

iPhone® and iPad® aPP

24-hour Trainer

inTroducTion . xxv

LeSSon 1 Hello iOS! . 1

LeSSon 2 The iOS Simulator .17

LeSSon 3 A Tour of Xcode .21

LeSSon 4 iOS Application Basics . 39

LeSSon 5 Introduction to Storyboards .61

LeSSon 6 Handling User Input .81

LeSSon 7 Communicating with Your Users . 93

LeSSon 8 Adding Images to Your View . 103

LeSSon 9 Pickers . 111

LeSSon 10 Date Pickers . 119

LeSSon 11 Custom Pickers .127

LeSSon 12 Navigation Controllers . 135

LeSSon 13 Table Views .147

LeSSon 14 Static Table Views . 161

LeSSon 15 Tab Bars and Toolbars. 173

LeSSon 16 Creating Page-Based Applications . 187

LeSSon 17 Creating UI Elements Programmatically . 197

LeSSon 18 Creating Views That Scroll . 205

LeSSon 19 Popovers and Modal Views . 217

LeSSon 20 Tweeting with Twitter . 231

LeSSon 21 Basic File Handling . 239

LeSSon 22 Property Lists . 249

LeSSon 23 Application Settings . 259

LeSSon 24 iTunes File Sharing Support . 269

LeSSon 25 Introduction to iCloud Storage . 277

LeSSon 26 Introduction to Core Data . 303

LeSSon 27 XML Parsing with NSXMLParser .317

LeSSon 28 Consuming SOAP Web Services . 335

LeSSon 29 Touches and Gestures . 349

LeSSon 30 Printing . 359

LeSSon 31 Basic Animation with Timers . 367

LeSSon 32 Introduction to Core Image . 375

LeSSon 33 Building Universal Applications . 383

LeSSon 34 Where Am I? Introducing Core Location . 391

LeSSon 35 Introducing Map Kit . 403

LeSSon 36 Using the Camera and Photo Library . 413

LeSSon 37 Introduction to Core Motion . 421

LeSSon 38 Building Background-Aware Applications . 435

aPPendix a What’s on the DVD? . 447

index .451

 ⊲ BonuS MaTeriaL

aPPendix B Introduction to Programming with Objective-C . 1

aPPendix c Introduction to ARC . 37

aPPendix d Testing on an iOS Device . 55

aPPendix e Ad Hoc Distribution . 65

aPPendix F App Store Distribution . 75

iPhone® and iPad® app
24-hour Trainer

iPhone® and iPad® app
24-hour Trainer

Abhishek Mishra

Gene Backlin

iPhone® and iPad® App 24-Hour Trainer

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

ISBN: 978-1-118-13081-0
ISBN: 978-1-118-22507-3 (ebk)
ISBN: 978-1-118-23837-0 (ebk)
ISBN: 978-1-118-26314-3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and speciically disclaim all warranties, including without limita-
tion warranties of itness for a particular purpose. No warranty may be created or extended by sales or promotional materials.
The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding
that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable
for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a poten-
tial source of further information does not mean that the author or the publisher endorses the information the organization or
Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this
work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at http://booksupport
.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012930548

Trademarks: DVD and software compilation copyright © 2012 John Wiley & Sons, Inc. All rights reserved. Individual pro-
grams are copyrighted by their respective owners and may require separate licensing. This DVD may not be redistributed
without prior written permission from the publisher. The right to redistribute the individual programs on the DVD depends
on each program's license. Consult each program for details. Wiley, Wrox, and the Wrox logo are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its afiliates, in the United States and other countries, and may not be used
without written permission. iPhone and iPad are registered trademarks of Apple, Inc. All other trademarks are the property of
their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://booksupport.wiley.com

To my wife Sonam, for her love and support

through all the years we’ve been together.

—Abhishek Mishra

This book is being dedicated to the family unit,

past, present and future. May it never lose

sight of its existence.

—Gene Backlin

aBouT The auThorS

aBhiShek MiShra has been developing software for over 12 years and has
experience with a diverse set of programming languages and platforms. He
holds a master’s degree in computer science from the University of London
and is a freelance consultant and trainer specializing in iOS development.
He lives with his wife in London, and when not working, spends his time
stargazing under Scottish skies.

Gene BackLin’S irst calculating machine was a slide rule. If you ask him
about the information revolution, his response would be “fascinating.” He
has developed on computers that loaded programs from paper tape, the revo-
lutionary NeXT computer, which he still has two of, to the iPhone and iPad.
Gene feels very fortunate to have not only seen an industry evolve, but also
to have been an active participant in it. His childhood interest in electronics
helped him break into the computer industry. He started building Heathkit
walkie-talkies, leading him to build the Heathkit H-8 digital computer and

H-9 video terminal, which he still has, in 1978. He taught himself programming using Extended
Benton Harbor Basic and after the IBM-PC was introduced, Gene built the Heathkit H-151
PC-compatible computer, which is still running today.

Gene is owner and principal consultant of MariZack Consulting, formed in 1991 with one purpose —
to help. He has been helping clients for over 30 years, including IBM, McDonnell Douglas, Waste
Management, U.S. Environmental Protection Agency, Nations Bank, Bank of America, Bank One,
and Sears to name a few. He is also a faculty member of DePaul University’s College of Computing
and Digital Media and has previously penned Developing NeXTSTEP Applications in 1995, and
Professional iPhone and iPad Application Development in 2010.

TechnicaL ediTor

aLLan evanS is a veteran multimedia developer with almost 20 years of
programming experience. He has turned his attention to iOS devices, cur-
rently working as a Mobile Architect for Walgreens. He has worked on
iOS projects for Sears Holdings, Tribune Company and CCC Information
Systems. He has spoken about iOS at SecondConf 2010 (www.secondconf
.com) and presented “An Introduction to iOS and Xcode” to the Chicago
Adobe Users Group (www.augchicago.com). In his spare time, he has taken
a liking to physical computing (Arduino and its ilk), and has been known to

write screenplays and graphic novels.

http://www.secondconf.com
http://www.secondconf.com
http://www.augchicago.com

acquiSiTionS ediTor

Mary James

ProjecT ediTor

Ed Connor

TechnicaL ediTor

Allan Evans

ProducTion ediTor

Daniel Scribner

coPy ediTor

Kim Cofer

ediToriaL ManaGer

Mary Beth Wakeield

FreeLancer ediToriaL ManaGer

Rosemarie Graham

aSSociaTe direcTor oF MarkeTinG

David Mayhew

MarkeTinG ManaGer

Ashley Zurcher

BuSineSS ManaGer

Amy Knies

ProducTion ManaGer

Tim Tate

vice PreSidenT and execuTive

GrouP PuBLiSher

Richard Swadley

vice PreSidenT and execuTive PuBLiSher

Neil Edde

aSSociaTe PuBLiSher

Jim Minatel

ProjecT coordinaTor, cover

Katie Crocker

coMPoSiTor

Craig Woods, Happenstance Type-O-Rama

ProoFreader

Jen Larsen, Word One

indexer

Ron Strauss

cover deSiGner

Ryan Sneed

cover iMaGe

© webphotographeer / iStockphoto

verTicaL WeBSiTeS SuPerviSinG Producer

Rich Graves

verTicaL WeBSiTeS aSSociaTe Producer

Josh Frank

crediTS

acknoWLedGMenTS

ThiS Book WouLd noT have Been PoSSiBLe without the support of the team at John Wiley and
Sons—Mary James, Ed Connor, and Kim Cofer. I would also like to thank Allan Evans for his keen
eye for detail and Gene Backlin for his continued support throughout the project. It has been my
privilege to work with you. Thank you.

—Abhishek Mishra

i WouLd FirST Like To Thank My WiFe, Roseann, my son Zachary, and my daughter Marissa, for
putting up with me once again while I was writing this book, and my son Ethan for keeping me
young and remembering what you are to do if this idea ever comes up again, but this time really
hold me to it!

I would also like to thank my mother Mary Louise, father Eugene William and daughter Hannah
Angel, for giving me the gift of themselves and spirit, which I carry with me every day of my life.
I miss you.

To Helen and Jerry, you will never know how much you mean to me, especially the gum!

To Allan, I am glad we were able to work together again. To Abby, it has been fun working together
on this.

This book is more than just words and code. It is time and people. The pages you hold in your hand
are a snapshot of events that somehow managed to come together with the very hard work of a lot
of people; Ed, Mary and Kim speciically, I want to thank you all for everything that you did, it is
greatly appreciated.

Finally I would like to thank Jean-Marc Krikorian especially for once again really doing nothing as
he did in 1995 and 2010.

—Gene Backlin

conTenTS

INTRODUCTION xxv

LeSSon 1: heLLo ioS! 1

iOS Developer Essentials 1
A Suitable Mac 1

A Device for Testing 2

Device Diferences 2

An iOS Developer Account 4

The Oicial iOS SDK 6

The Typical App Development Process 8

Home Screen Icon 10

Application Launch Image 10

Try It 11
Lesson Requirements 11

Hints 12

Step by Step 12

LeSSon 2: The ioS SiMuLaTor 17

Features of the iOS Simulator 17
Installing and Uninstalling Applications 19

Limitations of the iOS Simulator 20

LeSSon 3: a Tour oF xcode 21

The Welcome Screen 21
Selecting a Project Template 21
Setting up Project Options 23
An Overview of the Xcode IDE 24

The Navigator Area 24

The Editor Area 29

The Utility Area 32

The Library Area 34

The Debugger Area 35

The Toolbar 35

Try It 37
Lesson Requirements 37

Hints 37

Step-by-Step 37

xiv

CONTENTS

LeSSon 4: ioS aPPLicaTion BaSicS 39

Application States 39
Windows, Views, and View Controllers 41
Frameworks 43

The UIButton Class 44

The UILabel Class 45

Creating User Interface Elements 46
Creating Outlets 50

Creating Actions 52

Adding Interactivity 54

Try It 56
Lesson Requirements 56

Hints 56

Step-by-Step 57

LeSSon 5: inTroducTion To SToryBoardS 61

Try It 68
Lesson Requirements 68

Hints 69

Step-by-Step 69

LeSSon 6: handLinG uSer inPuT 81

Text Fields 81
Text Views 85
Try It 86

Lesson Requirements 86

Hints 86

Step-by-Step 86

LeSSon 7: coMMunicaTinG WiTh your uSerS 93

Alert Views 93
Action Sheets 97
Try It 99

Lesson Requirements 99

Hints 99

Step-by-Step 99

LeSSon 8: addinG iMaGeS To your vieW 103

The UIImage Class 103
The UIImageView Class 105

xv

CONTENTS

Try It 106
Lesson Requirements 106

Hints 106

Step-by-Step 107

LeSSon 9: PickerS 111

Arrays in Objective-C 113
Try It 114

Lesson Requirements 114

Hints 115

Step-by-Step 115

LeSSon 10: daTe PickerS 119

Dates in Objective-C 121
Try It 122

Lesson Requirements 123

Hints 123

Step-by-Step 123

LeSSon 11: cuSToM PickerS 127

Try It 128
Lesson Requirements 128

Hints 129

Step-by-Step 129

LeSSon 12: naviGaTion conTroLLerS 135

Navigation Controller Interface 135
Navigation Bar 136

Navigation View 137

Navigation Toolbar 137

Navigation Controller Hierarchy 137
Navigation Stack Management 137

xib-Based Applications 138

Storyboard-Based Applications 138

Try It 140
Lesson Requirements 140

Hints 140

Step-by-Step 140

xvi

CONTENTS

LeSSon 13: TaBLe vieWS 147

Table View Worklow 148
Display Values 148

Row Selection 148

Table View Styles 148
Delegate Methods 149

Data Source Methods 150

New for iOS 5 150
Table View Additions 150

Constants 151

Storyboard Additions 151

Try It 153
Lesson Requirements 153

Hints 153

Step-by-Step 153

LeSSon 14: STaTic TaBLe vieWS 161

Table View Types 161
Static 161

Dynamic Prototype 161

Table View Design 163
Display Considerations 163

Try It 163
Lesson Requirements 163

Hints 164

Step-by-Step 164

LeSSon 15: TaB BarS and TooLBarS 173

Tab Bars 173
Appearance Characteristics 173

Usage Guidelines 174

Toolbars 174
Appearance Characteristics 174

Usage Guidelines 174

XIB-Based Xcode 4.2 Changes 175
Try It 176

Lesson Requirements 176

Hints 176

Step-by-Step 177

xvii

CONTENTS

LeSSon 16: creaTinG PaGe-BaSed aPPLicaTionS 187

The PageViewController Class 187
Instantiation 187

Delegate and Data Source 189

Preparing the Initial Page 189

The Page-Based Application Template 190
Try It 193

Lesson Requirements 193

Hints 194

Step-by-Step 194

LeSSon 17: creaTinG ui eLeMenTS ProGraMMaTicaLLy 197

UIButton 197
UILabel 199
UIImageView 201
Try It 201

Lesson Requirements 202

Hints 202

Step-by-Step 202

LeSSon 18: creaTinG vieWS ThaT ScroLL 205

The UIScrollView Class 205
Scroll Views and Text Fields 208
Try It 209

Lesson Requirements 209

Hints 210

Step-by-Step 210

LeSSon 19: PoPoverS and ModaL vieWS 217

Popovers 217
Usage Guidelines 218

Presenting the Popover 218

Dismissing the Popover 218

Modal Views 218
Usage Guidelines 218

Presentation Styles 219

Transition Styles 219

Presenting the Modal View 219

Dismissing the Modal View 219

xviii

CONTENTS

Try It 220
Lesson Requirements 220

Hints 220

Step-by-Step 220

LeSSon 20: TWeeTinG WiTh TWiTTer 231

The Tweet Sheet 232
Try It 234

Lesson Requirements 234

Hints 234

Step-by-Step 234

LeSSon 21: BaSic FiLe handLinG 239

The IOS File System 239
Introducing the NSFileManager Class 240
Object Serialization 241
Try It 242

Lesson Requirements 242

Hints 243

Step-by-Step 243

LeSSon 22: ProPerTy LiSTS 249

Property List Types 249
Creating Property Lists 250

Programmatically 250

Property List Editor 251

Try It 251
Lesson Requirements 251

Hints 252

Step-by-Step 252

LeSSon 23: aPPLicaTion SeTTinGS 259

Adding a Settings Bundle 259
Reading Preferences with Code 263
Try It 263

Lesson Requirements 264

Hints 264

Step-by-Step 264

xix

CONTENTS

LeSSon 24: iTuneS FiLe SharinG SuPPorT 269

Try It 271
Lesson Requirements 271

Hints 271

Step-by-Step 271

LeSSon 25: inTroducTion To icLoud SToraGe 277

Basic Concepts 277
Preparing to Use the iCloud Storage APIs 278

Create an iCloud-enabled App ID 278

Create an Appropriate Provisioning Proile 281

Enable Appropriate Entitlements in Your Xcode Project 283

Checking for Service Availability 285
Using iCloud Document Storage 285

Creating a New iCloud Document 287

Opening an Existing Document 288

Saving a Document 288

Searching for Documents on iCloud 289

Try It 290
Lesson Requirements 290

Hints 291

Step-by-Step 291

LeSSon 26: inTroducTion To core daTa 303

Basic Concepts 303
Managed Object 303

Managed Object Context 303

Persistent Store Coordinator 303

Managed Object Model 304

Instantiating Core Data Objects 307
Writing Managed Objects 308
Reading Managed Objects 309
Try It 309

Lesson Requirements 309

Hints 310

Step-by-Step 310

LeSSon 27: xML ParSinG WiTh nSxMLParSer 317

XML Fundamentals 318
Elements and Tags 318

Attributes 319

xx

CONTENTS

Special Characters 319

Comments and Processing Instructions 319

The NSXMLParser Class 320
SAX and DOM Parsers 320

The NSXMLParserDelegate Protocol 321
A Simple XML File and How it Is Parsed 322

Loading the XML Document into an NSData Object 323

Instantiating an NSXMLParser Object 323

Instantiating a Delegate Object 324

Begin Parsing 324

The XMLParser Delegate Methods 324

Try It 328
Lesson Requirements 328

Hints 328

Step-by-Step 328

LeSSon 28: conSuMinG SoaP WeB ServiceS 335

Try It 341
Lesson Requirements 341

Hints 341

Step-by-Step 341

LeSSon 29: ToucheS and GeSTureS 349

Touch Events 349
Touch Phases 350

Tap Counting 350

Gesture Events 350
Gesture Handling 351

Gesture Recognizer Phases 351

Try It 351
Lesson Requirements 352

Hints 352

Step-by-Step 352

LeSSon 30: PrinTinG 359

Preparing Content for Printing 360
UIPrintInfo 360

UIPrintPaper 361

UIPrintInteractionController 362

xxi

CONTENTS

Try It 363
Lesson Requirements 363

Hints 364

Step-by-Step 364

LeSSon 31: BaSic aniMaTion WiTh TiMerS 367

Animating UIView Subclasses 368
Try It 370

Lesson Requirements 370

Hints 370

Step-by-Step 370

LeSSon 32: inTroducTion To core iMaGe 375

Images and Filters 375
Using Core Image 377
Try It 378

Lesson Requirements 378

Hints 378

Step-by-Step 379

LeSSon 33: BuiLdinG univerSaL aPPLicaTionS 383

Examining the Universal Application Template 383
Try It 386

Lesson Requirements 386

Hints 386

Step-by-Step 387

LeSSon 34: Where aM i? inTroducinG core LocaTion 391

Handling Location Updates 393
Handling Errors and Checking Hardware Availability 394

Geocoding and Reverse Geocoding 396

Obtaining Compass Headings 397
Try It 398

Lesson Requirements 398

Hints 398

Step by-Step 399

LeSSon 35: inTroducinG MaP kiT 403

Adding Annotations 405

xxii

CONTENTS

Try It 407
Lesson Requirements 407

Hints 408

Step-by-Step 408

LeSSon 36: uSinG The caMera and PhoTo LiBrary 413

Try It 416
Lesson Requirements 416

Hints 417

Step-by-Step 417

LeSSon 37: inTroducTion To core MoTion 421

Accelerometers and Gyroscopes 421
Core Motion Basics 423
Checking Hardware Availability 425
Handling Accelerometer Events 426
Handling Gyroscope Events 427
Try It 427

Lesson Requirements 427

Hints 428

Step-by-Step 428

LeSSon 38: BuiLdinG BackGround-aWare aPPLicaTionS 435

Understanding Background Suspension 435
Executing Background Code 436
Creating Local Notiications 438
Try It 439

Lesson Requirements 440

Hints 440

Step-by-Step 440

aPPendix a: WhaT’S on The dvd? 447

System Requirements 447
Using the DVD on a PC 447
Using the DVD on a Mac 448
What’s on the DVD 448
Troubleshooting 448
Customer Care 449

INDEX 451

xxiii

CONTENTS

BonuS MaTeriaL

aPPendix B: inTroducTion To ProGraMMinG WiTh oBjecTive-c 1

Fundamental Programming Concepts 1
Typing Your Program 2

Compiling 2

Linking to Create an Executable 2

Testing and Debugging 3

How Xcode Fits Into This Picture 3

Variables, Statements, and Expressions 3
Variables 5

Statements 7

Expressions and Operators 8

Making Decisions and Performing Repetitive Tasks 10
The if and if ... else statements 10

 The for Statement 13

 The while Statement 15

The do…while Statement 16

The break and continue Statements 17

Introduction to Object-Oriented Programming (OOP) 17
The Need for Object-Oriented Programming 19

Key Concepts of Object-Oriented Programming 20

Creating an Objective-C Class 25

Implementing the Class 30

Sending Messages to Objects 32

Instantiating Objects 33

Objective-C Properties 33

aPPendix c: inTroducTion To arc 37

Object Ownership 37
Converting Projects to ARC 40

aPPendix d: TeSTinG on an ioS device 55

Obtaining and Registering UDIDs 55
Creating an App ID (Bundle Identiier) 57
Creating a Development Certiicate 58
Creating a Provisioning Proile 60
Coniguring Your Project 62

xxiv

CONTENTS

aPPendix e: ad hoc diSTriBuTion 65

Obtaining and Registering UDIDs 65
Creating an App ID (Bundle Identiier) 66
Creating a Distribution Certiicate 66
Creating a Provisioning Proile 69
Coniguring Your Project for Distribution 70

aPPendix F: aPP STore diSTriBuTion 75

Creating an Application Proile 75
Preparing and Uploading the Application Binary 80

Creating an App Store Distribution Provisioning Proile 82

Coniguring Your Project for App Store Distribution 83

inTroducTion

When FirST LearninG The ioS deveLoPMenT environMenT, it is natural to be overwhelmed with
new concepts like view controllers and table views. While experience with previous development
environments and languages is helpful, and iOS developing resources are available from Apple and
forums, it is still a daunting task to become proicient.

This book is written to help someone new to iOS development come to grips with the basic concepts,
and hopefully avoid making the mistakes we made when we were starting out. This book adopts a
hands-on Try It approach, and you get to try out each new concept as you progress through the book.

iOS application development is a huge topic, and it is just not possible to put every single topic
related to iOS application development in this book. That being said, the aim of this book is to
help you get started and to understand the fundamentals of the SDK.

This book has been written for you, the reader. We hope that after reading this book, you can take
your irst steps into the wildly exciting world of iOS app development.

Who ThiS Book iS For

This book is for beginners with little or no prior programming experience who want to pursue a
career in the exciting world of iOS development.

If you are a beginner and are looking for a book to help you get up to speed with basic concepts and
start you down your journey of iOS application development, this is the book for you.

Although you do not need to have any prior programming experience, a little knowledge will help
you move faster through the initial lessons. If you are a more experienced developer, this book can
help you get up to speed with new concepts relating speciically to iOS 5 development.

WhaT ThiS Book coverS

This book covers iOS 5 application development. That includes development for both the iPhone
and the iPad. The lessons in this book use Xcode 4.2.1 and make use of new iOS 5 features like
storyboards and Automatic Reference Counting. Most lessons use Interface Builder to create the
user interface; however, creating user interfaces programmatically is covered in Lesson 17.

The appendixes on the DVD and on the book’s website (www.wrox.com/go/iphoneipadappvideo)
contain various topics ranging from an introduction to programming with Objective-C, to deploying
applications on the App Store. New iOS 5–speciic topics such as storyboards, Twitter integration,
iCloud document storage, and Core Image are covered in Lessons 5, 20, 25, and 32, respectively.

http://www.wrox.com/go/iphoneipadappvideo

xxvi

inTroducTion

hoW ThiS Book iS STrucTured

This book consists of 38 short lessons and 6 appendixes. Most lessons introduce a single topic and end
with a step-by-step Try It section where you get to apply the concepts you’ve learned in the lesson to
create a simple iOS application. Lessons toward the beginning of the book are simpler, and progress in
complexity as you work your way through the book.

If you are an absolute beginner to programming, you should read Appendix B for an introduction
to computer programming with Objective-C and then progress through the lessons from cover to
cover, sequentialy.

If you have prior experience with iOS development and want to read this book for a particular
topic of interest, you can jump right in to the relevant lessons. iOS development is a vast topic, and
no book can attempt to cover everything related to it; this book is no exception. However, several
lessons contain links to places on the Web where you can obtain additional information.

When you’re inished reading the book and watching the DVD, you’ll ind lots of support in the
P2P forums.

inSTrucTionaL videoS

Learning is often enhanced by seeing in real-time what’s being taught, which is why most lessons in
the book have a corresponding video tutorial on the DVD accompanying the print book and on the
book’s website (www.wrox.com/go/iphoneipadappvideo). And, of course, it’s vital that you play
along at home—ire up Xcode and try out what you read in the book and watch on the videos.

convenTionS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Notes, tips, hints, tricks, and asides to the current discussion are offset and
placed in italics like this.

References like this one point you to the DVD to watch the instructional video
that accompanies a given lesson.

http://www.wrox.com/go/iphoneipadappvideo

xxvii

inTroducTion

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show URLs and code within the text like so: persistence.properties.

 ➤ We present code in the following way:

We use a monofont type for code examples.

Source code

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code iles that accompany the book. All the source code used in this
book is available for download at www.wrox.com. When at the site, simply locate the book’s title
(use the Search box or one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may ind it easiest to search by
ISBN; this book’s ISBN is 978-1-118-13081-0.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

erraTa

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you ind an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

To ind the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the Book Search Results page, click the Errata link. On this page
you can view all errata that has been submitted for this book and posted by Wrox editors.

A complete book list including links to errata is also available at www.wrox.com/
misc-pages/booklist.shtml.

If you don’t spot “your” error on the Errata page, click the Errata Form link and complete the form
to send us the error you have found. We’ll check the information and, if appropriate, post a message to
the book’s errata page and ix the problem in subsequent editions of the book.

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/misc-pages/booklist.shtml

xxviii

inTroducTion

P2P.Wrox.coM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will ind a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions speciic to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

http://p2p.wrox.com

Hello iOS!

Hello and welcome to the exciting world of iOS application development. iOS is Apple’s operat-
ing system for mobile devices; the current version as of writing this book is 5.0. It was originally
developed for the iPhone (simply known as iPhone OS back then), and was subsequently extended
and renamed in June 2010 to iOS to support the iPad, iPhone, and iPod Touch.

iOS at its core is Unix-based, and has its foundations in MacOS X, which is Apple’s desktop
operating system. In fact, both iOS and MacOS X share a common code base. As new versions
of mobile operating systems have appeared, Apple has brought over more functionality from
MacOS X. This is part of Apple’s strategy to bridge the difference between desktop and mobile
computing.

With the launch of version 5.0, Apple has once again pushed the boundaries of what is
achievable on smart phones and tablet computers. iOS 5.0 has more than 200 new features
and is without a doubt the most signiicant update to the family.

This lesson introduces you to the arena of iOS development.

ioS deveLoPer eSSenTiaLS

Before you get started on your journey of becoming an iOS developer, you will need some
essential resources. This section covers these basic requirements.

a Suitable Mac

To develop apps for the iPhone and the iPad using the oficial set of tools provided by Apple,
you will irst need an Intel-based Mac running Mac OS X Lion with a minimum 2GB of RAM
and at least 11GB of free space on your hard disk. You do not need a top-spec model to get
started. In fact a Mac Mini or a low-end MacBook will work just ine.

Processor speed is not going to make much difference to you as a developer. You will be bet-
ter off investing your money toward more RAM and hard disk space instead. These are things
you can never get enough of. A large screen does help, but it is not essential.

1

2 ❘ LeSSon 1 Hello ioS!

a device for Testing

If you are reading this book, chances are that you have used an iPhone/iPad/iPod Touch and probably
even own one or more of these nifty devices.

As far as development is concerned, there aren’t many differences between developing for any of
these devices. When you are starting out as an iOS developer, you will test your creations on the
iOS Simulator. The iOS Simulator is an application that runs on your Mac and simulates several
functions of a real iOS device (more on this later).

At some point, though, you will want to test your apps on a physical device. As good as the iOS
Simulator may be, you must test on a physical device before submitting your app to the App Store.

Another good reason to test on a physical device is that the processor on your Mac is much faster
than that on the iPhone/iPad. Your app may appear to execute much faster on your Mac (in the iOS
Simulator) than it does on the real thing.

If the app you are going to make is targeted at iPhone users, you can also use an iPod Touch as
the test device. These are signiicantly cheaper than iPhones and for the most part offer the same
functionality as their phone counterparts.

device diferences

Though many similarities exist in developing apps for the iPhone and the iPad, there are some
obvious differences between the devices.

iPhone 3GS

The iPhone 3GS was a major increment from the iPhone 3G. It included a 600Mhz ARM processor,
256MB RAM, and several enhancements to support 3D games. All iPhone models come with at least
one camera.

The iPhone 3GS has a screen size of 320 n 480 units. Notice the unit of measurement is not “pixel.”
Starting with iOS4 and the introduction of the Retina display on the iPhone 4, Apple has introduced a
new device-independent coordinate system. Application developers express sizes and positions in this
new system. Depending on the physical device on which the app is executed, these device-independent
coordinates are converted to device-dependent coordinates by multiplying them with a scale factor.
In the case of a device that does not have a Retina display (such as the iPhone 3GS), this scale factor
happens to be 1.

Thus the screen size of the iPhone 3GS (Figure 1-1) happens to be 320 n 480 pixels because 1 unit is
exactly 1 pixel on this device.

iPhone 4

The iPhone 4 has a generous 512MB RAM, and a super-fast 1GHz Apple A4 processor. It also
introduced a new high-resolution display called the Retina display that packs twice as many pixels
in the same physical screen area.

The screen size of the iPhone4 is also 320 n 480 units; however the internal scaling factor is 2,
which implies that the actual number of pixels in an iPhone 4 screen is 640 n 960 (Figure 1-2).

iOS Developer Essentials ❘ 3

480 units
480 pixels (1 unit = 1 pixel)

320 units
320 pixels (1 unit = 1 pixel)

FiGure 1-1

iPhone 4S

The iPhone 4S is the newest member of the iOS family. Like its predecessor, it also has a high-
resolution Retina display. In addition, the iPhone 4S has a dual-core Apple A5 processor.

iPad

The iPad has a much larger screen size than the iPhone (768 n 1024 units); however, it does not have
a camera. The irst generation iPad is equipped with a 1GHz Apple A4 processor and has 256MB
RAM. The iPad does not have a Retina display, hence the conversion factor from units to pixels for
this device is 1. This means the number of pixels in an iPad screen is 768 n 1024 (Figure 1-3).

iPad 2

With the iPad 2 Apple has once again raised the stakes for high-end tablet computing. The iPad 2
has a much faster 1GHz Dual Core Apple A5 processor, more RAM, and two cameras, but sadly
no Retina display.

4 ❘ LeSSon 1 Hello ioS!

480 units
960 pixels (1 unit = 2 pixels)

320 units
640 pixels (1 unit = 2 pixels)

FiGure 1-2

an ioS developer account

To develop your apps you will need to download the latest version of Xcode and the iOS SDK
(Software Development Kit). To do this you must sign up for the Apple Developer Program to
become a registered developer.

The signup process is free and you can immediately begin to develop your irst apps. Limitations exist
as to what you can do for free. To submit your apps to the App Store, get access to beta versions of
the iOS/SDK, or test your apps on a physical device, you need to become a paying member.

Most of the concepts and apps presented in this book will work just ine with the free membership.
The only exceptions would be examples that require the camera, accelerometer, and GPS for which
you really do need to try the app on a physical device.

You can choose from two forms of paid membership as a registered Apple Developer: Standard
and Enterprise.

iOS Developer Essentials ❘ 5

1024 units
1024 pixels (1 unit = 1 pixel)

768 units
768 pixels (1 unit = 1 pixel)

FiGure 1-3

Standard

The Standard iOS Developer Program costs $99 a year and is for individuals or companies that want
to develop apps that will be distributed through the App Store.

You can also test/distribute your apps on up to 100 devices without having to go through the App
Store. This form of deployment (without having to submit them to the App Store) is called Ad-Hoc
distribution and is a great way to submit a preview of the app to a client. This form of distribution
is covered in detail in Appendix C.

Enterprise

The Enterprise iOS Developer Program costs $299 a year and is for large companies that want to
develop apps for internal use and will not distribute these apps through the App Store. With the
Enterprise iOS Developer Program there is no restriction to the number of devices on which your
in-house application can be installed.

To start the registration process, visit the iOS Dev Center (Figure 1-4) at http://developer
.apple.com/devcenter/ios/index.action

http://developer.apple.com/devcenter/ios/index.action
http://developer.apple.com/devcenter/ios/index.action

6 ❘ LeSSon 1 Hello ioS!

FiGure 1-4

The oicial ioS Sdk

The Apple iOS SDK (Software Development Kit) is a collection of tools and documentation that you
can use to develop iOS apps. The main tools that make up the SDK are:

 ➤ Xcode: Apple’s integrated development environment (IDE) that lets you manage your products,
type your code, trace and ix bugs (debugging), and lots more.

 ➤ Interface Builder: A tool fully integrated into the Xcode IDE that lets you build your
application’s user interface visually.

 ➤ iOS Simulator: A software simulator to simulate the functions of an iPhone or an iPad on
your Mac.

 ➤ Instruments: A tool that will help you ind memory leaks and optimize the performance of
your apps. Instruments are not covered in this book.

In addition to these tools, the iOS SDK also includes extensive documentation, sample code,
How-To’s, and access to the Apple Developer Forums.

The iOS SDK is available as a free download to registered members (registration is free). However
there are beneits to paid membership, including the ability to debug tour code on an iOS device,
distribute your applications, and two technical support incidents a year where Apple engineers will
provide you code-level assistance.

Downloading and Installing

You can download and install Xcode 4.2.1 for Mac OS X Lion and the iOS SDK from the Mac App
Store (Figure 1-5).

iOS Developer Essentials ❘ 7

FiGure 1-5

If you do not have the paid membership, you will only see a single version of Xcode and the iOS
SDK to download. If you do have a paid membership you will have the option to download prior
versions (Figure 1-6). This book is based on Xcode 4.2.1.

FiGure 1-6

8 ❘ LeSSon 1 Hello ioS!

After downloading Xcode and the iOS SDK, begin the installation process by double-clicking
the Install Xcode icon in Launchpad (Figure 1-7). You don’t have to change any of the defaults
for the installer, so just read and agree to the software license and click Continue to proceed
through the steps.

FiGure 1-7

The Typical app development Process

Whether you intend to develop iOS apps yourself or manage the development of one, there is a
basic sequence of steps involved in the development process (Figure 1-8). This section covers these
steps briely.

Written
Specification

Wireframes
and Design

Coding

Final
Product

Testing

FiGure 1-8

Writing a Speciication

The development of an app begins with a concept. It is good practice to formally put this concept on
paper and create a speciication. You do not necessarily need to type this speciication although it’s a
good idea to do so.

At the end of the project you should come back to the speciication document to see how the inal
product that was created compares with the original speciication.

iOS Developer Essentials ❘ 9

As you build your experience developing iOS applications, this difference will become smaller. The
speciication must address the following points:

 ➤ A short description in 200 words or less

 ➤ The target audience/demographic of the users

 ➤ How will it be distributed (App Store, or direct to a small number of devices)

 ➤ A list of similar competing apps

 ➤ A list of apps that best illustrate the look-and-feel your app is after

 ➤ The pricing model of competing apps and potential pricing for your app

Wireframes and Design

A wireframe is large drawing that contains mockups of each screen of your app as well as lines
connecting different screens that indicate the user’s journey through your application.

Wireframes are important because they can help identify laws in your design early on (before any
coding has been done). They can also be used to show potential clients how a particular app is likely
to look when it’s completed.

There is no right or wrong way to make a wireframe. If it is for your personal use; you can just use a few
sheets of paper and a pen. If it is for a client you might want to consider using an illustration package.

Coding

The actual process of creating an iOS app involves using the Xcode IDE to type your code. iOS apps
are usually written in a language called Objective-C. An iOS app typically consists of several iles of
Objective-C code along with resource iles (such as images, audio, and video).

These individual iles are combined together by a process called compilation into a single ile that is
installed onto the target device. This single ile is usually referred to as the application binary or a build.

Testing

It might sound obvious, but you must test your app after it has been developed. As a developer you
test your code frequently as you write it. You must also perform a comprehensive test of the entire
application as often as possible to ensure things that were working in the past continue to do so. This
form of testing is called regression testing. It helps to make a test plan document. Such a document
basically lists all the features that you want to test, and the steps required to carry out each test. The
document should also clearly list which tests failed. The ones that fail will then need to be ixed and
the test plan document can provide the replication procedure for the defect in question.

When your app is ready you will want to list it on the iTunes App Store. To do so involves submitting
your app for review to Apple. Apple has several criteria against which it reviews applications and if
your app fails one or more of these criteria it will be rejected—in which case you will need to ix the
appropriate code and resubmit. It is best to test your apps thoroughly before submitting them in the irst
place. Distributing your apps via the App Store is covered in Appendix E.

You must always test on a real iOS device before submitting your app for the App Store review
process, or giving it to a client to test. Testing on the iOS Simulator alone is not suficient.

10 ❘ LeSSon 1 Hello ioS!

If you are developing for a client, you will probably need to send them a testable version of your
work periodically for them to review. To do this you will need to give them something they can
install on their devices. This is covered in Appendix F.

home Screen icon

Unless you provide an icon for your application, iOS will use a standard gray icon to represent your
application in the home screen (Figure 1-9).

To replace this icon, simply create a PNG ile with the

appropriate dimensions, as shown in Table 1-1.

TaBLe 1-1: Standard Icon Sizes

DEvIcE IcON SIzE (IN pIxELS)

iPhone 57 n 57

iPhone 4 (Retina) 114 n 114

iPad 72 n 72

These dimensions are in pixels and are different for iPhone-

based and iPad-based applications.

If you are building an iPhone application that should run

on both the iPhone 4 (Retina-based) and the iPhone 3GS

(non-Retina–based), you will need to create two versions

of each image resource that your application requires. One

version of each ile will be twice the size of other; your icon

images are no exceptions.

You will also need to name the Retina display versions

of your images using a special convention. For example, if

your standard icon ile is called icon.png, then the Retina

display version of the icon should be called icon@2x.png.

You learn to use these icons in this lesson’s Try It section.

application Launch Image

A launch image is a special PNG image that you may provide as part of your iOS application. When

a user taps your application’s icon on the home screen, iOS looks for this launch image, and if found,

shows this launch image before loading the rest of the application. While this launch image is displayed,

iOS proceeds to load the rest of your application in the background.

Once your application has inished loading, iOS gives it control and simultaneously hides the place-

holder launch image that was displayed in its stead. The overall effect of the launch image is to give

your users the perception that your application has launched quickly.

FIgurE 1-9

mailto:icon@2x.png

Try It ❘ 11

The launch image must be of a speciic size; these sizes are listed in Table 1-2. Once again, these
sizes are different for iPhone-based and iPad-based applications. Retina display devices (iPhone 4)
require images that are twice the size of their non-Retina counterparts.

An additional requirement applies for iPad-based applications. These applications must provide a
launch image for each supported orientation (landscape/portrait).

TaBLe 1-2: Application Launch Image Sizes

device iMaGe Size (in PixeLS)

iPhone 320 n 480

iPhone 4 (Retina) 640 n 960

iPad (portrait orientation) 768 n 1024

iPad (landscape orientation) 1024 n 768

The usual naming convention of appending @2x applies to the Retina display versions of images.
You learn to use launch images in this lesson’s Try It.

Try iT

In this Try It, you build a simple iPhone application using Xcode 4.2.1 that displays the text
“Hello iOS” on the screen.

Lesson requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template

 ➤ Open a storyboard in Interface Builder

 ➤ Display the Xcode Utilities area

 ➤ Change the background color of the default scene in the storyboard

 ➤ Add a Label from the Xcode Object library

 ➤ Set up an application icon

 ➤ Setup a launch image

 ➤ Test an app in the iOS Simulator

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 1 folder in the download.

http://www.wrox.com

12 ❘ LeSSon 1 Hello ioS!

hints
 ➤ Download and install the latest version of Xcode and the iOS SDK on your Mac.

 ➤ Launch Xcode.

Step by Step

 1. Create a Single View Application in Xcode called HelloIOS.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application (Figure 1-10) template and click Next.

FiGure 1-10

 4. Use the following information in the project options dialog box (Figure 1-11) and
click Next.

 ➤ Product Name: HelloIOS

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson1

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

Try It ❘ 13

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

FiGure 1-11

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Open the MainStoryboard.storyboard ile in Interface Builder (Figure 1-12).

 1. Ensure the project navigator is visible and the HelloIOS project is selected and
expanded. To show the project navigator, use the View d Navigators d Show
Project Navigator menu item. To expand a project, click the triangle next to the
project name in the project navigator.

 2. Click the MainStoryboard.storyboard ile.

 3. Ensure the utilities editor is visible. To show the utilities editor, use the View
Utilities d Show Utilities menu item.

14 ❘ LeSSon 1 Hello ioS!

FiGure 1-12

 3. Change the background color.

 1. Click the white background area of the default scene in the storyboard and switch
to the Attributes inspector by selecting the View d Utilities d Show Attributes
Inspector menu item.

 2. Under the View section of the Attributes inspector, click once on the Background
item to change the background color. This is shown in Figure 1-13.

 4. Add a Label from the Xcode Object library.

 1. From the Object library, select Label and drop it onto the View (Figure 1-14).

 2. Change the text displayed in the Label to “Hello iOS” by editing the value of the
Text in the Attribute inspector.

 3. Resize and reposition the Label using the mouse.

 5. Set up an application icon.

 1. In Xcode, make sure the project navigator is visible.

 2. Select the HelloIOS project in the project navigator to bring up the project proper-
ties editor. Make sure the HelloIOS target is selected, and the Summary tab is vis-
ible (Figure 1-15).

 3. Scroll down to the App Icons section.

 4. Right-click each icon placeholder and set up an icon ile using the Select File option
in the popover menu. Select the HelloIcon.png ile and the HelloIcon@2x.png iles
for the standard and Retina display icons, respectively. Both these iles are located in
the resources folder of this lesson’s Try It folder on the DVD.

mailto:HelloIcon@2x.png

Try It ❘ 15

FiGure 1-13

FiGure 1-14

16 ❘ LeSSon 1 Hello ioS!

 6. Set up a launch image.

 1. Make sure the project navigator is visible.

 2. Select the HelloIOS project in the project navigator to bring up the project proper-
ties editor. Make sure the Summary tab is selected.

 3. Scroll down to the Launch Images section

 4. Right-click each placeholder and set up a launch image using the Select File option in
the popover menu. Select the HelloLaunch.png ile and the HelloLaunch@2x.png
iles for the standard and Retina display launch images, respectively. Both these iles
are located in the resources folder of this lesson’s Try It folder on the DVD.

1

2

3

4

FiGure 1-15

 7. Test your app in the iOS Simulator by clicking the Run button in the Xcode toolbar.
Alternatively, you can use the Project Run menu item.

Please select Lesson 1 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

mailto:HelloLaunch@2x.png
http://www.wrox.com/go/iphoneipadappvideo

The iOS Simulator

The iOS Simulator is an application that runs on your Mac and allows you to test your
apps without using an actual iOS device. The iOS Simulator is located in the /Developer/
Platforms/iPhoneSimulator.platform/Developer/Applications folder and is a part of
the standard iOS SDK installation. When you run your app in Xcode, you have the choice
of launching it in the simulator or an actual device. If you choose to launch it in the simulator,
Xcode will launch the iOS Simulator automatically.

FeaTureS oF The ioS SiMuLaTor

You can use the iOS Simulator to simulate different device (iPad, iPhone 3GS, iPhone 4) and
SDK versions. You can change the iOS version being simulated using the Hardware ➪ Version
menu (Figure 2-1). The actual list of options you see here will depend on the different versions
of the iOS SDK that you have installed on your Mac.

To switch devices use the Hardware ➪ Device menu.
You can choose between an iPhone (iPhone 3GS),
iPhone Retina (iPhone 4), or an iPad. Figure 2-2
shows the iPhone4 and iPad simulators.

You can rotate the simulator by using the Rotate Left
or Rotate Right menu items from the Hardware menu
(Figure 2-3).

The iOS Simulator allows you to simulate a vari-
ety of one and two-inger multi-touch gestures.
Single-inger gestures such as taps and swipes can
be performed by clicking and dragging with the
mouse. The only two-inger gesture that you can simulate is the pinch. To do so, hold down
the Option key on your keyboard while clicking and dragging with the mouse in the simulator
window. Shake gestures can be performed by using the Hardware ➪ Shake Gesture menu item.

FiGure 2-1

2

18 ❘ LeSSon 2 THe ioS SimulaTor

If you are developing an app that requires location data, you can now use the iOS Simulator to
simulate a test location while you are running your application within the simulator. Select the
Debug ➪ Location ➪ Custom Location menu item (Figure 2-4) to specify a latitude and longitude
pair. Creating location-based applications is covered in Lessons 34 and 35.

FiGure 2-2

FiGure 2-3 FiGure 2-4

The simulator can also simulate changing locations. This is particularly useful if your app is designed to
be used while on the move. From the Debug ➪ Location menu, you can select from a list of prerecorded
location sets. The simulator will then periodically cycle between the locations in the selected set. The
sets are:

 ➤ Apple Stores

 ➤ City Bicycle Ride

Features of the iOS Simulator ❘ 19

 ➤ City Run

 ➤ Freeway Drive

If you are developing an app that allows the user to print something and do not have an AirPrint-
compatible printer, you can simulate a printer using the iOS Printer Simulator. The Printer Simulator
is not loaded automatically when you switch on your Mac; to load it simply select the File ➪ Open
Printer Simulator menu item.

installing and uninstalling applications

To install an application to the iOS Simulator you need to open its corresponding .xcodeproj ile in
Xcode and click the Run button in the Xcode toolbar.

You cannot delete the default iOS Simulator applications (such as Photos, Settings, Game Center,
Safari, and so on). To uninstall (delete) one of your applications from the iOS Simulator, click and
hold the mouse button down on the icon of the app until all the icons start to wiggle. Once they
start to wiggle you will notice an X button on the top-left corner of each icon (Figure 2-5).

Release the mouse button if you are still holding it down; the icons will still continue to wiggle.
Click the X button on the icon of the app you want to delete. An alert window will appear asking
you to conirm this action (Figure 2-6).

FiGure 2-5 FiGure 2-6

20 ❘ LeSSon 2 THe ioS SimulaTor

LiMiTaTionS oF The ioS SiMuLaTor

As good as the iOS Simulator may be, it has its limitations. For starters you cannot make calls, send or
receive text messages, or install apps from the App Store.

The performance of the iOS Simulator depends on the speed of your Mac, and in certain cases your
application may appear to execute much faster on your Mac (in the iOS Simulator) than it does on
the real device.

Accelerometer, camera, and microphone functions are not supported in the iOS Simulator. If you are
developing OpenGL/ES-based applications, you should keep in mind that several OpenGL/ES func-
tions are not supported on the iOS Simulator.

The iOS Simulator is a useful tool to test your apps but it is deinitely not a replacement for testing
on a real device.

A Tour of Xcode

Xcode is Apple’s IDE (Integrated Development Environment), which you use to create iOS
applications. The word “integrated” refers to the fact that Xcode brings together several differ-
ent tools into a single application.

Xcode contains several tools, but the ones you’ll use most of the time are the source code
editor, debugger, and Interface Builder. The current version of Xcode when this book is
being written is 4.2.

In this lesson you explore various commonly used features of Xcode.

The WeLcoMe Screen

When you launch Xcode, you are presented with the welcome dialog (Figure 3-1). You can use
the welcome dialog to quickly create a new project, connect to a source code repository, open
a recently used project, and access documentation.

The irst step toward creating an iOS application is the creation of an appropriate project in
Xcode. An Xcode project has the ile extension .xcodeproj, and tells the Xcode IDE (among
other things) the name of your application, what kind of application it is (iPhone/iPad/
Universal), and where to ind the code iles and resources required to create the application.

SeLecTinG a ProjecT TeMPLaTe

When you create a new project in Xcode, you irst need to select a template on which to base
the project. Xcode templates contain iles that you need to start developing a new application.
Xcode provides a list of project templates to select from (Figure 3-2).

The Xcode template window has two categories of templates to choose from. In this book you
create iOS applications, and hence need to make sure the iOS template category is selected.

3

22 ❘ LeSSon 3 a Tour of Xcode

FiGure 3-1

FiGure 3-2

Setting up Project Options ❘ 23

SeTTinG uP ProjecT oPTionS

After you have selected a suitable template, Xcode presents the project options dialog box
(Figure 3-3).

FiGure 3-3

This is where you provide the name of the project, and specify the target device—iPhone, iPad, or
Universal. To uniquely identify your application on the iTunes store (and on an iOS device), each
project must have a unique identiier. This identiier is known as a Bundle Identiier, and is created
by combining the name of the project along with a company identiier that you provide in the project
options dialog. It is best to provide your website domain name in reversed format as the company
identiier, because domain names are guaranteed to be globally unique.

Xcode can also create unit tests for your project. A unit test is a small program that is written for
the sole purpose of testing another program. Unit testing is beyond the scope of this book, so just
uncheck the Include Unit Tests option in the dialog box.

Ensure the Use Storyboard and Use Automatic Reference Counting checkboxes are checked before
you click the Next button. The lessons in this book make use of storyboards and automatic reference
counting. When you click Next, Xcode asks you to provide a location on your Mac where you would
like to save the new project.

24 ❘ LeSSon 3 a Tour of Xcode

an overvieW oF The xcode ide

The Xcode IDE features a single window, called the workspace window (Figure 3-4), where you get
most of your work done.

FiGure 3-4

The navigator area

The left side of the workspace window is the navigator area (Figure 3-5).

The navigator area consists of seven tabs; each of these tabs (called navigators) shows different
aspects of the same project. You can switch between navigators using the navigator selector bar at
the top of the navigator area (Figure 3-6).

The Project Navigator

The project navigator (Figure 3-7) shows the contents of your project. Individual iles are organized
within groups that are represented as folders in a tree structure. The top-level node of this tree
structure represents the project itself. These groups are purely logical and provide a convenient way
to organize the contents of your project. A group may not necessarily correspond to actual folders
on your hard drive.

An Overview of the Xcode IDE ❘ 25

FiGure 3-5

FiGure 3-6

This node represents your project.

This node represents a Group.

These nodes represent
individual files.

FiGure 3-7

26 ❘ LeSSon 3 a Tour of Xcode

In most cases, you will work with a single project at a time in the Xcode workspace window; however,
it is possible to open multiple projects in the workspace window using a workspace ile. A workspace
ile has the ile extension .xcworkspace and contains references to one or more project iles. You will
not be creating workspaces in this book; however, if you were to open a workspace ile, the workspace
window would display information on multiple projects contained within the workspace (Figure 3-8).

Project 1

Project 2

Project 3

FiGure 3-8

To create a new group, right-click an existing node in the project navigator and select New Group
from the context menu. You can move iles between groups by using simple drag-and-drop opera-
tions in the project navigator. If the groups in the project navigator correspond to actual folders on
your Mac, then moving things around in the project navigator would not move the corresponding
iles into new locations on your Mac.

To delete a ile, simply select the item and hit the backspace key on your keyboard. Xcode then asks
you if you intended to delete the actual ile from your Mac or just remove the reference from the
project. The process of deleting a group is similar to that of a ile; keep in mind that deleting a group
deletes any iles within that group.

To learn more about the project navigator read the Project Navigator Help
document at http://developer.apple.com/library/ios/#recipes/xcode_
help-structure_navigator/_index.html.

Although you are free to create any number of groups in your project, Xcode creates three groups
for you by default (Figure 3-9). The irst is the project group, which is usually the same name as the
project itself, and this is where all your code and resources will go.

The second is the Frameworks group. Frameworks are libraries of code supplied by Apple to use in
your application. The third is the Products group, which contains the actual iOS application.

At the bottom of the project navigator is a set of icons. You can use these icons to ilter what is
displayed in the project navigator based on certain criteria (Figure 3-10).

http://developer.apple.com/library/ios/#recipes/xcode_help-structure_navigator/_index.html
http://developer.apple.com/library/ios/#recipes/xcode_help-structure_navigator/_index.html

An Overview of the Xcode IDE ❘ 27

Your code and resources go here.

Frameworks (Apple supplied code) that
your application uses

The final product

FiGure 3-9

Add a new file

Show only recently edited files

Show only files that are
under source-control

Show only unsaved files

Show files with
mathing name

FiGure 3-10

The Symbol Navigator

The symbol navigator (Figure 3-11) shows the classes in your project along with their methods and
member variables. A top-level node in a tree-like structure represents each class. Expanding the class
node reveals all its member variables and methods.

This node represents a class.

This node represents
another class.

These nodes represent
member variables and

methods within the class.

FiGure 3-11

28 ❘ LeSSon 3 a Tour of Xcode

The Search Navigator

The search navigator (Figure 3-12) lets you ind all occurrences of some text, across all iles of
the project.

The text to search for

Files that contain the text

These nodes represent
individual lines where

matching text was found.

FiGure 3-12

A root-level node in a tree represents each ile that has one or more occurrences of matching text.
Expanding the node reveals the exact positions within that ile where these matches were made.

The Issue Navigator

The issue navigator (Figure 3-13) lists all compile-time errors and warnings in your project. While
compiling a ile, Xcode raises an issue each time it inds a problem with the ile. Severe show-stopping
issues are lagged as errors, whereas less severe issues are lagged as warnings.

This node represents a specific
issue within the file.

These nodes represent
files that have generated

errors/warnings during
compilation.

FiGure 3-13

An Overview of the Xcode IDE ❘ 29

Each ile having one or more errors/warnings is represented by a root-level node in a tree-like struc-
ture. Expanding the node reveals the exact positions within that ile where these errors/warnings
were encountered.

The Debug Navigator

The debug navigator is used during an active debugging session and lists the call stack for each
running thread. Debugging is an advanced topic and is not covered in this book.

The Breakpoint Navigator

The breakpoint navigator lists all breakpoints in your code, and allows you to manage them. A break-
point is an intentional pause-point that you can set in your project. When the app is being executed,
Xcode interrupts the execution of the application when it encounters one of these pause-points and
transfers control to the debugger. This is extremely useful when trying to igure out why a particular
piece of code does not work and you want to inspect the values of variables and content of memory.
Breakpoints and the debugger work only when the application is being executed in a special debug
mode. Breakpoints and debugging are advanced topics, and are not covered in this book.

The Log Navigator

The log navigator shows you a history of build logs and console debug sessions. Building is the com-
plete process of creating an executable application from your source code iles. Compilation is a part
of the build process. Each time you build a new executable, Xcode creates a build log that contains,
among other things, a list of iles that were compiled.

The editor area

The right side of the workspace window is the editor area (Figure 3-14). Xcode includes editors for
many ile types, including source code, user interface iles, XML iles, and project settings, to name
a few.

The content of the editor area depends on the current selection in the navigator area. When you
select a ile in the navigator area, Xcode tries to ind an appropriate editor for that ile type. If it
can’t ind one, it opens the ile using Quick Look (which is also used by the Finder).

Jump Bars

At the top of the editor area is the jump bar (Figure 3-15). The jump bar displays the path to the
current ile being edited and can be used to quickly select another ile in the workspace. The jump
bar also has back and forward buttons to move through a history of iles edited.

Each element in the path displayed in the jump bar is a pop-up menu (Figure 3-16) that you can use
to navigate around your project.

The contents of the jump bar depend on the type of ile you’re viewing. When editing a user inter-
face ile, for example, the jump bar enables you to navigate to individual interface elements.

30 ❘ LeSSon 3 a Tour of Xcode

FiGure 3-14

FiGure 3-15

An Overview of the Xcode IDE ❘ 31

FiGure 3-16

The Source Editor

When you select a source-code ile in the navigator area, or a text/XML ile, Xcode uses the source
editor to open the ile. This is the editor with which you will spend most of your time when you write
your code. The source editor has several helpful features, such as syntax highlighting and code com-
pletion hints. You can conigure individual features of the source editor using Xcode preferences.

The Assistant Editor

The assistant editor (Figure 3-17) was introduced in Xcode 4 and enables you to view multiple iles
side-by-side.

FiGure 3-17

32 ❘ LeSSon 3 a Tour of Xcode

The assistant editor is not visible by default, and can be accessed by using the
editor selector buttons (Figure 3-18) in the Xcode toolbar. Option-clicking a ile
in the project navigator or symbol navigator opens it in the assistant editor.

You can create additional assistant editor panes by using the + and x buttons
(Figure 3-19). You can also use the jump bar in the additional panes to specify
which ile to show in each pane; however, it is often helpful to let Xcode ind a
related ile for you. The assistant editor can ind, for example, the header ile that
corresponds to the source code ile you’re viewing.

Close this Assistant Editor pane.

Create a new Assistant Editor pane.

FiGure 3-19

The Version Editor

If your project is under version control, you can use the version editor to compare the current version
of a ile with a previous version. Like the assistant editor, the version editor is not visible by default,
and can be accessed by using the editor selector buttons in the Xcode toolbar. Version control is not
covered in this book.

The utility area

The utility area (Figure 3-20) supplements the editor area. You can display it by choosing the View
Utilities d Show Utilities menu item or by clicking the utility button in the toolbar.

The Inspector Area

The top portion of the utility area contains the inspector area (Figure 3-21). Like the navigator area,
the inspector area also contains multiple tabs that can be switched using a selector bar at the top of the
inspector area.

FiGure 3-18

An Overview of the Xcode IDE ❘ 33

FiGure 3-20

Selector bar

Inspector Area

FiGure 3-21

34 ❘ LeSSon 3 a Tour of Xcode

The number of tabs available depends on the currently selected item in the project navigator. Regardless
of what is selected in the project navigator, the irst two tabs are always the ile inspector and the quick
help inspector. The ile inspector provides access to the properties of the current ile. The quick help
inspector provides a short description of the current ile.

The Library area

The bottom portion of the utility area contains the library area (Figure 3-22). This area contains a
library of ile templates, user interface objects, and code snippets that you can use in your applications.

Selector bar

Library Area

FiGure 3-22

The library area also provides a convenient method to access all the media iles in your project.
A selector bar at the top of the library area provides access to four different library categories.

File Template Library

The File Template library (Figure 3-23) contains templates for several types of iles (such as settings
bundles and property lists) and subclasses of commonly used classes. To use a ile template, simply
drag it into the project navigator.

Code Snippet Library

The Code Snippet library (Figure 3-24) contains short pieces of code that you can use in your appli-
cation. To use one, drag it directly into your source code ile.

An Overview of the Xcode IDE ❘ 35

FiGure 3-23 FiGure 3-24

Object Library

The Object library (Figure 3-25) contains a collection of user interface objects that you can use in
your project.

Media Library

The Media library (Figure 3-26) contains all graphics, icons, audio, and other media iles that you
use in your project.

FiGure 3-25 FiGure 3-26

The debugger area

The debugger area (Figure 3-27) also supplements the editor area. You can access it by selecting the
View d Show Debug Area menu item or by clicking the debugger button in the toolbar.

The debugger area is used while debugging an application and to access the debug console window.
You can use this area to examine the values of variables in your programs.

The Toolbar

The Xcode toolbar (Figure 3-28) is located at the top of the workspace window. Use the irst two
buttons on the left side to run/stop the active build scheme. Immediately following the stop button is
the Scheme/Target multi-selector. When you create an iOS project, Xcode creates a scheme with the
same name as the project and several build targets.

36 ❘ LeSSon 3 a Tour of Xcode

FiGure 3-27

Navigator/Debugger/Utility AreaStatus Area

Standard/Assistant/Version
Editor

FiGure 3-28

The build targets that are typically generated for a project include:

 ➤ iOS Device

 ➤ iPhone 5.0 Simulator (if it is an iPhone or Universal project)

 ➤ iPad 5.0 Simulator (if it is an iPad or Universal project)

Try It ❘ 37

You can use the Scheme/Target multi-selector to switch build targets and create/edit schemes.
Managing schemes is an advanced topic beyond the scope of this book.

To the right of the Scheme/Target multi-selector is a status window. Following the status window,
the toolbar contains the editor selector, utility selector, and organizer buttons. The editor and utility
selector buttons were covered in the previous sections.

The organizer button enables you to access the Xcode Organizer, which you can use to manage
devices, builds, and provisioning proiles.

Try iT

In this Try It, you launch Xcode and create a new project using the Single View Application tem-
plate. You then open a ile in the editor area and learn to display the assistant editor, debugger, and
utilities area.

Lesson requirements
 ➤ Launch Xcode.

 ➤ Create a new project using a template.

 ➤ Open a ile in the editor area.

 ➤ Show the assistant editor.

 ➤ Show the debug area.

 ➤ Show the utilities area.

hints
 ➤ Remember to leave the Use Storyboard and Use Automatic Reference Counting checkboxes

selected.

Step-by-Step

 1. Create a Single View Application in Xcode called iOSTest.

 1. Launch Xcode.

 2. Create a new project by selecting the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: iOSTest

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson3

38 ❘ LeSSon 3 a Tour of Xcode

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not checked
and click Create.

 2. Open the Lesson3AppDelegate.h ile in the Xcode editor.

 1. Ensure the project navigator is visible and the iOSTest project is open.

 2. Click the Lesson3AppDelegate.h ile.

 3. Use the editor selector buttons on the Xcode toolbar to show the assistant editor.

 4. Use the view selector buttons on the Xcode toolbar to show the debug area.

 5. Use the view selector buttons on the Xcode toolbar to show the utilities area.

Please select Lesson 3 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

iOS Application Basics

In Lesson 1, you created your irst iOS application by dragging a few visual elements from the
Object library onto your application’s .xib ile. For an app to do something useful, though, it
must be able to handle user interaction. This was something missing from the HelloiOS app
created in Lesson 1. In this lesson you learn some basic concepts involved in iOS application
programming, and how to add interactivity to your apps.

iOS programming is based on an event-driven model and is all about writing code to respond
to one or more events. The device generates these events every time the user does something
with the application. For instance, if the user taps a button, an appropriate “touch” event is
generated by the device and forwarded to the application.

Direct user interaction, although the most common reason for events, isn’t the only one. For
instance, events are generated when the phone is receiving a call, when a ile has successfully
downloaded from a server, and so on. Practically anything that happens on an iOS device ends
up generating one or more events. When an event is generated, the operating system looks into
your program to see if a method in one of your classes should be notiied.

The key to iOS programming lies in knowing what these events are, and how to set your methods
to be called when one of these events occurs. Figure 4-1 shows a simpliied version of the sequence
of events that occurs between the launch and termination of an iOS application. This sequence is
also known as the application life cycle.

At key points in the application life cycle, messages are sent to objects in the application to let
it know what’s going on. iOS applications aren’t actually terminated when the user presses the
home button on the device; instead they are moved to a background “suspended” state.

aPPLicaTion STaTeS

At the heart of your code is a C-based function called main(). Xcode creates this function for
you as part of the boilerplate code that is generated when you create a new project. Its main pur-
pose is to serve as an entry point for your application and hand control to one of the classes in
the UIKit framework. You should never have to modify the implementation of this function.

4

40 ❘ LeSSon 4 ioS applicaTion BaSicS

User taps application on home screen

Application’s main function() is called

UIApplicationMain is called

Event Loop

System asks application to
quit foreground

Application moves to background

application:
didFinishLaunchingWithOptions:

other methods . . .

applicationWillResignActive:

applicationDidEnterBackground:

FiGure 4-1

Every iOS application must have a class that implements the UIApplicationDelegate protocol.
This class is known as the application delegate object and is responsible for monitoring the high-level
behavior of your application. The application delegate object must implement a few key methods of
the UIApplicationDelegate protocol that are used to handle critical events.

In object-oriented terminology, a delegate is an object that implements a certain set of methods. These
methods are then called by another object as and when needed.

iOS applications can be in one of several states at any given point in time; these states are summarized
in Table 4-1.

TaBLe 4-1: iOS Application States

STaTe deScriPTion

Not running The application is currently not running.

Inactive The application is running, but not receiving any events. An application can stay

briely in this state while it transitions to another state. The only time the applica-

tion remains inactive for a considerable period is when the system prompts the

user to respond to some event such as an incoming phone call or SMS.

Active The application is running and receiving events.

Windows, Views, and View Controllers ❘ 41

STaTe deScriPTion

Background The application is in the background and executing code. Most applications

briely enter this state on their way to being suspended.

Suspended The application is in the background and not executing any code.

At launch time, an application moves from the not-running state to the active or
background state. During the initial startup sequence, the application delegate’s
application:didFinishLaunchingWithOptions: method is called, followed by either
the applicationDidBecomeActive: or applicationDidEnterBackground: methods.

These methods are, as you might expect, part of the UIApplicationDelegate protocol, and your
application delegate must provide implementations for these.

To learn more about the lifecycle of an iOS application, read the “iOS App
Programming Guide” available at http://developer.apple.com/library/
ios/#documentation/iphone/conceptual/iphoneosprogrammingguide/

Introduction/Introduction.html.

Typically, when you create a new project with Xcode, basic implementations are provided for you as
part of the boilerplate code in the application delegate class.

WindoWS, vieWS, and vieW conTroLLerS

Windows and views are used to represent the application’s visual content on the screen and manage
the immediate interactions with that content. A window is an instance of a UIWindow class and is
essentially an empty surface that hosts one or more views. Windows it the entire main screen area
and have no visual elements. Most iOS applications have only one window; however, some may have
an additional window to support an external display.

A view is an instance of a UIView class and deines a rectangular region within the main application
window. Views draw content in their rectangular area, have some properties that can animate to
new values, and can receive touch events. Views can also have a number of subviews, thus creating a
view hierarchy.

Several user interface classes that are part of the UIKit framework (for instance, the UIButton class)
are subclasses of UIView. UIKit is discussed later in this lesson, but for now you need to understand
that complex user interfaces can be created by putting together a hierarchy of overlapping user inter-
face elements, as shown in Figure 4-2.

Much of iOS programming is about following conventions and creating well-structured applications.
One of the most common design patterns, known as the Model-View-Controller pattern, requires the
programmer to think of the individual classes in the application as belonging to one of three distinct
categories: data, view, and manager.

http://developer.apple.com/library/ios/#documentation/iphone/conceptual/iphoneosprogrammingguide/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/iphone/conceptual/iphoneosprogrammingguide/Introduction/Introduction.html

42 ❘ LeSSon 4 ioS applicaTion BaSicS

Status Bar

UIWindow

Custom View
(UIImageView)

Custom View
(UILabel)

Custom View
(UITextField)

Custom View
(UIButton)

FiGure 4-2

Data classes are responsible for storing and representing application data in a meaningful way. This
data could be stock quotes downloaded from a web service, or a page of text typed in by the user.
Data classes are also known as model classes.

View classes are responsible for presenting this data to the user and controller classes manage the
link between data classes and view classes. More often than not, classes tend to have functionality
that somewhat blurs this classiication a little.

The aim of the MVC pattern is to make objects in these classes as distinct from each other as possible.
A class that implements a button should not have any code to process user input when that button is
pressed; similarly, a class that represents stock quotes should not have any code to draw a graph.

iOS applications in general follow this pattern, and to that end have data classes, view classes, and
controller classes. An iOS application’s version of a controller class is called a view controller class,
and essentially manages the contents and user interaction with a view. Thus, while a view is respon-
sible for presenting a user interface such as a button, the code that does something when this button
is pressed sits in the view controller class.

Several controller classes are provided by the iOS SDK; however the most commonly used one is
the UIViewController class. View controllers in iOS applications are thus usually instances of
UIViewController.

Frameworks ❘ 43

The UIViewController base class deines several methods that are called when signiicant events
occur. You can override these methods in your view controller class to do something when these sig-
niicant events occur. Some of the most common methods that you can override are:

 ➤ - didReceiveMemoryWarning: Called when memory is low. The view controller should typi-
cally try to free up unused resources.

 ➤ - viewDidLoad: Called after the view has inished loading into memory. This method is a
good place to set up the user interface elements in the view to initial states.

The view controller class and the user interface elements in the view class are often linked to
each other using Xcode’s Interface Builder. To link the two together, Interface Builder uses special
variables (known as outlets), and methods (known as actions) in the view controller class. Using
Interface Builder to create outlets and actions is discussed later in this lesson. It is important to keep
in mind that you could create these links programmatically without using Interface Builder at all.
Creating user interface elements programmatically is covered in Lesson 17.

To learn more about view controllers, read the “View Controller
Programming Guide” available at http://developer.apple.com/library/
ios/#featuredarticles/ViewControllerPGforiPhoneOS/Introduction/

Introduction.html#//apple_ref/doc/uid/TP40007457-CH1-SW1.

FraMeWorkS

A framework is a collection of classes that you can use to write your apps. Apple provides a large
number of frameworks that enforce consistent implementation of features across applications from
different developers. All the familiar user interface features like navigation bars, toolbars, back but-
tons, and so on that we commonly use in iOS apps are, in fact, classes in one of the frameworks
provided by Apple.

Although the idea of sticking to user interface elements that only appear in an Apple framework
may seem limiting, it is in fact not the case. Apple’s frameworks have a large number of classes; in
fact, some frameworks do not have any user interface-speciic classes at all. You must always try
to use classes from one of the standard frameworks when possible; this will ensure that you do not
spend time reinventing the wheel.

The frameworks are grouped together into layers, with frameworks in higher layers building upon
frameworks found in lower layers. Figure 4-3 shows the different layers with examples of some of
the frameworks they contain. In general, using a class from a framework in a lower layer requires
you to write more code that using one from a higher layer.

The top-most layer is known as Cocoa Touch and contains a large number of classes distributed
within multiple frameworks that handle the most common aspects of iOS applications, including but
not limited to processing events, touches, gestures, multithreading, map support, and accelerometer.

Every Xcode project that is created from one of the standard iOS application templates includes
three key frameworks: CoreGraphics, Foundation, and UIKit. Most simple apps do not need to
use classes from any other framework.

http://developer.apple.com/library/ios/#featuredarticles/ViewControllerPGforiPhoneOS/Introduction/Introduction.html#//apple_ref/doc/uid/TP40007457-CH1-SW1
http://developer.apple.com/library/ios/#featuredarticles/ViewControllerPGforiPhoneOS/Introduction/Introduction.html#//apple_ref/doc/uid/TP40007457-CH1-SW1

44 ❘ LeSSon 4 ioS applicaTion BaSicS

IOS Framework
Layers

cocoa Touch

UIKit MapKit GameKit . . .

Media

CoreGraphics AVFoundation . . .

core Services

Foundation CoreData CoreLocation . . .

coreoS

Accelerate Security . . .

FiGure 4-3

Of all Cocoa Touch frameworks, perhaps the most important and commonly used is UIKit. The
name UIKit may lead you to conclude that it contains only user interface-speciic classes. This is,
however, not true. Besides user interface-speciic classes, UIKit contains classes for handling events,
touches, gestures, and general application support.

Classes that are part of UIKit always begin with the UI preix. Thus, the UIApplication, UIWindow,
UIView, and UIViewController classes that you have encountered earlier in this lesson are all part
of UIKit.

The uiButton class

The UIButton class is part of the UIKit framework, and encapsulates the functionality of a button
on a touch screen. A UIButton object sends a message to a target object when it intercepts one or
more touch events.

UIButton objects can intercept different types of touch events; some of the most common ones are
briely summarized in Table 4-2.

TaBLe 4-2: UIButton Touch Events

evenT deScriPTion

Touch Up Inside The user has lifted his inger from the touch screen inside the area of

the button.

Frameworks ❘ 45

evenT deScriPTion

Touch Up Outside The user had pressed this button but has lifted his inger outside the

area of the button (that is, dragged his inger outside the button before

lifting it).

Touch Down The user has just pressed this button and hasn’t yet lifted his inger, or

moved it.

Touch Drag Enter The user has pressed this button, then dragged his inger outside the

button, and has just entered the area of the button again (without lifting

the inger).

Touch Drag Exit The user has pressed this button, then dragged his inger and, as a con-

sequence of dragging, has just left the area of the button.

Touch Drag Inside The user has pressed this button and is dragging his inger within the

area of the button.

Touch Drag Outside The user has pressed this button and is now dragging his inger outside the

area of the button. The user would have had to move his inger out of the

button and continued to drag without lifting his inger to receive this event.

By and large, the most common event that you will use in your code is the Touch Up Inside event.

To learn more about the UIButton class, read the “UIButton Class Reference”
documentation available at http://developer.apple.com/library/
IOs/#documentation/UIKit/Reference/UIButton_Class/UIButton/

UIButton.html.

The uiLabel class

The UILabel class allows you to draw one or multiple lines of static text onto your view. The
UILabel class does not normally generate touch events, but provides several properties that allow
you to customize its appearance. The most common ones are described in Table 4-3.

TaBLe 4-3: UILabel Properties

ProPerTy deScriPTion

text Sets the text displayed by the label using the current font.

numberOfLines The maximum number of lines to be drawn.

textAlignment Deines the horizontal alignment of text in the label. Permissible

values are UITextAlignmentLeft, UITextAlignmentRight, and

UITextAlignmentCenter.

continues

http://developer.apple.com/library/IOs/#documentation/UIKit/Reference/UIButton_Class/UIButton/UIButton.html
http://developer.apple.com/library/IOs/#documentation/UIKit/Reference/UIButton_Class/UIButton/UIButton.html

46 ❘ LeSSon 4 ioS applicaTion BaSicS

ProPerTy deScriPTion

textColor Sets the color used to display the text. You can set the color by providing

a UIColor object. The UIColor class is discussed later in this lesson.

font Sets the font that is used to display the text. The font is speciied as a

UIFont object. UIFont objects are covered in Lesson 6.

To learn more about The UILabel class, read the “UILabel Class” refer-
ence documentation available at http://developer.apple.com/library/
IOs/#documentation/UIKit/Reference/UILabel_Class/Reference/

UILabel.html.

creaTinG uSer inTerFace eLeMenTS

UIButton and UILabel instances can be created programmatically or by using the Xcode Interface
Builder. Creating UIKit objects programmatically is covered in Lesson 17. In this lesson, you use
Interface Builder.

Before you can add a button or label, you must irst create a new Xcode project. To do so, launch
Xcode and select the File d New d New Project menu item. This brings up a dialog box (Figure 4-4)
where you can select a template to use as a starting point for your development.

There are several types of iOS application templates; the most commonly used ones are described in
Table 4-4.

FiGure 4-4

TaBLe 4-3 (continued)

http://developer.apple.com/library/IOs/#documentation/UIKit/Reference/UILabel_Class/Reference/UILabel.html
http://developer.apple.com/library/IOs/#documentation/UIKit/Reference/UILabel_Class/Reference/UILabel.html

Creating User Interface Elements ❘ 47

TaBLe 4-4: Common iOS Application Templates

TeMPLaTe TyPe deScriPTion

Single View

Application

Provides a starting point to create an application that has one view. The

template provides a view controller to manage the view. The view is con-

tained within a nib ile or storyboard.

Page--Based

Application

Used to create a book/magazine reader type of application in which the

user swipes the screen to turn pages. An application based on this tem-

plate applies a built-in page turn animation when it detects an appropriate

swipe. Page-based applications are covered in Lesson 16.

OpenGL Game Provides a starting point for an OpenGL/ES-based game. This type of

project is not covered in this book.

Master Detail

Application

Provides a starting point for an application that on the iPhone presents

hierarchical content using tables, much like the iPhone Contacts applica-

tion. On the iPad, this application will use a split view controller. This type

of project is not covered in this book.

Tabbed Application Provides a starting point for an application that uses a tab bar to present

multiple views of content side by side. This is covered in Lesson 15.

Most examples in this book are based on the Single View Application template. Select this template
and click Next to go to the project options dialog box shown on Figure 4-5.

The project options dialog box is where you can specify additional information for your new
project. The ields in this dialog box are described in Table 4-5.

FiGure 4-5

48 ❘ LeSSon 4 ioS applicaTion BaSicS

TaBLe 4-5: Project Options

iTeM deScriPTion

Product Name This is where you type your new app’s name. Avoid using spaces or

starting the name with a number.

Company Identiier Usually the reverse domain name of your website. This is a sequence

of characters that is used to create the Bundle Identiier along with

the product name. The lessons in this book use com.wileybook.

Bundle Identiier Every app must have a unique identiier that can be used by iOS to

diferentiate it from other apps that may be running on your user’s

phone. This identiier is generated automatically for you, but you can

change it later on. Combining the company identiier with the product

name creates this identiier.

Class Preix A preix applied to the name of each class created in the project. For

the lessons in this book, the class preix will be the word Lesson fol-

lowed by the lesson number.

Device Family Allows you to specify whether your new app is being built for the

iPhone, iPad, or both device families (in which case it is called a

Universal application).

Use Storyboard Check this if you want to use a storyboard for your view instead of

a nib ile. All lessons in this book use storyboards. Storyboarding is

covered in Lesson 5.

Use Automatic Reference

Counting

Automatic Reference Counting (ARC) is a new compiler-level feature

introduced with iOS5 that simpliies memory management. All les-

sons in this book use automatic reference counting.

Include Unit Tests Check this if you intend to use unit testing with your application. Unit

testing is not covered in this book, thus all projects you create will

have this checkbox unchecked.

Name your product ButtonTest and specify com.wileybook as the company identiier. Specify
Lesson4 as the class preix and select iPhone from the Device Family drop-down menu. Uncheck the
Include Unit Tests checkbox.

Click Next to specify a location where Xcode should create your new project iles.

You can now look at some of the iles generated for you by Xcode as part of the tem-
plate (Figure 4-6). Take a look at the project navigator and note that Xcode has created
an application delegate class and a view controller class called Lesson4AppDelegate and
Lesson4ViewController, respectively.

Creating User Interface Elements ❘ 49

Your application’s user interface is contained in the storyboard ile
called MainStoryboard.storyboard. Select the storyboard ile to edit
it with Interface Builder.

Prior to iOS5, user interfaces were contained in nib iles. Storyboards
are amongst the new additions to iOS 5 and are covered in Lesson 5.
For now, all you need to know is that a storyboard consists of one or
more scenes. Each scene contains the user interface for a single view.
Most Interface Builder concepts that were applicable to nib iles still
apply to scenes within a storyboard.

If you are curious, you can browse through the boilerplate code generated by
Xcode in the application delegate and view controller classes.

The application delegate class, Lesson4AppDelegate, contains default imple-
mentations (mostly empty) for several methods that are called at different points
in the application’s life cycle. Similarly, the application’s view controller class,
Lesson4ViewController, contains implementations for several view life cycle meth-
ods, most of which just call their base class versions.

Because this application is based on the Single View Application template, the storyboard contains a
single scene that represents the user interface of this view. Adding a UIButton to the view is a simple
matter of dragging a Round Rect Button object from the Object library onto the client area of the
scene. You can use the mouse to resize and position it, or specify precise values using the Size inspector
(View d Utilities d Show Size Inspector).

You can use the Attributes inspector to set up some common properties of the new button. However,
keep in mind that each of these properties can be set up using Objective-C code. If you just want to
add a title to a button quickly, simply double-click the button and type in a suitable title.

The default rounded rectangle button created by Xcode is, in fact, quite boring. To make it more interest-
ing you can change its appearance using use the Attribute inspector (View d Utilities d Show Attributes
Inspector). You can select from common buttons types using the Type drop-down (Figure 4-7).

The standard button types are:

 ➤ Custom: A button without any speciic appearance, invisible
unless you set up an image. Typically used to create hotspots or
graphical buttons.

 ➤ Rounded Rect: This is the default.

 ➤ Detail Disclosure: A button with an arrow; usually indicates
that tapping it will reveal additional information.

 ➤ Info Light: The standard “i” icon, intended to be used over dark
backgrounds.

FiGure 4-6

FiGure 4-7

50 ❘ LeSSon 4 ioS applicaTion BaSicS

 ➤ Info Dark: The standard “i” icon, intended to be used over light backgrounds.

 ➤ Add Contact: The standard + icon.

A UIButton object can be in one of four states:

 ➤ Default: The button is visible on the screen; the user is not interacting with it.

 ➤ Highlighted: The user is currently pressing down the button.

 ➤ Selected: A UIButton object does not ordinarily move into this state as a result of user inter-
action, however this state can be setup programmatically.

 ➤ Disabled: The button is visible on the screen, but the user cannot interact with it.

For each state you can provide a different background color, title, and
background image. You can use the Attribute inspector’s State Conig
drop-down to select a state and set up attributes for that state. This is
shown in Figure 4-8.

To assign an image for your button, you will need to create a PNG
image for each state and import the images into your Xcode project.
When applying an image to a button, you can assign the image to either
the Image attribute or the Background attribute. There is a slight differ-
ence between the two. Assigning an image to the Image attribute does
not hide the title of the button.

creating outlets

User interface elements are usually deined in storyboards, and even though you can set their properties
graphically using Interface Builder, there will be times when you will need to read or change a property
from your code while your application is running. To do so, you need to create an appropriate instance
variable in the view controller class and connect it to the user interface element in the scene. These
connections are known as outlets, and can be created quickly using the assistant editor. To display the
assistant editor, use the View d Assistant Editor d Show Assistant Editor menu item. With the assistant
editor visible, selecting a user interface element in one of the scenes of the storyboard ile automatically
opens the interface (.h) ile of the corresponding view controller class. This is shown in Figure 4-9.

To create an outlet for the button object, right-click the button to bring up a context menu and drag
from the circle beside the New Referencing Outlet line to an empty line just before the @end state-
ment in the header ile. This is shown in Figure 4-10.

Releasing the mouse button on an empty line in the header ile pops up a dialog box that allows you
to type in a name for the instance variable (Figure 4-11).

Click the Connect button in the popup dialog box to inish creating the outlet. Notice how Xcode
has created a suitable @property declaration of type UIButton in your class.

#import <UIKit/UIKit.h>
@interface Lesson4ViewController : UIViewController
@property (weak, nonatomic) IBOutlet UIButton *someButton;
@end

FiGure 4-8

Creating User Interface Elements ❘ 51

FiGure 4-9

FiGure 4-10

52 ❘ LeSSon 4 ioS applicaTion BaSicS

FiGure 4-11

To signify that the variable refers to an object deined in the storyboard ile, Xcode adds the IBOutlet
keyword to the property statement:

@property (weak, nonatomic) IBOutlet UIButton *someButton;

creating actions

Most user interface elements generate a variety of events as a result of user interaction. As a program-
mer, you will be interested in some of these events and will want your code to be executed when these
events occur. To achieve this, you need to create one or more methods in the view controller class, and
wire them up to appropriate events of the user interface element. These methods in the view controller
class that are called as a result of an event being triggered are called actions.

As you might expect, both these steps can be performed graphically with the Interface Builder. To
show a list of events that can be intercepted by a user interface object, simply right-click the user
interface element in Interface Builder and browse through the entries under the Sent Events category
of the context menu (Figure 4-12).

You will see all the familiar touch events listed there along
with a few others. To wire up the Touch Up Inside event to a
method in your class, simply drag from the circle beside the
name of the event to an empty line in your view controller’s
interface ile before the @end statement (Figure 4-13).

When you release the mouse on the view controller, Xcode
presents a popup window in which you can provide a name
for the new method. Call the new method onButtonPressed.

Adding a method to a class manually is a two-step process.
First, a line deining the method must be added to the inter-
face (.h) ile, and then an implementation must be added to
the corresponding implementation (.m) ile. When you use the
Interface Builder to add a method to a view controller class,
both of these steps are carried out for you.

FiGure 4-12

Creating User Interface Elements ❘ 53

FiGure 4-13

To verify that this is indeed the case, you can examine the Lesson4ViewController.h ile, which
now has a declaration for a method named onButtonPressed:

#import <UIKit/UIKit.h>
@interface Lesson4ViewController : UIViewController
@property (weak, nonatomic) IBOutlet UIButton *someButton;
- (IBAction)onButtonPressed:(id)sender;
@end

The corresponding implementation ile Lesson4ViewController.m has a stub implementation for
the method at the end of the ile:

#import "ButtonViewController.h"
@implementation ButtonViewController
@synthesize my_button;
…
…
…
- (IBAction)onButtonPressed:(id)sender {
}
@end

Note that the onButtonPressed method takes in a single argument of type (id) called sender.
This parameter always contains a reference to the object that sent this message to your view con-
troller. In this particular case, the sender would be the user interface object that generated the
corresponding event.

54 ❘ LeSSon 4 ioS applicaTion BaSicS

An alternative method to add an outlet or action to a view controller class and connect it to a user
interface element in a storyboard scene is to Ctrl+drag from the element onto an empty line in the
view controller’s interface ile before the @end statement. Releasing the mouse button will present
a popup dialog that lets you create either an outlet or an action.

adding interactivity

At this point, if you were to test this application in the iOS Simulator, you would see that nothing really
happens when you tap the button. This is because you haven’t put any code in your action method to do
something. All you’ve done so far is created a UIButton, created an action, and linked the two together.

Say you wanted to change the background color of the application’s view when the button is pressed.
You can do this by adding a single line of code to the onButtonPressed method:

- (IBAction)onButtonPressed:(id)sender {
 self.view.backgroundColor = [UIColor redColor];
}

If you run this application now, and tap the button, the background color of the view changes to red.
This is shown in Figure 4-14.

The code that makes this happen demands a little explanation. The self variable, when used within
a method, always returns a reference to the object that owns the method. In this case, that would be
an instance of the Lesson4ViewController class.

FiGure 4-14

Creating User Interface Elements ❘ 55

Lesson4ViewController is a view controller and inherits from UIViewController. This can be
veriied by simply examining the declaration of the ButtonViewController in the interface (.h) ile:

@interface Lesson4ViewController : UIViewController

By virtue of inheritance, the Lesson4ViewController inherits the member variables deined in
UIViewController, one of which is a reference to a UIView object called view. This happens to be
the very same view that is being managed by the view controller—that is, your application’s view.

Thus, you can get a reference to the current view by using the statement:

self.view

Once you have this, you can set any of the properties of the UIView object (including the
backgroundColor property) to an appropriate value.

The backgroundColor property is actually an instance of a UIColor object. You can create UIColor
objects either from RGB values, or from a set of predeined colors. Table 4-6 lists some of the mes-
sages that you can send the UIColor class to instantiate objects.

TaBLe 4-6: Instantiating a UIColor Object

uicoLor MeThodS deScriPTion

+ (UIColor *)blackColor; Returns a UIColor object initialized to R=0.0, G=0.0, B= 0.0

+ (UIColor *)darkGrayColor; Returns a UIColor object initialized to R=0.33, G=0.33, B= 0.33

+ (UIColor *)lightGrayColor Returns a UIColor object initialized to R=0.66, G=0.66, B= 0.66

+ (UIColor *)whiteColor; Returns a UIColor object initialized to R=1.0, G=1.0, B= 1.0

+ (UIColor *)grayColor; Returns a UIColor object initialized to R=0.5, G=0.5, B= 0.5

+ (UIColor *)redColor; Returns a UIColor object initialized to R=1.0, G=1.0, B= 0.0

+ (UIColor *)greenColor; Returns a UIColor object initialized to R=0.0, G=1.0, B= 0.0

+ (UIColor *)blueColor; Returns a UIColor object initialized to R=0.0, G=0.0, B= 1.0

+ (UIColor *)cyanColor; Returns a UIColor object initialized to R=0.0, G=1.0, B= 1.0

+ (UIColor *)yellowColor; Returns a UIColor object initialized to R=1.0, G=1.0, B= 0.0

+ (UIColor *)magentaColor; Returns a UIColor object initialized to R=1.0, G=0.0, B= 1.0

+ (UIColor *)clearColor; Returns a transparent UIColor (with alpha = 0.0)

+ (UIColor *)colorWithRed:

green:blue:alpha;

Returns a UIColor created out of the speciied RGBA values;

the individual values must lie between 0 and 1

The code in the onButtonPressed method could just as easily change the value of any other member
variable in the view controller class, or for that matter do something signiicantly more complicated,
such as downloading data from the internet.

56 ❘ LeSSon 4 ioS applicaTion BaSicS

For example, you could create a UILabel, set up an appropriate outlet called textLabel using the
Interface Builder, and change the text displayed in the label when the button is pressed using code
similar to this:

- (IBAction)onButtonPressed:(id)sender {
 textLabel.text = @"This is some text";
}

Here you are changing the value of the text property of a UILabel object. This is demonstrated in
the following Try It section.

Try iT

In this Try It, you create a new Xcode project based on the Singe View Application template, called
InteractionSample. You use the Interface Builder to create an instance of a UIButton and a UILabel
class and then write code to update the text displayed in the label when the button is pressed.

Lesson requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Edit the storyboard with Interface Builder.

 ➤ Add a UILabel and a UIButton object to the default scene in the storyboard.

 ➤ Create and connect the UILabel to an outlet in the view controller class.

 ➤ Create and connect the Touch Up Inside event of the UIButton instance to an action method
in the view controller class.

 ➤ Change the text of the label when the button is clicked.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 4 folder in the download.

hints
 ➤ To show the Object library, use the View d Utilities d Show Object Library menu item.

 ➤ To show the assistant editor, use the View d Assistant Editor Show Assistant Editor menu item.

 ➤ To show the source editor, use the View d Source Editor d Show Standard Editor menu item.

http://www.wrox.com

Try It ❘ 57

Step-by-Step

 1. Create a Single View Application in Xcode called InteractionSample.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: InteractionSample

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson4

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Open the storyboard ile in Interface Builder.

 1. Ensure the project navigator is visible and the InteractionSample project is selected
and expanded. To show the project navigator, use the View d Navigators d Show
Project Navigator menu item. To expand a project, click the triangle next to the proj-
ect name in the project navigator.

 2. Click the MainStoryboard.storyboard ile.

 3. Ensure the utilities editor is visible. To show the utilities editor, use the
View d Utilities d Show Utilities menu item.

 3. Add a label to the default scene in the storyboard

 1. Ensure the Object library is visible. To show it, use the View d Utilities d Show
Object Library menu item.

 2. From the Object library, select Label and drop it onto the scene.

58 ❘ LeSSon 4 ioS applicaTion BaSicS

 3. Use the Size inspector to size and position the label to X=20, Y=206, W=259, H=40.
You can show the Size inspector by using the View d Utilities d Show Size Inspector
menu item.

 4. Use the Attributes inspector set the alignment property to be centered. You can
show the Attributes inspector by using the View d Utilities d Show Attributes
inspector menu item.

 4. Add a button to the default scene in the storyboard

 1. From the Object library, select Round Rect Button and drop it onto the scene.

 2. Use the Size inspector to size and position the button to X=113, y=280, W=95, H=37.

 3. Double-click the button and change the text displayed in it to Greet Me!

 5. Create an outlet in the view controller class and connect it to the label.

 1. Ensure the assistant editor is visible. To show it, use the View d Assistant Editor d

Show Assistant Editor menu item. Ensure the Lesson4ViewController.h ile is
open in the assistant editor, if not then use the jump bars to select it.

 2. Right-click the label to show the context menu.

 3. Drag from the circle beside New Referencing Outlet to an empty line just before
the @end keyword in the assistant editor.

 4. Name the new connection textLabel in the popup dialog that appears and click the
Connect button. The code in the assistant editor should now resemble the following:

#import <UIKit/UIKit.h>
@interface Lesson4ViewController : UIViewController
@property (weak, nonatomic) IBOutlet UILabel *textLabel;
@end

 6. Create an action method in the view controller class and connect it to the Touch Up Inside
event of the button.

 1. Right-click the button to show the context menu.

 2. Drag from the circle beside the Touch Up Inside event to an empty line just before
the @end keyword in the assistant editor.

 3. Name the new method onButtonPressed in the popup dialog that appears and
click the Connect button. The code in the assistant editor should now resemble the
following:

#import <UIKit/UIKit.h>
@interface Lesson4ViewController : UIViewController
@property (weak, nonatomic) IBOutlet UILabel *textLabel;
- (IBAction)onButtonPressed:(id)sender;
@end

Try It ❘ 59

 7. Write code to update the text of the label when the button is pressed.

 1. Ensure the source editor is visible. To show it, use the View d Standard
Editor d Show Standard Editor menu item.

 2. Select the Lesson4ViewController.m ile in the project navigator to open it in the
source editor.

 3. Scroll down and locate the implementation of the onButtonPressed: method.

 4. Replace it with the following code to change the text of the label:

- (IBAction)onButtonPressed:(id)sender
{
 textLabel.text = @"Greetings mighty coder!";
}

 8. Test your app in the iOS Simulator by clicking the Run button in the Xcode toolbar.
Alternatively, you can use the Project d Run menu item.

Please select Lesson 4 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Introduction to Storyboards

Most iOS applications are usually made up of several screens of content, with the user typically
navigating from one screen to another. A storyboard is a new feature in Xcode that lets you
view all the screens as well as the connections between them in a single place.

Storyboards involve two key concepts, scenes and segues. A scene is deined by a view controller
and is the major visual component of a storyboard. It represents one screen of content in your
application.

If you have been programming iOS applications prior to iOS5, everything you know about
Interface Builder applies to scenes. To use storyboarding in your application, you must select
the Use Storyboard option in the project options dialog (Figure 5-1).

FiGure 5-1

5

62 ❘ LeSSon 5 inTroducTion To SToryBoardS

Figure 5-2 shows the scenes that make up the storyboard of a simple iOS application. As you can
see, each scene contains familiar UIKit controls like image views, buttons, and labels. Clicking one
of the scenes in the storyboard selects it. The selected scene has a green outline around it.

FiGure 5-2

At the bottom of each scene is a gray rectangle, called the dock (Figure 5-3). When a scene is selected,
the dock contains icons corresponding to the top-level objects in the scene. The two icons you see in
Figure 5-3 correspond to the ile’s owner and the view controller. The actual user-interface elements
in the view controller are not top-level objects because they are contained by the view controller, and
hence do not appear in the dock.

FiGure 5-3

You can expand the dock by clicking the small triangle indicator at the bottom left of the storyboard
(Figure 5-4). When expanded, the dock contains all the objects contained in each scene of the story-
board. Each scene is represented by a rounded rectangle.

Introduction to Storyboards ❘ 63

FiGure 5-4

Objects contained within the scene are shown hierarchically (Figure 5-5). Clicking an object in the
hierarchy selects it in the corresponding scene.

To view the entire storyboard at a glance, simply double-click the canvas to zoom out. Double-click
a scene to select and zoom in to the storyboard.

A segue represents the transition between one scene to another. It also represents the manner in
which the new scene is presented. Segues are represented by arrows between scenes (Figure 5-6).

64 ❘ LeSSon 5 inTroducTion To SToryBoardS

There are three different types of segues: Modal, Push, and Custom.
Modal segues are used to present modal content; they enable you to
specify a transition style, the most common of which is one where the
new scene slides up from the bottom of the screen. Push segues are used
in conjunction with a navigation controller to slide a new scene onto the
screen. A Custom segue enables you to specify the presentation style.

You can set up the type and attributes of a segue by selecting it and
using the Attributes inspector (Figure 5-7).

You can select a segue by clicking the circle in the middle of the arrow
representing the segue on the storyboard (Figure 5-8). Each segue in
your application must be uniquely identiied by a string. This identiier
can also be set up using the Attributes inspector.

When you create a new Xcode project that uses storyboards, the story-
board contains a default scene. To add a new scene to a storyboard,
simply drag and drop a View Controller object from the Object library
onto the canvas (Figure 5-9).

FiGure 5-6

FiGure 5-5

Introduction to Storyboards ❘ 65

FiGure 5-7 FiGure 5-8

FiGure 5-9

Although you can add interface elements to the new scene by simply dragging and dropping objects
from the Object library, to create outlets and actions for these elements you irst need to create a
UIViewController subclass that does not have an associated XIB ile, and link it to the new scene.

To create a new UIViewController subclass, simply right-click the project in the project navigator
and select New File from the context menu. Select the UIViewController Subclass template in the
dialog box that appears and click Next (Figure 5-10).

66 ❘ LeSSon 5 inTroducTion To SToryBoardS

FiGure 5-10

In the ile options dialog box for the UIViewController subclass, provide a name for the new class
and ensure the With XIB for User Interface checkbox is unchecked (Figure 5-11).

FiGure 5-11

Introduction to Storyboards ❘ 67

After you create your UIViewController subclass, you need to associate it with the new scene in the
storyboard. To do so, simply select the scene in the storyboard, select the view controller object (the yel-
low box) in the dock and choose the appropriate class name in the Identity inspector (Figure 5-12).

1

2

FiGure 5-12

To create a segue from an object in one scene to another scene, simply right-click the object to display
a context menu and drag from the circle beside one of the entries listed under the Storyboard Segues
category to the target scene (Figure 5-13).

Alternately, you can Ctrl+drag from the object to the target scene and select an option from the
context menu that appears when you release the mouse button.

Click the new segue to select it, and use the Attributes inspector to give it a unique string identiier.
To perform some tasks in the source view controller when a segue is about to be performed, override
the prepareForSegue:sender: method in the source view controller class.

You could potentially have several buttons in the source view controller, each going to different
scenes of the storyboard with individual segues. If you override the prepareForSegue:sender:
method in the source view controller, your version of this method will be called regardless of which
segue is in action. Within this method you need to provide code to determine which segue is in
action, and take appropriate steps.

The irst argument of this method is a UIStoryboardSegue object that represents the segue about to
be performed. The second parameter is a reference to the object that initiated the segue.

68 ❘ LeSSon 5 inTroducTion To SToryBoardS

FiGure 5-13

The UIStoryboardSegue object provides the identifier property, which contains the unique string
identiier speciied using the Attributes inspector. The UIStoryboardSegue object also provides the
sourceViewController and destinationViewController properties that you can use to retrieve a
reference to the source and target view controllers involved in the transition. You can use this informa-
tion to set up properties in the destination view controller before it is displayed.

Try iT

In this Try It, you create a new Xcode project based on the Single View Application called FruitList
using storyboards. You use Interface Builder to add an additional scene to the storyboard. In the default
scene you present the user with a short list of fruits, and in the second scene you show detailed informa-
tion on the fruit selected in the irst scene. The user will be able to get back to the irst scene from the
second scene.

Lesson requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

Try It ❘ 69

 ➤ Add image resources to your project.

 ➤ Add a new NSObject subclass to your project FruitClass.

 ➤ Add an array to the FruitListViewController class, and add four instances of
FruitClass to this array.

 ➤ Edit the storyboard with Interface Builder.

 ➤ Add four UIButton instances to the default scene, each containing the name of a fruit.

 ➤ Create an additional scene in the storyboard, and a new UIViewController subclass called
FruitDetailViewController in the project.

 ➤ Use the Identity inspector to change the Custom Class of the new scene to
FruitDetailViewController.

 ➤ Create segues from the four buttons in the irst scene to the second scene.

 ➤ Override the prepareForSegue:sender method in the Lesson5ViewController class to
pass information on the selected fruit to the second scene.

 ➤ Add user interface elements and code to the second scene to display information on a fruit.

 ➤ Add a UIButton to the second scene to dismiss it.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 5 folder in the download.

hints
 ➤ To show the Object library, use the View d Utilities d Show Object Library menu item.

 ➤ To show the assistant editor, use the View d Assistant Editor Show Assistant Editor menu item.

Step-by-Step

 1. Create a Single View Application in Xcode called FruitList.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: FruitTest

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson5

 ➤ Deine Family: iPhone

http://www.wrox.com

70 ❘ LeSSon 5 inTroducTion To SToryBoardS

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Add image resources to your project.

 1. Ensure the project navigator is visible. To show it use the View d

Navigators d Show Project Navigator menu item.

 2. Right-click the FruitTest group in the project navigator and select Add Files to
“FruitTest” from the context menu.

 3. Navigate to the Images folder in this chapter’s resources on the DVD.

 4. Ensure the Copy Items into Destination Group’s Folders (if needed) option is
selected.

 5. Click the Add button.

 3. Create an NSObject subclass called FruitClass.

 1. Ensure the project navigator is visible.

 2. Right-click the FruitTest group and select New File from the context menu.

 3. Select the Objective-C class template and click Next.

 4. Call the new class FruitClass and ensure that the new class is a subclass of NSObject
by selecting NSObject in the drop-down combo box and click Next.

 5. Select a folder where iles should be created. It is best to accept the default location
provided by Xcode.

 6. Modify the FruitClass.h ile to resemble the following:

#import <Foundation/Foundation.h>
@interface FruitClass : NSObject
@property (strong, nonatomic) NSString* fruitName;
@property (strong, nonatomic) NSString* imageFilename;
@property (strong, nonatomic) NSString* family;
@property (strong, nonatomic) NSString* genus;
@end

Try It ❘ 71

 7. Modify the FruitClass.m ile to resemble the following:

#import "FruitClass.h"
@implementation FruitClass
@synthesize fruitName;
@synthesize imageFilename;
@synthesize family;
@synthesize genus;
@end

 4. Add an NSArray member to the Lesson5ViewController class and populate it with four
FruitClass instances.

 1. Add the following property declaration to the Lesson5ViewController class:

@property (strong, nonatomic) NSArray* arrayOfFruits;

 2. Synthesize the property in the implementation ile by adding the following line:

@synthesize arrayOfFruits;

after the line:

@implementation FruitTestViewController

 3. Import the deinition of FruitClass in the Lesson5ViewController.m ile by
adding the following line to the top of the ile:

#import "FruitClass.h"

after the line:

#import "Lesson5ViewController.h"

 4. Instantiate the arrayOfFruits member variable and add data to it in the
viewDidLoad method of the view controller class:

- (void)viewDidLoad
{
 [super viewDidLoad];
 FruitClass* apple = [[FruitClass alloc] init];
 apple.fruitName = @"Apple";
 apple.imageFilename = @"apple.png";
 apple.family = @"Rosaceae";
 apple.genus = @"Malus";

 FruitClass* banana = [[FruitClass alloc] init];
 banana.fruitName = @"Banana";
 banana.imageFilename = @"banana.png";
 banana.family = @"Musaceae";
 banana.genus = @"Musa";

 FruitClass* orange = [[FruitClass alloc] init];
 orange.fruitName = @"Orange";
 orange.imageFilename = @"orange.png";
 orange.family = @"Rutaceae";
 orange.genus = @"Citrus";

72 ❘ LeSSon 5 inTroducTion To SToryBoardS

 FruitClass* peach = [[FruitClass alloc] init];
 peach.fruitName = @"Peach";
 peach.imageFilename = @"peach.png";
 peach.family = @"Rosaceae";
 peach.genus = @"Prunus";

 arrayOfFruits = [[NSArray alloc] initWithObjects:apple, banana,
 orange, peach, nil];
}

 5. Add a new subclass of UIViewController called FruitDetailViewController.

 1. Ensure the project navigator is visible.

 2. Right-click the FruitTest group and select New File from the context menu.

 3. Select the UIViewController Subclass template and click Next.

 4. Call the new class FruitDetailViewController and ensure that the new class is a subclass
of UIViewController by selecting UIViewController in the drop-down combo box.

 5. Ensure that With XIB for User Interface option is unchecked and click Next.

 6. Select a folder where iles should be created. It is best to accept the default location
provided by Xcode.

 6. Open the MainStoryboard.storyboard ile in the Xcode Interface Builder.

 1. Ensure the project navigator is visible and the FruitTest project is selected and
expanded.

 2. Click the MainStoryboard.storyboard ile.

 3. Ensure the utilities editor is visible. To show the utilities editor, use the View d

Utilities d Show Utilities menu item.

 7. Edit the irst scene in the storyboard.

 1. Ensure the Media library is visible. To show it, use the View d Utilities d Show
Media Library menu item.

 2. From the Media library, drag and drop the bg1.png ile onto the scene.

 3. Select the image in the scene, and use the Size inspector to position it at X = 0, Y = –20.
To show the Size inspector, use the View d Utilities d Show Size Inspector menu item.

 4. Ensure the Object library is visible. To show it, use the View d Utilities d Show
Object Library menu item.

 5. Add four Round Rect Button instances from the Object library to the scene and size/
position them as shown in Table 5-1. Instead of dragging four separate instances
from the Object library, you may wish to drag just one and then duplicate it by
selecting the button in the scene and Option+dragging it to a new location on the
scene to duplicate it.

Try It ❘ 73

TaBLe 5-1: Button Positions

x y W h

First button 35 143 250 37

Second button 35 201 250 37

Third button 35 265 250 37

Fourth button 35 329 250 37

 6. Double-click each button to edit the text displayed in it. Set the text in the buttons
to Apple, Banana, Orange, and Peach from top to bottom (Figure 5-14).

FiGure 5-14

 8. Add a new scene to the storyboard.

 1. Drag a View Controller object from the Object library onto the storyboard canvas.

 2. Double-click the canvas to zoom out.

 3. Position the new scene alongside the original scene.

74 ❘ LeSSon 5 inTroducTion To SToryBoardS

 4. Select the new scene in the storyboard, select the View Controller object
from the dock and use the Identity inspector to change its Custom Class to
FruitDetailViewController. To show the Identity inspector, use the View�d�
Utilities d Show Identity inspector menu item.

 9. Add user interface elements to the new scene.

 1. Select the Fruit Detail View Controller scene to select it, and use the scroll bars to
center it in the view area.

 2. From the Media library, drag and drop the bg2.png ile onto the scene.

 3. Select the image in the scene, and use the Size inspector to position it at X = 0, Y = –20.

 4. Ensure the Object library is visible.

 5. Add a Round Rect Button instance to the scene, and use the Size Inspector to size/
position it at X = 29, Y=403, W = 271, H=37.

 6. Double-click the button and edit the text displayed in it to Back To Fruit List.

 7. Use the Object library to add an Image View object to the scene. Use the Size inspec-
tor to size/position it at X = 104, Y=74, W=120, H=120.

 8. Use the Object library to add three Label instances. Use the Size inspector to size/
position them as per Table 5-2.

TaBLe 5-2: Label Positions

x y W h

First label 29 214 262 28

Second label 29 259 262 28

Third label 29 303 262 28

 9. Double-click each label and set the text displayed, from top to bottom, to Fruit

Name, Fruit Family, and Genus. Use the Attributes inspector to center the text in
each label. The second scene in your storyboard should resemble Figure 5-15.

 10. Create outlets in the FruitDetailViewController class and connect these outlets to user
interface elements in the scene.

 1. Ensure the assistant editor is visible. To show it, use the View d Editor d Show
Assistant Editor menu item.

 2. Ensure the FruitDetailViewController.h ile is open in the assistant editor. If it
is not use the jump bars to select it (Figure 5-16).

 3. Right-click the UIImageView object in the scene to display a context menu. Drag
from the circle beside the New Referencing Outlet option in the context menu to
an empty line in the interface of the FruitDetailViewController class before the
@end statement.

Try It ❘ 75

FiGure 5-15

FiGure 5-16

 4. This will bring up a dialog where you can specify the name of the new outlet. Name
the new outlet fruitImage.

 5. Create outlets for each of the three label objects and name them fruitName,
fruitFamily, and fruitGenus, respectively. Your FruitDetailViewController.h
ile should now resemble:

#import <UIKit/UIKit.h>
@interface FruitDetailViewController : UIViewController
@property (weak, nonatomic) IBOutlet UIImageView *fruitImage;
@property (weak, nonatomic) IBOutlet UILabel *fruitName;
@property (weak, nonatomic) IBOutlet UILabel *fruitFamily;
@property (weak, nonatomic) IBOutlet UILabel *fruitGenus;
@end

76 ❘ LeSSon 5 inTroducTion To SToryBoardS

 11. Create an action in the FruitDetailViewController class and connect it with the Touch
Up Inside event of the UIButton object.

 1. Right-click the UIButton object in the scene to display its context menu, and
drag from the circle beside the Touch Up Inside item to an empty line in the
FruitDetailViewController.h ile before the @end statement.

 2. Name the new action onBackButtonPressed.

 3. Click the FruitDetailViewController.m ile in the project navigator to open it.

 4. Add the following line to the implementation of the onBackButtonPressed method:

[self dismissModalViewControllerAnimated:YES];

 12. Create segues in the storyboard.

 1. Open the MainStoryboard.storyboard ile in Interface Builder.

 2. Double-click the canvas to zoom out. Position the two scenes suficiently apart on
the canvas by dragging them.

 3. Right-click the Apple button to bring up a context menu. Drag from the circle beside
the Modal item under the Storyboard Segues category in the context menu to the
Fruit Detail View Controller scene (Figure 5-17).

FiGure 5-17

 4. Select the segue by clicking the circle along the line joining the two scenes and use
the Attributes inspector to change the identiier to appleSegue (Figure 5-18).

Try It ❘ 77

1

2

FiGure 5-18

 5. Similarly, create segues from each of the other three buttons (Banana, Orange,
and Peach) in the irst scene to the second scene. Name these segues bananaSegue,
orangeSegue, and peachSegue, respectively. Your storyboard canvas should resem-
ble Figure 5-19.

FiGure 5-19

78 ❘ LeSSon 5 inTroducTion To SToryBoardS

 13. Modify the implementation of the Lesson5ViewController class.

 1. Add the following #import directive to the top of the Lesson5ViewController.m ile:

#import "FruitDetailViewController.h"

 2. Implement the prepareForSegue:sender: method in as follows:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 // apple segue
 if ([segue.identifier isEqualToString:@"appleSegue"])
 {
 FruitClass* appleData = [arrayOfFruits objectAtIndex:0];
 FruitDetailViewController* detailView =
 segue.destinationViewController;
 detailView.dataObject = appleData;
 }

 // banana segue
 if ([segue.identifier isEqualToString:@"bananaSegue"])
 {
 FruitClass* bananaData = [arrayOfFruits objectAtIndex:1];
 FruitDetailViewController* detailView =
 segue.destinationViewController;
 detailView.dataObject = bananaData;
 }

 // orange segue
 if ([segue.identifier isEqualToString:@"orangeSegue"])
 {
 FruitClass* orangeData = [arrayOfFruits objectAtIndex:2];
 FruitDetailViewController* detailView =
 segue.destinationViewController;
 detailView.dataObject = orangeData;
 }

 // peach segue
 if ([segue.identifier isEqualToString:@"peachSegue"])
 {
 FruitClass* peachData = [arrayOfFruits objectAtIndex:3];
 FruitDetailViewController* detailView =
 segue.destinationViewController;
 detailView.dataObject = peachData;
 }
}

 14. Modify the interface of the FruitDetailViewController class.

 1. Add the following #import directive to the top of the
FruitDetailViewController.h ile:

#import "FruitClass.h"

 2. Add the following property declaration:

@property (strong, nonatomic) FruitClass* dataObject;

Try It ❘ 79

 15. Modify the implementation of the FruitDetailViewController class.

 1. Synthesize the dataObject property by adding the following line to the top of the
FruitDetailViewController.m ile:

@synthesize dataObject;

after the line:

@implementation FruitDetailViewController

 2. Implement the viewDidLoad method as follows:

- (void)viewDidLoad
{
 [super viewDidLoad];

 fruitImage.image = [UIImage imageNamed:dataObject.imageFilename];
 fruitName.text = [NSString stringWithFormat:@"Name: %@", dataObject
.fruitName];
 fruitFamily.text = [NSString stringWithFormat:@"Family: %@", dataObject
.family];
 fruitGenus.text = [NSString stringWithFormat:@"Genus: %@", dataObject
.genus];
}

 16. Test your app in the iOS Simulator by clicking the Run button in the Xcode toolbar.
Alternatively you can use the Project d Run nenu item.

Please select Lesson 5 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Handling User Input

In Lesson 4 you were introduced to the UILabel class that enabled you to display static
text on the screen. In this lesson you learn to use text ields and text views to accept input
from users. Text ields enable users to type a single line of text and are instances of the
UITextField class. Text views, on the other hand, enable users to type in multiple lines of
text and are instances of the UITextView class. Both classes are part of the UIKit framework.

TexT FieLdS

To create a text ield, simply drag and drop a Text Field object from the Object library onto a
view controller (Figure 6-1).

You can use the Attributes inspector to set up several attributes of the text ield including
the Placeholder, Alignment, Border Style, Text Color, Font Attributes, and the type of key-
board that is displayed when the user taps on the text ield (Figure 6-2).

A placeholder is some text that is displayed in the text ield when it is empty, typically prompt-
ing the user to enter some information in the ield. You can choose from seven different key-
boards to associate with a text ield; the choice you make will depend on the type of data you
expect. These keyboard styles can be selected using the Attributes inspector and are displayed
in Figure 6-3.

The text displayed in a text ield is an instance of an NSString object. The NSString class
is deined in the Foundation framework and its instances represent sequences of characters
(alphabets, numbers, punctuations) known as strings.

To be able to access the text displayed in a text ield object from code, you irst need to create
an outlet in the view controller class and then read the value of the text property in your code.
For example, if usernameField is an outlet created using the assistant editor, you can use the
following code to get the text displayed in the ield:

NSString* theUsername = usernameField.text;

6

82 ❘ LeSSon 6 Handling uSer inpuT

FiGure 6-1

Tapping on a text ield signiies that the user wants to interact with it, and as a result makes it
the active user interface element. The active user interface element is formally known as the irst
responder. When a text ield receives irst responder status, it automatically displays a keyboard.

To dismiss a keyboard when the Done button is pressed on the keypad, you will have to use the
assistant editor to create an Action method in the view controller class and connect it to the Did
End On Exit event of the text ield (Figure 6-4).

In this method you need to ask the text ield to resign from irst responder status. You can do this by
sending it the resignFirstResponder message:

- (IBAction)onDismissKeyboard:(id)sender {
 [sender resignFirstResponder];
}

Note that the sender parameter will contain a reference to the source of the event that triggered this
method (which will be the text ield).

Text Fields ❘ 83

FiGure 6-2

This method of dismissing the keypad works for most keyboard styles, except for the numeric key-
pads, which don’t have a Done button. It is common practice for applications to allow the user to
tap the background of the screen (outside the keypad or any other text ield) to dismiss the keypad.
One way to achieve this is by using a UITapGestureRecognizer object. Gesture recognizers are
covered in detail in Lesson 29. For the moment, you can add a gesture recognizer to the view con-
troller class by following these simple steps.

 1. Add the following method declaration to the interface of the view controller class:

- (void) handleBackgroundTap:(UITapGestureRecognizer*)sender;

 2. Add the following code to the viewDidLoad method of the view controller class:

UITapGestureRecognizer* tapRecognizer = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleBackgroundTap:)];
tapRecognizer.cancelsTouchesInView = NO;
[self.view addGestureRecognizer:tapRecognizer];

 3. Implement the handleBackgroundTap: method as follows:

- (void) handleBackgroundTap:(UITapGestureRecognizer*)sender
{
 [userNameField resignFirstResponder];
}

84 ❘ LeSSon 6 Handling uSer inpuT

Numbers and Punctuation URLASCII Capable

Phone Pad Name Phone PadNumber Pad

E-mail Address

FiGure 6-3

FiGure 6-4

Text Views ❘ 85

TexT vieWS

Text views are similar to text ields in many respects. The key difference, however, is that text views
can handle multiple lines of text. Text views handle the scrolling of text automatically, and can also
be used as a read-only view, thus providing a convenient way to display scrollable multi-line text.

To create a text view, simply drag and drop a Text View element from the Object library onto the
view (Figure 6-5). By default a text view is sized to it the entire screen, but you can resize/reposition
it as needed.

FiGure 6-5

To create a read-only text view, simply uncheck its Editable property in the Attributes inspector.
A read-only text view does not display a keypad when tapped. Editable text views also enable you
to select from one of seven different keypad types that will appear when the user taps them. The
keypad associated with a text view, however, does not have a Done button; instead it has a Return
button that adds a new line to the text. Thus, to dismiss the keypad you will have to use the gesture
recognizer technique discussed for text ields.

86 ❘ LeSSon 6 Handling uSer inpuT

Try iT

In this Try It, you create a new Xcode project based on the Single View Application template called
LoginSample that presents a simple user interface to collect a username and password combination
from the user. The user interface will also contain a Login button that displays a customized greet-
ing to the user.

Lesson requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Edit the storyboard with Interface Builder.

 ➤ Add two UILabel instances to the default scene, with the text User name: and Password:,
respectively.

 ➤ Add two UITextField instances to the same scene, corresponding to the username and
password ields, and create appropriate outlets in the view controller for them.

 ➤ Create an action method called dismissKeyboard: in the view controller class that sends
the resignFirstResponder message to each text ield, and connect the Did End On Exit
event of each text ield to this action method.

 ➤ Add a UIButton instance to the scene that when tapped, displays a message in an alert view.

 ➤ Use a tap gesture recognizer to dismiss the keyboard when the background is tapped.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 6 folder in the download.

hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identiier in the Project Options dialog box.

 ➤ To show the Object library, use the View d Utilities d Show Object Library menu item.

Step-by-Step

 1. Create a Single View Application in Xcode called LoginSample.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

http://www.wrox.com

Try It ❘ 87

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: LoginSample

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson6

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This project checkbox is not selected.

 7. Click Create.

 2. Open the MainStoryboard.storyboard ile in Interface Builder.

 1. Ensure the project navigator is visible and the LoginSample project is selected and
expanded.

 2. Click the MainStoryboard.storyboard ile.

 3. Ensure the utilities editor is visible. To show the utilities editor, use the View d

Utilities d Show Utilities menu item.

 3. Add two UILabel instances to the default scene.

 1. Ensure the Object library is visible. To show it, use the View d Utilities d Show
Object Library menu item.

 2. From the Object library, drag and drop two Label objects onto the scene.

 3. Use the Attributes inspector to set the text attribute of the irst label to User name:.
To show the Attributes inspector, use the View d Utilities d Show Attributes Inspector
menu item.

 4. Change the text attribute of the second label to Password:.

 5. Size and position the two labels as shown in Table 6-1.

88 ❘ LeSSon 6 Handling uSer inpuT

TaBLe 6-1: Label Positions

x y W h

User name: 20 37 73 21

Password: 20 78 66 21

 4. Add two UITextField instances to the scene.

 1. From the Object library, drag and drop two Text Field objects onto the scene.

 2. Use the Attributes inspector to set the Placeholder attribute of the irst text ield to
Enter user name.

 3. Use the Attributes inspector to set the Placeholder attribute of the second text ield
to Enter password.

 4. Size and position the two text ields as shown in Table 6-2.

TaBLe 6-2: Text Field Positions

PLacehoLder x y W h

User name: 101 37 199 31

Password: 101 78 199 31

 5. Add a UIButton instance to the scene.

 1. From the Object library, drag and drop a Round Rect Button object onto the scene.

 2. Double-click it and set the text in the button to Login.

 3. Size and position the button to X=20, Y=126, W=280, H=37.

 6. Create outlets in the Lesson6ViewController class and connect these outlets to the text
ields in the scene.

 1. Ensure the assistant editor is visible. To show it, use the View d Editor d Show
Assistant Editor menu item.

 2. Right-click the UITextField object corresponding to the username to display a
context menu. Drag from the circle beside the New Referencing Outlet option in the
context menu to an empty line in the interface of the Lesson6ViewController class
before the @end statement.

 3. Name the new outlet usernameField.

 4. Repeat this procedure for the password text ield, and name the corresponding
outlet passwordField.

Try It ❘ 89

 7. Create an action method in the Lesson6ViewController class and associate it with the
Did End On Exit events of the two text ields.

 1. Right-click the UITextField object corresponding to the username to display its
context menu, and drag from the circle beside the Did End On Exit item to an
empty line in the Lesson6ViewController.h ile before the @end statement.

 2. Name the new Action onDismissKeyboard.

 3. Right-click the UITextField object corresponding to the password to display its
context menu, and drag from the circle beside the Did End On Exit item to the icon
representing the view controller in the dock (Figure 6-6).

FiGure 6-6

90 ❘ LeSSon 6 Handling uSer inpuT

 4. Release the mouse button over the yellow view controller icon in the dock
to present a list of existing action methods in the view controller. Select the
onDismissKeyboard method.

 5. Click the Lesson6ViewController.m ile in the project navigator to open it.

 6. Add the following code to the implementation of the onDismissKeyboard method:

[usernameField resignFirstResponder];
[passwordField resignFirstResponder];

 8. Create an action in the view controller class and connect it with the Touch Up Inside event
of the login button.

 1. Select the storyboard in the project navigator.

 2. Right-click the Login button in the scene to display its context menu, and
drag from the circle beside the Touch Up Inside item to an empty line in the
Lesson6ViewController.h ile before the @end statement.

 3. Name the new Action onLogin.

 4. Click the Lesson6ViewController.m ile in the project navigator to open it.

 5. Add the following line to the implementation of the onLogin method:

[usernameField resignFirstResponder];
[passwordField resignFirstResponder];

NSString* username = usernameField.text;

int length = [username length];
if (length == 0)
 return;

NSString* alertMessage = [NSString stringWithFormat:@"Welcome %@",
 username];

UIAlertView* welcomeMessage = [[UIAlertView alloc]
 initWithTitle:@"Login successful"
 message:alertMessage
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];

[welcomeMessage show];

 9. Add a tap gesture recognizer and use it to dismiss the keyboard when the background area
of the view is tapped.

 1. Add the following method declaration to the Lesson6ViewController.h ile:

- (void) handleBackgroundTap:(UITapGestureRecognizer*)sender;

Try It ❘ 91

 2. Add the following code to the viewDidLoad method of the view controller class,
after the [super viewDidLoad] line:

UITapGestureRecognizer* tapRecognizer = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleBackgroundTap:)];
tapRecognizer.cancelsTouchesInView = NO;
[self.view addGestureRecognizer:tapRecognizer];

 3. Implement the handleBackgroundTap: method in the Lesson6ViewController.m
ile as follows:

- (void) handleBackgroundTap:(UITapGestureRecognizer*)sender
{
 [usernameField resignFirstResponder];
}

 10. Test your app in the iOS Simulator by clicking the Run button in the Xcode toolbar.
Alternatively you can use the Project d Run menu item.

Please select Lesson 6 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Communicating with Your Users

The user interface elements you have encountered so far have all been created by dragging
and dropping from the Object library. In this lesson you are introduced to UIAlertView and
UIActionSheet, two user interface elements that are created only with code.

aLerT vieWS

An alert view is a special modal view that is used to display a short message to the user and
typically enables the user to choose from a small number of options. The most common use of
an alert view is to display information on success or failure of an operation; for example, on
success a typical login operation may display an alert view, as shown in Figure 7-1.

When an alert view is displayed, the screen is dimmed automatically for you. You can specify
a title, a message, and one or more buttons to present the user with options. One of these but-
tons is always designated as the cancel button, and though you can change the text displayed
in it, it is always displayed at the bottom of the alert view with a small offset from the other
buttons, as shown in Figure 7-2.

An alert view is an instance of the UIAlertView class, which is part of the UIKit framework,
and is created in code as follows:

UIAlertView* message = [[UIAlertView alloc]
 initWithTitle:@"This is the title"
 message:@"This is the message text"
 delegate:self
 cancelButtonTitle:@"Cancel Button"
 otherButtonTitles:@"Option 1", @"Option 2", nil];

The irst parameter is the title of the alert view. This is followed by the message. You can
provide an optional delegate object that is notiied when the user clicks one of the buttons in
the alert view. This delegate object must implement the UIAlertViewDelegate protocol, and
is speciied in the third parameter. The alert view is dismissed automatically when the user
presses one of the buttons. If you do not specify a delegate object, you have no way to ind out
which button was pressed. To use the view controller class as the delegate object, specify self
for the delegate parameter.

7

94 ❘ LeSSon 7 communicaTing wiTH your uSerS

FiGure 7-1 FiGure 7-2

The fourth parameter, cancelButtonTitle, enables you to specify the text to be displayed in the can-
cel button. You can specify the titles of additional buttons in the last parameter, otherButtonTitles.
This parameter contains a list of button titles separated by commas. The last title in the list must
always be nil. If you want no additional buttons, simply set this parameter to nil.

To show the alert view, simply send it the show message as follows:

[message show];

To determine which button was pressed, implement the alertView:clickedButtonAtIndex:
method in the delegate object as follows:

- (void)alertView:(UIAlertView *)alertView
 clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if (buttonIndex == alertView.cancelButtonIndex)
 {
 // cancel button pressed
 }
 else if (buttonIndex == alertView.firstOtherButtonIndex)
 {

Alert Views ❘ 95

 // first button pressed
 }
 else if (buttonIndex == alertView.firstOtherButtonIndex + 1)
 {
 // second button pressed
 }
}

The irst parameter to this method is a reference to the alert view object itself. The second param-
eter, buttonIndex, is an integer that contains the index number of the button that was pressed. The
UIAlertView object deines two standard properties, the value of which should be used to interpret
the buttonIndex parameter.

The irst is cancelButtonIndex. This stores the index position of the cancel button. Thus, to
determine if the cancel button was pressed, you would use an if statement as follows:

if (buttonIndex == alertView.cancelButtonIndex)
{
 // cancel button pressed
}

The second is firstOtherButtonIndex. This stores the index position of the irst of the optional but-
tons speciied while creating the alert view object. Recall that you can specify a list of optional button
titles while creating the alert view object in the otherButtonTitles parameter. Thus, to determine if
the irst optional button was pressed, you would use an if statement as follows:

if (buttonIndex == alertView.firstOtherButtonIndex)
{
 // first button pressed
}

Similarly, to determine if the second optional button was pressed, you would use the following if
statement:

if (buttonIndex == alertView.firstOtherButtonIndex + 1)
{
 // second button pressed
}

The alert view object enables you to add up to two text ields, in addition to buttons. This comes in
handy when you want to collect username and password information from the user (Figure 7-3).

To do this, you can set the value of the alertViewStyle property of the alert view object before
displaying it to the user. The value of this property can be one of the following:

 ➤ UIAlertViewStyleDefault — This is the default style, with no text ields.

 ➤ UIAlertViewStyleSecureTextInput — The alert view contains one text ield, and any
text typed by the user is masked.

 ➤ UIAlertViewStylePlainTextInput — The alert view contains one text ield, and any text
typed by the user is visible.

 ➤ UIAlertViewStyleLoginAndPasswordInput — The alert view contains two text ields, the
irst of which is an unmasked ield and the other a masked ield.

96 ❘ LeSSon 7 communicaTing wiTH your uSerS

FiGure 7-3

If you want to create an alert view with a single masked text ield, you can do it as follows:

UIAlertView* message = [[UIAlertView alloc]
 initWithTitle:@"This is the title"
 message:@"This is the message text"
 delegate:self
 cancelButtonTitle:@"Cancel"
 otherButtonTitles:@"Login", nil];

message.alertViewStyle = UIAlertViewStyleSecureTextInput;
[message show];

To retrieve the value typed by the user when the alert view is dismissed, you need to retrieve
a reference to the UITextField object within the alert view and read its value in the
alertView:clickedButtonAtIndex: delegate method as follows:

- (void)alertView:(UIAlertView *)alertView
 clickedButtonAtIndex:(NSInteger)buttonIndex
{
 UITextField* field1 = [alertView textFieldAtIndex:0];
 NSString* username = field1.text;

Action Sheets ❘ 97

 if (buttonIndex == alertView.cancelButtonIndex)
 {
 // cancel button pressed
 }
 else if (buttonIndex == alertView.firstOtherButtonIndex)
 {
 // Login button pressed
 }
}

acTion SheeTS

An action sheet is another user interface component that is created through code, and can be used to
present a list of choices to a user. Action sheets are similar to alert views in many respects; however,
they have several important differences. To start with, action sheets look signiicantly different from
alert views, and they look different on an iPhone and an iPad (Figure 7-4).

FiGure 7-4

98 ❘ LeSSon 7 communicaTing wiTH your uSerS

On an iPhone they slide up from the bottom of the screen, and on the iPad they display as popover
windows. On an iPad, the cancel button is not visible. If the user taps outside the action sheet on an
iPad, the action sheet is dismissed.

Action sheets enable you to highlight one of the buttons in red—this button is referred to as the
destructive button. To create an action sheet you can use the following code:

UIActionSheet* message = [[UIActionSheet alloc]
 initWithTitle:@"This is the title"
 delegate:self
 cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:@"Destructive"
 otherButtonTitles:@"Other 1", @"Other 2", nil];

As you can see, the parameters are very similar to those of an alert view. The
destructiveButtonTitle parameter is optional, and when speciied contains the title of
the destructive button. To create an action sheet without a destructive button, set this parameter
to nil.

To show an action sheet, send it the showInView: message as follows:

[message showInView:self.view];

You cannot display an action sheet in the viewDidLoad: method of a view controller class on the
iPad. Another important distinction between action sheets and alert views is that the former cannot
have text ields in them.

To determine which button was pressed in an action sheet, you need to provide a delegate object that
conforms to the UIActionSheetDelegate protocol. In most cases this delegate object is the view con-
troller class itself. In the delegate object, you must implement actionSheet:clickedButtonAtIndex:
as follows:

- (void)actionSheet:(UIActionSheet *)actionSheet
 clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if (buttonIndex == actionSheet.cancelButtonIndex)
 {
 // cancel button pressed
 }
 else if (buttonIndex == actionSheet.destructiveButtonIndex)
 {
 // destructive button pressed
 }
 else if (buttonIndex == actionSheet.firstOtherButtonIndex)
 {
 // option 1 pressed
 }
 else if (buttonIndex == actionSheet.firstOtherButtonIndex + 1)
 {
 // option 2 pressed
 }
}

Try It ❘ 99

Try iT

In this Try It, you create a new Xcode project based on the Single View Application template called
AlertSample that presents an alert view prompting the user to supply a username. When the alert
view is dismissed, a label on the screen is updated with the name entered in the alert view.

Lesson requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Edit the storyboard with Interface Builder.

 ➤ Add a UILabel instance to the default scene.

 ➤ Have the view controller class conform to the UIAlertViewDelegate protocol.

 ➤ Create a UIAlertView instance in the viewDidLoad method of the view controller class and
present it to the user.

 ➤ Implement the alertView:clickedButtonAtIndex: delegate method in the view con-
troller class.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 7 folder in the download.

hints
 ➤ Launch Xcode from the /Developer/Applications folder.

 ➤ To show the Object library, use the View ➪ Utilities ➪ Show Object Library menu item.

Step-by-Step

 1. Create a Single View Application in Xcode called AlertSample.

 1. Launch Xcode from the /Developer/Applications folder.

 2. To create a new project, select the File ➪ New ➪ New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: AlertSample

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson7

 ➤ Deine Family: iPhone

http://www.wrox.com

100 ❘ LeSSon 7 communicaTing wiTH your uSerS

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Open the MainStoryboard.storyboard ile in the Interface Builder.

 1. Ensure the project navigator is visible and the AlertSample project is selected and
expanded.

 2. Click the MainStoryboard.storyboard ile.

 3. Ensure the utilities editor is visible. To show the utilities editor, use the View
Utilities ➪ Show Utilities menu item.

 3. Add a UILabel instance to the scene.

 1. Ensure the Object library is visible. To show it, use the View ➪ Utilities ➪ Show
Object Library menu item.

 2. From the Object library, drag and drop a Label object onto the scene.

 3. Use the Attributes inspector to set the text attribute of the Label to User name:. To
show the Attributes inspector, use the View ➪ Utilities ➪ Show Attributes inspector
menu item.

 4. Size and position the label to X=68, Y=23, W=184, H=21.

 5. Use the assistant editor to create an outlet in the view controller class called userLabel
and connect the label to it.

 4. Have the view controller conform to the UIAlertViewDelegate protocol.

 1. Select the Lesson7ViewController.h ile in the Project Explorer.

 2. Modify the interface of the view controller class to resemble the following:

@interface Lesson7ViewController : UIViewController <UIAlertViewDelegate>
@property (weak, nonatomic) IBOutlet UILabel *userLabel;
@end

Try It ❘ 101

 5. Create a UIAlertView instance and display it.

 1. Select the Lesson7ViewController.m ile in the Project Explorer.

 2. Replace the implementation of the viewDidLoad method with the following:

- (void)viewDidLoad
{
 [super viewDidLoad];

 UIAlertView* message = [[UIAlertView alloc]
 initWithTitle:@"What is your name?"
 message:nil
 delegate:self
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 message.alertViewStyle = UIAlertViewStylePlainTextInput;
 [message show];
}

 6. Implement the alertView:clickedButtonAtIndex: delegate method in the view con-
troller class. Paste the following implementation into the Lesson7ViewController.m ile:

- (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:(NSInteger)
buttonIndex
{
 UITextField* field1 = [alertView textFieldAtIndex:0];
 userLabel.text = [NSString stringWithFormat:@"User name:%@", field1.text];
}

 7. Test your app in the iOS Simulator. Click the Run button in the Xcode toolbar.
Alternatively, you can use the Project Run menu item.

Please select Lesson 7 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Adding Images to Your View

The UIKit framework provides classes that enable you to represent and display images. In this
lesson, you learn how to use the UIImage and UIImageView classes.

The uiiMaGe cLaSS

A UIImage object represents image data that has either been read from a ile or created using
Quartz primitives. Instances are immutable, thus their properties can’t be changed once they
have been created. UIImage instances do not provide access to the underlying image data, but
do enable you to retrieve a PNG or JPEG image representation in an NSData object.

Images generally require large amounts of memory to store, and you should avoid creating
image objects larger than 1024 n 1024 pixels. To load an image from a ile into a UIImage
object, you irst need to ensure the ile is in one of the formats listed in Table 8-1.

TaBLe 8-1: UIImage Supported File Formats

deScriPTion FiLe exTenSionS

Portable Network Graphics .png

Joint Photographic Experts Group .jpeg, .jpg

Graphics Interchange Format .gif

Windows Device Independent Bitmap .bmp

Tagged Image File Format .tif, .tiff

You also need to ensure that the ile is part of the project. If the ile is not visible in the Project
Explorer, you need to add it by right-clicking an existing group and selecting the Add Files to
Project option in the context menu (Figure 8-1).

8

104 ❘ LeSSon 8 adding imageS To your View

FiGure 8-1

Assuming you have an image ile called cat.png, and want to load it into a UIImage object, use the
following code:

UIImage* catImage = [UIImage imageNamed:@"cat.png"];

The imageNamed method is a class method of the UIImage class, and implements an internal system
cache. Thus if you were to use this method to repeatedly load the same image ile, the image data
would be loaded only once and shared between the UIImage instances. If this code is executed on a
device that has a retina display, the imageNamed: method irst searches for a ile with an @2x sufix
appended to it. Thus, on an iPhone 4, this code would irst look for a ile named cat@2x.png. If it
could not ind that, it would look for the ile cat.png.

Loading images from your application bundle is not the only way to use UIImage objects. You can
also create one from an online data source by downloading the data available at the URL into an
NSData object and then instantiating a UIImage using the imageWithData: class method.

The following code snippet shows how to do this synchronously; however in production code you
should try and download any data from the web, including images, asynchronously. Downloading
images asynchronously is an advanced topic and is not covered in this book.

NSURL * imageURL = [NSURL URLWithString : @"http://......"];
NSData * imageData = [NSData dataWithContentsOfURL :imageURL];
UIImage * image = [[UIImage alloc] initWithData :imageData];

mailto:cat@2x.png

The UIImageView Class ❘ 105

The uiiMaGevieW cLaSS

A UIImageView object provides a container for displaying either a single UIImage object, or an
animated series of UIImage objects. To add a UIImageView object to a view controller or story-
board scene, simply drag an Image View object from the Object library (Figure 8-2).

FiGure 8-2

To set up the default image displayed in the image view, simply select
an image from the project’s resources for the Image property in the
Attributes inspector (Figure 8-3).

To display a UIImage object in an image view, you need to create an
outlet for the image view in the view controller class and set up its
image property as follows:

imageView.image = [UIImage imageNamed:@"cat.png"];

FiGure 8-3

106 ❘ LeSSon 8 adding imageS To your View

To use a UIImageView object to perform simple frame animation, simply provide an array of
UIImage objects in its animationImages property as follows:

NSArray* frameArray = [[NSArray alloc] initWithObjects:
 [UIImage imageNamed:@”frame1.png”],
 [UIImage imageNamed:@”frame2.png”],
 [UIImage imageNamed:@”frame3.png”],
 nil];

imageView.animationImages=frameArray;

and send the startAnimating message to the image view:

[imageView startAnimating];

Specify the duration of the animation in seconds, using the animationDuration property:

imageView.animationDuration = 2;

Try iT

In this Try It, you create a new Xcode project based on the Single View Application template called
TreasureHunt that displays an image and asks the user to ind an object in the image. When the
user taps the object, a short congratulatory animation sequence is displayed.

Lesson requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Edit the storyboard with Interface Builder.

 ➤ Import image resources into the project.

 ➤ Add a UILabel instance to the default scene.

 ➤ Add two UIImageView instances to the default scene.

 ➤ Use a gesture recognizer to detect a tap on the image and display an alert view.

 ➤ If the tap occurs over a speciic region of the image, display a congratulatory frame
animation.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 8 folder in the download.

hints
 ➤ To show the Object library, use the View d Utilities d Show Object Library menu item.

http://www.wrox.com

Try It ❘ 107

Step-by-Step

 1. Create a Single View Application in Xcode called TreasureHunt.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: TreasureHunt

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson8

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Import image resources into your project.

 1. Ensure the project navigator is visible and the TreasureHunt project is selected
and expanded. To show the project navigator, use the View d Navigators d Show
Project Navigator menu item. To expand a project click the triangle next to the
project name in the project navigator.

 2. Right-click the project node and select Add Files to TreasureHunt from the
context menu.

 3. Select the Images folder in this lesson’s resources on the DVD.

 4. Ensure the Copy Items to Destination Group’s Folder (if needed) option is selected
in the dialog box.

 5. Click the Add button.

 3. Add a UILabel instance to the default scene.

 1. Open the MainStoryboard.storyboard ile in Interface Builder.

 2. Ensure the Object library is visible. To show it, use the View d Utilities d Show
Object Library menu item.

108 ❘ LeSSon 8 adding imageS To your View

 3. From the Object library, drag and drop a Label object onto the scene.

 4. Use the Attributes inspector to set the Text attribute of the label to Tap the blue
bead! To show the Attributes inspector, use the View d Utilities d Show Attributes
Inspector menu item.

 5. Size and position the label to X=102, Y=6, W=117, H=21.

 4. Add two UIImageView instances to the default scene.

 1. From the Object library, drag and drop an Image View object onto the scene.

 2. Use the Attributes inspector to set the Image attribute of the image view to beads.png.
To show the Attributes inspector, use the View d Utilities d Show Attributes Inspector
menu item.

 3. Size and position the image view to X=0, Y=30, W=320, H=430.

 4. Use the assistant editor to create an outlet in the view controller class called
largeImage and connect the image view to it.

 5. From the Object library, drag and drop a second Image View instance to the scene.

 6. Size and position the image view to X=0, Y=190, W=320, H=100.

 7. Use the assistant editor to create an outlet in the view controller class called
animatedImage and connect the image view to it.

 5. Add a tap gesture recognizer and use it to show an animated image sequence when the
blue bead is tapped. Gesture recognizers are covered in detail in Lesson 29.

 1. Add the following method declaration to the Lesson8ViewController.h ile:

- (void) handleTap:(UITapGestureRecognizer*)sender;

 2. Update the viewDidLoad method of the view controller class to resemble the following:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // install tap gesture recognizer.
 UITapGestureRecognizer* tapRecognizer = [[UITapGestureRecognizer
alloc]
 initWithTarget:self
 action:@
selector(handleTap:)];
 tapRecognizer.cancelsTouchesInView = NO;
 [self.view addGestureRecognizer:tapRecognizer];

 // setup animatedImage
 NSArray* frameArray = [[NSArray alloc] initWithObjects:
 [UIImage imageNamed:@"anim1.png"],
 [UIImage imageNamed:@"anim2.png"],
 [UIImage imageNamed:@"anim3.png"],
 [UIImage imageNamed:@"anim4.png"],
 [UIImage imageNamed:@"anim5.png"],
 [UIImage imageNamed:@"anim6.png"],

Try It ❘ 109

 nil];

 animatedImage.animationImages=frameArray;
 animatedImage.animationDuration = 0.5;
 animatedImage.animationRepeatCount = 1;
 animatedImage.userInteractionEnabled = NO;
 [animatedImage setHidden:YES];
}

 3. Implement the handleTap: method in the Lesson8ViewController.m ile as follows:

- (void) handleTap:(UITapGestureRecognizer*)sender
{
 CGPoint startLocation = [sender locationInView:self.view];
 if ((startLocation.y >= 211) && (startLocation.y <= (211 + 104)))
 {
 [animatedImage setHidden:NO];
 [animatedImage startAnimating];
 }
}

 6. Test your app in the iOS Simulator by clicking the Run button in the Xcode toolbar.
Alternatively, you can use the Project d Run menu item.

Please select Lesson 8 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Pickers

A picker view (Figure 9-1) is a user interface component that enables a user to pick a value
from a set of related values using a slot machine–style interface.

Each wheel of the picker view is called a component, and it is fairly common to have
picker view with multiple components. Each component can have a different number of
items in it (Figure 9-2).

FiGure 9-1 FiGure 9-2

A picker view is encapsulated by the UIPickerView class, which is part of the UIKit framework.
Apple provides a special picker for allowing the user to select date and time. This component is
called the date picker and is covered in the next lesson.

A picker requires a data source object and a delegate object. The data source object is one that
implements the UIPickerViewDataSource protocol and provides information on the number
of components, and rows-per-component of the picker.

The delegate object implements the UIPickerViewDelegate protocol and has methods that
are called when the current selection in a component has changed.

The delegate and data source objects could both be the same object, and in many cases the
duties of these objects are performed by the view controller. However, it is very possible for
them to be independent objects.

9

112 ❘ LeSSon 9 pickerS

Creating a picker view is a simple matter of dragging the Picker View component from the Object
library onto your storyboard or XIB ile (Figure 9-3) and then creating an appropriate outlet in your
view controller class using the assistant editor.

The delegate and data source objects can be set up using Interface
Builder (Figure 9-4) or by setting up the delegate and dataSource
properties in code.

The following code snippet assumes pickerView is an outlet that is
connected to a UIPickerView instance and sets up the view controller
to be the delegate and the data source object:

- (void)viewDidLoad{
 [super viewDidLoad];
 pickerView.delegate = self;
 pickerView.dataSource = self;
}

The UIPickerViewDataSource protocol deines two methods:

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView;
- (NSInteger)pickerView:(UIPickerView *)pickerView
 numberOfRowsInComponent:(NSInteger)component;

FiGure 9-4

FiGure 9-3

Arrays in Objective-C ❘ 113

You must return the number of components in the picker view from the
numberOfComponentsInPickerView: method. The number of rows in each component
should be returned by the pickerView:numberOfRowsInComponent: method. For example,
a two-component picker can be set up as follows:

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView{
 return 2;
}
- (NSInteger)pickerView:(UIPickerView *)pickerView
 numberOfRowsInComponent:(NSInteger)component
{
 if (component == 0)
 return [cities count];

 return [placesOfInterest count];
}

The most commonly used UIPickerViewDelegate methods are:

- (NSString *)pickerView:(UIPickerView *)pickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component;
- (void)pickerView:(UIPickerView *)pickerView
 didSelectRow:(NSInteger)row
 inComponent:(NSInteger)component;

The text to be displayed in each row of each component is to be returned by the
pickerView:titleForRow:forComponent: delegate method. When the user selects a row in any
component of the picker, your delegate object’s pickerView:didSelectRow:inComponent: method
will be called.

Typically, the data for each component of a picker view is stored in an array. Assuming that
cities and placesOfInterest are arrays of NSString objects that contain the data for the two
components of a picker view, the pickerView:titleForRow:forComponent: delegate method
can be implemented as follows:

- (NSString *)pickerView:(UIPickerView *)pickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component
{
 if (component == 0)
 return [cities objectAtIndex:row];

 return [placesOfInterest objectAtIndex:row];
}

arrayS in oBjecTive-c

An array is an ordered collection of similar objects, and each object in the array has an index.
The index of the irst object is zero. Objective-C has two classes to represent arrays:

 ➤ NSArray

 ➤ NSMutableArray

114 ❘ LeSSon 9 pickerS

NSArray instances are immutable. This means that you cannot change the contents of an NSArray
object after you have created it. In fact, the contents of an array are set up as part of the initializa-
tion process.

NSMutableArray instances, on the other hand, have no such restriction. However, you must keep in
mind that inserting/deleting objects from an array can be a time-consuming operation, and thus you
should aim to use NSArray objects wherever possible.

To create an NSArray instance, and add four NSString objects to it in the same step, you can use
code similar to the following:

cities = [[NSArray alloc]
 initWithObjects:@"New York", @"London", @"Paris", @”Chicago”, nil];

When using the initWithObjects: method, the last object must always be nil.

To retrieve an object at a speciic index position, you can use the objectAtIndex: method. Index
numbers start from zero.

NSString* someCity = [cities ObjectAtIndex:0];

To retrieve the number of objects in an array, you can use the count method:

int arrayCount = [cities count];

NSMutatbleArray has all the methods provided by NSArray and a few more. You can create an
NSMutableArray with a speciied initial capacity as follows:

NSMutableArray* dynamicArray = [[NSMutableArray alloc] initWithCapacity:10];

The value you provide to the initWithCapacity: method serves merely as a hint to
NSMutableArray to pre-allocate memory for the speciied number of objects. You can have fewer or
more objects in the array as required by your program.

To add an element to the back of an NSMutableArray instance, you can use the addObject:
method:

[dynamicArray addObject:@”This in inserted at the end of the array”];

To remove a speciic object from an NSMutableArray, you can use the removeObject: method. To
remove all objects, you can use the removeAllObjects method.

Try iT

In this Try It, you build a new Xcode project based on the Single View Application template called
PickerTest that displays a two-component picker and a button. When the button is tapped, an
alert view appears, displaying the selected item in each component.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Add a Picker View to the default scene and create an outlet in the view controller class.

Try It ❘ 115

 ➤ Add a Round Rect Button to the default scene and add an action method in the view
controller class that is called when the Touch Up Inside event is ired.

 ➤ Add two data arrays in the view controller class and populate them in the viewDidLoad
method.

 ➤ Implement the UIPickerViewDataSource and UIPickerViewDelegate protocols in your
view controller class.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 9 folder in the download.

hints
 ➤ Use an NSArray object to create a data array whose contents will not change.

Step-by-Step

 1. Create a Single View Application in Xcode called PickerTest.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: PickerTest

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson9

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

http://www.wrox.com

116 ❘ LeSSon 9 pickerS

 2. Add a Picker View to your storyboard’s default scene.

 1. Ensure the Object library is visible. You can show it by using the View d Utilities d
Show Object Library menu item.

 2. Use the Object library to add a Picker View to the default scene.

 3. Use the Size inspector to resize and position it at X = 0, Y = 0.

 4. Using the assistant editor, create an outlet for the picker view called
cityAndSubjectPicker.

 5. Set the view controller class to be the delegate and data source object for the
picker view.

 1. Right-click the picker view to display a context menu.

 2. Drag from the circle beside the delegate entry in the context menu, to the
view controller icon (yellow box) in the dock.

 3. Do the same for the dataSource entry in the context menu.

 3. Add a Round Rect Button to the default scene.

 1. Ensure the Object library is visible. You can show it by using the View d Utilities d
Show Object Library menu item.

 2. Use the Object library to add a Round Rect Button instance.

 3. Double-click the button and set its title to Show Values.

 4. Using the Size Inspector, resize and position it to X = 20, Y = 251, W = 280, H = 37.

 5. Using the assistant editor, create an action in the view controller class and connect it
to the Touch Up Inside event of the button. Call the new method onButtonPressed.

 4. Add two strong and nonatomic NSArray properties called cities and placesOfInterest
to the Lesson9ViewController class.

 1. Declare the properties in the interface ile:

@property (strong, nonatomic) NSArray* cities;
@property (strong, nonatomic) NSArray* placesOfInterest;

 2. Synthesize them in the implementation ile:

@synthesize cities;
@synthesize placesOfInterest;

 5. Instantiate and initialize the NSArray objects in the viewDidLoad method:

- (void)viewDidLoad
{
 [super viewDidLoad];
 cities = [[NSArray alloc]
 initWithObjects:@"New York", @"London", @"Paris",
 @"Chicago", nil];

 placesOfInterest = [[NSArray alloc]

Try It ❘ 117

 initWithObjects:@"Museums", @"Clubs", @"Schools",
 @"Hotels", @"Airports", nil];
}

 6. Have your view controller class conform to the UIPickerViewDataSource and
UIPickerViewDelegate protocols by modifying its interface to the following:

@interface Lesson9ViewController : UIViewController<UIPickerViewDataSource,
 UIPickerViewDelegate>

 7. Implement the numberOfComponentsInPickerView: data source method in your view
controller as follows:

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView
{
 return 2;
}

 8. Implement the pickerView:numberOfRowsInComponent: data source method in your view
controller as follows:

- (NSInteger)pickerView:(UIPickerView *)pickerView
 numberOfRowsInComponent:(NSInteger)component
{
 if (component == 0)
 return [cities count];

 return [placesOfInterest count];
}

 9. Implement the pickerView:titleForRow:forComponent: delegate method in your view
controller as follows:

- (NSString *)pickerView:(UIPickerView *)pickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component
{
 if (component == 0)
 return [cities objectAtIndex:row];
 return [placesOfInterest objectAtIndex:row];
}

 10. Add the following code to the implementation of the onButtonPressed: method in your
view controller class:

int cityIndex = [cityAndSubjectPicker selectedRowInComponent:0];
int placeIndex = [cityAndSubjectPicker selectedRowInComponent:1];
NSString* messsageText = [[NSString alloc]
 initWithFormat:@"Are you looking for %@ in %@?",
 [placesOfInterest objectAtIndex:placeIndex],
 [cities objectAtIndex:cityIndex]];

UIAlertView* message = [[UIAlertView alloc]
 initWithTitle:@""
 message:messsageText
 delegate:nil
 cancelButtonTitle:@"Yes"
 otherButtonTitles:nil];
[message show];

118 ❘ LeSSon 9 pickerS

 11. Test your application in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively you can use the Project d
Run menu item.

 2. Change the selection in the components of the picker and tap the Show Values
button (Figure 9-5).

FiGure 9-5

Please select Lesson 9 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Date Pickers

In the previous lesson you learned about picker views. Although it is possible to create a picker
view with several components to allow your user to enter a date, Apple provides a special user
interface component for precisely this purpose. The date picker is a special picker that can be
used to select dates and times. You can conigure it to display only date, only time, or both
date and time as shown in Figure 10-1.

FiGure 10-1

The UIDatePicker class provides the functionality of a date picker, which is part of the UIKit
framework. The UIDatePicker class privately uses a UIPickerView instance, but you cannot
access this instance directly.

A date picker is much simpler to use than a picker view. For starters, it does not require you
to provide a delegate or data source object. Creating a date picker is a simple matter of drag-
ging the Date Picker component from the Object library onto a scene in your storyboard
(Figure 10-2) and then creating an appropriate outlet in your view controller class using the
assistant editor.

The mode of the date picker refers to whether it displays date, time, or both date and time.
You can also specify the range of values that should be displayed by the date picker. Both
these tasks can be accomplished by using the assistant editor (Figure 10-3).

10

120 ❘ LeSSon 10 daTe pickerS

You can read the date currently selected in the picker by accessing the date picker’s date property.
The result is returned as an NSDate instance:

// get date from date picker
NSDate* pickerDate = datePicker.date;

The date picker provides a Value Changed event that is ired when the user changes the selection in
the picker. You can use the assistant editor to create and associate an action method in your view
controller class with this event (Figure 10-4).

FiGure 10-4

FiGure 10-2 FiGure 10-3

Dates in Objective-C ❘ 121

daTeS in oBjecTive-c

Objective-C provides an NSDate class, instances of which represent a combined date and time value.
To create an NSDate object that has the current date and time, use the following code:

NSDate* todaysDate = [[NSDate alloc] init];

To create an NSDate object dated at a speciic interval of time from the current date, you can use
the initWithTimeIntervalSinceNow: method. This method requires a single argument, which is
the number of seconds in the past or future from the current date. A positive number indicates
a future date.

Thus, to create an NSDate object exactly 24 hours from the current date, you can use the follow-
ing code:

NSDate* tomorrowsDate = [[NSDate alloc]
 initWithTimeIntervalSinceNow: 24 * 3600];

If you want to create an NSDate without reference to the current date, you can use the
initWithTimeIntervalSinceReferenceDate: method to create a date that is at a speciied
interval from the 1st of January, 1970. The interval is speciied in seconds.

NSDate instances also provide several useful methods to compare dates, including:

 ➤ isEqualToDate: Returns YES if two NSDate instances are equal.

 ➤ earlierDate: Returns the earlier of two NSDate objects.

 ➤ laterDate: Returns the later of two NSDate objects.

Examples that contain these methods are shown here:

BOOL comparisonResult = [todaysDate isEqualToDate:someOtherDate];
NSDate* firstDate = [todaysDate earlierDate:someOtherDate];

For information on NSDate objects, refer to the NSDate Class Reference,
available at:

http://developer.apple.com/library/ios/#documentation/Cocoa/
Reference/Foundation/Classes/NSDate_Class/Reference/Reference
.html#//apple_ref/doc/uid/TP40003641

Creating a formatted representation of the contents of an NSDate object requires the use of another
class: NSDateFormatter.

To use an NSDateFormatter, you need to irst instantiate it, and use the setDateFormat method
on the instance to specify the internal format used by the date formatter object. This internal for-
mat is speciied as a string. Once a date formatter is instantiated, you can use it to create a textual
representation of an NSDate object using the stringFromDate method. This is demonstrated in the
following code:

NSDateFormatter* dateFormat = [[NSDateFormatter alloc] init];
[dateFormat setDateFormat:@"MMMM d, yyyy"];
NSString* textutalRepresentation = [dateFormat stringFromDate:todaysDate];

http://developer.apple.com/library/ios/#documentation/Cocoa/Reference/Foundation/Classes/NSDate_Class/Reference/Reference.html#//apple_ref/doc/uid/TP40003641

122 ❘ LeSSon 10 daTe pickerS

The format string consists of a series of characters that represent parts of a date and time. The
characters themselves are case-sensitive, some of the most common format strings are:

 ➤ MMMM: The full name of the month

 ➤ d: The day of the month

 ➤ YYYY: The four-digit year

 ➤ hh: Two-digit hour of the day

 ➤ mm: Two-digit minute

 ➤ ss: Two-digit second

 ➤ a: AM

 ➤ p: PM

For a complete list of format strings, refer to the Date Formatting Guide,
available at:

http://developer.apple.com/library/ios/#documentation/Cocoa/
Conceptual/DataFormatting/DataFormatting.html#//apple_ref/doc/
uid/10000029i

You can also use an NSDateFormatter instance to create an NSDate instance from a string represen-
tation of a date. This is done using the dateFromString: method of the date formatter object. If the
method succeeds, the result is a valid NSDate object, otherwise it is nil. The following code snippet
converts the string December 5, 2011 into an NSDate instance:

NSDateFormatter* dateFormat = [[NSDateFormatter alloc] init];
[dateFormat setDateFormat:@"MMMM d, yyyy"];
NSDate* equivalentDate = [dateFormat dateFromString:@"December 5, 2011"];

For more information on the NSDateFormatter class, refer to the NSDateFormatter
Class Reference, available at:

http://developer.apple.com/library/ios/#documentation/Cocoa/
Reference/Foundation/Classes/NSDateFormatter_Class/Reference/
Reference.html#//apple_ref/doc/uid/TP40003643

Try iT

In this Try It, you build an iPhone application based on the Single View Application template called
DateSample that displays a date picker and a label. The contents of the label are updated to display
a formatted version of the selected date, and the number of days between the selected date and
today’s date.

http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/DataFormatting/DataFormatting.html#//apple_ref/doc/uid/10000029i
http://developer.apple.com/library/ios/#documentation/Cocoa/Reference/Foundation/Classes/NSDateFormatter_Class/Reference/Reference.html#//apple_ref/doc/uid/TP40003643

Try It ❘ 123

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Add a date picker to the default scene and create an outlet for it in the view controller class.

 ➤ Use the Attributes inspector to set the mode and range of the date picker.

 ➤ Add two UILabel instances and create outlets for them in the view controller class.

 ➤ Create an action method in the view controller class and connect it to the Value Changed
event of the date picker.

 ➤ Write code to display the selected date in a speciic format and compute the number of days
between the selected date and today’s date.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 10 folder in the download.

hints
 ➤ You cannot change the height/width of a date picker.

 ➤ You can set the mode and the minimum and maximum date range using the Attributes
inspector.

Step-by-Step

 1. Create a Single View Application in Xcode called DateSample.

 1. Launch Xcode.

 2. To create a new project, select the File ➪ New ➪ New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: DateSample

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson10

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

http://www.wrox.com

124 ❘ LeSSon 10 daTe pickerS

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Add a date picker to the default scene.

 1. Ensure the Object library is visible. You can show it by using the View ➪ Utilities ➪
Show Object Library menu item.

 2. Use the Object library to add a date picker to the default scene.

 3. Use the Size inspector to resize and position it at X = 0, Y = 0.

 4. Using the assistant editor, create an outlet for the date picker in the view controller
class called datePicker.

 5. Using the assistant editor, create an action method called onValueChanged in the
view controller class and associate it with the Value Changed event of the date
picker.

 1. Right-click the date picker to display a context menu.

 2. Drag from the circle beside the Value Changed event to the view controller
ile in the adjacent window.

 3. Name the new action onValueChanged (Figure 10-5).

 4. Using the Attributes inspector, set the mode of the date picker to Date.

 5. Using the Attributes inspector, set the range of dates displayed in the date
picker as shown in Table 10-1.

FiGure 10-5

TaBLe 10-1: Custom Date Range

iTeM vaLue

Minimum 08/01/2011

Maximum 12/31/2012

Try It ❘ 125

 3. Add two UILabel instances to the scene.

 1. Ensure the Object library is visible. You can show it by using the View ➪ Utilities ➪
Show Object Library menu item.

 2. Use the Object library to add two UILabel instances.

 3. Using the Size inspector, resize and position the irst label to X = 20, Y = 257, W =
280, H = 21.

 4. Using the Size inspector, resize and position the second label to X = 20, Y = 293, W
= 280, H = 21.

 5. Using the Attributes inspector, set the Alignment property of both labels to be cen-
ter aligned.

 6. Add outlets to the view controller class for each label. Name the outlet correspond-
ing to the label on top as topLabel. Name the other one bottomLabel.

 4. Your view controller’s interface should now resemble the following:

#import <UIKit/UIKit.h>
@interface Lesson10ViewController : UIViewController
@property (weak, nonatomic) IBOutlet UIDatePicker *datePicker;
@property (weak, nonatomic) IBOutlet UILabel *topLabel;
@property (weak, nonatomic) IBOutlet UILabel *bottomLabel;
- (IBAction)onValueChanged:(id)sender;
@end

 5. Modify your view of controller’s viewDidLoad method to resemble the following:

- (void)viewDidLoad
{
 [super viewDidLoad];
 bottomLabel.text = @"";
 topLabel.text = @"Please select a date!";
}

 6. Add the following code to the implementation of the onValueChanged: method in your
view controller class:

// get todays date
NSDate* todaysDate = [[NSDate alloc] init];

// get date from date picker
NSDate* pickerDate = datePicker.date;

// difference between intervals (in days)
NSTimeInterval dateDifference = [pickerDate
 timeIntervalSinceDate:todaysDate];
double numDays = dateDifference / (3600 * 24);
bottomLabel.text = [NSString stringWithFormat:@"Difference from
 today (in days) = %2.0f", numDays];

// display the selected day as a string.
NSDateFormatter* dateFormat = [[NSDateFormatter alloc] init];

126 ❘ LeSSon 10 daTe pickerS

[dateFormat setDateFormat:@"MMMM d, yyyy"];
topLabel.text = [NSString stringWithFormat:@"Selected date:%@",
 [dateFormat stringFromDate:pickerDate]];

 7. Test your application in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively you can use the Project ➪
Run menu item.

 2. Change the selection in the components of the date picker and notice how the text in
each label changes.

Please select Lesson 10 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Custom Pickers

In Lesson 9 you learned about the UIPickerView class. Picker views do not have to be restricted
to displaying text; in fact, they can just as easily display images, or a combination of images and
text. In this lesson you learn how to provide your own UIView subclasses for individual elements
of a picker view, thus creating pickers that have images instead of text, as shown in Figure 11-1.

The key to implementing this functionality lies in three optional methods of the
UIPickerViewDelegate protocol:

- (CGFloat)pickerView:(UIPickerView *)pickerView
 widthForComponent:(NSInteger)component;
- (CGFloat)pickerView:(UIPickerView *)pickerView
 rowHeightForComponent:(NSInteger)component;
- (UIView *)pickerView:(UIPickerView *)pickerView
 viewForRow:(NSInteger)row
 forComponent:(NSInteger)component
 reusingView:(UIView *)view;

You can customize the width of each picker component by returning an appropriate value
from the pickerView:withForComponent: delegate method (Figure 11-2).

If you do not implement this method, the picker view distributes the available width equally
between its components.

FiGure 11-1 FiGure 11-2

11

128 ❘ LeSSon 11 cuSTom pickerS

The pickerView:rowHeightForComponent: delegate method enables you to specify the height of
each row in a given component. All rows in a component must have the same height.

You need to return a UIView subclass in the pickerView:viewForRow:forComponent:resusingV
iew: delegate method. This method’s arguments include a reference to the picker view, the row, and
the component number.

The view returned by this method can be an instance of an existing UIKit class like UIImageView
or UILabel. You can also provide instances of your own UIView subclass in which you have imple-
mented custom drawing logic. Subclassing UIView is outside the scope of this book.

The last argument of this delegate method is a reference to an existing UIView object. If this argu-
ment is not nil, it will refer to one of the view objects provided by this method on a previous occa-
sion. You should try to reuse it instead of creating one from scratch.

When you scroll a row in one of the components off the screen, the picker does not immediately
destroy the corresponding view; instead it adds it to an internal cache of “reusable views.” When it
is time to display a new row in the same component the picker provides one of these cached views
to your delegate method, encouraging you to reuse it instead of instantiating a fresh copy.

Try iT

In this Try It, you build a new Xcode project based on the Single View Application template called
CustomPickerTest that displays a three-component custom picker view with images of fruits.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Import image iles into the project.

 ➤ Add a Picker View and create an outlet for it in the view controller class.

 ➤ Add a UILabel instance and create an appropriate outlet for in the view controller class.

 ➤ Add three data arrays with the names of fruits to be displayed for each picker component in
the view controller class and populate them in the viewDidLoad method.

 ➤ Add an NSDictionary object that maps names of fruits to image ilenames.

 ➤ Implement the UIPickerViewDataSource and UIPickerViewDelegate protocols in your
view controller class.

You can download the code and resources for this Try It from the book’s
web page at www.wrox.com. You can ind them in the Lesson 11 folder in the
download.

http://www.wrox.com

Try It ❘ 129

hints
 ➤ Use an NSArray object to create a data array whose contents will not change.

 ➤ An NSDictionary object contains a list of mappings between keys and values. Each key in a
dictionary is unique.

Step-by-Step

 1. Create a Single View Application in Xcode called CustomPickerTest.

 1. Launch Xcode.

 2. To create a new project, select the File ➪ New ➪ New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: CustomPickerTest

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson11

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Import image resources into your project.

 1. Ensure the project navigator is visible and the CustomPickerTest project is selected
and expanded.

 2. Right-click the CustomPickerTest group and select Add Files to CustomPickerTest
from the context menu.

 3. Select the Images folder in this lesson’s resources on the DVD.

 4. Ensure the Copy Items to Destination Group’s Folder (if needed) option is selected in
the dialog box.

 5. Click the Add button.

130 ❘ LeSSon 11 cuSTom pickerS

 3. Add a Picker View to your storyboard’s scene.

 1. Use the Object library to add a Picker View to the default scene.

 2. Use the Size inspector to resize and position it at X = 0, Y = 0.

 3. Using the assistant editor, create an outlet for the picker view in the view controller
class called fruitPicker.

 4. Set the view controller class to be the delegate and data source object for the picker.

 1. Right-click the picker view to display a context menu.

 2. Drag from the circle beside the delegate entry in the context menu to the
view controller object (the yellow box) in the dock.

 3. Do the same for the dataSource entry in the context menu.

 4. Add a label to the default scene.

 1. Use the Object library to add a UILabel instance.

 2. Using the Size inspector, resize and position it to X = 10, Y = 264, W = 300, H = 21.

 3. Using the Attributes inspector, set the Alignment property to be center aligned.

 4. Add an outlet to the view controller class for the label, and name it resultLabel.

 5. Add three strong and nonatomic NSArray properties called dataForComponent1, data-
ForComponent2, and dataForComponent3 to the view controller class.

 1. Declare the properties in the interface ile:

@property (strong, nonatomic) NSArray* dataForComponent1;
@property (strong, nonatomic) NSArray* dataForComponent2;
@property (strong, nonatomic) NSArray* dataForComponent3;

 2. Synthesize them in the implementation ile:

@synthesize dataForComponent1;
@synthesize dataForComponent2;
@synthesize dataForComponent3;

 6. Add a strong and nonatomic NSDictionary property called nameToImageMapping to the
view controller class.

 1. Declare the property in the interface ile:

@property (strong, nonatomic) NSDictionary* nameToImageMapping;

 2. Synthesize it in the implementation ile:

@synthesize nameToImageMapping;

 7. Have your view controller class conform to the UIPickerViewDataSource and
UIPickerViewDelegate protocols by modifying its interface to the following:

@interface Lesson11ViewController : UIViewController<UIPickerViewDelegate,
 UIPickerViewDataSource>

Try It ❘ 131

 8. Your view controller’s interface should now resemble the following:

@interface Lesson11ViewController : UIViewController<UIPickerViewDelegate,
 UIPickerViewDataSource>
@property (weak, nonatomic) IBOutlet UILabel *resultLabel;
@property (weak, nonatomic) IBOutlet UIPickerView *fruitPicker;
@property (strong, nonatomic) NSArray* dataForComponent1;
@property (strong, nonatomic) NSArray* dataForComponent2;
@property (strong, nonatomic) NSArray* dataForComponent3;
@property (strong, nonatomic) NSDictionary* nameToImageMapping;
@end

 9. Add the following code to your view controller’s viewDidLoad method to instantiate and
initialize the three NSArray objects:

dataForComponent1 = [[NSArray alloc] initWithObjects:@"Apple",
 @"Banana", @"Lemon", @"Orange",
 @"Peach", @"Pear", @"Pineapple", nil];
dataForComponent2 = [[NSArray alloc] initWithObjects:@"Banana",
 @"Orange", @"Pear", @"Apple",
 @"Pineapple", @"Lemon", @"Peach", nil];
dataForComponent3 = [[NSArray alloc] initWithObjects:@"Pear",
 @"Peach", @"Lemon", @"Pineapple",
 @"Apple", @"Banana", @"Orange", nil];

 10. Add the following code to your view controller’s viewDidLoad method to instantiate and
initialize the NSDictionary object:

nameToImageMapping = [[NSDictionary alloc]
 initWithObjectsAndKeys:@"apple.png", @"Apple",
 @"banana.png", @"Banana",
 @"lemon.png", @"Lemon",
 @"orange.png", @"Orange",
 @"peach.png", @"Peach",
 @"pear.png", @"Pear",
 @"pineapple.png", @"Pineapple",
 nil];

 11. Add the following code to your view controller’s viewDidLoad method to set up the initial
text of the UILabel instance resultLabel:

resultLabel.text = @"Match the fruits in each row!";

 12. Implement the numberOfComponentsInPickerView: delegate method in your view control-
ler as follows:

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView
{
 return 3;
}

 13. Implement the pickerView:numberOfRowsInComponent: data source method in your view
controller as follows:

- (NSInteger)pickerView:(UIPickerView *)pickerView
 numberOfRowsInComponent:(NSInteger)component
{
 if (component == 0)
 return [dataForComponent1 count];

132 ❘ LeSSon 11 cuSTom pickerS

 if (component == 1)
 return [dataForComponent2 count];

 return [dataForComponent3 count];
}

 14. Implement the pickerView:rowHeightForComponent: data source method in your view
controller as follows:

- (CGFloat)pickerView:(UIPickerView *)pickerView
 rowHeightForComponent:(NSInteger)component
{
 return 50;
}

 15. Implement the pickerView:viewForRow:forComponent:reusingView: delegate method in
your view controller as follows:

- (UIView *)pickerView:(UIPickerView *)pickerView
 viewForRow:(NSInteger)row
 forComponent:(NSInteger)component
 reusingView:(UIView *)view
{
 // get the fruit name
 NSString* keyString;
 if (component == 0)
 keyString = [dataForComponent1 objectAtIndex:row];
 else if (component == 1)
 keyString = [dataForComponent2 objectAtIndex:row];
 else if (component == 2)
 keyString = [dataForComponent3 objectAtIndex:row];

 NSString* imageFileName = [nameToImageMapping objectForKey:keyString];

 if(view == nil)
 {
 return [[UIImageView alloc] initWithImage:[UIImage imageNamed:imageFileName]];
 }

 ((UIImageView*)view).image = [UIImage imageNamed:imageFileName];
 return view;
}

 16. Implement the pickerView:didSelectRow:inComponent: delegate method in your view
controller as follows:

- (void)pickerView:(UIPickerView *)pickerView
 didSelectRow:(NSInteger)row
 inComponent:(NSInteger)component
{
 // get selected fruit in each component
 int selectedRowInComponent1 = [pickerView selectedRowInComponent:0];
 NSString* fruitInComponent1 = [dataForComponent1
 objectAtIndex:selectedRowInComponent1];
 int selectedRowInComponent2 = [pickerView selectedRowInComponent:1];
 NSString* fruitInComponent2 = [dataForComponent2

Try It ❘ 133

 objectAtIndex:selectedRowInComponent2];
 int selectedRowInComponent3 = [pickerView selectedRowInComponent:2];
 NSString* fruitInComponent3 = [dataForComponent3
 objectAtIndex:selectedRowInComponent3];

 // if the same fruit is selected in
 // each row, then show a message
 if ([fruitInComponent1 isEqualToString:fruitInComponent2] &&
 [fruitInComponent2 isEqualToString:fruitInComponent3])
 {
 resultLabel.text = @"Jackpot!";
 }
 else
 {
 resultLabel.text = @"Match the fruits in each row!";
 }
}

 17. Test your application in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively you can use the Project ➪
Run menu item.

 2. Change the selection in the components of the picker. If you get three fruits of the
same kind in the central row, you should see the Jackpot! message.

Please select Lesson 11 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Navigation Controllers

A lot of applications for Apple’s iOS devices display information on more than one view con-
troller. On the iPad, for example, there is even a split view that displays two view controllers
at once. The iPhone doesn’t have that luxury, so it must provide a way to navigate through a
hierarchy of view controllers.

To be able to navigate from view controller to view controller, by either drilling down into a
hierarchy of views controllers or returning back to the original view controller, there has to be
a process to accomplish this.

Apple has provided developers with a navigation controller that manages the presentation of
these view controllers in your application. The class provided is UINavigationController
that controls a hierarchy of UIViewController classes.

The UIViewController class contains a view property that contains your custom view infor-
mation for user interaction. This view is what users see on their device. This custom user inter-
face is designed using the Xcode Interface Builder editor as shown in Figure 12-1.

In this lesson you learn how to add a navigation controller to your single view application. You
learn how to navigate from one view controller to another, including returning back to the origi-
nal root view controller. You also learn how to transfer data from one view controller to another.

This lesson requires you to add the navigation controller manually in code. In
Lesson 13, the Master-Detail Application template automatically adds the navi-
gation controller and includes two view controllers already connected.

naviGaTion conTroLLer inTerFace

To manage the presentation of your custom view controllers, the navigation controller uses
custom views of its own as shown in Figure 12-2.

12

136 ❘ LeSSon 12 naVigaTion conTrollerS

FiGure 12-1

The navigation controller interface contains the following key views:

 ➤ Navigation bar

 ➤ Navigation view

 ➤ Navigation toolbar

navigation Bar

The navigation bar is located at the top of the view controller, and as you drill down the naviga-
tion stack, the left area of the navigation bar automatically presents a back button, enabling you to
return to the previous view controller.

You can add buttons to the navigation bar that perform custom actions.

The following code adds a Done button to a navigation bar, which when tapped launches a
someAction method in your source code:

UIBarButtonItem *doneButton = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemDone target:self
 action:@selector(someAction:)];
[[self navigationItem] setRightBarButtonItem:doneButton];

Navigation Controller Hierarchy ❘ 137

navigation view

The navigation view is the view stored in the navigation control-
ler’s view property. You customize this view by adding buttons,
input ields, pickers, or any other objects, depending on your appli-
cation’s requirements.

navigation Toolbar

The navigation toolbar is optional, but is used for additional but-
tons that add more functionality to your application.

naviGaTion conTroLLer hierarchy

The process of navigating through view controllers within the
hierarchy is stack-based, or irst in, last out. The irst view con-
troller that is placed on this stack is known as the root view
controller, and cannot be removed from the stack.

Each view controller is responsible for pushing the next view con-
troller onto the navigation stack; however the navigation control-
ler, through the use of the back button appearing on the left side of
the navigation bar, controls the popping of the visible view control-
ler, revealing the previous view controller by default.

navigation Stack Management

The UINavigationController class provides methods to add and remove view controllers from the
navigation stack. All management of the navigation stack originates with the initial view controller,
known as the root view controller.

Table 12-1 summarizes the methods that manage the contents of the navigation stack.

TaBLe 12-1: Navigation Stack Management

acTion deScriPTion

Display the next view controller The pushViewController:animated: method pushes

a new view controller onto the navigation stack.

Display the previous view controller The navigation controller provides a back button to

return to the previous view controller. Programatically, a

call to the popViewControllerAnimated: method also

displays the previous view controller.

FiGure 12-2

continues

138 ❘ LeSSon 12 naVigaTion conTrollerS

acTion deScriPTion

Return to the root view controller To return to the root view controller a call to the

popToRootViewControllerAnimated: method

removes the all but the root view controller from the

navigation stack.

Jump to a speciic view controller A call to the setViewControllers:animated: method

enables immediate jumping to any view controller in the

navigation stack.

xib-Based applications

Beginning with the irst iOS SDK release, the user interface was xib-based. That means that when
you designed your user interface in the Interface Builder, the created ile that contained all the UI
information had an .xib extension.

Each view controller would have an associated .xib ile that had to be loaded when it was pushed
onto the navigation stack.

The following code pushes a view controller onto the navigation stack:

QuestionPoolViewController *controller =
 [[QuestionPoolViewController alloc] initWithStyle:UITableViewStyleGrou
ped];
[[self navigationController] pushViewController:controller animated:YES];

Storyboard-Based applications

Beginning with iOS 5, the concept of storyboards was introduced. The developer now lays out the
entire UI in one window as shown in Figure 12-3.

In addition to laying out your entire UI in one window, storyboarding enables the deinition of all
the transitions between view controllers to be deined graphically as well as all the controls that
launch the transitions.

This ability to lay out your entire UI and program low graphically signiicantly reduces the amount
of code you need to write for your application.

Figure 12-4 illustrates how to deine the transition between two view controllers in the Interface Builder by
connecting the table view cell to the view controller’s performSegueWithIdentifier:sender: method.

To pass data from one view controller to the next view controller, you implement
prepareForSegue:sender method.

The following code passes a custom Person object to the next view controller:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {
Person *aPerson = [[self people]
 objectAtIndex:[[[self tableView] indexPathForSelectedRow] row]];

TaBLe 12-1 (continued)

Navigation Controller Hierarchy ❘ 139

DetailViewController *detailViewController = [segue
destinationViewController];
[detailViewController setPerson:aPerson];
}

FiGure 12-3

FiGure 12-4

140 ❘ LeSSon 12 naVigaTion conTrollerS

Try iT

In this Try It, you implement two view controllers, where the root view controller passes a value to
the detail view controller for display.

You can download the code and resources for this Try It from the book’s web
page at www.wrox.com. You can ind them in the Lesson 12 folder in
the download.

Lesson requirements
 ➤ Create an Xcode project using the Single View Application template.

 ➤ Create a storyboard including root and detail view controllers.

 ➤ Add a UITextField and UIButton to the root view controller.

 ➤ Add a UILabel to the detail view controller.

 ➤ Implement the prepareForSegue:sender method in the root view controller to pass the
value entered in the UITextField.

 ➤ Display the detail view controller with the UILabel populated with the passed value that
was entered in the root view controller’s UITextField.

hints
 ➤ Because this application uses storyboards instead of .xib iles, remember to have the Use

Storyboard option checked at project creation.

 ➤ The view controller transition launches when the button on the navigation bar is tapped, so
the performSegueWithIdentifier:sender connection from the root view controller to the
detail view controller will be between the button and the detail view controller.

Step-by-Step

 1. Create a Single View Application.

 1. Launch Xcode.

 2. Create your new iOS project.

 a. To create a new project, select Create a New Xcode Project.

 b. On the left under iOS, select Application.

 c. Select Single View Application from the template list and click Next.

http://www.wrox.com

Try It ❘ 141

 d. Choose the following options for your project:

 ➤ Product Name: Lesson12

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson12

 ➤ Device Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you may use any unique
identiier for your application.

 e. Select the location on your computer where the project will be saved and
select Create.

 f. Your Xcode project has been created as shown in Figure 12-5.

FiGure 12-5

142 ❘ LeSSon 12 naVigaTion conTrollerS

 2. Design the user interface.

 1. On the left, select MainStoryboard.storyboard.

 2. On the right select the third button in the View section, to display the Utilities view
as shown in Figure 12-6.

FiGure 12-6

 3. Select the bottom bar of the default view controller in the storyboard and tap the
Delete key to remove it.

It is important to make sure the default view controller is completely removed
from the storyboard. Your storyboard must be completely empty after step 3.

 4. To create the detail view controller:

 a. Select the Lesson12 folder on the left.

 b. Select File ➪ New ➪ New File from the Xcode menu.

 c. On the left under iOS, select Cocoa Touch.

 d. Select UIViewController from the template list and click Next.

 e. Choose the following options for your new ile:

 ➤ Class: DetailViewController

 ➤ Subclass of: UIViewController

Try It ❘ 143

 ➤ Deselect: Targeted for iPad

 ➤ Deselect: With XIB for user interface

 f. Click Next.

 g. Click Create to save the class in your project folder.

 5. Select MainStoryboard.storyboard and on the lower right select the third icon to
display the object library; scroll through the list of objects and drag a Navigation
Controller on your storyboard window.

 6. Complete the following to design the root view controller:

 a. Click inside the root view controller view and then click the frame of the
view to select the view controller.

 b. Select the Identity Inspector from the toolbar on the right.

 c. In the Custom Class section of the Identity Inspector, replace
UIViewController with your Lesson12ViewController class.

 d. Drag a Text Field from the objects in the lower right, and place it in the cen-
ter and near the top of the root view controller window.

 e. Drag a Bar Button Item from the objects in the lower right, and place it on
the right corner of the navigation bar.

 f. Select the Attributes Inspector from the toolbar on the right as shown in
Figure 12-7.

 g. Select Action from the Identiier drop-down list in the Bar Button Item
section of the inspector.

FiGure 12-7

144 ❘ LeSSon 12 naVigaTion conTrollerS

 7. Complete the following to design the detail view controller:

 a. Drag a View Controller object from the objects in the lower right, and drag
it on the storyboard to the right of the root view controller.

 b. From the Identity Inspector choose the DetailViewController class for the
Custom Class.

 c. Drag a Label from the objects in the lower right, and place it in the middle
of the detail view controller window.

 8. Select File ➪ Save to save your project.

 3. Make the connection for the navigation transition by selecting the bar button item in the
navigation bar of the root view controller, Ctrl-drag to the detail view controller, and select
Push, from the Storyboard Segues list..

 4. Make the connection for the UITextField.

 1. Select the root view controller in the storyboard and from the Editor section, select
the Assistant Editor button as shown in Figure 12-8.

FiGure 12-8

 2. Select the text ield and Ctrl-drag to the interface source code just above the @end.

 3. Enter entryTextField for the outlet name and click Connect.

Try It ❘ 145

 5. Make the connection for the UILabel.

 1. Select the detail view controller in the storyboard.

 2. Select DetailViewController.h from the list as shown in Figure 12-9.

 3. Select the label and Ctrl-drag to the interface source code just above the @end.

 4. Enter displayLabel for the outlet name and click Connect.

 5. From the Editor section, select the Standard editor to hide the
DetailViewController.h ile.

FiGure 12-9

 6. Modify the view controllers.

 1. On the left, select Lesson12ViewController.m and add the following import at
the top:

#import "DetailViewController.h"

 2. Add the following method at the bottom above the @end:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {
 DetailViewController *detailViewController =
 [segue destinationViewController];
 [detailViewController
 setDetailText:[[self entryTextField] text]];
}

146 ❘ LeSSon 12 naVigaTion conTrollerS

 3. Select DetailViewController.h and add the following property above the @end:

@property (strong, nonatomic) NSString *detailText;

 4. Select DetailViewController.m and add the following at the top:

@synthesize detailText;

 5. Uncomment the viewDidLoad method and add the following below [super
viewDidLoad]:

[self setTitle:@"Detail View Controller"];
[[self displayLabel] setText:[self detailText]];

 6. In the viewDidUnLoad method, add the following above [super viewDidUnload]:

 [self setDetailText:nil];

 7. Run the application.

 1. Select the iPhone Simulator to run the application.

 2. Click the Run button from Xcode.

 3. When the application launches, enter Hello in the text ield and click the action but-
ton on the navigation bar.

 4. The detail view controller is displayed with your Hello in the label.

 5. Click the back button to return to the root view controller.

Please select Lesson 12 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Table Views

To display a list of values, the table view is one of the most common user interface elements in
iOS development. The table view is more common in iPhone applications than in iPad applica-
tions because of the size of the viewing area.

In addition to displaying a scrollable list of data, you can present the list in the following ways
to make viewing easier:

 ➤ As an indexed list

 ➤ As a part of related groups

Developers use the table view within a navigation controller–based application as a way to
drill down through a hierarchical set of data. This style of application can be created easily
by choosing the Master-Detail Application from the application template upon Xcode project
creation.

The physical makeup of the table view is limited to a single-column vertical scrolling con-
trol. The list can be presented in groups along with a header and footer for each group
section, and each section contains a row of data related to that speciic section.

The Contacts application that is pre-installed on all iOS devices uses the indexed format to
present names. The sections are grouped by the letters of the alphabet, and within each letter
group, are the rows of names beginning with that letter. For example, under the group J would
be a name Jones.

In this lesson you learn how to add data to a table view. You learn how to group related infor-
mation into sections, and you learn how to transfer data from a selected table view cell to a
separate detail view controller to display the selected list item.

13

148 ❘ LeSSon 13 TaBle ViewS

TaBLe vieW WorkFLoW

To implement a table view into your application, two required elements must be in your code for the
navigation worklow to be successful:

 ➤ You must display a known set of values.

 ➤ You must respond to the user’s table view cell selection.

display values

The data to be displayed must be in list form. An NSArray is used frequently to store the data, as it
can be referenced easily with the row index being used as the index to the array.

The number of sections represents how your data is grouped. If you have an array of related items,
the number of sections will be one. If the data contains several groups, as the contacts grouped
names alphabetically, the numberOfSectionsInTableView method returns the number of sections
or groups that are present in the array.

The number of rows that are displayed usually is the count of the NSArray, for example. This count
is returned via the tableView:numberOfRowsInSection method.

The actual value in the NSArray being displayed is a one-to-one relationship between the array
index and the indexPath’s row property. The actual table view cell population occurs in the
tableView:cellForRowAtIndexPath method.

row Selection

Responses to a row being selected differ in nib-based versus storyboard applications.

Nib-based

When the user selects a table view cell in a nib-based application, the tableView:didSelectRowAtI
ndexPath method is called, and like the tableView:cellForRowAtIndexPath method, the selected
indexPath’s row property is the same as the index in the array. When the row is selected, usually a
view controller is pushed on to the navigation stack.

Storyboard

When the user selects a table view cell in a storyboard application that has the performSegueWithI
dentifier:sender connection established, the prepareForSegue:sender method is called before
the view controller is pushed on to the navigation stack.

TaBLe vieW STyLeS

A table view is an instance of the UITableView class and has two styles of presentation. It can be a
UITableViewStyleGrouped or UITableViewStylePlain style, as shown in Figure 13-1.

Table View Styles ❘ 149

FiGure 13-1

Each row of a table view is an instance of the UITableViewCell class. Custom table view cells sub-
class this class. The table view’s appearance and source for data are handled by the following:

 ➤ Delegate methods

 ➤ Data source methods

delegate Methods

For a view controller to indicate that it is a UITableView delegate, it must implement the
UITableViewDelegate protocol. The delegate then handles managing selections, conigures the
section headings and footers, and assists in the deletion and reordering of table view cells.

The following are common delegate methods to implement in the view controller:

 ➤ tableView:heightForRowAtIndexPath:

 ➤ tableView:willDisplayCell:forRowAtIndexPath:

 ➤ tableView:didSelectRowAtIndexPath:

 ➤ tableView:didDeselectRowAtIndexPath:

 ➤ tableView:commitEditingStyle:forRowAtIndexPath:

 ➤ tableView:canEditRowAtIndexPath:

150 ❘ LeSSon 13 TaBle ViewS

data Source Methods

For a view controller to indicate that it is a UITableView data source, it must implement the
UITableViewDataSource protocol. The data source provides the table view with the data items
needed to populate or modify the contents of a UITableViewCell row.

The following are common data source methods to implement in the view controller:

 ➤ tableView:cellForRowAtIndexPath: (required)

 ➤ tableView:numberOfRowsInSection: (required)

 ➤ numberOfSectionsInTableView:

 ➤ tableView:titleForHeaderInSection:

 ➤ tableView:titleForFooterInSection:

 ➤ tableView:commitEditingStyle:forRowAtIndexPath:

 ➤ tableView:canEditRowAtIndexPath:

 ➤ tableView:canMoveRowAtIndexPath:

 ➤ tableView:moveRowAtIndexPath:toIndexPath:

neW For ioS 5

For iOS 5, the table view has received a number of new features that can be used by the developer.

Table view additions

Table 13-1 highlights the additions that have been added to the UITableView class.

TaBLe 13-1: iOS 5 Table View Additions

TaSkS deScriPTion

allowsMultipleSelection Determines if more than one row can be

selected outside of editing mode.

allowsMultipleSelectionDuringEditing Determines if more than one row can be

selected during editing mode.

indexPathsForSelectedRows The index paths of the rows that have been

selected.

moveRowAtIndexPath:toIndexPath: Moves a row at one index path to another

row at its index path.

New for iOS 5 ❘ 151

TaSkS deScriPTion

moveSection:toSection: Moves a section in a table view to another

section location.

registerNib:forCellReuseIdentifier: Registers a custom table view cell’s nib ile

for reuse by the table view.

constants

When a new table view cell is added programmatically, there is a new constant,
UITableViewRowAnimationAutomatic, that allows for the appropriate animation to be performed.
The following methods can use this constant:

 ➤ insertRowsAtIndexPaths:withRowAnimation:

 ➤ insertSections:withRowAnimation:

 ➤ deleteRowsAtIndexPaths:withRowAnimation:

 ➤ deleteSections:withRowAnimation:

 ➤ reloadRowsAtIndexPaths:withRowAnimation:

 ➤ reloadSections:withRowAnimation:

When you want the UITableView to choose a default value for the height of the header or footer, the
delegate methods tableView:heightForHeaderInSection: or tableView:heightForFooterIn
Section: would return the new constant UITableViewAutomaticDimension. The height will be
sized according to the values being returned in the tableView:titleForHeaderInSection: or
tableView:titleForFooterInSection: methods, so they will it properly.

Storyboard additions

Beginning with iOS 5, the concept of storyboards was introduced. As before, with nib-based table
views, the developer continues to use a dynamic prototype table view cell, but now has the ability to
design a static table view.

Static Table Views

A static table view is designed directly through the Interface Builder. In addition to the table view
cell itself, you can add the sections, headers, and footers. Because these are not dynamically pro-
duced, there is no data source for you to identify. See Figure 13-2.

Prototype-based Table Views

Dynamic prototype-based table views are also designed directly through the Interface Builder. They
are easy to implement, and the prototype table view cell is similar to pre-storyboard custom table
view cells. See Figure 13-3.

152 ❘ LeSSon 13 TaBle ViewS

FiGure 13-2

FiGure 13-3

Prototype table view cells must have reuse identiiers declared. They are deined
in the Attributes Editor under the Table View section labeled Identiier.

Try It ❘ 153

Try iT

In this Try It, you implement a dynamic-based table view using a storyboard. The table view has
two sections and the application toggles the sections between each other within the table view.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson13 folder in the download.

Lesson requirements
 ➤ Create an Xcode project using the Master-Detail Application template.

 ➤ Create a storyboard including root and detail view controllers.

 ➤ Implement a table view using dynamic prototype content.

 ➤ Populate the header section of the table view.

 ➤ Implement the prepareForSegue:sender method in the root view controller to pass the
values associated with the selected table view cell.

 ➤ Add a bar button item to the navigation bar that toggles the sections displayed in the
table view.

 ➤ Display the detail view controller with the passed values associated with the selected table
view cell.

hints
 ➤ Because this application uses storyboards instead of .xib iles, remember to have the Use

Storyboard option checked at project creation.

 ➤ Two arrays, one for each section, will be used for table view cell population.

 ➤ A method titleForSection will be added to populate the title for each section in the
table view.

 ➤ The bar button item on the navigation bar will launch the toggleSections method.

 ➤ The view controller transition will launch when a table view cell is selected, so the perform
SegueWithIdentifier:sender connection from the root view controller to the detail view
controller will be between the button and the detail view controller.

Step-by-Step

 1. Create a Master-Detail application.

 1. Launch Xcode.

http://www.wrox.com

154 ❘ LeSSon 13 TaBle ViewS

 2. Create your new iOS project.

 a. Select Create a New Xcode Project.

 b. On the left under iOS, select Application.

 c. Select Master-Detail Application from the template list and click Next.

 d. Choose the following options for your project:

 ➤ Product Name: Lesson13

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: leave blank

 ➤ Device Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Core Data: Unchecked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 e. Select the location on your computer where the project will be saved.

 f. Your Xcode project has been created as shown in Figure 13-4.

FiGure 13-4

Try It ❘ 155

 2. Design the user interface.

 1. On the left, select MainStoryboard.storyboard.

 2. On the right select the third button in the View section to display the Utilities view,
as shown in Figure 13-5.

FiGure 13-5

 3. To change the table view cell to a dynamic prototype:

 a. Select the center of the table view right over the area that has Table View
Static Content.

 b. Select the fourth icon, the Attributes Inspector, from the utilities toolbar
and change the Content from Static Cells to Dynamic Prototypes as shown
in Figure 13-6.

 c. Select the table view cell and enter Cell for the Identiier in the Table View
Cell section at the top of the Attributes Inspector.

 4. To add a bar button item to the navigation bar:

 a. Scroll and select a bar button item from the bottom of the Objects section of
the utilities, and drag it to the right side of the navigation bar.

 b. Double-click Item and enter Toggle.

 c. From the Editor section on the upper right of Xcode, select the Assistant
Editor button as shown in Figure 13-7.

156 ❘ LeSSon 13 TaBle ViewS

FiGure 13-6

FiGure 13-7

 d. Select the Toggle button and control-drag to the interface source code just
above the @end.

 e. Select Action for Connection and enter toggleSections for the action name
and click Connect.

 5. Select File ➪ Save to save your project.

Try It ❘ 157

 3. Make the connection for the navigation transition.

 1. Select the table view cell you just labeled Cell and control-drag to the detail view
controller and select performSegueWithIdentifier:sender.

 4. Modify the view controllers.

 1. Select MasterViewController.h and add the following above the @end:

@property (strong, nonatomic) NSArray *girlsArray;
@property (strong, nonatomic) NSArray *boysArray;
@property (strong, nonatomic) NSArray *sections;
@property (strong, nonatomic) NSArray *sectionsSorted;
@property (assign) BOOL sorted;
- (NSArray *)arrayForSection:(NSInteger)section;
- (NSString *)titleForSection:(NSInteger)section;

 2. Select MasterViewController.m and add the following right below @implementation
MasterViewController:

@synthesize girlsArray;
@synthesize boysArray;
@synthesize sections;
@synthesize sectionsSorted;
@synthesize sorted;

 3. In the ViewDidLoad method, add the following arrays for the girls and boys name,
and for the section groups:

 [self setGirlsArray:[NSArray arrayWithObjects:@”Sue”,
 @”Ann”, @”Mary”, @”Debra”, @”Maggie”, nil]];
 [self setBoysArray:[NSArray arrayWithObjects:@”Frank”,
 @”Bill”, @”Dick”, @”Hank”, @”Jean”, nil]];
 [self setSections:[NSArray arrayWithObjects:@”Girls”,
 @”Boys”, nil]];

 4. The section toggles between sorted and unsorted sections. Add the following array
also in the ViewDidLoad method for the sorted section groups and initialize the
sorted variable to NO, indicating that the sections are not initially sorted:

[self setSectionsSorted:[[self sections]
 sortedArrayUsingSelector:@selector(localizedCaseInsensitiveCompare:)]];
 [self setSorted:NO];

 5. To display section headers, implement the following method:

- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {
 return [self titleForSection:section];
}

 6. To inform the table view on the number of sections that are to be displayed, add the
following:

 // Customize the number of sections in the table view.
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {

158 ❘ LeSSon 13 TaBle ViewS

 NSInteger sectionCount = 0;

 if([self sorted]) {
 sectionCount = [[self sectionsSorted] count];
 } else {
 sectionCount = [[self sections] count];
 }
 return sectionCount;
}

 7. For each section are the arrays containing the actual data for the associated section.
To inform each section how many rows are to be displayed, add the following:

// Customize the number of rows in the table view.
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [[self arrayForSection:section] count];
}

 8. To display each row with the values in the array, you implement the tableView:
cellForRowAtIndexPath: as follows:

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 NSInteger row = [indexPath row];
 NSInteger section = [indexPath section];
 NSString *cellText = [[self arrayForSection:section] objectAtIndex:row];
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 // Configure the cell.
 [[cell textLabel] setText:cellText];
 return cell;
}

 9. When the Toggle button is tapped, the toggleSections method is launched, which
checks to see if the sorted or unsorted ordering of sections is required, and then calls
the moveSection:toSection: method to move the sections, as implemented in the
following method:

- (IBAction)toggleSections:(id)sender {
 NSArray *currentNames = nil;
 NSArray *newNames = nil;

 if([self sorted]) {
 currentNames = [self sectionsSorted];
 newNames = [self sections];
 } else {
 currentNames = [self sections];
 newNames = [self sectionsSorted];
 }

 [self setSorted:![self sorted]];

Try It ❘ 159

 [[self tableView] beginUpdates];

 NSUInteger currentIndex = 0;
 NSUInteger newIndex = 0;

 for(NSString *currentName in currentNames) {
 for(NSString *newName in newNames) {
 if([newName isEqualToString:currentName]) {
 [[self tableView] moveSection:currentIndex
toSection:newIndex];
 newIndex = 0;
 break;
 }
 newIndex++;
 }
 currentIndex++;
 }

 [[self tableView] endUpdates];
}

The moveSection:toSection: method is new to iOS 5.

 10. To ensure the correct values are used for each section, create the arrayForSection
method:

- (NSArray *)arrayForSection:(NSInteger)section {
 NSArray *selectedArray = nil;
 NSArray *sectionZero = nil;
 NSArray *sectionOne = nil;

 if([self sorted]) {
 sectionZero = [self boysArray];
 sectionOne = [self girlsArray];
 } else {
 sectionZero = [self girlsArray];
 sectionOne = [self boysArray];
 }

 switch (section) {
 case 0:
 selectedArray = sectionZero;
 break;

 case 1:
 selectedArray = sectionOne;
 break;
 }

 return selectedArray;
}

160 ❘ LeSSon 13 TaBle ViewS

 11. To ensure the correct section header is displayed, create the titleForSection
method:

- (NSString *)titleForSection:(NSInteger)section {
 NSString *title = nil;

 if([self sorted]) {
 title = [[self sectionsSorted] objectAtIndex:section];
 } else {
 title = [[self sections] objectAtIndex:section];
 }

 return title;
}

 12. When the table view cell is selected, prepareForSegue:sender: is called before the
view controller transition. Here you pass the selected table view cell and associated
section header title to the detail view controller for display:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender {
 NSIndexPath *indexPath = [[self tableView] indexPathForSelectedRow];
 NSInteger row = [indexPath row];
 NSInteger section = [indexPath section];

 NSArray *names = [self arrayForSection:section];

 NSString *headerTitle = [self titleForSection:section];
 NSString *name = [names objectAtIndex:row];

 DetailViewController *detailViewController = [segue
destinationViewController];
 [detailViewController setTitle:headerTitle];
 [detailViewController setDetailItem:name];
}

 5. Run the application.

 1. Select the iPhone Simulator to run the application.

 2. Click the Run button from Xcode.

 3. When the application launches, the two sections and their contents are displayed.
Tap the Toggle button and observe the sections swap.

Please select Lesson 13 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Static Table Views

For table view applications pre-iOS 5, table view cells were displayed dynamically using a
prototype table view cell that would be populated dynamically prior to being displayed in
the table view.

The table view cell could be customized to provide a custom look to an application; however
the architecture was still using default or custom UITableViewCell and was still a dynamic list
based object organized by sections and related rows.

This all changed with the release of iOS 5.

TaBLe vieW TyPeS

With iOS 5 using storyboards, table views are now designed using the following table view types:

 ➤ Static

 ➤ Dynamic prototype

Static

A static table view is designed directly through the interface editor. In addition to the table view
cell itself, you can add the sections, headers, and footers directly into the Attributes Inspector.
Because these are not dynamically produced, there is no data source and the table view cells are
populated directly. A sample static table view is shown in Figure 14-1.

dynamic Prototype

Dynamic prototype–based table views are also designed directly through the Interface Builder.
They are easy to implement, and the prototype table view cell is similar to pre-iOS 5 custom
table view cells. See Figure 14-2.

14

162 ❘ LeSSon 14 STaTic TaBle ViewS

FiGure 14-1

FiGure 14-2

Try It ❘ 163

Prototype table view cells must have reuse identiiers declared. They are deined
in the Attributes Editor under the Table View section labeled Identiier.

TaBLe vieW deSiGn

The design of the static table view is similar to the dynamic
prototype style with the following design considerations:

 ➤ The designing of the cells are performed
directly through the interface editor directly
on the table view.

 ➤ Sections, headers, and footers are added via the
Attributes Inspector.

 ➤ No data source outlet needs to be identiied because
the cells are directly referenced as outlets

display considerations

When dynamic prototype table view cells are used, the
amount of data to display is variable. Static table view cells,
in contrast, display a known quantity of rows.

Data can still be grouped into sections, but the sections
partition the related data to the same entity. For example,
contact information can be grouped into last name and irst
name, phone number as shown in Figure 14-3.

Try iT

In this Try It, you implement a Master-Detail Application that
contains a list of contacts in a dynamic prototype table view.
On selection of a speciic contact, the contact detail is displayed in a static table view.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson14 folder in the download.

Lesson requirements
 ➤ Create an Xcode project using the Master-Detail Application template.

 ➤ Create a storyboard including root and detail view controllers.

FiGure 14-3

http://www.wrox.com

164 ❘ LeSSon 14 STaTic TaBle ViewS

 ➤ Implement a table view using a dynamic prototype and static content.

 ➤ Populate the header section of the table view.

 ➤ Implement the prepareForSegue:sender method in the root view controller to pass the
contact values associated with the selected table view cell.

 ➤ Display the detail view controller with the passed values associated with the selected contact
in a static table view.

hints
 ➤ Because this application uses storyboards instead of xib iles, remember to have the Use

Storyboard option checked at project creation.

 ➤ One dictionary will be used for table view cell population using the keys for the cell title.

 ➤ The view controller transition will launch when a table view cell is selected, so the perform
SegueWithIdentifier:sender connection from the root view controller to the detail view
controller will be between the button and the detail view controller.

 ➤ A custom Person object will be used to hold the contact information.

Step-by-Step

 1. Create a Master-Detail Application.

 1. Launch Xcode.

 2. Create your new iOS project.

 a. To create a new project, select Create a New Xcode Project.

 b. On the left under iOS, select Application.

 c. Select Master-Detail Application from the template list and click Next.

 d. Choose the following options for your project:

 ➤ Product Name: Lesson14

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: leave blank

 ➤ Device Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Core Data: Unchecked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

Try It ❘ 165

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 e. Select the location on your computer where the project will be saved and
select Create.

 f. Your Xcode project has been created as shown in Figure 14-4.

FiGure 14-4

 2. Design the user interface.

 1. On the left, select MainStoryboard.storyboard.

 2. On the right select the third button in the View section, to display the Utilities view
as shown in Figure 14-5.

 3. To change the master table view cell to a dynamic prototype:

 a. Select the center of the table view right over the area that has Table View
Static Content.

 b. Select the fourth icon, the Attributes Inspector, from the utilities toolbar
and change the Content from Static Cells to Dynamic Prototype and Style
from Plain to Group as shown in Figure 14-6.

 c. Select the table view cell and enter Cell for the Identiier in the Table View
Cell section at the top of the Attributes Inspector.

166 ❘ LeSSon 14 STaTic TaBle ViewS

FiGure 14-5

FiGure 14-6

Try It ❘ 167

 4. To delete the detail view controller from the storyboard:

 a. Select the bottom bar of the detail view controller in the storyboard and tap
the delete key to remove it.

It is important to make sure the default view controller is completely removed from
the storyboard. Your detail view controller must be completely removed from the
storyboard after this step.

 b. Select the DetailViewController.h and DetailViewController.m iles
and delete and remove the iles from the project.

 5. To add the new detail view controller to the storyboard:

 a. Select the Lesson14 folder.

 b. Select File d New d New File from the Xcode menu.

 c. On the left under iOS, select Cocoa Touch.

 d. Select UIViewController from the template list and click Next.

 e. Choose the following options for your new ile:

 ➤ Class: DetailViewController

 ➤ Subclass of: UITableViewController

 ➤ Deselect: Targeted for iPad

 ➤ Deselect: With XIB for user interface

 f. Click Next.

 g. Click Create to save the class in your project folder.

 6. To add the detail table view controller to the storyboard:

 a. On the left, select MainStoryboard.storyboard.

 b. Drag a Table View Controller from the Object Library and add it to the
storyboard.

 c. Select the Identity Inspector and enter DetailViewController for the class.

 d. Select the center of the table view right over the area that has Table View
Static Content.

 e. Select the Attributes Inspector and change the Content from Dynamic
Prototype to Static Cells, Sections from 1 to 2, and Style from Plain to Group.

 e. Select the frame next to the Section-1 group; change the Rows value from
3 to 1 and enter Last Name for the Header.

 f. Select the frame next to the Section-2 group; change the Rows value from
3 to 2 and enter Contact Info for the Header.

168 ❘ LeSSon 14 STaTic TaBle ViewS

 7. To create the outlets for the detail view controller table view cells:

 a. Select the Attributes Inspector to bring up the DetailViewController.h ile.

 b. Select the irst table view cell and control-drag to the interface source code
just above the @end.

 c. Enter lastName for the outlet name and click Connect.

 d. Select the second table view cell and control-drag to the interface source
code just above the @end.

 e. Enter irstName for the outlet name and click Connect.

 f. Select the third table view cell and control-drag to the interface source code
just above the @end.

 g. Enter phone for the outlet name and click Connect.

 h. Select the Standard editor to hide the detail view controller.

 8. To create the Person class:

 a. Select the Lesson14 folder.

 b. Select File d New d New File from the Xcode menu.

 c. On the left under iOS, select Cocoa Touch.

 d. Select Objective-C from the template list and click Next.

 e. Choose the following options for your new ile:

 ➤ Class: Person

 ➤ Subclass of: NSObject

 f. Click Next.

 g. Click Create to save the class in your project folder.

 9. Select File d Save to save your project.

 3. Make the connection for the navigation transition from the master detail view controller to
the detail view controller.

 1. Select the table view cell in the master view controller and control-drag to the detail
view controller below the table view cells. Select Push from Storyboard Segues list.

 4. Modify the master view controller.

 1. Select MasterViewController.h and add the following above the @end:

@property (strong, nonatomic) NSDictionary *contacts;

 2. Select MasterViewController.m and add the following import:

#import "DetailViewController.h"
#import "Person.h"

Try It ❘ 169

 3. Add the following synthesize variables right below the @implementation section:

@synthesize contacts;

 4. Uncomment the viewDidLoad method and add the following below [super
viewDidLoad]:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.
 NSDictionary *dict = [[NSDictionary alloc] initWithObjectsAndKeys:
 [[Person alloc] initWithLastName:@”Jones”
 firstName:@”Joe”
 phone:@”312-555-1212”], @”Jones”,
 [[Person alloc] initWithLastName:@”Barnes”
 firstName:@”Bill”
 phone:@”443-555-1212”], @”Barnes”,
 [[Person alloc] initWithLastName:@”Smith”
 firstName:@”Andy”
 phone:@”775-555-1212”], @”Smith”,
 nil];
 [self setContacts:dict];
}

 5. There is only one section to display the contacts. Complete the
numberOfSectionsInTableView: method:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

 6. There is one row for each contact in the dictionary. Complete the
tableView:numberOfRowsInSection: method:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 return [[[self contacts] allKeys] count];
}

 7. For each row, the last name for each contact in the list is displayed. Complete the
tableView:cellForRowAtIndexPath: method:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 NSArray *keys = [[[self contacts] allKeys]
sortedArrayUsingSelector:@selector(localizedCaseInsensitiveCompare:)];
 NSString *key = [keys objectAtIndex:[indexPath row]];
 Person *person = [[self contacts] objectForKey:key];
 NSString *cellText = [person lastName];

 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

170 ❘ LeSSon 14 STaTic TaBle ViewS

 if (cell == nil) {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 }

 // Configure the cell...
 [[cell textLabel] setText:cellText];

 return cell;
}

 5. Modify the detail view controller.

 1. Select DetailViewController.h and add the following above the @end:

@class Person;
@interface DetailViewController : UITableViewController
@property (strong, nonatomic) IBOutlet UITableViewCell *lastName;
@property (strong, nonatomic) IBOutlet UITableViewCell *firstName;
@property (strong, nonatomic) IBOutlet UITableViewCell *phone;
@property (strong, nonatomic) Person *person;

 2. Select DetailViewController.m and add the following import:

#import "DetailViewController.h"
#import "Person.h"

 3. Add the following synthesize variables right below the @implementation section:

@synthesize lastName;
@synthesize firstName;
@synthesize phone;
@synthesize person;

 4. Two sections are displayed. The irst section is the last name and the second section
is the irst name and phone number. Complete the numberOfSectionsInTableView:
method:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 2;
}

 5. There is one row in the irst section, and two rows in the second section. Complete the
tableView:numberOfRowsInSection: method:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
 {
 NSInteger count = 0;

 switch (section) {
 case 0:
 count = 1;
 break;

Try It ❘ 171

 case 1:
 count = 2;
 break;

 default:
 break;
 }
 return count;
}

 6. For each row, the corresponding value in the Person class is displayed. Complete
the tableView:cellForRowAtIndexPath: method:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = nil;
 NSString *cellText = nil;

 switch ([indexPath section]) {
 case 0:
 cell = [self lastName];
 cellText = [[self person] lastName];
 break;

 case 1:
 switch ([indexPath row]) {
 case 0:
 cell = [self firstName];
 cellText = [[self person] firstName];
 break;

 case 1:
 cell = [self phone];
 cellText = [[self person] phone];
 break;

 default:
 break;
 }
 break;

 default:
 break;
 }
 [[cell textLabel] setText:cellText];

 return cell;
}

 6. Create the Person class.

 1. Complete the Person class deinition:

@interface Person : NSObject
@property (strong, nonatomic) NSString *lastName;

172 ❘ LeSSon 14 STaTic TaBle ViewS

@property (strong, nonatomic) NSString *firstName;
@property (strong, nonatomic) NSString *phone;
- (id)initWithLastName:(NSString *)lastName
 firstName:(NSString *)firstName
 phone:(NSString *)phone;
@end

 2. Complete the Person class implementation:

@implementation Person
@synthesize lastName = _lastName;
@synthesize firstName = _firstName;
@synthesize phone = _phone;
- (id)initWithLastName:(NSString *)lastName
 firstName:(NSString *)firstName
 phone:(NSString *)phone {
 [self setLastName:lastName];
 [self setFirstName:firstName];
 [self setPhone:phone];

 return self;
}
@end

 7. Run the application.

 1. Select the iPhone Simulator to run the application.

 2. Click the Run button from Xcode.

 3. When the application launches, a list of contacts appears.

 4. Select a speciic contact to display the details.

Please select Lesson 14 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Tab Bars and Toolbars

Lesson 12 illustrated navigation as one view controller pushing another view controller onto
the navigation stack throughout the use of the navigation bar. Navigation bars arrange the pre-
sentation of data in a hierarchy by drilling down, and providing a path back to the root view.

This lesson presents two other navigation components:

 ➤ Tab bars

 ➤ Toolbars

TaB BarS

While not always followed in the real world of app
development, Apple in its User Interface Guidelines
proposes that the philosophy behind tab bar views is to
provide a different perspective of the same set of data by
using several view controllers, as shown in Figure 15-1.

appearance characteristics

Tab bars reside in a tab bar controller located at the bottom
of the view, which manages the display of the multiple view
controllers. The tab bar display consists of an icon and text
to describe the perspective it represents. The tab itself has
the ability to provide additional information that the appli-
cations may have to offer. The badge itself has the appear-
ance of a red oval that will display a number or exclamation
point. For example, when you may have any app updates
from the AppStore the number of updates are displayed in
a red oval. FiGure 15-1

15

174 ❘ LeSSon 15 TaB BarS and ToolBarS

The limitation for tab bars on the iPhone is that the tab bar cannot display more than ive tabs at a
time. If there are more than ive tabs, the irst four are displayed and the tab bar controller adds a
More tab, which reveals a list of any additional tabs.

The iPad can display more than ive tabs due to the larger view area the device has.

usage Guidelines

Apple suggests the following guidelines when using a tab bar in your application:

 ➤ The tab should not give users control over any components in the displayed view, because
that is the purpose of the toolbar.

 ➤ The tab bar should organize the information from an overall application functionality level.

 ➤ If a tab represents a function that is not available in your application, disable the tab rather
than remove it.

 ➤ To indicate a change within an application, the badge can be updated to relect that change.
For example, if there is a tab to indicate updates, displaying a badge with the number would
inform the user properly.

 ➤ Avoid overcrowding the iPad tab bar with too many tabs.

 ➤ Keep the same order of tabs in either orientation, landscape or portrait, on the iPad.

TooLBarS

On an iPhone, toolbars are always placed at the bottom of
the view, and contain bar button items that provide a number
of options that act on the current view context, as shown in
Figure 15-2. However, on an iPad, toolbars appear on the top
of the view.

appearance characteristics

Toolbars are spaced equally across the width of the toolbar. There
are also lexible and ixed space bar button items to aid in the
proper placement.

Unlike tab bars, the number of bar button items can change from
view to view, because the items are always directly related to the
view that is currently displayed.

usage Guidelines

Apple suggests the following guidelines when using a toolbar in
your application:

 ➤ The button items should represent command functions that
would be used on the current view. FiGure 15-2

XIB-Based Xcode 4.2 Changes ❘ 175

 ➤ Do not crowd the toolbar with too many button items, and make the button item at least
44n44 points in size.

 ➤ Use system-provided toolbar items whenever possible. For example, Done, Pause, and Play
are commonly understood functions.

 ➤ Avoid mixing styles. For example, do not use bordered and borderless buttons on the
same toolbar.

xiB-BaSed xcode 4.2 chanGeS

In Xcode versions prior to 4.2, the tab bar application template provided a MainWindow.xib ile that
contained the tab bar controller. New tabs were added and associated with view controllers through
the Interface Builder.

With the introduction of Xcode 4.2, the MainWindow.xib ile no longer exists, and the tab bar
controller is assembled in the AppDelegate class.

The AppDelegate.h ile contains the deinition of the tab bar controller:

#import <UIKit/UIKit.h>
@interface AppDelegate : UIResponder <UIApplicationDelegate, UITabBarControllerDelegate>
@property (strong, nonatomic) UIWindow *window;
@property (strong, nonatomic) UITabBarController *tabBarController;
@end

In the application:didFinishLaunchingWithOptions: method of AppDelegate.m, the tab bar
controller is initialized and associated view controllers are assigned, as shown in the following code:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 UIViewController *viewController1 = [[FirstViewController alloc]
 initWithNibName:@"FirstViewController"
 bundle:nil];
 UIViewController *viewController2 = [[SecondViewController alloc]
 initWithNibName:@"SecondViewController"
 bundle:nil];
 self.tabBarController = [[UITabBarController alloc] init];
 self.tabBarController.viewControllers =
 [NSArray arrayWithObjects:viewController1, viewController2, nil];
 self.window.rootViewController = self.tabBarController;
 [self.window makeKeyAndVisible];
 return YES;
}

The tab titles and images are initialized in each of the view controllers initWithNibName:bundle:
method, as shown here:

- (id)initWithNibName:(NSString *)nibNameOrNil
 bundle:(NSBundle *)nibBundleOrNil
{

176 ❘ LeSSon 15 TaB BarS and ToolBarS

 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
 if (self) {
 self.title = NSLocalizedString(@"First", @"First");
 self.tabBarItem.image = [UIImage imageNamed:@"first"];
 }
 return self;
}

Remember, you have to do this only for xib-based tab bar applications using Xcode 4.2 or greater.

Try iT

In this Try It, you implement a tabbed application for the iPhone that has a list of famous artists and
some of their popular works. The application contains three tabs. The irst tab is a summary page
that indicates how many artists are available. The second tab presents each of the artists and a few
of their works in a grouped table view, and the third tab lists all the paintings. When a painting is
selected, an alert is presented that displays the artist and the painting.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson15 folder in the download.

Lesson requirements
 ➤ Create an Xcode project for iPhone using the Tabbed Application template.

 ➤ Create a storyboard including the tab bar controller and three separate view controllers
associated with their respective tabs.

 ➤ The irst button displays a summary page indicating how many artists are available for
the detail viewing, the second button displays details about the artists and their works,
and the third button displays all the paintings that are listed.

hints
 ➤ Because this application uses storyboards instead of .xib iles, remember to have the Use

Storyboard option checked at project creation.

 ➤ Select iPhone from the Device Family list.

 ➤ Create two images, third.png and third@2x.png, with dimensions 30 n 30 72 dpi and
60 n 60 144 dpi, respectively, for the images used on the third tab.

The third.png and third@2x.png images are supplied in the Try It for Lesson 15
on the DVD.

http://www.wrox.com
mailto:third@2x.png
mailto:third@2x.png

Try It ❘ 177

Step-by-Step

 1. Create a new application using the Tabbed Application template.

 1. Launch Xcode.

 2. Create your new iOS project.

 a. To create a new project, select Create a New Xcode Project from the initial
Welcome to Xcode window.

 b. On the left under iOS, select Application.

 c. Select Tabbed Application from the template list and click Next.

 d. Choose the following options for your project:

 ➤ Product Name: Lesson15

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: leave blank

 ➤ Device Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 e. Select the location on your computer where the project will be saved and
click Create.

 f. Your Xcode project has been created as shown in Figure 15-3.

 2. Create the ThirdViewController class.

 1. To add the third view controller to the storyboard:

 a. Select the Lesson15 folder.

 b. Select File d New d New File from the Xcode menu.

 c. On the left under iOS, select Cocoa Touch.

 d. Select UIViewController from the template list and click Next.

 e. Choose the following options for your new ile:

 ➤ Class: ThirdViewController

 ➤ Subclass of: UITableViewController

 ➤ Targeted for iPad: Unchecked

 ➤ With XIB for user interface: Unchecked

178 ❘ LeSSon 15 TaB BarS and ToolBarS

FiGure 15-3

 f. Click Next.

 g. Click Create to save the class in your project folder.

 2. To add the third view controller to the storyboard:

 a. Select the Lesson15 folder.

 b. Control-click and select Add Files to Lesson15 to add the third.png and
third@2x.png images from the DVD.

 3. Design the user interface.

 1. Design the FirstViewController.

 a. On the left, select MainStoryboard.storyboard.

 b. In the irst view controller’s view, select both the label and text view and
delete them.

 c. Drag a Label from the list on the lower right and place it in the left center
of the view. Double-click the Title and enter Number of Artists:.

 d. Drag a Label from the object list and place it just to the right of the label
you added in Step c.

 e. Select the tab bar at the bottom of the view, select the Attributes Inspector,
and enter Summary for the Title.

In the Attributes Inspector right below the Title you just entered, notice the entry
for Image. This is where you would add your custom image for the tab. For this
Try It, the default first.png image is used.

mailto:third@2x.png

Try It ❘ 179

 2. Design the SecondViewController.

 a. In the second view controller’s view, select both the label and text view and
delete them.

 b. Drag a Table View from the list and place it on the entire view.

 c. Click the table view cell and from the Attributes Inspector, enter Cell for the
Identiier.

 3. Design the ThirdViewController.

 a. Drag a Table View Controller from the object list on the lower right onto
the storyboard below the tab bar controller view.

 b. From the Identity Inspector choose the ThirdViewController class for the
Custom Class.

 c. Click the table view cell and from the Attributes Inspector, enter Cell for the
Identiier.

 4. Select File d Save to save your project.

 4. Make the connections to the outlets and actions.

 1. To make the connections on the FirstViewController:

 a. On the storyboard, select the status bar at the top of the irst view
controller.

 b. From the Editor section on the top right, select the Assistant Editor.

 c. Select the second label you added. It still has the title Label. Control-drag to
the interface source code just above the @end.

 d. Select Outlet for Connection, enter artistCountLabel for the outlet name,
and click Connect.

 2. To make the connections on the SecondViewController:

 a. On the storyboard, select the status bar at the top of the popover view
controller.

 b. Select in the middle of the table view and control-drag to the interface
source code just above the @end.

 c. Select Outlet for Connection, enter artistTableView for the outlet name, and
click Connect.

 d. Select the table view and control-drag to the Second View Controller icon
on the bar just below the tab bar in the view. Release the mouse and click
the dataSource outlet in the popup that is displayed (Figure 15-4).

 e. Repeat step d and click the delegate outlet in the popup that is displayed.

180 ❘ LeSSon 15 TaB BarS and ToolBarS

FiGure 15-4

 3. To make the connections on the ThirdViewController:

 a. From the main tab bar controller’s view, control-drag to the center of the
third view controller, release the mouse, and click Relationship – view
Controllers from the options displayed.

 b. Select the tab bar on the bottom. From the Attributes Inspector, enter
Paintings for the Title and select third.png for the Image.

 4. Select File d Save to save your project.

 5. Modify the AppDelegate class.

 1. Select the irst button for the Standard Editor in the Editors section, on the upper
right of Xcode, and modify the AppDelegate.h ile to look like the following:

#import <UIKit/UIKit.h>
@interface AppDelegate : UIResponder <UIApplicationDelegate>

Try It ❘ 181

@property (strong, nonatomic) UIWindow *window;
@property (strong, nonatomic) NSDictionary *names;
- (NSDictionary *)createDictionaryOfArtists;
@end

 2. Add the following synthesize variables right below the @implementation section to
the AppDelegate.m ile:

@synthesize names = _names;

 3. Modify the application: didFinishLaunchingWithOptions: method to look
like the following:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 [self setNames:[self createDictionaryOfArtists]];
 return YES;
}

 4. Add the createDictionaryOfArtists: method at the bottom, before the @end, to
look like the following:

- (NSDictionary *)createDictionaryOfArtists {
 NSDictionary *artists = [NSDictionary dictionaryWithObjectsAndKeys:
 [NSArray arrayWithObjects:@"Mona Lisa", @"Last Supper", nil],
 @"da Vinci",
 [NSArray arrayWithObjects:@"Self-Portrait", @"Starry Night", nil],
 @"van Gogh",
 [NSArray arrayWithObjects:@"Tragedy", @"Guernica", nil], @"Picasso",
 [NSArray arrayWithObjects:@"Naked Maya", @"Dancing-Banks Mazanare",
 nil], @"de Goya",
 [NSArray arrayWithObjects:@"Impression At Sunrise", @"Waterlilies",
 nil], @"Monet", nil];
 return artists;
}

 6. Modify the FirstViewController class.

 1. Modify the FirstViewController.h ile to look like the following:

#import <UIKit/UIKit.h>
@interface FirstViewController : UIViewController
@property (weak, nonatomic) IBOutlet UILabel *artistCountLabel;
@end

 2. Add the following imports to the FirstViewController.m ile:

#import “AppDelegate.h”

 3. Add the following synthesize variables right below the @implementation section:

@synthesize artistCountLabel = _artistCountLabel;

 4. In the viewDidLoad method, add the following below [super viewDidLoad];

AppDelegate *appDelegate =
 (AppDelegate *)[[UIApplication sharedApplication] delegate];
[[self artistCountLabel] setText:[NSString stringWithFormat:@”%d”,
 [[[appDelegate names] allKeys] count]]];

182 ❘ LeSSon 15 TaB BarS and ToolBarS

 7. Modify the SecondViewController class.

 1. Modify the SecondViewController.h ile to look like the following:

#import <UIKit/UIKit.h>
@interface SecondViewController : UIViewController
 <UITableViewDelegate, UITableViewDataSource> {
}
@property (strong, nonatomic) NSDictionary *artists;
@property (weak, nonatomic) IBOutlet UITableView *artistTableView;
@end

The addition of <UITableViewDelegate, UITableViewDataSource> to the interface
declaration indicates that the second table view controller is going to implement the
table view delegate and data source methods, allowing for table view processing.

 2. Add the following imports to the SecondViewController.m ile:

#import “AppDelegate.h”

 3. Add the following synthesize variables right below the @implementation section:

@synthesize artists = _artists;

 4. In the viewDidLoad method and add the following below [super viewDidLoad];

AppDelegate *appDelegate =
 (AppDelegate *)[[UIApplication sharedApplication] delegate];
[self setArtists:[appDelegate names]];

 5. To let the table view know how many sections there are, add the following method:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return [[[self artists] allKeys] count];
}

 6. To let the table view know how many rows per section there are, add the following
method:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 NSArray *keys = [[[self artists] allKeys]
 sortedArrayUsingSelector:
 @selector(localizedCaseInsensitiveCompare:)];
 NSString *key = [keys objectAtIndex:section];
 return [[[self artists] objectForKey:key] count];
}

 7. Each artist is the key to the dictionary, which is the section group. For each artist,
there is a list of paintings, which is the row of the section. The tableview:
cellForRowAtIndexPath: method displays the paintings for each artist:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath

Try It ❘ 183

{

 NSArray *keys = [[[self artists] allKeys]
 sortedArrayUsingSelector:
 @selector(localizedCaseInsensitiveCompare:)];
 NSString *key = [keys objectAtIndex:[indexPath section]];
 NSArray *paintings = [[self artists] objectForKey:key];
 NSString *cellText = [paintings objectAtIndex:[indexPath row]];

 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 [cell setSelectionStyle:UITableViewCellSelectionStyleNone];
 }

 [[cell textLabel] setText:cellText];

 return cell;
}

 8. Each section’s heading is displayed using the tableView:titleForHeaderInSection:
method and is the last name of the artist:

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section {
NSArray *keys = [[[self artists] allKeys]
 sortedArrayUsingSelector:
 @selector(localizedCaseInsensitiveCompare:)];
return [keys objectAtIndex:section];
}

 9. Because no navigation occurs when the table view cell is tapped, the cell is simply
deselected to restore the original color. Add the following table view delegate method:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 [tableView deselectRowAtIndexPath:indexPath animated:YES];
}

 8. Modify the ThirdViewController class.

 1. Modify the ThirdViewController.h ile to look like the following:

#import <UIKit/UIKit.h>
@interface ThirdViewController : UITableViewController
@property (strong, nonatomic) NSArray *paintings;
- (NSArray *)getPaintingsFromDictionary:(NSDictionary *)artists;
- (void)alert:(NSString *)aMessage;
@end

 2. Add the following imports to the ThirdViewController.m ile:

#import “AppDelegate.h”

184 ❘ LeSSon 15 TaB BarS and ToolBarS

 3. Add the following synthesize variables right below the @implementation section:

@synthesize paintings = _paintings;

 4. In the viewDidLoad method and add the following below [super viewDidLoad];

 AppDelegate *appDelegate = (AppDelegate *)[[UIApplication
sharedApplication] delegate];
 [self setPaintings:[self getPaintingsFromDictionary:
 [appDelegate names]]];

 5. To let the table view know how many sections there are, add the following method:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

 6. To let the table view know how many rows per section there are, add the following
method:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 return [[self paintings] count];
}

 7. Each string in the paintings array is a | character delimited string. The two parts
are the painting name and the artist. The tableview: cellForRowAtIndexPath:
method displays the paintings for each artist by parsing on the | character and
selecting the painting:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 NSString *rec = [[[self paintings]
 sortedArrayUsingSelector:
 @selector(localizedCaseInsensitiveCompare:)]
 objectAtIndex:[indexPath row]];
 NSString *cellText = [[rec componentsSeparatedByString:@”|”]
 objectAtIndex:0];

 static NSString *CellIdentifier = @”Cell”;

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 [cell setSelectionStyle:UITableViewCellSelectionStyleNone];
 }

 [[cell textLabel] setText:cellText];

 return cell;
}

Try It ❘ 185

 8. Because no navigation occurs when the table view cell is tapped, the cell’s contents
are displayed in an alert. Add the following table view delegate method:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 [tableView deselectRowAtIndexPath:indexPath animated:YES];
 NSString *rec = [[[self paintings]
 sortedArrayUsingSelector:
 @selector(localizedCaseInsensitiveCompare:)]
 objectAtIndex:[indexPath row]];
 NSString *msg = [NSString stringWithFormat:@”%@\n%@”,
 [[rec componentsSeparatedByString:@”|”] objectAtIndex:0],
 [[rec componentsSeparatedByString:@”|”] objectAtIndex:1]];

 [self alert:msg];
}

 9. A utility method, getPaintingsFromDictionary, extracts the paintings from the
main dictionary:

- (NSArray *)getPaintingsFromDictionary:(NSDictionary *)artists {
 NSMutableArray *paintingList = [NSMutableArray array];
 NSArray *keys = [artists allKeys];
 for(NSString *key in keys) {
 NSArray *list = [artists objectForKey:key];
 for(NSString *painting in list) {
 NSString *rec = [NSString stringWithFormat:@”%@|%@”,
 painting, key];
 [paintingList addObject:rec];
 }
 }
 return paintingList;
}

 10. The source for displaying the painting and artist combo is as follows:

- (void)alert:(NSString *)aMessage {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Lesson 15”
 message:aMessage
 delegate:self
 cancelButtonTitle:nil
 otherButtonTitles:@”OK”, nil];
 [alert show];
}

 9. Run the application.

 1. Select the iPhone Simulator to run the application.

 2. Click the Run button from Xcode.

 3. When the application launches, the irst view controller indicates there are ive artists
available for display.

186 ❘ LeSSon 15 TaB BarS and ToolBarS

 4. Select the Detail tab to display details about the artist and the paintings attributed
to them.

 5. Select the Paintings tab to display a list of all the paintings.

 6. Select a painting to display the painting and artist in an alert view.

Please select Lesson 15 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Creating Page-Based Applications

Apple has introduced a new view controller class to make it easy for you to create page-based
applications. Applications typical to this category are e-book/magazine readers. These applica-
tions typically present content one page at a time and allow a user to lick through pages by
swiping across the screen. With iOS 5 not only do you now have the page view controller class
to help you create such applications, but also a new application template speciically suited to
this type of application.

In this lesson you learn to use the new Page-Based Application template to create page-based
applications.

The PaGevieWconTroLLer cLaSS

Whether you decide to use the Page-Based Application template or an empty project to start
from, you must use an instance of the new PageViewController class in your application. A
page view controller allows users to navigate between view controllers using a speciic transition.
Navigation between pages generally occurs when the user performs a swipe gesture, although it
can also be done programmatically.

The page view controller works in tandem with a data source and a delegate object, which must
implement the UIPageViewControllerDataSource and UIPageViewControllerDelegate pro-
tocols, respectively. The data source object is called in response to gesture-based page navigation.
If the value for this property is nil, gesture-based navigation is disabled.

instantiation

A page view controller is typically instantiated in the viewDidLoad method of an existing
view controller class. The view controller acts as a container for the page view control-
ler and is often referred to as the “root” view controller. After the page view controller is
instantiated and set up properly, it is added into the view hierarchy of the application by
using the addSubView: method of the root view controller object’s view.

16

188 ❘ LeSSon 16 creaTing page-BaSed applicaTionS

To instantiate a page view controller, use the
initWithTransitionStyle:navigationOrientation:options: method as follows:

UIPageViewController* pageViewController = [[UIPageViewController alloc]
initWithTransitionStyle:UIPageViewControllerTransitionStylePageCurl
navigationOrientation:UIPageViewControllerNavigationOrientationHorizontal
options:nil];

The irst parameter to this method is the transition style to be used for page turns. At the moment,
the only allowed value for this parameter is UIPageViewControllerTransitionStylePageCurl.
The second parameter controls the orientation of the transition; this can be either horizontal or ver-
tical. The corresponding values are UIPageViewControllerNavigationOrientationHorizontal
and UIPageViewControllerNavigationOrientationVertical, respectively. Figure 16-1 shows the
difference between the transition orientations.

UIPageViewControllerNavigationOrientationVertical UIPageViewControllerNavigationOrientationHorizontal

FiGure 16-1

The third parameter is a dictionary of options. For the purposes of this lesson, this can be set to nil.

The PageViewController Class ❘ 189

delegate and data Source

The delegate and dataSource properties of the page view controller are set up next. These must
refer to objects that implement the UIPageViewDataSource and UIPageViewDelegate protocols,
respectively.

The UIPageViewControllerDataSource protocol deines two mandatory methods that are used
to provide the view controller for the previous and next pages:

- (UIViewController *)pageViewController:(UIPageViewController *)pageViewController
viewControllerBeforeViewController:(UIViewController *)viewController;

- (UIViewController *)pageViewController:(UIPageViewController *)pageViewController
viewControllerAfterViewController:(UIViewController *)viewController;

These methods are called only in response to gesture-initiated transitions and can return nil to
indicate that no more pages exist in the given direction.

The UIPageViewControllerDelegate protocol deines a couple of optional methods. The one you
are most likely to implement is:

-(void)pageViewController:(UIPageViewController *)pageViewController
 didFinishAnimating:(BOOL)finished
 previousViewControllers:(NSArray *)previousViewControllers
 transitionCompleted:(BOOL)completed;

This method is called when a gesture-initiated page turn ends. The irst parameter to this method
is a reference to the page view controller object. The second parameter is a Boolean variable that
indicates if the page turn animation has completed. The third parameter is an array of view con-
trollers that were visible before the start of the transition, and the fourth parameter is another
Boolean variable that is set to YES to indicate that the user completed the page turn gesture.

Preparing the initial Page

After having instantiated the page view controller object and set up its delegate and data source,
you must provide an array that contains an initial set of view controller objects for it to manage
using the setViewControllers:direction:animated:completion: method.

The irst parameter to this method is an array of view controller objects. Typically you provide an
array with a single view controller object representing the irst view controller, and subsequent view
controllers are provided by the data source. In some situations where two pages are visible side-by-
side, you will provide two view controllers in this array,

The second parameter indicates the direction of navigation; this is usually
set to UIPageViewControllerNavigationDirectionForward but can also
be UIPageViewControllerNavigationDirectionReverse.

The third parameter is a Boolean value that speciies if the transition should be animated. The
fourth parameter is a block handler that is called when the animation has completed. When you
are using this method to provide the initial set of view controllers, these are typically set to NO
and NULL, respectively.

190 ❘ LeSSon 16 creaTing page-BaSed applicaTionS

Thus, if startingViewController was an instance of a UIViewController subclass, a typical
call to the setViewControllers:direction:animated:completion: method would be made in
the viewDidLoad: method of the class that contains the page view controller instance, and would
resemble the following:

NSArray *viewControllers = [NSArray arrayWithObject:startingViewController];

[pageViewController setViewControllers:viewControllers
 direction:UIPageViewControllerNavigationDirectionForward
 animated:NO
 completion:NULL];

To insert the page view controller instance into the application’s view hierarchy, use the addSubView:
method of the root view controller’s view toward the end of the viewDidLoad: method as follows:

[self.view addSubview:pageViewController.view];

The PaGe-BaSed aPPLicaTion TeMPLaTe

To help you get started building page-based applications, Apple has provided a new project template
that includes a page view controller, data source, and delegate objects. Creating a page-based applica-
tion using the new template is a simple matter of selecting the Page-Based Application template when
creating a new project (Figure 16-2).

FiGure 16-2

The Page-Based Application Template ❘ 191

The template consists of several classes and a storyboard with
two scenes. If you run the application in the iOS Simulator, you
will see something similar to Figure 16-3. If you swipe across
the screen you will be able to turn to the next/previous pages.

The main classes involved in this template are listed in
Table 16-1. This table assumes that no class preix was used
while creating a project.

TaBLe 16-1: Page-Based Application Template Classes

cLaSS deScriPTion

AppDelegate The application delegate object.

RootViewController Primary view controller, which con-

tains an instance of a page view

controller.

DataViewController A view controller class, whose

instances represent individual

pages managed by the page view

controller.

ModelController A class that contains the data that

is displayed in each page and is

also responsible for instantiating

DataViewController objects.

This template provides a clear separation between the data that appears on each page and the view
that represents the actual page. Figure 16-4 depicts the various classes within this template and their
relationship to one another.

delegate
ViewController

PageView
Controller

data source

AppDelegate

ModelController

DataViewController

FiGure 16-4

FiGure 16-3

192 ❘ LeSSon 16 creaTing page-BaSed applicaTionS

The primary view controller of the application is called RootViewController and contains an
instance of the UIPageViewController class, an instance of the ModelController class, and also
acts as the delegate for the page view controller. The boilerplate code to instantiate the page view
controller is found in the viewDidLoad method.

Individual pages managed by the page view are instances of the DataViewController class. The
interface of this class is very simple and contains a single UILabel outlet and a strong reference to
a data object:

#import <UIKit/UIKit.h>

@interface DataViewController : UIViewController
@property (strong, nonatomic) IBOutlet UILabel *dataLabel;
@property (strong, nonatomic) id dataObject;
@end

The scene corresponding to the DataViewController class in the storyboard is shown in Figure 16-5.
When you customize the template, you will almost certainly delete the contents of this scene and the
corresponding UILabel outlet from the DataViewController class.

FiGure 16-5

Try It ❘ 193

DataViewController instances are created by an instance of the ModelController class. The
ModelController class encapsulates the data that is to be displayed on each page and also acts as
the data source for the page view controller instance. The ModelController class implements the
UIPageViewControllerDataSource protocol and provides a couple of additional methods:

- (NSUInteger)indexOfViewController:(DataViewController *)viewController

and

- (DataViewController *)viewControllerAtIndex:(NSUInteger)index
 storyboard:(UIStoryboard *)storyboard

The irst of these, indexOfViewController: is used to retrieve an integer page index from a given
DataViewController instance. The second method is used to retrieve a DataViewController
instance for a particular page index.

The data for each page is contained in an NSArray instance within the ModelController class called
_pageData. The application template populates this array with month names in the init method:

- (id)init
{
 self = [super init];
 if (self) {
 // Create the data model.
 NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];
 _pageData = [[dateFormatter monthSymbols] copy];
 }
 return self;
}

In your implementation, you are likely to populate the _pageData array differently, perhaps with
instances of your own data objects. The ModelController class also deines a read-only property
called pageData that allows access to the _pageData array:

@property (readonly, strong, nonatomic) NSArray *pageData;

@synthesize pageData = _pageData;

Try iT

In this Try It, you create a simple lip book using the new Page-Based Application template. The app
consists of ive pages with an image on each page. You can lip through pages by swiping your inger
horizontally across the screen.

Lesson requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Page-Based Application template.

 ➤ Modify the storyboard with Interface Builder.

 ➤ Import image resources into the project.

 ➤ Delete existing elements from one of the scenes in the storyboard.

194 ❘ LeSSon 16 creaTing page-BaSed applicaTionS

 ➤ Add an image view to one of the scenes in the storyboard.

 ➤ Create an outlet using the assistant editor.

 ➤ Update the Lesson16ModelController class.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 16 folder in the download.

hints
 ➤ To show the Object library, use the View d Utilities d Show Object Library menu item.

Step-by-Step

 1. Create a Page-Based Application in Xcode called PageTest.

 1. Launch Xcode and create a new project.

 2. Choose the Page-Based Application template and click Next.

 3. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: PageTest

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson16

 ➤ Deine Family: iPhone

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 4. Select a folder where this project should be created.

 5. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 6. Click Create.

 2. Import image resources into your project.

 1. Ensure the project navigator is visible and the PageTest project is selected
and expanded.

 2. Right-click the PageTest group and select Add Files to PageTest from the context menu.

http://www.wrox.com

Try It ❘ 195

 3. Select the Images folder in this lesson’s resources on the DVD.

 4. Ensure the Copy Items to Destination Group’s Folder (if needed) option is selected in
the dialog box.

 5. Click Add.

 3. Edit the storyboard.

 1. Open the MainStoryboard.storyboard ile in Interface Builder

 2. Ensure the Lesson16 Data View Controller scene is selected (it is the scene with
the yellow background), and delete the contents of the scene. Your storyboard should
resemble Figure 16-6.

FiGure 16-6

 3. Add an Image View from the Object library onto the scene and resize/position it to
X=0, Y=0, W = 320, H = 460.

 4. Use the assistant editor to modify the Lesson16DataViewController class.

 1. Ensure the assistant editor is visible and the Lesson16DataViewController.h ile is
loaded in the editor.

 2. Delete the following line from the interface:

@property (strong, nonatomic) IBOutlet UILabel *dataLabel;

 3. Add a new outlet to the Lesson16DataViewController class and connect it
to the image view in the scene. Call the outlet imageView. The interface of the
Lesson16DataViewController class should now resemble the following:

#import <UIKit/UIKit.h>

@interface Lesson16DataViewController : UIViewController

196 ❘ LeSSon 16 creaTing page-BaSed applicaTionS

@property (strong, nonatomic) id dataObject;
@property (weak, nonatomic) IBOutlet UIImageView *imageView;
@end

 5. Update the implementation of the Lesson16DataViewController class.

 1. Open the Lesson16DataViewController.m ile.

 2. Delete the following line from the top of the ile:

@synthesize dataLabel = _dataLabel;

 3. Replace the implementation of the viewWillAppear: method with the following:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 self.imageView.image = [UIImage imageNamed:self.dataObject];
}

 6. Update the implementation of the Lesson16ModelController class.

 1. Open the Lesson16ModelController.m ile.

 2. Replace the implementation of the init method with the following:

- (id)init
{
 self = [super init];
 if (self) {
 // Create the data model.
 _pageData = [NSArray arrayWithObjects:@"image_1.png",
 @"image_2.png", @"image_3.png", @"image_4.png",
 @"image_5.png", nil];
 }
 return self;
}

 7. Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively, you can use the
Project d Run menu item.

 2. Flick through the images by swiping your inger across them horizontally. Note the
page curl animation.

Please select Lesson 16 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Creating UI Elements
Programmatically

In previous lessons you learned how to use several standard user-interface objects, includ-
ing buttons, image views, and labels. Using one of these objects in your application typically
involves using Interface Builder to drag and drop instances onto a scene and then creating
appropriate outlets/actions with the assistant editor.

However, there is another way to instantiate these objects, one that does not involve using the
Interface Builder or assistant editor at all. Instead this alternate technique involves instantiating
user-interface objects through Objective-C code. Any UIKit-based object that is instantiated
with Interface Builder can also be instantiated programmatically.

Either method is ine; the one you choose is purely a matter of preference. Most likely, you will
use the Interface Builder technique, but sometimes you may come across some code written by
another programmer that creates user-interface elements programmatically. In these situations
knowing how user-interface elements are created with code will be to your advantage.

Keep in mind, though, that some UIKit classes like UIAlertView and UIActionSheet cannot
be instantiated with Interface Builder at all. This lesson shows you how to instantiate a few
common UIKit objects with Objective-C code.

uiBuTTon

To create a UIButton instance programmatically, you irst declare an appropriate UIButton*
property in your view controller class:

@interface ViewController : UIViewController
@property (nonatomic, strong) UIButton* buttonOne;
@end

Next, you synthesize the property in your view controller’s implementation ile after the
@implementation statement:

@implementation ViewController
@synthesize buttonOne;

17

198 ❘ LeSSon 17 creaTing ui elemenTS programmaTically

Instantiate the UIButton object in the viewDidLoad method using the buttonWithType class
method as follows:

buttonOne = [UIButton buttonWithType:UIButtonTypeRoundedRect];

The buttonWithType: class method takes a single argument that can be one of the following values:

 ➤ UIButtonTypeRoundedRect

 ➤ UIButtonTypeCustom

 ➤ UIButtonTypeDetailDisclosure

 ➤ UIButtonTypeInfoLight

 ➤ UIButtonTypeInfoDark

 ➤ UIButtonTypeContactAdd

To specify the size and position of the button instance, you need to provide a rectangle with the top,
left, width, and height values for the button’s frame property. For instance, to specify the button is
located at left = 10, top = 20, has a width of 300 units, and a height of 40 units, use the following code:

buttonOne.frame = CGRectMake(10.0, 20.0, 300.0, 40.0);

When the user interacts with the button, one or more events are generated. To associate
a method in the view controller class with an event generated by the button, use the
addTarget:action:forControlEvents: method on the UIButton instance as follows:

[buttonOne addTarget:self
 action:@selector(onButtonPressed:)
 forControlEvents:UIControlEventTouchUpInside];

The irst parameter is a reference to an object that contains the method to be called. In most cases
this method will be implemented in the view controller class and this argument will be self. The
second parameter contains a selector that identiies the method to be called. This method must be
declared to not return a value, and takes a single argument of type id as shown here:

- (void) onButtonPressed:(id)sender;

To create a selector for the method, simply provide the name of the method to the @selector
statement:

@selector(onButtonPressed:)

The third parameter identiies an event generated by the button to which you want to associate the
method in question. This is usually one of the following values:

 ➤ UIControlEventTouchDown

 ➤ UIControlEventTouchDownRepeat

 ➤ UIControlEventTouchDragInside

 ➤ UIControlEventTouchDragOutside

 ➤ UIControlEventTouchDragEnter

 ➤ UIControlEventTouchDragExit

 ➤ UIControlEventTouchUpInside

UILabel ❘ 199

 ➤ UIControlEventTouchUpOutside

 ➤ UIControlEventTouchCancel

To have the button appear on the screen, add it into the current view hierarchy. If you are creating
your button in a view controller class, you can simply use the underlying view’s addSubView: method
as follows:

[self.view addSubview:buttonOne];

To summarize, the code to create and add a button programmatically in the viewDidLoad method
looks like this:

- (void)viewDidLoad
{
 [super viewDidLoad];
 buttonOne = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 buttonOne.frame = CGRectMake(10.0, 10.0, 300.0, 40.0);

 [buttonOne addTarget:self
 action:@selector(onButtonPressed:)
 forControlEvents:UIControlEventTouchUpInside];

 [self.view addSubview:buttonOne];
}

If you want to use an image with the button, you need to irst add the image to your project and
load it into a UIImage object. Once the image has been loaded into an UIImage object, you can
associate it with one or more button states by using the setImage:forControlState: method.
The irst parameter to this method is the UIImage instance; the second identiies one of several
button states and can be one of the following values:

 ➤ UIControlStateNormal

 ➤ UIControlStateHighlighted

 ➤ UIControlStateDisabled

An example of using the setImage:forControlState: method is as follows:

[buttonOne setImage:[UIImage imageNamed:@"Normal.png"]
 forState:UIControlStateNormal];

uiLaBeL

Creating a UILabel instance is similar to creating a button. You need to create an appropriate
UILabel* property in your view controller class, and can then instantiate the UILabel using the
following code in the viewDidLoad method:

labelOne = [[UILabel alloc] initWithFrame:CGRectMake(10.0, 20.0,
 300.0, 40.0)];
labelOne.textColor = [UIColor blackColor];
labelOne.backgroundColor = [UIColor clearColor];
labelOne.font = [UIFont fontWithName:@"Arial" size:10];
labelOne.textAlignment = UITextAlignmentCenter;

200 ❘ LeSSon 17 creaTing ui elemenTS programmaTically

labelOne.text = @"Hello, World!";
[self.view addSubview:labelOne];

A UILabel object is instantiated by sending the alloc message to the UILabel class, and initialized
with the initWithFrame: method. The initWithFrame: method takes a CGRect argument that
speciies the position and size of the label:

labelOne = [[UILabel alloc] initWithFrame:CGRectMake(10.0, 20.0,
 300.0, 40.0)];

Use the textColor and backgroundColor properties to specify the color of the text and the back-
ground of the label, respectively. The value you assign to these properties must be a UIColor instance.

You can instantiate a UIColor object with a speciic RGB color by using the
colorwithRed:green:blue:alpha: method. The arguments to the method are the values for the
individual red, green, blue, and alpha components speciied as numbers between 0.0 and 1.0. For
example, to create a UIColor instance that represents red, you would use the following code:

UIColor* redColor = [UIColor colorWithRed:1.0 green:0.0 blue:0.0 alpha:1.0];

UIColor also deines a few class methods that allow you to create a few commonly used colors by
referring to them by name instead of individual component values:

+ (UIColor *)blackColor; // 0.0 white
+ (UIColor *)darkGrayColor; // 0.333 white
+ (UIColor *)lightGrayColor; // 0.667 white
+ (UIColor *)whiteColor; // 1.0 white
+ (UIColor *)grayColor; // 0.5 white
+ (UIColor *)redColor; // 1.0, 0.0, 0.0 RGB
+ (UIColor *)greenColor; // 0.0, 1.0, 0.0 RGB
+ (UIColor *)blueColor; // 0.0, 0.0, 1.0 RGB
+ (UIColor *)cyanColor; // 0.0, 1.0, 1.0 RGB
+ (UIColor *)yellowColor; // 1.0, 1.0, 0.0 RGB
+ (UIColor *)magentaColor; // 1.0, 0.0, 1.0 RGB
+ (UIColor *)orangeColor; // 1.0, 0.5, 0.0 RGB
+ (UIColor *)purpleColor; // 0.5, 0.0, 0.5 RGB
+ (UIColor *)brownColor; // 0.6, 0.4, 0.2 RGB
+ (UIColor *)clearColor; // 0.0 white, 0.0 alpha

The font used to display the text is speciied in the font property of the label. The value of this prop-
erty must be set to a UIFont instance. To obtain a UIFont instance that represents the system font in
a speciic point size, use the systemFontOfSize: class method of the UIFont class as follows:

labelOne.font = [UIFont systemFontOfSize:10];

To create an instance of speciic font, use the fontWithName:size: class method:

[UIFont fontWithName:@"Arial" size:10];

UILabel instances allow you to set the text alignment by providing an appropriate value for the
textAlignment property. The value speciied must be one of the following:

 ➤ UITextAlignmentLeft

 ➤ UITextAlignmentCenter

 ➤ UITextAlignmentRight

Try It ❘ 201

Last but not least, use the text property to set up the text displayed in the label. The value of this
property must be an NSString instance; you can also provide simple strings as shown here:

labelOne.text = @"Hello, World!";

uiiMaGevieW

Creating UIImageView instances programmatically is far simpler than creating labels and buttons.
You need an appropriate UIImageView* property in your view controller class and can create the
image view using code similar to the following:

UIImage* contentImage = [UIImage imageNamed:@"flag.png"];
bgView = [[UIImageView alloc] initWithImage:contentImage];
bgView.frame = CGRectMake(10, 20, 100, 150);
[self.view addSubview:bgView];

A UIImageView object is instantiated by sending the alloc message to the UIImageView class, and
initialized with the initWithImage: method. The initWithImage: method requires a single argu-
ment, a UIImage instance that represents the image you want to display.

To resize/position the image view, provide an appropriate CGRect value for the frame property. Keep
in mind that by default, the image view will resize its contents to match the dimensions provided in the
frame property. If you do not want resizing to occur, provide the same dimensions as the original image,
or specify one of the following values for the contentMode property to affect how images appear:

 ➤ UIViewContentModeScaleToFill

 ➤ UIViewContentModeScaleAspectFit

 ➤ UIViewContentModeScaleAspectFill

 ➤ UIViewContentModeCenter

 ➤ UIViewContentModeTop

 ➤ UIViewContentModeBottom

 ➤ UIViewContentModeLeft

 ➤ UIViewContentModeRight

 ➤ UIViewContentModeTopLeft

 ➤ UIViewContentModeTopRight

 ➤ UIViewContentModeBottomLeft

 ➤ UIViewContentModeBottomRight

Try iT

In this Try It, you build a new Xcode project based on the Single View Application template that
constructs its interface programmatically in the viewDidLoad: method of the view controller class.
The application will create a label, an image view, and a button. Tapping on the button will present
an alert view.

202 ❘ LeSSon 17 creaTing ui elemenTS programmaTically

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Import image iles into the project.

 ➤ Add code to the view controller class to create the user interface programmatically.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 17 folder in the download.

hints
 ➤ When creating the user interface programmatically, you do not need to use Interface Builder.

Step-by-Step

 1. Create a Single View Application in Xcode called CodeBasedUI.

 1. Launch Xcode and create a new project.

 2. Choose the Single View Application template and click Next.

 3. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: CodeBasedUI

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson17

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 4. Select a folder where this project should be created.

 5. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 6. Click Create.

 2. Import image resources into your project.

 1. Ensure the project navigator is visible and the CodeBasedUI project is selected and
expanded.

http://www.wrox.com

Try It ❘ 203

 2. Right-click the CodeBasedUI group and select Add Files to CodeBasedUI from the
context menu.

 3. Select the Images folder in this lesson’s resources on the DVD.

 4. Ensure the Copy Items to Destination Group’s folder (if needed) option is selected in
the dialog box.

 5. Click Add.

 3. Edit the view controller class.

 1. Add three nonatomic, strong properties to the view controller class, for a UILabel,
UIImageView, and UIButton. Name these properties countryName, flagView, and
infoButton, respectively.

 2. Add the following method declaration to the ViewController.h ile:

- (void) onShowInfo:(id)sender;

 3. Your Lesson17ViewController.h ile should now resemble the following:

#import <UIKit/UIKit.h>

@interface Lesson17ViewController : UIViewController
@property (nonatomic, strong) UIButton* infoButton;
@property (nonatomic, strong) UILabel* countryName;
@property (nonatomic, strong) UIImageView* flagView;

- (void) onShowInfo:(id)sender;
@end

 4. Add appropriate @synthesize statements at the top of the ViewController.m ile
corresponding to the @property declarations in the ViewController.h ile:

@synthesize infoButton;
@synthesize countryName;
@synthesize flagView;

 5. Add the following code to the implementation of the viewDidLoad method, after the
[super viewDidLoad] line:

UIImage* contentImage = [UIImage imageNamed:@"flag.png"];
flagView = [[UIImageView alloc] initWithImage:contentImage];
flagView.frame = CGRectMake(85, 20, 150, 87);
[self.view addSubview:flagView];

countryName = [[UILabel alloc] initWithFrame:CGRectMake(10.0, 120.0,
 300.0, 40.0)];
countryName.textColor = [UIColor blackColor];
countryName.backgroundColor = [UIColor clearColor];
countryName.font = [UIFont systemFontOfSize:12];
countryName.textAlignment = UITextAlignmentCenter;
countryName.text = @"United Kingdom of Great Britain and Northern Ireland";
[self.view addSubview:countryName];

infoButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
infoButton.frame = CGRectMake(10.0, 200.0, 300.0, 40.0);
[infoButton setTitle:@"What is the capital city?"

204 ❘ LeSSon 17 creaTing ui elemenTS programmaTically

 forState:UIControlStateNormal];
[infoButton addTarget:self
 action:@selector(onShowInfo:)
 forControlEvents:UIControlEventTouchUpInside];
[self.view addSubview:infoButton];

 6. Implement the onShowInfo: method as follows:

- (void) onShowInfo:(id)sender
{
 UIAlertView* alert = [[UIAlertView alloc]
 initWithTitle:@"The capital city of this country is"
 message:@"London"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [alert show];
}

 4. Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar.
Alternatively, you can use the Project d
Run menu item.

 2. Tap the button titled “What is the capital
city?” You should see an alert view similar
to the one in Figure 17-1.

Please select Lesson 17 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

FiGure 17-1

http://www.wrox.com/go/iphoneipadappvideo

Creating Views That Scroll

The applications you have built in the previous lessons have one thing in common—all their
content its neatly into a single view the size of the device screen. Sometimes that is not the
case, and when that happens you have two strategies to deal with the situation. You can either
try to break up the content of your application and present it across multiple views using tab
bars or navigation controllers, or you could still keep all the content in a single view but allow
the user to scroll through the content of the view.

UIKit provides the UIScrollView class, speciically designed to help you create scrolling views.
In this lesson you learn to use UIScrollView instances in your applications.

The uiScroLLvieW cLaSS

To create a UIScrollView instance using the Xcode Interface Builder, simply drag and drop a
Scroll View object from the Object library onto a scene, and create an outlet using the assistant
editor (Figure 18-1).

You can add one or more instances of UIView subclasses as
subviews of the scroll view. The collective dimensions of these sub-
views can be much larger than the dimensions of the scroll view
itself (Figure 18-2).

The dimensions of the content managed by a scroll view can be
read (or set) using the contentSize property. The contentSize
property is a CGSize structure and contains two loat members,
height and width. Thus, if scrollView is a UIScrollView
instance, the following code could be used to read the height and
width of the content area:

float contentHeight = scrollView.contentSize.height;
float contentWidth = scrollView.contentSize.width;

FiGure 18-1

18

206 ❘ LeSSon 18 creaTing ViewS THaT Scroll

contentSize.width

content area

contentSizeheight

UIScrollView

FiGure 18-2

When you create a scroll view instance with Interface Builder, the size of the content area is exactly
the same as the size of the scroll view. Thus, scroll views, by default, do not scroll. To enable the
scrolling behavior, you need to set up the contentSize property programmatically. You can do this
at any point after the scroll view is instantiated. If you created the scroll view with Interface Builder,
you may want to set it up in the viewDidLoad method of the view controller class that contains the
scroll view, using code similar to the following:

scrollView.contentSize = CGSizeMake(320, 4200);

Another property related to the scrolling behavior is the contentOffset property. This property is
a CGPoint structure and contains two loat members, x and y, that represent the distance scrolled by
the user along the horizontal and vertical axes (Figure 18-3).

contentSize.width

content area

contentSizeheightUIScrollView
contentO�set.x

contentO�set.y

FiGure 18-3

The UIScrollView class ❘ 207

You can add user interface elements to a scroll view with Interface Builder by simply dragging
and dropping them from the Object library onto the scroll view. Positioning elements that are
not initially visible in the scroll view can be a bit tricky. One way to solve this problem is to
drag and drop elements onto the scroll view and then provide precise numeric values for the
X and Y positions using the Attributes inspector (Figure 18-4).

FiGure 18-4

Another way is to resize/reposition the scroll view within the scene, and create the user interface
elements visually in their correct positions. This approach requires you move the scroll view in the
scene a few times until you get the results you want (Figure 18-5). Don’t forget to reset the scroll
view’s position and size to their initial values after you are done.

You could also create the user interface elements programmatically, and insert them at the appropriate
position within the scroll view. The code to add a simple UILabel instance into a scroll view program-
matically is presented in the following code:

- (void)viewDidLoad
{
 [super viewDidLoad];

 UILabel* countryName = [[UILabel alloc] initWithFrame:CGRectMake(10.0,
 120.0, 300.0, 40.0)];
 countryName.textColor = [UIColor blackColor];
 countryName.backgroundColor = [UIColor clearColor];
 countryName.font = [UIFont systemFontOfSize:12];
 countryName.textAlignment = UITextAlignmentCenter;

208 ❘ LeSSon 18 creaTing ViewS THaT Scroll

 countryName.text = @”United States of America”;
 [scrollView addSubview:countryName];
}

FiGure 18-5

Regardless of which method you use, you need to set the contentSize property to an appropriate
value to enable scrolling.

 ScroLL vieWS and TexT FieLdS

A common scenario in which you are likely to use a scroll view involves multiple text ields in a
scene. If you tap a text ield closer to the bottom of the screen, a keyboard automatically pops up
and covers part of the user interface. This is illustrated in Figure 18-6; when a user taps on the
Address (Line 1): ield, the keyboard comes up and covers the text ield, thus making it impossible
for the user to see what is being typed.

Scroll views provide a simple and elegant solution to this problem; you can change the y offset of
the content area within the scroll view when a speciic text ield is tapped, thus moving the content
toward the top by a small amount. This solution is explored next, in this lesson’s Try It section.

Try It ❘ 209

FiGure 18-6

Try iT

In this Try It, you create a simple application based on the Single View Application template that
contains several text ields and a scroll view. When a text ield is tapped on, the content of the scroll
view is moved up by a small amount to ensure that the iOS keyboard will not cover the text ield.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Add a scroll view to the default scene of the storyboard.

 ➤ Use Interface Builder to add several user interface elements to the scroll view.

 ➤ Add code to the view controller class to move the content in the scroll view when a text ield
is tapped, thus ensuring the text ield is always visible.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 18 folder in the download.

http://www.wrox.com

210 ❘ LeSSon 18 creaTing ViewS THaT Scroll

hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identiier in the Project Options dialog box.

Step-by-Step

 1. Create a Single View Application in Xcode called ScrollingForms.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: ScrollingForms

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson18

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Add user interface elements to your storyboard’s scene.

 1. Add a UIScrollView instance to the default scene.

 1. Use the Object library to add a Scroll View to the default scene of the
storyboard.

 2. Use the Size inspector to resize and position it at X = 0, Y = 0, Width = 320,
Height = 460.

 3. Using the assistant editor, create an outlet for the scroll view in the view
controller class called scrollView.

Try It ❘ 211

 2. Add user interface elements to the scroll view.

 1. Use the Object library to add ive Label instances and ive Text Field
instances to the scroll view. Position them to resemble Figure 18-7.

FiGure 18-7

 2. Use the assistant editor to create outlets for each of the text ields in the
view controller class. Name the outlets usernameField, passwordField,
addressField1, addressField2, and postcodeField.

 3. Ensure the Lesson18ViewController class implements the UITextFieldDelegate
protocol.

 1. Modify the interface declaration of the Lesson18ViewController class from:

@interface Lesson18ViewController : UIViewController

to

@interface Lesson18ViewController : UIViewController <UITextFieldDelegate>

 4. Add additional property declarations to the Lesson18ViewController.h ile.

 1. Add the following property declarations to the Lesson18ViewController.h ile:

@property float keyboardHeight;
@property (weak, nonatomic) UITextField *currentTextField;

212 ❘ LeSSon 18 creaTing ViewS THaT Scroll

 2. The code in the Lesson18ViewController.h ile should now resemble the
following:

#import <UIKit/UIKit.h>

@interface Lesson18ViewController : UIViewController <UITextFieldDelegate>
@property (weak, nonatomic) IBOutlet UIScrollView *scrollView;
@property (weak, nonatomic) IBOutlet UITextField *usernameField;
@property (weak, nonatomic) IBOutlet UITextField *passwordField;
@property (weak, nonatomic) IBOutlet UITextField *addressField1;
@property (weak, nonatomic) IBOutlet UITextField *addressField2;
@property (weak, nonatomic) IBOutlet UITextField *postcodeField;

@property float keyboardHeight;
@property (weak, nonatomic) UITextField *currentTextField;

@end

 3. Edit the implementation of the view controller class.

 1. Add the following @synthesize statements to the top of the
Lesson18ViewController.m ile, after the @implementation
Lesson18ViewController line:

@synthesize keyboardHeight;
@synthesize currentTextField;

 2. Set up the view controller instance to be the delegate object for the text
ield instances by modifying the implementation of the viewDidLoad:
method to the following:

- (void)viewDidLoad
{
 [super viewDidLoad];

 usernameField.delegate = self;
 passwordField.delegate = self;
 addressField1.delegate = self;
 addressField2.delegate = self;
 postcodeField.delegate = self;
}

 3. You need to tell iOS to call the keyboardDidShow: and keyboarDid-
Hide: methods in your view controller class when the keyboard becomes
visible/hidden, respectively. To do this, you need to register these
methods as observers for the UIKeyboardDidShowNotification and
UIKeyboardDidHideNotification events. Modify the implementation of
the viewWillAppear: method to the following:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 [NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardDidShow:)

Try It ❘ 213

 name:UIKeyboardDidShowNotification
 object:self.view.window];

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardDidHide:)
 name:UIKeyboardDidHideNotification
 object:nil];
}

 4. You need to tell iOS that your code is not interested in the notiications pre-
viously registered by modifying the implementation of the viewDidDisap-
pear: method to the following:

- (void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];

 [NSNotificationCenter defaultCenter] removeObserver:self
 name:UIKeyboardDidShowNotification
 object:nil];
 [NSNotificationCenter defaultCenter] removeObserver:self
 name:UIKeyboardWillHideNotification
 object:nil];
}

The above code snippet removes individual observers one by one, if you
want to remove all observers in one line, you can alternately, implement the
viewDidDisappear: method as:

- (void) viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];

 [[NSNotificationCenter defaultCenter] removeObserver:self];
}

 4. Implement the keyboardDidShow: method in your view controller class as follows:

-(void) keyboardDidShow:(NSNotification *) notification
{
 // get height of keyboard
 NSDictionary* info = [notification userInfo];
 CGRect keyboardFrame = [[info objectForKey:UIKeyboardFrameEndUserInfoKey]
 CGRectValue];
 keyboardHeight = keyboardFrame.size.height;

 // ensure current text field is visible, if not adjust the contentOffset
 // of the scrollView appropriately.

 float textFieldTop = currentTextField.frame.origin.y;
 float textFieldBottom = textFieldTop + currentTextField.frame.size.height;

 if (textFieldBottom > keyboardHeight)

214 ❘ LeSSon 18 creaTing ViewS THaT Scroll

 {

 [scrollView setContentOffset:
 CGPointMake(0, textFieldBottom - keyboardHeight)
 animated:YES];
 }
}

 5. The preceding code snippet stores the height of the keyboard in a member variable
keyboardHeight. It then tests to see if the currently active text ield is partly or
wholly covered by the keyboard. If it is, it updates the contentOffset property of
the scroll view to rectify the situation.

 6. Implement the keyboardDidHide: method in your view controller class as follows:

-(void) keyboardDidHide:(NSNotification *) notification
{
 [scrollView setContentOffset:CGPointMake(0, 0)
 animated:YES];
}

 7. The preceding code snippet resets the contentOffset property of the scroll view
to X = 0, and Y = 0.

 8. Implement the textFieldShouldReturn: method of the UITextFieldDelegate
protocol as follows:

- (BOOL)textFieldShouldReturn:(UITextField *)textField
{
 [textField resignFirstResponder];
 return YES;
}

 9. Implement the textFieldDidBeginEditing: method of the UITextFieldDelegate
protocol as follows:

- (void)textFieldDidBeginEditing:(UITextField *)textField
{
 // save reference to currently-active text field
 currentTextField = textField;

 // ensure this field is visible by adjusting the contentOffset
 // property of the scrollView instance appropriately.
 float textFieldTop = currentTextField.frame.origin.y;
 float textFieldBottom = textFieldTop +
 currentTextField.frame.size.height;

 if ((textFieldBottom > keyboardHeight) && (keyboardHeight != 0.0))
 {
 [scrollView setContentOffset:CGPointMake(0, textFieldBottom -
 keyboardHeight)
 animated:YES];
 }
}

Try It ❘ 215

 10. The preceding code snippet is called when the user taps on a text ield. It irst saves
a reference to the text ield in the variable currentTextField. It then checks to see
if the ield is wholly/partially obscured by the keyboard. If this is the case, it updates
the contentOffset property of the scroll view to rectify this situation.

 5. To test your app in the iOS Simulator, click the Run button in the Xcode toolbar.
Alternatively, you can use the Project d Run menu item.

Please select Lesson 18 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Popovers and Modal Views

This lesson presents two ways of temporarily displaying data for user feedback:

 ➤ Popovers

 ➤ Modal views

Though the overall purpose is the same between popovers and modal views, they behave differ-
ently when implemented. For example, to dismiss a popover, you simply tap outside the bounds
of the popover itself. To dismiss a modal view, you must touch a user-deined button that will
dismiss it. Because of this permanence, modal views are presented to the user for immediate
required feedback in order to continue the application.

PoPoverS

Popovers by deinition are views that are revealed when a control is tapped. They also have
the visual effect of being attached to that control as shown in Figure 19-1.

FiGure 19-1

19

218 ❘ LeSSon 19 popoVerS and modal ViewS

usage Guidelines

The popover is an iPad-only view, and suggested uses are as follows:

 ➤ To provide a list of additional information related to the selected control.

 ➤ In a split view in portrait mode, to display the list that would appear in the left pane in
landscape mode.

 ➤ To display a list of options displayed in an action sheet.

Apple User Interface Guidelines recommend that you do not provide a Done
or Dismiss option in your popover. By design, a popover is dismissed by simply
tapping outside the popover itself.

Presenting the Popover

Popovers can be associated with buttons on the toolbar by using the presentPopoverFromBarButton
Item:permittedArrowDirections:animated method. They can also be associated with a particular
view throughout the presentPopoverFromRect:inView:permittedArrowDirections:animated
method.

The following code illustrates how to present a view controller within a popover that is attached to
a bar button item attached to a navigation bar:

PopoverViewController *controller = [[self storyboard]
 instantiateViewControllerWithIdentifier:@"PopoverView"];

UIPopoverController *popoverController =
 [[UIPopoverController alloc] initWithContentViewController:controller];
 [popoverController setPopoverContentSize:CGSizeMake(320.0, 320.0)];
 [popoverController presentPopoverFromBarButtonItem:[self modalButton]
 permittedArrowDirections:UIPopoverArrowDirectionUp animated:YES];

dismissing the Popover

Apple discourages the use of a Done or Dismiss button to dismiss popovers. However, in some instances
it needs to be programmatically dismissed. The following code illustrates how to dismiss the popover:

[popoverController dismissPopoverAnimated:YES];

ModaL vieWS

Modal views are a way to manage the low of your applications. Speciically, they will interrupt the
low to acquire vital information on how to proceed further in the application.

usage Guidelines

Unlike popovers, modal views are not limited to the iPad. Suggested uses are as follows:

 ➤ To acquire information immediately

Modal Views ❘ 219

 ➤ To provide vital information before proceeding

 ➤ To alter application logic low, depending on the response received

Presentation Styles

The four presentation styles for modal views are as follows:

 ➤ UIModalPresentationFullScreen: Takes up the full screen.

 ➤ UIModalPresentationPageSheet: In landscape is centered horizontally on the page and
does not ill the screen.

 ➤ UIModalPresentationFormSheet: Appears as a self-contained form centered in the view.

 ➤ UIModalPresentationCurrentContext: Adopts the presentation style of its parent.

Transition Styles

The three transition styles for modal views are as follows:

 ➤ UIModalTransitionStyleCoverVertical: The default and used to enter/exit from the bot-
tom of the view.

 ➤ UIModalTransitionStyleFlipHorizontal: Used to enter/exit by lipping horizontally
between two views

 ➤ UIModalTransitionStyleCrossDissolve: Used to fade between two views.

Presenting the Modal view

The following code illustrates how to present a view controller modally:

ModalViewController *modalView = [[self storyboard]
 instantiateViewControllerWithIdentifier:@"ModalView"];
 [modalView setModalTransitionStyle:UIModalTransitionStyleCoverVertical];
 [modalView setModalPresentationStyle:UIModalPresentationFormSheet];
 [self presentModalViewController:modalView animated:YES];

dismissing the Modal view

The following code illustrates how to dismiss the modal view:

[self dismissModalViewControllerAnimated:YES];

The transition style used to dismiss a modal view is the same style used to present
it. If you fade the view in, when it is dismissed, it will fade out.

220 ❘ LeSSon 19 popoVerS and modal ViewS

Try iT

In this Try It, you implement a single view application for the iPad that has a button on the top
right. Tapping this button reveals a popover that offers a choice of presentation styles that will be
used for the appearance of the modal view. After choosing the presentation style, a tap on the Show
button presents the modal view. Tapping the Done button on the modal view dismisses it.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 19 folder in the download.

Lesson requirements
 ➤ Create an Xcode project for iPad using the Single View Application template.

 ➤ Create a storyboard including just a root view controller.

 ➤ Implement a dynamic prototype table view.

 ➤ Respond to the selection of a Modal button by displaying a popover with a choice of modal
presentation styles.

 ➤ Selecting a presentation style and tapping the Show button reveals a modal view.

 ➤ Tapping Done on the modal view dismisses it.

hints
 ➤ Because this application uses storyboards instead of xib iles, remember to have the Use

Storyboard option checked at project creation.

 ➤ Select iPad from the Device Family list.

 ➤ The popover as well as the modal view will have to be dismissed programmatically.

Step-by-Step

 1. Create a Single View Application.

 1. Launch Xcode.

 2. Create your new iOS project.

 a. To create a new project, select Create a New Xcode Project, from the initial
Welcome to Xcode window.

 b. On the left under iOS, select Application.

 c. Select Single View Application from the template list and click Next.

http://www.wrox.com

Try It ❘ 221

 d. Choose the following options for your project:

 ➤ Product Name: Lesson19

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: leave blank

 ➤ Device Family: iPad

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 e. Select the location on your computer where the project will be saved and
click Create.

 f. Your Xcode project has been created as shown in Figure 19-2.

FiGure 19-2

 2. Add the PopoverViewController and ModalViewController.

 1. To add the popover view controller to the storyboard:

 a. Select the Lesson19 folder.

 b. Select File d New d New File from the Xcode menu.

222 ❘ LeSSon 19 popoVerS and modal ViewS

 c. On the left under iOS, select Cocoa Touch.

 d. Select UIViewController from the template list and click Next.

 e. Choose the following options for your new ile:

 ➤ Class: PopoverViewController

 ➤ Subclass of: UIViewController

 ➤ Select: Targeted for iPad

 ➤ Deselect: With XIB for user interface

 f. Click Next.

 g. Click Create to save the class in your project folder.

 2. To add the modal view controller to the storyboard:

 a. Select the Lesson19 folder.

 b. Select File d New d New File from the Xcode menu.

 c. On the left under iOS, select Cocoa Touch.

 d. Select UIViewController from the template list and click Next.

 e. Choose the following options for your new ile:

 ➤ Class: ModalViewController

 ➤ Subclass of: UIViewController

 ➤ Select: Targeted for iPad

 ➤ Deselect: With XIB for user interface

 f. Click Next.

 g. Click Create to save the class in your project folder.

 3. Select File d Save to save your project.

 3. Design the user interface.

 1. Design the ViewController.

 a. On the left, select MainStoryboard.storyboard.

 b. On the right select the third button in the View section to display the
Utilities view.

 c. Drag a Navigation Bar from the list, place it on the top section of the
view, double-click the Title, and enter Lesson 19.

 d. Drag a BarButtonItem from the object list, place it on the right section of
the navigation bar you just added, double-click Item, and enter Modal.

Try It ❘ 223

 2. Design the PopoverViewController.

 a. On the left, select MainStoryboard.storyboard.

 b. Drag a View Controller from the list, and place it to the right of the
ViewController on the storyboard.

 c. From the Identity Inspector, enter PopoverViewController for the Class.

 d. From the Attributes Inspector, select Freeform for the Size parameter and
enter PopoverView for the identiier.

 e. Select the view and from the Size Inspector, enter 320 for both the Width
and Height.

 f. Drag a Navigation Bar from the list, place it on the top section of the
view, double-click the Title, and enter Modal Types Popover.

 g. Drag a Round Rect Button from the list, place it on the middle of the view,
double-click the center, and enter Show.

 h. Drag a Segmented Control from the object list, and place it all the way on
the left just attached to the bottom of the navigation bar.

 i. Select the Attributes Inspector and select Bar for Style and 4 for Segments.

 j. Center the control and add the following titles for each cell, respectively:
Full, Page, Form, and Current, as shown in Figure 19-3.

FiGure 19-3

224 ❘ LeSSon 19 popoVerS and modal ViewS

 3. Design the ModalViewController.

 a. On the left, select MainStoryboard.storyboard.

 b. Drag a View Controller from the list, and place it to the right of the
ViewController on the storyboard.

 c. From the Identity Inspector, enter ModalViewController for the Class.

 d. From the Attributes Inspector, enter ModalView for the identiier.

 e. Drag a Navigation Bar from the list, place it on the top section of the
view, double-click the Title, and enter Modal View.

 f. Drag a BarButtonItem from the object list, place it on the right section of
the navigation bar you just added, and from the Attributes Inspector, select
Done for the Identiier. The button should have the title Done and have a
blue background.

 g. Drag a Label from the object list, and place it on the middle of the view.
From the Attributes Inspector select the center alignment, and from the Size
Inspector set the width to 550 and deselect the Autosizing anchors as shown
in Figure 19-4.

FiGure 19-4

 4. Select File d Save to save your project.

 4. Make the Connections to the outlets and actions.

Try It ❘ 225

 1. To make the connections on the ViewController perform the following:

 a. On the storyboard, select the status bar at the top of the irst view
controller.

 b. From the Editor section on the top right, select the Assistant Editor.

 c. Select the Modal button and control-drag to the interface source code just
above the @end.

 d. Select Outlet for Connection, enter modalButton for the outlet name. and
click Connect.

 e. Select the Modal button and control-drag to the interface source code just
above the @end.

 f. Select Action for Connection, enter selectModalType for the action name,
and click Connect.

 2. To make the connections on the PopoverViewController, perform the following:

 a. On the storyboard, select the status bar at the top of the popover view
controller.

 b. Select the segmented control and control-drag to the interface source code
just above the @end.

 c. Select Outlet for Connection, enter modalTypeSegmentedController for the
outlet name, and click Connect.

 d. Select the Show button and control-drag to the interface source code just
above the @end.

 e. Select Action for Connection, enter showModalView for the action name,
and click Connect.

 3. To make the connections on the ModalViewController, perform the following:

 a. On the storyboard, select the status bar at the top of the irst view
controller.

 b. From the Editor section on the top right, select the Assistant Editor.

 c. Select the label and control-drag to the interface source code just above the
@end.

 d. Select Outlet for Connection, enter textLabel for the outlet name, and click
Connect.

 e. Select the Done button and control-drag to the interface source code just
above the @end.

 f. Select Action for Connection, enter done for the action name, and click
Connect.

 4. Select File d Save to save your project.

226 ❘ LeSSon 19 popoVerS and modal ViewS

 5. Modify the ViewController class.

 1. Modify the ViewController.h ile to look like the following:

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController
@property (strong, nonatomic) UIPopoverController
 *modalTypePopoverController;

@property (weak, nonatomic) IBOutlet UIBarButtonItem *modalButton;

- (IBAction)selectModalType:(id)sender;
- (void)showModalView:(UISegmentedControl *)sender;
- (void)dismissPopover:(UIPopoverController *)popoverController;

@end

 2. Add the following imports to the ViewController.m ile:

#import "PopoverViewController.h"
#import "ModalViewController.h"

 3. Add the following synthesize variables right below the @implementation section:

@synthesize modalTypePopoverController = _modalTypePopoverController;
@synthesize modalButton = _modalButton;

 4. Add the following above [super viewDidUnload] in the viewDidUnload method:

[self setModalButton:nil];
[self setModalTypePopoverController:nil];

 5. There is one action deined selectModalType:, enter the following code for
this method:

- (IBAction)selectModalType:(id)sender {
 UIPopoverController *popoverController =
 [self modalTypePopoverController];
 if(popoverController == nil) {
 PopoverViewController *controller = [[self storyboard]
 instantiateViewControllerWithIdentifier:@”Lesson19”];
 [controller setDelegate:self];
 popoverController =
 [UIPopoverController alloc]
 initWithContentViewController:controller];
 popoverController.popoverContentSize = CGSizeMake(320.0, 320.0);
 [self setModalTypePopoverController:popoverController];
 }
 [popoverController presentPopoverFromBarButtonItem:[self modalButton]
 permittedArrowDirections:UIPopoverArrowDirectionUp animated:YES];

 6. There is one delegate method called showModalView: that will be called from the
PopoverViewController that brings up the appropriate modal view, depending on
the choice selected in the popover:

- (void)showModalView:(UISegmentedControl *)sender {
 UIPopoverController *popoverController =
 [self modalTypePopoverController];

Try It ❘ 227

 ModalViewController *modalView = [[self storyboard]
 instantiateViewControllerWithIdentifier:@”ModalView”];
 switch ([sender selectedSegmentIndex]) {
 case 0:
 [modalView setModalTransitionStyle:
 UIModalTransitionStyleCrossDissolve];
 [modalView setModalPresentationStyle:
 UIModalPresentationFullScreen];
 [modalView setText:@”UIModalPresentationFullScreen”];
 break;
 case 1:
 [modalView setModalTransitionStyle:
 UIModalTransitionStyleFlipHorizontal];
 [modalView setModalPresentationStyle:
 UIModalPresentationPageSheet];
 [modalView setText:@”UIModalPresentationPageSheet”];
 break;
 case 2:
 [modalView setModalTransitionStyle:
 UIModalTransitionStyleCoverVertical];
 [modalView setModalPresentationStyle:
 UIModalPresentationFormSheet];
 [modalView setText:@”UIModalPresentationFormSheet”];
 break;
 case 3:
 [modalView setModalTransitionStyle:
 UIModalTransitionStyleFlipHorizontal];
 [modalView setModalPresentationStyle:
 UIModalPresentationCurrentContext];
 [modalView setText:@”UIModalPresentationCurrentContext”];
 break;
 }
 [self dismissPopover:popoverController];
 [self presentModalViewController:modalView animated:YES];
}

 7. The dissmissPopover: method is called after the selection has been made in
preparation for the display of the modal view:

- (void)dismissPopover:(UIPopoverController *)popoverController {
 if (popoverController != nil) {
 [popoverController dismissPopoverAnimated:YES];
 }
 [self setModalTypePopoverController:nil];
}

 6. Modify the PopoverViewController class.

 1. Modify the PopoverViewController.h ile to look like the following;

#import <UIKit/UIKit.h>

@interface PopoverViewController : UIViewController

@property (strong, nonatomic) id delegate;

228 ❘ LeSSon 19 popoVerS and modal ViewS

@property (weak, nonatomic) IBOutlet UISegmentedControl
 *modalTypeSegmentedController;

- (IBAction)showModalView:(id)sender;

@end

 2. Add the following imports to the PopoverViewController.m ile:

#import "ModalViewController.h"

 3. Add the following synthesize variables right below the @implementation section:

@synthesize delegate = _delegate;
@synthesize modalTypeSegmentedController = _modalTypeSegmentedController;

 4. Add the following above [super viewDidUnload] in the viewDidUnload method:

[self setModalTypeSegmentedController:nil];

 5. There is one action deined showModalView:

- (IBAction)showModalView:(id)sender {
 [[self delegate] showModalView:[self modalTypeSegmentedController]];
}

 7. Modify the ModalViewController class.

 1. Modify the ModalViewController.h ile to look like the following:

#import <UIKit/UIKit.h>

@interface ModalViewController : UIViewController

@property (strong, nonatomic) NSString *text;
@property (strong, nonatomic) IBOutlet UILabel *textLabel;

- (IBAction)done:(id)sender;

@end

 2. Add the following synthesize variables right below the @implementation section:

@synthesize text = _text;
@synthesize textLabel = _textLabel;

 3. Uncomment the viewDidLoad method and add the following below [super
viewDidLoad]:

[[self textLabel] setText:[self text]];

 4. Add the following above [super viewDidUnload] in the viewDidUnload method:

[self setText:nil];
[self setTextLabel:nil];

 5. There is one action deined done:

- (IBAction)done:(id)sender {
 [self dismissModalViewControllerAnimated:YES];
}

Try It ❘ 229

 8. Run the application.

 1. Select the iPad Simulator to run the application.

 2. Click the Run button from Xcode.

 3. When the application launches, tap the Modal button to present the popover.

 4. Select a style from the segmented control and tap Show.

 5. Tap Done to dismiss the modal view.

Please select Lesson 19 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Tweeting with Twitter

Social media integration is not something that most apps can ignore. These days social media
integration in apps is the norm rather than the exception. Fortunately for you, starting from iOS 5,
Apple has built Twitter integration into the operating system. Sending tweets has never been easier!

In this lesson you learn to integrate the new Twitter framework in your iOS apps and allow
the user to send tweets from your apps. You can build more complex Twitter clients that can
access the entire Twitter API, but that topic is beyond the scope of this book.

The Twitter framework is not included in any of the standard iOS project templates that you
use when creating a new project. You will need to add a reference to this framework manually.
You can do this from the Project Settings page in Xcode. Select the project node in the project
navigator to display the settings page. On the settings page, select the build target and switch
to the Build Phases tab. Click the plus (+) button under the Link Binary With Libraries category
and select Twitter.framework from the list of available frameworks (Figure 20-1).

FiGure 20-1

20

232 ❘ LeSSon 20 TweeTing wiTH TwiTTer

The TWeeT SheeT

The Twitter framework provides a tweet sheet that you should use in your apps if all you want is a
simple “send tweet” feature. The tweet sheet is an instance of the TWTwitterComposerViewController
class and provides a convenient user interface to allow the user to type a message, attach an image, and
add the current location (Figure 20-2).

The keyboard is displayed automatically when the tweet sheet appears, and disappears automati-
cally when the user presses the Send or Cancel buttons. Creating and displaying the tweet sheet
is a simple matter of instantiating it and presenting it modally:

// create tweet sheet
TWTweetComposeViewController* tweetSheet =
 [[TWTweetComposeViewController alloc] init];

//show tweet sheet
[self presentModalViewController:tweetSheet animated:YES];

Typically, you will want to do this in an action method that is triggered when your user taps on a
Tweet button in the user interface. Before you show the tweet sheet, you must check to see if the user
has created a Twitter account on the system (Figure 20-3).

If the user has not created a Twitter account on the system, you may want to hide the Tweet button
from your user interface entirely, or display an alert when the user taps it.

To check the availability of the Twitter service, use the canSendTweet: class method of the
TWTweetComposeViewController class as follows:

BOOL serviceAvailability = [TWTweetComposeViewController canSendTweet];

You can set up the initial text displayed in the tweet sheet prior to displaying it by sending it the
setInitialText: message:

- (BOOL) setInitialText:(NSString*)text;

This message takes one NSString argument that contains the text you want to set, and returns a
Boolean value that contains the result of the operation. Common reasons why the operation may not
be successful are:

 1. The length of the message is longer than the 140-character limit set by Twitter.

 2. You are trying to set the text in the tweet sheet after it has been displayed.

You can attach an image to the tweet sheet by sending it the addImage: message:

- (BOOL)addImage:(UIImage*)image

This message has one argument that is a UIImage object, and returns a Boolean result. The image is
automatically resized and uploaded to the Twitter service by the framework. You must examine the
return value to determine if the operation was successful.

To add a URL to the tweet sheet, send it the addURL: message:

- (BOOL)addURL:(NSURL*)url

To create an NSURL instance from a string, use code similar to the following:

NSURL *url = [NSURL URLWithString:@”http://www.asmtechnology.com “];

http://www.asmtechnology.com

The Tweet Sheet ❘ 233

FiGure 20-2 FIgurE 20-3

As with the setInitialText: and addImage: messages, the addURL: message returns a Boolean
value indicating success or failure. It is important to note that images and URLs take up part of the
140-character limit imposed by the Twitter service.

You can provide an optional block completion handler that will be executed when the tweet has
been sent. Assuming tweetSheet is an instance of a TWTweetComposeViewController, you can
do this as follows:

tweetSheet.completionHandler = ^(TWTweetComposeViewControllerResult result)

{

 [self dismissModalViewControllerAnimated:YES];

};

Within the block, you can examine the value of the result parameter to get more information on
the result of the operation. The value of the result parameter depends on which button was pressed
by the user, and can be either of:

 ➤ TWTweetComposeViewControllerResultCancelled

 ➤ TWTweetComposeViewControllerResultDone

You will need to dismiss the tweet sheet by sending the dismissModalViewControllerAnimated:
message to the view controller. If you do not provide a block completion handler, the tweet sheet is
dismissed automatically regardless of the result of the operation.

234 ❘ LeSSon 20 TweeTing wiTH TwiTTer

Try iT

In this Try It, you build a new Xcode project based on the Single View Application template called
TwitterTest. The user interface of this app will consist of a single button titled Send Tweet and a
label displaying service status. When the user taps the button, a tweet sheet will be displayed, with
an image attached. The user can then type a message and send the tweet.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Open the storyboard in Interface Builder.

 ➤ Import image resources into the project.

 ➤ Add a UIButton and a UILabel instance to the default scene.

 ➤ Add a reference to the Twitter framework.

 ➤ Display Twitter service status in the label.

 ➤ Create a tweet sheet and attach an image to it.

 ➤ Present the tweet sheet modally.

 ➤ Create a UIAlertView instance in the action method and present it to the user.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 20 folder in the download.

hints
 ➤ To show the Object library, use the View d Utilities d Show Object Library menu item.

 ➤ Remember to add a reference to the Twitter framework.

Step-by-Step

 1. Create a Single View Application in Xcode called TwitterTest.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: TwitterTest

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson20

http://www.wrox.com

Try It ❘ 235

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Import image resources into your project.

 1. Ensure the project navigator is visible and the TwitterTest project is selected and
expanded.

 2. Right-click the TwitterTest group and select Add Files to TwitterTest from the con-
text menu.

 3. Select the Images folder in this lesson’s resources on the DVD.

 4. Ensure the Copy Items to Destination Group’s Folder (if needed) option is selected in
the dialog box.

 5. Click the Add button.

 3. Add a UILabel instance to the default scene.

 1. Open the MainStoryboard.storyboard ile in Interface Builder.

 2. Ensure the Object library is visible. To show it, use the View d Utilities d Show
Object Library menu item.

 3. From the Object library, drag and drop a Label object onto the default scene.

 4. Use the Attributes inspector to set the Text attribute of the label to Service Status.
To show the Attributes inspector, use the View d Utilities d Show Attributes
Inspector menu item.

 5. Use the Attributes inspector to set the alignment of the label to Center.

 6. Size and position the label to X=35, Y=149, W=256, H=21.

 7. Using the assistant editor, create an outlet called statusLabel in the view controller
class and connect it to the label.

 4. Add a UIButton instance to the default scene.

 1. From the Object library, drag and drop a Round Rect Button object onto the scene.

 2. Double tap the button and set the text displayed in it to Send Tweet.

236 ❘ LeSSon 20 TweeTing wiTH TwiTTer

 3. Size and position the button to X=69, Y=202, W=190, H=37.

 4. Using the assistant editor, create a action method in the view controller class called
onSendTweet and connect it with the Touch Up Inside event of the button.

 5. Add a reference to the Twitter framework.

 1. Select the project node in the project navigator to display the settings page.

 2. On the settings page, select the build target and switch to the Build Phases tab.

 3. Click the plus (+) button under the Link Binary With Libraries category and select
Twitter.framework from the list of available frameworks.

 4. Click the Add button.

 6. Add the following code to the top of the Lesson20ViewController.m ile:

#import "Twitter/Twitter.h"

after the line:

#import "Lesson20ViewController.h"

 7. Modify the viewDidLoad method in the Lesson20ViewController.m ile to resemble
the following:

- (void)viewDidLoad
{
 [super viewDidLoad];

 if ([TWTweetComposeViewController canSendTweet])
 statusLabel.text = @"Service Status: Can send tweets!";
 else
 statusLabel.text = @"Service Status: Unavailable!";
}

 8. Update the implementation of the onSendTweet: method in the
Lesson20ViewController.m ile.

 1. If the service is not available, show a suitable alert to the user by typing code similar
to the following in the implementation of the onSendTweet: method:

if ([TWTweetComposeViewController canSendTweet] == NO)
{
 UIAlertView* serviceAlert = [[UIAlertView alloc]
 initWithTitle:@""
 message:@"Can't send tweets"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [serviceAlert show];
 return;
}

 2. Create the tweet sheet by typing the following code in the implementation of the
onSendTweet: method, after the code from the previous step:

TWTweetComposeViewController* tweetSheet =
[[TWTweetComposeViewController alloc] init];

Try It ❘ 237

 3. Load the beads.png ile into a UIImage object and attach the image object to the
tweet sheet by typing the following code after the code from the previous step:

UIImage* attachment = [UIImage imageNamed:@"beads.png"];
[tweetSheet addImage:attachment];

 4. Finally, display the tweet sheet by typing the following code after the code from the
previous step:

[self presentModalViewController:tweetSheet animated:YES];

 5. Your implementation of the onSendTweet method should now resemble the following:

- (IBAction)onSendTweet:(id)sender
{
 // display a alert if the service is not available.
 if ([TWTweetComposeViewController canSendTweet] == NO)
 {
 UIAlertView* serviceAlert = [[UIAlertView alloc]
 initWithTitle:@""
 message:@"Can't send tweets"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [serviceAlert show];
 return;
 }

 // create the tweet sheet
 TWTweetComposeViewController* tweetSheet =
 [[TWTweetComposeViewController alloc] init];

 // setup attachment
 UIImage* attachment = [UIImage imageNamed:@"beads.png"];
 [tweetSheet addImage:attachment];

 // show tweet sheet
 [self presentModalViewController:tweetSheet animated:YES];
}

 9. Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively, you can use the
Project d Run menu item.

 2. If the app indicates that the Twitter service is unavailable, create a Twitter account
from the device settings app and try your app again.

Please select Lesson 20 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Basic File Handling

Your iPhone applications always execute in a restricted environment on the device known as
the application sandbox. Some of these restrictions affect where and how your application can
store data. Several types of applications need the ability to store user-created data. Take, for
instance, the Notes application. The notes that the user creates with this application need to be
stored somewhere so that they are available when the application is restarted.

You can store data in several ways on an iOS device. In this lesson you learn to store data within
iles on the device.

The ioS FiLe SySTeM

Each application is given a directory on the device’s ile system. The contents of this directory
are private to the application, and cannot be read by other applications on the device. The infor-
mation from some of Apple’s applications such as Photos and Contacts can be accessed by third-
party applications using frameworks in the iOS SDK.

Each application’s directory has four locations into which you can store data:

 ➤ Preferences

 ➤ Documents

 ➤ Caches

 ➤ tmp

The irst of these, Preferences, is not intended for direct ile manipulation; however, the other
three are. The most commonly used directories are the Documents and the tmp directories.

The Documents directory is the main location for storing application data. The contents of this
directory can also be manipulated within iTunes (this is covered in Lesson 24). The Caches direc-
tory is used to store temporary iles that need to persist between application launches. The tmp
directory is used to store temporary iles that do not need to persist between application launches.

21

240 ❘ LeSSon 21 BaSic file Handling

Applications are responsible for cleaning up the contents of these directories, because storage space
on a device is limited. The contents of the Caches and tmp directories are not backed up by iTunes.

To retrieve the path to the Documents and Caches directories, you can use a C function called
NSSearchPathForDirectoriesInDomains. This function is part of the Core Foundation framework,
and returns results in an array. You access only the irst element of this array. For example, to get the
path to the Documents directory, you would use:

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory ,
 NSUserDomainMask, YES);
NSString *documentsDir = [paths objectAtIndex:0];

To obtain a path to the Caches directory, you should specify NSCachesDirectory as the irst
argument to the NSSearchPathForDirectoriesInDomains function.

To retrieve a path to the tmp directory, you need to use another Core Foundation function,
NSTemporaryDirectory, as follows:

NSString* tmpDir = NSTemporaryDirectory();

Once you have a path to one of these standard directories, you can append a ilename to it to refer
to a speciic ile in that directory using the stringByAppendingPathComponent class method of the
NSString class. For example, if you wanted to access the ile myFile.dat in the Documents directory,
you would use:

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory ,
 NSUserDomainMask, YES);
NSString *documentsDir = [paths objectAtIndex:0];

NSString* filePath = [documentsDir
 stringByAppendingPathComponent:@"myFile.dat"];

inTroducinG The nSFiLeManaGer cLaSS

The NSFileManager class provides several useful methods that allow you to manipulate iles in your
application’s directories. NSFileManager is a singleton object—only one instance is created during
the lifetime of your application. To access this one shared instance, use the defaultManager class
method as follows:

NSFileManager* fileManager = [NSFileManager defaultManager];

Once you have a reference to an NSFileManager instance, you can use it to check whether a ile
exists by using the fileExistsAtPath: method as follows:

BOOL fileExists = [fileManager fileExistsAtPath:filePath];

To copy a ile from one directory to another, use the copyItemAtPath:toPath:error: method.
This method requires you to provide a source ile path, a destination ile path, and a variable in which
detailed error information will be provided. If the operation succeeds, the method returns YES. If it
fails, it returns NO, and you can get more details by examining the NSError object returned in the third

Object Serialization ❘ 241

parameter. The following example shows how you can use this method to copy a ile from the tmp
directory to the Documents directory:

// source file (in temporary directory)
NSString* tmpDir = NSTemporaryDirectory();
NSString* srcFilePath = [tmpDir
 stringByAppendingPathComponent:@"myFile.dat"];

// destination file (in documents directory)
NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory ,
 NSUserDomainMask, YES);
NSString *documentsDir = [paths objectAtIndex:0];
NSString* dstnFilePath = [documentsDir
 stringByAppendingPathComponent:@"myFile.dat"];

// copy if destination file does not exist!
NSFileManager* fileManager = [NSFileManager defaultManager];
if ([fileManager fileExistsAtPath:dstnFilePath] == NO)
{
 NSError* error;
 BOOL success = [fileManager copyItemAtPath:srcFilePath
 toPath:dstnFilePath
 error:&error];
}

oBjecT SeriaLizaTion

A typical application has a lot of objects in memory, and some of these objects are likely to represent
the data needed by the application to perform its functions. Wouldn’t it be nice if you could just save
these data objects to a ile, and load them the next time the app was launched? Well, the good news
is that you can.

The concept of storing an object to a ile is known as serialization, and the reverse is known as
de-serialization. In the Cocoa universe this is also known as object archiving. Two main compo-
nents are needed to perform object archiving:

 ➤ An NSCoder object that can encode and decode objects.

 ➤ Objects that can be encoded or decoded by an NSCoder instance. These must implement the
NSCoding protocol.

The NSCoding protocol is very simple, and contains just two methods, encodeWithCoder: and
initWithCoder:, corresponding to the encoding and decoding process, respectively.

Say you have an application that works with phone numbers and contact information. Your data
class could resemble:

@interface ContactData : NSObject <NSCoding>
@property (strong, nonatomic) NSString* contactName;
@property (strong, nonatomic) NSString* phoneNumber;
@end

242 ❘ LeSSon 21 BaSic file Handling

To archive instances of this class successfully, you will need to implement the encodeWithCoder:
and initWithCoding: methods in this class. Begin with the encodeWithCoder: method.

In the implementation of this method you will need to irst decide which variables you want to
archive. Each instance variable that you encode must either be a primitive data type or an instance
of an object that conforms to the NSCoding protocol. Fortunately, most of the Cocoa Touch objects
implement NSCoding.

The encoding process requires a unique key for each instance variable that you want to archive.
Your encodeWithCoder: method for this class will probably resemble:

- (void)encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:contactName forKey:@"name"];
 [encoder encodeObject:phoneNumber forKey:@"phone"];
}

The reverse process is carried out in the initWithCoder: method. In this class, decoding would be
implemented as follows:

- (id)initWithCoder:(NSCoder *)decoder {
 if (self = [super init])
 {
 contactName = [decoder decodeObjectForKey:@"name"];
 phoneNumber = [decoder decodeObjectForKey:@"phone"];
 }
 return self;
}

Now that your ContactData class is NSCoding compliant, you can save an entire array of
ContactData objects to a ile. Assuming arrayOfContacts is an NSArray instance that contains
a few ContactData objects and you want to save the entire array into a ile in the Documents
directory called ContactData.dat, you can use the following code:

 [NSKeyedArchiver archiveRootObject:arrayOfContacts toFile:filePath];

To read back the individual ContactData objects into the array, you can use the following code:

arrayOfContacts = [NSKeyedUnarchiver unarchiveObjectWithFile:filePath];

Try iT

In this Try It, you build a new Xcode project based on the Single View Application template called
FileTest that saves an array of NSCoding-compliant objects to a ile in the Documents directory
and reads them back.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Open the storyboard in Interface Builder.

 ➤ Add a UIButton instance to the default scene.

 ➤ Create an Objective-C class called ContactData that is NSCoding compliant.

Try It ❘ 243

 ➤ Create an NSArray instance in the view controller class that will store ContactData instances.

 ➤ In the viewDidLoad method, load ContactData objects from a ile, if it exists. If the ile
does not exist, create fresh ContactData instances and insert them into the array.

 ➤ When the button is pressed, archive the array of objects to a ile.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 21 folder in the download.

hints
 ➤ To archive an object ensure the class implements the NSCoding protocol.

Step-by-Step

 1. Create a Single View Application in Xcode called FileTest.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: FileTest

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson21

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Create an NSObject-derived class called ContactData.

 1. In Xcode, make sure the project navigator is visible.

 2. Right-click the FileTest group and select New File from the popup menu.

http://www.wrox.com

244 ❘ LeSSon 21 BaSic file Handling

 3. Select the Objective-C Class template for the new class.

 4. Name the class ContactData and make it a subclass of NSObject.

 5. Click the Next button, accept the default location for the ile, and click Save.

 3. Add member variables to the ContactData class.

 1. Modify the ContactData.h ile to resemble the following:

@interface ContactData : NSObject <NSCoding>
@property (strong, nonatomic) NSString* contactName;
@property (strong, nonatomic) NSString* phoneNumber;
@end

 2. Modify the ContactData.m ile to resemble the following:

@implementation ContactData
@synthesize contactName;
@synthesize phoneNumber;
@end

 4. Ensure the ContactData class implements the encodeWithCoder: and initWithCoder:
methods.

 1. Implement the encodeWithCoder: method as follows:

- (void)encodeWithCoder:(NSCoder *)encoder
{
 [encoder encodeObject:contactName forKey:@"name"];
 [encoder encodeObject:phoneNumber forKey:@"phone"];
}

 2. Implement the initWithCoder: method as follows:

- (id)initWithCoder:(NSCoder *)decoder
{
 if (self = [super init])
 {
 contactName = [decoder decodeObjectForKey:@"name"];
 phoneNumber = [decoder decodeObjectForKey:@"phone"];
 }
 return self;
}

 5. Add a UIButton instance to the default scene.

 1. Open the MainStoryboard.storyboard ile in Interface Builder.

 2. Ensure the Object library is visible. To show it, use the View d Utilities d Show
Object Library menu item.

 3. From the Object library, drag and drop a Round Rect Button object onto the scene.

 4. Double tap the button and set the text displayed in it to Save Objects To File.

 5. Size and position the button to X=10, Y=30, W=300, H=37.

 6. Using the assistant editor, create an action method in the view controller class called
onSaveToFile: and connect it with the Touch Up Inside event of the button.

Try It ❘ 245

 6. Add an NSArray instance variable to the view controller class.

 1. Modify the interface of the view controller class to resemble the following:

#import <UIKit/UIKit.h>

@interface Lesson21ViewController : UIViewController
@property (nonatomic, strong) NSArray* arrayOfContacts;

- (IBAction)onSaveToFile:(id)sender;
@end

 2. Synthesize the property variable in the Lesson21ViewController.m ile by adding
the following line:

@synthesize arrayOfContacts;

after the line:

@implementation Lesson21ViewController

 7. Load ContactData objects from a ile in the viewDidLoad method of the view controller class.

 1. Import the interface of the ContactData class at the top of the
Lesson21ViewController.m ile.

 2. Ensure the viewDidLoad method of the view controller class resembles the following:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // target file in Documents directory
 NSArray* paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDir = [paths objectAtIndex:0];
 NSString* filePath = [documentsDir
 stringByAppendingPathComponent:@"ContactData.dat"];

 // if file does not exist, show error message.
 if ([[NSFileManager defaultManager] fileExistsAtPath:filePath] == NO)
 {
 UIAlertView* errorMessage = [[UIAlertView alloc]
 initWithTitle:@"ContactData.dat not found!"
 message:@"Creating objects..."
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [errorMessage show];

 ContactData* c1 = [[ContactData alloc] init];
 c1.contactName = @"Peter Kramer";
 c1.phoneNumber = @"44 79830 11460";

 ContactData* c2 = [[ContactData alloc] init];
 c2.contactName = @"Mark Andrews";
 c2.phoneNumber = @"44 79110 07491";

 arrayOfContacts = [NSArray arrayWithObjects:c1, c2, nil];
 }

246 ❘ LeSSon 21 BaSic file Handling

 // if file exists, then show how many objects were loaded.
 else
 {
 arrayOfContacts = [NSKeyedUnarchiver
 unarchiveObjectWithFile:filePath];

 NSString* messageText = [NSString
 stringWithFormat:@”Loaded %d objects”,
 [arrayofContacts count]];
 UIAlertView* message = [[UIAlertView alloc]
 initWithTitle:@"ContactData.dat found!"
 message:messageText
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];

 [message show];
 }
}

 8. Implement the onSaveToFile: method in the Lesson21ViewController.m class as follows:

- (IBAction)onSaveToFile:(id)sender
{
 // target file in Documents directory
 NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
 NSString *documentsDir = [paths objectAtIndex:0];
 NSString* filePath = [documentsDir
 stringByAppendingPathComponent:@"ContactData.dat"];

 // save to file
 BOOL result = [NSKeyedArchiver archiveRootObject:arrayOfContacts
 toFile:filePath];

 if (result == YES)
 {
 UIAlertView* message = [[UIAlertView alloc]
 initWithTitle:@"File has been saved!"
 message:@""
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [message show];
 }
 else
 {
 UIAlertView* message = [[UIAlertView alloc]
 initWithTitle:@"Error saving to file!"
 message:@""
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];

Try It ❘ 247

 [message show];
 }

}

 9. Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively, you can use the
Project d Run menu item.

 2. The irst time you run the app, you will get an alert message stating that the
ContactData.dat ile was not found. Tap the Ok button to dismiss the alert.
The app will now create two ContactData instances and add them to the
arrayOfContacts array.

 3. Now tap the Save Objects To File button.

 4. Click the Stop button in the Xcode toolbar, and then run the application again by
clicking the Run button.

 5. This time, you will get an alert message stating that two objects were loaded from
the ContactData.dat ile.

Please select Lesson 21 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Property Lists

iOS devices have the capability to store data locally. The data is organized into a name/value
relationship and uses the standard XML format. Apple recommends that the decision as to when
to use property lists to persist data should be limited to small amounts, preferably less than a few
hundred kilobytes. For larger amounts, Apple offers Core Data as an alternative solution.

Property lists are used quite frequently in standard Apple applications. For example, the
application’s user settings are stored in a property list. The Settings app requires a speciic
format, but the structure is a property list.

ProPerTy LiST TyPeS

To convert the XML element values in a property list into an Objective C object, Apple has
deined the following relationships between the Objective C object and the property list’s XML
element value, as shown in Table 22-1.

TaBLe 22-1: Property List Types

daTa TyPe xML TaG ioS cLaSS

array < array> NSArray

dictionary < dictionary> NSDictionary

string < string> NSString

data < data> NSData

date < date> NSDate

integer < integer> NSNumber (intValue)

loating point <real> NSNumber (floatValue)

Boolean <true/> or <false/> NSNumber (boolValue) YES or NO

22

250 ❘ LeSSon 22 properTy liSTS

creaTinG ProPerTy LiSTS

You can create property lists in two ways:

 ➤ Programmatically

 ➤ Using the property list editor

Programmatically

You can create a property list programmatically directly in Objective-C if all of the objects derive
from the NSDictionary, NSArray, NSString, NSDate, NSData, or NSNumber class.

If they do not, the objects will have to adopt the NSCoder protocol and implement the following
methods:

 ➤ encodeWithCoder

 ➤ initWithCoder

The following Transaction class contains both these methods to allow for the storage and retrieval
of its data values into a property list:

#import "Transaction.h"

@implementation Transaction

@synthesize balance;
@synthesize items;

#pragma mark -
#pragma mark NSCoder methods

- (void)encodeWithCoder:(NSCoder *)coder {
 [coder encodeObject:[self balance] forKey:@"balance"];
 [coder encodeObject:[self items] forKey:@"items"];
}

- (id)initWithCoder:(NSCoder *)coder {
 if (self = [super init]) {
 [self setBalance:[coder decodeObjectForKey:@"balance"]];
 [self setItems:[coder decodeObjectForKey:@"items"]];
 }
 return self;
}

@end

Notice that the order of the variables in the encodeWithCoder method, balance
and items, is the exact order in the initWithCoder method. This is required to
maintain data integrity.

Try It ❘ 251

Property List editor

While the plist ile can be created and modiied with a simple text editor, within Xcode, there is a
GUI property list editor that allows for creation and modiication of the ile directly, with the advan-
tage of a user friendly view. See Figure 22-1.

FiGure 22-1

Try iT

In this Try It, you implement a single view application that reads a property a list of names into a
dynamic prototype table view. On selection of a speciic name, the name is displayed in an alert.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson22 folder in the download.

Lesson requirements
 ➤ Create an Xcode project using the Single View Application template.

 ➤ Create a storyboard including just a root view controller.

 ➤ Implement a dynamic prototype table view.

 ➤ Respond to the selection of a name by displaying the selected name in an alert view.

http://www.wrox.com

252 ❘ LeSSon 22 properTy liSTS

hints
 ➤ Because this application uses storyboards instead of xib iles, remember to have the Use

Storyboard option checked at project creation.

 ➤ One array representing the contents of a property list will be used for table view cell popula-
tion using the names stored for the cell title.

 ➤ The table view selection will be handled by the delegate method tableView:didSelectRow
AtIndexPath:.

Step-by-Step

 1. Create a Single View Application.

 1. Launch Xcode.

 2. Create your new iOS project.

 a. To create a new project, select Create a New Xcode Project.

 b. On the left under iOS, select Application.

 c. Select Single View Application from the template list and click Next.

 d. Choose the following options for your project:

 ➤ Product Name: Lesson22

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: leave blank

 ➤ Device Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 e. Select the location on your computer where the project will be saved and
select Create.

 f. Your Xcode project has been created as shown in Figure 22-2.

Try It ❘ 253

FiGure 22-2

 2. Design the user interface.

 1. On the left, select MainStoryboard.storyboard.

 2. On the right, select the third button in the View section to display the Utilities view.

 3. To delete the initial view controller from the storyboard:

 a. Select the bottom bar of the view controller in the storyboard and tap the
Delete key to remove it.

It is important to make sure the default view controller is completely removed from
the storyboard. Your detail view controller must be completely removed from the
storyboard after this step.

 b. Select the ViewController.h and ViewController.m iles and delete and
remove the iles from the project.

 4. To add the new view controller to the storyboard:

 a. Select the Lesson22 folder.

 b. Select File d New d New File from the Xcode menu.

 c. On the left under iOS, select Cocoa Touch.

 d. Select UIViewController from the template list and click Next.

 e. Choose the following options for your new ile:

 ➤ Class: ViewController

 ➤ Subclass of: UITableViewController

254 ❘ LeSSon 22 properTy liSTS

 ➤ Deselect: Targeted for iPad

 ➤ Deselect: With XIB for user interface

 f. Click Next.

 g. Click Create to save the class in your project folder.

 5. To add the table view controller to the storyboard:

 a. On the left, select MainStoryboard.storyboard.

 b. Drag a Table View Controller from the Object Library and add it to the
storyboard.

 c. Select the Identity Inspector and enter ViewController for the class.

 6. To create the NameList.plist ile:

 a. Select the Lesson22 folder.

 b. Select File d New d New File from the Xcode menu.

 c. On the left under iOS, select Resource.

 d. Select Property List from the template list and click Next.

 e. Enter NameList for the ilename.

 f. Click Next.

 g. Click Create to save the class in your project folder.

 7. Select File d Save to save your project.

 3. Create the property list editor, then select NameList.plist, control-click Add Row, and
enter names in the main window editor as shown in Figure 22-3.

FiGure 22-3

Try It ❘ 255

 4. Add names to the property list using the property list editor.

 1. Under the Type column, select Array. In the Key column, click the triangle so it
points down.

 2. Hit the return key and begin entering your list of names.

 3. Hit the return key twice after entering the name to create another column to enter
the next name.

 4. Continue this until 15 names are entered.

 5. Select File d Save to save your project.

 5. Add the following to the ViewController.h ile before the @end statement:

@property (strong, nonatomic) NSArray *nameArray;

#pragma mark - Alert methods

- (void)alert:(NSString *)aMessage;

#pragma mark - Property List methods

- (NSArray *)readFromPropertyList:(NSString *)filename;

 6. Modify the ViewController.m ile using the following:

 1. Add the following synthesize variables right below the @implementation section:

@synthesize nameArray;

 2. Uncomment the viewDidLoad method and add the following below
[super viewDidLoad];:

 [self setNameArray:[self readFromPropertyList:@"NameList"]];

 3. Add the following above [super viewDidUnload] in the viewDidUnload method:

[self setNameArray:nil];

 4. There is only one section to display the contacts. Complete the
numberOfSectionsInTableView: method:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

 5. There is one row for each contact in the dictionary. Complete the
tableView:numberOfRowsInSection: method:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 return [[self nameArray] count];
}

256 ❘ LeSSon 22 properTy liSTS

 6. For each row, the name in the list is displayed. Complete the
tableView:cellForRowAtIndexPath: method:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 NSArray *names = [[self nameArray]
 sortedArrayUsingSelector:
 @selector(localizedCaseInsensitiveCompare:)];
 static NSString *CellIdentifier = @”Cell”;
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 }
 [[cell textLabel] setText:[names objectAtIndex:[indexPath row]]];
 return cell;
}

 7. When a row is selected, the tableView: didSelectRowAtIndexPath: method is
launched and the name from the selected row is retrieved and displayed in an alert:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 [tableView deselectRowAtIndexPath:indexPath animated:YES];
 NSArray *names = [[self nameArray]
 sortedArrayUsingSelector:
 @selector(localizedCaseInsensitiveCompare:)];
 [self alert:[names objectAtIndex:[indexPath row]]];
}

The alert uses the UIAlertView to display the name selected:

- (void)alert:(NSString *)aMessage {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Lesson 22"
 message:aMessage
 delegate:self
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil];
 [alert show];
}

 7. Load the property list from local storage. The readFromPropertyList method is called
from the viewDidLoad method. Add this method above the @end:

- (NSArray *)readFromPropertyList:(NSString *)filename {
 NSString *errorDesc = nil;
 NSPropertyListFormat format;
 NSString *plistPath = [[NSBundle mainBundle] pathForResource:filename
 ofType:@”plist”];
 NSData *plistXML = [[NSFileManager defaultManager]
 contentsAtPath:plistPath];
 NSDictionary *temp = (NSDictionary *)[NSPropertyListSerialization

Try It ❘ 257

 propertyListFromData:plistXML
 mutabilityOption:NSPropertyListMutableContainersAndLeaves
 format:&format errorDescription:&errorDesc];
 if (!temp) {
 NSLog(@”%s at line %d with message: %@”, __FUNCTION__,
 __LINE__, errorDesc);
 }
 return [temp objectForKey:@”names”];
}

 8. Run the application.

 1. Select the iPhone Simulator to run the application.

 2. Click the Run button from Xcode.

 3. When the application launches, a list of names appears.

 4. Select a speciic contact to display the name in an alert.

Please select Lesson 22 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Application Settings

Most applications that perform complex tasks will at some point need to allow users to
customize the applications’ operation to suit their speciic needs. These customizable options
are usually referred to as application preferences or application settings. iOS applications
can either expose their preferences within Apple’s Settings application, or provide a user
interface within the application where the user can customize them appropriately.

To integrate your application’s preferences with Apple’s Settings application, your application
must include a Settings.bundle ile. A settings bundle ile lets you declare the preferences in
your application as a property list and the Settings application provides the user interface for
editing those preferences.

Keep in mind that to access the Settings application your users will have to irst quit your
application if they were using it. In this lesson, you learn to create this ile and use it to expose
system preferences.

addinG a SeTTinGS BundLe

To add a Settings.bundle ile to your application, right-click your application’s group in
the project navigator and select New File from the context menu. Select the Settings Bundle
ile type from the iOS Resource section of the dialog box (Figure 23-1).

When the Settings application is launched on an iOS device, every third-party application is
checked to see if it has a Settings.bundle ile. For each application on the iOS device that
has this ile, its name and icon are added to a list on the main page of the Settings application
(Figure 23-2).

Tapping on the icon will take the user to the particular application’s settings page. By default,
the Settings application will use an application’s standard icon ile when listing it. If you want
to provide a custom icon to be used for your application in the Settings application, include a
29 n 29 pixel image called Icon-Settings.png.

23

260 ❘ LeSSon 23 applicaTion SeTTingS

FiGure 23-1

The Settings application can display application preferences in a
series of hierarchical pages. Creating hierarchical settings pages
is not covered in this lesson; however if you are interested in this
topic you should read the “Preferences and Settings Programming
Guide” available at: http://developer.apple.com/library/
ios/#documentation/Cocoa/Conceptual/UserDefaults/

Introduction/Introduction.html#//apple_ref/doc/

uid/10000059i-CH1-SW1.

A settings bundle is actually a collection of iles. To see the con-
tents of the bundle simply click the triangle beside the Settings
.bundle ile in the project navigator (Figure 23-3).

Inside the settings bundle you will ind a ile named Root.plist.
This ile controls how your application’s preferences will appear
within the Settings application. Clicking the ile opens it in the
property list editor. When you do this you will see a table with
three columns—Key, Type, and Value. This ile contains two
properties: an array called Preference Items and a string called
Strings Filename (Figure 23-4).

Each preference that you want to expose to your users will be an
entry in the Preference Items array. To see the contents of the
Preference Items array, simply expand it within the property

FiGure 23-2

http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/UserDefaults/Introduction/Introduction.html#//apple_ref/doc/uid/10000059i-CH1-SW1

Adding a Settings Bundle ❘ 261

list editor. When you create a new settings bundle, this array contains four items by default
(Figure 23-5). Each entry in the array is a dictionary of key-value pairs. Technically speaking, the
Preference Items property is an array of dictionaries.

Each entry within the Preference Items array, being a dictionary,
can have several key-value pairs, but you will always ind four keys in
each entry—Title, Type, Identifier, and DefaultValue.

The value of the Title key is used by the Settings application to label
the preference when it is presented to the user. The value of the Type key
determines what kind of preference value it is, and thus what user inter-
face component will be used by the Settings application when presenting
it. The value of the Identifier key contains a string that you can use to
read the value of the preference in your Objective-C code. The value of
the DefaultValue key contains the default value for the preference.

FiGure 23-4

FiGure 23-5

The default settings bundle created by Xcode contains four entries is the Preference Items array:

 ➤ Group

 ➤ Text Field

 ➤ Toggle Switch

 ➤ Slider

If you were to run this app on an iOS device, and look at its settings page in the Settings application,
you would see something similar to that shown in Figure 23-6.

FiGure 23-3

262 ❘ LeSSon 23 applicaTion SeTTingS

FiGure 23-6

Table 23-1 describes the element types that can be used in the settings bundle.

TaBLe 23-1: Preference Types

TyPe deScriPTion

Text Field An editable text ield

Toggle Switch On/Of toggle button

Title A read-only text string

Slider A slider to allow the user to select from a range of values

Multi Value A list of values

Group A logical group of preferences

Child Pane Child preferences page, used to implement hierarchical preference pages

Try It ❘ 263

readinG PreFerenceS WiTh code

To read the value of a preference in a settings bundle from your code, you need to use an
NSUserDefaults object. NSUserDefaults is part of the Core Foundation framework and pro-
vides a set of methods that allow you to manage application preferences. NSUserDefaults is a
singleton class, and thus only one object should exist during the lifetime of an application. To
get access to this one instance, use the following code:

NSUserDefaults *userDefaults = [NSUserDefaults standardUserDefaults];

Recall that each preference within a settings bundle is represented by a dictionary of key-value pairs,
and one of the four keys that each dictionary must contain is Identifier. To retrieve the value of a
preference that has the identiier user_name, use the following code:

NSString *userName = [userDefaults stringForKey:@"user_name"];

This code assumes that the value being retrieved is a string. The NSUserDefaults class provides
several methods that allow you to retrieve preference values of different data types, including:

 ➤ boolForKey

 ➤ floatForKey

 ➤ doubleForKey

 ➤ integerForKey

Although you have provided default values for the preferences in the settings bundle, these values
will not be applied until the users launch the Settings application on their device after installing
your application. To get around this problem, you should specify a default value for each of your
preferences in code as well as the settings bundle.

You can then use methods in the NSUserDefaults class to ensure that the default values are
applied only once regardless of whether your user launches the Settings application or your
application irst. To do this, you need to create a dictionary with the default values of each
preference and use the registerDefaults and synchronize methods of the NSUserDefaults
object as follows:

NSMutableDictionary* defaultsDict = [[NSMutableDictionary alloc] initWithCapacity:1];
[defaultsDict setObject:@"Paul Woods" forKey:@"user_name"];

[userDefaults registerDefaults:defaultsDict];
[userDefaults synchronize];

Try iT

In this Try It, you build an iPhone application based on the Single View Application template called
SettingsTest that allows the user to specify a name and age value within the Settings application.
Your application, when launched, will display this name and age.

264 ❘ LeSSon 23 applicaTion SeTTingS

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Add a settings bundle to the application.

 ➤ Add two Text Field preferences to the settings bundle.

 ➤ Open the storyboard in the interface editor.

 ➤ Add two UILabel instances to the irst scene.

 ➤ In the viewDidLoad method, read the preference values and display them in the labels.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 23 folder in the download.

hints
 ➤ To display your application’s preferences in the Settings application, you must include a

Settings.bundle ile.

 ➤ To access the preference values speciied by the user in the settings page from within your
code, each preference must have a unique string identiier.

Step-by-Step

 1. Create a Single View Application in Xcode called SettingsTest.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: SettingsTest

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson23

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

http://www.wrox.com

Try It ❘ 265

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Add a Settings.bundle ile to the project.

 1. Ensure the project navigator is visible.

 2. Right-click the Settings Test group and select New File from the context menu.

 3. Select the Settings Bundle template from the iOS Resources section. Save the ile as
Settings.bundle.

 3. Edit the Settings.bundle ile.

 1. Expand the Settings.bundle ile in the project navigator and click the Root.plist
ile to edit it with the property editor.

 2. Expand the Preference Items property.

 3. Delete items 2 and 3. These are the Toggle Switch and Slider items, respectively. To
delete an item, select it and hit the backspace key.

 4. Edit the Text Field preference.

 1. Expand the Item 1 (Text Field – Name) dictionary.

 2. Set the Title to User Name, Identifier to user_name, and Default
Value to Paul Woods (Figure 23-7).

FiGure 23-7

 5. Add a new Text Field preference.

266 ❘ LeSSon 23 applicaTion SeTTingS

 1. Ensure the Item 1 (Text Field – User Name) dictionary is collapsed.

 2. Right-click the row corresponding to the Item 1 (Text Field – User
Name) dictionary and select Add Row from the context menu (Figure 23-8).

FiGure 23-8

 3. Expand the newly added preference dictionary.

 4. Ensure the Type key is set to Text Field, Title is set to Age, and
Identifier is set to user_age.

 5. Add a new key to the dictionary by right-clicking the last key (Identifier)
and selecting Add Row from the context menu.

 6. Ensure the name of the new key is Default Value and the value of the key
is 28 (Figure 23-9).

 4. Add two UILabel instances to the storyboard.

 1. Open the MainStoryboard.storyboard ile in the Xcode interface editor.

 2. From the Object library, drag and drop two Label objects onto the scene.

 3. Name the labels Name and Age, respectively.

 4. Size and position the Name label to X=28, Y=172, W=261, H=21.

 5. Size and position the Age label to X=28, Y=219, W=261, H=21.

 6. Using the assistant editor, create an outlet for each label in the view controller class,
and name the outlets nameLabel and ageLabel, respectively.

Try It ❘ 267

FiGure 23-9

 5. Read and display the preference values provided by the user in the Settings application by
replacing the Replace the viewDidLoad method of the Lesson23ViewController.m ile
with the following code:

- (void)viewDidLoad
{
 [super viewDidLoad];

 // register defaults.
 NSUserDefaults *userDefaults = [NSUserDefaults standardUserDefaults];
 NSMutableDictionary* defaultsDict = [[NSMutableDictionary alloc]
 initWithCapacity:2];
 [defaultsDict setObject:@"Paul Woods" forKey:@"user_name"];
 [defaultsDict setObject:@"28" forKey:@"user_age"];

 [userDefaults registerDefaults:defaultsDict];
 [userDefaults synchronize];

 // read preferences values and setup labels.
 nameLabel.text = [userDefaults stringForKey:@"user_name"];
 ageLabel.text = [userDefaults stringForKey:@"user_age"];
}

 6. Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively, you can use the
Project d Run menu item.

 2. After changing preferences in the Settings application, ensure your application is not
running in the background before launching it again. Building background-aware
applications is covered in Lesson 38.

Please select Lesson 23 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

iTunes File Sharing Support

In Lesson 21 you learned to store data within iles on the device. These iles were created
by your application in a restricted environment on the device known as the sandbox. In this
lesson you learn to allow your users to modify the contents of one of the directories in your
application’s sandbox with iTunes.

This feature is known as iTunes ile sharing, and the irst thing you need to do to enable it in
your app is to add the Application supports iTunes file sharing key to the project’s
info.plist ile. Set the value of this key to YES, as shown in Figure 24-1.

FiGure 24-1

24

270 ❘ LeSSon 24 iTuneS file SHaring SupporT

When you add this key to the info.plist ile, iTunes essentially displays the contents of your
application’s Documents directory to users when they go to the Apps section in iTunes and scroll
to the bottom (Figure 24-2).

FiGure 24-2

In your application, you can enumerate the contents of the Documents directory using the
contentsOfDirectoryAtPath:error: method of the NSFileManager class using code similar
to the following:

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
NSString *documentsFolderPath = [paths objectAtIndex:0];

NSError* errVal;

NSArray* directoryList = [[NSFileManager defaultManager]
 contentsOfDirectoryAtPath:documentsFolderPath
 error:&errVal];

The irst argument to this method is the path to the directory whose contents you want to enumerate.
In this case, it would be the path to the Documents directory. The second parameter is used to retrieve
information on any error that may have occurred in the process.

The contentsOfDirectoryAtPath:error: method returns an NSArray instance containing the
ilenames (excluding folder paths), which you can iterate through using a simple for loop:

for (int iX = 0; iX < [directoryList count]; iX++)
{
 // get file name
 NSString* fileName = (NSString*)[directoryList objectAtIndex:iX];
}

Try It ❘ 271

Exposing your application’s Documents directory to your users in this way allows them to potentially
drag and drop any kind of ile in there, or delete anything that exists in that directory. It is unlikely
that your application can handle any kind of ile the user puts in the Documents directory, and thus,
when processing the contents of the Documents directory it would be a good idea to check the exten-
sion of the ile to determine if it is something that your application can handle. This is demonstrated
in this lesson’s Try It section.

Try iT

In this Try It, you build a new Xcode project based on the Single View Application template called
ImageGallery that allows the user to navigate through an image gallery by using navigation buttons
on the screen. You can use iTunes to modify the contents of the gallery.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Enable iTunes ile sharing in the application.

 ➤ Create a simple storyboard-based user interface.

 ➤ When the application starts, read a list of image iles in the Documents directory and display
the irst one.

 ➤ Implement a simple navigation strategy to allow a user to browse through the gallery using
two buttons on the screen.

 ➤ Add a few images to the gallery using iTunes.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 24 folder in the download.

hints
 ➤ To enable iTunes ile sharing in an application, you must add the Application supports

iTunes file sharing key to the project’s info.plist ile.

Step-by-Step

 1. Create a Single View Application in Xcode called ImageGallery.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

http://www.wrox.com

272 ❘ LeSSon 24 iTuneS file SHaring SupporT

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: ImageGallery

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson24

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Add user interface elements to the default scene.

 1. Add a UIImageView instance to the default scene.

 1. Use the Object library to add an Image View to the default scene of the
storyboard.

 2. Use the Size inspector to resize and position it at X = 0, Y = 0, Width = 320,
Height = 460.

 3. Using the assistant editor, create an outlet in the view controller class called
imageView and connect it to the scroll view.

 2. Add two UIButton instances to the default scene.

 1. Use the Object library to add two Round Rect Button instances to the scene,
on top of the image view.

 2. Double-click the irst button and set its title to Previous. Size and position
it to X=20, Y=403, W=115, H=37.

 3. Double-click the second button and set its title to Next. Size and position it
to X=186, Y=403, W=115, H=37.

 4. Use the assistant editor to create an action called onPreviousImage in the
view controller class and connect it to the Touch Up Inside event of the
Previous button.

 5. Use the assistant editor to create an action called onNextImage in the view
controller class and connect it to the Touch Up Inside event of the Next button.

 6. Your scene should now resemble Figure 24-3.

Try It ❘ 273

FiGure 24-3

 3. Add a new entry to the property list ile called Application supports iTunes file
sharing, and set its value to YES.

 4. Add the following @property declarations to the Lesson24ViewController.h ile.

@property (strong, nonatomic) NSMutableArray* imageFileNames;
@property (nonatomic) int currentImageIndex;

 5. Update code in the ViewController.m ile.

 1. Add the following @synthesize statements to the top of the ile:

@synthesize imageFileNames;
@synthesize currentImageIndex;

 2. Replace the viewDidLoad method of the Lesson24ViewController.m ile with the
following code:

- (void)viewDidLoad
{
 [super viewDidLoad];

274 ❘ LeSSon 24 iTuneS file SHaring SupporT

 imageFileNames = [[NSMutableArray alloc] initWithCapacity:10];
 currentImageIndex = 0;

 // full path to Documents directory
 NSArray *paths =NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *folderPath = [paths objectAtIndex:0];

 NSError* errVal;
 NSArray* directoryList = [[NSFileManager defaultManager]
 contentsOfDirectoryAtPath:folderPath
 error:&errVal];

 for (int iX = 0; iX < [directoryList count]; iX++)
 {
 // get file name
 NSString* fileName = (NSString*)[directoryList objectAtIndex:iX];

 // extract file extension
 NSArray* fileNameComponents = [fileName
 componentsSeparatedByString:@"."];
 if ([fileNameComponents count] < 2)
 continue;

 NSString* fileExtension = (NSString*)[fileNameComponents
 objectAtIndex:([fileNameComponents count] - 1)];

 if (([fileExtension isEqualToString:@"png"]) ||
 ([fileExtension isEqualToString:@"jpg"]))
 {
 [imageFileNames addObject:fileName];
 }
 }

 // show an alert that contains the number of readable
 // image files found in the documents.
 NSString* messageText = [NSString stringWithFormat:
 @"Found %d usable files in the documents directory.",
 [imageFileNames count]];

 UIAlertView* alertMessage = [[UIAlertView alloc] initWithTitle:@""
 message:messageText
 delegate:nil
 cancelButtonTitle:@”Ok”
 otherButtonTitles:nil];
 [alertMessage show];

 if ([imageFileNames count] > 0)
 {
 NSString* imageFile = [imageFileNames
 objectAtIndex:currentImageIndex];

 NSString* sourceFile = [folderPath

Try It ❘ 275

stringByAppendingString:[NSString stringWithFormat:@"/%@",
 imageFile]];

 imageView.image = [[UIImage alloc]
 initWithContentsOfFile:sourceFile];
 }
}

 3. Implement the onPreviousImage: method as follows:

- (IBAction)onPreviousImage:(id)sender
{

 if ([imageFileNames count] == 0)
 return;

 if (currentImageIndex == 0)
 return;

 currentImageIndex--;

 // full path to Documents directory
 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *folderPath = [paths objectAtIndex:0];

 // path to image file in the documents directory
 NSString* imageFile =
 [imageFileNames objectAtIndex:currentImageIndex];
NSString* sourcefile = [folderPath stringByAppendingString:
 [NSString stringWithFormat:@”/%@”,
 imageFile]];
 imageView.image = [[UIImage alloc] initWithContentsOfFile:sourceFile];

}

 4. Implement the onNextImage: method as follows:

- (IBAction)onNextImage:(id)sender
{

 if ([imageFileNames count] == 0)
 return;

 if (currentImageIndex == [imageFileNames count])
 return;

 currentImageIndex++;

 // full path to Documents directory
 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *folderPath = [paths objectAtIndex:0];

 // path to image file in the documents directory
 NSString* imageFile =

276 ❘ LeSSon 24 iTuneS file SHaring SupporT

 [imageFileNames objectAtIndex:currentImageIndex];
 NSString* sourcefile = [folderPath stringByAppendingString:
 [NSString stringWithFormat:@”/%@”,
 imageFile]];
 imageView.image = [[UIImage alloc] initWithContentsOfFile:sourceFile];
}

 6. Test your app on an iOS device.

 1. Connect your iOS device to your Mac, and use the Scheme/Target selector to select it
(Figure 24-4).

FiGure 24-4

 2. Click the Run button in the Xcode toolbar. Alternatively, you can use the Project d
Run menu item. For more information on testing your apps on iOS devices, refer to
Appendix D.

 3. When you run the app for the irst time on the device, you will receive a message
telling you that no readable images were found. The Next and Previous buttons will
not work at this stage.

 4. Use iTunes to add a few images from the Images folder, which is included as part of
this chapter’s Try It on the DVD, into the application’s Documents directory.

 5. Ensure your application is not running in the background before launching it again.
Note how the application now detects the images you have added to its Documents
directory with iTunes.

Please select Lesson 24 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Introduction to iCloud Storage

iCloud Storage is a set of classes and services that enable you to share data between instances
of your application running across different devices. In this lesson you learn to use the iCloud
Storage APIs in your apps.

BaSic concePTS

Apple’s iCloud is a service that allows applications to synchronize data across devices. Your
data is stored across a set of servers maintained by Apple and is made available to copies of
your app across all iCloud-compatible devices. Changes made to this data by one instance
of your application are automatically propagated to other instances.

From a developer’s perspective, you need to use Apple’s iCloud Storage APIs to interact
with the iCloud service. These APIs enable you to store both documents and small amounts
of key-value data.

This lesson does not cover key-value data storage. For more information on
storing key-value data with iCloud, refer to the iCloud Storage section of the “iOS
App Programming Guide,” available at http://developer.apple.com/library/
ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/

iCloud/iCloud.html#//apple_ref/doc/uid/TP40007072-CH5-SW1.

iCloud applications cannot be tested on the iOS Simulator, and to make the most of this lesson
you should ideally have two iOS devices to test on. As of now, the iCloud Storage APIs are avail-
able to both iOS 5 and MacOS X developers.

In Lesson 21, you learned that each iOS application executes within a sandbox on the device
and can store its data within subfolders of its private directory. iCloud conceptually extends this
model and allows your applications to upload your data from its private directory to Apple’s
servers. This data then ilters down to other iCloud-compatible devices on which copies of your

25

http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iCloud/iCloud.html#//apple_ref/doc/uid/TP40007072-CH5-SW1
http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iCloud/iCloud.html#//apple_ref/doc/uid/TP40007072-CH5-SW1

278 ❘ LeSSon 25 inTroducTion To icloud STorage

application are running. Your application also receives notiications when a document has been created
or updated by another copy of the application.

This synchronization is achieved by a background process (also known as a daemon) that runs on
all iCloud-compatible devices. Figure 25-1 illustrates the iCloud architecture.

iCloud service

iCloud
daemon

Files

iCloud
daemon

Files

Files

iCloud
daemon

Files

FiGure 25-1

PreParinG To uSe The icLoud SToraGe aPiS

To use the iCloud Storage APIs in an application, you need to perform three steps:

 1. Create an iCloud-enabled App ID.

 2. Create an appropriate provisioning proile.

 3. Enable appropriate entitlements in your Xcode project.

create an icloud-enabled app id

To create an appropriate App ID, log in to your iOS developer account at https://developer
.apple.com/ios and click the iOS Provisioning Portal link on the right side of the page. Within
the Provisioning Portal, click the App IDs link in the menu on the left-hand side (Figure 25-2).

To create a new App ID, click the New App ID button on the top-right side. Provide a description of
the new App ID in the Description ield. Select Use Team ID in the Bundle Seed ID drop-down and
provide a unique identiier in the Bundle Identiier ield that ends in the name of the Xcode project
you are going to create (or have created).

https://developer.apple.com/ios
https://developer.apple.com/ios

Preparing to Use the iCloud Storage APIs ❘ 279

FiGure 25-2

Typically, you create this identiier by combining the reverse-domain name of your website and the
name of your Xcode project. For example, the project created in this lesson is called CloudTest and
the bundle identiier speciied is com.wileybook.CloudTest.

Your browser window should resemble Figure 25-3. Click the Submit button to inish creating
the App ID.

Look for the new App ID in the list of App IDs and notice that, by default, it is not conigured for
iCloud (Figure 25-4). If your new App ID is not visible, you may need to refresh your browser window.

To conigure the App ID for iCloud, click the Conigure link, which takes you to the Conigure App
ID page. Select the Enable for iCloud checkbox (Figure 25-5).

This brings up a warning message stating that all provisioning proiles that you will create using this
App ID will be iCloud enabled (Figure 25-6).

Click OK to dismiss the warning message and then click Done to inish coniguring the App ID for
iCloud.

280 ❘ LeSSon 25 inTroducTion To icloud STorage

FiGure 25-3

FiGure 25-4

Preparing to Use the iCloud Storage APIs ❘ 281

FiGure 25-5

create an appropriate Provisioning Proile

To create a provisioning proile for an iCloud-enabled
App ID, click the Provisioning link in the menu on the
left-hand side of the iOS Provisioning Portal window. You
can create a development or distribution provisioning pro-
ile depending on whether you are testing your application
on your own devices, or submitting to the App Store. This
lesson focuses on developing an iCloud-enabled applica-
tion, therefore, ensure the Development tab is selected and
click the New Proile button (Figure 25-7).

Provide a suitable name for the proile, and select your development certiicate, the iCloud-enabled
App ID you created in the previous step, and a list of test devices (Figure 25-8). Click the Submit
button to create the provisioning proile.

FiGure 25-6

282 ❘ LeSSon 25 inTroducTion To icloud STorage

FiGure 25-7

FiGure 25-8

Preparing to Use the iCloud Storage APIs ❘ 283

This takes you back to the previous screen and you should see an entry for the new proile in the
list. Download the new provisioning proile and install it by dragging the proile from your Mac’s
Downloads folder onto the Xcode Organizer window (Figure 25-9). To show the Organizer window,
launch Xcode and click the Organizer button in the toolbar.

FiGure 25-9

enable appropriate entitlements in your xcode Project

Create a new project in Xcode using one of the standard iOS application templates. In the Project
Options dialog box, make sure you provide the correct value for the Product Name and Company
Identiier ields so as to create the same App ID that was registered on the iOS Provisioning Portal.
If, for instance, the App ID you registered was com.wileybook.CloudTest, use CloudTest for the
Product Name ield and com.wileybook for the Company Identiier ield.

Applications that use iCloud must be signed with iCloud-speciic entitlements. These entitlements
ensure that only your applications can access the documents that they create. When you enable
entitlements for your app target, Xcode automatically conigures entitlements for both document
and key-value storage.

284 ❘ LeSSon 25 inTroducTion To icloud STorage

Each entitlement is a key-value pair. The only entitlement keys allowed as of now are:

 ➤ com.apple.developer.ubiquity-container-identifiers

 ➤ com.apple.developer.ubiquity-kvstore-identifier

The value assigned to these keys consists of one or more container identiier strings. A container
identiier string identiies a directory (also known as a container) on the iCloud server that your app
can use to store its data. Typically, each iCloud-enabled app you create uses its own container on the
server, and this container is identiied uniquely by the application bundle identiier. However, appli-
cations that store documents could access multiple containers on the iCloud server.

To enable entitlements, select the project’s root node in the project navigator and the appropriate
build target. Ensure the Summary tab is selected. Scroll down to the Entitlements section and select
the Enable Entitlements checkbox (Figure 25-10).

3

2

1

FiGure 25-10

Xcode automatically ills in four ields with default values:

 ➤ Entitlements File: The name of a ile with an .entitlements extension that has been added
to your project. This is a standard property list ile that contains all the entitlements data.

Using iCloud Document Storage ❘ 285

 ➤ iCloud Key-Value Store: The container identiier for key-value type data. There can be only
one container for key-value data per application, and hence this ield accepts only a single
value. By default, it is the container identiied by your application bundle identiier.

 ➤ iCloud Containers: Contains a list of container identiiers for document data. An application
that uses iCloud document storage can potentially read/write to multiple containers by specify-
ing multiple container identiier strings. By default, Xcode adds the container identiier for the
directory identiied by your application bundle identiier. If multiple identiiers are speciied, the
irst string must always be the main container identiier for your application.

 ➤ Keychain Access Groups: Contains keys needed by applications that share keychain data.
For the scope of this lesson, you should accept the default value provided by Xcode.

checkinG For Service avaiLaBiLiTy

If your application intends to make use of the iCloud Storage APIs, you must ensure that the service
is available to the application. This may not necessarily be the case if, for example, the user has not
set up iCloud on the device.

To check for service availability, use the URLForUbiquityContainerIdentifier: method of the
NSFileManager shared instance. This method requires one NSString parameter that speciies a
container identiier that your application uses.

If this method succeeds, the return value is an NSURL instance that identiies the container directory. If
the method fails, the return value is nil.

If your application uses only one container identiier, or you want to use the main container identiier
for the application, pass nil for the parameter. If your application accesses multiple containers, you
must call this method for each container identiier to ensure you have access to each container. The
following code snippet shows how to use this method for the main container identiier:

NSURL *folderURL = [[NSFileManager defaultManager]
 URLForUbiquityContainerIdentifier:nil];
if (folderURL != nil)
{
 // cloud access is available
}
else
{
 // cloud access is not available.
}

uSinG icLoud docuMenT SToraGe

Any ile stored by your application on iCloud must be managed by a ile presenter object. A ile pre-
senter is an object that implements the NSFilePresenter protocol. Essentially, a ile presenter acts
as an agent for a ile. Before an external source can change the ile, the ile presenter for the ile is
notiied. When your app wants to change the ile, it must lock the ile by making its changes through
a ile coordinator object. A ile coordinator object is an instance of the NSFileCoordinator class.

286 ❘ LeSSon 25 inTroducTion To icloud STorage

The simplest way to incorporate ile presenters and coordinators in your application is to have your
data classes (also known as model classes) subclass UIDocument. The UIDocument class implements
the methods of the NSFilePresenter protocol and handles all of the ile-related management. At the
most basic level, you will need to override two UIDocument methods:

- (BOOL)loadFromContents:(id)contents ofType:(NSString *)typeName
 error:(NSError **)outError;

- (id)contentsForType:(NSString *)typeName error:(NSError **)outError;

The loadFromContents:ofType:error: method is overridden by your UIDocument subclass, and is
called when the application needs to read data into its data model.

The irst parameter of this method, contents, encapsulates the document data to be read. In the
case of lat iles, contents is an instance of an NSData object. It can also be an NSFileWrapper
instance if the data being read corresponds to a ile package. The typeName parameter indicates
the ile type of the document.

If you cannot load the document for some reason, you should create an NSError object encapsulating
the reason for failure and return its address in the outError parameter. If you did not encounter prob-
lems loaded document data, ignore this parameter.

The contentsForType:error: method is also overridden by your UIDocument subclass and is
called when the application saves data to a ile. This method must return an NSData instance that
will be written to the ile. If you cannot return an NSData instance for some reason, you must return
a pointer to an NSError object. The NSError object must encapsulate the reason for failure.

Listings 25-1 and 25-2 present the interface and implementation of a simple UIDocument subclass
called CloudTestDocument. The example assumes that the application where this class is used has
a rather simple data model consisting of a single NSString instance.

LiSTinG 25-1: CloudTestDocument.h

@interface CloudTestDocument : UIDocument
@property (nonatomic, strong) NSString* documentContent;
@end

LiSTinG 25-2: CloudTestDocument.m

@synthesize documentContent;

// Called whenever the application reads data from the file system
- (BOOL)loadFromContents:(id)contents ofType:(NSString *)typeName
 error:(NSError **)outError
{
 if ([contents length] > 0)
 {
 self.documentContent = [[NSString alloc] initWithBytes:[contents bytes]
 length:[contents length]

Using iCloud Document Storage ❘ 287

 encoding:NSUTF8StringEncoding];

 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"refreshDocumentPreview"
 object:self];
 }
 else
 {
 self.documentContent = @"";
 }

 return YES;
}

// Called whenever the application (auto)saves the content of a note
- (id)contentsForType:(NSString *)typeName error:(NSError **)outError
{
 return [self.documentContent dataUsingEncoding:NSUTF8StringEncoding];
}

creating a new icloud document

To create a new document, allocate and initialize an instance of your UIDocument subclass by using
the initWithFileURL: method and then call saveToURL:forSaveOperation:completionHandler:
on the instance.

The initWithFIleURL: method requires a single NSURL parameter that identiies the location where
document data is to be written. This URL is usually composed by appending a ilename in the
Documents subdirectory to the path to an iCloud container. For instance, to create a new document
on iCloud called phoneNumber.txt, you could use the following snippet:

NSURL *containerURL = [[NSFileManager defaultManager]
 URLForUbiquityContainerIdentifier:nil];

NSURL *documentURL = [[containerURL URLByAppendingPathComponent:@"Documents"]
 URLByAppendingPathComponent:@"phoneNumber.txt"];

CloudTestDocument * cloudDocument = [[CloudTestDocument alloc]
 initWithFileURL:documentURL];

[cloudDocument saveToURL:[self.cloudDocument fileURL]
 forSaveOperation:UIDocumentSaveForCreating
 completionHandler:^(BOOL success)
 {
 if (success)
 {
 // document was create successfully.
 }
 }];

The saveToURL:forSaveOperation:completionHandler: method is described later in this lesson.

288 ❘ LeSSon 25 inTroducTion To icloud STorage

opening an existing document

To open an existing document, allocate and initialize an instance of your UIDocument subclass
and call openWithCompletionHandler: on the instance. For example, you could open a ile called
phoneNumbers.txt from iCloud using the following snippet:

NSURL *containerURL = [[NSFileManager defaultManager]
 URLForUbiquityContainerIdentifier:nil];
NSURL *documentURL = [[containerURL URLByAppendingPathComponent:@"Documents"]
 URLByAppendingPathComponent:@"phoneNumber.txt"];
CloudTestDocument* cloudDocument = [[CloudTestDocument alloc]
 initWithFileURL:documentURL];

[self.cloudDocument openWithCompletionHandler:^(BOOL success)
{
 if (success)
 {
 // cloud document opened successfully!
 }
}];

Saving a document

Once you have an instance of a UIDocument subclass, saving it to iCloud is simply a matter of call-
ing the saveToURL:forSaveOperation:completionHandler: method on it. The irst parameter to
this method is an NSURL instance that contains the target URL. You can compose this URL in the
same manner as when you instantiated your UIDocument subclass. If, however, you want to retrieve
the URL corresponding to an existing UIDocument subclass, simply send the fileURL message to
your subclass. Thus, if cloudDocument is an instance of a UIDocument subclass, you can retrieve the
URL used when it was instantiated using the following code:

NSURL *documentURL = [cloudDocument fileURL]

The second parameter is a constant that is used to indicate whether the document contents are being
saved for the irst time, or overwritten. It can be either of:

 ➤ UIDocumentSaveForCreating

 ➤ UIDocumentSaveForOverwriting

The third parameter is a block completion handler.

For more information on the UIDocument class, refer to the UIDocument
Class reference, available at http://developer.apple.com/library/
ios/#documentation/UIKit/Reference/UIDocument_Class/UIDocument/

UIDocument.html.

http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIDocument_Class/UIDocument/UIDocument.html
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIDocument_Class/UIDocument/UIDocument.html

Using iCloud Document Storage ❘ 289

Searching for documents on icloud

Often you will need to search iCloud container directories for documents. To do this, you need to
create a search query using an NSMetadataQuery instance, set up an appropriate search ilter, and
execute the query. Queries have two phases: an initial search phase and a second live-update phase.
During the live-update phase, updated results are typically available once every second. The follow-
ing code snippet builds a search query:

NSMetadataQuery* searchQuery = [[NSMetadataQuery alloc] init];
[searchQuery setSearchScopes:[NSArray

 arrayWithObject:NSMetadataQueryUbiquitousDocumentsScope]];

The setSearchScopes: method enables you to specify an array of directories over which the search
should execute. To specify the iCloud container folder as the search target, you provide an NSArray
instance with a single object:

NSMetadataQueryUbiquitousDocumentsScope

Before you can execute the query, you need to specify a search ilter. Search ilters are also known
as predicates and are instances of the NSPredicate class. The following code snippet creates an
NSPredicate instance that ilters out a ile with a speciic name:

NSString* documentFileName = @"cloudDocument.txt";
NSPredicate *pred = [NSPredicate predicateWithFormat:@"%K == %@",
 NSMetadataItemFSNameKey, documentFileName];

To apply the predicate to the search query, use the setPredicate: method on the NSMetadataQuery
instance:

[searchQuery setPredicate:pred];

Search queries execute asynchronously. When the query has inished gathering results, your applica-
tion will receive the NSMetadataQueryDidFinishGatheringNotification notiication message.
Use the following code snippet to set up a method in your code called queryDidFinish: to be called
when this notiication is received:

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(queryDidFinish:)
 name:NSMetadataQueryDidFinishGatheringNotification
 object:searchQuery];

Finally, to start the query, send the startQuery message to the NSMetadataQuery instance:

[searchQuery startQuery];

When you receive the notiication message, you can ind out the number of results returned by the
search by sending the resultCount message to the NSMetadataQuery instance:

int numResults = [searchQuery resultCount];

To retrieve an NSURL instance for each result returned by the search query, you can use a simple
for loop:

for (int resultIndex = 0; resultIndex < numResults; resultIndex++)
{

290 ❘ LeSSon 25 inTroducTion To icloud STorage

 NSMetadataItem *item = [self.searchQuery resultAtIndex:resultIndex];
 NSURL *url = [item valueForAttribute:NSMetadataItemURLKey];
}

If you do not want the search query to continue returning results, use the following code snippet to
stop it:

[self.searchQuery disableUpdates];
[self.searchQuery stopQuery];

The Try It section for this lesson contains a simple project that uses an NSMetadataQuery instance
to ind a document on iCloud and then proceeds to open it.

For more information on the NSMetadataQuery class, refer to the
NSMetadataQuery Class Reference, available at http://developer.apple
.com/library/ios/#documentation/Cocoa/Reference/Foundation/

Classes/NSMetadataQuery_Class/Reference/Reference.html#//apple_

ref/occ/cl/NSMetadataQuery. For more information on the NSPredicate
class, refer to the NSPredicate Class Reference available at http://developer
.apple.com/library/ios/#documentation/Cocoa/Reference/Foundation/

Classes/NSPredicate_Class/Reference/NSPredicate.html#//apple_ref/

doc/c_ref/NSPredicate.

Try iT

In this Try It, you build a new Xcode project based on the Single View Application template called
CloudTest. In this application, you to create a simple text document called cloudDocument.txt
and store it on iCloud. This document can then be edited across multiple copies of the application
running on different iOS devices.

Lesson requirements
 ➤ Create a new Universal application project based on the Single View Application template.

 ➤ Register the App ID with the iOS Provisioning Portal.

 ➤ Create a development provisioning proile.

 ➤ Download and install the development provisioning proile.

 ➤ Create a simple user interface that consists of a UIButton instance, a UILabel instance, and
a UITextView instance.

 ➤ Create a data class that subclasses UIDocument.

 ➤ Check iCloud service availability in the viewDidLoad method of the view controller class.

 ➤ Load an existing document stored on iCloud. If the document does not exist, create a new one.

 ➤ Implement code to save the document on iCloud when a button is tapped.

http://developer.apple.com/library/ios/#documentation/Cocoa/Reference/Foundation/Classes/NSMetadataQuery_Class/Reference/Reference.html#//apple_ref/occ/cl/NSMetadataQuery
http://developer.apple.com/library/ios/#documentation/Cocoa/Reference/Foundation/Classes/NSPredicate_Class/Reference/NSPredicate.html#//apple_ref/doc/c_ref/NSPredicate
http://developer.apple.com/library/ios/#documentation/Cocoa/Reference/Foundation/Classes/NSMetadataQuery_Class/Reference/Reference.html#//apple_ref/occ/cl/NSMetadataQuery
http://developer.apple.com/library/ios/#documentation/Cocoa/Reference/Foundation/Classes/NSMetadataQuery_Class/Reference/Reference.html#//apple_ref/occ/cl/NSMetadataQuery
http://developer.apple.com/library/ios/#documentation/Cocoa/Reference/Foundation/Classes/NSPredicate_Class/Reference/NSPredicate.html#//apple_ref/doc/c_ref/NSPredicate

Try It ❘ 291

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 25 folder in the download.

hints
 ➤ To make best use of this application, you will need at least two iOS devices set up to use the

same iCloud account.

 ➤ You must ensure iCloud has been set up on each test device.

 ➤ This Try It requires you to create a Universal application. You should be alright following the
steps listed here, but if you want more information on Universal applications, read Lesson 38.

 ➤ Testing your apps on iOS devices is covered in Appendix D.

Step-by-Step

 1. Create a Single View Application in Xcode called CloudTest.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the Project Options dialog box and click Next:

 ➤ Product Name: CloudTest

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson25

 ➤ Deine Family: Universal

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

http://www.wrox.com

292 ❘ LeSSon 25 inTroducTion To icloud STorage

 2. Register an App ID with the iOS Provisioning Portal.

 1. Log in to the iOS Provisioning Portal, and register a new App ID with the follow-
ing details:

 ➤ Description: Lesson25 App ID

 ➤ Bundle Seed ID: Use Team ID

 ➤ Bundle Identiier: com.wileybook.CloudTest

 2. Enable the App ID to use with iCloud.

This process is covered in the section titled “Create an iCloud-enabled App ID”
earlier in this lesson.

 3. Create a development provisioning proile using the App ID created in the previous step.

 1. The process of creating the provisioning proile is covered in the section titled
“Creating an Appropriate Provisioning Proile” earlier in this lesson. Follow
those instructions to create a development provisioning proile called Lesson 25
Development Proile.

 2. Download and install the provisioning proile in the Xcode Organizer.

 4. Select the project’s root node in the project navigator and select the appropriate build target.
Ensure the Summary tab is selected. Scroll down to the Entitlements section and select the
Enable Entitlements checkbox.

 5. Create a UIDocument subclass.

 1. Right-click your project’s root node in the project navigator and select New File
from the context menu.

 2. Select the Objective-C class template and click Next.

 3. Name the class CloudTestDocument and specify UIDocument as the parent class
(Figure 25-11). You will need to type UIDocument manually in the Subclass Of ield
because it is not present in the default list.

 4. Add the following property declaration to the CloudTestDocument.h ile:

@property (nonatomic, strong) NSString* documentContent;

 5. Add the following @synthesize statement to the CloudTestDocument.m ile:

@synthesize documentContent;

 6. Override the loadFromContents:ofType:error: method in CloudTestDocument.m
by adding the following implementation:

- (BOOL)loadFromContents:(id)contents ofType:(NSString *)typeName
 error:(NSError **)outError
{
 if ([contents length] > 0)
 {
 self.documentContent = [[NSString alloc]
 initWithBytes:[contents bytes]
 length:[contents length]

Try It ❘ 293

 encoding:NSUTF8StringEncoding];

 [[NSNotificationCenter defaultCenter]
 postNotificationName:@”refreshDocumentPreview”
 object:self];
 }
 else
 {
 self.documentContent = @””;
 }

 return YES;
}

FiGure 25-11

 7. Recall that this method is called when a document must be loaded from a ile. In
the case of iCloud documents this method is also called automatically when the
contents of the ile have changed. This will typically happen when the ile was
edited by another copy of the application.

 8. In the preceding implementation, in addition to loading the contents of the ile into
member variables of the CloudTestDocument class, you also send out an applica-
tion-wide notiication called refreshDocumentPreview.

294 ❘ LeSSon 25 inTroducTion To icloud STorage

 9. The view controller class listens for these notiications, and treats the arrival of one
as a cue to update the user interface.

 10. Override the contentsForType:error: method in CloudTestDocument.m by adding
the following implementation:

- (id)contentsForType:(NSString *)typeName error:(NSError **)outError
{
 return [self.documentContent dataUsingEncoding:NSUTF8StringEncoding];
}

 6. Edit the MainStoryboard_iPhone.storyboard ile with Interface Builder.

 1. Use the Object library to add a UILabel instance, a UIButton instance, and a
UITextView instance to the default scene.

 2. Resize/position the UILabel instance at X=10, Y=20, W=300, H=21.

 3. Use the Attributes inspector to set the text property of the label to iCloud Service

Status:.

 4. Use the Attributes inspector to set the Alignment property of the label to center.

 5. Resize/position the UIButton instance to X=10, Y=56, W=300, H=37.

 6. Double-click the button in the scene and change its title to Save Document.

 7. Resize/position the UITextView instance to X=10, Y=108, W=300, H=332.

 8. Use the assistant editor to create an outlet called serviceStatus in the
Lesson25ViewController class and connect it to the UILabel instance in the
default scene.

 9. Use the assistant editor to create an outlet called documentContentView in the
Lesson25ViewController class and connect it to the UITextView instance in the
default scene.

 10. Use the assistant editor to create an action method called onSaveDocument in the
Lesson25ViewController class and connect it to the Touch Up Inside event of
the UIButton instance in the default scene.

Your storyboard should resemble Figure 25-12.

 7. Edit the MainStoryboard_iPad.storyboard ile with Interface Builder.

 1. Use the Object library to add a UILabel instance, a UIButton instance, and a
UITextView instance to the default scene.

 2. Resize/position the UILabel instance at X=20, Y=20, W=734, H=21.

 3. Use the Attributes inspector to set the text property of the label to iCloud Service

Status:.

 4. Use the Attributes inspector to set the Alignment property of the label to center.

 5. Resize/position the UIButton instance to X=15, Y=58, W=738, H=37.

Try It ❘ 295

FiGure 25-12

 6. Double-click the button in the scene and change its title to Save Document.

 7. Resize/position the UITextView instance to X=26, Y=103, W=717, H=881.

 8. Use the assistant editor to connect the UILabel instance to the outlet called
serviceStatus in the Lesson25ViewController.h ile.

 1. Ensure the Lesson25ViewController.h ile is visible in the assistant editor.

 2. Right-click the UILabel instance in the default scene to bring up a
context menu.

 3. Drag from the circle beside the New Referencing Outlet entry of the
context menu to the existing outlet called serviceStatus in the
Lesson25ViewController.h ile (Figure 25-13).

 9. Use the assistant editor to connect the UITextView instance to the outlet called
documentContentView in the Lesson25ViewController.h ile.

 10. Use the assistant editor to connect the Touch Up Inside event of the UIButton
instance to the action called onSaveDocument in the Lesson25ViewController.m ile.

Your storyboard should resemble Figure 25-14.

296 ❘ LeSSon 25 inTroducTion To icloud STorage

FiGure 25-13

FiGure 25-14

Try It ❘ 297

 8. Edit the Lesson25ViewController.h ile.

 1. Add the following #import statement to the top of the ile:

#import "CloudTestDocument.h"

 2. Add the following property declarations:

@property BOOL cloudServicesAreAvailable;
@property (strong) CloudTestDocument* cloudDocument;
@property (strong) NSMetadataQuery *searchQuery;

 3. Add the following method declarations:

- (void) createDocument;
- (void) loadDocument;
- (void) queryDidFinish:(NSNotification *)notification;
- (void) refreshDocumentPreview:(NSNotification *)notification;

 9. Edit the Lesson25ViewController.m ile.

 1. Add the following @synthesize statements:

@synthesize cloudServicesAreAvailable;
@synthesize cloudDocument;
@synthesize searchQuery;

 2. Update the implementation of the viewDidLoad method to resemble the following:

- (void)viewDidLoad
{
 [super viewDidLoad];

 documentContentView.text = @"";

 // register this class as an observer for the 'refreshDocumentPreview'
 // notification, this notification is sent by the document class when
 // the contents of the document have ben updated.
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(refreshDocumentPreview:)
 name:@"refreshDocumentPreview"
 object:nil];

 // check if cloud services are available.
 NSURL* containerURL = [[NSFileManager defaultManager]
 URLForUbiquityContainerIdentifier:nil];
 if (containerURL != nil)
 {
 // cloud access is available
 self.cloudServicesAreAvailable = YES;
 serviceStatus.text = @"Cloud Service Status: Available";

 // load existing document, or create a new document
 [self loadDocument];
 }
 else
 {
 // cloud access is not avaialable.

298 ❘ LeSSon 25 inTroducTion To icloud STorage

 self.cloudServicesAreAvailable = NO;
 serviceStatus.text = @"Cloud Service Status: Not Available";

 UIAlertView* cloudError = [[UIAlertView alloc]
 initWithTitle:@""
 message:@"iCloud has not been setup on this device!"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [cloudError show];
 }
}

In this method you check if the iCloud service is available, and if it is, then proceed
to load a speciic document from iCloud.

 3. Add the following statements to the implementation of the viewDidUnload method
after the existing contents of the method:

if (self.cloudDocument != nil)
 [self.cloudDocument closeWithCompletionHandler:nil];
self.cloudDocument = nil;

self.searchQuery = nil;

[[NSNotificationCenter defaultCenter] removeObserver:self
 name:@"refreshDocumentPreview"
 object:nil];

 4. Implement the loadDocument method as follows:

- (void)loadDocument
{
 // search for iCloud document
 self.searchQuery = [[NSMetadataQuery alloc] init];
 [self.searchQuery setSearchScopes:[NSArray
 arrayWithObject:NSMetadataQueryUbiquitousDocumentsScope]];

 NSString* documentFileName = @"cloudDocument.txt";
 NSPredicate *pred = [NSPredicate predicateWithFormat:@"%K == %@",
 NSMetadataItemFSNameKey, documentFileName];
 [self.searchQuery setPredicate:pred];

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(queryDidFinish:)
 name:NSMetadataQueryDidFinishGatheringNotification
 object:nil];

 [UIApplication sharedApplication].networkActivityIndicatorVisible = YES;

 [self.searchQuery startQuery];
}

These statements instantiate an NSMetadataQuery object to search the Documents
directory in the application’s iCloud container for a ile called cloudDocument.txt.
When the query is complete, the queryDidFinish: method of the view controller
class will be called.

Try It ❘ 299

 5. Implement the queryDidFinish: method as follows:

- (void)queryDidFinish:(NSNotification *)notification
{
 [UIApplication sharedApplication].networkActivityIndicatorVisible = NO;

 // stop the query to prevent it from running constantly
 [self.searchQuery disableUpdates];
 [self.searchQuery stopQuery];

 [[NSNotificationCenter defaultCenter] removeObserver:self
 name:NSMetadataQueryDidFinishGatheringNotification
 object:nil];

 // this application expects this query to return a single
 // result. If no documents were found, then inform the user.
 if ([self.searchQuery resultCount] == 0)
 {
 UIAlertView* cloudMessage = [[UIAlertView alloc]
 initWithTitle:@""
 message:@"Unable to find iCloud document, creating new document!"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [cloudMessage show];

 self.searchQuery = nil;
 [self createDocument];
 return;
 }

 // process the result of the search
 if (self.cloudDocument == nil)
 {
 NSMetadataItem *item = [self.searchQuery resultAtIndex:0];
 NSURL *url = [item valueForAttribute:NSMetadataItemURLKey];
 self.cloudDocument = [[CloudTestDocument alloc]
initWithFileURL:url];
 }

 [self.cloudDocument openWithCompletionHandler:^(BOOL success)
 {
 if (success)
 {
 UIAlertView* cloudMessage = [[UIAlertView alloc]
 initWithTitle:@""
 message:@"iCloud document loaded!"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [cloudMessage show];
 }
 else
 {
 UIAlertView* cloudMessage = [[UIAlertView alloc]

300 ❘ LeSSon 25 inTroducTion To icloud STorage

 initWithTitle:@""
 message:@"Could not load iCloud document!"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];

 [cloudMessage show];
 }
 }
];

}

The preceding implementation irst stops the query from running constantly. If the
query did not return any results, it calls the createDocument method of the view
controller class to create a new document on iCloud; otherwise, it loads the existing
document from iCloud.

 6. Implement the onSaveDocument: method as follows:

- (IBAction)onSaveDocument:(id)sender
{
 if (self.cloudDocument == nil)
 return;

 [documentContentView resignFirstResponder];
 self.cloudDocument.documentContent = documentContentView.text;

 [self.cloudDocument saveToURL:[self.cloudDocument fileURL]
 forSaveOperation:UIDocumentSaveForCreating
 completionHandler:^(BOOL success)
 {
 if (success)
 {
 [self.cloudDocument openWithCompletionHandler:nil];
 }
 }];

}

This method dismisses the keypad if it is visible, and saves the CloudTestDocument
object to the iCloud document.

 7. Implement the createDocument method as follows:

- (void) createDocument
{
 if (self.cloudDocument == nil)
 {
 NSURL *containerURL = [[NSFileManager defaultManager]
 URLForUbiquityContainerIdentifier:nil];
 NSURL* documentURL = [[containerURL
 URLByAppendingPathComponent:@”Documents]
 URLByAppendingPathComponent:@”cloudDocument.txt”];
 self.cloudDocument = [[CloudTestDocument alloc]
 initWithFileURL:documentURL]; }

 self.cloudDocument.documentContent = documentContentView.text;

Try It ❘ 301

 [self.cloudDocument saveToURL:[self.cloudDocument fileURL]
 forSaveOperation:UIDocumentSaveForCreating
 completionHandler:^(BOOL success)
 {
 if (success)
 {
 [self.cloudDocument openWithCompletionHandler:nil];
 }
 }];
}

This method is used to create an empty ile called cloudDocument.txt on iCloud,
and is used when the loadDocument method could not ind a document to load.

 8. Implement the refreshDocumentPreview: method as follows:

- (void) refreshDocumentPreview:(NSNotification *)notification
{
 documentContentView.text = self.cloudDocument.documentContent;
}

This method is received when the CloudTestDocument object loads data from the
iCloud document cloudDocument.txt. Here, you simply refresh the user interface.

 10. Test your app on an iOS device.

 1. Connect your iOS device to your Mac.

 2. Select your device from the Target/Device selector in the Xcode toolbar.

 3. Ensure the correct value has been selected for the Code Signing Entity build settings
of the application target (Figure 25-15).

3

2

1

FiGure 25-15

302 ❘ LeSSon 25 inTroducTion To icloud STorage

 4. Click the Run button in the Xcode toolbar. Alternatively, you can use the Project d
Run menu item.

 5. When you run the application for the irst time, you will see a message similar to
Figure 25-16, telling you that a new iCloud document is going to be created for you.

 6. Type some text into the text view and tap the Save Document button.

 7. If you now run this application on a different device, you will get a message similar
to Figure 25-17 telling you that an existing iCloud document has been opened.

FiGure 25-16 FiGure 25-17

Please select Lesson 25 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Introduction to Core Data

The Core Data framework provides solutions to tasks commonly associated with managing
the life-cycle of objects in your application, including object persistence. In this lesson you will
learn to use Core Data to implement simple object persistence in your applications.

BaSic concePTS

Core Data is based on the Model-View-Controller pattern and essentially its in at the model
stage. Core Data introduces a few new concepts and terminology, which are discussed briely
in this section.

Managed object

A managed object is a representation of the object that you want to save to the data store.
This is conceptually similar to a record in SQL and typically contains ields that correspond
to properties in the object you want to save.

Managed object context

The managed object context is akin to a buffer between your application and the data store.
It contains all your managed objects before they are written to the data store. Inside this
context you can add, delete, or modify managed objects. Most of the time, when you need
to read, insert, or delete objects you will call methods on the managed object context.

Persistent Store coordinator

The persistent store coordinator represents the connection to the data store and contains low-level
information like the actual name and location of the data store to be used. This class is generally
used by the managed object context.

26

304 ❘ LeSSon 26 inTroducTion To core daTa

Managed object Model

This is a class that contains deinitions for each of the managed objects that you want to store in the
data store. These deinitions are also known as entities.

To use Core Data in your project, you irst need to add a reference to the framework. You can do
this from the Project Settings page in Xcode. Select the project node in the project navigator to dis-
play the settings page. On the settings page, switch to the Build Phases tab and click the + button
under the Link Binary With Libraries category. Select CoreData.framework from the list of available
frameworks (Figure 26-1).

FiGure 26-1

The next step is to create a managed object model for the project. To create an empty model ile
(into which you will later add entities), right-click the project group in the project navigator and
select New File from the context menu. Select the Data Model template from the Core Data section
and create the new ile (Figure 26-2).

To open the model in the Xcode editor, simply click the ile in the project navigator (the model ile
has the .xcdatamodeld extension). The new model ile is initially empty (Figure 26-3), and as such
is not much use to you in this state.

Basic Concepts ❘ 305

FiGure 26-2

FiGure 26-3

306 ❘ LeSSon 26 inTroducTion To core daTa

To persist objects into the underlying data store, you irst need to deine an entity in the data model
for each object that you want to persist. Deining entities is trivial with the Xcode editor—to add a
new entity called ContactData, select the Editor d Add Entity menu item and name the new entity
appropriately. You will see the new entity listed under the Entities section of the Xcode editor
(Figure 26-4).

FiGure 26-4

After you have deined an entity, you need to add attributes to it. Attributes represent the actual
data ields in the entities themselves. Assuming the ContactData entity represents customer contact
information, some of its attributes may be:

 ➤ Customer Name

 ➤ Phone Number

 ➤ Postcode

To add an attribute to the currently selected entity, select the Editor d Add Attribute menu item.
This adds a new row to the Attributes section of the Xcode model editor (Figure 26-5).

FiGure 26-5

Type in an appropriate name for the attribute and specify the attribute type. The attribute type is
similar to the data type of a variable, and determines what type of data the attribute contains. Core
Data provides several data types that can be selected from a drop-down list (Figure 26-6). The type
for each attribute of the ContactData entity can be String.

Instantiating Core Data Objects ❘ 307

FiGure 26-6

At this stage you have created a new data model, and added an entity to it. Now you need an actual
Objective-C class that maps to the entity deined in the model. To do this, select the Editor d Create
NSManagedObject Subclass menu item. This presents a dialog box asking you where to save the .h
and .m iles for the new class. The name of the class will be the same as the name of the entity. The
ContactData class that is created for you by Xcode is a subclass of NSManagedObject and maps to
the entity with the same name. Its interface is listed below:

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@interface ContactData : NSManagedObject

@property (nonatomic, retain) NSString * customerName;
@property (nonatomic, retain) NSString * phoneNumber;
@property (nonatomic, retain) NSString * postCode;

@end

inSTanTiaTinG core daTa oBjecTS

Before you can read or write model objects to the underlying data store, you will need to instantiate
the managed object model, the managed object context, and the persistent store coordinator.

The managed object model is represented by an instance of the NSManagedObjectModel class, and
you instantiate a single instance for all the .xcdatamodeld iles in your project as follows:

NSManagedObjectModel* managedObjectModel = [NSManagedObjectModel
 mergedModelFromBundles:nil];

The mergedModelFromBundles: method searches the project for all iles that have an .xcdatamodeld
extension and loads all the entities into a single NSManagedObjectModel instance.

308 ❘ LeSSon 26 inTroducTion To core daTa

Once you have an NSManagedObjectModel instance, you can create an instance of the
NSPersistentStoreCoordinator class, which represents the persistent store coordinator.
Recall that the persistent store coordinator handles the low-level connection with underlying
data stores. Individual databases are referred to as persistent stores.

To create an NSPersistentStoreCoordinator instance, use the following snippet:

NSPersistentStoreCoordinator* peristentStoreCoordinator =
 [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel:managedObjectModel];

Once you have the store coordinator, you need to give it a data store to manage. You do this by sending
the addPersistentStoreWithType:configuration:URL:options:error: message to the store coor-
dinator object. For instance, the following code snippet sets up a SQLite database as the data store:

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory ,
 NSUserDomainMask, YES);
NSString *documentsDir = [paths objectAtIndex:0];
NSString* filePath = [documentsDir
 stringByAppendingPathComponent:@"datastore.sqlite"];
NSURL *databaseURL = [NSURL fileURLWithPath:filePath];

NSError* error = nil;
[peristentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:databaseURL
 options:nil
 error:&error];

Finally, with the store coordinator object in place, it is time to instantiate a managed object context.
Recall that a managed object context is like a buffer where you place your managed objects before
writing to (or reading from) the database. The managed object context is represented by an instance
of the NSManagedObjectContext class and can be created as follows:

NSManagedObjectContext* managedObjectContext = [[NSManagedObjectContext alloc] init];
[managedObjectContext setPersistentStoreCoordinator:peristentStoreCoordinator];

WriTinG ManaGed oBjecTS

Instantiating a managed object is slightly different from the usual alloc and init process. With
managed objects, you allow Core Data to instantiate them within a managed object context. Once
the object has been instantiated, you can use it as you would any other object. To instantiate a
ContactData object, use the following code:

ContactData* newContact = (ContactData*)[NSEntityDescription
 insertNewObjectForEntityForName:@"ContactData"
 inManagedObjectContext:managedObjectContext];

Now that you have instantiated a ContactData object, you can set up its attributes just like you
would for any object:

newContact.customerName = @"John Smith";
newContact.phoneNumber = @"+44 78901 78192";
newContact.postcode = @"PB2 7YK";

Try It ❘ 309

To write managed objects to the data store, simply call the save method of the managed object
context. Doing so saves any new objects to the underlying data store (by using the persistent store
coordinator). The save method returns a Boolean value indicating success or failure.

NSError* error;
BOOL result = [managedObjectContext save:&error];

readinG ManaGed oBjecTS

Reading objects from a data store with Core Data is quite straightforward. You simply create an
appropriate fetch request and ask the managed object context to execute the request. The managed
object context will then return an array of objects read from the data store.

A fetch request is an instance of the NSFetchRequest class, and while creating one you need to specify
the entity that you want to fetch. The entity has to be one that exists in the data model. To create a
fetch request that retrieves all ContactData entities from the data store, use the following code:

NSEntityDescription* entityDescription = [NSEntityDescription
 entityForName:@"ContactData"
 inManagedObjectContext:managedObjectContext];

NSFetchRequest* fetchRequest = [[NSFetchRequest alloc] init];
[fetchRequest setEntity:entityDescription];

To retrieve an array of managed objects from the data store, you need to ask the managed object
context to execute the fetch request, as shown in the following snippet:

NSError* error;
NSArray* existingCustomers = [managedObjectContext
executeFetchRequest:fetchRequest
error:&error];

Try iT

In this Try It, you build an iPhone application based on the Single View Application template called
CoreDataTest that can serialize/de-serialize object data to an SQLite database using Core Data.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Add a reference to the Core Data framework.

 ➤ Add a Core Data model to the project.

 ➤ Add an entity to the data model.

 ➤ Create an NSManagedObject subclass.

 ➤ Create a simple user interface with a storyboard.

 ➤ Initialize Core Data objects.

310 ❘ LeSSon 26 inTroducTion To core daTa

 ➤ Save managed objects to the database with Core Data.

 ➤ Read managed objects from the database with Core Data.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 26 folder in the download.

hints
 ➤ To use Core Data in a project, you must add a reference to the appropriate framework.

Step-by-Step

 1. Create a Single View Application in Xcode called CoreDataTest.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: CoreDataTest

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson26

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Add a reference to the Core Data framework.

 1. Make sure the project navigator is visible.

 2. Click the root (project) node of the project navigator to display the project settings.

 3. Select the Build Phases tab.

http://www.wrox.com

Try It ❘ 311

 4. Expand the Link Binary With Libraries group in this tab.

 5. Click the + button at the bottom of this group and select CoreData.framework
from the list of available frameworks.

 6. Click the Add button.

 3. Create a data model for the project.

 1. Right-click the CoreDataTest group in the project navigator and select New File
from the context menu.

 2. Select the Data Model template from the Core Data section. Save the ile as DataModel.

 4. Edit the data model ile.

 1. Select the DataModel.xcdatamodeld ile in the project navigator to open it in the
Xcode editor.

 2. Select the Editor d Add Entity menu item and name the new entity ContactData.

 3. Add attributes to the ContactData entity.

 1. Select the Editor d Add Attribute menu item to create a new attribute.
Name it customerName and set its type to String.

 2. Add two more String attributes, phoneNumber and postCode, to the entity.

 5. Select the Editor d Create NSManagedObject Subclass menu item. Accept the default ile
location and click Save to create a new class called ContactData in your project.

 6. Create a simple user interface using a storyboard.

 1. Open the MainStoryboard.storyboard ile in Interface Builder.

 2. From the Object library, drag and drop ive Label objects, three Text Field objects,
one Round Rect Button object, and one Table View object onto the scene.

 3. Arrange these objects to resemble Figure 26-7.

 4. Create three outlets in the view controller class corresponding to the three
Text Field objects in the scene. Name the outlets nameField, phoneField, and
postcodeField, respectively.

 5. Create an action method called onAdd in the view controller class and connect it to
the Touch Up Inside event of the Add New Record button.

 6. Create an outlet in the view controller class corresponding to the Table View object
in the scene. Name the outlet tableOfContacts.

 7. Initialize Core Data objects.

 1. Import the CoreData.h header ile at the top of the Lesson26ViewController.h
ile by adding this line:

#import <CoreData/CoreData.h>

312 ❘ LeSSon 26 inTroducTion To core daTa

FiGure 26-7

 2. Add the following property declarations to the Lesson26ViewController.h ile:

@property (nonatomic, strong) NSManagedObjectModel* objectModel;
@property (nonatomic, strong) NSPersistentStoreCoordinator* coordinator;
@property (nonatomic, strong) NSManagedObjectContext* objectContext;

 3. Synthesize the properties in the Lesson26ViewController.m ile.

 4. Add the following code to the viewDidLoad method of your view controller class
after the [super viewDidLoad] line.

// create managed object model
objectModel = [NSManagedObjectModel mergedModelFromBundles:nil];

// create persistent store coordinator
coordinator = [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel:objectModel];

// add persistent store
NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
NSString *documentsDir = [paths objectAtIndex:0];
NSString* filePath = [documentsDir

Try It ❘ 313

 stringByAppendingPathComponent:@"datastore.sqlite"];
NSURL *databaseURL = [NSURL fileURLWithPath:filePath];

NSError* error = nil;
[coordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:databaseURL
 options:nil
 error:&error];

// create managed object context
objectContext = [[NSManagedObjectContext alloc] init];
[objectContext setPersistentStoreCoordinator:coordinator];

 8. Save a managed object to the database when the Add button is tapped.

 1. Add the following code to the implementation of the onAdd method in the view
controller class. This code creates an instance of the ContactData class in the man-
aged object context, sets up its properties using values entered by the user in the text
ields, and saves the object.

NSString* newName = nameField.text;
NSString* newPhone = phoneField.text;
NSString* newPostcode = postcodeField.text;

ContactData * newContact = (ContactData*)[NSEntityDescription
 insertNewObjectForEntityForName:@"ContactData"
 inManagedObjectContext:objectContext];

newContact.customerName = newName;
newContact.phoneNumber = newPhone;
newContact.postCode = newPostcode;

NSError* error;
if ([objectContext save:&error])
{
 [self fetchExistingContactData];
 [tableOfContacts reloadData];
}

// hide keyboard.
[phoneField resignFirstResponder];
[nameField resignFirstResponder];

 2. Import the deinition of the ContactData class by adding the following line to the
top of the Lesson26ViewController.m ile:

#import "ContactData.h"

 9. Read managed objects from the database and display them in a table view.

 1. Ensure the Lesson26ViewController class implements the
UITableViewDataSource and UITableViewDelegate protocols by changing its
interface declaration to the following:

@interface Lesson26ViewController : UIViewController
 <UITableViewDataSource,
 UITableViewDelegate>

314 ❘ LeSSon 26 inTroducTion To core daTa

 2. Add the following property to the Lesson26ViewController.h ile:

@property (strong, nonatomic) NSArray* existingContacts;

 3. Synthesize the property in the Lesson26ViewController.m ile.

 4. Deine a new method in the Lesson26ViewController.h ile called
fetchExistingContactData:

- (void) fetchExistingContactData;

 5. Add the following lines of code to the end of the viewDidLoad method in the
Lesson26ViewController.m ile. These lines set up the datasource and delegate
properties of the table view object and call the fetchExistingContactData method.

// setup datasource and delegate for tableView
tableOfContacts.dataSource = self;
tableOfContacts.delegate = self;

// get rows from database
[self fetchExistingContactData];

 6. Implement the fetchExistingContactData method in the
Lesson26Viewcontroller.m ile as follows:

- (void) fetchExistingContactData
{
 NSFetchRequest* fetchRequest = [[NSFetchRequest alloc] init];
 NSEntityDescription* entityDescription = [NSEntityDescription
 entityForName:@"ContactData"

 inManagedObjectContext:objectContext];
 [fetchRequest setEntity:entityDescription];

 NSError* error;
 existingContacts = [objectContext executeFetchRequest:fetchRequest
 error:&error];
}

 7. Implement UITableViewDataSource and UITableViewDelegate methods in the
Lesson26ViewController.m ile as follows:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)aTableView {
 return 1;
}

- (NSInteger)tableView:(UITableView *)aTableView
 numberOfRowsInSection:(NSInteger)section
{
 return [existingContacts count];
}
- (UITableViewCell *)tableView:(UITableView *)aTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = [aTableView dequeueReusableCellWithIdentifier
:@"Cell"];
 if (cell == nil)

Try It ❘ 315

 {

 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:@"Cell"];
 }

 ContactData* data = (ContactData*)[existingContacts
 objectAtIndex:indexPath.row];
 [[cell textLabel] setText:data.customerName];

 return cell;
}

 10. Add a tap gesture recognizer and use it to dismiss the keyboard when the background area
of the view is tapped.

 1. Add the following method declaration to the Lesson26ViewController.h ile:

- (void) handleBackgroundTap:(UITapGestureRecognizer*)sender;

 2. Add the following code to the end of the viewDidLoad method of the view
controller class:

UITapGestureRecognizer* tapRecognizer = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleBackgroundTap:)];
tapRecognizer.cancelsTouchesInView = NO;
[self.view addGestureRecognizer:tapRecognizer];

 3. Implement the handleBackgroundTap: method in the Lesson26ViewController.m
ile as follows:

- (void) handleBackgroundTap:(UITapGestureRecognizer*)sender
{
 [phoneField resignFirstResponder];
 [nameField resignFirstResponder];
 [postcodeField resignFirstResponder];

}

 11. Test your app in the iOS Simulator by clicking the Run button in the Xcode toolbar.
Alternatively, you can use the Project d Run menu item.

Please select Lesson 26 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

XML Parsing with NSXMLParser

XML is an extremely popular format for data interchange and is used widely in desktop, mobile,
and web applications. In this lesson you learn to parse XML documents in your applications.

XML stands for Extensible Markup Language and is a text-based markup language that lets
you deine the structure of a document. It is primarily used as a means to store and transfer
data. Because it is text-based, XML iles can be created and edited using almost any text editor
capable of editing plain text iles. If you decide to use TextEdit to edit XML iles, be sure to use
the Format d Make Plain Text menu item to ensure that TextEdit treats the XML document as
plan text and not RTF.

Essentially, the author of an XML document creates structure within the document by creating
several tags and inserting the content of the document within these tags. This is perhaps best
understood with a simple example:

<contact>
 <first_name>John</first_name>
 <last_name>Doe</last_name>
 <address>15 Bilton Road, Perivale</address>
</contact>

The preceding snippet is a simple XML document that could be used to store information
about a single contact, perhaps as part of a contacts management application.

The key thing to note is that XML is just a means to store/exchange data. There is no ixed
set of tags that must be used in an XML document; you can create your own tags to structure
your data.

An XML document on its own does not do anything. You need one or more applications that
can use the data. These applications could be desktop-based, web-based, or mobile-based.

If you are writing such applications yourself, you can use your own set of tags in the docu-
ment. If you need to create an XML document that will be used with a third-party applica-
tion, you will need to work with tags that the application can understand.

27

318 ❘ LeSSon 27 Xml parSing wiTH nSXmlparSer

If you are familiar with HTML you may have noticed the similarity between XML and HTML.
Although similar, these are not the same. HTML is a markup language intended to display data.
XML is concerned only with storage of data.

xML FundaMenTaLS

In this section, you learn the basics of XML. XML is conceptually a very simple language. An XML
document consists of:

 ➤ Elements and tags

 ➤ Attributes

 ➤ Special characters

 ➤ Comments

 ➤ Processing instructions

Each of these items is discussed in the following sections.

elements and Tags

XML documents are simply text documents that have been marked with tags into a series of elements.
XML requires that every start tag have a matching end tag. Hence, each element consists of a start tag
and an end tag. Start tags begin with < and end tags begin with </. For example:

<name>John</name>

XML tag names are case-sensitive, thus <name> and <Name> are not the same tag. The text between
a pair of matching start and end tags is called the content of the element. The content is usually
text, but could also be one or more elements.

When an element contains one or more elements as part of its content, the XML document structure
begins to resemble a tree. The root element of the document is a special element that does not have
any parent and thus contains every other element. Every other element in an XML document has
a parent element. In the following example, the root element is contact, and it is the parent of the
first_name, last_name, and address elements.

<contact>
 <first_name>John</first_name>
 <last_name>Doe</last_name>
 <address>170 Bilton Road, Perivale</address>
</contact>

If an element contains no content, it is called an empty element, and is represented using special syntax:

<empty_element/>

The above line is equivalent to:

<empty_element></empty_element>

XML Fundamentals ❘ 319

attributes

An XML element may contain attributes in the form of name-value pairs. Attributes are always
speciied in the start tag of an element, and have the following syntax:

attribute_name=”value”

A given element can have multiple attributes; each pair separated with whitespace as shown here:

<name employee_id=”1” department_name =”Sales”>John</name>

Special characters

Certain characters cannot be used as part of the content between start and end tags, or attribute
values. These characters have special meaning to XML parsers and thus cannot be used as part of
your data. If you need to use these characters, you will have to use a special character sequence for
each. In technical terms, you will need to use a speciic escape sequence for these special characters
as shown in Table 27-1.

TaBLe 27-1: Reserved Characters in XML

reServed characTer eScaPe Sequence

> >

< <

& &

“ "

‘ '

This is an example of bad XML:

<company_name>Allen & Peters Plumbing</company_name>

The corrected version is:

<company_name>Allen & Peters Plumbing</company_name>

comments and Processing instructions

Comments can be inserted in an XML document by placing the comment between <!-- and
--!>. Comments are not allowed inside attribute values, or start and end tags.

<!-- this is a valid xml comment --!>

Processing instructions are special instructions intended for speciic applications. Every XML
document that you want to parse using an NSXMLParser object must begin with the following
processing instruction:

<?xml version= "1.0" encoding="UTF8"?>

320 ❘ LeSSon 27 Xml parSing wiTH nSXmlparSer

The nSxMLParSer cLaSS

The NSXMLParser class is part of the Cocoa framework and you can use its instances to parse
XML documents. The NSXMLParser class is a SAX-based parser (SAX stands for Serial API
for XML), and thus implements an event-based approach to XML parsing.

The NSXMLParser class requires you to provide a delegate object. It sequentially examines the content
of the XML document and informs the delegate object as it encounters elements. It is up to the delegate
object to do something with the data that has been encountered.

It is important to note that you cannot make the NSXMLParser object begin parsing from the middle
of the XML document and stop parsing when a particular element of interest has been read. The
parser will parse the entire document from start to inish, even if all you are interested in is the value
of one attribute in a speciic element toward the end of the document.

Parsing can take a considerable amount of time, especially if the XML document is large. For this
reason it is not recommended to parse a document multiple times. In most cases you will parse the
document only once, and your delegate object will populate an application-speciic data model in
memory with data from the XML ile. For all subsequent access to the data, your code will use your
application-speciic data model and not parse the XML ile repeatedly.

In addition to parsing the XML document and informing the delegate object, the NSXMLParser class
also performs basic validation on the XML document to check if it is well-formed.

This check typically involves making sure that every start tag has a matching end tag, attributes have
values, and that the XML document contains valid characters (certain characters are not allowed in
an XML document; refer to the “Special Characters” section earlier).

If any problems are encountered, the NSXMLParser class calls an appropriate error method on the
delegate object and stops parsing the document.

Sax and doM Parsers

When it comes to parsing XML documents, a parsing application can take two general approaches:

 ➤ Event-based: Parsers that opt for this approach parse the document sequentially from start
to inish, and raise appropriate events as the ile is parsed. Events are typically raised when a
tag begins, when a tag ends, when an error is encountered, and so on. These parsers are said
to be SAX-based.

 ➤ Tree-based: Parsers that opt for this approach load the entire XML document into a tree-like
representation in memory. A node in this tree usually corresponds to an element in the XML
document. The application then has the task of traversing this tree to a speciic node. These
parsers are said to be DOM-based (DOM stands for document object model).

SAX-based parsers require very little memory to implement because all they really need to store is
the data for the particular element that is being parsed. DOM-based parsers, on the other hand,
need more memory because they need to load the entire document.

However, DOM-based parsers do allow random access to data, and the ability to verify the structure
of the document to ensure that all required tags are present.

The NSXMLParserDelegate Protocol ❘ 321

The nSxMLParSerdeLeGaTe ProTocoL

The delegate object that you need to supply to the NSXMLParser instance must implement the
NSXMLParserDelegate protocol. The protocol deines several optional methods. The four most
commonly used methods that you are likely to implement are:

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName
 attributes:(NSDictionary *)attributeDict;

- (void)parser:(NSXMLParser *)parser didEndElement:(NSString*)elementName
 namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName;

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string;

- (void)parser:(NSXMLParser *)parser parseErrorOccurred:(NSError *)parseError;

The parser:didStartElement:namespaceURI:qualifiedName:attributes: and parser:didEn
dElement:namespaceURI:qualifiedName: delegate methods are called when the parser encounters
a start tag or an end tag. The irst parameter to each method contains a reference to the parser. The
name of the tag is supplied in the elementName parameter.

Attributes that may be part of the start tag are supplied as a dictionary of attribute-value pairs in
the attributeDict parameter.

Attributes are speciied only in start tags, and are thus available only in the
didStartElement:namespaceURI:qualifiedName:attributes delegate method.
If you need to do something with the attributes in a start tag you must put relevant
code in this method of your delegate object.

The namespaceURI and qualifiedName parameters deal with the concept of XML Namespaces,
which is beyond the scope of this book.

The parser:foundCharacters: delegate method is called by the parser when one or more characters
are encountered between start and end tags. The characters themselves can be accessed through the
string parameter.

The parser does not guarantee to pass all the characters that may be found between start and end
tags in a single call. This method is usually called several times to cover all the characters that are
in between a start and end tag.

For instance, if the XML document had a pair of start and end tags like this:

<first_name>John</first_name>

the parser may call this delegate method either:

 ➤ Once with the entire text John

 ➤ Four times with each character J o h n

 ➤ Any combination in between

322 ❘ LeSSon 27 Xml parSing wiTH nSXmlparSer

The parser:parseErrorOccurred: delegate method is called by the parser if it encounters a fatal
error while parsing the XML document. Parsing stops after this method is called.

There can be many reasons why the error occurred in the irst place. The most common ones are:

 ➤ Start tags that do not have end tags

 ➤ Attributes that do not have values

 ➤ Invalid characters in the XML document

a SiMPLe xML FiLe and hoW iT iS ParSed

The best way to understand how to use the NSXMLParser class is through an example. Listing 27-1
represents a simple XML ile called contacts.xml that could perhaps be used in an address book
application to store information on various contacts.

LiSTinG 27-1: contacts.xml

<?xml version= "1.0" encoding="UTF8">
<contacts>

 <contact id="1">
 <first_name>John</first_name>
 <last_name>Doe</last_name>
 <address>170 Bilton Road, Perivale</address>
 <phone>44-798-12871</phone>
 </contact>

 <contact id="2">

 <first_name>Paul</first_name>
 <last_name>Bridges</last_name>
 <address>17A Heathfield gardens, Brent Cross</address>
 <phone>44-701-57358</phone>
 </contact>

</contacts>

In the listing, XML start and end tags are highlighted in boldface. The root element of the XML
document is <contacts>, and data on each contact is stored in a <contact> element. The document
contains two <contact> elements in all. For each contact the document contains the data shown in
Table 27-2.

TaBLe 27-2: Contact Fields

FieLd naMe noTeS

ID Attribute of the <contact> start tag

Name Content of the <first_name> element

A Simple XML File and How it Is Parsed ❘ 323

FieLd naMe noTeS

Surname Content of the <last_name> element

Address Content of the <address> element

Phone number Content of the <phone> element

Each <contact> element in the XML ile will map to an instance of a data model class in the applica-
tion. An interface of a data model class that could be used to encapsulate the contents of a <contact>
element is presented next. The name of this class is ContactInfo.

@interface ContactInfo : NSObject

@property int contactId;
@property (nonatomic, strong) NSMutableString* contactName;
@property (nonatomic, strong) NSMutableString* contactSurname;
@property (nonatomic, strong) NSMutableString* contactAddress;
@property (nonatomic, strong) NSMutableString* contactPhone;

@end

To manage multiple ContactInfo instances (corresponding to multiple contact elements in the
XML ile), an application will typically use an NSMutableArray instance. In simple applications,
this array could be a member of the view controller class.

Loading the xML document into an nSdata object

The irst step towards to parsing the XML document is to load the document into an NSData object.
This step is essentially reading the ile from beginning to end, character by character, and loading it into
memory. At this point the application is not trying to make sense of (parse) the contents of the ile while
it is being loaded. It is simply creating a block of memory into which the contents of the ile are placed.
The following code snippet shows how contacts.xml could be loaded into an NSData instance.

NSBundle* bundle = [NSBundle mainBundle];
NSString* filePath = [bundle pathForResource:@"contacts" ofType:@"xml"];
NSData* xmlData = [NSData dataWithContentsOfFile:filePath];

instantiating an nSxMLParser object

The next step is to instantiate an NSXMLParser object, giving it a reference to the NSData object that
contains XML content to be parsed. This is done by using the alloc and initWithData: methods
as shown below:

NSXMLParser *xmlParser = [[NSXMLParser alloc] initWithData:xmlData];

You may be wondering why the XML ile should be loaded into an NSData object at all. Why not
just give the NSXMLParser object the path to the ile straight away?

The answer is that doing so adds a level of abstraction that decouples the process of parsing XML
content from the manner in which it is stored physically. As long as you can get the XML data into
an NSData object, you can parse it with an NSXMLParser object.

324 ❘ LeSSon 27 Xml parSing wiTH nSXmlparSer

This becomes particularly relevant when you use an NSXMLParser object to parse XML data that is
downloaded from the Internet, perhaps as a response from a web service. In this case the downloaded
data will be made available to your application by the relevant Cocoa framework as an NSData object.

instantiating a delegate object

Having instantiated an NSXMLParser object, you will need to provide a delegate object. The delegate
object must implement the NSXMLParserDelegate protocol.

In most applications you will create a separate NSObject subclass that implements the
NSXMLParserDelegate protocol and use an instance of this class as the delegate. For instance,
if the name of this class was XMLParserDelegate then the following code snippet could be used
to set up the delegate property of the XML parser:

XMLParserDelegate *parserDelegate = [[XMLParserDelegate alloc] init];
[xmlParser setDelegate:parserDelegate];

Begin Parsing

The actual parsing begins by calling the parse method on the NSXMlParser instance:

[xmlParser parse];

At this point the NSXMLParser object will begin sequential parsing and will call one or more methods
on your delegate object as XML content is encountered.

The xMLParser delegate Methods

The code to do something when elements in the XML ile are encountered is part of the delegate
object. The delegate object, thus, does the bulk of the work. The XMLParserDelegate class, an
instance of which is used as the delegate object to parse contacts.xml, could be deined as:

#import <Foundation/Foundation.h>
#import "ViewController.h"
#import "ContactInfo.h"

@interface XMLParserDelegate : NSObject <NSXMLParserDelegate>

@property (nonatomic, weak) ViewController* viewController;
@property (nonatomic, strong) ContactInfo* tmpContactInfo;
@property (nonatomic, strong) NSMutableString* currentElementValue;

@end

The implementation of the parser:didStartElement:namespaceURI:qualifiedName:attributes:
delegate method is presented below:

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict
{
 // clear the contents of current_element_value
 if (self.currentElementValue == nil)
 self.currentElementValue = [[NSMutableString alloc] initWithString:@""];

A Simple XML File and How it Is Parsed ❘ 325

 else
 [currentElementValue setString:@""];

 // set 'tmpContactInfo' to a new ContactInfo object each time
 // the start of a 'contact' element is been encountered
 if([elementName isEqualToString:@"contact"])
 {
 tmpContactInfo = [[ContactInfo alloc] init];

 // read the attributes of the node here.
 NSString* szID = [attributeDict objectForKey:@"id"];
 if (szID != nil)
 tmpContactInfo.contactId = [szID intValue];
 }
}

This method is called when the parser encounters the start of each XML element. When the
contacts.xml ile is being parsed, this method will be called 11 times, once for each XML start
tag encountered, as shown in Listing 27-2.

LiSTinG 27-2: Start tags in contacts.xml

<?xml version= "1.0" encoding="UTF8">
<contacts>

 <contact id="1">

<first_name>John</first_name>
<last_name>Doe</last_name>
<address>170 Bilton Road, Perivale</address>
<phone>44-798-12871</phone>
 </contact>
 <contact id="2">

<first_name>Paul</first_name>
<last_name>Bridges</last_name>
<address>17A Heathfield gardens, Brent Cross</address>
 <phone>44-701-57358</phone>
 </contact>
</contacts>

The implementation of this delegate method assigns a new NSMutableString instance to
currentElementValue. If currentElementValue is not nil, then its contents are cleared.

 if (self.currentElementValue == nil)
 self.currentElementValue = [[NSMutableString alloc] initWithString:@""];
 else
 [currentElementValue setString:@""];

The elementName parameter is examined next, to check if the parser is dealing with the start
tag of the <contact> element. If this is so, then tmpContactInfo is assigned a reference to a new
ContactInfo instance.

During the parsing process, tmpContactInfo refers to the current ContactInfo instance that is being
set up as the document is being parsed. As the parser encounters other XML tags, appropriate member
variables of tmpContactInfo will be set up. This will go on until the end tag of the <contact> element
is encountered, at which point tmpContactInfo is considered to be ready to use.

326 ❘ LeSSon 27 Xml parSing wiTH nSXmlparSer

The start tag of the <contact> element also happens to contain a single attribute id. This is read
into the contactId member variable of tmpContactInfo using the following code.

NSString* szID = [attributeDict objectForKey:@"id"];
if (szID != nil)
 tmpContactInfo.contactId = [szID intValue];

Recall that attributes are only available when start tags are encountered. If the application has any
interest in an attribute it must process it when its corresponding start tag is encountered.

The implementation of the parser:foundCharacters: delegate method is next:

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string
{
 [currentElementValue appendString:string];
}

This method is called when one or more characters of text are encountered between start and end
tags. Unfortunately this delegate method does not provide information on the name of the current
element being processed at the point this call was made. In this method, the characters that are
encountered are appended to the existing value of the currentElementValue variable.

In essence, the currentElementValue variable acts like an accumulator, collecting characters
as they arrive. If you clear the content of currentElementValue at the start of each element (in
the parser:didStartElement:namespaceURI:qualifiedName:attributes: method), you can
safely assume it will have meaningful content when the end of each element is encountered.

The implementation of the parser:didEndElement:namespaceURI: qualifiedName: delegate
method is slightly longer, as is presented below:

- (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName
{
 if([elementName isEqualToString:@"first_name"])
 {
 if (tmpContactInfo.contactName == nil)
 tmpContactInfo.contactName = [[NSMutableString alloc]
 initWithCapacity:25];
 [tmpContactInfo.contactName setString:currentElementValue];
 }

 if([elementName isEqualToString:@"last_name"])
 {
 if (tmpContactInfo.contactSurname == nil)
 tmpContactInfo.contactSurname = [[NSMutableString alloc]
 initWithCapacity:25];
 [tmpContactInfo.contactSurname setString:currentElementValue];
 }

 if([elementName isEqualToString:@"address"])
 {
 if (tmpContactInfo.contactAddress == nil)
 tmpContactInfo.contactAddress = [[NSMutableString alloc]
 initWithCapacity:25];

A Simple XML File and How it Is Parsed ❘ 327

 [tmpContactInfo.contactAddress setString:currentElementValue];
 }

 if([elementName isEqualToString:@"phone"])
 {
 if (tmpContactInfo.contactPhone == nil)
 tmpContactInfo.contactPhone = [[NSMutableString alloc]
 initWithCapacity:25];
 [tmpContactInfo.contactPhone setString:currentElementValue];
 }

 if([elementName isEqualToString:@"contact"])
 {
 [viewController.listOfContacts addObject:tmpContactInfo];
 tmpContactInfo = nil;
 }
}

This method is called when the parser encounters the end of each XML element. When the contacts
.xml ile is being parsed, this method will also be called 11 times, as shown in Listing 27-3.

LiSTinG 27-3: End tags in contacts.xml

<?xml version= "1.0" encoding="UTF8">
<contacts>
 <contact id="1">
<first_name>John</first_name>
<last_name>Doe</last_name>
<address>170 Bilton Road, Perivale</address>
<phone>44-798-12871</phone>
 </contact>

 <contact id="2">
<first_name>Paul</first_name>
<last_name>Bridges</last_name>
<address>17A Heathfield gardens, Brent Cross</address>
<phone>44-701-57358</phone>
 </contact>

</contacts>

When the end of the <first_name>, <last_name>, <address>, and <phone> elements are encountered,
the text of the element will be contained in currentElementValue. All you need to do then is set up
appropriate member variables in the current ContactInfo instance tmpContactInfo.

When the end of the <contact> element is encountered, this is taken to signify that the current
ContactInfo object tmpContactInfo is ready to use, and is thus added to an NSMutableArray in
the view controller class.

Error checking has been intentionally omitted in this example to focus on the task of XML
parsing. In a real-world application, at the very least you would want to examine the contents
of the listOfContacts array to make sure it has some data in it.

328 ❘ LeSSon 27 Xml parSing wiTH nSXmlparSer

Try iT

In this Try It, you build you build a new Xcode project based on the Single View Application template
called ContactSample that loads a list of contacts from an XML ile and display the name of each
contacts in a table view.

Lesson requirements
 ➤ Create a new iPhone application project based on the Single View Application template.

 ➤ Import an XML ile into the project.

 ➤ Create an NSObject subclass called ContactData that will encapsulate information on
each contact.

 ➤ Create an NSObject subclass called ContactDataXMLParserDelegate that implements the
NSXMLParserDelegate protocol.

 ➤ Add an NSMutableArray to the view controller class.

 ➤ Create a simple user interface consisting of a button and a table view.

 ➤ When the button is tapped, load the XML ile and update the table view.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 27 folder in the download.

hints
 ➤ Launch Xcode from the /Developer/Applications folder.

Step-by-Step

 1. Create a Single View Application in Xcode called ContactSample.

 1. Launch Xcode from the /Developer/Applications folder.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: ContactSample

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson27

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

http://www.wrox.com

Try It ❘ 329

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Copy contacts.xml from the resources folder of this lesson on the DVD into the
Xcode project.

 3. Create a new NSObject subclass called ContactData.

 1. In Xcode, make sure the project navigator is visible.

 2. Right-click the ContactSample group and select New File from the popup menu.

 3. Select the Objective-C Class template for the new class, and click Next.

 4. Name the class ContactData, make it a subclass of NSObject, and click Next.

 5. Accept the default ile location suggested by Xcode and click Create.

 4. Add the following @property declarations to the ContactData.h ile:

@property int contactId;
@property (nonatomic, strong) NSMutableString* firstName;
@property (nonatomic, strong) NSMutableString* lastName;
@property (nonatomic, strong) NSMutableString* address;
@property (nonatomic, strong) NSMutableString* phone;

 5. Add the following @synthesize statements to the ContactData.m ile:

@synthesize contactId;
@synthesize firstName;
@synthesize lastName;
@synthesize address;
@synthesize phone;

 6. Add user interface elements to the default scene.

 1. Select the MainStoryboard.storyboard ile in the project navigator.

 2. Use the Object library to add a UIButton instance to the default scene.

 3. Resize/position the button to X=10, Y=11, W=300, H=37.

 4. Double-click the button and set its title to Load Contacts.

 5. Use the assistant editor to create an action method called onLoadContacts in the
view controller class and connect it to the Touch Up Inside event of the button.

330 ❘ LeSSon 27 Xml parSing wiTH nSXmlparSer

 6. Use the Object library to add a Table View to the default scene.

 7. Resize/position the table view to X=10, Y=69, W=300, H=371.

 8. Use the assistant editor to create an outlet in the view controller class corresponding
to the table view object in the scene. Name the outlet tableOfContacts.

 7. Create the XML parser delegate object.

 1. Create a new NSObject subclass called ContactDataXMLParserDelegate by following
steps similar to those outlined in step 3 above.

 2. Modify the interface of the ContactDataXMLParserDelegate class to implement
the NSXMLParserDelegate protocol. The modiied @interface declaration should
now resemble:

@interface ContactDataXMLParserDelegate : NSObject <NSXMLParserDelegate>

 3. Add the following #import directives to the top of the
ContactDataXMLParserDelegate.h ile, after the #import
<Foundation/Foundation.h> line:

#import "Lesson27ViewController.h"
#import "ContactData.h"

 4. Add the following @property declarations to the
ContactDataXMLParserDelegate.h ile:

@property (nonatomic, weak) Lesson27ViewController* viewController;
@property (nonatomic, strong) ContactData* tmpContactInfo;
@property (nonatomic, strong) NSMutableString* currentElementValue;

 5. Add the following @synthesize statements to the
ContactDataXMLParserDelegate.m ile:

@synthesize viewController;
@synthesize tmpContactInfo;
@synthesize currentElementValue;

 6. Implement the
parser:didStartElement:namespaceURI:qualifiedName:attributes: delegate
method in the ContactDataXMLParserDelegate.m ile as follows:

- (void)parser:(NSXMLParser*)parser
 didStartElement:(NSString*)elementName
 namespaceURI:(NSString*)namespaceURI
 qualifiedName:(NSString*)qualifiedName
 attributes:(NSDictionary*)attributeDict
{
 // clear the contents of current_element_value
 if (self.currentElementValue == nil)
 self.currentElementValue = [[NSMutableString alloc]
initWithString:@""];
 else
 [currentElementValue setString:@""];

 // set 'tmpContactInfo' to a new ContactInfo object each time
 // the start of a 'contact' element is been encountered

Try It ❘ 331

 if([elementName isEqualToString:@"contact"])
 {
 self.tmpContactInfo = [[ContactData alloc] init];

 // read the attributes of the node here.
 NSString* szID = [attributeDict objectForKey:@"id"];
 if (szID != nil)
 self.tmpContactInfo.contactId = [szID intValue];
 }
}

 7. Implement the parser:foundCharacters: delegate method in the ContactDataXML
ParserDelegate.m ile as follows:

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string
{
 [currentElementValue appendString:string];
}

 8. Implement the parser:didEndElement:namespaceURI:qualifiedName: delegate
method in the ContactDataXMLParserDelegate.m ile as follows:

- (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName
{
 if([elementName isEqualToString:@"first_name"])
 {
 if (tmpContactInfo.firstName == nil)
 tmpContactInfo.firstName = [[NSMutableString alloc]
 initWithCapacity:25];
 [tmpContactInfo.firstName setString:currentElementValue];
 }

 if([elementName isEqualToString:@"last_name"])
 {
 if (tmpContactInfo.lastName == nil)
 tmpContactInfo.lastName = [[NSMutableString alloc]
 initWithCapacity:25];
 [tmpContactInfo.lastName setString:currentElementValue];
 }

 if([elementName isEqualToString:@"address"])
 {
 if (tmpContactInfo.address == nil)
 tmpContactInfo.address = [[NSMutableString alloc]
 initWithCapacity:25];
 [tmpContactInfo.address setString:currentElementValue];
 }

 if([elementName isEqualToString:@"phone"])
 {
 if (tmpContactInfo.phone == nil)
 tmpContactInfo.phone = [[NSMutableString alloc]
 initWithCapacity:25];
 [tmpContactInfo.phone setString:currentElementValue];
 }

332 ❘ LeSSon 27 Xml parSing wiTH nSXmlparSer

 if([elementName isEqualToString:@"contact"])
 {
 [viewController.listOfContacts addObject:tmpContactInfo];
 tmpContactInfo = nil;
 }
}

 8. Load and parse the XML ile.

 1. Add the following @property declarations to the Lesson27ViewController.h ile:

@property (strong, nonatomic) NSMutableArray* listOfContacts;
@property (strong, nonatomic) NSXMLParser* xmlParser;
@property (strong, nonatomic) NSData* xmlData;

 2. Synthesize the properties in the Lesson27ViewController.m ile.

 3. Add the following #import directive to the top of the Lesson27ViewController.m ile:

#import "ContactDataXMLParserDelegate.h"

 4. Add the following code at the end of the existing implementation of the
viewDidLoad method:

self.listOfContacts = [[NSMutableArray alloc] initWithCapacity:10];

 5. Add the following code to the implementation of the onLoadContacts: method:

// load contacts.xml into NSData instance
NSBundle* bundle = [NSBundle mainBundle];
NSString* filePath = [bundle pathForResource:@"contacts" ofType:@"xml"];
self.xmlData = [NSData dataWithContentsOfFile:filePath];

// instantiate NSXMLParser
self.xmlParser = [[NSXMLParser alloc] initWithData:xmlData];

// set up parser delegate
ContactDataXMLParserDelegate *parserDelegate =
 [[ContactDataXMLParserDelegate alloc] init];
parserDelegate.viewController = self;
[xmlParser setDelegate:parserDelegate];

// parse the file.
[xmlParser parse];
self.xmlParser = nil;
self.xmlData = nil;

 9. Display contact information in the table view.

 1. Modify the interface of the view controller class to implement the
UITableViewDataSource and UITableViewDelegate protocols. The modiied
interface declaration should resemble:

@interface Lesson27ViewController : UIViewController <UITableViewDataSource,
 UITableViewDelegate>

Try It ❘ 333

 2. Add the following code at the end of the existing implementation of the
viewDidLoad method:

tableOfContacts.delegate = self;
tableOfContacts.dataSource = self;

 3. Add the following code at the end of the existing implementation of the
onLoadContacts: method:

// reload table view
 [tableOfContacts reloadData];

 4. Implement UITableViewDataSource and UITableViewDelegate methods in the
Lesson27ViewController.m ile as follows:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)aTableView
{
 return 1;
}
- (NSInteger)tableView:(UITableView *)aTableView
 numberOfRowsInSection:(NSInteger)section
{
 return [listOfContacts count];
}
- (UITableViewCell *)tableView:(UITableView *)aTableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = [aTableView
 dequeueReusableCellWithIdentifier:@"Cell"];
 if (cell == nil)
 {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:@"Cell"];
 }

 ContactData* data = (ContactData*)[listOfContacts
 objectAtIndex:indexPath.row];

 [[cell textLabel]
 setText:[NSString stringWithFormat:@"%@ %@",
 data.firstName, data.lastName]];

 return cell;
}

 10. Test your app in the iOS Simulator by clicking the Run button in the Xcode toolbar.
Alternatively, you can use the Project d Run menu item.

Please select Lesson 27 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Consuming SOAP Web Services

In the previous lesson you learned how to parse an XML ile. In this lesson you learn to
communicate with web services by using XML-based messages and responses.

A web service is essentially a web application that runs on a web server and provides a list of
methods to its users. You access the web service as you would any other website, using a URL.

You need to know the URL at which a web service is located beforehand, and more often
than not, you also need to know the list of methods provided by the web service. Some web
services include an additional ile on the web server that provides a list of methods contained
in the web service. This ile is known as the WSDL ile. WSDL is an acronym for Web Service
Description Language.

Web services themselves can be written using one of several technologies including PHP,
ASP.NET, and ColdFusion. Creating a web service is outside the scope of this book.

The examples in this lesson use a simple web service called MathService. This is a PHP-based
web service and can be accessed at: www.asmtechnology.com/MathService/mathservice.php.

If you point your browser to that URL, you will see the WSDL ile for the service, which
contains a list of method names exposed by this web service (Figure 28-1).

FiGure 28-1

28

http://www.asmtechnology.com/MathService/mathservice.php

336 ❘ LeSSon 28 conSuming Soap weB SerViceS

Table 28-1 lists the methods provided by the web service and a brief description of each.

TaBLe 28-1: MathService Methods

MeThod naMe deScriPTion

getCircleArea Input: radius

Output: Returns the area of a circle with speciied radius.

getRectangleArea Input: length, breadth

Output: Returns the area of a rectangle with speciied length

and breadth.

getSquareArea Input: length

Output: Returns the area of a square whose sides are of

speciied length.

getTriangleArea Input: base, height

Output: Returns the area of a triangle with speciied base length

and height.

Broadly speaking, you have three ways to communicate with web services. You can use SOAP, HTTP
GET, or HTTP POST. The precise method you use will depend on the web service in question. Most
web services made using ASP.NET respond to SOAP.

SOAP is an acronym for Simple Object Access Protocol. It is an XML-based message format, which
allows different applications to exchange objects with each other. For this to work, though, the systems
need to know beforehand what these objects will be. A full discussion of SOAP is outside the context of
this lesson.

On some platforms, developers have access to frameworks that are designed to convert objects to
SOAP messages and back. Sadly as iOS developers, we do not have such a framework as of yet.

In the absence of a framework to create SOAP messages for you, the only option available is to make
the SOAP message yourself, send it to the web service, and process the SOAP response.

Keep in mind that fundamentally a SOAP message is just some XML text, and all the rules of
parsing XML that you learned in Lesson 27 still apply.

The SOAP message to access the getCircleArea method of the web service is as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <ns3916:getCircleArea xmlns:ns3916="http://tempuri.org">
 <radius xsi:type="xsd:string">20.00</radius>
 </ns3916:getCircleArea>

http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://schemas.xmlsoap.org/soap/encoding/
http://tempuri.org

 Consuming SOAP Web Services ❘ 337

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

If this is the irst time you are looking at a SOAP message, you might feel intimated. If you apply
the fundamental rules of XML, you can make out the root element of this XML document to be
<SOAP-ENV:Envelope>. The SOAP-ENV: preix speciies the namespace; the actual element name
is Envelope.

XML Namespaces are not covered in this book. For now, all you need to know is that they provide
a mechanism to prevent conlicts between different systems that use an element name to mean two
different things.

The Envelope element has several attributes, and contains one child element: <SOAP-ENV:Body>.

Every SOAP message consists of an Envelope element that contains a Body element. The web
service method that you intend to use (getCircleArea), along with any parameters that it may
require (radius), forms the content of the Body element.

In this particular SOAP message, the Body element contains the following:

<ns3916:getCircleArea xmlns:ns3916="http://tempuri.org">
 <radius xsi:type="xsd:string">20.00</radius>
</ns3916:getCircleArea>

You can see that the content of the Body element is another element called getCircleArea, which
happens to be the method you want to use from the web service. The parameter radius is speciied as
a child of the getCircleArea element.

You can use the NSString class’s stringWithFormat convenience method to create an NSString
object that contains the SOAP message. Assuming the_radius is an NSString instance that contains
the value of the radius parameter for the web method, this can be done as follows:

NSString* soap_message =
[NSString stringWithFormat:@"%@%@%@%@%@%@%@%@%@%@",
 @"<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>",
 @"<SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle=\"http://schemas.xmlsoap.org/soap/encoding/\"
 xmlns:SOAP-ENV=\"http://schemas.xmlsoap.org/soap/envelope/\"
 xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"
 xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
 xmlns:SOAP-ENC=\"http://schemas.xmlsoap.org/soap/encoding/\">",
 @"<SOAP-ENV:Body>",
 @"<ns3916:getCircleArea xmlns:ns3916=\"http://tempuri.org\">",
 @"<radius xsi:type=\"xsd:string\">",
 the_radius,
 @"</radius>",
 @"</ns3916:getCircleArea>",
 @"</SOAP-ENV:Body>",
 @"</SOAP-ENV:Envelope>"];

To send the SOAP message to the web server you will have to create a suitable HTTP-POST request.
The NSMutableURLRequest class is used to create an instance of an HTTP request:

NSURL *url = [NSURL
URLWithString:@"http://www.asmtechnology.com/MathService/mathService.php"];
NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];
[req setHTTPMethod:@"POST"];

http://tempuri.org
http://schemas.xmlsoap.org/soap/encoding/\
http://schemas.xmlsoap.org/soap/envelope/\
http://www.w3.org/2001/XMLSchema\
http://www.w3.org/2001/XMLSchema-instance\
http://schemas.xmlsoap.org/soap/encoding/\
http://tempuri.org\
http://www.asmtechnology.com/MathService/mathService.php"]

338 ❘ LeSSon 28 conSuming Soap weB SerViceS

An HTTP-POST request contains a few headers and a payload (Figure 28-2). The headers typically
identify the format and size of the payload.

MathService web service

Your iOS
Application

getCircleArea
getRectangleArea
getSquareArea
getTriangleArea

HTTP REQUEST

H
E
A
D
E
R

Content-Type = “..”
Content-Length = “..”

P
A
Y
L
O
A
D

SOAP Message

HTTP RESPONSE

H
E
A
D
E
R

Content-Type = “..”
Content-Length = “..”

P
A
Y
L
O
A
D

SOAP Message

FiGure 28-2

Table 28-2 lists the most common HTTP headers you will need to set up in order to put the SOAP
message as part of the payload.

TaBLe 28-2: Common HTTP Headers

hTTP MeSSaGe header deScriPTion

Content-Length The length in bytes of the payload.

Content-Type A string that identiies the format of the payload. When the payload

contains a SOAP message, you need to set this to be:

text/xml; charset=ISO-8859-1

 Consuming SOAP Web Services ❘ 339

The following code can be used to set both the Content-Type and the Content-Length headers of
the HTTP-POST request:

NSString *message_length =
[NSString stringWithFormat:@"%d", [soap_message length]];

[req addValue:@"text/xml; charset=ISO-8859-1"
 forHTTPHeaderField:@"Content-Type"];

[req addValue:message_length
 forHTTPHeaderField:@"Content-Length"];

You can set up the payload of the message as follows:

[req setHTTPBody:[soap_message dataUsingEncoding:NSUTF8StringEncoding]];

At this point, your NSMutableURLRequest object is all ready to be sent to the web service over
an Internet connection. To connect to a web service and send the request, you need to use an
NSURLConnection object.

An NSURLConnection instance manages all the low-level intricacies of connecting to a web server
across the Internet. It performs this communication asynchronously, allowing your application to
do something else in the meantime. The NSURLConnection instance also requires a delegate object
that conforms to the NSURLConnectionDelegate protocol. Methods on this delegate object will be
called to signal different events in the life cycle of a connection; for instance, when new data has
been received or when a connection error has occurred.

To create an NSURLConnection object and send the request with your SOAP message to the web
server, use the following code:

connection = [[NSURLConnection alloc] initWithRequest:req delegate:self];

This code assumes that connection is a variable of type NSURLConnection* and is deined in the
class that contain this code.

The most commonly implemented NSURLConnectionDelegate methods are described in Table 28-3.

TaBLe 28-3: Commonly used NSURLConnectionDelegate Methods

MeThod naMe deScriPTion

- connection:didReceiveResponse: Called before the connection:didReceiveData:

event, and contains the HTTP response code.

- connection:didReceiveData: Called multiple times as small quantities of data are

received. You should concatenate each data object to

build up the entire data for the URL load.

- connection:didFailWithError: Called if the connection failed; error information

is provided.

- connectionDidFinishLoading: Called when the connection has inished

loading successfully. You should use the

accumulated data received over multiple calls to the

connection:didReceiveData: method at this point.

340 ❘ LeSSon 28 conSuming Soap weB SerViceS

A typical implementation of these delegate methods is provided here:

-(void) connection:(NSURLConnection *) connection
 didReceiveResponse:(NSURLResponse *) response
{
 if (receivedData == nil)
 receivedData = [NSMutableData data];
}

-(void) connection:(NSURLConnection *) connection didReceiveData:(NSData *) data
{
 [receivedData appendData:data];
}
-(void) connection:(NSURLConnection *) connection didFailWithError:(NSError *) error
{
 NSLog(@"%@", @"Unable to connect to web service!");
}

-(void) connectionDidFinishLoading:(NSURLConnection *) connection
{
 NSString* theResponse = [[NSString alloc]
 initWithBytes:[received_data mutableBytes]
 length:[received_data length]
 encoding:NSUTF8StringEncoding];
}

The preceding implementation assumes that you have declared a variable named receivedData in
your class, of type NSMutableData.

The sample implementation of the connectionDidFinishLoading delegate method converts the
response that has been accumulated in the NSMutableData variable receivedData into an NSString.
You could at this stage display the response in the Debug console with an NSLog statement.

This response is a SOAP message as shown here:

<?xml version="1.0" encoding="ISO-8859-1"?>
<SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <ns1:getCircleAreaResponse xmlns:ns1="http://tempuri.org">
 <return xsi:type="xsd:string">1519.76</return>
 </ns1:getCircleAreaResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

To extract the result from this XML response, you will need to parse it using an NSXMLParser object.
The result of the web method is contained within the result element, and is shown in boldface.
Parsing XML iles was covered in Lesson 27.

http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://schemas.xmlsoap.org/soap/encoding/
http://tempuri.org

Try It ❘ 341

Try iT

In this Try It, you build a new Xcode project based on the Single View Application template called
SoapClient to call a SOAP method on a web service.

Lesson requirements
 ➤ Launch Xcode.

 ➤ Create a new project based on the Single View Application template.

 ➤ Add a UIButton to the default scene and an appropriate action method to the view con-
troller class.

 ➤ Add a UITextField to the default scene and an appropriate outlet to the view controller class.

 ➤ Add a scrolling UITextView to the default scene and an appropriate outlet to the view
controller class.

 ➤ Dismiss the text ield when the Return button is pressed on the keyboard by implementing
a UITextFieldDelegate method.

 ➤ Send a SOAP request a web service when the UIButton is pressed.

 ➤ Display the SOAP response in the UITextView.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 28 folder in the download.

hints
 ➤ The MathService is located at http://www.asmtechnology.com/MathService/

mathService.php.

 ➤ The MathService implements a web method called getCircleArea that requires a single
parameter called radius.

 ➤ When composing SOAP messages, keep in mind that method names and parameter names
are case sensitive.

Step-by-Step

 1. Create a Single View Application in Xcode called SoapClient.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

http://www.wrox.com
http://www.asmtechnology.com/MathService/mathService.php
http://www.asmtechnology.com/MathService/mathService.php

342 ❘ LeSSon 28 conSuming Soap weB SerViceS

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: SoapClient

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson28

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Add a UITextField instance to the default scene.

 1. Use the Object library to add a Text Field. Resize and reposition it at
X = 20, Y = 20, W = 280, H = 31.

 2. Use the Attributes inspector to set the placeholder text to Enter Radius.

 3. Set the delegate property of the text ield to the view controller object.

 4. Using the assistant editor, create an outlet called radiusField and connect it to the
text ield.

 3. Add a button to the default scene.

 1. Add a UIButton instance to the default scene.

 2. Name the button Compute area of circle and resize/reposition it at X=66,
Y=69, W=188, H=37.

 3. Using the assistant editor, create an action method called onButtonPressed in the
view controller class and connect it to the Touch Up Inside event of the button.

 4. Add a UITextView instance to the default scene

 1. Using the Object library, add a Text View. Resize and reposition it at X=14, Y=122,
W=293, H=318.

 2. Using the Attribute inspector, uncheck the Editable checkbox.

 3. Clear the initial contents of the text view deleting the contents of the Text attribute.

Try It ❘ 343

 4. Using the assistant editor, add an outlet to the view controller class called result-
View and connect it to the text ield. Your view controller should resemble
Figure 28-3.

 5. Dismiss the text ield when the Return button is pressed on the keyboard.

 1. Ensure the Lesson28ViewController.h implements the UITextFieldDelegate
protocol.

 2. Add the following code to the implementation of the view controller class:

- (BOOL)textFieldShouldReturn:(UITextField *)textField
{
 [textField resignFirstResponder];
 return NO;
}

FiGure 28-3

 6. Send a SOAP request to a web service to compute the area of a circle when the button
is pressed.

 1. Add the following property declarations to the Lesson28ViewController.h ile:

__strong NSURLConnection* connection;
__strong NSMutableData* receivedData;

344 ❘ LeSSon 28 conSuming Soap weB SerViceS

 2. Have the view controller conform to the NSURLConnectionDataDelegate protocol.
The code in the Lesson28ViewController.h ile should now resemble:

 #import <UIKit/UIKit.h>

@interface Lesson28ViewController : UIViewController
 <NSURLConnectionDataDelegate, UITextFieldDelegate>

@property (weak, nonatomic) IBOutlet UITextField *radiusField;
@property (weak, nonatomic) IBOutlet UITextView *resultView;

@property (nonatomic, strong) NSURLConnection* connection;
@property (nonatomic, strong) NSMutableData* receivedData;
- (IBAction)onButtonPressed:(id)sender;

@end

 3. Add the following @synthesize statements to the Lesson28ViewController.m ile:

@synthesize connection;
@synthesize receivedData;

 4. Add the following code to the onButtonPressed: method in your view controller
class to dismiss the keypad if it is visible:

// hide keypad
if ([radiusField isFirstResponder])
 [radiusField resignFirstResponder];

 5. Before sending a request to the web service, you need to ensure that the value of
the radius parameter is valid. Add the following code to the onButtonPressed:
method, after the code from the previous step:

// ensure valid radius is specified
NSString* theRadius = radiusField.text;
if ((theRadius == nil) || ([theRadius length] == 0))
{
 UIAlertView* errorMessage = [[UIAlertView alloc] initWithTitle:nil
 message:@"Radius not specified"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [errorMessage show];

 return;
}

 6. The next step involves creating a SOAP message. Add the following code to the
onButtonPressed: method, after the code from the previous step, to create a SOAP
message that will call the getCircleArea web service method. This method requires
a single parameter called radius. Use the value entered by the user in the text ield.

NSString* soapMessage =
[NSString stringWithFormat:@"%@%@%@%@%@%@%@%@%@%@",
 @"<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>",
 @"<SOAP-ENV:Envelope

Try It ❘ 345

 SOAP-ENV:encodingStyle=\"http://schemas.xmlsoap.org/soap/encoding/\"
 xmlns:SOAP-ENV=\"http://schemas.xmlsoap.org/soap/envelope/\"
 xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"
 xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
 xmlns:SOAP-ENC=\"http://schemas.xmlsoap.org/soap/encoding/\">",
 @"<SOAP-ENV:Body>",
 @"<ns3916:getCircleArea xmlns:ns3916=\"http://tempuri.org\">",
 @"<radius xsi:type=\"xsd:string\">",
 theRadius,
 @"</radius>",
 @"</ns3916:getCircleArea>",
 @"</SOAP-ENV:Body>",
 @"</SOAP-ENV:Envelope>"];

 7. The SOAP message generated by this code is:

<?xml version="1.0" encoding="ISO-8859-1"?>
<SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <ns3916:getCircleArea xmlns:ns3916="http://tempuri.org">
 <radius xsi:type="xsd:string">22.0</radius>
 </ns3916:getCircleArea>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

 8. Prepare an HTTP-POST request for the web service, setting the Content-Type,
SoapAction, and Content-Length attributes by adding the following code to the
onButtonPressed: method, after the code for the previous step:

NSURL *url = [NSURL URLWithString:
 @"http://www.asmtechnology.com/MathService/mathService.php"];

NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];

// HTTP headers
NSString *messageLength = [NSString stringWithFormat:@"%d",
 [soapMessage length]];
[req addValue:@"text/xml; charset=ISO-8859-1"
 forHTTPHeaderField:@"Content-Type"];
[req addValue:@"" forHTTPHeaderField:@"SOAPAction"];
[req addValue:messageLength forHTTPHeaderField:@"Content-Length"];

// method = POST
[req setHTTPMethod:@"POST"];

 9. Set the SOAP message to be the body of the HTTP request by adding the following
code to the onButtonPressed: method, after the code from the previous step:

// BODY
[req setHTTPBody:[soapMessage dataUsingEncoding:NSUTF8StringEncoding]];

http://schemas.xmlsoap.org/soap/encoding/\
http://schemas.xmlsoap.org/soap/envelope/\
http://www.w3.org/2001/XMLSchema\
http://www.w3.org/2001/XMLSchema-instance\
http://schemas.xmlsoap.org/soap/encoding/\
http://tempuri.org\
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://schemas.xmlsoap.org/soap/encoding/
http://tempuri.org
http://www.asmtechnology.com/MathService/mathService.php"]

346 ❘ LeSSon 28 conSuming Soap weB SerViceS

 10. Finally, send the request to the server over an Internet connection by adding the
following code to the end of the onButtonPressed: method, after the code from
the previous step:

// send request
self.connection = [[NSURLConnection alloc] initWithRequest:req
delegate:self];
if (self.connection != nil)
{
 self.receivedData = [NSMutableData data];
}
else
{
 [[UIApplication sharedApplication]
 setNetworkActivityIndicatorVisible:NO];
}

 7. Implement NSURLConnectionDataDelegate methods in your view controller class.

 1. Implement the connection:didReceiveResponse: method as follows:

-(void) connection:(NSURLConnection *) connection
 didReceiveResponse:(NSURLResponse *) response
{
 [self.receivedData setLength:0];
}

 2. Implement the connection:didReceiveData: method as follows:

- (void)connection:(NSURLConnection *)connection
 didReceiveData:(NSData *)data
{
 [self.receivedData appendData:data];
}

 3. Implement the connection:didFailWithError: method as follows:

-(void) connection:(NSURLConnection *) connection
didFailWithError:(NSError *) error
{
 [[UIApplication sharedApplication] setNetworkActivityIndicatorVisible:NO];

 UIAlertView* errorMessage = [[UIAlertView alloc] initWithTitle:nil
 message:@"Unable to connect to web service!"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [errorMessage show];
}

 4. Implement the connectionDidFinishLoading: method as follows:

-(void) connectionDidFinishLoading:(NSURLConnection *) connection
{
 const void* receivedBytes = [self.receivedData mutableBytes];
 int dataLength = [self.receivedData length];
 NSString* theResponse = [[NSString alloc] initWithBytes:receivedBytes

Try It ❘ 347

 length:dataLength
encoding:NSUTF8StringEncoding];

 resultView.text = theResponse;

 NSLog(@"%@", @"Response:");
 NSLog(@"%@", theResponse);

 [[UIApplication sharedApplication]
 setNetworkActivityIndicatorVisible:NO];
}

 8. Test your app in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively you can use the Project d
Run menu item.

 2. Enter a radius between 1 and 100 and press the Compute Area of Circle button. You
should get a result similar to Figure 28-4.

FiGure 28-4

 3. Examine the contents of the Debug console to examine the SOAP message and SOAP
response. The SOAP response is shown in the following code. The area of the circle is
contained in the result element and is shown in boldface:

<?xml version="1.0" encoding="ISO-8859-1"?>
<SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

http://schemas.xmlsoap.org/soap/encoding/

348 ❘ LeSSon 28 conSuming Soap weB SerViceS

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <ns1:getCircleAreaResponse xmlns:ns1="http://tempuri.org">
 <return xsi:type="xsd:string">1519.76</return>
 </ns1:getCircleAreaResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Please select Lesson 28 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://schemas.xmlsoap.org/soap/encoding/
http://tempuri.org
http://www.wrox.com/go/iphoneipadappvideo

Touches and Gestures

iOS devices differ from traditional non-mobile devices. Interaction is received from a touch
or gesture, rather from a keyboard or mouse. The touch or gesture is a UIEvent and the
UIApplication class manages these events. The events that are most common on iOS
devices are touch events interacting with views.

A touch sequence begins as a inger or ingers are placed on the touch screen, and ends when
the last inger is removed from the touch screen.

Single-ingered events can be a tap, touch, and hold, or the drag and swipe. Multiple-ingered
events, for example, can be a pinch, commonly used to zoom in or out on a photo.

This lesson looks at the two techniques of touch event handling:

 ➤ Use of the phase methods: touchesBegin, touchesMoved, touchesCancelled,
and touchesEnded.

 ➤ Use of the UIGestureRecognizer class.

Touch evenTS

A touch event is a UIEvent of the type UIEventTypeTouches. The touch itself is a UITouch
object that contains the following information:

 ➤ locationInView: The touch coordinates

 ➤ previousLocationInView: Previous coordinates

 ➤ tapCount: Current tap count

 ➤ timestamp: Time of the last touch

 ➤ phase: The current touch phase

29

350 ❘ LeSSon 29 ToucHeS and geSTureS

When a touch event occurs, it is placed on a queue that is distributed by the application to the window
where the event was initiated. The event is then forwarded to a irst responder. In most cases, the irst
responder is the view where the touch occurred.

If that view cannot handle the touch event, the event is then forwarded to the next responder in the
chain—a view controller, for example.

For a view to enter the responder chain, it must perform the following:

[self becomeFirstResponder];

In addition, the following method must be added in the view controller:

- (BOOL)canBecomeFirstResponder { return YES; };

Touch Phases

Four phases make up touch events:

 ➤ Touching of the irst inger:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

 ➤ Touch and holding of one or more ingers:

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event

 ➤ Removing of one or more ingers:

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

 ➤ Touch event being cancelled by system event, like a phone call:

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event

Tap counting

To obtain the tap count, retrieve the tapCount property of the UITouch class:

UITouch *aTouch = [touches anyObject];
int count = [aTouch tapCount];

GeSTure evenTS

Since the introduction of the UIGestureRecognizer class in iOS SDK 3.2, gesture recognition was
simpliied. Six gesture recognizers were introduced:

 ➤ UITapGestureRecognizer: For taps

 ➤ UIPinchGestureRecognizer: For in, out pinching

 ➤ UIPanGestureRecognizer: For dragging

 ➤ UISwipeGestureRecognizer: For swiping

 ➤ UIRotationGestureRecognizer: For rotating inger in opposite direction

 ➤ UILongPressGestureRecognizer: For touch and hold

Try It ❘ 351

Gesture handling

The process of gesture handling begins with the creation of an instance of the gesture recognizer
you need, and assigning a method to handle the event as follows:

UITapGestureRecognizer *recognizer = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleTapEvent:)];
[view addGestureRecognizer:recognizer];
[recognizer setDelegate:self];

The handleTapEvent method receives the UITapGestureRecognizer and processes the event by
centering an image over the location of the tap, as shown here:

- (void)handleTapEvent:(UITapGestureRecognizer *)recognizer {
 CGPoint location = [recognizer locationInView:self];

 [UIView beginAnimations:nil context:nil];
 [UIView setAnimationDuration:0.05];
 [imageView setCenter:location];
 [UIView commitAnimations];
}

Gesture recognizer Phases

Seven phases make up gesture recognizers:

 ➤ UIGestureRecognizerStatePossible: Has not yet recognized its gesture

 ➤ UIGestureRecognizerStateBegan: Has received touch objects that have been recognized
as a gesture

 ➤ UIGestureRecognizerStateChanged: Has received touch objects that have been recog-
nized as a change

 ➤ UIGestureRecognizerStateEnded: Has received touch objects that have been recognized
as the end

 ➤ UIGestureRecognizerStateCancelled: Has received touch objects that have been recog-
nized as a cancellation of a gesture

 ➤ UIGestureRecognizerStateFailed: Has received multi-touch sequence that it cannot rec-
ognize as a gesture

 ➤ UIGestureRecognizerStateRecognized = UIGestureRecognizerStateEnded: Has
received multi-touch sequence that it does recognize as a gesture

Try iT

In this Try It, you implement a Single View Application that captures gestures and displays the
gesture type it has recognized.

352 ❘ LeSSon 29 ToucHeS and geSTureS

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson29 folder in the download.

Lesson requirements
 ➤ Create an Xcode project using the Single View Application template.

 ➤ Create a storyboard including just a root view controller.

 ➤ Create a series of gesture recognizers.

 ➤ Recognize and identify the gestures that were created.

hints
 ➤ Because this application uses storyboards instead of xib iles, remember to have the Use

Storyboard option checked at project creation.

 ➤ You will create not only the gestures, but also the handlers.

 ➤ You create four swipe gesture recognizers, one for each direction.

Step-by-Step

 1. Create a Single View Application.

 1. Launch Xcode.

 2. Create your new iOS project.

 a. To create a new project, select Create a New Xcode Project.

 b. On the left under iOS, select Application.

 c. Select Single View Application from the template list and click Next.

 d. Choose the following options for your project:

 ➤ Product Name: Lesson29

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: leave blank

 ➤ Device Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

http://www.wrox.com

Try It ❘ 353

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 e. Select the location on your computer where the project will be saved and
select Create.

 f. Your Xcode project has been created as shown in Figure 29-1.

FiGure 29-1

 2. Design the user interface.

 1. On the left, select MainStoryboard.storyboard.

 2. On the right, select the third button in the View section, to display the Utilities view.

 3. Drag a label from the object library and place it near the top of the view and resize
it to be as wide as the view.

 4. Select two more labels and resize and place them each under the other, so you have
three labels arranged in a row.

 5. Select a view and drag it into the view controller in the middle.

 6. From the attributes inspector set the background to black.

 7. From the size inspector set the width and height to 100 and center it in the view as
shown in Figure 29-2.

354 ❘ LeSSon 29 ToucHeS and geSTureS

FiGure 29-2

 3. To create the outlets for the view controller:

 1. Select the attributes inspector to bring up the ViewController.h ile.

 2. Select the irst label and control+drag to the interface source code just above the @end.

 3. Enter phaseLabel for the outlet name and click Connect.

 4. Select the second label and control+drag to the interface source code just above
the @end.

 5. Enter tapCountLabel for the outlet name and click Connect.

 6. Select the third label and control+drag to the interface source code just above the @end.

 7. Enter touchCountLabel for the outlet name and click Connect.

 8. Select the 100 n 100 view and control+drag to the interface source code just above
the @end.

 9. Enter touchView for the outlet name and click Connect.

 10. Select the Standard editor to hide the detail view controller.

 4. In addition to adding <UIGestureRecognizerDelegate> to the interface class declaration,
add the following to the ViewController.h class before the @end statement:

#pragma mark - Create Gesture Recognizers

- (void)createGestureRecognizers;
- (void)createSingleTapRecognizer;
- (void)createDoubleTapRecognizer;

Try It ❘ 355

- (void)createPinchRecognizer;
- (void)createSwipeRecognizers;
- (void)createSwipeRecognizer:(UISwipeGestureRecognizerDirection)direction;

#pragma mark - Event Handlers

- (void)handleSingleTapEvent:(UITapGestureRecognizer *)recognizer;
- (void)handleDoubleTapEvent:(UITapGestureRecognizer *)recognizer;
- (void)handlePinchEvent:(UIPinchGestureRecognizer *)recognizer;
- (void)handleSwipeEvent:(UISwipeGestureRecognizer *)recognizer;

#pragma mark - Utility methods

- (void)updateDisplayWithPhase:(NSString *)phase
 tapCount:(int)tapCount
 touchCount:(int)touchCount;
- (void)moveImage:(UIGestureRecognizer *)recognizer;

 5. Make the following updates to the ViewController.m class.

 1. In the viewDidLoad method add the following below the [super viewDidLoad];
statement:

[self becomeFirstResponder];
[self updateDisplayWithPhase:@"" tapCount:0 touchCount:0];
[self createGestureRecognizers];

 2. Add the following above the @end:

- (BOOL)canBecomeFirstResponder {
 return YES;
}

 3. To create the gesture recognizers, add the following above the @end:

#pragma mark - Create Gesture Recognizers

- (void)createGestureRecognizers {
 [self createSingleTapRecognizer];
 [self createDoubleTapRecognizer];
 [self createPinchRecognizer];
 [self createSwipeRecognizers];
}

- (void)createSingleTapRecognizer {
 UITapGestureRecognizer *recognizer =
 [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleSingleTapEvent:)];
 [[self view] addGestureRecognizer:recognizer];
 [recognizer setDelegate:self];
}

- (void)createDoubleTapRecognizer {
 UITapGestureRecognizer *recognizer =
 [[UITapGestureRecognizer alloc]
 initWithTarget:self

356 ❘ LeSSon 29 ToucHeS and geSTureS

 action:@selector(handleDoubleTapEvent:)];
 [[self view] addGestureRecognizer:recognizer];
 [recognizer setDelegate:self];
 [recognizer setNumberOfTapsRequired:2];
}

- (void)createPinchRecognizer {
 UIPinchGestureRecognizer *recognizer =
 [[UIPinchGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handlePinchEvent:)];
 [[self view] addGestureRecognizer:recognizer];
 [recognizer setDelegate:self];
}
- (void)createSwipeRecognizers {
 [self createSwipeRecognizer:UISwipeGestureRecognizerDirectionLeft];
 [self createSwipeRecognizer:UISwipeGestureRecognizerDirectionRight];
 [self createSwipeRecognizer:UISwipeGestureRecognizerDirectionUp];
 [self createSwipeRecognizer:UISwipeGestureRecognizerDirectionDown];
}

- (void)createSwipeRecognizer:
 (UISwipeGestureRecognizerDirection)direction
{
 UISwipeGestureRecognizer *recognizer =
 [[UISwipeGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleSwipeEvent:)];
 [[self view] addGestureRecognizer:recognizer];
 [recognizer setDirection:direction];
}

 4. To create the event handlers, add the following above the @end:

#pragma mark - Event Handlers

- (void)handleSingleTapEvent:(UITapGestureRecognizer *)recognizer {
 [self updateDisplayWithPhase:@"UITapGestureRecognizer"
 tapCount:1
 touchCount:1];
 [self moveImage:recognizer];
}

- (void)handleDoubleTapEvent:(UITapGestureRecognizer *)recognizer {
 [self updateDisplayWithPhase:@"UITapGestureRecognizer"
 tapCount:2
 touchCount:1];
 [self moveImage:recognizer];
}

- (void)handlePinchEvent:(UIPinchGestureRecognizer *)recognizer {
 [self updateDisplayWithPhase:@"UIPinchGestureRecognizer"
 tapCount:1
 touchCount:2];

 CGFloat scale = [(UIPinchGestureRecognizer *)recognizer scale];

Try It ❘ 357

 if ([recognizer state] == UIGestureRecognizerStateEnded) {
 [UIView beginAnimations:nil context:nil];
 [UIView setAnimationDuration:0.10];
 [[self touchView] setTransform:CGAffineTransformIdentity];
 [UIView commitAnimations];
 } else {
 [UIView beginAnimations:nil context:nil];
 [UIView setAnimationDuration:0.10];
 [[self touchView]
 setTransform:CGAffineTransformMakeScale(scale, scale)];
 [UIView commitAnimations];
 }
}

- (void)handleSwipeEvent:(UISwipeGestureRecognizer *)recognizer {
 NSString *swipeDirection = nil;
 CGPoint location = [recognizer locationInView:[self view]];
 [[self touchView] setCenter:location];

 if([recognizer direction] == UISwipeGestureRecognizerDirectionLeft) {
 swipeDirection = @"UISwipeGestureRecognizerDirectionLeft";
 location.x -= 150.0;
 } else if([recognizer direction] ==
 UISwipeGestureRecognizerDirectionRight) {
 swipeDirection = @"UISwipeGestureRecognizerDirectionRight";
 location.x += 150.0;
 } else if(([recognizer direction] ==
 UISwipeGestureRecognizerDirectionUp)) {
 swipeDirection = @"UISwipeGestureRecognizerDirectionUp";
 location.y -= 150.0;
 } else if(([recognizer direction] ==
 UISwipeGestureRecognizerDirectionDown)) {
 swipeDirection = @"UISwipeGestureRecognizerDirectionDown";
 location.y += 150.0;
 }

 if(swipeDirection != nil) {
 [self updateDisplayWithPhase:swipeDirection
 tapCount:1
 touchCount:1];
 [UIView beginAnimations:nil context:nil];
 [UIView setAnimationDuration:0.50];
 [[self touchView] setCenter:location];
 [UIView commitAnimations];
 }
}

 5. To update the three labels with the current phase, tap, and touch counts, add the
following utility method:

- (void)updateDisplayWithPhase:(NSString *)phase
 tapCount:(int)tapCount
 touchCount:(int)touchCount {

358 ❘ LeSSon 29 ToucHeS and geSTureS

 [[self phaseLabel] setText:[NSString
 stringWithFormat:@”Touch Phase:%@”, phase]];
 [[self tapCountLabel] setText:[NSString
 stringWithFormat:@”Tap Count:%d”, tapCount]];
 [[self touchCountLabel] setText:[NSString
 stringWithFormat:@”TouchCount: %d”, touchCount]];
}

 6. To move the image depending on the gesture, add the following utility method:

- (void)moveImage:(UIGestureRecognizer *)recognizer {
 CGPoint location = [recognizer locationInView:[self view]];

 [UIView beginAnimations:nil context:nil];
 [UIView setAnimationDuration:0.10];
 [[self touchView] setCenter:location];
 [UIView commitAnimations];
}

 6. Run the application.

 1. Select the iPhone Simulator to run the application.

 2. Click the Run button on the Xcode toolbar.

 3. When the application launches, tap, double tap, and swipe, and observe the display
and the 100 n 100 image move about the view.

Please select Lesson 29 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Printing

Starting with iOS 4.2, applications can print their contents to local printers. Printing is a valuable
feature that can be added to an existing application often with only a few lines of code. In this
lesson, you learn to add printing capabilities to your apps.

From an end user’s perspective, printing from an iOS device involves tapping a print button, spec-
ifying a few print options, and sending a print job to the printer. A print job is a unit of work for
the iOS printing subsystem, which includes not just the content to be printed, but also additional
information such as the name of the printer, print quality settings, and page orientation.

The print options user interface is provided by UIKit. On an iPad it is a popover view; on an
iPhone/iPod Touch it is a sheet that can be animated to slide up from the bottom of the screen
(Figure 30-1).

FiGure 30-1

30

360 ❘ LeSSon 30 prinTing

The print options always include a list of printers that have been discovered, and the number of
copies. Sometimes the user interface can include additional options such as the range of pages to
print, and duplex printing.

The printing subsystem is shared between all applications; print jobs are sent to the printer in the
order in which they are received. After submitting a print job from an application, the user can
monitor its status by double-tapping the home button and using the standard Print Center applica-
tion (Figure 30-2). The Print Center application is available only when one or more print jobs are
in progress.

FiGure 30-2

PreParinG conTenT For PrinTinG

The UIKit framework contains several key classes related to printing. These are briely described in
this section.

uiPrintinfo

An instance of this class represents attributes of a print job such as the name of the printer,
page orientation, output type, and duplex mode. Typically, you create a UIPrintInfo object by
using the printInfo class method and set up relevant properties. The properties are shown in
Table 30-1.

Preparing Content for Printing ❘ 361

TaBLe 30-1: UIPrintInfo Properties

ProPerTy deScriPTion

NSString* jobName A string representing the name of the print job. This

name will be used to list the job in the Print Center

while it is being printed. The default value is the

name of the application.

UIPrintInfoOrientation orientation Can be either UIPrintInfoOrientationPortrait

or UIPrintInfoOrientationLandscape. Portrait

mode is the default.

UIPrintInfoOutputType outputType Speciies the output type of the print job. The value

you specify here determines the default values of

some of the other properties of the UIPrintInfo

instance, and the default paper size. The output-

Type property can be one of the following:

UIPrintInfoOutputGeneral

UIPrintInfoOutputPhoto

UIPrintInfoOutputGrayscale

UIPrintInfoDuplex duplex Speciies duplex-mode printing options. It can be

one of the following values:

UIPrintInfoDuplexNone

UIPrintInfoDuplexLongEdge

UIPrintInfoDuplexShortEdge

The default value is based on the output type—it is

none for photo and long edge for others.

Besides these properties, the UIPrintInfo object contains another property that identiies the
printer. This property is illed by UIKit after the user selects a printer. The following code snippet
creates a UIPrintInfo object suitable for printing a photo:

UIPrintInfo *printInfo = [UIPrintInfo printInfo];
printInfo.outputType = UIPrintInfoOutputPhoto;
printInfo.orientation = UIPrintInfoOrientationPortrait;
printInfo.jobName = @"Bird";

uiPrintPaper

Instances of this class specify the size of paper to use and the printable area. Most applications
use the default object created by UIKit for a print job, but it is possible to provide one of your own.
UIKit chooses default paper sizes based on the destination printer and the output job type speciied
in UIPrintInfo object.

362 ❘ LeSSon 30 prinTing

uiPrintinteractioncontroller

A shared instance of this class is the central object controlling a print job for your application. It con-
tains information about the print job, the size of the paper, and the content to be printed. The content
to be printed can be speciied as a single image/PDF document, an array of images/PDF documents, a
print formatter, or a page renderer. To access the shared instance, use the sharedPrintController
class method as follows:

UIPrintInteractionController *pic = [UIPrintInteractionController
 sharedPrintController];

Some of the properties of the UIPrintInteractionController class are listed in Table 30-2.

TaBLe 30-2: UIPrintInteractionController Properties

ProPerTy deScriPTion

UIPrintInfo* printInfo A reference to a UIPrintInfo object.

Id<UIPrintInteractionControllerDelegate>

delegate

An optional delegate

object that implements the

UIPrintInteractionControllerDelegate

protocol.

BOOL showsPageRange Speciies whether the print options user inter-

face should contain a page range control.

id printingItem Refers to a single NSData, NSURL, or

UIImage object to print.

NSArray* printingItems Refers to an array of NSData, NSURL, or

UIImage objects to print.

UIPrintFormatter* printFormatter An instance of a UIPrintFormatter sub-

class that can be used for complex content

that needs pagination.

UIPrintPageRenderer* printPageRenderer An instance of a subclass of

UIPrintPageRender that can be used for

complex content that requires advanced

printing features such as headers and footers.

The content to be printed can be assigned to the printingItem, printingItems, printFormatter,
or printPageRenderer properties. If you are printing simple images and PDF documents you use
either the printingItem or the printingItems property.

If you want to print the contents of a UIView, you would typically get a UIViewPrintFormatter
object from the view and assign it to the printFormatter property. If you wanted total control over
the content that is printed, including margins, pagination, headers, and footers, you would create
an instance of a UIPrintPageRenderer subclass and assign it to the printPageRenderer property.
Using print formatters and page renderers for printing is outside the scope of this book.

Try It ❘ 363

A UIPrintInteractionController object can have a reference to an optional delegate object
that conforms to the UIPrintInteractionControllerDelegate protocol. The methods in the
delegate object are invoked when printing options are presented/dismissed and when the print job
begins/ends. If your application requires a special paper size, the delegate object can return an
appropriate UIPrintPaper instance.

Before you can print content, you must ensure the iOS device supports printing. It is a
good idea to check this once your view loads, and show/hide the print button appropriately.
To determine if printing is available, use the isPrintingAvailable class method of the
UIPrintInteractionController object.

BOOL canPrint = [UIPrintInteractionController isPrintingAvailable];

Once you have set up appropriate properties of the UIPrintInteractionController shared
instance, you can display the print options to users by using one of three methods:

 ➤ presentFromBarButtonItem:animated:completionHandler: This is used to present the
print options from a button in a navigation bar or toolbar.

 ➤ presentFromRect:inView:animated:completionHandler: This is used to present the
print options from an arbitrary rectangle in the application’s view.

 ➤ presentAnimated:completionHandler: This is used when presenting the print options on
an iPhone or iPod Touch. It animates a sheet that slides up from the bottom.

Each of these methods requires a block handler that is called when the job is complete, or errors
occur. This handler typically resembles the following:

void (^completionHandler)(UIPrintInteractionController *,
 BOOL, NSError *) =
^(UIPrintInteractionController *pic, BOOL completed, NSError *error)
 {
 if (!completed && error)
 {
 // handle error here
 }
 return;
 };

A simple application that uses these concepts to print a UIImage object is covered in this lesson’s
Try It section.

Try iT

In this Try It, you build an iPhone application based on the Single View Application template called
PrintTest that prints a UIImage. To test the printing functionality, you use the iOS Printer Simulator.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Import image resources into the project.

 ➤ Add a UIImageView instance to the scene.

364 ❘ LeSSon 30 prinTing

 ➤ Add a UIButton instance to the scene and an appropriate action method in the view con-
troller class.

 ➤ Ensure printing features are available in the viewDidLoad method.

 ➤ Launch the iOS Printer Simulator.

 ➤ Print the image.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 30 folder in the download.

hints
 ➤ Launch the iOS Printer Simulator from the File d Print Simulator menu of the iOS

Simulator.

Step-by-Step

 1. Create a Single View Application in Xcode called PrintTest.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: PrintTest

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson30

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

http://www.wrox.com

Try It ❘ 365

 2. Import the bird.png resource from this chapter’s resource folder on the DVD.

 3. Add a UIImageView instance to the scene.

 1. Open the storyboard ile and use the Media library to drag and drop bird.png onto
the default scene. This automatically creates an image view.

 2. Size and position the image view to X=0, Y=–20, W=320, H=480.

 4. Add a UIButton instance to the scene and create an appropriate outlet and action method in
the view controller class.

 1. Drag and drop a Round Rect Button from the Object library onto the scene and posi-
tion it at X=30, Y=398, W=264, H=37. Change the title of the button to Print Image.

 2. Use the assistant editor to create an outlet called printButton in the view controller
class and connect it to the button.

 3. Use the assistant editor to create an action called onPrint in the view controller
class and associate it with the Touch Up Inside event of the button.

 5. Add the following code to the viewDidLoad method of the Lesson30ViewController class,
after the [super viewDidLoad] line.

BOOL canPrint = [UIPrintInteractionController isPrintingAvailable];
if (canPrint == NO)
 [printButton setHidden:YES];

 6. Print the image.

 1. Add the following code to the onPrint method of the Lesson30ViewController class:

UIImage* birdImage = [UIImage imageNamed:@"bird.png"];

UIPrintInteractionController *pic = [UIPrintInteractionController
 sharedPrintController];

UIPrintInfo *printInfo = [UIPrintInfo printInfo];
printInfo.outputType = UIPrintInfoOutputPhoto;
printInfo.orientation = UIPrintInfoOrientationPortrait;
printInfo.jobName = @"Bird Image Print";

pic.printInfo = printInfo;
pic.showsPageRange = NO;
pic.printingItem = birdImage;

void (^completionHandler)(UIPrintInteractionController*,
 BOOL, NSError *) =
^(UIPrintInteractionController *pic, BOOL completed, NSError *error)
{
 if (!completed && error)
 {
 UIAlertView* errorMessage = [[UIAlertView alloc]
 initWithTitle:@"Printing Error"
 message:nil
 delegate:nil
 cancelButtonTitle:@"Ok"

366 ❘ LeSSon 30 prinTing

 otherButtonTitles:nil];
 [errorMessage show];
 }
 return;
};

[pic presentAnimated:YES completionHandler:completionHandler];

 7. Test your app in the iOS Simulator.

 1. Launch the Printer Simulator from the File d Print Simulator menu item of the iOS
Simulator application on your Mac.

 2. Tap the Print Image button, select appropriate options, and tap the Print button.

Please select Lesson 30 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Basic Animation with Timers

A timer is an object that waits for a time interval and then sends a speciic message to a target
object. When a timer sends the message, the act is generally referred to as iring, and the timer
is said to have ired. You can set up a timer to be repeating or non-repeating. A non-repeating
timer ires only once; a repeating timer ires and then reschedules itself to ire again.

In iOS development, timers are represented by instances of the NSTimer class. Timers have
several uses, but in this lesson you learn to use them to create a simple animation.

Creating a repeating or non-repeating timer is simple and can be done by sending the
scheduleTimerWithTimeInterval:target:selector:userInfo:repeats: class method
to the NSTimer class:

NSTimer* animationTimer = [NSTimer scheduledTimerWithTimeInterval:0.5
 target:self
 selector:@selector(onTimerFired:)
 userInfo:nil
 repeats:YES];

The irst parameter to this method is the time interval after which the timer should ire, expressed
in milliseconds. If the timer is repeating, this is also the interval that will be used to reschedule the
timer after it has ired.

The second parameter is the object to which a message should be sent when the timer ires. When
used within view controllers, it is common to provide self for this value. The third parameter
is the name of the message that should be sent to the target object. The object must implement a
method that corresponds to the message. The method must be of a speciic signature:

 - (void) methodName:(NSTimer*)timer;

It must not return any values, and must accept a single parameter of type NSTimer*. The
fourth parameter can be an instance of an NSObject subclass that contains some information
you want to provide to the target object when the timer ires. This is usually set to nil.

The inal parameter is a Boolean value that speciies whether the timer should be a repeating
one. If you have created a repeating timer, you must dispose of the timer when you no longer

31

368 ❘ LeSSon 31 BaSic animaTion wiTH TimerS

need it. Disposing of a timer object is also known as invalidating it; once invalidated, a repeating timer
will not ire. Non-repeating timers do not need to be invalidated. To invalidate a repeating timer, send
the timer object an invalidate message:

[animationTimer invalidate];

If you have speciied an object in the userInfo parameter while creating the timer, you can retrieve
the object within the method that is ired in the target object as follows:

- (void)onTimerFired:(NSTimer*)timer
{
 id someObject = [timer userInfo];
}

aniMaTinG uivieW SuBcLaSSeS

The size and position of a UIView subclass is collectively referred to as its frame. The position of a
view is expressed by specifying the distance of the top-left corner of the view from that of its parent. If
the view has no parent, the distance is measured from the top-left corner of the window (Figure 31-1).

Window / Parent View Width
0, 0

X

Y

Width

W
in

d
o

w
 /

 P
a

re
n

t
V

ie
w

 H
e

ig
h

t

Height

FiGure 31-1

The size of the view is simply the number of pixels horizontally and vertically. A frame is essentially
a rectangle and is represented by the CGRect structure. To create one, you specify the x, y, width,
and height values to the CGRectMake function:

CGRect rect1 = CGRectMake(10.0, 20.0, 100.0, 100.0);

The CGRect structure internally contains two members, origin and size, which themselves are
CGPoint and CGSize structures. A CGPoint structure has two loat members, x and y, that represent
the coordinate values of the point in question. A CGSize structure has two loat members, width
and height.

Animating UIView Subclasses ❘ 369

Thus, if rect1 is a CGRect instance, you can access the individual x, y, width, and height members as:

rect1.origin.x
rect1.origin.y
rect1.size.width
rect1.size.height

CGRect, CGPoint, CGSize, and CGRectMake are all part of the Core Graphics framework. This
framework is automatically included in your iOS applications when you use most of Xcode’s iOS
application templates.

You can reposition a UIView subclass by simply providing a different value for the origin of the
view’s frame (Figure 31-2). For instance, if myButton is an instance of UIButton with frame 100,
20, 50, 90, you can reposition it at 300, 100 by changing its frame using the following code:

myButton.frame = CGRectMake(300, 100, 50, 90);

300

90

X-axis
0, 0

100

20

Y
-a

x
is

FiGure 31-2

If you were to repeatedly reposition a UIView subclass (such as an image view) using a repeating
timer, you could create simple moving objects on your screen. Animation is a complex subject and in
fact Apple provides a framework called Core Animation designed speciically for this purpose. Core
Animation is beyond the scope of this book; however, in this lesson’s Try It section, you will move
an image view across the screen using a repeating timer.

For an introduction to Core Animation, read the “Core Animation
Programming Guide,” available at: http://developer.apple.com/
library/mac/documentation/Cocoa/Conceptual/CoreAnimation_guide/

Introduction/Introduction.html.

http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreAnimation_guide/Introduction/Introduction.html
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreAnimation_guide/Introduction/Introduction.html

370 ❘ LeSSon 31 BaSic animaTion wiTH TimerS

Try iT

In this Try It, you build an iPhone application based on the Single View Application template called
Bounce that uses a timer to move a ball on the screen.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Import image resources into the project.

 ➤ Add a UIImageView instance to the scene and an appropriate outlet in the view controller ile.

 ➤ Create a repeating timer in the viewDidLoad method.

 ➤ Move the image view across the screen by a small amount each time the timer ires.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 31 folder in the download.

hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identiier in the Project Options dialog box.

 ➤ A repeating timer must be invalidated when you do not need it any longer.

Step-by-Step

 1. Create a Single View Application in Xcode called Bounce that uses a storyboard.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: Bounce

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson31

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

http://www.wrox.com

Try It ❘ 371

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Import the ball.png resource from this chapter’s resource folder on the DVD into the project.

 3. Add a UIImageView instance to the scene and connect it to an outlet in the view
controller class.

 1. Open the storyboard ile and use the Media library to drag and drop ball.png onto
the default scene. This automatically creates an image view.

 2. Use the assistant editor to create an outlet in the view controller class and connect it
to the image view. Name the outlet ballImage.

 4. Set up a timer in the view controller class.

 1. Add the following @property declaration to the Lesson31ViewController.h ile:

@property (strong, nonatomic) NSTimer* animationTimer;

 2. Declare the method that will be called when the timer is ired in the
Lesson31ViewController.h ile as:

-(void) onTimerFired:(NSTimer*)timer;

Your Lesson31ViewController.h ile should now resemble the following:

#import <UIKit/UIKit.h>

@interface Lesson31ViewController : UIViewController

@property (weak, nonatomic) IBOutlet UIImageView *ballImage;
@property (strong, nonatomic) NSTimer* animationTimer;

-(void) onTimerFired:(NSTimer*)timer;
@end

 3. Add the following @synthesize statement to the Lesson31ViewController.m ile:

@synthesize animationTimer;

 4. Create a repeating timer in the viewDidLoad method of the view controller class
using the following code:

animationTimer = [NSTimer scheduledTimerWithTimeInterval:0.1
 target:self
 selector:@selector(onTimerFired:)
 userInfo:nil
 repeats:YES];

372 ❘ LeSSon 31 BaSic animaTion wiTH TimerS

 5. Add the following code at the top of viewDidUnload method of the view controller
class to invalidate the timer:

[animationTimer invalidate];

 5. Move the image view across the screen in the onTimerFired method.

 1. Add the following @property declarations to the Lesson31ViewController.h ile:

@property int velocityX;
@property int velocityY;

 2. Add the following @synthesize statements to the Lesson31ViewController.m ile:

@synthesize velocityX;
@synthesize velocityY;

 3. Add the following code to the viewDidLoad method, before creating the timer:

velocityX = 10;
velocityY = 17;

 4. Implement the onTimerFired: method in the view controller class as follows:

- (void) onTimerFired:(NSTimer*)timer
{
 // current position of ball
 int ballRadius = 34;
 int currentX = ballImage.frame.origin.x + ballRadius;
 int currentY = ballImage.frame.origin.y + ballRadius;

 // new position of ball
 int newX = currentX + velocityX;
 int newY = currentY + velocityY;

 // ensure new position is within the bounds of the screen

 // left
 if (newX < ballRadius)
 {
 newX = ballRadius;
 velocityX = velocityX * -1;
 }

 // top
 if (newY < ballRadius)
 {
 newY = ballRadius;
 velocityY = velocityY * -1;
 }

 // right
 if (newX > 320 - ballRadius)
 {
 newX = 320 - ballRadius;
 velocityX = velocityX * -1;
 }

Try It ❘ 373

 // bottom
 if (newY > 460 - ballRadius)
 {
 newY = 460 - ballRadius;
 velocityY = velocityY * -1;
 }

 // put ball in new place.
 ballImage.frame = CGRectMake(newX - ballRadius,
 newY - ballRadius,
 ballRadius * 2,
 ballRadius * 2);
}

 6. Test your app in the iOS Simulator by clicking the Run button in the Xcode toolbar.
Alternatively you can use the Project d Run menu item.

Please select Lesson 31 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Introduction to Core Image

Core Image is a framework for image processing built into iOS 5 that aims to provide near real-
time processing of images and video by leveraging programmable graphics hardware capabilities.
Prior to Core Image, the only way a developer could take advantage of programmable graphics
hardware was to create small programs called shaders in a language called OpenGL Shading
Language (GLSL). Not all devices have programmable graphics hardware; on these older devices
(such as the iPhone 3G), Core Image falls back to using the main CPU for computations.

The Core Image framework is not included in any of the standard iOS application templates.
To use this framework in your code you need to add it manually to your project.

iMaGeS and FiLTerS

You need to be aware of two key concepts while working with Core Image:

 ➤ Images: An image is represented by an instance of the CIImage class and represents
the input or output image/video frame that you want to process.

 ➤ Filters: The code that performs the actual image processing is known as a ilter. A ilter
is represented by an instance of a CIFilter object. Though it is possible to create your
own Core Image ilters, this is an advanced topic and beyond the scope of this book.
Apple provides more than 100 ready-to-use ilters with the Core Image framework that
you can use in your application.

Apple’s ilters are grouped into 18 categories, and each category is identiied by a unique name.
These names are listed in Table 32-1.

32

376 ❘ LeSSon 32 inTroducTion To core image

TaBLe 32-1: Core Image Filter Categories

kCICategoryBlur kCICategoryColorEffect kCICategoryStylize

kCICategoryDistortionEffect kCICategoryTransition kCICategorySharpen

kCICategoryGeometryAdjustment kCICategoryTileEffect kCICategoryVideo

kCICategoryCompositeOperation kCICategoryGenerator kCICategoryStillImage

kCICategoryHalftoneEffect kCICategoryReduction kCICategoryInterlaced

kCICategoryColorAdjustment kCICategoryGradient kCICategoryNonSquarePixels

You can use the filterNamesInCategory class method of the CIFilter class to get an array that
contains the names of ilters in that category:

NSArray *array = [CIFilter filterNamesInCategory:kCICategoryColorEffect];

For example, the preceding code snippet returns an array with the following identiiers, corresponding
to ilters in the color effect category:

 ➤ CIColorInvert

 ➤ CIFalseColor

 ➤ CISepiaTone

 ➤ CIVignette

You can think of a ilter as a black box (Figure 32-1), which requires a number of input parameters
and returns an output. These input and output parameters differ depending on the ilter.

numeric
parameter 1

Image
(CIImage)

numeric
parameter 2

Core Image Filter
(CIFilter)

Output Image
(CIImage)

FiGure 32-1

You can ind a full list of ilters in each category along with their parameters in the Core Image Filter
Reference document. The output of one ilter can be one of the inputs for another ilter, thus allowing
you to create chains of ilters (Figure 32-2). Some ilters can even take multiple images as input.

Using Core Image ❘ 377

numeric
parameter 1

Image
(CIImage)

numeric
parameter 2

Core Image Filter
(CIFilter)

Output Image
(CIImage)

Another Input
Image

Additional
parameter

Core Image Filter
(CIFilter)

Final Output
Image (CIImage)

FiGure 32-2

You can download the Core Image Filter Reference document from: http://
developer.apple.com/library/ios/#documentation/GraphicsImaging/

Conceptual/CoreImaging/ci_concepts/ci_concepts.html#//apple_ref/

doc/uid/TP30001185-CH202-TPXREF101.

uSinG core iMaGe

Once you know the identiier of a ilter, creating one is a simple matter of using the filterWithName:
class method of the CIFilter class, as follows:

CIFilter* sepiaFilter = [CIFilter filterWithName:@"CISepiaTone"];

When you create a ilter, you must send it the setDefaults message to initialize all its parameters
to default values. These default values are speciied in the Core Image Filter Reference document.

[sepiaFilter setDefaults];

Each attribute of a ilter has a unique identiier. These identiiers are also known as keys. To set the
value of an attribute, assuming you know its identiier, you use the setValue:forKey: method of
the ilter object:

[sepiaFilter setValue:[NSNumber numberWithFloat: 0.5]
 forKey:@"inputIntensity"];

You may be surprised to know that both the input image and the output images are considered ilter
attributes. The input image attribute is usually referred to with the inputImage key, and the output
image attribute with the outputImage key. Thus, to specify a CIImage instance as input for the
CISepiaTone ilter, you would use the following code:

 [sepiaFilter setValue:inputCIImage forKey:@"inputImage"];

To access the output of the same ilter, which would also be a CIImage instance, you would use the
following code:

CIImage* resultCIImage = [sepiaFilter valueForKey:@"outputImage"];

http://developer.apple.com/library/ios/#documentation/GraphicsImaging/
http://developer.apple.com/library/ios/#documentation/GraphicsImaging/Conceptual/CoreImaging/ci_concepts/ci_concepts.html#//apple_ref/doc/uid/TP30001185-CH202-TPXREF101

378 ❘ LeSSon 32 inTroducTion To core image

CIImage objects can be created from UIImage objects using the following code:

UIImage* inputImage = [UIImage imageNamed:@"building.png"];
CIImage* inputCIImage = [CIImage imageWithCGImage:inputImage.CGImage];

To display the output of the ilter in a UIImageView, you will need to convert the CIImage object
into a UIImage object. You do this using the following code:

CIContext* context = [CIContext contextWithOptions:nil];
CGImageRef outputImageRef = [context createCGImage:resultCIImage
 fromRect:CGRectMake(0, 0, 320, 480)];
UIImage* outputImage = [UIImage imageWithCGImage:outputImageRef];

The conversion involves irst converting the CIImage object into a CGImageRef object and then creating
the UIImage object from the CGImageRef object. CGImageRef is an object used to represent images in
Core Graphics. When creating the CGImageRef object, you need to specify the dimensions of the image
in a CGRect structure.

Try iT

In this Try It, you build a new Xcode project based on the Single View Application template called
ImageFilters that uses Core Image ilters to perform image processing on a UIImage object.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Import image resources into the project.

 ➤ Add a UIImageView instance to the default scene and an appropriate outlet in the view
controller ile.

 ➤ Add a reference to the Core Image framework.

 ➤ Add two UIButton instances to the default scene and connect them to appropriate action
methods in the view controller class.

 ➤ Perform image processing operations with Core Image when either button is tapped.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 32 folder in the download.

hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identiier in the Project Options dialog box.

http://www.wrox.com

Try It ❘ 379

Step-by-Step

 1. Create a Single View Application in Xcode called ImageFilters.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: ImageFilters

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson32

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Import the building.png resource from this chapter’s resource folder on the DVD into
the project.

 3. Add a UIImageView instance to the default scene and connect it to an outlet in the view
controller class.

 1. Open the storyboard ile and use the Media library to drag and drop building.png
onto the scene. This automatically creates an image view.

 2. Use the assistant editor to create an outlet in the view controller class called
imageView and connect it to the image view.

 4. Add two UIButton instances to the scene and connect their Touch Up Inside events to
appropriate action methods in the view controller class.

 1. Set the title of the irst button to Sepia Tone and use the Size inspector to resize/
position it to X=8, Y=365, W=302, H=37.

 2. Set the title of the second button to Hue Adjust and use the Size inspector to resize/
position it to X=8, Y=410, W=302, H=37.

380 ❘ LeSSon 32 inTroducTion To core image

 3. Name the action method corresponding to the irst button onSepia.

 4. Name the action method corresponding to the second button onHueAdjust.

 5. Add a reference to the Core Image framework.

 6. Add the following line of code to the top of the Lesson32ViewController.m ile:

#import <CoreImage/CoreImage.h>

 7. Add the following code to the implementation of the onSepia: method in the
Lesson32ViewController.m ile:

// input image, converted from UIImage to CIImage
UIImage* inputImage = [UIImage imageNamed:@"building.png"];
CIImage* inputCIImage = [CIImage imageWithCGImage:inputImage.CGImage];

// the CIFilter, created and configured
CIFilter* sepiaFilter = [CIFilter filterWithName:@"CISepiaTone"];
[sepiaFilter setDefaults];
[sepiaFilter setValue: inputCIImage forKey: @"inputImage"];
[sepiaFilter setValue: [NSNumber numberWithFloat: 0.5]
 forKey: @"inputIntensity"];

// the result image
CIImage* resultCIImage = [sepiaFilter valueForKey: @"outputImage"];

// convert CIImage to UIImage
CIContext* context = [CIContext contextWithOptions:nil];
CGImageRef outputImageRef = [context createCGImage:resultCIImage
 fromRect:CGRectMake(0, 0, 320, 480)];
UIImage* outputImage = [UIImage imageWithCGImage:outputImageRef];
imageView.image = outputImage;

 8. Add the following code to the implementation of the onHueAdjust: method in the
Lesson32ViewController.m ile:

// input image, converted from UIImage to CIImage
UIImage* inputImage = [UIImage imageNamed:@"building.png"];
CIImage* inputCIImage = [CIImage imageWithCGImage:inputImage.CGImage];

// the CIFilter, created and configured
CIFilter* hueAdjust = [CIFilter filterWithName:@"CIHueAdjust"];
[hueAdjust setDefaults];
[hueAdjust setValue: inputCIImage forKey: @"inputImage"];
[hueAdjust setValue: [NSNumber numberWithFloat: 2.094]
 forKey: @"inputAngle"];

// the result image
CIImage* resultCIImage = [hueAdjust valueForKey: @"outputImage"];

// convert CIImage to UIImage
CIContext* context = [CIContext contextWithOptions:nil];
CGImageRef outputImageRef = [context createCGImage:resultCIImage
 fromRect:CGRectMake(0, 0, 320, 480)];
UIImage* outputImage = [UIImage imageWithCGImage:outputImageRef];
imageView.image = outputImage;

Try It ❘ 381

 9. Test your app in the iOS Simulator. Figure 32-3 shows the original image on the left hand
side and the result of applying the sepia and hue adjustment ilters to the original image.

FiGure 32-3

Please select Lesson 32 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Building Universal Applications

Following up on the huge success of the iPhone and iPod Touch, Apple introduced the iPad—
a device with a much larger screen size, running iOS. Developing for the iPad in most cases is
similar to developing for the iPhone, except for the obvious difference in screen sizes. Certain
features, like the ability to make a phone call or send an SMS, are not available on the iPad.

The latest version of the iPad when this book was written is the iPad2. It does not have a retina
display and comes with two cameras. iPads may not necessarily have 3G capabilities.

If you were to run an iPhone application on an iPad, the application would appear in a small
320 n 480 window in the center of the screen, as shown in Figure 33-1. To take advantage of
the extra screen space on the iPad, you need to create an application speciically for the iPad.

As an iOS developer you can create applications that are iPhone-only, iPad-only, or universal. A
universal application is one that includes binaries for both iPhone and iPad in a single archive.

In most cases, if you want to create both an iPhone and iPad version of your application, you
create a universal application project in Xcode. However, some developers like to keep two
separate projects for the iPhone and the iPad. This is sometimes done if the iPhone and iPad
versions of the application are signiicantly different in functionality, or simply because the
developer wants to make more money by selling two copies of the application instead of one.

exaMininG The univerSaL aPPLicaTion TeMPLaTe

When you create a new project in Xcode, you are asked to specify the device family in the
Project Options dialog box (Figure 38-2).

Select the Universal option to create a project that can run on both device families. Although
you can use any Xcode template to create a universal application, this section uses the Single
View Application template.

The irst thing you will notice is that the project has two storyboards. This is understandable
because the project targets two different device families with different screen sizes. A rather

33

384 ❘ LeSSon 33 Building uniVerSal applicaTionS

painful issue with developing a universal application is that you end up making two sets of user inter-
faces. If your storyboards use images, you will probably need two different sizes of each image.

FiGure 33-1

If making two applications in one is not something you are particularly fond
of, you could create your user interfaces with code instead of using storyboards.
Creating user interfaces programmatically was covered in Lesson 17.

As of the time when this lesson is being written, the iPad device family has a common screen size of
W=768 n H=1024 units (with one unit equal to one pixel). The iPhone device family, on the other
hand, has two screen sizes, one for the standard and the other for the retina-display version.

UIKit controls scale automatically on retina displays, but you will have to provide two versions of
each image resource. The retina display versions will be twice the size of their standard counter-
parts, and their ilenames must end with the @2x sufix.

In effect, this means that for your universal application to work well across all iOS device families,
you need to provide three sizes for each image resource:

 ➤ iPhone standard

 ➤ iPhone retina

 ➤ iPad

Examining the Universal Application Template ❘ 385

FiGure 33-2

Something else to note about the universal project template is that both storyboards share a common
view controller class. Thus, it is inevitable that at some point in your Objective-C code you need to
programmatically determine the device family that is executing the code. The following code snippet
illustrates how to do just that:

if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPhone)
{
 // write iPhone specific code here
}
else
{
 // write iPad specific code here
}

Last but not least, you need to provide multiple versions of your application’s launch image and
icon, one for each device family. Table 33-1 lists the ilenames and image sizes for the most com-
monly used images.

386 ❘ LeSSon 33 Building uniVerSal applicaTionS

TaBLe 33-1: Application Icon and Launch Image

FiLenaMe iMaGe Size (PixeLS) deScriPTion

Icon.png 57 n 57 App Store and Home screen icon on iPhone/

iPod touch

Icon@2x.png 114 n 114 Retina-display version of Icon.png

Icon-72.png 72 n 72 Home screen for iPad

Default.png 320 n 480 iPhone/iPod touch portrait launch image

Default@2x.png 640 n 960 Retina-display version of Default.png

Default-Portrait.png 768 n 1024 Portrait-mode IPad launch image

Default-Landscape.png 1024 n 768 Landscape-mode iPad launch image

Try iT

In this Try It you build a universal application called UniGallery that allows the user to navigate
through a gallery of images using swipe gestures. Being universal, the app will work on both the
iPhone and the iPad.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Import image resources into the project.

 ➤ Add a UIImageView instance to both the iPhone and iPad storyboards, and connect the
image view to an appropriate outlet in the view controller class.

 ➤ In the viewDidLoad method of the view controller class, populate an array with image
ilenames depending on the type of device that is executing the code.

 ➤ Implement swipe gesture recognizers in the view controller class.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 33 folder in the download.

hints
 ➤ When creating the Xcode project, set the value of the Device Family combo box to Universal.

mailto:Icon@2x.png
mailto:Default@2x.png
http://www.wrox.com

Try It ❘ 387

Step-by-Step

 1. Create a Single View Application in Xcode called UniGallery.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: UniGallery

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson33

 ➤ Deine Family: Universal

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Add an image view to the iPad storyboard.

 1. Select the MainStoryboard_iPad.storyboard ile in the project navigator.

 2. Ensure the Object library is visible. You can show it by using the View d
Utilities d Show Object Library menu item.

 3. Use the Object library to add a UIImageView instance and size it to it the entire sur-
face of the scene.

 4. Using the assistant editor, create an outlet for the image view in the view controller
class and call the outlet galleryImageView.

 3. Add an image view to the iPhone storyboard.

 1. Select the MainStoryboard_iPhone.storyboard ile in the project navigator.

 2. Use the Object library to add a UIImageView instance and size it to it the entire sur-
face of the scene.

388 ❘ LeSSon 33 Building uniVerSal applicaTionS

 3. Ensure the Lesson33ViewController.h ile is open in the assistant editor.

 4. Right-click the image view instance to bring up a context menu. Make a connection
from New Referencing Outlet in the context menu to the galleryImageView outlet
in the assistant editor. While doing this step ensure you are not creating a new outlet,
but instead connecting to an existing one.

 4. Import image resources into the project.

 1. Ensure the project navigator is visible and the UniGallery project is selected and
expanded. To show the project navigator, use the View d Navigators d Show
Project Navigator menu item. To expand a project, click the triangle next to the
project name in the project navigator.

 2. Right-click the Supporting Files group and select Add Files to UniGallery from the
context menu.

 3. Select the Images folder in this lesson’s resources on the DVD.

 4. Ensure the Copy Items to Destination Group’s Folder (if needed) option is selected in
the dialog box.

 5. Click the Add button.

 5. Add an NSArray instance to the view controller class and populate it with a list of ilenames.

 1. Add the following property declarations to the Lesson33ViewController.h ile:

@property (strong, nonatomic) NSArray* imageFileNames;
@property int currentIndex;

 2. Synthesize the properties in the Lesson33ViewController.m ile.

 3. Update the viewDidLoad method of the view controller class. In this method, create
an array and populate it with ilenames. The speciic ilenames added to the array
will depend on the device on which this code is executed. Once the array is created,
load the irst image ile to the image view. Add the following code to viewDidLoad
method after the [super viewDidLoad] line:

if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPhone)
{
 self.imageFileNames = [[NSArray alloc]
 initWithObjects:@"image_1.png"
 @"image_2.png",
 @"image_3.png",
 @"image_4.png",
 @"image_5.png",
 nil];
}
else
{
 self.imageFileNames = [[NSArray alloc]
 initWithObjects:@"image_1_ipad.png",
 @"image_2_ipad.png",
 @"image_3_ipad.png",
 @"image_4_ipad.png",

Try It ❘ 389

 @"image_5_ipad.png",
 nil];
}

// load first image
currentIndex = 0;
galleryImageView.image = [UIImage imageNamed:[imageFileNames
 objectAtIndex:currentIndex]];

 6. Add swipe gestures to the view controller class.

 1. Add the following method declarations to the Lesson33ViewController.h ile:

- (void) handleLeftSwipe:(UIGestureRecognizer *)gestureRecognizer;
- (void) handleRightSwipe:(UIGestureRecognizer *)gestureRecognizer;

 2. Implement these methods in the Lesson33ViewController.m ile as follows:

- (void) handleLeftSwipe:(UIGestureRecognizer *)gestureRecognizer
{
 if (currentIndex == ([imageFileNames count] - 1))
 return;

 currentIndex++;
 galleryImageView.image = [UIImage imageNamed:[imageFileNames

objectAtIndex:currentIndex]];
}

- (void) handleRightSwipe:(UIGestureRecognizer *)gestureRecognizer
{
 if (currentIndex == 0)
 return;

 currentIndex--;
 galleryImageView.image = [UIImage imageNamed:[imageFileNames

objectAtIndex:currentIndex]];
}

 3. Create two swipe gestures in the viewDidLoad method of the view controller class
by adding the following code to the end of the method, after the code from step 5-3:

// left swipe
UISwipeGestureRecognizer* left_swipe = [[UISwipeGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleLeftSwipe:)];

left_swipe.numberOfTouchesRequired = 1;
left_swipe.cancelsTouchesInView = YES;
left_swipe.direction = UISwipeGestureRecognizerDirectionLeft;
[self.view addGestureRecognizer:left_swipe];

// right swipe
UISwipeGestureRecognizer* right_swipe = [[UISwipeGestureRecognizer
 alloc] initWithTarget:self
 action:@selector(handleRightSwipe:)];

390 ❘ LeSSon 33 Building uniVerSal applicaTionS

right_swipe.numberOfTouchesRequired = 1;
right_swipe.cancelsTouchesInView = YES;
right_swipe.direction = UISwipeGestureRecognizerDirectionRight;
[self.view addGestureRecognizer:right_swipe];

 7. Test your application in the iOS Simulator.

 1. Use the scheme/target multi-selector in the Xcode toolbar to ensure
UniGallery d iPhone 5.0 Simulator is selected.

 2. Click the Run button in the Xcode toolbar. Alternatively, you can use the
Project d Run menu item.

 3. Click the stop button in the Xcode toolbar.

 4. Now use the scheme/target multi-selector in the Xcode toolbar to ensure
UniGallery d iPad 5.0 Simulator is selected.

 5. Click the Run button in the Xcode toolbar.

Please select Lesson 33 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Where Am I? Introducing
Core Location

Core Location is a framework that allows applications to retrieve the location and heading of
the device they are running on. To do this, Core Location can use a combination of a compass
for heading, and either GPS, cellular radio, or WiFi technologies for location. Cellular radio
and WiFi-based location is less accurate than GPS.

Applications cannot specify which method will be used; however, they can specify a desired
level of accuracy. Depending on the desired level of accuracy, Core Location tries to use the
GPS hardware, cellular radio, or WiFi in that order.

This framework is not included in any of the standard iOS application templates. To use this
framework in your code you will need to add it manually to your project. You can do this from
the Project Settings page in Xcode. Select the project node in the project navigator to display the
settings page. On the settings page, switch to the Build Phases tab and click the + button under
the Link Binary With Libraries category. Select CoreLocation.framework from the list of avail-
able frameworks (Figure 34-1).

Core Location deines a manager class called CLLocationManager that you can use to interact
with the framework. It allows you to specify the desired frequency and accuracy of location
information. To receive location updates in an application, you need to create an instance of
the CLLocationManager class, and provide a delegate object to receive location updates and
errors. This delegate object must implement the CLLocationManagerDelegate protocol.

The delegate object is often the view controller class, but could also be any other class in your
application. Using location hardware can have a signiicant drain on the device’s batteries, and
hence applications need to turn on and turn off receiving location updates. The following code
demonstrates the basic setup required to receive location updates:

// setup Core Location
locationManager = [[CLLocationManager alloc] init];
locationManager.delegate = self;
[locationManager startUpdatingLocation];

34

392 ❘ LeSSon 34 wHere am i? inTroducing core locaTion

FiGure 34-1

This code assumes that locationManager is an instance variable deined in the class, and that
the class implements the CLLocationManagerDelegate protocol. When your application does
not want to receive location updates, it must send the stopUpdatingLocation message to the
CLLocationManager instance:

[locationManager stopUpdatingLocation];

An application can set up the desiredAccuracy property of the CLLocationManager instance to
specify a desired accuracy. Core Location will try its best to achieve the desired accuracy. The more
accurate a reading required, the more battery power is needed.

Applications should, in general, try to use the least accuracy possible to satisfy their requirements.
The property can have the following values, listed in decreasing order of accuracy:

 ➤ kCLLocationAccuracyBestForNavigation

 ➤ kCLLocationAccuracyBest

 ➤ kCLLocationAccuracyNearestTenMeters

 ➤ kCLLocationAccuracyHundredMeters

 ➤ kCLLocationAccuracyKilometer

 ➤ kCLLocationAccuracyThreeKilometers

Handling Location Updates ❘ 393

An application can also set up the distanceFilter property of the CLLocationManager instance
to specify the minimum distance in meters. A device must move before an update is provided to
the application.

The default value of this property is kCLDistanceFilterNone, which speciies the application wants
to know of all movements.

handLinG LocaTion uPdaTeS

The CLLocationManagerDelegate protocol deines two methods that are used by an application to
handle a location update:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation;

- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error;

A typical implementation of the locationManager:didUpdateToLocation:fromLocation:
would resemble:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation
{
 // lat/lon values should only be considered if
 // horizontalAccuracy is not negative.
 if (newLocation.horizontalAccuracy >= 0)
 {
 CLLocationDegrees currentLatitude = newLocation.coordinate.latitude;
 CLLocationDegrees currentLongitude =
 newLocation.coordinate.longitude;

 // do something with currentLatitude and currentLongitude.
 }

 // altitude values should only be considered if
 // verticalAccuracy is not negative.
 if (newLocation.verticalAccuracy >= 0)
 {
 CLLocationDegrees currentAltitude = newLocation.altitude;
 // do something with currentAltitude
 }
}

The locationManager:didUpdateToLocation:fromLocation: method’s arguments are
the CLLocationManager instance, and the current and previous locations as instances of
CLLocation objects.

A CLLocation object encapsulates a location. It contains a coordinate property that is a structure
containing a latitude and longitude member, each expressed as CLLocationDegrees values.
CLLocationDegrees is an alias for a loating-point (decimal) value.

394 ❘ LeSSon 34 wHere am i? inTroducing core locaTion

The location object also has the horizonalAccuracy property that signiies the radius of a
circle centered at the coordinate property. The device can be anywhere within this circle. A
larger horizontalAccuracy implies a larger circle, and thus a less accurate measurement. If the
horizontalAccuracy property is negative, the reading should be discarded as being inaccurate.

The CLLocation object also provides altitude information using two properties: altitude and
verticalAccuracy. A positive altitude value is a height above sea level, and a negative altitude
is below sea level. A positive verticalAccuracy implies that the altitude measurement is off that
amount; a negative value implies an invalid altitude measurement.

You can measure the distance between two locations using the distanceFromLocation method of
the CLLocation class. The distance in meters is expressed as a CLLocationDistance value, which is
also an alias for a loating-point value:

CLLocationDistance distanceTravelled =
 [oldLocation distanceFromLocation:newLocation];

To compute the distance of a location update from a ixed point, you can instantiate a CLLocation
object that represents the ixed point, and use the distanceFromLocation method as normal. For
example, if you want to ind out the distance of a location update from the center of London (lat =
51.5001524, lon = –0.1262362), you can use code similar to the following:

CLLocation *londonLocation = [[CLLocation alloc] initWithLatitude:51.5001524
 longitude:-0.1262362];
CLLocationDistance distanceTravelled =
 [londonLocation distanceFromLocation: newLocation];

handLinG errorS and checkinG hardWare avaiLaBiLiTy

When a user uses an application that uses Core Location for the irst time, iOS will request
the user for permission. The user has the option to deny the application access to location
information. If this happens, or Core Location is unable to get a location ix, your delegate’s
locationManager:didFailWithError: method will be called. The error argument is of type
NSError. Its code property can be examined to determine the reason for failure:

 ➤ kCLErrorDenied: The user has denied access to location data.

 ➤ kCLErrorLocationUnknown: Core Location has tried, but could not get a location ix.

 ➤ kCLErrorNetwork: There is no means for Core Location to get a location ix.

If the user has denied access to Core Location, then the CLLocationManager will not try to get a loca-
tion ix again, and in such a case, it is best to send the stopUpdatingLocation message to the instance.

You can set up a message to be displayed to the user while asking for permission by using the purpose
property of the CLLocationManager instance. This is done along with the code to create and initialize
the location manager (Figure 34-2).

// setup Core Location
locationManager = [[CLLocationManager alloc] init];
locationManager.delegate = self;
locationManager.purpose = @"This is a test application";

[locationManager startUpdatingLocation];

Handling Errors and Checking Hardware Availability ❘ 395

FiGure 34-2

Some location services require the presence of speciic hardware on the device. In general, you must
check whether the desired service is available before attempting to use it. Table 34-1 lists some of the
methods provided by the CLLocationManager class to test service availability.

TaBLe 34-1: CLLocationManager Service Availability Methods

MeThod deScriPTion

+ (BOOL)locationServicesEnabled Returns YES if location services are enabled on the

device. The user can disable location services from

device settings.

+ (BOOL)regionMonitoringAvailable Returns YES if region monitoring is supported on the

current device.

+ (BOOL)regionMonitoringEnabled Returns YES if region monitoring is currently

enabled on the device. The user can disable region

monitoring from device settings.

+ (BOOL)headingAvailable Returns YES if the location manager is able to

generate heading-related events.

+ (CLAuthorizationStatus)

authorizationStatus

Returns a value indicating whether an application is

authorized to use location services.

396 ❘ LeSSon 34 wHere am i? inTroducing core locaTion

The iOS Simulator can simulate either a device at a ixed location, or a device
that is moving along one of three preset routes. These features can be accessed
from the Debug d Location menu of the iOS Simulator.

Geocoding and reverse Geocoding

Geocoding involves converting between a latitude/longitude coordinate pair and an address. Core
Location provides the CLGeocoder class that provides methods to perform both forward and reverse
geocoding. Forward-geocoding involves converting from an address to a latitude/longitude value.
Reverse-geocoding involves converting a latitude/longitude value into an address. The result of a
geocoding request is represented by a CLPlacemark object. A forward-geocoding request returns an
array of CLPlacemark objects because multiple results may be returned.

You should try to use one geocoding request per action, and avoid making the same geocoding
request multiple times. To perform a forward-geocoding request from an address string, you can
send the geocoder a geocodeAddressString:completionHandler: message. This message requires
you to specify an NSString object that contains an address string and a block handler that is called
when the geocoding operation is complete. The following example converts an address string into a
latitude/longitude coordinate pair:

CLGeocoder *localGeocoder = [[CLGeocoder alloc] init];
[localGeocoder
geocodeAddressString:@"170 Bilton Road, Perivale, UB6 7HL, United Kingdom"
completionHandler:^(NSArray *placemarks, NSError *error)
 {
 if (placemarks != nil){
 int number_of_placemarks = [placemarks count];
 CLPlacemark *firstPlacemark = [placemarks objectAtIndex:0];

 double latValue = firstPlacemark.location.coordinate.latitude;
 double lonValue = firstPlacemark.location.coordinate.longitude;
 }
}];

You can send the geocoder a reverse-geocoding request by sending it the reverseGeocodeLocation:
completionHandler: message as shown here:

CLGeocoder *localGeocoder = [[CLGeocoder alloc] init];
CLLocation *londonLocation = [[CLLocation alloc] initWithLatitude:51.5001524
 longitude:-0.1262362];
[localGeocoder reverseGeocodeLocation:londonLocation
 completionHandler:^(NSArray *placemarks, NSError *error)
 {
 if (placemarks != nil){
 CLPlacemark *firstPlacemark = [placemarks objectAtIndex:0];
 NSString *countryCode = firstPlacemark.ISOcountryCode;
 NSString *countryName = firstPlacemark.country;
 NSString *adminArea = firstPlacemark.administrativeArea;
 NSString *city = firstPlacemark.locality;
 NSString *postCode = firstPlacemark.postalCode;
 NSString *streetAddress1 = firstPlacemark.thoroughfare;
 }
 }];

Obtaining Compass Headings ❘ 397

The message requires you to provide a CLLocation object that represents a latitude/longitude coor-
dinate pair and block handler that is called with the results of the reverse-geocoding operation. The
CLLocation instance in this example is created with a ixed set of coordinates (lat=51.5001524,
lon=–0.1262362) but could have just as well been obtained from a location update.

The actual geocoding operation is performed asynchronously. The results are supplied as an array
of CLPlacemark objects; however in this case the array will contain just one element. If an error
occurred, the array is nil and the error variable contains more information on the error.

A CLPlacemark object contains several properties that encapsulate information on an address
associated with a speciic coordinate. Some of the properties are:

 ➤ location: A CLLocation object that provides the coordinate pair associated with the
placemark.

 ➤ ISOcountryCode: An NSString object that contains the abbreviated country code.

 ➤ country: An NSString object that contains the name of country.

 ➤ postalCode: An NSString object that contains the postal code.

 ➤ administrativeArea: An NSString object that contains the state/province.

 ➤ locality: An NSString object that contains the city.

 ➤ thoroughfare: An NSString object that contains the street address.

 ➤ subThoroughfare: An NSString object that contains additional street address information.

If the coordinates lie over an inland water body, or an ocean, this information can be accessed through
the inlandWater and ocean properties, respectively, both of which are NSString objects.

oBTaininG coMPaSS headinGS

A compass has been included as part of iPhone 3GS, iPhone 4, iPad, and iPad 2. You can determine if
a compass is available on a device by sending the headingAvailable message to the location manager.
If a compass is available on the device, you can use the location manager to receive heading updates.
Heading updates work much like location updates. Once you have set up the CLLocationManager
instance, you can send it the startUpdateHeading message to begin receiving heading updates.

The CLLocationManagerDelegate protocol deines two methods that are related to heading updates:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading

- (BOOL)locationManagerShouldDisplayHeadingCalibration:
 (CLLocationManager *)manager

Heading data is supplied as a CLHeading object to the locationManager:didUpdateHeading delegate
method. The CLHeading class encapsulates the magnetic heading, the true heading, and an accuracy
measure in its magneticHeading, trueHeading, and headingAccuracy properties, respectively.

The earth’s geographic north pole is different from the magnetic north pole. The geographic north
pole is ixed at the north pole, whereas magnetic north pole is a few hundred miles away. Make sure

398 ❘ LeSSon 34 wHere am i? inTroducing core locaTion

you know the difference between geographic north and magnetic north when you build any applica-
tion that uses the compass feature.

The geographic north pole heading is contained in the trueHeading member of the CLHeading instance.
Data in this member is available only if you enable both heading updates and location updates.

The locationManagerShouldDisplayHeadingCalibration message is sent to the delegate object
when the location manager wants to display a calibration prompt to the user. If you ind this prompt
annoying, you can implement this method to return NO. If you were to do so, the compass would
try to calibrate itself automatically but the results of the calibration process may not be accurate.

The iOS Simulator cannot simulate compass headings. You need to test applications
that require this feature on an actual device.

Try iT

In this Try It, you build an iPhone application based on the Single View Application template called
CLTest that displays the current location and the distance traveled since the last location reading
was obtained.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Add a few UILabel elements that will display the location readings. Create outlets for these
in the view controller class.

 ➤ Add a UIButton that will be used to stop/start receiving location updates. Create an appro-
priate outlet and action.

 ➤ Initialize Core Location when the button is pressed. Stop receiving location updates when
the button is pressed a second time.

 ➤ Implement CLLocationManagerDelegate methods.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 34 folder in the download.

hints
 ➤ Remember to use the purpose property of the CLLocationManager instance to provide a

description of what your application intends to do with the location data.

 ➤ Your application should send the stopUpdatingLocation message to the location manager
when it does not require location updates.

 ➤ You need to add a reference to the Core Location framework to the project.

http://www.wrox.com

Try It ❘ 399

Step by-Step

 1. Create a Single View Application in Xcode called CLTest.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: CLTest

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson34

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Add a reference to the Core Location framework.

 1. In Xcode, make sure the project navigator is visible. To show it, use the
View d Navigators d Show Project Navigator menu item.

 2. Click the root (project) node of the project navigator to display project settings.

 3. Select the Build Phases tab.

 4. Expand the Link Binary With Libraries group in this tab.

 5. Click the + button at the bottom of this group and select CoreLocation.framework
from the list of available frameworks.

 6. Click the Add button.

 3. Add six UILabel instances to the default scene to display location readings.

 1. Ensure the Object library is visible. You can show it by using the View d Utilities d
Show Object Library menu item.

400 ❘ LeSSon 34 wHere am i? inTroducing core locaTion

 2. Use the Object library to add six UILabel instances to the default scene. Double-
click each label in turn and change its text to Latitude, Longitude, Distance
Travelled, latitudeValue, longitudeValue, and distanceValue respectively.

 3. Resize/position them using the Size inspector as per Table 34-2.

TaBLe 34-2: Size and Position of Labels

LaBeL x y WidTh heiGhT

Latitude 18 34 62 21

Longitude 18 79 77 21

Distance Travelled 18 123 141 21

latitudeValue 167 34 99 21

longitudeValue 167 79 113 21

distanceValue 167 123 107 21

 4. Using the assistant editor, create outlets for the latitudeValue, longitudeValue,
and distanceValue labels. Call these latValue, lonValue, and distValue,
respectively.

 4. Add a UIButton instance to start/stop receiving location updates.

 1. Ensure the Object library is visible. You can show it by using the View d Utilities d
Show Object Library menu item.

 2. Use the Object library to add a UIButton instance.

 3. Resize and position it to X = 25, Y = 172, W = 275, H = 37.

 4. Double-click the button and set its title to Start Location Updates.

 5. Using the assistant editor, create an outlet called toggleButton in the
Lesson34ViewController class and connect it to the button.

 6. Using the assistant editor, create an action method in the view controller class
and connect it to the Touch Up Inside event of the button. Call the new method
onButtonPressed.

 5. Add the following line to the top of the view controller’s header ile, to import the Core
Location framework:

#import <CoreLocation/CoreLocation.h>

 6. Add the following @property declarations to the Lesson34ViewController.h ile:

@property BOOL hasInitialized;
@property BOOL hasStarted;
@property (strong, nonatomic) CLLocationManager* locationManager;

Try It ❘ 401

 7. Make the Lesson34ViewController class conform to the CLLocationManagerDelegate
protocol by modifying its interface declaration to:

@interface Lesson34ViewController : UIViewController <CLLocationManagerDelegate>

 8. Add the following @synthesize statements to the Lesson34ViewController.m ile:

@synthesize hasInitialized;
@synthesize hasStarted;
@synthesize locationManager;

 9. Add the following code to the viewDidLoad method of the view controller class after the
[super viewDidLoad] line:

// setup Core Location
hasInitialized = YES;
locationManager = [[CLLocationManager alloc] init];
locationManager.delegate = self;
locationManager.purpose = @"This application will display your current
 location and the distance travelled since the last reading.";

// setup button
hasStarted = NO;
[toggleButton setTitle:@"Start Location Updates"
 forState:UIControlStateNormal];

 10. Add the following code to the viewDidUnload method of the view controller class:

if (hasInitialized == YES)
 [locationManager stopUpdatingLocation];

 11. Add the following code to the onButtonPressed: method of the view controller class:

// do not do anything if location manager is not setup
if (hasInitialized == NO)
 return;

// start
if (hasStarted == NO)
{
 [toggleButton setTitle:@"Stop Location Updates"
 forState:UIControlStateNormal];
 [locationManager startUpdatingLocation];
 hasStarted = YES;
 return;
}

// stop
else if (hasStarted == YES)
{
 [toggleButton setTitle:@"Start Location Updates"
 forState:UIControlStateNormal];
 [locationManager stopUpdatingLocation];
 hasStarted = NO;
 return;
}

402 ❘ LeSSon 34 wHere am i? inTroducing core locaTion

 12. Implement the locationManager:didFailWithError: delegate method in the
Lesson34ViewController.m ile as follows:

- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error
{
 if (error.code == kCLErrorDenied)
 {
 hasInitialized = NO;
 [locationManager stopUpdatingLocation];
 }
}

 13. Implement the locationManager:didUpdateToLocation:FromLocation: delegate method
in the Lesson34ViewController.m ile as follows:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation
{
 // lat/lon values should only be considered if
 // horizontalAccuracy is not negative.
 if (newLocation.horizontalAccuracy >= 0)
 {
 CLLocationDegrees currentLatitude = newLocation.coordinate.latitude;
 CLLocationDegrees currentLongitude =
 newLocation.coordinate.longitude;
 CLLocationDistance distanceTravelled =
 [oldLocation distanceFromLocation:newLocation];

 latValue.text = [NSString stringWithFormat:@"%2.3f",
 currentLatitude];
 lonValue.text = [NSString stringWithFormat:@"%2.3f",
 currentLongitude];
 distValue.text = [NSString stringWithFormat:@"%2.3f",
 distanceTravelled];
 }
}

 14. Test your application in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively you can use the Project d
Run menu item.

 2. Click the Start Location Updates button.

 3. Use the iOS Simulator’s ability to simulate a device on the move by selecting the
Debug d Location d City Bicycle Ride menu item.

Please select Lesson 34 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Introducing Map Kit

In the previous lesson you learned how to locate a device using Core Location. In this lesson
you learn how to integrate a map within your application.

The Map Kit framework provides the MKMapView class for adding maps into your views. Map
Kit also provides additional classes for annotating the map. The Map Kit framework uses
Google’s map service internally. Using a class within this framework binds you to the Google
Maps/Google Earth terms of service. You can ind these at http://code.google.com/apis/
maps/iphone/terms.html.

The Map Kit framework is often used in conjunction with the Core Location framework, neither
of which are included in any of the standard iOS application templates. To use these frameworks
in your code you need to add them manually to your project. You can do this from the Project
Settings page in Xcode. Select the Project node in the project navigator to display the settings
page. On the settings page, switch to the Build Phases tab and click the + button under the Link
Binary With Libraries category. Select the Map Kit framework from the list of available frame-
works (Figure 35-1). Repeat this step for the Core Location framework.

You can add a map view to an existing view controller or storyboard using the Object library.
Simply drag an instance of a map view and create an outlet for it in the view controller class.

The map view handles zooming and scrolling automatically. You can use the Attributes
inspector to choose from Map, Satellite, and Hybrid modes (Figure 35-2). You can also set
up the map to use Core Location to display the user’s location by checking the Shows User
Location property.

You can also set up these properties programmatically by using the mapType property of the
MKMapView instance to specify the map mode. The mapType property can take one of three
values: MKMapTypeStandard, MKMapTypeSatellite, or MKMapTypeHybrid. To enable/disable
zooming and scrolling use the zoomEnabled and scrollEnabled properties, respectively. To
have the map display the user’s location, set the showsUserLocation property to YES.

You can set up the initial coordinate and zoom factor of the map by deining a map region and
using the setRegion:animated method of the MKMapView instance.

35

http://code.google.com/apis/maps/iphone/terms.html
http://code.google.com/apis/maps/iphone/terms.html

404 ❘ LeSSon 35 inTroducing map kiT

FiGure 35-1

FiGure 35-2

A region is represented by the MKCoordinteRegion structure and has members called center
and span. The center member is a CLLocationCoordinate2D structure and has the members
latitude and longitude. The span member is an MKCoordinateSpan structure and has the mem-
bers latitudeDelta and longitudeDelta that specify a rectangular region around the center in
degrees of latitude and longitude.

To create a region and apply it, you use code similar to the following:

// setup the map's location and zoom factor
MKCoordinateRegion mapRegion;
mapRegion.center.latitude=51.5001524;
mapRegion.center.longitude=-0.1262362;
mapRegion.span.latitudeDelta=0.2;
mapRegion.span.longitudeDelta=0.2;

[mapView setRegion:mapRegion animated:YES];

The above code snippet assumes that mapView is an outlet connected to the map view object created
with Interface Builder.

Adding Annotations ❘ 405

addinG annoTaTionS

The MKMapView class enables you to add custom annotations to a map. Because a map can potentially
display several annotations at the same time, the designers of Map Kit decided to use separate objects
to represent the data contained in an annotation and the view used to display it. The idea was that
view objects could be reused with different data objects.

The data portion of an annotation is encapsulated by an instance of a class that implements the
MKAnnotation protocol and contains information about the coordinates on the map and a descrip-
tion that is displayed in a callout.

The MKAnnotation protocol deines the coordinate, title, and subtitle properties. The
coordinate property is a CLLocationCoordinate2D structure, and the title and subtitle
properties are NSString objects. To conform to this protocol, your class must contain these
properties. An example interface of such a class, PlacemarkClass, is shown here:

#import <Foundation/Foundation.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

@interface PlacemarkClass : NSObject <MKAnnotation>

@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
@property (nonatomic, readonly, copy) NSString *title;
@property (nonatomic, readonly, copy) NSString *subtitle;

-(id)initWithCoordinate:(CLLocationCoordinate2D)annotCoordinate
title:(NSString*)annotTitle subtitle:(NSString*)annotSubtitle;

@end

Note that the class has an initializer method that enables you to specify an initial coordinate, title,
and subtitle. The implementation of this class is listed next:

#import "PlacemarkClass.h"
@implementation PlacemarkClass

@synthesize coordinate;
@synthesize subtitle;
@synthesize title;

-(id)initWithCoordinate:(CLLocationCoordinate2D)annotCoordinate
title:(NSString*)annotTitle subtitle:(NSString*)annotSubtitle
{
 self = [super init];
 if (self)
 {
 coordinate = annotCoordinate;
 subtitle = [[NSString alloc] initWithString:annotSubtitle];
 title = [[NSString alloc] initWithString:annotTitle];
 }

 return self;
}
@end

406 ❘ LeSSon 35 inTroducing map kiT

To instantiate a PlacemarkClass object and add it as an annotation to the mapView object, you can
use the addAnnotation:animated: method, as demonstrated by the following code:

// drop a pin on parliament square
CLLocationCoordinate2D parliamentLocation =
 CLLocationCoordinate2DMake(51.5001524, -0.1262362);
parliamentAnnotation = [[PlacemarkClass alloc]
 initWithCoordinate:parliamentLocation
 title:@"Parliament Square"
 subtitle:@"Big Ben is here!"];

[mapView addAnnotation:parliamentAnnotation];

The view portion of an annotation is represented by a subclass of the MKAnnotationView class.
Apple provides a subclass called MKPinAnnotationView that you can use for standard pin/call-
out annotations. The MKMapView instance requests this view from a delegate object when it is
required. The delegate object must implement the MKMapViewDelegate protocol, which deines
the mapView:viewForAnnotation: method.

Typically, the delegate object will be your view controller class. You can set up the delegate by
using either the Interface Builder (Figure 35-3), or setting the delegate property of the MKMapView
instance.

FiGure 35-3

A typical implementation of this delegate method follows:

- (MKAnnotationView *) mapView:(MKMapView *)mapView
 viewForAnnotation:(id <MKAnnotation>) annotation
{
 MKPinAnnotationView *newAnnotation =

Try It ❘ 407

 [[MKPinAnnotationView alloc]
 initWithAnnotation:annotation
 reuseIdentifier:@"annotation1"];

 newAnnotation.pinColor = MKPinAnnotationColorGreen;
 newAnnotation.animatesDrop = YES;
 newAnnotation.canShowCallout = YES;
 [newAnnotation setSelected:YES animated:YES];
 return newAnnotation;
}

The annotation object for which a view is required is speciied in the annotation parameter. Once you
have allocated an MKPinAnnotationView instance, you can set up its pin color using the pinColor
property. If you want the pin to display a callout when tapped, set the canShowCallout property to
YES. If you want the pin drop animation, set animatesDrop to YES.

The pinColor property can be one of three values:

 ➤ MKPinAnnotationColorGreen

 ➤ MKPinAnnotationColorRed

 ➤ MKPinAnnotationColorPurple

Try iT

In this Try It, you build an iPad application called MapTest that displays the current location and
the location of Big Ben on a map. The user can use a segmented control to change the map style to
either standard, satellite, or hybrid.

Although this book does not have a lesson dedicated speciically to the seg-
mented control, it is often used with maps. You can follow the steps outlined in
this Try It to use a segmented control with a map; however, if you would like
more information on the segmented control, refer to the UISegmentedControl
class reference, available at: http://developer.apple.com/library/
ios/#documentation/uikit/reference/UISegmentedControl_Class/

Reference/UISegmentedControl.html.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Add a map view to the default scene and create an outlet for it in the view controller class.

 ➤ Add a segmented control and add an action for it in the view controller class.

 ➤ Add a reference to the Map Kit and Core Location frameworks

 ➤ Create a subclass of NSObject that implements the MKAnnotation protocol to use as the
annotation data class.

 ➤ Initialize the map view in the view controller’s viewDidLoad method.

http://developer.apple.com/library/ios/#documentation/uikit/reference/UISegmentedControl_Class/Reference/UISegmentedControl.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UISegmentedControl_Class/Reference/UISegmentedControl.html

408 ❘ LeSSon 35 inTroducing map kiT

 ➤ Implement the MKMapViewDelegate protocol in your view controller class.

 ➤ Change the map style when the active segment in the segmented control is changed.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 35 folder in the download.

hints
 ➤ Remember to add a reference to both the Map Kit and the Core Location frameworks.

Step-by-Step

 1. Create a Single View Application in Xcode called MapTest.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: MapTest

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson35

 ➤ Deine Family: iPad

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Add a reference to the Core Location and Map Kit frameworks.

 1. In Xcode, make sure the project navigator is visible. To show it, use the View d
Navigators d Show Project Navigator menu item.

 2. Click the root (project) node of the project navigator to display project settings.

 3. Select the Build Phases tab.

http://www.wrox.com

Try It ❘ 409

 4. Expand the Link Binary With Libraries group in this tab.

 5. Click the + button at the bottom of this group and select CoreLocation.framework
from the list of available frameworks.

 6. Click the Add button.

 7. Click the + button at the bottom of this group and select MapKit.framework from
the list of available frameworks.

 8. Click the Add button.

 3. Add a map view to the default scene.

 1. Ensure the Object library is visible. You can show it by using the View d Utilities d
Show Object Library menu item.

 2. Use the Object library to add a Map View to the default scene of the storyboard.

 3. Use the Size inspector to resize and position the map view to X = 0, Y = 0,
Width = 768, Height = 900

 4. Using the assistant editor, create an outlet called mapView and connect it to the map
view instance in the default scene.

 4. Add a segmented control to the scene.

 1. Ensure the Object library is visible. You can show it by using the View d Utilities d
Show Object Library menu item.

 2. Use the Object library to add a Segmented Control instance.

 3. Use the Attributes inspector to set the number of segments to 3.

 4. Use the Attributes inspector to name the three segments Standard, Satellite, and
Hybrid, respectively (Figure 35-4).

FiGure 35-4

 5. Using the Size inspector, resize and position it to X = 223, Y = 941, W = 333, H = 44.

 6. Using the assistant editor, create an outlet in the view controller class called
mapModeSegmentControl and connect it to the segmented control in the
default scene.

410 ❘ LeSSon 35 inTroducing map kiT

 7. Using the assistant editor, create an action in the view controller class and connect
it to the Value Changed event of the UISegmentedControl. Call the new method
onSegmentChanged.

 5. Create a new Objective-C class to represent annotation data.

 1. Create a new Objective-C class by selecting the File d New d New File menu item.

 2. Select the Objective-C class template and click Next.

 3. Make the new class a subclass of NSObject.

 4. Name the new class PlacemarkClass.

 5. Edit the interface of the new class to resemble the following:

#import <Foundation/Foundation.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

@interface PlacemarkClass : NSObject <MKAnnotation>

@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
@property (nonatomic, readonly, copy) NSString *title;
@property (nonatomic, readonly, copy) NSString *subtitle;

-(id)initWithCoordinate:(CLLocationCoordinate2D)annotCoordinate
title:(NSString*)annotTitle subtitle:(NSString*)annotSubtitle;

@end

 6. Edit the implementation of the class to resemble the following:

#import "PlacemarkClass.h"

@implementation PlacemarkClass

@synthesize coordinate;
@synthesize subtitle;
@synthesize title;

-(id)initWithCoordinate:(CLLocationCoordinate2D)annotCoordinate
title:(NSString*)annotTitle subtitle:(NSString*)annotSubtitle
{
 self = [super init];
 if (self)
 {
 coordinate = annotCoordinate;
 subtitle = [[NSString alloc] initWithString:annotSubtitle];
 title = [[NSString alloc] initWithString:annotTitle];
 }

 return self;
}

@end

Try It ❘ 411

 6. Add the following lines to the top of the Lesson35ViewController.h ile:

#import <MapKit/MapKit.h>
#import "PlacemarkClass.h"

 7. Add the following property declaration to the Lesson35ViewController.h ile:

@property (strong, nonatomic) PlacemarkClass* parliamentAnnotation;

 8. Declare the Lesson35ViewController class to conform to the MKMapViewDelegate protocol
by modifying its interface declaration to:

@interface Lesson35ViewController : UIViewController <MKMapViewDelegate>

 9. Synthesize the parliamentAnnotation property in the Lesson35ViewController.m ile:

@synthesize parliamentAnnotation;

 10. Add the following code to the viewDidLoad method of the Lesson35ViewController class
after the [super viewDidLoad] line:

// setup the map's delegate
mapView.delegate = self;

// setup the map's location and zoom factor
MKCoordinateRegion mapRegion;
mapRegion.center.latitude=51.5001524;
mapRegion.center.longitude=-0.1262362;
mapRegion.span.latitudeDelta=0.2;
mapRegion.span.longitudeDelta=0.2;

[mapView setRegion:mapRegion animated:YES];

// drop a pin on parliament square
CLLocationCoordinate2D parliamentLocation =
 CLLocationCoordinate2DMake(51.5001524, -0.1262362);
parliamentAnnotation = [[PlacemarkClass alloc]
 initWithCoordinate:parliamentLocation
 title:@"Parliament Square"
 subtitle:@"Big Ben is here!"];
mapView addAnnotation:parliamentAnnotation];

 11. Implement the MKMapViewDelegate method mapView:viewForAnnotation: in your view
controller class as follows:

- (MKAnnotationView *) mapView:(MKMapView *)mapView
 viewForAnnotation:(id <MKAnnotation>) annotation
{
 MKPinAnnotationView *newAnnotation = [[MKPinAnnotationView alloc]
 initWithAnnotation:annotation
 reuseIdentifier:@"annotation1"];
 newAnnotation.pinColor = MKPinAnnotationColorGreen;
 newAnnotation.animatesDrop = YES;
 newAnnotation.canShowCallout = YES;
 [newAnnotation setSelected:YES animated:YES];
 return newAnnotation;
}

412 ❘ LeSSon 35 inTroducing map kiT

 12. Add the following code to the onSegmentChanged: method of the view controller class:

if (mapModeSegmentControl.selectedSegmentIndex == 0)
{
 mapView.mapType = MKMapTypeStandard;
}
else if (mapModeSegmentControl.selectedSegmentIndex == 1)
{
 mapView.mapType = MKMapTypeSatellite;
}
else if (mapModeSegmentControl.selectedSegmentIndex == 2)
{
 mapView.mapType = MKMapTypeHybrid;
}

 13. Test your application in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively, you can use the Project d
Run menu item.

 2. Change the selected segment on the segmented control to switch map types
(Figure 35-5).

FiGure 35-5

Please select Lesson 35 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Using the Camera and
Photo Library

All iOS devices, with the exception of the irst-generation iPad, have at least one camera. When a
user takes a picture with the camera, the image is stored in the device’s photo library. This lesson
shows you how to allow the user to pick an image from the photo library or take a new picture
with the camera and use it in your application.

The UIKit framework contains a class called UIImagePickerController designed speciically to
allow you to access the camera and photo library from your applications. This class presents its
own user interface (Figure 36-1) that allows a user to browse through the photo library or control
the camera. All you have to do is present this view controller in your application and provide a
delegate method whose methods are called when the user has inished selecting an image.

FiGure 36-1

36

414 ❘ LeSSon 36 uSing THe camera and pHoTo liBrary

The image picker controller can also be used to record videos and access these recorded videos
within your application. Video recording and playback is not covered in this book.

Creating an instance of the UIImagePickerController is a simple matter of sending it an alloc
and init message:

UIImagePickerController* imagePicker = [[UIImagePickerController alloc]
 init];

The UIImagePickerController class can be used to access the contents of either the photo library,
saved photos album, or the camera. You can specify the source by providing a value for the sourceType
property. This value can be one of the following:

 ➤ UIImagePickerControllerSourceTypePhotoLibrary

 ➤ UIImagePickerControllerSourceTypeCamera

 ➤ UIImagePickerControllerSourceTypeSavedPhotosAlbum

The irst-generation iPad and iPod touch devices do not have a camera, hence you should check
to see if the device has a camera before trying to set it as a source for the image picker. To
check if a particular source type is available, use the isSourceTypeAvailable: class method
of the UIImagePickerController class as follows:

BOOL hasCamera = [UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera];

When the sourceType is set to use the camera, you can specify which camera is to be used if your
device has multiple cameras. By default, the image picker uses the rear camera. To ind out if front
and rear cameras are available, use the isCameraDeviceAvailable class method as shown in the
following code snippet:

BOOL hasFrontCamera = [UIImagePickerController
isCameraDeviceAvailable:UIImagePickerControllerCameraDeviceFront];

BOOL hasRearCamera = [UIImagePickerController
isCameraDeviceAvailable:UIImagePickerControllerCameraDeviceRear];

Once you have determined that the camera you want to use is available, you can specify it using
the cameraDevice property of the image picker instance. For instance, to use the front camera,
use the following code:

imagePicker.cameraDevice = UIImagePickerControllerCameraDeviceFront;

To display the image picker as a modal sheet, use the presentModalViewController:animated:
method on your active view controller object:

[self presentModalViewController:imagePicker animated:YES];

On an iPad, you can also display an image picker in a popover controller. The following code snippet
shows how this can be done from a method in your view controller class:

imagePicker = [[UIImagePickerController alloc] init];
imagePicker.delegate = self;
imagePicker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;

Using the Camera and Photo Library ❘ 415

containerPopover = [[UIPopoverController alloc]
 initWithContentViewController:imagePicker];
containerPopover.popoverContentSize = CGSizeMake(320.0, 480.0);
containerPopover.passthroughViews = nil;
containerPopover.delegate = nil;

[containerPopover presentPopoverFromRect:CGRectMake(295.0, 60.0, 30.0, 50.0)
 inView:self.view
 permittedArrowDirections:UIPopoverArrowDirectionLeft
 animated:YES];

The above code snippet is by no means complete; it assumes that you have created appropriate prop-
erties called imagePicker and containerPopover in your view controller class. It also assumes that
your view controller class implements certain protocols and implements popover controllers correctly.
These protocols are described next. Popover controllers are covered in Lesson 19.

UIImagePickerController requires a delegate object that implements both the
UIImagePickerControllerDelegate and UINavigationControllerDelegate protocols. The
former deines two methods that are called when the user has selected an image, or selected the
Cancel button in the image picker:

 ➤ imagePickerControllerDidCancel:

 ➤ imagePickerController:didFinishPickingMediaWithInfo:

The imagePickerControllerDidCancel: delegate method has one parameter that contains a ref-
erence to the image picker controller. A typical implementation of this delegate method dismisses
the image picker controller if it was presented modally:

[picker dismissModalViewControllerAnimated:YES];

The imagePickerController:didFinishPickingMediaWithInfo: delegate method has two param-
eters, the irst of which is a reference to the image picker. The second parameter is an NSDictionary
object that contains a UIImage object corresponding to the selected image.

To access this image in this delegate method, you can use code similar to the following to retrieve
the value in the dictionary that corresponds to the UIImagePickerControllerOriginalImage key:

UIImage* image = [info valueForKey: UIImagePickerControllerOriginalImage];

Often, you may want to save this UIImage instance to a ile. To do that, you must irst
obtain an NSData instance that contains the pixels in the UIImage instance in a speciic
ile-format. Once you have this NSData instance, you can write it to a ile by sending it the
writeToFile:atomically: message.

To obtain an NSData instance that contains the image as a PNG, use the UIImagePNGRepresentation
function as follows:

NSData *imageData = UIImagePNGRepresentation(image);

To obtain an NSData instance that contains the image in JPEG format, use the
UIImageJPEGRepresentation function as follows:

NSData *imageData = UIImageJPEGRepresentation(image, 1.0);

416 ❘ LeSSon 36 uSing THe camera and pHoTo liBrary

The irst parameter to this function is the UIImage instance, and the second is a number between 0.0
and 1.0 that indicates the desired JPEG quality, with 0.0 representing the lowest quality and 1.0 the
highest quality.

The following implementation of the imagePickerController:didFinishPickingMediaWithInfo:
delegate method shows how to save the selected image to a PNG ile in the Documents directory. Basic
ile handling is covered in Lesson 21.

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 UIImage* image = [info valueForKey: UIImagePickerControllerOriginalImage];

 NSArray* paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
 NSString* documentsDir = [paths objectAtIndex:0];
 NSString* outFile = [documentsDir
 stringByAppendingPathComponent:@"savedImage.png"];

 NSData *imageData = UIImagePNGRepresentation(image);
 [imageData writeToFile:outFile atomically:YES];

 [picker dismissModalViewControllerAnimated:YES];
}

If the image picker was presented as a modal view controller, you will need to dismiss it yourself
when the user has inished selecting an image by adding the following code to the end of the
imagePickerController:didFinishPickingMediaWithInfo: delegate method:

[picker dismissModalViewControllerAnimated:YES];

Try iT

In this Try It, you build an iPhone application based on the Single View Application template called
ImagePicker that allows the user to select an image from the photo library, or take a picture using
the camera and display the image in an image view.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Add a UIImageView instance to the scene and an appropriate outlet in the view controller ile.

 ➤ Add two UIButton instances to the scene and connect them to appropriate action methods
in the view controller class.

 ➤ Allow the user to select an image from the photo library, and display the selected image in
the image view.

 ➤ Allow the user to take a picture using the camera and display the image in the image view.

 ➤ Hide the camera button if the device does not have a camera.

Try It ❘ 417

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 36 folder in the download.

hints
 ➤ When creating a new project, you can use your website’s domain name as the Company

Identiier in the Project Options dialog box.

Step-by-Step

 1. Create a Single View Application in Xcode called ImagePicker.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: ImagePicker

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson36

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Add a UIImageView instance to the scene and connect it to an outlet in the view control-
ler class.

 1. Open the storyboard ile and use the Object library to drag and drop an image
view onto the scene. Use the Size inspector to resize/position it to X=0, Y=0,
W=320, H=460.

 2. Use the assistant editor to create an outlet in the view controller class and connect it
to the image view. Name the outlet imageView.

http://www.wrox.com

418 ❘ LeSSon 36 uSing THe camera and pHoTo liBrary

 3. Add two UIButton instances to the scene and connect their Touch Up Inside events to
appropriate action methods in the view controller class.

 1. Set the title of the irst button to Camera and use the Size inspector to resize/position
it to X=8, Y=365, W=302, H=37.

 2. Set the title of the second button to Photo Library and use the Size inspector to
resize/position it to X=8, Y=410, W=302, H=37.

 3. Name the action method corresponding to the irst button onCamera.

 4. Name the action method corresponding to the second button onPhotoLibrary.

 5. Create an outlet called cameraButton in the view controller class and connect it to
the button titled Camera in the scene.

 4. Modify the declaration of the Lesson36ViewController class to resemble the following:

@interface Lesson36ViewController : UIViewController
 <UINavigationControllerDelegate,
 UIImagePickerControllerDelegate>

 5. Add the following code to the implementation of the onCamera: method in the
Lesson36ViewController.m ile:

UIImagePickerController* imagePicker = [[UIImagePickerController alloc] init];
imagePicker.delegate = self;
imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;
[self presentModalViewController:imagePicker animated:YES];

 6. Add the following code to the implementation of the onPhotoLibrary: method in the
Lesson36ViewController.m ile:

UIImagePickerController* imagePicker = [[UIImagePickerController alloc] init];
imagePicker.delegate = self;
imagePicker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
[self presentModalViewController:imagePicker animated:YES];

 7. Implement UIImagePickerControllerDelegate methods in your view controller class.

 1. Add the following code in your Lesson36ViewController.m ile to implement the
imagePickerControllerDidCancel: delegate method:

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{
 [picker dismissModalViewControllerAnimated:YES];
}

 2. Add the following code in your Lesson36ViewController.m ile to implement the
imagePickerController:didFinishPickingMediaWithInfo: delegate method:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 UIImage* image = (UIImage *) [info valueForKey:
 UIImagePickerControllerOriginalImage];
 imageView.image = image;
 [picker dismissModalViewControllerAnimated:YES];
}

Try It ❘ 419

 8. Add the following code to the end of the viewDidLoad method of your view controller class:

BOOL hasCamera = [UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypeCamera];
if (hasCamera == NO)
 [cameraButton setHidden:YES];

 9. Test your application on an iPhone or iPod touch.

 1. Connect your device to your Mac and select it from the Scheme/Target selector in
the Xcode toolbar.

 2. Click the Run button in the Xcode toolbar. Alternatively you can use the Project d
Run menu item.

 3. Tap the Photo Library button and select a photo from the contents of your device’s
photo library. Alternately, tap the Camera button to take a picture. After selecting
the image, your device screen will resemble Figure 36-2.

FiGure 36-2

Please select Lesson 36 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Introduction to Core Motion

Motion sensing has proven to be an effective input technique in applications, particularly
games. All iOS devices have had the capability to detect motion, and most achieve this using
an accelerometer. Starting with iPhone 4 and iPad 2, Apple has included a gyroscope in addi-
tion to the standard accelerometer found in its predecessors.

As far as developing motion-aware applications, accelerometer events have traditionally been
available to applications through the UIAccelerometer class. Starting with iOS4, Apple has
provided a new framework called Core Motion that exposes the functionality of both the
accelerometer and the gyroscope (when available).

You can’t test accelerometer and gyroscope functionality in the iOS Simulator.
You will need to test any apps that require Core Motion on a real device.

acceLeroMeTerS and GyroScoPeS

An accelerometer is a device that measures acceleration along three axes (Figure 37-1). The
standard unit of acceleration is “g”(short for gravity). 1g is the force pulling down on an
object that is at rest at sea level.

The only time an accelerometer will give a reading of 0g is when the device is in free fall (not
recommended). Depending on how your iPhone is placed, the 1g of acceleration can be distrib-
uted differently across the three axes. An accelerometer can measure both translational accel-
eration and tilt (Figure 37-2).

A gyroscope, on the other hand, is a device that measures the speed with which the iOS device
is spinning about the three axes (Figure 37-3). The unit of measurement in this case is radians-
per-second. Two radians make a complete circle.

37

422 ❘ LeSSon 37 inTroducTion To core moTion

+X

+Z

-Z

+Y

-Y

-X

FiGure 37-1

Y = -1.0 Y = 1.0

X = -1.0 X = +1.0

X = +0.5, Y = -0.5

Z = -1.0

(Face Up)

Z = +1.0

(Face Down)

FiGure 37-2

Core Motion Basics ❘ 423

+X

+Z

+Y

FiGure 37-3

core MoTion BaSicS

Core Motion is a framework that allows applications to receive data from motion sensors. This frame-
work is not included in any of the standard iOS application templates. To use this framework in your
code you need to add it manually to your project. You can do this from the Project Settings page in
Xcode. Select the project node in the project navigator to display the settings page. On the settings page,
switch to the Build Phases tab and click the + button under the Link Binary With Libraries category.
Select CoreMotion.framework from the list of available frameworks (Figure 37-4).

Core Motion deines a manager class called CMMotionManager that you can use to interact with it.
It also deines three data classes that encapsulate different types of motion data. These are described
in Table 37-1.

TaBLe 37-1: Core Motion Classes

cLaSS deScriPTion

CMMotionManager A manager class that allows your apps to interact with the Core Motion

framework.

CMAccelerometerData Contains a measurement of device acceleration along three axes.

CMGyroData Contains a biased measurement of device rotation along three axes.

CMDeviceMotion Contains a combination of both accelerometer and gyroscope data.

424 ❘ LeSSon 37 inTroducTion To core moTion

FiGure 37-4

Each of the data classes—CMAccelerometerData, CMGyroData, and CMDeviceMotion—contain
a timestamp that can be used by your application. For instance, you could potentially compare
the timestamp between the current and previous motion events to work out the true rate at which
motion data is being provided to your application.

Because the motion sensing hardware (accelerometer/gyroscope) is shared between different applica-
tions, your application should create only one instance of the CMMotionManager class. You can do
this using the following line of code:

CMMotionManager* motionManager = [[CMMotionManager alloc] init];

An application can use the Core Motion framework in one of two modes:

 ➤ Push: Your application requests an update interval (measured in seconds), and implements
a block handler to process the motion data as it is available. Your application then provides
both the block as well as an operation queue to the framework. Core Motion delivers each
update to your block.

 ➤ Pull: Your application samples a property value in the CMMotionManager instance to read
the last available acceleration/gyroscope readings. This approach is simpler to implement
and requires less code. It is well suited to games that are driven by a run loop and need to
poll hardware at each pass through the loop.

This lesson examines the push approach. When using this approach, your application requests
motion updates at a speciic frequency. The requested update interval, however, is not guaranteed.

As a developer, you will need to experiment with different update frequencies to determine what
works best for your application. You may be tempted to specify a high frequency (more updates per
second) than you actually need, but this can have adverse effects on overall system performance and
drain the battery faster.

Checking Hardware Availability ❘ 425

checkinG hardWare avaiLaBiLiTy

Because only the latest devices have gyroscopes, you need to check to see if one exists before
attempting to use it. You have two ways to do this. If having a gyroscope is a key requirement for
your application, and you do not want users to use your app on an older device, you can add the
UIRequiredDeviceCapabilities key to your application’s Info.plist ile (Figure 37-5).

2

1

FiGure 37-5

The value of this key is an array that must contain an entry for each capability that is required to
run your application. The entries for motion hardware are:

 ➤ accelerometer (for accelerometer events)

 ➤ gyroscope (for motion events)

If having a gyroscope is an optional requirement, and your application can be used without one, you
can test for the availability of a gyroscope using the following code:

// is a gyroscope available
CMMotionManager* motionManager = [[CMMotionManager alloc] init];
BOOL gyroscopeAvailable = motionManager.gyroAvailable;

426 ❘ LeSSon 37 inTroducTion To core moTion

handLinG acceLeroMeTer evenTS

Core Motion provides an alternate way to handle accelerometer events (the other alternative being
the UIAccelerometer class). An accelerometer event is an instance of CMAccelerometerData class.

The CMAccelerometerData class encapsulates a CMAcceleration structure called acceleration,
which in turn contains the values of acceleration along the x, y, and z axes, respectively.

The following code snippet shows how to use Core Motion to receive accelerometer updates roughly
10 times per second:

CMMotionManager* motionManager = [[CMMotionManager alloc] init];
motionManager.accelerometerUpdateInterval = 1.0 / 10.0;
[motionManager startAccelerometerUpdatesToQueue:
 [NSOperationQueue currentQueue]
withHandler:^(CMAccelerometerData *accelData, NSError *error)
{
 // get acceleration values along three axes
 double accelerationX = accelData.acceleration.x;
 double accelerationY = accelData.acceleration.y;
 double accelerationZ = accelData.acceleration.z;

 // do something with the acceleration values...
}];

When your application does not want to receive accelerometer events any longer, it must call the
stopAccelerometerUpdates method on the CMMotionManager instance:

[motionManager stopAccelerometerUpdates];

If you need to reduce the effect of sudden changes on the accelerometer data, you can modify the
raw acceleration values contained in the CMAcceleration structure by applying a low-pass ilter.
The following code snippet implements a simple low-pass ilter:

// get acceleration values along three axes
double rawX = accelData.acceleration.x;
double rawY = accelData.acceleration.y;
double rawZ = accelData.acceleration.z;

// filter the raw acceleration values using a low-pass filter
double filteredX = (rawX * 0.1) + (filteredX * 0.9);
double filteredY = (rawY * 0.1) + (filteredY * 0.9);
double filteredZ = (rawZ * 0.1) + (filteredZ * 0.9);
// do something with the filtered values...

The iltering is based on using 10 percent of the current, uniltered acceleration value and 90 percent
of the previous iltered value.

If you want to isolate the effect of gravity on the accelerometer data, you can modify the raw
acceleration values by applying a high-pass ilter as follows:

// get acceleration values along three axes
double rawX = accelData.acceleration.x;
double rawY = accelData.acceleration.y;
double rawZ = accelData.acceleration.z;

// filter the raw acceleration values using a high-pass filter
double filteredX = rawX - ((rawX * 0.1) + (filteredX * 0.9));

Try It ❘ 427

double filteredY = rawY - ((rawY * 0.1) + (filteredY * 0.9));
double filteredZ = rawZ - ((rawZ * 0.1) + (filteredZ * 0.9));

// do something with the filtered values...

handLinG GyroScoPe evenTS

A gyroscope measures the rate of rotation of a device about three axes. The gyroscope measure-
ments provided by Core Motion are biased, meaning that the gyroscope will provide some ixed
reading even where there is no change in rotation about an axis. A gyroscope event is an instance
of a CMGyroData class.

The CMGyroData class encapsulates a CMRotationRate structure called rotationRate, which in turn
contains the values of rotation rate along the X, Y, and Z axes, respectively. The rate of rotation is
measured in radians per second.

Using Core Motion to access gyroscope data is very similar to using it with acceleration data. You
need to check that the gyroscope exists before trying to access it. The following code snippet shows
how to use Core Motion to receive gyroscope updates.

CMMotionManager* motionManager = [[CMMotionManager alloc] init];
motionManager.gyroUpdateInterval = 1.0/60.0;
if (motionManager.gyroAvailable)
{
 [motionManager startGyroUpdatesToQueue:
 [NSOperationQueue currentQueue]
 withHandler:^(CMGyroData *rotationData, NSError *error)
 {
 // get rotation-rate values along three axes
 double rawX = rotationData.rotationRate.x;
 double rawY = rotationData.rotationRate.y;
 double rawZ = rotationData.rotationRate.z;

 // do something with the values...
 }];
}

When your application does not want to receive gyroscope updates, it should send the
stopGyroUpdates message to the CMMotionManager instance.

Try iT

In this Try It, you build an iPad application called AccelTest based on the Single View Application
template that uses Core Motion to display accelerometer and gyroscope readings and slides an image
along one axis as you tilt the device.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Import image resources into the project.

428 ❘ LeSSon 37 inTroducTion To core moTion

 ➤ Add a background image to the default scene.

 ➤ Add a few UILabel elements that will display the accelerometer and gyroscope readings.
Create outlets for these in the view controller class.

 ➤ Add a UIImageView instance to the default scene that will be moved about the screen along
the X axis as the device is tilted. Create an appropriate outlet.

 ➤ Initialize Core Motion in the viewDidLoad method of the view controller class.

 ➤ Send appropriate methods to CMMotionManager to stop receiving motion updates in the
viewDidUnload method.

 ➤ Write code to slide the UIImageView instance across the screen along the X axis as the
device is tilted.

 ➤ The gyroscope features of this Try It require an iPad 2.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 37 folder in the download.

hints
 ➤ Remember to check for gyroscope availability before attempting to use it.

 ➤ You need to add a reference to the Core Motion framework to the project.

Step-by-Step

 1. Create a Single View Application in Xcode called AccelTest.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

 ➤ Product Name: AccelTest

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson37

 ➤ Deine Family: iPad

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

http://www.wrox.com

Try It ❘ 429

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Add a reference to the Core Motion framework.

 1. In Xcode, make sure the project navigator is visible. To show it, use the View d
Navigators d Show Project Navigator menu item.

 2. Click the root (project) node of the project navigator to display project settings.

 3. Select the AccelTest target and ensure the Build Phases tab is visible.

 4. Expand the Link Binary With Libraries group in this tab.

 5. Click the + button at the bottom of this group and select CoreMotion.framework
from the list of available frameworks.

 6. Click the Add button.

 3. Disable landscape orientation for iPad applications.

 1. Switch to the Summary tab in project settings.

 2. Deselect the Landscape Left and Landscape Right orientations from the Supported
Device Orientations group.

 4. Copy the gameBack.png and 00.png iles from the resources folder of this lesson on the
DVD into the Xcode project.

 5. Add a background image to the view.

 1. Open the MainStoryboard.storyboard ile in Interface Builder.

 2. Ensure the Media library is visible. You can show it by using the View d Utilities d
Show Media Library menu item.

 3. Drag the gameBack.png ile onto the view controller.

 4. Use the Size inspector to set the origin to X = 0 and Y = 0.

 6. Add an image to the view that will be moved as the device is tilted.

 1. Drag the 00.png ile from the Media library onto the view controller.

 2. Use the Size inspector to position it at X = 267 and Y = 643.

 3. Using the assistant editor, create an outlet called playerImage in the
Lesson37ViewController.h ile and connect it to the image.

430 ❘ LeSSon 37 inTroducTion To core moTion

 7. Add three UILabel instances to the view controller to display accelerometer readings.

 1. Ensure the Object library is visible. You can show it by using the View d Utilities d
Show Object Library menu item.

 2. Use the Object library to add three UILabel instances. Resize and position them
using the Size Inspector as per Table 37-2.

TaBLe 37-2: Size and Position of Accelerometer Labels

LaBeL x y WidTh heiGhT

First Label 20 13 70 42

Second Label 90 13 70 42

Third Label 160 13 70 42

 3. Using the Assistant Editor, create outlets for each label named accelX, accelY, and
accelZ, respectively, in the Lesson37ViewController.h ile

 8. Add three more UILabel instances to the view controller to display gyroscope readings.

 1. Ensure the Object library is visible. You can show it by using the View d Utilities d
Show Object library menu item.

 2. Use the Object library to add three UILabel instances. Resize and position them
using the size inspector as per Table 37-3.

TaBLe 37-3: Size and Position of Gyroscope Labels

LaBeL x y WidTh heiGhT

First Label 543 13 70 42

Second Label 613 13 70 42

Third Label 683 13 70 42

 3. Using the assistant editor, create outlets for each label named gyroX, gyroY, and
gyroZ, respectively.

 9. Add the following line to the top of the Lesson37ViewController.h ile, to import the
Core Motion framework:

#import <CoreMotion/CoreMotion.h>

Try It ❘ 431

 10. Add the following property declarations to the Lesson37ViewController.h ile:

@property double filteredX;
@property double filteredY;
@property double filteredZ;
@property double xVelocity;
@property (strong, nonatomic) CMMotionManager* motionManager;

 11. Add the following @synthesize statements to the Lesson37ViewController.m ile:

@synthesize filteredX;
@synthesize filteredY;
@synthesize filteredZ;
@synthesize xVelocity;
@synthesize motionManager;

 12. Add the following code to the viewDidLoad method of the view controller class after the
[super viewDidLoad] line:

// instantiate CMMotionManager
self.motionManager = [[CMMotionManager alloc] init];

// initialize horizontal velocity
xVelocity = 0.0;

// set up to receive acceleration
self.motionManager.accelerometerUpdateInterval = 1.0 / 60.0;
[self.motionManager startAccelerometerUpdatesToQueue:
 [NSOperationQueue currentQueue]
 withHandler:^(CMAccelerometerData *accelData, NSError *error)
 {
 // get acceleration values along three axes
 double rawX = accelData.acceleration.x;
 double rawY = accelData.acceleration.y;
 double rawZ = accelData.acceleration.z;

 // filter the raw acceleration values using
 // a high-pass filter
 filteredX = rawX - ((rawX * 0.1) +
 (filteredX * 0.9));
 filteredY = rawY - ((rawY * 0.1) +
 (filteredY * 0.9));
 filteredZ = rawZ - ((rawZ * 0.1) +
 (filteredZ * 0.9));

 // display the values
 accelX.text = [NSString stringWithFormat:@"%2.3f",
 filteredX];
 accelY.text = [NSString stringWithFormat:@"%2.3f",
 filteredY];
 accelZ.text = [NSString stringWithFormat:@"%2.3f",
 filteredZ];

 // slide playerImage along the X axis
 xVelocity = xVelocity + filteredX;
 float newPlayerX = playerImage.frame.origin.x +
 xVelocity;

432 ❘ LeSSon 37 inTroducTion To core moTion

 // clamp new position between [20.0, 700.0]
 if (newPlayerX <= 20.0)
 {
 newPlayerX = 20.0;
 xVelocity = 0.0;
 }

 if (newPlayerX > 700.0)
 {
 newPlayerX = 700.0;
 xVelocity = 0.0;
 }

 playerImage.frame = CGRectMake(newPlayerX,
 playerImage.frame.origin.y,
 playerImage.frame.size.width,
 playerImage.frame.size.height);
 }];

 if (self.motionManager.gyroAvailable)
 {
 self.motionManager.gyroUpdateInterval = 1.0/60.0;

 [self.motionManager startGyroUpdatesToQueue:
 [NSOperationQueue currentQueue]
 withHandler:^(CMGyroData *rotationData, NSError *error)
 {
 // get rotation-rate values along three axes
 double rawX = rotationData.rotationRate.x;
 double rawY = rotationData.rotationRate.y;
 double rawZ = rotationData.rotationRate.z;

 // display the values
 gyroX.text = [NSString stringWithFormat:@"%2.3f",
 rawX];
 gyroY.text = [NSString stringWithFormat:@"%2.3f",
 rawY];
 gyroZ.text = [NSString stringWithFormat:@"%2.3f",
 rawZ];
 }];
 }
 else
 {
 gyroX.text = @"--";
 gyroY.text = @"--";
 gyroZ.text = @"--";

 UIAlertView* noGyroscope = [[UIAlertView alloc]
 initWithTitle:@""
 message:@"No gyroscope detected!"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [noGyroscope show];
 }

Try It ❘ 433

 13. Add the following code to the end of the viewDidUnload method of the view controller class:

if (self.motionManager != nil)
{
 [self.motionManager stopAccelerometerUpdates];
 if (self.motionManager.gyroAvailable)
 {
 [self.motionManager stopGyroUpdates];
 }
}

 14. Test your application on an iPad.

 1. Connect your iPad and select it from the Scheme/Target selector in the Xcode
toolbar.

 2. Click the Run button in the Xcode toolbar. Alternatively you can use the Project d
Run menu item.

 3. Tilt the iPad along its X axis to move the player character. Observe the accelerom-
eter and gyroscope readings displayed on the top of the screen (Figure 37-6).

FiGure 37-6

Please select Lesson 37 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

Building Background-Aware
Applications

Starting with iOS 4, Apple included support for background applications. If you have been
building the applications in the Try It sections at the end of each lesson, you may have noticed
that when you quit your application and launch it again from the home screen, your application
resumes from where you left off. The reason for it is that projects created with Xcode 4.2 and
above are background-ready by default.

Being background-ready does not mean that your application will run in the background. It just
means that your application is aware of the support for background features in iOS and can take
advantage of these features. In this lesson you learn how to create applications that can perform
limited functions whilst in background mode.

underSTandinG BackGround SuSPenSion

To support background execution, an application must be compiled against the iOS 4 SDK
or higher. This means that if you purchase an application from the App Store that was cre-
ated using an older version of the iOS SDK, the application will simply enter a suspended
state of execution when you press the home button and will not be able to perform any
background processing.

When a user quits a background-aware application by pressing the home button, the applica-
tion is usually moved into a suspended state. Most applications cease to execute any code in this
suspended state. Instead, these applications are preserved exactly as the user left them. When the
user returns to the suspended application, it appears as if it has been running the whole time.

iOS calls several methods in your application delegate object as the application is being sus-
pended or resumed. Typically you are responsible for cleaning up resources as the application
enters the suspended state and for updating things in the application that should have changed
when the application resumes.

38

436 ❘ LeSSon 38 Building Background-aware applicaTionS

You will typically ind the following application delegate methods in a background-aware application.
Default implementations of these methods are provided as part of Apple’s application templates.

 ➤ (BOOL)application didFinishLaunchingWithOptions: Called when your application is
irst launched, or launched after it was manually terminated using the iOS Task Manager.

 ➤ (void)applicationDidBecomeActive: Called when an application returns to the foreground
from the background.

 ➤ (void)applicationWillResignActive: Called when your application is about to become
inactive. This can happen if the application is being temporarily interrupted by a phone
call/SMS or is about to begin its transition to the background state.

 ➤ (void)applicationDidEnterBackground: Called when your application has become a
background application.

 ➤ (void)applicationWillEnterForeground: Called when the application is in the process
of becoming active from the background state.

 ➤ (void)applicationWillTerminate: Called when the application is about to terminate from
the background state. This happens when the user decides to terminate it from the task man-
ager or the operating system is running low on resources and terminates your application.

In most cases, you will save your application state in the applicationDidEnterBackground: event
and restore its state in the applicationDidBecomeActive: event.

By default, applications created with Xcode will go into the suspended state when they are closed by
the user. To override this behavior and have the application terminate instead, add the Application
Does Not Run In Background key to the project’s Info.plist ile and set the value of the key to
YES (Figure 38-1).

Most devices support background-aware applications; however, some older devices like the iPhone
3G may not. Use the following code snippet to determine if the device on which your application is
running supports background-aware applications:

UIDevice *device = [UIDevice currentDevice];
BOOL backgroundSupported = NO;
if ([device respondsToSelector:@selector(isMultitaskingSupported)])
 backgroundSupported = device.multitaskingSupported;

execuTinG BackGround code

Unfortunately, only applications that perform certain types of tasks can execute code when in back-
ground mode. All other applications are sent to the suspended state, and while in that state cannot
execute any code. The types of applications that can execute code in the background are:

 ➤ Audio players

 ➤ Voice over IP applications

 ➤ Applications that require location updates

Executing Background Code ❘ 437

2

1

FiGure 38-1

To declare your application as supporting one or more of these tasks, you need to add the Required
Background Modes key to the project’s Info.plist ile and then add the values App Plays Audio,
App Provides Voice over IP Services, and App Registers for Location Updates, respec-
tively (Figure 38-2). In the Try It section that accompanies this lesson, you create a background-
aware location-based application.

If your application has certain long-running tasks that need to be completed before the application
is suspended, it can mark these tasks appropriately. Each marked task is given approximately 10
minutes to complete its actions before the application is suspended.

To mark the beginning of a long-running task, use the application’s beginBackgroundTaskWith-
ExpirationHandler: method. This method returns a task identiier and takes as an argument an
Objective-C block that is called if your task does not complete in the 10-minute timeframe:

UIBackgroundTaskIdentifier longTask;
longTask = [[UIApplication sharedApplication]
 beginBackgroundTaskWithExpirationHandler:^{
 // write code here to handle the case that
 // your task did not complete in 10 minutes.
}];

Then, mark the end of the task by using the endBackgroundTask: method, giving it the task identi-
ier you obtained in the previous step:

[[UIApplication sharedApplication] endBackgroundTask:longTask];

438 ❘ LeSSon 38 Building Background-aware applicaTionS

FiGure 38-2

creaTinG LocaL noTiFicaTionS

All background-aware applications can receive both remote and local notiications. Remote notiica-
tions are notiications that originate from the Apple Push Notiication Service and are not covered
in this book. A local notiication is similar in many respects to a remote notiication, except that the
notiication is scheduled by iOS on the same device. A typical example where local notiications can
be used is a to-do list application that allows the user to set a reminder for a future date.

Local notiications are instances of the UILocalNotification class and are created as follows:

UILocalNotification* futureAlert = [[UILocalNotification alloc] init];
futureAlert.alertBody = @"I need attention!";
futureAlert.alertAction = @"View ";
futureAlert.applicationIconBadgeNumber = 1;
futureAlert.fireDate = [NSDate dateWithTimeIntervalSinceNow:10];

When a local notiication ires and your application is in the suspended state, iOS displays an alert
view similar to the one shown in Figure 38-3. The alertBody property contains a string that is dis-
played in an alert view, and the alertAction property contains a string that represents the caption
of the OK button in the notiication alert.

The fireDate property of the local notiication object is set to an NSDate instance that represents a
point of time in the future when you want this notiication to ire. To create an NSDate instance that
refers to a point of time 10 seconds from now, use the following code:

[NSDate dateWithTimeIntervalSinceNow:10];

Try It ❘ 439

FiGure 38-3

You can specify a number to display over the application icon in the home screen by using
the applicationIconBadgeNumber property. You can also play a sound when the notiica-
tion ires by specifying the ilename of a sound resource that is part of your application bundle
for the soundName property. To play the default system sound, set the soundName property to
UILocalNotificationDefaultSoundName.

To schedule the local notiication, use the scheduleLocalNotification: method of the application
object as follows:

[[UIApplication sharedApplication] scheduleLocalNotification:futureAlert];

When the notiication ires, and the user decides to activate your application
by tapping on the appropriate button in the notiication alert, your application delegate’s
application:didReceiveLocalNotification: method is called. This method is also called
when the local notiication ires while your application is active; however in this case the system
will not show the notiication alert view.

Try iT

In this Try It, you build an iPhone application called BackgroundLocation based on the Single
View Application template that uses Core Location to receive location updates. The application
displays the current location, the number of location updates processed, and the distance traveled

440 ❘ LeSSon 38 Building Background-aware applicaTionS

since the irst location reading was obtained. When you quit the application, it will continue to
execute in the background and update the current location and distance traveled.

Lesson requirements
 ➤ Create a new project based on the Single View Application template.

 ➤ Add a few UILabel elements to the default scene that will display the location readings.
Create outlets for these in the view controller class.

 ➤ Add a UIButton that will be used to stop/start receiving location updates. Create an appro-
priate outlet and action.

 ➤ Initialize Core Location when the button is pressed. Stop receiving location updates when
the button is pressed a second time.

 ➤ Implement CLLocationManagerDelegate methods.

 ➤ Send appropriate methods to CLLocationManager to stop receiving location updates in the
viewDidUnload method.

 ➤ Add the Required Background Modes key to the application’s Info.plist ile so that the
application can receive location updates while it is in the background state.

You can download the code and resources for this Try It from the book’s web page
at www.wrox.com. You can ind them in the Lesson 38 folder in the download.

hints
 ➤ Remember to use the purpose property of the CLLocationManager instance to provide a

description of what your application intends to do with the location data.

 ➤ Your application should send the stopUpdatingLocation message to the location manager
when it does not require location updates.

 ➤ You need to add a reference to the Core Location framework to the project.

 ➤ This application can execute code in the background only if the Required Background
Modes key in the Info.plist ile is set to App Registers for Location Updates.

Step-by-Step

 1. Create a Single View Application in Xcode called BackgroundLocation.

 1. Launch Xcode.

 2. To create a new project, select the File d New d New Project menu item.

 3. Choose the Single View Application template and click Next.

 4. Use the following information in the project options dialog box and click Next.

http://www.wrox.com

Try It ❘ 441

 ➤ Product Name: BackgroundLocation

 ➤ Company Identiier: com.wileybook

 ➤ Class Preix: Lesson38

 ➤ Deine Family: iPhone

 ➤ Use Storyboard: Checked

 ➤ Use Automatic Reference Counting: Checked

 ➤ Include Unit Tests: Unchecked

For Company Identiier, we used com.wileybook, but you can use any unique
identiier for your application.

 5. Select a folder where this project should be created.

 6. Ensure the Create Local Git Repository for This Project checkbox is not selected.

 7. Click Create.

 2. Add a reference to the Core Location framework.

 1. In Xcode, make sure the project navigator is visible. To show it, use the View d
Navigators d Show Project Navigator menu item.

 2. Click the root (project) node of the project navigator to display project settings.

 3. Select the BackgroundLocation target and ensure the Build Phases tab is visible.

 4. Expand the Link Binary With Libraries group in this tab.

 5. Click the + button at the bottom of this group and select CoreLocation.framework
from the list of available frameworks.

 6. Click the Add button.

 3. Add eight UILabel instances to the view controller to display location readings.

 1. Use the Object library to add eight UILabel instances to the default scene.

 2. Use the data in Table 38-1 to name and position these labels.

TaBLe 38-1: Size and Position of Labels

LaBeL x y WidTh heiGhT

Latitude 17 34 62 21

Longitude 17 79 77 21

Distance Travelled 17 123 141 21

continues

442 ❘ LeSSon 38 Building Background-aware applicaTionS

LaBeL x y WidTh heiGhT

Update Count 17 169 104 21

latitudeValue 180 34 99 21

longitudeValue 180 79 113 21

distanceValue 180 123 107 21

countValue 180 169 86 21

 3. Using the assistant editor, create outlets for the latitudeValue, longitudeValue,
distanceValue, and countValue labels in the view controller class. Call these out-
lets latValue, lonValue, distValue, and countValue, respectively.

 4. Add a UIButton instance to the scene.

 1. Use the Object library to add a UIButton instance. Resize and position it to X = 17,
Y = 236, W = 275, H = 37.

 2. Using the Attributes inspector, set its Title for the Default state to Start Location
Updates.

 3. Using the assistant editor, create an outlet in the view controller class called
toggleButton and connect it to the button.

 4. Using the assistant editor, create an action in the view controller class called
onButtonPressed and connect it to the Touch Up Inside event of the button.

 5. Your storyboard should now resemble Figure 38-4.

 5. Add the following line to the top of the view controller’s header ile, to import the
Core Location framework:

#import <CoreLocation/CoreLocation.h>

 6. Add the following property declaration statements to the interface of the view controller class:

@property double totalDistanceTravelled;
@property long numberOfUpdatesProcessed;
@property BOOL hasInitialized;
@property BOOL hasStarted;
@property (strong, nonatomic) CLLocationManager* locationManager;

 7. Declare the Lesson38ViewController class to conform to the CLLocationManagerDelegate
protocol by modifying its interface declaration to the following:

@interface Lesson38ViewController : UIViewController <CLLocationManagerDelegate>

 8. Add the following @synthesize statements to the Lesson38ViewController.m ile:

@synthesize totalDistanceTravelled;
@synthesize numberOfUpdatesProcessed;
@synthesize hasInitialized;
@synthesize hasStarted;
@synthesize locationManager;

TaBLe 38-1 (continued)

Try It ❘ 443

FiGure 38-4

 9. Add the following code to the viewDidLoad method of the view controller class after the
[super viewDidLoad] line:

// setup Core Location
hasInitialized = YES;
self.locationManager = [[CLLocationManager alloc] init];
self.locationManager.delegate = self;
self.locationManager.purpose = @"This application will display your
 current location and the distance
 travelled since the first reading.";

// setup button
hasStarted = NO;
[toggleButton setTitle:@"Start Location Updates"
 forState:UIControlStateNormal];

// initialize number of updates processed
numberOfUpdatesProcessed = 0;

// initialize distance travelled
totalDistanceTravelled = 0;
distValue.text = [NSString stringWithFormat:@"%2.3f",
 totalDistanceTravelled];
countValue.text = [NSString stringWithFormat:@"%d",
 numberOfUpdatesProcessed];

444 ❘ LeSSon 38 Building Background-aware applicaTionS

 10. Add the following code to the viewDidUnload method of the view controller class:

if (hasInitialized == YES)
 [self.locationManager stopUpdatingLocation];

 11. Add the following code to the onButtonPressed: method of the view controller class:

// do not do anything if location manager is not setup
if (hasInitialized == NO)
 return;

// start
if (hasStarted == NO)
{
 [toggleButton setTitle:@"Stop Location Updates"
 forState:UIControlStateNormal];
 [self.locationManager startUpdatingLocation];
 hasStarted = YES;
 return;
}

// stop
else if (hasStarted == YES)
{
 [toggleButton setTitle:@"Start Location Updates"
 forState:UIControlStateNormal];
 [self.locationManager stopUpdatingLocation];
 hasStarted = NO;
 return;
}

 12. Implement the locationManager:didFailWithError: delegate method as follows:

- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error
{
 if (error.code == kCLErrorDenied)
 {
 hasInitialized = NO;
 [self.locationManager stopUpdatingLocation];
 }
}

 13. Implement the locationManager:didUpdateToLocation:FromLocation: delegate method
as follows:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation
{
 // lat/lon values should only be considered if
 // horizontalAccuracy is not negative.
 if (newLocation.horizontalAccuracy >= 0)
 {
 CLLocationDegrees currentLatitude = newLocation.coordinate.latitude;
 CLLocationDegrees currentLongitude =
 newLocation.coordinate.longitude;

Try It ❘ 445

 // must have more than one update to compute distance travelled.
 if (numberOfUpdatesProcessed > 0)
 {
 CLLocationDistance distanceTravelled = [oldLocation
 distanceFromLocation:newLocation];
 totalDistanceTravelled += distanceTravelled;
 }

 // increment numberOfUpdatesProcessed
 numberOfUpdatesProcessed++;

 // update UI
 latValue.text = [NSString stringWithFormat:@"%2.3f",
 currentLatitude];
 lonValue.text = [NSString stringWithFormat:@"%2.3f",
 currentLongitude];
 distValue.text = [NSString stringWithFormat:@"%2.3f",
 totalDistanceTravelled];
 countValue.text = [NSString stringWithFormat:@"%d",
 numberOfUpdatesProcessed];
 }
}

 14. Add the Required Background Modes key to the application’s Info.plist ile.

 1. This is straightforward. Set the value of the key to App registers for location
updates.

 15. Test your application in the iOS Simulator.

 1. Click the Run button in the Xcode toolbar. Alternatively, you can use the Project d
Run menu item.

 2. When the app is running in the simulator, click the Start Location Updates button.

 3. Use the iOS Simulator’s ability to simulate a device on the move by selecting the
Debug d Location d City Bicycle Ride menu item.

 4. Press the home button to quit the application, wait for about 10 seconds, and then
launch the application by tapping its icon in the home screen. Note how the applica-
tion continued to process location updates while it was in background mode.

Please select Lesson 38 on the DVD that accompanies the print book, or go to
www.wrox.com/go/iphoneipadappvideo, to view the video that accompanies
this lesson.

http://www.wrox.com/go/iphoneipadappvideo

What’s on the DVD?

This appendix provides you with information on the contents of the DVD that accompanies
the print book. For the most up-to-date information please refer to the ReadMe ile located
at the root of the DVD. Here is what you will ind in this appendix:

 ➤ Using the DVD

 ➤ What’s on the DVD

 ➤ Troubleshooting

SySTeM requireMenTS

Most reasonably up-to-date computers with a DVD drive should be able to play the screencasts
that are included on the DVD. You may also ind an Internet connection helpful for downloading
updates to this book. To follow the exercises covered in the screencasts you will need to have the
iOS 5 SDK installed on your Mac. Instructions on downloading and installing the iOS 5 SDK are
provided in Lesson 1.

uSinG The dvd on a Pc

To access the content from the DVD, follow these steps:

 1. Insert the DVD into your computer’s DVD-ROM drive. The license agreement
will appear.

The interface won't launch if you have autorun disabled. In that case click Start d
Run (For Windows Vista, Start d All Programs d Accessories d Run). In the
dialog box that appears, type D:\Start.exe. (Replace D with the proper letter if
your DVD drive uses a different letter. If you don't know the letter, see how your
CD drive is listed under My Computer.) Click OK.

A

448 ❘ aPPendix a wHaT’S on THe dVd?

 2. Read through the license agreement, and click the Accept button if you want to use the
DVD.

 3. The DVD interface appears. Simply select the lesson video you want to view.

uSinG The dvd on a Mac

To install the items from the DVD to your hard drive, follow these steps:

 1. Insert the DVD into your computer's DVD-ROM drive.

 2. The DVD icon will appear on your desktop; double-click to open.

 3. Double-click the Start button.

 4. Read the license agreement and click the Accept button to use the DVD.

 5. The DVD interface will appear. Here you can install the programs and run the demos.

WhaT’S on The dvd

Most lessons in the book have a corresponding screencast that illustrates examples in the lesson and
provides content beyond what is covered in print.

We recommend using the following steps when reading a lesson:

 1. Read the lesson’s text.

 2. Read the step-by-step instructions in the lesson’s “Try It” section.

 3. Follow these instructions to make the code sample work on your computer.

 4. Watch the screencast.

You can also download all the solutions to the “Try It” sections at the book’s website. If you get
stuck and don’t know what to do next, visit the p2p forums (p2p.wrox.com), locate the forum
for the book, and leave a post. You can also e-mail us at amishra@asmtechnology.com and
gbacklin@marizack.com and we’ll try to point you in the right direction.

TrouBLeShooTinG

If you have dificulty installing or using any of the materials on the companion DVD, try the
following solutions:

 ➤ Turn off any antivirus software that you may have running: Installers sometimes mimic
virus activity and can make your computer incorrectly believe that it is being attacked by
a virus. (Be sure to turn the antivirus software back on later.)

mailto:amishra@asmtechnology.com
mailto:gbacklin@marizack.com

Customer Care ❘ 449

 ➤ Close all running programs: The more programs you’re running, the less memory is available
to other programs. Installers also typically update iles and programs; if you keep other pro-
grams running, installation may not work properly.

 ➤ Reference the ReadMe: Please refer to the ReadMe ile located at the root of the CD-ROM
for the latest product information as of publication time.

 ➤ Reboot if necessary: If all else fails, rebooting your machine can often clear any conlicts in
the system.

cuSToMer care

If you have trouble with the CD-ROM please call the Wiley Product Technical Support phone
number, (800) 762-2974. Outside the United States call 1 (317) 572-3994. You can also contact
Wiley Product Technical Support at http://support.wiley.com. John Wiley & Sons will pro-
vide technical support only for installation and other general quality-control issues. For technical
support on the applications themselves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley products, please call
(877) 762-2974.

http://support.wiley.com

451

index

a

accelerometer

basics of, 421–422

events, handling, 426–427

AccelTest project (Core Motion), 427–433

account registration (iOS development), 4–6

action sheets, 97–98

actions, 43, 52–54

active user interface elements, 82

addresses

contacts.xml and, 322–323, 325, 327

locating, 396–397

addSubView: method, 187, 199

addTarget:action:forControlEvents:
method, 198

addURL: message, 232–233

alert views

vs. action sheets, 97, 98

alertView:clickedButtonAtIndex:
delegate method, 96, 101

alertViewStyle property, 95

basics of, 93–97

AlertSample project, 99–101

animation

constant for (table views), 150–151

of images, 106

animation with timers

Bounce project, 370–373

timers, creating, 367–368, 371–372

timers basics, 367

UIView subclasses, animating, 368–369

annotations, adding (Map Kit), 405–407

APIs (iCloud), steps for using

entitlements, enabling, 283–285

iCloud-enabled App ID, preparing to
use, 278–281

provisioning proiles, creating,
281–283

app development process, 8

App IDs

iCloud-enabled, creating, 278–281

registering, 292

AppDelegate class, 180–181, 191

Apple iOS SDK (Software Development
Kit), 6–8

application settings

preference types, 262

preferences, reading with code, 263

Settings.bundle iles, adding,
259–262

SettingsTest project, 263–267

Application supports iTunes file

sharing key, 269–270

452

applications – camera and photo library

applications. See also background-aware
applications, building

application life cycle, 39

application preferences. See application
settings

application states (iOS), 39–41

ile directories, 239

storyboard-based applications navigation,
138–139

xib-based applications (navigation
controllers), 138

arrayForSection method, 159

arrays

deined, 113

in Objective-C, 113–114

Assistant Editor button, 144

assistant editor (Xcode editor
area), 31–32

attributes

adding to ContactData entities (Core
Data), 306–307

NSXMLParserDelegate protocol
and, 321

setting up for Core Data objects,
308–309

XML elements, 319

Attributes Inspector

adding buttons and, 49

creating text ields and, 81

designing for iPhone tabbed
application project and,
178–179

designing root view controller
and, 143

segues and, 64, 65

Single View Application, creating and,
14, 15

B

background color change, enabling, 54–56

background-aware applications, building

background code, executing, 436–438

background suspension, 435–436

BackgroundLocation project, 439–445

basics of, 435

local notiications, creating, 438–439

methods found in, 436

types of, 436

beginBackgroundTaskWith-

ExpirationHandler: method, 437

(BOOL)canBecomeFirstResponder { return

YES; }; method, 350

Bounce project (animation), 370–373

breakpoint navigator (Xcode), 29

breakpoints, deined, 29

build targets in project creation, 35–37

Bundle Identiiers, 23

buttons

adding, 46

adding to default scene, 342

adding to navigation bar, 136, 155, 156

adding to storyboard scene, 58, 72–73

alert views, 93, 94

button types, 49–50

editing text on, 73

buttonWithType: class method, 198

c

Caches directory, 239, 240

camera and photo library

contents of, accessing, 414

ImagePicker project, 416–419

453

cancel button – Core Data

images, saving to iles, 415–416

selecting camera to use, 414

UIImagePickerController class,
413–416

cancel button (alert views), 93, 94, 95

canSendTweet: class method, 232

CGRectMake function (UIView subclass),
368–369

CIFilter class, 375–376, 377

CIImage class, 375, 378

classes. See also speciic classes

frameworks and, 43

Page-Based Application template, 191

CLLocationManager class, 391, 392, 395

CLLocationManagerDelegate protocol, 391,
392, 393, 397

cloudDocument.txt project, 290–302

CloudTestDocument, 286

CLPlacemark object, 397

CLTest project (Core Location), 398–402

CMAccelerometerData class, 426

CMGyroData class, 427

CMMotionManager class, 421

Cocoa Touch (frameworks), 43–44

code

background code, executing, 436–438

code listings. See listings

reading preferences in settings bundles
with, 263

Code Snippet library (Xcode), 34–35

CodeBasedUI project, 202–204

color

background color, changing, 14, 54–56

ilters and, 376

of label text and background, 199–200

pinColor property, 407

text color, setting, 46

comments, in XML documents, 319

compass headings (Core Location), 397–398

components, pickers, 111

coniguring App IDs for iCloud, 280–281

constants, table views and, 151

ContactData class, 243–244, 245, 329

ContactData entity, 306

ContactData objects, instantiating, 308

ContactSample project (XML parsing),
328–333

containers and container identiiers
(iCloud), 285

content

of elements, deined (XML), 318

preparing for printing, 360–363

contentOffset property, creating scroll views
and, 206

contentsForType:error: method, 286

contentSize property, scroll views and,
205–206, 208

contentsOfDirectoryAtPath:error:
method, 270

copying iles from directories, 240–241

copyItemAtPath:toPath:error: method.,
240–241

“Core Animation Programming
Guide”, 369

Core Data

CoreDataTest project, 309–315

instantiating Core Data objects,
304–307

managed object context, 303

managed object model, 304–307

managed objects, 303

managed objects, reading, 309

managed objects, writing, 308–309

persistent store coordinator, 303, 308

454

Core Image – delegate methods

Core Image

basics of, 375

ImageFilters project, 378–381

images and ilters, 375–377

using, 377–378

Core Image Filter Reference document,
376, 377

Core Location

accuracy of location and, 391, 392

CLLocationManager class, 391

CLTest project, 398–402

compass headings, 397–398

error handling, 394–395

geocoding and reverse geocoding,
396–397

hardware availability, 394–395

location updates, code for receiving,
391–392

location updates, handling, 393–394

Core Motion

accelerometer basics, 421–422

accelerometer events, handling, 426–427

AccelTest project, 427–433

basics of, 423–424

gyroscope events, handling, 427

gyroscopes basics, 421, 423

hardware availability, checking, 425

createDocument method, implementing
(iCloud), 300–301

currentElementValue variable, 326

custom pickers

basics of, 127–128

CustomPickerTest project, 129–133

Custom segues, 64

d

daemons, deined, 278

data

applications directories for storing, 239

displaying for user feedback, 217–219

displaying in table views, 148

storage of. See iles, basic handling of;
property lists

synchronizing across devices.
See iCloud storage

data classes, 42

data models, creating and editing (Core Data
project), 311

data source methods (table views), 150

data source objects (pickers), 111

data store, persistent store coordinator
and, 303

dataSource property (page view
controller), 189

DataViewController class, 191, 192–193

date pickers

adding to default scene, 124

basics of, 119–120

custom date range, 124–125

dates in Objective-C, 121–122

DateSample project, 122–126

vs. picker views, 119

debug navigator (Xcode), 29

debugger area (Xcode), 35

DefaultValue key (Settings applications), 261

delegate methods

in background-aware applications, 436

in iOS applications, 40

NSURLConnectionDelegate methods,
339–340, 346–347

455

delegate objects – endBackgroundTask: method

NSXMLParserDelegate protocol, 321

table views, 149

XMLParser, 324–327

delegate objects, instantiating, 324

delegate property (page view
controller), 189

delegates, deined, 40

deleting detail view controller from
storyboard, 167

de-serialization, 241

destructive button, action sheets and, 98

detail view controller

adding to storyboard, 167

creating, 142–143, 144

deleting from storyboard, 167

DetailViewController.h ile, 145, 167

modifying, 170–171

developers. See iOS5 developer essentials

devices

storage of data on. See iles, basic
handling of; property lists

switching with Simulator, 17

synchronizing data across.
See iCloud storage

testing for iOS development, 2–4

didStartElement:namespaceURI:qualifiedN

ame:attributes delegate method, 321

directories

of applications, 239

copying iles from one to another, 240

searching for documents in (iCloud), 289

dismissing

modal views, 219, 228

popovers, 218

text ields, 343

tweet sheets, 233

dismissModalViewControllerAnimated:
message, 219, 228, 233

display values, table views and, 148

docks, 62–63

documents (iCloud)

creating new, 287

opening, 288

saving, 288

searching for, 289–290

documents (XML)

comments in, 319

loading into NSData objects, 323

validation of, 320

Documents directory, 239, 240, 270–271

DOM parsers (XML), 320

Done button, adding to navigation bar, 136

Done or Dismiss option in popovers, 218

downloading Apple iOS SDK, 7–8

DVD that accompanies the book, xxiii,
447–449

dynamic prototype-based table views,
151–153, 155, 162, 163

dynamic-based table view, implementing,
153–160

e

editor area (Xcode), 29–32

elements (XML), 318

encodeWithCoder: method, 242, 244, 250

end tags (XML), 318, 321, 322, 327

endBackgroundTask: method, 437

456

Enterprise iOS Developer Program – gyroscopes

Enterprise iOS Developer Program, 5–6

entities, deined (Core Data), 304

entitlements, enabling (iCloud APIs), 283–285

Envelope elements (SOAP web services), 337

errata page for this book, xxv

error handling (Core Location), 394–395

event-based parsers, 320

events

gesture events, 350–351

iOS programming and, 39, 40

touch events, 349–350

UIButton class, 44–45, 198–199

Extensible Markup Language. See XML
(Extensible Markup Language)

F

fetch requests, 309

ile coordinators (iCloud storage), 285–286

ile extensions

images, 103

.xib, 138

ile presenters, iCloud storage and, 285–286

File Template library (Xcode), 34, 35

iles

deleting (Xcode), 26

entitlements iles, 284

saving images to, 415–416

viewing multiple, 31

iles, basic handling of

FileTest project, 242–247

iOS ile system, 239–240

NSFileManager class, 240–241

object serialization, 241–242

iles formats supported by UIImage, 103

FileTest project, 242–247

ilters, 375–377

inger gestures

Simulator and, 17

single/multiple-inger events, 349

fonts for label text, 45–46, 200

formats for images, 103

frame property (buttons), 198

frames (UIView subclass), 368

frameworks

adding reference to (Twitter), 231, 236

deined, 26

iOS applications, 43–46

manually adding (Core Image), 375

manually adding (Core Location),
391, 392

FruitClass, creating, 70–71

FruitDetailViewController class, 72, 74,
76, 78, 79

G

“g” (gravity) measurement, 421

geocoding, 396–397

gestures

gesture events, 350–351

gesture project, 352–358

Simulator and, 17

swipe gestures, adding, 389–390

tap gesture recognizers, adding, 83,
90–91, 108–109, 315

GPS (Core Location), 391

gyroscopes, 421, 423, 427

457

handleTapEvent method – initWithObjects: method

h

handleTapEvent method, 350

hardware availability, checking

Core Location, 394–395

Core Motion, 425

headers (HTTP), SOAP web services,
338–339

HelloIOS project, 11–16

home screen icons, 10

horizonalAccuracy property, 394

HTTP headers (SOAP web services),
338–339

HTTP-POST requests (SOAP web services),
337–339

i

iCloud storage, 277–302

architecture of, 278

basics of, 277–278

cloudDocument.txt project, 290–302

CloudTestDocument, 286

documents, creating new, 287

documents, opening, 288

documents, saving, 288

documents, searching for, 289–290

entitlements, enabling, 283–285

ile presenters, 285–286

iCloud-enabled App ID, preparing to use,
278–281

provisioning proiles, creating,
281–283

service availability, checking for, 285

Identifier key (Settings applications), 261

identiiers

creating unique (iCloud), 279

for projects, 23

IDs (Apps), creating iCloud-enabled,
278–281

ImageFilters project, 378–381

ImageGallery project, 271–276

imageNamed method, 104

ImagePicker project, 416

images. See also camera and photo library;
Core Image

attaching to tweet sheets, 232

image sources, importing, 194–195,
202–203

images resources, adding, 70

images resources, importing, 107,
129, 235

importing into projects, 388

iPhone/iPad development and,
383–386

printing, 365–366

UIImageView instances, adding, 108

using with buttons, 199

images, adding to views, 103–109

background images, 429

imageWithData: class method, 104

UIImage class, 103–104

UIImageView class, 105–106

indexOfViewController: method, 193

initializing Core Data objects, 311–313

initWithCoder method, 250

initWithCoding: method, 242, 244

initWithObjects: method, 114

458

initWithTimeIntervalSinceNow: method – iPad

initWithTimeIntervalSinceNow:
method, 121

initWithTransitionStyle:navigationOrien

tation:options: method, 188

inspector area (Xcode utility area), 32–34

installing

Apple iOS SDK, 7–8

applications, 19

new provisioning proiles, 283

instantiating

Core Data objects, 304–307

delegate objects, 324

NSXMLParser objects, 323–324

page view controllers, 187–188

Instruments, 6

Integrated Development Environment (IDE).
See Xcode

InteractionSample project, 56–59

interactivity, adding to user interfaces,
54–56

interface (navigation controller),
135–137

Interface Builder

adding UI elements to scroll views
with, 207

basics of, 6

editing MainStoryboard_iPad.
storyboard ile with, 294–296

editing MainStoryboard_iPhone.
storyboard ile with, 294, 295

editing MainStoryboard.storyboard ile
with, 13–14

map annotations, adding with, 406

pickers, creating and, 112

transitioning between view
controllers, 138

UIScrollView instances, creating with,
205, 206

invalidating repeating timers, 368

“iOS App Programming Guide”, 277

iOS applications basics, 39–59

application states, 39–41

ile systems, 239–240

frameworks, 43–46

user interface elements, creating.
See user interface elements,
creating

windows, views and view controllers,
41–43

iOS Simulator, 6, 17–20

iOS5 developer essentials, 1–16

additions to table views, 150–152

app development process, 8–10

Apple iOS SDK, 6–8

application launch images, 10–11

basics of, xxiii

developer account registration, 4–6

HelloIOS project, 11–16

home screen icons, 10

Mac model needed for, 1

testing devices, 2–4

iOSTest, creating, 37–38

iPad

action sheets on, 97–98

basics of, 3, 5

cameras and, 413, 414

developing for, 383

home screen icon size, 10

image views, adding to
storyboard, 387

popovers and modal views and, 218,
220–229

print popover view, 359

universal applications and, 383–386

459

iPad 2 – listings

iPad 2, 3–4

iPhone

action sheets on, 97–98

home screen icon size, 10

image views, adding to storyboard, 387

iPhone/iPad applications, 383–384

print options sheet, 359

simple application using Xcode 4.2.1
(project), 11–16

storage on. See iles, basic handling of

tab bars and, 174

tabbed application for (project), 177–186

toolbars on, 174

universal applications and, 383–386

iPhone 3G

iPhone 3GS, 2

support of background-aware
applications, 436

iPhone 4

basics of, 2–3

home screen icon size, 10

iPhone 4S, 3

iPod Touch

cameras and, 414

print options sheet, 359

issue navigator (Xcode), 28–29

iTunes ile sharing, 269–276

Application supports iTunes file

sharing key, 269–270

contentsOfDirectoryAtPath:error:
method, 270

Documents directory, 270–271

ImageGallery project, 271–276

j

JPEG format, 415–416

jump bars (Xcode editor area), 29–31

k

keyboards

dismissing, 82–83

placeholders and, 81, 84

scroll views and, 212, 213–214

keychain access groups (iCloud), 285

keys, ilters and, 377

L

Label instances. See also UILabel instances

adding, 74

labels

adding, 46, 57–58

changing text, 59

positions of in LoginSample
project, 88

latitude (Map Kit), 404

launch images

basics for developers, 10

setting up in HelloIOS project, 16

library area (Xcode), 34–35

listings

CloudTestDocument.h, 286

CloudTestDocument.m, 286–287

contacts.xml, 322

End tags in contacts.xml, 327

Start tags in contacts.xml, 325

460

loadFromContents:ofType:error: method – methods

loadFromContents:ofType:error:
method, 286

location. See also Core Location

simulating, 18–19

locationManager:didFailWithError:
delegate method, 402

locationManager:didUpdateToLocation:fro

mLocation: method, 393, 402, 444–445

log navigator (Xcode), 29

LoginSample project, 86–91

longitude (Map Kit), 404

M

Macs

model needed for iOS development, 1

using accompanying DVD on, 448

main() function, 39

MainStoryboard_iPad.storyboard ile,
294–296

MainStoryboard_iPhone.storyboard ile,
294, 295

MainStoryboard.storyboard user
interface, 49

managed objects (Core Data)

basics of, 303, 308–309

managed object context, 303

managed object model, 304–307

reading, 309, 313–315

saving, 313

manually adding frameworks

Core Image, 375

Core Location, 391, 392

Map Kit

annotations, adding, 405–407

latitude and longitude and, 404

MapTest project, 407–412

mapType property, 403

MKMapView class, 403

regions, 403–404

master view controller, modifying, 168–170

Master-Detail Application project, 164–172

MathService web service, 335–336

Media library (Xcode), 35

messages

SOAP, 336–337, 340

Twitter. See Twitter

methods. See also speciic methods

adding, 52–53

CLLocationManagerDelegate protocol,
393, 397

found in background-aware
applications, 436

MathService web service, 335–336

NSDate class, 121

NSURLConnectionDelegate, 339–340

NSUserDefaults class (Settings
applications), 263

NSXMLParserDelegate protocol, 321

Objective-C classes, 113–114

service availability (CLLocationManager
class), 395

table views data source methods, 150

table views delegate methods, 149

table views, displaying data in and, 148

table views methods for constants
allowing animation, 151

touch event handling, 349

UIApplicationDelegate protocol, 41

UIImagePickerControllerDelegate, 418

UINavigationController class, 137–138

461

MKAnnotation protocol – NSURLConnection objects

UIPickerViewDataSource protocol,
112, 113

UIPickerViewDelegate protocol, 111,
113–114, 127

UIPrintInteractionControllerDelegate
protocol, 363

UIViewController class, 42–43

web services, 336

XMLParser delegate, 324–327

MKAnnotation protocol, 405

MKMapView class, 403, 405

Modal segues, 64

modal views

basics of, 218–219

popover and modal views project,
220–229

ModelController class, 191, 193

Model-View-Controller pattern, Core Data
and, 303

modes (date picker), 119–120

motion sensing. See Core Motion

moveSection:toSection: method, 158–159

multiple-inger events, 349

n

NameList.plist ile, creating, 254

navigation between pages, 187

navigation controllers, 135–146

hierarchy, 137–139

interface, 135–137

Single View Application template, using,
140–146

transitioning between view controllers, 138

navigation toolbar, 136, 137, 155–156

navigation view, 137

navigator area (Xcode IDE)

breakpoint navigator, 29

debug navigator, 29

issue navigator, 28–29

log navigator, 29

project navigator, 24–27

search navigator, 28

symbol navigator, 27

New Proile button (iCloud), 281, 282

nib-based applications, table views and, 148

north pole, 398

notiications, local, 438–439

NSArray class

displaying data in table views and, 148

Objective-C, 113–114

NSArray instances, adding to view controller
class, 388–389

NSCoder object, 241

NSData objects, loading XML documents
into, 323

NSDate class, 121

NSDateFormatter class, 121–122

NSDictionary object, 128, 129

NSFileManager class, 240–241

NSFilePresenter protocol, 285–286

NSManagedObjectModel class, 307

NSMetadataQuery class, 289–290

NSMutableArray class, 113–114

NSPredicate class, 289–290

NSSearchPathForDirectoriesInDomains
function, 240

NSTimer class, 367

NSURLConnection objects, 339

462

NSURLConnectionDataDelegate methods – page-based applications

NSURLConnectionDataDelegate methods,
346–347

NSURLConnectionDelegate methods,
339–340

NSUserDefaults object (Settings
applications), 263

NSXMLParser, 320–333

ContactSample project, 328–333

DOM parsers, 320

NSXMLParserDelegate protocol, 321–322

parsing XML iles. See parsing XML iles

SAX parsers, 320

XML parser delegate object, creating,
330–331

numberOfComponentsInPickerView: method,
112–113

numberOfRowsInComponent: method (pickers),
112–113

o

object archiving, 241–242

Object library (Xcode), 35

object persistence, implementing. See
Core Data

Objective-C

arrays in, 113–114

class that maps to ContactData entity
(Core Data), 307

converting XML element values into
objects, 249

creating property lists in, 250

dates in, 121–122

new class to represent annotation
data, 410

objects. See also managed objects (Core
Data); speciic objects

converting XML element values
into, 249

initializing Core Data objects,
311–313

in scenes, 63–64

serialization of, 241–242

onButtonPressed: method, 53

onSaveDocument: method (iCloud
storage), 300

onSaveToFile: method, 246–247

onSendTweet: method, 236, 237

onTimerFired method, 372

OpenGL Shading Language (GLSL), 375

orientation

disabling landscape orientation for iPad
apps, 429

launch images and, 11

of page transitions, 188

popovers and, 218

printing and, 360, 361

otherButtonTitles (alert views), 94

outlets

connecting to text ields, 88

creating, 50–52, 58, 75, 354

deined, 43

P

p2p.wrox.com, xxv–xxvi

page-based applications, creating,
187–196

basics of, 187

Page-Based Application template,
190–193

463

parser:didEndElement:namespaceURI: qualiiedName: delegate method – projects

PageTest project, 193–196

PageViewController class, 187–190

parser:didEndElement:namespaceURI:

qualifiedName: delegate method,
326–327

parser:didStartElement:namespaceURI

:qualifiedName:attributes: delegate
method, 324–325

parser:foundCharacters: delegate
method, 326

parsing XML iles

contacts.xml (listing), 322

ields, 322–323

instantiating delegate objects, 324

instantiating NSXMLParser objects,
323–324

XMLParser delegate methods, 324–327

persistence

of data. See property lists

persistent store coordinator (Core Data),
303, 308

persistent stores, deined, 308

persisting object into data store, 306

Person class, creating, 171–172

photos. See camera and photo library

picker views, 111–118. See also custom
pickers; date pickers

adding to storyboard default scene,
116, 130

arrays in Objective-C, 113–114

basics of, 111–113

vs. date pickers, 119

PickerTest, creating, 115–118

pinColor property (Map Kit), 407

pixels

application launch image sizes and, 11

home screen icon size and, 10

maximum recommended size for
images, 103

screen sizes of Apple devices and, 2–4

placeholders, 81

popovers, 217–218, 220–229

Preference Items array (Settings
applications), 260–261

preferences (Settings applications)

preference types, 262

in settings bundles, reading with
code, 263

“Preferences and Settings Programming
Guide”, 260

Preferences directory, 239

prepareForSegue:sender: method, 67–68

printing

basics of, 359–360

preparing content for, 360–363

Print Center application, 360

PrintTest project, 363–366

project navigator, 24–27

project options dialog box, 23

project templates, selecting, 21–22

projects

AccelTest, 427–433

AlertSample, 99–101

BackgroundLocation, 439–445

Bounce, 370–373

build targets, 35–37

cloudDocument.txt, 290–302

CLTest (Core Location), 398–402

CodeBasedUI, 202–204

ContactSample, 328–333

CoreDataTest, 309–315

CustomPickerTest, 128–133

DateSample, 123–126

464

property lists – reverse geocoding

FileTest, 242–247

FruitList, 68–79

gestures, 352–358

HelloIOS, 11–16

ImageFilters, 378–381

ImageGallery, 271–276

ImagePicker, 416

implementing a table view, 153–160

InteractionSample, 56–59

iOSTest, 37–38

LoginSample, 86–91

MapTest, 407–412

Master-Detail Application, 164–172

PageTest, 193–196

PickerTest, 115–118

popover and modal views, 220–229

PrintTest, 363–366

project options basics, 47–48

property list, 251–257

ScrollingForms, 209–215

SettingsTest, 263–267

Single View Application template, using,
140–146

SoapClient, 341–348

Tabbed Application template, using,
177–186

TreasureHunt, 107–109

TwitterTest, 234–237

UniGallery, 386–390

property lists, 249–257

creating programmatically, 250

creating with property list editor,
251, 255

property list project, 251–257

property list types, 249

prototype-based table views, 151–152,
162, 163

Provisioning Portal link, 278–279, 281

provisioning proiles, creating (iCloud APIs),
281–283, 292

Pull mode (Core Motion), 424

Push mode (Core Motion), 424

Push segues, 64

q

queries, search, 289

queryDidFinish: method (iCloud storage),
299–300

r

radians per second, 421, 427

readFromPropertyList method, 256–257

recognizers (gestures), 83, 108–109,
350, 351

references, adding to frameworks (Core
Data), 304, 310–311

regions (Map Kit), 403–404

remote notiications, deined, 438

requests

fetch requests, 309

HTTP-POST requests (SOAP web services),
337–339

SOAP requests, sending, 344–346

Required Background Modes key, 437

reserved characters (XML), 319

resizing scroll views, 206–207

result parameter, Twitter and, 233

reverse geocoding, 396–397

465

root view controller – SOAP web services

root view controller, creating, 143

RootViewController class, 191, 192

rotating the simulator, 17

rows

customizing (pickers), 128

selection of, table views and, 148

S

sandbox

deined, 239, 269

directories in, modifying contents of. See
iTunes ile sharing

saving

documents (iCloud), 288

images to iles, 415–416

SAX parsers (XML), 320

scenes

adding, 64, 65, 73–74

adding buttons to, 88

adding UILabel instances to, 87, 125

basics of, 61–63

deined, 61

editing, 72

elements, adding to, 65

user interface elements, adding to, 74

scheduleLocalNotification: method, 439

scheduleTimerWithTimeInterval:target:se

lector:userInfo:repeats: class method,
367–368

screen size

iPad, 3

iPhone 3GS, 2, 3

iPhone 4, 2, 4

scrolling. See also views that scroll, creating

maps and, 403

ScrollingForms project, 209–215

SDK (Software Development Kit), Apple
iOS, 6–8

search navigator (Xcode), 28

searching for documents on iCloud, 289–290

segues

basics of, 63–64, 65

creating, 67–68, 76–77

sepia tone, adding, 380–381

serialization of objects, 241–242

settings bundles

deined, 260

Settings.bundle iles, adding,
259–262, 265

Settings.bundle iles, editing, 265–266

SettingsTest project, 263–267

setViewControllers:direction:animated:c

ompletion: method, 189

shaders, deined, 375

sharedPrintController class method, 362

single masked text ield alert views, 96

Single View Application template, using

navigation controllers, 140–146

with Xcode, 37–38

single-inger events, 349

SOAP web services

basics of, 336–337

Envelope elements, 337

HTTP headers, 338–339

HTTP-POST requests, 337–339

NSURLConnection objects, 339

NSURLConnectionDelegate methods,
339–340

466

Software Development Kit – table views

SOAP messages, 336–337, 340

SoapClient project, 341–348

web services basics, 335–336

web services methods, 336

Software Development Kit (SDK), Apple
iOS, 6–8

source editor (Xcode editor area), 31

special characters (XML), 319

speciications, writing, 8–9

stacks, navigation controller and, 137–138

Standard iOS Developer Program, 5

start tags (XML), 318, 321, 322, 325

static table views

basics of, 151, 152, 161, 162

design of, 163

Master-Detail Application project,
164–172

vs. pre-iOS table views, 161

storage of data. See also iles, basic handling
of; iCloud storage; property lists

applications directories for, 239

storyboard-based applications

navigation of, 138–139

table views and, 148

storyboarding, 138

storyboards, 61–79

adding view controllers to, 177–178,
253–257

additions to table views (iOS5), 151–152

deined, 61

docks, 62–63

editing, 195

FruitList project, 68–79

image views, adding to, 387–388

modal view controller, adding to, 222

scene elements, adding to, 65

scenes, adding, 64, 65

scenes, basics of, 61–63

segues, basics of, 63–64, 65

segues, creating, 67–68

universal applications and, 383–385

user interface, creating with, 311

user interfaces in, 49

stringByAppendingPathComponent class
method, 240

strings, deined, 81

Strings Filename string, 260–261

styles

for popovers, 219

table views, 148–150

suspended states of execution, 435–436

swipe gestures, adding, 389–390

symbol navigator (Xcode), 27

system requirements for accompanying
DVD, 447

T

tab bars, 173–176

Tabbed Application template, using (project),
177–186

table views, 147–160. See also static
table views

basics of, 147

constants, 151

dynamic-based table view project, 153–160

iOS5 additions, 150–152

storyboard additions, 151–152

styles, 148–150

467

tags – UIButton class

table view cell, changing to dynamic
prototype, 155

table view types, 161–162

worklow, 148

tags (XML), 318

tap counting, 350

tap gesture recognizers, adding, 83, 90–91,
108–109, 315

templates. See also speciic templates

common iOS Application templates,
46–47

project templates, selecting for Xcode,
21–22

Universal application templates, 383–386

testing

basics for developers, 9–10

devices for (iOS development), 2–4

with iOS Simulator, 17–20

text

button text, editing, 73

of labels, 45–46, 200

setting color, 46

updating (labels), 59

text ields

basics of, 81–84

connecting outlets to, 88

dismissing, 343

scroll views and, 205–208

vs. text views, 85

text views, 81, 85

TextEdit, for XML iles, 317

ThirdViewController class, creating, 177–178

time

date pickers and, 119

timestamp in accelerator classes, 424

timers. See animation with timers

Title key (Settings applications), 261

titleForSection method, 160

tmp directory, 239, 240

toggleSections method, 158–159

toolbars

basics of, 174–175

navigation, 137

Xcode, 35–37

touch events, 349–358

basics of, 349–350

gesture events, 350–351

gesture project, 352–358

tap counting, 350

touch phases, 350

UIButton class, 44–45

TreasureHunt project, 106–109

tree-based parsers, 320

troubleshooting the DVD that accompanies
this book, 448–449

Twitter, 231–237

framework, adding reference to, 231

tweet sheet, 232–233, 236–237

TwitterTest project, 234–237

Type key (Settings applications), 261

u

UIAccelerometer class, 421, 426

UIActionSheet, 97–98

UIAlertView, 93–97

UIAlertViewDelegate protocol, 93, 100

UIApplicationDelegate protocol, 40, 41

UIButton class, 44–45

468

UIButton instances – UIWindow class

UIButton instances

adding (camera and photo library), 418

adding to default scenes, 235–236, 244,
272–273

adding to scenes, 365, 379–380, 418, 442

adding to start/stop location updates, 400

creating programmatically, 197–199

UIColor class, 55

UIColor instance, 200

UIDatePicker class, 119

UIDocument class, 286–288, 292–294

UIEventTypeTouches, 349

UIFont instance, 200

UIGestureRecognizer class, 350, 351

UIImage class, 103–104

UIImagePickerController class, 413–416

UIImageView class, 105–106

UIImageView instances

adding to default scenes, 108, 272, 379

adding to scenes, 365, 371, 387, 417

creating programmatically, 201

UIKit, 44

UILabel class, 45–46

UILabel instances

adding into scroll views, 207–208

adding to default scenes, 87, 235,
399–400

adding to scenes, 100, 125

adding to storyboards, 266

adding to view controller, 430, 441–442

creating programmatically, 199–201

UILocalNotification class, 438

UINavigationController class, 135, 137

UIPageViewControllerDataSource protocol,
187, 189, 193

UIPageViewControllerDelegate protocol,
187, 189

UIPageViewControllerNavigation
orientation, 188

UIPickerView class, 111, 127

UIPickerView instances, 119

UIPickerViewDataSource protocol, 111, 112

UIPickerViewDelegate protocol, 111,
113, 127

UIPrintInfo class, 360–361

UIPrintInteractionController class,
362–363

UIPrintInteractionControllerDelegate
protocol, 362, 363

UIPrintPaper class, 361

UIRequiredDeviceCapabilities key, 425

UIScrollView class, 205–208

UISegmentedControl class reference, 407

UITableView class additions, 150–151

UITableViewDataSource protocol, 150

UITableViewStyleGrouped instance, 148–149

UITableViewStylePlain instance, 148–149

UITapGestureRecognizer object, 83

UITextField class, 81

UITextField instance, adding to default
scene, 342

UITextView class, 81

UITextView instance, adding to default scene,
342–343

UIView subclasses, animating, 368–369

UIViewController class, 42–43

UIViewController subclass, 65–67

UIWindow class, 41

469

UniGallery project – view controllers

UniGallery project, 386–390

uninstalling applications, Simulator and, 19

unit tests, Xcode and, 23

universal applications, building

reasons for, 383

UniGallery project, 386–390

Universal application templates, 383–386

URLForUbiquityContainerIdentifier:
method, 285

URLs, adding to tweet sheets, 232

user input, 81–91

LoginSample project, 86–91

text ields, 81–84

text views, 85

user interaction, iOS applications and, 39

user interface elements

adding to default scenes, 272, 329–330

adding to storyboard’s scene, 210–211

user interface elements, creating

actions, creating, 52–54

basics of, 46–50

InteractionSample project, 56–59

interactivity, adding, 54–56

outlets, creating, 50–52

user interface elements, creating
programmatically

CodeBasedUI project, 202–204

UIButton instance, 197–199

UIImageView instance, 201

UILabel instance, 199–201

user interfaces

camera and photo library, 413

creating, 41, 42

creating with storyboards, 311

designing, 142

designing for gestures project, 351–354

designing for iPhone tabbed application
project, 178–179

designing for Master-Detail Application,
155, 165–168

designing for popover project, 222

designing for property list project, 253

universal applications and, 383–384

users, communicating with

action sheets, 97–98

alert views, 93–97

AlertSample, creating, 99–101

utility area (Xcode), 32–34

v

validation of XML documents, 320

version editor (Xcode editor area), 32

verticalAccuracy property, 394

video

Core Image and, 375

image picker controller and, 414

tutorials, xxiv

view classes, 42

view controller classes

basics of, 42

editing, 203–204

editing implementation of, 212

view controllers

adding to storyboards, 253–257

basics of, 41–43

470

ViewController – width of pickers

detail view controller, creating, 142–
143, 144

managing. See navigation controllers

modifying, 144, 157–158

outlets, creating for (gestures
project), 354

root view controller, creating, 143

tab bars and, 173

ViewController.h ile, creating property lists
and, 253, 255

ViewController.m class, updating for
gestures project, 355–358

ViewController.m ile

creating property lists and, 253,
255–256

updating code in, 273–276

viewDidLoad method

buttons, adding and, 245–246

buttons, creating and, 198, 199

implementing (iCloud storage), 298

labels, creating and, 199

page view controllers and, 187

viewDidUnload method, adding statements
to, 298

views

basics of, 41–43

moving across a screen, 369, 372–373

size and position of, 368

UIView subclass, 368

views that scroll, creating

scroll views and text ields, 208–209

ScrollingForms project, 209–215

UIScrollView class, 205–208

W

web services, 335–336. See also SOAP
web services

web sites for downloading

Apple iOS SDK, 6

“Core Animation Programming
Guide”, 369

Core Image Filter Reference
document, 376

Date Formatting Guide, 122

“iOS App Programming Guide”, 277

NSMetadataQuery Class Reference, 290

NSPredicate Class Reference, 290

“Preferences and Settings Programming
Guide”, 260

Try It lessons, 11

UIDocument Class reference, 288

“UILabel Class” reference
documentation, 46

UISegmentedControl class reference, 407

“View Controller Programming
Guide”, 43

web sites for further information

Apple account registration, 5

MathService web service, 335

NSDate class, 121

NSDateFormatter class, 122

storing key-value data with iCloud, 277

this book’s Website, xxiii

Wiley Product Technical Support, 449

Xcode project navigator, 26

welcome screen, (Xcode), 21, 22

width of pickers, customizing, 127

471

Wiley Product customer support – zooming

Wiley Product customer support, 449

windows (iOS applications), 41–43

wireframes, 9

worklow (table views), 148

workspace window (Xcode), 24

x

Xcode, 21–38

basics of, 6

debugger area, 35

downloading, 6–8

editor area, 29–32

iOSTest project, 37–38

library area, 34–35

navigator area. See navigator area
(Xcode IDE)

project options, 23

project template selection, 21–22

Single View Application, creating in, 11–16

toolbar, 35–37

utility area, 32–34

welcome screen, 21, 22

workspace window, 24

xib-based Xcode 4.2 tab bar changes,
175–176

.xcodeproj iles, testing and, 19

xib-based applications

navigation controllers, 138

Xcode 4.2 tab bar changes, 175–176

XML (Extensible Markup Language)

ContactSample project (XML parsing),
328–333

fundamentals, 317–319

loading documents into NSData
objects, 323

parsing, see NSXMLParser. See parsing
XML iles

XMLParser delegate methods, 324–327

z

zooming, maps and, 403

Introduction to Programming
with Objective-C

In this appendix, you learn some of the key concepts of computer programming and the funda-
mentals of the Objective-C language. Objective-C is the language of choice when it comes to iOS
programming. It is an object-oriented language and was invented in the early ’80s by Brad Cox.

Essentially, Objective-C is an extension of the C language designed to give it object-oriented
capabilities by bringing in concepts from another popular programming language in the
’80s—Smalltalk. Objective-C development coincided with the development of the popular
C++ language, thus Objective-C and C++ share many common concepts. A brief timeline of
the Objective-C language is shown in Figure B-1.

Smalltalk
Objective-C

1.0

C C++

Objective-C
2.0

FiGure B-1

FundaMenTaL ProGraMMinG concePTS

To create anything more than the simplest of iOS applications requires you to know how to
write programs. A program is a set of instructions to the device to carry out a speciic task,
and these instructions are speciied using a programming language.

Fundamentally, computers are electronic devices, and only understand a language of 1s and 0s
(known as binary language). In the early days of computer programming, programmers would
have to provide their instructions in this binary language—a process that was both tedious
and error prone.

B

2 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

As time went by, sequences of binary digits were given three-character names (like MOV and ADD)
to create a higher-level language called assembly language. Programs were written using these
names, and then converted to binary language before being given to the computer. These higher-
level languages were easier to use by programmers.

Over the decades, several high-level, verbose languages were developed, each getting closer to instruc-
tions that began to resemble words we use in our everyday lives (like if, while, do, and return). Today
almost all programming is done in one high-level language or the other (such
as C, C++, Java, C#, or Objective-C). Creating an application requires a few common steps, regardless
of the language in which you write your code. Sometimes one or more of these steps are combined into
a single step.

Typing your Program

The irst step in creating an application is typing your code in a suitable text editor. This code that
you type is essentially a series of instructions to the iOS device to perform certain tasks, and is
known as source code.

compiling

Objective-C is a high-level programming language. This means that the computer cannot directly
understand Objective-C. A computer requires digital/binary instructions (also known as binary

language, or machine language), and before your Objective-C code can run on an iOS device, it
needs to be converted into machine language.

This translation (from Objective-C to machine language) is performed by an application called a
compiler, and the process is known as compilation. A compiler (Figure B-2) basically takes as input
your Objective-C source code and produces another ile with machine language instructions (usually
with an .obj extension).

Compiler
Objective-C

code
Machine
code

FiGure B-2

Linking to create an executable

In an ideal world, you would write all the code that is required by your application to carry out its
intended purpose, and in the early days of computer programming, this was how things were done.
Modern application development is all about reusing code. Most of the time you will use code that
has been written by someone else and you have to build on it to create your own application.

In fact, much of iOS development involves using functionality provided by code that is written by
Apple engineers. Entire libraries of such code (known as frameworks) are installed on your hard
disk when you install the iOS SDK in ready-to-use machine language form.

Variables, Statements, and Expressions ❘ 3

The inal step after your code is compiled into machine language instructions is to link this com-
piled code with other machine language code that it depends on (Figure B-3). This process is called
linking and the end result of this process is an executable ile (that is, something that you can actu-
ally install and use on an iOS device). This executable ile is also known as the application binary.
Linking is performed by a special application called a linker.

Compiler
Objective-C

code

Other machine
code

Other machine
code

Executable Application

Machine
code

Linker

FiGure B-3

Testing and debugging

The testing and debugging phase of development happens after an executable has been created,
and you realize that it does not do things the way you intended. An ininite number of reasons
exist as to why your application does not run as expected; these faults are often called bugs. The
most common reason for a bug in the application is poorly written source code.

The process of testing an application reveals these bugs, and the process of ixing them is called
debugging. Debugging typically involves changing some of the source code, then compiling, linking
to build a new executable, and inally testing the new executable to verify that the bug is no longer
present (Figure B-4).

how xcode Fits into This Picture

Xcode brings together a powerful text editor, compiler, linker, and debugger into a single applica-
tion. In fact, each time you click the Run button on the Xcode toolbar, you are invoking a compiler,
and then a linker!

variaBLeS, STaTeMenTS, and exPreSSionS

The applications that you create will need to work with different types of data. This data could
be anything—coordinates of a place on a map, names and addresses of your friends, and so on. In
order for your application to do something useful with this data, it irst needs to store it somewhere.

4 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

Compiler
Objective-C

code

Test &
Debug

Executable Application

Machine
code

Linker

FiGure B-4

Fundamentally two kinds of data exist—numbers (like height, weight, distance traveled) and characters
(names of people, places). Your application will need a strategy to deal with either type.

Your iOS device uses RAM (random access memory) to store things while it is switched on and run-
ning. This is different from hard-disk space, which is the number commonly advertised on the back
of the iOS device: 16GB, 32GB, and so on.

RAM is located inside microchips and is erased/replaced with new information frequently. Whenever
you power off off your iOS device, the contents of RAM are lost for good. This is not the case with
things stored on the hard disk, whose contents are available the next time the device is turned back
on. Keep in mind though, that putting your iOS device to sleep is not the same thing as powering it
off. When you put the device to sleep, you are essentially turning off the display and saving battery.

The amount of RAM available on a particular iOS device depends on the model, but is always
signiicantly less than its hard-disk capacity. The amount of memory of either type (RAM or hard
disk) is measured in megabytes (MB) and gigabytes (GB).

A bit stands for binary digit and is a fundamental unit of information storage on iOS devices. A byte
is 8 bits, a kilobyte is 1024 bytes, a megabyte is 1024 kilobytes, and a gigabyte is 1024 megabytes.

RAM is organized sequentially into tiny byte-sized bins, each with a unique number (Figure B-5).
A good analogy would perhaps be the locker room in your local gym. Each individual locker would
represent a byte of RAM memory, and each locker has a number to distinguish it from other lockers.

Position

0 1 2 3 4 5

1 byte

FiGure B-5

Variables, Statements, and Expressions ❘ 5

Depending on the data that your application want to store, the computer will use one or more bytes.
The more data to be stored, the more number of bytes of RAM will be required.

variables

To store data, a computer program uses something called a variable, which is a named location in
RAM that has a value. This value can change depending on your program’s requirements.

In terms of the locker analogy, if you were to pick one of the lockers and label it with a name (perhaps
by sticking a card over the locker with some tape), that named locker would now represent a variable.

When you use a variable’s name in your program, you are essentially referring to the data stored in
the associated location in RAM.

Declaration and Assignment

Now that you know a little about how RAM works, and what variables are, how do you go about
creating a variable and storing some data in it?

It turns out this is a two-stage process. First you need to declare a variable (which in terms of the
locker analogy is the act of labeling a free locker), and then you can store some data in it.

To declare a variable, you need to pick a name for the variable (more on this later), and specify the
type of data the variable will store.

Computer data is essentially one of two types: number-based (numeric) or character-based (string).
Consequently, variables are one of two types: numeric or string. This appendix focuses on numeric
variables. The type of a data stored in a variable is also referred to as the variable’s data type.

Since Objective-C was built upon the C programming language, you can use the standard C data
types in your Objective-C code; however, Objective-C provides new data types in addition to the
C data types. Table B-1 describes some of the common numeric variable data types available to
Objective-C programmers.

TaBLe B-1: Some Numeric Data Types in Objective-C

oBjecTive-c

daTa TyPe

c daTa TyPe ByTeS oF SToraGe

required

noTeS

int 4 Can store integers in the range

–2,147,483,648 to 2,147,438,647

unsigned int 4 Can store integers in the range 0 to

4,294,967,295

bool 1 Can be either true or false

long 8 Can store a much larger range of values

than the int data type

continues

6 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

oBjecTive-c

daTa TyPe

c daTa TyPe ByTeS oF SToraGe

required

noTeS

unsigned long 8 Can store a much larger range of values

than the unsigned int data type

float 4 Can store decimal numbers

double 8 Can store decimal numbers with much

greater precision than float

NSInteger 4 Equivalent to the int data type

NSUInteger 4 Equivalent to the unsigned int

data type

BOOL 1 Can be either YES or NO

id 4 Can store a reference to an object

NSDecimal 20 Used to store decimal numbers

For a complete list of Objective-C data types available to iOS developers refer to
the Foundation Data Types Reference document available at: http://developer
.apple.com/library/ios/#documentation/Cocoa/Reference/Foundation/

Miscellaneous/Foundation_DataTypes/Reference/reference.html.

For example, to declare a variable height, whose data type is int, you write a line of code like this:

int height;

To assign a value to the variable named height after you have declared it, you write a line of code
like this:

height = 10;

It is worth noting that no units are used while assigning a value to the variable named height. This
is because as far as the computer is concerned, the numeric variable height only stores a number.
Whether that number represents height measured in feet, inches, or meters depends on the context
in which you use the variable.

You could combine both declaration and assignment into a single line as follows:

int height = 10;

You could also declare multiple variables (of the same data type) in a single line as follows:

int height, weight;
height = 10;
weight = 20;

TaBLe B-1 (continued)

http://developer.apple.com/library/ios/#documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_DataTypes/Reference/reference.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_DataTypes/Reference/reference.html

Variables, Statements, and Expressions ❘ 7

or

int height = 10, weight = 20;

When it comes to naming variables, it is important to pick a name that indicates
what the variable is likely to represent. Names like speed, distance, weight, and
height are far more descriptive than x, p, r, and q.You need to be aware of a few
rules regarding the naming of variables:

 ➤ The name may contain digits, letters, and an underscore (_) character.

 ➤ The name must not begin with a number (it can begin with a letter or an

underscore character).

 ➤ Variable names are case-sensitive, thus weight, Weight, and weiGHT repre-

sent three different variable names.

 ➤ You cannot use Objective-C keywords as variable names. Certain words have

special meaning in Objective-C, and these cannot be used as variable names.

Variable names need not be single words; you could create a variable name such
as heightOfStudents. Keep in mind, though, that whitespace cannot be part of a
variable name. When a variable name consists of multiple words, it is customary to
capitalize the irst letter of each word except the irst. This notation is commonly
known as camel case notation.

Statements

An Objective-C program consists of a series of statements; each statement is a directive to the iOS
device to carry out a particular task. Most statements are written one per line, although some could
span multiple lines. Statements usually end with a semicolon (;) character. You saw a few examples
of Objective-C statements in the previous section.

Null Statements

If you type the ; character on its own on an otherwise empty line, you create a null (do-nothing) state-
ment. Although this is perfectly valid Objective-C code, use of null statements is not recommended.

Whitespace

When it comes to typing computer programs, the term whitespace refers to empty lines, tabs, or
spaces in your code. In general, the Objective-C compiler ignores whitespace. Thus as far as the
Objective-C compiler is concerned, the following statements are identical:

int height = 10;

and

int height=10;

8 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

and

int height= 10;

However, whitespace is required between the data type identiier (int) and the name of the variable
(height). Furthermore, you cannot have whitespace as part of the name of a variable. Thus, the follow-
ing code cannot be compiled by the Objective-C compiler:

intheight = 10;

and

int h e i ght = 10;

Whenever the Objective-C compiler is unable to compile one or more statements in your program,
it produces a compilation error and aborts the process. Whitespace should be used to make code
appear more readable.

Compound Statements

You can group together multiple statements into a compound statement by enclosing them in between
{ and }. Compound statements are also known as blocks.

{
 int iNumber1 = 10;
 int iNumber2 = 50;
}

It is a good idea to place the enclosing braces on a separate line each, that way it is easier to see the
beginning and end of each block. You can use a block anywhere you can use a statement.

expressions and operators

In most cases, your Objective-C statements will consist of a combination of expressions and operators.
An expression is basically something that evaluates to a number. The simplest expression is a numeric
variable (because a numeric variable is guaranteed to evaluate to a number, that number being the
value stored in the variable).

More complex expressions can be formed by connecting simpler expressions with operators, for
example:

10 – 4

is a complex expression made up of two simple expressions (10) and (4), that are combined with the
minus (–) operator. As you can see, the expression 10 – 4 will evaluate to 6, which is a number.

An operator is basically a special symbol that instructs the compiler to perform some action using
one or more operands. Most operators require two operands; however, some require just one, or
even three operands.

Several operators are available to you as an Objective-C programmer; Table B-2 lists some of the
common ones.

Variables, Statements, and Expressions ❘ 9

TaBLe B-2: Objective-C Operators

SyMBoL deScriPTion exaMPLe

/ Divides two operands; second operand must not be zero number1 / number2

* Multiplies two operands number1 * number2

+ Adds two operands number1 + number2

- Subtracts two operands number1 – number2

= Assignment operator number1 = 300

You can also create expressions using numeric variables just as well. Typically, you would assign an
expression to a numeric variable, that is, the numeric variable would contain the number obtained
by evaluating an expression, as shown here:

int iFirst = 100;
int iSecond = 30;
int iResult = iFirst + iSecond;

When an expression contains multiple operators, Objective-C applies certain rules to decide the
order in which operators should be evaluated. To understand why the order is necessary, consider
the expression:

4 – 1 * 5

If 4 – 1 was evaluated irst, and the result multiplied by 5, then this expression would evaluate to
15. However, if 1 * 5 was evaluated irst, and the result subtracted from 4, this expression would
evaluate to -1. So which is it?

It turns out that it is the latter, because Objective-C considers * (multiplication) to be a higher priority
operator than – (subtraction). Table B-3 lists the priority of operators in increasing order.

TaBLe B-3: Priority of Objective-C Operators

oPeraTorS

(in increaSinG order oF PrioriTy)

-

+

*

/

=

10 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

MakinG deciSionS and PerForMinG rePeTiTive TaSkS

Besides simple assignments and arithmetic, statements can also be used to control the low of
your program. It is time to introduce you to a new type of Objective-C operator that helps you
compare variables. Collectively, these operators are called the comparison operators. Table B-4
lists the standard Objective-C comparison operators:

TaBLe B-4: oBjecTive-c coMPariSon oPeraTorS

SyMBoL deScriPTion/uSaGe exaMPLe

== Are the two operands equal? a == b

> Is the irst operand greater than the second? a > b

< Is the irst operand less than the second? a < b

>= Is the irst operand greater than or equal to the second? a >= b

<= Is the irst operand less than or equal to the second? a <= b

!= Are the two operands not-equal? a != b

You can think of comparison operators as ones that always pose a question, and the answer to the
question is YES or NO. Thus, an expression that contains a comparison operator will always evaluate
to YES or NO.

The result of a comparison is always assigned to a variable of type BOOL. This is the Objective-C
data type for Boolean variables. A Boolean data type is one that can take only one of two values
(YES or NO) and requires exactly 1 byte of storage space in RAM. You would use a BOOL data type
as follows:

BOOL result = YES;

It is important to note that the value assigned to a Boolean variable must be uppercase YES or upper-
case NO. The result of evaluating an expression that involves comparison operators is always a Boolean
variable, for example the expression:

BOOL comparisonTest = 10 > 4;

evaluates to YES if operand 1 (which is 10 in this case) is greater than (but not equal to) operand 2
(which is 4 in this case).

The if and if ... else statements

Comparison operators are used to create control statements. Normally statements are written in a
serial top-bottom order and execute one by one in the order in which they were written. A control

statement allows you to modify the order of statements executed, execute certain statements multiple
times, or execute certain statements conditionally.

Making Decisions and Performing Repetitive Tasks ❘ 11

The if statement is one such control statement. In its basic form an if statement executes a state-
ment only if a speciic condition is met.

if (condition evaluates to YES)
 statement to execute;

The test condition is usually a Boolean variable, or an expression that evaluates to a Boolean variable.
If the test condition evaluates to YES, the following statement is executed. If the test condition evaluates
to NO, the following statement is not executed. A simple example would be:

int numberOfRedMarbles = 20;
int numberOfBlueMarbles = 5;
if (numberOfRedMarbles > numberOfBlueMarbles)
 NSLog(@"%@", @"Game over, you won!");

In this hypothetical game example, a player is required to collect a certain number of red and blue
marbles. A player wins the game if he collects more red marbles than blue ones. The test condition
in this case is the expression:

numberOfRedMarbles > numberOfBlueMarbles

which evaluates to YES in this particular case. Note the complete if statement contains two lines.
The irst line contains the condition, and the second contains the statement to execute if the condition
evaluates to YES. If you were to write only the irst line without the second, the Objective-C compiler
would consider it a syntax error.

As you learned in this appendix, a single Objective-C statement (that is, one written on a single
line), can be replaced by a compound statement (a block of statements contained between { and }).

An example of an if statement that executes a compound statement would be:

int numberOfRedMarbles = 20;
int numberOfBlueMarbles = 5;
int score = 0;
if (numberOfRedMarbles > numberOfBlueMarbles)
{
 score = 10;
 NSLog(@"%@", @"Game over, you won!");
}

In this example, if the number of red marbles is more than the number of blue marbles, a block of
statements is conditionally executed. This particular block consists of only two statements:

 ➤ Statement 1 gives the player 10 score points.

 ➤ Statement 2 writes a message to the Debug console.

However, the block could just as well have contained a few dozen statements. The key point to note
is that the complete if statement consists of two parts: the irst part is where the condition is being
tested and the second is a single (or a block) statement that is to be executed when the condition
evaluates to YES.

Any statements that follow a two-part if statement will execute as normal after the if statement
has inished executing.

12 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

Thus, in this example:

int numberOfRedMarbles = 20;
int numberOfBlueMarbles = 5;
int score = 0;
if (numberOfRedMarbles > numberOfBlueMarbles)
{
 score = 10;
 NSLog(@"%@", @"Game over, you won!");
}

int totalMarbles = numberOfRedMarbles + numberOfBlueMarbles;
NSLog(@"%d", totalMarbles);

the last two statements would execute regardless of the outcome of the if statement, because they
are separate statements in their own right. The only statements that may or may not execute are part
of the if statement, and the precise condition that is being tested for will determine whether or not
they execute.

The else Clause

A modiied version of the if statement allows you to specify an additional statement (or a block) that
is executed should the test condition fail. This additional alternate-scenario statement is completely
optional and should you need to specify it, you can use the modiied form of the if statement:

if (condition evaluates to YES)
 statement to execute;
else
 some other statement to execute;

This modiied form of the if statement is known as the if…else statement. The else portion is
optional. The statement (or block) following the else clause is executed only if the test condition
evaluates to NO. A simple example follows:

int numberOfRedMarbles = 20;
int numberOfBlueMarbles = 5;
if (numberOfRedMarbles > numberOfBlueMarbles)
{
 NSLog(@"%@", @"Game over, you won!");
}
else
{
 NSLog(@"%@", @"You lost. Better luck next time!");
}

int totalMarbles = numberOfRedMarbles + numberOfBlueMarbles;
NSLog(@"%d", totalMarbles);

In this example, if numberofRedMarbles is greater than numberofBlueMarbles then

{
 NSLog(@"%@", @"Game over, you won!");
}

Making Decisions and Performing Repetitive Tasks ❘ 13

will be executed, otherwise

{

 NSLog(@"%@", @"You lost. Better luck next time!");
}

will be executed. Now it just so happens to be the case that 20 is greater than 5 and hence the block
associated with the else clause will not execute in this example.

In the examples so far, the conditional expressions are trivial (such as is 20 greater than 5) and strictly
speaking, the if statement is not being used to its true potential. In a real-world application the values
of the operands in the conditional expression would be dynamic, for instance the number of times a
tap is detected, or the number of alien spaceships destroyed by the player as a game proceeds. In these
cases the if and if...else statements are extremely useful.

Just as with an if statement, statements that appear after the if…else statements would continue to
execute regardless of what happened in the if...else statement.

 The for Statement

The for statement (also known as the for loop), on the other hand, allows you to execute a state-
ment (or a block) multiple times consecutively. The precise number of repetitions will depend on an
integer counter variable that you control.

The for statement allows you to create loops in your code (a loop is a term used to describe a situation
in computer programming when a statement or a block is executed multiple times in succession. The
general form of the for statement is:

for (initial expression; termination expression; increment expression)
 loop statement;

Unlike the if and if...else statements, a for statement requires three expressions:

 ➤ Initial expression: This expression usually involves an assignment (where a value is assigned
to a variable).

 ➤ Termination expression: This expression usually involves a comparison operator and
evaluates to either YES or NO. If this expression evaluates to NO the body of the loop will
not be executed.

 ➤ Increment expression: This expression usually adds an integer to the variable used in the
initial expression.

The loop statement is any Objective-C statement (or a block of statements) and is also known as the
body of the loop.

When a for loop is encountered, the following happens:

 1. The initial expression is evaluated.

 2. The termination expression is evaluated.

 3. If the termination expression evaluates to NO the for statement terminates, and execution
continues at the irst statement after the loop block.

14 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

 4. If the termination expression evaluates to YES the loop statement/block is executed once.

 5. The increment expression is evaluated, and execution continues from step 2.

These steps are depicted in Figure B-6.

Continue with normal
program flow

evaluate
termination expression

NO YES execute loop statement
or

loop block

evaluate increment expression

evaluate initial expression

FiGure B-6

As an example of a for statement in action, consider the following snippet:

int number;
for (number = 1; number <= 5; number = number + 1)
{
 NSLog(@"%@", @"This message is displayed by a loop block!");
}

This snippet would result in the following output:

This message is displayed by a loop block!

This message is displayed by a loop block!

This message is displayed by a loop block!

This message is displayed by a loop block!

This message is displayed by a loop block!

In this example, the initial expression sets the value of the variable number to 1:

number = 1

The termination expression is a conditional expression that evaluates to YES or NO. In this case the
expression tests if the value of iNumber is less-than-or-equal-to 5:

number <= 5

The increment expression adds 1 to the value of the variable number:

number = number + 1

Making Decisions and Performing Repetitive Tasks ❘ 15

Without this expression, the value of number would never change, and termination expression
would never evaluate to NO. Consequently the loop would go on indeinitely.

 The while Statement

The while statement (also known as the while loop), is another statement that allows you to create
loops. It executes a statement (or a block of statements) as long as a speciied condition holds true.
The general form of the while statement is:

while (loop condition)
 loop statement;

The loop condition is typically an Objective-C expression that involves a conditional operator, and
evaluates to YES or NO. The loop statement is any Objective-C statement (or a block of statements)
and is also known as the body of the loop.

When a while loop is encountered, the following happens:

 1. The loop condition is evaluated.

 2. If the loop condition evaluates to NO the while statement terminates, and execution continues
at the irst statement after the loop block.

 3. If the loop condition evaluates to YES the loop statement/block is executed once, after which
execution continues from step 1.

These steps are depicted in Figure B-7.

Continue with normal
program flow

evaluate
loop condition

NO YES execute loop statement
or

loop block

FiGure B-7

As an example of a while statement in action, consider the following code snippet:

int number = 1;
while (number <= 5)
{
 NSLog(@"%@", @"This message is displayed by a loop block!");
 number = number + 1;
}

16 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

This snippet would result in the following output:

This message is displayed by a loop block!

This message is displayed by a loop block!

This message is displayed by a loop block!

This message is displayed by a loop block!

This message is displayed by a loop block!

In this example, the loop condition is a conditional expression that evaluates to YES or NO. In this
case the expression tests if the value of number is less-than-or-equal-to 5:

number <= 5

It is worth noting that the value of number is incremented by 1 in the body of the while loop. If this
was not done, then number would always equal 1 and this loop would never terminate.

The do…while Statement

The do...while statement (also known as the do...while loop), is another statement that allows
you to create loops. It irst executes a statement (or a block of statements) and then checks a speciied
condition to determine if the preceding statement/block should be executed again. The general form
of the do while statement is:

do
 loop statement;
while (loop condition)

Once again, the loop condition is typically an Objective-C expression that involves a conditional
operator, and evaluates to YES or NO. The loop statement is any Objective-C statement (or a block
of statements) and is also known as the body of the loop.

When a do…while loop is encountered, the following happens:

 1. The loop body is executed.

 2. The loop condition is evaluated.

 3. If the loop condition evaluates to NO the do...while statement terminates, and execution
continues at the irst statement after the loop block.

 4. If the loop condition evaluates to YES execution continues from step 1.

As an example of a do...while statement in action, consider the following code snippet:

int number = 1;
do {
 NSLog(@"%@", @"This message is displayed by a loop block!");
 number = number + 1;
} while (number <= 5);

This snippet would result in the following output:

This message is displayed by a loop block!

This message is displayed by a loop block!

This message is displayed by a loop block!

This message is displayed by a loop block!

This message is displayed by a loop block!

Introduction to Object-Oriented Programming (OOP) ❘ 17

A key point about the do...while loop is the fact that the body of the loop is guaranteed to execute
at least once because the loop condition is evaluated after the loop body is executed.

Don’t forget to include the semicolon (;) at the end of the do...while loop:

while (number <= 5);

The break and continue Statements

You can use the break statement as part of the statements that form the body of a for, while, or
do...while loop, to end the loop prematurely. Programs that use loops generally rely on the loop
to come to a natural end at some point based on some test criteria.

However, sometimes you need to break out of a loop prematurely (perhaps in response to some
external factor) and in such cases you can use the break statement. The break statement is written
on its own, on a single line:

break;

Any other statements in the block after the break statement will not be executed.

The continue statement, when used in the body of a loop, causes execution to skip one iteration of
the loop. Any statements after a continue statement will be skipped for that iteration. The continue
statement is also written on its own, on a single line:

continue;

When To uSe WhaT (For, WhiLe, do. . .WhiLe)

Objective-C provides three statements to create loops. Though it is possible to

create equivalent loops using any of these statements, here are a few guidelines

that should help you decide when to use them:

 ➤ If you need to execute one or more statements a ixed number of times (and

you know the number of iterations beforehand), use a for loop.

 ➤ If you do not know the number of iterations, and can only decide whether or

not another iteration should execute within the loop body, use a while loop.

 ➤ If you need to guarantee the loop body is executed at least once, use a

do...while loop.

inTroducTion To oBjecT-orienTed ProGraMMinG (ooP)

Over the years, computer application developers have come up with various strategies to create
applications that can solve complex problems. One of the earliest approaches to problem solving
was the concept of structured programming.

Structured programming (which predates object-oriented programming) centered on a divide-and-
conquer philosophy. A complex program was broken down into a set of tasks, and each task subse-
quently into a set of simpler sub-tasks.

18 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

Blocks of code were then written to perform these simple tasks, and each block of code was given a
name. Keep in mind that a block of code is just a series of statements enclosed between { and }).

The reason why names were assigned to these blocks of code was to make it possible to refer to one
block of code from within another. These named code blocks were conveniently called functions.

Structured programming was all about breaking down a complex task into a set of simpler tasks, each
to be performed by a function. If the simpler task wasn’t quite so simple, it would be broken further
into even simpler sub-tasks. Each of these sub-tasks would then be performed by a function that would
be used by the function that represented the super task. The practice of using a function (block of code
with a name) was termed calling the function.

Typically these functions would operate on data (variables), and conceptually an application was
divided into data and a set of functions that acted on that data. A simple example will help clarify this:

Suppose an application was to be developed for a bank that would allow them to compute the net
interest payable across all savings accounts in a year. Now, this is a rather complex task and can
easily be broken down into inding out the net interest over each month and then summing up these
results to reach the net interest payable over the year (Figure B-8).

Net interest payable
across all accounts

in January

+

+

=

. . .

+

Net interest
payable

across all accounts
over a year

Net interest payable
across all accounts

in February

Net interest payable
across all accounts

in December

FiGure B-8

The task of computing the next interest payable across all savings accounts for a given month can
be broken down to computing the interest payable to individual savings accounts in that month, and
then summing up these results.

This division could be stopped at this point, or could be carried further down to another level.
Now, each of these tasks and sub-tasks would be performed by a function (named block of
code). For the purpose of this discussion assume the names computeAnnualNetInterest,
computeMonthlyNetInterest, and computeNetInterestForAccount.

A pseudo-code version of such a program is presented in the following code snippet. Pseudo-code is
an informal high-level description of a computer program, intended to illustrate concepts only.

computeAnnualNetInterest
{

Introduction to Object-Oriented Programming (OOP) ❘ 19

 int total_months = 12;
 for (int month = 1; month <= total_months; month++)
 {
 computeMonthlyNetInterest(month);
 }
}

… elsewhere in the code …

computeMonthlyNetInterest
{
 int total_number_of_accounts = 5412;
 for (int account = 1; account < total_number_of_accounts; account++)
 {
 computeNetInterestForAccount(account);
 }
}
… elsewhere in the code ….
computeNetInterestForAccount
{
… do some simple computation here
}

At some function in the preceding example, actual computation will have to be performed, and for
this some data will be needed. The data in this case could be as simple as a list of accounts and the
total dollar balance in them. The point to take from this example is that structured programming
requires a clear split between the data and the code that works on that data.

The need for object-oriented Programming

The structured programming approach covered in the previous section is still in use in some types of
applications today; however, it has a few drawbacks:

 ➤ People generally think of data (account numbers) and what they can do with it (compute bal-
ance, interest, and so on) as related concepts. It is not natural to think of them in isolation.

 ➤ Programmers were constantly reinventing the wheel, creating solutions for things that
had been solved over and over again by others. Structured programming did not address
the need to reuse existing functions (either written by you or someone else) conveniently.
Imagine if you were manufacturing a car and had to manufacture each little part yourself
without any possibility of using a seat or a tire from another manufacturer. This would
become a very cost-ineficient approach. It would be far better for the automobile industry
to promote re-use between manufacturers and have different manufacturers stick to making
speciic items. The same option, however, was just not available to software programmers
who were using structured programming techniques.

A new approach to programming was created, and named object-oriented programming (OOP).
Essentially OOP tries to address the deiciencies in the structured programming model by:

 ➤ Providing techniques to achieve re-use of software components

 ➤ Coupling data with the functions that act on them

20 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

Core to object-oriented programming is the idea of treating data and functions that act upon them
as an independent entity know as an object.

key concepts of object-oriented Programming

In the previous section you learned why object-oriented programming was needed. In this section
you learn some of the key concepts introduced by the object-oriented programming approach.

Classes and Objects

A class can be thought of as a template or blueprint of an object. This is best understood by
an example. If you were to go down to your local car dealer, you would likely ind several cars
there. Each of these cars share some common characteristics with each other; for instance each
has seats, wipers, four wheels, and so on. Looking at this situation from an object-oriented per-
spective you can say that each of these cars is an instance of a class of objects called automobiles.
The Automobile class (Figure B-9) could then be thought to deine some characteristics that are
common to each instance (like the fact that each car has four wheels).

CLASS: Automobile

Has 4 Wheels
Has Seats
Has 1 Steering Wheel
Has Windows
Has Brake Pedal

OBJECT: Astin Martin DB9OBJECT: BMW X5OBJECT: Ford Focus

FiGure B-9

If you were tasked with creating a software-based version of the Automobile class, these common
characteristics between the various instances of the Automobile class can be easily represented using
variables; for example, number of wheels could be represented by an integer variable iWheelCount
and so on. Table B-5 lists the characteristics of the Automobile class and the equivalent variables that
could be used to represent them.

TaBLe B-5: Characteristics of the Automobile Class

characTeriSTic variaBLe

Has 4 wheels int wheelCount

Has seats BOOL hasSeats

Has 1 steering wheel int numberOfSteeringWheels

Has windows BOOL hasWindows

Has brake pedal BOOL hasBrakePedal

Introduction to Object-Oriented Programming (OOP) ❘ 21

However, to be compliant with the principles of object-oriented design, this Automobile class must
also deine some operations that do something with these characteristics/variables (Figure B-10).
Whatever these operations may be, each concrete instance of the Automobile class will be able to
perform them.

CLASS: Automobile

Has 4 Wheels
Has Seats
Has 1 Steering Wheel
Has Windows
Has Brake Pedal

RollDown Windows
StopMoving
StartMoving

OBJECT: Astin Martin DB9OBJECT: BMW X5OBJECT: Ford Focus

FiGure B-10

These operations are best thought of as commands you could give to a car (instance of Automobile
class). This is perhaps where object-oriented solutions differ from real-world situations. In the real
world you can’t command a car to drive itself (except in the movies); you need to drive the car. In an
object-oriented world, however, the car would drive itself and all you would have to do is tell the car
to start driving. Table B-6 lists a few possible operations that the Automobile class could deine:

TaBLe B-6: Operations in the Automobile Class

oPeraTion deScriPTion

RollDownWindows The car rolls down all its windows.

StopMoving The car stops moving.

StartMoving The car starts moving.

Just like you use variables to represent the common characteristics, each of these operations would
be represented using blocks of code (functions). These blocks of code would operate on the data
(variables) within the class to achieve the desired outcome.

To put it formally: A class is simply a collection of variables and a list of functions that act on those
variables. An object is a concrete instance of a class. (Recall that a function is simply a named block
of code.)

The variables deined in a class are called its instance variables (ivars for short), and the functions
that act on those variables are called methods.

22 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

Pay attention to the fact that when it comes to using a class, you need to instantiate it into a concrete
object irst. All subsequent interaction will be with the object and not the class. The Automobile class
in this example is not an actual car; it is just the deinition of what a car should be. Instantiating an
Objective-C class is covered in the topic Instantiating Objects, later in this appendix.

Inheritance

When developing an application, you are likely to create more than one class. The classes you deine
are likely to have some relationships with each other. Object-oriented programming allows you to
specify different types of relationships between classes.

The concept of inheritance implies that a new class can be created that inherits the functionality
of an existing class. This new class will provide the functionality of the parent class and provide
some additional functionality of its own. Inheriting from a base class is known as subclassing. By
subclassing an existing class, the designer of an object-oriented solution is reusing the functionality
present in an existing class and not duplicating it. The parent class is commonly referred to as the
base class, and the child as the subclass.

As an example consider a hypothetical class Dog
(Figure B-11). Such a class could either be created
in isolation, or more likely inherit from a more
general class Mammal. The attributes and methods
present in the Mammal class would be a part of the
Dog class. In addition the Dog class would add a
few attributes and methods of its own.

When you use inheritance to create a relationship
between two classes, you are essentially creating
an is-a relationship between them. This in the
above example, a Dog is a Mammal.

Composition

You learned earlier that classes can contain mem-
ber variables. These member variables, however,
need not be restricted to int, double, and BOOL as
you may have thought. Classes can contain objects
of different classes as their member variables. This
principle is called composition and allows you to
create composite classes.

This is best explained by a simple example. Consider the Automobile class. This class is actually
a composite class that includes within it objects of several other classes (for example, one object of
the Engine class, four objects of the Door class, and so on).

If you were to try to analyze real-world objects you would come to the conclusion that almost every
real-world object is an instance of a composite class. The same holds true for objects in software
applications.

CLASS: Dog (is-a Mammal)

has Gender
Has 4 legs

Play
rest
eat
Bark

OBJECT: Ben’s Dog

CLASS: Mammal

Has Gender

Play
Rest
Eat

OBJECT: Jane’s Dog

FiGure B-11

Introduction to Object-Oriented Programming (OOP) ❘ 23

Composition implies a has-a relationship between objects. Thus an Automobile instance has an
Engine instance and four Door instances.

Encapsulation

Encapsulation refers to a much-desired property of an object to behave like a self-contained black
box. A well-designed object should hide its inner workings from the outside world. This would
allow a programmer to use the object without knowing how it works internally. This is much like
how you use your iPhone without knowing how its wireless receiver works.

Polymorphism

Polymorphism refers to a concept in object-oriented programming where a derived class is free
to provide a specialized implementation of a method it has inherited from its parent class. This
specialized method implementation in the subclass is called an override. Programmers thus
implement polymorphism by overriding base class methods in a subclass.

Once again, consider the Mammal and Dog classes (see Figure B-11). Clearly, Dog is a subclass of
Mammal and by virtue of that inherits the Play, Rest, and Eat methods. Now create another class,
Kangaroo, which is also a subclass of Mammal (Figure B-12).

CLASS: Dog

has Gender
Has 4 legs

Play
rest
eat
Bark

CLASS: Kangaroo

has Gender
Has Tail

Play
rest
eat
Jump

OBJECT: Ben’s Dog

CLASS: Mammal

Has Gender

Play
Rest
Eat

OBJECT: Jane’s Dog

OBJECT: Ben’s Dog

OBJECT: Jane’s Dog

FiGure B-12

Although both the Dog and Kangaroo classes have inherited a Play method, they are likely to imple-
ment it differently; after all they are very different animals.

24 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

Protocols

A protocol can be thought of as a contract that a class agrees to abide by. Technically speaking, the
class is said to implement the protocol in question. But what form does this contract take?

This contract (protocol) is basically a list of methods. These methods can be grouped as either
required or optional. Any class that wishes to conform to a protocol must provide implementations
of all required methods in the protocol. A class can implement multiple protocols (Figure B-13),
and multiple classes may implement a given protocol.

CLASS 1

Protocol 1
(Contract)

CLASS 1 CLASS 1

Protocol 2
(Contract)

CLASS 1

FiGure B-13

Just because a class implements a protocol does not mean that the class cannot have additional
methods of its own (in addition to the ones deined in the protocol). The manner in which protocols
are used depends on the designer of the object-oriented system. In other object-oriented languages
like C++, protocols are known as interfaces.

Why are protocols useful? Essentially, a protocol guarantees that an object of a conforming class will
respond to a set of methods. For example, consider a hypothetical scenario where you are hired by
an electronics giant to create a universal remote control. The primary requirement is that this remote
control utilizes object-oriented principles and can control a wide range of home-entertainment devices
from different manufacturers.

To simplify things a little and to keep this example within the scope of the book, assume that the
various devices that your remote control will interact with are all objects of one kind or the other
(television, radio, DVD player, and so on).

Being objects, each of these devices will provide a few methods that can be used to control them.
However, because these devices are of different kinds, and are probably made by different manufac-
turers, each implements a slightly different set of methods. Table B-7 lists the methods deined by
each device.

TaBLe B-7: Methods provided by diferent devices

TeLeviSion radio dvd PLayer

switchOn turnOn powerOn

jumpToChannel tuneToChannel skipToTrack

Introduction to Object-Oriented Programming (OOP) ❘ 25

You could try to design a remote control that somehow detects the type of device it is interacting
with, and then uses speciic methods for that device.

The alternative is that you deine a protocol called UniversalRemoteDelegate that implements
two methods—switchOnDevice and changeChannel—and have the manufacturers of each of
those devices conform to your protocol. In order to declare themselves compliant with your stan-
dard, they would have to implement these two methods in their devices regardless of whatever
other methods they implement.

Remember, you happen to be hired by an electronics giant, who presumably has the necessary inluence
to make this happen. But, if this were to happen your task as a remote control designer is quite simple
because you know for certain that every controllable device will have two methods that you can use.

This example illustrates the power of interfaces; applications can be built that can work with objects
of different types, created by different programmers.

creating an objective-c class

Creating a class in Objective-C is a two-step process. First you need to declare the class (in a
header ile) and then implement its methods (in an implementation ile). Thus the deinition of an
Objective-C class spans two physical iles as shown in Figure B-14.

Class: SomeClass

SomeClass.mSomeClass.h

Implementation
File

Header
File

FiGure B-14

The declaration of the class (header ile) includes, among other things, a list of the member variables
and functions (methods) provided by the class. The implementation ile is where you would type in
the code that actually makes these methods work.

The following code snippet shows the declaration of a Planet class:

#import <Foundation/Foundation.h>

@interface Planet : NSObject
{
 float surfaceTemperature;

26 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

}

- (void)spinOnAxis;
- (float)distanceFromSun;
- (void)rotatePlanetByAngle:(float)angle;

@end

The #import Directive

The irst line of the header ile usually starts with the #import directive. A directive is an instruction
to Xcode and begins with the # character:

#import <Foundation/Foundation.h>

This particular directive (#import) tells Xcode to include the contents of the ile referred to in the
angular brackets at that position, provided it has not been included earlier.

As it turns out, Apple provides hundreds of classes that you can use in your code. For instance, the slot
machine–style date picker that you commonly encounter in many apps is actually a class provided by
Apple. Much of iOS programming has to do with using the methods of one or more classes provided
by Apple.

Classes that provide related functionality are grouped together in what is known as a framework.
For example, all classes that deal with video playback are packaged into a single framework called
Media Player.

If you need to include a ile that is part of a standard framework provided by Apple, you enclose
the name of the ile in angular brackets, as seen in the preceding import statement. However, if
you need to include a ile that is part of your own code, you use double quotes instead of angular
brackets. You see an example of this shortly.

Earlier in this appendix, you also learned that classes inherit from other classes, thus creating
tree-like hierarchies. You may be wondering if there is some root class that sits at the base of all
Objective-C classes. There is, and it is called NSObject. This is shown in Figure B-15.

All Objective-C classes, including your Planet class, can be traced down to NSObject in their
inheritance tree. NSObject is a class provided by Apple and is part of the Foundation framework.
This is why the deinition of the class includes the Foundation/Foundation.h ile at the top.

The @interface and @end Keywords

The deinition of a class in Objective-C is also called its interface and is basically everything
between the @interface and @end keywords in the header ile:

#import <Foundation/Foundation.h>

@interface Planet : NSObject
…
…
…

@end

Introduction to Object-Oriented Programming (OOP) ❘ 27

The name of the class immediately follows the @interface keyword:

@interface Planet : NSObject

Class: NSObject

Class: PlanetClass: SomeClass

Class: AnotherClass

FiGure B-15

Following the name of the class is the name of the parent class, separated by a colon (:). In most
cases the classes that you create will inherit directly from NSObject. However sometimes you will
derive your new class from an existing class, which in turn will inherit from NSObject somewhere
in its inheritance tree.

Instance Variables and Methods

Instance variables are declared between the pair of curly braces immediately following the name of
the class:

@interface Planet : NSObject
{
 …
 instance variables can be declared here
 …
}

@end

Methods are declared after the closing brace that follows member variable deinitions, and before
the end statement:

@interface Planet : NSObject
{

28 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

}

…

methods are declared here

…

@end

Methods never return more than one value; they can however take any number of input parameters.
When you declare a method in a class, you will need to specify how many inputs it requires, the data
types of these inputs, and whether or not the method will return a value.

For example, a method that does not require any input parameters and does not return a value can
be declared as:

- (void)spinOnAxis;

Figure B-16 dissects this method declaration into its constituent parts. Every method begins with
a – or a + character. A minus character indicates that the method can only be called on an object
(instance of the class). This makes sense because the class is just a blueprint anyway that deines
what an object should be. Methods that start with a – sign are also known as instance methods.

Type of method
(Instance or class)

Type of data returned
by the method

– ;(v o i d) s p i n O n A x i s

end of method
definition

Name of the method

FiGure B-16

Thus, if the Planet class deined a method SpinOnAxis you would need an actual object on which
to call the method. In effect you would be asking the object to do something.

A + character before a method deinition indicates that the method can be called on the class, and
must not be called on an instance. Class methods have their uses, but they are beyond the scope of
this appendix. It is safe to assume that as a beginner, all the methods that you will create in your
classes will start with a - sign.

Following the – (or +) sign, a method deinition speciies the type of information returned by the
method in parentheses. If the method does not return anything, its return type is set as void.

Next comes the name of the method. The declaration of the method is complete by adding a ; at the
end of the line.

What if your method were to return a value? Say, a method that provides the distance of the planet
from its sun. Such a method can be declared as:

- (float)distanceFromSun;

Introduction to Object-Oriented Programming (OOP) ❘ 29

Note the return type is not void anymore! It is a numeric data type. This indicates that the method
will return a numeric value, which in this case is a distance.

What if you wanted to create a method that took one input, perhaps a method that would
allow a Planet object to be rotated about its axis by a speciied angle? Such a method can be
declared as:

- (void)rotatePlanetByAngle:(float)angle;

This method deinition looks slightly different from the ones before it. That is because this method
takes a single input value. Figure B-17 dissects this method.

Type of method
(instance or class)

Type of data returned
by the method

– : ;(v o i d)

end of method
definition

Name of the method

Data type of
first parameter

(f l o a t) a n g l e

Name of the variable
that the method can

use to access the value
of the first parameter

r o t a t e P l a n e t B y A n g l e

FiGure B-17

If a method takes an input parameter, the name of the method is followed by a colon, followed by the
data type of the input parameter in parentheses, followed by a variable name that will be used to refer
to that parameter within the implementation of the method. When the rotatePlanetByAngle method
is used, Objective-C will automatically create the variable named angle as speciied in the method dec-
laration, copy the value into it, and make it available for the body of the method to use.

Methods with Multiple Parameters

An Objective-C method is not restricted to taking a single input parameter. Methods can (and com-
monly do) require multiple input parameters. In this case, for each parameter, a short descriptive
label is added. This label is followed by another colon, data type, and variable name.

The name of the method is then the name formed by collecting the labels of each parameter together.

It is best to illustrate this with an example. Suppose you wanted to add a method to the Planet
class to rotate the planet by speciic amounts along three orthogonal axes x, y, and z. Such a
method would look like:

- (void)rotatePlanetAboutX:(float)xAngle aboutY:(float)yAngle aboutZ:(float)zAngle;

The name of this method is rotatePlanetAboutX:aboutY:aboutZ:. In this method declaration, the
irst parameter is labeled rotatePlanetAboutX, the second is aboutY, and the third is aboutZ. The
values assigned to these parameters can be accessed within the body of the method by the variables
named xAngle, yAngle, and zAngle respectively. This is depicted in Figure B-18.

30 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

– :(v o i d)

P a r a m e t e r L a b e l s

r o t a t e P l a n e t A b o u t X (f l o a t) x A n g l e

:a b o u t Y (f l o a t) y A n g l e

: ;a b o u t Z (f l o a t) z A n g l e

V a r i a b l e N a m e s

FiGure B-18

oBjecTive-c caTeGorieS

A category allows you to add methods to an existing class, even if you do not
have the source to the class. Using categories you can extend the functionality
of a class without subclassing. For more information on categories refer to “The
Objective-C Programming Language Guide” available at: http://developer
.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjectiveC/

Chapters/ocCategories.html#//apple_ref/doc/uid/TP30001163-CH20-SW1.

implementing the class

The implementation ile ends with the extension .m and is where you type the code for the methods
of the class. The implementation ile of the Planet class is listed here:

#import "Planet.h"

@implementation Planet

- (void)spinOnAxis
{

}

- (float)distanceFromSun
{

}

- (void)rotatePlanetByAngle:(float)angle
{

}

@end

http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocCategories.html#//apple_ref/doc/uid/TP30001163-CH20-SW1
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocCategories.html#//apple_ref/doc/uid/TP30001163-CH20-SW1

Introduction to Object-Oriented Programming (OOP) ❘ 31

With the introduction of iOS SDK 5.0, it is now possible to declare member
variables in the implementation ile (.m) instead of the interface (.h) ile. The
beneit of doing this is that the .h ile truly hides the implementation details, and
only exposes the methods made available by the class. The member variables of
a class, while necessary, are just implementation details. The principle of encap-
sulation dictates that classes should try as much as possible to hide implemen-
tation details from their users. To this end you could move the declaration of
instance variable surfaceTemperature into the .m ile. If you do so, then your
Planet.h ile will look like this:

#import <Foundation/Foundation.h>

@interface Planet : NSObject

- (void)spinOnAxis;
- (float)distanceFromSun;
- (void)rotatePlanetByAngle:(float)angle;

@end

The corresponding implementation ile Planet.m will now contain the declara-

tion of the instance variable and will look like this:

#import “Planet.h”

@implementation Planet
{
 float surfaceTemperature;
}

- (void)spinOnAxis
{

}

- (float)distanceFromSun
{

}

- (void)rotatePlanetByAngle:(float)angle
{

}

@end

Whether you should opt to do things thing way or not is a matter of personal

choice. This is a new recommendation and a lot of code that you are likely to

encounter in the near future will not have adapted it.

Furthermore, you do not need to declare instance variables for synthesized prop-

erties. Synthesized properties are discussed later in this appendix.

32 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

The implementation ile also begins with the #import directive. An implementation ile must always
include the corresponding header ile.

Implementations for each method of the class are placed between the @implementation and @end
keywords:

#import "Planet.h"

@implementation Planet
….
….
@end

The implementation of a method looks similar to its declaration in the header ile, except that the
semicolon at the end of the declaration is replaced by a pair of curly braces, { and }.

Sending Messages to objects

In Objective-C terminology, the act of using a method on an object is known as sending a message
to the object. Thus you don’t call a method, you send the object a message.

If secondPlanet was an instance of the Planet class (we will not consider the problem of how to
instantiate the object just yet), then to use the spinOnAxis method, you would send it the spinOnAxis
message as shown in the following code snippet:

.. assume secondPlanet is an instance of Planet

...

[secondPlanet spinOnAxis];

An Objective-C statement that sends a message to an object is enclosed in square brackets. The recipient
of the message (which is usually an object) comes irst, followed by a space, followed by the name of the
method. This is depicted in Figure B-19.

Square brackets enclose an Objective-C statement
where a message is being sent to a receiver.

Name of Object
(Target of

the message)

[;s e c o n d P l a n e t

Name of Method
(message

being sent)

s p i n O n A x i s]

FiGure B-19

If the message being sent (method being called) returned a value, you will need to collect this value
in a variable of the appropriate type:

float result = [secondPlanet distanceFromSun];

If the message requires you to include an input value (parameter), you will need to specify an appropriate
value (depending on the data type of the parameter) after the method name. This can be done as follows:

[secondPlanet rotatePlanetByAngle:16.88];

Introduction to Object-Oriented Programming (OOP) ❘ 33

Compare this to the deinition of the rotatePlanetByAngle method:

- (void)rotatePlanetByAngle:(float)angle;

 You will see that the value 16.88 will be copied into a variable named angle. This variable angle
will be used within the block of code that makes up the function.

You can insert a comment line in your code by starting the line with //. The
Objective-C compiler ignores everything in a line that begins with //.If you want
your comments to span across multiple lines, you can either place // in front of
each line, or create a block comment by putting your comments between a pair
of /* and */ characters, as shown here:

/*
this is a comment that spans
multiple lines, and will be ignored by
the Objective-C complier.
*/

instantiating objects

To instantiate an object of an existing class, you use the alloc and init methods as shown in the
following code snippet.

Planet* newPlanet = [[Planet alloc] init];

The alloc and init methods are deined in NSObject as:

+ (id)alloc;
- (id)init;

It is common for classes to override the init method. If a class does not speciically override the init
method, the base class’ version will be used instead.

Objective-C classes also provide overloaded versions of the init method that accept one or more
arguments. These overloaded methods internally call the init method of the parent class. As an
example, the NSString class provides several overloaded versions of the init method including
initWithString:, initWithFormat: and others. The following code shows how a new instance
of an NSString object is created using the alloc and initWithString: methods:

NSString* userName = [[NSString alloc] initWithString:@"Roy Wicks"];

For more information on instantiating objects, refer to “The Objective-C Programming
Language Guide” available at: http://developer.apple.com/library/ios/#documentation/
Cocoa/Conceptual/ObjectiveC/Chapters/ocCategories.html#//apple_ref/doc/uid/

TP30001163-CH20-SW1.

objective-c Properties

The principle of encapsulation requires that in order to use an object, you should not need to know
how the object works. If a class were well designed, then in order to use it, you only need to know of
a list of methods provided by the object.

http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocCategories.html#//apple_ref/doc/uid/TP30001163-CH20-SW1
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocCategories.html#//apple_ref/doc/uid/TP30001163-CH20-SW1

34 ❘ aPPendix B inTroducTion To programming wiTH oBjecTiVe-c

Member variables, although an essential component of an object, are part of the object’s internal
details and thus are not accessible to users directly. The interface of the Planet class that has been
used in the previous sections of this appendix is presented once again:

#import <Foundation/Foundation.h>

@interface Planet : NSObject
{
 float surfaceTemperature;
}

- (void)spinOnAxis;
- (float)distanceFromSun;
- (void)rotatePlanetByAngle:(float)angle;

@end

In order to give other classes (including subclasses) the ability to read/change the value of the instance
variable surfaceTemperature, you will need to add a pair of accessor methods to the class. A method
that is used to read the value of an instance variable is known as a getter, and a method used to change
an instance variable is called a setter. It turns out that accessor methods are created quite frequently,
and in order to simplify the process of creating these accessors, Objective-C provides the concept of
synthesized properties.

Essentially, you declare a property in your class to expose a instance variable to your users, and the
compiler generates the required getter/setter method for you.

Thus you can expose the surfaceTemperature variable to your users by adding this statement to
your class declaration, between the closing } and the @end statement:

@property float surfaceTemperature;

You can think of adding the above @property declaration statement to be equivalent to adding
two methods:

- (float)surfaceTemperature;
- (void)setSurfaceTemperature:(float)newValue;

The updated Planet.h ile, with a property called surfaceTemperature will look like this:

@interface Planet : NSObject
{
 float surfaceTemperature;
}

@property float surfaceTemperature;
- (void)spinOnAxis;
- (float)distanceFromSun;
- (void)rotatePlanetByAngle:(float)angle;

@end

Introduction to Object-Oriented Programming (OOP) ❘ 35

You also need to add an @synthesize statement in the .m ile for each corresponding property
you have added to the .h ile. The @synthesize statement is added at the top of the implementa-
tion (.m) ile, immediately after the @implementation line as shown here:

@implementation Planet

@synthesize surfaceTemperature;

// other method declarations follow …

@end

The net effect of a pair of @property and @synthesize statements is to create both a getter and
a setter method for the member variable in question. The Objective-C language also allows you
to use a few modiiers with @property statements. When used, these modiiers create slightly
different setter/getter methods.

The most common @property modiiers are nonatomic and readonly. Using the nonatomic modiier
results in code that is slightly faster. A readonly property is one that can only be read, thus only a get-
ter method is created for one of these. Objective-C properties are not read-only by default.

Applying these modiiers to a property is a simple matter of including the appropriate keywords in
the @property statement:

@property (readonly) float surfaceTemperature;

It is common practice, when exposing an instance variable using synthesized properties, to not declare
the instance variable in the .h ile at all. This is because when the Objective-C compiler comes across
an @property declaration without a matching instance variable declaration, it will create an instance
variable automatically. Thus, the inal version of the Planet.h ile would resemble:

@interface Planet : NSObject
@property float surfaceTemperature;
- (void)spinOnAxis;
- (float)distanceFromSun;
- (void)rotatePlanetByAngle:(float)angle;

@end

Last but not least, it is worth mentioning that you could override the default getter/setter method
generated by the compiler with one of your own. Thus, if you wanted to use the standard compiler-
generated setter method, but override the getter method, you will need to add an implementation for
the setSurfaceTemperature: method in the .m ile:

- (void)setSurfaceTemperature:(float)newValue
{
 // do something with newValue
}

This concludes the introduction to Objective-C. For more information you are encouraged to read “The
Objective-C Programming Language Guide” available at: http://developer.apple.com/library/
ios/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html.

http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html

Introduction to ARC
Automatic Reference Counting (ARC) is a feature of the new LLVM 3.0 compiler that does away
with manual memory management of Objective-C objects. From a programmer’s perspective,
enabling ARC in your project implies you do not need to call retain, release, or autorelease
on your Objective-C objects. In fact, you will get a compile-time error if you attempt to do so.
Instead, the compiler evaluates the lifetime of each object and inserts appropriate method calls
for you. The compiler also generates appropriate dealloc methods for you.

It is important to keep in mind that ARC is not an addition to the Objective-C language. It is a
compile-time feature. All ARC does is insert appropriate release and retain calls in your code
where you would have. Another point worth mentioning is that ARC is not garbage collection.
Garbage collection is an Objective-C language-level feature and is not supported on iOS.

In this appendix, you learn how to use ARC in your projects.

oBjecT oWnerShiP

To use ARC in your projects you need to move away from the retain-release model and think
in terms of object ownership. This is best explained with an example. The following code
allocates memory for and initializes an NSString object:

NSString* firstName = @"Andrew";

When the preceding statement is executed, the variable firstName points to the location in
memory where the NSString instance is located, and effectively owns the contents of that mem-
ory location. In fact, firstName is the only reference to that memory location, and keeps the
memory “alive.” This is illustrated in Figure C-1.

This kind of reference (which implies ownership) is called a strong reference, and is the default
type of reference for all instance variables, local variables, and property declarations.

To specify a strong reference, you can apply the __strong preix at the beginning of an assign-
ment statement, although this is not strictly necessary because assignments are, by default,
strong references. The equivalent statement with the __strong preix would have been:

__strong NSString* firstName = @”Andrew”;

C

38 ❘ aPPendix c inTroducTion To arc

firstName

0

Andrew

1 2 3

FiGure c-1

It is possible (though not particularly useful in this case) to create another variable that points to the
same memory as firstName. You can do this by using the following statement:

NSString* anotherName = firstName;

The situation is depicted in Figure C-2. At this point there are two strong references to the same
memory location. ARC-compliant code can have multiple strong references to the same memory.

firstName

0

Andrew

1 2 3

anotherName

FiGure c-2

If you were to now reassign firstName using the following statement:

firstName = @"Johnson";

the situation in memory changes, and is depicted in Figure C-3. Note that both firstName and
anotherName are now strong references to different blocks of memory. The memory for the block
containing the string Andrew was not freed because there is still a strong reference to the block (in
the variable anotherName).

firstName

0

AndrewJohnson

1 2 3

anotherName

FiGure c-3

This is important to note. Memory will not be freed as long as there is a single strong reference to
that block. If you were to once again reassign firstName using the following code:

firstName = @"Kirk";

Object Ownership ❘ 39

the block of memory containing the string Johnson would indeed be freed because there is no longer
a strong reference to it. This is depicted in Figure C-4.

firstName

0

Andrew KirkJohnson

1 2 3

anotherName

FiGure c-4

ARC also introduces the concept of a weak reference. A weak reference does not signify ownership.
It is merely a reference and does not count toward keeping a block of memory “alive.” You create a
weak reference by preixing an assignment with the __weak qualiier:

__weak NSString* weakReference = firstName;

When the block of memory referenced by a weak reference is destroyed (because there are no strong
references keeping the block alive), weak references are automatically set to nil. Such a reference is
referred to as a zeroing weak reference in ARC terminology.

Weak references aren’t used very often; they are mostly used when two objects have a parent-child
relationship. The parent holds a strong reference to the child, thus keeping the child object from
being deallocated. The child, on the other hand, keeps a weak reference to the parent. A common
example of this situation would be when you create a UITextField object in your view control-
ler class and set its delegate property to self. Your view controller holds a strong reference to the
UITextField instance; however, the text ield holds a weak reference to the view controller (via its
delegate property). This situation is depicted in Figure C-5.

view controller

UITextField* usernameField = [[UITextField alloc]

usernameField.delegate = self;

initWithFrame:CGRectMake(10, 10, 300, 20)];

(strong)

(weak) uiTextField

delegate

FiGure c-5

Just like variables, properties can also be strong or weak. For example:

@property (nonatomic, strong) NSString* strongReference;
@property (nonatomic, weak) NSString* weakReference;

40 ❘ aPPendix c inTroducTion To arc

When creating outlets, the properties added to your class by Interface Builder are weak, so that they
will automatically be set to nil when the objects they reference go out of scope.

ARC is a great feature and helps reduce clutter in your code. However, it does have its limitations,
the most important being that ARC works only with Objective-C objects.

If your code uses Core Foundation or allocates memory with the C-function malloc, you are still
responsible for managing that memory. Another point to remember is to set strong references to nil
when you do not need the references. This is because if you keep holding on to all the objects you
have allocated with strong references, ARC will never be able to free the memory, and eventually
your application may run out of memory.

converTinG ProjecTS To arc

When you create a new project in Xcode, you have the option to enable the use of Automatic
Reference Counting in the Project Options dialog box. However, there may be instances when you
want to enable ARC in an existing project that is not currently ARC enabled. To do this, you could
either use the automatic conversion tool included with Xcode or attempt to convert the project man-
ually. This section presents a simple project that is made ARC compliant using the automatic con-
version tool. The project is a simple view-based application called FruitTap that displays images of
four fruits and an alert view with the name of the fruit when the user taps one of them. Figure C-6
shows this simple application in action.

FiGure c-6

Converting Projects to ARC ❘ 41

The user interface for the application is created programmatically in the viewDidLoad method of
the view controller class. Listings C-1 to C-4 contain the source code for the application before it is
converted to use ARC.

You can download the code and resources for this appendix from the book’s
web page at www.wrox.com. You can ind them in the Appendix C folder in the
download.

LiSTinG c-1: The AppDelegate.h ile

#import <UIKit/UIKit.h>

@class ViewController;

@interface AppDelegate : NSObject <UIApplicationDelegate>

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet ViewController *viewController;

@end

LiSTinG c-2: The AppDelegate.m ile

#import "AppDelegate.h"
#import "ViewController.h"

@implementation AppDelegate

@synthesize window;
@synthesize viewController;

- (void)dealloc
{
 [window release];
 [viewController release];
 [super dealloc];
}

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 // add the view controller's view.
 [window addSubview:[viewController view]];
 [window makeKeyAndVisible];
 return YES;
}

- (void)applicationWillResignActive:(UIApplication *)application

continues

http://www.wrox.com

42 ❘ aPPendix c inTroducTion To arc

{

}

- (void)applicationDidEnterBackground:(UIApplication *)application
{

}
- (void)applicationWillEnterForeground:(UIApplication *)application
{

}

- (void)applicationDidBecomeActive:(UIApplication *)application
{

}

- (void)applicationWillTerminate:(UIApplication *)application
{

}

@end

LiSTinG c-3: The ViewController.h ile

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property (nonatomic, retain) UIImageView* backgroundImage;
@property (nonatomic, retain) UIImageView* appleImage;
@property (nonatomic, retain) UIImageView* bananaImage;
@property (nonatomic, retain) UIImageView* orangeImage;
@property (nonatomic, retain) UIImageView* peachImage;
@property (nonatomic, retain) UITapGestureRecognizer* tapRecognizer;

- (void) handleTap:(id)sender;

@end

LiSTinG c-4: The ViewController.m ile

#import "ViewController.h"

@implementation ViewController

@synthesize backgroundImage = _backgroundImage;
@synthesize appleImage = _appleImage;

LiSTinG c-2 (continued)

Converting Projects to ARC ❘ 43

@synthesize bananaImage = _bananaImage;
@synthesize orangeImage = _orangeImage;
@synthesize peachImage = _peachImage;
@synthesize tapRecognizer = _tapRecognizer;

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
}

#pragma mark - View lifecycle

- (void)viewDidLoad
{
 [super viewDidLoad];

 _backgroundImage = [[UIImageView alloc] initWithImage:[UIImage
 imageNamed:@"bg1.png"]];
 _backgroundImage.frame = CGRectMake(0, -20, 320, 480);
 [self.view addSubview:_backgroundImage];

 _appleImage = [[UIImageView alloc] initWithImage:[UIImage
 imageNamed:@"apple.png"]];
 _appleImage.frame = CGRectMake(30, 120, 120, 120);
 [self.view addSubview:_appleImage];

 _bananaImage = [[UIImageView alloc] initWithImage:[UIImage
 imageNamed:@"banana.png"]];
 _bananaImage.frame = CGRectMake(170, 120, 120, 120);
 [self.view addSubview:_bananaImage];

 _orangeImage = [[UIImageView alloc] initWithImage:[UIImage
 imageNamed:@"orange.png"]];
 _orangeImage.frame = CGRectMake(30, 300, 120, 120);
 [self.view addSubview:_orangeImage];

 _peachImage = [[UIImageView alloc] initWithImage:[UIImage
 imageNamed:@"peach.png"]];
 _peachImage.frame = CGRectMake(170, 300, 120, 120);
 [self.view addSubview:_peachImage];

 _tapRecognizer = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleTap:)];
 _tapRecognizer.cancelsTouchesInView = NO;
 [self.view addGestureRecognizer:_tapRecognizer];
}

- (void) dealloc
{
 [_backgroundImage release];
 [_appleImage release];
 [_bananaImage release];
 [_orangeImage release];
 [_peachImage release];

continues

44 ❘ aPPendix c inTroducTion To arc

 [_tapRecognizer release];

 [super dealloc];
}
- (void)viewDidUnload
{
 [super viewDidUnload];
 self.backgroundImage = nil;
 self.appleImage = nil;
 self.bananaImage = nil;
 self.orangeImage = nil;
 self.peachImage = nil;
 self.tapRecognizer = nil;
}

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
}
- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
}

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];
}
- (void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation
{
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);
}

- (void) handleTap:(id)sender
{
 CGPoint startLocation = [sender locationInView:self.view];

 if ((startLocation.x >= 30) && (startLocation.x <= 150) &&
 (startLocation.y >= 120) && (startLocation.y <= 240))
 {
 UIAlertView* alertMessage = [[UIAlertView alloc] initWithTitle:nil
 message:@"Apple"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];

LiSTinG c-4 (continued)

Converting Projects to ARC ❘ 45

 [alertMessage show];
 [alertMessage release];
 return;
 }

 if ((startLocation.x >= 170) && (startLocation.x <= 290) &&
 (startLocation.y >= 120) && (startLocation.y <= 240))
 {
 UIAlertView* alertMessage = [[UIAlertView alloc] initWithTitle:nil
 message:@"Banana"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [alertMessage show];
 [alertMessage release];
 return;
 }

 if ((startLocation.x >= 30) && (startLocation.x <= 150) &&
 (startLocation.y >= 300) && (startLocation.y <= 420))
 {
 UIAlertView* alertMessage = [[UIAlertView alloc] initWithTitle:nil
 message:@"Orange"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [alertMessage show];
 [alertMessage release];
 return;
 }

 if ((startLocation.x >= 170) && (startLocation.x <= 290) &&
 (startLocation.y >= 300) && (startLocation.y <= 420))
 {
 UIAlertView* alertMessage = [[UIAlertView alloc] initWithTitle:nil
 message:@"Peach"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [alertMessage show];
 [alertMessage release];
 return;
 }

}

@end

Before you begin converting the project to use ARC memory management, be sure to make a backup
of the original project in case you need to start over. To begin the conversion process, select the Edit d
Refactor d Convert to Objective-C ARC menu item in Xcode. Xcode will prompt you to select one or
more build targets that need to be converted (Figure C-7). Once you have selected the appropriate tar-
gets, click the Precheck button.

46 ❘ aPPendix c inTroducTion To arc

FiGure c-7

Xcode goes through the project’s source iles and looks for any statements in your code that it cannot
convert. If no such statements are found, Xcode presents a dialog box that requires you to conirm
your intent to upgrade the selected targets to use ARC memory management (Figure C-8). Click the
Next button.

FiGure c-8

Converting Projects to ARC ❘ 47

Once the conversion has been performed, Xcode lets you review the changes that will be made to
each ile (Figure C-9). If you are not happy with the changes, you can click the Cancel button and
your project will remain in its original, unconverted state.

FiGure c-9

If you are satisied with the changes Xcode will make, click the Save button. Xcode asks you to take
a snapshot of the project before proceeding; this is in general a good idea, and you should click the
Enable button (Figure C-10). If you ever need to go back to the original version of the project before
the conversion process, you can ind the snapshot in the Xcode Organizer.

FiGure c-10

In the FruitTap example, the conversion process has no impact on the AppDelegate.m ile.
Listings C-5 to C-7 contain the source code for the AppDelegate.h, ViewController.h, and
ViewController.m iles after they have been converted to use ARC.

48 ❘ aPPendix c inTroducTion To arc

LiSTinG c-5: The AppDelegate.h ile after ARC conversion

#import <UIKit/UIKit.h>

@class ViewController;

@interface AppDelegate : NSObject <UIApplicationDelegate>

@property (nonatomic, strong) IBOutlet UIWindow *window;
@property (nonatomic, strong) IBOutlet ViewController *viewController;

@end

LiSTinG c-6: The ViewController.h ile after ARC conversion

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property (nonatomic, strong) UIImageView* backgroundImage;
@property (nonatomic, strong) UIImageView* appleImage;
@property (nonatomic, strong) UIImageView* bananaImage;
@property (nonatomic, strong) UIImageView* orangeImage;
@property (nonatomic, strong) UIImageView* peachImage;
@property (nonatomic, strong) UITapGestureRecognizer* tapRecognizer;

- (void) handleTap:(id)sender;

@end

LiSTinG c-7: The ViewController.m ile after ARC conversion

#import "ViewController.h"

@implementation ViewController

@synthesize backgroundImage = _backgroundImage;
@synthesize appleImage = _appleImage;
@synthesize bananaImage = _bananaImage;
@synthesize orangeImage = _orangeImage;
@synthesize peachImage = _peachImage;
@synthesize tapRecognizer = _tapRecognizer;

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
}

#pragma mark - View lifecycle
- (void)viewDidLoad

Converting Projects to ARC ❘ 49

{

 [super viewDidLoad];

 _backgroundImage = [[UIImageView alloc]
 initWithImage:[UIImage imageNamed:@"bg1.png"]];
 _backgroundImage.frame = CGRectMake(0, -20, 320, 480);
 [self.view addSubview:_backgroundImage];

 _appleImage = [[UIImageView alloc]
 initWithImage:[UIImage imageNamed:@"apple.png"]];
 _appleImage.frame = CGRectMake(30, 120, 120, 120);
 [self.view addSubview:_appleImage];

 _bananaImage = [[UIImageView alloc]
 initWithImage:[UIImage imageNamed:@"banana.png"]];
 _bananaImage.frame = CGRectMake(170, 120, 120, 120);
 [self.view addSubview:_bananaImage];

 _orangeImage = [[UIImageView alloc]
 initWithImage:[UIImage imageNamed:@"orange.png"]];
 _orangeImage.frame = CGRectMake(30, 300, 120, 120);
 [self.view addSubview:_orangeImage];

 _peachImage = [[UIImageView alloc]
 initWithImage:[UIImage imageNamed:@"peach.png"]];
 _peachImage.frame = CGRectMake(170, 300, 120, 120);
 [self.view addSubview:_peachImage];

 _tapRecognizer = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleTap:)];
 _tapRecognizer.cancelsTouchesInView = NO;
 [self.view addGestureRecognizer:_tapRecognizer];
}
- (void)viewDidUnload
{
 [super viewDidUnload];
 self.backgroundImage = nil;
 self.appleImage = nil;
 self.bananaImage = nil;
 self.orangeImage = nil;
 self.peachImage = nil;
 self.tapRecognizer = nil;
}

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
}

continues

50 ❘ aPPendix c inTroducTion To arc

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];

}

- (void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];
}

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation
{
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);
}

- (void) handleTap:(id)sender
{
 CGPoint startLocation = [sender locationInView:self.view];

 if ((startLocation.x >= 30) && (startLocation.x <= 150) &&
 (startLocation.y >= 120) && (startLocation.y <= 240))
 {
 UIAlertView* alertMessage = [[UIAlertView alloc] initWithTitle:nil
 message:@"Apple"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [alertMessage show];
 return;
 }

 if ((startLocation.x >= 170) && (startLocation.x <= 290) &&
 (startLocation.y >= 120) && (startLocation.y <= 240))
 {
 UIAlertView* alertMessage = [[UIAlertView alloc] initWithTitle:nil
 message:@"Banana"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [alertMessage show];
 return;
 }

 if ((startLocation.x >= 30) && (startLocation.x <= 150) &&
 (startLocation.y >= 300) && (startLocation.y <= 420))
 {
 UIAlertView* alertMessage = [[UIAlertView alloc] initWithTitle:nil
 message:@"Orange"

LiSTinG c-7 (continued)

Converting Projects to ARC ❘ 51

 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [alertMessage show];
 return;
 }

 if ((startLocation.x >= 170) && (startLocation.x <= 290) &&
 (startLocation.y >= 300) && (startLocation.y <= 420))
 {
 UIAlertView* alertMessage = [[UIAlertView alloc] initWithTitle:nil
 message:@"Peach"
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [alertMessage show];
 return;
 }

}

@end

When using ARC memory management, you cannot manage autorelease pools with
the NSAutoReleasePool class. Instead, ARC introduces a new statement construct to the
Objective-C language called @autoreleasepool. One place in your application where this
new construct is used is the main.m ile. The modiied version of this ile is listed here:

#import <UIKit/UIKit.h>

int main(int argc, char *argv[])
{
 @autoreleasepool {
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 return retVal;
 }
}

The conversion process doesn’t always go smoothly. In many cases you will need to tweak your code
and try the automatic conversion process again. Some of the more common conversion errors you
are likely to encounter are:

 ➤ ARC forbids Objective-C objects in structs or unions.

You are getting this error because you have a C-style struct that contains Objective-C point-
ers. You will need to update these structures to Objective-C classes. An example of code
that will cause this error is:

typedef struct
{
 NSString *firstName;
 NSString *lastName;
}
ContactDetails;

52 ❘ aPPendix c inTroducTion To arc

 ➤ Switch case is in protected scope.

You are getting this error because your code is creating a new pointer variable inside a case
statement. An example of this kind of code is:

switch (numberOfTaps)
{
 case 1:
 UIAlertView* alertMessage = [[UIAlertView alloc]
 initWithTitle:nil
 message:messageText
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [alertMessage show];
 break;
 default:
 break;
 }
 }

To correct this problem you will need to enclose the body of the case statements in its own
block as shown here:

switch (numberOfTaps)
{
 case 1:
 {
 UIAlertView* alertMessage = [[UIAlertView alloc] initWithTitle:nil
 message:messageText
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil];
 [alertMessage show];
 break;
 }
 default:
 break;
}

If one or more iles throw a lot of errors during the conversion process, you can always disable ARC
memory management for speciic iles in your project. To do so, select the project node in the project
navigator and switch to the Build Phases tab. Open the Compile Sources group to reveal the source
ile list. Double-click the ile for which you want to disable ARC and type -fno-objc-arc in the
popup window (Figure C-11).

When you create new projects you should try to use ARC memory management right from the
start. However, because ARC is a new concept, you may have to use code that is not ARC ready
every now and then. Hopefully this appendix will give you the basic knowledge to use ARC mem-
ory management in your projects.

Converting Projects to ARC ❘ 53

FiGure c-11

For more information on how to handle ARC conversion issues, read the
Transitioning to ARC Release Notes available at http://developer.apple
.com/library/ios/#releasenotes/ObjectiveC/RN-TransitioningToARC/

_index.html.

http://developer.apple.com/library/ios/#releasenotes/ObjectiveC/RN-TransitioningToARC/_index.html
http://developer.apple.com/library/ios/#releasenotes/ObjectiveC/RN-TransitioningToARC/_index.html

Testing on an iOS Device
The iOS Simulator is a handy tool for testing your application as you are developing it. However,
it is no substitute for testing on an actual device—certain features, like the accelerometer, cannot
be tested on the simulator at all.

Testing your application on your device is slightly different from giving it to a small number of
users for beta testing. When it is your own device, you can physically connect it to your Mac and
use Xcode to test/debug your app while it executes on the device. Distributing your app to a few
users for beta testing is achieved through Ad Hoc distribution—a process covered in detail in
Appendix E.

Before you can test your app on a device, you need to prepare the device for testing and conigure
a few options in Xcode. The process itself can seem quite complicated at irst. This appendix goes
through the various steps required to test your apps on a device with Xcode.

oBTaininG and reGiSTerinG udidS

Each iOS device has a unique 40-digit identiier, commonly referred to as the device UDID.
Before you can test your app on a device with Xcode, you will need to register the UDID of that
device with the iOS Provisioning Portal. You can obtain this UDID through the Xcode Organizer.

To obtain the UDID for a device, simply connect it to your Mac and access the Organizer
from the Xcode toolbar. Click the device in the list on the left-hand side and note the value
of the Identiier ield (Figure D-1).

To register a device for development, simply click the Use for Development button in the
Organizer. You will be asked to provide the Apple ID and password you used to register as an
iOS developer.

 You can also register UDIDs manually. To do this you must log in to your iOS developer
account at https://developer.apple.com/ios and click the iOS Provisioning Portal link on
the right side of the page. Within the Provisioning Portal, click the Devices link on the left side
(Figure D-2).

D

https://developer.apple.com/ios

56 ❘ aPPendix d TeSTing on an ioS deVice

FiGure d-1

FiGure d-2

Creating an App ID (Bundle Identiier) ❘ 57

The Devices screen shows you a list of devices registered to your account. You can register up to
100 devices a year (note that deleting a device does not count toward this limit). Click the Add
Devices link and ill in the UDID of the device along with a name with which you would like to
refer to the device. Click Submit to add the UDID to the device list. This list can be reset once a
year, when you renew your paid membership.

creaTinG an aPP id (BundLe idenTiFier)

The next step involves creating and registering a unique identiier for your app; this is known as the
App ID or Bundle Identiier. In addition to uniquely identifying your application, it allows your appli-
cation to receive remote notiications, communicate with external accessories, or share keychain data
with other applications in a suite.

A Bundle Identiier consists of company identiier and an application identiier (Figure D-3). When you
create a new project in Xcode, you are asked to provide a company identiier, and the Bundle Identiier
is generated for you by appending the name of the project to the company identiier. To distribute the
application through the App Store, or through Ad Hoc distribution, the identiier you provide must
match the one you register in the Provisioning Portal. You can always change the Bundle Identiier for
an existing application by editing the Bundle Identiier key in the project’s info.plist ile.

uk.co.asmtechnology.NewApplication

Company
Identifier

Application
Identifier

FiGure d-3

58 ❘ aPPendix d TeSTing on an ioS deVice

To register an App ID within the iOS Provisioning Portal, log in to the portal and click the App IDs
link on the left-hand side. Click New App ID to access the App IDs creation screen (Figure D-4).

FiGure d-4

On this screen, provide a description for the App ID, choose Generate New for the Bundle Seed ID,
and provide a unique value for the Bundle Identiier. The standard convention encouraged by Apple
is to use a reverse-domain name type string of the form com.domainname.appname. If you do not
mind your apps sharing data between them, you can use an asterisk instead of the appname, thus
creating a string of the form com.domainname.*.

Such an App ID is called a wildcard App ID and can be used repeatedly across multiple applications.
The downside of wildcard App IDs is that certain features such as Remote Push Notiications are not
available. After you have illed up all the values on this screen, click Submit to create the new App ID.

creaTinG a deveLoPMenT cerTiFicaTe

The next step involves creating and installing a development certiicate. Creating a development
certiicate involves creating an appropriate certiicate request and submitting this request to the
iOS Provisioning Portal. Once the certiicate is ready, you will be able to download and install it
on your Mac.

Creating a Development Certiicate ❘ 59

To create a certiicate request, launch the Keychain Access utility from the Applications folder on
your Mac. When the Keychain Access utility is running, choose Certiicate Assistant d Request a
Certiicate from a Certiicate Authority menu item.

In the Certiicate Assistant dialog (Figure D-5), specify the e-mail address and account name used to
access the iOS Developer Program, and ensure the Saved to Disk radio button is selected. Click the
Continue button to save the certiicate request as a ile on your Mac.

FiGure d-5

Log in to the iOS Provisioning Portal, click the Certiicates category on the left-hand side, and select
the Development tab (Figure D-6). Click the Request Certiicate button and then the Choose File
button on the following screen. Select the certiicate request ile that you saved on your Mac. Click
the Submit button to submit the certiicate request.

If you are not part of a team, and are solely responsible for handling your iOS Developer account,
your certiicate is issued automatically and available to download in a few minutes. You may need to
refresh your browser window. If you are part of a team, your team agent will need to irst approve
the certiicate request. When your certiicate is ready to download, you will see its status listed as
Issued, and a Download link will be available.

Download the certiicate and save it to your Mac; by default, the certiicate should be saved to your
Downloads folder. If you haven’t done so already, download the WWDR Intermediate certiicate
from the same page of the iOS Provisioning Portal by using the link below the certiicate. Simply
double-click the certiicates to install them onto your Mac.

60 ❘ aPPendix d TeSTing on an ioS deVice

FiGure d-6

creaTinG a ProviSioninG ProFiLe

After having registered your device UDID, App ID, and creating a development certiicate, you will
need to create a development provisioning proile. A provisioning proile associates an App ID, a
Certiicate, and some device-speciic information within Xcode. In this case the certiicate in question
would be the development certiicate you just generated in the previous section, and the device-speciic
information would be a list of UDIDs on which you want to debug your application.

To create a development provisioning proile, log in to the iOS Provisioning Portal, click the
Provisioning category on the left side, and select the Development tab (Figure D-7). Here you
will see a list of existing development provisioning proiles. To create a new one, click the New
Proile button.

Type in a name for the proile and select the development certiicate you created earlier
(Figure D-8). Select an App ID and a list of target devices. Click the Submit button to create
the provisioning proile.

Your provisioning proile is issued automatically and available to download in a few minutes.
You may need to refresh your browser window. Download the development provisioning
proile onto your Mac and install it by dragging the .mobileprovision ile onto Xcode in
your dock.

Creating a Provisioning Proile ❘ 61

FiGure d-7

FiGure d-8

62 ❘ aPPendix d TeSTing on an ioS deVice

conFiGurinG your ProjecT

The inal step in the process involves setting up your Xcode project and preparing an appropriate
build. Before you begin, make sure you have installed both your development certiicate and develop-
ment provisioning proile. To check, simply bring up the Xcode Organizer by clicking the last button
in the Xcode toolbar, and select Provisioning Proiles in the Organizer menu (Figure D-9).

FiGure d-9

If you have successfully installed your development provisioning proile and development certiicate,
your proile should be listed on this screen without any error messages in the Status column.

Once you have veriied that no errors have been reported by the Organizer, close it and load the
project that you want to prepare for Ad Hoc distribution. If the project’s App ID is different from
what has been registered with the iOS Provisioning Portal, edit the value of the Bundle identiier key
in the project’s info.plist ile to match.

Save the info.plist ile if you have edited it, then connect one of the provisioned iOS devices to
your Mac and ensure that the Scheme/Target selector in the Xcode toolbar is set to build for an iOS
Device (Figure D-10).

Coniguring Your Project ❘ 63

FiGure d-10

Access the project’s properties by selecting the root project node in the project navigator. Select
the build target and then switch to the Build Settings tab. Scroll down to the Code Signing section.
Locate the node that corresponds to the Debug coniguration. Under this node, you will ind a node
labeled Any iOS SDK. Ensure the value of this node is set to be the development provisioning proile
you created and installed earlier. In most cases the default value selected should be okay, but it helps
to verify this (Figure D-11).

FiGure d-11

At this point you are ready to test/debug your application on the iOS device. Simply click the Run
button on the Xcode toolbar to begin.

Ad Hoc Distribution
As an iOS application developer, there will be times when you need to try out your apps on one or
more test devices before submitting it to Apple for the App Store approval process. In cases where
these devices are your own, you can always set up the device for development and use Xcode to
debug applications on the device. In many cases, however, these devices may not be physically
accessible; for example, if a client asked you to provide a preview of your app for them to try out
on their devices. In these cases you will need to prepare your app for Ad Hoc distribution.

Using Ad Hoc distribution, you can distribute your application to a limited number of
devices outside the App Store. The standard iOS developer account enables you to specify
up to 100 devices each year, which can be used for development or Ad Hoc distribution.
It is important to remember that Ad Hoc distribution is not a replacement for App Store
distribution. Apps that are distributed in this manner will eventually expire, at which point
they can’t be run on the test devices.

oBTaininG and reGiSTerinG udidS

Each iOS device has a unique 40-digit identiier, commonly referred to as the device UDID.
Before you can use Ad Hoc distribution for your apps, you must obtain and register the
UDIDs of each device with the iOS Provisioning Portal.

You can obtain the UDID with Xcode or iTunes. To obtain the UDID for a device with iTunes,
simply connect the device to a computer with iTunes installed (keep in mind that your clients
may have PCs that do not ship with iTunes installed). Launch iTunes, and select the device
from the device list on the left side of the iTunes window. The UDID is hidden by default, and
to reveal it you need to click the Serial Number label, which then changes to read Identiier
(UDID) (Figure E-1).

Obtaining the UDID with Xcode and registering it with iOS Provisioning Portal has been
covered in Appendix D.

E

66 ❘ aPPendix e ad Hoc diSTriBuTion

FiGure e-1

creaTinG an aPP id (BundLe idenTiFier)

The next step involves creating and registering a unique identiier for your app; this is known as
the App ID or Bundle Identiier. In addition to uniquely identifying your application, it allows
your application to receive remote notiications, communicate with external accessories, or share
keychain data with other applications in a suite.

When you create a new project in Xcode, you are asked to provide a company identiier, and the
Bundle Identiier is generated for you by appending the name of the project to the company identi-
ier. To distribute the application through the App Store, or through Ad Hoc distribution, the identi-
ier you provide must match the one you register in the Provisioning Portal. You can always change
the Bundle Identiier for an existing application by editing the Bundle Identiier key in the project’s
info.plist ile (Figure E-2).

Creating a Bundle Identiier has been covered in Appendix D.

creaTinG a diSTriBuTion cerTiFicaTe

To distribute code to iOS devices, you must have a valid distribution certiicate installed on your
Mac. Creating a distribution certiicate involves creating an appropriate certiicate request and sub-
mitting this request to the iOS Provisioning Portal. Once the certiicate is ready, you will be able to
download and install it on your Mac.

Creating a Distribution Certiicate ❘ 67

FiGure e-2

To create a certiicate request, launch the Keychain Access utility from the Applications folder on
your Mac. When the Keychain Access utility is running, choose the Certiicate Assistant d Request
a Certiicate from a Certiicate Authority menu item.

In the Certiicate Assistant dialog (Figure E-3), specify the e-mail address and account name used to
access the iOS Developer Program, and ensure the Saved to Disk radio button is selected. Click the
Continue button to save the certiicate request as a ile on your Mac.

FiGure e-3

68 ❘ aPPendix e ad Hoc diSTriBuTion

Log in to the iOS Provisioning Portal, click the Certiicates category on the left side, and then click the
Distribution tab. Click the Choose File button and select the certiicate request ile that you had saved
on your Mac. Finally, click the Submit button to submit the certiicate request.

If you are not part of a team, and are solely responsible for handling your iOS Developer account,
your certiicate is issued automatically and available to download in a few minutes. You may need to
refresh your browser window. If you are part of a team, your team agent will need to irst approve the
certiicate request. When your certiicate is ready to download, you will see its stats listed as Issued,
and a Download link will be available as shown in Figure E-4.

Download the certiicate and save it to your Mac. By default, the certiicate should be saved to your
Downloads folder. If you haven’t done so already, download the WWDR Intermediate certiicate
from the same page of the iOS Provisioning Portal by using the link below the certiicate. Simply
double-click the certiicates to install them onto your Mac.

FiGure e-4

Creating a Provisioning Proile ❘ 69

creaTinG a ProviSioninG ProFiLe

After registering your device UDID, App ID, and creating a distribution certiicate, you will need to
create a distribution provisioning proile. A Provisioning Proile associates an App ID, a certiicate,
and some distribution-speciic information within Xcode. In the case of Ad Hoc distribution, the
certiicate in question would be the distribution certiicate you just generated in the previous section,
and the distribution-speciic information would be a list of UDIDs to which you want to distribute.

To create a distribution provisioning proile, log in to the iOS Provisioning Portal, click the
Provisioning category on the left side, and select the Distribution tab. Here you will see a list of
existing Distribution Provisioning Proiles. To create a new one, click the New Proile button.

Set the distribution method to Ad Hoc (Figure E-5) and provide a descriptive name for the new
proile. Select an App ID and a list of target devices. Click the Submit button to create the provi-
sioning proile.

Your provisioning proile is issued automatically and available to download in a few minutes. You
may need to refresh your browser window. Download the distribution provisioning proile onto
your Mac and install it by dragging the .mobileprovision ile onto Xcode in your dock.

FiGure e-5

70 ❘ aPPendix e ad Hoc diSTriBuTion

conFiGurinG your ProjecT For diSTriBuTion

The inal step in the process involves setting up your Xcode project and preparing an appropriate build.
Before you begin, make sure you have installed both your distribution certiicate and distribution provi-
sioning proile. To check, simply bring up the Xcode Organizer by clicking the last button in the Xcode
toolbar and select Provisioning Proiles in the Organizer menu.

If you have successfully installed your distribution provisioning proile and distribution certiicate,
your proile should be listed on this screen without any error messages in the Status column.

Once you have veriied that no errors are reported by the Organizer, close it and load the project
that you want to prepare for Ad Hoc distribution. If the project’s App ID is different from what has
been registered with the iOS Provisioning Portal, edit the value of the Bundle Identiier key in the
project’s info.plist ile to match.

Save the ile, and then ensure that the Scheme/Target
selector in the Xcode toolbar is set to build for an
iOS Device (Figure E-6).

Access the project’s properties by selecting the root
project node in the project navigator and select the
Info tab (Figure E-7).

21 3

FiGure e-7

Add a new build coniguration by clicking the + button below the list of conigurations. This brings
up a popup menu. Select the Duplicate “Release” Coniguration option to create a duplicate of the
Release build coniguration (Figure E-8). Name this duplicate Ad Hoc Release.

FiGure e-6

Coniguring Your Project for Distribution ❘ 71

FiGure e-8

Select the build target and then switch to the Build Settings tab. Scroll down to the Code Signing
section and locate the node that corresponds to the Ad Hoc Release coniguration you just created.
Under this node, you will ind a node labeled Any iOS SDK. Ensure the value of this node is set to
be the distribution provisioning proile you created and installed earlier. In most cases the default
value selected should be okay, but it helps to verify this (Figure E-9).

FiGure e-9

Select the Edit Scheme menu from the Scheme/Target
multi-selector in the Xcode toolbar (Figure E-10).

In the Edit Scheme dialog box, select Archive from the left
side menu to bring up archive-speciic options (Figure E-11).

Ensure the Reveal Archive in Organizer option is checked
and the Build Coniguration is set to Ad Hoc Release. Click
OK to dismiss this dialog.

At this point you are ready to prepare an archive that can be distributed to your clients/beta-testers.
To prepare an archive, simply select the Product d Archive menu item in Xcode. This builds your
project for Ad Hoc distribution. During the build process, Xcode may ask you to allow access to
your development certiicate; if it does, click the Allow button. When the archive is successfully
built, the Organizer opens automatically, revealing the archive (Figure E-12).

FiGure e-10

72 ❘ aPPendix e ad Hoc diSTriBuTion

2

1

3

4

FiGure e-11

FiGure e-12

The Archive tab in the Xcode Organizer lists all archives created across all projects. To share an
archive with your client/beta-tester, ensure the relevant archive is selected and click the Share button.
The Organizer presents a simple options sheet (Figure E-13). Ensure the iOS App Store Package option
is selected and click Next.

Once again, you may be prompted to allow access to your Distribution Certiicate. If so, click Allow.
In a few seconds you are presented with the standard Save File dialog box. Select a suitable location on
your Mac to save the packaged archive. Send the packaged archive .ipa ile to your clients/beta-testers.
To install the app, they will need to connect their iOS device to their Mac, bring up iTunes, drag the
.ipa ile onto the iTunes Library menu, and sync the iOS device.

Coniguring Your Project for Distribution ❘ 73

FiGure e-13

App Store Distribution
In most cases, after your app is ready and tested, you will want to list it on the App Store.
Regardless of your pricing strategy (free or paid), every application that is submitted to Apple
for distribution via the App Store is subject to an approval process. The approval process
takes about a week. Updated versions of an existing application also need to go through an
approval process.

To distribute your application via the App Store, you will need a standard, paid, iOS developer
account. If you have an enterprise iOS developer account, you cannot distribute your applica-
tions through the App Store. Submitting an application to Apple for inclusion in the App Store
is a two-stage process. First, you need to create an Application Proile on the iTunes Connect
portal, and then you need to submit your application binary with the Xcode Organizer.

Most of the steps involved in the second stage of creating and submitting the application
binary are similar to the Ad Hoc distribution process, and these steps are covered only briely
in this appendix.

creaTinG an aPPLicaTion ProFiLe

To start the App Store submission process, log in to the iTunes Connect portal at https://
itunesconnect.apple.com/ with your iOS developer account credentials. Once you have
logged in to the portal, click the Manage Your Applications link (Figure F-1).

On this screen you will see all your iOS and MacOS applications. You can either add a new
application, or manage one of the existing ones. To create a new Application Proile, click the
Add New App button on the top-left corner of the window (Figure F-2).

You will be asked to select the type of application you want to submit (iOS or MacOS). Selecting
the iOS App option will take you to the Application Information screen (Figure F-3).

On this screen you need to specify basic information on the app. including an application
name, a SKU code, and an application Bundle Identiier. Creating and registering Bundle
Identiiers was covered in Appendix D.

F

https://itunesconnect.apple.com/
https://itunesconnect.apple.com/

76 ❘ aPPendix F app STore diSTriBuTion

FiGure F-1

FiGure F-2

You will also need to enter a Bundle ID Sufix and verify that the bundle identiier speciied in your
Xcode project’s info.plist ile matches what is speciied on this screen.

The Bundle ID Sufix is typically the name you used while creating the Xcode project. The SKU
code is not used by Apple, but is used to identify the application on the monthly inancial report
provided by Apple. Click Continue when you have inished entering this information.

Creating an Application Proile ❘ 77

FiGure F-3

The next part of the process requires you to specify availability date and pricing information. The
pricing category you select will affect the price your end users pay for your application. If you do not
want your application to be available across all App Stores worldwide, you can select speciic countries
on this screen (Figure F-4) by clicking the Speciic Stores link and then selecting individual stores.

FiGure F-4

78 ❘ aPPendix F app STore diSTriBuTion

Click Continue to go to the next screen, where you will provide detailed information on the application.
This is a large screen and consists of the following sections:

 ➤ Metadata

 ➤ Rating

 ➤ EULA

 ➤ Uploads

The Metadata section resembles Figure F-5. Here you need to specify the following information:

 ➤ Version Number: This must match the value set in the Xcode project.

 ➤ Description: This is the description as you want it to appear on the App Store. It can be no
more than 4000 characters.

 ➤ Primary Category: Select a category that best describes the app you are adding from a list of
available categories.

 ➤ Subcategory: Some categories (like Games) allow you to specify up to two subcategories.

 ➤ Secondary Category: An additional category that further describes the app you are adding.

 ➤ Keywords: One or more keywords that describe the app you are adding. When users search
the App Store, the terms they enter are matched with these keywords.

 ➤ Copyright: The name of the person or entity that owns the copyright to the app.

 ➤ Contact Email Address: An email address where Apple engineers can contact you if there
are problems with your app.

 ➤ Support URL: A URL that links to the application’s support site.

 ➤ App URL: An optional URL that links to the application’s website.

 ➤ Privacy Policy URL: An optional URL that links to the application’s privacy policy page.

 ➤ Reviewer Notes: Optional notes intended for the person reviewing the application at Apple.
If your application uses any online services and requires its users to provide credentials to
access these services, you can provide a set of test credentials here for the reviewer to use.

The Rating section consists of a series of questions, the answers to which determine a rating cat-
egory for your application (Figure F-6). The rating determines the parental controls that will apply
to your application. As you change the answers to these questions, the age limit will change.

The EULA section allows you to provide a speciic end-user license agreement for speciic countries.
If you do not provide one, the standard license agreement will apply.

The Uploads section allows you to upload a few images for your application (Figure F-7). These
images are:

 ➤ Large 512 n 512 Icon: A 512 n 512 pixel image that is similar to the application icon and
will be used while listing your application on the App Store.

Creating an Application Proile ❘ 79

 ➤ iPhone and iPod Touch Screenshots: You can upload up to ive images. These must be
320 n 480 pixels for portrait applications and 480 n 320 pixels for landscape applications.

 ➤ iPad Screenshots: You can upload up to ive images. These must be 768 n 1024 pixels for
portrait applications and 1024 n 768 pixels for landscape applications.

FiGure F-5

FiGure F-6

80 ❘ aPPendix F app STore diSTriBuTion

FiGure F-7

If you are submitting a universal application, you will need to provide both iPhone and iPad
screenshots. Click the Next button at the bottom of the screen to inish creating the Application
Proile. You are then taken to the App Summary screen, where you should review the information
presented and click Done.

PreParinG and uPLoadinG The aPPLicaTion Binary

Once you have created the Application Proile, the next step involves preparing and uploading
the actual binary. You can do this immediately after creating the Application Proile or later on.
If you decide to do it later on, you will need to log in to the iTunes Connect portal and click the
Manage Your Applications link to come to the screen that lists all your applications (Figure F-8).
If you’ve decided to proceed immediately after creating the Application Proile, you should be at
this screen now.

Preparing and Uploading the Application Binary ❘ 81

FiGure F-8

You should ind your new application listed there. Click your application’s icon to access the App
Summary screen. The App Summary screen enables you to modify rights and pricing information,
conigure In-App purchases, Game Center, News Stand, and iAd Network settings. You can also
delete the app from this screen.

Toward the bottom of the screen you will see a list of versions for the application, along with status
information. Because this is a new application, there is only one entry in this list corresponding to
version 1.0. Click the View Details link to go to the details page for this version (Figure F-9).

FiGure F-9

82 ❘ aPPendix F app STore diSTriBuTion

On the Version Details screen you can edit metadata, update screenshots, conigure localization
options for your application, and update its status. Click the Ready to Upload Binary button on
this screen (located in the top-right corner).

You will be asked to verify that you are not exporting encryption software, and if you are you will need
to provide answers to additional questions. Select the appropriate options and click the Save button.

Click the Continue button on the next screen to go back to the Version Details screen, and note
that your application’s status has changed to “Waiting for Upload.” You can sign out of the iTunes
Connect portal at this point if you wish. The rest of the process involves building the application
binary and uploading it to the iTunes Connect portal using the Xcode Organizer.

If you haven’t done so already, you will need to create and install a distribution certiicate. This
process is covered in detail in Appendix D.

creating an app Store distribution Provisioning Proile

If this is the irst application you are submitting to the App Store, you will need to create an App
Store distribution provisioning proile. A provisioning proile associates an App ID, a certiicate,
and some distribution-speciic information within Xcode.

To create an App Store distribution provisioning proile, log in to the iOS Provisioning Portal, click
the Provisioning category on the left side, and select the Distribution tab. Here you will see a list of
existing distribution provisioning proiles. To create a new one, click the New Proile button.

Set the distribution method to App Store (Figure F-10) and provide a descriptive name for the new
proile. Select an App ID and click the Submit button to create the provisioning proile.

FiGure F-10

Preparing and Uploading the Application Binary ❘ 83

Your provisioning proile is issued automatically, and is available to download in a few minutes.
You may need to refresh your browser window. Download the distribution provisioning proile
onto your Mac and install it by dragging the .mobileprovision ile onto Xcode in your dock.

coniguring your Project for app Store distribution

The inal step in the process involves setting up your Xcode project and preparing an appropriate
build. Before you begin, make sure you have installed both your distribution certiicate and App
Store distribution provisioning proile. To check, simply bring up the Xcode Organizer by clicking
the last button in the Xcode toolbar and select Provisioning Proiles in the Organizer menu.

If you have successfully installed your App Store distribution provisioning proile and distribution cer-
tiicate, your proile should be listed in the Organizer without any error messages in the Status column.

Once you have veriied that no errors are reported by the Organizer, close it and load the project
that you want to prepare for App Store distribution. If the project’s App ID is different from what
has been registered with the iOS Provisioning Portal, edit the value of the Bundle Identiier key in
the project’s info.plist ile to match.

Save the info.plist ile if you have edited it, and then ensure that the Scheme/Target selector in the
Xcode toolbar is set to build for an iOS Device.

Access the project’s properties by selecting the root project node in the project navigator. Select the
build target and then switch to the Build Settings tab. Scroll down to the Code Signing section and
locate the node that corresponds to the Release coniguration.

Under this node, you will ind a node labeled Any iOS SDK. Ensure the value of this node is set to
be the App Store distribution provisioning proile you created and installed earlier (Figure F-11).

FiGure F-11

Select the Edit Scheme menu from the Scheme/Target
multi-selector in the Xcode toolbar (Figure F-12).

In the Edit Scheme dialog box, select Archive from the left
menu to bring up archive-speciic options. Ensure the Reveal FiGure F-12

84 ❘ aPPendix F app STore diSTriBuTion

Archive in Organizer option is checked and the Build Coniguration is set to Release (Figure F-13).
Click OK to dismiss this dialog.

1

2

3

4

FiGure F-13

At this point you are ready to prepare an archive that can be distributed to your clients/beta-testers.
To prepare an archive, simply select the Product d Archive menu item in Xcode. This builds your
project for App Store distribution. During the build process, Xcode may ask you to allow access
to your development certiicate. If it does, click the Allow button. When the archive is successfully
built, the Organizer opens automatically, revealing the archive.

To submit the archive to the iTunes Connect portal, ensure the relevant archive is selected, and click
the Submit button. The Organizer will ask you for your iTunes Connect login credentials, and present
a simple list of applications in the “Waiting for Upload” state (Figure F-14).

Ensure the correct Application Proile is selected, and click Next. Once again, you may be prompted
to allow access to your Distribution Certiicate; if so, click Allow. In a few seconds you are pre-
sented with a message conirming that the archive has been submitted for approval.

Preparing and Uploading the Application Binary ❘ 85

FiGure F-14

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

START YOUR FREE TRIAL TODAY!
Visit my.safaribooksonline.com/wrox43 to get started.

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

•Accesstohundredsofexpert-ledinstructional
videos on today’s hottest topics.

•Samplecodetohelpaccelerateawidevariety
of software projects

•Robustorganizingfeaturesincludingfavorites,
highlights,tags,notes,mash-upsandmore

•Mobileaccessusinganydevicewithabrowser

•RoughCutspre-publishedmanuscripts

Read this book for free online—along with thousands of others—
withthis15-daytrialoffer.

*Available to new subscribers only. Discount applies to the

Safari Library and is valid for first 12 consecutive monthly

billing cycles. Safari Library is not available in all countries.

	iPhone and iPad App 24-Hour Trainer
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	Instructional Videos on DVD
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Hello iOS!
	iOS Developer Essentials
	Try It

	Chapter 2: The iOS Simulator
	Features of the iOS Simulator
	Limitations of the iOS Simulator

	Chapter 3: A Tour of Xcode
	The Welcome Screen
	Selecting a Project Template
	Setting up Project Options
	An Overview of the Xcode IDE
	Try It

	Chapter 4: iOS Application Basics
	Application States
	Windows, Views, and View Controllers
	Frameworks
	Creating User Interface Elements
	Try It

	Chapter 5: Introduction to Storyboards
	Try It

	Chapter 6: Handling User Input
	Text Fields
	Text Views
	Try It

	Chapter 7: Communicating with Your Users
	Alert Views
	Action Sheets
	Try It

	Chapter 8: Adding Images to Your View
	The UIImage Class
	The UIImageView Class
	Try It

	Chapter 9: Pickers
	Arrays in Objective-C
	Try It

	Chapter 10: Date Pickers
	Dates in Objective-C
	Try It

	Chapter 11: Custom Pickers
	Try It

	Chapter 12: Navigation Controllers
	Navigation Controller Interface
	Navigation Controller Hierarchy
	Try It

	Chapter 13: Table Views
	Table View Workflow
	Table View Styles
	New for iOS 5
	Try It

	Chapter 14: Static Table Views
	Table View Types
	Table View Design
	Try It

	Chapter 15: Tab Bars and Toolbars
	Tab Bars
	Toolbars
	XIB-Based Xcode 4.2 Changes
	Try It

	Chapter 16: Creating Page-Based Applications
	The PageViewController Class
	The Page-Based Application Template
	Try It

	Chapter 17: Creating UI Elements Programmatically
	UIButton
	UILabel
	UIImageView
	Try It

	Chapter 18: Creating Views That Scroll
	The UIScrollView class
	 Scroll Views and Text Fields
	Try It

	Chapter 19: Popovers and Modal Views
	Popovers
	Modal Views
	Try It

	Chapter 20: Tweeting with Twitter
	The Tweet Sheet
	Try It

	Chapter 21: Basic File Handling
	The IOS File System
	Introducing the NSFileManager Class
	Object Serialization
	Try It

	Chapter 22: Property Lists
	Property List Types
	Creating Property Lists
	Try It

	Chapter 23: Application Settings
	Adding a Settings Bundle
	Reading Preferences with Code
	Try It

	Chapter 24: iTunes File Sharing Support
	Try It

	Chapter 25: Introduction to iCloud Storage
	Basic Concepts
	Preparing to Use the iCloud Storage APIs
	Checking for Service Availability
	Using iCloud Document Storage
	Try It

	Chapter 26: Introduction to Core Data
	Basic Concepts
	Instantiating Core Data Objects
	Writing Managed Objects
	Reading Managed Objects
	Try It

	Chapter 27: XML Parsing with NSXMLParser
	XML Fundamentals
	The NSXMLParser Class
	The NSXMLParserDelegate Protocol
	A Simple XML File and How it Is Parsed
	Try It

	Chapter 28: Consuming SOAP Web Services
	Try It

	Chapter 29: Touches and Gestures
	Touch Events
	Gesture Events
	Try It

	Chapter 30: Printing
	Preparing Content for Printing
	Try It

	Chapter 31: Basic Animation with Timers
	Animating UIView Subclasses
	Try It

	Chapter 32: Introduction to Core Image
	Images and Filters
	Using Core Image
	Try It

	Chapter 33: Building Universal Applications
	Examining the Universal Application Template
	Try It

	Chapter 34: Where Am I? Introducing Core Location
	Handling Location Updates
	Handling Errors and Checking Hardware Availability
	Obtaining Compass Headings
	Try It

	Chapter 35: Introducing Map Kit
	Adding Annotations
	Try It

	Chapter 36: Using the Camera and Photo Library
	Try It

	Chapter 37: Introduction to Core Motion
	Accelerometers and Gyroscopes
	Core Motion Basics
	Checking Hardware Availability
	Handling Accelerometer Events
	Handling Gyroscope Events
	Try It

	Chapter 38: Building Background-Aware Applications
	Understanding Background Suspension
	Executing Background Code
	Creating Local Notifications
	Try It

	Appendix A: What’s on the DVD?
	System Requirements
	Using the DVD on a PC
	Using the DVD on a Mac
	What’s on the DVD
	Troubleshooting
	Customer Care

	Index
	Appendix B: Introduction to Programming with Objective-C
	Fundamental Programming Concepts
	Variables, Statements, and Expressions
	Making Decisions and Performing Repetitive Tasks
	Introduction to Object-Oriented Programming (OOP)

	Appendix C: Introduction to ARC
	Object Ownership
	Converting Projects to ARC

	Appendix D: Testing on an iOS Device
	Obtaining and Registering UDIDS
	Creating an App ID (Bundle Identifier)
	Creating a Development Certificate
	Creating a Provisioning Profile
	Configuring Your Project

	Appendix E: Ad Hoc Distribution
	Obtaining and Registering UDIDs
	Creating an App ID (Bundle Identifier)
	Creating a Distribution Certificate
	Creating a Provisioning Profile
	Configuring Your Project for Distribution

	Appendix F: App Store Distribution
	Creating an Application Profile
	Preparing and Uploading the Application Binary

	Advertisement

