViewCellEditingStyle)editingStyle forRowAtIndexPath:(NSIndexPath *)
indexPath

{

 if (editingStyle == UITableViewCellEditingStyleDelete)

 {

 // Delete the row from the data source

 [self.tasks removeObjectAtIndex:indexPath.row];

 [self.tableView reloadData];

 }

}

In the preceding code snippet, we determine the type of action that we
are performing within the table view, and this is determined by the
UITableViewCellEditingStyle class. We then perform a comparison against the
UITableViewCellEditingStyleDelete constant variable, and if the condition is met,
we remove the selected task at the selected row from our tasks array, and refresh the
table view data source.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Task Priorities – Building a TaskPriorities iOS App

[64]

Finishing up
We just have a few more things to implement before we have a complete working
application. We will need to implement a couple more methods that will be used
to handle the transition between our Task Priorities and Add New Task screens
when the + button has been pressed from the Task Priorities screen. We also need
to let the Tasks Priorities screen notify the TaskDetailsViewController that it is
now a delegate, so that it can communicate with other view controllers within the
Storyboard using this delegate object, by calling the navigation controller whenever
the segue is called.

1. Open the TasksViewController.m implementation ile, located within the
TaskPriorities folder, and enter in the following code snippet:

- (void) prepareForSegue:(UIStoryboardSegue *)segue sender:(id)
sender

{

 if ([segue.identifier isEqualToString:@"AddNewTask"])

 {

 UINavigationController *navigationController =

 segue.destinationViewController;

 TaskDetailsViewController *taskDetailsViewController =

 [[navigationController viewControllers] objectAtIndex:0];

 taskDetailsViewController.delegate = self;

 }

}

In the preceding code snippet, we use the prepareForSegue: method to
determine whenever a transition to segue takes place; a check is made on
the identiier of the segue to determine if we are calling the Add New
Task screen.

2. Next, we set the navigationController of the segue to be the navigation
controller of the destination screen, and then cycle through each of the
view controllers within the navigation controller properties to get the
TaskDetailsViewController instance.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 2

[65]

Congratulations, we have inally implemented the methods for our TaskPriorities
application. Next, we are ready to build and run our application by choosing Product
| Run from the Product menu, or alternatively by pressing Command+ R to have this
run within the iOS Simulator, as shown in the preceding screenshot.

Summary
In this chapter, we learned how to create a TaskPriorities application, making
use of the Storyboard feature, as well as creating relationships between the Tab Bar
controllers and Navigation controllers using segues. We looked at how to set up
delegates between table views, so that information can be passed back and forward,
before inishing up learning about table views' Static Cells, and how to add object
controls to the cells within each group.

In the next chapter, we will look at how to create an application that will give you
the ability to record your voice, and have this played back to you or e-mailed as an
attachment, to be played back later.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio

Recording and Playback
The VoiceRecorder application is a small application that allows the user to record
audio sounds using the iPad's built-in microphone, and then plays back the saved
audio content at a later stage.

This voice recorder application can be very useful, and it can be used for sending
simple and short voice messages, or even used more in business to take dictation
notes during meetings, and eventually have this e-mailed and distributed amongst
your peers.

In this chapter, we will be taking a closer look at how we can use both the
AVFoundation and MessageUI frameworks to record and play back audio content
using the iOS's device built-in microphone, and then start to design the user interface
for our app.

We will also look at how we can create a new UIViewController instance to create
our custom VoiceVisualizer class that will be used to measure our voice sound
levels, and familiarize ourselves with the MFMailComposeViewController class, to
see how we can add an audio ile as an e-mail attachment, so that it can be e-mailed
to one or more people.

In this chapter we will:

• Get an overview of the technologies that we will be using

• Learn how to add the AVFoundation and MessageUI frameworks

• Walk through the steps to build the VoiceRecorder application

• Implement the VoiceVisualizer class to measure our voice levels

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio Recording and Playback

[68]

• Implement a method to record our voice and save to a ile
• Implement a method to play back our voice recording

• Implement a method to e-mail our voice recording

We have an exciting project ahead of us, so let's get started.

Overview of the technologies
The VoiceRecorder application makes reference to two very important frameworks
to allow for audio recording and playback, as well as sending e-mail messages,
directly within the application.

In this chapter, we will use the AVFoundation framework to handle recording and
playback of our audio content, and the MessageUI framework for composing and
sending our recording as an e-mail attachment directly within our app.

We will use the AVAudioRecorder class to record audio using the iOS device built-in
microphone, and then save this to an audio ile within the app. The AVAudioPlayer
is used to play the previously saved audio when the Play button is pressed.

We make use of the NSSearchPathForDirectoriesInDomains class to create a list
of path strings for each directory and then obtain the root directory, determined as
the irst object instance, before appending our attachment ilename to the end of the
path. We use the NSData object to convert the audio recording, and then pass this as
an attachment to an MFMailComposeViewController class object. This class opens
up the e-mail dialog-boxes directly within the application.

For more information on the
NSSearchPathForDirectoriesInDomains class, refer to the Apple
Developer Documentation located at the following location: https://
developer.apple.com/library/ios/#documentation/
Cocoa/Reference/Foundation/Miscellaneous/Foundation_
Functions/Reference/reference.html#//apple_ref/c/func/
NSSearchPathForDirectoriesInDomains.

Building the VoiceRecorder app
Leaving voice messages is one of the most common things that we do in our
everyday lives; we call someone and leave a voice mail message when their
phone is left unattended, so that they can get back to us.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 3

[69]

In this section, we will take a look at how to create an application that we can use
to run on an iOS device that will enable us to record and playback voice recordings,
with the view of having these e-mailed and sent as an e-mail attachment.

Before we can proceed, we irst need to create our VoiceRecorder project. To refresh
your memory on how to go about creating a new project, you can refer to the section
that we covered in Chapter 2, Task Priorities – Building a TaskPriorities iOS App, under
the section named Building the TaskPriorities App.

It is very simple to create this in Xcode. Just follow the steps listed here:

1. Launch Xcode from the /Xcode4/Applications folder.

2. Choose Create a new Xcode project, or File | New Project.

3. Select the Single View Application template from the list of
available templates.

4. Select iPad from under the Device Family drop-down.

5. Ensure that the Use Storyboard checkbox has not been selected.

6. Select the Use Automatic Reference Counting checkbox.

7. Ensure that the Include Unit Tests checkbox has not been selected.

8. Click on the Next button to proceed with the next step in the wizard:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio Recording and Playback

[70]

9. Enter in VoiceRecorder as the name for your project.

10. Click on the Next button to proceed to the next step of the wizard.

11. Specify the location where you would like to save your project.

12. Then, click on the Save button to continue and display the Xcode
workspace environment.

Now that we have created our VoiceRecorder project, we now need to add the
AVFoundation and MessageUI frameworks that will handle the recording, playback,
and e-mailing of our audio content.

Adding the AVFoundation and MessageUI
frameworks
As we mentioned previously, we need to add the AVFoundation and MessageUI
frameworks to our project to enable us to record and play back audio iles, as well
as enable us to have these e-mailed with attachments, all directly within our
iOS application.

To add the AVFoundation framework, select Project Navigator Group, and follow
these simple steps as outlined here:

1. Click and select your project from Project Navigator.

2. Then, select your project target from under the TARGETS group.

3. Select the Build Phases tab.

4. Expand the Link Binary With Libraries disclosure triangle.

5. Finally, use the + to add the library you want.

6. Select the AVFoundation.framework from the list of available frameworks.

If you can't ind the framework you are looking for, there is also the
added ability to search for this directly, right from within the list of
available frameworks.

If you are still confused how to go about adding the framework, follow this
screenshot, which highlights the areas that you need to select (surrounded
by a rectangles):

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 3

[71]

Next, we need to add the MessageUI.framework framework to our project that will
be allow us to compose and send our sound recording as an attachment, directly
within our iOS application.

To add the MessageUI framework, select Project Navigator Group, and follow these
simple steps as outlined here:

1. Click and select your project from Project Navigator.

2. Then, select your project target from under the TARGETS group.

3. Select the Build Phases tab.

4. Expand the Link Binary With Libraries disclosure triangle.

5. Finally, use the + button to add the library you want.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio Recording and Playback

[72]

6. Select the MessageUI.framework from the list of available frameworks:

Now that we have added the MessageUI framework into our project, we need to
start building our user interface that will be responsible for allowing us to record,
playback, and e-mail our recording.

Creating the main application screen
We have successfully created our project and added the AVFoundation and
MessageUI frameworks to handle the record/playback and e-mailing of our audio
recording. Our next step is to build the user interfaces for our VoiceRecorder
application. This screen will be very simple and will consist of just a View controller
and a toolbar.

1. Select the ViewController.xib ile from Project Navigator.

2. From Object Library, select-and-drag a (UIToolbar) Toolbar Controller,
and add this to our view:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 3

[73]

Now that we have added our UIToolbar toolbar control to our view controller,
our next step is to start adding the Start Recording, Play, Stop, and E-mail buttons.
So let's proceed to the next section.

Adding the Start Recording button
Our next step is to add a button to our previously added toolbar; this button will be
responsible for handling the recording of our audio content and storing this content
within a ile, to be used for playback later. This can be achieved by following these
simple steps:

1. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control to the top-left corner of the Voice Recorder screen:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio Recording and Playback

[74]

2. From the Attributes Inspector section, change the value of Identiier
to Custom.

3. Change the value of Style to Bordered.

4. Then, change the value of Title to Start Recording:

Now that we have added our Start Recording button to our Voice Recorder View
Controller, our next step is to add the Play button that will be responsible for playing
back our recorded voice message when this has been clicked. So, let's proceed with the
next section.

Adding the Play button
Now, we need to add another button on our UIToolbar that will be responsible for
playing back our recorded audio, once the user has inished recording their message.
This can be achieved by following these simple steps:

1. From Object Library, select-and-drag another (UIButtonItem) Bar Button
Item control after the Start Recording button, located within our UIToolBar.

2. From the Attributes Inspector section, change the value of Identiier to Play.

3. Change the value of Style to Bordered:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 3

[75]

Now that we have added our Play button to our Voice Recorder View Controller,
our next step is to add the Stop button that will be responsible for halting the
playback our recorded voice message when this has been clicked.

Adding the Stop button
Now, we need to add another button to our UIToolbar that will be responsible
for stopping audio recording, once the user has recorded what they wanted to say.
This can be achieved by following these simple steps:

1. From Object Library, select-and-drag another (UIButtonItem) Bar Button
Item control after the Play button, located within our UIToolBar.

2. From the Attributes Inspector section, change the value of Identiier to Stop.

3. Change the value of Style to Bordered:

Now that we have added our Stop button to our Voice Recorder View Controller,
our next step is to add a (UIBarButtonItem) Flexible Space Bar Button Item control
that will be used to ill in the space between the Stop button and the Compose e-mail
button, which will be responsible for composing and attaching our voice recording
when it has been clicked.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio Recording and Playback

[76]

Adding the E-mail button
Now, we need to add our inal button to our UIToolbar that will be responsible for
allowing the user to e-mail their attached recording to an individual or a group of
recipients. This can be achieved by following these simple steps:

1. From Object Library, select-and-drag a (UIBarButtonItem) Flexible Space
Bar Button Item control after the Stop button within our View Controller:

2. Next, from Object Library, select-and-drag a (UIButtonItem) Bar Button
Item control after the UIBarButtonItem control, located within our
UIToolBar.

3. From the Attributes Inspector section, change the value of Identiier
to Compose.

4. Change the value of Style to Bordered:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 3

[77]

Now that we have added our buttons and have built our user interface, our next step
is to create our very own custom UIViewController subclass that will be used to
display a visual representation of our voice:

1. Select the VoiceRecorder folder, then choose File | New | New File… or
press Command + N.

2. Select the Objective-C class template from the list of available templates.

3. Click on the Next button to proceed to the next step within the wizard.

4. Enter in VoiceVisualizer as the name of the ile to be created.
5. Ensure that you have selected UIViewController as the type of subclass

to create from the Subclass of dropdown.

6. Ensure that you have selected the Targeted for iPad option. This will
ensure that the view is created using the iPad dimensions, not the
iPhone dimensions:

7. Click on the Next button to proceed with the next step of the wizard.

8. Then, click on the Create button to save the ile to the folder location speciied.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio Recording and Playback

[78]

Now that we have created our voice visualizer class, we need to update our Voice
Recorder View Controller to use our VoiceVisualizer class, rather than the default
UIViewController class:

1. Select the ViewController.xib ile from the VoiceRecorder folder.

2. Click and select our VoiceRecorder (UIViewController) controller.

3. Click on the Identity Inspector section, and change the value of the
Custom Class property to read VoiceVisualizer:

Our next step is to create the Outlet events for the Start Recording, Play, Stop, and
Compose E-mail buttons. Creating these will allow us to access these controls within
our code and make modiications to the control properties. To create an Outlet,
follow these simple steps:

1. Open Assistant Editor by choosing Navigate | Open in Assistant Editor,
or press Option + Command + ,.

2. Ensure that the ViewController.h interface ile is displayed to the left of
ViewController.xib.

3. Select the Start Recording (UIBarButtonItem) control, then hold down
the Control key, and drag it into the ViewController.h interface ile.

4. Choose Outlet from the Connection dropdown for the connection
to be created.

5. Enter in startRecord as the name of the Outlet property to be created.

6. Choose Strong from the Storage dropdown:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 3

[79]

7. Repeat steps 3 to 6 to create the IBOutlets for the Play, Stop,
Compose, and VoiceVisualizer controls, while providing the following
naming for each as startPlayback, stopPlayback, composeE-mail,
and Visualizer, respectively.

Now that we have created the Outlet events for our controls, we need to create the
associated Action events for those Outlets. Creating these actions allows an event
to be ired when the button has been pressed. To create an Action, follow these
simple steps:

1. The ViewController.h interface ile should still be displayed to the left of
the ViewController.xib View Controller.

2. Select the Start Recording (UIBarButtonItem) control, then hold down the
Control key, and drag it into the ViewController.h interface ile.

3. Choose Action from the Connection dropdown for the connection to create.

4. Enter in voiceRecord for the Name ield, which is the name of the method to
be created:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio Recording and Playback

[80]

5. Repeat steps 2-4 to create the IBActions for the Play, Stop, and Compose
controls, while providing the naming for each as voicePlayback,
voicePlaybackStop, and e-mailRecording, respectively.

Now that we have successfully inished building the user interface for both the Voice
Recorder and Voice Visualizer screens, connected up each of our controls, and
created the required outlets and associated the action methods. Our next step is to
start implementing the methods that will be used by our Start Recording, Play, Stop
and Compose buttons. These buttons will be responsible for handling the recording
and audio playback, as well as for e-mailing our audio recording as a ile attachment.

Implementing the View Controller class
We are now ready to start adding additional content to our ViewController class.
We need to import some interface header iles and declare some objects that we will
be using throughout our application. We will also need to extend our class, so that
we can use the AVFoundation and mail composition functionality.

1. Open the ViewController.h interface ile, located within the
VoiceRecorder folder, and enter in the following highlighted code sections:

// ViewController.h

// VoiceRecorder

//

// Created by Steven F. Daniel on 18/01/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import <UIKit/UIKit.h>

#import <AVFoundation/AVFoundation.h>

#import <MessageUI/MessageUI.h>

#import "VoiceVisualizer.h"

@interface ViewController : UIViewController
<AVAudioRecorderDelegate, AVAudioPlayerDelegate,
MFMailComposeViewControllerDelegate>

{

 IBOutlet UIBarButtonItem *startRecord;

 IBOutlet UIBarButtonItem *startPlayback;

 IBOutlet UIBarButtonItem *stopPlayback;

 IBOutlet UIBarButtonItem *composeE-mail;

 IBOutlet VoiceVisualizer *Visualizer;

 // Variables setup for access in the class:

 NSString *attachmentName;

 AVAudioRecorder *audioRecorder;

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 3

[81]

 AVAudioPlayer *audioPlayer;

 NSTimer *timer;

}

@property (nonatomic, strong) IBOutlet VoiceVisualizer
*Visualizer;

@property (nonatomic, strong) IBOutlet UIBarButtonItem
*startPlayback;

@property (nonatomic, strong) IBOutlet UIBarButtonItem
*startRecord;

@property (nonatomic, strong) IBOutlet UIBarButtonItem
*composeE-mail;

- (IBAction)voiceRecord:(id)sender;

- (IBAction)voicePlayback:(id)sender;

- (IBAction)voicePlaybackStop:(id)sender;

- (IBAction)e-mailRecording:(id)sender;

In the preceding code snippet, we import the interface ile header information
for our AVFoundation.h, MessageUI.h, and VoiceVisualizer.h interface
iles, so that we can access their class methods. We extended our class so that
we can include the AVAudioRecorderDelegate, AVAudioPlayerDelegate,
and MFMailComposeViewControllerDelegate class protocols, as well as
their methods.

We then declared a new outlet to our VoiceVisualizer to display the
intensity of the user's voice during recording, and then declared an NSTimer
object that will be used to generate the events required to redraw the
visualizer based on the voice input.

2. Next, open the ViewController.m implementation ile, located within the
VoiceRecorder folder, and modify the viewDidLoad method as shown in
the following code snippet:

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view,

 // typically from a nib.

 NSArray *dirPaths;

 NSString *docsDir;

 attachmentName = @"VCOR_Recording.caf";

 dirPaths = NSSearchPathForDirectoriesInDomains(

 NSDocumentDirectory, NSUserDomainMask, YES);

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio Recording and Playback

[82]

 docsDir = [dirPaths objectAtIndex:0];

 NSString *soundFilePath = [docsDir

 stringByAppendingPathComponent:attachmentName];

 NSURL *soundFileURL = [NSURL

 fileURLWithPath:soundFilePath];

 // Initialize the recorder with default settings.

NSDictionary *recordSettings = [NSDictionary

 dictionaryWithObjectsAndKeys:

[NSNumber

 numberWithInt:AVAudioQualityMin],

AVEncoderAudioQualityKey,

[NSNumber numberWithInt:16],

AVEncoderBitRateKey,

[NSNumber numberWithInt:2],

AVNumberOfChannelsKey,

[NSNumber

 numberWithFloat:44100.0],

AVSampleRateKey, nil];

 // Initialize our audioRecorder settings and

 // the default recording filename

 audioRecorder = [[AVAudioRecorder alloc]

 initWithURL:soundFileURL settings:recordSettings

 error:nil];

 [audioRecorder setDelegate:self];

 [audioRecorder prepareToRecord];

 audioRecorder.meteringEnabled = YES;

 composeE-mail.enabled = NO;

 stopPlayback.enabled = NO;

 startPlayback.enabled = NO;

 // Initialize our visualizer and timer.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 3

[83]

 [Visualizer clearOSCLevels];

 [timer invalidate];

 timer = nil;

 // Set the background color of our view to black

 self.view.backgroundColor = [UIColor blackColor];

}

In the preceding code snippet, we need to create an instance of the
AVAudioRecorder class when the application is irst launched. This method is
then initialized with a URL pointing the default ilename to which the recorded
audio is saved, and declare an NSDictionary object to initialize and set up the
recording settings for the audio.

3. Next, we use the NSSearchPathForDirectoriesInDomains class to identify
the application's document directory, then construct a URL to a ile in that
location named VCOR_Recording.caf, and prepare the audioRecorder
instance to begin recording when the user requests it.

4. We then set the meteringEnabled property of our audioRecorder object
to monitor the level of audio that is coming in. Finally, we disable our Play,
Stop, and E-mail buttons, since no audio has been recorded yet, call the
clearOSCLevels method to reinitialize our Visualizer class, and stop the
timer from iring the events used to redraw our voice visualizer.

For more information on the AVFoundation class, refer to the Apple
Developer Documentation located at the following location: http://
developer.apple.com/library/mac/#documentation/
AVFoundation/Reference/AVAudioRecorder_ClassReference/
Reference/Reference.html#//apple_ref/occ/cl/
AVAudioRecorder.

Implementing the voiceRecord method
Now that we have set up our VoiceRecorder View Controller and have initialized
everything correctly, we are ready to start implementing the method that will be
responsible for recording the audio when the user presses the Start Recording button:

1. Open the ViewController.m implementation ile, located within the
VoiceRecorder folder, locate the voiceRecord method, and enter in the
following code snippet:

//===

// Handles recording of the audio

//===

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio Recording and Playback

[84]

- (IBAction)voiceRecord:(id)sender

{

 // Check to see if we are already recording.

 if (!audioRecorder.recording)

 {

 // Initialize our Timer event for the Voice Visualizer

 timer = [NSTimer scheduledTimerWithTimeInterval:0.02

 target:self selector:@selector(timerFired:)

 userInfo:nil repeats:YES];

 [startRecord setTitle :@"Stop Recording"];

 startPlayback.enabled = NO;

 stopPlayback.enabled = NO;

 [audioRecorder record];

 }

 else

 {

 [startRecord setTitle:@"Start Recording"];

 startPlayback.enabled = YES;

 stopPlayback.enabled = NO;

 composeE-mail.enabled = YES;

 // Stop the recorder and reset our visualizer.

 [audioRecorder stop];

 [Visualizer resetOSCLevels];

 [timer invalidate];

 timer = nil;

 }

}

In the preceding code snippet, we use the audioRecorder object to determine if
we are currently recording. If we have determined that we are not recording, we
initialize our timer to start generating the events and redraw our voice visualizer,
then change the text of our startRecord button to display Stop Recording,
disable the startPlayback and stopPlayback methods, and then set up our
audioRecorder object to begin the recording.

If we are currently recording, we change the text of our startRecord method
to display Start Recording and disable the stopPlayback method, stop our
audioRecorder object from recording, and call the clearOSCLevels method to
reinitialize our Visualizer class. Finally, we need to tell our timer object to stop
iring the events used to redraw our voice visualizer.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 3

[85]

Implementing the voicePlayback method
Now, we need to start implementing the method that will be responsible for playing
back our previously recorded audio when the user presses the Play button:

1. Open the ViewController.m implementation ile, located within the
VoiceRecorder folder, locate the voicePlayback method, and enter
in the following code snippet:

//===

// Handles playback of our recording.

//===

-(IBAction)voicePlayback:(id)sender

{

 [Visualizer resetOSCLevels];

 // Check to see if we are already playing.

 if (!audioPlayer.playing)

 {

 // Grab the recorded file from the url location.

 audioPlayer = [[AVAudioPlayer alloc]

 initWithContentsOfURL:audioRecorder.url

 error:nil];

 // Next, play our audio file

 audioPlayer.delegate = self;

 [audioPlayer prepareToPlay];

 [audioPlayer play];

 // Enable the stop playback button

 stopPlayback.enabled = YES;

 }

}

In the preceding code snippet, we call our clearOSCLevels method of our
Visualizer class to reset the sound levels recording array, and perform a
check to ensure that our audioPlayer object is not in the process of already
playing the audio. Next, we initialize the audioPlayer object to play the ile
recording using the URL method of the audioRecorder object.

2. Finally, we then set up our audioPlayer object to use the prepareToPlay
method, and call the Play method to start the playback. Finally, we enable
our stopPlayback method, so that we can stop recording the playback,
if required.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio Recording and Playback

[86]

Implementing the voicePlaybackStop method
Now, we need to start implementing the method that will be responsible for
handling the stopping of the audio playback currently being played, when the
user presses the Stop button.

Open the ViewController.m implementation ile, located within the
VoiceRecorder folder, locate the voicePlaybackStop method, and enter
in the following code snippet:

//===

// Stops playback of our recording

//===

-(IBAction)voicePlaybackStop:(id)sender

{

 // Check to see if our audio is playing prior to stopping.

 if (audioPlayer.playing)

 {

 [audioPlayer stop];

 stopPlayback.enabled = NO;

 }

}

In the preceding code snippet, we perform a check on our audioPlayer object to see
if we are currently playing our voice recording. If we are, we make a call to the stop
method on our audioPlayer object, and then disable the stopPlayback button.

Implementing the e-mailRecording method
Now, we need to implement a method that will be responsible for allowing you to
attach a voice-recording ile to an e-mail message, so that you can send this to an
individual person or a group of people. This will be displayed when the user presses
the Compose button.

1. Open the ViewController.m implementation ile, located within the
VoiceRecorder folder, locate the e-mailRecording method, and enter
in the following code snippet:

//===

// Sends an e-mail with our recording attached

//===

- (IBAction)e-mailRecording:(id)sender

{

 NSArray *arrayPaths =

 NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

 NSUserDomainMask,YES);

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 3

[87]

 NSString *docDir = [arrayPaths objectAtIndex:0];

 NSString *Path = [docDir stringByAppendingString:@"/"];

 Path = [Path stringByAppendingFormat:attachmentName];

 // Create an NSData object with the selected recording

 NSData *audioData = [NSData dataWithContentsOfFile:Path];

 MFMailComposeViewController *controller =

 [[MFMailComposeViewController alloc] init];

 [controller.navigationBar setTintColor:[UIColor

 purpleColor]];

 controller.mailComposeDelegate = self;

 // Add the recording as an attachment

 [controller setSubject:@"Voice Recorder File"];

 [controller setMessageBody:@"Recorded File Recording

 attached" isHTML:NO];

 [controller addAttachmentData:audioData

 mimeType:@"audio/mp4" fileName:attachmentName];

 // show the MFMailComposerVewController

 [self presentModalViewController:controller animated:YES];

}

In the preceding code snippet, we use the
NSSearchPathForDirectoriesInDomains class to identify our root directory
folder location to where our audio recording ilename VCOR_Recording.caf
is located. We then create an NSData object that contains the contents of the
audio recording ile using the dataWithContentsOfFile: method
of NSData.

2. Next, we create a new object instance of the MFMailComposeViewController
class, which controls the mail dialog view, thus allowing the user to compose
and send an e-mail without leaving the application. We then change the color
of the mail composition sheet using the navigationBar:setTintColor:
method of the controller to purple, and then set the subject heading and body
of our e-mail message, before using the addAttachmentData:mimeType:fil
ename: method to add the audio recording ile as an e-mail attachment.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio Recording and Playback

[88]

3. We then set the value of the mailComposeDelegate controller to self so
that our controller receives the mailComposeController:didFinishWithR
esult:error: message from the MFMailComposeViewControllerDelegate
protocol when the user inishes with the e-mail dialog.

4. Next, we call the controller's presentModalViewController:animated:
method to display the e-mail dialog.

For more information on the MFMailComposeViewController
class, refer to the Apple Developer Documentation located at
the following location: https://developer.apple.com/
library/ios/#documentation/MessageUI/Reference/
MFMailComposeViewControllerDelegate_protocol/
Reference/Reference.html.

//===

// Dismiss our Mail view controller when the user finishes

//===

- (void) mailComposeController:(MFMailComposeViewController *)
controller didFinishWithResult:(MFMailComposeResult)result
error:(NSError *)error

{

 NSString *e-mailMessage = nil;

 // Notifies users about errors associated with

 // the interface

 switch (result)

 {

 case MFMailComposeResultCancelled:

 e-mailMessage = @"E-mail sending has been cancelled";

 break;

 case MFMailComposeResultSaved:

 e-mailMessage = @"E-mail draft saved successfully";

 break;

 case MFMailComposeResultSent:

 e-mailMessage = @"E-mail sent successfully.";

 break;

 case MFMailComposeResultFailed:

 e-mailMessage = @"E-mail sending failure.";

 break;

 default:

 e-mailMessage = @"Problem sending the e-mail.";

 break;

 }

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 3

[89]

 // Display the alert dialog based on the message derived

 // from the above case statement.

 UIAlertView *alert = [[UIAlertView alloc]

 initWithTitle: @"Voice
Recorder E-mail"

 message: e-mailMessage

 delegate: nil

 cancelButtonTitle:@"OK"

 otherButtonTitles:nil];

 [alert show];

 // make the MFMailComposeViewController disappear

 [self dismissModalViewControllerAnimated:YES];

}

In the preceding code snippet, we declare our mailComposeController: ma
ilComposeController:didFinishWithResult:error: method, which will
be responsible for notifying the user when the user inishes with the e-mail
dialog box, either by sending an e-mail or by dismissing out of this view.

5. Next, we determine the type of error that was received by the delegate,
and then assign this to an NSString object variable e-mailMessage.

6. In our inal step, we declare an instance of the UIAlertView
dialog box to display the error message, before calling the
dismissModalViewControllerAnimated: method of our
view controller.

Implementing the VoiceVisualizer class
In our inal step, we need to implement the class that will be used to display a
graphical visual representation of our voice intensity during the recording of
our audio, using the iOS device's built-in microphone:

1. Open the VoiceVisualizer.h interface ile, located within the
VoiceRecorder folder, and enter in the following code snippet:

//

// VoiceVisualizer.h

// VoiceRecorder

//

// Created by Steven F. Daniel on 18/01/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

//

#import <UIKit/UIKit.h>

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio Recording and Playback

[90]

@interface VoiceVisualizer : UIView

{

 NSMutableArray *OSCLevel; // Levels in the recording

 float minOSCLevel; // Minimum recorded level

}

- (void) setOSCLevel:(float)level; // set the OSCLevel

- (void) clearOSCLevels; // clear all OSC levels

@end

In the preceding code snippet, we declare a new instance of our UIView
sub-class, as our VoiceVisualizer will act as a view within our View
Controller on our main screen. Next, we declare an NSMutableArray
object variable OSCLevel that will hold the intensity levels from the
View Controller.

2. Next, we declare a minOSCLevel variable to store the lowest recorded
level for the current recording. We then declare the setOSCLevel: method
to basically add a new level to the OSCLevel NSMutableArray object,
and update the minOSCLevel variable accordingly. Next, we declare the
clearOSCLevels method to remove all the previously added items from the
OSCLevel array, thus removing the visualizer representation from appearing
on screen.

3. Open the VoiceVisualizer.m implementation ile, located within
the TaskPriorities folder, and enter in the following code snippet:

// initialize the Visualizer

- (id)initWithCoder:(NSCoder *)aDecoder

{

 // if the superclass initializes properly

 if (self = [super initWithCoder:aDecoder])

 {

 // initialize powers with an entry for every

 // other pixel of width

 OSCLevel = [[NSMutableArray alloc]

 initWithCapacity:self.frame.size.width / 2];

 }

 return self;

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 3

[91]

In the preceding code snippet, we create an initWithCoder: method
object to initialize the voice visualizer, and check to ensure that it has been
initialized correctly, prior to initializing our OSCLevel array with half of the
screen's width using the initWithCapacity: method of NSMutableArray:

// sets the current power in the recording

- (void)setOSCLevel:(float)level

{

 [OSCLevel addObject:[NSNumber numberWithFloat:level]];

 // Need to ensure that our current level is

 // not less than the last one that was recorded.

 if (level < minOSCLevel) minOSCLevel = level;

}

In the preceidng code snippet, we add the current recording voice intensity
level to the voice visualizer.

4. We then perform a check to see if the current recording level is lower than
what was previously recorded; if the comparison returns TRUE, we update
the minOSCLevel variable to the given value:

// Resets the objects contained within our Array.

- (void)resetOSCLevels

{

 [OSCLevel removeAllObjects];

} // clears all the points from the visualizer

In the preceding code snippet, we perform a call to the removeAllObjects
method of NSMutableArray to remove all array elements from the OSCLevel
array, resulting in the voice visualizer graphic being cleared.

// draws the visualizer

- (void)drawRect:(CGRect)rect

{

 // Get the current graphics context

 CGContextRef context;

 CGSize size;

 CGFloat cHeight;

 context = UIGraphicsGetCurrentContext();

 size = self.frame.size;

 cHeight = size.height;

 // Cycle through each of the levels and plot a line.

 for (int i = 0; i < OSCLevel.count; i++)

 {

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio Recording and Playback

[92]

 // Get the next determined sound wave level and

 // calculate the height.

 float newLevel = [[OSCLevel objectAtIndex:i]

 floatValue];

 float height = (1-newLevel/minOSCLevel)*(cHeight/ 2);

 // Move to a point located within the center of the

 // screen and plot a line.

 CGContextMoveToPoint(context, i*2, cHeight/2-height);

 CGContextAddLineToPoint(context, i*2,
cHeight/2+height);

 // Set the line color and then draw it to the view.

 CGContextSetRGBStrokeColor(context, 1, 0, 1, 1);

 CGContextStrokePath(context);

 }

}

In the preceding code snippet, we use the drawRect: method to draw
each of our voice intensity levels from our NSMutableArray object to
VoiceVisualizer. We irst need to obtain the current graphics context using
the UIGraphicsGetCurrentContext function, and then work out the size
and height of our VoiceVisualizer, using the controller's frame property.

5. Next, we perform a loop to cycle through each of the intensity levels
within the OSCLevel array, calculate the height of the line, and use
CGContextMoveToPoint and CGContextAddLineToPoint to work out
and draw the line in the middle of the screen.

6. Finally, we use the CGContextSetRGBStrokeColor function to set the line
color to purple, and use the CGContextStrokePath function to draw our line
to the graphics window.

Finishing up
Congratulations, we have successfully implemented the methods for our
VoiceRecorder application. Next, we are ready to build and run our application by
choosing Product | Run from the Product menu, or alternatively pressing Command
+ R. The following screenshot shows the VoiceRecord application currently within
the iOS Simulator in the middle of a voice recording:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 3

[93]

In the following screenshot, we display the e-mail composition sheet when the
Compose button has been pressed on the toolbar. As you can see, it contains the
pre-populated Subject and body message, as well as the audio recording being
attached as a ile attachment:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VoiceRecorder App – Audio Recording and Playback

[94]

From this screenshot, you can amend the subject header, and include additional
content within the body of the message. Once you have inished composing your
e-mail, click on the Send button to have your e-mail sent. You will receive a
conirmation, as shown in the preceding screenshot.

Summary
In this chapter, we learned how to use the AVFoundation framework and
AVAudioRecorder to record sounds using the iOS device's built-in microphone.
We learned about the AVAudioPlayer framework, and how we can use this
framework to play back audio content that was previously recorded.

We then looked at how to create a custom UIViewController sub-class to display
a graphical representation of our voice level intensity, using the meteringEnabled
method of the AVAudioRecorder class. To end the chapter, we looked at how we
can use the MFMailComposeViewController class to allow the user to send e-mails
directly within the app, as well as looking at how we can use the NSData object to
convert the saved audio iles, so that these can then be added as attachments
to e-mails.

In the next chapter, we will look at how we can create an enhanced address book
application that will store contact information into an SQLite database using the Core
Data framework. We will also learn about the GameKit framework, and how we can
use this to send a contact from one device to another using Bluetooth.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook

App – Core Data
The iPad comes with a built-in Bluetooth functionality, allowing it to
communicate with other Bluetooth-capable devices, such as other iOS devices
or Bluetooth-compatible headsets. In this chapter, we will take a look at how to
create a simple AddressBook application, making use of Apple's powerful Core
Data framework that will allow you to directly interface with a SQLite database
to create and store client information using a form.

We will then take a look at how you can incorporate the Bluetooth functionality
within your application, so that you can send this information by communicating
with another iOS device, and have this information received wirelessly and stored
within the database at the other end.

This may sound all a bit confusing at irst, but you will soon come to see that
by using the iOS SDK, Bluetooth programming is actually quite simple and this
functionality is nicely encapsulated within the Game Kit framework.

In this chapter we will:

• Build the AddressBook application using Storyboards

• Build the AddressBook Core Data Model and create the table schema

• Learn how to navigate between screens using Storyboards

• Implement a functionality to populate UITableView from a database

• Implement a method to save a record to the database

• Implement a method to send the record using Bluetooth

• Implement a method to delete table view items

• Implement an ability to perform searches within UITableView

We have an exciting project ahead of us; so let's get started.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

Overview of the Core Data technologies
The enhanced AddressBook application makes reference to two very important
frameworks: the Game Kit framework and the Core Data framework. The Game
Kit framework allows for multiple iOS devices to communicate with each other over
the Bluetooth network, to allow information to be sent and received from one device
to another.

The Core Data framework is described as an abstraction layer that sits on top
of a SQLite database, and enables developers to easily implement data-centric
applications by modeling your data storage around entities (which are known as
classes), which contain the relationships between them. If you are familiar with the
Entity-Framework that comes as part of the Microsoft .NET framework, then this one
is of a similar nature.

This framework can be described as a "Schema-driven object graph management and
persistence framework" that was irst released as part of the iOS 3.0 SDK, and helps
manage where data is stored, how it is stored, how it is cached, and how it handles
the management of memory.

Since Core Data is a large topic, we will be covering a small aspect of some of the
features that come with Core Data. There are many books that already exist on the
market, which go into more depth than what will be covered within this chapter.

The following screenshot shows the simplest and most common coniguration of the
stack. The objects that you will most likely work directly with are located at the top
of the stack, including the managed object context and the managed data objects that
it contains.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

The following table shows you the three main management object models the Core
Data framework contains.

Object models Description

Managed Object Context This associates the in-memory object with their associated
in-storage counterparts

Managed Object This is the in-memory representation of the data-model
object and is saved in a persistent store (table)

Managed Object Model This is the object-relational schema that contains the
entity descriptions that are required to build the managed
objects

For more information on the Core Data Framework, refer to the Core Data
Programming Guide located within the Apple Developer Documentation at
https://developer.apple.com/library/mac/#documentation/
Cocoa/Conceptual/CoreData/cdProgrammingGuide.html#//
apple_ref/doc/uid/TP30001200-SW1.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

Building the AddressBook application
The ability to create a new contacts record is one of the most common things that we
do in our everyday lives. This includes adding the contact details of family members,
friends, colleagues, or even business contacts.

In this section, we will take a look at how to create an application, which will do
just that, so it can run on an iOS device, enabling us to create new contacts, assign
company details, address information, and additional notes or comments.

We will also be storing this information within a database using Core Data, and then
have this information populated within a UITableView control that will provide us
with the added ability to handle the management and presentation of data a lot more
cleanly, and provide an added functionality of being able to delete items that have
been previously added to the list.

Before we can proceed, we irst need to create our AddressBook project. To refresh
your memory on how to go about creating a new project, you can refer to the section
that we covered in Chapter 2, Task Priorities – Building a TaskPriorities iOS App, under
the section named Building the TaskPriorities app.

It is very simple to create this in Xcode. Just follow the steps listed here.

1. Launch Xcode from the /Xcode4/Applications folder.

2. Choose Create a new Xcode project, or File | New Project.

3. Select the Empty Application template from the list of available templates.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

4. Select iPad from under the Device Family drop-down.

5. Select the Use Core Data checkbox.

6. Select the Use Automatic Reference Counting checkbox.

7. Ensure that the Include Unit Tests checkbox has not been selected.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

8. Click on the Next button to proceed with the next step in the wizard.

9. Enter in AddressBook as the name for your project.

10. Click on the Next button to proceed with the next step of the wizard.

11. Specify the location where you would like to save your project.

12. Then, click on the Save button to continue and display the Xcode
workspace environment.

Now that we have created our AddressBook project, we need to add the Game Kit
framework to our project. This will enable us to communicate with other iOS devices
over a Bluetooth network to send and receive information between them.

Adding the GameKit framework
As we mentioned previously, we need to add the Game Kit framework to our project
that will enable us to perform to have the ability of transmitting information over
a Bluetooth network to other iOS devices. To add the Game Kit framework, select
Project Navigator Group, and then follow these simple steps as outlined here:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

1. Click and select your project from Project Navigator.

2. Then, select your project target from under the TARGETS group.

3. Select the Build Phases tab.

4. Expand the Link Binary With Libraries disclosure triangle.

5. Finally, use + to add the library you want.

6. Select GameKit.framework from the list of available frameworks.

If you can't find the framework you are looking for, there is also the
added ability to search for this directly, right from within the list of
available frameworks.

If you are still confused how to go about adding the framework, follow
this screenshot, which highlights the areas that you need to select
(surrounded by a rectangle):

Now that we have added GameKit.framework into our project, we need to start
building our user interface that will be responsible for allowing us to create and
add new contacts directly into our list. One thing you will also notice is that we
don't need to include CoreData.framework as it has been automatically added
for us.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

Building the Core Data model
The Core Data database model is stored within AddressBook.xcdatamodel, located
within the AddressBook group within the Project Navigator window. This ile
will be used to deine the database schema for our SQLite database, as we will be
deining the entities (table) and the attributes (ields) that make up our address book.

Since we have selected the Use Core Data option, Xcode has automatically set up
some important variables, and has created the ile for us within our project.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

Our next step is to create an entity and add the necessary attributes that will enable
our application to write to these ields, hence storing this information within the
database, so that it can be queried later. To create a new entity, follow the steps
listed here:

1. Select the AddressBook.xcdatamodel ile from Project Navigator.

2. Click on the + Add Entity button located at the bottom left-hand corner
of the entity panel, and name this entity AddressBook.

3. Next, click on the + Add Attribute button located at the bottom right-hand
corner of the entity panel, or alternatively from the Attributes pane, and
enter in adTitle as the value for the attribute.

4. Change the attribute type to String from the Type selection box.

5. Click on the + Add Attribute button located at the bottom right-hand corner
of the entity panel, and enter in adFirstName as the value for the attribute.

6. Change the attribute type to String from the Type selection box.

7. Click on the + Add Attribute button located at the bottom right-hand corner
of the entity panel, and enter in adSurName for the attribute.

8. Change the attribute type to String from the Type selection box.

9. Repeat steps 7 to 8 to add the remaining attributes for adAddress,
adCompany, adEmail, adHomepage, adJobTitle, adMobileNo, adNotes,
and adWorkNo.

10. Save your project using File | Save, as we have inished deining our
database table schema.

So far we have created our AddressBook database model. Our next step is to take a
look at how we can integrate and use the database within our application. In the next
section, we will look at how to create the core data model iles that will allow us to
access the table deinitions.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

Creating our Core Data model iles
Before our application can start to use our AddressBook database, we need to create
the entity class deinitions that will deine the variables the database store contains,
so that we can access these through code.

1. From the AddressBook folder, select the AddressBook.xcdatamodel ile
from Project Navigator.

2. Choose File | New | New File… or press Command + N.

3. Select the NSManagedObject subclass from the list of available templates.

4. Click on the Next button to proceed with the next step within the wizard.

5. Click on the Create button to save the ile to the folder location speciied.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

6. Next, we need to deine the entities for which we want to create the
NSManagedObject classes.

7. Select the AddressBook entity from the Select the entities you would like to
manage list.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

8. Click on the Next button to proceed with the next step in the wizard.

9. Ensure that the Use scalar properties for primitive data types option
is not selected.

10. Click on the Create button to generate the NSManagedObject class iles.

You will notice that the wizard has created two new iles for us—AddressBook.m
and AddressBook.h. These iles deine the NSManagedObject class for the
AddressBook entity that we created in the Core Data store.

They deine the table schema ields, so that when we want to use the AddressBook
class, we can access the attributes at runtime.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

Let's take a quick look at the AddressBook class iles, to see what the wizard
generated for us.

1. Open the AddressBook.h interface ile located within the
AddressBook folder.

// AddressBook.h

// AddressBook

// Created by Steven F Daniel on 10/02/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import <Foundation/Foundation.h>

#import <CoreData/CoreData.h>

@interface AddressBook : NSManagedObject

@property (strong, nonatomic) NSString * adFirstName;

@property (strong, nonatomic) NSString * adSurName;

@property (strong, nonatomic) NSString * adAddress;

@property (strong, nonatomic) NSString * adCompany;

@property (strong, nonatomic) NSString * adEmail;

@property (strong, nonatomic) NSString * adHomepage;

@property (strong, nonatomic) NSString * adJobTitle;

@property (strong, nonatomic) NSString * adMobileNo;

@property (strong, nonatomic) NSString * adNotes;

@property (strong, nonatomic) NSString * adTitle;

@property (strong, nonatomic) NSString * adWorkNo;

@end

From the preceding code snippet, we can see that the wizard has generated
an AddressBook.h interface ile containing each of our entity attribute ields
with each being declared as an NSString object.

2. Next, open the AddressBook.m implementation ile located within the
AddressBook folder.

// AddressBook.m

// AddressBook

// Created by Steven F Daniel on 10/02/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import "AddressBook.h"

@implementation AddressBook

@dynamic adFirstName;

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

@dynamic adSurName;

@dynamic adAddress;

@dynamic adCompany;

@dynamic adEmail;

@dynamic adHomepage;

@dynamic adJobTitle;

@dynamic adMobileNo;

@dynamic adNotes;

@dynamic adTitle;

@dynamic adWorkNo;

@end

From the preceding code snippet, we can see that the wizard has generated
an AddressBook.m implementation ile that contains each of our entity
attribute ields with each being declared as dynamic. This deines the entity
attribute properties, so that they can be used when data is being written or
retrieved from Core Data.

For more information about the dynamic data type, you can refer to
the Apple Developer documentation at the following URL: https://
developer.apple.com/library/mac/#documentation/
Cocoa/Conceptual/CoreData/Articles/cdAccessorMethods.
html#//apple_ref/doc/uid/TP40002154-SW9.

Adding the Storyboard screen
Now that we have created our AddressBook project, added the GameKit framework,
and created the CoreData database, our next step is to include the Storyboard template
as part of our AddressBook project. Unfortunately, the Storyboard template is not
added as part of the Empty Application project template. This template provides you
with a starting point for any application, and comes with an application delegate
and a window.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

Follow these simple steps to see how to add the Storyboard template into
your application.

1. From the Project Navigator window, select the AddressBook folder.

2. Choose File | New | New File… or press Command + N

3. Select Storyboard from the list of available templates.

4. Click on the Next button to proceed with the next step in the wizard.

5. Choose the Storyboard template from the list of available templates,
located under the User Interface option within the iOS section.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

6. Click on the Next button to proceed with the next step in the wizard.

7. Ensure that you have selected iPad from under the Device
Family dropdown.

8. Click on the Next button to proceed with the next step of the wizard.

9. Enter in MainStoryboard within the Save As ield as the name of the
ile to be created.

10. Click on the Create button to save the ile to the folder speciied.

Now that we have created and added our Storyboard to our AddressBook
application, our next task is to modify our project so that it is conigured to
use the Storyboard that we just created.

1. Click and select your project from the Project Navigator window.

2. Then, select your project target from under the TARGETS group.

3. Select the Summary tab.

4. Ensure that you select MainStoryboard from the Main Storyboard
dropdown box.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

5. Next, open the AppDelegate.m implementation ile from within Project
Navigator, and modify the application's didFinishLaunchingWithOptions
method, as shown in the following code snippet.

- (BOOL)application:(UIApplication *)application didFinishLaunchin
gWithOptions:(NSDictionary *)launchOptions

{

 return YES;

}

When using Storyboards, we don't need to create a new UIWindow, as this will create
another white window and place this on top of the Storyboard. Now that we have
added our Storyboard to our AddressBook application, our next step is to start
building our main application.

For more information on using Storyboards, you can refer to the Apple
Developer Documentation located at the following URL: https://
developer.apple.com/library/mac/#documentation/
ToolsLanguages/Conceptual/Xcode4UserGuide/
InterfaceBuilder/InterfaceBuilder.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

Creating the main application screen
Our next step is to build the user interface for our AddressBook application.
The screens will consist of a Tab Bar controller, a Navigational controller, and
View controllers. The Navigational controller enables us to create relationships
between the other screens within the Storyboard and sets up the required connections,
known as segues. A segue represents a transition from one screen to another.

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UITabBarController) Tab Bar
Controller control, and add this to your view.

The Tab Bar controller comes pre-conigured with two other view controllers, one
for each tab that are represented by each image button at the bottom of the Tab Bar
Controller control. The container relationship between each screen is represented
within the Storyboard editor between the Tab Bar controller and the View controllers
that it contains.

To refresh your memory on how to go about adding a
UITabBarController to your Storyboard, you can refer to the section
that we covered in Chapter 2, Task Priorities – Building a TaskPriorities
iOS App, under the section named Creating the main application screen.

So far we have added a Tab Bar controller consisting of two view controllers that
don't provide any functionality as yet. In this section, we will start building our
user interface and add the required controls that will be used to process and hold
our task items.

Adding a table control to hold the item data
Our next step is to add a UITableViewController that will be used to hold and list
our task entries. We will need to include a Navigation controller that will be used to
navigate back and forth between the UITableViewController and itself.

To implement the UINavigationController is very simple, and we will take
a look at how this in done in a few moments. For a discussion on what happens
when a view gets displayed, we covered this in Chapter 2, Task Priorities – Building
a TaskPriorities iOS App, under the section named Adding a table control to hold the
item data.

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UITableViewController)
Table View Controller control, and add this to our view.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

3. Next, we need to create a navigation controller between the Tab Bar
controller and UITableViewController that we just added. There
are two ways in which this can be achieved; you can either drag
UINavigationController directly onto the view, or you can let Xcode
do this for you automatically.

4. Select UITableViewController that we just added, and then choose
Editor | Embed In | Navigation Controller from the Editor menu.

If you have followed the steps correctly, your Storyboard should look similar
to the following screenshot. If it doesn't look quite the same as mine, feel free
to adjust yours.

You will notice that by embedding the Table View controller, our TableView
controller automatically gets included within the navigation bar. The Storyboard
editor automatically added the NavigationController in there for us, because the
scene will now be displayed inside the Navigation Controller's frame.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

The UINavigationBar screen is not a real UINavigationBar object;
the Storyboard Editor has simulated this for us. This can be seen from
within Attributes Inspector as shown in the previous screenshot.

In the Simulated Metrics section, you will notice that Inferred has been set up as
the default setting for each of the options; this is the default setting for storyboards.
Inferred means that the scene will show a navigation bar when the Table View
controller is inside a Navigation controller.

You have the ability to override any of these settings if you wanted to, but keep in
mind that these are only here to help you when designing your screens. These aren't
used during runtime, and are only available to show you how your screen will end
up looking when it is run on the iOS device.

Our next step is to connect these scenes to our Tab Bar controller, so that the Table
View controller will be the irst screen to be displayed when it is run.

1. Select the Tab Bar Controller control, then hold down the Ctrl key and drag
from the Tab Bar Controller control to the Navigation Controller control,
and release the mouse.

2. Choose Relationship – viewControllers from the Storyboard Segues
pop up.

To refresh your memory on how to go about connecting the different
scenes within your Storyboard, you can refer to the section that we
covered in Chapter 2, Task Priorities – Building a Task Priorities iOS App,
under the section named Adding a table control to hold item data.

You will notice that when we made a connection between the two view
controllers, a new tab was added to the Tab Bar Controller control,
named Item.

3. Next, we want to show the bottom toolbar within our Navigation Controller.
Select the Navigation Controller control, and from the Attributes Inspector
dialog, select the Shows Toolbar option.

So far, we have linked up our Tab Bar controller and Navigation controllers, and
have conigured the properties required for the Navigation controller; our next step
is to set up the properties on our Table View controller. Follow these simple steps:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

1. Select the Table View controller that we just added previously.
2. Next, click on the toolbar located at the top of the View controller.

3. Then, from Attributes Inspector, change Title to read Enhanced Address
Book, as shown in the following screenshot:

If you prefer, you can also double-click on the navigation bar and change its
title. You may have noticed that since we added our Table View controller,
Xcode gave us a warning.

As we have seen in the previous chapters, this warning message happens
whenever you add a Table View Controller to a storyboard, and this is
because it wants to use prototype cells as the default, but we haven't correctly
conigured this control yet. Let's take a look at the following screenshot:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

4. Click on the Prototype cell from the Prototype Cells section.

5. From the Attributes Inspector section, change Style to Subtitle.
This will change the cell's appearance to contain two labels.

6. Select the Identiier item and enter in ContactsCell as its unique
identiier. You will notice that once this has been entered in, Xcode will
stop complaining about the warning message that we received earlier on.

7. Set the Accessory attribute to show None.

Adding the Add button
Our next step is to add a button to our UITableViewController; this will be
responsible for displaying an additional screen where we can create additional
tasks. This can be achieved by following these simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button
Item control to the top left-hand corner of the navigation bar on the Task
Priorities (UITableViewController) section of the Table View Controller
screen that we added previously.

3. From the Attributes Inspector section, change Identiier to Add.

4. Then, change Style to Bordered.

Now that we have added our Add button to our Contacts View controller, our
next step is to add the Action button that will be responsible for sending our contact
from one iOS device to another when the button is clicked. So let's proceed with the
next section.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

Adding the Action button
Now that we have added our button to add a new address contact record, our next
step is to add another button to UITableViewController; this will be responsible
for sending the contact information from one iOS device to another within the table
view. This can be achieved by following these simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control to the top right-hand corner of the navigation bar on the Enhanced
Address Book (UITableViewController) section of the Table View
Controller screen that we added previously.

3. From the Attributes Inspector section, change the value of Identiier
to Action.

4. Then, change the value of Style to Bordered.

Now that we have added our Add and Action buttons, as well as properly
conigured our Table View controller, we are ready to create our very own custom
UIViewController subclass that will act as the data source for our table, so that it
will know how many rows are to be displayed when it retrieves the address book
information from our database.

1. Select the AddressBook folder, choose File | New | New File… or press
Command + N.

2. Select the Objective-C class template from the list of templates.

3. Click on the Next button to proceed with the next step within the wizard.

4. Enter in ContactsViewController as the name of the ile to create.
5. Ensure that you have selected UITableViewController as the type of

subclass to create from the Subclass of dropdown.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

6. Ensure that you have selected the Targeted for iPad option.

7. Click on the Next button to proceed with the next step of the wizard.

8. Click on the Create button to save the ile to the folder location speciied.

Now that we have added our ViewController class to our AddressBook
application, our next step is to update the class of UITableViewController to use
this class, instead of the default UITableViewController class.

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. Select our Enhanced Address Book (UITableViewController) controller.

3. Click on the Identity Inspector section, and change the value of the Custom
Class property to read ContactsViewController.

Our next step is to add a reference to the NSManagedObjectContext and
NSFetchedResultsController objects that will provide us with all of the Core Data
fetch-related functions we need to perform when populating our table view with
data. These functions encapsulate the common functions that are associated with the
table and the Core Data data-model. We will also create a NSMutableArray array
property within our ContactsViewController interface ile.

For more information about the NSFetchedResultsController object,
you can refer to the Apple Developer documentation at the following URL:
http://developer.apple.com/library/ios/#DOCUMENTATION/
CoreData/Reference/NSFetchedResultsController_Class/
Reference/Reference.html.

1. Open the ContactsViewController.h interface ile located within the
AddressBook folder. Enter in the following code snippet:

// ContactsViewController.h

// AddressBook

// Created by Steven F Daniel on 10/02/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import <UIKit/UIKit.h>

#import "AddressBook.h"

@interface ContactsViewController : UITableViewController

{

 NSManagedObjectContext *managedObjectContext;

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

 NSFetchedResultsController *fetchedResultsController;

 NSArray *fetchedObjects;

 IBOutlet UIBarButtonItem *btnSend;

}

@property (strong, nonatomic) NSManagedObjectContext
*managedObjectContext;

@property (strong, nonatomic) NSFetchedResultsController
*fetchedResultsController;

@property (strong, nonatomic) IBOutlet UIBarButtonItem *btnSend;

-(void)getContactDetails;

@end

As you can see, all we have done is created a reference to the
NSManagedObjectContext and NSFetchedResultsController objects that
will help us with managing the fetching, updating, and creating of records
within the data store.

These objects also come with the added advantage and ability to handle
validations and undo/redo functionality of records without having to write
any additional code.

2. Next, open the AppDelegate.m implementation ile, located within the
AddressBook folder, and add the following highlighted code:

// AppDelegate.m

// AddressBook

//

// Created by Steven F Daniel on 10/02/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import "AppDelegate.h"

#import "ContactsViewController.h"

@implementation AppDelegate

@synthesize window = _window;

In the preceding code snippet, we need to import the
ContactsViewController.h interface header ile, as we will be referencing
these when we set up our data source for ContactsViewController within
our Storyboard.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

3. Next, we need to change the didFinishLaunchingWithOptions: method
located within the AppDelegate.m implementation ile.
- (BOOL)application:(UIApplication *)application didFinishLaunchin
gWithOptions:(NSDictionary *)launchOptions
{
 UITabBarController *tabBarController =
 (UITabBarController *)self.window.rootViewController;

 UINavigationController *navigationController =
 [[tabBarController viewControllers]
 objectAtIndex:0];
 ContactsViewController *contactsViewController =
 [[navigationController
 viewControllers]objectAtIndex:0];

 contactsViewController.managedObjectContext =
 self.managedObjectContext;

 return YES;
}

In the preceding code snippet, we need to initialize the data source for
contactsViewController using the managedObjectContext method. This
will ensure that our controller has access to all of the required properties and
methods required to add and retrieve the information from our data store.

Before this can happen, we must irst cycle through each scene within our
Storyboard in order to get a reference to ContactsViewController. This is
so that we can initialize its data source, so that it points to our database. Next,
we need to populate our address book information to our table view.

4. Open the ContactsViewController.m implementation ile, and enter in the
following highlighted code snippets:

// ContactsViewController.m

// AddressBook

//

// Created by Steven F Daniel on 10/02/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import "ContactsViewController.h"

@implementation ContactsViewController

@synthesize fetchedResultsController;

@synthesize managedObjectContext;

@synthesize btnSend;

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

5. Next, we need to modify the viewDidLoad method located within the
ContactsViewController.m implementation ile. Enter in the following
highlighted code snippet:

#pragma mark - View lifecycle

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Initialize and reload contacts.

 btnSend.enabled = NO;

 [self getContactDetails];

}

In the preceding code snippet, we need to initialize and set the action button
to disabled and then call the getContactDetails method to populate the
database object items to our table view.

6. Next, open the ContactsViewController.m implementation ile, and enter
in the following code snippet for the getContactDetails method:

#pragma mark Populate our UITableView Controller with all records
in our database.

-(void)getContactDetails

{

 // Define our table/entity name to use

 NSEntityDescription *entity = [NSEntityDescription
 entityForName:@"AddressBook"
 inManagedObjectContext:managedObjectContext];

 // Set up the fetch request

 NSFetchRequest *fetchRequest=[[NSFetchRequest alloc]
 init];

 [fetchRequestsetEntity:entity];

 // Define how we are to sort the records

 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor
 alloc] initWithKey:@"adSurName" ascending:NO];

 NSArray *sortDescriptors = [NSArray
 arrayWithObject:sortDescriptor];

 [fetchRequest setSortDescriptors:sortDescriptors];

 // Define the FetchResults controller
 fetchedResultsController =
 [[NSFetchedResultsController
 alloc] initWithFetchRequest:fetchRequest
 managedObjectContext:managedObjectContext
 sectionNameKeyPath:nil cacheName:@"Root"];

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

 // Fetch the records

 NSError *error;

 if (![[self fetchedResultsController]
 performFetch:&error])

 {

 // Something seriously went wrong, so notify the
 //user.

 NSLog(@"There was an error retrieving the address
 book contacts.");

 }

 // Return the number of rows to populate our

 // Table View controller with.

 fetchedObjects =
 fetchedResultsController.fetchedObjects;

 [self.tableView reloadData];

}

In the preceding code snippet, we deine the table entity that we want to use
as our main data source and then create an instance to our fetchRequest
object that will be used to hold the returned items. Next, we then specify that
we would like to have the results sorted by surname in descending order.

7. Next, we initialize our fetchResultsController object in order for it to
start retrieving the data from our database, then sort the result set returned
by surname in descending order, then execute the record set, and then check
for any errors that occurred, using the performFetch method.

8. Finally, we save the result set to our fetchedObjects property and then call
the reloadData method on our table View control to redisplay the records in
the table view.

9. Next, we need to modify the viewDidAppear method that is located within
the ContactsViewController.m implementation ile to refresh our Table
View whenever the view is displayed. Locate the viewDidAppear method,
and enter in the following highlighted code snippets:

- (void)viewDidAppear:(BOOL)animated

{

 [super viewDidAppear:animated];

 [self getContactDetails];

}

10. Next, we need to change the table view data source methods that are located
within the ContactsViewController.m implementation ile, and enter in the
following highlighted code snippets:

#pragma mark - Table view data source

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

{

 // Return the number of sections.

 return 1;

}

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSect
ion:(NSInteger)section

{

 // Return the number of rows in the section.

 return [fetchedObjects count];

}

From the preceding code snippet we can see that we set the number of table
sections, and then had the numberOfRowsInSection method work out how
many rows will exist in each section. This is achieved by using the count
property of our contactsArray array object.

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRow
AtIndexPath:(NSIndexPath *)indexPath

{

 static NSString *CellIdentifier = @"ContactsCell";

 AddressBook *address;

 // Check to ensure that we have items in our list.

 address = [contactsArray

 objectAtIndex:indexPath.row];

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {

 cell = [[UITableViewCell alloc]

 initWithStyle:UITableViewCellStyleSubtitle

 reuseIdentifier:CellIdentifier];

 }

 // Configure the cell...

cell.textLabel.text = [NSString

 stringWithFormat:@"%@ %@, %@",

 address.adTitle,

 address.adSurName, address.adFirstName];

 cell.detailTextLabel.text = address.adCompany;

 return cell;

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

Finally, as you can see in the preceding code snippet, we supply the reuse
identiier of the TableViewController's cell that we set up previously,
then assign each of the properties from our contacts array, and write it to
the cell labels.

When you reference the reuse identifier as a parameter to the
following method called dequeueReusableCellWithIdentifier,
this will automatically make a new copy of the prototype, and return
the object back to you.

11. Now that we have set up the data source correctly for our
TableViewController, we can run our application by choosing
Product | Run from the Product menu, or alternatively by pressing
Command + R to see the AddressBook application running within
the iOS Simulator, as shown in the following screenshot:

12. Now that we have successfully conigured our data source for our list of
contacts, we will see how we can navigate between screens within the
Storyboard. We will learn about segues and the different types of views
they can take on. We will look into static table view cells, as well as how to
go about providing the ability for additional contact details to be added to
the current list of contacts within our address book.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

Navigating between screens using Storyboards
In this section, we will be adding more view controllers to our Storyboard to allow
the lexibility of adding new contact detail information to our existing table view.

In order for us to transition between screens within our Storyboard, we need to
create a connection, known as segue. Segues are deined as having the ability to only
go one way; they cannot go back to the previous screen, unless a delegate class has
been set up.

For our new screen, we will be creating a "modal" segue. A modal segue is a screen
that becomes the active screen, which prevents the user from interacting with the
underlying screen until they close the modal screen irst.

To begin creating the Add New Contact screen, follow these simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a new (UITableViewController)
Table View Controller control, and add this to our Storyboard to the right
of the Enhanced Address Book screen.

3. Next, select the UITableViewController that we just added, and then
choose Editor | Embed In | Navigation Controller from the Editor menu.

4. Next, select the + button that we added previously, and hold down the
Control key while dragging it to the new Navigation Controller and release
the mouse button.

5. Finally, select Modal from the pop-up list of choices.

When you select Modal from the list of Storyboard Segues, a new connection will be
placed between the Contacts screen and the Navigational controller. So, when you
press the + button, a new Table View will slide up from the bottom of the screen.

Next, we need to specify an identiier for our Storyboard Segue. This will be
responsible for handling the cancelling and saving methods when the Add New
Contact form is closed.

1. Select the segue relationship that is located between the Enhanced Address
Book screen and the Navigation controller for the Add New Contact screen.

2. Click on the Attributes Inspector button.

3. Change the Identiier property to AddNewContact.

4. Change the Style property to Modal.

5. Change the Presentation property to Form Sheet.

6. Change the Transition property to Cover Vertical.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

Unfortunately, you won't be able to go back to the previous screen until we create
a UIViewController subclass, same as what we did for ContactsViewController.

1. From the AddressBook folder, choose File | New | New File… or press
Command + N.

2. Select the Objective-C class template from the list of templates.

3. Click on the Next button to proceed with the next step within the wizard.

4. Enter in ContactDetailsViewController as the name of the ile to create.
5. Ensure that you have selected UIViewController as the type of subclass to

create from the Subclass of dropdown list.

6. Ensure that you have selected the Targeted for iPad option.

7. Click on the Next button to proceed with the next step of the wizard.

8. Then, click on the Create button to save the ile to the folder
location speciied.

Once you have done this, we need to update the class method of our previously
added View controller to use our new ViewController subclass. Follow these
simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. Click-and-select our newly added (UIViewController) to the right of the
Enhanced Address Book table.

3. Click on the Identity Inspector section, and change the value of the Custom
Class property to read ContactDetailsViewController.

4. Next, from the Attributes Inspector section, change the Title property to
read Add New Contact.

5. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control to the top left-hand corner of the navigation bar on the Add New
Contact (UIViewController) section of the View Controller screen that we
added previously.

6. From the Attributes Inspector section, change the value of Identiier to Save.

7. Then, change the value of Style to Bordered.

8. Next, from the Object Library, select-and-drag a (UIBarButtonItem) Bar
Button Item control to the top right-hand corner of the navigation bar.

9. From the Attributes Inspector section, change the value of Identiier
to Cancel.

10. Change the value of Style to Bordered.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

Our next step is to start building the screen that will allow us to record our contact
details information, so that it can be saved to the Enhanced Address Book list.

1. Select the Add New Contact table view controller from within
our Storyboard.

2. Next, drag a (UILabel) Label Field control onto the canvas.

3. Select Attributes Inspector for Text Field.

4. Set the Text ield property to read Salutation:

5. Set the Alignment ield property to Left Justify.

6. Next, drag a (UITextField) Text Field control next to the Salutation ield
that we added in the previous step.

7. Select Attributes Inspector for Text Field.

8. Set the Alignment ield property to Left Justify.

9. Set the value of Border Style to Rounded.

10. Set the value of Font to System 14.0.

11. Ensure that you have unchecked the Adjust to Fit checkbox.

12. Repeat steps 2-11 to apply the same for each section, and create the following,
along with their ield types as shown in the table below:

FIELD NAME FIELD TYPE
Firstname: UITextField

Surname: UITextField

Company: UITextField

Job Title: UITextField

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

FIELD NAME FIELD TYPE
Mobile #: UITextField

Work #: UITextField

Email: UITextField

WWW: UITextField

Postal Address: UITextView

Additional Notes: UITextView

If you have followed the steps correctly, the completed Add New Contact screen
should look similar to the following screenshot. Feel free to adjust yours accordingly
if it doesn't.

The next step is to create the outlets for each of the ields that we previously added
to our Add New Contact form.

1. Open Assistant Editor by choosing Navigate | Open In Assistant Editor
or press Option + Command + ,.

2. Ensure that the ContactDetailsViewController.h interface ile
gets displayed.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

3. Select the Salutation (UITextField), hold down the Control key, and drag it
into the ContactDetailsViewController.h interface ile.

4. Enter in taskName for the Name of the property to be created.

5. Choose Strong from the Storage dropdown.

6. Repeat steps 3 to 5, and add create the properties for the Firstname,
Surname, Company, Job Title, Mobile #, Work #, Email, WWW, Postal
Address, and Additional Notes ields.

Now that we have created the outlets and properties for each of our form ields,
we need to start modifying our ContactDetailsViewController.h interface ile.

1. Open the ContactDetailsViewController.h interface ile, located
within the AddressBook folder, and enter in the following highlighted
code snippets:

// ContactDetailsViewController.h

// AddressBook

// Created by Steven F Daniel on 10/02/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import <UIKit/UIKit.h>

#import "AddressBook.h"

@interface ContactDetailsViewController : UIViewController

{

 // Core Data Objects

 NSManagedObjectContext *managedObjectContext;

 // Create the required form Outlets

 IBOutlet UITextView *tvAdditionalNotes;

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

 IBOutlet UITextView *tvPostalAddress;

 IBOutlet UITextField *txtWebAddress;

 IBOutlet UITextField *txtEmailAddress;

 IBOutlet UITextField *txtWorkNo;

 IBOutlet UITextField *txtMobileNo;

 IBOutlet UITextField *txtJobTitle;

 IBOutlet UITextField *txtCompany;

 IBOutlet UITextField *txtSalutation;

 IBOutlet UITextField *txtFirstname;

 IBOutlet UITextField *txtSurname;

}

// Create the required class Setters and Getters

@property (strong, nonatomic) NSManagedObjectContext
*managedObjectContext;

@property (strong, nonatomic) IBOutlet UITextField *txtFirstname;

@property (strong, nonatomic) IBOutlet UITextField *txtSurname;

@property (strong, nonatomic) IBOutlet UITextField *txtSalutation;

@property (strong, nonatomic) IBOutlet UITextField *txtCompany;

@property (strong, nonatomic) IBOutlet UITextField *txtJobTitle;

@property (strong, nonatomic) IBOutlet UITextField *txtMobileNo;

@property (strong, nonatomic) IBOutlet UITextField *txtWorkNo;

@property (strong, nonatomic) IBOutlet UITextField
*txtEmailAddress;

@property (strong, nonatomic) IBOutlet UITextField *txtWebAddress;

@property (strong, nonatomic) IBOutlet UITextView
*tvPostalAddress;

@property (strong, nonatomic) IBOutlet UITextView
*tvAdditionalNotes;

// Class methods

- (IBAction)btnSaveContact:(id)sender;

- (IBAction)btnCancel:(id)sender;

@end

In the preceding code snippet, we are setting up the Core Data objects that will
enable us to save our new contact detail back to the data store when the user presses
the Save button, as well as dismissing the view when the user presses the Cancel
button to return us back to the Enhanced Address Book screen.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

Now that we have created the Outlet events for each of our controls, we now need
to create the associated Action events for those Outlets. Creating these actions
allows an event to be ired when the button is pressed. To create an Action, follow
these steps:

1. With the ContactDetailsViewController.h interface ile still
displayed to the right of the Add New Contact screen, select the Save
(UIBarButtonItem) control, then hold down the Control key and drag
it into the ContactDetailsViewController.h interface ile.

2. Choose Action from the Connection dropdown for the connection
to be created.

3. Enter in btnSaveContact for the Name of the method to be created.

4. Repeat steps 2 to 4 and hook up the Cancel button, creating the Action event
btnCancel.

In the next section, we will take a look at building the functionality for our enhanced
AddressBook application, as well as implementing the methods that will be used
for our Cancel and Save buttons. These will be responsible for adding new contact
information to our enhanced AddressBook list, and returning us back to the
Enhanced Address Book screen.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

Implementing the save record method
We are now ready to start implementing the method that will be responsible for
saving the record when the user presses the Save button.

1. Open the ContactDetailsViewController.m implementation ile, located
within the AddressBook folder, and enter in the following code snippet:

- (IBAction)btnSaveContact:(id)sender {

 // Set a pointer to our AddressBook database table
 //schema

 AddressBook *address = (AddressBook
 *)[NSEntityDescription
 insertNewObjectForEntityForName:@"AddressBook"
 inManagedObjectContext:managedObjectContext];

 // Assign the form fields to each of their

 // managedObjectModel attributes.

 [address setAdTitle:txtSalutation.text];

 [address setAdFirstName:txtFirstname.text];

 [address setAdSurName:txtSurname.text];

 [address setAdCompany:txtCompany.text];

 [address setAdJobTitle:txtJobTitle.text];

 [address setAdMobileNo:txtMobileNo.text];

 [address setAdWorkNo:txtWorkNo.text];

 [address setAdEmail:txtEmailAddress.text];

 [address setAdHomepage:txtWebAddress.text];

 [address setAdAddress:tvPostalAddress.text];

 [address setAdNotes:tvAdditionalNotes.text];

 NSError *error;

 if (![managedObjectContext save:&error]) {

 // Display Error message stating that the record

 // could not be saved.

 UIAlertView *alertView = [[UIAlertView alloc]
 initWithTitle:@"Contact Details"
 message:@"There was a problem saving the contact
 details."
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];

 [alertView show];

 }

 // Close our Contact Details view after we have
 //finished.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

 [self dismissViewControllerAnimated:YES
 completion:nil];

}

In the preceding code snippet, we create a managed object context that is
then used to create a new managed object using the AddressBook entity
description. The setAd getters and setters for each of the schema ields of
the managed object are then called to set each of the attributes values of the
managed object before inally the context is instructed to save the changes
to the persistent store, with a call to the context's save method. Any errors
detected during the save operation to our Core Data data model will be
displayed within a UIAlertView dialog box.

2. We then add the new contact details object to our existing list of contacts and
then refresh the table view, using the reloadData method to show that the
new item was added, and then we close the Add New Contact screen.

Implementing the cancel method
Next, we need to implement the Cancel button. This will be responsible for closing
the screen, and returning you back to the Enhanced Address Book table view
when pressed.

Open the ContactDetailsViewController.m implementation ile, located within
the AddressBook folder, and enter in the following code snippet:

-(IBAction) btnCancel:(id) sender

{

 [self dismissViewControllerAnimated:YES completion:nil];

}

In the preceding code snippet, we use the dismissViewControllerAnimated
method, which is only made available in iOS 5 and later. This method is used to
close the current modal screen that was sent by our Task Priorities table view screen.

Implementing the delete row method
Next, we need to implement the delete method. This will be responsible for
removing a contact detail record from the Enhanced Address Book table view.

Open the ContactsViewController.m implementation ile, located within the
AddressBook folder, and enter in the following highlighted code:

// Override to support editing the table view.

- (void)tableView:(UITableView *)tableView commitEditingStyle:(UITabl
eViewCellEditingStyle)editingStyle forRowAtIndexPath:(NSIndexPath *)

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

indexPath

{

 if (editingStyle ==

 UITableViewCellEditingStyleDelete)

 {

 // Get the item to delete from our row

 AddressBook *itemToDelete =
 [fetchedResultsController
 objectAtIndex:indexPath];

 // Delete the item in Core Data

 [self.managedObjectContext
 deleteObject:itemToDelete];

 // Commit the deletion

 NSError *error;

 if (![self.managedObjectContext save:&error])

 {

 NSLog(@"There was a problem deleting the
 contact %@",[error domain]);

 }

 // Delete the row from the data source

 [tableView deleteRowsAtIndexPaths:[NSArray
 arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];

 }

}

In the preceding code snippet, we determine the type of action currently
being performed within the table view, which is determined by the
UITableViewCellEditingStyle class. We then compare against the
UITableViewCellEditingStyleDelete constant variable, and if the condition
is met ,we remove the selected contact details at the selected row from our
AddressBook database, then refresh the table view data source. If any errors have
been detected during the removal process, are then logged out to the Debug window.

Implementing the didSelectRowAtIndexPath
method
Next, we need to implement the didSelectRowAtIndexPath: method. This will
be responsible for determining when a contact detail has been selected from the
Enhanced Address Book table view.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

Open the ContactsViewController.m implementation ile, located within the
AddressBook folder, and enter in the following highlighted code:

#pragma mark - Table view delegate

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NS
IndexPath *)indexPath

{

 AddressBook *contact = [fetchedResultsController
 objectAtIndex:indexPath];

 itemSelected =[NSString
 stringWithFormat:@"%@~%@~%@~%@~%@~%@~%@~%@~%@~%@~%@",
 contact.adTitle,

 contact.adFirstName,

 contact.adSurName,

 contact.adCompany,

 contact.adJobTitle,

 contact.adMobileNo,

 contact.adWorkNo,

 contact.adEmail,

 contact.adHomepage,

 contact.adAddress,

 contact.adNotes];

}

In the preceding code snippet, we need to construct the contact detail information
for the selected row. We use the row property of indexPath to seek inside our
contacts array, and extract the record information. We then construct the record as
a delimited string and assign it to our itemSelected variable, which will be used by
the Send button.

Transferring contact details using

Bluetooth
One of the neat features that come as part of the iOS SDK is the Game Kit framework,
which contains APIs that allow for communication over a Bluetooth network.

You can then use these APIs to create peer-to-peer games and applications easily.
In this section, we will take a look at how we can implement these features into our
application, and transfer contact details from one iOS device to another.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

Open the ContactsViewController.h interface ile, located within the
AddressBook folder, and add the following highlighted code:

//

// ContactsViewController.h

// AddressBook

//

// Created by Steven F Daniel on 10/02/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

//

#import <UIKit/UIKit.h>

#import <GameKit/GameKit.h>

#import "AddressBook.h"

@interface ContactsViewController : UITableViewController
<GKSessionDelegate, GKPeerPickerControllerDelegate,
UISearchBarDelegate>

{

 GKSession *currentSession;

 GKPeerPickerController *peerPicker;

 // Used for our selected table view item.

 NSString *itemSelected;

 NSArray *fetchedObjects;

 IBOutlet UIBarButtonItem *btnSend;

 IBOutlet UIBarButtonItem *btnConnect;

}

@property (nonatomic, strong) GKSession *currentSession;

@property (strong, nonatomic) IBOutlet UIBarButtonItem *btnConnect;

@property (strong, nonatomic) IBOutlet UIBarButtonItem *btnSend;

@property (strong, nonatomic) NSString *itemSelected;

- (IBAction)btnConnect:(id)sender;

- (IBAction)btnSend:(id)sender;

@end

In the preceding code snippet, we have declared a number of delegate objects that
are responsible for handling the Bluetooth functionality.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

We declared a GKSessionDelegate object that is used to represent an active session
between two connected Bluetooth devices, and it allows for sending and receiving of
data between the two. GKPeerPickerControllerDelegate provides a standard UI
to let your application discover and connect to another Bluetooth device, and is the
easiest way of connecting between devices.

The UISearchBarDelegate object is used to handle searches within our table
view controller.

Implementing the connect method
Before you proceed to implement the connect method, ensure that you have
added the Connect button to the UITableViewController view of Enhanced
Address Book, and that you have created the necessary Outlets, Actions, and
have synthesized these objects within the ContactsViewController interface and
implementation iles.

1. Open the ContactsViewController.m implementation ile, located within
the AddressBook folder, and enter the following code snippet:

- (IBAction)btnConnect:(id)sender {
 if ([btnConnect.title isEqualToString:@"Connect"])
 {
 [btnConnect setTitle:@"Disconnect"];
 peerPicker = [[GKPeerPickerController alloc]init];
 peerPicker.delegate = self;
 peerPicker.connectionTypesMask =
 GKPeerPickerConnectionTypeNearby;
 [peerPicker show];
 btnSend.enabled = YES;
 }
 else if ([btnConnect.title
 isEqualToString:@"Disconnect"])
 {
 [btnConnect setTitle:@"Connect"];
 [self.currentSession disconnectFromAllPeers];
 currentSession = nil;
 btnSend.enabled = NO;
 }
}

In the preceding code snippet, we check to see what is the current value of our
button using the isEqualToString method. If the current state reads Connect,
then we make a call to the GKPeerPickerController class, which displays a
standard UI for which you can connect to another Bluetooth device.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

Alternatively, if you click on Disconnect, we make a call to the
disconnectFromAllPeers method from the GKSession object to close the
connection between the two devices.

The following screenshot shows the process when two devices are trying to
establish a connection:

The connectionTypesMask property indicates the types of connections that
the user can choose from.

There are two types that are made available:
GKPeerPickerConnectionTypeNearby and
GKPeerPickerConnectionTypeOnline. If you want to use Bluetooth
communication, use the GKPeerPickerConnectionTypeNearby constant.
Use of the GKPeerPickerConnectionTypeOnline constant indicates an
internet-based connection.

When a Bluetooth connection has been detected between the two devices and
the user has selected one of the items to connect to from the list of available
devices, the peerPickerController:didConnectPeer:toSession: method
is called.

2. Next, open the ContactsViewController.m implementation ile located
within the AddressBook folder, and enter the following code snippets:

#pragma mark Handle Bluetooth capabilities using the GameKit
framework.

-(void)peerPickerController:(GKPeerPickerController *)picker
didConnectPeer:(NSString *)peerID toSession:(GKSession *)session

{

 self.currentSession = session;

 session.delegate = self;

 [session setDataReceiveHandler:self withContext:nil];

 picker.delegate = nil;

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

 [picker dismiss];

 btnSend.enabled = YES;

}

When the user has connected to the peer Bluetooth device, you save the
GKSession object to the currentSession property, which enables you
to use the GKSession object to communicate with the remote device.

-(void)peerPickerControllerDidCancel:(GKPeerPickerController *)
picker

{

 [btnConnect setTitle:@"Connect"];

 btnSend.enabled=NO;

 peerPicker = nil;

 peerPicker.delegate = nil;

 [peerPicker dismiss];

}

In the preceding code snippet, the peerPickerControllerDidCancel:
method gets called whenever the user cancels out from the Bluetooth picker.
Once this happens, we disable our Send button on our form, and close the
peerPicker dialog box, releasing the memory allocated.

Whenever a device is connected or disconnected, there is a call made to the
session:didChangeState: method. This method knows when a connection
has been established or ended.

You then need to use the state property of the GKPeerConnectionState
class and the constants to determine the type of connection.

-(void)session:(GKSession *)session peer:(NSString *)peerID didCha
ngeState:(GKPeerConnectionState)state

{

 NSString *GKPeerStateInfo;

 switch (state)

 {

 case GKPeerStateAvailable:

 GKPeerStateInfo = @"Wi-Fi is Available";

 break;

 case GKPeerStateUnavailable:

 GKPeerStateInfo = @"Wi-Fi is not Available";

 break;

 case GKPeerStateConnecting:

 GKPeerStateInfo = @"Establishing Connection";

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

 break;

 case GKPeerStateConnected:
 GKPeerStateInfo = @"Connection Successful";
 break;

 case GKPeerStateDisconnected:
 GKPeerStateInfo = @"Disconnected from Session";
 currentSession = nil;
 break;
 }

 // Display the current connection state.
 NSLog(@"Connection State: %@", GKPeerStateInfo);
}

The code preceding snippet shows how you can handle the different
connection states, whenever a device connects or disconnects, using the
state property. After we have determined the state type, we write the
connection state to the console window using the NSLog statement.

In the next section, we will take a look at how to send a contact from one device to
another over Bluetooth.

Please ensure that you have added the Send button to the UITableViewController
view of Enhanced Address Book, and that you have created the necessary Outlets,
Actions, and have synthesized these objects within the ContactsViewController
interface and implementation iles.

Implementing the Action button method
Once the two devices are connected via Bluetooth, you can start to send data
between them. The data that is transmitted uses the NSData object, which is basically
a bytes buffer, so you have the lexibility to deine your own data format and send
any given type of data.

1. Next, open the ContactsViewController.m implementation ile located
within the AddressBook folder, and enter the following code snippets:

- (IBAction)btnSend:(id)sender {

 // Convert an NSString object to NSData
 NSData *data;

 data = [itemSelected
 dataUsingEncoding:NSASCIIStringEncoding];

 [self.currentSession sendDataToAllPeers:data
 withDataMode:(GKSendDataReliable) error:nil];

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

In the preceding code snippet, we use the sendDataToAllPeers: method of
the GKSession object to send data to the other device via the NSData object.
We use a variable called itemSelected, which contains the contact address
information to be sent.

When using the GKSendDataReliable constant, the GKSession
object will continue to send the data until it successfully transmits
the data or the connection times out. Alternatively, using
GKSendDataUnreliable indicates that the GKSession object should
send the data only once with no retry.

2. Next, we need to add a method that will be responsible for handling when
data is received by the iOS device on the other end.

3. Next, open the ContactsViewController.m implementation ile located
within the AddressBook folder, and enter the following code snippet:

-(void) receiveData:(NSData *)data fromPeer:(NSString *)peer
inSession:(GKSession *)session context:(void *)context

{

 // Convert our NSData type to NSString

 NSString *strData;

 strData = [[NSString alloc] initWithData:data
 encoding:NSASCIIStringEncoding];

 // Split out our data array and place the contents

 // into an array.

 NSArray *stringComponents = [strData
 componentsSeparatedByString:@"~"];

 NSMutableArray *myArray = [[NSMutableArray alloc]
 initWithCapacity:1000];

 [myArray addObjectsFromArray:stringComponents];

 // Insert the passed record details into our database.

 AddressBook *address = (AddressBook
 *)[NSEntityDescription
 insertNewObjectForEntityForName:@"AddressBook"
 inManagedObjectContext:managedObjectContext];

 [address setAdTitle:[myArray objectAtIndex:0]];

 [address setAdFirstName:[myArray objectAtIndex:1]];

 [address setAdSurName:[myArray objectAtIndex:2]];

 [address setAdCompany:[myArray objectAtIndex:3]];

 [address setAdJobTitle:[myArray objectAtIndex:4]];

 [address setAdMobileNo:[myArray objectAtIndex:5]];

 [address setAdWorkNo:[myArray objectAtIndex:6]];

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

 [address setAdEmail:[myArray objectAtIndex:7]];

 [address setAdHomepage:[myArray objectAtIndex:8]];

 [address setAdAddress:[myArray objectAtIndex:9]];

 [address setAdNotes:[myArray objectAtIndex:10]];

 NSError *error;

 if (![managedObjectContext save:&error])

 {

 // Display Error message stating that the record

 // could not be saved.

 UIAlertView *alertView = [[UIAlertView alloc]
 initWithTitle:@"Contact Details"
 message:@"There was a problem saving the contact
 details."

 delegate:self

 cancelButtonTitle:@"OK"

 otherButtonTitles:nil];

 [alertView show];

 }

 // Reload our contacts from our database

 [self getContactDetails];

}

In the preceding code snippet, we use the receiveData:fromPeer:inSe
ssion:context: method of the GKSession object to handle the receiving
of data that is sent. Since our data has been sent as an NSData delimited
string, we irst need to convert this into an NSString object before using
the componentsSeparatedByString string class to split out each ield
individually, and place these into our NSMutableArray object variable,
myArray. Next, we need to create a new managedObjectContext instance
that will point to our AddressBook entity, and use the getter and setter
methods of our AddressBook application's NSManagedObject to assign each
array element from our myArray object, to each of the entity ield attributes
before the details are then written to the database. Any errors detected
during the save operation to our Core Data data model will be displayed
within a UIAlertView dialog box.

4. Finally, we reload our contacts from our database to repopulate our table
view with the updated information.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

For more information about the NSMutableArray object, you can refer
to the Apple Developer documentation at the following URL: https://
developer.apple.com/library/mac/#documentation/Cocoa/
Reference/Foundation/Classes/NSMutableArray_Class/
Reference/Reference.html.

Finishing up
We just have a few more things to implement before we have a complete
working application.

We will need to implement a couple more methods that will handle the transition
between our Enhanced Address Book and our Add New Contact screens when the
+ button has been pressed, as well as adding the ability to search for records within
our Enhanced Address Book Table View.

First, lets handle the transition between the Enhanced Address Book screen and
the Navigation controller, to determine when a transition has been made on a segue
within the Storyboard.

1. Open the ContactsViewController.m implementation ile, located within the
TaskPriorities folder, and enter in the following code snippet:

-(void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)
sender

{

 if ([segue.identifier
 isEqualToString:@"AddNewContact"])

 {

 UINavigationController *navigationController =
 segue.destinationViewController;

 ContactDetailsViewController
 *contactDetailsViewController =
 [[navigationController
 viewControllers] objectAtIndex:0];

 contactDetailsViewController.managedObjectContext =
 self.managedObjectContext;

 }

}

In the preceding code snippet, we use the prepareForSegue: method to
determine whenever a transition to segue takes place, a check is required to
be made on the identiier of the segue to determine if we are calling the Add
New Contact screen.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

2. Next, we set navigationController of the segue to be the Navigation
controller of the destination screen, and then cycle through each of the
view controllers within the Navigation controller properties to get the
ContactDetailsViewController instance, before inally setting the
data source property of the form to be the currently active connection.

Implementing the search functionality
Now that we have sorted out our segue transition, we have one last feature to
add to our enhanced AddressBook application. This will provide us with the
ability to ilter through our contacts list, and display only those names that have
matching surnames.

Our next step is to add a Search bar to our UITableViewController; this will be
responsible for iltering and narrowing down our contact list results. This can be
achieved by following these simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UISearchBar) Search Bar and
Search Display Controller control to the top of the navigation bar on the
Enhanced Address Book (UITableViewController) section of the Table
View Controller screen that we added previously.

Our next step is to create the Outlet for the Search bar. This will allow us to control
what text is entered, and set or remove the control properties.

1. Open the Assistant Editor window by choosing Navigate | Open in
Assistant Editor, or pressing Option + Command + ,.

2. Ensure that the Enhanced Address Book screen is displayed.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

3. Select the Search bar (UISearchBar) control, then hold down the Control key
and drag it into the ContactsViewController.h interface ile.

4. Choose Outlet from the Connection dropdown for the connection
to be created.

5. Enter in destinationSearchBar for the name of the Outlet property
to be created.

6. Choose Strong from the Storage dropdown.

Now that we have created the outlet event for our UISearchBar, we need to start
adding the additional content to our ViewController class that will provide us with
the ability to ilter our list.

1. Next, open the ContactsViewController.h interface ile, located within the
AddressBook folder, and enter the following highlighted code:

//

// ContactsViewController.h

// AddressBook

//

// Created by Steven F Daniel on 10/02/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

//

#import <UIKit/UIKit.h>

#import <GameKit/GameKit.h>

#import "AddressBook.h"

@interface ContactsViewController : UITableViewController
<GKSessionDelegate, GKPeerPickerControllerDelegate,
UISearchBarDelegate>

{

 IBOutlet UISearchBar *destinationSearchBar;

}

@property (strong, nonatomic) IBOutlet UISearchBar
*destinationSearchBar;

@end

 In the preceding code snippet, we have extended our
ContactsViewController class to use the UISearchBarDelegate class
protocols, so that we have access to its properties and methods.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

2. Next, open the ContactsViewController.m implementation ile located
within the AddressBook folder, and enter the following code:

#pragma mark UISearchBar Delegates

-(void)searchBarTextDidBeginEditing:(UISearchBar *)searchBar

{

 // Only show the Search Bar's cancel button

 // while in edit mode.

 destinationSearchBar.showsCancelButton = YES;

 destinationSearchBar.autocorrectionType =

 UITextAutocorrectionTypeNo;

}

In the preceding code snippet, all we are doing is changing the appearance
of the Search bar when a user taps in it. Next, we specify to show the
Cancel button when the user is in Edit mode, and then turn off the Auto
Correction feature.

-(void)searchBarTextDidEndEditing:(UISearchBar *)searchBar

{

 // Hide our Search Bar's cancel button when

 // not in edit mode.

 destinationSearchBar.showsCancelButton = NO;

}

In the preceding code snippet, we hide the Cancel button of the Search bar
when the user has inished with editing.
-(void)searchBarCancelButtonClicked:(UISearchBar *)searchBar

{

 // Reload our contact details

 [self getContactDetails];

}

In the preceding code snippet, we call our getContactDetails method to
get the updated records from the database, and populate this to our table
view control.

- (void) searchBarSearchButtonClicked:(UISearchBar *)theSearchBar

{

 // We use an NSPredicate combined with the

 // fetchedResultsController to perform the search

 if (![destinationSearchBar.text isEqualToString:@""])

 {

 NSPredicate *predicate =[NSPredicate

 predicateWithFormat:@"adSurName contains[cd] %@",

 self.destinationSearchBar.text];

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

 [fetchedResultsController.fetchRequest

 setPredicate:predicate];

 }

 else

 {

 // We have hit the cancel button, so just reload

 // our TableView

 [destinationSearchBar resignFirstResponder];

 [self.tableView reloadData];

 return;

 }

 NSError *error = nil;

 if (![[self fetchedResultsController]

 performFetch:&error])

 {

 // Handle the error that was caught by the exception

 NSLog(@"Unresolved error %@, %@", error, [error

 userInfo]);

 exit(-1);

 }

 // Return the number of rows to populate our

 // Table View controller with.

 fetchedObjects =
 fetchedResultsController.fetchedObjects;

 // reload the TableView Controller and hide the
 //keyboard.

 [destinationSearchBar resignFirstResponder];

 [self.tableView reloadData];

 NSString *searchResults = [[NSString alloc]

 initWithFormat:@"%d matching record(s) found.",

 [fetchedObjects count]];

 UIAlertView *alertView = [[UIAlertView alloc]

 initWithTitle:@"Search Results"

 message:searchResults

 delegate:self

 cancelButtonTitle:@"OK"

 otherButtonTitles:nil];

 [alertView show];

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

In the preceding code snippet, we cycle through our data source and select
those objects that have the occurrence of the search string. We then reload
our table view with the search data that was returned to be matching, and
then display the total number of matching records within a UIAlertView
dialog box.

If the Search criterion is empty, we perform a comparison using
the isEqualToString method and check to see if the string is empty.
We then resign the keyboard and reload all contacts from our data-model.

In our next part, we need to modify our tableView:
numberOfRowsInSection:section method to handle the search facility
in order to display the correct number of rows.

1. Open the ContactsViewController.m implementation ile, located within
the AddressBook folder, and enter the following code:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSect
ion:(NSInteger)section

{

 // Return the number of rows in the section.

 return [fetchedObjects count];

}

In the preceding code snippet, we need to determine whenever a search has
been applied ,and ilter the list accordingly for those items. This is achieved
by using the fetchedObjects count property.

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRow
AtIndexPath:(NSIndexPath *)indexPath

{

 static NSString *CellIdentifier = @"ContactsCell";

 AddressBook *address;

 // Get each item from our resultset and add this to

 // the TableView.

 address = [fetchedResultsController

 objectAtIndexPath:indexPath];

 UITableViewCell *cell = [tableView

 dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {

 cell = [[UITableViewCell alloc]

 initWithStyle:UITableViewCellStyleSubtitle

 reuseIdentifier:CellIdentifier];

 }

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 4

[97]

 // Configure the cell...

 cell.textLabel.text = [NSString

 stringWithFormat:@"%@ %@, %@", address.adTitle,

 address.adSurName, address.adFirstName];

 cell.detailTextLabel.text = address.adCompany;

 return cell;

}

In the preceding code snippet, we again need to determine whenever a
search has been applied, and ilter the list accordingly for only those items.
This is to ensure that when we select an item from the list, we are using the
correct one.

Congratulations, we have successfully implemented the methods for our enhanced
AddressBook application. Next, build and run the application by choosing Product
| Run from the Product menu, or alternatively by pressing Command + R keys, and
deploy the AddressBook application onto two different devices.

One thing to keep in mind when working with Core Data is that if you try to add
a new ield to the data-model schema, your application will crash. You will need
to regenerate the NSManagedObject iles, and then reset the simulator or delete the
application from the iOS device.

Next, connect each of the devices using Bluetooth, select a contact from the Contact list,
and click on the Send button to have it submitted to the other device. The following
screenshot shows the application running within the iOS Simulator and the other
running on an iOS device with an Internet connection and Bluetooth connectivity.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Enhanced AddressBook App – Core Data

[96]

From the preceding screenshot, we can see that when the Connect button is pressed,
a pop up is displayed that contains a list of nearby devices from which the user can
choose from. Once the user has selected a device, conirmation is required from that
device to allow the iOS Simulator to establish a connection with it.

Once a connection has been established, you are free to select an item from the list,
and then click on the Send button to have this information transmitted to the other
device, as shown in the last window to the right. As you can see, incorporating
Bluetooth connectivity into your applications allows you to create some stunning
games, so that you can play against your friends, or create some fantastic business
applications and have documents or images transmitted between your colleagues.

Summary
In this chapter, we learned how to create an enhanced AddressBook application,
using the Core Data framework to separate our data model from the rest of the
application using the Model-View-Controller design. We visually designed our
AddressBook entity, which contained the attributes representing each contact's
name, address, job title, and so on, and programmatically interacted with the data
model using the NSManagedObject, and the NSFetchedResultsController objects,
which allowed us to fetch information from the data store and populate this within
our UITableView.

We used the Game Kit framework to transfer the selected contact information among
multiple iOS devices using Bluetooth, and used the GKPeerPickerController class
that enabled the user to choose a nearby iOS device to which the contact should be
transferred. We then used the GKSession object, which enabled us to transmit this
information as an NSData object representing the contact information.

In the next chapter, we will look at how to create an application that will allow us
to interact with the iOS device and determine its battery level, and use the Core
Graphics framework to represent the battery level as a colored bar.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application
The BatteryMonitor application allows you to monitor the state and battery levels
of your iOS device using the APIs that come with the iOS SDK. Each iOS device
represents a unique set of properties that include the device's current physical
orientation, its model name, and its battery state. It also provides access to the
onboard hardware.

In this chapter, we will be taking a closer look at how we can use the Core Graphics
framework to create and draw a gauge that will be used to present and visualize the
total amount of battery life remaining on the iOS device, and then start to design the
user interface for our app.

We will look at how to create an instance of our UIViewController that will be used
to create a custom BatteryGauge class. This class will be used to visually represent
the total amount of battery remaining on the device. We will then take a look at how
we can use the MFMailComposeViewController class to send an e-mail message
when the total amount of battery life left is less than 20 percent full.

In this chapter we will:

• Get an overview of the technologies that we will be using

• Learn how to add the Core Graphics and MessageUI frameworks

• Walk through the steps to build the BatteryMonitor application

• Implement the BatteryGauge class to measure battery levels

• Implement a method to handle monitoring of the battery

• Implement a method to change the battery color

• Implement a method to change the number of battery bars displayed

• Implement a method to send an e-mail alert when the battery is low

We have an exciting project ahead of us; so let's get started.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[152]

Overview of the technologies
The BatteryMonitor application makes reference to two very important frameworks
to allow for drawing of graphics to the iOS device's view, as well as composing and
sending of e-mail messages, directly within the application.

In this chapter, we will be making use of the Core Graphics framework that will be
responsible for handling the creation of our battery gauge to allow the contents to be
illed based on the total amount of battery life remaining on the device. We will then
use the MessageUI framework that will be responsible for composing and sending
e-mails whenever the application has determined that the battery levels fall below
the 20 percent threshold. This is all handled and done directly within our app.

We will make use of the UIDevice class that will be used to gather the device
information for our iOS device. This class enables you to recover device-speciic
values, including the model of the iOS device that is being used, the device name,
and the OS name and version. We will then use the MFMailComposeViewController
class object to directly open up the e-mail dialog box within the application.

The information that you can retrieve from the UIDevice class is shown in the
following table:

Type Description

System name This returns the name of the operating system that is currently in use.
Since all current generation iOS devices run using the same OS, only
one will be displayed; that is iOS 5.1.

System version This lists the firmware version that is currently installed on the iOS
device; that is, 4.3, 4.31, 5.01, and so on.

Unique identifier The unique identifier of the iOS device generates a hexadecimal
number to guarantee that it is unique for each iOS device, and does
this by applying an internal hash to several of its hardware specifiers,
including the device's serial number.

This unique identifier is used to register the iOS devices at the iOS
portal for provisioning of distribution of software apps. Apple is
currently phasing out and rejecting apps that access the Unique
Device Identifier on an iOS device to solve issues with piracy, and
has suggested that you should create a unique identifier that is
specific to your app.

Model The iOS model returns a string that describes its platform; that is,
iPhone, iPod Touch, and iPad.

Name This represents the assigned name of the iOS device that has been
assigned by the user within iTunes. This name is also used to create
the localhost names for the device, particularly when networking is
used.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[153]

For more information on the UIDevice class, you can refer to
the Apple Developer Documentation that can be found and
located at the following URL: https://developer.apple.
com/library/ios/#DOCUMENTATION/UIKit/Reference/
UIDevice_Class/Reference/UIDevice.html.

Building the BatteryMonitor application
Monitoring battery levels is a common thing that we do in our everyday lives.
The battery indicator on the iPhone/iPad lets us know when it is time for us to
recharge our iOS device. In this section, we will look at how to create an application
that can run on an iOS device to enable us to monitor battery levels on an iOS device,
and then send an e-mail alert when the battery levels fall below the threshold.

Before we can proceed, we irst need to create our BatteryMonitor project. To
refresh your memory on how to go about creating a new project, you can refer to
the section that we covered in Chapter 3, VoiceRecorder App – Audio Recording and
Playback, under the section named Building the VoiceRecorder app.

It is very simple to create this in Xcode. Just follow the steps listed here.

1. Launch Xcode from the /Xcode4/Applications folder.

2. Choose Create a new Xcode project, or File | New Project.

3. Select the Single View Application template from the list of
available templates.

4. Select iPad from under the Device Family drop-down list.

5. Ensure that the Use Storyboard checkbox has not been selected.

6. Select the Use Automatic Reference Counting checkbox.

7. Ensure that the Include Unit Tests checkbox has not been selected.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[154]

8. Click on the Next button to proceed with the next step in the wizard.

9. Enter in BatteryMonitor as the name for your project.

10. Then click on the Next button to proceed with the next step of the wizard.

11. Specify the location where you would like to save your project.

12. Then, click on the Save button to continue and display the Xcode
workspace environment.

Now that we have created our BatteryMonitor project, we need to add the
MessageUI framework to our project. This will enable us to send e-mail alerts
when the battery levels fall below the threshold.

Adding the MessageUI framework to the
project
As we mentioned previously, we need to add the MessageUI framework to our
project to allow us to compose and send an e-mail directly within our iOS application,
whenever we determine that our device is running below the allowable percentage.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[155]

To add the MessageUI framework, select Project Navigator Group, and follow the
simple steps outlined here:

1. Click and select your project from Project Navigator.

2. Then, select your project target from under the TARGETS group.

3. Select the Build Phases tab.

4. Expand the Link Binary With Libraries disclosure triangle.

5. Finally, use + to add the library you want.

6. Select MessageUI.framework from the list of available frameworks.

Now that we have added MessageUI.framework into our project, we need to start
building our user interface that will be responsible for allowing us to monitor the
battery levels of our iOS device, as well as handle sending out e-mails when the
battery levels fall below the agreed threshold.

Creating the main application screen
The BatteryMonitor application doesn't do anything at this stage; all we have done
is created the project and added the MessageUI framework to handle the sending of
e-mails when our battery levels are falling below the threshold.

We now need to start building the user interface for our BatteryMonitor
application. This screen will consist of a View controller, and some controls to handle
setting the number of bars to be displayed, as well as whether the monitoring of the
battery should be enabled or disabled.

1. Select the ViewController.xib ile from Project Navigator.

2. Set the value of Background of the View controller to read Black Color.

3. Next, from Object Library, select-and-drag a (UILabel) Label control,
and add this to our view.

4. Modify the Text property of the control to Battery Status:.

5. Modify the Font property of the control to System 42.0.

6. Modify the Alignment property of the control to Center.

7. Next, from Object Library, select-and-drag another (UILabel) Label control,
and add this to our view directly underneath the Battery Status label.

8. Modify the Text property of the control to Battery Level:.

9. Modify the Font property of the control to System 74.0.

10. Modify the Alignment property of the control to Center.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[156]

Now that we have added our label controls to our view controller, our next step is
to start adding the rest of our controls that will make up our user interface. So let's
proceed to the next section.

Adding the Enable Monitoring UISwitch control
Our next step is to add a switch control to our view controller; this will be
responsible for determining whether or not we are to monitor our battery levels and
send out alert e-mails whenever our battery life is running low on our iOS device.
This can be achieved by following these simple steps:

1. From Object Library, select-and-drag a (UILabel) Label control, and add
this to the bottom right-hand corner of our view controller.

2. Modify the Text property of the control to Enable Monitoring:.

3. Modify the Font property of the control to System 17.0.

4. Modify the Alignment property of the control to Left.

5. Next, from Object Library, select-and-drag a (UISwitch) Switch control to
the right of the Enable Monitoring label.

6. Next, from the Attributes Inspector section, change the value of State to On.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[157]

7. Then, change the value of On Tint to Default.

Now that we have added our Enable Monitoring switch control to our
BatteryMonitor View controller, our next step is to add the Send E-mail Alert switch
that will be responsible for sending out e-mail alerts if it has determined that the
battery levels have fallen below our threshold. So, let's proceed with the next section.

Adding the Send E-mail Alert UISwitch control
Now, we need to add another switch control to our view that will be responsible
for sending e-mail alerts. This can be achieved by following these simple steps:

1. From Object Library, select-and-drag another (UILabel) Label control,
and add this underneath our Enable Monitoring label.

2. Modify the Text property of the control to Send E-mail Alert:.

3. Modify the Font property of the control to System 17.0.

4. Modify the Alignment property of the control to Left.

5. Next, from Object Library, select-and-drag a (UISwitch) Switch control
to the right of the Send Email Alert label.

6. Next, from the Attributes Inspector section, change the value of State to On.

7. Then, change the value of On Tint to Default.

To duplicate a UILabel and/or UISwitch control and
have them retain the same attributes, you can use the
keyboard shortcut Command + D. You can then update the
Text label for the newly added control.

Now that we have added our Send E-mail Alert button to our BatteryMonitor
view controller, our next step is to add the Fill Gauge Levels switch that will be
responsible for illing our battery gauge when it has been set to ON.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[158]

Adding the Fill Gauge Levels UISwitch control
Now, we need to add another switch control to our view that will be responsible
for determining whether our gauge should be illed to show the amount of battery
remaining. This can be achieved by following these simple steps:

1. From Object Library, select-and-drag another (UILabel) Label control,
and add this underneath our Send E-mail Alert label.

2. Modify the Text property of the control to Fill Gauge Levels:.

3. Modify the Font property of the control to System 17.0.

4. Modify the Alignment property of the control to Left.

5. Next, from Object Library, select-and-drag a (UISwitch) Switch control
to the right of the Fill Gauge Levels label.

6. Next, from the Attributes Inspector section, change the value of State to On.

7. Then, change the value of On Tint to Default.

Now that we have added our Fill Gauge Levels switch control to our BatteryMonitor
view controller, our next step is to add the Increment Bars stepper that will be
responsible for increasing the number of bar cells within our battery gauge.

Adding the Increment Bars UIStepper control
Next, we need to add another control to our view that will allow the user to specify
the number of battery bars that should be displayed for our battery gauge. This can
be achieved by following these simple steps:

1. From Object Library, select-and-drag another (UILabel) Label control,
and add this underneath our Fill Gauge Levels label.

2. Modify the Text property of the control to Increment Bars:.

3. Modify the Font property of the control to System 17.0.

4. Modify the Alignment property of the control to Left.

5. Next, from Object Library, select-and-drag a (UIStepper) Stepper control
to the right of the Increment Bars label.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[159]

6. Next, from the Attributes Inspector section, change the Minimum value to 0.

7. Then, change the Maximum value to 100.

8. Next, set the Current value to 0 and the Step increment to 1.

Now that we have added our Increment Bars stepper control to our BatteryMonitor
view controller, our next step is to add an TextView control that will be used to display
information about the device, such as its model and the version.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[160]

Adding the System Information (UITextView) control
Now, we need to add another control to our view that will be responsible for
showing iOS device speciic information. This can be achieved by following these
simple steps:

1. From Object Library, select-and-drag a (UITextView) TextView control,
and add this to the left of the Enable Monitoring label.

2. Next, from the Attributes Inspector section, modify the Text property of the
control to System Information goes here....

3. Change the Font property of the control to System 14.0.

4. Modify the Alignment property of the control to Left.

5. Change the Capitalization property to Sentences.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[161]

Now that we have added all of our form controls and have built our user interface,
our next step is to create our very own custom UIView subclass that will be used to
display a visual representation of how much battery we have remaining on our iOS
device.

1. Select the BatteryMonitor folder, choose File | New | New File… or press
Command + N.

2. Select the Objective-C class template from the list of available templates.

3. Click on the Next button to proceed with the next step within the wizard.

4. Enter in BatteryGauge as the name of the ile to create.
5. Ensure that you have selected UIView as the type of subclass to be created

from the Subclass dropdown list.

6. Ensure that you have selected the Targeted for iPad option.

7. Click on the Next button to proceed with the next step of the wizard.

8. Then, click on the Create button to save the ile to the folder location speciied.

Now that we have created our BatteryGauge class, we need to drag a new UIView
controller and update this to use our newly created BatteryGauge class, rather than
the default UIViewController class.

1. Select the ViewController.xib ile from the BatteryMonitor folder.

2. From Object Library, select-and-drag a (UIView) View control, and add this
to the center of our View controller.

3. Click-and-select the (UIView) controller that we just added to our view.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[162]

4. Click on the Identity Inspector section, and change the value of the Custom
Class property to read BatteryGauge.

Our next step is to create the Outlet events for each of our controls that have been
added to our View controller. Creating these will allow us to access these controls
within our code and make modiications to the control properties. To create an
Outlet, follow these simple steps:

1. Open Assistant Editor by choosing Navigate | Open in Assistant Editor,
or press the Option + Command + , keys.

2. Ensure that the ViewController.h interface ile is displayed to the left of
ViewController.xib.

3. Select the Enable Monitoring (UISwitch) control, then hold down the
Control key, and drag it into the ViewController.h interface ile.

4. Choose Outlet from the Connection dropdown list for the connection
to be created.

5. Enter in enableMonitoring for the name of the Outlet property to
be created.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[163]

6. Choose Strong from the Storage dropdown list.

7. Repeat steps 3 to 6 to create IBOutlets for the Battery Status, Battery Level,
Enable Monitoring, Send E-mail Alert, Fill Gauge Levels, Increment Bars,
System Info, and Battery Gauge controls, while providing the following
naming for each, as follows: lblBatteryStatus, lblBatteryLevel,
enableMonitoring, sendEmailAlert, fillGauge, totalNoBars,
tvSystemInfo, and batteryMeter.

Now that we have created the Outlet events for our controls, we need to create the
associated Action events for those Outlets. Creating these actions allows an event
to be ired when the button has been pressed. To create an Action, follow these
simple steps:

1. With the ViewController.h interface ile still displayed to the left of the
ViewController.xib View Controller, select the Enable Monitoring
(UISwitch) control, then hold down the Control key, and drag it into the
ViewController.h interface ile.

2. Choose Action from the Connection dropdown for the connection
to be created.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[164]

3. Enter in enableMonitoring for the name of the method to be created.

4. Repeat steps 2 to 3 to create IBActions for the Enable Monitoring, Send
E-mail Alert, Fill Gauge Levels, Increment Bars, and Battery Gauge
controls, while providing the following naming for each, as follows:
enableMonitoring, sendEmailAlert, fillGauge, totalNoBars,
and batteryMeter.

Now that we have successfully connected up each of our controls, and created
the required outlets and associated action methods, we can start taking a look at
building the functionality for our BatteryMonitor application, so that it has the
ability to display the battery levels for our iOS device and e-mail when the threshold
reaches 20 percent.

Building the Battery Monitor functionality
Well done! You have made it this far; we have successfully inished building the user
interface for both the Battery Monitor and Battery Gauge screens. Our next step is to
start implementing the methods that will be used by each of our controls.

Each of these controls will be responsible for handling the monitoring of our iOS
device's battery, with the ability to ill and clear our gauge, increase the number of
battery cells present, as well as manually send e-mails when the device's battery level
reaches the threshold.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[165]

Implementing the View Controller class
We are now ready to start adding additional content to our ViewController class.
We need to import some interface header iles and declare some objects that we will
be using throughout our application. We will also need to extend our class in order
to provide us with the functionality to compose in-app e-mailing.

1. Open the ViewController.h interface ile, located within the
BatteryMonitor folder, and enter in the following highlighted code sections:

//ViewController.h

//BatteryMonitor

//Created by Steven F Daniel on 21/02/12.

//Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import <UIKit/UIKit.h>

#import <UIKit/UIDevice.h>

#import <MessageUI/MessageUI.h>

#import "BatteryGauge.h"

@interface ViewController : UIViewController

<MFMailComposeViewControllerDelegate> {

 IBOutlet UITextView *tvSystemInfo;

 IBOutlet UILabel *lblBatteryLevel;

 IBOutlet UILabel *lblBatteryStatus;

 IBOutlet UISwitch *sendEmailAlert;

 IBOutlet UISwitch *enableMonitoring;

 IBOutlet UISwitch *fillGauge;

 IBOutlet UIStepper *totalNoBars;

 IBOutlet BatteryGauge *batteryMeter;

}

@property (strong, nonatomic) IBOutlet UITextView
 *tvSystemInfo;

@property (strong, nonatomic) IBOutlet UILabel
 *lblBatteryLevel;

@property (strong, nonatomic) IBOutlet UILabel
 *lblBatteryStatus;

@property (strong, nonatomic) IBOutlet UISwitch
 *sendEmailAlert;

@property (strong, nonatomic) IBOutlet UISwitch
 *enableMonitoring;

@property (strong, nonatomic) IBOutlet UISwitch
 *fillGauge;

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[166]

@property (strong, nonatomic) IBOutlet UIStepper
 *totalNoBars;

@property (strong, nonatomic) IBOutlet BatteryGauge
 *batteryMeter;

@property (strong, nonatomic) UIDevice *currentDevice;

@end

In the preceding code snippet, we import the interface ile header information
for our UIDevice.h, MessageUI.h, and BatteryGauge.h interface iles, so
that we can access their class methods. We extended our class, so that we can
include the class protocol for MFMailComposeViewControllerDelegate, as
well as its methods to enable us to compose and send e-mails directly within
our application.

2. We then declared each outlet for each of the controls within our view, as well
as declared a new outlet instance of our BatteryGauge control, so that we
can display the total amount of battery life that is left on the iOS device.

3. Next, open the ViewController.m implementation ile, located within the
BatteryMonitor folder, and modify the viewDidLoad method as shown in
the following code snippet:

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view,

 // typically from a nib.

 // Enable monitoring of the battery status

 [[UIDevice currentDevice]
 setBatteryMonitoringEnabled:YES];

 // Initialise our Stepper to use the default

 // number of bars.

 [totalNoBars setMinimumValue:1];

 [totalNoBars setMaximumValue:20];

 [totalNoBars setValue:batteryMeter.numBars];

 // Initialize the background color for our Bar

 [batteryMeter setNormalBarColor:[UIColor greenColor]];

 // Get the current status of the iOS device battery.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[167]

 [self determineBatteryStatus];

 // Request to be notified when battery charge

 // or state changes

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(determineBatteryStatus)
 name:UIDeviceBatteryLevelDidChangeNotification
 object:nil];

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(determineBatteryStatus)
 name:UIDeviceBatteryStateDidChangeNotification
 object:nil];

}

In the preceding code snippet, we enable the monitoring for our iOS device
by setting the batteryMonitoringEnabled property to YES, so that our
application can be notiied of changes when the battery state changes.

4. We then initialize and set the minimum and maximum values for our
UIStepper control, and initialize the total number of bars to the default
values represented by our BatteryGauge class. In our next step, we initialize
our BatteryGauge and ill the color to green, before making a call to the
determineBatteryStatus function in order to determine the current status
of the battery.

5. Finally, we initialize our UIDeviceBatteryLevelDidChangeNotification
and UIDeviceBatteryStateDidChangeNotification methods to make a
call to our determineBatteryStatus function over-and-over, whenever a
change in the battery level or battery state has been detected. Change in the
battery state is determined whenever the iOS device has been plugged into a
power source, or it has been unplugged.

Implementing the determineBatteryStatus: method
Now, that we have set up our Battery Monitor View controller and have initialized
everything correctly, we are ready to start implementing the method that will be
responsible for determining the status of the battery when it has been called by the
notiication methods.

1. Open the ViewController.m implementation ile, located within
the BatteryMonitor folder, and enter in the following code for the
determineBatteryStatus function:

// Handle displaying of the battery status.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[168]

- (void)determineBatteryStatus

{

 NSString *OutputString;

 NSArray *batteryStatus = [NSArray arrayWithObjects:
 @"Battery State cannot be determined.",
 @"Battery is in use. Discharging.",
 @"Battery is currently being charged.",
 @"Battery is fully charged.", nil];

 // Determine the current status of the iOS Device Battery.

 switch ([[UIDevice currentDevice] batteryState])

 {

 case UIDeviceBatteryStateUnknown:

 OutputString = [batteryStatus objectAtIndex:0];

 break;

 case UIDeviceBatteryStateUnplugged:

 OutputString = [batteryStatus objectAtIndex:1];

 break;

 case UIDeviceBatteryStateCharging:

 OutputString = [batteryStatus objectAtIndex:2];

 break;

 case UIDeviceBatteryStateFull:

 OutputString = [batteryStatus objectAtIndex:3];

 break;

 default:

 OutputString = [batteryStatus objectAtIndex:0];

 break;

 }

 // Check to determine the state of the battery.

 // If it cannot be determined.

 if ([[UIDevice currentDevice] batteryState] ==
 UIDeviceBatteryStateUnknown)

 {

 batteryMeter.value = -1;

 lblBatteryStatus.text = OutputString;

 lblBatteryLevel.text = [NSString
 stringWithFormat:@"Battery Level: %0.2f%%\n", 0];

 tvSystemInfo.text = @"";

 tvSystemInfo.editable = NO;

 }

 else

 {

 // Get the Battery State and Battery Level and

 // display to the screen.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[169]

 NSString *SystemInfo = [NSString
 stringWithFormat:@"Device Model: %@\nDevice Name:
 %@\nSystem Name: %@\nSystem Version
 %@\nMultitasking
 Supported: %@\n",
 [[UIDevice currentDevice] model],
 [[UIDevice currentDevice] name],
 [[UIDevice currentDevice] systemName],
 [[UIDevice currentDevice] systemVersion],
 currentDevice.multitaskingSupported ? @"YES":
 @"NO"];

 lblBatteryStatus.text = OutputString;

 lblBatteryLevel.text = [NSString stringWithFormat:
 @"Battery Level: %0.2f%%\n",
 [[UIDevice currentDevice] batteryLevel] * 100];

 tvSystemInfo.text = SystemInfo;

 tvSystemInfo.editable = NO;

 // Show the battery level meter.

 batteryMeter.value = [[UIDevice currentDevice]
 batteryLevel];

 }

 // Determine the level of battery life remaining, and

 // Notify the user accordingly.

 if (([[UIDevice currentDevice] batteryLevel] * 100) <=
 20)

 {

 if (sendEmailAlert.on == YES)

 {

 [self sendEmailAlert];

 }

 else

 {

 UIAlertView *alertMessage = [[UIAlertView alloc]
 initWithTitle:@"Battery Status"
 message:@"Your Battery life is below 20%. Please
 recharge your iOS Device."
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];

 [alertMessage show];

 }

 }

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[170]

In the preceding code snippet, we start by setting up an NSArray object to
store the string value representations of our battery state, and then use the
batteryState property of the UIDevice class that represents the current
iOS device to determine what the current status of the battery is. We then
perform a check to ensure that we managed to determine the status of our
battery. If for some reason we are unable to determine this, we initialize our
battery gauge's value to -1, so that it doesn't display anything within the
bar, and set our battery Status and Level ields to their defaults.
If we are able to determine the state of the battery, we obtain the device
model, the name of the identifying device, the systemName property to
identify the operating system that is currently running on the iOS device,
and systemVersion to determine the current version of the operating system
that is installed, as well as determine whether the device provides support
for multitasking.

2. We then work out current battery level of the iOS device as a percentage, and
then update our batteryMeter value property to relect the current battery
level on the iOS device. We then perform a check to see if our battery levels
reading is less than or equal to 20 percent.

3. In our inal steps, we check to see if we have enabled sending of alerts, and
if this true, we make a call to the sendEmailAlert function to display the
e-mail composition sheet, where the information relating to the battery
state is pre-populated within the body of the message. Alternatively, if
the sendEmailAlert option is turned off, we create a new instance of the
UIAlertView class, and display a warning message to the user.

Implementing the enableMonitoring: method
Now, that we have set up our BatteryMonitor View controller and have initialized
everything correctly, we are ready to start implementing a method that will be
responsible for recording the audio when the user presses the Start Recording button.

Open the ViewController.m implementation ile, located within the
BatteryMonitor folder, locate the enableMonitoring method, and enter
in the following code snippet:

// Enable monitoring of the iOS battery.

- (IBAction)enableMonitoring:(id)sender

{

 if (enableMonitoring.on == YES) {

 // Turn on monitoring of the iOS battery.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[171]

 [[UIDevice currentDevice]
 setBatteryMonitoringEnabled:YES];

 sendEmailAlert.on = YES;

 sendEmailAlert.enabled = YES;

 }

 else

 {

 // Turn off monitoring of the iOS battery.

 [[UIDevice currentDevice]
 setBatteryMonitoringEnabled:NO];

 sendEmailAlert.on = NO;

 sendEmailAlert.enabled = NO;

 // Display an alert message to let the user

 // know that monitoring is disabled.

 UIAlertView *alertMessage = [[UIAlertView alloc]
 initWithTitle: @"Battery Monitoring"
 message: @"Monitoring of the iOS
 Battery has been switched off.
 You will no longer receive alert
 notifications."
 delegate: nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];

 // Show the alert message box.

 [alertMessage show];

 }

}

In the preceding code snippet, we perform a check on the value of the
enableMonitoring switch, to determine if we are currently monitoring our iOS
device battery. If the value of our enableMonitoring switch is off, we disable battery
monitoring for our iOS device and disable our sendEmailAlert switch to prevent
e-mails from being sent. We also create an instance of the UIAlertView dialog box to
notify the user that battery monitoring has been turned off and e-mail alerts will no
longer be sent. Alternatively, if enableMonitoring is turned back on, we re-enable
battery monitoring on the device and enable the sendEmailAlert buttons.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[172]

Implementing the sendEmailAlert: method
Next, we need to implement a method that will be responsible for displaying the
in-app e-mail composition sheet when the battery level of our iOS device falls below
our 20 percent mark.

1. Open the ViewController.m implementation ile, located within the
BatteryMonitor folder, locate the sendEmailAlert method, and enter
in the following code snippet:

- (IBAction)sendEmailAlert:(id)sender {

 // Perform a check to see if we are set up for

 // sending email alerts

 if (sendEmailAlert.on == YES)

 {

 MFMailComposeViewController *mailComposer =
 [[MFMailComposeViewController alloc] init];

 mailComposer.mailComposeDelegate = self;

 // Check to make sure that we are set up to send mail

 if ([MFMailComposeViewController canSendMail]) {

 [mailComposer setToRecipients:[NSArray
 arrayWithObjects:
 @"youremail@yourdomain.com",nil]];

 [mailComposer setSubject:@"Battery Status"];

 [mailComposer setMessageBody:@"Your iOS device is
 running on less than 20% of battery.\nPlease
 recharge your device." isHTML:NO];

 [mailComposer.navigationBar setTintColor:[UIColor
 redColor]];

 mailComposer.modalPresentationStyle =
 UIModalPresentationFormSheet;

 [self presentModalViewController:mailComposer
 animated:YES];

 }

 else

 {

 // Error sending the email message, so

 // notify the user.

 UIAlertView *alertMessage = [[UIAlertView alloc]
 initWithTitle:@"Failure"
 message:@"Your device hasn't been set up for
 email"

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[173]

 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles: nil];

 [alertMessage show];

 }

 }

}

In the preceding code snippet, we start by determining if we are able
to send e-mail messages by checking the status of the sendEmailAlert
switch control. Next, we create a new object instance of the
MFMailComposeViewController class, which controls the mail dialog view,
thus allowing the user to compose and send an e-mail without leaving the
application. We then change the color of the mail composition sheet using the
navigationBar:setTintColor: method of the controller to red, and then
set the subject heading and body of our e-mail message.

2. We then set the controller's mailComposeDelegate to self, so that our
controller receives the mailComposeController:didFinishWithResult:er
ror: message from the MFMailComposeViewControllerDelegate protocol
when the user inishes with the e-mail dialog box.

3. Finally, we call the controller's presentModalViewController:animated:
method to display the e-mail dialog box.

//===

// Dismiss our Mail view controller when the user finishes

//===

- (void) mailComposeController:(MFMailComposeViewController
 *)controller didFinishWithResult:(MFMailComposeResult)result
 error:(NSError *)error

{

 NSString *emailMessage = nil;

 // Notifies users about errors associated with

 // the interface

 switch (result)

 {

 case MFMailComposeResultCancelled:

 emailMessage = @"Email sending has been cancelled";

 break;

 case MFMailComposeResultSaved:

 emailMessage = @"Email draft saved successfully";

 break;

 case MFMailComposeResultSent:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[174]

 emailMessage = @"Email sent successfully.";
 break;
 case MFMailComposeResultFailed:
 emailMessage = @"Email sending failure.";
 break;
 default:
 emailMessage = @"Problem sending the email.";
 break;
 }
 //Display the alert dialog based on the message derived
 // from the preceding case statement.
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle: @"Battery Monitor Email"
 message: emailMessage
 delegate: nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];

 // make the MFMailComposeViewController disappear
 [self dismissModalViewControllerAnimated:YES];
}

In the preceding code snippet, we declare the mailComposeController:
delegate. The mailComposeController:didFinishWithResult:error:
method is called when the user inishes with the e-mail dialog box, either by
sending an e-mail or by cancelling out of this view. Next, we determine the
type of the error that was received by the delegate, and then assign this to an
NSString object variable emailMessage.

4. In our inal step, we declare an instance of the UIAlertView
dialog box to display the error message, before calling the
dismissModalViewControllerAnimated: method of our
view controller.

Implementing the illGauge: method
Next, we need to start implementing the method that will be responsible for illing
our battery gauge control to represent the level of battery life remaining, when the
user sets the Fill Gauge Levels option to On, and Off accordingly.

Open the ViewController.m implementation ile, located within the BatteryMonitor
folder, locate the illGauge method and enter in the following code snippet:

// Handles coloring of the battery bar.

- (IBAction)fillGauge:(id)sender

{

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[175]

 if (fillGauge.on == YES)

 {

 // Set the bar color to green and update the display.

 [batteryMeter setNormalBarColor:[UIColor greenColor]];

 [batteryMeter setNeedsDisplay];

 totalNoBars.enabled = YES;

 }

 else

 {

 // Set the bar color to gray and update the display.

 [batteryMeter setNormalBarColor:[UIColor blackColor]];

 [batteryMeter setNeedsDisplay];

 totalNoBars.enabled = NO;

 }

}

In the preceding code snippet, we perform a check on our fillGauge object
control to see if we are currently illing our battery gauge. If we are, we set the
normalBarColor property of our battery gauge to green, and then make a call to the
setNeedsDisplay method to redraw our UIView, so that the changes are relected.

Alternatively, if we have determined that we have turned off our fillGauge control,
we set the color of our battery gauge to black, and again call the setNeedsDisplay
method to update the display, and then disable our Increment Bars control.

Implementing the totalNoBars: method
Next, we need to start implementing the method that will be responsible for
incrementing the total number of bars to display within our Battery Gauge control.

Open the ViewController.m implementation ile, located within the
BatteryMonitor folder, locate the totalNoBars method, and enter in the following
code snippet:

// Handle Incrementing and Decrementing our Battery Bars

- (IBAction)totalNoBars:(id)sender {

 NSInteger iTotalBars = totalNoBars.value;

 // We need to ensure that our bars are within our range

 if (totalNoBars.value >= 7 && totalNoBars.value <= 20) {

 iTotalBars++;

 }

 else

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[176]

 {

 // We need to check that we don't fall below our default

 iTotalBars = (iTotalBars < 7) ? iTotalBars = 7 :
 iTotalBars--;

 }

 // Update our Number of bars accordingly

 [batteryMeter setNumBars:iTotalBars];

 [batteryMeter setNeedsDisplay];

}

In the preceding code snippet, we need to check to ensure that the number of bars
within our battery meter doesn't exceed the total allowable number. This is achieved
by checking the value of our totalNoBars object, whilst checking to see if it falls
within our allowable range prior to incrementing its value.

When reducing the total number of bars within the battery gauge, we will need to check
to ensure that we don't exceed the minimum value of the control. This is achieved by
using the ternary operator, which is represented as a question (?) mark. Finally, we
assign the total number of bars to our setNumBars method of our BatteryMeter class,
and then redraw the display by calling the setNeedsDisplay method.

Implementing the Battery Gauge class
In our inal step, we need to implement the class that will be used to display
a graphical visual representation of our battery levels when the device has
determined that the battery state has changed.

1. Open the BatteryGauge.h interface ile, located within the BatteryMonitor
folder, and enter in the following code snippet:

// BatteryGauge.h

// BatteryMonitor

// Created by Steven F Daniel on 21/02/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import <UIKit/UIKit.h>

// Interface file structure for our Battery Gauge

@interface BatteryGauge : UIView

{

 @private

 float m_flValue, // Current value being displayed

 m_flFillValue, // Current Bar fill value last seen

 m_flMaxLimit, // The bars maximum fill limit

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[177]

 m_flMinLimit; // The bars minimum fill limit

 int m_iNumBars, // Number of bar segments

 m_iOnIdx, // The index of the bar to turn on

 m_iOffIdx, // The index of the bar to turn off

 m_iFillBarIdx; // The index of the bar to fill

 UIColor *m_clrOBorder, // Color of outer border

 *m_clrIBorder, // Color of inner border

 *m_clrBackgrd, // Background color of gauge

 *m_clrNormal; // Normal segment color

}

// Create the Getters and Setters for the variables.

@property (readwrite, nonatomic) float value;

@property (readwrite, nonatomic) float maxLimit;

@property (readwrite, nonatomic) float minLimit;

@property (readwrite, nonatomic) int numBars;

@property (readonly, nonatomic) float fillValue;

@property (readwrite, retain) UIColor *oBorderColor;

@property (readwrite, retain) UIColor *iBorderColor;

@property (readwrite, retain) UIColor *backgrndColor;

@property (readwrite, retain) UIColor *normalBarColor;

// Battery Gauge Class Methods

-(void) setDefaults;

-(void) drawBar:(CGContextRef)a_ctx withRect:(CGRect) a_rect
andColor:(UIColor *)a_clr barLit:(BOOL)a_IsBarlit;

@end

In the preceding code snippet, we declare a new instance of our
UIView subclass, as our BatteryGauge will act as a view within our
view controller on our main screen. Next, we declare a collection of private
class variables that will be used within our implementation ile, as well as
deine the object properties that can be set and accessed from our Battery
Monitor view controller.

2. Open the BatteryGauge.m implementation ile, located within the
BatteryMonitor folder, and enter in the following code snippet:

// BatteryGauge.m

// BatteryMonitor

// Created by Steven F Daniel on 21/02/12.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[178]

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import "BatteryGauge.h"

@implementation BatteryGauge

// Synthesized getters and setters properties

@synthesize maxLimit = m_flMaxLimit;

@synthesize minLimit = m_flMinLimit;

@synthesize numBars = m_iNumBars;

@synthesize fillValue = m_flFillValue;

@synthesize oBorderColor = m_clrOBorder;

@synthesize iBorderColor = m_clrIBorder;

@synthesize backgrndColor = m_clrBackgrnd;

@synthesize normalBarColor = m_clrNormal;

In the preceding code snippet, we use the @synthesize class directive
to have it automatically generate the setters and getters for each of the
properties that we have declared within the interface ile.

3. In the following code snippet, we create an initWithCoder: method object,
to initialize the battery gauge class and then check to ensure that it has been
initialized correctly, prior to making a call to our setDefaults method to
initialize Battery Gauge.

// Initializes the instance when brought from nib, etc.

-(id) initWithCoder:(NSCoder *)aDecoder

{

 self = [super initWithCoder:aDecoder];

 if (self) {

 // Assign default values

 [self setDefaults];

 }

 return self;

}

4. In the following code snippet, we create a Method value: object that we
can use to pass in, and set and retrieve the value of our battery gauge.

// Method: value accessor

-(float) value

{

 return m_flValue;

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[179]

5. In the following code snippet, we create a Method setValue: object that
determines when the bars within the battery gauge are to be shown as active
battery cells or inactive battery cells. A check is performed to determine which
bar should be lit within the gauge. We then check our fRedrawBar variable
to see if the display needs to be redrawn, by calling our setNeedsDisplay
method to redraw our UIView.

// Method: value setter

-(void) setValue:(float)a_value

{

 BOOL fRedrawBar = false;

 // take a copy of our current bar value

 m_flValue = a_value;

 // Point at which bars need to light up

 int iOnIdx = (m_flValue >= m_flMinLimit) ? 0 :
 m_iNumBars;

 if (iOnIdx != m_iOnIdx)

 {

 m_iOnIdx = iOnIdx;

 fRedrawBar = true;

 }

 // Point at which bars no longer require to be lit

 int iOffIdx = ((m_flValue - m_flMinLimit) /
 (m_flMaxLimit - m_flMinLimit)) * m_iNumBars;

 if (iOffIdx != m_iOffIdx)

 {

 m_iOffIdx = iOffIdx;

 fRedrawBar = true;

 }

 // Yes, save the fill value of our bars index

 m_iFillBarIdx = MIN(m_iOffIdx, m_iNumBars - 1);

 m_flFillValue = a_value;

 // Determine if we need to redraw the display

 if (fRedrawBar == true) {

 [self setNeedsDisplay];

 }

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[180]

6. In the following code snippet, we create a setNumBars(int)a_iNumBars:
method object, to initialize and set the total number of bars to display to the
UIView by making a call to the setValue method, passing the current battery
level reading.

// Sets the number of bars for our battery gauge

- (void) setNumBars:(int)a_iNumBars

{

 // save a copy of the value and then update the bars.

 m_iNumBars = a_iNumBars;

 [self setValue:m_flValue];

}

7. In the following code snippet, we create a setDefaults: function that will
be used to initialize the battery gauge when it is irst displayed. This function
sets the default number of bars to be displayed, as well as the frame and
background colors of the gauge.

// Configures the default settings for our battery gauge

-(void) setDefaults

{

 // Initialize the Maximum/Minimum limits for our gauge

 m_flMaxLimit = 1.0f;

 m_flMinLimit = 0.0f;

 m_flValue = 0.0f;

 // Set the defaults for our gauge

 m_iNumBars = 20;

 m_iOffIdx = 0;

 m_iOnIdx = 0;

 // Set our gauge default colors

 m_clrBackgrnd = [UIColor blackColor];

 m_clrOBorder = [UIColor grayColor];

 m_clrIBorder = [UIColor blackColor];

 m_clrNormal = [UIColor greenColor];

 m_iFillBarIdx = -1;

 m_flFillValue = -INFINITY;

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[181]

8. In the following code snippet, we use the drawRect: method to draw each
of our battery cells, and then determine which ones need to be illed in and
which ones should not be illed in. We irst need to work out the boundaries
of our battery gauge control, and then calculate the height and width of
each of the bars that need to be placed between each of the bars, using the
controller's bounds property.

// Function to draw the Battery Gauge

-(void) drawRect:(CGRect)rect

{

 CGContextRef ctx; // Graphics context

 CGRect rectBounds, // Bounds for the rectangle

 rectBar; // Rectangle for the bar

 size_t iBarSize; // Size of each bar to be lit

 // Determine the boundaries of our bar

 rectBounds = self.bounds;

 // Adjust the height of our bar

 iBarSize = rectBounds.size.height / m_iNumBars;

 rectBounds.size.height = iBarSize * m_iNumBars;

 // Compute the width and height sizes of our bar

 rectBar.size.width = rectBounds.size.width - 2;

 rectBar.size.height = iBarSize;

 // Obtain the current graphics context of our view.

 ctx = UIGraphicsGetCurrentContext();

 CGContextClearRect(ctx, self.bounds);

 // Fill in the background for each of our bars.

 CGContextSetFillColorWithColor(
 ctx,m_clrBackgrnd.CGColor);

 CGContextFillRect(ctx, rectBounds);

 // Initialize each of our bars,
 //including their line with

 CGContextSetStrokeColorWithColor(ctx,m_clrIBorder
 .CGColor);

 CGContextSetLineWidth(ctx, 1.0);

 // Cycle through the total number of bars and draw each

 // one and lighting up those that need to be lit.

 for (int iX = 0; iX < m_iNumBars; ++iX)

 {

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[182]

 // Determine the position of this bar.

 rectBar.origin.x = rectBounds.origin.x + 1;

 rectBar.origin.y = CGRectGetMaxY(rectBounds) –
 (iX + 1) * iBarSize;

 // Draw top and bottom borders for each of the bars

 CGContextAddRect(ctx, rectBar);

 CGContextStrokePath(ctx);

 // Determine the fill color for each of our bars

 UIColor *clrFill = m_clrNormal;

 // Determine if the bar should be filled

 BOOL fIsBarLit = ((iX >= m_iOnIdx && iX < m_iOffIdx)
 || iX == m_iFillBarIdx);

 // Fill the interior for each of our bars

 CGContextSaveGState(ctx);

 CGRect rectFill = CGRectInset(rectBar, 1.0, 1.0);

 CGPathRef clipPath = CGPathCreateWithRect(rectFill,
 NULL);

 CGContextAddPath(ctx, clipPath);

 CGContextClip(ctx);

 // Call our function to draw and fill each of our
 //bars, checking to see if the bar is should be
 //filled in.

 if (fIsBarLit)

 {

 // Draw the bar as a solid fill color

 CGContextSetFillColorWithColor(ctx,
 clrFill.CGColor);

 CGContextFillRect(ctx, rectFill);

 }

 else

 {

 // Draw the bar as background color.

 CGColorRef fillClr =
 CGColorCreateCopyWithAlpha(clrFill.CGColor,
 0.2f);

 CGContextSetFillColorWithColor(ctx,
 m_clrBackgrnd.CGColor);

 CGContextFillRect(ctx, rectFill);

 CGContextSetFillColorWithColor(ctx, fillClr);

 CGContextFillRect(ctx, rectFill);

 CGColorRelease(fillClr);

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 5

[183]

 }

 CGContextRestoreGState(ctx);

 CGPathRelease(clipPath);

 }

 // Finally, draw a nice border around our gauge control

 CGContextSetStrokeColorWithColor(ctx,m_clrOBorder
 .CGColor);

 CGContextSetLineWidth(ctx, 2.0);

 CGContextAddRect(ctx, CGRectInset(rectBounds, 1, 1));

 CGContextStrokePath(ctx);

}

9. Our next step is to obtain the current graphics context for our view using the
UIGraphicsGetCurrentContext function, and then set the background color
for each of our bars with the speciied background color. Next, we perform
a loop to create each bar determined by the m_iNumBars variable. We then
determine the x and y positions for the placement of each of the bars, use
CGContextAddRect to draw the top and bottom borders of each bar, and use
the CGContextStrokePath function to draw our bar to the graphics window.

10. We then move on to determine if the bar should be lit and at what
position within the gauge this should happen, and then call the
CGContextSaveGState method to push a copy of the current graphics state
onto the graphics stack for the current context to ill the bar. We, then we set
the style of the bar, and add this to the current graphics context.

11. Finally, we draw the bar to our view, determining whether it should be illed
in or not, by checking the fIsBarLit variable.

If the bar is to be lit, we use the CGContextSetFillColorWithColor method
to ill the bar, and add this to our current graphics context. If the bar does not
need to be illed in, we use the CGContextCreateCopyWithAlpha method
to create a copy of an existing Quartz color, then substitute a new alpha
value and use this to ill the cell within the gauge. Since we have used the
CGContextCreateCopyWithAlpha method, we will need to release this once
we have inished with it.
- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrienta
tion)interfaceOrientation {

 // Return YES for supported orientations

 return(interfaceOrientation==
 UIInterfaceOrientationPortrait);

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

BatteryMonitor Application

[184]

In the preceding code snippet, we force the device to always display in a
portrait mode when the device has been rotated. We do this by checking
the interfaceOrientation variable of the iOS device, so that it will only
allow support for the portrait mode, by setting this to the value of the
UIInterfaceOrientationPortrait type.

For more information relating to the UIViewController, UIView,
CGColor, and CGContext classes, you can refer to the Apple Developer
Connection Documentation located at the following URLs:

• https://developer.apple.com/library/
ios/#DOCUMENTATION/UIKit/Reference/
UIViewController_Class/Reference/Reference.html

• https://developer.apple.com/library/
ios/#documentation/UIKit/Reference/UIView_Class/
UIView/UIView.html#//apple_ref/doc/uid/TP40006816

• https://developer.apple.com/library/
mac/#documentation/graphicsimaging/reference/
CGColor/Reference/reference.html

• https://developer.apple.com/library/
mac/#documentation/GraphicsImaging/Reference/
CGContext/Reference/reference.html

Finishing up
Congratulations, we have inally implemented the methods for our BatteryMonitor
application. Next, we are ready to build and run our application by choosing
Product | Run from the Product menu, or alternatively pressing Command + R. The
follwoing screenshot shows the BatteryMonitor application running on an iOS
Device, displaying the e-mail composition sheet when the Compose button has been
pressed on the toolbar. As you can see, it contains the pre-populated Subject and
Body message.

This material is copyright and is licensed for the sole use by on 7th October 2012

https://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIView_Class/UIView/UIView.html
https://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIView_Class/UIView/UIView.html
https://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIView_Class/UIView/UIView.html
https://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIView_Class/UIView/UIView.html
https://developer.apple.com/library/mac/#documentation/graphicsimaging/reference/CGColor/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/graphicsimaging/reference/CGColor/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/graphicsimaging/reference/CGColor/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/graphicsimaging/reference/CGColor/Reference/reference.html
http:///

Chapter 5

[185]

From this screenshot, you can amend the subject header and include additional
content within the body of the message. Once you have inished composing your
e-mail, click on the Send button to have your e-mail sent. You will then be presented
with a dialog letting you know that your email has been sent successfully.

Summary
In this chapter, we learned how to use the UIDevice class to derive device-related
information in order to monitor battery levels for our iOS device, using the
batteryMonitoringEnabled as well as the batteryState methods.

We then looked at how to create a custom UIViewController subclass, to display a
graphical representation of our battery levels, using the batteryState method that
comes as a part of the UIDevice class. To end the chapter, we looked at how we can
use the MFMailComposeViewController class to allow the user to send e-mails directly
within the app, whenever the battery levels fall below the 20 percent threshold.

In the next chapter, we will look at how we can use the MapKit and Core Location
frameworks to create a RouteTracking application that we can use to monitor our
location and direction visually, and display the route on the map.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application
The RouteTracker application allows you to track the location and direction that
you are heading in, visually drawing the route on the map. The application works
out the current location of the iOS device, and represents the user's location on the
map contained by a blue dot, which shifts as the user's location changes within the
map. The route that the user is taking is then visually drawn on the map using a blue
line with transparency, so that the underlying road names can be still seen.

In this chapter, we will be taking a closer look at how we can use each of the Core
Location and MapKit frameworks to determine the location that is being travelled
by the user, and draw this visually onto our map, using an overlay.

We will look at how to create an instance of UIViewController that will be used to
create our custom TrackingOverlay class. This class will be used to visually draw
the route taken by the user on our Map view.

In this chapter we will:

• Get an overview of the technologies that we will be using

• Learn how to add the Core Location and MapKit frameworks

• Walk through the steps to build the RouteTracker application

• Implement and use overlays to draw the route taken on the map

• Implement a method to handle the tracking of the user's current location
using the CLLocation method object

• Implement a method to choose between the different Map views

• Use the NSDate object to calculate the speed at which the user moves along
the route on the map

We have an exciting project ahead of us; so let's get started.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[188]

Overview of the technologies
The RouteTracker application makes reference to two very important frameworks,
to determine the current location of our device, as well as allow for drawing of
graphics to the iOS device's view.

In this chapter, we will be making use of the MapKit framework that is based on
both the Google Earth and Google Maps data, as well as the APIs that provide
developers with a simple mechanism of integrating detailed and interactive mapping
capabilities into their applications. The core element of the MapKit framework is the
MKMapView class. This class is a subclass of UIView that provides a canvas onto which
map and/or satellite information is presented to the user.

The types of information that can be presented within the map are the Satellite or
Hybrid views, whereby the map is displayed on top of the satellite image. The user
can manually zoom in and out of the map, by simply pinching or stretching, and shift
the location by using the panning gestures. The current location of the device may also
be displayed and tracked on the map view. The MapKit framework includes support
for adding annotations to a map. This takes the form of a pin or custom image, title,
and subview that may be used to mark speciic locations on a map.

Implementation of the MKMapViewDelegate protocol allows an application to
receive notiications of events relating to the map view, such as a change in either
the location of the user or region of the map displayed, or the failure of the device to
identify the user's current location. We will also be making use of the Core Location
framework to allow our application to determine and track the current route
location of our device, have this information visually represented within our map,
then calculate the total distance travelled, and have this displayed to the user once
tracking has been turned off.

The information that you can specify on the Map view includes the following:

Map type Description

MKMapTypeStandard This is the default map type to be displayed, if none is specified.
This will show a normal map containing the street and road
names.

MKMapTypeSatellite This type of map will display the satellite view information.

MKMapTypeHybrid This type of map will show a combination of a satellite view
with road and street information overlaid onto the map.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[189]

For more information on the MapKit class, you can refer to the Apple
Developer Documentation located at the following URL: https://
developer.apple.com/library/ios/#documentation/
MapKit/Reference/MKMapView_Class/MKMapView/
MKMapView.html.

Building the RouteTracker application
In this section, we will take a look at how to create an application that we can use
to run on an iOS device using the MapKit and Core Location frameworks to allow
our application to determine and track the current user's location, and have this
information visually represented within our map.

Before proceeding, we irst need to create our RouteTracker project. To refresh your
memory on how to go about creating a new project, you can refer to the section that
we covered in Chapter 3, VoiceRecorder App – Audio Recording and Playback, under the
section named Building the VoiceRecorder App.

It is very simple to create our application in Xcode. Just follow the steps listed here.

1. Launch Xcode from the /Xcode4/Applications folder.

2. Choose Create a new Xcode project, or File | New Project.

3. Select the Single View Application template from the list of
available templates.

4. Click on the Next button to proceed with the next step in the wizard.

5. Next, enter in RouteTracker as the name for your project.

6. Select iPad from under the Device Family drop-down list.

7. Ensure that the Use Storyboard checkbox has not been selected.

8. Ensure that the Use Automatic Reference Counting checkbox is selected.

9. Ensure that the Include Unit Tests checkbox has not been selected.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[190]

10. Click on the Next button to proceed with the next step in the wizard.

11. Specify the location where you would like to save your project.

12. Then, click on the Save button to continue and display the Xcode
workspace environment.

Now that we have created our RouteTracker project, we need to add the Core
Location and MapKit frameworks to our project. This will allow us to track the
current device location travelled by the user, and have this information visually
draw the route taken onto our map.

Adding the Core Location and MapKit
frameworks
As we mentioned previously, we need to add the Core Location and MapKit
frameworks to our project to enable us to track the user location travelled within
our map, so that we can use this to draw the route that has been taken to our map.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[191]

To add the Core Location framework, select Project Navigator Group, and follow
these simple steps:

1. Click and select your project from Project Navigator.

2. Then, select your project target from under the TARGETS group.

3. Select the Build Phases tab.

4. Expand the Link Binary With Libraries disclosure triangle.

5. Finally, use + to add the library you want.

6. Select CoreLocation.framework from the list of available frameworks.

If you can't ind the framework you are looking for, there is
also the added ability to search for this directly, right from
within the list of available frameworks.

If you are still confused how to go about adding the Core Location framework,
you can follow the next screenshot, which highlights the areas that you need
to select (surrounded by a rectangle):

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[192]

Next, we need to add MapKit.framework to our project that will allow us to
determine our current device location, and the direction that we are currently
moving within the map. To add the MapKit framework, select Project Navigator
Group, and follow these simple steps:

1. Click and select your project from Project Navigator.

2. Then, select your project target from under the TARGETS group.

3. Select the Build Phases tab.

4. Expand the Link Binary With Libraries disclosure triangle.

5. Finally, use + to add the library you want.

6. Select MapKit.framework from the list of available frameworks.

If you are still confused how to go about adding the MapKit framework, you
can follow the next screenshot, which highlights the areas you need to select
(surrounded by a rectangle):

Now that we have added MapKit.framework into our project, we need to start
building our user interface that will be responsible for allowing us to track our
user location and draw this onto our map.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[193]

Creating the main application screen
We have successfully created our project and added the Core Location and
 MapKit frameworks to allow for tracking of the current device location and
have this relected on our map. Our next step is to build the user interfaces
for our RouteTracker application.

This screen will consist of View controller and a toolbar, as well as some controls to
handle tracking of our user location and changing between the various map views.

1. Select the ViewController.xib ile from Project Navigator.

2. From Object Library, select-and-drag a (UIToolbar) Toolbar controller,
and add this to our view.

Now we have added our UIToolbar toolbar control to our view controller. Our next
step is to start adding the Start Tracking, Refresh Map, and Change Map Type
buttons. So let's proceed with the next section.

Adding the Start Tracking button
Our next step is to modify the button within our previously added toolbar; this
button will be responsible for handling the tracking of the current user location,
and have our map relect this within the view. This can be achieved by following
these simple steps:

1. Select the ViewController.xib ile from Project Navigator.

2. Next, select the Item button located within our toolbar that we
previously added.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[194]

3. From the Attributes Inspector section, change the value of Identiier
to Custom.

4. Change the value of Style to Bordered.

5. Then, change the value of Title to Start Tracking.

Now that we have added our Start Tracking button to our RouteTracker View
controller, our next step is to add the Refresh Map button that will be responsible for
removing our route information from the map, as well as for clearing out the array
holding each of these location points.

Adding the Refresh Map button
Our next step is to add a button to our previously added toolbar; this button will be
responsible for removing the visually drawn route information from our map view
control. This can be achieved by following these simple steps:

1. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control inside the toolbar, next to the Start Tracking button.

2. From the Attributes Inspector section, change the value of Identiier
to Custom.

3. Change the value of Style to Bordered.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[195]

4. Then, change the value of Identiier to Refresh.

Now that we have added our Refresh Map button to our RouteTracker View
controller, our next step is to add the Change Map Type button that will be
responsible for changing our map between the various map types that are available.

Adding the Change Map Type button
Our next step is to add a button to our toolbar; this will be responsible for allowing
the user to change between the different map viewing types that are available. The
user has the lexibility to choose to have their map displayed as a Satellite, Hybrid or
the default Map view. This can be achieved by following these simple steps:

1. From Object Library, select-and-drag a (UIBarButtonItem) Flexible Space
Bar Button Item control after the Change Map Type button within our
UIToolbar.

2. Next, from Object Library, select-and-drag a (UIButtonItem) Bar Button
Item control after the Flexible Space Bar Button Item control, located within
our UIToolBar.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[196]

3. From the Attributes Inspector section, change the value of Title to Change
Map Type.

4. Change the value of Style to Bordered.

Now that we have added our buttons and have built our user interface, our next step
is to create our very own custom UIView subclass.

This class will be used to display a visual representation of the route taken by our
current location within the map.

1. Select the RouteTracker folder, choose File | New | New File… or press
Command + N.

2. Select the Objective-C class template from the list of available templates.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[197]

3. Click on the Next button to proceed with the next step within the wizard.

4. Enter in TrackMapView as the name of the class name to be created.

5. Ensure that you have selected UIView as the type of subclass to create
from the Subclass of drop-down list.

6. Click on the Next button to proceed with the next step of the wizard.

7. Then, click on the Create button to save the ile to the folder location speciied.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[198]

We have successfully inished creating our TrackMapView class; our next step is to add
the MKMapView controller to our user interface. In this example, we will be creating a
new instance of the MapView control and overlay our TrackMapView class onto it, so
that we can draw the route taken by the user and add the necessary waypoints.

1. Select the ViewController.xib ile from the RouteTracker folder.

2. From Object Library, select-and-drag a (MKMapView) Map View control to
the center of our View controller, and adjust the size of Map View to ill the
entire area of the screen.

Our next step is to create the Outlet events for the Start Tracking, Map View, and
Change Map Type buttons. Creating these will allow us to access these controls
within our code, and make modiications to the control properties. To create an
Outlet, follow these simple steps:

1. Open Assistant Editor by choosing Navigate | Open in Assistant Editor,
or press Option + Command + ,.

2. Ensure that the ViewController.h interface ile is displayed on
Assistant Editor.

3. Select the Start Tracking (UIBarButtonItem) control, then hold down
the Control key, and drag it into the ViewController.h interface ile.

4. Choose Outlet from the Connection dropdown for the connection to
be created.

5. Enter in startTracking for the name of the Outlet property to create.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[199]

6. Choose Strong from the Storage dropdown.

7. Repeat steps 3 to 6 to create the IBOutlets for the Refresh Map, Change
Map Type, Map View, and Track Map View controls, while providing
the following namings for each, as follows: refreshMap, changeMapType,
routeMap, and TrackMapView.

Now that we have created the instance variable Outlets for our controls, we need
to create the associated Actions for those Outlets events. Creating these actions
allows an event to be ired when the button has been pressed. To create an Action,
follow these simple steps:

1. With the ViewController.h interface ile still displayed in Assistant Editor,
select the Start Tracking (UIBarButtonItem) control, then hold down the
Control key, and drag it into the ViewController.h interface ile.

2. Choose Action from the Connection dropdown list for the connection
to be created.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[200]

3. Enter in startTracking for the Name of the method to be created.

4. Repeat steps 2 to 4 to create the IBActions for the Refresh Map and Change
Map Type controls, while providing the following naming, as follows:
refreshMap and changeMapType.

We have successfully connected up each of our controls, and created the required
outlets and associated action methods. Now we can start to take a look at building the
functionality for our RouteTracker application, so that it has the ability to track and
draw our current route, and the ability to change between the different map views.

Building the RouteTracker functionality
Well done! You have made it this far; we have successfully inished building the user
interfaces for both the RouteTracker and TrackMapView screens. We now need to
implement the methods that will be used by our Start Tracking, Refresh Map, and
Change Map Type buttons. These will be responsible for determining our current
GPS location within the map, and draw the route taken to the map, as well as enable
us to change between each of the different types of map views available.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[201]

Implementing the View Controller class
We are now ready to start adding any additional content to our ViewController
class. We need to import some interface header iles and declare some objects that we
will be using throughout our application. We will need to extend our class, so that
we can use the ActionSheet, MapKit, and Core Location functionality.

1. Open the ViewController.h interface ile, located within the RouteTracker
folder, and enter in the following highlighted code sections:

// ViewController.h

// RouteTracker

//

// Created by Steven F. Daniel on 12/03/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import <UIKit/UIKit.h>

#import <MapKit/MapKit.h>

#import <CoreLocation/CoreLocation.h>

#import "TrackMapView.h"

@interface ViewController :UIViewController<UIActionSheetDelegate,
MKMapViewDelegate, CLLocationManagerDelegate>

{

 // IBOutlets for the results of core location

 // updates to be displayed.

 IBOutlet UIBarButtonItem :startTracking;

 IBOutlet UIBarButtonItem :refreshMap;

 IBOutlet UIBarButtonItem :changeMapType;

 IBOutlet MKMapView :routeMap;

 // Map View for displaying results to a map

 TrackMapView: trackMapView;

 // Core Location Manager for managing location updates

 CLLocationManager: locationManager;

 // Elements to determine if we are currently

 // tracking our location.

 BOOL isTracking;

 // Total distance from the starting location

 float totalDistance;

 // Element to work out Starting time

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[202]

 NSDate :startTime;

}

@property (strong, nonatomic) IBOutlet UIBarButtonItem
 :startTracking;

@property (strong, nonatomic) IBOutlet UIBarButtonItem
 :refreshMap;

@property (strong, nonatomic) IBOutlet UIBarButtonItem
 :changeMapType;

@property (strong, nonatomic) IBOutlet MKMapView
 :routeMap;

- (IBAction)startTracking:(id)sender;

- (IBAction)changeMapType:(id)sender;

- (IBAction)refreshMap:(id)sender;

@end

In the preceding code snippet, we import the interface ile header
information for our MapKit.h, CoreLocation.h, and TrackMapView.h
interface iles, so that we can access their class methods. We then
need to extend our class, so that we can include each of the following
class protocols: UIActionSheetDelegate, MKMapViewDelegate, and
CLLocationManagerDelegate, and so that we can access each of their
respective methods.

2. Finally, we declared a new outlet to our trackMapView, which is used
to call the events to draw the route taken, based on the GPS location of
our user, and then declare an NSDate object that is used to calculate the
distance travelled.

3. Next, open the ViewController.m implementation ile, located within the
RouteTracker folder, and modify the viewDidLoad method as shown in the
following code snippet:

- (void)viewDidLoad

{

 [superviewDidLoad];

 // Initialise our isTracking first time round

 isTracking = NO;

 // Do any additional setup after loading the view,

 // typically from a nib.

 trackMapView = [[TrackMapViewalloc]
 initWithFrame:routeMap.frame];

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[203]

 [routeMap setUserTrackingMode:MKUserTrackingModeFollow
 animated:YES];

 [routeMap addSubview:trackMapView];

 [routeMap setShowsUserLocation:YES];

 // Initialize the location manager

 locationManager = [[CLLocationManageralloc] init];

 locationManager.delegate = self;

 routeMap.delegate = trackMapView;

 // Set locationManager to provide the most

 // accurate readings possible

 locationManager.desiredAccuracy =
 kCLLocationAccuracyBest;

}

In the preceding code snippet, we initialize our super class's inherited
members and then set isTracking to NO the irst time round. We then
initialize our trackMapView custom class to take on the same size as our
mapView control, then add this as a subview of the mapView control, and set
the delegate property of mapView to our trackMapView class, so that the
mapView can pass on the notiications to the trackMapView class whenever
the map moves.

4. In our next step, we initialize the locationManager class, and set its delegate
property to our trackMapView class object, then set the desiredAccuracy
property of the object of locationManager to kCLLocationAccuracyBest,
which speciies that the location and heading information provided by
locationManager should be as accurate as the iOS device's hardware can
provide. This option is also the most energy-demanding option, is quite
power- and CPU-intensive, and should only be used when dealing with
turn-by-turn navigation.

For more information on the CoreLocation class, refer to
the Apple Developer Documentation located at the following
URL: https://developer.apple.com/library/
ios/#documentation/CoreLocation/Reference/
CoreLocation_Framework/_index.html#//apple_ref/
doc/uid/TP40007123.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[204]

Implementing the startTracking: method
Now that we have set up RouteTrackerviewController and have initialized
everything correctly, we are ready to start implementing the method that will be
responsible for tracking our current GPS location when the user presses the Start
Tracking button.

1. Open the ViewController.m implementation ile, located within the
RouteTracker folder, locate the startTracking method, and enter
in the following code:

// called when the user touches the "Start Tracking" button

- (IBAction)startTracking:(id)sender {

 // if the app is currently tracking

 if (isTracking) {

 // Update the button's label and stop tracking

 // and clear out our location points array.

 isTracking = NO;

 startTracking.title = @"Start Tracking";

 [locationManager stopUpdatingLocation];

 [locationManager stopUpdatingHeading];

 }

 else{

 // Start Tracking the user location.

 isTracking = YES;

 startTracking.title = @"Stop Tracking";

 totalDistance = 0.0;

 startTime = [[NSDate date] init];

 [locationManager startUpdatingLocation];

 [locationManager startUpdatingHeading];

 }

 // If we are not tracking display the distance
 //travelled

 if (isTracking != YES) {

 // get the time elapsed since the tracking started

 floatstopTime= -[startTime timeIntervalSinceNow];

 // format the ending message with various
 //calculations

 NSString :message = [NSStringstringWithFormat:
 @"Distance: %.02f km\nSpeed: %.02f km/h",
 totalDistance / 1000, totalDistance : 3.6 /
 stopTime];

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[205]

 // create an alert that shows the message

 UIAlertView :alert = [[UIAlertViewalloc]
 initWithTitle:@"RouteTracker Statistics"
 message:message delegate:self
 cancelButtonTitle:@"OK" otherButtonTitles:nil];

 // Display our alert to the user

 [alert show];

 }

}

In the preceding code snippet, we use the isTracking object to
determine if we are currently tracking. If we have determined that we
are currently tracking, we set the isTracking variable to NO, update the
title of the button to Start Tracking, and call stopUpdatingLocation
and stopUpdatingHeading to prevent the locationManager object from
monitoring the iOS device's position.

2. We then make a call to the timeIntervalSinceNow method to work out the
number of seconds that have elapsed since we started tracking our location,
and assign this to our loat variable, stopTime. In the inal steps, we create
an NSString object to hold both the distance and speed travelled, using the
standard metric conversions to calculate distance in kilometers and speed
in kilometers per hour, and display this information within a UIAlertView
dialog box.

3. Alternatively, if the application determined that we were not tracking, we
set the isTracking variable to YES, and update the title of the button to Stop
Tracking. In our next step, we reset the value of our distance variable to
0.0, then create a startTime variable to monitor how much time is taken for
our route, and call startUpdatingLocation and startUpdatingHeading to
begin monitoring the iOS device's position.

Implementing the refreshMap: method
Next, we need to start implementing the method that will be responsible for
providing the user the ability to remove the visual representation of the user's
route from our TrackMapView class, when the user presses the Refresh button.

Open the ViewController.m implementation ile, located within the RouteTracker
folder, locate the refreshMap method, and enter in the following code snippet:

// Resets the map values and clears all location points.

- (IBAction)refreshMap:(id)sender {

 [trackMapView resetWayPoints];

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[206]

In the preceding code snippet, we call our resetWayPoints method of our
trackMapView class to remove the visual route taken by our user and remove
all location points from our NSArray object.

Implementing the changeMapType: method
Next, we need to start implementing the method that will be responsible for
providing the user to change between each of the different map views that the
MapKit framework provides when the user presses the Change Map Type button.

1. Open the ViewController.m implementation ile, located within the
RouteTracker folder, locate the changeMapType method, and enter in
the following code snippet:

// Called when the user presses the Change Map Type button

-(IBAction)changeMapType:(id)sender

{

 // Define an instance of our action sheet

 UIActionSheet :actionSheet;

 // Initialize our action sheet with the

 // different mapping types.

 actionSheet = [[UIActionSheet alloc]initWithTitle:
 @"Select a Map View from the list below"
 delegate:self cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:@"Close"
 otherButtonTitles:@"Map View",
 @"Satellite View",
 @"Hybrid View", nil];

 // Set our Action Sheet style and then display

 // it to the user.

 actionSheet.actionSheetStyle =
 UIBarStyleBlackTranslucent;

 [actionSheet showInView:self.view];

}

// Delegate that handles the chosen action sheet options

-(void)actionSheet:(UIActionSheet :)
 actionSheet clickedButtonAtIndex:(NSInteger)buttonIndex

{

 // Determine the chosen item

 switch (buttonIndex) {

 case 1: mapView.mapType = MKMapTypeStandard; break;

 case 2: mapView.mapType = MKMapTypeSatellite; break;

 case 3: mapView.mapType = MKMapTypeHybrid; break;

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[207]

 default: break;// Catch the Close button and exit.

 }

}

In the preceding code snippet, we declare and instantiate an actionSheet
object that is based on the UIActionSheet class, and then initialize our
actionSheet to display the different map types to choose from.

2. Next, we proceed to set the style for actionSheet using the
actionSheetStyle property of the UIActionSheet class, and then display the
actionSheet into the current view using the showInView:self.view method.
In our next part, we declare a delegate method to determine the button that
was pressed from actionSheet, use the clickedButtonIndex method of
the actionSheet property, and check the value of the buttonIndex variable
to determine the index of the button that was pressed. When using the
buttonIndex variable, keep in mind that the starting value is always 0.

Implementing the locationManager: method
Next, we need to start implementing the method that will be responsible for
updating the current location each time theCLLocationManagerDelegate
protocol is called, whenever the CLLocationManager updates the current
location of the iOS device.

Open the ViewController.m implementation ile, located within the RouteTracker
folder, and enter in the following code snippet:

// called whenever the location manager updates the

// current location

- (void)locationManager:(CLLocationManager :)manager
 didUpdateToLocation:(CLLocation
 :)newLocation fromLocation:(CLLocation :)oldLocation

{

 // add the new location to the map

 [trackMapView addWayPoint:newLocation];

 // if there was a previous location then add the distance

 // from the old location to the total distance.

 if (oldLocation != nil) {

 totalDistance += [newLocation

 distanceFromLocation:oldLocation];

 }

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[208]

In the preceding code snippet, the didUpdateToLocation method gets
called whenever the CLLocationManager class changes the current
location of the iOS device. Once this occurs, we pass the new location to our
trackMapView:addWayPoint method, so that the location can be added to our
current list of location points. Next, we perform a check to ensure that we have a
previous location point, and then call the distanceFromLocation method to work
out the distance travelled between newLocation and the oldLocation, prior to
adding the calculated value to our totalDistance variable.

Implementing the locationManager:didFailWithError:
method
Next, we need to implement the method that will handle whenever an error has
occurred with obtaining the current location, or if the user has denied access to the
use of location services.

Open the ViewController.m implementation ile, located within the RouteTracker
folder, and enter in the following code snippet:

// Handle when an error occurs

-(void)locationManager:(CLLocationManager :)manager
 didFailWithError:(NSError :)error

{

 // Stop the location service if the user disallows access

 if ([error code] == kCLErrorDenied) {

 [locationManager stopUpdatingLocation];

 }

}

In the preceding code snippet, the locationManager:didFailWithError class
gets called whenever the use of location services is unavailable or unable to retrieve
a location straight away. We use the error code property to determine the type
of error that occurred, and then call the stopUpdatingLocation method of the
locationManager object.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[209]

The following table shows each of the valid error codes and their descriptions, as
returned by the locationManager:didFailWithError method:

Core location error code Location manager error description

kCLErrorLocationUnknown This error tells you that the location
manager was unable to obtain a
location value right now.

kCLErrorDenied This error lets you know that the
user denied the access to the location
service.

kCLErrorNetwork The error tells you that the network
was unavailable or a network error
occurred.

kCLErrorHeadingFailure This error tells you that the heading
location travelled could not be
determined.

kCLErrorRegionMonitoringDenied This error tells you that the user
denied the access to the region
monitoring service.

kCLErrorRegionMonitoringFailure This error tells you that a registered
region could not be monitored.

kCLErrorRegionMonitoringSetupDelayed This error tells you that Core Location
could not initialize the region-
monitoring feature immediately.

For more information on the didFailWithError: error code of
the Core Location class, refer to the Apple Developer Documentation
located at the following URL: http://developer.apple.com/
library/ios/#documentation/CoreLocation/Reference/
CoreLocation_Framework/_index.html#//apple_ref/doc/
uid/TP40007123.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[210]

Implementing the
shouldAutorotateToInterfaceOrientation: method
Next, we need to implement a method that will be responsible for preventing our
device from having our application being displayed within the various views.

Open the ViewController.m implementation ile, located within the RouteTracker
folder, locate the shouldAutoRotateToInterfaceOrientation: method, and enter
in the following code snippet:

- (BOOL)shouldAutorotateToInterfaceOrientation:(
 UIInterfaceOrientation)interfaceOrientation

{

 return (interfaceOrientation ==

 UIInterfaceOrientationPortrait);

}

In the preceding code snippet, we force the device to always display in the portrait mode
when the device has been rotated. We do this by checking the interfaceOrientation
variable of the iOS device, so that it will only support the portrait mode by setting this to
the value of the UIInterfaceOrientationPortrait type.

Implementing the TrackMapView class
In our inal step, we need to implement the class that will be used to display a visual
graphical representation of the location points along the route taken by the user
using the iOS device's built-in GPS capabilities, with the help of Google Map web
Services that come as part of the MapKit framework.

1. Open the TrackMapView.h interface ile, located within the RouteTracker
folder, and enter in the following code snippet:

// TrackMapView.h

// RouteTracker

//

// Created by Steven Daniel on 18/03/12.

// Copyright (c) 2012 GENIESOFT STUDIOS. All rights reserved.

#import <MapKit/MapKit.h>

#import <CoreLocation/CoreLocation.h>

@interface TrackMapView :UIView<MKMapViewDelegate>

{

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[211]

 // An array of way points containing each location

 NSMutableArray :wayPoints;

}

// Declare our function to add each new location to our array

-(void)addWayPoint:(CLLocation :) wayPoint;

-(void)resetWayPoints;

@end

In the preceding code snippet, we declare a new instance of our UIView sub-
class as TrackMapView, which will act as a view within our Map view on our
main screen. We declare an NSMutableArray object's wayPoints variable
that will hold each of the location points travelled within the map. We
declare an addWayPoint:method to basically add each new location travelled
within the map to the wayPointsNSMutableArray object, and draw the route
taken on the map.

2. Finally, we declare another resetWayPoints method to remove all previously
added location items from the wayPoints array, thus removing the route taken
from the map.

3. Open the TrackMapView.m implementation ile, located within the
RouteTracker folder, and enter in the following code snippet:

// Initialize the Track Map View class

- (id)initWithFrame:(CGRect)frame

{

 self = [super initWithFrame:frame];

 if (self) {

 // Initialization background and our location points

 self.backgroundColor = [UIColor clearColor];

 wayPoints = [[NSMutableArray alloc] init];

 }

 return self;

}

In the preceding code snippet, we modify the initWithFrame: method
to initialize the TrackMapView class that checks to ensure that it has been
initialized correctly, prior to initializing our wayPoints array using the
NSMutableArray init: method.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[212]

4. In the following code snippet, we perform a call to the NSMutableArray
removeAllObjects method to remove all array elements from the
wayPoints array, resulting in the user's visual route being removed from the
TrackMapView class. Finally, we call the setNeedsDisplay method to refresh
the view, after the changes have been applied.

// Remove all points within our array

-(void)resetWayPoints

{

 [wayPoints removeAllObjects];

 [self setNeedsDisplay];

}

5. In the following code snippet, we use the drawRect: method to draw
the route line of the path travelled by the user. We then check to make
sure that we have enough points within our array, and check to ensure
that our view is not hidden, as we want to draw our path when the map
is visible. Next, we need to obtain the current graphics context using the
UIGraphicsGetCurrentContext function, and then set the width of the line
that needs to be drawn to our view, representing the path.

// Called automatically when the view needs to be

// displayed to draw our route taken.

- (void)drawRect:(CGRect)rect

{

 // Get our current graphics context

 CGContextRef context = UIGraphicsGetCurrentContext();

 CGContextSetLineWidth(context, 6.0);

 CGPoint point;

 // Exit from our method if our view is hidden or

 // there is only one point to draw

 if (self.hidden || wayPoints.count == 1) return;

 // loop through each of our location points in our
 //Array

 for (intwayPoint=0; wayPoint<wayPoints.count;
 wayPoint++)

 {

 // Set the lines's color to red with transparency

 CGContextSetRGBStrokeColor(context, 0, 0, 1.0, 0.6f);

 // Get the next location from our points array

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[213]

 CLLocation :nextLocation = [wayPoints
 objectAtIndex:wayPoint];

 CGPointlastPoint = point;

 // get the view point for the given map coordinate

 point = [(MKMapView :)self.superview
 convertCoordinate:nextLocation.coordinate
 toPointToView:self];

 // Don't process our first starting position

 if (wayPoint != 0)

 {

 // move to the last point and draw a line

 CGContextMoveToPoint(context, lastPoint.x,
 lastPoint.y);

 CGContextAddLineToPoint(context, point.x, point.y);

 }

 // Draw the line to the view

 CGContextStrokePath(context);

 }

}

6. Next, we declare a variable point of type GPoint that will be used to store
the next point in the line, then perform a loop to cycle through each of the
location points, and use the CGContextSetRGBStrokeColor method to set
the line color.

7. Finally, we call the convertCoordinate:toPointToView method to receive
the point to the next location, then add a line from the last point draw to
the current points coordinates point, use CGContextMoveToPoint and
CGContextAddLineToPoint to work out and draw the line, and use the
CGContextStrokePath function to draw our line to the graphics window.

// add a new point to the list

- (void)addWayPoint:(CLLocation :)wayPoint

{

 // store last element of point

 CLLocation :lastPoint = [wayPoints lastObject];

 // if new point is at a different location than
 //lastPoint

 if (wayPoint.coordinate.latitude !=
 lastPoint.coordinate.latitude ||
 wayPoint.coordinate.longitude !=
 lastPoint.coordinate.longitude)

 {

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[214]

 // add the point to our map and redraw the view.

 [wayPoints addObject:wayPoint];

 [self setNeedsDisplay];

 }

}

In the preceding code snippet, we store the last point drawn on our
map, and check to ensure that our current coordinates don't describe the
same coordinates as the last point drawn on our map. If either are found
to be different, we add the new CLLocation point coordinates to our
NSMutableArray object, and then force the display to refresh the view
by calling the setNeedsDisplay method of UIView.

8. In the following code snippet, we set the hidden property of our
trackMapView view to YES, whenever the area that is currently being
displayed on our MKMapView is about to shift. This is to prevent the line
drawn from appearing misplaced on the map, whenever the transition
takes place.

#pragma mark mapView delegate functions

-(void)mapView:(MKMapView :)
 mapView regionWillChangeAnimated:(BOOL)animated

{

 // Hide the view when the region is going to change.

 self.hidden = YES;

}

9. In the following code snippet, we set the hidden property of our
trackMapView view to NO and then refresh our view. This method gets
called whenever the MKMapView inishes transitioning to its new location.
// refresh the route display.

- (void)mapView:(MKMapView :)
 mapView regionDidChangeAnimated:(BOOL)animated

{

 self.hidden = NO;

 [self setNeedsDisplay];

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[215]

Finishing up
Congratulations, we have inally implemented the methods for our RouteTracker
application. Next, we are ready to build and run our application by choosing
Product | Run from the Product menu, or alternatively by pressing Command + R.
The following screenshot shows the RouteTracker application running on their OS
device, and the information currently being tracked from inside a moving car.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

RouteTracker Application

[216]

The previous screenshot shows you how you can choose from the various types
of map views when Change Map Type is pressed. In the following screenshot ,
we display the total distance travelled and the speed at which we travelled. This
happens when the user has pressed the Stop Tracking button.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 6

[217]

Summary
In this chapter, we learned how to use and work with both the Core Location and
MapKit frameworks to determine the current user location, which relies on the use
of Google Maps Web services to obtain the map data. We looked at how to create
a new UIView class to enable us to draw our route on top of MKMapView through
the use of overlaying this information as a sub-view, and how we can use the
CLLocationManager class to allow us to access the current user's coordinates,
so that this information can be used to draw and track this information on our map.

We also looked at how we can use action sheets as well as how we can change
between the various Map views, Map, Satellite and Hybrid. To end the chapter, we
looked at how we can use the NSDate class to calculate the distance, speed, and time
taken to complete the route.

In the next chapter, we will look at how to create a VeterinaryClinic application
that will store pet information, including photo images into an SQLite database using
Core Data.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application
The VeterinaryClinic application allows you to keep a visual track of each pet that
visits the veterinary surgery. The application records information speciic to each pet
and even allows you to upload a photo, either using the camera or from the photo
album library.

In this chapter, we will take a look at how we can create a simple application to store
information on pets and veterinary information. In our example, we will be making
use of the powerful Core Data framework that will allow us to create and edit
information relating to cats and dogs using a form, and then having this information
stored within an SQLite database.

We will look at how to incorporate the camera and the image picker control to
capture images from the iOS device, and have this information stored within an
SQLite database relating to each pet.

In this chapter we will:

• Build the VeterinaryClinic application using Storyboards

• Build the Core Data Model and create the table schema

• Learn how to navigate between screens using Storyboards

• Implement the method to populate a UITableView view from a database

• Implement a method to save a record to the database

• Implement a method to use the photo library or the iOS camera

• Learn how to set the different keyboard styles on the control ields
• Implement the method to delete the table view items

• Implement an ability to perform searches within a UITableView view

We have an exciting project ahead of us, so let's get started.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

Overview of the technologies
The VeterinaryClinic application makes reference to the Core Data framework.
The Core Data framework is described as an abstraction layer that sits on top
of an SQLite database and enables developers to easily implement data-centric
applications, by modeling your data storage around entities (which are known as
classes) that contain the relationships between them. If you are familiar with the
Entity-Framework that comes part of the Microsoft .NET framework, then this one
is of a similar nature.

We will also be taking a look at how to store image data using the Binary Data
data-type, which is a part of Core Data that enables us to upload images. We will take
a look at how to convert an image photo to NSData format, before it can be stored
within the SQLite database, using the dataWithData:UIImagePNGRepresentation
method.

For further coverage of this area, please refer to Chapter 4, Enhanced AddressBook
App – Core Data, where we discuss more about this.

Building the VeterinaryClinic application
The ability to store information relating to our pets is one of the most common
things that veterinary clinics use on a daily basis. These can relate to adding a photo
of your pet, as well as their attributes, such as the name, age, date of birth, breed,
and type of animal.

In this section, we will take a look at how to create an application, which will do
just that so it can run on an iOS device, enabling us to create and edit new pet
information, assign their photo and their basic attributes, as well as their address
information and owner contact details.

We will also be storing this information within a SQLite database, and have this
information populated within a UITableView control with the added functionality
of being able to delete items that have been previously added to the list.

Before we can proceed, we irst need to create our VeterinaryClinic project. To
refresh your memory on how to go about creating a new project, you can refer to the
section that we covered in Chapter 2, Task Priorities – Building a TaskPriorities iOS App,
under the section named Building the TaskPriorities app.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

It is very simple to create our VeterinaryClinic application in Xcode. Just follow the
steps listed here.

1. Launch Xcode from the /Xcode4/Applications folder.

2. Choose Create a new Xcode project, or File | New Project.

3. Select the Empty Application template from the list of available templates.

4. Click on the Next button to proceed with the next step in the wizard.

5. Next, enter in VeterinaryClinic as the name for your project.

6. Select iPad from under the Device Family drop-down list.

7. Ensure that the Use Core Data checkbox has been selected.

8. Ensure that the Use Automatic Reference Counting checkbox
has been selected.

9. Ensure that the Include Unit Tests checkbox has not been selected.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

10. Click on the Next button to proceed with the next step in the wizard.

11. Specify the location where you would like to save your project.

12. Then, click on the Create button to continue and display the Xcode
workspace environment.

Now that we have created our VeterinaryClinic project, we need to start building
our user interface that will be responsible for allowing us to create and add new pet
information directly into our list.

Building the Core Data model
The Core Data database model is stored within the VeterinaryClinic.
xcdatamodeld, located within the VeterinaryClinic group within the Project
Navigator window. This ile will be used to deine the database schema for our
SQLite database, as we will be deining the entities (table) and the attributes (ields)
that make up our VeterinaryClinic Data Base.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

Since we have selected the Use Core Data option, Xcode has automatically set up
some important variables and has created the ile for us within our project. One thing
you will also notice is that we don't need to include CoreData.framework, as this
has been automatically added for us. Our next step is to create an entity and add the
necessary attributes that will enable our application to write to these ields, hence
storing this information within the database, so that it can be queried later.

To create a new entity, follow these steps.

1. Select the VeterinaryClinic.xcdatamodeld ile from Project Navigator.

2. Click on the + Add Entity button, located at the bottom left-hand corner
of the entity panel, and name this entity PetDetails.

3. Next, click on the + Add Attribute button, ()located at the bottom right-hand
corner of the entity panel or alternatively from the Attributes pane, and enter
in ownerAddress for Attribute.

4. Change the attribute type to String from the Type selection box.

5. Click on the + Add Attribute button, located at the bottom right-hand corner
of the entity panel, and enter in ownerMobileNo for Attribute.

6. Change the attribute type to Stringfrom the Type selection box.

7. Click on the + Add Attribute button, located at the bottom right-hand corner
of the entity panel, and enter in ownerName for Attribute.

8. Change the attribute type to String from the Type selection box.

9. Click on the + Add Attribute button, located at the bottom right-hand corner
of the entity panel, and enter in ownerPhoneNo for Attribute.

10. Change the attribute type to String from the Type selection box.

11. Click on the + Add Attribute button, located at the bottom right-hand corner
of the entity panel, and enter in petAge for Attribute.

12. Change the attribute type to Float from the Type selection box.

13. Click on the + Add Attribute button, located at the bottom right-hand corner
of the entity panel, and enter in petBreed for Attribute.

14. Change the attribute type to String from the Type selection box.

15. Click on the + Add Attribute button, located at the bottom right-hand corner
of the entity panel, and enter in petChipID for Attribute.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

16. Change the attribute type to String from the Type selection box.
17. Click on the + Add Attribute button, located at the bottom right-hand corner

of the entity panel, and enter in petDOB for Attribute.

18. Change the attribute type to Date from the Type selection box.

19. Click on the + Add Attribute button, located at the bottom right-hand corner
of the entity panel, and enter in petGender for Attribute.

20. Change the attribute type to String from the Type selection box.

21. Click on the + Add Attribute button, located at the bottom right-hand corner
of the entity panel, and enter in petName for Attribute.

22. Change the attribute type to String from the Type selection box.

23. Click on the + Add Attribute button, located at the bottom right-hand corner
of the entity panel, and enter in petPhoto for Attribute.

24. Change the attribute type to Binary Data from the Type selection box.

25. Click on the + Add Attribute button, located at the bottom right-hand corner
of the entity panel, and enter in petType for Attribute.

26. Change the attribute type to String from the Type selection box.
27. Click on the + Add Attribute button, located at the bottom right-hand corner

of the entity panel, and enter in petWeight for Attribute.

28. Change the attribute type to Integer 16 from the Type selection box.

29. Click on the + Add Attribute button, located at the bottom right-hand corner
of the entity panel, and enter in vetAddress for Attribute.

30. Change the attribute type to String from the Type selection box.

31. Save your project using File | Save as we are done deining our database
table schema.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

For more information on the Core Data Framework, refer to the Core Data
Programming Guide located within the Apple Developer Documentation at
https://developer.apple.com/library/ios/#documentation/
Cocoa/Conceptual/CoreData/cdProgrammingGuide.html%23//
apple_ref/doc/uid/TP30001200-SW1.

So far we have created our VeterinaryClinic database model. Our next step is to
take a look at how we can integrate and use the database within our application.
In the next section, we will look at how to create the core data model iles that will
allow us to access the table deinitions.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

Creating our Core Data model iles
Before our application can start to use our VeterinaryClinic database, we need to
create the entity class deinitions that will deine the variables that the database store
contains, so that we can access these through code.

1. From the VeterinaryClinic folder, select the VeterinaryClinic.
xcdatamodeld ile from Project Navigator.

2. Choose File | New | File… or press Command + N.

3. Select Core Data located under the iOS header section.

4. Next, select the NSManagedObject subclass template from the list of
available templates.

5. Click on the Next button to proceed with the next step within the wizard.

6. Next, we need to deine what entities we want to create the
NSManagedObject classes for.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

7. Select the PetDetails entity from the Select the entities you would like to
manage list.

8. Ensure that the Use scalar properties for primitive data types option
is not selected.

9. Click on the Next button to proceed with the next step in the wizard.

10. Click on the Create button to generate the NSManagedObject class iles.

You will notice that the wizard has created two new iles for us, PetDetails.m and
PetDetails.h. These iles deine the NSManagedObject class for the PetDetails
entity that we created in the Core Data store.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

They deine the table schema ields for our PetDetails class, so that we can access
their attributes at runtime. Let's take a quick look at the PetDetails class iles, to see
what the wizard generated for us.

1. Open the PetDetails.h interface ile, located within the PetDetails folder.

// PetDetails.h

// VeterinaryClinic

// Created by Steven Daniel on 4/04/12.

// Copyright (c) 2012 GENIESOFT STUDIOS. All rights reserved.

#import<Foundation/Foundation.h>

#import<CoreData/CoreData.h>

@interface PetDetails : NSManagedObject

@property (strong, nonatomic) NSNumber *petAge;

@property (strong, nonatomic) NSString *petBreed;

@property (strong, nonatomic) NSString *petChipID;

@property (strong, nonatomic) NSDate *petDOB;

@property (strong, nonatomic) NSString *petGender;

@property (strong, nonatomic) NSString *petName;

@property (strong, nonatomic) NSData *petPhoto;

@property (strong, nonatomic) NSString *petType;

@property (strong, nonatomic) NSNumber *petWeight;

@property (strong, nonatomic) NSString *vetAddress;

@property (strong, nonatomic) NSString *ownerName;

@property (strong, nonatomic) NSString *ownerAddress;

@property (strong, nonatomic) NSString *ownerPhoneNo;

@property (strong, nonatomic) NSString *ownerMobileNo;

@end

From the preceding code snippet, we can see that the wizard has generated a
PetDetails.h interface ile for us , which contains each of our entity attribute
ields, with each being declared and assigned their respective object type.

Any changes to the datatypes for the ields relating to the PetDetails
entity will need to be set using the Core Data schema editor. Any
changes made directly to those types above will receive an error when
the application launches, as the model is different to what was initially
created. The only way to solve this is to delete the application from the
iOS device/Simulator and re-compile your application.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

2. Next, open the PetDetails.m implementation ile, located within the
PetDetails folder.

// PetDetails.m

// VeterinaryClinic

// Created by Steven Daniel on 4/04/12.

// Copyright (c) 2012 GENIESOFT STUDIOS. All rights reserved.

#import "PetDetails.h"

@implementation PetDetails

@dynamic petAge;

@dynamic petBreed;

@dynamic petChipID;

@dynamic petDOB;

@dynamic petGender;

@dynamic petName;

@dynamic petPhoto;

@dynamic petType;

@dynamic petWeight;

@dynamic vetAddress;

@dynamic ownerName;

@dynamic ownerAddress;

@dynamic ownerPhoneNo;

@dynamic ownerMobileNo;

@end

From the preceding code snippet, we can see that the wizard has generated a
PetDetails.m implementation ile for us, which contains each of our entity
attribute ields, with each being declared as dynamic. This deines the entity
attribute properties, so that they can be used when the data is being written
or retrieved from Core Data.

The @dynamic directive tells the compiler that you will be creating
the method implementations directly through code, as well as
suppressing the warnings that the compiler would otherwise
generate, if it can't find suitable implementations. You should only
use this if you know that the methods will be available at runtime.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

Adding the Storyboard screen
Now that we have created our VeterinaryClinic project and created the CoreData
database, our next step is to include the Storyboard template as part of our
VeterinaryClinic project. Unfortunately, the Storyboard template is not added as
part of the Empty Application project template. This template provides you with a
starting point for any application, and comes with an application delegate and
a window.

To refresh your memory on how to go about adding the Storyboard screen to
your project, you can refer to the section that we covered in Chapter 4, Enhanced
AddressBook App – Core Data, under the section named Adding the Storyboard screen.

Follow these simple steps to see how to add the Storyboard template into
your application.

1. From the Project Navigator window, select the VeterinaryClinic folder.

2. Choose File | New | File… or press Command + N.

3. Select User Interface, located under the iOS header section.

4. Select Storyboard from the list of available templates.

5. Click on the Next button to proceed with the next step in the wizard.

6. Ensure that you have selected iPad from under the Device Family
drop-down list.

7. Click on the Next button to proceed with the next step of the wizard.

8. Enter in MainStoryboard as the name of the ile to be created.
9. Click on the Create button to save the ile to the folder speciied.

Now that we have created and added our Storyboard to our VeterinaryClinic
application, our next task is to modify our project so that it is conigured to use the
Storyboard that we just created.

1. Click and select your project from the Project Navigator window.

2. Then, select your project target from under the TARGETS group.

3. Select the Summary tab.

4. Ensure that you select MainStoryboard from the Main Storyboard drop-
down list.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

5. Next, open the AppDelegate.m implementation ile from within Project
Navigator, and modify the application didFinishLaunchingWithOptions
method, as shown in the following code snippet:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary
 *)launchOptions

{

 return YES;

}

When using Storyboards, we don't need to create a new UIWindow view object as this
will create another white window and place this on top of the Storyboard. Now that
we have added our Storyboard to our VeterinaryClinic application, our next step
is to start building our main application.

For more information on using Storyboards, you can refer to
the Apple Developer Documentation located at the following
URL: http://developer.apple.com/library/
ios/#documentation/ToolsLanguages/Conceptual/
Xcode4UserGuide/000-About_Xcode/about.html.

Creating the main application screen
Our next step is to build the user interface for our VeterinaryClinic application.
These screens will consist of a Tab Bar controller, a Navigational controller, and View
controllers. The Navigational controller enables us to create relationships between
each of the other screens within the Storyboard and set up the required connections,
known as segues, which represent a transition from one screen to another.

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UITabBarController) Tab Bar
Controller control, and add this to our Storyboard canvas.

3. Next, delete the two UIViewControllers controllers that Xcode
generated in the Storyboard when you dragged-and-dropped the
UITabBarController control.

To see how to go about adding the UITabBarController and TabBar controller, you
can refer to Chapter 4, Enhanced AddressBook App, under the section named Creating
the main application screen.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

Adding the table control to hold pet information
Our next step is to add a UITableViewController control that will be used to hold
and list our pet entries. We will need to include a Navigation controller that will be
used to navigate back-and-forth between UITableViewController and itself. To
see how to go about adding UITableViewController, you can refer to Chapter 4,
Enhanced AddressBook App, under the section named Adding the table control to hold
item data.

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UITableViewController) Table
View Controller control, and add this to our view.

Next, we need to create a Navigation controller between the Tab Bar controller and
the UITableViewController control that we just added. There are two ways that
this can be achieved; you can either drag UINavigationController directly onto
the view, or you can let Xcode do this for you automatically.

1. Select UITableViewController that we just added, and then choose
Editor | Embed In | Navigation Controller from the Editor menu.

2. Select Tab Bar Controller, then hold down Ctrl and drag from Tab Bar
Controller to Navigation Controller, and release the mouse.

3. Next, choose root view controller from the Relationship Segue pop up.

4. Next, we want to show the toolbar within our Navigation Controller. Select
Navigation Controller, and from the Attributes Inspector dialog box, select
the Shows Toolbar and Shows Navigation Bar options.

5. Then, change the Bottom Bar option under Simulated Metrics to
read Inferred.

So far, we have linked up our Tab Bar controller and Navigation controllers, and have
conigured the properties required for the Navigation controller; our next step is to set
up the properties on our Table View controller. Follow these simple steps below:

1. Select the Table View controller that we just added.
2. Next, click on the toolbar located at the top of the View controller.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

3. Then, from Attributes Inspector, change Title to read Veterinary Clinic
Application, as shown in the following screenshot:

If you prefer, you can also double-click the navigation bar and change its title. As we
have seen in a previous chapter, you will notice that since we added our Table View
controller, Xcode gave us a warning.

This happens whenever you add a Table View Controller to an existing or new
storyboard; this is due to it wanting to use prototype cells as the default type.
In the following screenshot, we will take a look at how to properly conigure this.

1. Click inside the Table View cell under the Prototype Cells header.

2. From the Attributes Inspector section, change Style to Subtitle. This will
change the cells' appearance to contain two labels.

3. Select the Identiier item and enter in PetDetailsCell as its unique
identiier. You will notice that once this has been entered in, Xcode will
stop complaining about the warning message we received earlier on.

4. Set the Accessory attribute to show None.

Now that we have successfully conigured our table cell, we need to start adding a
button to our Table View header that will be responsible for allowing new pet details
to be added to our Core Data database.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

Adding the Add button
Our next step is to add a button to our UITableViewController control that will
be responsible for displaying an additional screen where we can create pet record
details. This can be achieved by following these simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control to the top left-hand corner of the navigation bar on our Table View
Controller screen that we added previously.

3. From the Attributes Inspector section, change Identiier to Add.

4. Then, change the Style to Bordered.

Now that we have added our Add button to the Pets View Controller, our next step
is to add the Edit button that will be responsible for editing an existing item within
the list when the button is clicked. So let's proceed with the next section.

Adding the Edit button
Now that we have added our button to add a new pet record, our next step is to add
another button to UITableViewController; this will be responsible for allowing
the user to make changes to an existing pet item within the table view. This can be
achieved by following these simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control to the top right-hand corner of the navigation bar on the Veterinary
Clinic (UITableViewController) section of the Table View Controller
screen that we added previously.

3. From the Attributes Inspector section, change Identiier to Edit.

4. Then, change the Style to Bordered.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

Now that we have added our Add and Edit buttons, properly conigured our Table
View Controller, and built our user interface, our next step is to create our very
own custom UIViewController sub-class that will act as the data source for our
table, so that it will know how many rows to display when it retrieves the pet details
information from our database.

1. Select the VeterinaryClinic folder, choose File |New | New File… or
press Command + N.

2. Select Cocoa Touch located under the iOS header section.

3. Next, select the Objective-C class template from the list of available templates.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

4. Click on the Next button to proceed with the next step within the wizard.

5. Ensure that you have selected UITableViewController as the type of
subclass to be created from the Subclass of dropdown.

6. Enter in PetsViewController as the name of the ile to be created.
7. Ensure that you have selected the Targeted for the iPad option.

8. Click on the Next button to proceed with the next step of the wizard.

9. Then, click on the Create button to save the ile to the folder
location speciied.

Now that we have added our ViewController class to our VeterinaryClinic
application, our next step is to update the class of UITableViewController to use
this class, instead of the default UITableViewController class.

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. Select the Table View controller that we added to our VeterinaryClinic
application.

3. Click on the Identity Inspector section, and change the value of the Custom
Class property to read PetsViewController.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

Our next step is to add a reference to the NSManagedObjectContext and
NSFetchedResultsController objects as well as create an NSMutableArray
array property within our PetsViewController interface ile.

1. Open the PetsViewController.h interface ile, located within the
VeterinaryClinic folder. Enter in the following code snippet:

// PetsViewController.h

// VeterinaryClinic

// Created by Steven F. Daniel on 10/02/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import <UIKit/UIKit.h>

#import "PetDetails.h"

@interface PetsViewController : UITableViewController

{

 NSManagedObjectContext *managedObjectContext;

 NSFetchedResultsController *fetchedResultsController;

 // Used for our selected table view item.

 NSMutableArray *petListArray;

 NSArray *fetchedObjects;

}

@property (strong, nonatomic) NSManagedObjectContext
*managedObjectContext;

@property (strong, nonatomic) NSFetchedResultsController
*fetchedResultsController;

@property (strong, nonatomic) NSMutableArray
*petListArray;

-(void)getPetDetails;

@end

As you can see, all we have done is created a reference to the
NSManagedObjectContext and NSFetchedResultsController objects that
will help us with managing the fetching, updating, and creating of records
within the data store.

These objects also have the ability to handle validations and undo/redo
managements of records. Next, we declared an NSMutableArray object, that
will be used to hold each of our pet detail objects that we will create, and this
will also be used to act as a data source to our Veterinary Clinic Application
table view. It is a good practice to save the ile at this point in the process, to
avoid loss of changes.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

For more information about the NSMutableArray object, you can refer
to the Apple Developer documentation at the provided URL: http://
developer.apple.com/library/ios/#documentation/Cocoa/
Reference/Foundation/Classes/NSMutableArray_Class/
Reference/Reference.html.

2. Next, open the AppDelegate.m implementation ile, located within the
VeterinaryClinic folder, and add the following highlighted code:

// AppDelegate.m

// VeterinaryClinic

// Created by Steven F. Daniel on 26/03/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

//

#import "AppDelegate.h"

#import "PetsViewController.h"

@implementation AppDelegate

@synthesize window = _window;

In the preceding code snippet, we need to import the
PetsViewController.h interface header ile, as we will be referencing
these when we set up our data source for PetsViewController within our
Storyboard.

3. Next, we need to change the didFinishLaunchingWithOptions: method,
located within the AppDelegate.m implementation ile.
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary
 *)launchOptions

{

 UITabBarController *tabBarController =
 (UITabBarController *)self.window.rootViewController;

 UINavigationController *navigationController =
 [[tabBarControllerviewControllers] objectAtIndex:0];

 PetsViewController *petsViewController = [[
 navigationControllerviewControllers]objectAtIndex:0];

 petsViewController.managedObjectContext =
 self.managedObjectContext;

 return YES;

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

In the preceding code snippet, we need to initialize the data source for
petsViewController using the managedObjectContext method. This will
ensure that our controller has access to all of the required properties and
methods required to add and retrieve the information from our data store.

Before this can happen, we must irst cycle through each scene within our
Storyboard in order to get a reference to PetsViewController. This is so that
we can initialize its data source, so that it points to our database. Next, we
need to populate our pet information to our table view.

4. Open the PetsViewController.m implementation ile, and enter in the
following highlighted code snippets:

// PetsViewController.m

// VeterinaryClinic

//

// Created by Steven F. Daniel on 10/02/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import "PetsViewController.h"

@implementationPetsViewController

@synthesize fetchedResultsController;

@synthesize managedObjectContext;

@synthesize petListArray;

5. Next, we need to modify the viewDidLoad method located within the
PetsViewController.m implementation ile, and enter in the following
highlighted code snippet:

#pragma mark - View lifecycle

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Initialize and reload our pet information.

 self.navigationController.navigationBar.tintColor =
 [UIColor purpleColor];

 [self getPetDetails];

}

In the preceding code snippet, we need to initialize and set the color of our
Navigational controller bar to purple and then call the getPetDetails
method to populate the database object items to our table view.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

6. Next, open the PetsViewController.m implementation ile, and enter in the
following code snippet for the getPetDetails method:

#pragma mark Populate our UITableView Controller with all records
in our database.

-(void)getPetDetails

{

 // Define our table/entity name to use

 NSEntityDescription *entity = [NSEntityDescription
 entityForName:@"PetDetails"
 inManagedObjectContext:managedObjectContext];

 // Set up the fetch request

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc]
 init];

 [fetchRequestsetEntity:entity];

 // Define how we are to sort the records

 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor
 alloc] initWithKey:@"petName" ascending:NO];

 NSArray *sortDescriptors = [NSArray
 arrayWithObject:sortDescriptor];

 [fetchRequest setSortDescriptors:sortDescriptors];

 // Define the FetchResults controller

 fetchedResultsController = [[NSFetchedResultsController
 alloc] initWithFetchRequest:fetchRequest
 managedObjectContext:managedObjectContext
 sectionNameKeyPath:nilcacheName:@"Root"];

 // Fetch the records

 NSError *error;

 NSMutableArray *mutableFetchResults = [[
 managedObjectContext executeFetchRequest:fetchRequest
 error:&error]mutableCopy];

 if (!mutableFetchResults)

 {

 // Something seriously went wrong, so notify the
 //user.

 NSLog(@"There was an error retrieving the Veterinary
 Clinic records.");

 }

 // Save our fetched record to the array

 [selfsetPetListArray:mutableFetchResults];

 [self.tableView reloadData];

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

In the preceding code snippet, we deine the table entity that we want to use
as our main data source and then create an instance to our fetchRequest
object that will be used to hold the returned items. Next, we then specify that
we would like to have the results sorted on petName in descending order, so
that the latest entry appears at the top of the list.

7. We then initialize our fetchResultsController object, in order for it to
start retrieving the data from our database, then execute the record set and
check for any errors that occurred using the mutableFetchResults method.

8. Finally, we save the result set to our petListArray property, and then call
the reloadData method on our table View control to redisplay the records.

9. Next, we need to modify the viewDidAppear method that is located within
the PetsViewController.m implementation ile to refresh our Table view
whenever the view is displayed. Create the viewDidAppear method, and
enter in the following highlighted code snippets:

- (void)viewDidAppear:(BOOL)animated

{

 [super viewDidAppear:animated];

 [self getPetDetails];

}

10. Next, we need to change the table view data source methods that are located
within the PetsViewController.m implementation ile, and enter in the
following highlighted code snippets:

#pragma mark - Table view data source

- (NSInteger)numberOfSectionsInTableView:(UITableView
 *)tableView

{

 // Return the number of sections.

 return 1;

}

- (NSInteger)tableView:(UITableView
 *)tableViewnumberOfRowsInSection:(NSInteger)section

{

 // Return the number of rows in the section.

 if ([fetchedObjects count] == 0)

 {

 return [self.petListArray count];

 }

 else

 {

 // Handled by the search feature

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

 return [fetchedObjects count];

 }

}

From the preceding code snippet, we can see that we set the number of table
sections, and then have the numberOfRowsInSection method work out how
many rows that will exist in each section. This is achieved by using the count
property of our petListArray array object.

- (UITableViewCell *)tableView:(UITableView *)"
 tableViewcellForRowAtIndexPath:(NSIndexPath *)indexPath

{

 static NSString *CellIdentifier = @"PetDetailsCell";

 PetDetails *pet;

 // Check to ensure that we have items in our list.

 if ([fetchedObjects count] == 0)

 {

 pet = [petListArray objectAtIndex:indexPath.row];

 }

 else

 {

 // This section gets called when we are

 // using the search functionality.

 pet = [fetchedResultsController
 objectAtIndexPath:indexPath];

 }

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {

 cell = [[UITableViewCellalloc]
 initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier];

 }

 // Configure the cell...

 cell.textLabel.text = [NSString
 stringWithFormat:@"%@ %@, %@", pet.petName,
 pet.petType, pet.petGender];

 cell.detailTextLabel.text = pet.petBreed;

 UIImage *petPhoto = [UIImage
 imageWithData:pet.petPhoto];

 cell.imageView.image = petPhoto;

 return cell;

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

Finally, as you can see in the preceding code snippet, we supply the reuse
identiier of the TableViewController cell that we set up previously, then
assign each of the properties from our pets list array, and write it to the
cell labels.

When you reference the reuse identifier as a parameter to the method
called dequeueReusableCellWithIdentifier, it will automatically
make a new copy of the prototype and return the object back to you. For
more information on this method, you can refer to the UITableView
class reference at the following URL
http://developer.apple.com/library/
ios/#documentation/uikit/reference/UITableView_Class/
Reference/Reference.html.

11. Now that we have set up the data source correctly for our Table view, we
can run our application by choosing Product | Run from the Product menu,
or alternatively press Command + R to see the application running on an iOS
device, as shown in the following screenshot:

Now that we have successfully conigured our data source for our list of pet
information, we will see how we can navigate between the screens within the
Storyboard. We will learn about segues, and the different types of views they
can take on. We will look into static table view cells, as well as how to go about
providing the ability for additional pet information to be added to the current list
of pets within our veterinary clinic.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

Navigating between screens using Storyboards
In this section, we will be adding more view controllers to our Storyboard to allow
the lexibility of adding new pet detail record information to our existing table view.

In order for us to transition between screens within our Storyboard, we need to
create a connection, known as a segue. Segues are deined as having the ability to
only go one way; they cannot go back to the previous screen, unless a delegate class
has been set up.

For our new screen, we will be creating a "modal" segue. A modal segue is a screen
that becomes the active screen that prevents the user from interacting with the
underlying screen until they close the modal screen irst.

To begin creating the Add New Pet screen, follow these simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a new (UIViewController) View
Controller control, and add this to our Storyboard to the right of the
Veterinary Clinic Application screen.

3. Next, select UIViewController that we just added, and then choose
Editor | Embed In | Navigation Controller from the Editor menu.

4. Next, select the + button that we added previously, and hold down the
Control key while dragging it to the new Navigation Controller, and release
the mouse button.

5. Finally, select Modal from the pop-up list of choices.

6. Next, we want to show the toolbar within our Navigation controller.
Select the Navigation controller, and from the Attributes Inspector dialog
box, select the Shows Toolbar and Shows Navigation Bar options.

7. Then, change the Bottom Bar option under Simulated Metrics to
read Toolbar.

When you select Modal from the list of Storyboard Segues, a new arrow gets placed
between the Veterinary Details screen and the Navigational controller. So, when
you press the + button, a new screen will be displayed on the screen.

Next, we need to specify an identiier for our Storyboard Segue. This will be
responsible for handling the cancelling and saving methods when the Add New Pet
Details form is closed.

1. Select the segue relationship that is located between the Veterinary Clinic
Application screen and UINavigationController for the Add New Pet
Details screen.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

2. Click on the Attributes Inspector button.

3. Change the Identiier property to AddPetDetails.

4. Change the Style property to Modal.

5. Change the Presentation property to Default.

6. Change the Transition property to Cross Dissolve.

Next, we need to apply the same logic as we did for the Add New Pet Details form
that will be responsible for calling the same form to handle the editing of an existing
record when the Edit button has been pressed.

To begin creating the Edit Pet Details screen, follow these simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. Next, select the Edit button that we added to UITableViewController,
and hold down the Control key while dragging it to the same Navigation
controller as our Add button, and release the mouse button.

3. Finally, select Modal from the pop-up list of choices.

4. Next, select the segue relationship that we just created for our Edit Pet
Details screen.

5. Click on the Attributes Inspector button.

6. Change the Identiier property to EditPetDetails.

7. Change the Style property to Modal.

8. Change the Presentation property to Default.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

9. Change the Transition property to Flip Horizontal.

Unfortunately, you won't be able to go back to the previous screen until we create
a UIViewController subclass, the same as what we did for PetsViewController.

1. From the VeterinaryClinic folder, choose File | New | File… or press
Command + N.

2. Select Cocoa Touch located under the iOS header section.

3. Select the Objective-C class template from the list of templates.

4. Click on the Next button to proceed with the next step within the wizard.

5. Enter in PetDetailsViewController as the name of the ile to create.
6. Ensure that you select UIViewController as the type of subclass to be

created from the Subclass of drop-down list.

7. Ensure that you have selected the Targeted for iPad option.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

8. Click on the Next button to proceed with the next step of the wizard.

9. Then, click on the Create button to save the ile to the folder
location speciied.

Once you have done this, we need to update the class method of our Add Pet Details
screen of UIViewController to use our new view controller subclass. Follow these
simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. Click and select our Add Pet Details (UIViewController) within
our Storyboard.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

3. Click on the Identity Inspector section, and change the value of the Custom
Class property to read PetDetailsViewController.

4. Next, from the Attributes Inspector section, change the Title property
to read Add New Pet Details.

5. From Object Library, select-and-drag a Bar Button Item (UIBarButtonItem)
control to the top left-hand corner of the navigation bar on the Add New Pet
(UIViewController) View controller screen that we added previously.

6. From the Attributes Inspector section, change the Identiier property
to Save.

7. Then, change the Style property to Bordered.

8. Next, from Object Library, select-and-drag a Bar Button Item
(UIBarButtonItem) control to the top right-hand corner of the navigation bar.

9. From the Attributes Inspector section, change the Identiier property
to Cancel.

10. Change the Style property to Bordered.

11. Next, from Object Library, select-and-drag a Bar Button Item
(UIBarButtonItem) control to the bottom left-hand corner of the toolbar.

12. From the Attributes Inspector section, change the Title property to
Photo Library.

13. Change the Style property to Bordered.

14. Next, from Object Library, select-and-drag a Bar Button Item
(UIBarButtonItem) control to the bottom left-hand corner of the toolbar.

15. From the Attributes Inspector section, change the Identiier property
to Camera.

16. Change the Style property to Bordered.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

Our next step is to start building the screen that will allow us to enter information
relating to each pet, so that it can be saved to the Veterinary Clinic list.

1. Select the Add New Pet Details View controller from within our Storyboard.

2. Next, drag a Label Field (UILabel) control onto the canvas.

3. Select Attributes Inspector for Text Field.

4. Set the Text ield property to read Name:.

5. Set the Alignment ield property to Left Justify.

6. Next, drag a Text Field (UITextField) control next to the Name ield that we
added in the previous step.

7. Select Attributes Inspector for Text Field.

8. Set the Alignment ield property to Left Justify.

9. Set the Border Style property to Rounded.

10. Set the Font to System 14.0.

11. Adjust the size of the control by dragging the right edge of the control.

12. Ensure that you have unchecked the Adjust to Fit checkbox.

13. Repeat steps 2 to 11 to add the following control: Photo: (UIImageView),
Age: (UITextField), DOB: (UITextField), Type: (UITextField), Breed:
(UITextField), Gender: (UITextField), Weight: (UITextField), Chip ID:
(UITextField), Vet Address Details: (UITextView), Name: (UITextField),
Address: (UITextView), Phone (H): (UITextField), Phone (M):
(UITextField).

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

If you have followed the steps correctly, the completed Add New Pet Details screen
should look similar to the following screenshot; feel free to adjust yours accordingly
if it doesn't:

The next step is to create the outlets for each of the ields that we previously added to
our Add New Pet Details form.

1. Open Assistant Editor by choosing Navigate | Open In Assistant Editor
or press Option + Command + ,.

2. Ensure that the PetDetailsViewController.h interface ile gets displayed.
3. Select Name (UITextField), hold down the Control key, and drag it into the

PetDetailsViewController.h interface ile.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

In order to create the IBOutlet, outlets, these will need to be created
inside the curly braces { } under the @interface directive as these
are not created by default.

4. Enter in petName for the name of the property to be created.

5. Choose Strong from the Storage drop-down list.

6. Repeat steps 3 to 5 and create the properties for the Photo, Age, DOB, Type,
Breed, Gender, Weight, Chip ID, Vet Address Details, Owner Details
Name, Owner Details Address, Phone (H), and Phone (M) ields.

Now that we have created the outlets and properties for each of our form
ields, we need to start modifying our PetDetailsViewController.h interface
ile. Here, we will add a reference to the NSManagedObjectContext and
NSFetchedResultsController objects that will provide us with all of the Core Data
fetch-related functions we need to perform when populating the Table view with data.
These functions encapsulate the common functions that are associated with the table,
and the Core Data data model.

1. Open the PetDetailsViewController.h interface ile, located within
the VeterinaryClinic folder, and enter in the following highlighted
code snippets:

// PetDetailsViewController.h

// VeterinaryClinic

// Created by Steven F. Daniel on 10/02/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

#import <UIKit/UIKit.h>

#import "PetDetails.h"

@interface PetDetailsViewController : UIViewController<UIIma
gePickerControllerDelegate, UINavigationControllerDelegate,
UIPopoverControllerDelegate>

{

 // Declare our Core Data Objects

 NSManagedObjectContext *managedObjectContext;

 UIPopoverController *popoverController;

 // Create the required form Outlets

 IBOutlet UITextField *petName;

 IBOutlet UITextField *petAge;

 IBOutlet UITextField *petDateofBirth;

 IBOutlet UITextField *petType;

 IBOutlet UITextField *petBreed;

 IBOutlet UITextField *petGender;

 IBOutlet UITextField *petWeight;

 IBOutlet UITextField *petChipID;

 IBOutlet UIImageView *petPhoto;

 IBOutlet UITextView *vetAddress;

 IBOutlet UITextField *ownerName;

 IBOutlet UITextView *ownerAddress;

 IBOutlet UITextField *ownerHomePhone;

 IBOutlet UITextField *ownerMobilePhone;

}

// Create the required class Setters and Getters

@property (strong, nonatomic) NSManagedObjectContext
 *managedObjectContext;

@property (strong, nonatomic) UIPopoverController
 *popoverController;

@property (strong, nonatomic) UIImagePickerController
 *imagePicker;

@property (strong, nonatomic) PetDetails *currentPet;

// Create the required form properties for the Outlets

@property (strong, nonatomic)
 IBOutletUITextField*petName;

@property (strong, nonatomic) IBOutlet UITextField
 *petAge;

@property (strong, nonatomic) IBOutlet UITextField

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

 *petDateofBirth;

@property (strong, nonatomic) IBOutlet UITextField
 *petType;

@property (strong, nonatomic) IBOutlet UITextField
 *petBreed;

@property (strong, nonatomic) IBOutlet UITextField
 *petGender;

@property (strong, nonatomic) IBOutlet UITextField
 *petWeight;

@property (strong, nonatomic) IBOutlet UITextField
 *petChipID;

@property (strong, nonatomic) IBOutlet UIImageView
 *petPhoto;

@property (strong, nonatomic) IBOutlet UITextView
 *vetAddress;

@property (strong, nonatomic) IBOutlet UITextField
 *ownerName;

@property (strong, nonatomic) IBOutlet UITextView
 *ownerAddress;

@property (strong, nonatomic) IBOutlet UITextField
 *ownerHomePhone;

@property (strong, nonatomic) IBOutlet UITextField
 *ownerMobilePhone;

// Declare our class Instance methods

- (IBAction)btnSavePet:(id)sender;

@end

In the preceding code snippet, we have created a reference to our
NSManagedObjectContextthat that will help us with managing the fetching,
updating, and creating of records within the data store. These objects also
come with the added advantage and ability to handle validations, and undo/
redo functionality of records without having to write any additional code.

We will also need to extend our class so that we can include each of
the following class protocols: UIImagePickerControllerDelegate,
UINavigationControllerDelegate, and UIPopoverControllerDelegate.
This is so that we can access each of their respective methods.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

Now that we have created the instance variable Outlets for our controls, we now
need to create the associated Actions for those Outlets events. Creating these
actions allows an event to be ired when a button has been pressed. To create an
Action, follow these simple steps:

1. With the PetDetailsViewController.h interface ile still displayed
to the right of the Add New Pet Details screen, select the Save
(UIBarButtonItem) control, then hold down the Control key, and drag it into
the ContactDetailsViewController.h interface ile.

2. Choose Action from the Connection drop-down list for the connection to
be created.

3. Enter in btnSavePet for the name of the method to be created.

4. Repeat steps 2 to 4 and hook up the Cancel, Photo Album, and Camera
button, creating the following Action event(s): btnCancel, btnAddPhoto,
and btnCameraPhoto, respectively.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

In the next section, we will take a look at building the functionality for our veterinary
clinic, so that it has the ability to add new and edit existing pet information to the
Veterinary Clinic list.

Functionality
Well done! You have inally made it this far; we have successfully inished building the
user interface for both the Veterinary Clinic Application and Add New Pet screens.
Our next step is to start implementing the methods that will be used for our Save,
Cancel, Photo Library, and Camera buttons. These will be responsible for returning
us back to the Veterinary Clinic Application screen as well as having the ability to
choose photos from the iOS device photo library to use as our pet's photo image.

1. Now, open the PetDetailsViewController.m implementation ile, located
within the Veterinary folder, and modify the viewDidLoad method, as
shown in the following code snippet:

// PetDetailsViewController.m

// VeterinaryClinic

// Created by Steven F. Daniel on 10/02/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import <UIKit/UIKit.h>

#import "PetDetailsViewController.h"

@implementation PetDetailsViewController

@synthesize managedObjectContext;

@synthesize popoverController;

@synthesize imagePicker;

@synthesize currentPet;

@synthesize petName;

@synthesize petAge;

@synthesize petDateofBirth;

@synthesize petType;

@synthesize petBreed;

@synthesize petGender;

@synthesize petWeight;

@synthesize petChipID;

@synthesize petPhoto;

@synthesize vetAddress;

@synthesize ownerName;

@synthesize ownerAddress;

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

@synthesize ownerHomePhone;

@synthesize ownerMobilePhone;

#pragma mark - View lifecycle

- (void)viewDidLoad

{

 [superviewDidLoad];

 // Initialize and reload contacts.

 self.navigationController.navigationBar.tintColor =
 [UIColor blueColor];

 // If we are editing an existing picture, then put the

 // details from Core Data into the text fields for

 // displaying.

 if (self.currentPet)

 {

 NSDateFormatter *dateFormat =
 [[NSDateFormatter alloc] init];

 [dateFormat setDateFormat:@"yyyy-MM-dd"];

 NSString *theDOB = [dateFormat
 stringFromDate:[self.currentPet petDOB]];

 // Grab the Pet Detail Information

 [petName setText:[self.currentPet petName]];

 [petAge setText:[NSString
 stringWithFormat:@"%@",[self.currentPet petAge]]];

 [petDateofBirth setText:theDOB];

 [petType setText:[self.currentPet petType]];

 [petBreed setText:[self.currentPet petBreed]];

 [petGender setText:[self.currentPet petGender]];

 [petWeight setText:[NSString
 stringWithFormat:@"%@",[
 self.currentPet petWeight]]];

 [petChipID setText:[self.currentPet petChipID]];

 [vetAddress setText:[self.currentPet vetAddress]];

 // Check to see if we have a photo previously added,

 // if yes, display this.

 if ([self.currentPet petPhoto])

 {

 [petPhoto setImage:[UIImage
 imageWithData:[self.currentPet petPhoto]]];

 }

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

 // Grab the Owner Contact Details

 [ownerName setText:[self.current PetownerName]];

 [ownerAddress setText:[self.currentPet
 ownerAddress]];

 [ownerHomePhone setText:[self
 .currentPet ownerPhoneNo]];

 [ownerMobilePhone setText:[self.currentPet
 ownerMobileNo]];

 }

 // Set the UIKeyboardStyles for each of our field
 //controls

 petName.keyboardType= UIKeyboardTypeAlphabet;

 petAge.keyboardType= UIKeyboardTypeNumberPad;

 petDateofBirth.keyboardType =
 UIKeyboardTypeNumbersAndPunctuation;

 petType.keyboardType= UIKeyboardTypeAlphabet;

 petBreed.keyboardType= UIKeyboardTypeAlphabet;

 petGender.keyboardType = UIKeyboardTypeAlphabet;

 petWeight.keyboardType = UIKeyboardTypeDecimalPad;

 petChipID.keyboardType =
 UIKeyboardTypeNumbersAndPunctuation;

 vetAddress.keyboardType =
 UIKeyboardTypeAlphabet;

 ownerName.keyboardType = UIKeyboardTypeAlphabet;

 ownerAddress.keyboardType =
 UIKeyboardTypeNumbersAndPunctuation;

 ownerHomePhone.keyboardType = UIKeyboardTypeNumberPad;

 ownerMobilePhone.keyboardType =
 UIKeyboardTypeNumberPad;

}

In the preceding code snippet, we initialize our super class's inherited
members, and then set the color of our navigation bar control to blue, to
differentiate that we are editing an existing record.

2. Next, we check the value of the currentPet variable to determine if we
are editing an existing record, and if so, we use a managed object called
CurrentPet to grab each of the schema ields and the attribute values of the
managed object. Finally, we use the keyboardType property of each entry
ield to set the relevant keyboard styles for each.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

For more information on each of the different keyboard styles available,
refer to the UITextInputTraits Protocol Reference Guide within
the Apple Developer Documentation at the following URL: http://
developer.apple.com/library/ios/#DOCUMENTATION/
UIKit/Reference/UITextInputTraits_Protocol/
Reference/UITextInputTraits.html.

Implementing the btnSavePet: method
We are now ready to start implementing the method that will be responsible for
saving our pet record information when the user presses the Save button.

Open the PetDetailsViewController.m implementation ile, located within the
Veterinary folder, and enter in the following code snippet:

- (IBAction)btnSavePet:(id)sender {

 // Set a pointer to our Pet database table schema

 if (!self.currentPet) {

 self.currentPet = (PetDetails *)[NSEntityDescription
 insertNewObjectForEntityForName:@"PetDetails"
 inManagedObjectContext:managedObjectContext];

 }

 // Convert the Pet Photo Image to an NSData format

 // to be stored in the SQLite Database.

 NSData *currentPetPhoto = [NSData
 dataWithData:UIImagePNGRepresentation(petPhoto.image)];

 // Set up our date Format when storing the date of birth

 NSDateFormatter *dateFormat =
 [[NSDateFormatter alloc] init];

 [dateFormat setDateFormat:@"yyyy-MM-dd"];

 // Initialise our Number Formatter for Decimal Values

 NSNumberFormatter *numberFormat =
 [[NSNumberFormatter alloc] init];

 [numberFormat
 setNumberStyle:NSNumberFormatterDecimalStyle];

 NSNumber *cPetAge = [numberFormat
 numberFromString:petAge.text];

 // Grab each of the form fields and assign to each

 // of their attributes

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

 [self.currentPet setPetName:self.petName.text];

 [self.currentPet setPetAge:cPetAge];

 // Check to ensure that we have a value for the Date

 // Of Birth and then set it to be in the correct format.

 NSDate *date = [dateFormat
 dateFromString:petDateofBirth.text];

 [self.currentPet setPetDOB:date];

 [self.currentPet setPetType:self.petType.text];

 [self.currentPet setPetBreed:self.petBreed.text];

 [self.currentPet setPetGender:self.petGender.text];

 NSNumber *cPetWeight = [numberFormat
 numberFromString:petWeight.text];

 [self.currentPetset PetWeight:cPetWeight];

 [self.currentPetset PetChipID:self.petChipID.text];

 [self.currentPetset PetPhoto:currentPetPhoto];

 [self.currentPetset VetAddress:self.vetAddress.text];

 // Obtain the Owner Details

 [self.currentPet setOwnerName:self.ownerName.text];

 [self.currentPet setOwnerAddress:self.ownerAddress.text];

 [self.currentPet
 setOwnerPhoneNo:self.ownerHomePhone.text];

 [self.currentPet
 setOwnerMobileNo:self.ownerMobilePhone.text];

 // Catch any errors during the saving of the

 // Pet Details Record.

 NSError *error;

 if (![managedObjectContext save:&error])

 {

 // Display Error message stating that the record

 // could not be saved.

 NSLog(@"There was a problem saving the pet details...");

 }

 // Close the Pet Details form and return back to

 // our Pet Listing.

 [self dismissViewControllerAnimated:YES completion:nil];

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

In the preceding code snippet, we create a managed object context that is then used
to create a new managed object using the PetDetails entity description. The getters
and setters for each of the schema ields of the managed object are then called to
set each of the attributes values of the managed object, before the context is inally
instructed to save the changes to the persistent store with a call to the context's
save method.

We then add the new pet information details object to our existing list of pet records
and then refresh the table view, using the reloadData method to show that the new
item was added, and then close the Add New Pet Details screen.

Implementing the btnCancel: method
Next, we need to implement the Cancel button. This will be responsible for closing
the screen, and returning you back to the Veterinary Clinic Application table view
when pressed.

Open the PetDetailsViewController.m implementation ile, located within the
VeterinaryClinic folder, and enter in the following code snippet:

-(IBAction) btnCancel:(id) sender

{

 [self dismissViewControllerAnimated:YES completion:nil];

}

In the preceding code snippet, we use the dismissViewControllerAnimated
method, which is only made available in iOS 5 and later. This method is used to close
the current modal screen that was sent by our Veterinary Clinic Application table
view screen.

Implementing the btnAddPhoto: method
Next, we need to implement the Photo Album button. This will be responsible for
displaying the camera roll view within a popover when pressed.

Open the PetDetailsViewController.m implementation ile, located within the
VeterinaryClinic folder, and enter in the following code snippet:

// called when the user presses the Photo Library button

- (IBAction)btnAddPhoto:(id)sender {

 // Create image picker controller

 self.imagePicker= [[UIImagePickerController alloc] init];

 // Set source to the Photo Library

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

 self.imagePicker.delegate = self;

 self.imagePicker.sourceType =
 UIImagePickerControllerSourceTypePhotoLibrary;

 Self.imagePicker.allowsEditing = NO;

 self.popoverController = [[UIPopoverController alloc]
 initWithContentViewController:self.imagePicker];

 self.popoverController.delegate = self;

 [self.popoverController
 presentPopoverFromBarButtonItem:sender
 permittedArrowDirections:UIPopoverArrowDirectionUp
 animated:YES];

}

In the preceding code snippet, we declare an instance of UIImagePickerController
and initialize the properties to only display the images from the photo album. Next, we
declare a popover controller that will be passed through the image picker as the view.
The view controller is then designated as the delegate for the popover object before
the popover is displayed to the user. The sender object passed through to this method
references the Photo Library button in the toolbar. This object is passed through the
popover controller's presentPopoverFromBarButtonItem: method, so that the
popover is positioned directly above, and pointing to the button when displayed.

Implementing the btnCameraPhoto: method
Next, we need to implement the Camera Photo button. This will be responsible for
displaying the camera roll view within a popover when pressed.

Open the PetDetailsViewController.m implementation ile, located within the
VeterinaryClinic folder, and enter in the following code snippet:

// Display the iOS Device' Camera using the
// backview as the default.
- (IBAction)btnCameraPhoto:(id)sender {

 // Create image picker controller
 self.imagePicker = [[UIImagePickerController alloc] init];

 // Set source to the Camera
 self.imagePicker.delegate = self;
 self.imagePicker.sourceType =
 UIImagePickerControllerSourceTypeCamera;
 self.imagePicker.cameraDevice =
 UIImagePickerControllerCameraDeviceRear;
 [self presentViewController:imagePicker animated:YES
 completion:nil];
}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

In the preceding code snippet, we start by creating a UIImagePickerController
instance, and then make the delegate point to itself and set the media source as the
camera. Next, we set the value of the cameraDevice property to use the rear camera.
Finally, we display the camera interface, and the UIImagePickerController object
is released.

#pragma mark - Image Picker Delegate Methods
// On cancel, only dismiss the picker controller
- (void)imagePickerControllerDidCancel:(UIImagePickerController
 *)picker
{
 [imagePicker dismissModalViewControllerAnimated:YES];
}

In the preceding code snippet, we start by declaring a delegate object for our
image picker controller, imagePickerControllerDidCancel. This delegate will be
responsible for handling and taking care of closing the popover or camera session,
without making an image selection, or taking a picture whenever the Cancel button
has been pressed.

// Calls once the user has chosen an image
- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {
 UIImage *photoImage = [info
 objectForKey:UIImagePickerControllerOriginalImage];
 petPhoto.image = photoImage;

 [self.imagePicker dismissViewControllerAnimated:YES
 completion:nil];
}

In the preceding code snippet, the didFinishPickingMediaWithInfo method
dismisses and releases the image picker popover and identiies the type of media
passed from the image picker controller. If it is an image, it is then displayed to the
petPhoto.image object property of the user interface. If this is a new image, it is
saved to the camera roll. The didFinishPickingMediaWithInfo is called when the
user has inished taking or selecting an image.

Implementing the Delete row method
Next, we need to implement the Delete method. This will be responsible
for removing a pet detail record from the Veterinary Clinic table view.

Open the PetsViewController.m implementation ile, located within the
VeterinaryClinic folder, and modify the tableView:(UITableView *)
tableViewcommitEditingStyle: method, by entering in the following
highlighted code:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

// Override to support editing the table view.

- (void)tableView:(UITableView *)tableViewcommitEditingStyle:(
 UITableViewCellEditingStyle)editingStyleforRowAtIndexPath:(
 NSIndexPath *)indexPath

{

 if (editingStyle == UIableViewCellEditingStyleDelete)

 {

 // Get the item to delete from our row

 PetDetails *itemToDelete = [self.petListArray
 objectAtIndex:indexPath.row];

 // Delete the item in Core Data

 [self.managedObjectContext
 deleteObject:itemToDelete];

 // Delete the item from our array

 [petListArray removeObjectAtIndex:indexPath.row];

 // Commit the deletion

 NSError *error;

 if (![self.managedObjectContext save:&error])

 {

 NSLog(@"There was a problem deleting the pet
 information %@",[error domain]);

 }

 // Delete the row from the data source

 [tableView deleteRowsAtIndexPaths:[NSArray
 arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];

}

}

In the preceding code snippet, we determine the type of action currently
being performed within the table view, which is determined by the
UITableViewCellEditingStyle class. We then compare against the
UITableViewCellEditingStyleDelete constant variable, and if the condition is
met, we remove the selected pet details at the selected row from our Pet array and
database, then refresh the Table view data source. If any errors have been detected
during the removal process, they logged out to the Debug window.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

Finishing up
We just have a few more things to implement before we have a complete working
application. We will need to implement a couple more methods that will handle
the transition between our Veterinary Clinic and our Add New Pet Details screens
when the + and Edit buttons are pressed.

1. Firstly, we need to import our PetDetailsViewController.h interface ile
at the top of our PetsViewController.m implementation ile; so let's do
this now.

Open the PetsViewController.m implementation ile, and enter in the
following highlighted code snippet:

// PetsViewController.m

// VeterinaryClinic

// Created by Steven F. Daniel on 10/02/12.

// Copyright (c) 2012 GenieSoft Studios. All rights
// reserved.

#import "PetsViewController.h"

#import "PetDetailsViewController.h"

@implementation PetsViewController

@synthesize fetchedResultsController;

@synthesize managedObjectContext;

@synthesize petListArray;

2. Next, we need to handle the transition between the Veterinary Clinic
Application screen and the Navigation controller, to determine when
a transition has been made on a segue within the Storyboard.

3. Next, with the PetsViewController.m implementation ile still open,
enter in the following code snippet:

-(void)prepareForSegue:(UIStoryboardSegue *)segue
 sender:(id)sender

{

 UINavigationController *navigationController =
 segue.destinationViewController;

 PetDetailsViewController
 *petDetailsViewController= [[navigationController

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

 viewControllers] objectAtIndex:0];

 petDetailsViewController.managedObjectContext =
 self.managedObjectContext;

 if ([
 segue.identifierisEqualToString:@"EditPetDetails"])

 {

 // Get the row we selected to view

 NSInteger selectedIndex= [[self.tableView
 indexPathForSelectedRow]row];

 // Set the title of our form

 petDetailsViewController.title = @"Editing Pet
 Details";

 // Pass the picture object from the table

 // that we want to view.

 [petDetailsViewController setCurrentPet:[petListArray
 objectAtIndex:selectedIndex]];

 }

}

In the preceding code snippet, we use the prepareForSegue: method to
determine whenever a transition to segue takes place. A check is required
to be made on the identiier of the segue to determine if we are calling
the Edit Pet Details screen, then pass the selected pet information to the
petDetailsViewController class, and update the header for the form to
show that we are currently in the Edit mode.

If the determination has been made that editing has not taken place, it will
call and display a blank form.

4. Next, we set the Navigation controller of the segue to be the navigation
controller of the destination screen, and then cycle through each of the
view controller within the navigation controller properties to get the
PetDetailsViewController instance, before inally setting the data
source property of the form to be the currently active connection.

Congratulations, we have inally implemented the methods for our
VeterinaryClinic application.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

VeterinaryClinic Application

[220]

5. Next, build and run the application by choosing Product | Run from the
Product menu, or alternatively pressing Command + R. The following
screenshot shows the application running on the iOS device with the irst
item in the list being selected.

From the preceding screenshot, we can see that when the item has been selected and
the Edit button has been pressed, the details for the selected row are passed to the
Add New Pet Details form, all ields are read from the database, and all relevant
ields are then populated to the form.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 7

[221]

Summary
In this chapter, we learned how to create a VeterinaryClinic application, using
Core Data to separate our data model from the rest of the application using
Model-View-Controller design. We visually designed our PetDetails entity,
which contained the attributes representing each pet's name, age, date of birth,
type of pet, breed, gender, and so on, and programmatically interacted with the
data model using NSManagedObject and NSFetchedResultsController to fetch
information from the data store and populate this within UITableView.

We also looked into segues in a bit more detail and how we can use these to easily
utilize an existing previously created view, and pass information back-and-forth
based on the current record that has been selected from the table view controller.

In the next chapter, we will look at how to create an application that will allow us
to incorporate and interact with Facebook, directly within our application. We will
look at how to register our iOS application with Facebook, and how to install the
Facebook SDK.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application
When Mark Zuckerberg launched Facebook from his Harvard dormitory room on
February 4, 2004, he never could have imagined how big his dream would have
become, used by millions of people around the world. On May 24, 2007, Zuckerberg
announced the Facebook Platform, a development platform for programmers to
create social applications within Facebook.

When Facebook launched the development platform, numerous applications had
been built, and already had millions of users playing them. The Social Networking
application utilizes the Facebook collection of APIs that enable you to connect to
Facebook and send application request notiications, so that you can add them to your
list of friends. In this chapter, we will take a look at how to download the Facebook
iOS SDK and register your iOS application, so that it can be used with Facebook.

We will then start by creating a simple application and look at how we can add the
Facebook iOS SDK into our project, so that the user can sign in to their Facebook
account in order to send notiication requests as well as submit news feeds directly
to their timeline home page. Finally, we will look at how to implement the Single
Sign-On (SSO) feature of the Facebook iOS SDK that allows the user to sign into
your application using their Facebook identity.

In this chapter we will:

• Learn how to download the Facebook iOS SDK

• Learn how to register your iOS application with Facebook

• Build a simple Social Networking application that interacts with Facebook

• Implement a method to use the SSO feature

• Implement a method to integrate with the various social channels

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[270]

• Learn how to implement and use the Graph API

• Learn how to implement and handle errors within Facebook

We have an exciting project ahead of us, so let's get started.

Overview of the technologies
The Facebook application that we will be developing makes reference to the
Facebook iOS SDK. This framework contains all of the method objects and APIs that
are required to enable you to interact with Facebook and send notiication requests,
or simply post messages to the current person's timeline. We will be taking a look
into one of the most fundamental features of the Facebook iOS SDK that is the SSO.

This lets your users sign in to your app using their Facebook identity. With the
initial release of the SDK, the authorize method always opened an inline dialog
box containing UIWebView in which the authorization UI was shown to the user,
and required users to enter their credentials separately for each app they authorized.

In the updated version of the SDK, this has been changed, and no longer requires
users having to re-enter their credentials for every application on the device they
want to authorize.

Using the Facebook iOS SDK allows you to do the following:

Facebook iOS SDK types Description

Authentication and authorization This prompts users to log in to Facebook and grant
permissions to your application.

Make API calls This allows you to fetch user profile data, as well as
any information related to the user's friends using
JSON API calls.

Display dialog This allows you to interact with the user via a
UIWebView view. This is extremely useful for
enabling interactions with Facebook, without
requiring upfront permissions.

Now that we have a reasonable understanding of what the Facebook iOS SDK
encompasses and are comfortable with the different types of technologies that we
will be dealing with, our next step is to proceed with the download and install the
Facebook iOS SDK.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

Downloading the Facebook iOS SDK
Before we can start building our Social Networking application, we need to irst
download the Facebook iOS SDK at http://github.com/facebook/facebook-
ios-sdk/. This SDK provides you with all of the functionality required to make your
application interact with Facebook. You have the option to download the ile in the
various formats: Clone in Mac, ZIP, and HTTP.

Once you have downloaded the Facebook iOS SDK, the next step is to register your
iOS app with Facebook. This will allow your application to interact with Facebook,
and allow the visitors of your application to post messages to your timeline or send
friend requests.

This material is copyright and is licensed for the sole use by on 7th October 2012

http://github.com/facebook/facebook-ios-sdk/
http://github.com/facebook/facebook-ios-sdk/
http:///

Social Networking Application

[272]

Registering your iOS app with Facebook
Before we can start integrating our application with the Facebook platform, we will
need to register the application with Facebook's mobile website and provide some
basic application information. To begin follow these steps:

1. Open your browser and enter in http://developers.facebook.com/apps.

2. Next, enter in your Facebook account credentials.

3. Then, click on the Log In button.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

4. Next, click on the +Create New App button from the Apps page.

5. Next, enter in Social Networking App for the App Name ield.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[274]

6. Click on the Continue button to proceed with the next step of the wizard.
This will be used and displayed whenever you post or send a notiication
message to your friends.

7. Next, you will be prompted to enter in the Security Check words before you
can proceed with the next step.

8. Enter in the words displayed on your screen and click on the Submit
button to continue. The words displayed will be different each time this
screen is displayed.

If you enter in the words incorrectly, you may end up with
your account being blocked. If this is the case, you will
need to contact Facebook directly to have this unlocked.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

9. This is the inal screen that allows you to make any inal changes before you
commit your changes. Once you are satisied with all changes, click on the
Save Changes button.

The App ID is an important field that we will be using in
our iOS application to communicate with Facebook, and is
highlighted by an arrow in the preceding screenshot.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[276]

Building the Social Networking
application
The ability to communicate with friends and family through phone or e-mails is a
way of us staying in touch to let them know what we have been up to. This can be
in many forms, such as through e-mails, phone, or more commonly by using social
networking sites, such as Facebook and Google+.

In this section, we will take a look at how to create an application that will do just
that, so it can run on an iOS device, enabling us to send notiication requests and
post messages to our wall, to let any visitors know what we have been up to.
We will be using the Facebook iOS SDK and make use of the methods and
protocols to communicate with the Facebook development platform.

Before we can proceed, we irst need to create our FacebookSampleApp project. To
refresh your memory on how to go about creating a new project, you can refer to the
section that we covered in Chapter 2, Task Priorities – Building a TaskPriorities iOS App,
under the section named Building the TaskPriorities app.

It is very simple to create this in Xcode. Just follow the steps listed here.

1. Launch Xcode from the /Xcode4/Applications folder.

2. Choose Create a new Xcode project, or File | New Project.

3. Select the Single View Application template from the list of
available templates.

4. Click on the Next button to proceed with the next step in the wizard.

5. Next, enter in FaceBookSampleApp as the name for your project.

6. Select iPad from under the Device Family drop-down list.

7. Ensure that the Use Storyboards checkbox has not been selected.

8. Ensure that Use Automatic Reference Counting checkbox has not
been selected.

9. Ensure that the Include Unit Tests checkbox has not been selected.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

10. Click on the Next button to proceed with the next step in the wizard.

11. Specify the location where you would like to save your project.

12. Then, click on the Create button to continue and display the Xcode
workspace environment.

Now that we have downloaded our Facebook iOS SDK, registered our App ID with
Facebook, and created our FaceBookSampleApp project, we need to start building
our user interface that will be responsible for allowing us to communicate with
Facebook and post messages to the current user's timeline.

Adding the Facebook iOS SDK to our project
Our next step is to include the Facebook iOS SDK as part of our Facebook Sample
App project to enable us to communicate with the Facebook platform. To add the
Facebook iOS SDK, select Project Navigator Group, and then follow these simple
steps as outlined below:

1. From the Project Navigator window, select the FacebookSampleApp folder.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[278]

2. Choose Add Files to "FacebookSampleApp" … or press Option +
Command + A.

3. Next, select the src folder from the facebook-facebook-ios-sdk-397c0b6
folder.

4. Ensure that you have selected the Copy items into destination group's
folder (if needed) checkbox.

5. Click on the Add button to proceed with importing the project source iles
into the FacebookSampleApp project.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

6. Once the Facebook iOS SDK has been imported into your project, your
solution should contain the following iles:

7. Exclude facebook_ios_sdk_Prefix.pch and facebook-ios-sdk.
xcodeproj from the src folder.

Now that we have successfully added the Facebook SDK into our
FacebookSampleApp application, our next task is to start building
our application.

For more information on the Facebook iOS SDK, refer to the
Facebook Developer Documentation at http://developers.
facebook.com/docs/guides/mobile/.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[280]

Creating the main application screen
Our next step is to build the user interface for our Facebook Sample application.
This screen will be very simple and will consist of just a View controller and
a toolbar.

1. Select the ViewController.xib ile from Project Navigator.

2. From Object Library, select-and-drag a (UIToolbar) Toolbar control,
and add this to the top of our view.

Now that we have added our UIToolbar toolbar control to our view controller,
our next step is to start adding the Sign-in, Sign-Out, and Action buttons. So let's
proceed with the next section.

Adding the Sign-in button
Our next step is to modify the button within our previously added toolbar; this
button will be responsible for checking for a valid Facebook session and authorizing
the necessary permissions to Facebook. This can be achieved by following these
simple steps:

1. Select the ViewController.xib ile from Project Navigator.

2. Next, select the Item button located within our toolbar that we
previously added.

3. From the Attributes Inspector section, change the Identiier property
to Custom.

4. Change the Style property to Bordered.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

5. Then, change the Title property to Sign-in.

Now that we have added our Sign-in button to our View controller, our next step
is to add the Sign-out button that will be responsible for signing out of Facebook
and releasing the session object when the button is clicked. So let's proceed with
the next section.

Adding the Sign-out button
Now that we have added our button to sign in to Facebook and instantiate our
session object, our next step is to add another button that will be responsible for
allowing the user to sign out of Facebook when this has been clicked. This can be
achieved by following these simple steps:

1. Select the ViewController.xib ile from Project Navigator.

2. From Object Library, select-and-drag a Bar Button Item (UIBarButtonItem)
control after the Sign-in button, located within UIToolBar.

3. From the Attributes Inspector section, change the Identiier property
to Custom.

4. Change the Style property to Bordered.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[282]

5. Then, change the Title property to Sign-out.

Now that we have added our Sign-out button to our FaceBookApp View controller,
our next step is to add a Flexible Space Bar Button Item (UIBarButtonItem) control
that will be used to ill in the space between the Sign-out and the Action buttons,
which will be responsible for allowing us to send notiications, post messages to the
current user's timeline, as well as obtaining speciic information about the current
logged on user, when this has been clicked.

Adding the Action button
Now that we have added our button to sign into Facebook and instantiate our
session object, our next step is to add another button that will be responsible for
allowing the user to perform a variety of tasks to Facebook when this has been
clicked. This can be achieved by following these simple steps:

1. From Object Library, select-and-drag a Flexible Space Bar Button Item
(UIBarButtonItem) control after the Sign-out button within UIToolBar.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

2. Next, from Object Library, select-and-drag a Bar Button Item
(UIBarButtonItem) control after the Flexible Space Bar Item
control, within UIToolBar.

3. From the Attributes Inspector section, change the Identiier property
to Action.

4. Then, change the Style property to Bordered.

Our next step is to start adding some controls that will be used to display the current
user's proile picture as well as some user information.

1. Next, from Object Library, select-and-drag a Image View (UIImageView)
control, and place it underneath the toolbar. Resize the control accordingly,
so that it has enough space to it the proile picture.

2. Then, from Object Library, select-and-drag TextView Control (UITextView),
place it to the right of the proile picture, and resize the control accordingly
so that it has enough space to display the information.

If you have followed the steps correctly, the completed View Controller Details screen
should look similar to the following screenshot. Feel free to adjust yours accordingly.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[284]

Our next step is to create the outlets for the Sign-in, Sign-out, and Action buttons,
as well as our UIImageView, and UITextView form ields. Creating these will allow
us to access these controls from within our code and make modiications to the
control properties. To create an Outlet, follow these simple steps:

1. Open Assistant Editor by choosing Navigate | Open In Assistant Editor
or press Option + Command + ,.

2. Ensure that the ViewController.h interface ile is displayed to the left of
ViewController.xib.

3. Select the Sign-in (UIBarButtonItem) control, then hold down the Control
key and drag it into the ViewController.h interface ile.

4. Choose Outlet from the Connection drop-down list for the connection
to be created.

5. Enter in loginButton for the name of the Outlet to be created.

6. Repeat steps 3 to 5 to create the IBOutlets for the Sign-out, Action,
UIImageView, and UITextView controls, while providing the following
namings for each as follows: logoutButton, postMessage, imgPhoto, and
userInfoDetails.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

Now that we have created the instance variable Outlets for our controls, we need
to create the associated Actions for those Outlets events. Creating these actions
allows an event to be ired when the button has been pressed. To create an Action,
follow these simple steps:

1. With the ViewController.h interface ile still displayed to the left of the
ViewController.xibView controller, select the Sign-in (UIBarButtonItem)
control, then hold down the Control key and drag it into the
ViewController.h interface ile.

2. Choose Action from the Connection drop-down list for the connection
to be created.

3. Enter in loginButton for the name of the Action to be created.

4. Repeat steps 1 to 3 to create the IBActions for the Sign-out and Action
controls, while providing the following naming for each: logoutButton
and postMessage, respectively.

Now that we have successfully connected up each of our controls and created
the required outlets and associated action methods, we can start taking a look at
building the Facebook functionality into our Facebook sample application, so that it
has the ability to send notiications, post messages to the current user's timeline, as
well as retrieve proile information using JSON web method calls.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[286]

Building the Facebook app functionality
Well done! You have inally made it this far; we have successfully inished building
the user interface for our Facebook Social Networking application. Our next step is
to start implementing the methods that will be used for our Sign-in, Sign-out, and
Action buttons.

Implementing SSO within your app
One of the most brilliant features of the Facebook iOS SDK is the SSO feature.
This feature lets users to sign in to your application using their personal Facebook
login credentials. If a user is already signed into the Facebook iOS application on
their device, they won't need to provide this again.

The process of using SSO works by redirecting the user to the Facebook iOS
application on their device, and presenting them with an authentication dialog box,
showing only those permissions that your application has been conigured to use.
Once the user has allowed those permissions requested by your iOS app, they will be
redirected back to your application with the appropriate access token.

When using the Facebook SSO process, certain things can
behave slightly differently depending on what version of the
Facebook iOS app has been installed on the user's iOS device.

The following explains what happens when the Facebook SSO process is run under
these certain conditions.

• If the iOS application is running with a version of iOS that supports
multitasking and running version 3.2.3 or greater of the Facebook iOS
app, the Facebook SDK will attempt to open the authorization dialog box
within the Facebook app. After the user grants or declines authorization,
the user is redirected back to the calling application, passing back with it
an authorization token, expiration, and any other parameters the Facebook
oAuth authentication server may happen to return.

• If the iOS device is running with a version of iOS that supports multitasking,
and isn't running version 3.2.3 or greater of the Facebook iOS app, the
Facebook SDK will open the authorization dialog box within Safari. After the
user grants or declines authorization, Safari will redirect the user back to the
calling application. This process is similar to the Facebook app authorization,
and allows for multiple apps to share the same Facebook user access_token
through the Safari cookie.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

• If the iOS application is running a version of iOS that does not support
multitasking, then the SDK will use the old mechanism of popping up
an inline UIWebView web view control, prompting the user to log in and
grant access.

Facebook recommends that you should always ensure that
your devices are running the latest version of the Facebook
iOS app.

Adding SSO into your iOS application is very easy, and we will be taking a look at
how this can be achieved in the next section.

Implementing the Application Delegate class
We are now ready to start adding additional content to our AppDelegate class, so
that it can handle and communicate easily with Facebook through the use of the SSO
process. We will irst need to import some important header iles, as well as declare
some object variables that we will be using within this delegate class, and to be called
from other class modules. We will also need to extend our class, so that we can use
the Facebook Session objects and the Facebook Dialog objects.

1. Open the AppDelegate.h interface ile, located within the
FacebookSampleApp folder, and enter in the following highlighted code:

// AppDelegate.h

// FaceBookSampleApp

// Created by Steven F. Daniel on 10/05/12.

// Copyright (c) 2012 GenieSoft Studios. All rights
//reserved.

#import <UIKit/UIKit.h>

#import "FBConnect.h"

#import "FBRequest.h"

@class ViewController;

@interface AppDelegate : NSObject<UIApplicationDelegate,
 FBSessionDelegate, FBDialogDelegate>

{

 Facebook *facebook;

}

// Create the required class Setters and Getters

@property (strong, nonatomic) UIWindow *window;

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[288]

@property (strong, nonatomic) ViewController
 *viewController;

@property(nonatomic, retain) Facebook *facebook;

@end

In the preceding code snippet, we import the interface ile header
information for our FBConnect.hand FBRequest.hinterface iles,
so that we can access their class methods. We then extended our class
to include each of the following protocols: FBSessionDelegate and
FBDialogDelegate, as well as its methods. We then declared an instance
variable called facebook that will enable us to access the Facebook class
methods. In our inal step, we add a property instance of the Facebook class
to create the class getters and setters.

2. Next, open the AppDelegate.m implementation ile, located within
the FacebookSampleApp folder, and enter in the following highlighted
code sections:

// AppDelegate.m

// FaceBookSampleApp

// Created by Steven F. Daniel on 10/05/12.

// Copyright (c) 2012 GenieSoft Studios. All rights
// reserved.

#import "AppDelegate.h"

#import "ViewController.h"

@implementation AppDelegate

@synthesize window = _window;

@synthesize viewController = _viewController;

@synthesize facebook;

In the preceding code snippet, we need to synthesize our facebook variable
that we deined within the AppDelegate.h interface ile. This is so that we
can make our implementation ile aware of this, so that we can access the
object properties and methods.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary
 *)launchOptions

{

 self.window = [[[UIWindowalloc] initWithFrame:
 [[UIScreen mainScreen] bounds]] autorelease];

 // Override point for customization after

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

 // application launch.
 self.viewController = [[[ViewController alloc]
 initWithNibName:@"ViewController" bundle:nil]
 autorelease];

 self.window.rootViewController = self.viewController;

 // Do any additional setup after loading the view,

 // typically from a nib.

 self.facebook= [[Facebook alloc]
 initWithAppId:@"YOUR_APPID_HERE"
 andDelegate:self];

 // Check and retrieve authorization information

 NSUserDefaults *defaults = [NSUserDefaults
 standardUserDefaults];

 if ([defaults objectForKey:@"FBAccessTokenKey"] &&
 [defaultsobjectForKey:@"FBExpirationDateKey"]) {

 self.facebook.accessToken = [defaults
 objectForKey:@"FBAccessTokenKey"];

 self.facebook.expirationDate = [defaults
 objectForKey:@"FBExpirationDateKey"];

 }

 // Check to ensure that we have a valid

 // session object

 if (![self.facebook isSessionValid]) {

 [self.facebook authorize:nil];

 }

 [self.window makeKeyAndVisible];

 return YES;

}

In the preceding code snippet, we need to initialize our Facebook object to
invoke the SSO by passing in the application AppID that we created when
we registered our iOS mobile app, as well as the Graph API and Platform
Dialogs from within our app. Once the object has been instantiated, we
need to check for any previously saved access token information and then
use this saved information to set up a valid session, by assigning the saved
information to the Facebook access token and expiration date properties.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[290]

To ensure your application works with your own AppID, you
will need to replace the YOUR_APPID_HERE string after the
initWith AppId with your own created Facebook App ID.

This is to ensure that your app does not redirect to the Facebook application
and invoke the authorization dialog box, if the application already has a
valid access_token. Next, we check for a valid session and if it is not valid,
we call the authorize method which will log the user in and prompt the
user to authorize the application.

-(BOOL)application:(UIApplication *)application
 handleOpenURL:(NSURL *)url

{

 return [self.facebook handleOpenURL:url];

}

-(BOOL)application:(UIApplication *)application
 openURL:(NSURL *)url sourceApplication:(NSString
 *)sourceApplication annotation:(id)annotation

{

 return [self.facebook handleOpenURL:url];

}

In the preceding code snippet, we need to declare two methods that will be
called by the iOS when the Facebook application redirects to the app during
the SSO process. These methods provide the app with the user's credentials.
You will notice that we have declared two different methods; this is to handle
different versions of the iOS app. The handleOpenURL method is for versions
prior to 4.2, and the openURL one is for versions 4.2 and greater.

-(void)fbDidLogin

{

 // Check and retrieve authorization information

 NSUserDefaults *defaults = [NSUserDefaults
 standardUserDefaults];

 [defaults setObject:[self.facebook accessToken]
 forKey:@"FBAccessTokenKey"];

 [defaults setObject:[self.facebook expirationDate]
 forKey:@"FBExpirationDateKey"];

 [defaults synchronize];

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

In the preceding code snippet, we implement the Facebook fbDidLogin
method of FBSessionDelegate. After the SSO process has successfully
signed in and the Facebook app redirects back to the calling application,
we save the user's credentials using the FBAccessTokenKey and
FBExpirationDateKey keys, and then save these into the user preferences
NSUserDefaults:

- (void) fbDidLogout

{

 // Remove saved authorization information

 // if it exists

 NSUserDefaults *defaults = [NSUserDefaults
 standardUserDefaults];

 if ([defaults objectForKey:@"FBAccessTokenKey"]) {

 [defaults
 removeObjectForKey:@"FBAccessTokenKey"];

 [defaults
 removeObjectForKey:@"FBExpirationDateKey"];

 [defaults synchronize];

 }

 UIAlertView *alertView = [[UIAlertView alloc]
 initWithTitle:@"FaceBookSampleApp"
 message:@"Your session has logged out."
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil,
 nil];

 [alertView show];

 [alertView release];

}

In the preceding code snippet, we implement the Facebook fbDidLogout
method of FBSessionDelegate. After the SSO process successfully signs
out of the iOS app, the callback method gets called. Next, we need to check
to see if we have a successful access token key prior to removing the stored
user's credentials, using the FBAccessTokenKey and FBExpirationDateKey
keys. Next, we remove those details from the user preferences using the
NSUserDefaults object. Finally, we create an instance of the UIAlertView
dialog box to notify the user that a successful logout has happened.

// Called when the session has expired.

- (void)fbSessionInvalidated {

 UIAlertView *alertView = [[UIAlertView alloc]
 initWithTitle:@"FaceBookSampleApp"

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[292]

 message:@"Your session has expired."
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil,
 nil];

 [alertView show];

 [alertView release];

 [self fbDidLogout];

}

In the preceding code snippet, we implement the Facebook
fbSessionInvalidated method of FBSessionDelegate. When a request
is made to post a new message to the current user's timeline or to send
notiications to your friends, the fbSessionInvalidated method is called to
ensure that a valid session exists. This uses the session object, created by the
SSO process when your application signed in. If the session state has expired,
we declare an instance of the UIAlertView class to display a message to the
user, before inally making a call to the fbDidLogout method to ensure that
all of the required access tokens are removed cleanly.

Implementing the View Controller class
We are now ready to start adding additional content to our View Controller class.
We will need to import some important header iles, as well as declare some object
variables that we will be using throughout our application. We will also need to
extend our class, so that we can conform with the ActionSheet and Facebook
Request Dialog Delegate protocols.

1. Open the ViewController.h interface ile, located within the
FacebookSampleApp folder, and enter in the following highlighted
code sections:

// ViewController.h

// FaceBookSampleApp

// Created by Steven F. Daniel on 10/05/12.

// Copyright (c) 2012 GenieSoft Studios. All rights
// reserved.

#import <UIKit/UIKit.h>

#import "AppDelegate.h"

@interface ViewController :
 UIViewController<UIActionSheetDelegate,
 FBRequestDelegate>

{

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

 AppDelegate *mainDelegate;

 IBOutlet UIBarButtonItem *loginButton;

 IBOutlet UIBarButtonItem *logoutButton;

 IBOutlet UIBarButtonItem *postMessage;

 IBOutlet UIImageView *imgPhoto;

 IBOutlet UITextView *userInfoDetails;

 Facebook *facebook;

}

// Create the required class Setters and Getters

@property (nonatomic, strong) UIBarButtonItem
 *loginButton;

@property (nonatomic, strong) UIBarButtonItem
 *logoutButton;

@property (nonatomic, strong) UIBarButtonItem
 *postMessage;

@property (nonatomic, strong) UIImageView *imgPhoto;

@property (nonatomic, strong) UITextView
 *userInfoDetails;

@property (nonatomic, retain) Facebook
 *facebook;

@property (nonatomic, retain) AppDelegate
 *mainDelegate;

// Declare our instancemethods

-(void)SendNotificationRequest;

-(void)PostMessagetoWall;

@end

In the preceding code snippet, we import the interface ile header
information for our AppDelegate.h interface ile, so that we can access
their class methods. We extend our class, so that we can include each of the
following class protocols and methods for UIActionSheetDelegate and
FBRequestDelegate. Next, we declare a new Facebook object, which will be
used by our View Controller to access the Facebook properties. Finally, we
declare an AppDelegate object variable to connect to the AppDelegate class
and use the already instantiated Facebook object.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[294]

2. Open the ViewController.m implementation ile, located within the
FacebookSampleApp folder, and modify the viewDidLoad method,
as shown in the following code snippet:

// ViewController.m

// FaceBookSampleApp

// Created by Steven F. Daniel on 10/05/12.

// Copyright (c) 2012 GenieSoft Studios. All rights
// reserved.

//

#import "ViewController.h"

#import "FBRequest.h"

@interface ViewController ()

@end

@implementation ViewController

@synthesize loginButton, logoutButton, postMessage,imgPhoto,
userInfoDetails;

@synthesize facebook, mainDelegate;

- (void)viewDidLoad

{

 [superviewDidLoad];

 // Set up our delegate object
 self.mainDelegate= (AppDelegate *)[[UIApplication
 sharedApplication]delegate];

 self.facebook= mainDelegate.facebook;

 // Initialize our form fields

 userInfoDetails.text = @"";

}

In the preceding code snippet, we import the interface ile header
information for our FBRequest.h interface ile, so that we can access the
request dialog class methods. Next, we declare an application delegate
object mainDelegate that points to the properties and class methods within
our delegate class. Next, we initialize our facebook object within our view
controller to use the same object instance as the one which we instantiated
within our delegate class. Finally, we initialize our user info details
UITextView control.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

Adding the LogOut functionality to your app
When developing applications for the iOS platform, it is always better to provide an
easy way for your user to log out cleanly from your application. This helps ensure
that your application properly clears out or releases any objects and clear application
state objects.

When working with the Facebook integration within your application, you simply
make a call to the logout method of the Facebook class. This method clears the
application state, and makes a server request to invalidate the current session
access_token.

Open the ViewController.m implementation ile, located within the
FacebookSampleApp folder, and modify the logoutFacebook method,
as shown in the following code snippet:

// Handle when the logout button is pressed.

- (IBAction)logoutFacebook:(id)sender {

 [self.facebook logout:self.mainDelegate];

}

In the preceding code snippet, we call the logout method of the Facebook class,
and then pass in our mainDelegate object. When this method is called, it will call
the fbDidLogout method of the FBSessionDelegate within our AppDelegate class
to handle any post-logout actions and releasing of objects as well as for notifying the
user that a successful logout has taken place.

When making a call to the logout method, your application's
permissions will not be revoked; it will simply clear the value of your
application's access_token.

If a user who has previously logged out of your application decides
to run it again, they will simply see a notiication that they are
logging back into your application, not a notiication requesting for
permissions.

For more information on the Facebook protocol methods, refer to
the following URL: http://developers.facebook.com/docs/
reference/iossdk/#protocols.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[296]

Requesting additional permissions
When using Facebook integration within your application, you can specify
additional permissions to be used by your application. When you launch your
application without specifying additional permissions, your application uses the
default permissions; by that I mean your application gets the ability to read only the
user's basic information and this includes certain properties of the User object, such
as id, name, picture, gender, and their locale.

If you want to read additional data or publish data back to Facebook, you will need
to request these additional permissions. These additional permissions fall into the
following sections:

Requested permission Description

Basic information (no permissions) When a user authorizes your application and
you don't specify additional permissions, your
application will only have access to the user's basic
information. This includes certain properties, such
as their id, name, gender, locale, and their profile
picture.

User and friend permissions As a part of the authorization process, you can also
request for additional access to your user's profile.
You can access information, such as their birthday,
activities, check-ins, and education history. The user
must, however, authorize this at startup in order to
continue and authorize your application.

Extended permissions If you are using the Enhanced Authorization Dialog,
the extended permissions will be presented to the
user. These type of permissions allow you to read
your user's friend lists, read the user's mail inbox,
access your user's friend requests, and create and
modify events on the user's behalf.

Open graph permissions These types of permissions allow your application to
publish actions to the Open Graph API and enables
it to retrieve any actions that have been published by
any other application.

Page permissions These types of permissions allow you to retrieve
access_tokens for pages and applications that the
user administrates, and is only compatible with the
Graph API.

Now that we have covered a bit about permissions, let's take a look at how we can
implement these additional permissions into our iOS application.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

Open the AppDelegate.m implementation ile, and apply the highlighted sections to
the didFinishLaunchingWithOptions:(NSDictionary *)launchOptions method
as shown in the following code snippet:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

 self.window = [[[UIWindowalloc] initWithFrame:
 [[UIScreen mainScreen] bounds]] autorelease];

 // Override point for customization after

 // application launch.

 self.viewController = [[[ViewController alloc]
 initWithNibName:@"ViewController" bundle:nil]
 autorelease];

 self.window.rootViewController = self.viewController;

 // Do any additional setup after loading the view,

 // typically from a nib.

 self.facebook= [[Facebook alloc]
 initWithAppId:@"YOUR_APPID_HERE" andDelegate:self];

 // Check and retrieve authorization information

 NSUserDefaults *defaults = [NSUserDefaults
 standardUserDefaults];

 if ([defaults objectForKey:@"FBAccessTokenKey"] &&
 [defaults objectForKey:@"FBExpirationDateKey"]) {

 self.facebook.accessToken = [defaults
 objectForKey:@"FBAccessTokenKey"];

 self.facebook.expirationDate = [defaults
 objectForKey:@"FBExpirationDateKey"];

 }

 // Set up the permissions to use for this App

 NSArray *permissions = [[NSArray alloc]
 initWithObjects:
 @"user_likes",
 @"user_birthday",
 @"user_interests",
 @"read_stream"
 , nil];

 // Check to ensure that we have a valid

 // session object

 if (![self.facebook isSessionValid]) {

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[298]

 [self.facebook authorize:permissions];

 }

 [permissions release];

 [self.window makeKeyAndVisible];

 return YES;

}

In the preceding code snippet, we declare an NSArray object variable permission
that will be used to store each of our permissions that we want to request. We then
pass this variable into our authorize method of the facebook object, before inally
releasing the memory allocated by the object.

For more information on the full list of available permissions that
are available to you, refer to the Facebook Permissions reference
at the following URL: https://developers.facebook.com/
docs/authentication/permissions/.

Using the Graph API
The Graph API is the core of Facebook, and represents a simple social graph
pertaining to people and each of the connections they have, by representing
each of the objects in the graph (for example; people, photos, events, and pages)
and the connections between them (for example; friend relationships, shared content,
and photo tags). You can access the Graph API by passing the Graph Path to the
request method.

Within the Facebook Developer's website, you can access the Graph API Explorer
to learn more about what types of information are returned, and see a visual
representation of the data schema that the Facebook Query Language
(FQL) produces.

1. Log in to the Facebook Developers website at the following website address:
http://developers.facebook.com/tools/.

2. Next, from the Tools section, click on the Graph API Explorer link.

This material is copyright and is licensed for the sole use by on 7th October 2012

https://developers.facebook.com/docs/reference/api/user
https://developers.facebook.com/docs/reference/api/photo
https://developers.facebook.com/docs/reference/api/event
https://developers.facebook.com/docs/reference/api/page
http:///

Chapter 8

[271]

This will display the Graph API Explorer window and display an
explanation of each of the data ields returned within the center view.

3. From the Application section, select Social Networking App from the
drop-down menu.

4. Then, click on the Submit button to retrieve all the basic information for the
current user ID.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[300]

You have seen how easy it is to use the Graph API Explorer to retrieve a visual
representation of the data for various types of information. Let's take a look at how
we can access information about the currently logged in user.

Open the ViewController.m implementation ile, located within the
FacebookSampleApp folder, and enter in the method as shown in the
following code snippet:

#pragma mark - Facebook GraphAPI Method

-(void)getGraphAPIData

{

 // Make a call using the Facebook Query Language to

 // get the current user details.

 NSMutableDictionary *params = [NSMutableDictionary
 dictionaryWithObjectsAndKeys:
 @"SELECT quotes, uid, name, pic FROM
 user WHERE uid=me()", @"query",
 nil];

 [self.facebook requestWithMethodName:@"FQL.query"
 andParams:params
 andHttpMethod:@"POST"
 andDelegate:self];

}

In the preeceding code snippet, we declare an NSMutableDictionary object variable
param that will be used to pass an SQL query to the FQL object. This enables us to
use an SQL-style interface using the Graph API to query the data. We then call the
requestWithMethodName method of the facebook object and set up type to be FQL.
query, which tells the request that we are passing in a query string and returns the
contents as a dictionary array object.

// This method gets called when the Graph API

// call has completed.

-(void)request:(FBRequest *)request didLoad:(id)result

{

 if ([result isKindOfClass:[NSArray class]]) {

 result = [result objectAtIndex:0];

 }

 // This callback can be a result of getting the user's

 // basic information or getting the user's permissions.

 if ([result objectForKey:@"name"]) {

 // Retrieve back the basic user information.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

 NSString *concatString = [[NSString alloc]
 initWithFormat:@"ID: %@\nName: %@\nQuotes: %@\n",
 [result objectForKey:@"uid"],
 [result objectForKey:@"name"],
 [result objectForKey:@"quotes"]];

 // Get the profile image

 UIImage *image = [UIImage imageWithData:[NSData
 dataWithContentsOfURL:[NSURL URLWithString:[result
 objectForKey:@"pic"]]]];

 self.imgPhoto.image = image;

 self.userInfoDetails.text = concatString;

 }

}

In the preceding code snippet, when our requestWithMethodName method
completes, it calls the didLoad method of the request method. This method parses
the result using a JSON call. Next, we check to see the type that has been returned.
If multiple results are returned, an NSArray object is returned, otherwise an
NSDictionary object is returned for single result values. We then set our result to
point to the irst position within the array, and then retrieve each of the ields for the
uid, name, and quotes. We then declare a UIImage variable image and then typecast
the proile picture to be of type UIImage, before assigning this to our imgPhoto
control on our form, as well as displaying the relevant proile details.

// This method is called when an error has occurred

// while retrieving GraphAPI details.

-(void)request:(FBRequest *)request didFailWithError:(NSError
 *)error

{

 NSLog(@"An error occurred obtaining details: %@",error);

}

In the preceding code snippet, if any JSON parsing errors are determined when our
requestWithMethodName method completes, the didFailWithError method is
called. Any error information is contained within the NSError variable error object.

For more information on the Graph API and FQL Query language,
please refer to the Facebook API and FQL reference material at the
following locations:

• https://developers.facebook.com/docs/
reference/api/

• https://developers.facebook.com/docs/
reference/fql/

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[302]

Integrating with social channels
The Facebook iOS SDK provides you with an easy way of making your applications
integrate with the Facebook social channels. Using these social channels allows your
users to submit posts to their timeline, or send notiication requests to your friends.

The iOS SDK provides you with a method to integrate through the social channels
using the Facebook platform dialogs. The following table lists the dialogs that are
currently supported by Facebook:

Social channel dialogs Description

Feed dialog This dialog is used for publishing posts to a user's news feed.

Requests dialog This type of dialog allows you to send a request to one or more
of your friends.

When using Facebook requests, these social channel dialogs provide you with a great
way of allowing users to invite their friends to your iOS application or even accept
gifts from your friends. Requests are sent using the Request dialog, and if the user's
iOS device supports push notiications, they will receive a push notiication via the
Facebook iOS application whenever a notiication request is sent.

Sending requests provides you with a great way of promoting your iOS apps on
Facebook to increase download sales. Now that we have an understanding of what
requests are, let's take a look at how we can implement this within our iOS application.

1. Open the ViewController.m implementation ile, located within the
FacebookSampleApp folder, and enter in the method as shown in the
following code snippet:

#pragma mark - Facebook Method

// Method to send a notification request to a

// group of friends.

- (void)sendNotificationRequest

{

 NSMutableDictionary *params =
 [NSMutableDictionary dictionaryWithObjectsAndKeys:
 @"invites you to check out some great stuff.",
 @"message",
 @"Check this out", @"notification_text",
 nil];

 // Display the Facebook Request Notifications DialogBox

 [self.facebook dialog:@"apprequests"
 andParams:params
 andDelegate:self.mainDelegate];

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

}

// FBDialogDelegate

- (void)dialogDidComplete:(FBDialog *)dialog {

 NSLog(@"dialog completed successfully");

}

In the preceding code snippet, we declare an NSMutableDictionary object
variable params that will be used to pass the message and the notiication
text, using the @message and @notification_text parameters. We then
use the dialog method of our facebook object, and tell the dialog that
we want to use the apprequests dialog. Finally, we declare the method
called dialogDidComplete, which gets called if the requests dialog gets
successfully displayed to the user.

The use of incorporating News feeds within your application allows you
to post information to the current user's main timeline page. This page is
normally shown immediately upon the user signing in to Facebook. Let's
take a look at how we can implement this within our iOS application.

2. Open the ViewController.m implementation ile, located within the
FacebookSampleApp folder, and enter in the method as shown in the
following code snippet:

// Method to post a message to the current user's Wall.

- (void)postMessagetoWall

{

 NSMutableDictionary *params =
 [NSMutableDictionarydictionaryWithObjectsAndKeys:
 @"Testing FacebookSampleApp Feed Dialog", @"name",
 @"Using Feed Dialogs within iOS are great.",
 @"caption",
 @"Click to check out my BlockHeadz game on the
 AppStore",
 @"description",
 @"http://itunes.apple.com/app/block-headz
 /id386884355?mt=8#",
 @"link",
 @"http://geniesoftstudios.com/blog/wp-
 content/uploads/2011/03/blockhead.png", @"picture",
 nil];

 // Display the Facebook feed dialog with our array.

 [self.facebook dialog:@"feed"
 andParams:params
 andDelegate:self.mainDelegate];

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[304]

In the preceding code snippet, we declare an NSMutableDictionary object
variable parameters that will be used to pass the message and the notiication
text, using the @name, @caption, @description, @link, and @picture
properties. These deine what information is displayed when posting the
message to the user's timeline. Next, we use the dialog method of our
facebook object, and tell the dialog that we want to use the feed dialog,
since we are posting details to the timeline.

How to handle errors
Handling errors within your application when using the Facebook SDK is extremely
easy. Should any errors occur within your iOS application, the FBRequestDelegate
and the FBDialogDelegate protocols will immediately handle them.

// This method is called when an error has occurred while retrieving
GraphAPI details.

-(void)request:(FBRequest *)request didFailWithError:(NSError
 *)error

{

 NSLog(@"An error occurred obtaining details: %@",error);

}

In the preceding code snippet, the didFailWithError method gets called upon
whenever an error during the requesting of information using the Graph API occurs.
Should any errors occur, this information will be returned in the error object.

- (void)dialog:(FBDialog*)dialog didFailWithError:(NSError *)error

{

 NSLog(@"An error occurred obtaining details: %@",error);

}

In the preceding code snippet, the didFailWithError method is invoked if there
is an error during the dialog process. Should any errors occur, you can access this
information using the error object.

For more information on how to handle errors when using the
Facebook iOS SDK, you can refer to the Facebook iOS Reference
documentation at the following URL: https://developers.
facebook.com/docs/mobile/ios/build/#errors.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

Implementing the postMessageButton: method
Our next step is to start implementing a method that will be responsible for sending
notiication messages, posting messages to the user's timeline, as well as obtaining
a user's proile information using the Graph API when the user presses the
Action button.

Open the ViewController.m implementation ile, located within the
FacebookSampleApp folder, and enter in the following code snippet:

// Called when the user presses the Post Message Button

- (IBAction)postMessage:(id)sender {

 // Define an instance of our action sheet

 UIActionSheet *actionSheet;

 // Initialize our action sheet with the

 // different mapping types.

 actionSheet = [[UIActionSheet alloc]
 initWithTitle:@"Choose from the list below"
 delegate:self
 cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:@"Close"
 otherButtonTitles:@"Send Notification",
 @"Submit new post",
 @"Obtain User Details",nil];

 // Set our Action Sheet style and then

 // display it to the user.

 actionSheet.actionSheetStyle =
 UIBarStyleBlackTranslucent;

 [actionSheet showInView:self.view];

}

// Delegate that handles the chosen action sheet options

-(void)actionSheet:(UIActionSheet
 *)actionSheet clickedButtonAtIndex:(NSInteger)buttonIndex

{

 // Determine the chosen item

 switch (buttonIndex) {

 case 1: [self sendNotificationRequest]; break;

 case 2: [self postMessagetoWall]; break;

 case 3: [self getGraphAPIData]; break;

 default: break; // Catch the Close button and exit.

 }

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[306]

In the preceding code snippet, we declare and instantiate an actionsheet object
that is based on the UIActionSheet class, and then initialize our action sheet to
display the different types of actions we want to perform, to have displayed as the
list of options to choose from. Next, we proceed to set the style for our action sheet
using the actionSheetStyle property of the UIActionSheet class, and then display
the action sheet into the current view using the showInView:self.view method.
In our next part, we deine a delegate method to determine the button that was
pressed from the action sheet and use the clickedButtonAtIndex method of the
actionSheet property. We then check the value of the buttonIndex variable to
determine the index of the button that was pressed.

Implementing the loginButton: method
Next, we need to implement the Login button. This allows our application to display
the Facebook login page where we can provide our login credentials, and then
returns back to us the Social Networking iOS application.

Open the ViewController.m implementation ile, located within the
FacebookSampleApp folder, and enter in the following code snippet:

// Handle when the login button is pressed.

- (IBAction)loginButton:(id)sender

{

 if (![self.facebook isSessionValid])

 {

 NSLog(@"facebook session");

 NSArray *permissions = [[NSArray alloc]
 initWithObjects:@"email",@"publish_actions", nil];

 [self.facebook authorize:permissions];

 [permissions release];

 }

 else

 {

 NSLog(@"session still valid");

 }

}

In the preceding code snippet, we use the isSessionValid method of the facebook
object to determine if we still have a valid connection to the facebook instance.
If it proves that our session has expired, we initialize and pass to our authorize
method of the facebook class permissions to request for accessing the user's e-mail,
and allow the iOS to publish to the Open Graph API actions. Finally, we release the
memory that has been allocated by our permissions object.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

Finishing up
We just have a few more things to implement before we have a complete working
application. We will need to make some changes to our application's property list to
enable SSO support when the application is run.

In order to make our application enable SSO, we will need to modify our
application's property list ile. This can be achieved by following these simple steps:

1. Select the FacebookSampleApp-info.plist ile from within
Project Navigator.

2. Next, right-click within the center of the panel, then select Add Row from the
pop-up list.

3. Add a new entry called URL Types, and set its type to Array.

4. Right-click and select Add Row inside the URL types.

5. Then, create a new item called Item 0, and set its type to Dictionary.

6. Next, create a new entry called URL Schemes, and set its type to Array.

7. Then, create a new item called Item 0, and set its type to String.

8. Finally, using the Facebook AppID value when we registered our mobile
application, enter this in the Value ield. You must preix this with fb
followed by your App ID for this to work correctly.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Social Networking Application

[308]

As you can see from the preceding screenshot, we have modiied our .plist
ile so that it can support SSO. We speciically created and registered two
URL variables: URL Types and URL Schemes, so that it can uniquely
identify your application with iOS.

Congratulations, we have inally implemented the methods for our Facebook Social
Networking application. Next, build and run the application by choosing Product
| Run from the Product menu, or alternatively press Command + R. The following
screenshot shows the application running on the iOS device:

From the preceding screenshot, you can see that when we irst load our Social
Networking application, we receive the authorization dialog box with the permissions
that we have requested. Once the user has pressed on the Okay button, the dialog
box will disappear, and our iOS application will be displayed (as shown in the second
screenshot). We then press the Action button and select the Submit new post button to
display the post new message to our wall, which is shown in the inal screenshot.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 8

[271]

Summary
In this chapter, we learned how to create a simple Social Networking application
using the Facebook iOS SDK. We looked at how to register our mobile application
with Facebook, and how to then download the Facebook iOS SDK, and then import
this into our project. We then looked at how we can implement the SSO feature
within our application, and how we can go about using the Facebook methods and
APIs to communicate with Facebook to post directly to the current user's timeline,
as well as sending notiications to friends.

We also looked into the Open Graph API, and how we can use the Facebook Query
Language to pass SQL Query-like syntax to retrieve information about the current
user. To end the chapter, we looked at how we can use the various methods that
have been made available to us within the Facebook iOS SDK to handle errors within
our iOS applications cleanly.

In the next chapter, we will look at how to create an application that will allow us
to work with external displays to display output to Apple TV using AirPlay. We
will look at the different types of transition effects that we can incorporate into our
application, to create a photo slideshow application.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using

Airplay and Core Image
Since the release of iOS 4.2, developers have been able to use Airplay to stream
Photos, videos, and audio to an Apple TV capable device. With the release of iOS
5, this has been greatly improved, and makes it even easier to wirelessly mirror
everything on your iPad 2 to an HDTV through Apple TV.

The Core Image framework is a hardware-accelerated framework that provides an
easier way for you to enhance your photos and videos by creating some amazing
effects using your camera and image editing applications. Core Image provides
several built-in ilters: color effects, distortions, and transitions, as well as several
advanced features: auto-enhance, red-eye reduction, and facial recognition.

In this chapter, we will be taking a closer look at these frameworks and how we can
use them within our applications, to apply image ilter effects using the CIFilter
class, as well as implementing Airplay to allow us to output content to another
device using Apple TV. Finally, we will learn how we can output content to an
external monitor, and then adjust the screen resolution using the UIScreen class.

In this chapter we will:

• Get an overview of the types of technologies that we will be using

• Learn about the AirPlay and Core Image frameworks

• Create a simple AirPlay and Core Image application

• Implement methods to access the iOS device's camera and photo library

• Implement the method to apply image ilter effects using the CIFilter class

• Implement methods to apply transition effects using the CATransition class

• Implement methods to output content to an Apple TV and external VGA

We have an exciting project ahead of us; so let's get started.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

Overview of the technologies
The External Displays application makes reference to the following frameworks
MediaPlayer, CoreImage, and QuartzCore. With the release of iOS 5, the Media
Player framework has been updated to give developers the ability to easily
incorporate Airplay into their applications, and lets you stream audio and video
content from any iOS device to any Airplay device that is capable of playing audio
and video to a nearby Apple TV receiver.

The Core Image framework is an extensible image processing technology
architecture that has been built into Mac OS X v10.4 and iOS 5.0. This framework
leverages the programmable graphics hardware to provide near real-time,
pixel-accurate image processing of graphics, as well as video processing.
The Core Image framework comes with over 100 built-in ilters that are ready-to-use
by ilter clients who want to support image processing in their applications.

The Core Image Application Programming Interface (API) is a component of the
Quartz Core framework that provides access to several built-in image ilters for both
video and still images, as well as providing support for creating custom ilters.

In this section, we will take a look at how we can create a simple application to
playback video content on an iOS device and how to output this to an Apple TV
device. We will also look at how we can apply ilter effects and transitions to images
and output this to an external display using the Apple Video Graphics
Adaptor (VGA).

Building the ExternalDisplays application
Playing videos is one of the most common tasks that can be done on any iOS device;
all videos must be played and displayed in full-screen. Before we can play any
videos, we need to add the Media Player framework into our project. With Core
Image, Apple has provided more than 100 image-processing ilters to make it easier
for you to provide support to these within your own applications, to enhance the
sharpness of images or even red-eye removal from photos.

Before we can proceed, we irst need to create our ExternalDisplays project. To
refresh your memory on how to go about creating a new project, you can refer to
the section that we covered in Chapter 3, VoiceRecorder App – Audio Recording and
Playback, under the section named Building the VoiceRecorder App.

It is very simple to create this in Xcode. Just follow the steps listed here.

1. Launch Xcode from the /Xcode4/Applications folder.

2. Choose Create a new Xcode project, or File | New Project.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

3. Select the Single View Application template from the list of
available templates.

4. Click on the Next button to proceed with the next step in the wizard.

5. Next, enter in ExternalDisplays as the name for your project

6. Select iPad from under the Device Family drop-down list.

7. Ensure that the Use Storyboards checkbox has not been selected.

8. Ensure that the Use Automatic Reference Counting checkbox has
been selected.

9. Ensure that the Include Unit Tests checkbox has not been selected.

10. Click on the Next button to proceed with the next step in the wizard.

11. Specify the location where you would like to save your project.

12. Then, click on the Create button to continue and display the Xcode
workspace environment.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

Adding the Media Player framework to our
project
Now that we have created our ExternalDisplays project, we need to add each of
the necessary frameworks to our project that will enable us to playback video and
apply different image ilter effects and transitions.

To add the Media Player framework, select Project Navigator Group, and then
follow these simple steps:

1. Click and select your project from Project Navigator.

2. Then select your project target from under the TARGETS group.

3. Select the Build Phases tab.

4. Expand the Link binary with Libraries disclosure triangle.

5. Use + to add the library you want.

6. Select MediaPlayer.framework from the list of available frameworks.
You can also search if you can't ind the framework you are after, from
within the list.

If you are still confused as to how to go about adding the frameworks, take
a look at this screenshot, which highlights the areas that you need to select
(surrounded by a rectangle).

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

7. Repeat steps 1 to 6 to add the CoreImage.framework and QuartzCore.
framework frameworks to the ExternalDisplays project.

Creating the main application screen
Now that we have successfully added our frameworks into our project, we need to
start building our user interface that will allow us select a photo or video from the
photo library that will allow for the playback of videos and apply ilter effects to the
images. This screen will be very simple and will consist of just a View controller and
a toolbar.

1. Select the ViewController.xib ile from Project Navigator.

2. From Object Library, select-and-drag a (UIToolbar) Toolbar control,
and add it to the top of our view.

We have added our UIToolbar toolbar control to our view controller; our next step
is to start adding the button objects that make up our user interface. So let's proceed
to the next section.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

Adding the Browse button
Our next step is to add a Browse button to UIToolBar; this will be responsible
for allowing you to choose a photo image or video from the iOS device's library.
This can be achieved by following these simple steps:

1. Select the ViewController.xib ile from Project Navigator.

2. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control to the top left-hand corner of UIToolBar.

3. From the Attributes Inspector section, change the Identiier property
to Organize.

4. Change the Style property to Bordered.

Now that we have added our Browse button to our View controller, our next step is
to add the Camera button that will be responsible for allowing you to take a photo
using the iOS device camera when the button is clicked. So let's proceed with the
next section.

Adding the Camera button
Now that we have added our Browse button, our next step is to add another button
that will be responsible for allowing the user to use the iOS camera to take photos
and record a video when it has been clicked. This can be achieved by following these
simple steps:

1. Select the ViewController.xib ile from Project Navigator.

2. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control after the Browse button, located within UIToolBar.

3. From the Attributes Inspector section, change the Identiier property
to Camera.

4. Change the Style property to Bordered.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

Now that we have added our Camera button to our View controller, our next step
is to add a (UIBarButtonItem) Flexible Space Bar Button Item control that will be
used to ill in the space between the Browse button and the Camera button.

Adding the Play Video button
Now that we have added our Camera button, our next step is to add another button
that will be responsible for playing video content when it has been clicked. This can
be achieved by following these simple steps:

1. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control after the UIBarButtonItem control, located within UIToolBar.

2. From the Attributes Inspector section, change the Identiier property
to Play.

3. Change the Style property to Bordered.

Adding the Transitions button
Now that we have added our Play Video button, our next step is to add another
button that will be responsible for applying ilter effects and transitions to images
when it has been clicked. This can be achieved by following these simple steps:

1. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control after the Play UIBarButtonItem control, located within UIToolBar.

2. From the Attributes Inspector section, change the Identiier property
to Action.

3. Change the Style property to Bordered.

Adding the VGA Out button
Now that we have added our Transitions button, our next step is to add our inal
button that will be responsible for outputting content to an external VGA device,
using the VGA cable extension for the iPad when this has been clicked. This can be
achieved by following these simple steps:

1. From Object Library, select-and-drag a (UIBarButtonItem) Flexible Space
Bar Button Item control after the Camera button, located within UIToolBar.

2. Next, from Object Library, select-and-drag a (UIBarButtonItem) Bar Button
Item control after ActionUIBarButtonItem, located within UIToolBar.

3. From the Attributes Inspector section, change the Identiier property
to Custom.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

4. Change the Style property to Bordered.

5. Then, change the Title property to VGA Out.

6. Next, from Object Library, select-and-drag an (UIImageView) Image View
control, and place it underneath the toolbar.

7. Resize the control so that it ills the container window of the View controller.

If you have followed the steps correctly, the completed View Controller screen
should look similar to the following screenshot; feel free to adjust yours accordingly:

Our next step is to create the outlets for the Browse, Camera, Play Video, Transitions,
and VGA Out buttons, as well as our UIImageView form ields. Creating these outlets
will allow us to access these controls from within our code and make modiications to
the control properties. To create an Outlet, follow these simple steps:

1. Open Assistant Editor by choosing Navigate | Open In Assistant Editor, or
press Option + Command + ,.

2. Ensure that the ViewController.h interface ile is displayed inside the
Assistant Editor window.

3. Select the Browse (UIBarButtonItem) control, then hold down the Control
key, and drag it into the ViewController.h interface ile.

4. Choose Outlet from the Connection drop-down list, for the connection
to be created.

5. Enter in btnBrowse for the name of the property to be created.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

6. Repeat steps 3 to 5 to create the IBOutlets for the Camera, Play Video,
Transitions, VGAOut, Toolbar, and UIImageView controls, while
providing the following namings for each as follows: btnCamera,
btnPlayVideo, btnTransitions, btnVGAOut, imageView, and toolbar.

Now that we have created the instance variable Outlets for our controls, we need to
create the associated Actions for those Outlets events. Creating these actions allows
an event to be ired when the button has been pressed. To create an Action, follow
these simple steps:

1. With the ViewController.h interface ile still displayed to the left of the
ViewController.xib View controller, select the Browse (UIBarButtonItem)
control, then hold down the Control key, and drag it into the
ViewController.h interface ile.

2. Choose Action from the Connection drop-down list, for the connection
to be created.

3. Enter in btnBrowse for the name of the property to be created.

4. Repeat steps 1 to 3 to create the IBActions for the Camera, Play Video,
Transitions, and VGA Out controls, while providing the following namings
for each as follows: btnCamera, btnPlayVideo, btnTransitions, and
btnVGAOutput.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

Now that we have successfully connected each of our controls, and created the
required outlets and associated action methods, we can start taking a look at building
the functionality into our application.

Functionality
Well done! You have made it this far; we have successfully inished building the user
interface for our ExternalDisplays application. Our next step is to implement the
methods for each of our button controls. This gives us the ability to choose an image
from the iOS device's photo library or take a photo using the camera, and then apply
ilter effects to those images. We will also look at implementing the methods that
will be responsible for outputting the content to both an Apple TV and external
monitor device.

Implementing the View Controller class
We are now ready to start adding additional content to our View Controller class.
We will need to import some important header iles, as well as declare some object
variables that we will be using throughout our application.

We will also need to extend our class so that we can use the ImagePickerController,
NavigationController, PopOverController, and ActionSheet delegate classes.

1. Open the ViewController.h interface ile, located within the
ExternalDisplays folder, and enter in the following highlighted
code sections:

// ViewController.h

// ExternalDisplays

// Created by Steven F. Daniel on 3/06/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import <UIKit/UIKit.h>

#import <MediaPlayer/MediaPlayer.h>

@interface ViewController:
 UIViewController<UIImagePickerControllerDelegate,
 UINavigationControllerDelegate,
 UIPopoverControllerDelegate, UIActionSheetDelegate>

{

 MPMoviePlayerController *moviePlayerController;

 UIPopoverController *popoverController;

 NSURL *videoUrl;

 IBOutlet UIToolbar *toolBar;

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

 IBOutlet UIBarButtonItem *btnBrowse;

 IBOutlet UIBarButtonItem *btnCamera;

 IBOutlet UIBarButtonItem *btnVGAOut;

 IBOutlet UIBarButtonItem *btnTransitions;

 IBOutlet UIBarButtonItem *btnPlayVideo;

 IBOutlet UIImageView *imageView;

 // Declare variables for use with the VGA Out button

 UIWindow *externalWindow;

 NSArray *screenModes;

 UIScreen*externalScreen;

}

// Declare the Getters and Setters for each of our
// objects.

@property (nonatomic, retain) UIWindow *externalWindow;

@property (strong, nonatomic) IBOutlet UIBarButtonItem
 *btnBrowse;

@property (strong, nonatomic) IBOutlet UIBarButtonItem
 *btnCamera;

@property (strong, nonatomic) IBOutlet UIBarButtonItem
 *btnVGAOut;

@property (strong, nonatomic) IBOutlet UIBarButtonItem
 *btnTransitions;

@property (strong, nonatomic) IBOutlet UIBarButtonItem
 *btnPlayVideo;

@property (strong, nonatomic) IBOutlet UIImageView
 *imageView;

@property (strong, nonatomic) IBOutlet UIToolbar
 *toolBar;

@property (strong, nonatomic)
 MPMoviePlayerController *moviePlayerController;

@property (strong, nonatomic)
 UIPopoverController *popoverController;

@property (nonatomic, retain)
 UIImagePickerController *imagePicker;

@property (nonatomic, retain) NSURL *videoUrl;

// Declare each of our Class methods

- (IBAction)btnBrowse:(id)sender;

- (IBAction)btnCamera:(id)sender;

- (IBAction)btnPlayVideo:(id)sender;

- (IBAction)btnTransitions:(id)sender;

- (IBAction)btnVGAOutput:(id)sender;

@end

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

In the preceding code snippet, we start by importing our interface header
information for our MediaPlayer.h interface ile to allow for the playback of
audio and video content, as well as setting up instance variables to both our
Movie Player and Popover Controllers that will be used to playback video
content and select images from the iOS device's photo library.

We then extended our class, to include each of the following class protocols:
UIImagePickerControllerDelegate, UINavigationControllerDelegate,
UIPopOverControllerDelegate, and UIActionSheetDelegate. This is
done so that we can access each of their respective properties and methods.
Finally, we declared a series of variables that will enable us to output the
content to an external monitor, as well as the NSArray object screenModes
which will contain each of the allowable screen resolutions.

2. Open the ViewController.m implementation ile, located within
the ExternalDisplays folder, and modify the viewDidLoad method,
as shown in the following code snippet:

// ViewController.m

// ExternalDisplays

// Created by Steven F. Daniel on 3/06/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import "ViewController.h"

#import "QuartzCore/QuartzCore.h"

@interface ViewController ()

@end

@implementation ViewController

@synthesize btnBrowse,btnCamera,btnPlayVideo btnVGAOut;

@synthesize btnTransitions, toolBar;

@synthesize popoverController,imagePicker,imageView;

@synthesize moviePlayerController;

@synthesize externalWindow,videoUrl;

// Initialize our view and the objects when it is loaded.

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the

 // view, typically from a nib.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

 [self.toolbar setTintColor:[UIColor purpleColor]];

 self.externalWindow.hidden = YES;

 self.btnPlayVideo.enabled = NO;

 self.btnTransitions.enabled = NO;

 self.btnVGAOut.enabled = NO;

}

In the preceding code snippet, we import the interface ile header
information for our QuartzCore.h interface iles, so that we can access the
core image and transition class methods. Next, we initialize our toolbar object
within our view controller, set the background color of our toolbar to purple,
and then initialize each of the buttons.

Implementing the btnBrowse: method
Our next step is to implement the Browse button. This method will be responsible
for allowing you to choose an image from the iOS device's photo library and display
this using the camera roll view within a popover.

Open the ViewController.m implementation ile, located within the
ExternalDisplays folder and modify the btnBrowse method, as shown
in the following code snippet:

// Called when the user presses the Photo Library button

- (IBAction)btnBrowse:(id)sender

{

 // Create image picker controller

 self.imagePicker= [[UIImagePickerController alloc] init];

 // Checks the device to make sure that the Photo Library

 // is available.

 if ([UIImagePickerController
 isSourceTypeAvailable:
 UIImagePickerControllerSourceTypePhotoLibrary]) {

 // Set source to the Photo Library

 self.imagePicker.delegate = self;

 self.imagePicker.sourceType =
 UIImagePickerControllerSourceTypePhotoLibrary;

 self.imagePicker.mediaTypes =
 [UIImagePickerController
 availableMediaTypesForSourceType:imagePicker.sourceType];

 self.imagePicker.allowsEditing = NO;

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

 self.popoverController = [[UIPopoverController alloc]
 initWithContentViewController:self.imagePicker];

 popoverController.delegate = self;

 [self.popoverController
 presentPopoverFromBarButtonItem:sender
 permittedArrowDirections:UIPopoverArrowDirectionUp
 animated:YES];

 }

 else {

 NSLog(@"Unable to access the Photo Library.");

 }

}

In the preceding code snippet, we irst check to see if we are able to access the
iOS device's Photo Library using the isSourceTypeAvailable property of
the UIImagePickerController class. Next, we initialize the properties of the
imagePicker class to only display images from the photo library, and then declare
a popover controller that will be passed through the image picker as the view.

The view controller is then designated as the delegate for the popover object before
the popover is displayed to the user. The sender object passed through to this method
references the Photo Library button in the toolbar. The object is passed through the
popover Controller's presentPopoverFromBarButtonItem: method so that the
popover is positioned directly above, and points to the button when displayed.

Implementing the btnCamera: method
Our next step is to implement the Camera photo button that will be responsible
for displaying the camera view within the popover when pressed.

Open the ViewController.m implementation ile, located within the
ExternalDisplays folder, and enter in the method as shown in the
following code snippet:

// Display the iOS Device' Camera using the backview as

// the default.

- (IBAction)btnCamera:(id)sender

{

 // Checks the device to make sure that it has a camera.

 if ([UIImagePickerController
 isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera]) {

 // Create image picker controller

 self.imagePicker = [[UIImagePickerController alloc] init];

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

 // Set source to the Camera
 self.imagePicker.delegate = self;

 self.imagePicker.sourceType =
 UIImagePickerControllerSourceTypeCamera;

 self.imagePicker.cameraDevice =
 UIImagePickerControllerCameraDeviceRear;

 self.imagePicker.allowsEditing = NO;

 [self presentViewController:self.imagePicker
 animated:YES completion:nil];

 }

 else {

 NSLog(@"Unable to access the camera.");

 }

}

In the preceding code snippet, we irst check to see if we are able to access
the iOS device camera using the isSourceTypeAvailable property of the
UIImagePickerController class. We then create a new instance of our
UIImagePickerController class. Next, we make the delegate point to itself and
then set the sourceType property to use the camera, and then set the value of the
cameraDevice property to use the rear camera. Finally, we display the camera
interface, and the UIImagePickerController object is dismissed.

#pragma mark - Image Picker Delegate Methods

- (void)imagePickerControllerDidCancel:(UIImagePickerController
 *)picker

{

 [self.imagePicker dismissModalViewControllerAnimated:YES];

}

In the preceding code snippet, we start by declaring a delegate method for our
image picker controller imagePickerControllerDidCancel. This delegate will be
responsible for handling and taking care of closing the popover or camera session
without making an image selection, or taking a picture whenever the Cancel button
has been pressed.

// This method is called when the user has chosen an item

// from the image picker.

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {

 // Determine the media type of the chosen item

 // from the image picker.

 NSString *mediaType = [info
 objectForKey:UIImagePickerControllerMediaType];

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

 // Determine if we have chosen a Movie file from library.

 if ([mediaTypeisEqualToString:@"public.movie"])

 {

 self.videoUrl= [info
 valueForKey:UIImagePickerControllerMediaURL];

 self.moviePlayerController= [[MPMoviePlayerController alloc]
 initWithContentURL:self.videoUrl];

 UIImage *thumbnail = [self.moviePlayerController
 thumbnailImageAtTime:0.0
 timeOption:
 MPMovieTimeOptionNearestKeyFrame];

 [self.imageView setImage:thumbnail];

 // Enable our video button but disable the image

 // transitions button.

 self.btnTransitions.enabled = NO;

 self.btnPlayVideo.enabled = YES;

 }

 // Else we have chosen an image file from library.

 else if ([mediaType isEqualToString:@"public.image"])

 {

 self.moviePlayerController= nil;

 self.videoUrl= nil;

 self.btnPlayVideo.enabled = NO;

 self.btnTransitions.enabled = YES;

 UIImage *photoImage = [info
 objectForKey:UIImagePickerControllerOriginalImage];

 self.imageView.image = photoImage;

 }

 // Enable our VGA Out buttons

 self.btnVGAOut.enabled = YES;

 // Dismiss the PopOver Dialog

 [self.popoverController dismissPopoverAnimated:NO];

}

In the preceding code snippet, we start by checking the type of media that has been
chosen from the photo library using the UIImagePickerControllerMediaType
property of UIImagePickerController, and then enable our video
button but disable the image transition button. Next, we check to see if we
selected a movie, and then obtain the ile location of the chosen ile, using
UIImagePickerControllerMediaURL.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

Next, we create a thumbnail image representation of the video, and set the image
property of the imageView control. If we have determined an image has been chosen,
we set the image property of the imageView control to the selected image, and enable
the VGA Out button, before dismissing the popoverController control.

Implementing the btnPlayVideo: method
Our next step is to implement the Play button that will be responsible for playing
our chosen movie from the camera roll when pressed.

1. Open the ViewController.m implementation ile, located within the
ExternalDisplays folder, and enter in the method as shown in the
following code snippet:

// Handle Playback of the chosen movie when the Play
// Movie

// button is pressed.

- (IBAction)btnPlayVideo:(id)sender

{

 [self.navigationController
 dismissModalViewControllerAnimated:NO];

 // Determine to see if we have chosen a video from the

 // Photo Library.

 if (self.videoUrl== NULL)

 {

 // Display an alert message to the user.

 UIAlertView *alertView = [[UIAlertView alloc]
 initWithTitle:@"Video Playback"
 message:@"No video has been selected from the
 library." delegate:self
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil];

 [alertView show];

 }

 else

 {

 // Initialise our moviePlayer Controller with

 // the path of the selected video.

 [self.moviePlayerControllersetContentURL:[NSURL
 fileURLWithPath:[videoUrlpath] isDirectory:NO]];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(moviePlaybackComplete:)
 name:MPMoviePlayerPlaybackDidFinishNotification

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

 object:self.moviePlayerController];

 // Add the movie player controller to the view

 [self.view addSubview:self
 .moviePlayerController.view];

 // Initialize the movie player properties.

 self.moviePlayerController.fullscreen= YES;

 self.moviePlayerController.scalingMode =
 MPMovieScalingModeAspectFit;

 // Play the video

 [self.moviePlayerController play];

 }

}

In the preceding code snippet, we start by dismissing our popover control
from our current view to prevent it from being displayed when the video is
played. Next, we check value of our videoUrl variable, to ensure that we
have a value for our video ile location, and display a message using the
UIAlertView class; this is to prevent the application from crashing.

2. Next, we create an (NSURL) fileURLWithPath object variable
that converts our videoURL variable to an object, which is what
MPMoviePlayerController needs when it is being initialized. We
then add the MPMoviePlayerController view to our View controller,
so that it will appear on the screen, then specify that we want to
display this in full-screen, and inally tell moviePlayerController
to commence playback. Next, we send a dispatch notiication
method called MPMoviePlayerPlaybackDidFinishNotification to
NSNotificationCenter to tell it what to do when the movie playback
completes, as shown in the highlighted code in the previous snippet.

3. When we playback the video content within our iOS applications,
you will sometimes need to modify the scalingMode property of the
MPMoviePlayerController object. By setting this property, it will determine
how the movie image adapts to ill the playback size that you have deined.
// Method to handle once the video has finished playback.

- (void)moviePlaybackComplete:(NSNotification
 *)notification

{

 self.moviePlayerController= [notification object];

 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:MPMoviePlayerPlaybackDidFinishNotification

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

 object:self.moviePlayerController];

 [self.moviePlayerController.view removeFromSuperview];

}

In this code snippet, we passed an object to the notification method.
This is whatever we have passed in the previous code snippet, due to the
moviePlayerController object. We start by retrieving the object using the
[notification object] statement, and then reference it with the new
MPMoviePlayerController pointer.

4. We then send a message back to the NSNotificationCenter method that
removes the observer we previously registered with our btnPlayVideo
method. We inally proceed with removing moviePlayerController
from our display. In the next section, we will look at the steps involved in
modifying our application, so that it can be displayed on a TV screen using
Apple TV.

For more information on the comparison between the different

scaling modes, refer to MPMoviePlayerController Class

Reference at the following URL: http://developer.apple.com/
library/ios/#documentation/mediaplayer/reference/
MPMoviePlayerController_Class/Reference/Reference.

html#//apple_ref/doc/c_ref/MPMoviePlayerController.

Using AirPlay to present application content

to Apple TV
Starting with iOS 4.3, Apple decided to provide its developers with one of the most
impressive frameworks ever imagined, which would allow developers to integrate
AirPlay features into their own applications. With just a few lines of code, any iOS
application can be modiied to have the ability to stream video directly out to an
Apple TV device.

To enable the AirPlay functionality, we will need to enable a special property on our
MPMoviePlayerController object, by setting the allowsAirPlay property to YES.

1. Open the ViewController.m implementation ile, located within the
ExternalDisplays folder, and locate the following statement within the
btnPlayVideo method:

// Add the movie player controller to the view

[self.view addSubview:self.moviePlayerController.view];

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

2. Next, add the following code snippet:

if([self.moviePlayerController
 respondsToSelector:@selector(setAllowsAirPlay:)]){

 [self.moviePlayerController setAllowsAirPlay:YES];

}

In this code snippet, we use the respondsToSelector: method of the
MPMoviePlayerController object to cater for older iOS devices that don't
support the allowsAirPlay property.

If you try to use this feature on a device that does not support it, it will cause
a run-time error exception to occur, which will crash your application. In
order to offer AirPlay only to those devices that support it, we need to place
a conditional statement around the statement, which will check to see if the
MPMoviePlayController object supports the allowsAirPlay option.

When this is set, it will cause an additional icon to appear within the
movie player controller pane. You have no control, programmatically,
over this icon placement.

3. Next, build and run your application, and click on the Play button.
The following screenshot shows what this icon looks like when AirPlay
has been enabled:

4. When the AirPlay icon has been enabled, you will be presented
with a pop-up list of detected output device options to choose from.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

5. If you choose the Apple TV option, as shown in the preceding screenshot,
the output on your iOS device will disappear, and you will be notiied that
the video is being played on the Apple TV device. This is shown in the
following screenshot:

6. Finally, you will see your video being displayed on an Apple TV device,
as shown in the following screenshot:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

As you can see, by following a few simple steps, you can easily incorporate
the functionality needed to turn your existing applications into Airplay-aware
applications.

The following list provides you with a few considerations to keep in mind when
implementing AirPlay within your applications.

• Apple has only made this feature available on its most recent devices with
the AirPlay 4.3 SDK, so there is no AirPlay support for iPhone 3G devices.

• When launching an AirPlay-enabled application, you will need to ensure
that both your iOS device and your Apple TV software are running the same
version of the OS, otherwise you could run into some problems.

• In order for your iOS devices to ind other Apple AirPlay-enabled devices,
you will need to ensure that you are on the same Wi-Fi network that your
AirPlay devices are connected to.

For more information about the MPMoviePlayerController Class
framework, refer to the following Apple Developer Documentation
at the following URL: http://developer.apple.com/
library/ios/#documentation/mediaplayer/reference/
MPMoviePlayerController_Class/Reference/Reference.
html#//apple_ref/doc/c_ref/MPMoviePlayerController.

Implementing the btnTransitions: method
Our next step is to implement the Transitions button that will enable us to choose a
ilter effect from a list of options, and have this applied to our loaded image within
the imageView control.

1. Open the ViewController.m implementation ile, located within the
ExternalDisplays folder, and enter in the method as shown in the
following code snippet:

// Displays our list of image filter effects

// within an ActionSheet

- (IBAction)btnTransitions:(id)sender

{

 // Initialise our Action Sheet with options

 UIActionSheet *actionSheet = [[UIActionSheet alloc]
 initWithTitle:@"Available Transitions"
 delegate:self
 cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:@"Close"
 otherButtonTitles:@"Hue Adjust",

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

 @"Vibrance",@"Color Invert",
 @"Ripple Effect", nil];

 // Display the actionsheet to the view.

 [actionSheet showInView:self.view];

}

In the preceding code snippet, we declare, create, and initialize an
actionSheet variable that sets up a list of ilter options that can be chosen
from, and then applied to an image. It is worth mentioning that the
UIActionSheet class adopts the UIActionSheetDelegate protocol.

2. Next, we need to create the actionSheet method that will handle and apply
the required ilter type to the image based on the button index chosen within
the list.

3. Enter in the following code snippet for this method.

// Delegate which handles the processing of the option
// buttons selected

- (void)actionSheet:(UIActionSheet *)actionSheet
 clickedButtonAtIndex:(NSInteger)buttonIndex {

}

The preceding code snippet will be used to determine what button has been selected
from the action sheet options panel. This is derived by the buttonIndex property
that is passed into this function. In the next section, we will look at how to apply
these image effects.

Understanding the Core Image framework
The Core Image framework is an extensible image processing technology
architecture that has been built into Mac OS X v10.4 and iOS 5.0. This framework
comes with over 100 built-in ilters that are ready-to-use, and leverages the
programmable graphics hardware to provide near real-time, pixel-accurate image
processing of graphics, as well as video processing.

The Core Image ilter reference describes these ilters. The list of built-in ilters can
change. So, for this reason, Core Image provides you with the methods that let you
query the system for these available ilters. You can also load ilters that third-party
developers package as image units. The Core Image API is a part of the QuartzCore
framework (QuartzCore.framework), and provides access to built-in image ilters
for both video and still images, and provides support for creating custom ilters.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

You can use Core Image from the Cocoa and Carbon frameworks by linking to this
the Core Image framework. By using the Core Image framework, you can perform
the following types of operations, by using ilters that are bundled in Core Image or
that you or another developer would create:

• Crop images and correct color, such as perform white point adjustment

• Apply color effects, such as sepia tone and blur or sharpen Images

• Composite images and warp or transform the geometry of an image

• Generate color, Gaussian gradients, and other pattern images

• Add transition effects to images/video

• Provide real-time color adjustment on video

The following screenshot gives you a general idea of where the Core Image
framework its in with other graphics technologies within the Mac OS X
operating system.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

As you can see, the Core Image framework has been integrated with these
technologies, allowing you to use them together to achieve a wide range of results.
You can use Core Image to process images created in Quartz 2D (Core Graphics) and
textures created in OpenGL. You can also apply Core Image ilters to videos played
using Core Video.

The Core Image comes with over 100 built-in ilters, ready-to-use by ilter clients
who want to support image processing in their application. The Core Image ilter
reference describes these ilters; the list of built-in ilters can change, so for that
reason, Core Image provides you with the methods that let you query the system for
these available ilters. You can also load ilters that third-party developers package as
image units.

For more information on the built-in ilters that are available
in the Core Image API, refer to the following Apple Developer
Documentation: http://developer.apple.com/library/
mac/#documentation/graphicsimaging/reference/
CoreImageFilterReference/index.html.

Applying image ilter effects using the
CIImage class
The Core Image class is used when you want to apply effects to images. These can be
when you want to pixelate an image, or to handle red eye removal from your images.
You can use the CIImage objects in conjunction with other Core Image classes,
such as the CIFilter, CIContent, CIVector, and CIColor classes. In order to take
advantage of the built-in Core Image ilters when processing images, you can create
CIImage objects with data supplied from a variety of sources, including Quartz 2D
images and Core Video image buffers, using CVImageBufferRef.

The CIImage object has image data associated with it, but it is not an image. A
CIImage object has all the information necessary to produce an image, but Core
Image doesn't actually render an image until it is told to do so. This method allows
Core Image to operate as eficiently as possible.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

The CIImage class contains a number of parameters, which are explained in the
following table:

CIImageParameters Description

Filter category This specifies the type of effect—blur, distortion, generator,
and so on—or its intended use—still images, video, non-
square pixels, and so on. A filter can be a member of more
than one category.

Display name This is the name that should be shown in the user interface.

Filter name This is the name you use to access the filter programmatically.

Input parameters These can contain one or more input parameters that let you
control how processing is done.

Attribute class Every input parameter that you create contains an attribute
class that specifies its data type, such as NSNumber. An input
parameter can optionally have other attributes, such as its
default value, the allowable minimum and maximum values,
the display name for the parameter, and any other attributes
that are described in CIFilter.

If you take, for instance, the color monochrome ilter, this contains three input
parameters: the image to process, a monochrome color, and the color intensity.
You supply the image and have the option to set a color and color intensity.

Most ilters, including the color monochrome ilter, have default values for each
non-image input parameter. Core Image uses the default values to process your
image, if you choose not to supply your own values for the input parameters.

Filter attributes are stored as key-value pairs. The key is a constant that identiies
the attribute, and the value is the setting associated with the key. Core Image
attribute values are typically one of the following data types:

• Strings: These are used for things, such as display names.
• Floating-point numbers: They are used to specify scalar values,

such as intensity levels and radii.

• Vectors: They can have two, three, or four elements, each of which is
a loating-point number. These are used to specify positions, areas,
and color values.

• Colors: They specify color values and a color space to interpret the
values in.

• Images: They are lightweight objects that specify images.

• Transforms: They specify an afine transformation to apply to image.
CIContext.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

In the next section, we will take a look at how we can use some of these techniques
when creating the various types of color effects to our CIFilterEffects application,
when a ilter type has been selected from our action sheet list of options.

1. Open the ViewController.m implementation ile, located
within the ExternalDisplays folder, locate the - (void)
actionSheet:(UIActionSheet *)actionSheet

clickedButtonAtIndex:(NSInteger)buttonIndex method.

2. Enter the following code snippet after the function declaration.

CIContext *context = [CIContext contextWithOptions:nil];
CIImage *cImage = [CIImage imageWithCGImage:[self.imageView.image
CGImage]];
CIImage *result = nil;
CIFilter *filterType = nil;
CATransition *animation = nil;

In the preceding code snippet, we declared a CIContext variable context.
This variable will be used for rendering the cImage image object to the view.
We then declare a cImage variable object of type CIImage, which contains a
pointer to the image within our imageView.

Next, we declare a CIImage result variable that will be used to apply the
image ilter changes, and then output this modiied imageView control. We
then declare a CIFilter variable called filterType, which will contain the
type of ilter effect to use. Finally, we declare a CATransition variable called
animation that will be responsible for handling the transition animations for
our UIView layer.

3. Open the ViewController.m implementation ile, located within the
ExternalDisplays folder.

4. Next, locate the - (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex method.

5. Enter the following code snippet after the variable declarations that we
applied in the previous code snippet.

// Changes the overall Hue, or tint, of the source
// pixels.
if (buttonIndex == 1) {
 filterType = [CIFilterfilterWithName:@"CIHueAdjust"];
 [filterType setDefaults];
 [filterType setValue:cImageforKey: @"inputImage"];
 [filterType setValue:[NSNumber numberWithFloat: 2.094]
 forKey: @"inputAngle"];

 result = [filterType valueForKey: @"outputImage"];
}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

In the preceding code snippet, we start by declaring a CIFilter variable called
filterType. This will be used to denote the type of ilter that we want to apply to
our image. Next, we assign a cImage variable of type CIImage, which points to the
chosen image within our UIImageView control, and assign this to be the inputImage.
We then assign the level of the hue to apply to the image, by setting the value of the
inputAngle property. Once we have done all of this, we apply the hue adjustment to
the image and return this to our UIImage result, based on the outputImage property,
and then output this back to our UIImageView control.

The values for the inputAngle property must have a starting range
from a minimum value of -3.14 to a maximum value of 3.14. There
is also a default value of 0.00.

Next, we will take a look at the Vibrance option and see what happens when this
Core Image ilter has been chosen from the list of options within our action sheet.

1. Open the ViewController.m implementation ile, located within the
ExternalDisplays folder.

2. Next, enter in the following code snippet underneath the previous code block
that we applied in the previous code snippet:

// Adjusts the saturation of an image while keeping
// pleasing

// skin tones.

else if (buttonIndex == 2) {

 filterType = [CIFilter filterWithName:@"CIVibrance"];

 [filterType setDefaults];

 [filterType setValue: cImageforKey: @"inputImage"];

 [filterType setValue: [NSNumbernumberWithFloat: 1.00]
 forKey: @"inputAmount"];

 result = [filterType valueForKey: @"outputImage"];

}

In the preceding code snippet, we start by declaring a CIFilter variable
called filterType. This will be used to denote the type of ilter that we want
to apply to our image. Next, we assign a cImage variable of type CIImage,
which points to the chosen image within our UIImageView control, and
assign this to be inputImage. Finally, we assign the level of saturation to
apply to the image, by setting the value of the inputAmount property.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

The values for the inputAmount property must have a starting range
from a minimum value of -1.00 to a maximum value of 1.00. There
is also a default value of 0.00.

Next, we will take a look at the Color Invert option, and see what happens when this
Core Image ilter has been chosen from the list of options within our action sheet.

1. Open the ViewController.m implementation ile, located within the
ExternalDisplays folder.

2. Next, enter in the following code snippet underneath the previous code block
that we applied in the previous code snippet.

// Inverts the colors in an image

elseif(buttonIndex == 3) {

 filterType = [CIFilter filterWithName:@"CIColorInvert"];

 [filterType setDefaults];

 [filterType setValue: cImageforKey:@"inputImage"];

 result = [filterType valueForKey:@"outputImage"];

}

In the preceding code snippet, we start by declaring a CIFilter variable
called ilterType. This will be used to denote the type of ilter that we want
to apply to our image. Next, we assign a cImage variable of type CIImage,
which points to the chosen image within our UIImageView control, and
assign this to be inputImage.

Next, we need to add the code that will be used to output the updated image once
this has been applied based on our Core Image ilters.

1. Open the ViewController.m implementation ile, located within the
ExternalDisplays folder.

2. Next, enter in the following code snippet underneath the previous code block
that we applied in the previous code snippet.

// Only process when button index is based on the

// list of options(ignore the Close button).

if (buttonIndex > 0 && buttonIndex < 4) {

 self.imageView.image =
 [UIImage imageWithCGImage:[context
 createCGImage:result
 fromRect:CGRectMake(0, 0,
 self.imageView.image.size.width,
 self.imageView.image.size.height)]];

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

In the preceding code snippet, we start by checking to ensure that we are not
processing our Close button. This is a general way of safeguarding our application to
prevent it from crashing. Next, we use the imageWithCGImage method to create and
return an image object representing the speciied Quartz image, then displaying this
image back to our UIImageView control, and setting it to be displayed to the width
and height of the image view. In the next section, we will take a look at how we can
apply transition effects to an image while making use of the Quartz Core framework.

Applying transitions to images
Transitions are typically used to apply some sort of effect to an image. These effects
are rendered over time and require that you set up a timer event. In this section, we
will take a look at how to go about applying a water ripple effect to an image.

Fortunately, you don't need to worry, as there is already a ripple effect component
that comes as part of the Quartz Core framework, and this will take advantage of the
graphics hardware acceleration when rendering this effect.

Open the ViewController.m implementation ile that is located within the
ExternalDisplays folder, and add the following code statement underneath
the Color Invert code block:

// Applies the Ripple Effect transition to the view.

else if (buttonIndex == 4) {

 animation = [CATransition animation];

 [animation setDelegate:self];

 [animation setDuration:3.0f];

 [animation setType:@"rippleEffect"];

 [self.view.layer addAnimation:animation forKey:NULL];

}

In this code snippet, we start by declaring a variable called animation that will be
responsible for handling the transition animations for our UIView layer. In the next
step, we specify the duration of our ripple effect that will be used to deine how long,
in seconds, a single iteration of an animation will take to display. Next, we set up a
timing function. This will be used to specify the UIViewAnimationCurveEaseInOut
type as the type of animation that we want to use.

This causes the animation to start off slowly, then accelerate through the middle of
its duration, and then begin to slow down towards the end of its iteration, and is the
default curve for most animations. In the next step, we specify the type of animation
that we want to use is the rippleEffect transition effect. Finally, we apply the
animation effect to our view.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

The following screenshot displays the output with the water rippling effect applied.
You will notice how it curves from the inside out, more like a vacuum effect:

As you can see, by using both the Core Image and Quartz Core frameworks, you can
create some fantastic visual effects within your applications, and bring them to life.

For more information on the Quartz Core frameworks, refer to the
following URL: http://developer.apple.com/library/
ios/#documentation/GraphicsImaging/Conceptual/
CoreImaging/ci_intro/ci_intro.html.

For more information on the Core Image ilters, please refer to the
following URL:

http://developer.apple.com/library/ios/#documentation/
GraphicsImaging/Reference/CoreImageFilterReference/
index.html.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

Presenting content out to an external monitor
device
In this section, we will be taking a look at how we can display an image from our iOS
device out to an external monitor using the VGA port add-on for the iPad. We will
look at how we can dynamically obtain a list of the available screen modes, currently
supported by the external device using the UIScreen class. The user will then be able
to choose a screen resolution from the list, and have the image resized to the selected
screen mode.

Open the ViewController.m implementation ile, located within the
ExternalDisplays folder, and modify the btnVGAOut method, as shown
in the following code snippet:

// Method to output an image to an external screen.

- (IBAction)btnVGAOutput:(id)sender

{

 // Determine if we have found any external screens.

 if ([[UIScreen screens] count] > 1) {

 externalScreen = [[UIScreen screens]objectAtIndex:1];

 screenModes = externalScreen.availableModes;

 UIAlertView *alertView = [[UIAlertView alloc]
 initWithTitle:@"External Screen Size"
 message:@"Choose a screen resolution"
 delegate:self cancelButtonTitle:nil
 otherButtonTitles:nil];

 // Fill our alertView with the available screen modes

 for (UIScreenMode *mode in screenModes) {

 CGSizemode ScreenSize= mode.size;

 [alertView addButtonWithTitle:[NSString
 stringWithFormat:@"%.0f x %.0f pixels",
 modeScreenSize.width, modeScreenSize.height]];

 }

 // Display the alert dialog to the view.

 [alertView show];

 }

 else

 {

 // We didn't manage to locate any external devices.

 NSLog(@"Unable to locate any external screens.");

 }

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

In this code snippet, we use the screens property of the UIScreen class, then use the
count property to determine if any external devices have been detected, and then
set the objectAtIndex:1 property, this means that we are using an external screen.
Next, we populate our NSArray variable screenModes with the list of available
screen modes that are supported by the external device. Finally, we create an
alertView dialog and dynamically populate it with all of the determined available
screen modes, before inally displaying the alert dialog to the screen.

Alternatively, if no external devices were found, we log out an error message to the
console window.

Next, we need to add the code that will be used to output the image to the external
device and resize it based on the screen resolutions selected.

1. Open the ViewController.m implementation ile, located within the
ExternalDisplays folder.

2. Next, enter in the following code:

// Handles displaying of the chosen screen mode to the

// external display.

- (void)alertView:(UIAlertView *)alertView
 clickedButtonAtIndex:(NSInteger)buttonIndex

{

 // Get the chosen screen mode from the list.

 UIScreenMode *desiredMode = [screenModes
 objectAtIndex:buttonIndex];

 // Create a new window instance for our external
 //screen.

 externalWindow = [[UIWindowalloc] initWithFrame:
 [[UIScreen mainScreen] bounds]];

 externalScreen.currentMode = desiredMode;

 // Create a new imageView control

 UIImageView *externalImage = [[UIImageView alloc]
 initWithFrame:[[UIScreen mainScreen]
 applicationFrame]];

 // Copy the image from our view to the externalWindow

 [externalImage setImage:imageView.self.image];

 [externalWindow addSubview:externalImage];

 [externalWindow setScreen:externalScreen];

 // Resize the external window to the size of the

 // chosen screen resolution.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

 CGRectrect= CGRectZero;

 rect.size = desiredMode.size;

 [externalWindow setFrame:rect];

 [externalWindow setClipsToBounds:YES];

 [externalWindow setHidden:NO];

 [externalWindow makeKeyAndVisible];

 // Release the memory allocated to the objects

 screenModes = nil;

 externalScreen = nil;

}

In the preceding code snippet, we determine what button has been selected
from the alertView options panel. This is derived by the buttonIndex
property that is passed into this function. Next, we create a new window
instance for our external screen by declaring the externalWindow variable
object, and then set the current mode for the external window based on the
screen resolution chosen.

3. Finally, we create a new imageView control, and set the image of the current
view to the external window, before resizing the external window size to the
size of the chosen screen resolution. We then make this window visible to the
user, so that it shows up on the monitor screen. At the end we dereference
our screenModes and externalScreen objects.

Implementing the
shouldAutorotateToInterfaceOrientation: method
Now, we need to implement a method that will be responsible for preventing
our device from having our application being displayed within the various views.

1. Open the ViewController.m implementation ile, and then locate
the shouldAutorotateToInterfaceOrientation: method.

2. Next, enter in the following code snippet:

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterface
 Orientation)interfaceOrientation

{

 // Forces the device to stay in Portait mode.
 return (interfaceOrientation ==
 UIInterfaceOrientationPortrait ||
 interfaceOrientation ==
 UIInterfaceOrientationPortraitUpsideDown);

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 9

[313]

In the preceding code snippet, we force the device to always display
in portrait mode when the device has been rotated, then check the
interfaceOrientation variable of the iOS device, and set this to
the value of UIInterfaceOrientationPortrait.

Finishing up
Congratulations, we have inally implemented the methods for our
ExternalDisplays application. Next, build and run the application by choosing
Product | Run from the Product menu, or alternatively press Command + R. The
following screenshot shows the application running on the iOS device:

In the preceding screenshot, the external screen displays an image, which has been
chosen from the iOS device's photo library. Once the user taps on the VGA Out button,
we are presented with a list of available screen resolutions that have been detected as
being supported for the type of VGA monitor. Once a screen mode has been selected,
you can see that the image is sent to the monitor, and resized accordingly.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

External Displays using Airplay and Core Image

[312]

Summary
In this chapter, we learned about the AirPlay and Core Image frameworks, and
looked at how we can implement these into our applications to output this to an
external device, such as Apple TV and an external monitor using the VGA Adaptor.

We then learned about the Core Image ilters class, and how we can apply the
different image ilter effects to enhance images through the different built-in
ilters, such as color effects. We then familiarized ourselves with the Quartz Core
framework, and looked at how we can use this framework, using the built-in ilters,
for distortions and transition effects to apply a water ripple effect to an image.

In the next chapter, we will learn about iCloud and the storage APIs that come as
part of this technology. We will take a look at building an iCloud application, and
understand the different methods that can be used to store and use documents
within the Cloud. To end the chapter, we will look at the methods that we can use
to detect and handle ile-version conlicts.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within

the Cloud
The ScratchPad application allows you to keep a visual record of each note, or
reminder for your every day needs. These can be as simple as jotting down some
ideas when you are on your way home on the train, creating an itemized list of
shopping items, or even creating your daily journal entries. This application records
information for each item, and then adds this information into your iCloud account
repository, using the iCloud storage APIs.

In this chapter, we will take a look at the features of iCloud and the storage APIs,
and see how we can incorporate these into our application, so that it can interact
with the iCloud servers to read, write, and edit documents, and provide us with the
ability to access these items from all our iOS devices, without the need of having to
sync or transfer these iles.

Storing documents within a user's iCloud account provides us with an additional
layer of security, so even if the user loses their device, these documents can easily
be retrieved, provided that they are contained within iCloud storage.

In this chapter we will:

• Build the ScratchPad application using Storyboards

• Learn how to store and search for documents within iCloud Storage

• Learn how to handle ile-version conlicts
• Learn how to conigure and set up provisioning proiles ready for iCloud
• Implement the functionality to add or edit an item in UITableView

• Implement the methods to save and cancel items

We have an exciting project ahead of us, so let's get started.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

Overview of the technologies
iCloud is a service that comes as part of iOS 5 and helps you synchronize your data
across multiple devices, by using a set of central servers that store your documents,
apps, music, and photos, while making the latest version of these available to every
device compatible with iCloud, including your Mac or PC.

In iOS, each application has its data stored within a local directory, and each
application can access data within its own directory, thus preventing other
applications from reading or modifying data from other applications. iCloud allows
you to upload your local data to its central severs, and receive updates from other
devices. This replication of content is achieved by a continuous background process,
called a daemon, which detects changes made to a resource: document, photo, and so
on, and then uploads them to the central storage repository.

In this chapter, we will learn how to implement a background monitoring process
called "notiications" that will enable us to keep track of documents within the Cloud
repository, and refresh the table view controller as new documents are added or
updated. This is particularly useful if a user has deleted a document manually from
their iCloud repository, and we need to ensure that our application correctly shows
what is currently in the cloud.

Methods to store and use documents
within iCloud
iCloud provides you with a common central location for easy access to each
document that gets stored within the Cloud, any updates made to the document
will be delivered to each iOS device or computer, as long as they are using the
same Apple ID used to upload those documents. When a document is uploaded to
iCloud, it is not moved there immediately, as the document must irst be moved out
of the application sandbox into a local system-managed directory, where it can be
monitored by the iCloud service.

Once this process has completed, the ile is transferred to iCloud and then
distributed out to each of the user's iOS devices. Any changes made on one device
are initially stored locally and then immediately pushed out to iCloud, using a local
daemon service.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

This daemon service is used to prevent ile conlicts from happening at the same
time, and is handled by the ile coordinator, which mediates changes made between
the application and the local daemon service, responsible for facilitating the transfer
of the document to-and-from the iCloud service.

The ile coordinator acts much like a locking mechanism for the document, thus
preventing your application and the daemon service from applying modiications to
the document simultaneously. At the heart of the iCloud locking mechanism are ile
coordinators and ile presenters, which are explained in the following sections.

The ile coordinator
Whenever you need to read and write a ile, you do so by using a ile coordinator,
which is an instance of the NSFileCoordinator class. The job of a ile coordinator
is to coordinate the reads and writes performed by your application and the sync
daemon on the same document. For example, your application and the daemon may
both read the document at the same time, but only one may write to the ile at any
single time.

Also, if one process is reading the document, the other process is prevented from
writing to the document, until the earlier process is inished reading the document.

The ile presenter
In addition to coordinating operations, ile coordinators also work with ile
presenters to notify applications when changes are about to occur. A ile presenter is
any object that conforms to the NSFilePresenter protocol, and takes responsibility
for managing a speciic ile (or directory of iles) in an application.

The job of a ile presenter is to protect the integrity of its own data structures. It does
this by listening for messages from other ile coordinators and using those messages
to update its internal data structures. In most cases, a ile presenter may not have to
do anything.

However, if a ile coordinator declares that it is about to move a ile to a new URL,
the ile presenter would need to replace its old URL, with the new one provided to it
by the ile coordinator.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

The following screenshot shows the process when changes are made on one device,
and having those changes stored locally before being pushed back out to the iCloud
service, using a local daemon process:

Whenever your application stores documents to iCloud, it must
specify one or more containers in which those documents' contents
will be stored, by including the com.apple.developer.
ubiquity-container-identifiers key value entry within
your application's entitlements ile. This is covered in the section
Requesting entitlements for iCloud storage in this chapter.

Using the iCloud storage APIs
The iCloud storage APIs let your application write user documents and data to
a central location, and access those items from all of a user's computers and iOS
devices. Storing documents in a user's iCloud account provides a layer of security for
that user. If the user happens to lose their device, any documents that were saved on
it can easily be recovered, if they are contained within iCloud storage. To fully utilize

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

iCloud storage, this can happen in one of the two ways, which information can be
accessed. These are explained in the following table:

Storage type Description

iCloud document storage Use this feature to store and share user documents
and data in the user's iCloud account

iCloud key-value data storage Use this feature to store and share small amounts of
data among instances of your application

Most applications that you create will use the iCloud document storage to share
documents from a user's iCloud account as this provides you with the ability to share
documents across multiple devices, and manage documents from a given device.

When using the iCloud key-value data store, this is not something that a user
will see, as this is handled by your application to share very small amounts of
information that are only used by your application. An example of this would be
that you can store the time the user logged in to your application, or what screen
they are currently viewing.

The following screenshot shows the process involved when creating information in
local iCloud storage within your application's sandbox:

For more information about iCloud, you can refer to the Apple
Developer Documentation at the following URL: https://
developer.apple.com/library/ios/#documentation/
iPhone/Conceptual/iPhoneOSProgrammingGuide/iCloud/
iCloud.html#//apple_ref/doc/uid/TP40007072-CH5-SW1.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

Handling iCloud ile-version conlicts
Handling version conlicts of iles is a common issue in software development. With
iCloud, we need to be able to handle this when multiple instances of your application
are running on multiple devices, and both try to modify the same document.

This will result in a conlict when both devices try to upload the changes made to the
ile at the same time. At this point, iCloud will end up with two different versions of
the same ile, and has to decide what to do with them.

The solution to this is to make the most recently modiied ile the current ile, and
to mark any other versions of the ile as conlict versions. To avoid loss of changes
made to those documents, your application will need to prompt the user to choose
the appropriate course of action to take.

For example, you might let the user choose which version of the ile to keep, or
you might offer to save the older version under a new name. You would need to
determine the current iles version, using the currentVersionOfItemAtURL: class
method, and obtain an array of the conlicted versions, by using the class method call
to unresolvedConflictVersionsOfItemAtURL:.

For each conlicted ile version, you will need to perform the appropriate cause of
action to resolve the conlict, by using any of these actions, listed as follows:

• You have the option to merge the conlicted versions with the current ile
automatically, if it is practical to do so.

• You can choose to ignore the conlicted versions, which will result in data
being lost in those iles.

• You can have your application prompt the user to select the appropriate course
of action, and let the user decide which of the versions they should keep.
Please keep in mind that this should always be your last course of action.

Building the ScratchPad application
The ability to create notes to remind us of what needs to be done is very common,
and forms part of our day-to-day duties. These can be as simple as jotting down
some ideas, when you are on your way home on the train, creating an itemized list
of shopping items, or even creating your daily journal entries.

In this section, we will take a look at how to create an application that will enable us
to create new documents within our iCloud repository, and then have the ability for
us to edit this information, and save it back to our iCloud repository. We will also be
using the UITableView control to populate it with our documents retrieved from
our repository.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

Before we can proceed, we irst need to create our ScratchPad project. To refresh
your memory on how to go about creating a new project, you can refer to the section
that we covered in Chapter 2, TaskPriorities – Building a TaskPriorities iOS App, under
the section named Building the TaskPriorities App.

It is very simple to create this in Xcode. Just follow the steps listed here:

1. Launch Xcode from the /Xcode4/Applications folder.

2. Choose Create a new Xcode Project, or select File | New Project.

3. Select the Single View Application template from the list of
available templates.

4. Click on the Next button to proceed with the next step in the wizard.

5. Next, enter in ScratchPad as the name for your project.

6. Select iPad from under the Device Family drop-down list.

7. Ensure that the Use Storyboards checkbox has been selected.

8. Ensure that the Use Automatic Reference Counting checkbox has
been selected.

9. Ensure that the Include Unit Tests checkbox has not been selected.

10. Click on the Next button to proceed with the next step in the wizard:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

11. Next, specify the location where you would like to save your project.

12. Then, click on the Create button to continue and display the Xcode
workspace environment.

Creating the main application screen
Now that we have created our ScratchPad project, we can start building our user
interface that will be responsible for allowing us to create and modify new or
existing documents directly into our list and have them stored within the Cloud.

These screens will consist of a Tab Bar controller, Navigation controller, and View
controllers. The Navigation controller enables us to create relationships between the
other screens within the Storyboard and set up the required connections, known as
segues. A segue represents a transition from one screen to another.

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. Select the View controller that was added by the template, and then delete it.

3. From Object Library, select-and-drag a (UITabBarController) Tab Bar
Controller control, and add this to our view.

To see how to go about adding UITabBarController, Tab Bar Controller, you can
refer to Chapter 4, Enhanced Address Book App, under the section named Creating the
main application screen.

Adding the table control to hold iCloud document
data
Our next step is to add a UITableViewController object that will be used to hold
and list our task entries. We will need to include a Navigation controller that will
be used to navigate back and forth between UITableViewController and itself.
To see how to go about adding UITableViewController, you can refer to Chapter
4, Enhanced Address Book App, under the section named Adding the table control to hold
item data.

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UITableViewController)
Table View Controller control, and add this to our Storyboard canvas.

3. Next, delete the two UIViewController objects that Xcode generated in
the Storyboard when you dragged-and-dropped the UITabBarController
controller.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

Next, we need to create a navigation controller between TabBarController and
UITableViewController that we just added. There are two ways that this can be
achieved; you can either drag a UINavigationController object directly onto the
view, or you can let Xcode do this for you automatically:

1. Select the UITableViewController object that we just added, and then
choose Editor | Embed In | Navigation Controller from the Editor menu.

2. Next, select TabBarController, then hold down Ctrl, drag from the Tab Bar
controller to the Navigation controller, and release the mouse.

3. Choose Relationship – viewControllers from the Storyboard Segues
pop-up window.

4. Next, we want to show the bottom toolbar within our Navigation controller.
Select the Navigation controller, and from the Attributes Inspector dialog
box, select the Shows Toolbar option.

So far, we have linked up our Tab Bar controller and Navigation controllers, and
have conigured the properties required for the Navigation controller; our next step
is to set up the properties on our Table View controller. Follow these simple steps:

1. Select Table View Controller that we just added previously.

2. Next, click on the Prototype cell from the Prototype Cells section.

3. From the Attributes Inspector section, and change the Style property to
Subtitle. This will change the cell's appearance to contain two labels.

You would have noticed that since we added our Table View controller, Xcode
gave us a warning. This generally happens whenever you add a new Table View
controller to any new or existing storyboards; and is due to it wanting to use
prototype cells as the default. Now, we look at how we can properly conigure this:

1. Select the Identiier item and enter in ScratchPadCell as its unique
identiier. You will notice that once this has been entered in, Xcode will
stop complaining about the warning message we received earlier on.

2. Set the Accessory attribute to show Detail Disclosure.

3. Now that we have set up the properties to our Table View controller, it
would be a good time to build and run our application to ensure that you
have followed the steps correctly, and no program errors exist.

4. Choose Product | Run from the Product menu, or alternatively press
Command + R.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

Adding the Add button
Our next step is to add a button to our Navigation controller; this will be responsible
for displaying an additional screen, providing us with the ability to create new
documents that will be added to our iCloud repository. This information will then
be displayed within our Table View control. This can be achieved by following these
simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control to the top left-hand corner of the navigation bar on the ScratchPad
(UITableViewController) Table View Controller screen.

3. From the Attributes Inspector section, change the Identiier property
to Add.

4. Then, change the Style property to Bordered:

Now that we have added our Add button to our Scratch Pad View Controller, our
next step is to add the Edit button that will be responsible for editing an existing
document within our table view when the button is clicked. So let's proceed with
the next section.

Adding the Edit button
Now that we have added our button to add a new document, our next step is to add
another button that will be responsible for allowing the user to make changes to
an existing iCloud document record within the table view. This can be achieved by
following these simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control to the top right-hand corner of the navigation bar on the Scratch Pad
Table View Controller screen that we added previously.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

3. From the Attributes Inspector section, change the Identiier property to Edit.

4. Then, change the Style property to Bordered.

Now that we have added our Add and Edit buttons and have properly conigured
our Table View controller, as well as built our user interface, the next step is to create
our very own custom UIViewController subclass. This will act as the data source
for our table, so that it will know how many rows to display when it retrieves each
document from our iCloud repository.

1. Select the ScratchPad folder, choose File |New | File… or press
Command + N.

2. Select Cocoa Touch, located under the iOS header section.

3. Select the Objective-C class template from the list of templates.

4. Click on the Next button to proceed with the next step within the wizard.

5. Enter ScratchPadViewController within the Class ield as the name of the
ile to be created.

6. Ensure that you have selected UITableViewController as the type of
subclass to be created from the Subclass of dropdown.

7. Ensure that you have selected the Targeted for iPad option:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

8. Click on the Next button to proceed with the next step of the wizard.

9. Click on the Create button to save the ile to the folder location speciied.

Now that we have added our View controller class to our ScratchPad application,
our next step is to update the class of our UITableViewController to use this class,
instead of the default UITableViewController class:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. Click-and-select our ScratchPad (UITableViewController) controller.

3. Click on the Identity Inspector section, and change the value of the Custom
Class property to read ScratchPadViewController.

The next step is to create the outlets for our Add and Edit buttons:

1. Open the Assistant Editor window by choosing Navigate | Open In
Assistant Editor, or press Option + Command + ,.

2. Ensure that the ScratchPadViewController.h interface ile gets displayed.
3. Select the Add (UIBarButtonItem) control, hold down the Control key,

and drag it into the ScratchPadViewController.h interface ile.

In order to create the IBOutlet properties, it is necessary to drop it
outside the curly braces {} of the @interface; as these braces are
not there by default, you will need to add them.

4. Enter in btnAdd for the name of the property to be created.

5. Choose Weak from the Storage drop-down list:

6. Repeat steps 6 to 8 to create the outlets for the btnEdit button.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

Now that we have created the outlet properties, our next step is to create
the NSMutableArray and NSMetadataQuery properties within our
ScratchPadViewController interface ile. This will allow us to look up the
document within our application's iCloud repository, and keep a track of each
document object properties that have been retrieved.

1. Open the ScratchPadViewController.h interface ile from within Project
Navigator, and enter the following highlighted code sections:

// ScratchPadViewController.h

// ScratchPad

// Created by Steven Daniel on 19/06/12.

// Copyright (c) 2012 GenieSoft Studios. All rights
// reserved.

#import <UIKit/UIKit.h>

#import "ScratchPadDetailsViewController.h"

@interface ScratchPadViewController :
 UITableViewController<
 ScratchPadDetailsViewControllerDelegate>

{

}

// Declare the Getters and Setters for all objects.

@property (nonatomic,strong) NSMutableArray
 *document;

@property (nonatomic,strong) NSMetadataQuery
 *docQuery;

@property (nonatomic,weak)IBOutlet UIBarButtonItem *btnAdd;

@property (nonatomic,weak)
 IBOutlet UIBarButtonItem*btnEdit;

// Declare each of our class methods.

-(void)getScratchPadDetails;

-(void)getScratchPadData:(NSMetadataQuery *)query;

@end

As you can see, in the preceding code, we start by extending our class to
include our ScratchPadDetailsViewController class protocol delegate,
so that we can access the methods that will be used for adding and editing
document information. Next, we declare an NSMutableArray object to hold
each document that is created, so that in can be used as a data source to
populate our table view control.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

In our inal step, we create an NSMetadataQuery object that will be used to
query and look up the document within our applications iCloud repository,
so that it can access the relevant object properties of each ile.

For more information about the NSMutableArray object, refer to
the following URL: http://developer.apple.com/library/
ios/#documentation/Cocoa/Reference/Foundation/
Classes/NSMutableArray_Class/Reference/Reference.
html.

For more information about the NSMetadataQuery object, refer to
the following URL: http://developer.apple.com/library/
ios/#documentation/Cocoa/Reference/Foundation/
Classes/NSMetadataQuery_Class/Reference/Reference.
html.

2. Open the ScratchPadViewController.m implementation ile from within
Project Navigator, and enter the following highlighted code sections:

// ScratchPadViewController.m

// ScratchPad

// Created by Steven Daniel on 19/06/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import "ScratchPadViewController.h"

@interface ScratchPadViewController ()

@end

@implementation ScratchPadViewController

@synthesize document;

@synthesize docQuery;

@synthesize btnAdd = m_btnAdd;

@synthesize btnEdit = m_btnEdit;

3. Next, we need to change the table view data source methods that are located
within the ScratchPadViewController.m implementation ile, and enter the
following highlighted code snippets:

#pragma mark - Table view data source

- (NSInteger)numberOfSectionsInTableView:(UITableView
 *)tableView

{

 // Return the number of sections.return 1;

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

- (NSInteger)tableView:(UITableView
 *)tableView numberOfRowsInSection:(NSInteger)section

{

 // Return the number of rows in the section.
 return [self.document count];

}

As you can see from the preceding code snippets, we set the number of table
sections, and then have the numberOfRowsInSection method work out how
many rows will exist in each section. This is achieved by using the count
property of our document array object:

- (UITableViewCell *)tableView:(UITableView
 *)tableView cellForRowAtIndexPath:(NSIndexPath
 *)indexPath

{

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier
 :@"ScratchPadCell"];

 if (cell == nil) {

 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:@"ScratchPadCell"];

 }

 ScratchPad *scratchDoc = [self.document
 objectAtIndex:indexPath.row];

 cell.textLabel.text =
 scratchDoc.fileURL.lastPathComponent;

 cell.detailTextLabel.text = scratchDoc.docContent;

 // Configure the cell...

 return cell;

}

Finally, as you can see in the preceding code snippet, we supply the reuse
identiier of the TableViewController cell that we set up previously, and
then obtain the document properties for each item retrieved from our iCloud
repository, including the name of the ile and the associated document
content, then write these out to each of our cell labels.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

When you reference the reuse identifier as a parameter to the method
called dequeueReusableCellWithIdentifier, it automatically
makes a new copy of the prototype, and returns the object back to you.

#pragma mark - Table view delegate

- (void)tableView:(UITableView
 *)tableView didSelectRowAtIndexPath:(NSIndexPath
 *)indexPath

{

 // Enable our Edit Button when an item has

 // been selected within our Table View.

 if (indexPath> 0) {

 self.btnEdit.enabled = YES;

 }

 else {

 self.btnEdit.enabled = NO;

 }

}

As you can see from the preceding code snippet, we check to see if the
indexPath property for the selected row is greater than zero. If this is TRUE,
we enable the Edit button within our table view controller. Alternatively, we
disable the button.

4. Next, we need to modify the viewDidLoad method, located within
the ScratchPadViewController.m implementation ile, and enter
the following highlighted code snippets:

- (void)viewDidLoad

{

 [superviewDidLoad];

 // Initialize our table view buttons

 self.btnAdd.enabled = YES;

 self.btnEdit.enabled = NO;

 NSURL *ubiq = [[NSFileManager defaultManager]
 URLForUbiquityContainerIdentifier:nil];

 if (!ubiq) {

 self.btnAdd.enabled = NO;

 self.btnEdit.enabled = NO;

 NSLog(@"Error connecting to iCloud Service.");

 }

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

 // Initialize and reload our document information.
 self.navigationController.navigationBar.tintColor =
 [UIColor redColor];

 self.title = @"ScratchPad for iCloud";

 self.document = [[NSMutableArray alloc] init];

 // Add an observer call to reload the list when

 // the application becomes active from the

 // background.

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(getScratchPadDetails)
 name:UIApplicationDidBecomeActiveNotification
 object:nil];

}

In the preceding code snippet, we start by checking for the availability of
iCloud as soon as the application starts. Although iCloud is available on
all iOS 5 devices, it is a great way to ensure that the user has conigured
this correctly, and prevents your application from crashing. The
URLForUbiquityContainerIdentifier method takes the container identiier
and returns the URL for the iCloud storage on your local iOS device.

Passing in nil to the method, automatically returns the irst iCloud container
set up for the project. We will look at setting this up in the section Requesting
Entitlements for iCloud Storage, later on in this chapter. If we can access the
iCloud repository, we enable/disable our Add and Edit buttons accordingly,
then initialize and set the color of our navigational controller bar, set the title,
and initialize our document NSMutableArray object.

Finally, we set up an observer call to listen when our application becomes
active, and reload the documents from our iCloud storage repository. This is
particularly useful, and prevents your application from crashing if the user
manually deletes the document record from their iCloud repository. You
still need to ensure that your application performs, and refresh the list to
represent what is in the application's iCloud repository.

5. Next, open the ScratchPadViewController.m implementation ile, and
enter the following code snippet for the getScratchPadDetails method:

-(void)getScratchPadDetails

{

 NSURL *ubiq = [[NSFileManager defaultManager]
 URLForUbiquityContainerIdentifier:nil];

 if (ubiq)

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

 {

 self.docQuery= [[NSMetadataQuery alloc] init];

 [self.docQuerysetSearchScopes:[NSArray
 arrayWithObject:
 NSMetadataQueryUbiquitousDocumentsScope]];

 NSPredicate *pred = [NSPredicatepredicateWithFormat:
 @"%K Like 'Jou*_*'", NSMetadataItemFSNameKey];

 [self.docQuery setPredicate:pred];

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(queryDidFinishGathering:)
 name:NSMetadataQueryDidFinishGatheringNotification
 object:self.docQuery];

 [self.docQuery startQuery];

 } else {

 NSLog(@"Problem connecting to the iCloud Service.");

 }

}

In the preceding code snippet, we start by ensuring that we can
connect to our iCloud data store, and then set up and initialize
our docQuery query predicate to look for all occurrences of ile
names starting with "Jou*_*" using the predicate class method
NSMetadataQueryUbiquitousDocumentsScope. We then set up an observer
queryDidFinishGathering notiication that gets called when the metadata
search inishes gathering all items.

6. Next, open the ScratchPadViewController.m implementation ile, and
enter the following code snippet for the queryDidFinishGathering:
notiication method, as follows:
- (void)queryDidFinishGathering:(NSNotification
 *)notification {

 NSMetadataQuery *query = [notification object];

 [query disableUpdates];

 [query stopQuery];

 [self getScratchPadData:query];

 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:NSMetadataQueryDidFinishGatheringNotification
 object:query];

 self.docQuery= nil;

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

In the preceding code snippet, this method is called once the predicate
class method, NSMetadataQueryUbiquitousDocumentsScope:,
has completed gathering all items from the query, as deined
within our getScratchPadDetails method. We then call the
getScratchPadData:query method, and extract the required properties
associated with the document, before inally removing the notiication
observer call from the notiication center.

7. Next, open the ScratchPadViewController.m implementation ile, and
enter the following code snippet for the getScratchPadData:query method:

// Populate our documents array with the contents

// for each document returned.

- (void)getScratchPadData:(NSMetadataQuery *)query {

 [self.document removeAllObjects];

 for (NSMetadataItem *item in [query results])

 {

 NSURL *url = [item
 valueForAttribute:NSMetadataItemURLKey];

 ScratchPad *contents = [[ScratchPad alloc]
 initWithFileURL:url];

 [contents openWithCompletionHandler:^(BOOL success) {

 if (success) {

 [self.document addObject:contents];

 [self.tableView reloadData];

 }

 else

 {

 NSLog(@"failed to open from iCloud");

 }

 }];

 }

}

In the preceding code snippet, we cycle through each item returned by
our results query, populate our document array, and then reload the list of
documents that have been returned by iCloud. If any issues are experienced
accessing the iCloud document repository, an error message will be logged
out to the console window.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

8. Next, open the AppDelegate.m implementation ile from within Project
Navigator, and modify the didFinishLaunchingWithOptions: method,
as shown in the following code snippet:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary
 *)launchOptions

{

 // Override point for customization after the
 //application launches.

 return YES;

}

When using Storyboards, we don't need to create a new UIWindow instance, as
this will create another white window and place it on top of the Storyboard. So,
we just need to clear out everything except the return YES statement.

In the preceding section, we saw how to successfully conigure our data
source, so that it can be used to populate our table view with each document
that is retrieved from our application's iCloud repository. We also learned
how we can use predicates to search and retrieve ilenames using the Like
statement, as well as how to set up observers to call methods.

Our next step is to use the UIDocument class that comes with iOS 5, which will make
it much easier for us when working with iCloud documents. This is because it acts as
the middleware between the ile and the actual data that it contains, and implements
the NSFilePresenter protocol to handle our entire document processing in the
background, so that our application is not blocked when iles are opened or saved.

1. From the ScratchPad folder, choose File |New | New File…, or press
Command + N.

2. Select the Objective-C class template from the list of templates.

3. Click on the Next button to proceed with the next step in the wizard.

4. Enter in ScratchPad as the name of the ile to be created.
5. Ensure that you have selected UIDocument as the type to create from the

Subclass of dropdown.

If you don't see the UIDocument class shown within your drop-down
list, simply type it in manually.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

6. Click on the Next button to proceed with the next step of the wizard.

7. Click on the Create button to save the ile to the folder location speciied.
8. Next, open the ScratchPad.h interface ile, located within the ScratchPad

folder. Enter the following code snippet:

// ScratchPad.h

// ScratchPad

// Created by Steven Daniel on 19/06/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import<UIKit/UIKit.h>

@interface ScratchPad : UIDocument

@property (nonatomic, strong) NSString *docContent;

@end

In the preceding code snippet, we declared an NSString property variable
docContent that will be used to store the contents of each document that gets
created or modiied.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

9. Next, open the ScratchPad.m implementation ile from within Project
Navigator, and enter the following code snippet:

// ScratchPad.m

// ScratchPad

// Created by Steven Daniel on 19/06/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import "ScratchPad.h"

@implementation ScratchPad

@synthesize docContent;

// Called whenever the application reads data from the
// file.

- (BOOL)loadFromContents:(id)contents ofType:(NSString
 *)typeName error:(NSError **)outError

{

 // Initialize our document content

 self.docContent = @"";

 // Check to see if we have any text associated

 // for the document.

 if ([contents length] > 0) {

 self.docContent = [[NSString alloc]
 initWithBytes:[contents bytes]
 length:[contents length]
 encoding:NSUTF8StringEncoding];

 }

 return YES;

}

As you can see in the preceding code, we start by synthesizing our document
content property, so that our class can access the objects associated with it.
Next, we override the loadFromContents: method to read the data from
the ile into our UIDocument subclass. The most important parameter to
note here is contents; this is an NSData object containing the actual data
that was entered when you created or updated your document model. The
background queue of NSFilePresenter calls this method whenever the read
operation has completed. If the document was saved without entering any
information, we assign a default value of "":

// Called whenever the application saves the content.

- (id)contentsForType:(NSString *)typeName error:(NSError

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

 **)outError

{

 // Check to ensure we have content to save

 // for our document.

 if ([self.docContent length] == 0) {

 self.docContent = @"";

 }

 // Save the document contents and return back the data.

 return [NSData dataWithBytes:[self.docContent
 UTF8String]
 length:[self.docContent length]];

 }

@end

As you can see in the preceding code, we override the contentsForType:
method, which is used when the background queue of NSFilePresenter
requests a snapshot of the contents of the UIDocument subclass. Here we
check to ensure that the document contains contents, and if so, we convert
our document's data to an NSData object, and return this as an
NSData instance.

In our next section, we will see how we can navigate between screens within the
Storyboard. We will learn about segue, and the different types of views they can take
on, as well as how to go about providing the ability for additional documents to the
current list of documents within our table view.

Navigating between screens using Storyboards
In this section, we will be adding more View controllers to our Storyboard to allow
the lexibility of creating and modifying documents within our existing table view.

In order for us to transition between screens within our Storyboard, we need to
create a connection, known as a segue. Segues are deined as having the ability to
only go one way; they cannot go back to the previous screen, unless a delegate class
has been set up. For our new screen, we will be creating a "modal" segue. To begin
creating the Add New Document screen, follow these simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. From Object Library, select-and-drag a new (UIViewController) View
Controller control, and add it to our Storyboard to the right of the Table
View screen.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

3. Next, select the UIViewController control that we just added, and then
choose Editor | Embed In | Navigation Controller from the Editor menu.

4. Next, select the + button that we added previously, and hold down the
Control key while dragging it to the Navigation controller, and release the
mouse button.

5. Finally, select Modal from the pop-up list of choices.

6. Repeat steps 4 to 5 to create the relationships for the Edit button.

When you select Modal from the list of Storyboard segues, a new arrow is placed
between the Table View Controller screen and the Navigational controller. So, when
you press the + button, a new screen will be displayed. Next, we need to specify
an identiier for our Storyboard Segue that will be responsible for handling the
canceling and saving when the Add New Document form is closed.

1. Select the segue relationship located between the Add button inside the
Navigation bar of the Table View Controller screen and the Navigation
controller for the New Document screen.

2. Click on the Attributes Inspector button.

3. Change the Identiier property to Add Document.

4. Change the Style property to Modal.

5. Change the Presentation property to Form Sheet.

6. Change the Transition property to Cover Vertical.

Next, we need to apply the same logic as we did for the Add New Document form
that will be responsible for calling the same form to handle the editing of an existing
document record when the Edit button has been pressed.

Repeat steps 1 to 6 to create the segue relationship for the Edit button, and set the
Identiier property to Edit Document.

Unfortunately, you won't be able to go back to the previous screen until
we create a UIViewController subclass, the same as we did for our
ScratchPadViewController.

1. From the ScratchPad folder, choose File | New | File… or press
Command + N.

2. Select Cocoa Touch located under the iOS header section.

3. Select the Objective-C class template from the list of templates.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

4. Click on the Next button to proceed with the next step in the wizard:

5. Enter in ScratchPadDetailsViewController as the name of the ile
to be created.

6. Ensure that you have selected UIViewController as the type of subclass
to be created from the Subclass of dropdown.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

7. Ensure that you have selected the Targeted for iPad option:

8. Click on the Next button to proceed with the next step of the wizard.

9. Then, click on the Create button to save the ile to the folder
location speciied.

Once you have done this, we need to update the class method of our previously
added View controller to use our new View Controller subclass. Follow these
simple steps:

1. Select the MainStoryboard.storyboard ile from Project Navigator.

2. Click-and-select our newly added ViewController (UIViewController)
to the right of the ScratchPadViewController ViewController.

3. Click on the Identity Inspector section, and change the value of the Custom
Class property to read ScratchPadDetailsViewController.

4. Next, from the Attributes Inspector section, change the Title property to
read Add New Document.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

5. From Object Library, select-and-drag a (UIBarButtonItem) Bar Button Item
control to the top left-hand corner of the navigation bar on the Add New
Document (UIViewController) section of the View Controller screen that
we added previously.

6. From the Attributes Inspector section, change the Identiier property
to Save.

7. Then, change the Style property to Bordered.

8. Next, from Object Library, select-and-drag a (UIBarButtonItem) Bar Button
Item control to the top right-hand corner of the navigation bar.

9. From the Attributes Inspector section, change the Identiier property
to Cancel.

10. Change the Style property to Bordered.

Our next step is to start building the screen that will allow us to create a new
document and enter in the relevant information, so that it can be saved to the
Scratch Pad list:

1. Select the Add New Document view controller from within our Storyboard.

2. Next, drag a (UITextView) TextView ield control onto the canvas.
3. Resize the ield so that it ills the whole canvas area.
4. Select Attributes Inspector for the TextView control.

5. Set the Alignment ield property to Left Justify.

The next step is to create the outlets for each of our controls that we previously
added to our Add New Document form:

1. Open Assistant Editor by choosing Navigate | Open In Assistant Editor
or press Option + Command + ,.

2. Ensure that the ScratchPadDetailsViewController.h ile gets displayed.
3. Select TextView (UITextView), hold down the Control key, and drag it into

the ScratchPadDetailsViewController.h interface ile.

In order to create the IBOutlet properties, these will need to be
created inside the curly braces {} under the @interface directive; as
these are not created by default, you will need to add them.

4. Choose Outlet from the Connection drop-down list for the connection
to be created.

5. Enter in docContents for the name of the property to be created.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

6. Choose Weak from the Storage drop-down list:

Now that we have created our outlets and properties for our control that will hold
the document content, we need to start modifying our ScratchPadDetailsViewCont
roller.h interface ile:

1. Open the ScratchPadDetailsViewController.h interface ile, located
within the ScratchPad folder, and enter the following highlighted
code snippets:

// ScratchPadDetailsViewController.h

// ScratchPad

// Created by Steven Daniel on 19/06/12.

// Copyright (c) 2012 GenieSoft Studios. All rights reserved.

#import <UIKit/UIKit.h>

#import "ScratchPad.h"

@class ScratchPadDetailsViewController;

@protocol ScratchPadDetailsViewControllerDelegate
 <NSObject>

- (void)scratchPadDetailsViewController:(ScratchPadDetails
 ViewController *)controller

AddDocumentDetails:(ScratchPad *)scratchDoc;

- (void)scratchPadDetailsViewController:(ScratchPadDetails
 ViewController *)controller EditDocumentDetails:(id)sender;

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

@end

@interface ScratchPadDetailsViewController :
 UIViewController

@property (nonatomic, weak) id
 <ScratchPadDetailsViewControllerDelegate> delegate;

// Declare the Getters and Setters for each of our objects.

@property (strong, nonatomic) ScratchPad *document;

@property (weak, nonatomic)
 IBOutlet UITextView *docContents;

@property (strong, nonatomic) NSString *currFile;

@end

In the preceding code snippet, we declare a new delegate object that points
to the methods that are responsible when a document is added or edited, and
is used to communicate back to our table view screen when the user either
cancels or saves the Add New Document screen.

We have also declared an object variable called document that is an instance
of our ScratchPad class, and contains all of the properties and methods
that are associated with the UIDocument class. Next, we need to create the
associated Action events for those Outlets. To create an Action, follow
the next steps.

2. With the ScratchPadDetailsViewController.h interface ile still
displayed to the right of the Add New Document screen, select the Save
(UIBarButtonItem) control, then hold down the Control key, and drag it into
the ScratchPadDetailsViewController.h interface ile.

3. Choose Action from the Connection drop-down list for the connection
to be created.

4. Enter in btnSave for the name of the method to be created.

5. Choose UIBarButtonItem from the Type drop-down list for the type
to be created.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

6. Repeat steps 2 to 4 and hook up the Cancel button, as well as creating the
action event btnCancel for the method name:

In the next section, we will take a look at building the functionality for our Scratch
Pad application, so that it has the ability to add new and edit existing documents
from our application's iCloud repository from the Scratch Pad table view:

1. Now that we have created the Action events for our View controller, it
would be a good time to build and run our application to ensure that no
program errors exist.

2. Choose Product | Run from the Product menu, or alternatively press
Command + R.

Functionality
Well done! You have made it this far; we have successfully inished building the user
interface for both the Scratch Pad and Add New Document screens. Our next step is
to start implementing the methods that will be used by our Cancel and Save buttons;
these will be responsible for returning us back to the Scratch Pad screen:

1. Open the ScratchPadDetailsViewController.m implementation
ile, located within the ScratchPad folder, and add the following
synthesize methods:

#import "ScratchPadDetailsViewController.h"

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

@interface ScratchPadDetailsViewController ()

@end

@implementation ScratchPadDetailsViewController

@synthesize document;

@synthesize delegate;

@synthesize docContents = m_docContents;

@synthesize currFile;

2. Next, modify the viewDidLoad method, as shown in the following
code snippet:

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view.

 // Set the background color and font attributes

 // for our document.

 UIFont *font = [UIFont fontWithName:@"Helvetica-Bold"
 size:[UIFont systemFontSize]];

 [self.docContents setFont:font];

 [self.docContents setBackgroundColor:[UIColor
 colorWithRed:1.0f green:1.0f blue:0.6f alpha:1.0f]];

 // Populate our TextView Control with the data for

 // the selected record.

 [self.docContents setText: self.document.docContent];

In the preceding code snippet, we start by declaring a UIFont object, and
then use the setFont method to set up and initialize our font to be bold, and
to use the system font size. Next, we use the setBackgroundColor method
to initialize our document canvas background to render as yellow, similar
to that of the Notes application that comes with iOS. Finally, we populate
our UITextView control's text property, with the text associated with our
selected document.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

Implementing the btnSave method
We are now ready to start implementing a method that will be responsible for saving
the record when the user presses the Save button:

1. Open the ScratchPadDetailsViewController.m implementation ile,
located within the ScratchPad folder, and enter the following code snippet:

-(IBAction)btnSave:(id)sender
{
 NSString *fileName = @"";
 NSDateFormatter *formatter = [[NSDateFormatter alloc]
 init];
 [formatter setDateFormat:@"ddMMyyyy_hhmmss"];

 // If we are not editing a current document, generate a
//new filename with the dateTime stamp, appended to it.
 if(!self.currFile)
 {
 fileName = [NSString
 stringWithFormat:@"Journal_%@.doc", [formatter
 stringFromDate:[NSDate date]]];
 }
 else
 {
 fileName = self.currFile;
 }
}

In the preceding code snippet, we start by declaring an NSDateFormatter
object, and then use the setDateFormat method to set up and initialize the
correct date format that we would like our ilename to be generated with.
We then perform a check to see if we are not currently editing an existing
document. If we are creating a new document, we append the date and time
to the end of the ilename; otherwise, we just initialize our ilename to use the
name associated by our currFile variable:

// Point to our iCloud Documents container.

NSURL *ubiq = [[NSFileManager defaultManager]
 URLForUbiquityContainerIdentifier:nil];

NSURL *ubiquitousPackage = [[ubiq
 URLByAppendingPathComponent:@"Documents"]
 URLByAppendingPathComponent:fileName];

ScratchPad *doc = [[ScratchPad alloc]
 initWithFileURL:ubiquitousPackage];

doc.docContent = docContents.text;

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

In our preceding snippet, we set up our ubiq variable to point to our
current document's container within our iCloud account, then use the
ubiquitousPackage class, and append our ilename at the location of the
iCloud document container. We then initialize our UIDocument document
with the contents of our UITextView object.

// Check to see if we are editing a currently opened note

if(!self.currFile) {

 [doc saveToURL:[doc fileURL]
 forSaveOperation:UIDocumentSaveForCreating
 completionHandler:^(BOOL success) {

 if (success) {

 [self.delegate
 scratchPadDetailsViewController:self
 AddDocumentDetails:doc];

 }

 }];

}

else

{

 // Overwrite the file that is currently being edited.

 [doc saveToURL:[doc fileURL]
 forSaveOperation:UIDocumentSaveForOverwriting
 completionHandler:^(BOOL success) {

 if (success) {

 [self.delegate
 scratchPadDetailsViewController:self
 EditDocumentDetails:sender];

 }

 }];

 }

}

In the preceding code snippet, we notify our delegate object that we
have added a new document item, so that it can update ScratchPad for
iCloud table view. If we are in the process of editing a document, we use
the UIDocumentSaveForOverwriting property of our forSaveOperation
method, to denote that we are overwriting the document contents, which
are stored within our document container. Otherwise, we just use the
UIDocumentSaveForCreating property of our forSaveOperation method,
to create a brand new document.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

For more information about the UIDocument class, please refer to
the following link: http://developer.apple.com/library/
ios/#documentation/uikit/reference/UIDocument_
Class/UIDocument/UIDocument.html

2. Now that we have created our UIDocument class, it would be a good time to
build and run our application to ensure that no program errors exist.

3. Choose Product | Run from the Product menu, or alternatively press
Command + R.

Implementing the btnCancel: method
Next, we need to implement the Cancel button. This will be responsible for closing
the screen, and returning you back to the Scratch Pad table view when pressed.

Open the ScratchPadDetailsViewController.m implementation ile, located
within the ScratchPad folder, and enter the following code snippet:

-(IBAction)btnCancel:(id) sender

{

 [self dismissViewControllerAnimated:YES completion:nil];

}

In the preceding code snippet, we use the dismissViewControllerAnimated
method, which is only made available in iOS 5 and later. This method is used to
close the current modal screen that was sent by our Scratch Pad table view screen.

Implementing the AddDocumentDetails: method
In the previous section, we added some code to our Save method that created a new
ScratchPad document instance, and then sent this information to the delegate object,
located within scratchPadDetailsViewController. Next, we need to create the
AddDocumentDetails method that will be responsible for adding the document to
our document array.

Open the ScratchPadViewController.m implementation ile, located within the
ScratchPad folder, and enter the following code snippet:

- (void)scratchPadDetailsViewController:(
 ScratchPadDetailsViewController *)controller
 AddDocumentDetails:(ScratchPad *)scratchDoc

{

 [self.document addObject:scratchDoc];

 [self.tableView reloadData];

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

 [self dismissViewControllerAnimated:YES completion:nil];

}

In the preceding code snippet, we add the new scratchDoc object to our existing list
of documents. We then refresh the table view, using the reloadData method to show
that the new item was added, and then we close the Add New Document screen.

Implementing the EditDocumentDetails: method
In the previous section, we added some code to our Save method that created a
new ScratchPad instance, and sent this information to the delegate object, located
within ScratchPadDetailsViewController. In our next step, we need to create
the EditDocumentDetails method that will be responsible for disabling our Edit
button, once we have returned back from the Add New Document form.

Open the ScratchPadViewController.m implementation ile, located within the
ScratchPad folder, and enter the following code snippet:

- (void)scratchPadDetailsViewController:(
 ScratchPadDetailsViewController *)controller
 EditDocumentDetails:(id)sender

{

 self.btnEdit.enabled = NO;

 [self getScratchPadDetails];

 [self dismissViewControllerAnimated:YES completion:nil];

}

In the preceding code snippet, we disable our Edit button and repopulate our table
view controller with the list of documents obtained from our iCloud repository,
by calling the getScratchPadDetails method, and then we close the Add New
Document screen.

Finishing up
We just have a few more things to implement before we have a complete working
application. We will need to implement a couple more methods that will handle
the transition between our Scratch Pad and Add New Document screens when the
+ and Edit buttons have been pressed. Firstly, let's handle the transition between
the Scratch Pad screen and the Navigation controller, to determine whenever a
transition is made on a segue within the storyboard.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

Open the ScratchPadViewController.m implementation ile, located within the
ScratchPad folder, and enter the following code snippet:

- (void) prepareForSegue:(UIStoryboardSegue *)segue
 sender:(id)sender

{

 // Find our Scratch Pad Details View Controller

 // within our Storyboard.

 UINavigationController *navigationController =
 segue.destinationViewController;

 ScratchPadDetailsViewController
 *scratchPadDetailsViewController =
 [[navigationController viewControllers]
 objectAtIndex:0];

 scratchPadDetailsViewController.delegate = self;

 scratchPadDetailsViewController.title = @"New
 Document";

 scratchPadDetailsViewController.navigationController.
 navigationBar.tintColor = [UIColor blueColor];

 scratchPadDetailsViewController.currFile = nil;

 // If we are editing the currently selected document

 if ([segue.identifier isEqualToString:@"EditDocment"])

 {

 NSInteger selectedRow = [[self.tableView
 indexPathForSelectedRow]row];

 ScratchPad *scratchDoc = [self.document
 objectAtIndex:selectedRow];

 // Set the title for our form to show we are

 // editing, pass the document contents.

 scratchPadDetailsViewController.title = [NSString
 stringWithFormat:@"Editing: %@",
 scratchDoc.fileURL.lastPathComponent];

 scratchPadDetailsViewController.navigationController.
 navigationBar.tintColor = [UIColororangeColor];

 scratchPadDetailsViewController.currFile =
 scratchDoc.fileURL.lastPathComponent;

 scratchPadDetailsViewController.document =
 scratchDoc;

 }

}

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

In the preceding code snippet, we use the prepareForSegue: method to
determine whenever a transition to a segue takes place. A check is required
to be made on the identiier of the segue to determine if we are making a
call to the Add New Document screen, pass the selected document to the
ScratchPadDetailsViewController class, and update the header for the
form to show we are currently in the edit mode.

If the determination has been made that editing has not taken place, a new blank
document will be displayed. Next, we set navigationController of the segue
to be the navigation controller of the destination screen, and then cycle through
each of the view controller within the navigation controller properties to get the
ScratchPadDetailsViewController instance.

Requesting entitlements for iCloud
storage
In order to protect the data your application creates, a number of speciic
entitlements need to be created at build-time, in order to use iCloud storage.
You will need to ensure that you have selected the option to enable iCloud for
your application's App ID.

You will need to create a new App ID from within the iOS Provisioning Portal,
located at https://developer.apple.com/ios/manage/bundles/index.action.
If you are using an existing ID, this must not be a wild card one; that is, com.
yourcompany.*.

To enable iCloud services for your App ID, follow these simple steps:

1. Firstly, you will need to create a new App ID or edit the one that you have
created previously.

2. Then, set up your provisioning proile for use with iCloud, by simply
checking the Enable for iCloud checkbox from the Conigure App ID screen:

This material is copyright and is licensed for the sole use by on 7th October 2012

https://developer.apple.com/ios/manage/bundles/index.action
https://developer.apple.com/ios/manage/bundles/index.action
http:///

Storing Documents within the Cloud

[348]

3. Next, you will be presented with a pop-up dialog box, explaining that any
new provisioning proiles that you create using the chosen App ID will be
enabled for iCloud services:

4. Once you have clicked on the OK button, the pop-up dialog box will
disappear, and you will be returned back to the Conigure App ID screen,
and the Enable for iCloud button will be set to green, as shown in the
following screenshot:

5. Click on the Done button to close this screen.

6. Next, click on the Provisioning tab, and then click on the Development tab
to download your Development Provisioning Proiles, as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

7. Next, from the Provisioning tab, click on the Distribution tab to
download your Distribution Provisioning Proiles, as shown in the
following screenshot.

8. Next, from the Project Navigator window, click on your project,
on the Targets section, and then on the Summary page.

9. Scroll down till you get to the Entitlements section.

10. Check the Enable Entitlements and the iCloud Key-Value Store checkboxes.
This will add a ile called ScratchPad.entitlements to your project.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

When you add entitlements to your project, they are bound directly to your
application's provisioning proiles that are used to separate your application's
documents and data repositories from those of other applications that you create.
There are two entitlements that an application can request, depending on which
iCloud features it is required to use. These are explained in the following table:

Entitlement Description

com.apple.developer.ubiquity-
container-identifiers

Use this to request the iCloud document
storage entitlement.

The value of this key is an array of
container-identifier strings. (The first
string in the array must not contain any
wildcard characters.)

com.apple.developer.ubiquity-
kvstore-identifier

Use this to request the iCloud key-value
data store entitlement. The value of this
key is a single container identifier string.

When you specify the container identiier string, it must be in the form of
<TEAMID>.<CUSTOM_STRING>, where <TEAMID> is the unique 10-character
identiier associated with your development team. The <CUSTOM_STRING> identiier
is a reverse-DNS string that identiies the container for storing your application's
documents.

To locate your unique identiier associated with your development
team, log in to the Apple Developer Connection website, and then
go to the Member Center page (http://developer.apple.
com/membercenter). Select the Your Account tab, and then select
Organization Proile (if you have set up your proile to be used as
an organization) from the column on the left of that tab. Your team's
identiier is in the Company/Organization ID ield.

Applications using iCloud document storage can specify multiple containers for
storing documents and data. The com.apple.developer.ubiquity-container-
identifiers key is an array of strings. The following XML from the ScratchPad
entitlements ile shows the keys for an iOS application that can read/write its own
documents, which are stored in the container directory, identiied as shown in the
following highlighted code sections:

This material is copyright and is licensed for the sole use by on 7th October 2012

http://developer.apple.com/membercenter
http://developer.apple.com/membercenter
http:///

Chapter 10

[349]

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPEplist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

 <dict>

 <key>application-identifier</key>

 <string>AXEUZ3F6VR.com.geniesoftstudios</string>

 <key>com.apple.developer.ubiquity-container-identifiers</key>

 <array>

 <string>TEAMID.com.yourcompany.ScratchPad</string>

 </array>

 <key>com.apple.developer.ubiquity-kvstore-identifier</key>

 <string>TEAMID.com.yourcompany.ScratchPad</string>

 <key>get-task-allow</key>

 <true/>

 </dict>

</plist>

The application-identifier ield is your application bundle ID
that will need to be added manually into this ile. The get-task-
allow key will also need to be added manually into this ile also.

The following screenshot displays the property list view within the project navigator
of the ScratchPad.Entitlements entitlements ile:

This material is copyright and is licensed for the sole use by on 7th October 2012

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http:///

Storing Documents within the Cloud

[348]

The TEAMID value (as shown in the previous screenshot), can be obtained from the
Account Summary page of your developer account, and using the Individual ID, as
shown in the following screenshot:

The strings you specify in your entitlement's property-list ile are also
the strings you pass to the URLForUbiquityContainerIdentifier:
method, when requesting the location of a directory in the user's
iCloud storage.

Coniguring your iOS device to use iCloud
Before our application can start to store data within our iCloud application
repository, we will need to properly conigure and set up our application to use
iCloud, and store documents onto an iOS device; the device must irst be running
iOS 5 or later.

The following steps show you how easy it is to set up an iCloud account:

1. From the Settings pane within your device, select iCloud. This is shown
 in the following screenshot:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

2. Next, sign in with your Apple ID and password, and then click on the Sign
In button, as shown in this screenshot.

3. You will need to agree to the iCloud terms and conditions, and then click
on the Agree button to close the pop-up dialog box.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

4. Next, click on the Storage & Backup option to proceed with the next screen:

5. Next, set the Backup to iCloud option to ON, from under the Backup
sections pane. This will automatically start synching your Mail, Contacts,
Calendars, Reminders, Bookmarks, or Notes, and start pushing or pulling
your account information to iCloud.

If you prefer, you can also log in to your iCloud account by using
any web browser at http://www.iCloud.com/, using the
same information you entered into your iOS device. Once you are
successfully logged in, you can choose Contacts or Calendar to see
your data already pulled into the cloud. Making edits via the web
interface will push them directly back to your iOS device.

This material is copyright and is licensed for the sole use by on 7th October 2012

http://www.iCloud.com
http:///

Chapter 10

[349]

iCloud storage space
iCloud is a free service that comes with an initial 5 Gigabytes of free storage space,
upon successful signup. This then allows you to synchronize all of your contact
information, e-mails, and documents. Should you require additional storage space,
Apple provides this to you through the iCloud Settings menu under Storage &
Backup. For $20 a year you can purchase 10GB of space, $40 a year offers 20GB
of space, and $100 a year gets you 50GB of space; these prices are similar to what
Google offers with Gmail.

When using the iCloud storage APIs from within your applications, any documents
that your application stores explicitly in iCloud are not backed up with your
application, as these will already be stored within your iCloud account, and therefore
do not need to be backed up separately.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Storing Documents within the Cloud

[348]

Congratulations, you have inally implemented the methods for your ScratchPad
application. Next, build and run the application by pressing Command +R. The
following screenshot shows the application running on the iOS device with the irst
item in the list being selected:

From the preceding screenshot, you can see that when the item has been selected and
the Edit button has been pressed, the details for the selected row are passed to the
Add New Document form, and all of the document details are read from the iCloud
repository, and then populated to the form. The following screenshot displays the
document existing within our application's container within iCloud:

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Chapter 10

[349]

Summary
In this chapter, we learned about the beneits of using iCloud, and how to
access them through their storage APIs. We learned how to create a ScratchPad
application, making use of and incorporating iCloud functionality to store and
retrieve documents within our applications iCloud repository. We also learned how
we can search and locate a document within our iCloud repository, through the use
of query predicates, as well as learning the process of how to handle and avoid
ile-version conlicts when multiple copies of the same ile is being updated on
more than one device, and then being submitted to the iCloud repository.

This was the inal chapter; refer to the Appendix to learn more about the iOS Human
Interface Guidelines, and what you can and can't include within your applications.
We will also learn about the use of Xcode Instruments, and how we can use these to
track and improve our applications performance. Finally, we will look at the steps
required to submit and distribute our application to the Apple App Store.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Index

A

Accelerometer/gyroscope 18
Action button

adding, to AddressBook app 117, 118
adding, to Facebook app 282-285

ActionSheet 320
ActionUIBarButtonItem 317
Add button

adding, to AddressBook app 116
adding, to ScratchPad app 356
adding, to TaskPriorities App 40
adding, to VeterinaryClinic app 234

AddDocumentDetails: method
implementing, on ScratchPad app 380

additional permissions, Facebook app
requesting 296, 298

Address book 15
AddressBook application

about 95
Action button, adding 117-124
Action button method, implementing

140-142
Add button, adding 116
Add New Contact screen, creating 125-131
building 98-100
cancel method, implementing 133
connect method, implementing 137-140
contact details, transfering using Bluetooth

135
Core Data framework 96
Core Data model, building 102, 103
Core Data model iles, creating 104-108
delete row method, implementing 133, 134
didSelectRowAtIndexPath method,

implementing 134, 135

Game Kit framework 96
Game Kit framework, adding 100, 101
main application screen, creating 112
running 143
save record method, implementing 132, 133
search functionality, implementing 144-150
Storyboard screen, adding 108- 111
table control, adding 112-116

AddTaskDetails method
implementing 61

addWayPoint:method 211
AirPlay functionality

considerations 332
enabling 329
features 329
used, for presenting app content to Apple

TV 330-332
Alerts 18
Apple Video Graphics Adaptor (VGA) 312
Application Delegate class

implementing, in Facebook app 287-291
Audio mixing 17
audioRecorder object 85
Audio recording 17
authorize method 270, 290
AVAudioRecorder class 68
AVFoundation framework

about 68
adding, to VoiceRecorder app 70

B
basic screen orientations

landscape left 32
landscape right 33
portrait 32

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

[396]

portrait upside-down 32
Battery Gauge class

about 151
implementing, on BatteryMonitor app

176-183
BatteryMonitor application

about 151
Battery Monitor functionality, building 164
building 153, 154
Enable Monitoring UISwitch control,

adding 156, 157
Fill Gauge Levels UISwitch control,

adding 158
Increment Bars UIStepper control,

adding 158, 159
main application screen, creating 155
MessageUI framework, adding 154, 155
running 184, 185
Send E-mail Alert UISwitch control, adding

157
System Information (UITextView) control,

adding 160-164
technologies, used 152

Battery Monitor functionality
Battery Gauge class, implementing 176-183
determineBatteryStatus: method,

implementing 167, 170
enableMonitoring: method, implementing

170, 171
illGauge: method, implementing 174, 175
sendEmailAlert: method, implementing

172-174
totalNoBars: method, implementing 175,

176
View Controller class, implementing 165,

166, 167
Berkeley Standard Distribution (BSD) 14
Binary Data data-type 220
Bonjour

about 15
Browse button

adding, to ExternalDisplays app 316
btnAddPhoto: method

implementing 260, 261
btnBrowse: method

implementing, on ExternalDisplays app
323, 324

btnCamera: method
implementing, on ExternalDisplays app

324-326
btnCameraPhoto: method

implementing 261, 262
btnCancel: method

implementing 260
implementing, on ScratchPad app 380

btnPlayVideo: method
implementing, on ExternalDisplays app

327, 328
btnSave: method

implementing, on ScratchPad app 378, 379
btnSavePet: method

implementing 258, 260
btnTransitions: method

implementing, on ExternalDisplays app
332, 333

C

Camera button
adding, to ExternalDisplays app 316

Cancel method
implementing 62

Certiicates 15
CGContextAddLineToPoint 92
CGContextMoveToPoint 92
CGContextSetRGBStrokeColor function 92
CGContextStrokePath function 92
Change Map Type button

adding, to RouteTracker app 195-200
changeMapType: method

implementing, on RouteTracker app 206,
207

CIColor 335
CIContent 335
CIFilter class 311, 335
CIFilterEffects application 337
CIImage class

used, for applying image ilter effects
335-339

CIImageParameters
attribute class 336
Display name 336
Filter category 336
Filter name 336

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

[397]

Input parameters 336
CIVector 335
classes 96
clearOSCLevels method 83-85
clickedButtonAtIndex method 306
CLLocationManagerDelegate protocol 202
Cocoa-Touch layer

about 18
components 18

Collections 15
components, Cocoa-Touch layer

Accelerometer/gyroscope 18
Alerts 18
Controllers 18
Image picker 18
Localization/geographical 18
Multi-touch controls 18
Multi-touch events 18
People picker 18
View hierarchy 18
Web views 18

components, Core OS layer
Berkeley Standard Distribution (BSD) 14
Bonjour 15
Certiicates 15
File system 15
Keychain 15
Mach 3.0 14
OS X Kernel 14
Power management 15
Security 15
Sockets 14

components, Core Services layer
address book 15
collections 15
Core data 16
Core location 16
File access 15
Net services 16
networking 15
Preferences 16
SQLite 16
Threading 16
URL utilities 16

components, iOS SDK
DashCode 11
Instruments 11

iOS Simulator 11
Xcode 11

components, Media layer
Audio mixing 17
Audio recording 17
Core animations 17
Core audio 17
Image formats 17
OpenGL 17
OpenGL ES 17
PDF 17
Quartz 17
Video playback 17

connectionTypesMask property 138
contact details

transferring, Bluetooth used 135, 137
contactsArray array object 123
ContactsViewController interface ile 118,

137
contentsForType: method 369
Controllers 18
Core animations 17
Core audio 17
Core data 16
Core Data framework

about 96, 220
Managed Object 97
Managed Object Context 97
Managed Object Model 97
management object 97

Core Data model
about 102
building 102, 103

Core Data model iles
creating 104-108

Core Data model iles, VeterinaryClinic app
creating 226, 227

Core Data model, VeterinaryClinic app
Add button, adding 234
attributes, adding 223, 224
building 222-225
Edit button, adding 235-243
entity, creating 223
iles, creating 226-229
main application screen, creating 231
screens, navigating between 244-255
Storyboard screen, adding 230, 231

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

[398]

table control, adding 232, 233
Core Data technologies

overview 96
Core Graphics framework 29, 30
Core Image Application Programming

Interface (API) 312
Core Image attribute values

colors 336
loating-point numbers 336
images 336
strings 336
transforms 336
vectors 336

Core Image class 335
Core Image ilters

URL 341
Core Image framework

about 333
diagrammatic representation 334
features 334
uses 334

CoreImage framework 312
Core location 16
Core Location framework

adding, to RouteTracker application 191
Core OS layer

about 14
components 14

Core Services layer
about 15
components 15

CVImageBufferRef 335

D

daemon service 349
dataWithData:UIImagePNGRepresentation

method 220
Delete row method

implementing 63, 262, 263
determineBatteryStatus: method

implementing, on BatteryMonitor app 167,
170

dialogDidComplete 303
didFailWithError method 301, 304

didFinishPickingMediaWithInfo method
262

didLoad method 301
disconnectFromAllPeers method 138
dismissViewControllerAnimated method

380
drawRect: method 92

E

Edit button
adding, to ScratchPad app 356-368
adding, to VeterinaryClinic app 234-243

EditDocumentDetails: method
implementing, on ScratchPad app 381

E-mail button
adding, to VoiceRecorder application 76-80

e-mailRecording method
implementing, in VoiceRecorder app 86-89

enableMonitoring: method
implementing, on BatteryMonitor app 170,

171
entitlements

requesting, for iCloud Storage 383
External Displays application

AirPlay, used 329-332
building 312
content, presenting to external monitor

device 342-344
functionality 320
main application screen, creating 315
Media Player framework, adding 314
running 345
technologies, used 312

ExternalDisplays Functionality
about 320
btnBrowse: method, implementing 323, 324
btnCamera: method, implementing

324-327
btnPlayVideo: method, implementing

327-329
btnTransitions: method, implementing 332,

333
shouldAutorotateToInterfaceOrientation:

method, implementing 344
View Controller class, implementing

320-323

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

[399]

F

Facebook app functionality
additional permissions, requesting 296
Application Delegate class, implementing

287-292
building 286
errors, handling 304
Graph API, using 298-301
loginButton: method, implementing 306
Log Out functionality, adding to app 295
postMessageButton: method, implementing

305, 306
Social channels, integrating with 302, 303
SSO, implementing within app 286
View Controller class, implementing

292-294
Facebook application

about 269
Action button, adding 282-285
building 276, 277
Facebook app functionality, building 286
Facebook iOS SDK, adding 277-279
Facebook iOS SDK, downloading 271
main application screen, creating 280
running 307, 308
sign-in button, adding 280, 281
sign-out button, adding 281, 282
technologies, used 270

Facebook iOS SDK
about 269
adding, to Facebook app 277-279
downloading 271
iOS app, registering with Facebook 272-275
types 270

Facebook iOS SDK types
authentication and authorization 270
Display dialog 270
Make API calls 270

Facebook Query Language (FQL) 298
Facebook SSO process

running 286
FBAccessTokenKey 291
FBDialogDelegate 288
fbDidLogin method 291
fbDidLogout method 291-295

FBExpirationDateKey 291
FBRequestDelegate 293
FBSessionDelegate 288, 292
fbSessionInvalidated method 292
fetchRequest object 122, 241
fetchResultsController object 122
File access 15
ile coordinator 349
ile presenter 349
File system 15
illGauge: method

implementing, on BatteryMonitor app 174,
175

ilter attributes 336
forSaveOperation method 379
frameworks 13
functionality, VeterinaryClinic app

about 255, 257
btnAddPhoto

 method, implementing 260, 261
btnCameraPhoto

 method, implementing 261, 262
btnSavePet

 method, implementing 258, 260
Delete row method, implementing 262, 263

G

Game Kit framework
about 96
adding, to AddressBook app 100, 101

getContactDetails method 121
getPetDetails method 239
getScratchPadData:query method 365
getScratchPadDetails method 363, 381
GKPeerPickerConnectionTypeNearby 138
GKPeerPickerConnectionTypeOnline 138
GKPeerPickerControllerDelegate 137
Graph API, Facebook app

using 298-301

H
handleOpenURL method 290
HelloWorld iOS application

building 19-22
creating 7

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

[400]

objects, placing within View 22-24
Xcode Developer Tools, removing 24

I

iCloud
about 348
daemon service, using 348
documents, storing 348
documents, using 348
ile coordinator 349
ile presenter 349
ile-version conlicts, handling 352
storage APIs, using 350

iCloud document storage 351
iCloud ile-version conlicts

handling 352
iCloud key-value data storage 351
iCloud services

enabling 383, 384
iCloud Storage

entitlements, requesting for 383-388
iCloud storage APIs

about 350
iCloud document storage 351
iCloud key-value data storage 351
using 350, 351

iCloud storage space 391, 392
image ilter effects

applying, CIImage class used 335-339
Image formats 17
Image picker 18
ImagePickerController 320
imagePickerControllerDidCancel 262
imgPhoto control 301
initWithCoder: method 91
iOS app

registering, with Facebook 272-275
iOS Developer Program

registering 8, 9
iOS device

coniguring, for using iCloud 388-390
iOS SDK

components 11
downloading 10
installing 10, 11
system requirements 9

iOS Simulator
about 12
architecture layers 13, 14
default settings 13
features 12

iOS Simulator application
reference link 13

iPad
about 7
BatteryMonitor application 151
RouteTracker application 187
ScratchPad application 347
VeterinaryClinic application 219

isEqualToString method 137
isTracking variable 205

K

kCLErrorDenied error 209
kCLErrorHeadingFailure error 209
kCLErrorLocationUnknown error 209
kCLErrorNetwork error 209
kCLErrorRegionMonitoringDenied error

209
kCLErrorRegionMonitoringFailure error

209
kCLErrorRegionMonitoringSetupDelayed

error 209
key 336
Keychain 15

L

layers, of iOS architecture
about 13, 14
Cocoa-Touch layer 18
Core OS layer 14
Core Services layer 15
Media layer 16

Localization/geographical 18
locationManager

didFailWithError: method
implementing, on RouteTracker app 208

locationManager class 203
locationManager: method

implementing, on RouteTracker app 207,
208

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

[401]

loginButton: method
implementing 306

logoutFacebook method 295
Log Out functionality

adding, to Facebook app 295

M
Mac App Store

link 10
Mach 3.0 14
Mac OS X Lion 10
main application screen, ExternalDisplays

app
about 315
Browse button, adding 316
Camera button, adding 316
Play Video button, adding 317
Transitions button, adding 317
VGA Out button, adding 317-320

main application screen, Facebook app
creating 280

main application screen, RouteTracker app
creating 193

main application screen, ScratchPad app
creating 354

main application screen, VeterinaryClinic
app

creating 231
Managed Object 97
Managed Object Context 97
managedObjectContext method 239
Managed Object Model 97
MapKit framework

about 188
adding, to RouteTracker application 192

Media layer
about 16
components 16

MediaPlayer framework
about 312
adding, to ExternalDisplays app 314

MessageUI framework
about 68, 152
adding to BatteryMonitor app 154, 155
adding, to VoiceRecorder app 71

MFMailComposeViewController class 151,
152

MFMailComposeViewController class
object 68

MFMailComposeViewControllerDelegate
class 81

MKMapTypeHybrid 188
MKMapTypeSatellite 188
MKMapTypeStandard 188
MKMapViewDelegate protocol 188, 202
modal segue 125, 244
MPMoviePlayerController 328
MPMoviePlayerPlaybackDidFinish

Notiication 328
multiple screen orientations

handling 32
Multi-touch controls 18
Multi-touch events 18
mutableFetchResults method 241

N

Navigational controller 31
NavigationController 320
Net services 16
Networking 15
NSArray object 301
NSDictionary object 301
NSFetchedResultsController 118
NSFetchedResultsController object 237
NSFileCoordinator class 349
NSFilePresenter protocol 349
NSManagedObject class 227
NSManagedObjectContext 118
NSManagedObjectContext object 237
NSManagedObjectContextthat 253
NSMutableArray array 118, 237
NSSearchPathForDirectoriesInDomains

class 68, 83
numberOfRowsInSection method 123, 242,

361

O

OpenGL 17
OpenGL ES 17
OSCLevel array 90

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

[402]

OSCLevel NSMutableArray object 90
OS X Kernel 14

P

PDF 17
peerPickerControllerDidCancel: method

139
People picker 18
performFetch method 122
PetDetails class iles 228
PetDetails entity

creating 223
PetDetails.h interface 228
PetDetailsViewController.h interface 254
petListArray property 241
PetsViewController interface ile 237
Play button

adding, to VoiceRecorder application 74
Play Video button

adding, to ExternalDisplays app 317
PopOverController 320
postMessageButton: method

implementing 305, 306
Power management 15
Preferences 16
push notiications 302

Q

Quartz 17
QuartzCore framework 312
Quartz Core frameworks

URL 341

R

receiveData:fromPeer:inSession
context: method 142

Refresh button
adding, to TaskPriorities App 41-43

Refresh button method
implementing 62

Refresh Map button
adding, to RouteTracker app 194, 195

refreshMap: method
implementing, on RouteTracker app 205

reloadData method 122, 241
removeAllObjects method 91
requested permission, Facebook application

basic information (no permissions) 296
extended permissions 296
open graph permissions 296
page permissions 296
user and friend permissions 296

requestWithMethodName method 301
resetWayPoints method 206, 211
rippleEffect transition effect 340
RouteTracker application

about 187
building 189, 190
Change Map Type button, adding 195-200
Core Location framework, adding 191
main application screen, creating 193
MapKit framework, adding 192
Refresh Map button, adding 194, 195
RouteTracker functionality, building 200
running 215, 216
Start Tracking button, adding 193, 194
technologies, used 188

RouteTracker functionality
building 200
changeMapType: method, implementing

206, 207
locationManager:didFailWithError: method,

implementing 208
locationManager: method, implementing

207, 208
refreshMap: method, implementing 205,

206
shouldAutorotateToInterfaceOrientation:

method, implementing 210
startTracking: method, implementing 204,

205
TrackMapView class, implementing

210-214
View Controller class, implementing

201-203

S

Satellite or Hybrid views 188
Save record method

implementing 61

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

[403]

ScratchPad application
about 347
Add button, adding 356
building 352-354
Edit button, adding 356-368
main application screen, creating 354
running 381, 383
screens, navigating between 369-376
table control, adding 354, 355

ScratchPadDetailsViewController class
protocol 359

ScratchPad Functionality
about 376, 377
AddDocumentDetails: method,

implementing 380
btnCancel: method, implementing 380
btnSave: method, implementing 378-380
EditDocumentDetails: method,

implementing 381
Security 15
segue 31, 125
segway 27
sendEmailAlert: method

implementing, on BatteryMonitor app
172-174

session:didChangeState: method 139
setBackgroundColor method 377
shouldAutorotateToInterfaceOrientation 32
shouldAutorotateToInterfaceOrientation:

method
implementing, on External Displays app

344
implementing, on RouteTracker app 210

showInView:self:view method 306
Sign-in button

adding, to Facebook app 280, 281
Sign-out button

adding, to Facebook app 281, 282
Single Sign-On (SSO) feature

about 269
implementing, in Facebook app 286

social channel dialogs
Feed dialog 302
Requests dialog 302

social channels
integrating, with Facebook app 302, 303

Sockets 14
Software Development Kit (SDK) 7
SQLite 16
stack 96
startPlayback method 84
Start Recording button

adding, to VoiceRecorder application 73, 74
startRecord method 84
startTime variable 205
Start Tracking button

adding, to RouteTracker app 193, 194
startTracking: method

implementing, on RouteTracker app 204,
205

Stop button
adding, to VoiceRecorder application 75

stopPlayback method 84
stopUpdatingHeading 205
stopUpdatingLocation 205
Storyboard screen

adding, to AddressBook app 108-111
adding, to VeterinaryClinic app 230, 231

T

Tab Bar controller 32
table control

adding, to ScratchPad app 354, 355
adding, to TaskPriorities App 33

TaskPriorities application
about 27
Add a record, implementing 61, 62
Add button, adding 40
building 28, 29
Cancel method, implementing 62
Delete row method, implementing 63
main application screen, creating 31, 32
multiple screen orientations, handling 32
Refresh button, adding 41-51
Refresh button method, implementing 62
required frameworks, adding 30
running 64, 65
Save record method, implementing 61
screens, navigating between using

Storyboards 51-60
table control, adding 33-39
Xcode, creating 28

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

[404]

technologies, ExternalDisplays app
CoreImage 312
MediaPlayer 312
QuartzCore 312, 313

technologies, ScratchPad app
iCloud 348

Threading 16
totalNoBars: method

implementing, on BatteryMonitor app 175,
176

TouchedEnded 18
TouchesBegan 18
TouchesMoved 18
TrackingOverlay class 187
TrackMapView class

implementing, on RouteTracker app
210-214

trackMapView custom class 203
transitions

about 340
applying, to images 340, 341

Transitions button
adding, to ExternalDisplays app 317

U

ubiquitousPackage class 379
UIActionSheet class 306
UIActionSheetDelegate 293, 322
UIActionSheetDelegate protocol 202
UIAlertView class 18
UIBarButtonItem control 317
UIDevice class 152
UIDocumentSaveForCreating property 379
UIGraphicsGetCurrentContext function 92,

212
UIImagePickerControllerDelegate 253, 322
UIImagePickerControllerMediaType

property 326
UIImagePickerControllerMediaURL 326
UINavigationBar screen 114
UINavigationControllerDelegate 253, 322
UIPopoverControllerDelegate 253
UIPopOverControllerDelegate 322
UIScreen class 311
UISearchBarDelegate object 137
UITableView control 28, 98

UITableViewController class 236
UITableViewController control 33, 112

implementing 112
UIViewAnimationCurveEaseInOut 340
uninstall-devtools script 24
URLForUbiquityContainerIdentiier

method 363
URL utilities 16

V

VeterinaryClinic application
about 219
building 220-222
Core Data model, building 222, 223
functionality 255
running 264-266
technologies, using 220

VeterinaryClinic.xcdatamodeld ile 223
VGA Out button

adding, to ExternalDisplays app 317
Video playback 17
ViewController 24
View Controller class

adding, to VoiceRecorder application 80-83
implementing, on BatteryMonitor app

165-167
implementing, on ExternalDisplays app

320-323
implementing, on Facebook app 292-294
implementing, on RouteTracker app

201-203
ViewController.h interface 319
viewDidAppear method 122, 241
viewDidLoad method 121, 202, 239, 294, 362,

377
View hierarchy 18
Visualizer class 84
voicePlayback method

implementing, in VoiceRecorder app 85
voicePlaybackStop method

implementing, in VoiceRecorder app 86
VoiceRecorder application

about 67
AVFoundation framework, adding 70
building 68-70
E-mail button, adding 76-80

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

[405]

e-mailRecording method, implementing 86,
87, 89

main application screen 72, 73
MessageUI framework, adding 71, 72
overview 68
Play button, adding 74
running 92-94
Start Recording button, adding 73, 74
Stop button, adding 75
View Controller class, implementing 80-83
voicePlaybackStop method, implementing

86
voiceRecord method, implementing 83-85
VoiceVisualizer class, implementing 89-92

voiceRecord method
implementing, in VoiceRecorder app 83, 84

VoiceVisualizer class
implementing, in VoiceRecorder app 89-92

W

wayPoints array 211
wayPointsNSMutableArray object 211
Web views 18

X
Xcode

about 10
installing 10

Xcode Developer Tools 7

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Thank you for buying

iPad Enterprise Application Development
BluePrints

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more speciic and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it irst before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Oracle ADF Enterprise

Application Development—Made
Simple
ISBN: 978-1-849681-88-9 Paperback: 396 pages

Successfully plan, develop, test and deploy enterprise
applications with Oracle ADF

1. Best practices for real-life enterprise application
development

2. Proven project methodology to ensure success
with your ADF project from an Oracle ACE
Director

3. Understand the effort involved in building an
ADF application from scratch, or converting an
existing application

Microsoft SQL Azure: Enterprise
Application Development
ISBN: 978-1-849680-80-6 Paperback: 420 pages

Build enterprise-ready applications and projects with
SQL Azure

1. Develop large scale enterprise applications
using Microsoft SQL Azure

2. Understand how to use the various third
party programs such as DB Artisan, RedGate,
ToadSoft etc developed for SQL Azure

3. Master the exhaustive Data migration and Data
Synchronization aspects of SQL Azure.

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

Microsoft SharePoint 2010
Enterprise Applications on

Windows Phone 7
ISBN: 978-1-849682-58-9 Paperback: 252 pages

Create enterprise-ready websites and applications that
access Microsoft SharePoint on Windows Phone 7

1. Provides step-by-step instructions for integrating
Windows Phone 7-capable web pages into
SharePoint websites

2. Provides an overview of creating Windows
Phone 7 applications that integrate with
SharePoint services

3. Examines Windows Phone 7's enterprise
capabilities

4. Highlights SharePoint communities and their
use in a Windows Phone 7-connected enterprise

Amazon Web Services: Migrating
your .NET Enterprise Application
ISBN: 978-1-849681-94-0 Paperback: 336 pages

Evaluate your Cloud requirements and successfully
migrate your .NET Enterprise application to the
Amazon Web Services Platform

1. Get to grips with Amazon Web Services from a
Microsoft Enterprise .NET viewpoint

2. Fully understand all of the AWS products
including EC2, EBS, and S3

3. Quickly set up your account and manage
application security

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

This material is copyright and is licensed for the sole use by on 7th October 2012

http:///

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting and Installing the iOS SDK
	Getting and installing the iOS SDK
	The iOS Simulator
	Layers of the iOS architecture
	The Core OS layer
	The Core Services layer
	The Media layer
	The Cocoa-Touch layer

	Building the HelloWorld application
	Placing objects within the View
	Removing the Xcode Developer Tools

	Summary

	Chapter 2: Task Priorities – Building a TaskPriorities iOS App
	Building the TaskPriorities app
	Adding the required frameworks
	Creating the main application screen
	Handling multiple screen orientations when the device is rotated
	Adding the table control to hold item data
	Adding the Add button
	Adding the Refresh button
	Navigating between screens using Storyboards
	Implementing the Save record method
	Implementing the Add a record to the table method
	Implementing the Cancel method
	Implementing the Refresh button method
	Implementing the Delete row method

	Finishing up

	Summary

	Chapter 3: VoiceRecorder App – Audio Recording and Playback
	Overview of the technologies
	Building the VoiceRecorder app
	Adding the AVFoundation and MessageUI frameworks
	Creating the main application screen
	Adding the Start Recording button
	Adding the Play button
	Adding the Stop button
	Adding the E-mail button
	Implementing the View Controller class
	Implementing the voiceRecord method
	Implementing the voicePlayback method
	Implementing the voicePlaybackStop method
	Implementing the e-mailRecording method
	Implementing the VoiceVisualizer class

	Finishing up
	Summary

	Chapter 4: Enhanced AddressBook App – Core Data
	Overview of the Core Data technologies
	Building the AddressBook application
	Adding the GameKit framework
	Building the Core Data model
	Creating our Core Data model files
	Adding the Storyboard screen
	Creating the main application screen
	Adding a table control to hold the item data
	Adding the Add button
	Adding the Action button
	Navigating between screens using Storyboards
	Implementing the save record method
	Implementing the cancel method
	Implementing the delete row method
	Implementing the didSelectRowAtIndexPath method

	Transferring contact details using Bluetooth
	Implementing the connect method
	Implementing the Action button method

	Finishing up
	Implementing the search functionality

	Summary

	Chapter 5: BatteryMonitor Application
	Overview of the technologies
	Building the BatteryMonitor application
	Adding the MessageUI framework to the project
	Creating the main application screen
	Adding the Enable Monitoring UISwitch control
	Adding the Send E-mail Alert UISwitch control
	Adding the Fill Gauge Levels UISwitch control
	Adding the Increment Bars UIStepper control
	Adding the System Information (UITextView) control

	Building the Battery Monitor functionality
	Implementing the View Controller class
	Implementing the determineBatteryStatus: method
	Implementing the enableMonitoring: method
	Implementing the sendEmailAlert: method
	Implementing the fillGauge: method
	Implementing the totalNoBars: method
	Implementing the Battery Gauge class

	Finishing up
	Summary

	Chapter 6: RouteTracker Application
	Overview of the technologies
	Building the RouteTracker application
	Adding the Core Location and MapKit frameworks
	Creating the main application screen
	Adding the Start Tracking button
	Adding the Refresh Map button
	Adding the Change Map Type button

	Building the RouteTracker functionality
	Implementing the View Controller class
	Implementing the startTracking: method
	Implementing the refreshMap: method
	Implementing the changeMapType: method
	Implementing the locationManager: method
	Implementing the locationManager:didFailWithError: method
	Implementing the shouldAutorotateToInterfaceOrientation: method
	Implementing the TrackMapView class

	Finishing up
	Summary

	Chapter 7: VeterinaryClinic Application
	Overview of the technologies
	Building the VeterinaryClinic application
	Building the Core Data model
	Creating our Core Data model files
	Adding the Storyboard screen
	Creating the main application screen
	Adding the table control to hold pet information
	Adding the Add button
	Adding the Edit button
	Navigating between screens using Storyboards

	Functionality
	Implementing the btnSavePet: method
	Implementing the btnCancel: method
	Implementing the btnAddPhoto: method
	Implementing the btnCameraPhoto: method
	Implementing the Delete row method

	Finishing up
	Summary

	Chapter 8: Social Networking Application
	Overview of the technologies
	Downloading the Facebook iOS SDK
	Registering your iOS app with Facebook

	Building the Social Networking application
	Adding the Facebook iOS SDK to our project
	Creating the main application screen
	Adding the Sign-in button
	Adding the Sign-out button
	Adding the Action button

	Building the Facebook app functionality
	Implementing SSO within your app
	Implementing the Application Delegate class
	Implementing the View Controller class
	Adding the LogOut functionality to your app
	Requesting additional permissions
	Using the Graph API
	Integrating with social channels
	How to handle errors
	Implementing the postMessageButton: method
	Implementing the loginButton: method

	Finishing up
	Summary

	Chapter 9: External Displays using Airplay and Core Image
	Overview of the technologies
	Building the ExternalDisplays application
	Adding the Media Player framework to our project
	Creating the main application screen
	Adding the Browse button
	Adding the Camera button
	Adding the Play Video button
	Adding the Transitions button
	Adding the VGA Out button

	Functionality
	Implementing the View Controller class
	Implementing the btnBrowse: method
	Implementing the btnCamera: method
	Implementing the btnPlayVideo: method

	Using AirPlay to present application content to Apple TV
	Implementing the btnTransitions: method

	Understanding the Core Image framework
	Applying image filter effects using the CIImage class
	Applying transitions to images

	Presenting content out to an external monitor device
	Implementing the shouldAutorotateToInterfaceOrientation: method

	Finishing up
	Summary

	Chapter 10: Storing Documents within the Cloud
	Overview of the technologies
	Methods to store and use documents
within iCloud
	The file coordinator
	The file presenter

	Using the iCloud storage APIs
	Handling iCloud file-version conflicts

	Building the ScratchPad application
	Creating the main application screen
	Adding the table control to hold iCloud document data
	Adding the Add button
	Adding the Edit button
	Navigating between screens using Storyboards

	Functionality
	Implementing the btnSave: method
	Implementing the btnCancel: method
	Implementing the AddDocumentDetails: method
	Implementing the EditDocumentDetails: method

	Finishing up
	Requesting entitlements for iCloud Storage
	Configuring your iOS device to use iCloud
	iCloud storage space

	Summary

	Index

